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Abstract

The LINCS L1000 dataset is a large-scale compendium that contains records of the cell
line specific transcriptional effects of cellular perturbation that was established to provide
mechanistic and circuit-level insights with regard to cancer biology. This undertaking is a
scaled-up version of the Connectivity Map (CMap) project whose goal was to connect
transcriptional signatures of the downstream effects of genetic and small-molecule perturbations
in a high-throughput yet cost-effective manner. This was accomplished by profiling a reduced
representation of the human transcriptome — nearly 1,000 landmark transcripts whose expression
is predictive of roughly 80% of non-measured genes.

Whereas the choice to measure a subset of the transcriptome was primarily cost-based,
reducing the representation of transcriptional data is a common method for amplifying the signal
amidst the noisy background of large datasets. It can also be a valuable tool for making data
amenable to a variety of bioinformatics-based analyses, for example, when lists of genes and
their direction of regulation is considered based on continuously valued measurements subjected
to a significance-based threshold. In the work presented in this document, we subject the records
contained in the L1000 dataset to a thresholding procedure and explore how connections
between over 2,000 common genetic perturbations differ between a core set of seven cancer cell
lines. Specifically, we frame the connections in the context of edges between nodes in a novel
adaptation of pathway-level analysis.

We begin by conducting a simulation study in order to interrogate the data-generating
mechanism best suited to reproduce our data of interest with the least amount of bias. This will

be followed by a power analysis to assess the appropriate threshold for edge-based



measurements for our dataset. Then, we will demonstrate how these measurements can be
incorporated into the topology of cellular signaling pathways and introduce an R Bioconductor
package that easily integrates this type of data into pathways from the Kyoto Encyclopedia of
Genes and Genomes or KEGG — one of the most widely known online repositories for biological
pathways. Finally, we will conduct an edge set enrichment analysis of our data that applies the

well-known methodology of gene set enrichment analysis to this novel edge-data type.
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Chapter 1: Introduction

1.1 LINCS L1000 data set

The Library of Integrated Network-Based Cellular Signatures (LINCS) consortium is an
academic community of researchers supported by the NIH (National Institutes of Health)
established to take on the massive project of “generating and making public data that indicates
how cells respond to various genetic and environmental stressors” [1]. The overarching goal of
this initiative is to establish cause-and-effect biological insight by measuring the downstream
transcriptional response of genes in specific cell lines after “perturbating the [cellular] system”
with shRNA interference (genetic) or chemical/pharmacological (environmental) stressors [2].
The Connectivity Map (CMap) project established by the BROAD Institute of MIT and Harvard
has undertaken the ongoing task of generating and making public data obtained via the LINCS
L1000 platform [2] [3].

The CMap L1000 database (from here on referred to as the L1000 data set) is a collection
of gene expression signatures obtained by a high-throughput screening method developed by
CMap called the L1000 assay. The “L” in L1000 stands for landmark (LM); rather than
targeting the whole genome, the L1000 gene expression assay contains 1,058 probes
corresponding to 978 “landmark” genes and 80 control transcripts. The 978 L1000 genes
provide a reduced representation of the entire transcriptome and were chosen by CMap to be
targeted for changes in expression for the following reasons [4]:

1. These genes are widely expressed/transcribed across the cancer cell lineages of

interest at baseline conditions (no perturbating factors).



2. The expression of 11,350 genes that are not measured in the assay can be reliably

predicted via linear regression.

The unique records curated by CMap as part of the L1000 data set are called Consensus
Genomic Signatures (CGSs). Each CGS is the ‘consensus’ measurement of the expression
change of L1000 genes after cancer cells undergo perturbation by either genetic “perturbagens”
(genes known to be important in ‘upstream’ transcriptional regulation are targeted via shRNA
interference — an experimental procedure intended to functionally knock-out the transcription-
related-abilities of individual genes) at specific timepoints [after perturbation] and doses of the
perturbagens. The term ‘consensus’ indicates that this data represents the on-target effects
multiple of shRNAs targeting the same gene.

The L1000 data set is large and dynamic - CMap adds records to the database of over
1,000,000 L1000 profiles as data is generated. Providing reduced representation of data is an
important aspect of the generation and analysis of ‘big data’ sets such as L1000; it has important
applications not only in terms of high-throughput screening (i.e. reducing monetary cost of data
collection by reducing how much data is collected) but also for reducing the noise [and thereby
amplifying the signal] in the resulting data. There are two aspects reduced representation
inherent in the creation of ‘Level 6° CGSs. First, although records exist across multiple shRNAs,
Level 6 CGSs contain one record per perturbagen at each experimental condition which makes
the data more manageable from a practical standpoint. The ‘consensus’ signatures provide a
clearer signal of transcriptional outcomes among the genes by ‘averaging out’ off-target ShRNA
effects on the transcription of LM genes across experimental replicates [5].

The notion that the L1000 genes are, in effect, the opposite of housekeeping genes is the

second aspect of dimension reduction attributed to the L1000 data set. Whereas ‘housekeeping’



A

genes are chosen for their relatively stable expression across experimental conditions, the L1000

assay measures 978 genes were chosen to provide a clear signal of changes in transcriptionally

informative genes [6]. The discussion that follows posits the following questions: can we define

a metric to describe the transcriptional information associated with a particular L1000 gene and

how can the heterogeneity of transcriptional information be incorporated into the analysis of the

L1000 data set?

1.2 Level 6 Consensus Genomic Signature Gene Lists

ModZ scores for all 978 LM genes

)

[

\

B

Lists of the 50 top/bottom ranked LM genes

)

cell_id

A375
A549
HALE
HEPG2
HT29
MCF7
PC3
A375
A549
HALE
HEPG2
HT29
MCF7
PC3
A375
A549
HALE
HEPG2

MCF7
PC3

perturbagen  AARS_ModZ

A2m -0.085
A2M 0.622
AzM -0.045
A2M -0.061
A2M -0.451
AzMm 0.839
AzM 0210
AARS 0.038
AARS -1.209
AARS 0.962
AARS 0.840
AARS 0.428
AARS 1278
AARS 0.468
AATF 0.459
AATF -1.115
AATF 0.899
AATF 0.025
AATF -0.178
AATF -1.292
AATF 0.521

ABCB6_ModZ

0.390
0.146
0.143
-0.646
-0.049
-1.732
-1.595
-1.750
-0.811
0.168
-0.209
0.048
0.793
0.068
-0.279
-0.641
-1.845
0.897
0.855
-1.593
-0.213

ABCCS_Modz

-0.653
-1.447
-0.368
-1.663

0.345
-2.038
-2.318
-0.278
-1.472

1.454
-1.194
-2.725
-1.757

0.073
-0.301
-1.129
-0.984
-0.496
-1.984
-1.518

0.357

ZNF586_ModZ 2ZNF589_ModZ ZW10_Modz
1671 0.664 -0.661
0.219 3.073 -2.323
0.346 1.642 1451
-0.209 -0.648 0.759
2.268 -0.054 -0.964
0.116 -0.298 0.093
0.319 0.087 -1.629
2.452 0.894 -1.063
-0.244 -0.517 0.534
1.289 -1.426 1.567
0.651 -1.747 -0.444
0.013 -0.945 -0.878
-1.211 -0.541 -1.592
-0.320 -1.099 0.865
0.192 -0.790 -0.005
-0.116 -0.259 -0.533
-0.669 1.451 -0.227
0.152 0.280 -0.338
1.263 2.568 0.269
-1.236 -0.314 -1.233
0.414 1.107 -0.996

cellid
A375
A549
HALE
HEPG2
HT29
MCF7
PC3
A375
A549
HALE
HEPG2
HT29
MCF7
PC3
A375
A549
HALE
HEPG2
HT29
MCF7
PC3

perturbagen

uP
€('NOS3", "TBP", "ENOSF1", "OXSR1", "GHR", "RAD9A",

Cc('BRCAL", "EED", "EML3", "STAMBP", "ETFB", "DNAJBL",
C('EGF", "WIPF2", "HNI1L", "PHKB", "HDAC2", "KIAA010...

C("HLA-DMA", "KDMSB", "AKT1", "RRP8", "HN1L", "KIA.
<("CISD1", "COG4", "RRP8", "EML3", "BTK", "LIG1", "MA
<("CISD1", "HLA-DMA", "NOS3", "WIPF2", "ZNF274", "C
<("MCM3", "FAH", "ELOVL6", "USP14", "EIF4G1", "MRPL
<('FOXO3", "SERPINEL", "SNX13", "EPRS", "PTGS2", "MA.

C('BIRCS", "NFKBIB", "DNAJB1", "GNBS", "PRKCD", "ZNF..

C('FOXO3", "SERPINEL", "TSKU", "SLC2A6", "GABPB1", "
c('FOX03", "SPTLC2", "AKT1", "SOX4", "ELOVLE", "TWF.
C("CBLB", "USP14", "CPSF4", "APOE", "NRAS", "MTHFD2".
C('NFATC4", “TBP", "GABPB1", "EBP", "BHLHE40", "CLIC.
C('PSMEL", "SPTLC2", “TMEM2", "EZH2", "EPRS", "MBTP.
("IL1B", "EPRS", "HNIL", "TICAM1", "PTGS2", "PAK6", "
<("GABPBL", "PTK2B", "PAX8", "PMAIP1", "PXN", "PIK3C.
C('NFATC4", "SOX4", "SPAG7", "PTGS2", "STX1A", "CEB.

C("STX1A", "PNP", "GNBS", "LPAR2", "SMNDC1", "LSM6",.
C('SERPINEL", "ETV1", "GABPB1", "CASK", "SOX4", "PXN"

C('WIPF2", "GABPB1", "CASK", "RRP8", "PXN", "PIK3CA",

<("TBP", "NENF", "POLR1C", "RRP8", "HDACE", "ZNF274..

DOWN

<("SLC2A6", "POLR1C", "ARFIP2", "ATP2C1", "ARNT2", ".
C("TESK1", "ATP2C1", "DFFA", "CAMSAP2", "ARNT2", "
C("TESK1", "MLEC", "CAMSAP2", "ARNT2", "PLA2G4A", "..
<("FOX03", "SERPINEL", "RPN1", "PPP2RSA", “TESK1", *.
C('IGFIR", "SLC2A6", "POLR2K", “PIK3C3", "PPP2R5A", ".
C("SPAG7", "SYPL1", "KTN1", "CDK4", "MYCBP", “ATP18.
C('RPN1", "PPP2RSA", “TMED10", "ATP2C1", "EDN1", "C.
C('ATF1", "APP", "SLC2A6", "PPP2RSA", "RRAGA", "TME.
C("SENPE", "CBLB", "PDSSA", "ECH1", "CAMSAP2", "PLA
C("POLRIC", "FAH", "CAMSAP2", "ARNT2", "MSH6", "PL.
C("APP", "POLR2K", "SENP6", "NMT1", "PIK3CA", "ECH1".
C('RHEB", "RHOA", "PSMD4", "BDH1", "SOX4", "CASC3",
C("RHEB", "APP", "PSMD4", "DPH2", "RUVBL1", "PIK3C3",
C("NFKBIB", "USP14", "SCARBL", "PPARD", "COASY", "SL..
<("USP22", “TRAPPC6A", "MAT2A", "KLHDC2", "GADD4.
C("PSMEL", "BRCAL", "PSMD4", "SNX6", "RPN1", "XBP1",
C("PSMEL", "TMEM2", "BRCAL", "EED", "NENF", "UBE2C",
C('FOX03", "RPN1", "HSPB1", "PHKB", "MRPL19", "ETFB"..
C("SNX6", "APPBP2", "MRPL19", "CDK2", "WRB", "CASP3.
€("CISD1", "IGF1R", "SNX6", "RUVBLL", "BDH1", "PPP2R.
C('PSMEL", "SPTLC2", "SLC2A6", "PSMDA4", "SNX6", "EM..

Figure 1: Comparison of data for Level 6 CGSs ModZ (A) vs. Level 6 CGSs gene list (B) CGSs. Each
Level 6 CGS (A) is a vector of ModZ scores for each L1000 LM gene whereas level 6 signatures are lists of
LM genes that are top 50 overexpressed (“UP”) or underexpressed (“DOWN”) for each experimental

perturbagen for each cell line.

The Level 6 CGSs in the L1000 data set are vectors of ModZ scores for all LM genes.

Methods that employ ModZ CGSs for their intended purpose — to connect cellular events using

measurements of their transcriptional response to stressors in the context of multiple layers of

dimension reduction — have been the topic of many recently published papers both within the

LINCS and among other research communities [7] [8] [9]. The discussion that follows considers




Level 6 CGS gene lists — Level 6 data that has a further reduced representation of the
information measured by the L1000 genes. This novel data type - specifically provided to the
LINCS community - has received little attention despite its [intended] potential to reduce the
internal noise amongst expression of the L1000 genes themselves.

Here we define Level 6 CGS gene lists associated with each CGS that summarize the
direction of regulatory changes of ‘important’ LM genes according to the CGS’s internally most
differentially expressed (MDE) genes. Each Level 6 CGS gene list is associated with two non-
overlapping subsets: an “UP” (most up-regulated or overexpressed genes) and “DOWN” (most
down-regulated or underexpressed genes) list. Figure 1 demonstrates the differences in data
structure between the original Level 6 CGSs and Level 6 CGS gene lists.

CMap has offered Level 6 CGSs defined by simple selection criteria for the two subsets
of genes: “UP” lists contain the L1000 genes with the top 50 largest positive ModZ-scores and
entries for the “DOWN? lists have the 50 most negative ModZ-scores for each record of Level 5
data. The 878 (978 — 50x2) LM genes that do not make either cutoff (fall in the middle) are
essentially filtered out of the new Level 6 CGS. Unlike the Level 6 ModZ CGSs, Level 6 CGSs
signatures do not contain expression values for each L1000 gene. Note that the directionality of
a gene’s expression change is only captured in a Level 6 CGS if it is among the 100 MDE genes.
CMap has also generated Level 6 CGSs that first use algorithms to predict the expression of
genes and select the top 100 MDE genes in both directions for either a ‘best inferred gene set’
(“BING_100”) or for all genes across the genome (“ALL 100”). Our focus will remain on the
Level 6 CGSs for the top 50 most up and down-regulated landmark genes (“LM_50”) to first
address the following question before using these signatures in downstream analyses; does

reduced representation effectively boost the signal in our data or does the behavior of certain LM



genes overshadow the more muted, but perhaps more biologically or otherwise important
transcriptional response of genes that do not make the cutoff? We will conduct
simulation studies aimed to determine, in a controlled setting, the extent to which random noise

‘clutters’ the Level 6 signatures.

Table 1: Cell lines used for analysis

Cell Line Name Tissue/Disease of Origin

A375 Amelanotic melanoma (skin)
A549 Lung adenocarcinoma

HAIE Immortalized kidney epithelium
HEPG2 Hepatoblastoma (liver)

HT29 Colon adenocarcinoma

MCEF7 Invasive ductal carcinoma (breast)
PC3 Prostate carcinoma

1.3 Level 6 Concordance Signatures

Lists of gene names are used in many applications of bioinformatics research, perhaps
most notably as queries for enrichment analysis of gene expression data [10]. Typically, lists
contain the names of genes that are either over or under-expressed between two phenotypic
conditions (such as disease state relative to control) or across other experimental settings such as
time. Instead of using the Level 6 CGSs as queries for external data sets, the purpose of this
study is to use internally-derived concordance signatures to identify similarities/differences in
gene regulation amongst 6 cancer cell lines as well as 1 immortalized cell line (Table 1) that
each have a Level 6 CGS recorded at 96 hours across 2,042 common genetic perturbations
(concentration = 1ul).

Here we define concordance signatures (CS’s) between any two Level 6 CGS as the gene

lists that summarize the intersection of their impact on regulatory events as follows:



For any two Level 6 CGS gene lists, let (CGSS', CGSSY), uniquely identified by one cell line
(superscript; one of seven different cancer cell lines (CL’s)) and two perturbated genes
(subscript; two different perturbed genes (PGs) out of 2,042) let:
CGS_US =50 “UP” genes for PGxXCL®, CGS_UE' = 50 “UP” genes for PGyxCL*!,
CGS_DS =50 “DOWN” genes for PGxXCL®, CGS_DE&'= 50 “DOWN” genes for PGyxCL®".
While concordance signatures could be constructed between any two CGS gene lists, we will
specifically focus on relationships that exist as edges between nodes in cellular signaling
networks, as discussed in detail in the following section.
Then, the concordance signature CSgY (edge X|Y) is defined by four following sets of gene lists:

CS_UUx =CGS_UZ NnCGS_UE; 0 < |CS_UULS| < 50,

CS_DDyy" =CGS_DE N CGS_DE'; 0 < |CS_DDxy®'| < 50,

CS_UDyy" =CGS_UZ N CGS_DE; 0 < |CS_UDx| < 50,

CS_DUxy" =CGS_DZ N CGS_UE; 0 < |CS_DUx®| < 50, and

CSxy = CS_UUxy® U CSppyy™ U CSypyy U CSpy

Note that 0 < |CSyy| < 100.

Table 2: Cross-table representation of a Level 6 Concordance Signature
The four subsets of a Level 6 CS contain are themselves subsets of overlapping elements (LM genes)
derived from two different Level 6 CGSs (PGs X and Y) from the same cell line (CL).

PG = X

Up=CGS_US' | bown=CGS_Dg

CL=cl

> | Up=CGS_US | CSUUw (a) CS_DU,, " (b)

PG

Down=CGS_DS' | CS_UDxy“ (c) CS_DDyy " (d)




Table 2 displays these subsets in a 2X2 cross-classification table. The genes that fall in cells (a)
and (d) are in concordant sets; if they fall within cell (a) they are among the top 50 upregulated
genes for both PGx and PGy and if they fall into cell (d) they are among the 50 most down-
regulated genes for those two perturbagens. The genes that land in cells (b) and (c) are in
discordant sets; in cell (b) they are among the 50 most down-regulated genes for PGx but among

the 50 most upregulated genes for PGy and vice versa for the genes in cell (c).

1.4 Proposed Analysis for Level 6 Concordance Signatures

At this point, we have formally defined Level 6 CS’s but the question remains, does the
decision to include only the most transcriptionally responsive genes in our summary
measurements leave us with enough information to make biologically meaningful comparisons
in the data set? Furthermore, can we derive statistics from these signatures that allow us to
compare evidence for relationships between perturbed genes within and between cell lines based
on summaries of their similarities (or differences) of downstream effects that are obtained from a
reduced representation of the available data? Specifically, we will evaluate the relationships
between perturbed genes that exist as edges according to the cellular-signaling pathways curated
by the Kyoto Encyclopedia of Genes and Genomes (KEGG) [11].

The edges in KEGG pathways represent relationships between genes or gene products
(ie. proteins) and although specific relationships have been verified by experimental results, the
extent to which they translate across different types of cellular systems is not readily measured
[12]. There are two main types of relationships defined in KEGG - activation and repression —
but relationships such as binding, dissociation, expression and post-translational modification
(either inhibiting or activating) are also present in the pathways. We will attempt to quantify

heterogeneity in signaling patterns at the pathway level with regard to different cellular



phenotypes through the incorporation of LINCS L1000 data into KEGG pathway topology. The
benefit of using LINCS L1000 concordance measurement data is that we can define a metric for
relationships between genes when that relationship between two specific genes is not expression-
based. For example, in the mTOR signaling pathway (Figure 2), the mMTOR (mammalian target

of rapamycin) protein forms two different types of multi-protein complexes that regulate protein
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Figure 2: mTOR Signaling Pathway from KEGG. The mTOR protein complexes are
upstream activators/inhibitors of proteins that impact gene expression (red box).

synthesis by interacting with intermediary proteins that directly impact gene expression.

