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Abstract

This thesis presents two sets of new sharp estimates in harmonic analysis united by a
common theme: they are both related to Ap weights, they are both treated with the use of
Bellman functions, and they both develop new technical tools that go beyond established
theory. The first part concerns estimates for a family of Carleson sequences related to
dyadicA2 weights; the corresponding Bellman functions do not arise as solutions of a PDE
and have a new, non-infinitesimal kind of optimizers. The second part deals with lower
Lp-estimates for logarithms of A∞ weights as an indirect way of estimating the constant
of exponential integrability of BMOp for 0 < p < 1. The geometry of the underlying
PDE is significantly complicated by a lack of regularity in the boundary condition, and
the known mechanism relating A∞ estimates to BMOp has to be modified to work for
this range of p.
Throughout this work we maintain the perspective on Bellman functions as stand-

alone objects of study, and emphasize the connection among sharp constants, optimizing
functions or sequences, and, in the second part, the structure of developable surfaces.
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Chapter 1
Introduction

This thesis covers a variety of sharp estimates for Ap weights in the dyadic and contin-

uous settings, obtained using Bellman functions. It consists of two parts, each of which

presents a joint result with Dr. Leonid Slavin. In addition to obtaining new sharp results,

in each part we develop new technical tools to overcome limitations of existing Bellman

machinery.

The first part deals with sharp estimates for a family of Carleson sequences related

to dyadic A2 weights in dimension 1. These are accomplished by constructing the cor-

responding Bellman functions or Bellman majorants. An in-depth earlier study left a

prominent special case open. This was because the standard Bellman approach to esti-

mating dyadic sums seeks Bellman functions as solutions of certain PDEs. An equivalent

way of putting it is that the optimizing sequences in the resulting sharp inequalities

are obtained using infinitesimal extremal splits. However, the solutions of all applicable

PDEs were found in the earlier work and none of them covered the open special case.

In this part of the thesis, we develop a new non-infinitesimal splitting procedure, which

yields new optimizing sequences and new Bellman majorants. These coincide with the

actual Bellman functions for a key selection of points in the Bellman domain, which

yields the desired sharp estimates.
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The second part of the thesis deals with sharp estimates for continuous (i.e., non-

dyadic) A∞ weights on the line. These estimates are used to obtain new best bounds

for the John–Nirenberg constant of BMOp, 0 < p < 1. Bellman functions on this space

cannot be evaluated directly, so one instead estimates p-oscillations of logarithms of A∞

weights from below and examines the behavior of the corresponding Bellman function

defined on the A∞ domain. Our work here is an extension of earlier studies that dealt

with p > 1. However, while the generalized Monge-Ampère PDE our Bellman functions

solve is the same as before, the geometry of the solution is much more complicated for

our range of p, due to a lack of regularity in the boundary condition. This produces new

geometrical configurations that go beyond established theory. Furthermore, an earlier

theorem that allowed one to obtain estimates on BMOp as certain inverses of estimates

on A∞ fails to yield non-trivial results; we prove a new, sharper version that does yield

new best estimates.
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Chapter 2
Dyadic A2 weights, Carleson

Sequences, and Non-infinitesimal

Bellman functions

2.1 Setting, preliminaries, and main questions

We begin with some definitions. Let D be the collection of all open dyadic intervals on

R, i.e., intervals of the form (2−kj, 2−k(j + 1)), j, k ∈ Z. For an interval I ∈ D, let D(I)

be the collection of all dyadic subintervals of I, and Dn(I) be the collection of the dyadic

subintervals of I of the n-th generation, Dn(I) = {J : J ∈ D(I), |J | = 2−n|I|}.

A weight on R is a locally integrable function that is positive almost everywhere. Our

weights will be assumed to belong to the dyadic Muckenhoupt class Ad2. Let 〈w〉J be the

average of a weight w over an interval J,

〈w〉J :=
1

|J |

∫
J
w(t) dt.
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A weight w is said to belong to Ad2, written w ∈ Ad2, if

[w]Ad2
:= sup

J∈D
〈w〉

J
〈w−1〉

J
<∞, (2.1.1)

where w−1 denotes the reciprocal of w. The quantity [w]Ad2
is called the Ad2-characteristic

of w. Observe that [w]Ad2
> 1 by Jensen’s inequality, and w ∈ Ad2 if and only if w−1 ∈ Ad2,

in which case [w]Ad2
= [w−1]Ad2

. For Q > 1, let Ad,Q2 be the set of all Ad2 weights w with

characteristic at most Q:

Ad,Q2 = {w ∈ Ad2 : [w]Ad2
6 Q}. (2.1.2)

If I ∈ D and the supremum in (2.1.1) is taken over all J ∈ D(I) instead of all J ∈ D, we

will write Ad2(I) and Ad,Q2 (I), as appropriate.

A non-negative sequence {cJ}J∈D is called a Carleson sequence if

‖{cJ}‖C := sup
I∈D

1

|I|
∑

J∈D(I)

cJ <∞. (2.1.3)

The quantity ‖{cJ}‖C is called the Carleson norm of {cJ}.

Take a weight w ∈ Ad2. Let Φ be a non-negative increasing function on [1,∞). Consider

the following sequence {cΦ
J (w)}J∈D:

cΦ
J (w) = |J |Φ

(
〈w〉

J
〈w−1〉

J

) [(∆Jw)2

〈w〉2
J

+
(∆Jw

−1)2

〈w−1〉2
J

]
, (2.1.4)

where ∆Jw = 〈w〉
J−
−〈w〉

J+
, and J± are the two halves of J.We are looking to estimate

sharply ‖{cΦ
J (w)}‖C for w ∈ Ad2. Specifically, the goal is to find the sharp upper bounds

in terms of the characteristic [w]Ad2
, or, equivalently, find the best (smallest) function

4



KΦ(·) in the inequality:

sup
I∈D

1

|I|
∑

J∈D(I)

cΦ
J (w) 6 KΦ

(
[w]Ad2

)
. (2.1.5)

The need for such sharp estimates arises in applications when one uses the Carleson

embedding theorem in its various forms. One such form is given by the so-called Carleson

Lemma, whose proof can be found in [MP13]:

Lemma 2.1.1 (Carleson Lemma). A sequence {cJ}J∈D is a Carleson sequence with

norm B if and only if for all non-negative, measurable functions F on the line,

∑
J∈D

cJ inf
x∈J

F (x) 6 B

∫
R
F (x) dx.

Sequences similar to (2.1.4) have been used to obtain weighted bounds for dyadic

paraproducts or square functions ([Bez08; MP13; Wit00]); in such situations Φ is usually

a power function, i.e. Φ(t) = tα for some α > 0. In [Sla16] Lemma 2.1.1 was used in

conjunction with sharp estimate (2.1.5) for a class of functions Φ to obtain new bounds

in a larger family of inequalities for dyadic weights. In addition, these sequences provide

equivalent definitions of Ad2: as shown in [Sla16], for any increasing Φ, w ∈ Ad2 if and only

if {cΦ
J (w)} is Carleson, and inequality (2.1.5) quantifies one side of this relationship.

Beyond immediate applications, given modern tools and specifically Bellman func-

tions, the family {cΦ
J (w)} presents a fascinating stand-alone object of study, and the

corresponding sharp bounds (2.1.5) yield a rich picture worthy of a detailed investi-

gation. (As one manifestation of this, it is shown in [Sla16] that for large classes of

functions Φ, inequalities (2.1.5) are extremized by the same sequences of weights, which

allows for preservation of sharp estimates under polynomial algebra. The new results

presented here provide additional support for this notion.) This stand-alone study was

initiated and partly carried out in [Sla16]. To compute the function KΦ one defines the
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corresponding upper Bellman function:

BQ,Φ(x1, x2) = sup
{ 1

|I|
∑

J∈D(I)

cΦ
J (w) : w ∈ EQ,x,I

}
(2.1.6)

where x = (x1, x2) and

EQ,x,I =
{
w : w ∈ Ad,Q2 (I), 〈w〉

I
= x1, 〈w−1〉

I
= x2

}
. (2.1.7)

The function BQ,Φ is naturally defined on the planar domain

ΛQ = {(x1, x2) : 1 6 x1x2 6 Q}. (2.1.8)

That is to say, ΛQ is precisely the set of x ∈ R2 such that each EQ,x,I is non-empty

and which contains the point (〈w〉I , 〈w−1〉I) for all w ∈ Ad,Q2 (I). The inequality on the

left in (2.1.8) is given by Jensen’s inequality, while the one on the right is due to the

assumption w ∈ Ad,Q2 (I). The elements of EQ,x,I are referred to as admissible or test

functions. Furthermore, BQ,Φ satisfies the natural boundary condition:

BQ,Φ(x1, x
−1
1 ) = 0, (2.1.9)

since if w is a weight such that 〈w〉
I
〈w−1〉

I
= 1, then w is constant almost everywhere

on I, meaning cΦ
J (w) given by (2.1.4) is zero for each I ∈ D(I). We also note that the

Bellman function (2.1.6) does not actually depend on I. This can be shown by a rescaling

argument, which we will present later in section 2.3.

If BQ,Φ is known, then we immediately obtain the value KΦ(Q) in (2.1.5).

Theorem 2.1.2. For Q > 1,

KΦ(Q) = sup
x∈ΛQ

BQ,Φ(x). (2.1.10)
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Proof. We adapt an argument from [Sla16]. Take w ∈ Ad2 such that [w]Ad2
6 Q. For any

I ∈ D, by the definition of BQ,Φ,

1

|I|
∑

J∈D(I)

cΦ
J (w) 6 BQ,Φ

(
〈w〉

I
, 〈w−1〉

I

)
6 sup

x∈ΛQ

BQ,Φ(x).

Therefore, ‖{cΦ
J (w)}‖C 6 supx∈ΛQ BQ,Φ(x) and, thus,

KΦ(Q) = sup
[w]

Ad2
=Q
‖{cΦ

J (w)}‖C 6 sup
x∈ΛQ

BQ,Φ(x).

To prove the converse inequality, note that by the definition of BQ,Φ, for each x ∈ ΛQ

and any interval I ∈ D, there exists a sequence of Ad2(I)-weights {wn}n such that for

each n, [wn]Ad2(I) 6 Q, 〈wn〉I = x1, 〈w−1
n 〉I = x2, and

lim
n→∞

1

|I|
∑

J∈D(I)

cΦ
J (wn) = BQ,Φ(x).

Let us extend each wn to all of R; call the extension w̃n. Let w̃n be the appropriately

translated copy of wn on each dyadic interval of length |I|, except for one such interval,

say Ĩ , on which change wn to any Ad2-weight w̃ such that 〈w̃〉
Ĩ

= x1, 〈w̃−1〉
Ĩ

= x2, and

[w̃]Ad2(Ĩ) = Q. (Such a weight can be constructed to take only two constant values on Ĩ;

section 2.6 has more complicated examples.) Clearly, w̃n ∈ Ad2(R) and [w̃kn]Ad2
= Q, thus,

KΦ(Q) >
1

|I|
∑

J∈D(I)

cΦ
J (w̃n) =

1

|I|
∑

J∈D(I)

cΦ
J (wn) −−−→

n→∞
BQ,Φ(x).

It remains to take the supremum on the right.

In section 2.3, we show that our Bellman function has certain homogeneity:

BQ,Φ(x1, x2) = BQ,Φ(
√
x1x2,

√
x1x2),

7



thus,

sup
x∈ΛQ

BQ,Φ(x) = sup
16s6

√
Q

BQ,Φ(s, s).

While we are looking for a sharp upper bound KΦ in (2.1.5), one can similarly ask for

a sharp lower bound, which would naturally lead to the definition of the lower Bellman

function, with infimum replacing supremum in (2.1.6). Such sharp lower estimates were

obtained in [Sla16] for any Φ for which the function Ψ given by

Ψ(s) =
Φ(s2)

s2
, s > 1,

is either increasing or decreasing, covering most cases of interest. Thus, we focus on

upper estimates in this thesis.

In [Sla16], the upper Bellman function BQ,Φ was computed for all increasing Φ for

which the function Ψ is convex on [1,∞). When Φ(t) = tα, let us write Kα and BQ,α for

KΦ and BQ,Φ, respectively. The following theorem was proven in [Sla16].

Theorem 2.1.3 ([Sla16]). If Φ is increasing and Ψ is convex, then

KΦ(Q) = 16Φ(Q)
(

1− 1√
Q

)
+ 8

∫ Q

1

Φ(y)

y

(
1− 1
√
y

)
dy.

In particular,

Kα(Q) =



8(2α+ 1)

α
Qα − 32α

2α− 1
Qα−1/2 +

8

α(2α− 1)
, α ∈

(
0, 1

2

)
∪
(

1
2 , 1
]
∪
[

3
2 ,∞

)
;

32Q1/2 − 8 logQ− 32, α = 1/2;

8 logQ, α = 0.

(2.1.11)

This left unanswered the question of what happens for Φ with concave Ψ and, in

particular, for Φ(t) = tα, α ∈ (1, 3
2). One can obtain suboptimal estimates for this case, by

replacing such a Ψ with a tangential majorant; for α ∈ (1, 3
2) this amounts to interpolation

8



between the sharp results for α = 1 and α = 3
2 . However, the correct value for Kα was

not known until now.

Let us explain the reason. Directly from its definition, the Bellman function BQ,Φ

satisfies a so-called main inequality: for all x−, x+ ∈ ΛQ such that x := 1
2(x−+x+) ∈ ΛQ,

BQ,Φ

(
x
)
>

1

2
BQ,Φ(x−)+

1

2
BQ,Φ(x+)+Φ(x1x2)

[
(x−1 − x

+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

]
. (2.1.12)

Furthermore, for each x ∈ ΛQ there exists a split x = 1
2(x−+x+) such that this inequality

becomes equality, or approximate equality, when x− and x+ are infinitesimally close.

The standard approach is to focus on such infinitesimal splits. This is accomplished

by expanding both sides of the inequality to the second order of smallness, turning the

resulting differential inequality into a PDE, and then solving this PDE subject to the

boundary condition (2.1.9). While the PDE here is non-linear, it is easy to solve due to

the homogeneity of the problem. In fact, we have two distinct families of solutions and

one expects BQ,Φ to be found as an element of one of these families. That is exactly what

happens for convex Ψ. However, one can show (see section 2.4) that for concave Ψ neither

of these solutions of PDE can be the Bellman function (for such Ψ a particular step in

the process, the Bellman induction, reverses in direction). The standard Bellman arsenal

for dyadic estimates, which relies on infinitesimal extremal splits, is thus unavailable,

and a new, non-infinitesimal splitting procedure is necessary. This leads us to a series of

questions.

Question 1. What is Kα(Q) for α ∈ (1, 3
2)?

Question 2. What is the Bellman function BQ,Φ for Φ(t) = tα and α ∈ (1, 3
2)?

Question 3. Describe the non-infinitesimal splitting procedure and optimizing se-

quence(s).

9



Question 4. What about other increasing Φ with concave Ψ, different from power

functions?

2.2 Main results

Answer 1. We have obtained a complete answer to Question 1.

Theorem 2.2.1. For α ∈ (1, 3
2),

Kα(Q) = 16
√
Q
(√

Q−1
)
Qα−1 +8

(√
Q−1

)2 ∞∑
k=1

2−k
(
(1−2−k)

√
Q+2−k

)2α−2
. (2.2.1)

It is easy to check that this expression is strictly larger than what formula (2.1.11)

would give for this range of α. On the other hand, for other α > 0, (2.1.11) gives a larger

value than (2.2.1). This is illustrated in Figure 2.1 and is, of course, expected behavior

for sharp estimates.

Figure 2.1: Coefficient comparison for dominant terms of Kα(Q).

Formula (2.2.1) was obtained with the use of a Bellman majorant. This is a common

term for functions that satisfy the main inequality such as (2.1.12), and thus can be used

in induction arguments to estimate the original sum, but also may be larger than the

10



Bellman function itself at some or all points of the domain. Let s =
√
x1x2 and define

L =
√
Q; sk = s+ (1− 2−k)(L− s); rk = 1 + (1− 2−k)(L− 1).

Here is our majorant:

BQ,α(x1, x2) = 16L(s−1)L2α−2+8
∞∑
k=1

2−k
[(
L−1

)2
(rk)

2α−2−
(
L−s

)2
(sk)

2α−2
]
. (2.2.2)

This function arises as a result of a purported splitting procedure that is, in a way, the

opposite of infinitesimal splits. To describe it, first observe that due to the homogeneity

it is enough to construct the Bellman function, or a Bellman majorant, only at the points

(s, s), 1 6 s 6 L.We postulate that each s > 1
2(L+1) splits so that the right endpoint is

at L. Along this split, we require that the the main inequality (2.1.12) hold with equality.

Turning this around, each point s ∈ [1, L] is now the left endpoint of such a split, meaning

that the value at that point of the Bellman candidate being constructed is prescribed by

the values of the candidate at 1
2(s+L) and L. Continuing this procedure and coupling it

with the zero boundary condition at (2.1.9) and a natural condition on the derivative at

the point L, we obtain the complete candidate (2.2.2). The details of this construction

are given in section 2.4. We note that this function satisfies the main inequality (2.1.12),

meaning it indeed majorates the actual Bellman function BQ,α.

However, it turns out that the procedure described above is overdetermined and can

be realized as an actual sequence of weights only for the points rk. Indeed, it is clear that

the candidate (2.2.2) does not even use any values of Φ on the interval (1, 1
2(L+ 1)). For

s = rk such a weight sequence does exist and we have a partial answer to Question 2.

Answer 2. For Q > 1, let L =
√
Q, rk = 2−k + (1− 2−k)L, k > 1, and r∞ = L.

Theorem 2.2.2. If α ∈ (1, 3
2), then

BQ,α(s, s) 6 BQ,α(s, s), 1 6 s 6 L

11



and

BQ,α(rk, rk) = BQ,α(rk, rk), 0 6 k 6∞.

Answer 3. As mentioned above, for each s = rk we have an actual optimizing sequence of

weights {w(k)
n }n on the interval I := (0, 1). This means that 〈w(k)

n 〉I = 〈(w(k)
n )−1〉

I
= rk,

w
(k)
n ∈ Ad,Q2 (I), and

lim
n→∞

1

|I|
∑

J∈D(I)

c
(α)
J

(
w(k)
n

)
= BQ,α(rk, rk).

The weights w(k)
n are defined recursively, in a manner similar to that used for infinitesimal

splits in [Sla16], but with important differences accounting for non-infinitesimal nature

of the splits.

Answer 4. Our majorant actually satisfies the main inequality (2.1.12) for a larger class

of Φ with concave Ψ than just Φ(t) = tα, α ∈ (1, 3
2), though not for every such Φ. Let

BQ,Φ(x1, x2) = 16L(s− 1)Ψ(L) + 8
∞∑
k=1

2−k
[(
L− 1

)2
Ψ(rk)−

(
L− s

)2
Ψ
(
sk)
)]
.

Theorem 2.2.3. If Ψ ∈ C4([1, L]), such that Ψ and Ψ′′ are increasing and concave, then

BQ,Φ(s, s) 6 BQ,Φ(s, s), 1 6 s 6 L

and

BQ,Φ(rk, rk) = BQ,Φ(rk, rk), 0 6 k 6∞.

This theorem applies to some Φ’s that are not power functions. As an example, consider

Φ(t) = t log (t) , then Ψ(t) = 2 log (t) . Clearly, Ψ satisfies the conditions of this theorem,

and we thus have the following corollary.

12



Corollary 2.2.4. For Φ(t) = t log (t),

KΦ(Q) = 32L log (L)
(
L− 1

)
+ 16

(
L− 1

)2 ∞∑
k=1

2−k log (rk) .

2.3 Necessary conditions on the Bellman candidate

To find a Bellman function such as (2.1.6), one typically determines key properties that

it possesses directly from its definition. These properties become conditions imposed on

any candidate function being constructed. Once a candidate is found, it is then shown

to be equal to the true Bellman function, or at least to bound it from above or below,

as appropriate. In this section, we first derive the independence of BQ,Φ with respect

to the interval I. This property is crucial for induction arguments involving BQ,Φ. We

then proceed as in [Sla16] and derive three conditions and an induction-on-scales result

which together make up the essential properties of BQ,Φ on ΛQ. Following this, we use

these properties to translate the main inequality from a condition on ΛQ to one on the

interval [1, L], L =
√
Q.

Lemma 2.3.1 (Interval Independence). Let Ĩ be an interval with Ad2(Ĩ), B̃Q,Φ, EQ,x,Ĩ

and Λ̃Q the respective analogues of Ad2(I), BQ,Φ, EQ,x,I and ΛQ. Then

∀x ∈ ΛQ = Λ̃Q, BQ,Φ(x) = B̃Q,Φ(x).

Proof. This follows directly from the fact that a linear change of variables φ : I → Ĩ will

preserve both dyadic lattices and integral averages. Indeed, let φ be such a function and

define:

w̃ = w ◦ φ; J̃ = φ(J), J ⊆ I.

If we assume, without loss of generality, that φ is increasing, i.e. φ′(t) ≡ c > 0, then

∀J = (a, b) ⊆ I, |J̃ | = φ(b)− φ(a) = c(b− a) = c|J |.

13



Therefore, if J ∈ D(I) then there exists an n > 0 such that J partitions I with 2n − 1

other intervals of equal measure. From the above, we see that the same will hold for

J̃ within Ĩ, and with the same relative position; hence, J̃ ∈ D(Ĩ) and J̃± = φ(J±).

Consequently, given any weight w ∈ Ad2(I) and interval J ⊆ I,

〈w〉J =
1

|J |

∫
J
w(t) dt =

1

c|J |

∫
J̃
w(φ(t)) dt = 〈w̃〉J̃ ;

thus J φ←→ J̃ is a bijection from the dyadic intervals of D(I) to D(Ĩ) on which w and w̃

(along with their reciprocals) have the same average. Since it clearly follows that

1

|I|
cΦ
J (w) =

1

|Ĩ|
cΦ
J̃

(w̃),

we have w φ←→ w̃ is a bijection from EQ,x,I to EQ,x,Ĩ which preserves the value of the sum

in definition (2.1.6); hence, ΛQ = Λ̃Q and

BQ,Φ(x) = sup
w∈EQ,x,I

1

|I|
∑

J∈D(I)

cΦ
J (w) = sup

w̃∈EQ,x,Ĩ

1

|Ĩ|

∑
J̃∈D(Ĩ)

cΦ
J (w̃) = B̃Q,Φ(x).

With this in hand, we will now prove the following key properties:

Lemma 2.3.2. The function BQ,Φ satisfies the following

1. Main Inequality. For all points x−, x+ ∈ ΛQ such that x = 1
2(x− + x+) ∈ ΛQ,

BQ,Φ(x) >
1

2
BQ,Φ(x−) +

1

2
BQ,Φ(x+) + Φ(x1x2)

[
(x−1 − x

+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

]
.

2. Boundary Condition. For all x1 ∈ (0,∞),

BQ,Φ(x1, x
−1
1 ) = 0.
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3. Homogeneity. For all x ∈ ΛQ,

BQ,Φ(x1, x2) = BQ,Φ(
√
x1x2,

√
x1x2).

Proof. Fix x−, x+ ∈ ΛQ such that x = 1
2(x− + x+) ∈ ΛQ and let w± ∈ Ad,Q2 (I±) be

admissible weights for x± for which the supremum of the sum in the Bellman function

is almost attained, i.e. for some small, positive η:

1

2|I±|
∑

J∈D(I±)

cΦ
J (w±) > BQ,Φ(x±)− η.

Such a selection is possible since, as previously mentioned, given any interval I and

x ∈ ΛQ the corresponding set EQ,x,I is non-empty; furthermore, it should be noted that

there are no constraints on the relationship between these weights (i.e. we choose them

independently). We construct a new weight, w, on I by concatenating w±, i.e. we define

w on I± as w±. It follows that w is an admissible weight for x = (x1, x2) since

〈w〉I =
1

2
〈w−〉I− +

1

2
〈w+〉I+ =

1

2
(x−1 + x+

1 ) = x1, (2.3.1)

〈w−1〉I =
1

2
〈(w−)−1〉I− +

1

2
〈(w+)−1〉I+ =

1

2
(x−2 + x+

2 ) = x2 (2.3.2)

and w ∈ Ad,Q2 (I), which follows from the fact that w± ∈ Ad,Q2 (I±) and x ∈ ΛQ. We can

split the quantity in the definition of BQ,Φ as follows:

1

|I|
∑

J∈D(I)

cΦ
J (w) = cΦ

I (w) +
1

2|I−|
∑

J∈D(I−)

cΦ
J (w) +

1

2|I+|
∑

J∈D(I+)

cΦ
J (w)

= cΦ
I (w) +

1

2|I−|
∑

J∈D(I−)

cΦ
J (w−) +

1

2|I+|
∑

J∈D(I+)

cΦ
J (w+).
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Consequently, for our constructed weight w, we’ll have

1

|I|
∑

J∈D(I)

cΦ
J (w) >

1

2
BQ,Φ(x−) +

1

2
BQ,Φ(x−)− η + Φ(〈w〉I〈w−1〉I)RI(w)

=
1

2
BQ,Φ(x−) +

1

2
BQ,Φ(x−)− η + Φ(x1x2)

[
(x−1 − x

+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

]
.

Taking the supremum over all w ∈ EQ,x,I gives

BQ,Φ(x) >
1

2
BQ,Φ(x−) +

1

2
BQ,Φ(x+)− η + Φ(x1x2)

[
(x−1 − x

+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

]
.

Since η can be made arbitrarily small, the main inequality follows.

Now, fix x ∈ ΛQ with x2 = x−1
1 . If is w an admissible weight for this point, i.e.

w ∈ EQ,x,I , then 〈w−1〉I = 〈w〉−1
I and so w satisfies Jensen’s inequality with equality.

This can only occur if w is constant almost everywhere, and there is only one such

constant function admissible for x, namely w ≡ x1. Therefore, ∀J ∈ D(I) we have

∆J(w) := 〈w〉J− − 〈w〉J+ = 0 and thus BQ,Φ(x) = 0. All that remains to show now is

homogeneity.

For a fixed x ∈ ΛQ and τ > 0, let w ∈ EQ,x,I and define the new weight wτ (t) =

τw(t). It’s readily seen that 〈wτ 〉J = τ〈w〉J and 〈w−1
τ 〉J = τ−1〈w−1〉J , ∀J ∈ D(I).

Consequently, wτ ∈ Ad,Q2 (I), wτ is admissible for xτ = (τx1, τ
−1x2) and cΦ

J (w) = cΦ
J (wτ ),

∀J ∈ D(I). It follows that w → wτ is a bijection from EQ,x,I to EQ,xτ ,I which preserves

the value of the sum in the definition of BQ,Φ; hence, BQ,Φ(x) = BQ,Φ(xτ ). Taking

τ =
√
x2/x1 gives BQ,Φ(x) = BQ,Φ(

√
x1x2,

√
x1x2).

Lastly, we will need the following lemma.

Lemma 2.3.3 (Bellman Induction). Let B be a function satisfying the main inequality

and boundary condition on ΛQ, i.e. for all x1 ∈ (0,∞):

B(x1, x
−1
1 ) = 0,
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and for all points x± ∈ ΛQ such that 1
2(x− + x+) ∈ ΛQ,

B(x) >
1

2
B(x−) +

1

2
B(x+) + Φ(x1x2)

[
(x−1 − x

+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

]
.

