

QoE-Aware Video Communication in Emerging

Network Architectures

A dissertation submitted to the

Graduate School of the University of Cincinnati

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science

of the College of Engineering and Applied Science

July 2021

by

Mohammad Nazmus Sadat

B.Sc., Khulna University of Engineering & Technology, Bangladesh, 2013

Dissertation advisor and committee chair:

Rui Dai, Ph.D.

Abstract

The demand for video content has skyrocketed in the past decade owing to the popularity

of video streaming services such as YouTube and Netflix and the expanding usage of video

analytics applications such as surveillance, telemedicine, and public safety. This tremendous

demand for video has necessitated providing good quality of experience (QoE) to video ap-

plication users. Although the concept of QoE is not new, the developments of new network

architectures and computational paradigms have led to the need to design QoE-aware video

communication frameworks that can handle the new challenges. The overall goal of this

dissertation is to study video quality in emerging networks from the perspectives of both

human users and video analytic tools and propose new QoE-aware video communication

strategies to improve video quality in both cases. Content-Centric Networking (CCN) is a

future Internet architecture that has been proposed to tackle the vast amount of global video

traffic, provide better scalability, and allow more efficient bandwidth usage. A key feature of

CCN is ubiquitous in-network caching, where popular contents are cached near the end-user

for faster content fetching. However, this caching mechanism brings new challenges in main-

taining QoE for video streaming. We investigated how in-network caching influences video

content distribution and video streaming among CCN nodes. Then, we conducted human

subjective tests to quantify the influence of the video stalling events on the overall QoE

scores. After that, we proposed a new QoE-aware multi-source video streaming algorithm

for CCN that aims to suppress the stalling resulted from switching between content sources.

The exchange of video among different wireless communication entities has seen an up-

rise due to the popularity of wireless imaging applications and the Internet of Things (IoT)

technology. Software-defined radio (SDR) is a promising technology to communicate across

different wireless networking standards because of its implementation flexibility, achieved

using software rather than hardware, for signal processing tasks. We designed and imple-

mented (both simulation and hardware) an SDR video streaming platform with integrated

QoE components, which can handle both real-time and stored videos. Then we studied how

several parameters from the application and physical layers influence the QoE of the received

videos. Lastly, we proposed a cross-layer QoE-aware video streaming solution to maximize

viewers’ QoE.

Video analytics applications often require fast response and high accuracy. Performing

the video analysis at the network edge can provide significantly lower latency and bandwidth

consumption. In our pursuit to study video quality from the perspective of video analytics

tools, we designed and implemented a video analytics platform based on edge computing.

Then, we investigated the factors that influence the quality of edge computing-based video

analysis as well as the factors that contribute to the overall latency both in terms of com-

putation and communication. Next, we studied the trade-off between the video analysis

quality and the latency, i.e., computation benefits at the edge vs. remote server. Finally,

we proposed a quality-aware edge computing-based video analytics framework to minimize

latency while guaranteeing detection accuracy.

ii

©2021 Mohammad Nazmus Sadat.

All rights reserved.

iii

Acknowledgements

I am indebted to my advisor, Dr. Rui Dai, for her invaluable support and guidance through-

out this dissertation research. Her substantial knowledge, pragmatic insights, and construc-

tive feedback have been immensely helpful in developing my research skills and preparing

myself for the next step in my career.

I would like to sincerely thank other members of my dissertation committee. Dr. H.

Howard Fan, Dr. Nan Niu, Dr. Carla Purdy, and Dr. Manish Kumar have closely supervised

my dissertation research, and I appreciate their time and guidance.

I also want to thank all my Cincinnati friends whom I met on and off-campus. My

life in Cincinnati would not be nearly as good without their tremendous help and support.

In addition, I highly value the research collaborations with my friends from the Multimedia

Networking and Computing (MNC) Lab. Friends who have been instrumental in my journey

at UC include Nesrin, Hiranya, Erwin, Aishvarya, and Madhu.

My parents (Mr. Quzi Mofazzel Huq and Mrs. Kamrun Naher) have made innumerable

sacrifices to provide me with all the opportunities to reach this stage in my life, and I cannot

express in words how grateful I am to them. They have always supported me and encouraged

me to push forward. Likewise, I thank my wife, Fariha, for her unceasing understanding and

support; life as the spouse of a Ph.D. student was not easy. Furthermore, my sister, Mou,

has always been my biggest supporter, and I am grateful for her presence in my life.

Lastly, I am thankful to my one-year-old son, Zavian, who, albeit made this journey a

little more challenging but gave me the strength and love to persist through.

iv

Contents

List of Figures ix

List of Tables xii

List of Abbreviations xiv

1 Introduction and Overview 1

2 QoE-Aware Multi-Source Video Streaming in CCN 5

2.1 Background . 5

2.2 Related Works . 7

2.2.1 Stalling in CCN Video Streaming . 7

2.2.2 Usage of DASH in CCN . 8

2.2.3 Novelty of Our Work . 9

2.3 Impact of Distributed Caching on QoE . 9

2.4 Human Subjective Test . 12

2.4.1 Overview and Test Procedure . 12

2.4.2 Analysis of Subjective Test Data . 13

2.5 QoE Model . 17

2.6 Caching Mechanism and Content Distribution 21

2.7 Proposed Streaming Algorithm . 23

2.7.1 ASDC Overview . 23

v

2.7.2 Steps of ASDC . 25

2.8 Performance Analysis . 29

2.9 Conclusion . 36

3 Cross-Layer QoE-Aware Video Streaming over SDR 38

3.1 Background . 38

3.2 Related Works . 40

3.2.1 SDR-Based Platforms for Video Communication 40

3.2.2 Cross-layer Video Communication . 41

3.2.3 Novelty of Our Work . 42

3.3 SDR Platform Design . 43

3.3.1 Components for Video Communication over USRP 43

3.3.2 Cross-layer Parameters . 45

3.3.3 QoE components . 46

3.4 Measurement Results: Which Parameters

Influence QoE? . 48

3.5 QoE-Driven Cross-Layer Video Communication 51

3.6 Performance Analysis . 54

3.6.1 General Performance . 54

3.6.2 Cross-layer Adjustments . 55

3.7 Conclusion . 58

4 Quality-aware Video Analytics in Edge Computing Environments 59

4.1 Introduction . 59

4.1.1 Overview . 59

4.1.2 Proposed Work . 62

4.2 Related Works . 62

4.2.1 Edge Computing-based Video Analytics 62

vi

4.2.2 QoE-aware Video Streaming in Edge Computing 63

4.2.3 Novelty of Our Work . 64

4.3 Experimental Platform for Video Analytics based on Edge Computing 64

4.3.1 Testbed Components . 64

4.3.2 Object Detection Model and Dataset 66

4.4 Study of Quality and Latency for Edge Computing 67

4.4.1 Dataset and CNN Model . 68

4.4.2 Impact on Accuracy . 69

4.4.3 Impact on Latency . 70

4.5 Quality-Aware Video Analytics based on Quality-Latency Trade-off 73

4.6 Performance Analysis . 75

4.6.1 General Performance . 75

4.6.2 Performance of QVAF . 76

4.7 Conclusion . 79

5 Developed Experimental Platforms 81

5.1 QoE-Aware Multi-Source Video Streaming Platform over CCN 81

5.1.1 System Components . 83

5.1.2 Challenges . 84

5.1.3 Applications . 84

5.2 SDR-Based QoE-Aware Video Streaming Platform 85

5.2.1 System Components . 85

5.2.2 Video Transmission and Reception 87

5.2.3 Challenges . 88

5.2.4 Applications . 89

5.3 Quality-Aware Edge Computing-based Video Analytics Platform 90

5.3.1 System Components . 90

5.3.2 Challenges . 92

vii

5.3.3 Applications . 93

6 Conclusion and Future Work 94

6.1 Research Contributions . 94

6.2 List of Publications . 96

6.3 Future Work . 96

6.3.1 ICN Video Streaming: Other Facets 97

6.3.2 More Comprehensive QoE Model . 97

6.3.3 Quality-Driven Task Delegation . 98

7 Bibliography 99

viii

List of Figures

2.1 The diagram of CCN network topology . 10

2.2 Snapshots of video sequences . 11

2.3 Ground truths of stalling frequency and stalling length 13

2.4 Stalling ground truths vs. subjective scores 14

2.5 Overall MOS, SwSF, and SwSL under four CCN conditions 15

2.6 Overall MOS vs. SwSF under different video clarity levels 16

2.7 MOS from human subjective tests. (a) MOS vs. SwSF for different clarity

levels, (b) MOS vs. SwSL for different clarity levels, (c) MOS vs. Clarity for

different SwSF levels, and (d) MOS vs. Clarity for different SwSL levels . . . 18

2.8 Mean opinion scores (MOS) from human subjective tests and QoE model for

92 videos . 20

2.9 Network topology used in ccnSim . 21

2.10 An example of rate adaptation considering switches 26

2.11 Snapshots of video sequences. (a) Big Buck Bunny, (b) Elephants Dream, (c)

Of Forests and Men, (d) Tears of Steel, (e) The Swiss Account, (f) Valkaama 30

2.12 Avg. number of source switches for different caching methods 32

2.13 Delay variations of chunk arrival for DASH, SVC, and ASDC 32

2.14 Average bitrate/request vs. throughput for DASH, SVC, and ASDC 33

2.15 Estimated QoE for different videos under ASDC, DASH, and SVC 34

ix

2.16 Comparison of estimated QoE between ASDC, DASH, and SVC under differ-

ent caching methods . 35

3.1 System overview . 43

3.2 A Unix Pipe connecting GStreamer to GRC 44

3.3 Snapshots of transmitted and received video frames 46

3.4 Relationship between the input parameters and FL 49

3.5 Relationship between the input parameters and Pn 49

3.6 Relationship between the input parameters and Sn 51

3.7 Pn comparison . 56

3.8 Sn comparison . 57

3.9 FL comparison . 57

4.1 Object detection sample . 60

4.2 Edge computing-based video analytics architecture 65

4.3 Snapshots of video sequences used for activity recognition 68

4.4 Average detection accuracy for different video resolutions 69

4.5 Processing and transmission latency for different video resolutions 71

4.6 Total latency for QVAF vs. baseline configurations: high accuracy requirement 77

4.7 Total latency for QVAF vs. baseline configurations: moderate accuracy re-

quirement . 79

5.1 Content-Centric network architecture . 82

5.2 Client-server connection in our platform . 83

5.3 A picture of our SDR platform . 85

5.4 Flowgraph in GNU Radio . 86

5.5 GStreamer commands . 87

5.6 Video input stream . 88

5.7 An example of video reception . 88

x

5.8 Activity recognition on the receiver side . 90

5.9 Time synchronization between transmitter and receiver 91

xi

List of Tables

2.1 Correlation coefficient between Overall MOS with SwSF, SwSL and clarity . 17

2.2 The results of principal component analysis 17

2.3 Parameters used for the simulation . 22

2.4 Content distribution among CCN nodes . 22

2.5 List of variables used in the model . 24

2.6 Average computational complexity . 36

3.1 List of configuration parameters for video streaming 44

3.2 Range of input parameters used in our experiments 48

3.3 Impact of cross-layer parameters on video quality: Standard Deviation . . . 51

3.4 Relevance Scores of the cross-layer parameters: Priority list 52

3.5 General performance of the platform: QoE Scores 54

3.6 Estimated SNR levels for different Tx Power 55

3.7 Cross-layer parameter config. to maximize Pn 56

3.8 Cross-layer parameter config. to maximize Sn 57

3.9 Cross-layer parameter config. to minimize FL 58

4.1 Range of input settings for videos used in our experiments 67

4.2 Processing delays for edge vs. server . 72

4.3 List of variables used in QVAF . 74

4.4 General performance of the video analytics platform 76

xii

4.5 Video properties and processing location: high accuracy requirement 77

4.6 Video properties and processing location: moderate accuracy requirement . . 78

xiii

List of Abbreviations

ASDC Adaptive Streaming with Distributed Caching

AVC Advanced Video Coding

BTW Betweenness Centrality

BRISQUE Blind/Referenceless Image Spatial Quality Evaluator

CCE Caching Everything Everywhere

CCN Content-Centric Networking

CNN Convolutional Neural Network

CL-SDR Cross-Layer Video Streaming Protocol for SDR

CLT Content-Listing Table

CoA Cost-Aware

CS Content Store

CUDA Compute Unified Device Architecture

DASH Dynamic Adaptive Streaming over HTTP

DNN Deep Neural Network

ER Edge Router

FIB Forwarding Information Table

FDT File Distribution Table

xiv

GPU Graphics Processing Unit

HEVC High Efficiency Video Coding

ICN Information-Centric Networking

IoT Internet of Things

IP Internet Protocol

IR Intermediate Router

LCE Leave Copy Everywhere

LRU Least Recently Used

LTE Long Term Evolution

M2M Machine-to-Machine

MEC Multi-Access Edge Computing

MOS Mean Opinion Score

MSE Mean Squared Error

NDN Named Data Network

NTP Network Time Protocol

PC Principal Component

PCA Principal Component Analysis

PIT Pending Interest Table

QoE Quality-of-Experience

QoS Quality-of-Service

QP Quantization Parameter

QVAF Quality-Aware Video Analytics Framework

RMSE Root-Mean-Squared Error

xv

RTMP Real Time Messaging Protocol

SDR Software Defined Radio

SF Stalling Frequency

SHF Super High Frequency

SL Stalling Length

SNR Signal-to-Noise Ratio

SPR Shortest Path Routing

SQI Streaming QoE Index

SSIM Structural Similarity Index

SwSF Satisfaction with Stalling Frequency

SwSL Satisfaction with Stalling Length

SVC Scalable Video Coding

TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicles

UHD USRP Hardware Driver

UHF Ultra High Frequency

URI Uniform Resource Identifier

USRP Universal Software Radio Peripheral

VHF Very High Frequency

VQA Video Quality Assessment

VR Virtual Reality

xvi

Chapter 1

Introduction and Overview

The global Internet traffic has been increasing exponentially over the past two decades. This

rapid increase is primarily due to the ever-growing number of networked devices, which is

predicted to be more than three times the world population by 2023 [1]. Video devices, in

particular, can have a multiplier effect on traffic. According to the Cisco Visual Networking

Index [2], Internet video will represent 82% of all business Internet traffic by 2022. The

majority of this video traffic comes from two categories: end-user devices running video

streaming applications and Machine-To-Machine (M2M) connections. The first category in-

cludes video streaming applications such as YouTube, Netflix, cloud gaming, and virtual

reality (VR) streaming. While traditionally, the M2M traffic, also known as the Internet

of Things (IoT), has been less than that from the end-user devices, the amount of traffic is

growing faster than the number of connections due to the increase of M2M video application

deployment [1]. Moreover, many IoT applications such as surveillance, telemedicine, indus-

trial automation, public safety, and autonomous vehicles have integrated automatic video

analytics (e.g., facial recognition, smoke and flame detection, motion detection, etc.). This

enormous demand for video communication has made it crucial to provide good video quality

to both human viewers and video analytics tools.

Quality of Experience (QoE) is a measure of the satisfaction or annoyance of a customer’s

1

experience with a service. The factors that influence human viewers’ QoE include stalling

or video freezing, video resolution, initial delay, bitrate, and quality variations. In contrast,

video analytics quality depends on the quality of input video frames, video content, compres-

sion method, computing capacity, and detector algorithms. Although the concept of QoE is

not new, the development of new network architectures and computational paradigms has

led to the need to design quality-aware video communication frameworks that can handle

the new challenges and take advantage of the new features.

The overall objective of this dissertation is to study video quality in emerging

networks from the perspectives of both human users and video analytic tools and

then design new QoE-aware video communication strategies to improve video

quality in both cases.

To cope with the rapidly growing Internet traffic and provide a more bandwidth-efficient,

flexible, and scalable network, several future Internet architectures have been proposed in

the past decade. Content-Centric Networking (CCN) is one such approach that aims to

address the Internet’s modern-day need for secure content dissemination on a massive scale

to a diverse set of end devices. Because of the new features and the core differences between

the traditional IP network and CCN, it is essential to study how video streaming will be

different in CCN, along with the new challenges that need to be tackled to guarantee good

QoE. First, we investigated the impact of network-level caching, a key feature of CCN, on

content distribution and video streaming. Next, we determined how different CCN caching

mechanisms influence video content distribution across multiple sources and whether it leads

to more frequent video stallings. Then, we conducted human subjective tests to find out the

degree to which video stalling influences the mean opinion scores (MOS). Lastly, we proposed

a new QoE-aware multi-source video streaming framework to maximize QoE in CCN video

streaming. Our video streaming scheme utilizes a QoE prediction model with customized

parameters based on our human subjective test results.

The expanding usage of the IoT and M2M video applications has primarily been over

2

wireless connections. These connections linking different types of devices often have varying

standards and specifications. Hence, it is vital to provide satisfactory QoE for video commu-

nication across various wireless communication entities. Software-defined radio (SDR) is a

radio communication technology that uses software to implement components that have been

traditionally implemented using hardware. This flexibility in implementation allows SDR to

be used for exchanging videos among various wireless technologies. We developed a QoE-

aware video streaming framework over SDR. First, we designed and built a video streaming

platform over SDR featuring integrated QoE measurement components. The SDR platform

has been constructed using Universal Software Radio Peripheral (USRP), GNU Radio [3],

and GStreamer [4]. Second, we observed how the different application layer settings and

physical layer parameters influence the QoE of both real-time streaming and stored video

transmission. Lastly, we proposed a cross-layer QoE-aware video streaming architecture that

adjusts both physical and application layer parameters to maximize the received videos’ QoE.

In the next phase of our research, we studied video quality from the perspective of

video analytics tools. Video analytics applications are often time-sensitive and demand high

accuracy. To meet both of these requirements, edge computing-based video analysis has

been widely used since performing video analysis at the network edge can provide lower

latency, reduced bandwidth consumption, and the availability of powerful cloud computing

resources offers high accuracy when required. However, there is a trade-off between latency

and analysis quality; faster response time means less time for computation, i.e., lower analysis

quality and vice versa. We studied this trade-off and optimized the streaming process for the

best overall quality and latency. First, we designed and implemented a quality-aware video

analytics platform based on edge computing. Then, we investigated the factors that influence

the quality of edge computing-based video analysis as well as the factors that contribute to

the overall latency both in terms of computation and communication. Instead of focusing

just on the video bitrate or file size, we dived deeper and studied how video properties such

as resolution, frame rate, and quantization parameter influence detection accuracy. Lastly,

3

we proposed a quality-aware edge computing-based video analytics framework to guarantee

required analysis accuracy while minimizing total latency.

The rest of this dissertation is organized as follows. Chapter 2 describes our study on

the impact of CCN content distribution on QoE and also illustrates our QoE-aware multi-

source video streaming solution for CCN. Chapter 3 presents our cross-layer video streaming

architecture over SDR. Chapter 4 illustrates our research on quality-aware video analytics

in edge computing environments. In Chapter 5, our developed experimental platforms are

discussed. Chapter 6 delineates the overall contribution of our research and concludes the

dissertation.

4

Chapter 2

QoE-Aware Multi-Source Video

Streaming in CCN

2.1 Background

The traditional host-centric Internet architecture is no longer suitable for the Internet, as the

vast majority of current Internet usage consists of data being distributed from a source to

numerous clients. Information-Centric Networking (ICN) [5] has been proposed as a future

Internet architecture aiming to handle the vast amount of data, to provide better scalability

and efficiency in terms of bandwidth demand. ICN allows a user to focus on the data itself

rather than the location of the data. ICN-based video streaming has been demonstrated

to generate better average quality than traditional TCP/IP-based streaming, thanks to the

load balancing capability of ICNs [6].

Content-Centric Networks (CCN) [7] is a popular implementation of the ICN paradigm,

particularly because of its CCNx [8] platform. We will focus on CCN in this work. The

in-network caching mechanism of CCNs brings new challenges in maintaining the quality

of experience (QoE) for video streaming. In-network caching allows faster content-fetching

from nodes that are geographically closer to the user. By default, CCN follows the leave-

5

copy-everywhere (LCE)[7] caching strategy, which means popular contents will be cached

nearer to the end-user. So, there might be multiple copies of the same content in the nearby

nodes. Contrary to the classic streaming assumption that a client downloads a video from a

single source, a client in CCN may get the video from multiple sources. Videos being larger

in file size than other file types increases the probability of this scenario. Moreover, all users

do not watch the whole video. For instance, in the case of YouTube, 60% of viewers watch

only the initial 20% of a video [9]. Hence, the whole video may not be cached in all the

nodes; instead, each node may cache a different amount depending on the popularity of the

video among the viewers connected to it. In addition, due to the limitation of the cache size

[10], each node will only cache locally popular segments.

Getting data from multiple sources may cause stalling during the playback at the user

side. Stalling, defined as the momentary disruption in the fluidity of video playback due

to network impairments, is a prominent factor that could degrade user experience [11].

Stalling events during the video playback are caused by the rebuffering of the video due

to an insufficient content delivery rate. When a client gets videos from multiple sources

in CCNs, switching between sources could introduce additional delays. Moreover, the link

quality between a user and each source could be different, and the associated delays will be

different, causing intermittent stalling and lower QoE [12].

To date, little is known to what extent video streaming from multiple sources affects QoE

in CCN. In our preliminary work [13], we investigated the impact of content source switching,

which is brought by distributed in-network caching, on the QoE for video streaming in

CCNs. We conducted human subjective tests using videos generated from a CCN emulation

platform. Our test results indicate that switching between content sources could cause more

stalls in video playback and thus decrease QoE scores.