The relationships between the mTOR complexes and its direct targets rely on the kinase
activity of mTOR (activating or inhibitory phosphorylation), therefore we would not expect a
change in the rate of mTOR transcription to result in transcriptional changes in its targets
(increase or decrease of gene expression). On the other hand, since the mTOR complex

regulates the activity of its targets, the disruption of mTOR’s activity could impact downstream



Ai Al

“ MCF7_UP_MTOR MCF7_DOWN_MTOR “ MCF7_UP_MTOR  MCF7_DOWN_MTOR
MCF7_UP_EIF4EBP1 c("MCOLN1", "HOXA10", "ST3GALS5") c("TRAPPC6A", "KIAA0196") MCF7_UP_EIF4EBP1 3 2
MCF7_DOWN_EIF4EBP1 NFKBIB ("BIRCS", "HSD17B10", "PNP", "SYPL1", "LYPLA1") MCF7_DOWN_EIF4EBP1 1 5
B.1 B.u
“ PC3_UP_MTOR PC3_DOWN_MTOR “ PC3_UP_MTOR  PC3_DOWN_MTOR
PC3_UP_EIF4EBP1 c("DDX42", "ST3GALS", "KLHL9") <('KIAAO196", "DUSP4", "HOXA10") PC3_UP_EIF4EBP1 3 3
PC3_DOWN_EIF4EBP1 Cc("MRPL19", "GTPBP8", "CHMP4A", "TIMM9") c("PNP", "BNIP3", "PGAM1", "HMG20B", "CAST") PC3_DOWN_EIF4EBP1 4 5

Figure 3: Example of Level 6 CS for 2 different cell lines. The cross-table views comparing Level 6 CS’s
(perturbagens = MTOR, EIF4EBP1) between two different cell lines (MCF7 [breast cancer], PC3 [prostate
cancer]). The tables in A.i and B.i maintain the lists of genes in each subset whereas those in A.ii and B.ii
summarize the counts found in each quadrant.

gene expression in a way that would mirror the disruption of one of its direct targets. As a
specific example, n”TORC1 (mTOR complex 1) inhibits the activity of the translational repressor
4E-BP (initiation 4E binding protein), thereby initiating the activity of eukaryotic translation
initiation factor 4E (the inhibition of an inhibitor allows the downstream target to function) [13].
Thus, although mTOR does not directly impact the expression of Eif4ebpl (the gene that codes
for 4E-BP), the relationship between mTOR and 4E-BP could be quantified by metrics that
compare the similarities of the downstream impacts when either gene is functionally knocked
down via shRNA as showcased for cell lines MCF7 and PC3 in Figure 3.

When the subsets of Level 6 CGSs are arranged as shown in Table 2, the data may be
maintained as it is in its original form as a list (Figure 3(A.i), 4(B.i)) or by further summarizing
as a count of the elements contained in each cell (Figure 3(A.ii), 4(B.ii)). When the data is
maintained in this format, a different measurement of similarity can be calculated by counting
the intersection of units among the cells. In this case, the genes “ST3GALS5”, “KIAA0196” and

“PNP” are in cells (a), (b) and (d) respectively for both cell lines. Formally, for two cell lines A




and B and perturbed genes X and Y. We define the “sum of overlaps” statistic Y, overlapsge as

follows:

Z overlaps{E =

|CSUUXYA n CSUUXYB| + |CSDUXYA n CSDUXYB| + |CSUDXYA n CSUDXYB| + |CSDDXYA n CSDDXYB|

NA

HXY

In the example, overlapsxfg;”gfs 4Egp1 — 3 across the two tables. Is this value large enough

or small enough to suggest significant similarity or dissimilarity between the two cell lines? The
answer to this question would require a better understanding of how these values are distributed
among random pairwise comparisons of CS’s between perturbagens in the L1000 data set.

Data that is arranged in a 2X2 cross-classification or contingency table is amenable to the
well-known odds ratio (OR) test statistic as a measurement of association between two
‘treatment’ variables according to binary outcomes. For a single table, in our case for a single
cell line, two PGs have greater similarities in downstream effects when the OR is larger than one
1 (or equivalently a log(OR) > 0) as this means there is a higher ratio of genes that fall into the
concordant cells (a) and (d) relative to the discordant cells (b) and (c). On the other hand, if the
OR is between zero and 1 (or equivalently a log(OR) < 0) there are more differences in the
direction of downstream gene expression than there are similarities. The procedure for deriving
the OR test statistic is as follows (note that the value 0.5 is added to all of the cells of Figure

3A.ii and Figure 3.B.ii as a bias correction as recommended by Haldane [14]):

(CSyyyy" + 0.5)* (CSppy, " + 0.5)
(CSupyy” + 0.5) * (CSpy,,” + 0.5)

AB _
XYy —

_ (CSyyyy™ + 0.5) % (CSppy,” + 0.5)
(CSupyy” + 0.5) * (CSpy,y* + 0.5)

10

(2)

(1



1 1 1 1
A + A + A + A ’
(CSUUXY + 0.5 (CSDDXY + 0.5 (CSUDXY + 0.5) (CSDUXY + 0.5)

~

A _ _
SEXY - Jlﬂg(ggy) B

SEB, =5 _ = 1 : )
=0, (A= + + + .
XY = Opq(a1,) (CSyyyy” + 05)  (CSpp,,” + 05)  (CSyp,,” + 05)  (CSpy,,” + 05)

For a single cell line, we can measure the relative level of association/concordance under the
following assumptions:

Null: assume of no association, 84y, = 1 > log (6¢'xy)= 0, thus Hy: 04 = O8xy = 1.
Under the null hypothesis the following test statistic has a standard normal distribution:

5o — Log(Bfy) —log(Odxy) _ 1og(6%) 0 1y v
XY SEA, SEfy ,

Since we want to compare the relative association between two cell lines, we are more interested

in the following test statistic, which also has a standard normal distribution when the data for A

and B come from the same distribution:

V(SE4)? + (SEBy)?

In our example,

(3+0.5)*(5+0.5)

AMCF7 (3+0.5)(5+0.5) 513 ~pC3
=——————-=>513and 0 =
MTOREIF4EBP1 ~ (110 5):(240.5) MTOREIF4EBP1 = (4 05)4(3+0.5)

1.22,

A~ 1 1 1 1
SEsor = By0(3 = + + + ~ 1.24
MTOR,EIF4EBP1 10g(OM1OR EIF4EBPL) (3+05) = (540.5)  (1+0.5) = (2+0.5) ’

1 1 1 1
SEyFe = 040(2 = + ~ 0.99
MTOR,EIF4EBP1 log(817oR E1FaEBP1) (3+0.5) + (5 +0.5) + (4+05)  (3+0.5) ’

5 A375 £ A549
log (Oi7or EIF4ERBP1)—109 (OMTOR EIF4EBP1) _ log(5.13)-log(1.22) _ 91
J(1.24)2+(0.99)2 ’

AMCF7,PC3 _
and  AyroR EiFsEBP1T = o 2 e 2
J(SEMTOR,EIF4EBP1) +(SEMTOR EIF4EBP1)
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Under the assumption that the test statistics for both cell lines are identically distributed, the delta
value can be treated as a z-score and translates to a p-value of 0.18. Therefore, although there is
evidence of a more concordant relationship between MTOR and EIF4EBP1 in the MCF7 cell
line versus the PC3 cell line, the difference in concordance does not reach statistical significance
even at the less restrictive @ = 0.1 level (ie. less restrictive than restrictive @ = 0.05).

However, this begs the question: is the data from different cell lines identically
distributed or do genes in the L1000 data set have cell line specific behavior? For example, do
some cell lines have genes that tend to be upregulated or downregulated across PGs leading to
larger or smaller measurements of similarity on average compared to other cell lines? If so, what
statistical methods can we implement that would allow us to control for differences between cell
lines and possibly reconcile the differences between the different types of measurements?

Before we use this “thresholded” data to compare and contrast downstream effects between cell
lines, we will first consider the questions proposed at the beginning of the chapter regarding the
heterogeneity of transcriptional activity inherent not only among the L1000 genes themselves but
also between those same genes across cell lines. With a firm grasp on these concepts, we can
implement methods that moderate either true or false positive rates for detecting similarities or
differences between CS’s from different cell lines. In turn, these metrics may be used to evaluate
the extent to which a KEGG pathway generalizes to a range of different cell lines or, on the
contrary, represents cell line-specific regulatory relationships.

A first step in understanding the impact of cell line-specific gene behavior is to conduct a
simulation study. The purpose of the simulation study is to evaluate the proposed test statistics
when we know the parameters and data-generating mechanism behind a particular distribution.

The simulation study, to be explicitly described in Chapter 2, will involve the creation and

12



evaluation of Level 6 CS-type data under three different data-generating mechanisms. In
Chapter 3, the best-performing data generating mechanism from Chapter 2 will be used as a
basis for deriving non-parametric test statistics and integrated into the package KEGGlincs for an
exploratory analysis. Chapter 4 will describe how these statistics can be incorporated into the
structure of KEGG pathways to describe similarities and differences among different levels of
the L1000 data set and Chapter 5 gives an overview of the package KEGGlincs, an R
Bioconductor package designed to integrate CSs in pathway analysis in an integrative visual-
analytic platform. Finally, we will use differences in CSs among cell lines as our input
measurement for edge set enrichment analysis (ESEA), an established method of pathway

analysis, will be conducted in Chapter 6.
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Chapter 2: Simulation Study

The level of significance for the test statistics outlined in Chapter 1 and further described
in this chapter will be determined via non-parametric permutation testing procedures whereby
observed test statistics are compared to a distribution of test statistics generated under null
conditions. We will propose a permutation test that generates “random” concordance signatures
by utilizing information from the patterns of behavior for LM genes across cell lines. The
purpose of the simulation study is to investigate the nature of our proposed test statistics when
the behavior of individual entities (LM-type genes) is defined (known) rather than estimated

from the data.

2.1 Motivation

The concordance signatures capture bi-directional patterns (4 combinations) of behavior
for 978 LM genes between any 2 of over 2,000 perturbating factors (PGs — 2,042 common PGs
to be exact). The LM genes were chosen for their combined ability to reliably predict the
expression of non-measured genes across the human genome. For each LM gene at each
PGXCL, we know if a given LM gene is amongst the top 50 upregulated or 50 downregulated
LM genes. A given LM gene is not part of the 100 most-differentially expressed genes attributed
to a PGXCL if it is neither amongst the top 50 up- nor 50 down-regulated set.

The original format of the data set (Figure 1(B)) comes to us as a list entries which can
be converted into an information matrix (Figure 4) and shed light on the behavior of individual
LM genes within and between cell lines. This matrix (we will denote as Lnx m) 1S @ numerical

representation of the CGS data set whereby the rows (n = 7x2,042) correspond to PGxXCL¢!
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(peI’tuI‘batlon factor for a glVel’l Cell llne) and the “ AARS ABCB6 ABCCS ABCF1 ABCF3 ABHD4 ABHD6 ABL1 ACAAL
A375*A2M 0 0 1 0 -1 0 0 1
A375*AARS -1 0 0 0 0 0 0 1
columns (m = 978) correspond to an individual prKeus ; : : : ; ’ :
A375*ABCAl1 0 0 0 0 0 1 0 0
. A375*ABCA3 0 0 0 0 0 0 0 -1
landmark gene (g],J = 1,2,. . ,978) We deﬁne eaCh A375*ABCAS 0 0 0 0 0 0 0 0
A375*ABCB1 1 0 0 0 0 0 0 0
A375*ABCB6 0 -1 0 0 -1 0 0 0
entry of the matrix in L by indicator variable / such A3zSasca| o o ! 0 0 0 = !
A375*ABCC3 0 0 0 0 0 0 -1 0
A375*ABCCS 0 0 0 0 0 0 0 0
A375*ABCGS -1 0 0 0 0 0 0 0
that. A375*ABCG8 -1 0 0 0 0 0 1 0

—1,include gene g; in C GS_Df! Figure 4: Snapshot of Matrix L
cl _ . cl Matrix L is a matrix with 2,042X7%978 entries for
Ijj =4 0, no membership in CGS; ’

. . . Cl
+1, include gene g; in CGS_U{* indicator variable [};

With these I’s in place in L we may readily calculate the following probabilities:

?’042(1.‘:.1:4_1)
pu; = F;Tl; = probability that g; will be one of 50 genes in a random CGS_U{";
a  IEPafl=-1 o . . ol
pd;" = ~—oaz probability that g; will be one of 50 genes in a random CGS_D;*;

pn; =1 — pu; — pd; = probability that g is neither part of a random CGS_D{* nor CGS_Uf*.
Note the following relationships:

We go on to define the following probability and conditional probabilities:

2 ff=+10r-1)
2042

piljd =1—pn® = py + 'pdel =

= probability that g; is either part of a random CGS_Df" or CGS_Uf* (CGS{');

cl
; p?;’d = probability that g; is part of CGS_U{" | g; is in CGS{*;
pil;

J

1
cpd;* = 2L = probability that g, is part of CGS_D¢! | g; is in CGSE".

pil;j
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2.2 Variation Across and Between LM Genes
The behavior of the 978 LM genes is neither uniform across nor between cell lines for individual
genes. We use the following definitions for the behavior of genes within a given cell line to
define the observed variability:

1. Regulatory Responsivity

- This aspect of gene behavior is captured by piljd
- Genes with larger piljd (further from zero/closer to 1) are associated with higher

levels of regulatory responsivity as they are more likely to be among the top

dysregulated genes across PGs.

2. Directional consistency:

- This aspect of gene behavior is measured as a factor of the difference between
cpw;t vs. cpd; or, equivalently, pu;t vs. pd; .

- When gene g; is significantly dysregulated, is the conditional probability that it
is upregulated versus downregulated approximately equal or is it typically
upregulated or downregulated?

- Directional consistency is high if genes have a strong tendency to be either up or
down regulated [given that they are dysregulated] and decreases as the proportion
of occurrences in up vs. down lists gets closer to 1.

These factors of LM gene variability could also be used to describe the differences in

gene behavior between cell lines. Figure 5 demonstrates this variability as a function of pu;©!

vs. pd; °* and highlights the three general categories for gene regulation. This variable behavior

underlies our decision to use a permutation procedure whereby the direction and inclusion of a
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prob_top50_up

0.0

LM gene in a CGS is reassigned in order to evaluate differences in concordance signatures
between cell lines. Before we employ non-parametric tests with estimated parameters, we will
perform a simulation study on data with known parameters to explore the effects of our chosen

sampling method on the post-sampling data distribution.

Figure 5: Regulatory patterns in L1000 genes
a) Genes likely to be upregulated vs.
downregulated
cell_line . 1 cl
Py" >pd;
AS49 .« cpy>> cpd,©
HA1E b) Genes likely to be downregulated vs.
HEPG2 upregulated
HT29 cl cl
MCF7 * Py < de
PC3 ° CpuJCl<< de]Cl
c) Genes above the dashed line are more likely to
be expressed than other genes in general
e e L * pil;© > pul where pul is the average
o1 o2 o' o marginal probability of list inclusion for
prob_top50_down genes across cell lines and perturbagens

2.3 Purpose of Simulation Study
The permutation procedure to explore similarities/differences of concordance signatures
(CS) between cell lines will be conducted by comparing the observed test statistics to those
generated under the null hypothesis. Our working definition of the null hypothesis is that the
consensus genomic signatures are capturing random gene fluctuations within a cell line and
therefor the CS’s (that are based on agreement of two CGSs) are not meaningful. The
permutation procedure will be conducted by generating ‘random’ CS’s based on the concordance
between two ‘random’ nodes — each with a CGS of the top up and down-regulated LM genes
after they are selected using features of the observed LM gene behavior within a given cell line.
The simulation study will explore the statistical framework of the non-parametric testing

procedure that will eventually be employed to find meaningful differences among CS’s in the
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L1000 data set. The distribution of tests statistics measuring differences between ‘random’ CS’s
generated under the null vs. alternate scenarios will shed light on the power of our proposed test
statistics under a variety of controlled parameters. The first stage of the simulation study will
evaluate different methods for generating simulated data (‘random CS’s) and the second stage
will employ the least biased method for conducting permutation tests on the simulated data
across variable parameter settings.

The premise is as follows. There is a pool of sampling units that represent genes. Each
sampling unit is associated with a particular group (“Regulatory Group”) that defines the unit’s
behavior. Sampling units in the same group have identical probabilities of overall selection
(probability of being selected into either an up or down list) and identical conditional
probabilities for their direction (chance of being up or down given that they are in a list); thus,
the units in each group also have matching marginal probabilities for selection into an up- or
down-regulated list. The purpose of grouping the units in this way is to explore the effect of the
sampling algorithm on a pool of ‘genes’ with well-defined properties before using the method on
a real data set that has many parameter estimates (as many parameters as there are genes).

2.4 Sampling Simulated Data

The end goal for each of the sampling methods described in 2.4.2 is to populate “UP” and
“DOWN?” lists with a prespecified number of sampling units at each run or, in other words,
synthesize CGSs from a population of genes (referred to as sampling units or simply units) with a
known distribution. After the lists are generated across different sets of parameter values under
the direction of each method, the data-generating mechanisms will be evaluated for potential

sampling bias as outlined in section 2.4.3.
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2.4.1 Notation

The parameters defined in this section have been chosen to reflect characteristics of the sampling

distribution in accordance with the probabilities outlined in section 2.1. Each unit g;; is assigned

to a specific regulatory group i whereby all units in that group have identical sampling properties

as described by the following notation:

¢ = total number of groups (regulatory group)
i = groupindex;i =1,2,...,c

m; = number of sampling units in group i

c
M = z m; = total number of sampling units
i=1

gij = individual sampling unit from group i,j = 1,..,m;,i =1, ..., ¢
G; = collection of samlping units in group i; Z;’l:"1|gij| = |G|

G = collection of all sampling units; |G| =M

S = total number of simulations

s = simulation index; s = 1,2 .., S

ny = number of units in an "UP LIST"

np = number of units in a "DOWN LIST"

n=ny+ np

w; = selection weightfor genes in group i

m; = m = selection probability for a single unit from group i
@ = up-direction weightfor units in group i

@? = down-direction weight for units in group i

o TP =1
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w/ = m; * ¢/ = up-selection probability for gene in group i
w} = m; * P = down-selection probability for gene in group i
wlU + wP= T;

At each simulation s, sampling units are either unselected or selected into L°.
L® = collection of sampling units selected into an "UP" OR "DOWN LIST" at simulation s
If a unit is selected as part of L?, it will be part of one but not both of the following lists:

Y = sampling units selected into an "UP LIST" at simulation s, |L},| = ny

3 = sampling units selected into a "DOWN LIST" at simulation s, |L},| = np
Lybuly=L;LynLy=0

—1if gij € Lp
[ ={+1if g€ L
0 else

2.4.2 Methods

Method la (“Up First”)

Step 1: Populate LS, by sampling n,; units from G without replacement using @, as weights.
Step 2: Populate LS, by sampling n,, units from G — LS, without replacement using @}’ as
weights.

Method 1b (“Down First™)

Step 1: Populate LS, by sampling nj, units from G without replacement using @? as weights.
Step 2: Populate LS, by sampling n;, units from G — LS, without replacement using @/’ as
weights.

Method 2a (“Partition Up First”)

Step 1: Sample n units without replacement to populate L* from G using m; as weights.
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Step 2: Assign membership of n;; units from LS into L, using ¢! as weights; all other units in LS
are assigned membership into L}, by default.

Method 2b (“Partition Down First™)

Step 1: Sample n units without replacement to populate L° from G using 7;; as weights.
Step 2: Assign membership of 1, units from L into L3, using @ as weights; units left in L are
partitioned into L3, by default.

Method 3 (“Random Labels™)

Step 1: Label all M genes by sampling [with replacement] the labels “UP” or “DOWN” in a
binomial fashion with the vector of probabilities taking the form < ¢!, pP>.