Then B majorates the Bellman function BQ,Φ on ΛQ, i.e.

BQ,Φ(x) 6 B(x), ∀x ∈ ΛQ.

Proof. We begin by proving a simple estimate on B, namely B(x) > 0, ∀x ∈ ΛQ. Fix

x = (x1, x2) ∈ ΛQ and define the points x±:

x±1 = x1

(
1±

√
1− 1

x1x2

)
, x±2 = x2

(
1∓

√
1− 1

x1x2

)
.

Clearly, x±1 x
±
2 = 1 and x = 1

2(x+ + x−); thus, by our assumptions on B, we have

B(x) >
1

2
B(x−) +

1

2
B(x+) + Φ(x1x2)

[
(x−1 − x

+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

]

= Φ(x1x2)

[
(x−1 − x

+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

]
> 0.

Now, choose any admissible weight w ∈ EQ,x,I . For J ∈ D(I) we define the associated

point bJ(w) := (〈w〉J , 〈w−1〉J). Clearly, bI(w) = x. Since w ∈ Ad,Q2 (I), it follows that

bJ(w) ∈ ΛQ for any J ∈ D(I). Furthermore, by (2.3.1) and (2.3.2), we have

bJ(w) =
1

2
bJ−(w) +

1

2
bJ+(w), ∀J ∈ D(I). (2.3.3)

Observe, bI−(w) and bI+(w) are two points in ΛQ whose midpoint bI(w) ∈ ΛQ. Since B

satisfies the main inequality we have

B(bI(w)) >
1

2
B(bI−(w)) +

1

2
B(bI+(w)) +

1

|I|
cΦ
I (w).
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Equivalently,

|I|B(bI(w)) > |I−|B(bI−(w)) + |I+|B(bI+(w)) + cΦ
I (w). (2.3.4)

We can iterate this argument by splitting subsequent bJ(w) as in (2.3.3) then applying

(2.3.4). Doing so until the n-th generation, i.e. J ∈ Dn := {J ∈ D(I) : |J | = 2−n|I|},

gives:

|I|B(bI(w)) >
∑

J∈Dn(I)

|J |B(bJ(w)) +

n−1∑
k=0

∑
J∈Dk(I)

cΦ
J (w),

from which it follows that

B(x) >
1

|I|

n−1∑
k=0

∑
J∈Dk(I)

cΦ
I (w)

since B(x) > 0. Taking the limit as n→∞ gives

B(x) >
1

|I|
∑

J∈D(I)

cΦ
I (w).

As w was chosen arbitrarily, this holds over all weights in EQ,x,I . Taking the supremum

of the right hand side expression over all such weights gives the desired result.

Let B be a function on ΛQ and define A(s) = B(s, s) for s ∈ [1, L]. Suppose B satisfies

the homogeneity property on ΛQ and fix x± ∈ ΛQ such that x = 1
2(x− + x+) ∈ ΛQ. If

we let s = s(x) =
√
x1x2 and s± = s(x±), a quick calculation gives:

(x−1 − x
+
1 )2

x2
1

+
(x−2 − x

+
2 )2

x2
2

= 8− 4
(s−)2 + (s+)2

s2
+

((s−)2 − (s+)2)2

s4
.
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The main inequality for x± becomes

B(x) >
1

2
B(x−) +

1

2
B(x+) + Φ(x1x2)

[
8− 4

(s−)2 + (s+)2

s2
+

((s−)2 − (s+)2)2

s4

]

=
1

2
B(x−) +

1

2
B(x+) + Ψ(s)

[
8 s2 − 4 ((s−)2 + (s+)2) +

((s−)2 − (s+)2)2

s2

]
;

or, equivalently,

A(s) >
1

2
A(s−)+

1

2
A(s+)+Ψ(s)

[
8 s2 − 4 ((s−)2 + (s+)2) +

((s−)2 − (s+)2)2

s2

]
. (2.3.5)

It follows that for B to satisfy the main inequality on ΛQ it is both necessary and

sufficient for the function A to satisfy (2.3.5) for some selection of s, s± ∈ [1, L]; this latter

observation follows from the fact that the constraints on x, namely x = 1
2(x−+x−), will

result in constraints on s. Let ωL denote this collection of triples (s−, s+, s) ∈ [1, L]3. We

will specify conditions for ωL so that it contains all (s−, s+, s) arising from x, x± ∈ ΛQ

with x = 1
2(x− + x+). If we freely choose s± ∈ [1, L], it is clear that s can be made as

large as desired in the interval [1, L]. (Consider x± on the tangent to the upper boundary

of ΛQ such that x = (L,L).) We are therefore interested in the lower estimate:

min
x±∈ΛQ


√(x−1 + x+

1

2

)(x−2 + x+
2

2

)
: x−1 x

−
2 = (s−)2, x+

1 x
+
2 = (s+)2

 .

We can see that this minimum is attained when all three points x, x± lie on the same

line through the origin. Indeed

(x−1 + x+
1

2

)(x−2 + x+
2

2

)
=

1

4
((s+)2 + (s−)2) +

1

2
(x−1 x

+
2 + x−2 x

+
1 )

=
1

4
((s+)2 + (s−)2) +

1

2
〈x−, θ(x+)〉,
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where θ denotes the reflection through the line x2 = x1 and 〈·, ·〉 the inner product on R2;

this product is minimized precisely when the vectors x− and θ(x+) are perpendicular,

i.e. when x± are parallel. It follows then that s = 1
2(s− + s+). We therefore take

ωL =

{
(s−, s+, s) : 1 6 s− 6 L; 1 6 s+ 6 L;

1

2
(s− + s+) 6 s 6 L

}
.

If we define

P (s−, s+, s) = A(s)−1

2

[
A(s−) +A(s+)

]
−Ψ(s)

[
8s2 − 4((s−)2 + (s+)2) +

((s−)2 − (s+)2)2

s2

]
,

then by the above discussion, to show B satisfies the main inequality on ΛQ it suffices

to show that P > 0 on ωL. We make a further modification to this problem by defining

U(s−, s+, s) = A(s)− 1

2

[
A(s+) +A(s−)

]
− 8Ψ(s)

[
s2 − s−s+

]
.

It is clear that P > U on ωL and that P = U when s = 1
2(s−+ s+). Though a seemingly

harder task, we will prove that U > 0 on ωL as this function is computationally easier

to work with.

2.4 Non-infinitesimal candidate

As discussed in the introduction, the standard approach to finding the Bellman function,

or a majorant, is to assume the Bellman function satisfies the main inequality with

equality, or approximate equality, whenever x± ∈ ΛQ are infinitesimally close. This gives

a PDE which we then solve to produce a candidate function B. This function is then

shown to satisfy the main inequality for all other x± ∈ ΛQ, from which it follows that it

majorates the Bellman function by Bellman induction. Optimizers, which are sequences

that support the value of the candidate, are then constructed for each x ∈ ΛQ to give

the converse inequality B(x) 6 BQ,Φ(x).
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However, this approach fails when Ψ is concave. The function U , derived in the

previous section, fails to be positive for any triple (s−, s+, s
−+s+

2 ) ∈ ωL—a necessary

condition for the main inequality to hold. Specifically, in [Sla16] it was shown that for

any candidate arising from this PDE, we have for all s± ∈ [1, L]:

A
(s+ + s−

2

)
− 1

2

(
A(s+) +A(s−)

)
− 2 Ψ

(s+ + s−

2

)
(s+ − s−)2 > 0 ⇐⇒

8

∫ ∆

−∆
(∆− |t|)

(
1

2
Ψ(s+ t) +

1

2
Ψ(s− t)−Ψ(s)

)
dt > 0

where ∆ = 1
2(s+− s−); for concave Ψ the latter inequality is clearly reversed. Therefore,

since Bellman induction implies the existence of a direction in which the Bellman function

splits optimally, we must have that these splits are non-infimitesimal.

In this section we construct a special Bellman candidate via a non-infinitesimal splitting

procedure which we will show to be equal to the Bellman function at a key selection of

points in ΛQ. By homogeneity, it suffices to construct our candidate as a function of one

variable on the interval [1, L] which we will then extend to ΛQ as follows: if A is our

candidate on [1, L], we define the extension BQ,Φ(x1, x2) := A(
√
x1x2).

Our candidate A will be defined as the pointwise limit of a sequence of functions

{An}. For every s ∈ [1, L], each An will be constructed so as to satisfy equality in the

main equality for a prescribed number of splits to the boundary point L. We recall the

notation:

sk = s+ (1− 2−k)(L− s); rk = 1 + (1− 2−k)(L− 1).

Fix s ∈
[
1, L−1

2

)
and n > 1. We define An at the points {sk}nk=0 simultaneously as the

solution of the system of equations:

An(sk) =
1

2
An(sk−1) +

1

2
An(L) + 2Ψ(sk) [L− sk−1]2 , 1 6 k 6 n (2.4.1)

An(L) = An(sn) + 8Ψ(sn)
[
L2 − s2

n

]
. (2.4.2)
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This definition is well-defined in the sense that each s ∈ [1, L) will belong to a unique

system, so there are no redefinitions. (The case of L will be addressed shortly.) Further-

more, as each system consists of n+1 equations in n+2 unknowns, An is fully determined

at each s ∈ [1, L) up to knowledge of An(L). When s = 1, i.e. {sk}nk=0 = {rk}nk=0, we

set An(1) = 0 to satisfy the boundary condition and solve the resulting fully-determined

system, thus fixing An(L). This splitting procedure is illustrated below in Figure 2.2.

Figure 2.2: The splitting procedure for the intermediate function A3

We now proceed to solve (2.4.1) and (2.4.2) for An and {rk}nk=0. Define:

P (sk) = 2Ψ(sk) [L− sk−1]2 ; T (sk) = 8Ψ(sk)
[
L2 − s2

k

]
.

Then for 1 6 k 6 n, using (2.4.1) repeatedly, we have:

An(rk) =
1

2
An(rk−1) +

1

2
An(L) + P (rk)

=
1

2

[
1

2
An(rk−2) +

1

2
An(L) + P (rk−1)

]
+

1

2
An(L) + P (rk)

=
1

4
An(rk−2) +

3

4
An(L) +

1

2
P (rk−1) + P (rk)

...

= 2−kAn(r0) + (1− 2−k)An(L) +
k∑
j=1

2j−kP (rj)

= (1− 2−k)An(L) +
k∑
j=1

2j−kP (rj).
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Therefore, by (2.4.2)

An(L) = (1− 2−n)An(L) +
n∑
j=1

2j−nP (rj) + T (rn),

so that,

An(L) = 2nT (rn) +
n∑
j=1

2jP (rj),

An(rk) = (1− 2−k)

2nT (rn) +

n∑
j=1

2jP (rj)

+

k∑
j=1

2j−kP (rj), 1 6 k 6 n.

As mentioned, this fixes An(L) for all other systems. By a similar argment, we have:

An(sk) = 2−kAn(s0) + (1− 2−k)An(L) +

k∑
j=1

2j−kP (sj), 1 6 k 6 n.

We may then solve for An(s) = An(s0) explicitly using (2.4.2):

An(s) = 2nAn(sn)− (2n − 1)An(L)−
n∑
j=1

2jP (sj)

= 2n [An(L)− T (sn)]− (2n − 1)An(L)−
n∑
j=1

2jP (sj)

= An(L)− 2nT (sn)−
n∑
j=1

2jP (sj)

= 2n [T (rn)− T (sn)] +
n∑
j=1

2jP (rj)−
n∑
j=1

2jP (sj).

Noting that L− sk = 2−k(L− s), we have the general formula for An on [1, L]:

An(s) = 16L(s− 1)Ψ(L) + 8

n∑
j=1

2−j
[
(L− 1)2Ψ(rj)− (L− s)2Ψ(sj)

]
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and thus for A as well,

A(s) = lim
n→∞

An(s) = 16L(s− 1)Ψ(L) + 8
∞∑
j=1

2−j
[
(L− 1)2Ψ(rj)− (L− s)2Ψ(sj)

]
.

Therefore, our Bellman candidate on ΛQ is:

BQ,Φ(x1, x2) := A(
√
x1x2). (2.4.3)

2.5 Main inequality verification

In this section, we prove that the Bellman candidate BQ,Φ given by (2.4.3) satisfies the

main inequality. In section 2.3, it was established that for a function B with homogeneity

on ΛQ, to prove the main inequality it was sufficient to show that the function

U(s−, s+, s) = A(s)− 1

2

[
A(s+) +A(s−)

]
− 8Ψ(s)

[
s2 − s−s+

]
is non-negative on the domain

ωL =

{
(s−, s+, s) : 1 6 s− 6 L; 1 6 s+ 6 L;

1

2
(s− + s+) 6 s 6 L

}
,

where A(
√
x1x2) := B(x1, x2). This task is made easier by the following lemma.

Lemma 2.5.1. Let Φ ∈ C(4)([1, L]) such that Ψ and Ψ′′ are concave and increasing.

Then U > 0 on ωL if and only if

U(s1, s2,
1

2
(s1 + s2)) > 0, ∀ s1, s2 ∈ [1, L] (2.5.1)

U(s1, s1, s2) > 0, ∀ 1 6 s1 6 s2 6 L (2.5.2)

Proof. Both inequalities are clearly necessary. To prove sufficiency, assume (2.5.1) and

(2.5.2) hold. We will first prove a simple pointwise estimate for A′. For notational
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convenience, let G(s) :=
∑∞

j=1 2−jΨ(sj) so that

A(s) = 16L(s− 1)Ψ(L) + 8(L− 1)2G(1)− 8(L− s)2G(s).

For j > 1, we have sj−1 = sj − (L− sj) = sj − 2−j(L− s). Thus, by concavity of Ψ,

Ψ(sj−1) 6 Ψ(sj)− (sj − sj−1)Ψ′(sj) = Ψ(sj)− 2−j(L− s)Ψ′(sj).

Since G′(s) =
∑∞

j=1 2−2jΨ′(sj), the above estimate gives

G(s)− (L− s)G′(s) =

∞∑
j=1

2−j
[
Ψ(sj)− 2−j(L− s)Ψ′(sj)

]
>
∞∑
j=1

2−jΨ(sj−1) =
1

2
[Ψ(s) +G(s)] .

Therefore, since Ψ is positive and increasing, we have

A′(s) = 16LΨ(L) + 16(L− s)G(s)− 8(L− s)2G′(s)

> 16LΨ(L) + 12(L− s)G(s) + 4(L− s)Ψ(s)

> 16LΨ(L). (2.5.3)

Let (s−, s+, s) ∈ ωL; we may assume, without loss of generality, that s− 6 s+. Since

1
2(s−+ s+) 6 s, we must have either s− 6 s 6 s+ or s− 6 s+ 6 s. Let us consider these

cases separately.

Case 1: s− 6 s 6 s+. Since 1
2(s− + s+) 6 s, we have s− 6 2s− s+ 6 s 6 s+.

Differentiating U with respect to s−, we have

∂U

∂s−
= −1

2
A′(s−) + 8 Ψ(s) s+ 6 8L [Ψ(s)−Ψ(L)] 6 0. (2.5.4)

Therefore, U(s−, s+, s) > U(2s− s+, s+, s), which is non-negative by (2.5.1).

25



Case 2: s− 6 s+ 6 s. This also follows from (2.5.4). We’ll have U(s−, s+, s) >

U(s+, s+, s), which is non-negative by (2.5.2).

It remains to verify (2.5.1) and (2.5.2).

Lemma 2.5.2. Under the assumptions of Lemma 2.5.1, inequalities (2.5.1) and (2.5.2)

hold.

Proof. To prove (2.5.1), we must show that for all s± ∈ [1, L]

A

(
s+ + s−

2

)
− 1

2

(
A(s−) +A(s+)

)
− 2Ψ

(
s+ + s−

2

)
(s+ − s−)2 > 0.

We first introduce some notation. Let s = 1
2(s+ + s−), ∆ = 1

2(s+ − s−) and for k > 1

sk = s+ (1− 2−k)(L− s); s±k = s± + (1− 2−k)(L− s±).

After cancellation of first order terms, inequality (2.5.1) becomes

4
∞∑
j=1

2−j
[
Ψ(s−j )(L− s−)2 + Ψ(s+

j )(L− s+)2 − 2Ψ(sj)(L− s)2
]
− 8Ψ(s)∆2 > 0.

Let H(t) = Ψ(t)(L− t)2. Since L− sk = 2−k(L− s), we can rewrite the above as

∞∑
j=1

2j
[
H(s−j ) +H(s+

j )− 2H(sj)
]
− 2Ψ(s)∆2 > 0.

Finally, we define the function

S(s,∆) =
∞∑
j=1

2j
[
H(s−j ) +H(s+

j )− 2H(sj)
]
− 2Ψ(s)∆2.

To prove (2.5.1), it suffices to prove S is non-negative on the domain

D := {(s,∆) : 1 6 s 6 L, 0 6 ∆ 6 min(s, L− s)} .
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To this end, we prove a stronger result: that S is non-negative on the enlarged domain

D̄ := {(s,∆) : 1 6 s 6 L, 0 6 ∆ 6 L− s} .

Clearly, S is identically zero on the line segment ∆ = 0 in D̄, as for such points we’ll have

sj = s±j , ∀j > 1. We can also readily deduce the behavior of S along the line segment

∆ = L− s, since s−1 = s and for j > 1, sj = s−j+1 and s+
j = L. It follows that,

H(sj) = H(s−j+1), H(s+
j ) = 0, ∀j > 1.

Therefore,

S(s, L− s) =
∞∑
j=1

2j
[
H(s−j ) +H(s+

j )− 2H(sj)
]
− 2Ψ(s)(L− s)2

= 2H(s−1 ) +

∞∑
j=1

2j+1
[
H(s−j+1) +H(sj)

]
− 2Ψ(s)(L− s)2

= 2H(s)− 2Ψ(s)(L− s)2 = 0.

We use the behavior on these two line segments to prove positivity for all points in the

domain via an argument involving the partial derivatives of S in ∆. We first compute

these derivatives and note some of their properties on D̄, making use of our assumptions

on Ψ:

S∆(s,∆) =
∞∑
j=1

[
H ′(s+

j )−H ′(s−j )
]
− 4Ψ(s)∆,

S∆∆(s,∆) =
∞∑
j=1

2−j
[
H ′′(s+

j ) +H ′′(s−j )
]
− 4Ψ(s),

S∆∆∆(s,∆) =

∞∑
j=1

2−2j
[
H ′′′(s+

j )−H ′′′(s−j )
]
.
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Clearly, S∆∆∆(s, 0) = S∆(s, 0) = 0. Furthermore, S∆∆∆ 6 0 since

H(4)(t) = Ψ(4)(t)(L− t)2 − 8Ψ′′′(t)(L− t) + 12Ψ′′(t) 6 0.

Fix s ∈ (1, L) and suppose that min {S(s,∆) : 0 < ∆ < L− s} = S(s,∆′) < 0. Clearly

then S∆∆(s,∆′) > 0. Since S∆∆∆ 6 0, we must have that S∆∆∆ is monotonically

decreasing, and thus positive, on [0,∆′]. Given that S(s, 0) = S∆(s, 0) = 0, there exists

a neighborhood of 0 on which S is strictly positive (except at 0). Let [0, α) be the

largest such neighborhood. By the Extreme Value Theorem, S attains its maximum on

[0, α], say at ∆′′. Consequently, S∆∆(s,∆′′) < 0. However, by the Mean Value Theorem

(MVT), this implies the existence of some ∆′′′ ∈ [0,∆′] such that S∆∆∆(s,∆′′′) > 0, a

contradiction. Therefore, no such point exists, i.e. inequality (2.5.1) holds.

To prove (2.5.2), we must show that for 1 6 s− 6 s+ 6 L:

A(s+)−A(s−) > 8Ψ(s+)
[
(s+)2 − (s−)2

]
.

This follows directly from (2.5.3) and the MVT, since for some c ∈ (s−, s+) we’ll have

A(s+)−A(s−)

s+ − s−
= A′(c) > 16LΨ(L) > 8Ψ(s+)

[
s+ + s−

]
.

As a consequence of Lemma 2.5.2, we have that U > 0 on ωL and thus BQ,Φ satisfies

the main inequality. Therefore, BQ,Φ majorates the Bellman function:

BQ,Φ(x) 6 BQ,Φ(x), ∀x ∈ ΛQ.

The opposite inequality is taken up in the next section.
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2.6 Optimizers

In this section, we construct special sequences of functions which will prove the converse

inequality for BQ,Φ. As mentioned in the introduction, we are only able to do so for

those points (rk, rk) and (L,L), as BQ,Φ is not the true Bellman function but a majorant.

Naturally, the construction of these sequences for BQ,Φ will reflect the splitting procedure

of section 2.4. Recall that a sequence of functions {wxn} on I is called an optimizing

sequence for BQ,Φ(x), if {wxn} satisfies the following three conditions:

∀n, wxn ∈ Ad2(I); (2.6.1)

∀n, 〈wxn〉I = x1; 〈(wxn)−1〉I = x2; (2.6.2)

1

|I|
∑

J∈D(I)

cΦ
J (wxn) −→ BQ,Φ(s), as n→∞. (2.6.3)

Once optimizers are constructed for these points, we will have finished the proof of

Theorems 2.2.2 and 2.2.3. By the independence of the Bellman function on the interval

(Lemma 2.3.1), we may take I = (0, 1).

Let k > 1. We construct for each (rk, rk) an optimizing sequence
{
w

(k)
n

}∞
n=k

recursively.

The n-th optimizer in the sequence at (rk, rk) will be construted in terms of the (n− k)-

th optimizer at the points {(rk, rk)}n−1
k=0 and (L,L). Specifically, we define n-th element

of the optimizing sequence at (rk, rk) as the concatenation of the n-th element of the

optimizing sequence at (rk−1, rk−1) and (L,L), i.e.

w(k)
n (t) =


w

(k−1)
n (2t), t ∈

(
0, 1

2

)
wLn (2t− 1), t ∈

(
1
2 , 1
)
.

(2.6.4)
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Naturally, for (r0, r0) we take the constant optimizer w(0)
n := 1 and we close the recursion

at the n-th level by homogeneity: let ∆n =
√
L2 − r2

n, we define

w(L)
n (t) =


L−∆n
rn

w
(n)
n (2t), t ∈ (0, 1

2)

L+∆n
rn

w
(n)
n (2t− 1), t ∈ (1

2 , 1)

. (2.6.5)

This construction is illustrated in Figure 2.3. Before we proceed to verify conditions

Figure 2.3: The optimizer for A : normal splits to the boundary rk = 1
2(rk−1 + L) inside

the domain; tangential split on the boundary at (L,L).

(2.6.1)-(2.6.3), we will give an alternate presentation to help illustrate the behavior of

these functions. We will express each w(k)
n as a sequence of simple functions defined on

a strictly increasing subset of (0, 1). For a fixed n > 1, we introduce the notation

an =
L−∆n

rn
, bn =

L+ ∆n

rn
,
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and define the sequence of functions
{
v

(L)
m

}∞
m=0

on an increasing subset of (0, 1) as follows:

v
(L)
0 (t) =



an, t ∈ (0, 2−(n+1))

Undefined t ∈ [2−(n+1), 1
2)

bn, t ∈ [1
2 ,

1
2 + 2−(n+1))

Undefined t ∈ [1
2 + 2−(n+1), 1)

(2.6.6)

and for m > 1,

v(L)
m (t) =



an, t ∈ (0, 2−(n+1))

an v
(L)
m−1(2it− 1), t ∈ [2−(i+1), 2−i), 1 6 i 6 n

bn, t ∈ [1
2 ,

1
2 + 2−(n+1))

bn v
(L)
m−1(2it− 1), t ∈ [1

2 + 2−(i+1), 1
2 + 2−i), 1 6 i 6 n

. (2.6.7)

Observe that the measure of the set on which v(L)
m is undefined is (1 − 2−n) times that

of the set on which v
(L)
m−1 is undefined. This follows since there are 2n intervals on

which v
(L)
m is not explicitly given; on each of these intervals v(L)

m is just a rescaling of

v
(L)
m−1 and the total measure of these intervals is 2(1

2 − 2−(n+1)) = (1 − 2−n); hence,

the measure of the set on which v
(L)
m is undefined is (1 − 2−n)m. Furthermore, we

have v(L)
m agrees with v(L)

m−1 everywhere v(L)
m−1 is defined, i.e. there are no redefinitions.

Therefore, this sequence converges to a function defined almost everywhere on (0, 1).

Specifically, lim
m→∞

v(L)
m = w(L)

n . This can be easily seen when we express the original

recursive definition of w(n)
n as follows:

w(n)
n (t) =


1, t ∈

(
0, 2−n

)
w

(L)
n (2it− 1), t ∈ [2−i, 21−i), 1 6 i 6 n

. (2.6.8)
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Hence, by (2.6.5), we have

w(L)
n (t) =



an, t ∈ (0, 2−(n+1))

anw
(L)
n (2it− 1), t ∈ [2−(i+1), 2−i), 1 6 i 6 n

bn, t ∈ [1
2 ,

1
2 + 2−(n+1))

bnw
(L)
n (2it− 1), t ∈ [1

2 + 2−(i+1), 1
2 + 2−i), 1 6 i 6 n

. (2.6.9)

Therefore, v(L)
m is defined precisely for those values such that the recursion given above

terminates within m recursive steps; thus, for the intervals on which it is defined, v(L)
m

agrees with w(L)
n . Recursing as we had to obtain (2.6.8) gives ∀ 1 6 k 6 n:

w(k)
n (t) =


1, t ∈

(
0, 2−k

)
w

(L)
n (2it− 1), t ∈ [2−i, 21−i), 1 6 i 6 k

. (2.6.10)

Therefore, for a fixed n > 1, we can also represent each w(k)
n as the limit of the simple

functions
{
v

(L)
m

}∞
m=0

defined on an increasing subset of (0, 1) as follows:

v
(k)
0 (t) =


1, t ∈ (0, 2−k)

Undefined t ∈ [2−k, 1)

, (2.6.11)

and for m > 1,

v(k)
m (t) =


1, t ∈

(
0, 2−k

)
v

(L)
m (2it− 1), t ∈ [2−i, 21−i), 1 6 i 6 k

. (2.6.12)

To complete this presentation, we fix L = 1.1 and plot the first few functions from the

sequence
{
v

(L)
m

}∞
m=0

, first for n = 1 (Figure 2.4) then for n = 2 (Figure 2.5). Recall
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Figure 2.4: The first four functions of the sequence
{
v

(L)
m

}∞
m=0

defining w(L)
1

.

that the sequence
{
v

(L)
m

}∞
m=0

for a fixed n only approximates one element of the sequence{
w

(L)
n

}∞
n=1

, so each optimizer in this sequence becomes quite convoluted.

Lemma 2.6.1. The sequence
{
w

(k)
n

}∞
n=k

is an optimizing sequence for BQ,Φ at (rk, rk)

and
{
w

(L)
n

}∞
n=1

for BQ,Φ at (L,L). Therefore, if Φ ∈ C(4)([1, L]) such that Ψ, Ψ′′ are

concave and increasing:

BQ,Φ(L,L) 6 BQ,Φ(L,L); BQ,Φ(rk, rk) 6 BQ,Φ(rk, rk), k > 1.