Next, we proposed a new QoE-aware multi-source video streaming scheme for CCN.

First, we investigated the characteristics of video content distribution under a variety of

CCN caching methods. We then proposed a new adaptive video streaming with distributed

6

caching (ASDC) algorithm that aims to suppress the stalling resulting from switching be-

tween content sources to maintain satisfactory QoE during the switching process. The design

of ASDC is based on the conclusions from many user experience studies[11, 14]: i) stalling

or disruption of video fluidity has the largest effect on QoE, and ii) temporary reduction of

the video quality to avoid stalling is preferable to most viewers. To achieve adaptive video

quality, we used scalable video streaming in which scalable video coding (SVC) [15] is applied

to the source videos. Our algorithm employs a QoE model that characterizes the effect of

stalling, and the parameters of the model are adjusted by our human subjective test results.

Based on the prediction of possible stalling and resulting QoE degradation, the proposed

algorithm automatically adjusts the video quality to maintain playback fluidity.

2.2 Related Works

2.2.1 Stalling in CCN Video Streaming

Stalling or video freezing is the momentary disruption in the fluidity of video playback.

Stalling is a major factor that degrades the QoE of end-users. A study [16] on stalling events

caused by network bottlenecks showed that QoE is primarily influenced by the frequency

and duration of stalling events. Moreover, stalling has a worse impact on QoE than frame

rate reduction [17]. For conventional networks, network congestion, collision, and packet loss

are the main contributing factors to stalling, and many techniques have been proposed to

reduce stalling frequencies and lengths [18, 19, 20]. For CCN, however, little is known about

how source switching introduced by distributed caching could impact the QoE for video

streaming. A few recent studies aimed at improving the QoE for video streaming in CCNs

using strategies such as adaptive bitrate streaming [21, 22] and proactive content caching

[23], but none of them studied the relationship between source switching and QoE in depth.

7

2.2.2 Usage of DASH in CCN

Dynamic adaptive streaming over HTTP (DASH) is widely used in conventional networks.

Traditionally, advanced video coding (H.264/AVC) is most commonly used in DASH to

encode videos. We refer to H.264/AVC as AVC in the rest of this section. However, there

are some challenges in the direct application of this technique in CCNs. In DASH-AVC, each

quality layer is independent of all other quality layers, leading to a significant amount of

redundancy, both in segment storage and delivery. In contrast, scalable video coding (SVC)

creates a dependency between different quality layers, and the addition of each enhancement

layer to the base layer upgrades the quality. This reduces the load on video servers [24],

improves cache hit ratio [25], lowers cache redundancy [26], and helps to tackle the cache-

size constraints in CCN [27].

Moreover, AVC based DASH clients strongly depend on end-to-end throughput estima-

tion to select a proper version of the content [28]; once a quality is chosen, the segment

cannot be upgraded to a higher quality and a partially received segment cannot be decoded

at a lower quality. This can be an issue in CCNs, where, unlike traditional networks, con-

tent is served through multiple caches with different throughput, and content sources are

transparent, making the throughput assessment task difficult. Overestimation of available

throughput can lead to buffer drainage, an increased number of quality switches and video

freezes. SVC allows the client to gradually upgrade or downgrade the quality by adjusting

the number of enhancement layers, leading to more efficient quality-switching and a higher

average video rate compared to AVC [26]. In [22], the throughput estimation issue of DASH

is identified, and a hop-by-hop adaptive video streaming scheme is proposed. SVC is utilized

to enable the routers to proactively drop the less valuable SVC layer data packets, which is

not possible in the case of AVC based DASH.

Additionally, in traditional DASH applications, a large playout buffer is required to

guarantee a continuous playout. The incremental characteristic of SVC allows reducing the

buffer size as the base layer guarantees an uninterrupted playout. This can be helpful in

8

CCN video streaming as the client may switch to a different cache during playback.

Furthermore, AVC does not permit to fully utilize one of the main innovations introduced

by CCN, i.e., the possibility to simultaneously use all the available network interfaces of a

device. This is especially beneficial in mobile networks, where the video streaming client has

different antennas, e.g., LTE, Bluetooth, Wi-Fi, etc. In standard AVC, only the interface

providing the highest bitrate is used to forward an interest. The layered structure of SVC

provides a natural way to use multiple interfaces concurrently, thus increasing the aggregated

throughput for the client and, hence, improving the QoE. In [29], a network coding-based

DASH implementation over named data network (NDN) is proposed, where the client uses

different network interfaces to receive video packets across multiple interfaces simultaneously,

providing better cache-hit ratio, faster video quality adaptation, and reduced server load.

2.2.3 Novelty of Our Work

Our work is consistent with the recent CCN video streaming solutions [22, 27] in that we

also utilize scalable video streams. The unique contribution of our work is two-fold. First,

we investigate the problem of video streaming from multiple routers in CCNs, which has

not been addressed in other CCN video streaming studies. Second, our QoE-aware video

streaming solution is based on a statistical QoE model obtained from extensive experimental

results as well as realistic caching mechanisms in CCNs.

2.3 Impact of Distributed Caching on QoE

Fig. 2.1 shows a typical CCN network topology and an example of content source switching

during video streaming. A client is connected to an edge router ER, and ER is in turn

connected to the content server through several intermediate routers, such as IRi, IRj, and

IRk. To get a particular video, the client will send requests to ER. Depending on the

availability of the content at ER, two scenarios may arise. First, the whole video may be

9

Edge Router

Main

Content

Server

Client

Intermediate

Routers

ER

IRi IRj IRk

Figure 2.1: The diagram of CCN network topology

cached at the Content Store (CS) of ER, and thus ER will directly serve the video to the

client. As discussed earlier, this is unlikely for most content. Second, the video may be

partially cached at ER or not cached at all. In this case, ER will obtain the complete or

parts of the video from the intermediate routers or the content server. In the example of

Fig. 2.1, IRi has cached the first 40% frames of a video. When IRi finds that it does not

have the rest of the video, it will switch to IRj and IRk, which can provide the middle 30%

and the last 30% frames of the video. This results in a total number of two switches in the

video streaming process. It should be noted that, even if the complete video is cached at

one intermediate router, ER may still switch to another router with the same content if the

link quality between ER and the first router deteriorates. If none of the routers contain a

specific part of the video, the main content server will respond.

We installed CCNx 1.0 [8] (Distillery 2.0) on Ubuntu 14.04. All the routers and the

main content server were connected through the Ethernet, while the client and the edge

router were connected through 802.11n wireless connection. The main content server had

10

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Snapshots of video sequences

the complete video files, and the intermediate routers contained different parts of the same

video. Different cache distributions were used for different video files with up to 20% cache

overlap between routers. This content distribution simulates the in-network caching of the

CCN routers with the default LCE [7] caching strategy. LCE, also known as CCE (caching

everything everywhere), is an on-path, homogeneous, and non-cooperative caching technique.

Each video file was chunked into 1200 byte segments and stored in the CS of intermediate

routers. This segment size was chosen to prevent IP fragmentation of CCNx content object

messages. Each intermediate router had a server application that maintained the videos

in the CS and parsed the incoming requests to serve appropriate segments to the client.

A modified version of the CCN-VLC plugin [30] was used for the streaming purpose on

the client side. The requests sent from the client to the routers had the following format:

ccnx:/ccnx/fetch/Videoname.mp4/Chunknumber. The client determines the chunk number

using the file size information obtained from the server.

11

2.4 Human Subjective Test

2.4.1 Overview and Test Procedure

We conducted human subjective tests using videos generated from the aforementioned plat-

form. We selected 8 raw video clips from four movies: Big Buck Bunny and Elephants Dream

in Xiph.org Video Test Media Collection [31], Tears of Steel [32], and Valkaama [33]. These

video clips contain different motion characteristics: half classified as high motion and half

as low motion, based on the temporal information index defined by ITU-T P.910 [34]. The

genres of the 8 videos cover animation, talk show, human with nature, science fiction, and

action movie, as shown in Fig. 2.2. Each video has 1280×720 pixels with a duration of 30

seconds. We encoded the eight raw videos in two bitrates (1500 kbps and 200 kbps) with

the HM reference software (HEVC Standard) and generated 16 encoded videos. The choices

of bitrates align with common bandwidth conditions in the network, and the two bitrates

reflect different levels of clarity. Four file distribution cases for CCN caching were emulated:

a video is distributed among 1, 3, 4, and 5 routers, resulting in 0, 2, 3, and 4 switches during

the video streaming process. The 16 videos were transmitted over each of these cases, and

finally, 64 video samples were obtained. The channel bandwidth between the edge router

and the client was set to 2600 kbps for higher quality videos and 350 kbps for lower quality

ones. These bandwidth values were carefully selected to ensure that the channel had enough

capacity to transmit videos without stalling in the absence of source switching.

In the subjective test, 36 participants (21 males, 15 females with normal vision aged

from 18 to 34) rated the video samples in an indoor office with ordinary illumination. The

methodologies for the assessment of video quality are based on the recommendation of ITU-

R BT.500-13, the single-stimulus method [35]. A graphical user interface was used to record

individual ratings by playing 64 videos in random order. And the rating index with nine

scales ranging from 1 (unbearable/poor) to 9 (satisfied/excellent) was used to evaluate the

overall quality of the video, i.e., overall mean opinion score (MOS), satisfaction with stalling

12

length (SwSL), satisfaction with stalling frequency (SwSF), and video clarity, etc. The

screening method recommended by BT.500-13 was used to screen the collected data [35].

The first four video ratings of each subject as ”dummy presentations” were removed for

stabilizing opinions [35]. After examining the outliers [35], no observers were rejected.

2.4.2 Analysis of Subjective Test Data

(a) Stalling Frequency (b) Stalling Length

Figure 2.3: Ground truths of stalling frequency and stalling length

To understand the effect of source switching on the stallings in received videos, we first

check the distributions of the ground truths of stalling frequency (SF) and stalling length

(SL) under a different number of switches (Fig. 2.3). The edges of the blue boxes are the

25th and 75th quartiles, and the central red marks are the medians. In Fig. 2.3(a), the

SF ground truth is defined as the times that stalling appears in each video; in Fig. 2.3(b),

the SL ground truth is defined as the total duration of each stalling event in a video. We

find that as the number of switches increases, both the SF ground truth and the SL ground

truth increase. An outlier is marked as a red dot in Fig. 2.3(a). It corresponds to the video

TearsofSteel2 encoded under 200 kbps, where no stalling occurred even though there were

four switches between the caching sources.

We then compare the subjective scores of SF and SL with their ground truths. Fig.

13

(a) Stalling Frequency (b) Stalling Length

Figure 2.4: Stalling ground truths vs. subjective scores

2.4 shows the relationships between the stalling ground truths of the 64 videos and their

corresponding subjective scores. In Fig. 2.4(a), the SwSF MOS has a negative correlation

with the SF ground truth. In Fig. 2.4(b), as the SL ground truth increases, the SwSF MOS

decreases. These results indicate that the subjective evaluations of stalling align with the

true stalling events in the videos.

Fig. 2.5 presents the statistical results about the overall MOS, SwSF, and SwSL under a

different number of switches. The overall MOS, SwSF, and SwSL all decline as the number

of switches increases from 0 to 4. The overall MOS under 1500 kbps is better than the ones

under 200 kbps, mostly due to the fact that higher bitrates correspond to higher clarity in

the videos. On the other hand, the satisfaction scores with stalling (SwSF and SwSL) for

videos encoded under 1500 kbps are lower than the ones encoded under 200 kbps, indicating

that stallings are more likely to occur under higher bitrates.

We further analyze to what extent the stalling events could contribute to the overall

QoE. Fig. 2.6 depicts the relationship between SwSF, video clarity, and overall MOS in

the two bitrates, in which the video clarity is represented by the color bars. For the high

bitrate scenario, the video clarity MOSs are relatively high, and the overall MOS increases

when SwSF increases. That is to say, stalling has a greater impact on the overall MOS

14

(a) 200 kbps

(b) 1500 kbps

Figure 2.5: Overall MOS, SwSF, and SwSL under four CCN conditions

15

when the videos have high clarity levels. For the low bitrate scenario, the data are relatively

dispersed, and there is no significant linear correlation between the overall MOS and SwSF.

Furthermore, we analyze the correlation between the overall MOS and SwSF, SwSL, and

video clarity for the two bitrates, and the results are shown in Table 2.1. Similar conclusions

could be drawn from this correlation analysis. In both the two bitrates, SwSF, SwSL are

correlated with the overall MOS. Under 1500 kbps, SwSF and SwSL have more obvious

linear correlations with the overall MOS, while under 200 kbps, video clarity also plays a

significant role.

(a) 200 kbps

(b) 1500 kbps

Figure 2.6: Overall MOS vs. SwSF under different video clarity levels

Finally, we use Principal Component Analysis (PCA) method to quantify the relation-

ships between the different quality-contributing factors. The results are shown in Table 2.2.

16

Table 2.1: Correlation coefficient between Overall MOS with SwSF, SwSL and clarity

Correlation Type
1500 kbps 200 kbps

SwSF SwSL Clarity SwSF SwSL Clarity
Pearson 0.8279 0.8025 0.7043 0.6466 0.6551 0.8576
Kendall 0.5804 0.5131 0.5602 0.5576 0.5631 0.6276

Spearman 0.7467 0.6746 0.7502 0.7361 0.7539 0.8139

Table 2.2: The results of principal component analysis

Principal Component 1st 2nd 3rd 4th 5th
Eigenvalue 6.5327 2.9608 0.1883 0.0857 0.0529

Proportion (%) 66.52 30.15 1.92 0.87 0.54
Cumulative (%) 66.52 96.67 98.59 99.46 100.00

The 1st and 2nd principal components (PC) maintain overwhelming superiority with 66.52%

and 30.15%. Since the cumulative contribution is larger than 95%, we can use the first two

PCs to explain the total variability. The transform equation of PCs with original factors is

Pi =
∑j=5

j=1 cij ·Xj, where Pi is the i principal component, cij is corresponding coefficient, Xj

is the original factor. The five factors are movement consistency, video clarity, video quality

constancy, SwSF, and SwSL, sequentially. The 1st PC transform vector is (0.0701, -0.1402,

-0.0039, 0.7008, 0.6959), and the 2nd PC one is (0.4528, 0.7326, 0.5024, 0.0661, 0.0382). The

transform vectors show that stalling satisfaction (SwSF and SwSL) dominate the 1st PC,

and the video clarity contributes most to the 2nd PC.

2.5 QoE Model

We propose a model to accurately predict the QoE. To achieve this, we conducted two human

subjective tests and collected mean opinion scores (MOS) from human subjects who rated

videos streamed under various network conditions and streaming techniques. A total of 92

videos have been used in this study from the two subjective tests.

We used the results for higher bitrate (32 videos, encoded at 1500 kbps) from our first

subjective test described in Section 2.4.1. In our second subjective test, we used 60 videos

17

encoded at bitrates ranging from 1500kbps to 4500kbps. Each video had 1280×720 pixels

with a duration of 30 seconds. The test videos were obtained by streaming six videos under

five different CCN caching methods (listed in section 2.6) and varying network bandwidths.

In this subjective test, 28 participants (24 males and 4 females, with normal vision aged from

18 to 34) rated the video samples. We used the same test environment and methodologies

in both subjective tests (described in Section 2.4.1). The total time including training and

breaks was within 1.5 hours.

(a) (b)

(c) (d)

Figure 2.7: MOS from human subjective tests. (a) MOS vs. SwSF for different clarity levels,
(b) MOS vs. SwSL for different clarity levels, (c) MOS vs. Clarity for different SwSF levels,
and (d) MOS vs. Clarity for different SwSL levels

From our human subjective tests, we found that satisfaction with stalling frequency

18

(SwSF), satisfaction with stalling length (SwSL), and video clarity all had linear relationships

with overall mean opinion scores (MOS), which is shown in Fig. 2.7. For the 92 videos rated

by human subjects, the average value (each video was rated by multiple viewers as described

above) of video clarity ranged from 4.364 to 6.897, SwSF ranged from 3.242 to 8.336, and

SwSL ranged from 3.013 to 8.246. To demonstrate the linear relationships, we plotted data

points from two ranges as examples: 4.5 to 5.0 and 6.0 to 6.5 for each case in Fig. 2.7(a),

2.7(b), 2.7(c), and 2.7(d).

We built a QoE prediction model featuring linear relationships between MOS and both

stalling and video clarity based on Streaming QoE Index (SQI) [36] with customized param-

eters using results obtained from our human subjective tests. Linear QoE models have been

used in several other studies on video streaming [37, 38, 39, 40].

The original SQI model takes the impact of stalling, initial buffering, and video presen-

tation quality into consideration. The overall QoE is,

Q = Pn + Sn (2.1)

Pn represents the instantaneous video presentation quality, which can be estimated at the

server-side by a frame-level video quality assessment (VQA) model. We use the structural

similarity index (SSIM) [41] as the VQA operator in our work. The model views each stalling

event independently and sums all the events to calculate the overall effect, and Sn represents

the aggregated QoE drop due to stalling and is computed by summing the drop caused by

each stalling event:

Sn =
N∑
k=1

Sk(t) (2.2)

where N is the total number of stalling events and Sk quantifies the experience of the

k-th stalling event. Assume that the k-th stalling event locates at [ik, ik + lk], where lk is the

length of the stall. The following piecewise model estimates the impact of the k-th stalling

19

event at time t:

Sk(t) =

Pik−1(−1 + exp{−(tf−ik
T0

)}) ik
f
≤ t ≤ ik+lk

f

Pik−1(−1 + exp{−(lk
T0

)}).

(exp{−(tf−ik−lk
T1

)}) t > ik+lk
f

0 otherwise

(2.3)

where f is the frame rate in frames/second, Pik−1 is the scaling coefficient of the decay

function, and T0 and T1 represent the rate of dissatisfaction and the relative strength of

memory, respectively.

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

Subjective MOS

Pr
ed

ic
te

d
M

O
S

Figure 2.8: Mean opinion scores (MOS) from human subjective tests and QoE model for 92
videos

The original SQI model produces quality scores ranging from 15 to 90, according to the

experimental results presented in [36]. However, in our subjective tests, human subjects

rated video quality ranging from 1 to 9. To generate QoE prediction scores in the same

range as the mean opinion scores (MOS) from our human subjective tests and improve the

prediction quality, we propose to customize the parameters in the SQI model by applying

curve-fitting on our test data. Based on these test results, the QoE model can be updated

as,

20

Q = a+ b× Pn + c× Sn (2.4)

where, a = 5.783, b = 0.4128, and c = −0.8593. Fig. 2.8 shows the MOS from the human

subjective tests and the overall QoE scores generated by the updated QoE model (Eq. 2.4)

for the 92 videos. The R-square value for the prediction is 0.8674, the adjusted R-square

value is 0.8644, and the root-mean-square error (RMSE) value is 0.3719.

2.6 Caching Mechanism and Content Distribution

In this section, we present preliminary results on how video contents are cached across

different CCN nodes or routers for different caching methods. To produce a realistic content

distribution in the content stores (CS) of the CCN routers, we used the ccnSim simulator

[42]. We used five different caching mechanisms to observe the distribution of video content

throughout the network. The caching strategies are: LCE, Betweenness Centrality (BTW)

[43], 2-LRU [44], ProbCache [45], and Cost-Aware (CoA) [46]. We chose these caching

methods because they are popular and they present enough variance in techniques for CCN.

Figure 2.9: Network topology used in ccnSim

21

We used a custom topology inspired from [47] shown in Fig. 2.9, with the parameters

shown in Table 2.3. The interest forwarding strategy was set to shortest path routing (SPR),

and the cache replacement policy was least recently used (LRU). The popularity of the

contents was varied among the clients, and similar viewer engagement as YouTube [9] was

considered. We ran the simulation ten times (varying user interests) for each caching strategy.

Table 2.4 shows the average distribution of video content from this simulation. For all the

caching methods, the majority of the contents were retrieved from more than one source.

Note that the amount of content fetched from four or more sources is comparatively low here

because the topology used has fewer intermediate routers compared to real-world scenarios

where the main content server may be located many hops away from the client.

Table 2.3: Parameters used for the simulation

Parameter Values
Catalog size 2× 1010

Cache size 107

Aggregated request rate per client 15 req/s
Forwarding strategy SPR
Replacement strategy LRU
Meta caching lce, two lru, prob cache,

btw, costawareP
Initialization type Cold
Link capacity (balanced) 2.5mbps

Table 2.4: Content distribution among CCN nodes

Caching
method

Percentage of contents from
1 source 2 sources 3 sources 4≤ sources

LCE 14.4% 27% 47% 11.6%
BTW 28.2% 40.6% 27.2% 4%
2-LRU 21% 31.7% 38.1% 9.2%
ProbCache 23.3% 36% 32.5% 8.2%
CoA 20.1% 37.4% 32.4% 10.1%

In our previous study [13], we conducted experiments where the number of content sources

was a controlled variable and observed the effect of content distribution on the number of

22

stalling and MOS through human subjective tests. Video transmission from multiple sources

over CCN was emulated using the CCNx [8] platform, and then 36 human subjects rated

each video. Details of the subjective test have been described at the beginning of section

2.5. We found that when the number of source switching increases, both the frequency and

the length of the stalling events increase. The overall satisfaction declines when the number

of switches increases. The results of correlation analysis and principal component analysis

(PCA) indicate that the satisfaction with stalling has an obvious linear correlation with the

overall MOS (Pearson coefficient for SwSF and SwSL are 0.8279 and 0.8025, respectively).