Let 6;; = units labelled "UP" and 67 = units labelled "DOWN" after executing Step 1.

Step 2a: Sample without replacement ny, units from 6V using 7; as weights

Step 2b: Sample without replacement 7, units from 82 using 7; as weights

2.4.3 Measuring bias in simulated data

Notation

1 i 7 1 ;
Let U = By (I = +1); Ui =1 X5 Nj (0 = +1)

L i N 1 ;
Let D = Xy (I = =1 Dy =15 X Njt (= —1)

Bias Measurements

T, = P—E[P]
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The term P; represents the average marginal ‘share’ of list membership by units from G;.

In other words, for every 100 entries in a randomly chosen simulated list (L*), how many entries
would we expect to be occupied by genes from G;? P; is a marginal measurement of information
collapsed over lists [i.e. over L$, and L3;] whereas the term 9; is a measure of conditional list
membership. The value of 97 [97] is an answer to the following question: given that a unit from
G; occupies a randomly selected L, what is the probability that it is part of L3, [L},]? These post-
sampling quantities will be calculated to measure the relative bias between the candidate
sampling methods. The least biased sampling method will adhere to the following conditions:

(1) P, —E[P] =0

Q) I 97 =91 9P = ¢ =¢7 =0

(3) Ifw, = w, AND my=m, = Ay, =0

Conditions 1 and 2 measure bias as it relates to within-group comparisons of parameter
estimates. The statement given in Condition 3 is, perhaps, a more subtle indicator of bias
whereby its measurement is a function of parameter estimates between two different groups that
meet the specified criteria for similarity. Condition 3 states that groups with identical selection
weights and number of sampling units should have equal marginal proportions of list
membership, on average, after synthetic lists are created, even if direction weights differ between

the groups. In each simulation scenario, Condition 3 will be evaluated between complementary
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groups. Two groups G, and G, are complementary if w, = wp,, M, =My, @5 = @2 and @f =

U

Pa -
2.5 Motivation

An initial ‘test run’ was performed prior to a large-scale simulation study in an effort to
ensure that the algorithms were performing as expected. The sampling parameters were chosen
in order to represent a simplified prototype of the original dataset according to gene behavior
amongst the L1000 genes (via splitting the genes into groups according to their regulatory
activity and group size) and the size of the CGSs (n; = np = 50). 1000 sampling units were
assigned to one of three “Regulatory Groups” (RGs) that determine the sampling parameters
according to Table 3 on the following page.

In the initial setup, three groupings were chosen as a generalization of gene behavior
showcased in Figure 5. In a similar manner as the L1000 genes, most of the sampling units
exhibit “normal behavior” (RG3, 90% of sampling units, selection weight of 1, equal chances of
allocation to either an UP or DOWN list), some genes are “largely overexpressed” and usually
found in an UP list (RG1, 5% of sampling units, selection weight of 2.25, 9:1 chance of inclusion
in an UP vs. DOWN list), and some genes are “largely underexpressed” and usually found in an
DOWN list (RG1, 5% of sampling units, selection weight of 2.25, 9:1 chance of inclusion in a
DOWN vs. UP list). Each algorithm ran S = 2000 times, thereby generating 2000 “UP” and
“DOWN?” simulated CGSs (to induce stable estimates and to mimic the 2,042 CGSs across PGs
in the L1000 data). The values for E[P; | were calculated under the assumption that the sampled
totals would follow a multinomial distribution with E[P; | = m;m;; (E[P;], E[P2 ], E[P5]) = (0.1,

0.1, 0.8) [15].

23



Table 3: Initial parameter settings for sampling algorithms

Gl GZ G3

m; 50 50 900

o, 225 225 1

TTij 0.002 0.002 0.0008888889
o/ 0.9 0.1 0.5

D

@; 0.1 0.9 0.5

@y 0.0018 0.0002 0.0004444444
@y 0.0002 0.0018 0.0004444444

Table 4: Average proportion of genes from group G;,i = (1,2,3) in L°

Method P, P, P,

la 0.0933 0.0985 0.8082

1b 0.0972 0.0935 0.8092

2a 0.0955 0.0967 0.8078

2b 0.0956 0.0961 0.8083

3 0.0955 0.0954 0.8091

Table 5: Post-sampling direction weights

Method 9y, 97 93,97 95, 93

la 0.9113, 0.0887 0.1053, 0.8947 0.5009, 0.4991
1b 0.8958, 0.1042 0.0995, 0.9005 0.4988, 0.5012
2a 0.7269, 0.2731 0.1336, 0.8664 0.5171, 0.4829
2b 0.8651, 0.1349 0.2628, 0.7372 0.4852,0.5148
3 0.9052, 0.0948 0.0999, 0.9001 0.4995, 0.5005

The results of the pilot simulation are recorded in Table 4 and Table 5; Table 6 reports
the bias measurements. In summary, Methods 1a/1b and Method 3 simulate data sets with more
accurate post-sampling direction weights than Methods 2a/2b whereas Methods 2a/2b and
Method 3 resulted in the smallest differences in A,;, between complementary groups. Although

Method 3 had the best performance according to Condition 2 and Condition 3 (outlined in
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Section 2.3.3), it also produced larger deviations from E[P; | than the other methods. More

importantly than the individual measurements between methods was the strikingly similar

pattern showing that all methods appeared to oversample from G5 and thus under-sample from

G, and G,. This discrepancy was in need of resolution before the larger simulation study could

be carried out. The solution was not found in a different implementation of the sampling

algorithms but rather by identifying the multivariate Wallenius non-central hypergeometric

distribution as opposed to the multinomial distribution as the appropriate sampling distribution

for the simulated data.

Table 6: Measurements for bias across methods and groups. The minimum absolute value (or pair of values)
is underlined for each column.

Method T T2 T2 ¢t 67 63,62 63,65 A1z

la -0.0067 | -0.0015 | 0.0082 |-0.0113,0.0113 | -0.0053, 0.0053 | -0.0009, 0.0009 | -0.0052
1b -0.0028 | -0.0065 | 0.0092 | 0.0042,-0.0042 | 0.0005, -0.0005 | 0.0012,-0.0012 | 0.0037
2a -0.0045 | -0.0033 | 0.0078 | 0.1731,-0.1731 | -0.0336, 0.0336 | -0.0171,0.0171 | -0.0012
2b -0.0044 | -0.0039 | 0.0083 | 0.0349,-0.0349 | -0.1628,0.1628 | 0.0148, -0.0148 | -0.0005
3 -0.0045 | -0.0046 | 0.0091 |-0.0052,0.0052 | -0.0001, 0.0001 | 0.0005,-0.0005 | 0.0001

2.6 The Multivariate Wallenius Non-central Hypergeometric Distribution

2.6.1 Background

K.T. (“Ted”) Wallenius first introduced the non-central hypergeometric distribution as a

means to account for biased sampling between two finite populations with dichotomized

attributes in his Ph.D thesis in 1967 [16]. His work was motivated by the need to measure the
extent of non-randomness in a sampling population — that is — the extent to which sampling units

in a population have an unequal or biased chance of being selected relative to other units being
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sampled. The example featured in his paper involved measuring differences in survival vs. death
between rabbits in a population that could be divided into two subsets characterized by
homozygous and heterozygous blood type alleles with the notion that genetic selection for one
phenotype would influence sampling from that group — i.e. the number of rabbits that were still
alive in one phenotypic group instead of the other was influenced by factors above and beyond
the ratio of rabbits that were alive in each group at the starting timepoint.

In 1976 Chesson extended Walleneius’ definition to account for biased sampling when
there are more than two subsets in the sampling population [17]. He describes a multivariate
hypergeometric distribution to measure selective predation, a term to describe the degree to
which a predator consumes different types of prey based in part by preferential factors in
addition to the relative abundance amongst the prey. Consider the following situation: a
predator’s diet consists of m different species of prey in an environment with n; (i = 1, ..., m)
individual animals of each species for a starting total of N = )i, n; animals eligible for

predation. In the case of random predation, the probability that the predator’s next meal will be

n;
m
j=1Mj

= % However, when it is feasible that other factors will have an

an animal of type i is

impact on this outcome, those factors can be incorporated into a model that accounts for biased
predation.
For example, let §; be the probability that the predator will detect prey of type i at any

given encounter and p; be the probability that it will pursue that type of prey such that

probability of the prey’s capture and consumption takes the form % [18]. Let P; be the
j=1PjPj"j

probability that the predator’s next meal is an animal of type i and let a; = p;f;, such that
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ain; . . .
P, = ml—a‘n The values in vector a represent the relative preference for one prey species
j=1%j1j

L

%. P; demonstrates the effect of

versus the others and measure the deviation of P; from
preference on the outcome of an initial predatory event (one draw from a sample).

The purpose of taking into consideration selective predation is to incorporate
measurements of bias into the estimation of population parameters after many selection events
have taken place. Letr; (i = 1, ..., m) be the number of prey animals belonging to species i that
a predator has eaten after having r meals (or consuming a total of r animals). Note };/%, r; =71
and r; < m;. Chesson outlines two possible situations that will determine the distribution for the
vector R, whose i element represents the value ;. First, consider a scenario where n; remains
relatively constant over time; either prey is added to the population at the same rate it is
consumed or r < N. This is akin to a sampling with replacement scenario when there is a
functionally infinite population of prey animals and R has the multinomial distribution where

roT an; | (0)
PR=1)= ﬁlr-nl m a-n~l '

Ly 2= T

The second scenario is one that reflects the reduction of n; in a fixed population, as is the case in
a sampling without replacement procedure. In this scenario, R has the multivariate non-central

hypergeometric distribution and

PlR=n= ﬁ () fol ﬁ“ — ey dt, @)
i=1 ' i=1

where ¢; = and a; # 1 for at least one «; (otherwise the distribution is central as

m

=g @i(ni—1y)

opposed to non-central).
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In his 2008 paper, Agner Fog formally identifies the ‘Biased Urn’ model and gives it the
name ‘multivariate Wallenius non-central hypergeometric distribution’ in order to distinguish it
from a similar model that he calls the ‘multivariate Fisher non-central hypergeometric
distribution’ (which has also been referred to as the ‘extended hypergeometric distribution’) [19].
In the biased urn model, an urn contains balls with c different colors and m; (i € C =

{1,2, ..., c}) balls of each color for a total of N = };{_, m, balls in the urn. The color of the ball
1=1"%

indicates that color’s w;, which is the probability of selecting a ball of that particular color
relative to balls of different colors. w; can account for features that may increase/decrease the
color’s relative probability of selection above and beyond the ratio of balls of that type versus
others such as the relative size of the ball or texture of the ball. To meet criteria for the
multivariate Wallenius non-central hypergeometric distribution, a total of n balls are selected one
by one, without replacement, such that the probability of selecting a ball of type i at draw v; (j =
0,1,2, ...,m) is dependent upon the combination of balls selected up to draw v; (i.e. the
composition of balls left in the urn at draw v;_,). If the balls are selected simultaneously without
dependence between draws, then the distribution of balls in the urn has a multivariate Fisher non-
central hypergeometric distribution. In the univariate case, Fisher’s non-central hypergeometric
distribution can be regarded as the “conditional distribution of two independent binomial random
variables, given their sum” [20]. The multivariate Fisher and Wallenius non-central
hypergeometric distributions both simplify to the hypergeometric distribution when there is no
bias for selection between objects of different types (w; = 1V i € C) and reduce to the
multivariate binomial distribution when n = 1 (only one draw is taken) [21].

Consider, for example, an urn with m, tennis balls (large balls with rough surfaces), m,

ping-pong balls (medium size balls with slightly textured surface) and m; marbles (small balls
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with smooth surfaces) for a total of N balls. In an experiment, the urn is placed under a metal

claw which will drop down and select one ball ‘at random’. If there is no effect on the size or

texture of the sampling unit, the probability that the first ball is a tennis ball is % , % that it is a

ping-pong ball and % that it is marble. However, it is reasonable to assume that, for instance, a

tennis ball would be somewhat easier for the claw to grab on to versus a ping-pong ball and

much easier than a marble. This experiment of a single draw could be conducted multiple (i.e.

hundreds or thousands of times) to estimate values for the vector w so that when p; is the first-
m;wj

draw probability for a ball of type i, p; = S The w values are measurements of bias that
j=1Mj®wj

account for all underlying (latent) mechanisms that result in biased sampling, similar to the a
values (where a; = p;f5;) described by Chesson. Fog introduces notation to enumerate the
dependences between draws during a selection process in terms of probabilities and expected
values. Let X,, be a vector that records the number of balls of each type that have been drawn
over the past v draws; X,, = (X1, ---» Xip» ---» Xcv). The probability that a ball of color i is
selected at the next draw, draw v + 1, is:

o (my = X))o, (8)
Piw+1) = oS¢ (
1

Now let py, = (U1y) -y fivs -» Hen) = E[X,], that is, the expected count for each type of ball at
draw v. Note that when v = 0 (before any draws have occurred) p;p = 0V i € C. The means in
vector p, can be approximated by the recursive relationship for v > 1:

Hiv = Hiw-1) T Piw)Miw) )
Equation (9) is useful in the descriptive sense and even for calculations when the number of all

possible enumerated quantities is small, yet it quickly becomes unwieldy as the number of draws
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(v) and/or unique groups (size of ) becomes large. Fog’s recently published R package titled
‘BiasedUrn’ [19] has functions capable of estimating u,, values in an efficient and reliable
manner; precisely the type of functionality we need to obtain accurate estimates for the

measurements E[P; | defined in Section 2.3.3.

2.6.2 Estimation of Group P; with BiasedUrn Package

The purpose of introducing the multivariate Wallenius non-central hypergeometric
distribution (hereafter referred to as MWNCH) is to offer an explanation for the discrepancies
and solution for the calculations of E[P; ] in Section 2.4. This will afford us a more stable
grounds for selecting the least biased sampling method. What follows is a description of the
pilot simulation as it pertains to sampling units from a population that follows the MWNCH
distribution.

The sampling space S contains N = Y;_, m; sampling units (synthetic genes) where m;
is the number of sampling units for groupi € C = {1,2,3} and m = (50,50, 100) . Each group
G; has a corresponding weight (w;) in the marginal selection weight vector w = (2.25, 2.25,1);
in other words the [starting] odds of selecting a unit from G;or G, is equal (between the groups)
and 2.25 times the odds of selecting a unit from G5 if group size is ignored. The total number of
draws n is set to 100 (50 genes “UP” plus 50 genes “DOWN”). The values in m, w, and n are
the inputs to the function “momentsMWNCHypergeo” from the BiasedUrn package which
returns the following vector of values: E[X,,_190] = [9.5489, 9.5489, 80.9021]. Therefore, on
the basis of a 100-unit sample, E[P] = [0.0955, 0.0955, 0.8090]. The measurement in the first
three columns of Table 6 can now be adjusted to represent a more appropriate estimation of bias

as shown in Table 7. Now it is clear that Method 3 has the least biased performance, on average,
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across the performance measures. Moving forward, the central question is now: does method 3

consistently perform better across sampling scenarios with different parameters?

Table 7: Measurements for bias across methods and groups with 7 values adjusted for estimation of E[P]
according to MWNCH distribution. The minimum absolute value (values, or pair of values) is underlined for
each column.

Method Ty T2 T2 61,67 65,62 65,63 Ay

la -0.0022 | 0.0030 | -0.0008 |-0.0113,0.0113 | -0.0053,0.0053 | -0.0009, 0.0009 | -0.0052
1b 0.0017 | -0.0020 | 0.0002 | 0.0042,-0.0042 | 0.0005,-0.0005 | 0.0012,-0.0012 | 0.0037
2a 0.0000 0.0012 -0.0012 | 0.1731,-0.1731 | -0.0336, 0.0336 | -0.0171,0.0171 | -0.0012
2b 0.0001 0.0006 | -0.0007 | 0.0349,-0.0349 | -0.1628,0.1628 | 0.0148, -0.0148 | -0.0005
3 0.0000 | -0.0001 | 0.00001 | -0.0052,0.0052 |-0.0001,0.0001 | 0.0005,-0.0005 | 0.0001

2.6.3 Parameters and Expected Values for Data Simulation

The purpose of the pilot simulation was to ensure that the implementation of different
sampling algorithms was free from execution errors. What follows is a description of the larger
simulation study which aims to draw conclusions concerning differences between the proposed
sampling methods. Table 8-11 describe the parameterizations under each scenario. The name of
the scenario indicates the number of regulatory groups defined in each situation; for example, the
scenario “3RG” or “RG3” has three regulatory groups (#RG and RG# are used interchangeably).
In each scenario there is a “baseline” group. This group has the largest number of sampling
units, a sampling weight of 1, and equal up vs. down direction (and thus selection) weights. All
other groups have selection weights and up OR down direction weights with magnitude that is
inversely related to the number of units in the group. With the exception of the baseline group,
each group has a complementary group affiliation (see Section 2.3.3). For every scenario there

are a total of 1000 sampling units (X¢_, m; = 1000). The parameters for each scenario were fed
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into each sampling algorithm across the following values of s (number of simulations, or in other

words, number of simulated CGSs): 100, 1000, and 10000.

Table 8: Group size

Scenario |  my m, ms
3RG 100 100 800
5SRG 50 50 200
7RG 50 50 100
9RG 50 50 75
Table 9: Selection weight
Scenario w4 W, w3
3RG 2 2 1
5SRG 3 3 2
7RG 4 4 3
9RG 5 5 4
Table 10: Direction weight
Scenario | ¢V oY oY
3RG 0.9 0.1 0.5
5SRG 0.9 0.1 0.7
7RG 0.9 0.1 0.8
9RG 0.9 0.1 0.8
Scenario | ¢? @Y 2
3RG 0.1 0.9 0.5
5SRG 0.1 0.9 0.3
7RG 0.1 0.9 0.2
9RG 0.1 0.9 0.2
Table 11: E[P; ]
Scenario | E[P;] | E[P;] | E[ Ps]
3RG 0.1619 | 0.1619 | 0.6762
5SRG 0.0904 | 0.0904 | 0.2489
7RG 0.0918 | 0.0918 | 0.1411
9RG 0.0963 | 0.0963 | 0.1180 0.1025 | 0.1025
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The same scenarios have also been conducted under “complete” null conditions as well
as “null selection weight” (Null SW) and “null direction weight” (Null DW) conditions (in
contrast to the previously described “biased” condition) defined as follows:

Complete Null (Null)

l. wj=1Vi €C

2. oV =P =05Vi €eC

3. mp=m;Vi,j €Ci+]

Null Selection Weight (Null SW)

1. m;and < @7, @P > are the same as those in the biased condition

2. wi=1Vi €C
Null Direction Weight (Null DW)

1. w; and m; are the same as those in the biased condition

2. oV =P =05Vvi €eC
Please refer to the Appendix for the complete description of these parameter inputs.

2.7 Data Simulation Results

All of the methods proposed for data simulation are designed to accommodate two
important aspects of sampling during the simulation process: they operate on the basis that there
are variable probabilities for selection among the sampling units and that membership in an “UP”
vs. “DOWN” list is mutually exclusive for a single sampling unit. These two aspects of data
simulation violate the rules for equal probabilities and independence that are required for a
simple random scheme therefore we would expect to find evidence of sampling bias in resulting
data sets [22]. The identification of bias amongst the sampling methods must be addressed as a

preliminary analytical measure to ensure that downstream simulation analyses and permutation
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procedures employed on the actual data are conducted based on the optimal simulation and
permutation methods.

Most of the bias in the distribution of the post-sampling population can be specifically
attributed to the intentionally biased sampling design properties and can be predicted using the
MWNCH distribution. However, as the results of the data simulation will suggest, the order in
which units are selected to either an “UP” or “DOWN” list is an additional source of bias when
there is heterogeneity in the direction weights amongst the sampling units — that is, in the non-
central as opposed to central sampling scheme. In fact, across the factors of group size, selection
weight and direction weight, non-centrality (biased-ness) among the direction weights is the only
factor that separates the sampling methods’ performance.