Proof. Fix n > 1. We proceed to show that w(L)
n is admissible for (L,L) from which

conditions (2.6.1) and (2.6.2) will follow. From the above discussion, we have that w(L)
n

is the limit of the sequence of functions v(L)
m given by (2.6.6) and (2.6.7). If we let Im
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Figure 2.5: The first four functions of the sequence
{
v

(L)
m

}∞
m=0

defining w(L)
2

denote the set on which v(L)
m is defined, noting that an + bn = 2 L

rn
, we have for m > 1:

∫
Im

v(L)
m (t) dt = 2−(n+1)(an + bn) +

(
1

2
− 2−(n+1)

)
(an + bn)

∫
Im−1

v
(L)
m−1(t) dt

= 2−n
L

rn
+ (1− 2−n)

L

rn

∫
Im−1

v
(L)
m−1(t) dt

= 2−n
L

rn
+ (1− 2−n)

L

rn

[
2−n

L

rn
+ (1− 2−n)

L

rn

∫
Im−1

v
(L)
m−1(t) dt

]

= 2−n
L

rn
+ 2−n(1− 2−n)

(
L

rn

)2

+ (1− 2−n)2

(
L

rn

)2
[∫

Im−2

v
(L)
m−2(t) dt

]
...

= 2−n
L

rn

m∑
i=0

[
(1− 2−n)

L

rn

]i
= L− 2−(m+1)L

2

rn
.
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Therefore, by the monotone convergence theorem,

∫ 1

0
w(L)
n (t) dt = lim

m→∞
L− 2−(m+1)L

2

rn
= L.

A similar argument can be applied to (w
(L)
n )−1. This function is evidently the limit of the

sequence of step functions
{

(v
(L)
m )−1

}∞
m=0

. Since a−1
n +b−1

n = (an+bn)(anbn)−1 = an+bn,

we obtain the same recursion for
∫
Im

(v
(L)
m (t))−1 dt as that for

∫
Im
v

(L)
m (t) dt; thus,

∫ 1

0
(w(L)

n (t))−1 dt = lim
m→∞

L− 2−(m+1)L
2

rn
= L.

Furthermore, by (2.6.11) and (2.6.12), we have for k > 1

∫ 1

0
w(k)
n (t) dt = 2−k + (1− 2−k)

∫ 1

0
w(L)
n (t) dt

= 2−k + (1− 2−k)L

= rk.

Arguing as we had for (w
(L)
n )−1 gives

∫ 1
0 (w

(k)
n (t))−1 dt = rk; thus, (2.6.1) is satisfied.

To show (2.6.2), it suffices to remark that on every J ∈ D(I), w(k)
n is, by construction,

a constant multiple of an appropriately scaled w
(L)
n or w(k)

n . Let c be this constant

and w this function. It follows then that, on J , (w
(k)
n )−1 is just a rescaling of c−1w−1.

Consequently,

〈w(k)
n 〉J〈(w(k)

n )−1〉J = 〈w〉I〈w−1〉I 6 L2 = Q.

It remains to verify condition (2.6.3). Fix n > 1 and for each k ∈ {0, 1, 2, ..., n}, let

Σ(k) =
∑

J∈D(I)

cΦ
J (w(k)

n ).
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Then by our conditions on each w(k)
n , we have the following system of equations for the

associated sums:

Σ(k) =
1

2
Σ(k−1) +

1

2
Σ(L) + cΦ

I (w(k)
n ); Σ(L) = Σ(n) + 8Ψ(L)

[
L2 − r2

n

]
; Σ(0) = 0.

(2.6.13)

Since |I| = 1, we have

cΦ
I (w(k)

n ) = |I|Φ(〈w(k)
n 〉I〈(w(k)

n )−1〉I)RI(w(k)
n )

= Ψ(rk)

[[
〈w(k)

n 〉I− − 〈w(k)
n 〉I+

]2
+
[
〈(w(k)

n )−1〉I− − 〈(w(k)
n )−1〉I+

]2
]

= Ψ(rk)

[[
〈w(k−1)

n 〉I − 〈w(L)
n 〉I

]2
+
[
〈(w(k−1)

n )−1〉I − 〈(w(L)
n )−1〉I

]2
]

= 2Ψ(rk) [L− rk−1]2 .

Therefore, the system of equations (2.6.13) is identical to that defining the intermediate

function An at the points {rk}nk=0 and L. That is to say, we are again solving the system

Σ(k) =
1

2
Σ(k−1) +

1

2
Σ(L) + P (rk); Σ(L) = Σ(n) + T (rn); Σ(0) = 0

where

P (rk) = 2Ψ(rk) [L− rk−1]2 , T (rk) = 8Ψ(rk)
[
L2 − r2

k

]
.

Consequently, Σ(k) = An(rk) and so

lim
n→∞

∑
J∈D(I)

cΦ
J (w(k)

n ) = lim
n→∞

An(rk) = BQ,Φ(rk, rk)

which proves (2.6.3).
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Chapter 3
The John-Nirenberg Constant of

BMOp, 0 < p < 1

3.1 Introduction, preliminaries, and main results

Here we are taking up a study begun in [Sla15] and continued in [VS16]. We are concerned

with obtaining sharp estimates for BMO norms of logarithms of A∞ weights, and in so

doing estimating the so-called John–Nirenberg constant of the space BMOp. For p > 0

and a fixed interval I this space is defined as follows:

BMOp(I) = {ϕ ∈ L1(I) : ‖ϕ‖BMOp(I) := sup
interval J⊂I

〈|ϕ− 〈ϕ〉
J
|p〉1/p

J
<∞}.

It is classical that BMOp norms are equivalent for all p > 0; the paper [SV12] contains a

series of sharp results concerning this equivalence.

Recall that a weight is an almost everywhere positive function. For a fixed interval

I we say that a weight w on I belongs to A∞(I), w ∈ A∞(I), if both w and logw are
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integrable and the following condition holds:

[w]A∞(I) := sup
interval J⊂I

〈w〉
J
e
−〈logw〉

J <∞. (3.1.1)

Observe that [w]A∞(I) > 1 by Jensen’s inequality. For C > 1, we will also use the

notation AC∞(I) for the set of those A∞(I) weights with the characteristics bounded by

C:

AC∞(I) := {w ∈ A∞(I) : [w]A∞(I) 6 C}. (3.1.2)

Let us also recall the definition of A2, which we gave earlier in a dyadic setting. We

say that w belongs to A2(I), w ∈ A2(I), if both w and w−1 are locally integrable and

[w]A2(I) := sup
interval J⊂I

〈w〉
J
〈w−1〉

J
<∞. (3.1.3)

The quantities [w]A∞(I) and [w]A2(I) are called the A∞- and the A2-characteristics of w,

respectively. Clearly, A2 ⊂ A∞. In fact, it is easy to show that w is in A2 if and only if

both w and w−1 are in A∞.

The John–Nirenberg constant of BMOp, denoted by ε0(p), is the supremum of all ε > 0

such that for any function ϕ ∈ BMOp(I) with BMOp-norm ε we have eϕ ∈ A2(I). Since

a weight w ∈ A2 if and only if w,w−1 ∈ A∞, we have the following equivalent definition

of ε0(p):

ε0(p) = sup{ε > 0: ∀ϕ ∈ BMOp, ‖ϕ‖BMOp = ε =⇒ eϕ ∈ A∞}

This constant was computed for 1 6 p 6 2 in [Sla15] and for p > 2 in [VS16]. Here is

the combined main result of those studies:
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Theorem 3.1.1 ([Sla15; VS16]). If p > 1, then

ε0(p) =

[
p

e

(
Γ(p)−

∫ 1

0
tp−1et dt

)
+ 1

]1/p

. (3.1.4)

Let us briefly explain how ε0(p) may be computed or estimated. A straightforward

approach is to compute the supremum of the A∞ “oscillation" 〈eϕ−〈ϕ〉J 〉
J
for all ϕ such

that ‖ϕ‖BMOp = ε. The value of ε for which this supremum becomes infinite is precisely

ε0(p). As discussed in [Sla15], in trying to put this in practice one might consider the

following upper Bellman function:

Bp,ε(x1, x2) = sup{〈eϕ〉
I

: 〈ϕ〉
I

= x1, 〈|ϕ− 〈ϕ〉I |
p〉
I

= x2, ‖ϕ‖BMOp(I) 6 ε}. (3.1.5)

This works well for p = 2, since

〈|ϕ− 〈ϕ〉
I
|2〉

I
= 〈ϕ2〉

I
− 〈ϕ〉2

I
,

and one can then describe the dynamics of the function B2,ε in terms of the variables x1

and x2. Indeed, this is precisely what was done in [SV11], where it was first proved that

ε0(2) = 1. However, this direct approach no longer works when p 6= 2, since one cannot

describe the dynamics of the oscillation 〈|ϕ − 〈ϕ〉
I
|p〉

I
= x2 when the interval I is split

into subintervals. In particular, one cannot obtain a PDE for this function.

For p 6= 2 an inverse approach was developed in [Sla15]: instead of fixing 〈ϕ〉
I
and

‖ϕ‖BMOp(I) and estimating 〈eϕ〉
I
from above, one fixes 〈ϕ〉

I
, 〈eϕ〉

I
, and [eϕ]A∞(I) and

estimates 〈|ϕ|p〉
I
from below. Thus, one aims to compute the following lower Bellman

function:

bp,C(x) = inf{〈|ϕ|p〉
I

: ϕ ∈ Ex,C,I}. (3.1.6)
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where Ex,C,I is the set of admissible (or test) functions ϕ on I:

Ex,C,I = {ϕ : eϕ ∈ AC∞(I), 〈ϕ〉
I

= x1, 〈eϕ〉I = x2}.

As in the case of dyadic A2, this function can be shown by a simple rescaling argument

not to depend on I. It is naturally defined on the planar domain

ΩC = {x ∈ R2 : ex1 6 x2 6 C ex1}, (3.1.7)

where the left inequality is Jensen’s and the right one follows because eϕ ∈ AC∞(I). Since

the only test functions for which the left inequality in (3.1.7) holds with equality are

constants almost everywhere on I, we also have the following boundary condition:

bp,C(x1, e
x1) = |x1|p. (3.1.8)

We are interested in computing this function for all values of parameters and vari-

ables. This will allow us to obtain sharp lower estimates for p-averages of logarithms of

A∞ weights, and also sharply estimate their BMOp norms. It will also yield new best

estimates for ε0(p), 0 < p < 1. Finally, as we will see later, the graph of such a function

is a special degenerately-convex surface, and this computation will allow us to extend

the existing geometric techniques for building such surfaces to the settings with lower

boundary regularity. We thus arrive at our first question.

Question 1. Compute bp,C for 0 < p < 1.

If bp,C is at hand, one can estimate ε0(p) using a theorem from [Sla15]:

Theorem 3.1.2 ([Sla15]).

εp0(p) > lim sup
C→∞

bp,C(0, C) (3.1.9)
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Note that this theorem does not guarantee equality, but if equality does hold the

converse estimate is obtained by presenting an explicit function ϕ ∈ BMOp such that

‖ϕ‖BMOp = ε0(p) and eϕ /∈ A∞. This is precisely what was done in [Sla15] and [VS16].

Unfortunately, for 0 < p < 1 Theorem 3.1.2 fails to yield a non-trivial result: even

without knowing bp,C it easy to show, using a simple test function, that for this range

of p we have lim supC→∞ bp,C(0, C) = 0 (this is done in section 3.7.1). We thus arrive at

our second question.

Question 2. Replace Theorem 3.1.2 with a sharper result that allows one to estimate

ε0(p) non-trivially using the formula for bp,C .

Remark 3.1.3. By “nontrivial” we mean an estimate that couldn’t be obtained from an

earlier result. Specifically, it is shown in [SV12] that for 0 < p < 1 one has ‖ϕ‖BMOp >

21−2/p‖ϕ‖BMO2 . Since ε0(2) = 1, we immediately have ε0(p) > 21−2/p. We are looking

for a better estimate.

Next, it is easy to show that ε0(p) coincides with the supremum of all constants c0 in

the weak-form John–Nirenberg inequality,

1

|J |
|{t ∈ J : |ϕ(t)− 〈ϕ〉

J
| > λ}| 6 C1e

−c0λ/‖ϕ‖BMOp . (3.1.10)

However, it’s not obvious that one can replace c0 with ε0(p). In [Sla15], it was shown

to be the case for 1 < p 6 2 (the cases p = 1 and p = 2 had been established earlier

in [Kor92] and [VV13], respectively). However, the argument used in [Sla15] did not

extend to the range p > 2, so this question was left open for that range. We ask the

same question for 0 < p < 1.

Question 3. Can the value obtained while answering Question 2 replace c0 in (3.1.10)?
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3.1.1 The answers.

Answer 1. We have been able to fully compute the function bp,C . At its core, this is a

purely differential-geometric task, though a challenging one. Indeed, the main theorem

from [SZ16] asserts that bp,C is simply the largest locally convex function on ΩC sat-

isfying the boundary condition (3.1.8). (“Locally convex" means convex along any line

segment contained in ΩC .) Therefore, wherever bp,C is second differentiable, it satisfies

the homogeneous Monge-Ampère equation. Its graph is a surface ruled by lines of zero

curvature. The projections of these rulings – referred to as Monge-Ampère characteristics

– foliate the domain and do not intersect unless the function is affine in a neighborhood

of the point of intersection.

The Monge-Ampère geometry of bp,C is the simplest for 1 < p 6 2: for large enough C

(and these are the only values of C that inequality (3.1.9) is concerned with) the foliation

consists solely of one-sided tangents to the upper boundary of the Bellman domain. For

p > 2, the geometry is more complicated: the tangential foliation splits into two parts,

separated by a so-called “trolleybus” region (see [Iva+18] for the BMO analog of this

region); however, as C →∞, the width of this region goes to 0, which effectively yields

the same result.

For 0 < p < 1, the geometry is more difficult still, due to the lack of differentiability

of the boundary function (3.1.8) at x1 = 0. In particular, the foliation contains sev-

eral non-tangential elements, none of which disappear or become infinitesimally thin as

C → ∞. Furthermore, the nature of these regions changes as C increases, a process re-

ferred to as evolution. Our solution draws inspiration and basic understanding from the

monograph [Iva+18] and the next (as yet unpublished) iteration in the modern-Bellman

series, [Iva+a]. However, both of those sources treat Bellman functions with C2+ bound-

ary conditions, while our boundary function is not even differentiable. As a result, we

obtain foliations that are partly outside the established theory. In addition, we compute
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bp,C for all possible C and not just large ones; as we will see below, this is needed in

Theorem 3.1.4, which is our replacement for Theorem 3.1.2.

Our focus is on the value bp,C(0, C). It turns out that there exists a certain threshold

C∗ = C∗(p) such that for C ∈ [1, C∗] this value is unaffected by the parts of the foliation

outside of a fixed central configuration; for such C the formula for bp,C(0, C) is relatively

simple. However, for C > C∗ this central configuration collides with another evolving

region, which makes the formula for, and subsequent analysis of, bp,C(0, C) much more

complicated. The complete answer to Question 1 requires much additional notation to

state. This result is contained in Theorem 3.4.5. With bp,C in hand, we also record

a number of immediate corollaries, concerned with sharp estimates for p-averages, p-

oscillations, and BMOp norms of logarithms of A∞ weights. All of these are new in

literature.

Answer 2. We have indeed managed to find a useful substitute for Theorem 3.1.2.

Theorem 3.1.4.

εp0(p) > sup
1<C<∞

bp,C(0, C)

(ξ+(C))p

Of course, this estimate is formally stronger than (3.1.9), but what matters is that

it does produce new estimates on ε0(p). As a simple test, if we take the limit of the

expression under supremum as C → 1+, we get εp0(p) > 2p−2, thus recovering what we

could have obtained from [VS16]; see Remark 3.1.3 above. In section 3.7.3 we expand on

this calculation and show that in fact ε0(p) > 2p−2 for every p ∈ (0, 1); we then illustrate

this fact quantitatively.

Answer 3. We also have the positive answer to Question 3. In fact, the following key

theorem has Th. 3.1.4 as a corollary.

Theorem 3.1.5. Take p ∈ (0, 1). Let

ε∗(p) = max
1<C<∞

(bp,C(0, C))1/p

ξ+(C)
.
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Then there exists a constantK = K(p) such that for all ϕ ∈ BMOp(I) and any subinterval

J of I we have

1

|J |
|{t ∈ J : |ϕ(t)− 〈ϕ〉

J
| > λ}| 6 K e−λε∗(p)/‖ϕ‖BMOp (3.1.11)

The proofs of Theorems 3.1.4 and 3.1.5 are given in section 3.7.

The rest of this chapter is organized as follows. In section 3.2 we describe a conjectured

geometry of our Bellman function, i.e., the splitting of the domain ΩC into specific

regions, and Monge-Ampèrefoliation in each region. In section 3.3, we construct an

explicit function in each region according to the conjectured foliation. In section 3.4,

we formulate compatibility conditions for these regions, prove that they are fulfilled,

and thus obtain a so-called Bellman candidate in ΩC . We then state our main Bellman-

function result, which asserts that the candidate is in fact equal to the Bellman function,

and record several key corollaries. In section 3.5, we demonstrate the local convexity

of the candidate, which proves that it bounds the Bellman function from below. In

section 3.6, we present explicit optimizers for each point of the domain, thus sowing the

the candidate bounds the function from above. Finally, in section 3.7, we prove the main

theorems relating the Bellman function and the John–Nirenberg constant and explore

specific estimates.

3.2 The conjectured foliation for a Bellman candidate

As pointed out in the introduction, the Bellman function bp,C defined by (3.1.6) is the

largest locally convex function on the domain ΩC . Accordingly, we aim to build a locally

convex Bellman candidate bp,C on ΩC and then rigorously show that the candidate and

the function are one and the same.

While there is currently no definitive algorithm for constructing such functions on

non-convex planar domains for arbitrary boundary conditions, the current state of the
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Bellman studies does provide important insights as to what our function might look like.

In this section, we first introduce important notation and collect several facts about the

geometry of the domain ΩC .We then synthesize a conjectured recipe for bp,C from several

recent studies and implement this recipe piece-by-piece, splitting ΩC into subdomains and

constructing bp,C in each piece. Finally, we prove that the pieces can be glued together

in a continuous — in fact, C1, with a couple of important exceptions — fashion.

3.2.1 The domain ΩC and the numbers ξ±

Fix C > 1 and let ξ± = ξ±(C) be the two solutions of the equation

e−ξ = C(1− ξ) : −∞ < ξ− 6 0 6 ξ+ < 1. (3.2.1)

The numbers ξ± are variants of the so-called product logarithm functions. They are

well-studied, and we collect several of their key properties without proof.

ξ±(1) = 0, lim
C→∞

ξ+(C) = 1, lim
C→∞

ξ−(C) = −∞ (3.2.2)

(ξ±)′(C) =
1− ξ±

ξ±
1

C
(3.2.3)

Thus, ξ+ is strictly increasing in C, while ξ− is strictly decreasing.

lim
C→1

ξ+(C)

|ξ−(C)|
= 1, ξ− + ξ+ < 0 (3.2.4)

We will often encounter the difference ξ− − ξ+, so we will give it a separate name:

w0 = ξ− − ξ+. (3.2.5)
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We can readily express ξ± through w0:

ξ− = 1 +
w0

1− ew0
, ξ+ = 1 +

w0e
w0

1− ew0
. (3.2.6)

For R > 0, let

ΓR = {x ∈ R2 : x2 = Rex1};

then ΩC is the region in the plane bounded below by Γ1 and above by ΓC . We can

interpret ξ± as the x1-coordinates of the two points of tangency when two tangents to

ΓC are drawn from the point (0, 1). In relation to that, let us define two new functions

on ΩC , u
+ and u−, by the implicit formula

x2 = eu
±
(x1 − u±

1− ξ±
+ 1
)
. (3.2.7)

To illustrate their geometric meaning, take a point x ∈ ΩC and draw two one-sided

tangents to ΓC , so that each tangent starts at Γ1, passes through x, and terminates at

the point of tangency. One of these tangents will have its point of tangency to the right

of x; the other has the point of tangency to the left of x. In the first case, the horizontal

coordinate of the initial point is u+(x) and that of the point of tangency is u+(x) + ξ+;

in the second case, these are u−(x) and u−(x) + ξ−, respectively; see Figure 3.1, which

is reproduced from [Sla15].

3.2.2 Conjectured foliation for the Bellman function

Perhaps the most important inspiration for our conjectured foliation comes from [SV12],

where the lower Bellman function was found for the functional 〈|ϕ|p〉
I
, 0 < p < 1, for

ϕ ∈ BMO2(I). Thus, this is exactly the same functional as ours, but the domain is a

symmetric parabolic strip. Figure 3.2, reproduced from [SV12], shows the key elements

of interest to us: There are five regions in total. Two are so-called cups – the regions
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Figure 3.1: The geometric meaning of ξ± and u±(x).

Figure 3.2: The foliation for the boundary function f(t) = |t|p on the BMO2 domain.

under a single chord connecting two points on the lower boundary. Though cups can be

foliated in any number of ways, in these cups all extremal trajectories emanate from a

single corner, the point (0, 0). Such cups result from insufficient differentiability of the

boundary functions and are called singular. Two other regions are foliated by tangents

to the upper boundary. Lastly, there is a central region in which the function is affine.
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The biggest difference between that setting and ours is, of course, the lack of symmetry

in our domain. Still, it is reasonable to conjecture that we do have the central aggregate

consisting of two cups and the “triangle" with the vertex at (0, 1) (the equivalent of (0, 0)

in the BMO formulation). It turns out upon inspection that we cannot combine this

conjectured configuration with the two regions of tangent as was done in [SV12]; the

resulting function will not be locally convex in the whole domain.

However, the difficulties lie away from the point (0, 1), meaning away from the point

t = 0 for the boundary function f(t) = |t|p. And such smooth situations are completely

described in a pair of recent monographs, [Iva+18] and [Iva+a]. The first one lays out a

complete theory for BMO; the second one, still in preprint form as of this writing, deals

with general non-convex planar domains, of which ΩC is an example. Both references

assume C2+ boundary conditions, which we do have away from t = 0. Without going

into details, the main, beautiful idea is that the sign changes of the so-called torsion

function determine the configuration of various foliation blocks for small values of the

domain constant – in our case, for C close to 1. After that, the configuration starts to

evolve, often in complicated ways. We will see how the evolution proceeds in our case.

For a domain with the boundary curve (g1(t), g2(t)) (that boundary on which test

functions are constants) and the boundary function f(t), the torsion function is given by

T (t) :=

∣∣∣∣∣∣∣∣∣∣
g′1 g′′1 g′′′1

g′2 g′′2 g′′′2

f ′ f ′′ f ′′′

∣∣∣∣∣∣∣∣∣∣
.

We have g1(t) = t, g2(t) = et, and f(t) = |t|p, so T (t) = etp(p− 1)|t|p−4t(t− p+ 2). This

function changes sign from negative to positive at t = p− 2, which for the lower Bellman

function indicates the presence of a triangular region between two counter-directed one-

sided tangents; the function is affine in the region. The lower vertex of this region starts

at the point (p − 2, ep−2) and then moves away from it as C increases, though it is not
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a priori clear in what direction. Let us refer to the horizontal coordinate of this point as

w. Upon extensive experimentation, we have determined that w moves to the left from

the starting point p− 2. Here is our conjectured foliation for sufficiently small values of

C. It has a fixed configuration of four regions: the left singular cup P2, the right singular

cup P4, the triangular region P3 at the center, and a tangentially foliated region to the

right of P2, called P1. This fixed configuration is complemented by the moving triangular

region P6 and two regions of opposite tangential foliations on its left and on its right,

called P7 and P5 respectively. This foliation is presented in Figure 3.3.

Figure 3.3: The global foliation, pre-collision; P1 is not shown.

We now explore what happens with the moving region P6 as C increases. Note that

the left-most point of the cup P4, (w0, e
w0), is moving to the left as C grows. Three

possibilities now present themselves: P6 could be moving to the left and disappear for all

large enough C; it could be moving to the left and be present for all C, but never collide

with the P4; or it could be moving to the left and eventually collide with P4. The first and

second possibilities can be ruled out with calculation, and we conjecture that the last one
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is the one that actually happens. We will refer to the value of C when P4 and P6 collide

as the moment of collision; to the smaller values of C as being in the pre-collision range;

and to the larger value of C as being in the post-collision range. In later sections we will

formally prove that the collision happens. At the moment of collision, P5 is reduced to a

single half-tangent; see Figure 3.4.

Figure 3.4: The global foliation at collision; P1 = R1 is not shown.

After collision there are only six regions instead of the original seven; these are now

called R1, ..., R6. We have R1 = P1, R2 = P2, and R3 = P3. The cup P4, now reduced by

collision, is called R4, and the left-most region of one-sided left-leaning tangents is called

R6. The “quadrilateral” region R5 is referred to as “trolleybus" in Bellman literature.

The candidate b is affine in R5, as it is in the adjacent R3. However, it is not affine in

R5 ∪ R3. One usually does not see two regions of affinity next to each other; the reason

we see it here is that the vertex of the central triangle R3 is fixed at (0, 1) because of the

singularity. See Figure 3.5 for the post-collision foliation.
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Figure 3.5: The global foliation, post-collision.

3.3 Construction and properties of local Bellman candidates

We are now starting to build the global foliation conjectured in the previous section. To

that end, we construct the unique Bellman candidate in each region. Of our regions, cups

are entirely self-contained (or “complete," in the language of [SV12]), being independent

of the values of the candidate outside; regions foliated by tangents are “half-complete,"

reading information from either left or right, depending on their lean; and regions of

affinity are “incomplete,” requiring the knowledge of the candidate on both sides (or on

two of three sides in the case of R5).

3.3.1 Candidates in cups

Bellman candidates in cups depend only on the location of the cup and the conjectured

foliation within it. As pointed out earlier, all of our cup foliations will be of the so-

called singular variety, meaning all foliating chords emanate from one corner of the cup.

Furthermore, that corner will be the point (0, 1) in all cases.
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Specifically, one of our cups is the region called P2 pre-collision and R2 post-collision.

In this region all extremal chords start at (0, 1) and terminate at a point (v+, ev
+

) on the

lower boundary, for some v+ ∈ (0,−w0]. Its top chord is tangent to the upper boundary

at the point (ξ+, Ceξ
+

); see Figure 3.3.1.

Figure 3.6: The cup P2 = R2 and a typical element of the foliation.

Another cup region is P4, existing only pre-collision. It is algebraically symmetric to

P2; see Figure 3.3.1. In this region all extremal chords start at (0, 1) and terminate at a

point (v−, ev
−

) on the lower boundary, for some v− ∈ [w0, 0). The top chord is tangent

to the upper boundary at the point (ξ−, Ceξ
−

).

Figure 3.7: The cup P4 and a typical element of the foliation.
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Lastly, we have the cup R4, which is P4 partially reduced by the collision. Unlike in the

previous two cases, its top chord does not reach the upper boundary, and it terminates

at the points (w, ew), where w > w0; see Figure 3.3.1.

Figure 3.8: The cup R4 and a typical element of the foliation.