2.7 Proposed Streaming Algorithm

2.7.1 ASDC Overview

We propose an adaptive video streaming with distributed caching (ASDC) algorithm for

CCNs to improve QoE by minimizing stalling caused by content source switching. To simplify

the description of our algorithm, we use a sample network topology shown in Fig. 2.1. Client

C1 is connected to an edge router ER, and ER is in turn connected to the content server

through several intermediate routers, such as IRi, IRj, and IRk. To get a particular video,

the client will send requests to the ER. Depending on the availability of the content at

ER, two scenarios may arise. First, the whole video may be cached at the CS of ER. As

discussed earlier, this is unlikely for most contents because of the small cache to video catalog

ratio. Second, the video may be partially cached at the ER or not cached at all. In this

case, the ER will have to get the complete video or parts of it from the intermediate routers

or the content server itself. It should be noted that, even if the complete video is cached

at one of the intermediate routers, ER may still switch to another router with the same

content if the link quality between ER and that router deteriorates. Similarly, in the case

of overlapping coverage, ER will select the source based on the link quality between the ER

and those two sources. If ER finds there is a possibility of stalling, it reduces the number

23

of enhancement layers to avoid stalling, which is outlined in Fig. 2.10. Similarly, if the link

quality is improved, the number of enhancement layers will be increased.

A CCN router consists of three main modules: content store (CS), forwarding information

table (FIB), and pending interest table (PIT). We introduce a new component for the CS

of the CCN routers: the content-listing table (CLT). At each router, the CLT will store the

cached file names and the range of packets cached for each file. For example, for the file

named SampleV ideo.mp4, which has a total of 4000 chunks, one router may cache the first

800 chunks. In this case, the CLT in that router will have the following entry:

File name Cached chunks
SampleVideo.mp4 1 to 800 (out of 4000)

When the router receives a request for the file SampleV ideo.mp4, it will respond with

the data that its CS has chunks 1 to 800. This allows the edge router ER to determine when

to send requests for the rest of the chunks to other routers or the content server. In case

the routers cache random chunks instead of consecutive ones, the number of switches will

increase as ER will have to switch between different CS randomly.

Table 2.5: List of variables used in the model

Variable Definition
Li Initial number of layers
Lj Adjusted number of layers
Bi Bit rate of Li

Bj Bit rate of Lj

Bw Channel bandwidth between the client and the source
lk Stalling duration
θ Duration for which quality is changed
t0 Video beginning time
ti Time at which source is switched
tn Video ending time
δ Extra content in buffer

24

2.7.2 Steps of ASDC

There are two algorithms in ASDC: Algorithm 1 delineates the streaming process and Al-

gorithm 2 describes how the quality adjustment mechanism takes place inside Algorithm 1.

Table 2.5 shows a list of the variables used in the algorithms.

Algorithm 1 Quality adaptation at the edge router

1: C1 sends request to ER
2: if full video is available in the CS of ER then
3: ER starts streaming to C1

4: else
5: ER sends request to neighboring routers through FIB
6: ER receives response from other nodes and generates FDT
7: ER starts streaming to C1

8: end if
9: while t < tn do

10: ER determines lk and gets δ from C1

11: if lk=0 OR δ > lk then
12: C1 gets Li

13: else
14: ER determines θ and Lj using Algorithm 2
15: for duration t = ti − θ : ti, C1 gets Lj

16: end if
17: end while

Request for video (lines 1-8 of Algorithm 1): When C1 sends a request for a video,

ER will check its CS for the video and then add the request in its PIT. If the video is

available at the CS of ER, it will be directly served to C1. Otherwise, the request will

be forwarded to the intermediate routers using the FIB. After the video is located and ER

receives the response from one or more intermediate routers, it will generate a file distribution

table (FDT) and then start streaming to C1. The FDT will contain information about the

distribution of the file among the content stores of different routers along with information

such as the timing, the number of layers, bit rates, resolution, and file size.

Adapting to source switching (lines 9-17 of Algorithm 1): Suppose the video is

stored in two of the intermediate routers and each one of them contains certain parts of the

25

whole video. The first source contains the parts for the duration [t0, ti] and the second source

contains [ti + 1, tn]. When ER starts to get packets from the first source, it will get the list

of packets available at that router via CLT and then update FDT. So, ER will know when

it has to send requests for the next batch of packets to the other source.

ER will then check if there is a possibility of stalling due to that source switching by

checking lk and δ (line 11). If no stalling is expected, ER calculates an initial quality of the

video to transmit based on the current link quality and sends that information to C1. C1

then sends requests based on that information. The initial quality in the case of scalable

video means a number of layers, and we denote it by Li(n0, ..., ni). However, if a stalling

is expected, the number of layers will be reduced to Lj(n0, ..., nj), where Lj < Li and this

will be maintained for the interval [ti − θ, ti], which is depicted in Fig. 2.10. The variable

θ is a measure of time, and it dictates the moment when to change the number of layers.

The algorithm also works when there is no source switching and stalls are caused only by

bandwidth fluctuation, in which case, ti represents the possible time when the stall will take

place.

(a) Without rate adaptation

(b) With rate adaptation

Figure 2.10: An example of rate adaptation considering switches

26

Determine θ and Lj (Algorithm 2): The values of θ and Lj depend on the length of the

possible stalling event lk, which is shown in Fig. 2.10 (a). In the case of source switching,

lk denotes the switch time. The value of lk is predicted by ER. We assume the routers are

aware of the throughput between them and their immediate neighbors. This is a reasonable

assumption as routers continuously exchange packets and keep the routing table updated

with connection status. Hence ER can reliably predict the possible delay in packets to be

transmitted to and from its immediate neighbors, which allows the prediction of a possible

stalling event’s duration.

The effect of lk will be offset by the extra content in the buffer. The extra content is

cached in the buffer when the buffer fill rate x is more than the depletion or playout rate

r. We denote the extra content in the buffer by δ, which can be computed by the client. If

δ is larger than lk (line 9 of Algorithm 1), quality reduction is not needed as the client can

go through the switch maintaining the current quality without stalling. However, if δ is less

than lk, quality adjustment is necessary.

To avoid stalling, the total time required to transmit the video with adjusted number

of layers plus the difference between the extra buffered content and stalling duration must

be less than or equal to the time required to transmit the video with the initial number of

layers:

Bi × (ti − t0)
Bw

≥ Bi × (ti − θ − t0) +Bj × θ
Bw

+ (lk − δ) (2.5)

Eq. (2.5) can be reduced to

Biθ −Bw(lk − δ) ≥ Bjθ (2.6)

ER computes the value of Bw from the amount of data transferred between the edge

router and the content source per unit time. The number of available values of Bj or Lj

depends on the number of video qualities available at the server. If the video is available at

27

four different qualities, Bj can be set to the bandwidth of any three of the other qualities

apart from the current one. For each three of these values of Bj, to satisfy Eq.(2.6), the

corresponding θ has to be determined.

Algorithm 2 Determine quality switch time and layer adjustment

1: Input: Li, lk, {Lj}
2: ER calculates {Lj}, {θ} that satisfies Eq. (2.6)
3: ER calculates L∗

j , θ
∗ for max Q using Eq. (2.4)

4: set min=0
5: if θ∗ > ∆T then
6: for (θ=θ∗; θ >0; θ=θ∗-∆θ) do
7: calculate QoE value, Q using Eq. (2.4)
8: if min < = Q then
9: min = Q

10: θ∗ = θ
11: else
12: break
13: end if
14: end for
15: end if
16: Output: θ∗ and L∗

j

Algorithm 2 shows the computation of θ and Lj. It first decides the candidate combi-

nations of θ and Lj that reduce the stalling duration to zero, i.e., satisfying the condition

presented in Eq. (2.5). However, they produce different overall QoE. To choose the best

combination of Lj and θ, we use the QoE model described in section 2.5. We select the

combination of L∗
j and θ∗ that produces the maximum Q according to Eq. (2.4) (lines 2-3

of Algorithm 2). This ensures video streaming without any stalling and produces the best

QoE for most cases.

However, reducing stalling to zero may not always be the optimal choice. If the video

quality is reduced for too long, the overall QoE might decrease. To address this challenge, we

introduce additional steps in Algorithm 2 (lines 4-15). If the video quality reduction period,

i.e., θ∗ becomes greater than a threshold ∆T , the algorithm considers the presence of a short

stalling. So, instead of choosing the θ value that would have produced zero stalling (θ∗), the

value is decreased by ∆θ to make the quality switch at a later time. This new value of θ is

28

checked against the QoE model, and if needed, the same process is repeated until optimum

QoE is found. This is done to reduce the computational complexity of the algorithm because

combinations of θ and Lj that produce zero stalling almost always result in the highest QoE.

Inclusion of combinations that do not suppress stalling results in a very large set of values for

θ and Lj, which increases the complexity of the algorithm and wastes valuable computational

power in real-time streaming. Therefore, we consider cases with stalling only if the quality

reduction period is very long, and the impact of video presentation quality may be higher

than a small stalling.

In our experiments, we observed that the values computed at line 3 almost always produce

the best QoE. Steps in lines 4-15 are for extreme cases where the reduction duration is too

long, and the presence of stalling might produce better QoE; we found this to be rare.

In our human subjective tests, out of 180 streaming cases, the impact of the reduction in

video quality was higher than the inclusion of a small stalling in only 2 cases where quality

reduction times were 9.6 sec and 10.1 sec. In those cases, instead of a zero stalling (Sn=0),

test cases including stallings (Case 1: Sn=0.98 and Case 2: Sn=1.2) produced higher QoE.

Therefore, the value of ∆T has been set at 9 seconds, which is an empirical value based

on the experiments conducted in our current work and previous work [13]. The value of

∆θ depends on the time difference between two quality switch points, which is set during

encoding.

2.8 Performance Analysis

We evaluated the performance of ASDC in comparison with DASH and SVC. First, we

determined the content distribution using ccnSim as described in section 2.6. Then, we used

the CCNx [8] platform to emulate the streaming process, in which we implemented all the

algorithms.

We installed CCNx 1.0 (Distillery 2.0) on machines running Ubuntu 14.04. The devices

29

(a) (b) (c)

(d) (e) (f)

Figure 2.11: Snapshots of video sequences. (a) Big Buck Bunny, (b) Elephants Dream, (c)
Of Forests and Men, (d) Tears of Steel, (e) The Swiss Account, (f) Valkaama

were connected following the topology shown in Fig. 2.9 and the content popularity among

clients was based on Zipf distribution with exponent 0.8 [48]. The ten routers and the main

content server were connected through Ethernet. The ten clients and the respective edge

routers were connected through 802.11n wireless technology. The content distribution was

kept the same as the results from ccnSim (Table 2.4). Each intermediate router had a server

application that maintained the videos in the CS and parsed the incoming requests. A

modified VLC module [30] with default buffer size 1.5s was used at the client-side to stream

the videos.

We selected 6 video clips: Big Buck Bunny and Elephants Dream from Xiph.org Media

Collection [31], Of Forests and Men [49], Tears of Steel [32], The Swiss Account [50], and

Valkaama [33]. The genres of the six videos cover animation, talk show, human with nature,

sports, science fiction, and action movie, as shown in Fig. 2.11. Each video has 1280×720

pixels with a duration of 30 seconds. For DASH, two second segments were used and five

different representations (approximately 1500, 2000, 2500, 3500, and 4500kbps) taken from

ITEC Database [51] were available on the server. The source switch was achieved by ma-

nipulating the MPD and the content listing table (CLT). The video files were pre-chunked

30

and stored at CCN routers following the content distribution similar to Table 2.4. In case of

SVC, we used MainConcept H.264/SVC Encoder [52] to generate videos with SNR (signal-

to-noise ratio) scalability and five different quality layers: 1500kbps (BL), 2000kbps (EL1),

2500kbps (EL2), 3500 kbps (EL3), 4500kbps (EL4).

We first study the number of source switches for each of the videos streamed under

different caching schemes when similar content distributions as Table 2.4 were used. The

six videos are requested by ten clients following a Zipf distribution with exponent 0.8 [48];

the most popular video Valkaama was requested by ten clients while the least popular video

Of Forests and Men was requested by two. The number of source switches for each video

is an average from ten streaming cases, and the result is shown in Fig. 2.12, in which there

have been three or more switches in most cases. The video Valkaama has a particularly

low number of switches because of its high popularity and high viewer retention. Moreover,

among different caching techniques, LCE is seen to produce the highest average number of

source switches with CoA a close second. On the other hand, ProbCache and BTW have a

comparatively lower average number of source switches. This pattern is consistent with the

results found in Table II. Caching methods that obtained a higher percentage of contents

from a higher number of sources also lead to a larger average number of source switches.

It should be noted that the cache distribution in Table 2.4 is not a direct indicator of the

number of source switches. If the same video is available at multiple nodes, a client may

switch to a different node if the link quality is better or the current link deteriorates, e.g., a

two-source distribution can result in two, three, or more switches depending on the network

condition.

To compare the average CCN chunk arrival delays under DASH, SVC, and ASDC in the

presence of a source switch, we streamed each of the six original videos five times with a

double source switch. The video bitrate was 2000kbps, and the link capacity was 2500kbps.

The chunk arrival time was obtained from the CCN client-side forwarder for a total of 1000

chunks. As shown in Fig. 2.13, between chucks 260 and 270 and again between chunks 675

31

Figure 2.12: Avg. number of source switches for different caching methods

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

Chunks

A
vg

. d
el

ay
 in

 m
s

DASH

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

Chunks

A
vg

. d
el

ay
 in

 m
s

SVC

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

Chunks

A
vg

. d
el

ay
 in

 m
s

ASDC

Figure 2.13: Delay variations of chunk arrival for DASH, SVC, and ASDC

32

and 685, there are radical increases in delays for DASH (peak at chunk 264 and 680, around

2.21 and 2.05 times the average, respectively) and for SVC (peak at chunk 266 and 679,

around 2.06 and 2.02 times the average respectively), which took place due to the source

switches. In the case of ASDC, there was no such increase in delay in the presence of the

same switches. Although the average delays otherwise are similar, this sudden increase in

delay for DASH and SVC raises the possibility of stalling.

We also study the average bitrate per request against throughput, which can be a measure

of video quality from the consumer’s side. Here the average bitrate per request is the sum of

each received chunk’s bitrate divided by the number of chunks requested by the client. High

throughput means the client’s link to the upstream is sufficient for requested content delivery

while a lower throughput indicates a congested link. Fig. 2.14 shows the average results of

streaming 25 videos with three source switches. DASH, SVC, and ASDC- all perform well

for high throughput clients, while a difference is noticed in lower throughput. For clients

with a throughput of more than 2500kbps, ASDC produces a 12.91% higher average bitrate

compared to DASH and a 6.98% higher bitrate compared to SVC. The comparatively higher

average bitrate results from the better quality adjustment ability of ASDC.

Figure 2.14: Average bitrate/request vs. throughput for DASH, SVC, and ASDC

33

To compare the estimated QoE for ASDC, DASH, and SVC in the presence of source

switches, for each streaming method, we streamed each of the six videos three times for

five different content distributions resulting from the five caching mechanisms (Table 2.4)

producing a total of 270 samples. Fig. 2.15 shows the average estimated QoE for each

video streamed under the five different cache distributions and the three streaming methods.

Performance of ASDC, DASH, and SVC are similar for two videos where the number of

source switches is smaller while the difference in the performance becomes more apparent

for the four videos with a higher number of source switches (Fig. 2.12). For instance, in the

case of Valkaama (less number of switches), estimated QoE from ASDC is 4.57% more than

DASH and 2.09% more than SVC while in case of Swiss (more switches), estimated QoE

from ASDC is 15.85% more than DASH and 10.38% more than SVC. On average, the overall

estimated QoE improvement by ASDC is 12.42% more than DASH and 7.35% more than

SVC. Between DASH and SVC, SVC performed better (average 4.71%) due to its ability to

better adjust the video quality.

Figure 2.15: Estimated QoE for different videos under ASDC, DASH, and SVC

In Fig. 2.16, we further analyze how DASH, SVC, and ASDC compare against each other

under the five caching methods in terms of estimated QoE. The QoE values in the figure are

the average of eighteen video streamings (six videos streamed three times each) under each

34

caching technique and each streaming method. ASDC performs better than DASH and SVC

for all the different caching methods in terms of estimated QoE. However, the performance

gain is more pronounced in the case of CoA (10.68% for DASH, 8.10% for SVC) and LCE

(11.40% for DASH, 6.65% for SVC), while it is less noticeable for BTW (2.65% for DASH,

2.03% for SVC) and ProbCache (3.62% for DASH, 2.09% for SVC). This difference arose

from the higher number of source switches taken place for LCE and CoA while the opposite

is true for BTW and ProbCache. We observe that with the increase in source switches, i.e.,

the possibility of stalling, the advantage ASDC becomes more apparent.

Figure 2.16: Comparison of estimated QoE between ASDC, DASH, and SVC under different
caching methods

In our experiments, we noticed stallings ranging from 28 frames to 121 frames in length

(1.12s to 4.84s for 25 frames/sec, average 65.328 frames or 2.613s) depending on the network

configuration and the transmitted video. Comparison of the following buffer sizes used in

various streaming models focused on ICN, 5s in [53] and [54], 1s in [55], and 3s in [56]

with our observed stalling duration shows that source switching delay may cause stalling.

As the client buffers are not always full, especially in cases where end-to-end bandwidth is

similar to streaming bit rate, a larger client buffer would be required to mitigate the stalling

resulted from source switching. However, although a larger buffer size can help improve the

continuity, that may lead to higher startup and jumping latency.

35

Computational complexity plays an important role in algorithm selection. We compare

and analyze the complexity of the proposed algorithm against DASH and SVC. Complexity

is measured exclusively on a computer with an Intel Core i7-5820k (3.30GHz) processor,

8GB of RAM, and Ubuntu 14.04 operating system. Complexity is evaluated by the average

computational time over 1000 CCN chunks of the Big Buck Bunny video under a different

number of source switches. In Table 2.6, it can be noted that the proposed algorithm

has a similar computation time as both DASH and SVC, and thus can be implemented in

real-world video streaming. Moreover, the computation time increases with the increase in

the number of source switches, which is expected as the source switching necessitates the

quality adjustment calculation. Note that ASDC has a low computational overhead despite

additional QoE calculations because the second algorithm of ASDC goes into effect only

when there’s a possibility of stalling; otherwise, the first algorithm handles the streaming.

Another factor that impacts the computation time is the number of video representations

available at the source. As we consider the same number (five) of representations for all the

streaming techniques, this parameter is excluded from the comparison.

Table 2.6: Average computational complexity

Mechanism No switch 2 switches 4 switches
DASH 7.6 ms (±0.13) 11.2 ms (±0.19) 14.2 ms (±0.28)
SVC 9.3 ms (±0.26) 13.3 ms (±0.30) 16.4 ms (±0.33)
ASDC 9.1 ms (±0.19) 12.8 ms (±0.23) 14.9 ms (±0.24)

2.9 Conclusion

We studied the impact of source switching, brought by distributed caching, on the QoE

of video streaming in CCNs. We found that when the source switching increases, both the

frequency and length of stalling events increase, which was detected by human subjects. The

overall satisfaction with the received videos declines when the number of switches increases.

36

The results of correlation analysis and PCA indicate that the satisfaction with stalling is

correlated with the overall MOS. Specifically, in high bitrate videos with high clarity, the

satisfaction with stalling has an obvious linear correlation with the overall MOS; while in

low bitrates with lower video clarity, both the satisfaction with stalling and the clarity play

significant roles in the overall MOS.

We demonstrated that most videos were streamed from multiple sources in CCN because

of in-network caching. Stalling plays a major role in QoE degradation, and we designed

the ASDC algorithm for maintaining QoE during switches between multiple content sources.

ASDC relies on quality adaptation based on scalable video streams and a QoE prediction

model that characterizes stalling effects. Experimental results have shown that ASDC im-

proves QoE performance over DASH for different caching methods and a variety of video

contents in CCN.

37

Chapter 3

Cross-Layer QoE-Aware Video

Streaming over SDR

3.1 Background

With the increasing deployment of camera sensors in various wireless imaging applications,

such as surveillance, industrial process control, intelligent transportation, and telemedicine,

there is an emerging need to support the efficient delivery of video traffic in wireless envi-

ronments. In many human-centered wireless applications, human users rely on the received

images or videos to make critical decisions, such as identifying intruders from wireless surveil-

lance cameras or determining the quality of products for industrial applications. Maintaining

good perceptual quality or Quality of Experience (QoE) of received videos is a major design

challenge for these applications.

In the radio communication field, software-defined radio (SDR) uses software instead of

dedicated hardware to implement signal processing components such as frequency mixers,

filters, modulators and demodulators, synchronizers, amplifiers, etc. With the flexibility and

the reconfiguration capability to serve a wide range of changing radio protocols in real-time,

SDR has been applied in many domains such as cognitive radio [57], heterogeneous IoT

38

networking [58], and 5G networks [59]. SDR has the potential to satisfy the needs of video

applications in dynamic wireless environments.

On the other hand, the unique QoE properties for visual information should be taken

into consideration in video communication schemes. For example, based on many studies

(such as the ones in [13, 16, 36, 60, 61]), the QoE for video streaming is directly related to

application layer parameters such as initial delay, stalling, video clarity, disruption recency,

etc. The perceptual quality of compressed videos under the same bit rate can vary with

different video content characteristics, such as the level of spatial details (e.g., brightness,

edges, and texture complexity) and temporal details (e.g., the extent of motion) [62, 63].