The scatterplots in Figure A1 in the Appendix are designed to summarize the
measurements of bias introduced in Section 2.3.3 for comparison across the sampling conditions
(biased, complete null, null DW and null SW), scenarios, methods and numbers of simulations;
Figure 6 is a snapshot of the biased condition run at s = 10000 simulations . In each plot, the
point (z;,¢/) is plotted in two dimensions; 7; on the x-axis and ¢/ along the y-axis. Given the
relationship ¢/ = ¢ * (—1) (See Table 6), results based on ¢” would be mirrored across the x-
axis (summaries are based on ¢ only for brevity). Within the figures, the plotting symbols
represent the sampling method and the color represents the group. The figures are arranged by
scenario (row) and number of simulations (column).

The most glaring global comparison is between the conditions with null vs. non-null
direction weights. In the conditions with null direction weights there is no discernable difference
between methods; the points appear to be randomly scattered across the plots and their range

decreases across both axes (i.e., estimates are more precise) as the number of simulations
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increases. On the other hand, in the non-null direction weight conditions, the methods separate
across either the x- or y-axis. There is one commonality across scenarios for non-null direction
weight conditions: as the number of simulations increase, the minimum and maximum values
across the x-axis (7;) become smaller but the range of values remains constant for the y-axis
(¢¥) across numbers of simulations and scenarios. This suggests that, in general, P; gets closer
to E[P;] as the number of simulations increases across methods. That being said, the discussion
that follows will highlight discernable patterns of difference that point to one method as the
optimal, least-biased method for data simulation.

The best performing sampling method in accordance with the three conditions introduced
in Section 2.4.3 will be the one with the majority of points centered about the origin (0, 0) across
[biased] scenarios and number of simulations. With this in mind, a quick visual synopsis of
Figure 6 points to Method 3 as the best performing sampling algorithm, a claim that warrants an
inspection of the performance patterns between methods across both dimensions of performance
and regardless of the number of groups. The following terms will be used to identify patterns in
sampling behavior:

e The term “baseline group”, as previously mentioned, refers to the group in a given
scenario that: 1) has the most sampling units, 2) has a sampling weight of 1 and 3)
¢ = ¢ =05
e Within a pair of complimentary groups (¢ = (pjp and @P = (p]l-], i #]j):
o The group for which ¢!> ¢? is the “up-dominant” group and
@? > @V if the group is “down-dominant”.
For example, in Scenario 3 where groups 1 and 2 are the only complementary groups, group 1 is

the up-dominant group (m; = 100, w; = 2, ¥ = 0.9, ¢? = 0.1), group 2 is the down-
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dominant group (m, = 100, w, = 2, ¥ = 0.1, 2 = 0.9) and group 3 is the baseline group

(m3 =800, w; = 1,9 = p? =0.5).

A Scenario 3RG B Scenario 5RG Cc Scenario 7RG D Scenario 9RG
s = 10000 s = 10000 s = 10000 s = 10000
v Group(i)
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1 2 ) 3
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Figure 6: Scatterplots comparing sampling methods across two dimensions of bias at fixed number of
simulations (s = 10000).

The plotting points for Methods 1a and 1b tend to lie close to the x-axes of the plots
contained in Figure 6 due to small values of the measurements ¢ (and therefore ¢?) across
scenarios. Thus, these methods perform well in terms creating simulated data sets in which the
direction weights for sampling “UP” vs. “DOWN” units from specific groups is reflected in the
ratio of sampling units observed in “UP” vs. “DOWN” lists. However, the same plotting points
for these methods lie further from the y-axes than those for the other methods. This observation
is attributable to small but consistent patterns of bias in the measurement 7; . On the other hand,
the plotting points for Method 2a and 2b lie close to the y-axes as a result of small values of the
measurements of 7; yet are far from the x-axes due to larger values of ¢/ .

In Figure 7 and Figure 8, the two dimensions of bias are plotted separately against a
variable number of simulations in order to highlight specific, consistent patterns between the

methods. Note that each method is plotted individually and, in contrast to Figure 6, the shape of
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the plotting character represents whether the group is “up-dominant” (triangle pointing upward),
“down-dominant” (triangle pointing downward) or “baseline” (circular). For the clarity of
discussion, Scenario 5 is presented in Figure 7 and Figure 8, but the observations made
regarding group patterns in this scenario extend to Scenarios 3, 7 and 9. Recall that Method la
first selects 5 sampling units to be part of an “UP” list using the composite wil]’- weight for
selection to an “UP” list and then, from the remaining 950, uses wg to select 50 for the

“DOWN?” list - Method 1Db first selects 50 sampling units to be part of an “DOWN” list using the

composite wg- weight for selection to a “DOWN? list and then, from the remaining 950, uses zzrg

to select 50 for the “UP” list. In Figure 7(A) (Method 1a), the plotting points corresponding to
the “up dominant” groups fall below the x-axis whereas those for the “down dominant” groups
lie above it and in Figure 7(B) the behavior is reversed (points for the “up dominant” groups lie

above the x-axis and those for the “down dominant” groups fall below the zero line).
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Figure 7: Scatterplots of 7; across number of simulations for Scenario SRG
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Figure 8: Scatterplots of ¢/ across number of simulations for Scenario 5SRG

The simulation results suggest that the order for selection (either “UP” or “DOWN” first)
will introduce bias on the post-sampling population of sampling units for non-baseline groups in
violation of bias conditions 1 and 3, thereby offering grounds for eliminating Methods 1a/1b as
sampling mechanisms moving forward. On the other hand, the plots in Figure 8(C) and 8(D)
suggest that Methods 2a/2b violate the second condition for bias. When units are assigned to be
part of an “UP” list first (after they have been selected as part of the composite “UP” and
“DOWN?” list at a given simulation in accordance with Method 2a), those in the up-dominant
group are not assigned to the “UP” list as often as expected and the opposite is true for the down-
dominant group; they are assigned to the “UP” list with greater frequency than expected. This
relationship is completely reversed when units are assigned to a “DOWN?” list first as mandated

by Method 2b. In contrast, Figure 8(A) (Method 1a), 8(B) (Method 1b) and 8(E) (Method 3)
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suggest that the corresponding methods perform well with regard to distributing the sampling
units to either “UP” or “DOWN” lists in a predictable and non-biased manner.

Although Methods 1a/1b and Methods 2a/2b perform well across one dimension of non-
biasedness, Method 3 stands out as the best performer across both dimensions. The design of the
simulated data allows the post-sampling distribution of units to be inspected on a group-by-group
basis and describe group-based trends and patterns of bias that could be difficult to identify if
samplings units were considered on the individual level. The simulations were conducted across
a range of different grouping scenarios in order make the general observation that Method 3 does
not oversample/under-sample units that tend to be either up- or down-regulated to varying
degrees. Now that a method for sampling has been chosen, we will explore the effect of list size
(i.e. number of sampling units that will be included in lists) on the power of the proposed test

statistics before looking at performance in permutation procedures with the LINCS L1000 data.

2.8 Simulated test statistics and Power Analysis

Simulation studies harness the power of computers to create data sets under pseudo-
random sampling conditions that are defined/known to the experimenter in order to discern
properties of a test statistic by observing its empirical distribution, possibly, as in our case, over a
range of hypothetical scenarios [23]. Experimenters can compare the performance of methods
that are either intended to generate or analyze data. In the previous section, outcome
measurements pertaining to the simulated data were brought into question in order to identify the
data generation mechanism that was least biased among the competing methods. In the section
that follows, the ‘thresholding’ parameter (as defined below) will be varied in order to examine
the performance of our proposed measurements of association with regard to their power to

detect an effect under the assumption that the null hypothesis is not true.
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Recall the following parameters:
ny = number of units in an "UP LIST"
np = number of units in a "DOWN LIST"
n=ny+ np

These ‘threseholding’ parameters were held constant during our assessment of the data
generating mechanisms (ny = np = 50; n = 100).

The thresholding and discretization employed to transform the Level 5 CGSs to Level 6
CGSs is hierarchical in nature. The thresholding happens first and involves ranking the genes by
the continuous-valued mod-z scores and selecting the most positive and most negative among
them; up until now we have only discussed selecting genes with the 50 most positive and 50
most negative mod-z scores. The second step is the discretization of values for those genes that
were retained from the original ranked list. Thresholding the data in this way is intended to filter
out the effects of ‘noisy’ genes and ‘noisy’ gene behavior so that the analyses that utilize this

data have more power to detect meaningful associations among elements of the data set.

2.8.1 Measurements of Association and Concordance

The purpose of the simulation study is to find the distribution of our proposed test
statistics [for finding both differences and similarities among concordance measurements
between different cell lines] when the sampling distributions for the primary units are defined
rather than estimated from the data. The goal of the simulation study is to answer the following
question: “Are the association measurements reliably able to detect dissimilarity (or similarity) in
the downstream effects between two perturbating factors in one cell line vs. the other above and

beyond what would be considered ‘background gene discordance (or concordance)’? The term
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‘background gene discordance’ is meant to imply that individual L1000 genes do not have
uniform probabilities for up/down list membership across perturbating factors among cell lines.
The test statistics to compare measurements of association between two cell lines (A and B) at
two perturbating factors (X and Y) are:

log(0%y)—log(9%y)

JCspg) +(s8,)’

Y overlaps{E and A48 =

The formulae for ¢, and SEJ, are given in equations (2) and (3); note that under the null
hypothesis A4% ~ N(0,1) when A and B have identical distributions. The statistic A45 is largely
a measurement of difference; that is the magnitude of A4% in either a positive or negative
direction would suggest differences in concordance between A and B at X and Y. On the other
hand, we would expect that Y, overlapsgg to be larger when the downstream effects of X and Y
are more similar for A and B.

In the simulation study, we will observe the behavior of these test statistics when A and B
are known to have different distributions by generating their empirical distribution when A and B
fall under different regulatory groupings as described in Section 2.5.3. We will explore how
varying the thresholding parameter affects the distribution of the test statistics and then conduct a

power analysis in order to assess the possible benefits or drawbacks of increasing the limit of
data considered for these types of tests.
2.8.2 Procedure for Simulating Edges

In order to compare concordance measurements between RGs by comparing edges, we
first need to generate nodes. 2000 nodes (reflecting the number of perturbagens in the LINCS
data set) will be generated according to Method 3 for each RG (as well as the Null Scenario) as

outlined in Section 2.3.2 across the following thresholding parameter t: 10, 20, 30, 40, 50, 60,
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ny+np

70, 80, 90, 100, 150, 200, 250, 300, 350, 400 and “complete”. t represents the value ———

2

subject to the constraint ny; = np; i.e. the length of either “Up” or “Down” list with the
exception of the “complete” scenario. The “complete” parameterization, as the name implies,
uses the complete set of sampling units by carrying out only Step 1 of the algorithm for Method
3 to and label each unit as “Up” or “Down”; all of the units labeled “Up” will be part of the L3,
and all units labeled “Down” will be part of the L},. On average we would expect ny = np =
500 for the complete scenario but note that these values are actually random variables subject to
the constraint n; + np = 1000.
Let CR* be the collection of simulated nodes for a given RG scenario (R = “Null”, 3, 5, 7,
9) at threshold t where CR* is an individual node (i = 1,2, ...,2000). Then, the following
algorithm will be used to generate n edges:
Input: Nodes C®* and number of edges n to generate
Initialize a data frame with n rows for results
For 1:n:
R « integers from 1: |CRY|
r1 « random sample of 1 integer from R
R« R-—1!
r? « random sample of 1 integer from R

Derive contingency table for Cff and szt and store as edge Effrz inrow n

Calculate odds ratio and SE for edge Effrz and store values in row n

In order to be able to calculate both measures of association between different RG’s, the

minimally sufficient data for each edge is the list of units that populate each cell of the
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contingency table. n = 5000 edges will be generated for each of the five scenarios (four RG’s
and the Null). The value for n has been chosen to provide stable results for estimates of
association between RG’s but also to reflect the number of unique KEGG edges that will

eventually be utilized for the analysis of the L1000 data set.

2.8.3 Generating Measurements of Association in Simulated Data

The previous section demonstrates the procedure for producing single edges with regard
to parameters specific to a given RG. The next step is to generate data that will allow us to
calculate outcome measurements that compare our pairwise measurements of association (the
edge vs. edge summary statistics ¥ overlaps£ and A4 (“sum of overlaps” and “delta” values)).
In the simulated data, the indexes “A” and “B” represent the RG scenario as opposed to cell
lines. The indexes “X” and “Y” represent, within a given RG, two different nodes (among the
2000 simulated nodes) form any edge X|Y. Let ER be the collection of simulated edges for a
given RG scenario (R = “Null”, 3, 5, 7, 9) at threshold t where ElRt is an individual edge (i =
1,2,...,5000). There will be two relevant sets of edge-based comparisons: each RG vs. the Null
and each RG vs. itself (includes Null vs. Null) (referred to as the RG vs. RG scenario). The
algorithm below will be used to derive measurements of association for the RG vs. Null at each
threshold t:

Input: Edges E®/* and ERnutt;

Initialize a data frame with n rows for results

Fori=1:n:

Calculate Y, overlaps and delta values between El.Rj ‘and E iR nuttt,
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In the RG vs. RG scenario, the two edges for comparison are sampled in a bootstrap fashion
from the same set E®i*as follows:

Input: Edges ER/*

Initialize a data frame with n rows for results

For 1: n:

R « integers from 1: |[ER®/Y|

r1 « random sample of one integer from R
R« R-—11

r2? « random sample of one integer from R

Rt Rt
Calculate total overlaps and delta values between Erlj and Erzj .

2.8.4 Distribution of Measurements of Association in Simulated Data

Now that the data has been simulated, the first task at hand is to check our distributional
assumption regarding A%% ~ N(0,1) that should hold when A and B are the same. We can check
this assumption by observing the behavior of A48 that is, A4% across many random edges in the
RG vs. RG scenario as we would expect this to reflect the null hypothesis of no difference.
Graphical inspection along with summary measurements of the distributions (mean, median,
standard deviation) will be utilized to verify the assumption of standard normality for A4Z.

The plots in Figure 9 show the density of A4Z as the threshold for list membership
increases. When the units sampled come from the same distribution, in this example either both
sampled under the “null” scenario or “RG3” scenario, A4? approaches the standard normal
distribution as the threshold is increased beyond a lower limit of 20 units per up and per down

list (i.e. at least 30). The distributions corresponding to A4Z for list lengths of 20 and below fail
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to converge to the approximate the standard normal curve due to the limited number of values
that are possible realizations of A4Z as evidenced by multiple peaks (Figure 9: A1, B1, C1). On
ZAB

the other hand, as the threshold increases to 50 and above, the distributions of approach the

standard normal distribution (Figure 9: A2, B2).

The evidence for standard normality under the null as the threshold approaches 50 is
echoed in Table 12. Although a higher threshold means little in terms of more proximity to a
mean of zero, the standard deviations reported in Table 12 suggest that list lengths of 60 and

above produce A4F distributions that approach the hypothetical N(0,1).
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Figure 9: Distribution of A across range of thresholds; from 10 — 100 in increments of 10 (A1, B1, C1) and from
50-400 plus the ‘complete’ scenario in increments of 50 (A2, B2, C2). The black solid line represents the

standard normal curve.
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The other take away from Figure 9 is that under the alternate hypothesis, the mean of A% moves
away from zero as the threshold increases. The same plots [not shown] for the RG5, RG7 and
RG9 are nearly identical to those for RG3. The power analysis in the next section will address
the following question: is there a point at which an increase in the threshold fails to yield

additional power to detect a difference under the alternate hypothesis?

Table 12: Mean and standard deviation for distribution of 44 across range of thresholds for RG3.
List Length mean sd List Length mean sd

10 0.003 0.275 100 0.026 0.975
20 -0.013 0.488 150 -0.013 0.968
30 -0.031 0.691 200 0.039 0.965
40 -0.021 0.815 250 -0.037 0.981
50 0.004 0.860 300 0.003 0.964
60 0.015 0.926 350 0.061 0.955
70 0.079 0.966 400 0.014 0.940
80 0.018 0.937 complete 0.010 0.953
0| -0060] 0995 I

Whereas the test statistic A has a known parametric null distribution, the ad hoc test statistic
2. overlaps does not have a hypothetical or theory-based null distribution. Since the purpose of
this test statistic is to identify a degree of similarity between two edges that would be higher than
that expected under the null hypothesis of no association, the RG vs. Null scenario will serve as
the distribution for the test statistic under the null and the RG vs. RG scenario will be treated as
the distribution under the alternate hypothesis of presence of association. Figure 10 depicts the
distribution of )} overlaps under the RG3 vs. Null scenario, and for comparison the Null vs.
Null scenario along with the RG3 vs. RG3 as the alternate scenario.

The histograms in Figure 10 highlight two important concepts. The first is that the

threshold for list length must be greater than 100 in order to obtain a distribution that is not
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dominated by zero counts in either the null or alternate scenarios. The second is that under the
alternate hypothesis the distributions shift to the right; in other words, when we know that the
sampling units come from similar distributions, we would expect to find more units that occupy

the same cell under the alternate vs. the null scenario.
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Figure 10: Distribution for the test statistics ¥ overlaps™""™", ¥ overlaps"®*™" and
Y overlaps®®**%cross all thresholds (A1, A2, A3), thresholds below 100 (B1,B2,B3), and thresholds
above 100 (C1,C2,C3) under the null (top and middle) and alternate (bottom) hypothesis.
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2.8.5 Power Analysis

The distributions that were introduced in Section 2.7.3 for Y overlapszE and Z}‘}{? will now
be employed to conduct a power analysis of these proposed test statistics. Typically, when data
is arranged in a contingency table as shown in Table 13, the null hypothesis of independence is
that the characteristic 4 is equally distributed between the two groups in population P [24].
Under the alternate hypothesis, the “characteristic”” column or “response” variable is dependent
on the row or “explanatory” variable. In a balanced design, the marginal row totals n;, and n,,
are equal and considered fixed whereas the marginal column totals are random variables whose
value is determined by the outcome of the experiment [25]. The power of the test for
independence between the row and column variable is increased by taking a larger sample from
each subpopulation. In other words, if &V is the total number of individuals in the population of
interest, then the power increases as n/N increases.

Table 13: Traditional 2x2 contingency table

Characteristic Marginal Row
Population P A 7 Totals

5

= Group 1 N1 Nqo Nyy
=

Q.

o

Q.

§ Group 2 Nyq N,y Ny
Marginal Column

Totals N1 N2 n

In our analysis, we are operating based on the assumption that our sample includes the
entire population of interest and that, for each unit in the population, we have a ranking metric
that allows us to categorize that unit as “up”, “down”, or “not significant”. As shown in Table
14, only units that can be cross classified between two nodes in one of the four mutually

exclusive categories are part of an edge and contribute to the cell counts used to calculate
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measures of association. The cells are classified as either as either concordant (CC) or
discordant (DC) as follows: concordant cells are Q1 = CC:UU (units are “up” in both nodes) and
Q4 = CC:DD (units are down in both nodes); discordant cells are Q2 = DC:UD (units that are
“up” in node X but “down” in node Y) and Q3 = DC:DU (units that are “down” in node X but
“up” in node Y. Note that units that are “down” in Node X but are “not significant” in Node Y
(and vice versa) do not contribute to cell counts in the contingency table. In our sampling
scenarios, we cannot directly manipulate n, which we define as the total number of sampling
units that make it into a given edge/contingency table. However, we can indirectly influence n

by varying the list length threshold parameter as described in the previous section.