For each x in each of our cups, there is a unique chord containing the points (0, 1), x,

and (v, ev) (here v stands for either v− or v+). This v is given by the following equation:

x2 − 1

x1
=
ev − 1

v
(3.3.1)

We will also need vx2 :

vx2 =
v2

vev − ev + 1

1

x1
(3.3.2)

It clear both from geometry and from this formula that vx2 > 0 when v = v+ and vx2 6 0

when v = v−. We require that the candidate b be affine along each such chord:

b(x) = m(v)(x1 − v) + f(v).

This implies that b satisfies the homogeneous Monge-Ampère equation in the interior of

the cup. Since we also have b(0, 1) = 0, we conclude that m(x) = f(v)
v = sgn(v)|v|p−1.

Thus,

b(x) = sgn(v)|v|p−1x1. (3.3.3)
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We will need the first partial derivative of b with respect to x2:

bx2 =
(p− 1)|v|p

vev − ev + 1
(3.3.4)

3.3.2 Tangential candidates

General considerations

We are constructing a locally convex function b in a subdomain of ΩC between two

one-sided tangents of the same orientation (both left-leaning or both right-leaning). If

the orientation is chosen, each point x in such a region corresponds to a unique one-

sided tangent connecting the points (u, eu) ∈ Γ1 and (u + ξ, Ceu+ξ) ∈ ΓC . Here u is

u−(x) for left-leaning tangents and u+(x) for right-leaning ones; see Figure 3.1. Recall

equation (3.2.7):

x2 = eu
±
(x1 − u±

1− ξ±
+ 1
)
.

In calculations below that apply to both u− and u+ (and, thus, to ξ− and ξ+), we simply

use u and ξ.

We require that the function b have constant first partial derivatives for each fixed

u, which will automatically imply that it satisfies the Monge-Ampère equation in the

interior of the region in question. Thus, b is affine along each tangent and we have

b(x) = m(u)(x1 − u) + f(u), (3.3.5)

where f(u) = |u|p.

From (3.2.7) we obtain

ux2 =
e−u(1− ξ)
x1 − u− ξ

.
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Then

bx2 =
(
m′(u)(x1 − u)−m(u) + f ′(u)

)
ux2

=
m′(u)(x1 − u− ξ) +m′(u)ξ −m(u) + f ′(u)

x1 − u− ξ
e−u(1− ξ)

= m′(u)e−u(1− ξ) +
m′(u)ξ −m(u) + f ′(u)

x1 − u− ξ
e−u(1− ξ)

Since for a fixed u, bx2 is constant with respect to x1, we have

bx2 = m′(u)e−u(1− ξ) (3.3.6)

and

m′(u)ξ −m(u) + f ′(u) = 0. (3.3.7)

Though we will mostly be dealing with bx2 , in the same fashion we can obtain a formula

for bx1 :

bx1 = m(u)−m′(u), (3.3.8)

Solving the linear differential equation (3.3.7) gives

m(u) = eu/ξ
(
A− 1

ξ

∫ u

u0

e−s/ξf ′(s) ds

)
. (3.3.9)

For a left-leaning tangential foliation, u0 is the horizontal coordinate of the right-most

point on the lower boundary Γ1 to which it extends (including the possibility u0 = −∞),

while for a right-leaning tangential foliation, it is the left-most point. We have three

(pre-collision) or two (post-collision) different tangential foliations. Let us consider them

separately.
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Candidate in P7 (pre-collision) and R6 (post-collision)

Recall that the regions P7 and R6 have identical definitions in terms of the number w.

While we will see that w itself is computed differently pre- and post-collision, the formula

for b stays exactly the same.

Specifically, in this case we have u = u−, ξ = ξ−, u0 = −∞, and A = 0. Hence,

b(x) = M(u−)(x1 − u−) + f(u−), −∞ < u− 6 w, (3.3.10)

where, from (3.3.9),

M(u) = − 1

ξ−
eu/ξ

−
∫ u

−∞
e−s/ξ

−
f ′(s) ds. (3.3.11)

Candidate in P5

Here we have u = u+ and ξ = ξ+. To determine u0 and A, recall that in the cup P4 we

have

b(x) = −|v|p−1x1,

where (v, ev) is the left end-point of the chord from (0, 1) passing through x. We must

match this expression with out desired formula b(x) = m(x)(x1 − u) + f(u) along the

boundary between P4 and P5. Thus, we set

u0 = v = w0.

Now, from (3.3.9),

A = −e−w0/ξ+ |w0|p−1.

and so,

b(x) = µ(u+)(x1 − u+) + f(u+), w 6 u+ 6 w0, (3.3.12)

56



where

µ(u) = eu/ξ
+

(
−e−w0/ξ+ |w0|p−1 +

1

ξ+

∫ w0

u
e−s/ξ

+
f ′(s) ds

)
. (3.3.13)

Candidate in P1 = R1

Recall that P1 and R1 denote the same region, pre- and post-collision, respectively. Here

we have u = u− and ξ = ξ−. By an entirely symmetric reasoning to the previous case

(matching in this case with the cup P2 = R2, we obtain

u0 = −w0, A = ew0/ξ− |w0|p−1

and

b(x) =M(u−)(x1 − u−) + f(u−), −w0 6 u− <∞, (3.3.14)

where

M(u) = eu/ξ
−
(
ew0/ξ− |w0|p−1 − 1

ξ−

∫ u

−w0

e−s/ξf ′(s) ds

)
(3.3.15)

3.3.3 Candidates in regions of affinity

General considerations

Affine regions occur when two candidates with different foliations must be glued together.

The boundaries of the regions being glued meet at a single point on Γ1. For regions P3

and R3 this point is fixed; for regions P6 and R5, this point evolves with the parameter

C to satisfy a compatibility condition imposed by our conjectured foliation. Since the

function we are constructing is affine along each boundary subject to gluing, it must be

affine in he whole region between these two boundaries. That is to say,

b(x) = γ1 x1 + γ2 x2 + γ3.
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The coefficients γi are determined by the values from the two boundaries. We will now

consider each case separately.

Candidate in P6

b(x) = β1(x1 − w) + β2(x2 − ew) + f(w)

Since w is chosen so that b is continuously differentiable in the interior of P7 ∪ P6 ∪ P5,

we have, using (3.3.6) and (3.3.8):

β1 = bx1(w)
∣∣∣
P7

= M(w)−M ′(w), β2 = bx2(w)
∣∣∣
P7

= M ′(w)e−w(1− ξ−).

Once we have established the defining equations for w we will be able to rewrite these

coefficients more explicitly.

Candidate in P3

b(x) = α1x1 + α2(x2 − 1),

where

α1 + α2
1

1− ξ−
= −|w0|p−1, α1 + α

1

1− ξ+
= |w0|p−1

So, solving for α1 and α2,

α1 = |w0|p−2(ξ+ + ξ− − 2), α2 = 2|w0|p−2(1− ξ−)(1− ξ+) (3.3.16)

Candidate in R5

b(x) = β1(x1 − w) + β2(x2 − ew) + f(w).
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Since, again, w is chosen so that bx1 and bx2 are continuous across the boundary between

R6 and R5, we again have the same formulas for β1 and β2 as in section 3.3.3 above:

β1 = bx1(w)
∣∣∣
R6

= M(w)−M ′(w), β2 = bx2(w)
∣∣∣
R6

= M ′(w)e−w(1− ξ−). (3.3.17)

Candidate in R3

b(x) = α1x1 + α2(x2 − 1),

where

α1+α2
1

1− ξ−
= β1+β2

1

1− ξ−
= M(w)+M ′(w)(e−w−1) = M ′(w)(e−w−1+ξ−)−p|w|p−1,

where we have used β1 and β2 are from (3.3.17) and the equation M = ξ−M ′ + f ′

(cf. (3.3.7)), and

α1 + α2
1

1− ξ+
= |w0|p−1.

Solving for α1 and α2 we have

α1 = |w0|p−1 − |w0|p−1 −M ′(w)(e−w − 1 + ξ−) + p|w|p−1

|w0|
(1− ξ−) (3.3.18)

and

α2 =
|w0|p−1 −M ′(w)(e−w − 1 + ξ−) + p|w|p−1

|w0|
(1− ξ−)(1− ξ+). (3.3.19)

3.4 The global candidate and the main Bellman theorem

In this section, we prove that the individual regions and foliations conjectured in sec-

tion 3.2 and constructed in section 3.3 can be glued together using certain compatibility

conditions. We then prove that these conditions are fulfilled, which gives the formula
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for the Bellman candidate in the whole domain ΩC . We then state the main theorem,

asserting that the candidate and function coincide, as well as several corollaries.

3.4.1 Compatibility equations for C∗ and w

Equation for w in the pre-collision case

When C < C∗, w is defined to be the unique number so that the Bellman candidate b

so far defined individually in the regions P7, P6, and P5 is continuously differentiable in

the interior in the interior of their union. Since b is affine in P6 by construction, this

happens if and only if

bx2

∣∣∣
u−=w

= bx2

∣∣∣
u+=w

Using (3.3.6), we have

M ′(w)(1− ξ−) = µ′(w)(1− ξ+), (3.4.1)

where the functions M and µ are given, respectively, by (3.3.11) and (3.3.13).

Using the differential equation (3.3.7) and integrating by parts, we have

M ′(w) =
1

ξ−
(M(w)− f ′(w)) =

1

ξ−

(
− 1

ξ−
ew/ξ

−
∫ w

−∞
e−s/ξ

−
f ′(s) ds− f(w)

)
= − 1

ξ−
ew/ξ

−
∫ w

−∞
e−s/ξ

−
f ′′(s) ds

and

µ′(w) =
1

ξ+
(µ(w)− f ′(w))

=
1

ξ+

(
ew/ξ

+
(
− e−w0/ξ+ |w0|p−1 +

1

ξ+

∫ w0

w
e−s/ξ

+
f ′(s) ds

)
− f ′(w)

)
=
p− 1

ξ+
e(w−w0)/ξ+ |w0|p−1 +

1

ξ+
ew/ξ

+

∫ w0

w
e−s/ξ

+
f ′′(s) ds
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Substituting these two expressions into (3.4.1), writing f ′′ explicitly, changing the variable

in both integrals to y = s
w and cancelling where appropriate, we have

−1− ξ−

ξ−
p e

w
ξ−

∫ ∞
1

e
− w
ξ− y

yp−2 dy =
1− ξ+

ξ+
e
w
ξ+

(
e
−w0
ξ+ + p

∫ 1

w0
w

e
− w
ξ+

y
yp−2 dy

)
(3.4.2)

Equation for w in the post-collision case

Similarly to the previous case, when C > C∗, w is defined to be the unique number so

that the Bellman candidate b is continuously differentiable in the interior R6 ∪R5 ∪R4.

Since b is affine in R5, this happens if and only if

bx2

∣∣∣
u−=w

= bx2

∣∣∣
v=w

Recall that in the cup R4, we have

bx2 =
(p− 1)|v|p

vev − ev + 1
.

Using (3.3.6) we thus obtain the following equation for w:

M ′(w)(1− ξ−) =
(p− 1)|w|p

e−w − 1 + w
, (3.4.3)

where the function M is given by (3.3.11). Rewriting M ′(w) as in the previous section

and rearranging (3.4.3) slightly, we have

pew/ξ
−
∫ ∞

1
e
− w
ξ− y

yp−2 dy = − ξ−

1− ξ−
|w|

e−w − 1 + w
(3.4.4)

Equation for C∗

Finally, C∗ = C∗(p) by design is the value such that

w(C∗) = w0(C∗),
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where w(C) is given by either (3.4.1) or (3.4.4). These two equations become the same

at the moment of collision, thus, using (3.4.4), we have the following equation for C∗:

pew0/ξ−
∫ ∞

1
e
−w0
ξ− y

yp−2 dy = − ξ−

1− ξ−
|w0|

e−w0 − 1 + w0
. (3.4.5)

From the definition of ξ±,

e−w0 − 1 +w0 = e−ξ
−+ξ0 − 1 + ξ−− ξ+ =

1− ξ−

1− ξ+
− 1 + ξ−− ξ+ =

ξ+(ξ+ − ξ−)

1− ξ+
, (3.4.6)

and, thus, (3.4.5) becomes

pew0/ξ−
∫ ∞

1
e
−w0
ξ− y

yp−2 dy = −(1− ξ+)ξ−

(1− ξ−)ξ+
(3.4.7)

3.4.2 Key lemmas about C∗ and w

Here we prove that the compatibility equations stated stated above can be resolved

uniquely and also obtain key bounds on the numbers C∗ and w(C).

Lemma 3.4.1. Fix p ∈ (0, 1).

1. There exists a unique w1 = w1(p) < 0 such that

w2
1

e−w1 − 1 + w1
= p, (3.4.8)

2. There exists a unique w2 = w2(p) < 0 such that

w2

1− e−w2
= p. (3.4.9)

3. The following inequalities are true:

w1(p) < min{p− 2, w2(p)} (3.4.10)
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and

w2(p) < p− 1. (3.4.11)

Proof. To prove statement (1), let us rewrite (3.4.8) by flipping the fractions and ex-

panding the exponent in a power series:

∞∑
k=0

(−w1)k

(k + 2)!
=

1

p
(3.4.12)

The left-hand side of this equation is strictly increasing in |w1|; it is also equal to 1
2 and

thus less than 1
p when w1 = 0; and it is clearly larger than 1

p for all sufficiently large |w1|.

This proves the existence of a unique root w1 ∈ (−∞, 0), as required.

To prove statement (2), let us similarly rewrite (3.4.9):

∞∑
k=0

(−w2)k

(k + 1)!
=

1

p
(3.4.13)

The left-hand side is strictly increasing in |w2|; is equal to 1 and thus less than 1
p for

w1 = 0; and is larger than 1
p for all sufficiently large |w2|. This proves the existence of a

unique root w2 ∈ (−∞, 0).

To prove that w1 < w2, compare the left-hand sides of (3.4.12) and (3.4.13) when

evaluated at the same negative number w. We clearly have:

∞∑
k=0

(−w)k

(k + 2)!
<

∞∑
k=0

(−w)k

(k + 1)!

When w = w1, the left-hand side equals 1
p , thus the right-hand side is greater than 1

p .

Since the right-hand side is strictly increasing in |w| and equals 1
p when w = w2, we

conclude that |w1| > |w2| or, equivalently, that w1 < w2.
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Proving that w1 < p− 2 is equivalent to showing that the left-hand side of (3.4.12) is

less than 1
p when we replace w1 with p− 2. Equivalently, we want to show that

e2−p − 1 + (p− 2)

(p− 2)2
<

1

p
⇐⇒ pe2−p + p− 4 < 0

The last inequality is true at p = 1, and its left-hand side is increasing in p. This means

it is true of all p ∈ (0, 1), and (3.4.10) is thus proved.

Similarly, to show (3.4.11) is equivalent to showing that

1− e1−p

1− p
<

1

p
⇐⇒ pe1−p < 1.

The last inequality becomes equality when p = 1, and its left-hand side is again increasing

in p. The proof of the lemma is complete.

Lemma 3.4.2. For any θ > 0 and q > max{0, 1− θ} we have

1

θ + q
6
∫ ∞

1
e−θ(y−1) y−q dy 6

1

θ + q − 1
. (3.4.14)

Proof. We make use of the elementary inequality

e−(y−1) 6
1

y
,

valid for all y > 1. With it, we immediately obtain

∫ ∞
1

e−(θ+q)(y−1) dy 6
∫ ∞

1
e−θ(y−1) y−q dy 6

∫ ∞
1

y−θ−q dy,

and, after integration, the bounds in (3.4.14).

Lemma 3.4.3.
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(i) For every p ∈ (0, 1), there exists a unique C∗ = C∗(p) > 1 such that equation (3.4.7)

holds with w0 = w0(C∗) and ξ± = ξ±(C∗).

(ii) Let w∗(p) = w0(C∗(p)). Then

w1(p) < w∗(p) < min{p− 2, w2(p)}, (3.4.15)

where w1(p) and w2(p) are the numbers given by Lemma 3.4.1. Consequently,

w2

e−w − 1 + w
> p, for all w > w∗(p). (3.4.16)

Proof. We first prove statement (i). Let us refer to the left- and right-hand sides of (3.4.7)

as L(C) and R(C), respectively. Let τ(C) = 1− ξ+(C)
ξ−(C)

; thus,

L(C) = p

∫ ∞
1

yp−2e−τ(y−1) dy (3.4.17)

From (3.2.4), we have τ(C) → 2 as C → 1; from (3.2.2), we have τ(C) → 1 as C →∞.

Thus,

lim
C→1

L(C) = p

∫ ∞
1

yp−2e−2(y−1) dy 6
∫ ∞

1
e−2(y−1) ds =

1

2
.

From (3.2.4) we also have

lim
C→1

R(C) = 1.

At the other endpoint we have

lim
C→∞

L(C) = p

∫ ∞
1

yp−2e−(y−1) dy > 0,

and, from (3.2.2),

lim
C→∞

R(C) = 0.
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In shorthand, L(1) < R(1) and L(∞) > R(∞). This proves the existence of a root C∗ in

the interval (1,∞).

The uniqueness of this root will follow if we show that L(C) is strictly increasing in

C and R(C) is strictly decreasing in C. First, observe that τ is decreasing in C. Indeed,

using (3.2.3) we have

τ ′ = −(ξ+)′ξ− − (ξ−)′ξ+

(ξ−)2
= − 1

C(ξ−)2

(1− ξ+

ξ+
ξ− − 1− ξ−

ξ−
ξ+
)

= −(ξ+ − ξ−)(ξ+ + ξ− + ξ+ξ−)

C(ξ−)3ξ+
< 0,

since ξ+ +ξ−+ξ+ξ− < 0, which follows from the second inequality in (3.2.4) and the fact

that ξ−ξ+ < 0. By (3.4.17) L is decreasing in τ, and we have thus reached the desired

conclusion about L(C).

To deal with R(C), we differentiate directly:

R′(C) =
(−(ξ−)′ξ+ + (1− ξ−)(ξ+)′)(1− ξ+)ξ− − (−(ξ+)′ξ− + (1− ξ+)(ξ−)′)(1− ξ−)ξ+

(1− ξ−)2(ξ+)2

=
(1− ξ−)(1− ξ+)((ξ−)2 − (ξ+)2)

C(1− ξ−)2(ξ+)3ξ−
< 0,

where we used (3.2.3) on two occasions. The last factor in the numerator is positive

by (3.2.4); the denominator is obviously negative. This completes the proof of (i).

We turn to the proof of (ii). In light of the monotonicity in C of the two sides of (3.4.7)

that we have just established, to prove the left inequality in (3.4.15) is the same as to

demonstrate that the left-hand side of (3.4.7) is greater than the right-hand side, when

both are evaluated at w0 = w1(p) and the corresponding ξ±. Similarly, to prove the right

inequality in (3.4.15) it the same as to show that the left-hand side of (3.4.7) is smaller

than the right-hand side, when both are evaluated at w0 = min{p− 2, w2(p)}.
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Now, for w0 = w1(p) and the corresponding C, we use Lemma 3.4.2 with θ = τ and

q = 2− p to estimate L(C) from below:

p

∫ ∞
1

yp−2e−τ(y−1) dy >
p

τ + 2− p

On the other hand, using first (3.4.6) and then the definition of w1,

R(C)
∣∣∣
w0=w1

= −(1− ξ+)ξ−

(1− ξ−)ξ+
=

ξ−

1− ξ−
w1

e−w1 − 1 + w1

=
ξ−

w1(1− ξ−)

w2
1

e−w1 − 1 + w1
= p

ξ−

w1(1− ξ−)
=

p

τ(1− ξ−)
.

Hence, to show L(C)
∣∣
w0=w1

> R(C)
∣∣
w0=w1

it suffices to show that

1

τ + 2− p
>

1

τ(1− ξ−)
,

or, equivalently, −τξ− < 2− p, which is the same thing as w1 < p− 2, which is true by

Lemma 3.4.1.

For w0 = w2(p), we estimate L(C) from above using Lemma 3.4.2 with θ = τ and

q = 2− p:

L(C) 6
p

τ + 1− p
.

On the other hand, using (3.4.6) and then the definition of w2,

R(C)
∣∣∣
w0=w2

= − ξ−

1− ξ−
−w2

e−w2 − 1

e−w2 − 1

e−w2 − 1 + w2

= −p ξ−

1− ξ−
e−w2 − 1

e−w2 − 1 + w2

Since w2

1−e−w2
= p we have e−w2 − 1 = − p

w2
, so

R(C)
∣∣∣
w0=w2

= −p ξ−

1− ξ−
−w2

p

−w2
p + w2

= − p

1− p
ξ−

1− ξ−
.
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Thus, to show that L(C)
∣∣
w0=w2

< R(C)
∣∣
w0=w2

it suffices to show that

1

τ + 1− p
< − 1

1− p
ξ−

1− ξ−
.

Rewriting, we have

(1− p)(1− ξ−) < −ξ−(τ + 1− p) ⇐⇒ −ξ−τ > 1− p ⇐⇒ w2 < p− 1,

the last inequality being true by Lemma 3.4.1.

For w0 = p− 2 we have to work a bit harder. We take the integral in L(C) by parts:

L(C) =
p

τ

[
1− (2− p)

∫ ∞
1

e−τ(y−1)yp−3 dy

]
,

and now estimate the new integral (which has a negative multiple in front) from below

using Lemma 3.4.2 with θ = τ and q = 3− p, obtaining a new upper bound on L(C):

L(C) 6
p

τ

[
1− 2− p

τ + 3− p

]
=

p(τ + 1)

τ(τ + 3− p)
.

For the right-hand side we have from (3.2.6):

R(C) =
ew0 − 1− w0

e−w0 − 1 + w0
. (3.4.18)

We have p = w0 + 2 and τ = w0
ξ− = w0(ew0−1)

ew0−1−w0
. Let us temporarily write w for w0. After

some elementary algebra, we conclude that to prove that L(C)
∣∣
w0=p−2

< R(C)
∣∣
w0=p−2

for 0 < p < 1 it suffices to show that, for all w ∈ (−2,−1)

(
(w + 1)(ew − 1)− w

)
(w + 2)

ew − 1− w + w2
<

w(ew − 1)

e−w − 1 + w
(3.4.19)
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Define,

S(w) = w(ew − 1)(ew − 1− w + w2)− ((w + 1)(ew − 1)− w)(w + 2)(e−w − 1 + w).

To prove 3.4.19, it’s sufficient to show S is positive on the interval (−2,−1). Rearranging

gives:

S(w) =
[
e−w(2w2 + 5w + 2) + w3 + 3w2 − 5w − 4

]
− ew(3w2 − wew − 2 + w).

Additionally, we define the functions:

h(w) = e−w(2w2 + 5w + 2) + w3 + 3w2 − 5w − 4,

g(w) = ew(3w2 − wew − 2 + w).

We compute the following derivatives:

h′(w) = e−w(3− 2w2 − w) + (3w2 + 6w − 5),

h′′(w) = e−w(2w2 − 3w − 4) + 6(w + 1).

Since 2w2 − 3w − 4 > 0 on (−2,−1), we have:

h′′(w) > 4w2 − 6w − 8 + 6(w + 1) = 4w2 − 2 > 0.

Therefore, h is convex on (−2,−1). Similarly, we compute:

g′(w) = ew(7w + 3w2 − ew(1 + 2w)− 1),

g′′(w) = ew(6 + 13w + 3w2 − 4ew(1 + w)).
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Since −(1 + w) > 0 on (−2,−1), we have:

g′′(w) < ew(6 + 13w + 3w2 − 4(1 + w)) = ew(9w + 3w2 + 2) < 0.

Therefore, g is concave on (−2,−1). It follows that h lies above its tangent at w = −1

and g lies below its tangent at this same point. Since:

h(−1)− g(−1) = 3− e− e−2 > 0, h′(−1)− g′(−1) = e−2
[
2e3 − 8e2 + 5e− 1

]
< 0,

the tangent to h at w = −1 lies above the tangent to g at w = −1. Consequently,

h(w) > g(w) on (−2,−1), from which the desired result for S immediately follows.

Finally, to see (3.4.16), we rewrite it as

∞∑
k=0

(−w)k

(k + 2)!
6

1

p
.

The left-hand side is clearly increasing in |w|. Since for w = w1 we have equality and if

w > w∗ then |w| < |w1|, (3.4.16) holds as claimed.

Figure 3.9 shows the function w∗(p) given by Lemma 3.4.3 and graphically illustrates

inequality (3.4.15).

0.2 0.4 0.6 0.8 1.0

-6

-4

-2
w*

w1(p)

w2(p)

p-2

Figure 3.9: The relationship among w∗, w1, w2, and p− 2.
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Now, fix p ∈ (0, 1) and C > 1. The notation in the following statement is from Lemma 3.4.3.

Lemma 3.4.4. Let C∗ be given by Lemma 3.4.3.

(i) If 1 < C < C∗, then equation (3.4.2) has a unique solution w in the interval (−∞, w0)

satisfying w∗(p) < w < p− 2.

(ii) If C∗ < C <∞, then (3.4.4) has a unique solution w in the interval (w0, 0) satisfying

w∗(p) < w < w1(p).

Proof. We start with statement (i). Let us rewrite (3.4.2) in the form

l(w) = r(w),

where

l(w) = p
w

ξ−

∫ ∞
1

e
− w
ξ− (y−1)

yp−2 dy (3.4.20)

and, after changing the variable in the integral,

r(w) =
1− ξ+

1− ξ−
(
− w

ξ+

)
e
w
ξ+

(
e
−w0
ξ+ + p

(
− w

ξ+

)1−p
∫ −w

ξ+

−w0
ξ+

ezzp−2 dz

)

First, note that with ξ− fixed the function l(w) is increasing in w
ξ− . Since this fraction

itself is decreasing in w, we conclude that l is decreasing in w. Likewise, the function

G(s) := se−s
(
es0 + ps1−p

∫ s

s0

ezzp−2 dz
)

is decreasing in s for 2 < s0 < s. Note that we have −w0
ξ+ > 2, meaning r(w) is decreasing

in − w
ξ+ . Since this fraction is decreasing in w, we conclude that r is increasing in w.

Therefore, to prove the statement, we have to show that

l(w∗) > r(w∗) and l
(

min{p− 2, w0}
)
< r
(

min{p− 2, w0}
)
.
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The inequalities l(w∗) > r(w∗) and l(p−2) < r(p−2) are handled using similar arguments

to those in the proof of Lemma 3.4.3. To show that l(w0) < r(w0), recall the notation

L(C) and R(C) from the proof in Lemma 3.4.3 for the left- and right-hand sides of

equation (3.4.7), respectively and observe that since C < C∗, we have L(C) < R(C).

Then

l(w0) =
(
− w0

ξ−

)
L(C) <

(
− w0

ξ−

)
R(C) = r(w0),

as required.

To prove (ii), we rewrite (3.4.4) in the form

l(w) = r(w),

where l(w) is the same as before and given by (3.4.20) and

r(w) =
1

1− ξ−
w2

e−w − 1 + w
.

First, as noted above, l is decreasing in w. Second, as we have seen already seen, the

second fraction in r is decreasing in |w|, which means that r is increasing in w. Therefore,

to prove the statement, we have to show that

l(w∗) > r(w∗) and l(w2) < r(w2).

Since C > C∗, we have ξ− < ξ−(C∗) and so w∗
ξ− >

w∗
ξ−(C∗)

. Hence,

l(w∗) > p
w∗

ξ−(C∗)

∫ ∞
1

e
− w∗
ξ−(C∗)

(y−1)
yp−2 dy =

w∗
ξ−(C∗)

L(C∗).