Furthermore, when a video is compressed under a bit rate constraint, the choices of video

clarity level, spatial resolution, and frame rate could jointly contribute to perceptual quality

[64]. The impact of packet loss on QoE is related to the locations and the patterns of lost

packets in a video bitstream, and the visibility of packet loss also depends on the content of

the video [65, 66].

Considering the properties of QoE, it is natural to adopt a cross-layer design approach,

which can perform optimization based on parameters from different layers that could in-

fluence QoE. It would also be beneficial to leverage the capabilities of SDR systems for

cross-layer design. To this end, we propose a new cross-layer approach for video commu-

nication over SDR, with the objective of providing satisfactory QoE for end-users. Our

contributions are summarized as follows.

1. First, we designed and implemented an SDR platform that can achieve real-time video

communication in both simulation and hardware. Our platform is built upon GNU

radio (an open-source SDR platform), Universal Software Radio Peripheral (USRP)

B210 hardware, and GStreamer (a comprehensive library for video processing). Our

platform has integrated QoE measurement components for monitoring the QoE of

received videos in real-time, utilizing the latest findings in the field of QoE for videos.

The platform provides the capability of jointly adjusting physical layer parameters and

39

video application settings to maximize QoE in changing wireless conditions.

2. Second, we measured QoE under a variety of hardware settings and video use cases, and

based on these measurements, we analyzed how the parameters in the physical layer

and the application layer contribute to the QoE of videos presented to application

users.

3. Accordingly, we designed a cross-layer solution that jointly adjusts the physical layer

parameters and the application settings to maximize the QoE for video communica-

tion over SDR. We integrated the proposed cross-layer solution into our platform and

evaluated its performance in different test conditions. Our solution advances existing

cross-layer studies by: 1) considering the latest findings in QoE research for videos; and

2) adjusting communication parameters based on measurement results from a practical

SDR platform.

3.2 Related Works

3.2.1 SDR-Based Platforms for Video Communication

A few studies have designed and implemented SDR systems for video communication via

simulation or hardware implementation. A real-time video transceiver SDR testbed was

implemented based on USRP 2943R and LabVIEW in [67]. In this testbed, high packet

efficiency was achieved by optimizing transmission and reception during real-time video

transmission. Additionally, four directional antennas were used to attain a high frame rate

(30 fps). A real-time video streaming simulation platform was proposed in [68], comprising of

a web camera, GNU Radio [3], GStreamer [4], Universal Software Radio Peripheral (USRP),

and RTL-SDR. At the receiver side, buffering is done to store a live video stream, and then

the video is played with Mplayer. Different from the simulation-based platform in [68], a

real-time video streaming system was developed using USRP B200 hardware and 850 Mhz-

40

6.5 GHz antenna in [69]. The system in [69] has tested video transmission under different

modulation schemes, including BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM, and OFDM.

SDR has also been utilized for mobile sensing systems. In [70], a UAV radio telemetry

(UAV-RT) system was proposed that integrates VHF radio telemetry equipment with an

unmanned aerial system. The system uses a modified hexacopter in conjunction with an

SDR receiver to track radio-tagged wildlife. In [71], an application of UAVs in video surveil-

lance and search and rescue operations was designed through an ad-hoc GSM network in

areas without available infrastructure. Each UAV was fitted with a GSM base station built

using SDR that was implemented via LimeSDR [72]. A similar SDR-based ad-hoc GSM net-

work based on USRP was demonstrated in [73], where applications of UAVs during natural

disasters and surveillance were discussed.

3.2.2 Cross-layer Video Communication

We highlight cross-layer solutions that provide QoS or QoE support for wireless video com-

munication, which are most related to our work.

Many cross-layer studies aimed at improving QoS parameters, such as the PSNR (peak

signal to noise ratio), transmission delay, and packet loss rate, based on the information

available at different layers. In [74], a cross-layer video streaming algorithm over mobile ad

hoc networks was designed to minimize end-to-end delay and packet loss rate, and it selected

the most efficient PHY mode of IEEE 802.11 multi-rate service based on the information

available at the application, data link, and physical layers. The cross-layer optimization

strategy in [75] jointly optimized the application, data link, and physical layers. The follow-

ing parameters were adjusted to maximize the PSNR of the received videos: video source

rate, time slot allocation, and modulation scheme. Cross-layer design techniques for video

streaming over cooperative networks were studied in [76]. Here, the problem of the joint

control of video encoding rate, relay selection, and power allocation was formulated as a

mixed-integer nonlinear problem with the objective of maximizing PSNR. In [77] and [78],

41

the PSNR of scalable video streaming was maximized through cross-layer adaptation, based

on parameters such as video coding rate, radio resource scheduling policy, and modulation

technique.

Several cross-layer studies also addressed the problem of improving the QoE or perceptual

quality of videos. A structural similarity (SSIM)-based cross-layer optimization scheme for

wireless video streaming was proposed in [79], considering H.264/AVC encoding parameters

in the application layer and modulation and channel coding modes in the physical layer.

This scheme was shown to achieve good perceptual video quality in terms of mean opinion

scores (MOS). In the cross-layer video streaming scheme over wireless ad hoc networks in

[80], video packets were scheduled according to the states of frame buffers at the destination

nodes to increase playback continuity. In the quality-aware rate control and adaptation

scheme for real-time video communications over Long Term Evolution (LTE) networks in

[81], the transmission bit rate was automatically adjusted according to the estimated packet

loss, based on both packet queueing delay and transmission delay. This feedback-free system

was found to provide satisfactory QoE while maximizing the number of supported users.

3.2.3 Novelty of Our Work

While the aforementioned systems in Section 3.2.1 have demonstrated the feasibility and

benefit of SDR for video communication and mobile sensing applications, our proposed SDR

platform advances them by integrating the specific QoE properties for video applications in

an SDR platform.

Our proposed cross-layer video communication solution jointly adjusts parameters in the

application and physical layers. Different from the aforementioned studies in Section 3.2.2,

the proposed cross-layer solution leverages the specific properties of QoE for video, and it is

designed based on the QoE measurement results from a practical SDR platform.

42

3.3 SDR Platform Design

We designed and implemented a half-duplex video transmission system supported by USRP

devices. The solution features a hardware platform that emulates a digital communication

system via software radio. With the capability to deliver real-time video packets, the sys-

tem integrates interfaces for cross-layer adjustment of transmission parameters, and it also

supports the measurement of QoE metrics at the receiver side.

3.3.1 Components for Video Communication over USRP

Figure 3.1: System overview

The overview of our transceiver design is shown in Fig. 3.1 and the configuration param-

eters for our experiments are noted in Table 3.1. The main components of the system are

described below.

• Video Sources: Our system accepts video signal from three different sources: real-

time video from webcam, stored video file, and test video signal from GStreamer’s

videotestsrc element [4].

• GStreamer: Gstreamer [4] is a comprehensive video processing library. It can format

the source video frames, add text overlay, re-scale, compress, and multiplex into the

transport stream. A Unix pipe (mkfifo videotx.ts) is created to connect the GStreamer

43

Table 3.1: List of configuration parameters for video streaming

Parameter Value

Environment Indoors
Distance between Tx and Rx 3 ft.

Frequency 2.68 GHz
Bandwidth 3 MHz

Modulation scheme GMSK
Transmitter gain 40 dB

Receiver gain 35 dB
Source video resolution 1280×720 pixels

Frame rate 24 fps
Streaming encapsulation MPEG-TS

output with the input (filesink) of the GNU Radio Companion (GRC), which is shown

in Fig. 3.2.

Figure 3.2: A Unix Pipe connecting GStreamer to GRC

• GNU Radio: SDR transmitters and receivers are designed using GRC. The GNU Ra-

dio transmitter captures the video frames from GStreamer and processes them for

transmission over the RF channel, i.e., conducts necessary signal processing. GMSK

modulation scheme is used for improved spectral efficiency and lower power consump-

tion at the receiver [82].

• USRP: The platform uses Universal Software Radio Peripherals (USRP) B210 with an

operational frequency range of 70 MHz to 6 GHz. The USRPs have USRP Hardware

Driver (UHD) driver support, an open design schematic, and seamless integration

features with the GNU Radio platform for signal processing. As shown in Fig. 3.1,

44

one USRP is used as the transmitter and another USRP as the receiver.

• Antennas: Ettus VERT2450 antennas (dual Band 2.4 to 2.48 GHz and 4.9 to 5.9 GHz)

are used for transmission and reception.

• Computer: Each USRP is connected to a computer that runs the GNU Radio and

GStreamer programs.

• Video player: Most of the results are visualized using the playbin property from

Gstreamer. However, VLC Player and MPlayer may work as alternatives to play

the videos for both real-time streams and stored videos.

At the transmitter side, the source video is first encoded in H.264 and then passed to a

packet encoder. Here we use 1 bit/symbol and 2 samples/symbol. Then the packetized data

is modulated using the GMSK modulation and sent out to the USRP connected to GNU

Radio.

The receiver USRP captures the transmitted data and sends it to the GNU Radio. The

data is then demodulated and decoded to generate a bitstream. This bitstream is then sent

to either a file sink to be either stored or played in real-time. Snapshots of transmitted and

received frames for different videos are shown in Fig. 3.3. More details about the platform

components, including GNU Radio flowgraph, can be found in Section 5.2.

3.3.2 Cross-layer Parameters

In our system, to support the design of cross-layer video communication, we provide the

capability to adjust several input parameters from the application (APP) and physical (PHY)

layers based on the bandwidth (PHY) constraints. The adjustable parameters are as follows:

video resolution (APP), encoding rate (APP), frame rate (APP), transmission frequency

(PHY), transmission gain (PHY), and reception gain (PHY).

The value of available bandwidth directly controls the video encoding rate. For good video

quality, the recommended encoding rate should be 64% of the bandwidth [83]. Therefore,

45

(a) Webcam - Tx (b) Webcam - Rx (c) Color Bars - Tx (d) Color Bars - Rx

(e) Stored video -
Tx

(f) Stored video -
Rx

Figure 3.3: Snapshots of transmitted and received video frames

the minimum bandwidth required for a particular encoding rate can be found by multiplying

the encoding rate by 1.5625. For instance, if the encoding rate is 128kbps, the recommended

minimum bandwidth will be (128*1.5625) or 200kbps.

Due to the varying conditions of wireless operations, several energy-detection and efficiency-

based methods mitigate situations that deteriorate the performance of the system [84, 85, 86].

In our case, we included the SNR estimation block from the GNU Radio library, which is

aimed to maintain an optimal SNR. This adaptive procedure employs the M2M4 algorithm

[85] and operates over the PHY layer by adjusting the gain at the receiver end.

3.3.3 QoE components

Based on the latest results in QoE research, frame-level video presentation quality and QoE

drop due to video stalling are among the most prominent factors affecting overall viewers’

QoE [60], and they are linearly correlated to mean opinion scores (MOS) collected from

human subjective tests [13, 36, 61].

We propose to measure the following three metrics to evaluate the received video quality:

(1) video presentation quality (Pn), (2) QoE drop due to stalling (Sn), and (3) frame loss rate

(FL). These metrics are integrated into our system; more specifically, they are computed

46

at the receiver side in real-time. This provides the capability to assess the QoE after each

video session and to adjust the input configurations accordingly.

The instantaneous video presentation quality (Pn) or video clarity can be estimated by

a frame-level video quality assessment (VQA) model. Both full-reference and no-reference

VQA models can be used to measure Pn. Examples of full-reference models include Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) [41] index. On the other

hand, examples of no-reference models include Blind/Referenceless Image Spatial Quality

Evaluator (BRISQUE) [87] and BLIINDS-II [88]. Any of the aforementioned models can be

used with our platform. The choice of the VQA model depends on the specific application

case.

Stalling refers to the momentary disruption in the fluidity of video playback due to net-

work impairments. The QoE drop due to stalling (Sn) can be computed using the Streaming

QoE Index (SQI) [36] model described in Section 2.5. Prediction accuracy of this model in

comparison with Mean Opinion Scores (MOS) from human subjective tests can be found in

[13, 61]. The following input metrics are used in the calculation of Sn: video frame rate,

initial delay, stalling length, stalling frequency, and the location of the stall during the video

playback. Stalling and initial delay have different impacts on QoE, and therefore they are

computed with appropriate weights as specified in the SQI framework [36].

The third QoE metric, frame loss rate (FL), can be computed by comparing the number

of transmitted frames (NTx) and the number of received frames (NRx) for a particular video:

FL =
NTx −NRx

NTx

(3.1)

To extract the frames from the video clips, FFmpeg [89], a popular open-source multi-

media framework, can be used.

47

3.4 Measurement Results: Which Parameters

Influence QoE?

To determine how each of the input parameters influences the viewers’ QoE, we studied the

values of the QoE metrics for a wide range of input parameter configurations as shown in

Table 3.2. We streamed stored videos (Big Buck Bunny, an animated movie downloadable

from the Peach open movie project [90]) with resolutions up to 1920×1080, and real-time

webcam videos up to 1280×720. The frequency of the operational band was varied among the

UHF Band (917.5 MHz), the S-Band (2.68 GHz), and the C-Band (SHF, 5.656 GHz). For the

UHF and SHF bands, there is a high level of occupancy due to a significant number of wireless

technologies being allocated there. In the majority of our experiments, we achieved the best

results by transmitting on the S-Band. Due to the absence of an active frequency sensing

hardware component in our platform, we were unable to detect interference-free channels

and were limited to these three bands. For all three bands, the RF-channel bandwidth was

set at 3 MHz.

Utilizing the M2M4 estimator, we measured different SNR levels for multiple transmission

gains in the absence of additive noise. We observed that values before 35dB produced an

estimated SNR around 9dB at the receiver, and it led to signals from which the video stream

could not be decoded. Given these results, channel gain values ranging from 40dB to 70dB

have been selected for the following experiments.

Table 3.2: Range of input parameters used in our experiments

Input Parameter Values

Video Resolution (px) 176×144, 352×240, 480×360, 1280×720, 1920×1080
Frame Rate (fps) 10, 12, 15, 16, 20, 24, 30

Encoding Rate (kbps) 128, 256, 512, 1024
Tx Gain (dB) 40 – 70

Frequency (Hz) 917.5M, 2.68G, 5.656G

Although we tested our system with many different input parameter values as shown in

Table 3.2, some of the input parameter combinations led to extreme frame loss rates, and the

48

received video files could not be played by the player. We used a total of 34 combinations

in our analysis, which are shown in Figs. 3.4, 3.5, and 3.6. These are the valid combinations

we found that generated playable video files on the receiver end. Furthermore, among these

34 samples, a few combinations produced video files from which only the individual received

frames could be extracted but too many frames were missing to play the video or compute

the presentation quality reliably. As a result, we could not calculate Pn for 2 videos and Sn

for 5 videos. Therefore, Fig. 3.4, Fig. 3.5, and Fig. 3.6 shows results from 34, 32, and 29

input combinations respectively.

Figure 3.4: Relationship between the input parameters and FL

Figure 3.5: Relationship between the input parameters and Pn

Fig. 3.4 shows the relationship between the input parameters (encoding rate, Tx Gain,

video frame rate, resolution, and frequency) and output frame loss rate (FL). We computed

49

FL using Eq. 3.1. The values of FL ranged from 0.13% to 86.39%. High encoding rate

and high frame rate led to higher frame loss. For example, when the encoding rate was

raised from 256 kbps to 512 kbps keeping all other parameters constant, the frame loss rate

increased from 1.71% to 70.04%. Similarly, when the video frame rate was changed from

16 fps to 24 fps, the frame loss rate went up from 0.79% to 15.89%. Frequency had a large

impact on the frame loss as well; however, we did not see a direct or inverse relationship

between frequency and frame loss. For instance, both increasing (from 2.68 GHz to 5.656

GHz) and decreasing (from 2.68 GHz to 917.5 MHz) the transmission frequency resulted in

a higher frame loss rate (76.61% and 86.39% respectively). This result can be explained by

the high interference present on those two channels, as described at the beginning of this

section.

Fig. 3.5 represents the relationships between the input parameters and the video presen-

tation quality (Pn). For computing Pn, we used the BRISQUE [87] framework utilizing the

default feature model in Matlab. The BRISQUE score has a range of [0, 100] and a lower

score indicates better perceptual quality. The values of Pn were between 22.856 and 39.463.

Video encoding rate had the largest impact on Pn and a higher encoding rate usually led to a

lower Pn value, e.g., 36.886 vs. 29.358 for increasing the encoding rate from 256 kbps to 512

kbps. Resolution had the next biggest effect on Pn, and a higher resolution almost always

resulted in a higher Pn. For instance, with all other parameters unchanged, enhancing the

video resolution from 352×240 to 480×360 increased Pn from 28.548 to 39.114.

Fig. 3.6 demonstrates the QoE drops associated with playback stalling (Sn). We calcu-

lated Sn using Eq. (2.2). The values of Sn stretched between -13.528 (highest quality drop

caused by stalling) and 0 (lowest quality drop caused by stalling). Encoding rate had the

highest impact on Sn followed by Tx gain. Higher encoding rates (e.g., 512kbps) consistently

resulted in larger quality drops caused by stalling compared to videos with a lower encoding

rate (e.g., 128kbps or 256kbps). For example, reducing the encoding rate from 512kbps

to 256kbps, with all other parameters kept constant, also lowered the quality drop due to

50

Figure 3.6: Relationship between the input parameters and Sn

stalling (value of Sn went up from -13.528 to -1.592).

3.5 QoE-Driven Cross-Layer Video Communication

We designed a cross-layer video communication solution based on our observations of the

preliminary measurement results. The cross-layer model works on two layers: application

layer and physical layer. Our goal was to adjust the following input parameters to maximize

the QoE of received videos: video resolution (APP), encoding rate (APP), frame rate (APP),

transmission power (PHY), and transmission frequency (PHY).

To quantify the degree of influence that each input parameter has on the video quality,

we calculate the standard deviations of the output metrics. A larger standard deviation in

the output metric due to changing an input parameter means a higher impact and vice versa.

Table 3.3: Impact of cross-layer parameters on video quality: Standard Deviation

Cross-Layer Parameter Frame Loss Rate (%) Pn Sn

Encoding Rate 0.4629 6.053 7.923
Frame Rate 0.1421 2.79 2.45
Resolution 0.1801 5.56 6.019
Tx Gain 0.21487 1.95 6.07

Frequency 0.4985 N.A. N.A.

For each input parameter, we find the highest variation (standard deviation) it caused in

the output metrics over the whole set (a total of 34, as described in Section 3.4) of available

51

input combinations. This maximum standard deviation value denotes the input parameter’s

impact on the output video quality metric. Table 3.3 lists the highest standard deviations

of the quality metrics (FL, Pn, and Sn) for each of the five input parameters (encoding rate,

frame rate, video resolution, transmission gain, and frequency).

To create a priority list for input parameter adjustment, the standard deviation values

are proportionally translated into a relevance score that represents the overall impact of a

single input parameter concerning a specific output metric. Table 3.4 shows the relevance

scores on a scale of 1 to 5, where 5 denotes the highest impact or relevance. The rightmost

column is the total overall score equated by adding the three individual relevance scores.

It should be noted that frequency is found to be a parameter of high relevance. However,

due to the limitations of our testbed described in Section 3.4, this parameter is not taken

into consideration in our current implementation. However, the frequency parameter should

be considered in other wireless environments if necessary.

Table 3.4: Relevance Scores of the cross-layer parameters: Priority list

Cross-Layer Parameter Frame Loss Rate (%) Pn Sn

Encoding Rate 4 4 4
Resolution 2 3 2
Tx Gain 3 1 3

Frame Rate 1 2 1
Frequency 5 N/A N/A

We design our cross-layer protocol (CL-SDR) as a predictive scheme that will provide

an optimal configuration of the cross-layer input parameters based on the measured QoE

metrics of the previous streamings. The algorithm works in the following steps:

• Step 1: Copy the relevance scores from the Table 3.3 and 3.4, both of which are based

on existing results.

• Step 2: Stream video with the input parameters (encoding rate, frame rate, video

resolution, transmission gain, and frequency) set to their default values.

• Step 3: Measure both the signal SNR and the QoE metrics (FL, Pn, and Sn) from the

52

received video. Estimate SNR and set the corresponding gain at the receiver in order

to mitigate channel fading and degradation.

• Step 4: Adjust the cross-layer parameters following the relevance scores, i.e., priority

list.

– The parameter with the highest priority will be adjusted first. The adjustment

direction (increase or decrease) and amount (how much) will be determined from

the previous streaming data.

– Stream video with the updated input parameters. Measure the QoE metrics after

a set interval (δt).

– The parameter with the second-highest priority will be adjusted next and so on.

– Repeat until all combinations are explored and stop when the best QoE score is

found.

• Step 5: Update Table 3.3 and Table 3.4 if the value of an input parameter falls out

of the range of the pre-existing data.

As we discussed in Section 3.3.2, the video encoding rate is directly controlled by the

available bandwidth. Therefore, we consider available bandwidth when selecting the en-

coding rate for a certain input parameter combination. For a given bandwidth value, we

calculate the maximum possible encoding rate that could provide good video quality using

the procedure described in Section 3.3.2. Then, the upper limit of the encoding rate is set

at that number during the input parameter adjustments.