Table 14: 2x2 contingency/directional concordance table for edge X|Y.

Node Y
Regulatory Marginal Column Totals
Group RG UpinY DowninY
. ai .(CC:UFJ) - a2 .(DC:UP) - Units up in X
Upin X Units up in X Units up in X .
= . . and up or down in'Y
g andupinyY and downinY
] Q3 (DC:DU) = Q4 (CC:DD) = . .
4
Down in X Units down in X Units down in X anL;nL:ts:rO:g:/vl: |)r(1 v
andupinyY and downinY P
Marginal Row UnitsupinY Units down in Y Concordant and
Totals And up or down in X and up or down in X Discordant Units (n)

The rational is as follows: as the threshold is increased, a larger portion of units will be
classified as either “up” or “down” instead of “not significant” until the threshold is set to
“complete” and all units are “up” or “down” (and zero remain “not significant””). Note that when
all units are “up” or “down”, all units will fall into the contingency table and n will be equal to N,
the number of units in the population (1000 units in the simulation study and 978 genes in the

L1000 data set). In all other (“non-complete”) scenarios, 0 <n <t * 2. The purpose of the
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power analysis is to see how well our proposed test statistics capture the signal of “informative”

units/genes against varying degrees of background noise.

2.8.5.1 Power Analysis Results: A48

Under the null hypothesis, on average there should be of no difference between
concordance measurements of concordance (ie. E(A%? ) = 0) and the standard deviation
approaches 1 (see Figure 9 and Table 12). Under non-null conditions, as we have defined for
different RG scenarios, when the proportion of units that fall into the concordant cells (Q1 and
Q4) of the contingency table (Table 14) is large relative to the discordant cells (Q2 and Q3) in a
predictable manner based on the specified per-unit sampling values, it is reasonable to assume
that log(BRF*™1) — log(85¢="") > 0. Thus, it seems reasonable to assume that increasing
the threshold parameter ¢ will increase the likelihood of capturing ‘informative’ units; that is,
units that are weighted to fall into the concordant cells. By the same line of logic, however,
increasing ¢ will also lead to an increase in the number of units that fall into the discordant cells
[or concordant cells] by random chance for any sampling scenario. Is there, in fact, an upper
limit or ‘tipping point’ for the parameter ¢ that will result in less power to detect a true difference
in the non-null scenarios than lower parameter values?

In order to calculate power across different thresholds, the standard normal distribution
serves as the null distribution and the alternate distributions are those described in Section 2.7.3
(see Figure 9(C2)). Power at a given threshold is equal to the percentage of values of the
alternate distribution that are greater than the specified quantile of the null distribution for a
given alpha level. The dashed line in Figure 11 represents 80% power to detect a difference

when the alternate hypothesis of a difference in concordance is true. In general, all of the graphs
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show steady increases in power as the threshold ¢ (“List Length”, x-axis) increases to 200 after

which point only modest gains or even losses in power are made by increasing .

A Power across Thresholds B Power across Thresholds
Alternate Scenario: RG3 Alternate Scenario: RG5
1.00- 1.00-

alpha alpha
5 001 & 0.01
2 2
L — 005 ¢ — 0.05
0.1 0.1
10 50 100 150 200 250 300 350 400complete 10 50 100 150 200 250 300 350 400complete
List Length List Length
C Power across Thresholds D Power across Thresholds
Alternate Scenario: RG7 Alternate Scenario: RG9
alpha alpha
001 ® 0.01
2
— 005 ¢ — 0.05
0.1 0.1
10 50 100 150 200 250 300 350 400complete 10 50 100 150 200 250 300 350 400complete
List Length List Length

Figure 11: Power curves for A across threshold parameter settings for RG3(A), RG5(B), RG7(C), and RG9(D).

For scenario RG3, power decreases when the threshold is increased from 350 to 400 and
“complete” across all three alpha levels. In RG5 power only decreases when the threshold goes

from 400 to “complete”. For RG7, there are no decreases in power across thresholds or alpha

51



levels. The RGY scenario shows a very slight decrease in power when the threshold is increased

beyond 400 at alpha of 0.05 as well as beyond 400 at alpha of 0.01.

A Power across Thresholds B Power across Thresholds
Sum of Overlaps: RG3 Sum of Overlaps: RG5

alpha

alpha
9] 001 @ 0.01
5 5
L — 005 @ — 0.05
0.1 0.1
0.00- 0.00-
10 50 100 150 200 250 300 350 400complete 10 50 100 150 200 250 300 350 400complete
List Length List Length
C Power across Thresholds D Power across Thresholds
Sum of Overlaps: RG7 Sum of Overlaps: RG9
alpha alpha
9] 001 © 0.01
5 5
£ — 005 — 0.05
0.1 0.1
0.00- 0.00-
10 50 100 150 200 250 300 350 400complete 10 50 100 150 200 250 300 350 400complete
List Length List Length

Figure 12: Power curves for ), overlaps across threshold parameter settings for RG3(A), RG5(B), RG7(C),

2.8.5.2 Power Analysis Results: ), overlaps

The null hypothesis for the test statistic ), overlaps is more nuanced than that of A; the
null distribution is obtained by comparing the counts of sampling units that show up in the same

cell from a specified distribution (RG3, RGS5, RG7, RGY) to a random distribution (null scenario)
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instead of a known, hypothetical null such as the standard normal distribution. Power is
calculated as the percentage of observations in the alternate distribution (RG vs. RG) that are
greater than those of the null (RG vs. null) for quantiles at the three different alpha levels.
Whereas the null distribution is identical for A across threshold values, there is a different null
distribution at each threshold for ), overlaps. The distributions at each threshold level are
employed to take into consideration the fact that there will inevitably be an increase in
overlapping units by random as the threshold goes up.

The curves in Figure 13 are similar to those in Figure 11 with regard to steady increases
of power up to the threshold limit of 200. In contrast, there is not a threshold beyond which
power decreases and, conversely, there are values of t for which an increase does not yield any
additional power (i.e. power plateaus). For RG3, RGS5, and RG7, power plateaus at t = 250,
whereas for RG9 this value is t = 200.

2.8.6 Summary of Power Analysis

The plots in Figure 14 allow for comparison of the power under different scenarios at a
specified level of alpha and those in Figure 15 are included as a visual guide to aid in possible
explanations for differences in power amongst the scenarios and test statistics. For both A and
Y. overlaps, the RG7 and RGY scenarios attain higher levels of power across thresholds and
values of alpha. A possible explanation for the relatively higher power to detect differences
when compared to the null in scenarios RG7 and RG9 versus RG3 and RGS is that a smaller
proportion of units belong to the “baseline” group (i.e., the group for which p(UP) = p(DOWN))
in the RG7 and RGY scenarios. The same rationale could underlie the slightly higher power to

detect similarities in the RG7 and RG9 scenarios.
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A1 Delta Power across Thresholds A2 Delta Power across Thresholds A3 Delta Power across Thresholds
All Scenarios: Alpha = 0.10 All Scenarios: Alpha = 0.05 All Scenarios: Alpha = 0.01
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Figure 14: Power curves for alpha set to 0.1 (A1: A, B1: }; overlaps), 0.05 (A2: A, B2: }; overlaps)
and 0.05 (A3: A, B3: Y, overlaps

The results of the power analysis suggest that a threshold of 50 units per up/down list
may be insufficient to detect either differences or similarities between two entities. In order to
obtain the maximum power to detect differences and similarities in the simulated scenarios, a
threshold setting of 200 units per up/down list is required. Now that we know how these
parameters function in a simulated setting, we will explore how the same type of analysis plays

out in data specific to patterns in the L1000 data set in the next chapter.
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Figure 15: Size and initial p(UP) vs p(DOWN) properties for the RG3(A), RG5(B), RG7(C),
and RG(9) scenarios as well as the null scenario.
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Chapter 3: L1000 Power Analysis

Section 2.1 introduced a concept that will be of central importance going forward and
that is the concept that the L1000 genes exhibit behavior that may be described with regard to
two different dimensions; those dimensions being direction of regulation as well as cell line-
specific regulation. Different patterns of gene regulation between cells are inevitable given the
complex layers of epigenetic regulation even between cells of the same genotype [26]. In the
L1000 data set, there are multiple cancer cell lines that are known to have genotypic differences
but are similar with regard to experimental protocol; the seven core cell lines used in this
analysis have over two thousand common shRNA perturbations. The analyses presented in this
chapter will employ methods described in the previous chapter to model background patterns of
gene regulation among different cell lines in order to identify differences and similarities

between cell lines in the L1000 data set.

3.1 Motivation: Heterogeneity Among Cell Lines

The term “heterogeneity” takes on different meanings in the context of statistics and
biology; here we are using it to describe both. When we make the claim that there is
heterogeneity among cell lines, we a referring to differences in global gene regulation between
different cancer-cell lines across perturbating factors. This difference will be quantified and then
taken into consideration in the follow up analyses. Before moving on to the power analysis, a
preliminary example of heterogeneity among the seven core lines will be presented to serve as a
starting point for motivating the considerations that are being made when handling this diverse
data set.

The data set provided by ilincs.org [27] contains Level 5 consensus genomic signatures

CGS:s) for 2007 common perturbating factors across seven core cell lines. Each cell line-
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A375
A549
HA1E
HEPG2
HT29
MCF7
PC3

perturbating-factor combination contains a record of modZ scores for the 978 LM genes as well
as the p-values associated with the significance of the modZ score (accounts for variation across
different shRNAs).

Let MShg.2007 be the matrix of modZ scores for cell line cl.

Let PShg.2007 be the matrix of modZ p-values for cell line cl.

cl

Then, the entries My, ,,

and pf,ln’p s refer to the modZ score and p-value for landmark

gene Im (Im = 1,..., 978) at perturbating factor pg (pg = 1,..., 2042) within cell line ¢/ (c/ = 1,...,

7) from matrices M and P. The ranges and a few summary measurements of mffn,p s and plc,,ln,p f

are reported in Table 15. To be clear, a negative modZ score indicates that transcripts
corresponding to a landmark gene are fewer in number compared to baseline conditions at a
given perturbating-factor-cell line combination and a positive score means that there are more
counts of the transcript in the perturbed vs. baseline condition. In this data set, there are also
modZ scores of zero that reflect no significant difference between counts in the perturbed

condition versus baseline.

Table 15: Summary measurements from matrices M and P across perturbagens for each cell line.
Lowest modZ Highest modZ Mean modZ Zero modZ Count Smallest p—value Largest p-value

-10 10 —-0.0037 94 1.1742881131042e-42 1
-10 8.1029 —-0.0244 139 1.39192301536461e-28 1
-9.4864 8.0922 -0.0067 76 8.47284045075094e-35 1
-10 9.5294 0.0039 68 2.29157275174701e-27 1
-9.5979 10 0.004 129 1.02437885822332e-33 1
-10 8.1447 —-0.0187 1816 2.92367068286224e-21 1
-10 7.8563 -0.0229 1639 1.36918760797338e-32 1

The overall (across cell line) range of modZ values is [-10, 10] although the A375

(melanoma) cell line is the only entity with scores that cover this complete range. Perhaps not
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coincidentally it is also the cell line with a mean modZ closest to zero followed by HEPG2
which has the second largest range. In comparison to the other cell lines in the panel, MCF7 and
PC3 have modZ scores that equal zero at rates that are at least ten times that of other cell lines.
The purpose for reporting the minimum p-value is not so much to show that there are differences
between cell lines for this measurement but rather that there are no zero p-values; an aspect of
this data set that will be important in the construction of custom-length thresholded CGSs (and in
turn CSs (concordance signatures)) in the following section. It suffices to say that descriptive
numerical summaries of landmark gene behavior across perturbating factors within a given cell
line suggest that there may be differences in the magnitude of differential gene expression
between cell lines. The remainder of this chapter will focus on how heterogeneity between cell
lines may be accounted for in the analysis of the L1000 data as well as whether or not the

heterogeneity might affect the interpretation of the downstream results.
3.2 Generating Data for the Power Analysis of L1000 Data

The power analysis of simulated data suggested that the proposed test statistics have little
power to detect differences or similarities between two entities when the threshold parameter is
set at the default value of 50 units per up/down list. In the simulated data set, although this
finding was consistent across RG scenarios, different scenarios did yield consistently different
(higher or lower) power estimates across threshold and alpha settings. In this section we will
describe how we will generate data to conduct a parallel analysis of the L1000 data set.

The L1000 data power analysis will require cell line specific edge distributions.
Specifically, three types of pair-wise edge distributions will be generated as part of the power
analysis: simulated, random and KEGG. Simulated edges will be constructed in a manner

similar to those for the specific regulatory groups in chapter 2; measurement for differential
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expression of L1000 gene behavior across perturbating factors at each threshold level will be part
of the “Method 3”-type data generating process. Random edges and KEGG edges will be
synthesized from Level 6 CGSs in their original form across the different threshold levels. The
procedures for obtaining Level 6 CGSs and then generating the different types of edges will be

discussed in the remainder of this section.

3.2.1 Custom-Thresholded Level 6 CGSs

The manipulation of the thresholding parameter to produce new Level 6 CGSs will
require a new data set for their de novo construction. The p-values are the primary ranking
mechanism for determining a perturbating factor’s inclusion at a given threshold level and the

sign of their respective modZ scores accounts for the directionality of the dysregulation.

A2M AARS AATF A2M AARS AATF A2M AARS AATF
AARS 0.81074 -2.41592 0.80352 AARS 0.15680 0.00800 0.13306 AARS 0.15680 -0.00800 0.13306
ABCB6 -0.00450 0.41099 0.10218 ABCB6 0.99336 0.12786 0.80813 ABCB6 -0.99336 0.12786 0.80813
ABCCS5 1.01039 -0.08585 2.65974 ABCC5 0.16130 0.68513 0.02934 ABCC5 0.16130 -0.68513 0.02934
ABCF1 -0.69065 -0.09388 0.05886 ABCF1 0.22189 0.68865 0.87019 ABCF1 -0.22189 -0.68865 0.87019
ABCF3 -0.91045 -0.53804 -0.15166 ABCF3 0.09911 0.03928 0.73001 ABCF3 -0.09911 -0.03928 -0.73001
ABHD4 0.67756 -0.32756 -0.31919 ABHD4 0.28476 0.12343 0.50515 ABHD4 0.28476 -0.12343 -0.50515
ABHD6 0.45756 -0.49667 -0.34841 ABHD& 0.44760 0.01986 0.36238 ABHD6 0.44760 -0.01986 -0.36238
ABL1 1.16341 1.19339 -0.04573 ABL1 0.05349 0.04780 0.90906 ABL1 0.05349 0.04780 -0.90906
ACAA1 0.08618 0.15777 -0.09744 ACAA1 0.87318 0.60504 0.81431 ACAA1 0.87318 0.60504 -0.81431
ACAT2 -0.71894 -0.19292 -1.53479 ACAT2 0.25072 0.33448 0.24359 ACAT2 -0.25072 -0.33448 -0.24359
ACBD3 -0.69403 -0.32066 -0.05265 ACBD3 0.20587 0.07201 0.88270 ACBD3 -0.20587 -0.07201 -0.88270
ACD -1.13797 -0.01979 -0.077189 ACD 0.08608 0.91563 0.83778 ACD -0.08608 -0.91563 -0.83778
ACLY -0.04495 0.24140 1.02140 ACLY 0.93264 0.26905 0.03203 ACLY -0.93264 0.26905 0.03203
ACOT9 0.95737 0.17592 -0.67414 ACOT9 0.09117 0.28834 0.12556 ACOT9 0.09117 0.28834 -0.12556
ADAM10 0.66620 0.24147 0.06493 ADAM10 0.24608 0.24034 0.88458 ADAM10 0.24608 0.24034 0.88458
ADAT1 0.93440 -0.22183 0.05103 ADAT1 0.12719 0.39924 0.90534 ADAT1 0.12719 -0.39924 0.90534
ADCK3 0.17065 0.94122 -0.23139 ADCK3 0.76209 0.03093 0.56850 ADCK3 0.76209 0.03093 -0.56850
ADGRES -0.47768 -0.32315 0.63217 ADGRES 0.37103 0.13101 0.17562 ADGRES -0.37103 -0.13101 0.17562

Figure 16: Cell line A375 modZ scores (A), p-values (B) and signed p-values (C) for the first
twenty [rows; arranged alphabetically] L1000 LM genes across three perturbagens [columns].

The first step for generating custom-thresholded Level 6 CGSs is to obtain a metric by
which to rank the L1000 LM genes within each cell line-perturbagen combination as follows:

Let §55 852007 be Sign(MShg.2007); the sign matrix of the modZ scores for cell line c/.
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Then, §¢! © P! = R where R is the Hadamard product (entry-wise multiplication) of the
sign and p-value matrix [28]. Each column of R is an independent record of directional
ranking metrics that will be sufficient for generating custom-thresholded Level 6 CGSs for each
perturbagen-cell line-combination. Figure 16(C) is an example of the first twenty rows and
three columns of R4375,

Note that some entries in S are equal to zero; these number of these entries for given
cell line are reported in the column labeled “Zero modZ Count” in Table 15. The zero value for
these entries will result in an R°" entry of zero. When an entry in R° is zero, that particular LM
gene will be ineligible for a position in either an up or down CGS at any threshold. With the
exception of entries equal to zero, the closer an entry’s absolute value is to zero, the higher its
relative (column-wise) rank within its directional category; all positive entries are eligible for
membership in an “up” list and all negative entries are eligible for membership in a “down” list.
With R in place, the procedure for generating Level 6 CGSs at each cell line-perturbagen
combination at each threshold level ¢ is as follows:

Let 74P be the p™ column of R¢; the 978 signed p-values for perturbagen p in cell line c/.
r°tP will then be partitioned as follows:
o up°P contains all LM genes whose entries of rzc,l > 0 ranked in order of smallest
value to largest value.
o down‘? contains LM genes whose entries all entries of rf,l < 0 ranked in order
of smallest absolute value to largest absolute value.
Then, at each threshold level #, the Level 6 CGS is the combined vector < upif'tp, downif'tp >

for each cell line-perturbagen combination.
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3.2.2 Simulated L1000 Edges

A set of m = 5000 simulated edges will be generated from a set of n = 2000 simulated
nodes at each threshold level ¢ for each cell line. The values for m and » are chosen to be
representative of the approximately 5000 unique edges from KEGG pathways whereby both
nodes correspond to perturbagens in the L1000 data set [11]. The simulation procedure is
intended to reflect what would be expected if the L1000 LM genes were behaving in a random
but cell line-specific manner as predicted by their marginal counts in up and down thresholded
CGS:s.

The preliminary step in this procedure is to look across the 2007 cell line-perturbagen-
specific CGSs at each threshold (whose generation is detailed in Section 3.2.1) in order to obtain
probability weights similar to those that were introduced in Section 2.3.1. However, in this
scenario, each of the 978 LM genes will be associated with unique up/down selection weights
and probabilities instead of weights and probabilities specified by membership in a specific
regulatory group. Recall matrix L, an indicator matrix for LM gene CGS membership first
presented in Figure 4. This matrix is an indicator for LM gene membership in CGSs for the
default list length [threshold] of 50 genes up and down (978-100 = 878 not differentially
regulated). The notation used in Section 2.1 will be modified to describe the parameterization of
the cell line-specific null distribution across different threshold parameter settings as follows:

Let Lt be a 978%2007 matrix defined by the following indicator function:

—-1, geneg; € CGS_D{"" < CGS™*
Iicjl’t = 0, geneg; & CGS{"*
+1, geneg; € CGS_UM < CGSS™

With these I’s in place in LY we may readily calculate the following probabilities:
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2,007
clt — Zz 1 (II.] +1) clt

* pu, 5007 = probability that g; will be one of 7 genes in a random CGS_U;
gyt = HEU UG o abiliy that g will be one of e,

* pd; — 007 Pbrobability that g; will be one of 7 genes in a random CGS_D;

o pnt=1—pu;t — pd;*"* = probability that g; is neither part of a random

CGS_D{"* nor CGS_U™.
Note that in the “complete” scenario all genes will be either part of an up or down list and
therefore pn;cbeomplete = 0y i, j and |CGS_US"°™P*%| and |CGS_D{"“°™P**| are not
necessarily equal [although they could be equal by chance] but should be similar in size. With
these probabilities in place for each gene, we can derive the following gene-specific sampling

weights for cell line ¢/at threshold &

njCl't =1- pnjd't = probability that g; is in any randomly selected up or down list
Lt
Uclt _ pu; _ ; ; ;
ok = Tt = up-direction weight for g;
) ]
Dclt pd;
‘C ) _ ] _ _ - - . .
®; = gt down-direction weight for g;

Note that ¢! + @? = 1. These weights are the inputs for the Method 3 Sampling Algorithm
which, for each iteration, will produce a ‘synthetic’ level 6 CGS [for a given cell line at the
specific threshold]. The algorithm below is slightly modified from its original version in chapter
2 to reflect the specific cell line- level specificity.