On the other hand,

r(w∗) <
1

1− ξ−(C∗)

w2
∗

e−w∗ − 1 + w∗
=

w∗
ξ−(C∗)

R(C∗).
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Since L(C∗) = R(C∗) and w∗
ξ−(C∗

> 0, we have established the inequality for the left

endpoint.

When w = w2, we estimate l from above using Lemma 3.4.2 with θ = w2
ξ− and q = p−2:

l(w2) 6
p w2
ξ−

w2
ξ− + 1− p

.

Next, observe that

r(w2) =
1

1− ξ−
w2

2

e−w2 − 1 + w2
=

1

1− ξ−
w2

2

−w2
p + w2

=
1

1− ξ−
−w2p

1− p
.

Thus, to show l(w2) < r(w2) it suffices to show

p w2
ξ−

w2
ξ− + 1− p

<
1

1− ξ−
−w2p

1− p
,

which is equivalent to the inequality w2 < p− 1, which in turn is true by Lemma 3.4.1.

This completes the proof of (ii) and the lemma.

Figures 3.10, 3.11, and 3.12 illustrate the results of Lemma 3.4.4 for p = 1
4 , p = 3

4 , and

p = 9
10 , respectively. Shown are the starting position of w (the red line at w = p− 2), its

dynamics of w in both pre- and post-collision ranges (the blue line); the bounds w∗ and

w2 (the green and dashed red lines, respectively); and the movement of w0 (the yellow

line). The moment of collision corresponds to the intersection of the w and w0 graphs.

3.4.3 The expression for the global Bellman candidate

We will now assemble the pieces of the last two sections and present our full Bellman

candidate bp,C on ΩC with explicit expressions for each region of our proposed foliation.
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Figure 3.10: The dynamics of w(C) for p = 1
4 .
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Figure 3.11: The dynamics of w(C) for p = 3
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Figure 3.12: The dynamics of w(C) for p = 9
10 , post-collision
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In the pre-collision configuration, we have:

P1 ={ξ+ 6 x1 6 −w0, Ce
ξ+
x1 + 1 6 x2 6 Cex1}∪

{−w0 6 x1 <∞, ex2 6 x2 6 Cex1}

P2 ={0 6 x1 6 −w0, e
x2 6 x2 6 Cex1}

P3 ={0 6 x1 6 ξ+, Ceξ
+
x1 + 1 6 x2 6 Cex1}∪

{ξ− 6 x1 6 0, Ceξ
−
x1 + 1 6 x2 6 Cex1}

P4 ={w0 6 x1 6 0, ex2 6 x2 6 Ceξ
−
x1 + 1}

P5 ={w0 6 x1 6 ξ−, Ceξ
−
x1 + 1 6 x2 6 Cex1}∪

{w + ξ+ 6 x1 6 w0, e
x2 6 x2 6 Cex1}∪

{w 6 x1 6 w + ξ+, ex2 6 x2 6 Cew+ξ+ [
x1 − (w + ξ+) + 1

]
}

P6 ={w 6 x1 6 w + ξ+, Cew+ξ+ [
x1 − (w + ξ+) + 1

]
6 x2 6 Cex1}∪

{w + ξ− 6 x1 6 w, Cew+ξ−
[
x1 − (w + ξ−) + 1

]
6 x2 6 Cex1}

P7 ={w + ξ− 6 x1 6 w, ex2 6 x2 6 Cew+ξ−
[
x1 − (w + ξ−) + 1

]
}∪

{−∞ < x1 6 w + ξ−, ex2 6 x2 6 Cex1}

The formula for the Bellman candidate is given by:

bp,C(x) =



M(u−)(x1 − u−) + |u−|p, x ∈ P1

(v+)p−1x1, x ∈ P2

α1 x1 + α2 (x2 − 1), x ∈ P3

−|v−|p−1x1, x ∈ P4

µ(u+)(x1 − u+) + |u+|p, x ∈ P5

β1 (x1 − w) + β2 (x2 − ew) + |w|p, x ∈ P6

M(u−)(x1 − u−) + |u−|p, x ∈ P7

(3.4.21)
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where the slopes M , µ and M are given by formulas (3.3.11), (3.3.13) and (3.3.15),

respectively, and the coefficients α1, α2 by the formula (3.3.16). The coefficients β1, β2

are given by:

β1 =
(1− ξ−)M(w)− (1− ξ+)µ(w)

|w0|
(3.4.22)

β2 = [µ(w)−M(w)]
(1− ξ−)(1− ξ+)

|w0|
e−w (3.4.23)

In the post-collision configuration, we have:

R1 =P1

R2 =P2

R3 =P3

R4 ={w 6 x1 6 0, ex2 6 x2 6 w−1[ew − 1]x1 + 1}

R∗5 ={w + ξ− 6 x1 6 w, Cew+ξ−
[
x1 − (w + ξ−) + 1

]
6 x2 6 Cex1}∪

{w 6 x1 6 ξ−, w−1[ew − 1]x1 + 1 6 x2 6 Cex1}∪

{w 6 x1 6 0, w−1[ew − 1]x1 + 1 6 x2 6 Ceξ
−
x1 + 1}

R5 ={w0 6 x1 6 ξ−, Ceξ
−
x1 + 1 6 x2 6 Cex1}∪

{w + ξ+ 6 x1 6 w0, e
x2 6 x2 6 Cex1}∪

{w 6 x1 6 w + ξ+, ex2 6 x2 6 Cew+ξ+ [
x1 − (w + ξ+) + 1

]
}

R6 =P7
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where R∗5 gives the region R5 for those C such that w < ξ− (and R5 afterwards). The

formula for the Bellman candidate in this case is:

bp,C(x) =



M(u−)(x1 − u−) + |u−|p, x ∈ R1

(v+)p−1x1, x ∈ R2

α1 x1 + α2 (x2 − 1), x ∈ R3

−|v−|p−1x1, x ∈ R4

β1 (x1 − w) + β2 (x2 − ew) + |w|p, x ∈ R5

M(u−)(x1 − u−) + |u−|p, x ∈ R6

(3.4.24)

where M andM are the same as in the pre-collision case and the coefficients α1 and

α2 are given by the formulas (3.3.18) and (3.3.19), respectively. The coefficients β1 and

β2 are:

β1 =
(1− e−w)(1− ξ−)M(w)− |w|p

(1− e−w)(1− ξ−)− w
(3.4.25)

β2 =
|w|p − wM(w)

(1− e−w)(1− ξ−)− w
(1− ξ−)e−w (3.4.26)

3.4.4 The main Bellman theorem

Having constructed our candidate, we are in a position to state the main Bellman theo-

rem. Recall the definition (3.1.6) of the Bellman function bp,C and the definition of the

candidate bp,C in the previous section.

Theorem 3.4.5. Let p ∈ (0, 1) and C > 1. Then

bp,C(x) = bp,C(x), x ∈ ΩC .
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The proof of the theorem consists of two parts: bp,C > bp,C and bp,C 6 bp,C . As

mentioned in the introduction, the first part has traditionally been carried out using the

so-called Bellman induction. In our setting, one would first prove that the candidate b is

locally convex on ΩC and then use Vasyunin’s lemma from [Vas03] to constructs a special

quasi-dyadic martingale on which to run the induction on scales. However, the second

part is no longer necessary. We have the following special case of a general theorem

from [SZ16].

Theorem 3.4.6 ([SZ16]). The Bellman function bp,C is the largest locally convex function

b on ΩC satisfying the boundary condition b(t, et) = |t|p.

Since our candidate bp,C satisfies the boundary condition by construction, to show that

bp,C > bp,C it is sufficient to show that bp,C is locally convex in ΩC .

Lemma 3.4.7. The function bp,C given by 3.4.21 and 3.4.24 is locally convex in ΩC .

Consequently,

bp,C > bp,C .

The proof of this lemma is given in section 3.5.

The converse inequality will be established by presenting explicit optimizers, i.e., ap-

propriate test functions whose p-averages coincide with the values of bp,C .

Lemma 3.4.8. For each x ∈ ΩC , there exists a function ϕ ∈ Ex,C,(0,1) such that

〈|ϕ|p〉
(0,1)

= bp,C(x). Consequently,

bp,C 6 bp,C .

The proof of this lemma is given in section 3.6.

We now collect several immediate corollaries of Theorem 3.4.5. The first corollary is

the sharp estimate for the p-average of a logarithm of an A∞ weight in terms of the

appropriate averages and the A∞-characteristics.
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Corollary 3.4.9. Let ϕ be a function on an interval I such that eϕ ∈ A∞(I). Let

C = [eϕ]A∞(I). Then, for each p ∈ (0, 1), we have the inequality

〈|ϕ|p〉
I
> bp,C

(
〈ϕ〉

I
, 〈eϕ〉

I

)
(3.4.27)

The inequality is sharp for each choice of 〈ϕ〉
I
and 〈eϕ〉

I
.

The second corollary is the formula for bp,C(0, C), which will be important in our main

application to the John–Nirenberg constant.

Corollary 3.4.10. Fix p ∈ (0, 1). Let C∗ = C∗(p) be given by (3.4.7). Then For 1 <

C 6 C∗,

bp,C(0, C) = 2(ξ+ − ξ−)p−2(1− ξ−)(1− ξ+)(C − 1).

For C > C∗,

bp,C(0, C) =
(ξ+ − ξ−)p−1 + |w|p−1

(
p− (1−p)w(e−w+ξ−−1)

(1−ξ−)(e−w+w−1)

)
ξ+ − ξ−

(1− ξ−)(1− ξ+)(C − 1)

where w = w(p, C) is given by (3.4.4).

Lastly, we have a sharp estimate on the BMOp norm of logarithms of A∞ weights.

Corollary 3.4.11. Let w ∈ A∞(I) and let C = [w]A∞(I). Then

‖ logw‖BMOp >
(
bp,C(0, C)

)1/p
,

where bp,C(0, C) is given in Corollary 3.4.10.

3.5 Local convexity of the Bellman candidate

In this section we prove Lemma 3.4.7. Our Bellman candidate b is by construction

continuous on ΩC . Furthermore, it is twice continuously differentiable and satisfies the
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homogeneous Monge-Ampère equation the interior of each subdomain. Therefore, as

explained in [SV12] to check the local convexity of b in ΩC , it is necessary and sufficient

to check that bx2x2 is non-negative in each individual subdomain and then verify that

the jump in the derivative bx2 (if any) across any shared boundary and in the direction

of increasing x2 is non-negative. We first collect several useful general calculations and

then separate presentation into the the pre- and post-collision cases.

3.5.1 General calculations pertaining to bx2x2

Tangential candidates

We examine sign of bx2x2 for b given by (3.3.5) and (3.3.9), with u given by either u− or

u+ from (3.2.7). Here bx2 is given by (3.3.6). We differentiate further:

bx2x2 = (bx2)uux2 =
(
m′′(u)−m′(u)

)
e−u(1− ξ)ux2 .

Since ux2 > 0 when u = u− and ux2 < 0 when u = u+, we have

sgn bx2x2 = ∓ sgn(m′′(u±)−m′(u±)).

Using (3.3.7) we have

m′ =
m− f ′

ξ
=⇒ m′′ −m′ = m′ − f ′′

ξ
− m− f ′

ξ
=
m− f ′

ξ2
(1− ξ)− f ′′

ξ

Thus,

sgn bx2x2 = ∓ sgn
(
m(u±)− f ′(u±)− ξ±

1− ξ±
f ′′(u±)

)
(3.5.1)

Integrating in (3.3.9) by parts we get

m(u)e−u/ξ = A+ e−u/ξf ′(u)− e−u0/ξf ′(u0)−
∫ u

u0

e−s/ξf ′′(s) ds.
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Therefore,

S(u) :=
(
m−f ′− ξ

1− ξ
f ′′
)
e−u/ξ = A−e−u0/ξf ′(u0)− ξ

1− ξ
e−u/ξf ′′(u)−

∫ u

u0

e−s/ξf ′′(s) ds

(3.5.2)

For future use, let us compute the derivative of this function:

S′(u) =
ξ

1− ξ
e−u/ξ

(
f ′′(u)− f ′′′(u)) =

ξ

1− ξ
e−u/ξp(p− 1)|u|p−3

(
|u| − (p− 2) sgn(u)

)
(3.5.3)

Candidates in cups

We compute bx2x2 for b given by (3.3.3) and (3.3.1). Here, bx2 is given by (3.3.4). We have

the following formula for bx2x2 , obtained by direct differentiating and some rearranging:

bx2x2 = (p− 1)
v|v|p

(e−v − 1 + v)2

1

x1

(
p− v2

e−v − 1 + v

)
(3.5.4)

Since p < 1, and x1 and v always have the same sign in all our cups, we have

sgn bx2x2 = sgn
( v2

e−v − 1 + v
− p
)

(3.5.5)

Let us also observe that the expression in parentheses is increasing in v, as can be checked

by direct differentiating (twice). Thus, if v = v+, it suffices to check that the limit of

this expression as v → 0+ is positive. Indeed,

lim
v→0+

( v2

e−v − 1 + v
− p
)

= 2− p > 0.

The situation is more interesting when v = v−. For this case, to show that bx2x2 > 0

in the cup, it is necessary and sufficient to show that the expression in parenthesis is

non-negative for the left-most v−.
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3.5.2 Pre-collision case

We first show the local convexity in P7, then in P5, then in P4. By our choice of w

and the fact that the boundary between P5 and P4 is a part of the foliation for each

region, the function b is continuously differentiable on the interior of P7 ∪ P6 ∪ P5 ∪ P4.

Since it is affine in P6, it will automatically be locally convex in the union of these four

regions. After this, we verify the local convexity in P2, then in P1. Again, since these

are separated by a common extremal trajectory, b will be locally convex in their union.

Lastly we verify that bx2 is increasing in x2 across the boundary between P4 and P3 and,

separately, across the boundary between P2 and P3.

Subdomain P7

Here, b is given by (3.3.10), (3.3.11), and (3.2.7), with w given by (3.4.1) or (3.4.2).

Using (3.5.1) and (3.5.2) with A = 0 and u0 = −∞, we have

bx2x2 > 0 in P7 ⇐⇒ S(u) > 0, for u 6 w

where S(u) is given by

S(u) = − ξ−

1− ξ−
e−u/ξ

−
f ′′(u)−

∫ u

−∞
e−s/ξ

−
f ′′(s) ds (3.5.6)

and its derivative is given by (3.5.3):

S′(u) =
ξ−

1− ξ−
e−u/ξ

−
p(p− 1)|u|p−3

(
|u| − 2 + p

)
Since ξ− and p−1 are both negative, S has a single extremum – a maximum at u = p−2.

Since limu→−∞ S(u) = 0, we have S(u) > 0 for all u 6 p−2. By Lemma 3.4.4, w 6 p−2,

thus, we have S(u) > 0 for all u 6 w. Thus, we have shown the local convexity of b in

the region P7.
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Subdomain P5

Here, b is given by (3.3.12), (3.2.7), and (3.3.13). Using (3.5.1) and (3.5.2) with A =

−e−w0/ξ+ |w0|p−1 and u0 = w0, we have

bx2x2 > 0 in P5 ⇐⇒ S(u) 6 0, for w 6 u 6 w0

where S(u) is given by

S(u) = −e−w0/ξ+ |w0|p−1 − e−w0/ξ+
f ′(w0)− ξ+

1− ξ+
e−u/ξ

+
f ′′(u) +

∫ w0

u
e−s/ξ

+
f ′′(s) ds

and its derivative is given by (3.5.3):

S′(u) =
ξ+

1− ξ+
e−u/ξ

+
p(p− 1)|u|p−3

(
|u| − 2 + p

)
Thus, S attains its minimum at u = p− 2. To show that S(u) 6 0 for all w 6 u 6 w0, it

suffices to show that S(w) 6 0 and S(w0) 6 0.

First, using differential equation (3.3.7) we see that equation (3.4.1), which defines w,

is equivalent to

1− ξ−

ξ−

(
M(w)− f ′(w)− ξ−

1− ξ−
f ′′(w)

)
=

1− ξ+

ξ+

(
µ(w)− f ′(w)− ξ+

1− ξ+
f ′′(w)

)

By (3.5.1), the expression in parentheses on the left has the same sign as bx2x2 |u−=w

in subdomain P7, which was shown to be non-negative in the previous section. Since

ξ− < 0, the left-hand side is non-positive. On the other hand, again by (3.5.1), the

expression in parentheses on the right has the opposite sign from that of bx2x2 |u+=w in

subdomain P5, meaning the same sign as S(w) above. Thus, S(w) 6 0
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For the other endpoint, we compute:

S(w0) = e−w0/ξ+
(

(p− 1)|w0|p−1 − p(p− 1)
ξ+

1− ξ+
|w0|p−2

)
= e−w0/ξ+

(p− 1)|w0|p−2 ξ+

1− ξ+

((1− ξ+)(ξ+ − ξ−)

ξ+
− p
)
.

By (3.4.6), we have

(1− ξ+)(ξ+ − ξ−)

ξ+
− p =

w2
0

e−w0 − 1 + w0
− p.

Since we are in the pre-collision case, w0 > w∗(p), which means that by Lemma 3.4.3

(inequality (3.4.16)), this expression is non-negative. Since p < 1, we have S(w0) 6 0

and and the consideration of this case is complete.

Subdomain P4

By the remarks at the end of section 3.5.1, to show that b is locally concave in P4 it

suffices to show that
w2

0

e−w0 − 1 + w0
− p > 0,

which was shown immediately above, at the end of the consideration of the region P5.

This completes this case.

Subdomain P2

This case was already addressed at the end of section 3.5.1.
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Subdomain P1

Here, b is given by (3.3.14), (3.2.7), and (3.3.15). Using (3.5.1) and (3.5.2) with A =

e−w0/ξ− |w0|p−1 and u0 = −w0, we have

bx2x2 > 0 in P1 ⇐⇒ S(u) 6 0, for u ≥ −w0,

where S(u) is given by

S(u) = e−w0/ξ− |w0|p−1 − ew0/ξ−f ′(−w0)− ξ−

1− ξ−
e−u/ξ

−
f ′′(u)−

∫ u

−w0

e−s/ξ
−
f ′′(s) ds

and its derivative is given by (3.5.3):

S′(u) =
ξ−

1− ξ−
e−u/ξ

−
p(p− 1)|u|p−3

(
u+ 2− p

)
.

Since ξ− < 0, p < 1, and u+2−p > 0, we conclude that S is increasing. Thus, it suffices

to verify that S(−w0) > 0. Note that |w0| > −ξ−. We then have

S(−w0) = e−w0/ξ−
(
|w0|p−1 − p|w0|p−1 − ξ−

1− ξ−
p(p− 1)|w0|p−2

)
= e−w0/ξ−(1− p)|w0|p−2 1

1− ξ−
(
|w0|(1− ξ−) + pξ−

)
> e−w0/ξ−(1− p)|w0|p−2 1

1− ξ−
(
(−ξ−)(1− p) + (ξ−)2

)
> 0.

Checking jumps in bx2

As mentioned earlier, we need only check that bx2 is increasing in x2 from P4 into P3

and, separately, from P2 into P3. Recall that in either cup we have bx2 given by (3.3.4)

with v = v−. Since p < 1 and the denominator is positive for any v, we have bx2 6 0
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everywhere is each cup. On the other hand, in P3, we have

bx2

∣∣∣
P3

= α2

from (3.3.16), which is positive. Thus, the jumps have the correct signs.

3.5.3 Post-collision case

Since the collision affects neither the geometry of the regions R1 = P1 and R2 = P2,

nor the values of the Bellman candidate b in them, they do not have to be rechecked in

regard to the local convexity of b. Thus, going left to right, we have to check the local

convexity in R6 and R4, and then the jumps in bx2 across the boundary between R4 and

R3, and between R2 and R3. (Note that while the region R3 = P3 remains the same

geometrically, the expression for b is different in it, compared to the pre-collision case.)

Subdomain R6

Here b is formally given by the same expression as in P7, meaning by (3.3.10), (3.3.11),

and (3.2.7). However, w is now given by (3.4.3). Exactly as in section 3.5.2, the sign

of bx2x2 is the same as that of the function S given by (3.5.6), S has a maximum at

u = p − 2, and limu→−∞ S(u) = 0. Thus, as before, it suffices to show that S(w) > 0.

However, unlike in the previous case, it can be that w > p− 2, meaning w can be to the

right of the point of maximum. Thus, we must analyze equation (3.4.3). Using (3.3.7),

we rewrite it as

−1− ξ−

ξ−

(
M(w)− f ′(w)− ξ−

1− ξ−
f ′′(w)

)
=

(1− p)|w|p

e−w − 1 + w
− f ′′(w)

= (1− p)|w|p−2
( w2

e−w − 1 + w
− p
)
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The left-most side has the same sign as S(w), while the right-most side is non-negative: by

Lemma 3.4.4, w > w1(p), and the conclusion follows by inequality (3.4.16) of Lemma 3.4.5.

This case is thus complete.

Subdomain R4

By (3.5.5),

sgn bx2x2 = sgn
( v2

e−v − 1 + v
− p
)

Since the function v2

e−v−1+v
is increasing for all v, it suffices to show that the expression

in parenthesis is non-negative for the left-most v, which for this cup is w. This was shown

at the end of the previous section.

Checking jumps in bx2

As mentioned earlier we need to verify that bx2 is increasing with respect to x2 in two

situations: from R2 into R3 and from R5 into R3. This is nearly as obvious as in the

pre-collision case: in the cups R2 and R4 bx2 is always non-positive, while in the affine

region R5, (the constant) bx2 equals bx2(w)|R4 (see equation (3.4.3), thus it is again

non-positive. Since

bx2

∣∣∣
R3

= α2 > 0,

where α2 is defined by (3.3.19); our verification is now complete.

3.6 Optimizers

In this section, we construct special functions, called optimizers, which will prove the

converse inequality for our Bellman candidate. Specifically, given a fixed x ∈ ΩC , we

say that a test function ϕx is an optimizer for b(x) if the following three conditions are
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satisfied:

〈ϕx〉I = x1; 〈eϕx〉I = x2 (3.6.1)

eϕx ∈ AC∞(I); (3.6.2)

〈|ϕx|p〉I = b(x); (3.6.3)

Once optimizers are found for every point x ∈ ΩC , we’ll have

bp,C(x) 6 〈|ϕx|p〉I = b(x), ∀x ∈ ΩC

By the interval independence of bp,C , we may construct these optimizers on any fixed

interval; hence, unless otherwise noted, all function constructions will be made on (0, 1).

Furthermore, for notational convenience, we will parameterize optimizers constructed for

points on the upper boundary by their first coordinate: i.e. if (a,Cea) let ψa := ϕ(a,Cea).

Much like our candidate b, whose expression was determined locally for subregions

and then glued together by choosing appropriate constants, our optimizers will be con-

structed from local variants, built for these same subregions then concatenated together

in appropriate proportions.

Condition (3.6.2) will be verified via a geometric condition as follows. Let J be an

interval and ϕx a test function. We call the point xJ := (〈ϕx〉J , 〈eϕx〉J) the Bellman

point corresponding to ϕx and the interval J . Therefore, directly from the definition of

ΩC , we have eϕx ∈ AC∞(I) if and only if each Bellman point corresponding to ϕx and

J ⊆ I belongs to the domain ΩC .

The main principle behind building optimizers for Bellman foliations is to take for

each x the entire construction of ϕx to be along an extremal trajectory through x. This

means that when the interval I = (0, 1) is split into two subintervals I = I+ ∪ I−,

the corresponding Bellman points of ϕx, xI± = (〈ϕx〉I± , 〈eϕx〉I±), will also lie on the

trajectory. Indeed, since bp,C is linear along each trajectory, the local convexity inequality
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becomes equality. Conversely, if m and n are two points on the same trajectory for which

we know the optimizers ϕm and ϕn, then the optimizer for every point x on the line

segment [m,n] can be obtained by concatenation of these two known optimizers:

ϕx(t) =


ϕm

(
t
γ

)
, t ∈ (0, γ),

ϕn

(
t−γ
1−γ

)
, t ∈ (γ, 1)

(3.6.4)

where, γ− := x1−n1
m1−n1

.

Remark 3.6.1. In general, the concatenation of two logarithms of A∞ weights isn’t

necessarily a logarithm of an A∞ weight itself; therefore, we must take care in how the

functions ϕm, ϕn in the formula above are concatenated. In particular, we rearrange our

constructions to ensure the smallest A∞-characteristic of eϕ. So long as the proportions

of ϕm and ϕn remain the same, rearrangements like swapping concatenation order won’t

affect conditions (3.6.1) and (3.6.2).

We will need the following two lemmas.

Lemma 3.6.2 ([Sla15]). Let ϕ be such that eϕ ∈ A∞. For c, d ∈ R, such that c < d, let

ϕc,d = cχ{ϕ6c} + ϕχ{c<ϕ<d} + dχ{ϕ>d}. (3.6.5)

Then for any interval J,

〈eϕc,d−〈ϕc,d〉J 〉J 6 〈eϕ−〈ϕ〉J 〉J

and, consequently,

[eϕc,d ]A∞ 6 [eϕ]A∞ . (3.6.6)

Lemma 3.6.3. Let q(t) = u + ξ log
(µ
t

)
such that u, µ ∈ R, 0 < µ, and ξ is one of ξ±.

Then eq ∈ A∞((0, 1)) with

[eq(t)]A∞ = C
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and, for any interval (0, d) ⊆ (0, 1), we have

x(0,d) := (〈q〉(0,d), 〈eq〉(0,d)) ∈ ΓC

Proof. Let 0 < c < d 6 1. Integrating by parts, we compute

〈q〉(c,d) = u− ξ〈log (t)〉( c
µ
, d
µ

) = u− ξ

d− c
[d log (d)− c log (c)]− ξ(1 + log (µ)),

thus

q − 〈q〉(c,d) =
ξ

d− c
[d log (d)− c log (c)]− ξ log (t)− ξ.

Therefore, we have

〈eq−〈q〉J 〉(c,d) =
e−ξ

1− ξ

[
d

d
d−c

c
c
d−c

d1−ξ − c1−ξ

d− c

]
=

e−ξ

1− ξ

[
θ−

ξθ
1−θ

1− θ1−ξ

1− θ

]
(3.6.7)

where we repeatedly used the identities 1− θ = d−c
d and θ−1 − 1 = d−c

c to obtain 3.6.7.

We have that 3.6.7 is decreasing with a limit of e−ξ

1−ξ as θ → 0. Consequently,

[eq]A∞ =
e−ξ

−

1− ξ−
= C

from which it follows that eq ∈ A∞((0, 1)). Taking the limit as c→ 0 of 3.6.7 shows that

the Bellman point corresponding to q and any interval of the form (0, d) will belong to

the upper boundary, i.e. x(0,d) ∈ ΓC .

3.6.1 Optimizers for Candidates in Cups

We recall that the cups consist of P2 and P4 (pre-collision) and R2 and R4 (post-collision).

In these regions, the expression for the local candidate b was given by:

b(x) = sgn(v)|v|p−1x1 (3.6.8)
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where v is either one of v±. These regions are the portions of ΩC lying entirely beneath

a single extremal trajectory. In the case of P2 and R2, this trajectory is the full tangent

to the upper boundary at (ξ+, Ceξ
+

); in the case of P4, this trajectory is the full tangent

to the upper boundary at (ξ−, Ceξ
−); and, in the case of R4, this trajectory is the line

segment joining (w, ew) and (0, 1). Each of these regions are foliated by trajectories, also

known as chords in this context, joining (0, 1) to a point (u, eu) on the lower boundary.