To illustrate how the CL-SDR algorithm works, let us consider a video stream where

we want to maximize the video presentation quality (Pn). Suppose the priority list has

similar relevance values as shown in Table 3.4. In that case, the parameter with the highest

relevance score is the encoding rate (score= 4) followed by resolution (score= 3). Therefore,

the algorithm will adjust the video encoding rate first and compute the QoE. After a certain

53

period δt, the resolution will be changed, and then similarly, the other parameters will follow.

The combination producing the best Pn will be selected for streaming. The values of δt can

be set to decide how frequently the streaming parameters are adjusted. We set δt to 60

seconds in our experiments.

3.6 Performance Analysis

3.6.1 General Performance

We measured three QoE metrics of the received video files: video presentation quality (Pn),

QoE drop due to stalling (Sn), and frame loss rate (FL). Our platform can stream videos with

acceptable QoE for video resolutions up to 1280×720, encoding rates up to 1024kbps, and

frame rates up to 30fps. The corresponding QoE scores are listed in Table 3.5. We observed

that videos with higher resolutions (≥1920×1080) and encoding rates (≥1024kbps) were

more demanding in terms of computational power and enhanced graphics hardware (e.g.,

dedicated graphics card) will provide better performance.

Table 3.5: General performance of the platform: QoE Scores

QoE Metrics

Pn Sn FL

39.463 to 12.649 -17.641 to 0 86.386% to 0.134%

We also observed our platform’s performance under various distances between the trans-

mitter and receiver. We streamed both stored and live webcam videos with fixed input

parameter configurations (Stored: 352×240, 12fps, 256kbps, 40dB, 2.68 GHz; Webcam:

352×240, 15fps, 512kbps, 40dB, 2.68 GHz) and varied the Tx-Rx distance from 30cm to

210cm. For stored videos, the ranges of the resulting QoE metrics are as follows: Pn (27.978

to 32.302), Sn (-6.886 to -2.084), and FL (25.46% to 51.79%). In case of webcam video: Pn

(24.18 to 27.819), Sn (-0.799 to -3.024), and FL (5.46% to 17.76%). We found that the QoE

scores of the received video files were stable within that distance range (30-210cm).

54

We inserted an additive noise source in GNU radio in order to evaluate the performance

for different noise magnitudes. Gaussian noise is added to the modulated signal before the

USRP. After manually adjusting the receiver gain, we managed to maintain an SNR equal to

11, which exhibited a suitable performance regardless of the disruptive noise with amplitudes

that range from 0 to 1.40×10−4. Results are shown in Table 3.6.

Table 3.6: Estimated SNR levels for different Tx Power

Add. Noise Rx Gain SNR

0 35 dB

11 (10.41 dB)

7.20×10−4 40 dB
8.70×10−4 45 dB
1.00×10−4 50 dB
1.25×10−4 55 dB
1.40×10−4 60 dB

3.6.2 Cross-layer Adjustments

To evaluate the performance of our proposed cross-layer design, we streamed videos under a

similar hardware setup as described in Section 3.3. We used both stored (Big Buck Bunny)

and live webcam videos for this evaluation. The ranges of the cross-layer input parameters

(video resolution, frame rate, encoding rate, Tx gain, and frequency) utilized in the evalua-

tion are shown in Table 3.2. We conducted our evaluations under three different bandwidth

constraints: 200kbps, 400kbps, and 800kbps.

We compared our proposed algorithm (CL-SDR) against the following two benchmarks.

First, baseline QoE scores were produced by the platform with default input parameter

configurations (no adjustment). Second, a customized video quality adaptation model based

on [64], which optimizes video quality using three application layer parameters: quantization

parameter (QP), spatial resolution, and frame rate (QP R F). When controlling the bit rate

of a video stream, this model prioritizes QP over spatial resolution and frame rate (smaller

QP with lower resolution and frame rate is preferred to larger QP combined with higher

resolution and frame rate). Additionally, for the same QP value, the QP R F model will pick

55

the input configuration with a higher frame rate value as the videos used in our experiment

have fast motion, and therefore, the frame rate should be kept close to the original file [64].

Figure 3.7: Pn comparison

Table 3.7: Cross-layer parameter config. to maximize Pn

Bandwidth
(kbps)

Video Source

Parameter Configuration: Pn Scores
Video resolution (px), Frame rate (fps), Encoding rate (kbps),

Tx gain (dB), Frequency (GHz)
Baseline QP R F CL-SDR

200
Stored video

Webcam
480×360, 24, 128, 60, 2.68
176×144, 15, 128, 60, 2.68

352×240, 12, 128, 40, 2.68
176×144, 15, 128, 60, 2.68

352×240, 24, 128, 40, 2.68
176×144, 15, 128, 60, 2.68

400
Stored video

Webcam
480×360, 24, 256, 60, 2.68
176×144, 15, 256, 60, 2.68

352×240, 12, 256, 40, 2.68
176×144, 25, 256, 40, 2.68

352×240, 12, 256, 60, 2.68
480×360, 15, 256, 40, 2.68

800
Stored video

Webcam
480×360, 24, 512, 60, 2.68
176×144, 15, 512, 60, 2.68

352×240, 12, 512, 40, 2.68
176×144, 15, 512, 60, 2.68

352×240, 12, 512, 40, 2.68
480×360, 15, 512, 60, 2.68

Fig. 3.7 and Table 3.7 show the comparison of Pn scores generated by the baseline

configuration, the QP R F model, and the CL-SDR algorithm. In some cases (e.g., 200kbps

and 800kbps Webcam), more than one model came up with the same configuration, and

hence the scores were similar. In general, both QP R F and CL-SDR performed notably

better than the baseline configuration. For stored videos, CL-SDR improved average Pn

scores by 21.54% and 3.52% compared to the baseline and QP R F model, respectively. For

webcam videos, the average improvements were 23.47% and 23.39%, respectively.

Fig. 3.8 and Table 3.8 show the comparison of Sn values for the three models. Both

QP R F and CL-SDR performed better than the baseline configuration in case of stored

videos. However, for live webcam videos, the baseline configuration and the QP R F model

56

Figure 3.8: Sn comparison

Table 3.8: Cross-layer parameter config. to maximize Sn

Bandwidth
(kbps)

Video Source

Parameter Configuration: Sn Scores
Video resolution (px), Frame rate (fps), Encoding rate (kbps),

Tx gain (dB), Frequency (GHz)
Baseline QP R F CL-SDR

200
Stored video

Webcam
480×360, 24, 128, 60, 2.68
176×144, 15, 128, 60, 2.68

352×240, 12, 128, 60, 2.68
176×144, 15, 128, 60, 2.68

480×360, 16, 128, 40, 2.68
352×240, 15, 128, 60, 2.68

400
Stored video

Webcam
480×360, 24, 256, 60, 2.68
176×144, 15, 256, 60, 2.68

352×240, 12, 256, 60, 2.68
176×144, 15, 256, 40, 2.68

480×360, 12, 256, 60, 2.68
176×144, 15, 256, 40, 2.68

800
Stored video

Webcam
480×360, 24, 512, 40, 2.68
176×144, 15, 512, 60, 2.68

352×240, 12, 512, 40, 2.68
176×144, 15, 512, 60, 2.68

480×360, 12, 512, 40, 2.68
352×240, 15, 512, 40, 2.68

Figure 3.9: FL comparison

57

Table 3.9: Cross-layer parameter config. to minimize FL

Bandwidth
(kbps)

Video Source

Parameter Configuration: FL Scores
Video resolution (px), Frame rate (fps), Encoding rate (kbps),

Tx gain (dB), Frequency (GHz)
Baseline QP R F CL-SDR

200
Stored video

Webcam
480×360, 24, 128, 60, 2.68
176×144, 15, 128, 60, 2.68

352×240, 12, 128, 60, 2.68
176×144, 15, 128, 60, 2.68

480×360, 16, 128, 40, 2.68
352×240, 15, 128, 60, 2.68

400
Stored video

Webcam
480×360, 24, 256, 60, 2.68
176×144, 15, 256, 60, 2.68

352×240, 12, 256, 60, 2.68
176×144, 25, 256, 40, 2.68

480×360, 12, 256, 60, 2.68
176×144, 25, 256, 40, 2.68

800
Stored video

Webcam
480×360, 24, 512, 60, 2.68
176×144, 15, 512, 60, 2.68

352×240, 12, 512, 40, 2.68
176×144, 15, 512, 60, 2.68

352×240, 12, 512, 40, 2.68
176×144, 20, 512, 60, 2.68

produced similar results. For stored videos, the average improvement in Sn was 78.85%

and 62.49% compared to the baseline and QP R F model, respectively. In the case of live

webcam videos, the corresponding average increases were 31.10% and 33.38%.

Fig. 3.9 and Table 3.9 show the comparison of FL values for the three models. In

most cases, the QP R F model generated frame losses similar to the baseline settings. For

stored videos, the average reduction in FL was 45.58% and 37.49% compared to the baseline

and QP R F model, respectively. In case of live webcam videos, the corresponding average

reductions were 49.26% and 48.91%.

3.7 Conclusion

We introduced a QoE-Driven cross-layer video communication scheme over SDR. Our so-

lution is based on a practical SDR-based video communication platform built upon GNU

radio, USRP B210, and GStreamer. This platform could monitor the QoE of video commu-

nication in real-time, which utilizes the latest research results in the field of QoE for video

communication. We obtained measurements from this platform to understand how different

application and physical layer parameters influence the QoE of received videos, and then

based on these measurement results, we proposed a cross-layer solution that jointly adjusts

video application settings and physical layer parameters to maximize QoE. Experimental

results have shown that our solution could boost the quality of received videos in terms of

frame loss rate, video clarity, and playback stalling.

58

Chapter 4

Quality-aware Video Analytics in

Edge Computing Environments

4.1 Introduction

4.1.1 Overview

Edge computing is a distributed computing paradigm that uses decentralized processing

power to process data near the source and thus reduces latency and saves bandwidth. In

edge computing-based networks, data is processed by the source device itself or by a local

computer rather than being sent to a data center. This reduction in the physical distance

that data must travel leads to a significant reduction in delay, which is beneficial for mobile

computing, the Internet of Things (IoT), and real-time video analytics applications.

Video surveillance and public safety are some of the major fields where edge computing-

based video analysis has gained popularity. The prerequisites for intelligent video surveillance

include the following stages: moving objects detection, object tracking, understanding and

description of behaviors, and object recognition and identification [91].

Moving object detection segments the areas corresponding to the moving objects from

the rest of an image. The process of moving object detection usually involves environment

59

modeling, motion segmentation, and object classification, which overlap each other during

processing. An example of object detection is shown in Figure 4.1 [92]. The ground truths

are highlighted in solid lines, three detected objects in dashed lines, and confidence levels in

white text, respectively. Motion segmentation in image sequences aims at detecting regions

corresponding to moving objects such as vehicles and humans. Currently, most segmentation

methods use either temporal or spatial information in the image sequence [92]. The next step

in tracking objects and analyzing their behaviors is to classify the moving objects accurately.

Figure 4.1: Object detection sample

After moving object detection, surveillance systems usually track the moving objects

from one frame to the next. Well-known models for tracking include the hidden Markov

models [93], Condensation algorithm [94] and Particle filter[95]. The next step, behavior un-

derstanding, involves the analysis and recognition of motion patterns and the generation of a

high-level description of actions and interactions. Examples of behavior analyzing methods

include dynamic time warping [96], finite-state machine [97], and hidden Markov model [98].

The final step, recognition and identification of objects such as human beings, vehicles, or

animals, can be thought of as a special behavior-understanding problem. Human face and

gait are now regarded as the main biometric features that can be used for personal identifi-

cation in visual surveillance systems [92]. The bags-of-keypoints model [99] and the greedy

generative deep learning model [100] are some of the most popular recognition methods.

Deep learning is a type of machine learning method that teaches computers to do what

humans do naturally: learn by example. Deep learning models learn to perform classification

60

tasks directly from raw data, e.g., text, image, or audio. Learning models are trained using a

large set of data and complex multi-layered artificial neural networks. Deep learning is a key

component behind numerous applications such as automatic video analytics, speech recog-

nition and virtual assistants, natural language processing, self-driving cars, bioinformatics,

and social media filtering.

For computer vision-related tasks such as image recognition and classification, object

detection, and image analysis, a widely used deep learning technique is the convolutional

neural network (CNN). Convolutional networks feature a connectivity pattern between neu-

rons similar to the human visual cortex, i.e., the part of the human brain that is in charge of

interpreting and processing visual data received from the eyes. CNNs require comparatively

less data pre-processing compared to other traditional image classification algorithms, which

is a big advantage. Some well-known CNN architectures include VGGNet [101], ResNet

[102], GoogLeNet [103], and LeNet [104].

Deep learning can achieve accuracy at higher levels than ever before and can even sur-

pass humans at tasks like object classification in images or videos. However, two of the

key requirements that must be met for efficient deep learning are huge datasets and very

high computing power. High-performance graphics processing units (GPUs) with paral-

lel architectures are usually used for deep learning. Consequently, using deep learning for

object detection and tracking tasks at devices with constrained computing power can be

prohibitive. Many edge devices such as smartphones, smart surveillance cameras, and Rasp-

berry Pi’s have limited computing power, and for those devices, alternative low-complexity

object recognition and tracking methods should be considered. Traditional object detection

schemes such as Histograms of Oriented Gradients (HOG) [105], Gaussian mixture mod-

els, Discriminatively Part Models (DPM) [106], and Locally Decorrelated Channel Features

(LDCF) [107] can be useful for fast local detection tasks at edge devices. However, the low

complexity and lower requirement of computing resources come at the price of lower accu-

racy compared to deep learning techniques. We employed a deep learning-based activity

61

detection algorithm in our experiments to achieve higher detection accuracy.

4.1.2 Proposed Work

We designed and built an edge computing-based video analytics platform that supports real-

time video transmission and analysis. Our platform features a CNN-based activity detection

model. Employing our testbed, we studied what factors contribute to the overall latency

and detection accuracy in real-time video analytics. By examining the results from our

video analytics experiments, we quantified the trade-off between latency and accuracy for

video processing at the network edge vs. remote server. Finally, we proposed a quality-

aware video analytics framework that optimizes the source video quality to meet accuracy

requirements and maximizes response time.

4.2 Related Works

4.2.1 Edge Computing-based Video Analytics

Due to the benefits offered by edge computing, a number of research works have studied

edge computing-based video analytics and related applications. Video analytics-based indoor

positioning system using edge computing has been studied in [108] and [109]. Both works

considered the IoT use cases of real-time video analytics and implemented their positioning

system inside a conference room.

An edge-cloud coordination framework for live video analytics is proposed in [110]. This

system utilizes the location data of video queries to configure the associated end-cameras to

generate video frames that meet quality requirements. In [111], an intelligent task scheduling

problem has been presented. An adaptive deep neural network (DNN) model selection

method is employed to select the most effective DNN model for each task. They also present a

graph searching approach outlining the trade-off between network delay and computing delay.

A latency-aware video analytics platform has been presented in [112], where collaboration

62

between the nearby edge nodes is harnessed to minimize the response time. The authors

also compare different task placement schemes for inter-edge collaboration.

A mobile edge computing-based video analytics platform is illustrated in [113]. It uses a

DNN to partition an analysis task considering available resources on the mobile edge node

and then upload the unprocessed data to the cloud for further analysis. Partitioning video

analysis tasks across devices and servers is discussed in [114]. A black-box optimization

scheme is implemented to ensure the optimal usage of computing resources.

4.2.2 QoE-aware Video Streaming in Edge Computing

A multi-access edge computing (MEC)-based mobile video streaming app is presented in

[115]. The client app provides the general functions of the YouTube video streaming app.

The authors have conducted simulations to investigate the effectiveness of the MEC architec-

ture for improving the QoE. A similar MEC-based QoE maximization framework has been

proposed in [116]. The QoE for dynamic adaptive video streaming is optimized through

the coordination among MEC servers. The QoE optimization problem is cast as a Mixed-

Integer Nonlinear Program (MINLP) that jointly calculates the video resolution levels and

transmission rates.

In [117], an edge computing-based real-time QoE estimation system is deployed at a real

LTE-A network. The system does not require any feedback from the clients to estimate

the DASH clients’ QoE. Another quality adaptation technique for MEC-based mobile video

streaming is presented in [118]. This study aims to address the limitations of a purely client-

based adaptation mechanism. The system performs better than client-based DASH when

the available throughput is relatively low. However, the performance gain is insignificant

under moderately high throughput or when the mobile clients have similar link quality.

63

4.2.3 Novelty of Our Work

The existing works have predominantly focused on task scheduling and latency minimization

(e.g., [111, 112, 113]) while the impact of source video quality on network delay and video

analysis quality for real-time video applications remain largely unexplored. Notably, videos

with the same file size but different input settings (e.g., different resolution, frame rate, or

quantization parameter) can potentially produce different detection accuracy while taking

the same time to be transmitted over the network. Therefore, minimizing the latency with-

out considering the specific video properties could result in sub-optimal detection accuracy.

Furthermore, although some studies [115, 116] have considered the QoE of human users, the

quality from the viewpoint of video analytics tools has not been rigorously investigated. We

investigated the factors that impact video analysis quality with the primary concentration

on analytics tools.

The unique contribution of our work is that we studied the performance of real-time edge-

based video analytics considering the interrelation between video quality metrics such as

video resolution, bitrate, quantization parameter (QP), and frame rate. We also studied the

variation of total analysis time under different channel bandwidths and processing locations

(server vs. edge). Finally, our quality-aware video analytics framework jointly optimizes

source video quality and computation location to meet detection accuracy requirements

with minimum latency.

4.3 Experimental Platform for Video Analytics based

on Edge Computing

4.3.1 Testbed Components

Our edge computing-based video analytics platform (Fig. 4.2) comprises multiple edge de-

vices and a high-performance server. The edge devices and the high-performance server can

64

be connected using either wireless or wired connections. The platform supports edge de-

vices with different computing capacities, i.e., high and low, such as laptops, cellphones, and

Raspberry Pi’s. We found that although it is possible to run CNN models on devices with

constrained computing power, the detection speed is extremely slow and not suitable for ap-

plications demanding real-time results. As we focus on real-time video analytics in this study,

we used laptops with Linux OS (Ubuntu 18.04) as edge devices. The high-performance server

has Nvidia Compute Unified Device Architecture (CUDA)-enabled graphics processing unit

(GPU) to perform complex video analysis tasks.

Figure 4.2: Edge computing-based video analytics architecture

The edge node emulates the camera behavior with specific video-adjustment abilities,

65

and the computing node performs a more extensive analysis. For the sake of practicality,

the edge node is composed of a laptop that uses FFmpeg to stream locally stored videos

via Real-Time Messaging Protocol (RTMP). To better establish an adequate streaming, the

receiver side is configured with NGINX, which is an open-source software that supports web

serving, reverse proxying, caching, load balancing, and media streaming. NGINX creates an

RTMP session between the transmitting and receiving nodes to ensure optimal delivery of

the video.

Additionally, the testbed relies on Network Time Protocol (NTP) synchronization to

guarantee an accurate and unique time source. In this case, Chrony [119] is implemented in

a server-client mode to meet such requirements. The edge node acts as a client entity that

receives synchronization from the server side. More details about the platform can be found

in Section 5.3.

4.3.2 Object Detection Model and Dataset

Depending on the intended application, any deep learning-based video analytics model can be

used with our platform. We used Hara et al.’s [120] ResNet-based human activity recognition

convolutional neural network (CNN), which was trained on the Kinetics 400 dataset [121].

The Kinetics 400 dataset includes 160000 video clips containing 400 different activities,

which have been previously labeled and recognized. The activity recognition model was

implemented with the help of OpenCV.

The platform supports real-time video input from cameras (e.g., webcam or dedicated

camera sensor) as well as stored videos. The receiver node (edge device or server) can handle

both types of video signals. However, if the testbed is used for video analytics research, as

we do in this study, a labeled video dataset (with ground truths) would help investigate the

detection accuracy.

66

4.4 Study of Quality and Latency for Edge Computing

There are two primary aspects of the overall quality of edge computing-based video ana-

lytics: total latency and analysis quality or accuracy. Different video analytics applications

have different requirements/thresholds for latency and accuracy. The total latency in edge

computing is the sum of computational latency and communication latency. The main con-

tributing factors to computational latency are raw computational power of the edge and

cloud nodes, task scheduling efficiency, the computational complexity of the analytics algo-

rithm, and neural network (NN) training challenge due to a fragmented knowledge base. On

the other hand, the primary factors that impact communication latency are bandwidth lim-

itation, unpredictable latency, and abrupt service outage. The quality or accuracy of video

analytics predominantly depends on the quality of input video frames. The other factors

that influence the analysis quality are video content, video compression method, computing

capacity, detector algorithms, and learning rate of the NN. This work focused on the latency

and video quality factors that have the largest influence on overall analysis quality.

Table 4.1: Range of input settings for videos used in our experiments

Parameter Values

Video Resolution (px)
192×144, 180×320, 240×320, 288×384, 288×612,
324×492, 352×640, 360×480, 422×622, 480×270,

540×960, 720×1280, 916×1904, 1080×1920
Frame Rate (fps) 4, 8, 16, 24, 30

QP 15, 20, 25, 30, 35, 40, 45, 50

To determine how the different aspects of the source video quality influence real-time

activity detection in our video analysis platform, we streamed videos with a wide range

of input settings listed in Table 4.1. In addition, the videos were streamed under different

channel bandwidths ranging from 500 kbps to 10 Mbps. Testing the platform under different

bandwidths allowed us to control the communication latency.