Step 1: Simulate Nodes

clt Uclt D,clt

Input: Vectors with the parameters ;" ;""" @;

Initialize a data frame with n rows for results

For 1: n:
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1. Label all M genes by sampling [with replacement] the labels “UP” or “DOWN” in a

Uclt D,cl,t

binomial fashion with the vector of probabilities taking the form < ¢
O0p < units labelled "DOWN",

Oy < units labelled "UP".

Stop at step 1 if = “complete”.

2. Sample without replacement t/2 units from §p and t/2 units from &y using njCl't

as
sampling weights.

Step 2: Simulate Edges from Simulated Nodes

Let C¢"t be the collection of simulated nodes for a given cell line at threshold t where
Cid’t is an individual node (i = 1,2, ...,2000). Then, the following algorithm will be
used to generate m edges:

Input: Nodes C°"* and number of edges m to generate

Initialize a data frame E with m rows for results

For 1: m:

1. Use random number generator to select two integers (11,1, € 1: 2000; r; # 1)
2. Derive contingency table for Cﬁ’t and Cﬁ’t and store as edge Eﬁrt . iInTow m

3. Calculate odds ratio and SE for edge Eﬁrt » and store values in row m

3.2.3 Annotated KEGG L1000 Edges

The inherent assumption that underlies this analysis is that the topological annotations
that connect two genes/protein products will yield insight into biological mechanisms of action
that are either unique with regard to a particular cell line or ubiquitous across the board and
perhaps interesting for their general applicability across biological specimens of interest. The

topological annotations that we will consider for this analysis are the edge-type protein-protein
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relationships extracted from the KEGG pathway database that [11]. There are 5,474 unique
edges from KEGG that are amenable to our core L1000 data set; that is both proteins/gene-
products are perturbed via shRNA across the seven cell lines.

Let K be a 5,474X2 matrix that contains the collection of all unique KEGG edges that
have pairwise data entries in the L1000 data set such that k;; and k;, are the gene symbols for
the two nodes of the i*" edge. Note that the directionality of the relationship is not a factor for
this step in the analysis; an edge with the relationship B-> A is equivalent to A=>B and the node
pair (B,A) will not be in K if the node pair (A,B) is already in K. Let CGSLt be the 2,007x2
matrix whereby CGSS* contains CGS_DF"* CGSS* contains CGS_UF . The data set
corresponding to all of the KEGG edges, F€, is then constructed as follows:

Input: CGS°"t and K

Initialize a data frame F with m = 5,474 rows for results

For j=1:m:

cl, clt

1. Derive contingency table for CGS;_ ,ijland CGS;_ k2 and store as edge F kcj’lt'ka in row J.

2. Calculate odds ratio and SE for edge F,f;'lt’ka and store values in row j.

3.2.4 Random L1000 Edges

An alternative null distribution will be synthesized from random ‘real’ nodes in the
L1000 data set. Here, a ‘real’ node is a Level 6 CGS corresponding to an individual perturbagen
(shRNA) at threshold level . These edges are analogous to the KEGG edges described in the
previous section with the exception that we will be constructing the edges from nodes stored in

the matrix R instead of K. The criteria for any given pair of nodes < 7j4, 1, > is that it cannot

be among the pairs of nodes in K and that all pairs of nodes in R are unique amongst themselves.
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The same set of random nodes R will then be used to fill the data frame Gt in exactly the same

manner that K was utilized to fill the data frame F€'t,

3.2.5 Cell line vs Cell line comparisons

At this phase of the analysis, we will generate measurements of association amongst the
levels of cell line-combinations and thresholds that involve the data frames E€Yt, F€Lt and G€Lt.
This process will be similar to the one we introduced in Section 2.7.3. The following procedure
will be carried out across all cell line-combinations and threshold levels. The data frames
EEClaclnt FEclaclbt and GGCla¢bt will contain the outcomes for the edge-edge comparisons for
the simulated, KEGG and random edges respectively. Let the data frames X¢!¢ and XX¢lai¢!bt be
generic versions of the edge and edge-edge data frames such that the procedure described below
can be extended to the simulated, KEGG and random edges in an identical manner.

Input: Edges X¢!=%¢ and X¢!=b:t

Initialize a data frame XX¢la:!otyith m rows for results

For j=1:m:

XX ]fia:db *  Delta value for edge j between cell lines a and b

XXCla:Clb't

i3 overlaps < Total number of overlapping genes from the cells of the

contingency tables for edge j between cell lines a and b

3.3 Power Analysis

The power analysis in this section will either support or fail to support the notion that the
proposed test statistics [measurements of association] are most appropriate and useful when used
in conjunction with cell line specific models of background gene behavior as well as custom

thresholding parameters instead of the default threshold of the original Level 6 CGSs. There are
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two null hypotheses to consider; the first is that the genes in the Level 6 CGSs exhibit random
behavior and are therefore not able to detect meaningful or biologically relevant similarities or
differences in gene-product-relationship between cell lines. This null is represented by the
“simulated” edge set. The second null hypothesis is that the annotation given to edges is not
predictive of a greater level of similarity or difference between cell lines; this null is represented
by the “random” edge set. In both scenarios, the alternate distributions are represented by the
test statistics in the “KEGG” edge set.
3.3.1 Calculation of Power: Delta

In the analysis of the simulated data, there was an important difference between the null
scenario and the alternate scenario with regard to the delta values that does not hold true for the
analysis of cell line vs. cell line behavior — this is the assumption that the alternate scenarios
would show greater levels of concordance which could be captured by a delta distribution whose
mean was shifted away from zero in the positive direction (i.e. shifted to the right along the x-

log(8%y)—log(9%y)

axis). Recall that A45 =
2 2
(sESy)” +(SESy)

for edge X|Y compared in cell line A and B where

cell line A is there “reference” and cell line B is the “comparator”. In all cases, the relationship
A4E = —1 % AB4 holds true. If A4E > 0, the interpretation is that there is greater concordance
between X and Y in cell line A than in cell line B whereas A45 < 0 implies greater concordance
in cell line B than in cell line A; thus both positive and negative values of delta suggest deviation
from the null hypothesis of equality of concordance between cell lines. Therefore, under the
assumption that there are in fact edges that are more concordant in the reference cell line but
others that are more concordant in the comparator cell line, we would expect an alternate

distribution that displays heavier tails as opposed to an absolute shift in delta.

66



The plots in Figure 17 demonstrate two aspects of the data. The first is that there is
indeed a higher occurrence of delta values in the extremes [tails] of the distribution under the
alternate hypothesis when the simulated edge set acts as the null distribution. The second is that,
by including more LM genes in concordance measurements (i.e. increasing the threshold 7),
differences in odds ratios between cell lines will be even more pronounced as evidenced by the
larger spread of values in Figure 17(A) vs. (B). It may not be readily obvious given the
difference in scale between the two graphs that the shaded area (representing power at a two-
tailed alpha = .10) in Figure 17(B) is also much greater than the shaded area in Figure 17(A),
75% vs 33.5%. The power analysis in the following section will address the nature of the power

gains relative to increases in list length across the spectrum of list lengths.

A Density Plot of Delta: A375 vs MCF7 B  Density Plot of Delta: A375 vs MCF7
Power: List Length = 50, alpha = 0.10 Power: List Length = 400, alpha = 0.10

04-

Edge Type - Edge Type
KEGG 2 KEGG

o

a

— simulated —— simulated

0.1-

Figure 17: Density curves for A values with A375 as the reference cell line and MCF7 as the comparator
cell line amongst simulated edges as well as KEGG annotated edges. The shaded areas on the right-hand
side of the graph represent edges that are more concordant in A375 than MCF7 whereas areas on the left-
hand side are more concordant in A375 than MCF7 using cutoff values for the below the 5™ percentile and
above the 95" percentile of simulated delta values at list lengths of 50 (A) and 400 (B).
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3.3.2 Calculation of Power: ), overlaps

The null hypothesis underlying the count-type data for the statistic ), overlaps;?g is that
the count of overlapping genes amongst the cells in the KEGG edges is not fewer or greater than
we would expect under simulated or random conditions. As a consequence, the power for the
Y. overlaps will be handled in a two-tailed fashion akin to the treatment of the power for
calculation for delta. Unlike continuous measurements of delta, the ), overlaps is discrete, and
features counts that are dominated by zero at smaller list lengths. This type of behavior was

characterized in the simulation study in the previous chapter. Another characteristic of the

Y. overlaps statistic is that there is no difference in ), overlaps;f and ), overlapsi‘;,1 (recall

P P
AB __ BA
A Relative Frequency for Counts of Sum of Overlaps: A375 vs MCF7 B Density Plot of Sum of Overlaps: A375 vs MCF7
Power: List Length = 50, alpha = 0.10 Power: List Length = 400, alpha =0.10
0.04-
0.75-
0.03-
>
2
% - Edge Type
o 0.50- 5
= 2 KEGG
2 0 0.02- — simulated
©
o}
o
0.25-
001~
0.00- o l:l — 0.00-

6 100 200 300 400

0 2 4
Sum of Overlaps total

Figure 18: Relative frequency (A) and density plot (B) for the ), overlaps test statistic between the cell
lines A375 and MCF7. In (A) the shaded bars correspond to counts for KEGG edges that contribute to the
power calculation at a list length of 50 whereas in (B) the shaded area is a continuous approximation to the
power at a list length of 400.

Figure 18 shows how drastically the distributions differ at opposite ends of the threshold

spectrum. The distributions for both the null (simulated) and alternate (KEGG) delta
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A

0.9-

measurements is markedly discrete at the lower end of the threshold level (list length of 50)
whereas both are well approximated by nearly normal distributions at the higher end (list length
of 400). Regions of the alternate distribution that contribute to power at alpha = 0.10 is
represented by the shaded regions and is equal to 18.52% in Figure 18(A) and 84.75% in Figure
18(B). As with the delta statistic, we have preliminary evidence that increasing the threshold

leads to gains in power for the ), overlaps test statistic as well.

3.3.3 Power Analysis Results of Delta: Simulated Null Distribution

The power analysis of the delta test statistic shows a steady increase in power as the as
the threshold of 10 (10 out of 978 LM genes are up and 10 are down) is increased to a less
stringent threshold of 200 (nearly half of all LM genes). The power then plateaus as the list
length approaches 250 and then begins to decrease above the threshold of 350. This pattern is
evident across all levels of alpha but becomes clearer as the stringency of alpha increases (i.e. we

decrease alpha).

Power Curve: Delta B Power Curve: Delta (o] Power Curve: Delta
Null = Simulated Edges; alpha = 0.10 Null = Simulated Edges; alpha = 0.05 Null = Simulated Edges; alpha = 0.01

Reference Cell Line
A375
A549
— HAIE
— HEPG2
— HT29
MCF7
PC3

Power

Comparison Cell Line
— A375

- A549

--- HAIE

- - HEPG2

.-+ HT29

<=+ MCF7

—- PC3

0.25-

10 50 100 150 200 250 300 350 400 complete 10 50 100 150 200 250 300 350 400 complete 10 50 100 150 200 250 300 350 400 complete
List Length List Length List Length

Figure 19: Power curves for A across all possible cell line combinations at alpha levels of 0.10 (A),
0.05 (B) and 0.01(C) with the simulated edge distributions serving as the null distribution.
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Importantly, the shapes from the graphs in Figure 19 show no discernable differences
with regard to specific cell lines; that is, the choice for the most efficient threshold is
independent of reference or comparison cell line. However, there are some patterns that emerge
when the graphs are broken down by reference cell line (Appendix Figure AS). For example,
comparisons between any cell line and HA1E are consistently more powerful than other two cell
lines whereas the opposite is true for PC3 - in the graphs the green line (HA1E) is consistently
the upper bound whereas the pink line (PC3) is consistently the lower bound for the power
curves.

3.3.4 Power Analysis Results of ), overlaps: Simulated Null Distribution

The power trend for the statistic ), overlaps is very similar, though not identical to the
trend for delta; power increases at a steady rate to the threshold of 200, at which gains in power
diminish in subsequent intervals. Unlike delta, the power for the sum of overlap statistic
increases monotonically until the maximum threshold level — there is never a point at which the
signal among the noise is noticeably muddied by casting a larger net via an increase in sample
size.

Another commonality between the two statistics is that there are no glaring differences
amongst the patterns of power increase as it relates to cell line specificity. Interestingly, the
curves for the power of the }; overlaps that compare HA1E to other cell lines are clustered
similarly to those of the curves for the power of the delta statistic with the exception of cell lines
A375 (which trends higher on-) and HT29 (which trends lower on- the x-axis for most

comparisons) [Appendix Figure A6].
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Power Curve: Sum of Overlaps B Power Curve: Sum of Overlaps C Power Curve: Sum of Overlaps
Null = Simulated Edges; alpha =0.10 Null = Simulated Edges; alpha = 0.05 Null = Simulated Edges; alpha = 0.01

1.00- 1.00- 1.00-

Reference Cell Line
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-+ HT29
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Figure 20: Power curves for ), overlaps across all possible cell line combinations at alpha levels of 0.10
(A), 0.05 (B) and 0.01(C) with the simulated edge distributions serving as the null distribution.

3.3.5 Power Analysis Results of Test Statistics: Random Null Distribution

The same power analyses of the two tests statics were performed using a null distribution
as described in Section 3.2.4. This will allow us to get a sense of the nature of the relationship
between annotated edges and their associated test statistics by answering the following questions:
do we see larger differences in concordance (more extreme values of delta) when the edges being
compared are documented in KEGG? And/or are the similarities more pronounced among
annotated edges [as would be evidenced by different behavior of the distributions for sum of
overlap statistics]?

Figure 21 and Figure 22 depict the relationship between power and threshold for the two
test statistics when the null distribution is set to random edges. The nature of the plots in Figure
21 suggest that after the threshold of 50, there is no advantage to broaden the inclusion of genes
that might contribute to the delta statistic. On the other hand, the curves for the overlap statistic

in Figure 22 have the same shape, albeit a smaller scale on the y-axis, as those in Figure 20.
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Figure 21: Power curves for delta across all possible cell line combinations at alpha levels of 0.10
(A), 0.05 (B) and 0.01(C) with the random edge distributions serving as the null distribution.
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Figure 22: Power curves for ), overlaps for all possible cell line combinations at alpha levels of 0.10
(A), 0.05 (B) and 0.01(C) with the random edge distributions serving as the null distribution.

72



Row

3.3.5 Power Analysis: Conclusions

The results of the power analysis suggest that the threshold of 50 may be too low to
detect pairs of genes that are either similar (as measured by the Y, overlaps) or dissimilar (as
measured by delta) between two cell lines. Although annotated edges have modestly larger sums
of overlaps on average than random edges as well as delta values (Figure 21, Figure 22) there is
not sufficient power to detect differences and similarities when using the random edges as the
null distribution; therefore the distributions that arose from the simulated edges will serve as the
null. The threshold of 200 (200 LM genes most up-regulated and 200 LM genes most down-

regulated) will be used to construct test statistics.
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Figure 23: Matrix of mean values for delta (A) and its standard deviation (B) for cell line vs. cell line
comparisons at the threshold of 200 genes up and 200 genes down.

Figure 23 provides both the quantitative summary of the distributional properties of delta

along with a visual guide for interpreting differences/similarity among the values. The matrices
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can be read as follows: When cell line from row X is compared to the cell line in column Y, the
value is found in the entry for [X,Y] in the matrix. If the color of the cell is orange, it indicates
that deltas are, on average, more positive for the cell line in the row vs. the cell line in the
column, whereas if it is green the association is opposite (on average, deltas are more positive for
the cell line in the column vs the cell line in the row). While minor differences in delta can be
found when comparing the first few cell lines (A375, A549, HA1E, HEPG2, and HT29) to one
another, the magnitude of the differences between these cell lines and MCF7 and PC3 are
considerably larger. Therefore, the assumption that delta has a mean of zero is not met, most
notably in comparisons involving MCF7 or PC3. The standard deviations, on the other hand, are
very close [if not equal within rounding] to one — validating the assumption that delta has a
standard deviation of one.

In the following chapter, edges from pathways will be summarized by their average delta
in a matrix format just like those in Figure 23(A); if we denote that matrix by P and the matrix
in Figure 23(A) as C, the adjusted matrix A = P — C. The adjusted matrix will then be used to
describe the magnitude of the delta values. Unlike delta, which has a continuous-valued
distribution, the Y, overlaps statistic takes on discrete values. Therefore, we will use values that
correspond to given percentiles of the simulated distributions to describe pathway similarities in
the following chapter.

In figure Figure 24(A), the results of the simulation indicate that, with the exception of
the relationship between HA1E and A549, there are no differences in median values. The matrix
in Figure 24(B) represents the critical values for significance; at the 99" quartile 5 of the
possible 21 pairwise comparisons have larger values (16) compared to the other 16 comparisons.

Given the differences exhibited in Figure 24(B) and Figure 23(A) across the pairwise
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MCF7 HT29 HEPG2 HA1E A549 A375

PC3

comparisons, there is evidence that it may be worthwhile to take pairwise differences into

consideration when describing pathway-level activity.
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Figure 24: Matrix of median values for the Y, overlaps (A) and values that represent the 99" percentile

(B) for cell line vs. cell line comparisons at the threshold of 200 genes up and 200 genes down.
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Chapter 4: Application in KEGG Pathway Analysis

The original purpose of the Connectivity Map or “CMap” project was to take a bottom-up
approach to finding connections among genes in the human genome by virtue of similar gene
expression profiles or “signatures”. The goal of this project is not necessarily to find new
connections, but rather to assess the nature of known connections as they relate to cell line
similarities and differences. The term “known connections” refers to relationships between
genes that have been derived via experimentation and documented in literature. Specifically, we
are considering relationships between genes from pathways in the KEGG database.

The data generated via LINCS relies on readouts generated from cell lines. Cell lines that
are developed for use in research are heterogeneous with regard to tissue/tumor of origin and
specific mutations. Despite their heterogeneity, cancer and non-cancer cell lines (for example
HAI1E, immortalized kidney cells) have acquired mutations that allow cells to exhibit abnormal
growth via evasion of apoptosis or deviant patterns of division and growth; by definition, all cell
lines have achieved immortality [29] [30]. In a study comparing the gene expression profiles of
cell lines, tumor-derived cells and normal tissues, cell lines clustered with one another as
opposed to samples from the same tissue [31]. The phenotypic similarity amongst cell line gene
expression despite their genotypic differences raises the argument that an analysis of differences
among base-line gene expression would be underpowered for finding functional, pathway-level
differences. This chapter will describe how the measurements of heterogeneity and similarity of
the concordance signatures (CSs) introduced in Chapter 1 will be applied to a pathway-level
description and then analysis (Chapter 6) of the L1000 data set using the KEGG pathway

database.
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4.1 The KEGG Database

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is an on-line resource that was
initiated in 1995 with the goal of “computerizing the current knowledge of genetics,
biochemistry, and molecular and cellular biology in terms of the pathway of interacting
molecules or genes” [32]. While KEGG maintains a compendium of gene catalogs as well as
catalogs for chemical elements and compounds, it is most well-known for its library of molecular
biological networks or “pathways”. KEGG is, if not the most, one of the most utilized biological
pathway databases; it has been cited in over 15,000 publications. For the sake of comparison,
the next most-often cited resource Reactome has been cited less than 2,000 times in publications
since 2011 [33].