Due to the identical nature of these foliations, the optimizers constructed for these regions

will follow the same exposition. As such, we will address each case simultaneously, using

DC to refer to any one of these regions and v = v± as appropriate.

Given that the only admissible functions for points on the lower boundary are con-

stants, the optimizers for the endpoints of each chord foliating DC are already deter-

mined; specifically, we have ϕ(0,1) ≡ 0 and ϕ(u,eu) ≡ u. Furthermore, through every

point x ∈ DC − {(0, 1)} passes the unique chord which intersects the lower boundary at

(v, ev). Therefore, by the opening dicussion of this section, the optimizers for all x ∈ DC

will be an appropriate concatentation of the optimizers for (0, 1) and (v, ev):

ϕx(t) =


0, t ∈ (0, α)

v, t ∈ (α, 1)

(3.6.9)

where, α = (v − x1)v−1 = 1− x1v
−1. We will now verify conditions (3.6.1) - (3.6.3).

Lemma 3.6.4. Let x be a point in one of cups P2, R2, P4 or R4. Then the function ϕx

given by (3.6.9) is an optimizer for b(x) given by (3.6.8).

Proof. For condition (3.6.1), we compute the following averages:

〈ϕx〉(0,1) = α〈ϕx〉(0,α) + (1− α)〈ϕx〉(α,1) = (1− α)v = x1,

〈eϕx〉(0,1) = α〈eϕx〉(0,α) + (1− α)〈eϕx〉(α,1) = α+ (1− α)ev = 1 + (ev − 1)
x1

v
= x2.
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For condition (3.6.2), given an interval J = (c, d) ⊆ (0, 1), the corresponding Bellman

point xJ := (〈ϕx〉J , 〈eϕx〉J) will be a convex combination of the points (0, 1) and (v, ev).

This clearly follows if d 6 α, in which case xJ = (0, 1), or if α 6 c, in which case

xJ = (v, ev). For the remaining situation, when c < α < d, we have

〈ϕx〉(c,d) =
α− c
d− c

〈ϕx〉(c,α) +
d− α
d− c

〈ϕx〉(α,d) = (1− λ) v; (3.6.10)

〈ϕx〉(c,d) =
α− c
d− c

〈eϕx〉(c,α) +
d− α
d− c

〈eϕx〉(α,d) = λ+ (1− λ)ev (3.6.11)

where λ = α−c
d−c < 1. Clearly, xJ = λ (0, 1) + (1 − λ) (v, ev) and the claim follows. Since

the interval J was arbitrary, this implies all Bellman points of ϕx lie on the chord joining

(0, 1) and (v, ev)—which is fully contained in D. Therefore, eϕx ∈ AC∞(I). Lastly, for

condition (3.6.3), we compute:

〈|ϕx|p〉(0,1) = α 〈|ϕx|p〉0,α + (1− α) 〈|ϕx|p〉(1,α) = sgn(v)|v|p−1x1 = b(x)

3.6.2 Optimizers for Tangential Candidates

Optimizers for Candidate in P1 and R1

We recall the formula for the local candidate b in these regions:

b(x) = e
u
ξ−

[
|u0|p−1e

− u0
ξ− − p

ξ−

∫ u

u0

sp−1e
− s
ξ− ds

]
(x1 − u) + |u|p (3.6.12)

where u0 = ξ+ − ξ− and u = u− is the unique point satisfying:

x2 = Ceu+ξ−
[
x1 − (u+ ξ−) + 1

]
=

eu

1− ξ−
[
x1 − (u+ ξ−) + 1

]
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This candidate corresponds to the regions P1 (pre-collision) and R1 (post-collision).

These regions are the portion of ΩC sitting directly above the right-leaning tangent to the

upper boundary at (a0, Ce
a0) := (ξ+, Ceξ

+
) and are foliated by right-leaning tangents to

the upper boundary at points (a,Cea), a0 6 a. Since all considerations are identical for

these regions in their respective configurations, we will only address the case for P1. The

case for R1 will follow immediately. This candidate is incomplete, reading information

from the local candidate in the adjacent cup, P2, via the shared right-leaning tangent

at (a0, Ce
a0). As discussed, the optimizers constructed for this candidate will thererfore

depend on those of the candidate in this cup.

Clearly, the optimizers for this candidate are already determined for those x on the

lower boundary, viz. ϕx ≡ x1. Suppose we had already determined optimizers for points

on the upper boundary. Then for a fixed x ∈ P1 there passes a unique trajectory, i.e. a

right-leaning tangent to the upper boundary, which will intersect the lower boundary at

the point (u, eu); the corresponding point of tangency is then (a, Cea), where a := u+ξ−.

It follows from the opening discussion of this section, that an optimizer for x can then

be constructed as an appropriate concatentation of ϕ(u, eu) and ψa:

ϕx(t) =


ψa
(
t
α

)
, t ∈ (0, α),

u, t ∈ (α, 1)

(3.6.13)

where α = x1−u−
ξ− . It therefore remains to construct optimizers ψa for points on the

upper boundary. For such points, there is no extremal trajectory on which they lie

whose endpoint optimizers are known. To overcome this limitation, an approximation

procedure was developed in [SV12] which we shall present here, adapted to the domain

ΩC .

Let (a, Cea) be a fixed point on the upper boundary ΓC and ∆ some small postive

number such that a0 6 a − ∆. Consider the point (a − ∆, Cea−∆), also on the up-
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per boundary. We can relate the optimizers ψa and ψa−∆ by considering the left and

right tangents to ΓC at (a, Cea) and (a−∆, Cea−∆), respectively. Define the following

function:

h(t) := 1− t(et − 1)−1 (3.6.14)

Then h gives the x1 coordinate of the point of intersection of the aforementioned tangents.

Let ∆h := h(∆);. Observe that h is monotone increasing on R+ with limt→0+ h(t) = 0,

limt→∞ h(t) = 1 and h′(t) 6 1; hence, 0 < ∆h < ∆. Since a∆h
lies on the extremal

trajectory through (a−∆, Cea−∆), a corresponding optimizer is given by concatenation

as follows:

ϕa∆h
(t) =


ψa−∆

(
t
α

)
, t ∈ (0, α),

u−∆, t ∈ (α, 1)

(3.6.15)

where α = 1 + ∆−∆h
ξ− . We now have a trajectory, albeit not an extremal one, to which

(a, Cea) belongs and whose endpoint optimizers are known; thus, we can now build a

test function for (a, Cea) through concatenation:

ψa(t) ≈


ϕa∆h

(
t
β

)
, t ∈ (0, β),

u, t ∈ (β, 1)

(3.6.16)

where β = ξ−

ξ−−∆h
. In all, combining (3.6.15) and (3.6.16), gives:

ψa(t) ≈


ψa−∆

(
t
γ

)
, t ∈ (0, γ),

u−∆, t ∈ (γ, β)

u, t ∈ (β, 1)

(3.6.17)
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where γ = αβ = 1 + ∆
ξ−−∆k

. Repeating this procedure k more times, we obtain:

ψa(t) ≈ ψ(k)
a (t) :=



ψa−k∆

(
t
γk

)
, t ∈ (0, γk),

u− k∆, t ∈ (γk, γk−1β)

u− (k − 1)∆, t ∈ (γk−1β, γk−2β)

...
...

u−∆, t ∈ (γβ, β)

u, t ∈ (β, 1)

(3.6.18)

The function ψ(k)
a is completely determined up to knowledge of ψa−k∆. Since the optimiz-

ers are known for points on the shared boundary with P2, choosing ∆ = a−a0
k completes

the definition of (3.6.18), as we’ll have ψa−k∆ = ψa0 . To find ψa = limk→∞ ψ
(k)
a , we

derive a basic differential equation which we then solve. Fix t ∈ (0, 1); then, for large k,

there exists 0 6 j such that t ∈ (γjβ, γj+1β) and

ψa(t)− ψa(γ t) ≈ ψ(k)
a (t)− ψ(k)

a (γ t) ≈ (u− j∆)− (u− (j + 1)∆) = ∆

Furthermore, if ψa is assumed differentiable, for large k we have:

ψa(t)− ψa(γ t) ≈ ψ′a(t)t(1− γ) ≈ ψ′a(t)t
∆

∆h − ξ−

Combining these approximate equalities yields the following differential equation:

ψ′a(t) = −ξ− t−1

whose general solution is

ψa(t) = D − ξ− log (t)
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Since ∆ = a−a1
k , we have k = a−a1

∆ and so

lim
k→∞

γk = lim
∆→0+

(
1 +

∆

ξ− − h(∆)

)a−a1
∆

= e(a−a1)L

where,

L := lim
∆→0+

1

∆
log

(
∆

ξ− − h(∆)

)
Using l’Hôpitals rule, we have

lim
t→0+

h′(t) = lim
t→0+

tet − (et − 1)

(et − 1)2
= lim

t→0+

1

2(et − 1)et + 2e2t
=

1

2

and again

L = lim
∆→0+

ξ− − h(∆) + ∆h′(∆)

(ξ− − h(∆))2 + ∆(ξ− − h(∆))
=

ξ−

ξ−2 =
1

ξ−

thus, λ := limk→∞ γ
k = e

a−a0
ξ− . In all, this gives,

ψa(t) =


ψa0

(
t
λ

)
, t ∈ (0, λ),

D − ξ− log (t) , t ∈ (λ, 1)

(3.6.19)

The constant D is determined by considering the imposed conditions on the averages

of ψa and ψa0 . In particular, as optimizers for their respective points, we must have

〈ψa〉(0,1) = a and 〈ψa0〉(0,1) = a0. We note the following integral for 0 6 a < b, obtained

using integration by parts (and an appropriate limit if a = 0),

∫ b

a
log (t) dt = (b log (b)− a log (a))− (b− a) (3.6.20)

Therefore, since

〈ψa〉(0,1) = 〈ψa1〉(0,λ) + 〈D − ξ− log (t)〉(λ,1)
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It follows that

a = a1λ+ (D + ξ−)(1− λ) + λ(a− a1)

and so D = a− ξ− = u. By our precending comments, we can now construct optimizers

for all x ∈ P1. Recalling formula (3.6.13), we can substitute (3.6.19) for ψa to obtain:

ϕx(t) =


ψa1

(
t
µν

)
, t ∈ (0, µν),

u+ ξ− log
(µ
t

)
, t ∈ (µν, µ)

u, t ∈ (µ, 1)

(3.6.21)

where µ = x1−u
ξ− and ν = e

u−u0
ξ− . Lastly, we recall the formula for ψa0 := ϕ

(ξ+, Ceξ+ )
. This

optimizer for the candidate in the adjacent cup P2 was derived in the last subsection. In

this case, we have v = u0 and α = ξ−

ξ−−ξ+ :

ψa1(t) =


0, t ∈ (0, α)

u0, t ∈ (α, 1)

which gives us the final formula

ϕx(t) =



0, t ∈ (0, αµν)

u0, t ∈ (αµν, µν)

u+ ξ− log
(µ
t

)
, t ∈ (µν, µ)

u, t ∈ (µ, 1)

(3.6.22)

Note that this formula will coincide with the one given for points on the upper and

lower boundaries and is thus valid for all x ∈ P1. It remains to show that each ϕx, so

constructed, is an optimizer:
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Lemma 3.6.5. Let x be a point in the tangential region P1 or R1. Then the function ϕx

given by (3.6.22) is an optimizer for b(x) given by (3.6.12).

Proof. Recall that α = ξ−

ξ−−ξ+ = − ξ−

u0
, µ = x1−u

ξ− , ν = e
u−u0
ξ− and that u satisfies:

x2 =
eu

1− ξ−
[
x1 − (u+ ξ−) + 1

]
We first compute the following two integrals

∫ µ

µν
log
(µ
t

)
dt = −µ

∫ 1

ν
log (t) dt = µ [ν log (ν) + (1− ν)] (3.6.23)

∫ µ

µν
eu+ξ− log(µt ) dt = µ eu

∫ 1

ν
t−ξ
−
dt =

eu

1− ξ−
[
µ− µν eu0−u] (3.6.24)

where in the second integral we used the fact that ν1−ξ− = νeu0−u. Therefore,

〈ϕx〉(0,1) = µν(1− α)u0 + ξ−µ [ν log (ν) + (1− ν)] + µ(1− ν)u+ (1− µ)u

= µν(u0 + ξ−) + µν(u− u0) + ξ−µ(1− ν) + (1− µν)u

= ξ−µ+ u

= x1

and,

〈eϕx〉(0,1) = αµν + µν(1− α)eu0 +
eu

1− ξ−
[
µ− µν eu0−u]+ (1− µ)eu

= µν

[
α+ (1− α)eu0 − eu0

1− ξ−

]
+

eu

1− ξ−
[
(1− ξ−)(1− µ) + µ

]
= µν

[
ξ+(1− ξ−)− ξ−(1− ξ+)

(1− ξ+)(ξ+ − ξ−)
− 1

1− ξ+

]
+

eu

1− ξ−
[
x1 − (u+ ξ−) + 1

]
= x2
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where we used the fact that eu0 = eξ
+−ξ− = 1−ξ−

1−ξ+ ; this identity follows directly from the

definitions of ξ±. Therefore, condition (3.6.1) is satisfied. To show condition (3.6.2), we

let 0 < c < d < 1 and define

q(t) = u+ ξ− log
(µ
t

)
(3.6.25)

Note that q is the function in the statement of Lemma 3.6.3 with ξ = ξ−. Therefore, q

has all its Bellman points in ΩC and, for intervals of the form (0, c), 0 < c, these points

will belong to the upper boundary. Two additional results concerning q are needed; using

(3.6.20), we compute

〈q〉(0,µν) = u− ξ−〈log (t)〉(0,ν) = u− ξ− [log (ν)− 1] = u0 + ξ− = a1 (3.6.26)

〈eq〉(0,µν) = eu〈t−ξ−〉(0,ν) =
eu

1− ξ−
ν−ξ

−
=

eu

1− ξ−
eu0−u = Ceu0+ξ− = Cea1 (3.6.27)

Since ϕx is the cutoff at height u of the following function:

ηx(t) =


0, t ∈ (0, αµν)

u0, t ∈ (αµν, µν)

q(t), t ∈ (µν, 1)

, (3.6.28)

by Lemma 3.6.2, to show eϕx ∈ AC∞(I) it suffices to show eηx ∈ AC∞(I). We will do so by

proving its Bellman point corresponding to an arbitrary interval (c, d) ⊆ (0, 1):

x(c,d) := (〈ϕx〉(c,d), 〈eϕx〉(c,d))

belongs to ΩC . This is clearly the case if d < µν, since ηx restricted to (0, µν) is simply

the function ψa0 rescaled; the function ψa0 , an optimizer for the candidate in P2, has

already been shown to have its Bellman points in ΩC . The case when αµν < c also
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readily follows, since ηx restricted to (αµν, 1) is the cutoff at height u0 of the function

q, given in (3.6.25), whose Bellman points we’ve also shown to be in ΩC . Therefore, we

only need to consider the case when c < αµν < µν < d. In addition to x(c,d), we consider

the Bellman points:

x(0,c) = (〈ϕx〉(0,c), 〈eϕx〉(0,c)); x(0,d) = (〈ϕx〉(0,d), 〈eϕx〉(0,d))

Since ηx is constant on (0, αµν), the point x(0,c) lies on the lower boundary of ΩC .

Furthermore, by (3.6.26) and (3.6.27), we have:

(〈q〉(0,µν), 〈eq〉(0,µν)) = (〈ηx〉(0,µν), 〈eηx〉(0,µν))

and therefore,

(〈q〉(0,d), 〈eq〉(0,d)) = (〈ηx〉(0,d), 〈eηx〉(0,d))

for all µν 6 d. In particular, this means the point x(0,d) lies on the upper boundary of

ΩC . We consider the line through x(0,c) and x(0,d). Since q is increasing, x(0,d) lies to

the right of the point (a0, Ce
a0) and x(0,c) to its left. Consequently, this line must exit

the domain ΩC and re-enter at x(0,d). Since x(c,d) lies on this line to the left of x(0,d), we

must have that x(c,d) ∈ ΩC . To show condition (3.6.3), we first compute the integral:

∫ µ

µν

∣∣∣u+ ξ− log
(µ
t

)∣∣∣p dt = µ

∫ 1

ν

∣∣u− ξ− log (t)
∣∣p dt = −µ

∫ u

u0

|s|p e
u−s
ξ− ds (3.6.29)

where we used the substitution s = u− ξ− log (t). Integrating by parts gives

−µ
∫ u

u0

|s|p e
u−s
ξ− ds = µ|u|p − µν|u0|p − p µ

∫ u

u0

|s|p−1e
u−s
ξ− ds (3.6.30)

100



Therefore, since u0 = ξ+ − ξ− > 0, using (3.6.29) and (3.6.30), we have

〈|ϕx|p〉(0,1) = µν(1− α)|u0|p +

∫ µν

µ

∣∣∣u+ ξ− log
(µ
t

)∣∣∣p dt+ (1− µ)|u|p

= ξ+µν|u0|p−1 − µν|u0|p − µ
∫ u

u0

|s|p−1e
u−s
ξ− ds+ |u|p

= µν|u0|p−1(ξ+ − u0)− µ
∫ u

u0

|s|p−1e
u−s
ξ− ds+ |u|p

= e
u
ξ−

[
|u0|p−1e

− u0
ξ− −

∫ u

u0

|s|p−1e
−s
ξ− ds

]
ξ−µ+ |u|p

= e
u
ξ−

[
|u0|p−1e

− u0
ξ− −

∫ u

u0

|s|p−1e
−s
ξ− ds

]
(x1 − u) + |u|p

= b(x)

Optimizers for Candidate in P7 and R6

We recall the formula for the local candidate b in these regions:

b(x) = e
u
ξ−

[
p

ξ−

∫ u

−∞
(−s)p−1e

− s
ξ− ds

]
(x1 − u) + |u|p (3.6.31)

where u = u− is the unique point satisfying:

x2 = Ceu+ξ−
[
x1 − (u+ ξ−) + 1

]
=

eu

1− ξ−
[
x1 − (u+ ξ−) + 1

]
This candidate corresponds to the regions P7 (pre-collision) and R6 (post-collision).

These regions are the portion of ΩC sitting to the left of the right-leaning tangent to

the upper boundary at (w + ξ−, Cew+ξ−) and are foliated by right-leaning tangents to

the upper boundary at points (a,Cea), a 6 w + ξ−. Since this sequence is identical

among the two configurations, we will use P7 to refer to both. This candidate is similar

101



to the one for the tangential regions P1 and R1; however, this candidate is self-contained.

Its expression is independent of those of candidates defined on adjacent regions. As in the

last subsection, we first seek to construct optimizers for points on the upper boundary.

Since optimizers on the lower boundary are known, we can obtain optimizers for arbi-

trary x ∈ P7 by appropriately concatenating the boundary optimizers on the half-tangent

through x.

To obtain optimizers for points on the upper boundary, we begin with the approxima-

tion procedure detailed in the last subsection. Specifically, fix (a,Cea) ∈ P7∩ΓC and let

a0 < a. The approximation procedure gives a test function ψa, defined up to knowledge

of the optimizer ψa0 :

ψa(t) =


ψa0

(
t
λ

)
, t ∈ (0, λ),

u− ξ− log (t) , t ∈ (λ, 1)

(3.6.32)

where λ = e
u−u0
ξ− and u0 := a0− ξ−. Since lima0→−∞

u0
ξ− =∞, we have lima0→−∞ λ = 0;

thus, taking the limit of this test function (in a0) as a0 → −∞ gives

ψa(t) = u− ξ− log (t)

For an arbitrary x ∈ P7, we then concatenate the corresponding boundary optimizers

(i.e. those for the points (a,Cea) and (u,Ceu)) as mentioned:

ϕx(t) =


u+ ξ− log

(µ
t

)
, t ∈ (0, µ)

u, t ∈ (µ, 1)

(3.6.33)

where µ = x1−u
ξ− . To finish, we verify the following

Lemma 3.6.6. Let x be a point in the tangential region P7 or R6. Then the function ϕx

given by (3.6.33) is an optimizer for b(x) given by (3.6.31).
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Proof. Using (3.6.23) and (3.6.24), noting that µ > 0, we first compute

∫ µ

0
log
(µ
t

)
dt = lim

x→0+

∫ µ

µx
log
(µ
t

)
dt = µ lim

x→0+
[x log (x) + (1− x)] = µ

∫ µ

0
eu+ξ− log(µt ) dt = lim

x→0+

∫ µ

µx
eu+ξ− log(µt ) dt = lim

x→0+

eu

1− ξ−
[
µ− µx eu0−u] = µ

eu

1− ξ−

Therefore,

〈ϕx〉(0,1) = µu+ ξ−µ+ (1− µ)u = µu+ (x1 − u) + (1− µ)u = x1,

〈eϕx〉(0,1) = µ
eu

1− ξ−
+ (1− µ)eu =

eu

1− ξ−
[
ξ−µ+ (1− ξ−)

]
= x2

and so condition (3.6.1) is satisfied. Condition (3.6.2) follows directly from Lemma 3.6.2

since ϕx is the cutoff at height u of the function q from the last section. Lastly, to show

condition (3.6.3), we use (3.6.29) and (3.6.30) and compute

∫ µ

0

∣∣∣u+ ξ− log
(µ
t

)∣∣∣p dt = lim
x→0+

∫ µ

µx

∣∣∣u+ ξ− log
(µ
t

)∣∣∣p dt
= µ lim

x→0+

[
|u|p − x| log (x) |p + p

∫ u

log x
|s|p−1e

u−s
ξ− ds

]

= µ

[
|u|p + p

∫ u

−∞
|s|p−1e

u−s
ξ− ds

]

where we used the fact that d
ds |s|

p = −|s|p−1 for s < 0. Therefore, we have

〈|ϕx|p〉(0,1) = µ

[
|u|p + p

∫ u

−∞
|s|p−1e

u−s
ξ− ds

]
+ (1− µ)|u|p

= e
u
ξ−

[
p

ξ−

∫ u

−∞
|s|p−1e

−s
ξ− ds

]
(x1 − u) + |u|p

= b(x)
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Optimizers for Candidate in P5

We recall the formula for the local candidate b in this region:

b(x) = e
u
ξ+

[
−|w0|p−1e

−w0
ξ+ +

p

ξ+

∫ w0

u
(−s)p−1e

− s
ξ+ ds

]
(x1 − u) + |u|p (3.6.34)

where w0 = ξ− − ξ+ and u = u+ is the unique point satisfying:

x2 = Ceu+ξ+ [
x1 − (u+ ξ+) + 1

]
=

eu

1− ξ+

[
x1 − (u+ ξ+) + 1

]
The tangential region P5 is the portion of ΩC sitting between the left-leaning tangents

to the upper boundary at the points (w+ ξ+, Cew+ξ+
) and (ξ−, Ceξ

−
) and is foliated by

left-leaning tangents to the upper boundary at points (a,Cea), w + ξ− 6 a 6 ξ−. This

candidate is incomplete, reading information from the candidate in the adjacent cup P4

via their shared boundary (the left-leaning tangent to the upper boundary at (ξ−, eξ
−

)).

The argument producing optimizers for this candidate is entirely symmetric to the one

used for the candidate in regions P1 and P2. We again seek upper boundary optimizers

which we then concatenate with the trivial lower boundary optimizers for general x ∈ P5.

However, instead of using the approximation procedure to relate the upper boundary

optimizers ψa to those further to the left, i.e. ψa−∆ for some small 0 < ∆, we instead

relate them to optimizers further to the right, i.e. ψa+∆. Since the optimizers are known

for points on the shared boundary with P4, we can complete the construction. The

optimizer produced is the following:

ϕx(t) =



0, t ∈ (0, αµν)

w0, t ∈ (αµν, µν)

u+ ξ+ log
(µ
t

)
, t ∈ (µν, µ)

u, t ∈ (µ, 1)

(3.6.35)
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where α = ξ+

ξ+−ξ− , µ = x1−u
ξ+ and ν = e

u−w0
ξ+ . We record the following.

Lemma 3.6.7. Let x be a point in the tangential region P5. Then the function ϕx given

by (3.6.35) is an optimizer for b(x) given by (3.6.34).

3.6.3 Optimizers for Candidates in Affine Regions

Before addressing each situation explicitly, we will first discuss some similarities in the

construction of optimizers for candidates in the affine regions P3, P6, R3 and R5. In

the following discussion, we shall DA to denote any one of the aforementioned regions.

Therefore, DA is the portion of ΩC sitting between two half-tangents to the upper bound-

ary (and above a third, non-tangent line segment in the case of R5). The local candidate

b is incomplete, reading information from two of its neighbors, b±, each via a shared

trajectory. These shared trajectories will each touch the upper boundary at some point

a± and will intersect at a shared point u on the lower boundary; we’ll use the notation

[a±, u] to denote the trajectory shared with b± and we’ll suppose, without loss of gen-

erality, that a− lies to the left of a+. As a consequence of b’s dependence on G±, the

optimizers constructed for x ∈ DA will rely on those for b±.

As mentioned in the opening discussion of this section, to construct optimizers for

x ∈ DA, we seek to concatenate (in an appropriate proportion) two known optimizers

lying on either side of an extremal trajectory (entirely contained in DA) through x. Since

the local candidate b is affine, i.e.

b(x) = α1 x1 + α2 x2 + α3; αi ∈ R

every trajectory in DA is extremal. This makes constructing optimizers straightforward.

For any x ∈ DA, we simply take any trajectory through x which intersects both bound-

aries from which b reads information, i.e. [a±, u]. Provided such a trajectory exists, if

the optimizers for b± are known along these boundaries, then we have our optimizers to
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concatenate. More specifically, fix x ∈ DA and let [x−, x+] represent such a trajectory

through x; thus x± lies on the boundary shared with b± and [x−, x+] ⊂ DA. We can

then define the corresponding test function ϕx as follows:

ϕx(t) =


ϕx−

(
t
β

)
, t ∈ (0, β),

ϕx+

(
t−β
1−β

)
, t ∈ (β, 1)

(3.6.36)

where,

β =
x+

1 − x1

x+
1 − x

−
1

=
x+

2 − x2

x+
2 − x

−
2

(3.6.37)

Regarding the existence of such a trajectory through x, if x itself isn’t on one of shared

boundaries (and thus assumed to be known), we may take the right half-tangent to the

upper boundary which passes through x.

Without explicit reference to either of the two adjacent candidates, b±, we can show

that the test function given by (3.6.36) and (3.6.37) satisfies conditions (3.6.1) and (3.6.3).