67

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Snapshots of video sequences used for activity recognition

4.4.1 Dataset and CNN Model

To test the video analysis accuracy, we used 341 videos containing 17 activities such as

running, tai chi, dribbling basketball, sitting, arson, car accident, driving, hitting, kicking,

and vandalism. The video sequences had different scene characteristics, illumination levels,

and object scales. The videos were taken from two datasets: Surveillance Perspective Human

Action Recognition Dataset (SPHAR) [122], and Kinetics 400 [121]. SPHAR is a video

dataset for human action recognition that contains 7759 videos divided into 14 activity

classes. Fig. 4.3 shows some snapshots of the videos used in our video analysis experiments.

The videos feature variations in video quality, aspect ratio, color, camera angle, orientation,

and distance from the object.

The CNN model goes through each video blob by blob and identifies the activity based

on the frames processed within that blob. The default number of frames in a blob is set to

16. If the detected activity is the same as the manually set label, we consider that to be

an accurate detection. So, the detection accuracy is calculated by comparing the number of

correctly detected activities (Nc) and the total number of videos processed (NT):

68

Accuracy =
Nc

NT

(4.1)

4.4.2 Impact on Accuracy

(a) Resolution 180×320 (b) Resolution 360×480

(c) Resolution 720×1280 (d) Resolution 1080×1920

Figure 4.4: Average detection accuracy for different video resolutions

Fig. 4.4 shows the average detection accuracy for different video resolutions. We tested

the detection accuracy for each resolution for different combinations of QP and frame rate

(FR). The overall trend for different video resolutions was found to be similar, with better

detection accuracy observed for higher resolutions. The maximum accuracy observed for the

lowest resolution (180×320) was 61% (Fig. 4.4(a)) while maximum accuracy for 1080×1920

was 82.2% (Fig. 4.4(d)). Note that these numbers are dependent on the dataset used to test

69

the CNN model.

The impact of QP on detection accuracy was noticed across all video resolutions. For

lower QP values, i.e., 25 and below, the detection accuracy was generally very good, and

the accuracy usually began to be affected after QP=30. For instance, in Fig. 4.4(c), the

accuracy remained constant for QP = 15 to 30 for both 24fps and 30fps frame rates.

We also studied the impact of video frame rate on average detection accuracy. Interest-

ingly, we observed a comparatively smaller impact of frame rate on detection accuracy for

most videos. We found the detection accuracy to be largely unaffected for frame rates ranging

from 16 fps to 30 fps in the majority of videos. Only when the frame rate was reduced to or

below 8 fps, the average detection accuracy went down notably. For example, in Fig. 4.4(b)

and Fig. 4.4(c), we can see the average detection accuracies are very similar for 30fps, 24fps,

and 16fps. This phenomenon could be understood by realizing how activity detection and

video analytics work. While the frame rate is a key aspect for the human viewing experience,

and lower frame rate results in poor QoE, the significance of frame rate for activity detection

is different. If an activity happens very quickly, e.g., hitting, a lower frame rate would affect

the detection rate. However, if the activity in question is not time-sensitive, e.g., walking,

a low frame rate would still produce good detection results. Therefore, the minimum frame

rate requirement is highly dependent on the type of video analytics application.

4.4.3 Impact on Latency

To find the impact of video quality on overall latency, we studied the variation of processing

time and transmission latency. We also quantified the trade-off between computation at

the edge vs. server in terms of latency to illustrate which option generates minimal total

delay. Fig. 4.5 shows how the edge processing time, server processing time, and transmission

latency vary with video bitrate. Fig. 4.5 also shows the combined time it takes for the video

to be transmitted to the remote server (communication delay) and then analyze the video

(processing delay).

70

(a) Resolution 180×320 (b) Resolution 360×480

(c) Resolution 720×1280 (d) Resolution 1080×1920

Figure 4.5: Processing and transmission latency for different video resolutions

71

We found that the processing times at the edge and the server remained mostly unchanged

when the video bitrate was varied. The same trend was noticed across all resolutions. Due to

the greater computing capacity of the server, the server processing time was on average 5.356

times shorter than the edge processing time. Table 4.2 lists the average processing delays

and the corresponding standard deviations. We can see the variation in processing time is

minimal, and there is no significant impact of bitrate on the processing time, at least not in

the range of bitrates we tested. Therefore, communication latency plays a more critical role

in deciding where to process the video.

Table 4.2: Processing delays for edge vs. server

Resolution Processing location Avg. processing latency (sec) Standard deviation

180×320
Edge
Server

0.810275793
0.148663691

0.020575198
0.005894285

360×480
Edge
Server

0.804905051
0.147724946

0.005989622
0.00475499

720×1280
Edge
Server

0.806213322
0.152425845

0.006051314
0.001932372

1080×1920
Edge
Server

0.800968919
0.152935982

0.005982224
0.003905544

Fig. 4.5(a) through 4.5(d) also illustrate the trade-off between computation at the edge

vs. server in terms of total latency. It takes less time to transmit the video from the edge to

the server for processing at lower bitrates. At that stage, the summation of the transmission

latency and server processing time (denoted by Server+Tx in Fig. 4.5) is lower than the edge

processing time. As the video bitrate goes up, the transmission latency starts to increase.

Therefore, after a certain bitrate, i.e., turning point, processing at the edge incurs lower

delay. In Fig. 4.5, the turning points are the intersections of the Edge processing time and

Server+Tx.

The value of the turning point depends on two factors: video bitrate and channel band-

width. In our experiments, we used different bandwidths for different video resolutions: 500

kbps for 180×320, 2 Mbps for 360×480, 5 Mbps for 720×1280, and 10 Mbps for 1080×1920.

With those bandwidth settings, the bitrates where processing at the edge became the better

option were found to be the following: 338.56 kbps for 180×320, 1550.31 kbps for 360×480,

72

2397.41 kbps for 720×1280, and 8722.19 kbps for 1080×1920. Of course, if either the channel

bandwidth or the bitrate is changed, the turning points will change accordingly.

4.5 Quality-Aware Video Analytics based on Quality-

Latency Trade-off

Computation at the network edge offers low latency at the expense of lower processing

power and consequently lower accuracy or quality. On the other hand, transmitting the data

to the more computationally powerful server from the data source or device leads to higher

communication delay, but better quality of analytics can be achieved. This trade-off between

quality and latency is a critical factor for the overall video analytics quality.

We propose a quality-aware video analytics framework (QVAF) for edge-computing en-

vironments that aims to maintain satisfactory analysis quality or accuracy while minimizing

total latency (∆T). The proposed framework optimizes real-time video analytics in edge

networks through two steps.

First, QVAF intelligently adjusts the video size to minimize ∆T while maintaining the

detection accuracy. The framework harnesses the relationship between source video quality

parameters and detection accuracy described in Section 4.4 to find out how the parameters

could be adjusted to reduce file size while offering the best analysis quality. Based on the

previous streaming data and required detection accuracy, QVAF sets the thresholds for

QP (ΘQP) and frame rate (ΘFR) for each video resolution. Then, QVAF computes the

estimated bitrates of the output video for different combinations of QP and frame rate using

the rate-control relationships of the video encoder. We used the H.264/AVC encoder in our

experiments to adjust the QP and frame rates.

In H.264/AVC, the relationship between QP and bitrate or video file size is dictated by

the quantizer step size (Qstep). The ratio between successive Qstep values is chosen to be

1.2246 so that Qstep doubles in size when QP increases by 6 [123]. As a result, the video

73

bitrate or file size is doubled if QP is reduced by 6 and halved if QP is increased by 6.

Similarly, the encoder scaling matrix (Vi) could be used to predict bitrates for other values

of QP [124] using the following equation:

Qstep(QP) = Qstep(QP%6) ∗ 2floor(QP/6) (4.2)

Please refer to Section 7.2.3.5 in [123] for more details on the scaling matrix and H.264

standard.

On the other hand, in general, we can assume the video bitrate or file size to change at

the same rate as the frame rate (FR) does (24fps to 30fps would mean 125% increase in file

size) [125]. Utilizing these relationships between QP, frame rate, and output bitrate, QVAF

can calculate the predicted bitrate and thus associated latency.

Table 4.3: List of variables used in QVAF

Variable Definition
L Latency requirement of the application
A Accuracy requirement of the application
ΘQP Threshold for QP
ΘFR Threshold for frame rate (FR)
∆TE Total estimated latency for edge processing
∆TS Total estimated latency for server processing
∆Tmin Minimum of ∆TE and ∆TR

Second, it determines the best location, i.e., edge vs. remote server, for processing or

analyzing the video by comparing the total estimated latency (∆T). The total latency, ∆T ,

is the summation of the communication latency (∆c) and processing latency (∆p):

∆T = ∆c + ∆p (4.3)

Communication latency (∆c) depends on the link quality or channel bandwidth between

the video source and the processing location. If the video is processed at the edge, ∆c

would be zero. The value of processing latency (∆p) depends on the raw computing power

of the machine used for video analysis. Algorithm 3 outlines the working mechanism of the

74

proposed framework, and Table 4.3 lists the variables used in QVAF.

Algorithm 3 Quality-aware Video Analytics Framework (QVAF)

1: Set L and A
2: Copy the detection data from previous streaming sessions
3: Set ΘQP , and ΘFR that satisfies A for each resolution
4: Compute both ∆TE and ∆TS and find the minimum of the two (∆Tmin)
5: if ∆Tmin < L then
6: Conduct video analysis at corresponding location
7: else
8: Change QP and FR to adjust video quality and bitrate using the rate-control relationships
9: Select values such that QP ≥ ΘQP and FR ≥ ΘFR

10: Compute new ∆TE , ∆TS , and ∆Tmin

11: Conduct video analysis at corresponding location
12: end if
13: Update the detection data

To illustrate how the QVAF framework works, let us consider a video analytics application

that demands a minimum detection accuracy of 70% and requires total latency to be no

more than 0.8 seconds. QVAF will start by setting the values of A and L according to the

application requirements. Then, the thresholds for QP (ΘQP) and frame rate (ΘFR) will be

decided based on the existing data. Next, QVAF will compute the predicted total latency

and adjust QP or FR if required using the rate-control relationships of the encoder. Lastly,

QVAF will decide the best location, i.e., edge or server, and send the video for processing.

4.6 Performance Analysis

4.6.1 General Performance

Our edge computing-based video analytics platform can provide real-time activity detection

results for video resolutions up to 1080×1920 with frame rates up to 30 fps and QP up to

15. The bitrates we tested ranged from 38.873 kbps to 11782.34 kbps. Observation of the

experimental results indicates that the platform could support higher bitrates if the channel

bandwidth between the edge and the server is higher (≥10 Mbps) or the processing power of

75

the edge device is increased. The general performance of the platform in terms of processing

delay, communication delay, and detection accuracy is outlined in Table 4.4.

Table 4.4: General performance of the video analytics platform

Edge processing delay
(sec)

Server processing delay
(sec)

Communication delay
(sec)

Detection accuracy

Minimum 0.790779829 0.144020319 0.068426244 29.3%
Maximum 0.890771627 0.167339563 2.328599791 82.2%

The edge and server processing delays show small differences between their minimum

and maximum values; this finding has also been discussed in Section 4.4.3. Communica-

tion delay varies significantly and has a major impact on deciding the processing location.

The maximum accuracy achieved in our testbed, 82.2%, is comparable to rank-1 accuracies

reported on state-of-the-art models trained on ImageNet [120]. The minimum accuracy of

29.3% illustrates the adverse effects of higher QP and lower frame rates.

4.6.2 Performance of QVAF

To evaluate the performance of our proposed QVAF framework, we conducted real-time video

analysis in our experimental testbed. We used a total of 140 videos with four resolutions:

180×320, 360×480, 720×1280, and 1080×1920. The videos were taken from the testing

category of the Kinetics 400 [121] dataset. The following activities were shown in the videos:

lighting fire, javelin throw, watering plants, running, and rope climbing. The edge node and

the high-performance server were connected via Ethernet, and the videos were transmitted

under the following channel bandwidths: 500 kbps, 2000 kbps, 5000 kbps, and 10000 kbps.

We studied the performance of QVAF against two benchmarks: Baseline-Edge and

Baseline-Server. The benchmarks work in the following ways.

• Baseline-Edge: The videos are processed without any input parameter adjustments.

All the processing or video analysis is performed at the edge regardless of the available

bandwidth or computing power.

76

• Baseline-Server: The videos are streamed/transmitted without any input parameter

adjustments. All the processing or video analysis is performed at the high-performance

server regardless of the available bandwidth or computing power.

We also tested how QVAF performs under different accuracy requirements. To that

end, we chose two sets of minimum detection accuracy for the four video resolutions: high

accuracy and moderate accuracy, and observed the comparative performance gain in both

cases.

Table 4.5: Video properties and processing location: high accuracy requirement

Resolution Scheme Processing location
Video settings

QP, Frame rate, Encoding rate

180×320
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Server

25, 30 fps, 374.373 kbps
25, 30 fps, 374.373 kbps
25, 16 fps, 243.895 kbps

360×480
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Server

20, 16 fps, 877.672 kbps
20, 16 fps, 877.672 kbps
25, 16 fps, 496.571 kbps

720×1280
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Edge

15, 16 fps, 8973.58 kbps
15, 16 fps, 8973.58 kbps
20, 16 fps, 5541.95 kbps

1080×1920
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Server

20, 24 fps, 4936.72 kbps
20, 24 fps, 4936.72 kbps
30, 16 fps, 1129.50 kbps

Figure 4.6: Total latency for QVAF vs. baseline configurations: high accuracy requirement

For high detection accuracy requirement, Fig. 4.6 and Table 4.5 show the comparison of

total latency for Baseline-Edge, Baseline-Server, and QVAF. We set the accuracy requirement

77

for each video resolution (56% for 180×320, 66% for 360×480, 73% for 720×1280, and 78%

for 1080×1920) and then examined which model produces the smallest total latency. The

accuracy thresholds were different for different resolutions because lower resolution videos

can not attain the same accuracy as high-resolution ones, which has been demonstrated in

Section 4.4.2.

Table 4.6: Video properties and processing location: moderate accuracy requirement

Resolution Scheme Processing location
Video settings

QP, Frame rate, Encoding rate

180×320
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Server

25, 16 fps, 243.895 kbps
25, 16 fps, 243.895 kbps

30, 8 fps, 73.07 kbps

360×480
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Server

30, 16 fps, 281.884 kbps
30, 16 fps, 281.884 kbps
30, 8 fps, 190.626 kbps

720×1280
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Server

35, 30 fps, 1176.965 kbps
35, 30 fps, 1176.965 kbps
35, 30 fps, 1176.965 kbps

1080×1920
Baseline-Edge
Baseline-Server

QVAF

Edge
Server
Server

25, 30 fps, 3043.696 kbps
25, 30 fps, 3043.696 kbps
30, 8 fps, 562.741 kbps

In most cases, QVAF performed notably better than the other two models across all

resolutions. The latencies generated by QVAF were on average 27.86% lower than Baseline-

Edge and 40.44% lower than Baseline-Server. The performance difference between edge

and server processing was dictated by the communication delay and computing power. In

particular, channel bandwidth significantly affected the communication delay for high bitrate

videos. An example of this can be seen in Fig. 4.6 for resolution 720×1280. The source

video had a comparatively higher bitrate (8973.58 kbps), and with the available 5000 kbps

bandwidth, processing at the server resulted in a large delay.

78

Figure 4.7: Total latency for QVAF vs. baseline configurations: moderate accuracy require-
ment

Then, we set the accuracy requirement to moderate level: 53% for 180×320, 60% for

360×480, 69% for 720×1280, and 72% for 1080×1920. The overall performance trend was

similar to the previous case (high accuracy requirement). However, we took note of one

difference in performance when the accuracy requirement was lowered. As QVAF had more

room for adjustment due to a lower accuracy threshold, it was able to adjust video settings

more drastically and produce video streams with lower bitrates. Consequently, QVAF dic-

tated all videos be processed at the server as the communication delay was brought down.

This ultimately resulted in a bigger performance gap between Baseline-Edge and QVAF:

51.81%, whereas it was 27.86% for the high accuracy requirement. This behavior further

exhibits the gravity of source video quality and processing location on overall latency.

4.7 Conclusion

We designed and built an edge computing-based video analytics platform that allows real-

time activity detection. Then, we employed this platform to investigate the relationships

between video properties such as bitrate, QP, and frame rate and video analytics metrics

79

such as latency and accuracy. Additionally, we inspected how QP and frame rate impacts

detection accuracy. Furthermore, we analyzed the pros and cons of processing the video at

the network edge vs. the server. Finally, we proposed a quality-aware video analytics algo-

rithm (QVAF) to provide minimum latency while maintaining required detection accuracy

via optimizing source video properties. Experimental results exhibited that QVAF could

significantly boost the response time of video analytics applications.

80

Chapter 5

Developed Experimental Platforms

We designed and built three video streaming platforms based on three different networking

architectures. These platforms can be very beneficial to future researchers willing to conduct

experiments in similar fields. In this section, we will describe the major components, design

challenges, and applications of our developed platforms.

5.1 QoE-Aware Multi-Source Video Streaming Plat-

form over CCN

We built a QoE-aware multi-source CCN video streaming platform based on CCNx 1.0 [8].

This platform supports scalable video streaming from multiple CCN nodes across both wired

and wireless connections.

A standard CCN router (shown in Fig. 5.1) comprises of three primary modules: content

store (CS), forwarding information table (FIB), and pending interest table (PIT). The FIB

maps content names to the output interfaces that should be used to forward interest messages

(requests) towards appropriate data sources. The PIT tracks the incoming interfaces from

which pending requests have arrived. Finally, the CS serves as a local cache for content

objects that have gone through the CCN router. We added a new component to the CS of

81

Figure 5.1: Content-Centric network architecture

the CCN routers: the content-listing table (CLT). At each router, the CLT will store the

cached file names and the range of packets cached for each file. This additional component

allows QoE-aware video streaming optimization by adjusting the video quality based on the

content distribution (more details in Section 2.7).

The CCNx 1.0 (Distillery 2.0) software distribution brings together a set of modules

that are needed to build a complete CCN-based system. These modules are independent

of each other and fully customizable (written in C++). To enable multi-source streaming

and implement the QoE-aware streaming mechanism, we implemented a customized VLC

plugin (CCN-VLC-AccessModule) to play the videos on the client side. Plus, we maintained

realistic content (i.e., CCN chunks) distributions (determined by ccnSim) in the CCN server

nodes by pre-chunking the video files using ccnxSimpleFileTransfer Server. Moreover, we

also modified the built-in CCN forwarder named Athena to log CCN chunk transmission

and latency data. The major system components are shown in Fig. 5.2 and discussed below.

82

Figure 5.2: Client-server connection in our platform

5.1.1 System Components

• CCNx 1.0: The CCNx software was built from source and installed on computers run-

ning Ubuntu 14.04 LTS. CCNx comes with two CCN forwarders: Athena and Metis and

two file transfer modules: ccnxSimpleFileTransfer Server and ccnxFileRepo Server. All

of these modules can be customized to add or change functionalities.

• Athena Forwarder: We used the CCN Athena forwarder to establish dynamic rout-

ing paths between content servers. We employed public keys and passwords as the

chunk-level encryption method. We modified the Athena module to keep track of

chunk transmission and reception times as well as the source of each chunk.

• ccnxSimpleFileTransfer Server: This module was used to segment each video

into the desired number of CCN chunks (encrypted and named accordingly) and

then create a uniform resource identifier (URI) for the video file. On the client-side,

ccnxSimpleFileTransfer Client can be used to get a list of available video files hosted

by the servers in the network.

• CCN-VLC-AccessModule: The CCN 1.0 compatible version of the CCN-VLC-

83

AccessModule was used in our platform. This plugin works with VLC Player v2.1.6

(later versions might be incompatible due to VLC API changes). This plugin can be

used to play videos streamed over CCN. We customized this plugin and the VLC player

core to integrate QoE measurement features and allow updating CCN chunk request

messages.

5.1.2 Challenges

One of the major challenges was the lack of documentation regarding video streaming us-

ing the CCNx platform. The existing CCNx manuals and wikis are focused on general data

transfer over CCN, and none has outlined multi-source streaming. Plus, the installation pro-

cedures of both the CCNx 1.0 and the CCN-VLC-AccessModule software require very specific

dependencies, which were challenging to complete without sufficient resources. Note that

CCNx does not have any built-in module for multi-source video streaming or video quality

adjustment. Therefore, we had to modify the existing modules and add those features.

5.1.3 Applications

Our multi-source CCN video streaming platform could be helpful for studying video trans-

mission over CCN and investigating the impacts of key CCN features such as encryption,

routing, and naming on video streaming. Although our platform provides QoE prediction

and quality adjustment mechanisms, it is possible to integrate other QoE models and video

quality adaptation schemes into this platform. Moreover, the modular structure and the

highly customizable nature of the CCNx codebase means that researchers could use our

platform as a base and add their own modules for supplemental features.

84

5.2 SDR-Based QoE-Aware Video Streaming Platform

We designed and implemented an SDR-based QoE-aware video streaming platform, which

is depicted in Fig. 5.3. The main hardware and software components of our platform are

described below.

Figure 5.3: A picture of our SDR platform

5.2.1 System Components

Hardware Modules

• USRP: The platform uses Ettus B210, a single-board USRP platform with continuous

frequency coverage from 70 MHz – 6 GHz and up to 56 MHz of real-time bandwidth.