The popularity of KEGG can be attributed to its manually curated pathway maps that
offer a visually interpretable representation of complex biological interactions. The linear
diagrams, directed edges, and relationships based on consensus research efforts are all
characteristics of “pathways” as opposed to “networks”, which are typically much larger in scale,
usually have undirected edges, and are compiled as a result of data-set-specific large-scale
screens [34]. Each pathway map provides information on the consensus knowledge-base derived
relationships between molecules interacting as part of a defined biological process. In graph
terminology, the nodes in the pathways are genes/gene products (proteins) and the edges are the
relationships between the genes and are classified as activating, inhibiting, or binding
relationships. In addition to being either activating or inhibiting, some edges are also defined
with regard to post-translational modifications such as phosphorylation (labeled as +p) and

dephosphorylation (labeled as -p). As mentioned before, the edges are directed - there is a clear

77



to-and-from direction of action (except for in the case of binding relationships). In cases where

the relationship between genes is indirect, the edge is represented with a dashed line.

There are currently over 500 pathways in KEGG’s repository that span seven different

categories of specification (see Figure 25). The KEGG database is dynamic; pathways are

updated and new pathways are added as the knowledge base grows and becomes more refined.

This aspect is important to keep in mind when performing analyses using resources that have

static ‘snapshots’ of the KEGG data base that were downloaded at a given point in time and may

be out of date. For example, the R package MSigDB (Molecular Signature Data Base), which

contains collections of gene lists from 186 KEGG pathways, may not contain the most recent

KEGG pathways or may otherwise be
missing one of the roughly 300 other
KEGG pathways that are excluded from
MSigDB [35]. This is not necessarily a
drawback of KEGG or databases that get
information from KEGG; it just means that
researchers should be aware of this aspect
in their analyses and may need to manually
add pathway data to serve their research

needs.

Category

. Cellular Processes

. Drug Development

. Environmental Information Processing
. Genetic Information Processing

. Human Diseases

. Metabolism

. Organismal Systems

Figure 25: Pie chart representing the number of each type
of pathway defined in KEGG.




4.2 Pathway-level Analysis

4.2.1 Overview of Methods for Pathway Analysis

The term ‘pathway analysis’ in the context of gene expression analysis has broad
implications but most types of pathway analytical methods fall into one of three categories as
defined by Khatri [36]:
First Generation: Over-Representation Analysis (ORA)
Also referred to as 2 x 2 table methods, these types of methods employ tests of statistical
significance to identify pathways that are over-represented based on experimentally-derived
gene expression profiles that surpass a given thresholds (for example, lists of differentially
expressed genes between cases and controls that have p-values [adjusted for multiple testing] of
less than 0.05 after conducting differential expression analysis). One examples of this type of
analysis is LRpath, which uses a logistic regression-based method to identify pathways that
contain significantly more genes from the input list of genes than expected [37].
Second Generation: Functional Class Scoring (FCS)
As opposed to ORA methods, FCS methods take as input gene-level statistics that that measure
differential expression (i.e. t-test statistic, z-score or signal-to-noise ratio of expression of a gene
between two groups) and output pathway-level measurements — that is, each pathway is “scored”
based on coordinated changes in the expression of genes in that pathway. A well-known
example of FCS is Gene Set Enrichment Analysis (GSEA), which uses a Kolmogorov-Smirnoff
statistic to identify pathways that contain genes whose expression is similar in both direction (up-
regulated or down-regulated) and magnitude of signal-to-noise ratio relative to all of the genes
measured in an experiment [10] [38].

Third Generation: Pathway Topology (PT)-Based Approaches
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As their name suggests, PT-Based approaches incorporate the topology pathways, i.e. features
such as direction and type of relationships between genes, into their methodology. In addition to
generating pathway-level measurements, PT-Based methods also produce, perhaps as an
intermediary step, gene-level measurements. Gene-level measurements can either be per-gene or
per-gene-pair. For example, the ScorePAGE (Scoring Pathway Activity from Gene Expression)
algorithm first assigns a similarity metric for each pair of genes in a pathway and then divides
that score by the graphical distance (i.e. number of nodes) between the two genes [39]. An
example of the per-gene approach is SPIA (Signaling Pathway Impact Analysis) which assigns a
perturbation factor (PF) to each gene in a pathway as a function of the expression of upstream
genes [40]. SPIA falls into the category of impact factor (IF) approaches, a term coined by
Dragici et al to describe analysis methods that take into consideration the differential expression
of genes within a pathway as well as their upstream and downstream relationships before
assigning a score to the pathway that is proportional to the number of differentially expressed
genes in the pathway [41]. Both SPIA and ScorePAGE use the gene-level statistics to derive
overall pathway-level scores.

All of the types of pathway methods described are what Khatri defines as “knowledge
base-driven” methods [36]. They are also similar with regard to the starting point (gene
expression data) and end goal (a list of pathways ranked by statistical significance). Other
methods [not covered by Khatri] that use gene expression data in the context of pathway analysis
include Ingenuity Pathway Analysis, which provides causal analytical tools to assess the
upstream biological factors [genes] responsible for the observed [gene-expression-based] activity

in pathways [42]. Pathway analysis can also come in the form of subgraph extraction wherein
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the goal is to identify subsets of the most significant subset of connected pathway nodes and

edges for a given condition [43].

4.2.2 Approach to Pathway Analysis of L1000 Data

The different generations of pathway analysis are hierarchical in nature with an additional
layer of information added as the analysis moves from one level to the next. The analysis of the
L1000 data set differs in one unique aspect — although we are technically working with
expression-based data, it is not traditional transcription data whereby, [after pre-processing] each
gene in each sample is assigned a single measurement that reflects the gene’s expression in terms
of both direction and magnitude. These measurements are then mapped onto their corresponding
genes in a pathway to represent that gene’s own expression before conducting the types of
pathway analyses covered in the last section.

The per-gene consensus genomic signatures (CGSs) or gene-pair concordance signatures
(CSs) that are mapped onto pathway genes are fundamentally different as the information
assigned to each gene is not a reflection of its own expression. Instead, the information
associated with each primary gene reflects the binary direction of expression for the L1000 genes
after the primary gene is functionally knocked down in the model system. Although we are not
working with traditional expression data it is useful nonetheless to frame the approach with
regard to the different generations of pathway analysis. The approach that we are taking is
somewhat of a hybrid of the three different approaches.

The preliminary step of our analysis, the construction of contingency tables, is akin to
ORA in the sense that the genes that fall into the table are organized as a function of their binary
direction but not magnitude of differential expression. Similar to the FCS approach, we are

interested in both gene-level and pathway-level statistics; that is to say we are interested in
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finding differentially regulated pathways among cell lines as well as the edges within pathways
that suggest heterogeneity of gene-gene relationships based on quantitative measurements. Our
approach can also be framed in the context of PT- based approaches since we are deriving
measurements based on pairwise relationships between genes (CSs) based on the topology of a
given pathway.

The sections leading up to this analysis have highlighted two important aspects of the
analysis of this large, multidimensional dataset:

1) The threshold of 200 (i.e. lists of 200 upregulated and 200 downregulated L.1000
landmark genes) is the optimal threshold for detecting pairwise differences and
similarities between cell lines.

2) At the threshold of 200, we expect slightly more concordance by chance in the cell
lines A375, A549, HA1E, HEPG2, and HT29 when compared to MCF7 and PC3 as
well as slightly larger median values for sums of overlaps in 5 of the 21 pairwise
comparisons (16 vs 15).

Therefore, the threshold of 200 will be used in all following descriptive analyses and the
appropriate adjustments will be applied for pairwise comparisons in the formal pathway analysis
conducted in Chapter 6.

Our approach to a pathway analysis of the L1000 is hierarchical in nature; edges will be
assigned values that represent the over-all differences, similarities and level of concordance in a
multi-way comparison as outlined in the following section. Pathways will be scored as a
function of the of the edges within the pathway; this will give us an idea of the overall
heterogeneity and/or homogeneity at the pathway level. While we use the term ‘analysis’, the

procedures outlined in this chapter are more of a first pass means to explore the data and
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demonstrate how it can be incorporated into the topology KEGG pathways. In Chapter 6 we
will conduct a formal edge set enrichment analysis (ESEA) and make conclusions regarding cell
line specific pathway behavior.
4.2.3 The Breslow-Day Test for Detection of Differentially Regulated Edges and Pathways
Before diving into the specific pairwise differences among cell lines, we will calculate
statistics that will allow for a global assessment of differences in concordance among all seven
cell lines. The method employed to derive these values operates as a function of the 2-way
tables for directional concordance (data arranged in an odds ratio table). The method of interest
is the Breslow-Day test for homogeneity of odds ratios. The Breslow-Day test is preferable to
the other well-known method to analyze 2x2 tables, the Cochran-Mantel-Haenszel test, which
assumes that all associations are in the same direction [44]. The procedure to derive the
Breslow-Day test statistic (BD) for edge M|N across j = 7 cell lines is as follows [45] [46].

Step 1: derive common odds ratio

Estimate the over-all common odds ratio y using the entries from Table 16 as follows:

Table 16 : 2-way Table for Cell Line j

Perturbagen M
Cell line j Marginal Column Totals
UpinM Down in M

=z

c .

) UpinN a; b] ny;j

0

g Down in N d

E own in Cj o nDj

Marginal Row
Totals myj Mmpj T]
, ad; (10)

p=— 10

7 b]C/
i=1 T]
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Step 2: Calculate Expected Frequencies for each cell line

Table 17 gives the expected frequencies of the contingency table for cell line j as a function of

the marginal and expected frequencies for the first cell A;:

Table 17: 2-way Table of Expected Frequencies for Cell line j

Perturbagen M

Cell line j Marginal Column Totals
UpinM Downin M
=z
C i . § — . .
§ UpinN A] nU] A] nU]
3
3
§| Downinn myj — A; | Npj —Myj + 4; Mpj
Marginal Row
Totals mU] ij T]

Aj is derived as the positive solution to the quadratic equation:

B+ )+ (ray =)t [0+ ) + (g = )] = (4G5 — D Cnm)

A7) 26— 1)

The variance is given as:

Var(a-; 1/7) = 1 1 1

+

1
—+
A] ny j

Step 3: Conduct Breslow-Day test for homogeneity of odd’s ratio

Hy:y; = for all cell lines (j = 1:7).

Hy: 4 # 1 for at least one cell line.

8D — i(aj - Aj(lﬁ))z

Var(a-; lﬁ)

j=1
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Under the null, BD has a chi-square distribution with 6 (K-1 where K is the total number of cell
lines) degrees of freedom.

The Breslow-Day test statistic will be calculated for each edge in KEGG pathways that
has corresponding shRNA perturbations in the L1000 data set for the core set of cell lines. Then,
a pathway concordance heterogeneity score (PCH) for pathway p with n edges will be assigned
to each pathway as follows:

pep. — S BD (14)
=

The PCHs will be used a ranking metric for pathways such that those with the largest BD
values contain, on average, the most heterogeneous relationships between genes across all cell
lines. The most heterogeneous pathways will be examined for significant pairwise cell line

comparisons by using a pairwise pathway concordance (PPC) score between cell lines A and B:

Yi=1Dia8 (15)
n

Wp,AB =
Note that PPC,, 45 = (—1) * PPC, . If this score is positive, then, on average, the edges for
pathway p are more concordant in cell line A vs cell lines B whereas if it is negative it implies
more concordance in cell line B. Under the null, where there are not significant differences in
concordance, we would expect PPCy, 45 ~N(0,1). Recall in the simulation study, we found that
we would expect certain cell lines, namely MCF7 and PC3, to have edges that are more
discordant compared to other cell lines (Figure 23 B). In order to take these differences into
account, each PPCy, 45 will be adjusted to reflect the distributional properties of the Ay statistic
such that

PPCp,AB_ZAB
SE(AaB)

PPC, a5 = ~N(0,1). (16)
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Since the Metabolism pathways are designed to represent metabolic as opposed to transcription-
based processes, these pathways will not be included in the following analysis. Any pathway
with less than 10 edges will not be considered in the analysis (total number of pathways

considered N = 160).

4.2.4 .Y overlaps for Detection of Similarly and Heterogeneously Regulated Edges and
Pathways

Whereas the Breslow-Day statistic is a multivariate approach to find overall differences
based on the odds ratios across cell lines, a chi-square-type of statistic (which we will denote as
&) will be used as an ad-hoc measure to detect non-homogeneity amongst the )} overlaps
statistic. Let c represent the 21 unique cell line pairings; this will allow us to avoid correcting
for duplicate entries since ), overlaps for edge e between cell lines i and j is equal to
2. overlaps for edge e between cell lines j and i. &€ will be calculated for each edge as follows:
Let 1% = ), overlaps for edge e between cell line pair c. Then,

Te = il ¢ (17)
21

Thus, 7€ is the average Y. overlaps for edge e across all cell line pairs. Then,

go = g2 O m{ (18)

When edges have small £¢ values, then there are not big differences in the )} overlaps statistic
across the 21 unique cell line pairings, i.e. A6 ~ ¢ V c. Large £°, on the other hand, suggest
A¢ = J¢ for at least one cell line-cell line pairing (see Figure 29).

The ), overlaps statistic will also be used to derive a statistic that describes the similarity
across cell lines at a particular edge. The statistic Y. ¥’ overlaps is simply the numerator of A¢ in

equation 17:
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Y Y overlaps® = Y%L, 2¢. (19)
Each pathway will receive a pathway overlap heterogeneity score (POH) in order to rank
the pathways as was done similarly with the PCH score for the BD statistic. For pathway p with

n edges the POH will be assigned to each pathway as follows:

POH,

_shael (20)
n
Pathways with large POH,, will then be examined for pairwise differences. Let w,. be the set of
2. overlaps for cell line pair ¢ at pathway p; note that, for a pathway with n edges, |a)pC| =n.
Then, the pairwise pathway overlaps score (PPO) will be calculated as follows:
PPO,. = median(wy.). (21)

If PPO,y, is larger than the 99" percentile for Y, overlaps for cell lines pair ¢ from the simulation
study (see Figure 24B), then we will consider that pair to be significantly similar with regard to
their ), overlaps at pathway p.

Each pathway will also receive a pathway overlap magnitude score (POM). Let g, be the
set of ) ), overlaps for pathway p. POM will be assigned to each pathway as follows:

POM, = median(g,) (22)
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4.3 Edge-level Results
4.3.1 Distribution of Breslow-Day (BD), ¢ and ), )’ overlaps Across Edges

C Distribution of XXoverlaps Statistic

Distribution of Breslow Day (BD) Statistic B Distribution of & Statistic
0.005-

0.004 -

0.010-

0.004 -
0.003~

density
density

0.002 -

density

0.005-

0.002-
0.001 -

K - .
0 400 600 500 1000
ZXoverlaps

0.000
200 400 600 0 200
& Value

Figure 26: Density plots for the distribution of BD (A), & (B) and }; Y overlaps (C) across all
unique KEGG edges. The red line indicates 90" percentile value.

The distributions for the Breslow-Day, &, and )} Y overlaps statistics are shown in
Figure 26. All of the distributions are skewed to the right. Most (90%) BD values are less than

255.66, most (90%) & values are less than 155.54 and most (90%) of ). Y’ overlaps are less than

539.
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4.3.2 Breslow-Day Statistic Across Edges

Table 18: 20 largest BD edges

Edge BD A375 A549 HA1E HEPG2 HT29 MCF7 PC3 § YYoverlaps
KRAS_BRAF 615.3107 ([GligH (8525 350 (5581 (8570 981 7663 353.3155 1122
MET_ERBB3 594.6163 ([i6iioe 61246 (5650 (8650 (B5i@ 190048 8 1956335 382

PROCR_THBD 562.631¢ [8i26n (5600 (550 (9256 51619 ) -1620 524.8257 608
PDGFRA_KRAS 549.6416 (508 014 (7967 (8639 (862 (7383 (7898 397.9909 661
PRKCE_BRAF 549.6001 (8342 (8880 (91252 (7li08 8575 4622 BI68H) 303.1667 468
KRAS_RPS6KA1 542.9527 ([E0le7e) [E9HBE9 (8278 (81689 (556 (121558 IS8 01.9721 645
MET_KRAS 529.744c ([E8i844) (61589 E81520 (268 (BI85 E8I505) -1.625 217.2363 584
MET_PIK3CB 528.184c ([l (8681 85504 (827 18609 281 §@850) 190.9534 365
AKT3_MAP3K5 526.6204 ([Hi529) 81251 (81922 (61630 (81698 (181562 (71268 276.0048 419
KRAS_PIK3CA 510.4201 [EI514 (827 957 20 2 B0 E6859 352.8014 584
PDGFRA_JAK1 506.8152 ([Si588) (91289 E7li48) (81858 P -1.461 [E6IB#Y 464.8362 409
PIK3CD_AKT3 505.9793 ([8i040) (#6649 (81695 (1728 (9046 (6528 (BI688) 367.4836 352
MYC_cDKe 501.241c ([5i60W (2858 i) 0 (555 (655 8 2362667 495
CDK6_RB1 501.0832 (61985 (5H50 (S0 5756 (6621 8559 (BEEd 2152443 393
CDC25A CDK6 485.1332 [E8IE18) -1.067 (8765 (E550 (626 D BB -7c.c294 429
THBS1_ITGA2 483.4053 ([E7ioes) (i (9559 (955 5502 4543 B8 325.3909 614
MAP3K5_MAP2K4 482.922¢ ([iliiad (2210 (5078 (5238 (50 4575 81898 191.1259 286
EP300_TCF7L1 480.9683 (gD (BI85 61842 -1.190 (0877 E5H44 WEHEY 2090.7085 446
coL4Az_ITGA2 471.8633 ([Slig) (B609) (6600 (8480 (81780 (859 U884 153.1208 621
ITGA2_PIK3CD 470.5669 ([iinn 41235 (9526 (580 (9NS? E8 W9615 203.7746 497

Table 18 gives us the summary of the top 20 most-differently regulated edges (MDRESs)
as determined by the BD test statistic as well as the individual z-scores for each cell line. Note p
< 0.01 for all of these entries. The individual z-scores reflect the strength of association
(log(OR)) as well as the size of the contingency table (SE decreases as the number of
observations in the 2x2 table increase; recall z =1og(OR)/SE). The table is formatted so that the
direction of association for each cell line should be obvious; those in red are concordant (same
genes are regulated in the same directions for both perturbagens) and those in blue are discordant

(genes in one perturbagen are upregulated but downregulated in the other and/or vice versa). If a
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cell has a darker shade of its respective color, the individual z-score is significant at the 0.05
level (not controlling for multiple testing; z < -1.96 or z >1.96).

From table Table 18, it is obvious that there are a variety of different patterns of
concordance across the cell lines that will result in a large BD test statistic. The concordance
pattern for the most-differentially regulated edge, KRAS-BRAF, is easily interpretable — this
edge is highly concordant in all cell lines with the exception of PC3, in which case it is very
discordant. The canonical relationship between KRAS and BRAF is one of activation and is part
of a signaling module with two other genes, MEK and ERK [47]. In the case of KRAS-BRAF,
we might be able to guess how the pairwise differences playout — we would expect delta values
to be negative when PC3 is the reference cell line and positive when it is the comparison cell line
and for the magnitude of the delta values to be relatively large in comparison to other cell line
pairs. Also, since fewer LM genes fall in concordant cells for PC3, we might expect fewer
overlaps between PC3 and other cell lines.