We compute:

〈ϕx〉(0,1) = x−1 β + x+
1 (1− β) = x1; 〈eϕx〉(0,1) = x−2 β + x+

2 (1− β) = x2

which gives condition (3.6.1). For condition (3.6.2), since ϕx± are optimizers for b±(x±),

x = β x− + (1− β)x+ and b agrees with b± on their shared boundaries, we have

〈|ϕx|p〉(0,1) = β 〈ϕx−〉(0,β) + (1− β) 〈ϕx−〉(β,1)

= β b−(x−) + (1− β) b+(x+)

= β b(x−) + (1− β) b(x+)

= β (α1 x
−
1 + α2 x

−
2 + α3) + (1− β) (α1 x

+
1 + α2 x

+
2 + α3)

= α1 x1 + α2 x2 + α3

= b(x)
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Before we consider condition (3.6.2) for specific sequences, we will derive a new formula

for the test function ϕx, given by (3.6.36) and (3.6.37), one that is independent of the

trajectory [x−, x+]. Indeed, since [a±, u] are extremal trajectories for b±, we can express

the optimizers ϕx± as a concatenation of of the optimizers for b±(a±) and b±(u) as

follows:

ϕx−(t) =


ϕa−

(
t
γ−

)
, t ∈ (0, γ−),

u1, t ∈ (γ−, 1)

ϕx+(t) =


u1, t ∈ (0, γ+)

ϕa+

(
t−γ+

1−γ+

)
, t ∈ (γ+, 1)

(3.6.38)

where

γ− :=
x1 − u1

a−1 − u1
; γ+ :=

x1 − a+
1

u1 − a+
1

(3.6.39)

Here, we rearranged the value of u1 so as to follow the principle mentioned in remark

3.6.1. Substituting (3.6.38) and (3.6.39) into (3.6.36) gives:

ϕx(t) =


ϕa−

(
t

βγ−

)
, t ∈ (0, βγ−),

u, t ∈ (βγ−, β + (1− β)γ+)

ϕa+

(
t−β−(1−β)γ+

(1−β)(1−γ+)

)
, t ∈ (β + (1− β)γ+, 1)

(3.6.40)

Observe that DA is contained in the triangle with vertices a± and u. This is clearly for

the regions P3, P6 and R3. In the remaining case of R5, this holds since the line segment

[a−, a+] lies above the line segment through a+ and (ξ−, Ceξ
−

) since a− < ξ−. As an

immediate consequence of this containment, every x ∈ DA can be expressed as a unique

convex combination of these corner points:

x = δ1 a
− + δ2 u+ δ3 a

+ (3.6.41)
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where δ1, δ2, δ3 are non-negative and δ1 + δ2 + δ3 = 1. Since,

(β γ−)a− + [β(1− γ−) + (1− β)(γ+)] u+ (1− β)(1− γ+)a+ = x

It follows that these coefficients must all be independent of x±. In particular,

δ1 = β γ−; δ2 = β(1− γ−) + (1− β)(γ+); δ3 = (1− β)(1− γ+)

Therefore, we have the final formula

ϕx(t) =


ϕa−

(
t
δ1

)
, t ∈ (0, δ1)

u, t ∈ (δ1, δ1 + δ2)

ϕa+

(
t−δ1−δ2

δ3

)
, t ∈ (δ1 + δ2, 1)

(3.6.42)

We now verify condition (3.6.2) for each affine candidate

Optimizers for R5

The region R5 is the portion of ΩC sitting between two right tangents to the upper

boundary at the points (ξ−, Ceξ
−

) and a− = (w + ξ−, Cew+ξ−) and above the chord

connecting u = (w, ew) and a+ = (0, 1). This candidate reads information from its non-

affine neighbors: the local candidate in the tangential region R6 and the one in the cup

R4. In this case, the test function (3.6.42) becomes:

ϕx(t) =


w + ξ− log

(
δ1
t

)
, t ∈ (0, δ1),

w, t ∈ (δ1, δ1 + δ2)

0, t ∈ (δ1 + δ2, 1)

(3.6.43)
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To prove condition (3.6.2), we will show that the Bellman points of ϕx lie inside ΩC .

Fix (c, d) ⊆ (0, 1) and let x(c,d) be the corresponding Bellmain point of ϕx. By Lemmas

3.6.3 and 3.6.2, we can assume δ1 + δ2 < d. Furthermore, since ϕx restricted to (δ1, 1)

is a Bellman point for an optimizer for the candidate in the cup R4, we can also assume

c < δ1. Let β be given by (3.6.37) and [x−, x+] its coresponding trajectory through x;

note that δ3 < β < δ2 + δ3, otherwise one of x− = x(0,β) and x+ = x(1,β) will lie outside

R5. We want to locate the Bellman points x(c,β) and x(d,β). Since x(β,d) is a convex

combination of x+ = x(β,1) and x(d,1) = a+, we have that x(β,d) lies on the line segment

[u, a+], since x+ and a+ do, and below x+ since ϕx is increasing. For the point x(c,β),

observe that Lemma 3.6.3 implies x(0,c) lies on the upper boundary, and to the left of a−

since c < δ1 and w + ξ− log
(
δ1
t

)
is increasing. Since the upper boundary is the graph

of a convex function, the line segment [x(0,c), x−] has slope no more than that of the

line segment [x−, u], which itself has a slope no more than the line segment [x−, x+].

Therefore, points on [x(0,c), x−] to the right of x− will lie below [x−, x+]; this includes

x(c,β), since x− = x(0,β) is a convex combination of x(c,β) and x(0,c). Since both x(c,β)

and x(β,d) lie under [x−, x+], so too does the line segment between them. It follows that

[x(c,β), x(β,d)], and thus x(c,d), lies inside ΩC . We have now proven the following.

Lemma 3.6.8. Let x be a point in the affine region R5. Then the function ϕx given by

(3.6.43) is an optimizer for b(x) given by (3.6.42).

Optimizers for P6

The region P6 is the portion of ΩC bounded on the left by the right-leaning tangent to the

upper boundary at a− = (w + ξ−, Cew+ξ−) and on the right be the left-leaning tangent

to the upper boundary at a+ = (w+ ξ+, Cew+ξ+
), which meet at the point u = (w, ew).
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In this case, the test function (3.6.42) becomes:

ϕx(t) =



0, t ∈ (0, ανδ3)

ξ− − ξ+, t ∈ (ανδ3, νδ3)

w + ξ+ log
(
δ3
t

)
, t ∈ (νδ3, δ3)

w, t ∈ (δ3, δ2 + δ3)

w + ξ− log
(
δ1

1−t

)
, t ∈ (δ2 + δ3, 1),

(3.6.44)

where α = ξ+

ξ+−ξ− and ν = e
1+w−ξ−

ξ+ . Here, we’ve rearranged the optimizers for a± in

formula (3.6.42) to minimize the A∞-characteristic of eϕx (see remark 3.6.1). To show

condition (3.6.2), we first consider the function:

f(t) =


w + ξ+ log

(
δ3
t

)
, t ∈ (0, δ3)

w, t ∈ (δ3, δ2 + δ3)

w + ξ− log
(
δ1

1−t

)
, t ∈ (δ2 + δ3, 1),

We will show that all Bellman points of f lie in ΩC . Fix (c, d) ⊆ (0, 1) and let x(c,d) be

the corresponding Bellman point of f . If δ3 < c or d < δ2 + δ3, then Lemmas 3.6.3 and

3.6.2 immediately imply x(c,d) ∈ ΩC . For the remaining case, when c < δ3 < δ2 + δ3 < d,

let x(0,1) be the Bellman point of f corresponding to (0, 1). Since f and ϕx have the

same average on (0, δ3) and agree elsewhere, the Bellman point of f corresponding to

(0, 1) is precisely x and therefore lies in P6. Let β be given by (3.6.37) and [x−, x+]

the corresponding trajectory through x; note that δ3 < β < δ2 + δ3, otherwise either

x− = x(0,β) or x+ = x(1,β) will lie outside P6. We would like to determine the location of

x(c,β). By Lemma 3.6.3, we have that x(0,c) lies on the upper boundary, and to the right

of a+ since f is decreasing. Therefore, x(0,c) must lie above the line segment [x−, x+].

Since x− is a convex combination of x(0,c) and x(c,β), we must have that x(c,β) lies beneath
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the line segment [x−, x+]. A similar as that used to show the Bellman point x(c,β) for

the optimizer in R5 can be applied to x(β,d). Therefore, x(β,d) also lies below [x−, x+].

It follows that the line segment [x−, x+] lies above [x(c,β), x(β,d)]; therefore, this latter

segment, and thus x(c,d), must lie in P6. So in all cases we have x(c,d) ∈ ΩC .

We will now show the Bellman points of ϕx belong to ΩC . Fix (a, b) ⊆ (0, 1) and

let x(a,b) be the corresponding Bellman point for ϕx. Since ϕx restricted to (ανδ3, 1) is

the cutoff of f at height ξ− − ξ+, by Lemma 3.6.2 it suffices to consider the case when

a < ανδ. Furthermore, if d < δ2 + δ3 then x(a,b) is a Bellman point for an optimizer

for P5. Therefore, we will assume that a < ανδ3 < δ2 + δ3 < d. Arguing as we had

for f , we let β be given by (3.6.37) and [x−, x+] the corresponding trajectory through

x. However, this time x(0,a) = (0, 1) and is therefore on the lower boundary and above

the line segment [x−, x+]. Since x− = x(0,β) is a convex combination of x(0,a) and x(a,β),

we conclude that x(a,β) lies below the line segment [x−, x+]. From here, the argument

identical as that for f . Thus we have proven the following.

Lemma 3.6.9. Let x be a point in the affine region P6. Then the function ϕx given by

(3.6.44) is an optimizer for b(x) given by (3.6.42).

Optimizers for P3

The region P3 is the portion of ΩC bounded on the left by the right-leaning tangent to

the upper boundary at a− = (ξ−, Ceξ
−

), and on the right be the left-leaning tangent to

the upper boundary at a+ = (ξ+, Ceξ
+

), which meet at the point u = (0, 1). In this case,

the test function (3.6.42) becomes:

ϕx(t) =


ξ− − ξ+, t ∈ (0, αδ1),

0, t ∈ (αδ1, δ1 + δ2 + αδ3)

ξ+ − ξ−, t ∈ (δ1 + δ2 + αδ3, 1)

(3.6.45)
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where α = ξ−

ξ−−ξ+ . Here, we’ve rearranged the optimizers for a± in formula (3.6.42)

to ensure the smallest A∞-characteristic of eϕx (see remark 3.6.1). To show condition

(3.6.2), we fix (c, d) ⊆ (0, 1). If αδ1 6 c and/or d 6 δ1 + δ2 + αδ3, the Bellman point

x(c,d) will be a convex combination of u and one of a− and a+. Consequently, x(c,d)

will lie on one of the two line segments [a±, u] and thus inside ΩC . For the remaining

case, when c < αδ1 and δ1 + δ2 + αδ3 < d, let β be given by (3.6.37) and [x−, x+] the

corresponding trajectory through x; note that αδ1 < β < δ1 + δ2 + αδ3, otherwise either

x− = x(0,β) or x+ = x(β,1) will lie outside P3. We have x− is a convex combination of

x(0,c) and x(β,c); therefore, since x− and x(0,c) lie on the trajectory [a−, u], so too must

x(c,β) and below x−, since ϕx is increasing. A similar argument gives that x(β,d) lies on

the trajectory [a+, u] and below x+. It follows that the line segment [x−, x+] lies above

[x(c,β), x(β,d)]; therefore, this latter segment, and thus x(c,d), must lie in P3. We’ve now

proven the following

Lemma 3.6.10. Let x be a point in the affine region P3. Then the function ϕx given by

(3.6.45) is an optimizer for b(x) given by (3.6.42).

Optimizers for R3

The region R3, like P3, is the portion of ΩC bounded on the left by the right-leaning

tangent to the upper boundary at a− = (ξ−, Ceξ
−

) and on the right by the left-leaning

tangent to the upper boundary at a+ = (ξ+, Ceξ
+

), which meet at the point u = (0, 1).

In this case, the test function 3.6.40 becomes:

ϕx(t) =



w + ξ− log
(
µ1δ1
t

)
, t ∈ (0, µ1δ1),

w, t ∈ (µ1δ1, (µ1 + µ2)δ1)

0, t ∈ ((µ1 + µ2)δ1, δ1 + δ2 + αδ3)

ξ+ − ξ−, t ∈ (δ1 + δ2 + αδ3, 1)

(3.6.46)
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where α = ξ−

ξ−−ξ+ and µ1, µ2, µ3 are given by (3.6.41) with x = (ξ−, Ceξ
−

), a− = w+ξ−,

u = w and a+ = 0. Fix (c, d) ⊆ (0, 1) and let x(c,d) be the corresponding Bellman point

of ϕx. Since the restriction of ϕx to the interval (0, δ1 + δ2 + αδ3) is a Bellman point for

an optimizer for the candidate in R5, we may assume δ1 + δ2 +αδ3 < d. Furthermore, if

µ1δ1 < a then the restriction of ϕx to (a, b) will be a Bellman point of an optimizer like

(3.6.45) from the previous section. So it suffices to show x(a,b) ∈ ΩC for the case when

a < µ1δ < δ1 + δ2 + αδ3 < d. Let β be given by (3.6.37) and [x−, x+] the corresponding

trajectory through x; note that δ1 < β < δ1 + δ2 +αδ3, otherwise one of x− = x(0,β) and

x+ = x(1,β) will lie outside R5. From here the proof follows, almost identically, the one

given for optimizers for the local candidate in R5. We have now finished proving:

Lemma 3.6.11. Let x be a point in the affine region R3. Then the function ϕx given by

(3.6.46) is an optimizer for b(x) given by (3.6.42).

3.7 From the Bellman function to the John–Nirenberg

constant

In this section we prove Theorems 3.1.4 and Theorem 3.1.5. We also obtain new best

estimate on the John–Nirenberg constant ε0(p) using the latter result. However, let us

first demonstrate that Theorem 3.1.2, for which Theorem 3.1.4 is a replacement, could

not have provided any non-trivial estimates for ε0(p) in this range of p.
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3.7.1 A simple example

This conclusion can be derived without an explicit formula for the Bellman function bp,C .

Indeed, consider the following simple function on (0, 1):

ν(t) =


w0, t ∈ (0, γ)

0, t ∈ (γ, 1− γ)

−w0, t ∈ (1− γ, 1)

,

where γ = (1−ξ−)(1−ξ+)(C−1)
w2

0
. It is an elementary matter to check that

〈ν〉
(0,1)

= 0, 〈e−ν〉
(0,1)

= C, [eν ]A∞(0,1) = C.

Thus, ν ∈ E(0,C),C,(0,1) and by the very definition of bp,C ,

bp,C(0, C) 6 〈|ν|p〉
I

= 2|w0|pγ = 2|w0|p−2(1− ξ−)(1− ξ+)(C − 1).

Since (1 − ξ+)(C − 1) → e and |w0|p−2(1 − ξ−) → 0 as C → ∞, we conclude that the

limit in the right-hand side of (3.1.9) is 0.

3.7.2 Proofs of Theorems 3.1.4 and 3.1.5

We first prove Theorem 3.1.5 and then obtain Theorem 3.1.4 as an immediate corollary.

We will need a definition and two further results from [Sla15]. For ϕ ∈ BMO, let

εϕ = sup{ε > 0 : eεϕ ∈ A∞}. (3.7.1)

Lemma 3.7.1 ([Sla15]). Let ϕ be a non-constant BMO function. For ε ∈ [0, εϕ), let

F (ε) = [eεϕ]A∞ . Then F is a strictly increasing, continuous function on [0, εϕ), and

limε→εϕ F (ε) =∞.
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Note that it is also clear that limε→0 F (ε) = 1.

Theorem 3.7.2 ([Sla15]). If C > 1 and eϕ ∈ AC∞(I), then for any λ ∈ R and any

subinterval J of I,

1

|J |
∣∣{t ∈ J : ϕ(t)− 〈ϕ〉

J
> λ}

∣∣ 6 e−ξ
−/ξ+

1− ξ−/ξ+
e
− λ
ξ+ . (3.7.2)

Proof of Th. 3.1.5. Take ϕ ∈ BMO(I). For ε ∈ [0, εϕ), let F (ε) = [eεϕ]A∞(I). Then

‖εϕ‖pBMOp > bp,F (ε)(0, F (ε)) = ξ+(F (ε))p
bp,F (ε)(0, F (ε))

ξ+(F (ε))p
. (3.7.3)

By Lemma 3.7.1, F maps the interval [0, εϕ) onto [1,∞). Note that there exists ε̃ ∈ [1, εϕ)

such that

εp∗(p) =
bp,F (ε̃)(0, F (ε̃))

ξ+(F (ε̃))p
.

This is so because the fraction in the right-hand side is positive for all ε ∈ [1, εϕ) and its

limit is 0 as ε → εϕ, as explained in section 3.7.1 above. Note that while ε̃ depends on

ϕ, F (ε̃) depends only on p. From (3.7.3),

ε̃ ‖ϕ‖BMOp > bp,F (ε)(0, F (ε)) = ξ+
(
F (ε̃)

)
ε∗(p)

and, thus, for any λ > 0,

− λ

ξ+(F (ε̃))
6 − λε∗(p)

ε̃‖ϕ‖BMOp
.

Therefore, after applying (3.7.2) to ε̃ϕ we get

1

|J |
∣∣{t ∈ J : ε̃

(
ϕ(t)− 〈ϕ〉

J

)
> λ}

∣∣ 6 k
(
F (ε̃)

)
e
− λε∗(p)
ε̃‖ϕ‖BMOp ,

where

k(C) :=
e−ξ

−/ξ+

1− ξ−/ξ+
.
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We can get the same inequality with |ϕ(t) − 〈ϕ〉
J
| in place of ϕ(t) − 〈ϕ〉

J
by doubling

the constant in front of the exponent. Then, replacing λ
ε̃ with λ, we obtain (3.1.11) with

K(p) = 2k
(
F (ε̃)

)
.

Proof of Th. 3.1.4. For any ϕ ∈ BMO and any ε < ε∗(p) inequality (3.1.11) can be inte-

grated to bound the average
〈
eε|ϕ−〈ϕ〉J |/‖ϕ‖BMOp

〉
J
uniformly with respect to J, and with

the bound depending only on ε and p. Specifically, using the layer cake representation,

〈
e
ε|ϕ−〈ϕ〉J |
‖ϕ‖BMOp − 1

〉
J
6

ε

‖ϕ‖BMOp

∫ ∞
0

e
λε

‖ϕ‖BMOp
1

|J |
∣∣{t ∈ J : |ϕ(t)− 〈ϕ〉

J
| > λ}

∣∣ dλ
6 K(p)

ε

‖ϕ‖BMOp

∫ ∞
0

e
λ(ε−ε∗(p))
‖ϕ‖BMOp dλ =

K(p)

1− ε
ε∗(p)

.

Thus, eε|ϕ−〈ϕ〉J |/‖ϕ‖BMOp ∈ A2 ∈ A∞ and ε0(p) > ε∗(p).

3.7.3 Comparison to the estimate ε0(p) > 21−2/p

Recall, from Remark 3.1.3, that we already have a useful estimate on the John–Nirenberg

constant of BMOp that follows from known results on BMO-norm equivalence: ε0(p) >

21−2/p. Let us show that our new estimate is better for every p. We will do this by

expanding the ratio bp,C(0,C)
(ξ+)p

up to first order in ξ+ for C close to 1, meaning for ξ+ close

to 0.

Lemma 3.7.3. For all p ∈ (0, 1) we have

bp,C(0, C)

(ξ+)p
= 2p−2

(
1 +

p

3
ξ+
)

+O
(
(ξ+)2

)
, as ξ+ → 0.

Consequently,

ε0(p) > 21−2/p. (3.7.4)

Proof. By Corollary 3.4.10, for all C sufficiently close to 1 we have

bp,C(0, C) = 2(ξ+ − ξ−)p−2(1− ξ−)(1− ξ+)(C − 1).
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Using this and the fact that (1− ξ+)(C − 1) = e−ξ
+ − 1 + ξ+, we get

bp,C(0, C)

(ξ+)p
=

2
(

1− ξ−

ξ+

)p
(1− ξ−)(e−ξ

+ − 1 + ξ+)

(ξ+ − ξ−)2
.

We now expand every factor up to two terms in ξ+. The key is to understand the

relationship between ξ+ and ξ− when C is close to 1. Expanding the identity

e−ξ
+

1− ξ+
=

e−ξ
−

1− ξ−

we have
(ξ+)2

2
+

(ξ+)3

3
≈ (ξ−)2

2
+

(ξ−)3

3

Canceling the common factor ξ+ − ξ−, we get ξ+ + ξ− ≈ −2
3 (ξ+)2, so

ξ− ≈ −ξ+ − 2

3
(ξ+)2 =⇒ ξ+ − ξ− ≈ 2ξ+ +

2

3
(ξ+)2 =⇒ 1− ξ−

ξ+
≈ 2 +

2

3
ξ+.

In addition, 1− ξ− ≈ 1 + ξ+ and

e−ξ
+ − 1 + ξ+ ≈ (ξ+)2

2
− (ξ+)3

6

Putting everything together,

bp,C(0, C)

(ξ+)p
≈

2
(
2 + 2

3 ξ
+
)p

(1 + ξ+)
( (ξ+)2

2 − (ξ+)3

6

)(
2ξ+ + 2

3 (ξ+)2
)2

=
2p−2

(
1 + 1

3 ξ
+
)p

(1 + ξ+)
(
(ξ+)2 − 1

3 (ξ+)3
)(

ξ+ + 1
3 (ξ+)2

)2
≈

2p−2
(
1 + p

3 ξ
+
)
(1 + ξ+)

(
1− 1

3 ξ
+
)

1 + 2
3 ξ

+

≈ 2p−2
(

1 +
p

3
ξ+
)

(1 + ξ+)
(

1− 1

3
ξ+
)(

1− 2

3
ξ+
)
≈ 2p−2

(
1 +

p

3
ξ+
)
.

Note that the error in this compound approximation is of order (ξ+)2, as promised.
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Therefore,

lim
C→1

bp,C(0, C)

(ξ+)p
= 2p−2

and for every p ∈ (0, 1), there exists a number C̃ = C̃(p) > 1 such that the the function
bp,C(0,C)

(ξ+)p
is increasing for 1 < C 6 C̃. Hence,

εp0(p) > εp∗(p) = sup
1<C<∞

bp,C(0, C)

(ξ+(C))p
>

bp,C̃(0, C̃)

(ξ+(C̃))p
> 2p−2,

which gives (3.7.4).

The lemma just proved is qualitative in nature. Let us illustrate this result. While at

present we do not know the exact value of ε∗(p) or whether that value is, in fact, equal

to ε0(p), we can use Theorem 3.1.4 to produce any number of estimates for ε0(p), simply

by substituting any specific C into the expression

(
bp,C(0, C)

)1/p
ξ+(C)

.

We can do that because, unlike in the earlier studies for p > 1, for our range of p we know

the Bellman function bp,C for all values of C, and not just sufficiently large ones. To un-

derstand the nature of the estimate provided by Theorem 3.1.4, and also to see the subtle

quantitative nature of the w-related correction that Corollary 3.4.10 introduces after the

threshold C = C∗, compared to the behavior given by the relatively simple formula before

the threshold, let us consider several numerical illustrations, given in Figures 3.13, 3.14,

and 3.15. In all pictures in this group, the red curve is the ratio bp,C(0, C)/(ξ+)p; the

green curve is what this ratio would have been without the correction that happens after

C = C∗; the yellow curve is the function bp,C(0, C) itself; and the blue curve is this

function without the correction after C = C∗. The vertical black line is at C = C∗.

It view of the many implicit functions contained in the formula for bp,C in Corol-

lary 3.4.10 for C > C∗ it might be better to choose a value C < C∗ for an esti-
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Figure 3.13: The behavior of bp,C(0,C)
(ξ+)p

for p = 1
4
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Figure 3.14: The behavior of bp,C(0,C)
(ξ+)p

for p = 1
2

mate. Lemma 3.4.3 provides us with such a safe threshold: by (3.4.15) any C such

that w0(C) > p−2 will be in the pre-collision range. Figures 3.13, 3.14, and 3.15 suggest

that the optimal w0 decreases with p. In an admittedly simple-minded choice, we set

w0 = −p, which does, of course, satisfy w0 > p− 2.

Having chosen w0, we can easily compute ξ± using the formulas

ξ+ = 1 +
w0e

w0

1− ew0
, ξ− = 1 +

w0

1− ew0
,

119



2 3 4 5

0.35

0.40

0.45

0.50

Figure 3.15: The behavior of bp,C(0,C)
(ξ+)p

for p = 3
4

which then immediately gives C. Using these formulas with w0 = −p, we can graph

the quotient bp,C(0, C)/(ξ+)p against p in lieu of a complicated and opaque analytic

expression, and compare it to the function 2p−2, which, as we know, corresponds to

the limit of this quotient as C → 1+, meaning w0 → 0−. The comparison is shown in

Figure 3.16. We see that it is indeed the case that

bp,C(0, C)(
ξ+(C)

)p ∣∣∣
w0=−p

> 2p−2,

(blue curve for the left-hand side, yellow curve for the right-hand side) and, thus, our

theorem readily yields better estimates than could be obtained from earlier results. Of

course, much subtler and more deliberate choices of w0 (and, thus, C) can be made,

providing better – and perhaps optimal – values of this ratio for all p.
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Figure 3.16: w0 = −p vs. w0 → 0−

121



122



Bibliography

[Bel10] R. Bellman. Dynamic Programming. Princeton University Press, 2010. isbn:
0691146683.

[Bez08] O. V. Beznosova. “Linear bound for the dyadic paraproduct on weighted
Lebesgue space L2(w)”. In: Journal of Functional Analysis 255 (4 2008),
pp. 994–1007. doi: 10.1016/j.jfa.2008.04.025.

[BMP14] O. Beznosova, J. Moraes, and M. Pereyra. “Sharp bounds for t-Haar mul-
tipliers on L2”. In: Harmonic Analysis and Partial Differential Equations:
9th International Conference on Harmonic Analysis and Partial Differen-
tial Equations, June 11-15, 2012, El Escorial, Madrid, Spain. Contempo-
rary Mathematics 612. American Mathematical Society, 2014, pp. 45–64. doi:
10.1090/conm/612.

[BR12] O. Beznosova and A. Reznikov. “Equivalent definitions of dyadic Mucken-
houpt and reverse Hölder classes in terms of Carleson sequences, weak classes,
and comparability of dyadic L log L and A∞ constants”. In: Revista Matem-
atica Iberoamericana 30 (2012), pp. 1191–1236. doi: 10.4171/rmi/812.

[Bur84] D. L. Burkholder. “Boundary Value Problems and Sharp Inequalities for Mar-
tingale Transforms”. In: The Annals of Probability 12.3 (1984), pp. 647–702.
doi: 10.1214/aop/1176993220.

[Col88] Collectif. “Sharp inequalities for martingales and stochastic integrals”. In:
Colloque Paul Lévy sur les processus stochastiques. Astérisque 157-158. Société
mathématique de France, 1988. doi: 10.1214/ECP.v14-1438.

[CSS12] M. Cwikel, Y. Sagher, and P. Shvartsman. “A new look at the John–Nirenberg
and John–Strömberg theorems for BMO”. In: Journal of Functional Analysis
263.1 (2012), pp. 129–166. doi: 10.1016/j.jfa.2012.04.003.

[DC01] J. Duoandikoetxea and D. Cruz-Uribe. Fourier Analysis. CRM Proceedings
& Lecture Notes. American Mathematical Society, 2001. doi: 10.1090/gsm/
029.

[Geh73] F. W. Gehring. “The Lp-integrability of the partial derivatives of a quasi-
conformal mapping”. In: Acta Mathematica 130 (1973), pp. 265–277. doi:
10.1007/BF02392268.