Both USRPs were connected to the same computer via USB 3.0. One USRP was used

as the transmitter while the other one acted as the receiver. The B210 has full support

for UHD software and allows easy integration with GNU Radio.

• Antennas: Ettus VERT2450 antennas (dual Band 2.4− 2.48 GHz and 4.9− 5.9 GHz

omnidirectional vertical antenna at 3dBi Gain) are used with the USRPs.

• Computer: The USRPs are connected to a laptop computer with Intel Core i5-5200U

(2.20 GHz) processor, 16 GB of RAM, Intel HD Graphics 5500, and Ubuntu 18.04 LTS

operating system.

85

• WebCam: Real-time video is captured using a webcam and then streamed to the

encoder. We used the built-in webcam with a maximum resolution of 720p.

Figure 5.4: Flowgraph in GNU Radio

Software Modules

• GNU Radio: We designed the transceiver using GNU Radio software. It is a free

software development toolkit that can be used with external RF hardware to implement

SDRs. Our integrated transmission/reception flowgraph is shown in Fig. 5.4. One of

the key advantages of GNU Radio is the availability of a large number of built-in signal

processing blocks and the capability of designing custom blocks using Python.

• GStreamer: We used Gstreamer [4] to process (encoding and multiplexing) the video

before transmission and after reception. Fig. 5.5 shows the operation of the commands

86

at the transmitter/receiver side. An input video is compressed using MPEG-4 Part

10 (a.k.a H.264 or Advanced Video Coding). The x264 open source software library is

used for this implementation.

• Video player: GStreamer playbin, VLC Player, and MPlayer are three video players

that we used to play the received videos.

(a) Transmitter / Encoding (b) Receiver / Player

Figure 5.5: GStreamer commands

5.2.2 Video Transmission and Reception

The block diagrams for video transmission are shown in the upper half part in Fig. 5.4.

The first block in the flow graph is a file source that receives an H.264 encoded video input

stream. An example of the input stream is shown in Fig. 5.6. The stream is passed to

a packet encoder to be encoded in packets. After forming packets, the packetized data is

modulated using GMSK modulation followed by multiplying the signal in order to increase

the amplitude of the modulated signal. Then the samples are sent out to the USRP connected

to GNU Radio via a USB port.

The bottom part of Fig. 5.4 shows the receiver implementation. The first block in video

reception is the USRP source. The USRP captures the transmitted data and converts it to a

form suitable for processing by the computer (GNU Radio). An example of video reception is

shown in Fig. 5.7. The data is demodulated using the GMSK demodulator and forwarded to

87

Figure 5.6: Video input stream

(a) Constellation (Rx side) (b) Output/Decoded stream

Figure 5.7: An example of video reception

the packet decoder, which performs the inverse operation of the packet encoder to generate

a bitstream. This bitstream is then sent to either a file sink or played in real-time.

5.2.3 Challenges

The initial setup of both UHD and GRC requires a detailed process that is usually ac-

complished by installing these tools from the source code. The source code has a lot of

prerequisite libraries, and they vary depending on the Linux distribution being used. More-

over, we had to sort through issues arising from version incompatibility between GRC and

UHD. The default branches of the Git repositories of these two software may not always

work together. Ensuring this compatibility helps to avoid complications at more advanced

stages.

Additionally, the flowgraph design represents one of the most challenging situations as

it defines the communication architecture of the solution. It is important to note that,

88

when it comes to the transmission of video, there are limited references in regards to SDR

implementations. Therefore, the selection of an adequate modulation/demodulation scheme

became one of the most elaborate duties that, combined with the lack of well-documented

debugging strategies, clearly impacted the overall progress. We also faced some difficulties

due to the GNU radio’s inability to handle certain types of video streams (e.g., different

compression and multiplexing methods).

5.2.4 Applications

Our developed platform could be used to establish SDR-based real-time video streaming

between different devices connected wirelessly. This platform can also act as a base to

implement and test other SDR-based video streaming solutions. The integrated QoE support

could be especially helpful to investigate streaming performance in terms of users’ QoE.

Although the current implementation considers single-hop connectivity, the system could

be scaled up to build more complicated network topologies. Another possible application of

this platform is using it in conjunction with Unmanned Aerial Vehicles (UAVs), which will

help to study the impact of mobility on video streaming quality.

89

5.3 Quality-Aware Edge Computing-based Video An-

alytics Platform

We built an edge computing-based video analytics platform featuring real-time quality-aware

video analysis functionalities. This particular testbed allows a comprehensive examination

of the critical attributes of edge computing scenarios. The proposed platform is aimed to

resemble a high-performance architecture capable of transporting video with low latency

and processing video data at both the edge and remote server depending on the quality

and latency requirements. Fig. 5.8 shows an example of how the platform detects different

activities. The main components of the system are described below.

(a) (b) (c)

Figure 5.8: Activity recognition on the receiver side

5.3.1 System Components

Receiver Side: The receiver side can be the edge-computing device (e.g., laptop) or the

remote server depending on the particular analysis task. Regardless of the physical location

of the video receiver, the following components are used for video reception and analysis.

• Open CV: Open CV offers a broad set of libraries that handles advanced functions

for computer vision and deep learning. We installed Open CV using Python virtual

90

environment to easily develop the project in our Ubuntu 18.04 system with isolated

packages.

• NGINX: NGINX [126] with Real Time Messaging Protocol (RTMP) module provides

the system with a reliable yet flexible client-server connection. RTMP was an essential

part of this platform as it provides the experiments with sufficient capabilities and

has a low demand for system resources. NGINX was installed on our Ubuntu-based

machine, and by default, it uses port 1935 to accept the streams.

• Chronyc: Chronyc operates as an easy-to-use implementation of the Network Time

Protocol (NTP). It allows the platform to create a common timing reference that is

highly necessary for delay-quantification purposes. Figure 5.9 shows the execution of

the chronyc sources command that also indicates the node that is currently acting as a

timing reference (*). In this case, the server node (192.168.0.106) has been declared as

the machine with the highest priority (stratum 10) and thus is able to proportionate

a common clock to the system.

Figure 5.9: Time synchronization between transmitter and receiver

• Wireshark: Wireshark [127] is an open-source packet analyzer that supports net-

91

work troubleshooting, analysis, and communications protocol development. We used

Wireshark to identify and analyze the RTMP packets, which helped us verify the com-

munication latency between the nodes.

Transmitter Side: The transmitter side denotes the source of the video, which can be

a surveillance video camera, webcam, or a camera sensor attached to a Raspberry Pi. For

our experiments, we used labeled videos from datasets containing actual surveillance camera

footage. As the transmitter node, we used a laptop with Ubuntu. The platform supports

wireless (Wi-Fi) and wired (Ethernet) connections between the transmitter and the receiver.

• FFmpeg: We used FFmpeg for streaming the videos from the transmitting node

to the receiver node, where they were received by the NGINX server. FFmpeg also

allowed us to adjust the video properties such as QP and frame rate.

• Chronyc: Chronyc was installed and run on both the transmitter and the receiver

sides for time synchronization.

• Wireshark: Packets from the transmitter side were captured and analyzed using

Wireshark. Note that we ran Wireshark on both sides so that the captured frames

could be compared via saved network traces.

• Wonder Shaper: Wonder Shaper [128] is a Linux command-line tool that allows the

user to adjust the bandwidth of one or more network adapters. We used this tool to

control the bandwidth between the nodes and experiment with communication latency.

5.3.2 Challenges

One of the major implementation challenges was ensuring that the correct number of frames

are received by the CNN-based activity detection model. We found that the receiver was

losing some frames at the beginning of the streaming session and thus processing an incorrect

number of frames during blob construction. This frame loss at the very beginning of the

92

streaming caused a domino effect and resulted in erroneous detection results for the entire

session. We identified the number of frames that were lost and then adjusted the frames sent

from the transmitter side to solve the issue.

Another challenge was the quantification of delay between the transmitter and the re-

ceiver. As the communication latency was measured in microseconds, it was essential to

maintain the highest possible precision in the time measurements. Therefore, we used the

NTP protocol to synchronize the time references at the transmitter and the receiver. We also

ran Wireshark at both ends to further quantify and verify the packet transmission delays.

5.3.3 Applications

Our real-time video analytics platform could be used to implement edge computing-based

video applications. Moreover, our quality-aware video analytics framework (QVAF) offers

optimized video streaming and processing. Furthermore, the ability to monitor processing

and communication latencies separately is beneficial for edge-computing research. Although

the current implementation comprises laptops as edge devices to support real-time processing

by the CNN-based detection model, other devices such as cellphones and Raspberry Pi’s

could be easily integrated based on the needs of the intended application.

93

Chapter 6

Conclusion and Future Work

6.1 Research Contributions

We studied quality-aware video communication for both human viewers and video ana-

lytics tools in three different networking paradigms: Content-Centric Networking (CCN),

Software-Defined Radio (SDR), and Edge Computing. Based on the findings of our exten-

sive experimental data, we proposed new video communication frameworks for each of the

networking architectures.

For CCN, we investigated the impact of ubiquitous in-network caching on content dis-

tribution across multiple CCN nodes and how that influences video streaming in CCN. We

implemented actual CCN caching mechanisms to determine realistic chunk distributions

among CCN routers. We found that caching a single video file across multiple CCN nodes

could be a common scenario, which would result in source switching and video stalling. Then,

we conducted human subjective tests to find out which factors impact the overall quality of

experience (QoE) for human viewers. Our subjective test data showed that video stalling

and video clarity had the highest impact on viewers’ QoE. Next, we proposed a QoE model

to accurately predict video quality from the perspective of human viewers. To achieve that,

we used mean opinion scores (MOS) from our subjective tests. After that, we proposed a new

94

QoE-aware multi-source video streaming framework that maximizes perceptual video quality

by minimizing stalling in CCN. Experimental results showed that our proposed algorithm,

ASDC, can outperform state-of-the-art streaming standards such as DASH and SVC.

We designed and built an SDR platform that supports real-time video streaming and

QoE monitoring. Our USRP B210 based SDR platform can stream HD videos and maintain

satisfactory QoE. We also investigated how different application and physical layer parame-

ters shape the QoE of received videos. Then, based on our measurement results, we proposed

a cross-layer video streaming protocol for SDR (CL-SDR) to maximize QoE. Performance

evaluation illustrated that CL-SDR could improve the quality of received videos in terms of

frame loss rate, video clarity, and playback stalling. We also found that CL-SDR’s cross-

layer approach helped it achieve higher video quality compared to just application layer-based

streaming solutions.

We developed an edge computing-based video analytics platform that supports real-time

video streaming as well as stored video transmission. This platform could stream Full HD

surveillance footage from the camera sensor to the processing location and provide real-time

analytics results. Then, we studied which factors impact latency and detection accuracy and

to what degrees. We looked at both communication and computation latencies and identified

the trade-off between edge vs. centralized processing. Moreover, we explored how video

properties such as QP and frame rate influences detection accuracy and how they control the

video bitrate and thus transmission delay. Finally, we proposed a novel quality-aware video

analytics scheme that minimizes overall latency while meeting the quality requirements. Our

experimental results demonstrated that QVAF could significantly improve response times in

edge-based video analytics applications.

95

6.2 List of Publications

1. Mohammad Nazmus Sadat, Erwin Vargas-Alfonso, Rui Dai, Ziqian Huang, Yiling

Fu, and Sunmeng Lin. QoE-driven cross-layer design for video communication over

software-defined radio. In 2021 IEEE 18th Annual Consumer Communications & Net-

working Conference (CCNC), pages 1–9. IEEE, 2021

2. Mohammad Nazmus Sadat, Erwin Vargas-Alfonso, Rui Dai, Ziqian Huang, Yiling

Fu, and Sunmeng Lin. QoE-VS: A cross-layer QoE-aware video streaming platform

using software-defined radio. In 2020 IEEE 92nd Vehicular Technology Conference

(VTC2020-Fall), pages 1–6. IEEE, 2020

3. Mohammad Nazmus Sadat, Rui Dai, Lingchao Kong, and Jingyi Zhu. QoE-aware

multi-source video streaming in content centric networks. IEEE Transactions on Mul-

timedia, 22(9):2321–2330, 2020

4. J. Joseph, M. Radmanesh, M. N. Sadat, R. Dai, and M. Kumar. UAV path planning for

data ferrying with communication constraints. In 2020 IEEE 17th Annual Consumer

Communications Networking Conference (CCNC), pages 1–9, 2020

5. Lingchao Kong, Jingyi Zhu, Rui Dai, and Mohammad Nazmus Sadat. Impact of dis-

tributed caching on video streaming quality in information centric networks. In 2017

IEEE International Symposium on Multimedia (ISM), pages 399–402. IEEE, 2017

6.3 Future Work

The expanding usage of video-focused applications over wireless networks has necessitated

efficient and scalable video communication strategies. As new networking concepts are be-

ing realized, developing and fine-tuning quality-driven video transmission schemes is crucial.

Additionally, the popularity of M2M video communication and intelligent video analysis

96

means that the quality from the perspective of machines or software will need closer in-

spection. Furthermore, video content plays a significant role in human viewing experience,

video encoding, and video analytics. Therefore, optimizing video streaming by taking the

content into consideration would be a big step towards more efficient video communication

in general.

IoT-based smart environments are becoming ubiquitous, and consequently, guaranteeing

satisfactory QoE to the consumers in these scenarios is vital. Investigating the factors that

impact the perceptual video quality in the IoT applications, including those that require

real-time response, can lead to the development of robust communication protocols. While

received video properties such as resolution, bitrate, frame rate, and QP have major impacts

on QoE, other facets of the human viewing experience such as viewing devices, interactive

interfaces, and shared wireless resources should be studied more closely to provide a better

user experience. This dissertation could serve as a foundation for the following prospective

future research directions.

6.3.1 ICN Video Streaming: Other Facets

In Chapter 2 of this dissertation, we have studied the impact of CCN in-network caching on

video streaming and how the new challenges could be tackled for better QoE. This study

has given us a closer look into some of the crucial differences between traditional IP-based

networks and content-centric networks. Core networking aspects such as content naming,

security, routing and forwarding, and flow control are significantly different in CCN, even

more broadly, ICN. Future works could explore how these factors bring in new challenges

for ICN video streaming and what could be done to mitigate the issues.

6.3.2 More Comprehensive QoE Model

We have developed an accurate QoE prediction model (Section 2.5) that considers two of

the most important factors for viewer satisfaction: video stalling and clarity. While these

97

two factors significantly influence the overall viewing experience, there are other factors that

could be considered to build a more comprehensive QoE prediction model. As predicting

human perceptual quality is a complex task, integrating more parameters into the QoE model

would help in developing a more fine-tuned prediction framework. Our work on human

subjective tests could be expanded to collect mean opinion scores (MOS) from viewers on

additional video playback characteristics such as video content, viewer engagement, fatigue,

and user interface. Additionally, new use cases such as virtual reality (VR)-based video

streaming adds elements such as immersion and usability. Incorporation of these factors

could result in a more accurate approximation of viewer satisfaction.

6.3.3 Quality-Driven Task Delegation

Different video analytics applications have different user requirements and available re-

sources, and thus the demands for detection accuracy and response time vary widely. Our

edge-computing platform (Chapter 4) integrated a deep learning-based activity detection

model to achieve higher accuracy with minimal data preprocessing. It was an appropri-

ate selection because we considered use cases with very high thresholds for accuracy and

response time. However, for delay-tolerant video analytics applications and networks with

both high-power and resource-constrained devices, a combination of traditional object detec-

tion methods and deep learning algorithms could prove more useful. Such implementation

could benefit devices with limited computing power and sensor networks where energy con-

sumption is a crucial factor. This cooperative processing from the video quality perspective

could be an interesting area to investigate. Additionally, processing task distribution based

on the requirements of the users may lead to the development of highly specialized video

streaming frameworks.

98

Chapter 7

Bibliography

[1] Cisco. Cisco Annual Internet Report (2018–2023). white paper, 2018.

[2] Cisco visual networking index: Forecast and trends (2017-2022). white paper.

[3] GNU Radio - The Free & Open Source Radio Ecosystem. https://www.gnuradio.org/. Accessed:

2020-03-13.

[4] GStreamer. Open source multimedia framework. https://gstreamer.freedesktop.org/. Accessed:

2020-03-16.

[5] George Xylomenos, Christopher N Ververidis, Vasilios A Siris, Nikos Fotiou, Christos Tsilopoulos,

Xenofon Vasilakos, Konstantinos V Katsaros, and George C Polyzos. A survey of information-centric

networking research. IEEE Communications Surveys & Tutorials, 16(2):1024–1049, 2014.

[6] Jacques Samain, Giovanna Carofiglio, Luca Muscariello, Michele Papalini, Mauro Sardara, Michele

Tortelli, and Dario Rossi. Dynamic Adaptive Video Streaming: Towards a systematic comparison of

ICN and TCP/IP. IEEE Transactions on Multimedia, 19(10):2166–2181, 2017.

[7] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H Briggs, and Re-

becca L Braynard. Networking named content. In Proceedings of the 5th international conference on

Emerging networking experiments and technologies, pages 1–12. ACM, 2009.

[8] CCNx project web site. https://wiki.fd.io/view/Cicn. Accessed: 2018-04-05.

99

[9] Alessandro Finamore, Marco Mellia, Maurizio M Munafò, Ruben Torres, and Sanjay G Rao. Youtube

everywhere: Impact of device and infrastructure synergies on user experience. In Proceedings of the

2011 ACM SIGCOMM conference on Internet measurement conference, pages 345–360. ACM, 2011.

[10] Giuseppe Rossini and Dario Rossi. Evaluating CCN multi-path interest forwarding strategies. Com-

puter Communications, 36(7):771–778, 2013.

[11] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld, and Phuoc Tran-

Gia. A survey on quality of experience of HTTP adaptive streaming. IEEE Communications Surveys

& Tutorials, 17(1):469–492, 2015.

[12] Anush Krishna Moorthy, Lark Kwon Choi, Alan Conrad Bovik, and Gustavo De Veciana. Video

quality assessment on mobile devices: Subjective, behavioral and objective studies. IEEE Journal of

Selected Topics in Signal Processing, 6(6):652–671, 2012.

[13] Lingchao Kong, Jingyi Zhu, Rui Dai, and Mohammad Nazmus Sadat. Impact of distributed caching

on video streaming quality in information centric networks. In 2017 IEEE International Symposium

on Multimedia (ISM), pages 399–402. IEEE, 2017.

[14] Kamal Deep Singh, Yassine Hadjadj-Aoul, and Gerardo Rubino. Quality of experience estimation

for adaptive HTTP/TCP video streaming using H. 264/AVC. In Consumer Communications and

Networking Conference (CCNC), 2012 IEEE, pages 127–131. IEEE, 2012.

[15] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the scalable video coding exten-

sion of the H. 264/AVC standard. IEEE Transactions on circuits and systems for video technology,

17(9):1103–1120, 2007.

[16] Tobias Hoßfeld, Michael Seufert, Matthias Hirth, Thomas Zinner, Phuoc Tran-Gia, and Raimund

Schatz. Quantification of youtube QoE via crowdsourcing. In Multimedia (ISM), 2011 IEEE Interna-

tional Symposium on, pages 494–499. IEEE, 2011.

[17] Quan Huynh-Thu and Mohammed Ghanbari. Temporal aspect of perceived quality in mobile video

broadcasting. IEEE Transactions on Broadcasting, 54(3):641–651, 2008.

[18] Farhan Pervez and Muhammad Salman Raheel. QoE-based network-centric resource allocation for

on-demand uplink adaptive HTTP streaming over LTE network. In Application of Information and

Communication Technologies (AICT), 2014 IEEE 8th International Conference on, pages 1–5. IEEE,

2014.

100

[19] Konstantin Miller, Emanuele Quacchio, Gianluca Gennari, and Adam Wolisz. Adaptation algorithm

for adaptive streaming over HTTP. In Packet Video Workshop (PV), 2012 19th International, pages

173–178. IEEE, 2012.

[20] Waqas Ur Rahman, Dooyeol Yun, and Kwangsue Chung. A client side buffer management algorithm

to improve QoE. IEEE Transactions on Consumer Electronics, 62(4):371–379, 2016.

[21] Suphakit Awiphan, Takeshi Muto, Yu Wang, Zhou Su, and Jiro Katto. Video streaming over con-

tent centric networking: experimental studies on PlanetLab. In Computing, Communications and IT

Applications Conference (ComComAp), 2013, pages 19–24. IEEE, 2013.

[22] Zhengyang Liu and Yiran Wei. Hop-by-hop adaptive video streaming in content centric network. In

Communications (ICC), 2016 IEEE International Conference on, pages 1–7. IEEE, 2016.

[23] Kenji Kanai, Takeshi Muto, Jiro Katto, Shinya Yamamura, Tomoyuki Furutono, Takafumi Saito,

Hirohide Mikami, Kaoru Kusachi, Toshitaka Tsuda, Wataru Kameyama, et al. Proactive content

caching for mobile video utilizing transportation systems and evaluation through field experiments.

IEEE Journal on Selected Areas in Communications, 34(8):2102–2114, 2016.

[24] Yago Sánchez de la Fuente, Thomas Schierl, Cornelius Hellge, Thomas Wiegand, Dohy Hong, Danny

De Vleeschauwer, Werner Van Leekwijck, and Yannick Le Louédec. iDASH: improved dynamic adap-

tive streaming over HTTP using scalable video coding. In Proceedings of the second annual ACM

conference on Multimedia systems, pages 257–264. ACM, 2011.

[25] Raf Huysegems, Bart De Vleeschauwer, Tingyao Wu, and Werner Van Leekwijck. SVC-based HTTP

adaptive streaming. Bell Labs Technical Journal, 16(4):25–41, 2012.

[26] Yago Sanchez, Thomas Schierl, Cornelius Hellge, Thomas Wiegand, Dohy Hong, Danny

De Vleeschauwer, Werner Van Leekwijck, and Yannick Le Louédec. Efficient HTTP-based stream-

ing using scalable video coding. Signal Processing: Image Communication, 27(4):329–342, 2012.

[27] Stefano Petrangeli, Niels Bouten, Maxim Claeys, and Filip De Turck. Towards SVC-based adaptive

streaming in information centric networks. In Multimedia & Expo Workshops (ICMEW), 2015 IEEE

International Conference on, pages 1–6. IEEE, 2015.

[28] Abdelhak Bentaleb, Ali C Begen, Roger Zimmermann, and Saad Harous. SDNHAS: An SDN-enabled

architecture to optimize QoE in HTTP adaptive streaming. IEEE Transactions on Multimedia,

19(10):2136–2151, 2017.

101

[29] Jonnahtan Saltarin, Eirina Bourtsoulatze, Nikolaos Thomos, and Torsten Braun. Adaptive video

streaming with network coding enabled named data networking. IEEE transactions on multimedia,

19(10):2182–2196, 2017.

[30] CCN-VLC-AccessModule. https://github.com/PARC/CCN-VLC-AccessModule. Accessed: 2017-06-

10.

[31] Xiph.Org. Video Test Media Collection, 2014. https://media.xiph.org/video/derf/, Accessed:

March 10, 2018.

[32] Tears of Steel — Mango Open Movie Project, 2012. https://mango.blender.org/, Accessed: March

10, 2018.

[33] Valkaama, 2008. http://www.valkaama.com/, Accessed: March 10, 2018.

[34] ITUT Recommendation. P. 910, ”Subjective video quality assessment methods for multimedia appli-

cations”. International Telecommunication Union, Tech. Rep, 2008.

[35] ITUT Recommendation. BT. 500-13, ”Methodology for the subjective assessment of the quality of

television pictures”. International Telecommunication Union, Tech. Rep, 2012.

[36] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou Wang. A quality-of-experience

index for streaming video. IEEE Journal of Selected Topics in Signal Processing, 11(1):154–166, 2017.

[37] Lucjan Janowski and Zdzislaw Papir. Modeling subjective tests of quality of experience with a gen-

eralized linear model. In 2009 International Workshop on Quality of Multimedia Experience, pages

35–40. IEEE, 2009.

[38] Wang Kaiyu, Wang Yumei, and Zhang Lin. A new three-layer QoE modeling method for HTTP

video streaming over wireless networks. In 2014 4th IEEE International Conference on Network

Infrastructure and Digital Content, pages 56–60. IEEE, 2014.

[39] Ching-Fang Yang. The regressive QoE model for VoLTE. In 2017 31st International Conference on

Advanced Information Networking and Applications Workshops (WAINA), pages 409–414. IEEE, 2017.

[40] Friedemann Köster, Gabriel Mittag, and Sebastian Möller. Modeling the overall quality of experience

on the basis of underlying quality dimensions. In 2017 Ninth International Conference on Quality of

Multimedia Experience (QoMEX), pages 1–6. IEEE, 2017.

102

[41] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality assessment: from

error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

[42] Raffaele Chiocchetti, Dario Rossi, and Giuseppe Rossini. ccnSim: An highly scalable CCN simulator.

In Communications (ICC), 2013 IEEE International Conference on, pages 2309–2314. IEEE, 2013.

[43] Wei Koong Chai, Diliang He, Ioannis Psaras, and George Pavlou. Cache “less for more” in information-

centric networks. In International Conference on Research in Networking, pages 27–40. Springer, 2012.

[44] Michele Garetto, Emilio Leonardi, and Valentina Martina. A unified approach to the performance anal-

ysis of caching systems. ACM Transactions on Modeling and Performance Evaluation of Computing

Systems, 1(3):12, 2016.

[45] Ioannis Psaras, Wei Koong Chai, and George Pavlou. Probabilistic in-network caching for information-

centric networks. In Proceedings of the second edition of the ICN workshop on Information-centric

networking, pages 55–60. ACM, 2012.

[46] Andrea Araldo, Dario Rossi, and Fabio Martignon. Design and evaluation of cost-aware information

centric routers. In Proceedings of the 1st ACM Conference on Information-Centric Networking, pages

147–156. ACM, 2014.

[47] Dong Doan Van and Dung Ong Mau. MS-CCN: Multi-source content centric networking. In Informa-

tion Technology, Networking, Electronic and Automation Control Conference, IEEE, pages 843–847.

IEEE, 2016.

[48] Stefano Traverso, Mohamed Ahmed, Michele Garetto, Paolo Giaccone, Emilio Leonardi, and Saverio

Niccolini. Temporal locality in today’s content caching: why it matters and how to model it. ACM

SIGCOMM Computer Communication Review, 43(5):5–12, 2013.

[49] Of Forests and Men. http://www.offorestsandmen.org/en/film-en, 2011. Accessed: 2018-03-10.

[50] The Swiss Account. http://www.lt11.com/2011/07/17/the-swiss-account/, 2011. Accessed: 2018-

03-10.

[51] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic adaptive streaming over HTTP

dataset. In Proceedings of the 3rd Multimedia Systems Conference, pages 89–94. ACM, 2012.

[52] MainConcept H.264/SVC Encoder (proprietary). https://www.mainconcept.com/us/products.html,

2012. Accessed: 2018-01-16.

103

[53] Wei Quan, Changqiao Xu, Jianfeng Guan, Hongke Zhang, and Luigi Alfredo Grieco. Social coop-

eration for information-centric multimedia streaming in highway VANETs. In Proceeding of IEEE

International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, pages 1–6.

IEEE, 2014.

[54] Suphakit Awiphan, Takeshi Muto, Zhou Su, and Jiro Katto. Outbound face selection considering

response time and buffer usage for CCN adaptive video streaming. In 2015 IEEE Conference on

Standards for Communications and Networking (CSCN), pages 181–186. IEEE, 2015.

[55] Dung Ong Mau, Tarik Taleb, and Min Chen. Mm3c: Multi-source mobile streaming in cache-enabled

content-centric networks. In 2015 IEEE Global Communications Conference (GLOBECOM), pages

1–6. IEEE, 2015.

[56] W-P Ken Yiu, Xing Jin, and S-H Gary Chan. Vmesh: Distributed segment storage for peer-to-peer

interactive video streaming. IEEE journal on selected areas in communications, 25(9):1717–1731, 2007.

[57] Kuldeep S Gill and Alexander M Wyglinski. Heterogeneous cooperative spectrum sensing test-bed

using software-defined radios. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pages

1–5. IEEE, 2017.

[58] Manolis Surligas, Antonis Makrogiannakis, and Stefanos Papadakis. Empowering the IoT hetero-

geneous wireless networking with software defined radio. In 2015 IEEE 81st Vehicular Technology

Conference (VTC Spring), pages 1–5. IEEE, 2015.

[59] Xingguang Wei, Zhiming Geng, Haitao Liu, Kan Zheng, and Rongtao Xu. A portable SDR non-

orthogonal multiple access testbed for 5G networks. In 2017 IEEE 85th Vehicular Technology Confer-

ence (VTC Spring), pages 1–5. IEEE, 2017.

[60] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld, and Phuoc Tran-

Gia. A survey on quality of experience of HTTP adaptive streaming. IEEE Communications Surveys

& Tutorials, 17(1):469–492, 2014.

[61] Mohammad Nazmus Sadat, Rui Dai, Lingchao Kong, and Jingyi Zhu. QoE-aware multi-source video

streaming in content centric networks. IEEE Transactions on Multimedia, 22(9):2321–2330, 2020.

[62] Fuzheng Yang and Shuai Wan. Bitstream-based quality assessment for networked video: a review.

IEEE Communications Magazine, 50(11):203–209, 2012.

104

[63] Abdul Hameed, Rui Dai, and Benjamin Balas. A decision-tree-based perceptual video quality predic-

tion model and its application in FEC for wireless multimedia communications. IEEE Transactions

on Multimedia, 18(4):764–774, 2016.

[64] Demin Wang, Filippo Speranza, Andre Vincent, Taali Martin, and Phil Blanchfield. Toward optimal

rate control: a study of the impact of spatial resolution, frame rate, and quantization on subjective

video quality and bit rate. In Visual Communications and Image Processing 2003, volume 5150, pages

198–209. International Society for Optics and Photonics, 2003.

[65] Ting-Lan Lin, Sandeep Kanumuri, Yuan Zhi, David Poole, Pamela C Cosman, and Amy R Reibman. A

versatile model for packet loss visibility and its application to packet prioritization. IEEE Transactions

on Image Processing, 19(3):722–735, 2009.

[66] Péter Orosz, Tamás Skopkó, and Pál Varga. Towards estimating video QoE based on frame loss

statistics of the video streams. In 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM), pages 1282–1285. IEEE, 2015.

[67] Apurv Shaha, Duy HN Nguyen, Nathaniel Rowe, and Sunil Kumar. Real time video transceiver using

SDR testbed with directional antennas. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics

and Mobile Communication Conference (UEMCON), pages 499–504. IEEE, 2017.

[68] S Nimmi, V Saranya, R Gandhiraj, et al. Real-time video streaming using GStreamer in GNU Ra-

dio platform. In 2014 International Conference on Green Computing Communication and Electrical

Engineering (ICGCCEE), pages 1–6. IEEE, 2014.

[69] Octarina Nur Samijayani, Pramuditoruni Gitomojati, Dwi Astharini, Suci Rahmatia, and Nurul Ih-

san Hariz Pratama. Implementation of SDR for video transmission using GNU radio and USRP B200.

In 2017 5th International Conference on Cyber and IT Service Management (CITSM), pages 1–4.

IEEE, 2017.

[70] Amir Torabi, Michael W Shafer, Gabriel S Vega, and Kellan M Rothfus. UAV-RT: an SDR based

aerial platform for wildlife tracking. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall),

pages 1–6. IEEE, 2018.

[71] T. Radǐsić, M. Muštra, and P. Andraši. Design of an UAV equipped with SDR acting as a GSM base

station. In 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pages

31–34. IEEE, 2019.

105

[72] Limesdr: A low cost, open source (SDR) platform. https://limemicro.com/products/boards/limesdr/.

Accessed: 2020-07-15.

[73] K Guevara, M Rodriguez, N Gallo, G Velasco, K Vasudeva, and I Guvenc. UAV-based GSM network

for public safety communications. In SoutheastCon 2015, pages 1–2. IEEE, 2015.

[74] Gyeong Cheol Lee and Hwangjun Song. An effective cross layer-based video streaming algorithm over

mobile ad hoc network. In 2009 6th IEEE Consumer Communications and Networking Conference,

pages 1–5. IEEE, 2009.

[75] Shoaib Khan, Yang Peng, Eckehard Steinbach, Marco Sgroi, and Wolfgang Kellerer. Application-driven

cross-layer optimization for video streaming over wireless networks. IEEE communications Magazine,

44(1):122–130, 2006.

[76] Zhangyu Guan, Tommaso Melodia, and Dongfeng Yuan. Jointly optimal rate control and relay selection

for cooperative wireless video streaming. IEEE/ACM Transactions on Networking, 21(4):1173–1186,

2013.

[77] Hsuan-Li Lin, Tung-Yu Wu, and Ching-Yao Huang. Cross layer adaptation with QoS guarantees for

wireless scalable video streaming. IEEE communications letters, 16(9):1349–1352, 2012.

[78] Honghai Zhang, Yanyan Zheng, Mohammad A Khojastepour, and Sampath Rangarajan. Cross-layer

optimization for streaming scalable video over fading wireless networks. IEEE Journal on Selected

Areas in Communications, 28(3):344–353, 2010.

[79] Pinghua Zhao, Yanwei Liu, Ruixiao Yao, Song Ci, and Hui Tang. Perceptual quality driven cross-

layer optimization for wireless video streaming. In 2013 IEEE 10th Consumer Communications and

Networking Conference (CCNC), pages 210–215. IEEE, 2013.

[80] Shu Fan and Honglin Zhao. Delay-based cross-layer QoS scheme for video streaming in wireless ad

hoc networks. China Communications, 15(9):215–234, 2018.

[81] Dalei Wu, Song Ci, Haiyan Luo, Wendy Zhang, and Jinfang Zhang. Cross-layer rate adaptation

for video communications over LTE networks. In 2012 IEEE Global Communications Conference

(GLOBECOM), pages 4834–4839. IEEE, 2012.

[82] Mohammad Tahir, Hafizal Mohamad, Nordin Ramli, and Sigit PW Jarot. Experimental implementa-

tion of dynamic spectrum access for video transmission using USRP. In 2012 International Conference

on Computer and Communication Engineering (ICCCE), pages 228–233. IEEE, 2012.

106

[83] Jason Robert Carey Patterson. Video Encoding Settings for H.264 Excellence.

http://www.lighterra.com/papers/videoencodingh264/, April 2012. Accessed: 2020-03-21.

[84] X. Chen, J. Hwang, C. Lee, and S. Chen. A near optimal QoE-driven power allocation scheme for

scalable video transmissions over MIMO systems. IEEE Journal of Selected Topics in Signal Processing,

9(1):76–88, 2015.

[85] M. Chino, H. Miyashiro, and J. L. Arizaca. Implementation of an adaptive control system of the

power transmitted through the estimated SNR, over SDR platform. In 2019 IEEE XXVI International

Conference on Electronics, Electrical Engineering and Computing (INTERCON), pages 1–4, 2019.

[86] A. Prince, A. E. Abdalla, H. Dahshan, and A. E. Rohiem. Multimedia SDR-based cooperative com-

munication. In 2018 13th International Conference on Computer Engineering and Systems (ICCES),

pages 381–386, 2018.

[87] Anish Mittal, Anush K Moorthy, and Alan C Bovik. Blind/referenceless image spatial quality evaluator.

In 2011 conference record of the forty fifth asilomar conference on signals, systems and computers

(ASILOMAR), pages 723–727. IEEE, 2011.

[88] Michele A Saad, Alan C Bovik, and Christophe Charrier. Blind image quality assessment: A natural

scene statistics approach in the DCT domain. IEEE transactions on Image Processing, 21(8):3339–

3352, 2012.

[89] FFmpeg Developers, FFmpeg tool (ver. 4.1.5) [software]. https://ffmpeg.org/. Accessed: 2020-02-

16.

[90] Peach open movie project, Big Buck Bunny. https://peach.blender.org. Accessed: 2020-04-09.

[91] Weiming Hu, Tieniu Tan, Liang Wang, and Steve Maybank. A survey on visual surveillance of object

motion and behaviors. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 34(3):334–352, 2004.

[92] Lingchao Kong. Modeling of Video Quality for Automatic Video Analysis and Its Applications in

Wireless Camera Networks. PhD thesis, University of Cincinnati, June 2019.

[93] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech recog-

nition. Proceedings of the IEEE, 77(2):257–286, 1989.

107

[94] Michael Isard and Andrew Blake. Condensation—conditional density propagation for visual tracking.

International journal of computer vision, 29(1):5–28, 1998.

[95] Changjiang Yang, Ramani Duraiswami, and Larry Davis. Fast multiple object tracking via a hierar-

chical particle filter. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume

1, volume 1, pages 212–219. IEEE, 2005.

[96] Aaron F Bobick and Andrew D Wilson. A state-based approach to the representation and recognition

of gesture. IEEE Transactions on pattern analysis and machine intelligence, 19(12):1325–1337, 1997.

[97] Andrew D Wilson, AE Bobick, and Justine Cassell. Temporal classification of natural gesture and

application to video coding. In Proceedings of IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pages 948–954. IEEE, 1997.

[98] Matthew Brand and Vera Kettnaker. Discovery and segmentation of activities in video. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(8):844–851, 2000.

[99] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray. Visual cat-

egorization with bags of keypoints. In Workshop on statistical learning in computer vision, ECCV,

volume 1, pages 1–2. Prague, 2004.

[100] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets.

Neural computation, 18(7):1527–1554, 2006.

[101] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[102] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,

2016.

[103] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru

Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[104] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-

bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural

computation, 1(4):541–551, 1989.

108

[105] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE

computer society conference on computer vision and pattern recognition (CVPR’05), volume 1, pages

886–893. IEEE, 2005.

[106] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection

with discriminatively trained part-based models. IEEE transactions on pattern analysis and machine

intelligence, 32(9):1627–1645, 2009.

[107] Woonhyun Nam, Piotr Dollár, and Joon Hee Han. Local decorrelation for improved pedestrian detec-

tion. Advances in neural information processing systems, 27:424–432, 2014.

[108] Yinghao Xie, Yihong Hu, Yuejun Chen, Yaqiong Liu, and Guochu Shou. A video analytics-based

intelligent indoor positioning system using edge computing for IoT. In 2018 International Conference

on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pages 118–1187. IEEE,

2018.

[109] Yuejun Chen, Yinghao Xie, Yihong Hu, Yaqiong Liu, and Guochu Shou. Design and implementation of

video analytics system based on edge computing. In 2018 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), pages 130–1307. IEEE, 2018.

[110] Peng Yang, Feng Lyu, Wen Wu, Ning Zhang, Li Yu, and Xuemin Sherman Shen. Edge coordinated

query configuration for low-latency and accurate video analytics. IEEE Transactions on Industrial

Informatics, 16(7):4855–4864, 2019.

[111] Qiong Wu, Haitao Zhang, Peilun Du, Ye Li, Jianli Guo, and Chenze He. Enabling adaptive deep

neural networks for video surveillance in distributed edge clouds. In 2019 IEEE 25th International

Conference on Parallel and Distributed Systems (ICPADS), pages 525–528. IEEE, 2019.

[112] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun Li. LAVEA: Latency-

aware video analytics on edge computing platform. In Proceedings of the Second ACM/IEEE Sympo-

sium on Edge Computing, pages 1–13, 2017.

[113] Hui Sun, Ying Yu, Kewei Sha, and Bendong Lou. mvideo: Edge computing based mobile video

processing systems. IEEE Access, 8:11615–11623, 2019.

[114] Yang Deng, Tao Han, and Nirwan Ansari. Fedvision: Federated video analytics with edge computing.

IEEE Open Journal of the Computer Society, 1:62–72, 2020.

109

[115] Shun-Ren Yang, Yu-Ju Tseng, Chen-Chia Huang, and Wo-Chien Lin. Multi-access edge comput-

ing enhanced video streaming: Proof-of-concept implementation and prediction/QoE models. IEEE

Transactions on Vehicular Technology, 68(2):1888–1902, 2018.

[116] Ayman Younis, Tuyen X Tran, and Dario Pompili. On-demand video-streaming quality of experience

maximization in mobile edge computing. In 2019 IEEE 20th International Symposium on” A World

of Wireless, Mobile and Multimedia Networks”(WoWMoM), pages 1–9. IEEE, 2019.

[117] Chang Ge and Ning Wang. Real-time QoE estimation of DASH-based mobile video applications

through edge computing. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pages 766–771. IEEE, 2018.

[118] A. Mehrabi, M. Siekkinen, and A. Ylä-Jääski. Edge computing assisted adaptive mobile video stream-

ing. IEEE Transactions on Mobile Computing, 18(4):787–800, 2019.

[119] Chrony. https://chrony.tuxfamily.org/. Accessed: 2021-01-11.

[120] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3D CNNs retrace the history

of 2D CNNs and Imagenet? In Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, pages 6546–6555, 2018.

[121] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,

Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.

arXiv preprint arXiv:1705.06950, 2017.

[122] SPHAR Dataset. https://github.com/AlexanderMelde/SPHAR-Dataset. Accessed: 2021-01-05.

[123] Iain E Richardson. The H. 264 advanced video compression standard. John Wiley & Sons, 2011.

[124] H.264/AVC 4x4 Transform and Quantization. https://www.vcodex.com/h264avc-4x4-transform-and-

quantization/. Accessed: 2021-07-01.

[125] How Changing Video Frame Rate Affects File Size. https://larryjordan.com/articles/how-changing-

frame-rate-affects-file-size/. Accessed: 2021-07-01.

[126] NGINX. https://www.nginx.com/. Accessed: 2021-07-04.

[127] Wireshark. https://www.wireshark.org/. Accessed: 2021-07-04.

[128] Wonder Shaper. https://github.com/magnific0/wondershaper. Accessed: 2020-11-01.

110

[129] Mohammad Nazmus Sadat, Erwin Vargas-Alfonso, Rui Dai, Ziqian Huang, Yiling Fu, and Sunmeng

Lin. QoE-driven cross-layer design for video communication over software-defined radio. In 2021 IEEE

18th Annual Consumer Communications & Networking Conference (CCNC), pages 1–9. IEEE, 2021.

[130] Mohammad Nazmus Sadat, Erwin Vargas-Alfonso, Rui Dai, Ziqian Huang, Yiling Fu, and Sunmeng

Lin. QoE-VS: A cross-layer QoE-aware video streaming platform using software-defined radio. In 2020

IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), pages 1–6. IEEE, 2020.

[131] J. Joseph, M. Radmanesh, M. N. Sadat, R. Dai, and M. Kumar. UAV path planning for data ferrying

with communication constraints. In 2020 IEEE 17th Annual Consumer Communications Networking

Conference (CCNC), pages 1–9, 2020.

111