123

https://doi.org/10.1016/j.jfa.2008.04.025
https://doi.org/10.1090/conm/612
https://doi.org/10.4171/rmi/812
https://doi.org/10.1214/aop/1176993220
https://doi.org/10.1214/ECP.v14-1438
https://doi.org/10.1016/j.jfa.2012.04.003
https://doi.org/10.1090/gsm/029
https://doi.org/10.1090/gsm/029
https://doi.org/10.1007/BF02392268


[GJ78] J. B. Garnett and P. W. Jones. “The Distance in BMO to L∞”. In: Annals
of Mathematics 108.2 (1978), pp. 373–393. url: http://www.jstor.org/
stable/1971171.

[HS60] H. Helson and G. Szegö. “A problem in prediction theory”. In: Annali di
Matematica Pura ed Applicata 51 (1960), pp. 107–138. doi: 10.1007/BF02410947.

[Iva+a] P. Ivanishvili, D. Stolyarov, V. Vasyunin, and P. Zatitskiy. Bellman function
for extremal problems on general domains. Preprint.

[Iva+b] P. Ivanishvili, D. Stolyarov, V. Vasyunin, and P. Zatitskiy. Bellman functions
on general non-convex planar domains. In preparation.

[Iva+12] P. Ivanishvili, N. Osipov, D. Stolyarov, V. Vasyunin, and P. Zatitskiy. “On
Bellman function for extremal problems in BMO”. In: Comptes Rendus Math-
ematique 350.11 (2012), pp. 561–564. doi: 10.1016/j.crma.2012.06.011.

[Iva+15] P. Ivanishvili, N. Osipov, D. Stolyarov, V. Vasyunin, and P. Zatitskiy. “Bell-
man function for extremal problems in BMO”. In: Transactions of the Amer-
ican Mathematical Society (2015), pp. 3415–3468. doi: 10.1090/tran/6460.

[Iva+18] P. Ivanishvili, D. M. Stolyarov, V. I. Vasyunin, and P. B. Zatitskiy. “Bellman
function for extremal problems in BMO II: evolution”. In: Memoirs of the
AMS 255.1220 (2018), pp. v+133.

[JN61] F. John and L. Nirenberg. “On functions of bounded mean oscillation”. In:
Communications on Pure and Applied Mathematics 14.3 (1961), pp. 415–426.
doi: https://doi.org/10.1002/cpa.3160140317.

[Kne13] G. Knese. “Uchiyama’s lemma and the John–Nirenberg inequality”. In: Bul-
letin of the London Mathematical Society 45.4 (Feb. 2013), pp. 683–692. doi:
10.1112/blms/bds102.

[Kor92] A. Korenovskii. “On the connection between mean oscillation and exact in-
tegrability classes of functions”. In: Mathematics of the USSR-Sbornik 71 (2
1992), pp. 561–567. doi: 10.1070/SM1992v071n02ABEH001409.

[Ler13] A. Lerner. “The John–Nirenberg inequality with sharp constants”. In: Comptes
Rendus Mathematique 351.11 (2013), pp. 463–466. doi: 10.1016/j.crma.
2013.07.007.

[Log+15] A. Logunov, L. Slavin, D. Stolyarov, V. Vasyunin, and P. Zatitskiy. “Weak
integral conditions for BMO”. In: Proceedings of the American Mathematical
Society 143 (no. 7 2015), pp. 2913–2926. doi: 10.1090/S0002-9939-2015-
12424-0.

[Mel05] A. Melas. “The Bellman functions of dyadic-like maximal operators and re-
lated inequalities”. In: Advances in Mathematics 192.2 (2005), pp. 310–340.
doi: 10.1016/j.aim.2004.04.013.

[Mel09] A. Melas. “Sharp general local estimates for dyadic-like maximal operators
and related Bellman functions”. In: Advances in Mathematics 220.2 (2009),
pp. 367–426. doi: 10.1016/j.aim.2008.09.010.

124

http://www.jstor.org/stable/1971171
http://www.jstor.org/stable/1971171
https://doi.org/10.1007/BF02410947
https://doi.org/10.1016/j.crma.2012.06.011
https://doi.org/10.1090/tran/6460
https://doi.org/https://doi.org/10.1002/cpa.3160140317
https://doi.org/10.1112/blms/bds102
https://doi.org/10.1070/SM1992v071n02ABEH001409
https://doi.org/10.1016/j.crma.2013.07.007
https://doi.org/10.1016/j.crma.2013.07.007
https://doi.org/10.1090/S0002-9939-2015-12424-0
https://doi.org/10.1090/S0002-9939-2015-12424-0
https://doi.org/10.1016/j.aim.2004.04.013
https://doi.org/10.1016/j.aim.2008.09.010


[MN10] A. Melas and E. Nikolidakis. “Dyadic-like maximal operators on integrable
functions and Bellman functions related to Kolmogorov’s inequality”. In: Trans-
actions of the American Mathematical Society 362.3 (2010), pp. 1571–1597.
url: http://www.jstor.org/stable/40590880.

[MP13] J. Moraes and M. Pereyra. “Weighted estimates for dyadic paraproducts and
t-Haar multipliers with complexity (m,n)”. In: Publicacions Matemátiques
57.2 (2013), pp. 265–294. url: http://www.jstor.org/stable/43737018.

[Muc72] B. Muckenhoupt. “Weighted norm inequalities for the Hardy maximal func-
tion”. In: Transactions of the American Mathematical Society 165 (1972),
pp. 207–226. doi: 10.1090/S0002-9947-1972-0293384-6.

[NT96] F. Nazarov and S. Treil. “The hunt for a Bellman function: applications to
estimates for singular integral operators and to other classical problems of
harmonic analysis”. In: Algebra i Analiz 8.5 (1996), pp. 32–162. English trans-
lation in: St. Petersburg Mathematical Journal 8 (1997), pp. 721–824.

[NTV01] F. Nazarov, S. Treil, and A. Volberg. “Bellman function in stochastic control
and harmonic analysis”. In: Systems, Approximation, Singular Integral Oper-
ators, and Related Topics. Ed. by A. Borichev and N. Nikolski. Birkhäuser
Basel, 2001, pp. 393–423. doi: 10.1007/978-3-0348-8362-7_16.

[NTV99] F. Nazarov, S. Treil, and A. Volberg. “The Bellman function and two-weight
inequalities for Haar multipliers”. In: Journal of the American Mathematical
Society 12.4 (1999), pp. 909–928. doi: 10.1090/S0894-0347-99-00310-0.

[NV11] F. Nazarov and A. Volberg. Bellman function, polynomial estimates of weighted
dyadic shifts, and A2 conjecture. Tech. rep. 2011.

[Osę12] A. Osękowski. Sharp Martingale and Semimartingale Inequalities. 1st ed.
Monografie Matematyczne 72. Birkhäuser Basel, 2012.

[Osę13a] A. Osękowski. “Sharp inequalities for the dyadic square function in the BMO
setting”. In: Acta Mathematica Hungarica 139 (1-2 2013), pp. 85–105. doi:
10.1007/s10474-012-0273-9.

[Osę13b] A. Osękowski. “Survey Article: Bellman function method and sharp inequali-
ties for martingales”. In: Rocky Mountain Journal of Mathematics 43.6 (2013),
pp. 1759–1823. doi: 10.1216/RMJ-2013-43-6-1759.

[Osę15] A. Osękowski. “Sharp inequalities for BMO functions”. In: Chinese Annals of
Mathematics, Series B 36 (2 2015), pp. 225–236. doi: 10.1007/s11401-015-
0887-7.

[Osę16] A. Osękowski. “Sharp Estimates for Lipschitz Class”. In: Journal of Geometric
Analysis 26 (2 2016), pp. 1346–1369. doi: 10.1007/s12220-015-9593-7.

[Rez13] A. Reznikov. “Sharp weak type estimates for weights in the class Ap1,p2”. In:
Revista Matemática Iberoamericana 29 (2 2013), pp. 433–478. doi: 10.4171/
rmi/726.

125

http://www.jstor.org/stable/40590880
http://www.jstor.org/stable/43737018
https://doi.org/10.1090/S0002-9947-1972-0293384-6
https://doi.org/10.1007/978-3-0348-8362-7_16
https://doi.org/10.1090/S0894-0347-99-00310-0
https://doi.org/10.1007/s10474-012-0273-9
https://doi.org/10.1216/RMJ-2013-43-6-1759
https://doi.org/10.1007/s11401-015-0887-7
https://doi.org/10.1007/s11401-015-0887-7
https://doi.org/10.1007/s12220-015-9593-7
https://doi.org/10.4171/rmi/726
https://doi.org/10.4171/rmi/726


[Sla15] L. Slavin. The John–Nirenberg constant of BMOp, 1 ≤ p ≤ 2. 2015. arXiv:
1506.04969 [math.CA].

[Sla16] L. Slavin. “Best constants for a family of Carleson sequences”. In: Advances
in Mathematics 289 (2016), pp. 685–724. doi: 10.1016/j.aim.2015.11.004.

[SS06] L. Slavin and A. Stokolos. The Bellman PDE and its solution for the dyadic
maximal function. Preprint. 2006.

[SSV08] L. Slavin, A. Stokolos, and V. Vasyunin. “Monge–Ampère equations and Bell-
man functions: The dyadic maximal operator”. In: Comptes Rendus Mathe-
matique 346 (9-10 2008), pp. 585–588. doi: 10.1016/j.crma.2008.03.003.

[Str79] J.-O. Strömberg. “Bounded mean oscillation with Orlicz norms and duality
of Hardy spaces”. In: Indiana University Mathematics Journal 28.3 (1979),
pp. 511–544. url: http://www.jstor.org/stable/24892276.

[SV11] L. Slavin and V. Vasyunin. “Sharp results in the integral-form John–Nirenberg
inequality”. In: Transactions of the American Mathematical Society 363.8
(2011), pp. 4135–4169.

[SV12] L. Slavin and V. Vasyunin. “Sharp Lp estimates on BMO”. In: Indiana Uni-
versity Mathematics Journal 61.3 (2012), pp. 1051–1110. url: http://www.
jstor.org/stable/24904075.

[SV15a] L. Slavin and V. Vasyunin. Cincinnati lectures on Bellman functions. 2015.
arXiv: 1508.07668 [math.CA].

[SV15b] L. Slavin and V. Vasyunin. “Inequalities for BMO on α-Trees”. In: Interna-
tional Mathematics Research Notices (2015). doi: 10.1093/imrn/rnv258.

[SZ16] D. Stolyarov and P. Zatitskiy. “Theory of locally concave functions and its
applications to sharp estimates of integral functionals”. In: Advances in Math-
ematics 291 (2016), pp. 228–273. doi: 10.1016/j.aim.2015.11.048.

[Vas03] V. Vasyunin. “The sharp constant in the reverse Hölder inequality for Muck-
enhoupt weights”. In: Algebra i Analiz 15 (1 2003), pp. 73–117. English trans-
lation in: St. Petersburg Mathematical Journal 15 (2004), pp. 49–79.

[Vas09] V. Vasyunin. “Mutual estimates of Lp-norms and the Bellman function”. In: J.
of Math. Sci. 156 (5 2009), pp. 766–798. doi: 10.1007/s10958-009-9288-3.

[Vol02] A. Volberg. “Bellman approach to some problems in harmonic analysis”. In:
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Sémi-
naire Goulaouic-Schwartz" (2002). url: http://www.numdam.org/item/
SEDP_2001-2002____A19_0/.

[Vol11] A. Volberg. Bellman function technique in Harmonic Analysis. Lectures of IN-
RIA Summer School in Antibes, June 2011. 2011. arXiv: 1106.3899 [math.PR].

[VS16] V. Vasyunin and L. Slavin. “The John–Nirenberg constant for the space
BMOp, p > 2”. In: Algebra i Analiz 28.2 (2016), pp. 72–96. doi: 10.1090/
spmj/1445. English translation in: St. Petersburg Mathematical Journal 28
(2 2017), pp. 181–196.

126

https://arxiv.org/abs/1506.04969
https://doi.org/10.1016/j.aim.2015.11.004
https://doi.org/10.1016/j.crma.2008.03.003
http://www.jstor.org/stable/24892276
http://www.jstor.org/stable/24904075
http://www.jstor.org/stable/24904075
https://arxiv.org/abs/1508.07668
https://doi.org/10.1093/imrn/rnv258
https://doi.org/10.1016/j.aim.2015.11.048
https://doi.org/10.1007/s10958-009-9288-3
http://www.numdam.org/item/SEDP_2001-2002____A19_0/
http://www.numdam.org/item/SEDP_2001-2002____A19_0/
https://arxiv.org/abs/1106.3899
https://doi.org/10.1090/spmj/1445
https://doi.org/10.1090/spmj/1445


[VV07] V. Vasyunin and A. Volberg. “The Bellman functions for a certain two-weight
inequality: A case study”. In: St. Petersburg Mathematical Journal 18 (2
2007), pp. 201–223. doi: 10.1090/s1061-0022-07-00953-3.

[VV09] V. Vasyunin and A. Volberg. “Monge–Ampère equation and Bellman opti-
mization of Carleson Embedding Theorems”. In: Amer. Math. Soc. Transl.
Ser. 2 226 (2009), pp. 195–238. doi: 10.1090/trans2/226/16.

[VV10] V. Vasyunin and A. Volberg. “Burkholder’s function via Monge–Ampère equa-
tion”. In: Illinois Journal of Mathematics 54.4 (2010), pp. 1393–1428. doi:
10.1215/ijm/1348505534.

[VV13] V. Vasyunin and A. Volberg. “Sharp constants in the classical weak form of
the John–Nirenberg inequality”. In: Proceedings of the London Mathematical
Society 108.6 (2013), pp. 1417–1434. doi: 10.1112/plms/pdt063.

[VV20] V. Vasyunin and A. Volberg. The Bellman Function Technique in Harmonic
Analysis. Cambridge Studies in Advanced Mathematics. Cambridge Univer-
sity Press, 2020. doi: 10.1017/9781108764469.

[Wit00] J. Wittwer. “A sharp estimate on the norm of the martingale transform”. In:
Mathematical Research Letters 7 (2000), pp. 1–12. doi: 10.4310/MRL.2000.
v7.n1.a1.

127

https://doi.org/10.1090/s1061-0022-07-00953-3
https://doi.org/10.1090/trans2/226/16
https://doi.org/10.1215/ijm/1348505534
https://doi.org/10.1112/plms/pdt063
https://doi.org/10.1017/9781108764469
https://doi.org/10.4310/MRL.2000.v7.n1.a1
https://doi.org/10.4310/MRL.2000.v7.n1.a1


Chapter 4
Appendix

4.1 Mathematica Code

The following pages contain all Mathematica code used for calculations and to generate

the figures present in this thesis.
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(*Used for Figure 2.1*)
Q := 1000

LeadingKα1[α_] := 8 × 2 +
1

α

LeadingKα2[α_] := 8 × 2 + 
k=1

∞

2-k 1 - 2-k
2 α-2

Kα1[α_, s_] := 8 × 2 +
1

α
Qα -

32

2 α - 1
Qα-

1
2 +

8

α (2 α - 1)
;

Kα2[α_, s_] := 16 Qα - Qα-
1
2 + 8  Q - 1

2

j=1

∞

2-j s 2-j + Q 1 - 2-j
2 α-2

;

PlotLeadingKα1[a], LeadingKα2[a], {a, .9, 1.65},

AxesLabel → {"α", ""}, GridLines → {{1, 1.5}, {}},

PlotLegends → "8(2+
1

α
)", "8(2+

k=1

∞

2-k (1-2-k)2 α-2)"



(*Used for Figures 2.4 & 2.5*)
L := 1.1
res := 28
r[n_] := 1 + (1 - Power[2, -n]) (L - 1)
b[n_] := L / r[n] + Sqrt[Power[L / r[n], 2] - 1]
a[n_] := L / r[n] - Sqrt[Power[L / r[n], 2] - 1]

(*Binary Expansion Termination Checking*)
digits[d_] := StringRiffle[RealDigits[d, 2, res, -1]〚1〛, ""]
counts[s_] := Count[StringCases[s, "10" "11"], #] & /@ {"10", "11"}
zeros[n_, k_] := RegularExpression@

ToString@StringForm["^(0{``}|(^(0{0,``}(10|11))+0{``}))", k, n - 1, n]
dStar[n_, k_, d_] := First[StringCases[digits[d], Shortest[zeros[n, k]]], ""]

(*Iterative Optimizers*)
w[n_, k_, d_] := If[dStar[n, k, d] ⩵ "", Null, powers[n, dStar[n, k, d]]]
powers[n_, s_] := Power[a[n], counts[s]〚1〛] Power[b[n], counts[s]]〚2〛

(*Recursive Optimizers*)
rL[n_, i_, d_] := If[i ⩵ res, Null,

Piecewise[
{

{a[n] × r[n, n, i, 2 d], d ≤ .5},
{b[n] × r[n, n, i, 2 d - 1], d > .5 }

}

]

]

r[n_, k_, i_, d_] := If[k ⩵ 0, 1,
If[i ⩵ res, Null,
Piecewise[
{{r[n, k - 1, i, 2 d], d ≤ .5},
{rL[n, i + 1, 2 d - 1], d > .5}}

]]]

res = 1;

p1 = PlotrL[1, 0, d], {d, 0, 1},

PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 100, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v0
(L)(t)", 14, Below

res = 2;

p2 = PlotrL[1, 0, d], {d, 0, 1},

,



PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 100, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v1
(L)(t)", 14, Below

res = 3;

p3 = PlotrL[1, 0, d], {d, 0, 1},

PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 300, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v2
(L)(t)", 14, Below

res = 4;

p4 = PlotrL[1, 0, d], {d, 0, 1},

PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 400, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v3
(L)(t)", 14, Below

res = 1;

p5 = PlotrL[2, 0, d], {d, 0, 1},

PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 200, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v0
(L)(t)", 14, Below

res = 2;

p6 = PlotrL[2, 0, d], {d, 0, 1},

PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 200, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v1
(L)(t)", 14, Below

res = 3;

p7 = PlotrL[2, 0, d], {d, 0, 1},

PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 800, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v2
(L)(t)", 14, Below

res = 4;

p8 = PlotrL[2, 0, d], {d, 0, 1},

PlotRange → {{0, 1}, {0, 4}},
PlotPoints → 4200, AxesLabel → {t, ""},

PlotLegends → PlacedStyle"v3
(L)(t)", 14, Below
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(*Used for Figures 3.9-3.12*)
(*Computing C**)

C*[p_] :=
ⅇ-xm*[w*[p]]

1 - xm*[w*[p]]

xm*[w_] := 1 +
w

1 - ⅇw
; xp*[w_] := 1 +

w ⅇw

1 - ⅇw

R*[w_?NumericQ, p_] := -
xm*[w]

1 - xm*[w]

Abs[w]

ⅇ-w - 1 + w

L*[w_?NumericQ, p_] := p ⅇ
w

xm*[w] ExpIntegralE2 - p,
w

xm*[w]


w*[p_] := w /. FindRoot[L*[w, p] ⩵ R*[w, p], {w, p - 2}];

(*Various definitions*)

w1[p_] := w /. FindRoot
w2

ⅇ-w - 1 + w
⩵ p, {w, p - 2}

w2[p_] := w /. FindRoot
w

1 - ⅇ-w
⩵ p, {w, p - 2}

xm[C_] := 1 + ProductLog-1, -
1

C ⅇ


xp[C_] := 1 + ProductLog-
1

C ⅇ


w0[C_] := xm[C] - xp[C]

(*Computing w=wPre pre-collision; 1≤C≤C**)

LPre[w_?NumericQ, p_, C_] := -
1 - xm[C]

xm[C]
p ⅇ

w
xm[C] ExpIntegralE2 - p,

w

xm[C]


RPre[w_?NumericQ, p_, C_] :=
1 - xp[C]

xp[C]
ⅇ

w
xp[C] ⅇ

xp[C]-xm[C]
xp[C] + p NIntegrateⅇ-

w
xp[C]

y yp-2, y,
xm[C] - xp[C]

w
, 1

wPre[p_, C_] := w /. FindRoot[LPre[w, p, C] ⩵ RPre[w, p, C], {w, p - 2}]
(*Pre-collision w0*)

PreCollisionPlot[p_] :=
Plot[{wPre[p, C], w0[C], w*[p], p - 2}, {C, 1, C*[p] + 1}, GridLines → {{C*[p]}, None},
AxesLabel → {"C", "x1"}, PlotLegends → {"w", "w0", "w*", "p-2"},
PlotLabel → "w(C), 1≤C≤C*, p=" <> ToString[p]]

(*Computing w=wPost post-collision; C*≤C*)



RPost[w_?NumericQ, p_, C_] := -
xm[C]

1 - xm[C]

Abs[w]

ⅇ-w - 1 + w

LPost[w_?NumericQ, p_, C_] := p ⅇ
w

xm[C] ExpIntegralE2 - p,
w

xm[C]


wPost[p_, C_] := w /. FindRoot[LPost[w, p, C] ⩵ RPost[w, p, C], {w, p - 2}]
(*Post-collision w0*)

PostCollisionPlot[p_] :=
Plot[{wPost[p, C], w0[C], w*[p], w2[p], p - 2}, {C, C*[p], (50 + C*[p]) C*[p]},
AxesLabel → {"C", "x1"}, PlotLegends → {"w", "w0", "w*", "w2", "p-2"},
PlotLabel → "w(C), C*≤C, p=" <> ToString[p],
PlotStyle → {Automatic, Automatic, Automatic, Dashed, Automatic},
PlotRange → {Automatic, {-3, 1}}]

(*Computing w=wFull; 1≤C*)
wFull[p_, K_] := Piecewise[{{wPre[p, K], 1 ≤ K ≤ C*[p]}, {wPost[p, K], C*[p] ≤ K}}]
FullPlot[p_] := Plot[{wFull[p, K], w0[K], w*[p], w2[p], p - 2},

{K, 1, (4 + C*[p]) C*[p]}, GridLines → {{C*[p]}, None},
AxesLabel → {"C", "x1"}, PlotLegends → {"w", "w0", "w*", "w2", "p-2"},
PlotLabel → "w(C), 1≤C, p=" <> ToString[p],
PlotStyle → {Automatic, Automatic, Automatic, Dashed, Automatic}]

(*Lemma 4.3 Plots*)
Plot[{w*[p], w1[p], w2[p], p - 2}, {p, 0, 1},
PlotLegends → {"w*", "w1(p)", "w2(p)", "p-2"}]

(*Pre-collision plots for p=1/4, 1/2, 3/4*)
PreCollisionPlot[.25]
PreCollisionPlot[.50]
PreCollisionPlot[.75]

(*Post-collision plots for p=1/4, 1/2, 3/4*)
PostCollisionPlot[.25]
PostCollisionPlot[.50]
PostCollisionPlot[.75]
PostCollisionPlot[.9]

(*Full plots for p=1/4, 1/2, 3/4*)
p7 = FullPlot[.25]
p8 = FullPlot[.50]
p9 = FullPlot[.75]
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(*Used for Figures 3.13-3.16*)
w[p_] := p - 2

K[p_] :=
ⅇ-xp[p]

1 - xp[p]
;

xm[p_] := 1 +
w[p]

1 - ⅇw[p]
;

xp[p_] := 1 +
w[p] ⅇw[p]

1 - ⅇw[p]
;

NMaxValue[{xp[p], 0 ≤ p ≤ 1}, p]
NMaxValue[{xm[p], 0 ≤ p ≤ 1}, p]
b[p_] := 2 (xp[p] - xm[p])p-2 (1 - xm[p]) × (1 - xp[p]) (K[p] - 1) xp[p]-p;

NSolveb[p] ⩵ 2p-2 && 0 ≤ p ≤ 1, p

Plotb[p], 2p-2, {p, 0, 1}



(*For the purpose of computing C0*)

xm0[w_] := 1+
w

1-ⅇw
; xp0[w_] := 1+

w ⅇw

1-ⅇw
;

RHS1[w_?NumericQ, p_] :=-
xm0[w]
1- xm0[w]

Abs[w]
ⅇ-w - 1+w

LHS1[w_?NumericQ, p_] := p ⅇ
w

xm0[w] NIntegrateⅇ- w

xm0[w]
y yp-2, {y, 1, ∞}

w0[p_] :=w /. FindRoot[LHS1[w, p] == RHS1[w, p], {w, p- 2}]

C0[p_] :=
ⅇ-xm0[w0[p]]

1- xm0[w0[p]]
;

(*For the purpose of computing w*)
xm[C_] := x /. NSolve[C *(1- x) == ⅇ-x && x<= 0, x][[1]]
xp[C_] := x /. NSolve[C *(1- x) == ⅇ-x && 0≤ x, x][[1]]

RHS2[w_?NumericQ, p_, C_] :=-
xm[C]
1- xm[C]

Abs[w]
ⅇ-w - 1+w

LHS2[w_?NumericQ, p_, C_] := p ⅇ
w

xm[C] NIntegrateⅇ- w

xm[C]
y yp-2, {y, 1, ∞}

w[p_, C_] := w /. FindRoot[LHS2[w, p, C] == RHS2[w, p, C], {w, p- 2}]

Expr[p_, C_] := p-
(1- p)w[p, C] (ⅇ-w[p,C] + xm[C] - 1)

(1- xm[C]) (ⅇ-w[p,C] +w[p, C] - 1)

b1[p_, C_] := 2 (xp[C] - xm[C])p-2 (1- xm[C])×(1- xp[C]) (C- 1);

b2[p_, C_] :=
(xp[C] - xm[C])p-1 + Abs[w[p, C]]p-1 Expr[p, C]

xp[C] - xm[C]
(1- xm[C])×(1- xp[C]) (C- 1);

b[p_, C_] := Piecewise[{{b1[p, C], C≤C0[p]}}, b2[p, C]];
Plot[{b[.5, C], b1[1/2, C], b[.5, C]/xp[C]^ (1/2)}, {C, 1, C0[.5] + 6}]

r = 1 / 4; Plot[{b[r, C], b1[r, C], b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 6}]

r = 3 / 4;
Plot[{b[r, C], b1[r, C], b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 2},
Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]

r = 1 / 4;
Plot[{b[r, C], b1[r, C], b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 2},
Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]
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r = 1 / 2;
Plot[{b[r, C], b1[r, C], b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 2},
Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]

r = 3 / 4;
Plot[{b[r, C], b1[r, C], b[r, C] / xp[C]^(r), b1[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 4},
Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]

r = 1 / 2;
Plot[{b1[r, C], b[r, C], b1[r, C] / xp[C]^(r), b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 2},
Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]

r = 3 / 4;
Plot[{b1[r, C], b[r, C], b1[r, C] / xp[C]^(r), b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 4},
Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]

r = 1 / 4;
Plot[{b1[r, C], b[r, C], b1[r, C] / xp[C]^(r), b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 6},
Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]

r = 1 / 10;
Plot[{b1[r, C], b[r, C], b1[r, C] / xp[C]^(r), b[r, C] / xp[C]^(r)}, {C, 1, C0[r] + 6},
PlotRange → Full, Epilog → (*add vertical lines*)InfiniteLine[{C0[r], 0}, {0, 1}]]

Plot[{w0[p], p - 2, w2[p], w3[p]}, {p, 0, 1}]
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