In Figure 27 we have both visual and numeric representations of the pairwise

comparisons and can see that there are large differences in concordance between PC3 and other

A Delta: KRAS-BRAF B Sum of Overlaps: KRAS-BRAF

v
I IR S AR
X FLE®E

>

ke ¥ =211 98
A375 -2.26|-2.74| -2.7 | 0.91 |-0.63 1241 | A375 88.8
A549| 2.26 -0.76-1.21| 2.96 | 1.73 [10.61|| |27 A549 798
4.84 70.4

HA1E| 2.74 | 0.76 -0.57| 3.31 | 2.3 | 9.43 HA1E
2.42 61.2
HEPG2| 27 | 1.21 | 057 311|238 | 753 || | o HEPG2 52
2.42 42.8

HT29|-0.91|-2.96 |-3.31|-3.11 -1.5211.69 HT29
L4.84 33.6
MCF7| 0.63 |-1.73| 2.3 |-2.38| 1.52 12.05|| L7 MCF7 244
PC3 -12.11-10.61/-9.43 | ~7.53 |-11.69~12.0! U‘g'eg PC3| 8 102
=12.11 6

Figure 27: Pairwise values for delta (A) and the ), overlaps (B) for edge KRAS-BRAF. In (A) the cell lines
in the rows serve as the reference cell line and the columns represent the comparison cell lines.
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cell lines and minor differences when other cell lines are being compared. The other cell lines

exhibit greater degree of similarity as measured by the ), overlaps whereas PC3 has very few

overlapping genes with the other cell lines. As we might expect, it shares the most overlaps with

HEPG?2 — the comparison cell line with the smallest delta value when compared to PC3.

Table 19: 20 smallest BD edges

Edge BD
CREBBP_HK1 3.533683
ATP6V1A_LAMTOR3 3.848689
GOT1_LDHB 3.918992
ARAF_MAP2K1 4.758209
CDO1_GOT1 4.798181
BCL2L1_BAK1 5.839157
TP53_BAX 6.340465
EIF3J_EIF2S2 6.352989
PRKCA_GNG8 7.394749
GNG8_MAPK13 7.469179
TGFB1_FOXP3 8.073621
MAPK12_FOSL2 8.216305
ATIC_HPRT1 8.446237
ARAF_MAPK1 8.550567
SMAD2_RORC 8.866169
GNG8_ADCY9 9.453000
CREB3L4_BCL2 9.466745
MAPK13_TP53 9.473969
ACAT1_HADH 9.599824
IFNGR2_NFKB1 9.756997

A375 A549 HA1E HEPG2 HT29 MCF7  PC3
10451 -1.359 -0.143 [0.097 -1.237 0429 | 0.247
1276 0244 0303 1.853 1579 1.168 (121492
1807 (2548 1.878 [2.399) (2665 (3.485 0.872
1174 0966 | 1.811 (0605 -0.487 -0.640 | 0.229
0839 1.345 [2441) (2214 (33903 (2543 (2472
-0.645 -1.055 -0.174 -0.880 -0.173 | 1.882 | 0.069
(0343 1.354 | 1.133 -0.839 -0.957 -0.536 | 1.251
[0.290 [ 1.200 0.549 1.525 -1.512 -0.391 -0.159
-0.213 -0.669 -0.311 | 1.910 -1.283 [ 0.357 | 1.220
(8474) (3332 (3128 0735 1761 1578 (2329
1247 [8020) 0961 -0090 0520 (2.358 0.032
-0.425 | 1.522 -0.816 | 1.198 -1.175 -0.323 -1.552
1388 (8090 1493 (2414 1.941 0.694 (4090

(2188 0054 0141 -0849 1185 0316 (2:387
13879 2198 5368 3325 3882 3100 5.166
(0839 -0615 0311 (2394 (27859 0253 0422
6751 5708 4605 5469 6773 4028 4705
(2743 -0225 (0388 -0.826 (1.376 1.344 | 1.889
13633 4180 4483 3923 3860 0998 4.398
5184 4083 3478 2370 2062 3856 4.865

91

§ YYoverlaps
42.48344 302
13.89474 342
46.33557 447
25.75979 383
27.03650 411
30.17891 313
32.69969 323
27.47059 374
44.01036 386
35.10000 420
15.04505 333
33.08649 370
32.26415 318
26.94839 310
25.69955 446
30.05063 395
48.01556 514
38.59574 329
16.11111 378
37.37265 373



A Delta: CREBBP-HK1 B Sum of Overlaps: CREBBP-HK1
© © & D L o e P2 e o
R R I R SR I S R I R SR R S
A375 1.28 | 0.41 | 0.26 | 1.18 | 0.01 | 0.17 1:02 A375 15 | 16 | 8 | 12 [18 W ,,
A549 |-1.28 -0.81|-1.06|-0.14 |-1.26|-1.17 | | [>77 A549 14 | 16 ||| ®
HA1E|-0.41| 0.81 -0.17| 0.7 |-0.4 |-0.27 :: HA1E| 15 15 | 11 | 17 | 12 j:
HEPG2|-0.26| 1.06 | 0.17 0.95 (-0.25| 0.1 0 HEPG2| 16 15 11 | 8 | 12 16
HT29 [-1.18| 0.14 | -0.7 |-0.95 -116|-108]| 7 HT29| 8 1|1 1| 7 :
Lost
MCF7|-0.01|1.26 | 0.4 | 0.25 | 1.16 0.16 || Lo77 MCF7| 12 | 14 | 17 | 8 | 11 6 10
PC3|-0.17| 117 | 0.27 | 0.1 | 1.06 |-0.16 u‘“’z PC3/18 | 16 | 12 |12 | 7 | 6 ¢
L1 28 Ll

Figure 28: Pairwise values for delta (A) and the ), overlaps (B) for edge CREBBP-HK1. In (A)
the cell lines in the rows serve as the reference cell line and the columns represent the comparison
cell lines.

Figure 28 contains pair-wise data for the least differently regulated edge, CREBBP-
HK1. In contrast to KRAS-BRAF (Figure 27) the magnitudes of both delta values and sums of
overlaps are small across the board and there is no obvious discernable pattern. This edge is
found in the HIF-1 (hypoxia induced factor -1) signaling pathway of KEGG’s database and is the
relationship is coded as “expression” — that is to say that CREBBP activity leads to the
expression of HK1. This could explain the lack of a strong signal of a regulatory relationship
across cell lines since HK1 expression is an outcome of a signaling cascade as opposed to a

protein involved in determining the downstream transcriptional response.
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4.3.3 & Statistic Across Edges

Edge € A375 A549 HAIE HEPG2 HT29 MCF7  PC3 BD JYoverlaps
SYK_PIK3CA 580.9587 ([EiEen (E520 658 (1278 E8liid -0.345 [BI8E 345.8459 436
PIK3CA BTK 536.4660 [giiel E7890) 8047 -0.484 (5656 (680 6488 452.7533 412

PROCR_THBD 524.8257 [E8i26n (5800 (550 (91236 81019 98) -1.620 562.6316 608
MET_PIK3cA 5222500 ([GIoHH) (566 (510 (B89 (929 (18552 8888 :17.73%0 560
IL2_EGFR 497.0473 ([§i520 (68 (B0 5575 868 2029 11827 379.8102 697
PDGFRA_JAK1 464.8362 ([Sibes 91289 71148 (8858 IOHSD -1.461 [6B79 506.8152 409
PDPK1_AKT3 463.6505 ([io20 (6058 (BIS08 (1506 (2565 (8078 9628 206.4211 721
FADD_CFLAR 458.4463 ([fi22D (B8 (EHED 5480 5D 09228 8 265.8390 658
PLCG1_PIK3CA 4523060 (G054 (9281 (8228 (2528 (0625 (1403 (EBEH 160.1154 464
PDGFRA _PIK3CA 435.4271 [-0.861 ([Bi504 (9048 (608 -1.161 -1.073 888 261.3040 377
SYK_BTK 434.8330 (61945 81580 (81852 (BIES) 61926 (-1.692 (111886 325.1812 358

SYK VAV3 4286203 (6680 (B550 (8NS5 (819 (55562 AEED (1504 2904.5493 561
PIK3CA_PDPK1 427.1597 ((8lig2 E8I518 E859 (1952 (Bl68 (11841 81654 360.0411 457
PIK3CA_VAV3 406.4044 ([5I258 (5086 (B840 (0618 (8258 5788 B2 345.0241 549
BTK_PLCG1 403.407¢ [E8i265) E7i260 (61565 (1553 (7443 (2508 91888 -02.9278 368
KRAS_RPS6KA1 401.9721 [ol67e8) 959 81278 (51689 (iS58 (2558 888 5.2.0527 645
PRKACA BRAF 400.8151 ([Eigin (B (5H00 (569 (9888 4870 -0.081 314.0766 611
PDGFRA_KRAS 397.9900 ([[5i585 94 7567 8639 (B2 (7583 7888 -5490.6416 661
STAT6_IL2 397.7846 ([SI00) (BI688) (558 (5M26 4084 -0.702 (MBS -79.4031 455
PLCG1_VAV3 3946582 ([iii0 (928 580 (5259 (558 6588 528 2s2.1547 553

In contrast to the BD statistic,  is calculated based on pairwise rather than single cell line
data; the BD is calculated based on 7 odds ratio table whereas § is a function of the sums of
overlaps for 21 unique cell line combinations. Despite their disparate derivation, in Table 20 we
can see that edges with larger values of & tend to have larger BD values compared to edges with
smaller BD values. The correlation between these values in our data set is 0.606. The pairwise

Y. Y overlaps statistics for the single edge with the largest § value are summarized in Figure 29.
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In Figure 29(A) we see a wide range of ) overlaps [2:90]. Cell lines A549, A375 and HA1E
have large }; overlaps amongst themselves as well as moderately large ), overlaps with PC3,
minor ), overlaps with HEPG2 and very small ), overlaps with HT29 and MCF7, which have
small ), overlaps values across the board. In Figure 29(B) we can see that A375, A549 and
HAT1E are much more similar with regard to concordance and that set is also more concordant
than cell lines HEPG2, HT29, MCF7 and PC3. On the other end of the spectrum, the edge with
the smallest & value is depicted in Figure 30. In Figure 30(B), the only consistent pattern is
that the edge KRAS-MAPK?2 in HAIE is less concordant than in other cell lines; however,

evidence of this pattern is not readily reflected in Figure 30(A).

A Sum of Overlaps: SYK-PIK3CA B Delta: SYK-PIK3CA

920 ?“b ?g) ‘2\?‘ Q\Q/ ‘2\ @ Qo 9.68
A375 81.2 A375 -0.45|-1.77| 7.47 | 9.63 | 8.1 | 532 |||
A549 724 A549| 0.45 -1.39| 7.63 | 9.68 | 8.23 | 5.59 || 58
63.6 -3.87

HA1E HA1E | 1.77 | 1.39 6.97 | 8.43 | 7.4 | 5.57
54.8 1.94
HEPG2 46 HEPG2|-7.47|-7.63|-6.97 3.61 | 1.13 |-3.02|| f 0
37.2 1.94

HT29 HT29 |-9.63|-9.68 | -8.43 | -3.61 -2.43|-6.31
28.4 =3.87
MCF7 196 MCF7| -8.1 (-8.23| -7.4 | -1.13| 2.43 —4.01 || |55
PC3 108 PC3|-5.32|-5.50|-5.57| 3.02 | 6.31 | 4.01 778
2 Eloes

Figure 29: Pairwise values for delta (A) and the ), overlaps (B) for edge SYK-PIK3CA. In (A) the cell
lines in the rows serve as the reference cell line and the columns represent the comparison cell lines.
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Table 21 : Edges with the 20 largest ¢ values

Edge
KRAS_MAPK12
IFNGR1_FAS
GOT1_TST
KCNQ1_ADCY9
IKBKB_NFKB1
TAB3_MAP2K3
OXTR_GNAI2
GOT1_MDH2
ATP6V1A_LAMTOR3
MAPK12_FOS
FOXO4_CCND2
HLA-DMA_HLA-DRB1
BCL2L1_BAX
RALB_MAPK9
LAP3_GCLM
MAP2K6_MAPK12
CDK2_FOX04
TGFB1_FOXP3
ALK_NRAS
LSP1_IKBKE

€ A375 A549 HAIE HEPG2 HT29 MCF7  PC3
10.27586 (067 (5655 BHHS6 (-1.380 (11353 818210 @B o5.063199
11.71420 (10850 (BSS) 105524 (-0.326 (111335 (1591 (-0.679 20.938761
11.95217 (0,692 (1264 (BIEE8 11451 B89 01212 08 290.336938
12.28004 (818 (-0.318 (556 4561 - - 61825 111.095118
13.08527 (1i056) (#8685 (0728 -0.156 (-1 7 BA868 34218543
13.20032 (608 (10845 (6688 (%689 - - #8880 90.030593
13.56216 (10044 467D (D (5659 11623 (EES 2800 s0.071206
13.63758 (-1.942 (1067 (06017 (2058 (8668 11657 BEBE@ 16.052847
13.89474 (i276) 1012449 (0303 (1853 (579 (ili68 288  3.843689
14.15020 (Hig60) (-1.012 257 (N2 21525 2782 (11828 26.560662
14.47830 (E2Ni54) (1593 (B25D) (2000 (5529 2888 17238 902.318802
1457485 (JBNSE) (-0.945 (Fil6s7 (5655 S0 258 P2BE9 15.043879
14.71429 (101208 (2HEH 10854 (2889 111202 10448 -1.239 10.676158
14.72000 (2280 (1764 (01897 (5544 (588 21840 (1807 90.148770
14.75000 (2GS0 (25 EHG9 (-0 #2682 (0327 (-0.701 27.279271
14.92432 [-1.901 (2628 7516 551 51569 E86TD 77 090.72593
14.93023 (51288 (01409 662 -1.905 UHi7i0 0471 HI882) 94.860349
15.04505 (247 (8620 101967 (-0.090 (0520 (2IES8 10082 s.073621

rsororr (EHS WSNED Goes0 WHGED WHGHD GST WANSD 1sc.007ceo
sor77s (GEE8 GSEGD GoSte WHSED MBS WGED G126 11020610

95

BD }Yoverlaps

406
392
460
338
387
341
370
447
342
339
347
334
294
300
400
370
387
333
325
373



These edge-wise results for § are similar to those shown for the edges with the largest
(Figure 27) and smallest (Figure 28) BD values; at least in the extreme cases, these statistics
complement one another with regard to finding patterns of similarities and differences between

pairs of cell lines in a targeted manner.

A Sum of Overlaps: KRAS-MAPK12 B Delta: KRAS-MAPK12
© g2 X i

. & P s @
A375 208 A375 -2.53| 5.83 | 1.45 |-0.46| 2.88 |-1.24|| |
A549 a1 A549| 253 7.85 | 3.88 | 214 | 5.16 | 1.39 || *7!
20.4 3.14

HA1E HA1E|-5.83|-7.85 -4.47|-6.33| -3 |-7.01
19.2 1.57
HEPG2 18 HEPG2|-1.45|-3.88| 4.47 -1.93| 1.46 | -2.7 0
6.8 L1,
HT29 ' HT29| 0.46 |-2.14| 6.33 | 1.93 3.37 | -0.8 e
15.6 1-3.14
MCF7 144 MCF7|-2.88|-5.16| 3 |-1.46|-3.37 4.1 || L7
PC3 132 PC3| 1.24 |-1.39| 7.01 | 27 | 0.8 | 4.1 028
Ll o u—7.85

Figure 30: Pairwise values for delta (A) and the ), overlaps (B) for edge KRAS-MAPK12. In (A) the
cell lines in the rows serve as the reference cell line and the columns represent the comparison cell lines.

4.3.4 ), ), overlaps Statistic Across Edges

Although the }; Y’ overlaps value is not directly a function of an individual edge’s z-
score, in Table 22 we can see that the edges with large Y. ), overlaps values tend to have a very
high degree of concordance within the cell lines nearly across the board. The reasoning behind
this is straight forward in one sense; in order for there to be a high degree of overlap between
two contingency tables of two cell lines, the individual contingency tables need to have a large
number of genes that occupy any of the cells. Large positive z-scores indicate that an individual

cell line’s contingency table has many entries in the diagonal (up/up and down/down) cells but
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very few entries in the off diagonal cells (up/down and down/up) whereas the opposite is true for

negative z-scores of a large magnitude.
Table 22 : Edges with the 20 largest ). ), overlaps values

Edge YYoverlaps A375 A549 HA1E HEPG2 HT29 MCF7 PC3 BD §

KRAS_RAF1 1331 (SS9 (569 (B60 850 (8020 9509 Sl +2.71548 163.81818
SRC_KRAS 1327 ({622 (89 (B 555 (6512 00 BBB68 o0.09924 124.75358
ICAM1_KRAS 1314 (5550 (G2 (5669 80 18 9255 Bl 2550174 97.41096
JUN_MYC 1202 ([iEHD (56689 (5E0D BT 50 62D e 795478  86.55573
STAT1_MYC 1277 (566 (855 (BED 510 15260 0D S8 +1.48419  48.96006
KRAS_FOS 1223 ([iliG0 (9629 (5252 2 622 80 P88 532463 11267212
KRAS_JUN 1218 ({260 (9505 (5560 00 16550 922 PBB19 co.ss084  93.44828
FGFR2_KRAS 1108 (iSE0) (OHE0 (FED S5 (6250 9510 B cos6402  144.77295
ITGAV_KRAS 1192 (600 (8559 (9560 (5568 9020 6D 820 z0.41875 97.10403
STAT1_FOS 1175 ([GiES (5500 (5600 6D (850 5089 PES 008559 83.94553
EGFR_KRAS 1160 (08 (522 (9552 Sd) 820 D 10249 197.34496 257.68103
ITGA2_SRC 1145 ([ilioD (B550 5 N0 (855 659D 2 10066940 137.06376
KRAS_BRAF 1122 ([OHED (8525 (0 5580 8510 98D B766d 61531068 353.31551
KRAS_PDPK1 1116 (5546 (5500 (FE550 5029 (5555 80 P88 10465225 359.23118
NCOA3_MYC 1076 (G285 (EHE0 (6626 (ES1D 9HED 060D BE86d 10504087  81.18587
ITGA2_CRKL 1072 (5255 (B550 (50 5552 (9220 8559 P2808) 1.0.13661 101.41418
GNG5_KRAS 1071 (S0 (8525 (5250 S0 (852 010 A 12656704 219.64706
CSNK1E_ARNTL 1063 (210 (510 50 550 (9N60 5510 8D o1.02144 6153716
SRC_RAF1 1050 ([BHES (5550 (5 5500 7620 08898 BBl 054149 117.65439
EGFR_HRAS 1051 (550 (6050 (5NSD 56T 528 889 BEED 14350600 324.27022

In Table 22 the only edge that does not have a high degree of within-cell line
concordance across the board is the edge KRAS-BRAF — this edge is highly discordant in the
cell line PC3. Recall that this edge was ranked as the most different with regard to its BD value
(Table 18) — so despite the heterogeneity between the rest of the cell lines and PC3, the

similarity amongst those cell lines is so strong that it still ranks as one of the most similarly-
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regulated edges with regard to Y. ), overlaps. One more take-away from Table 22 is that the
individual gene KRAS has a high degree of representation — it is in over half (11) of the top 20
edges — suggesting that the downstream effects of knocking down KRAS are likely very similar

across the cell lines.

A Sum of Overlaps: KRAS-RAF1 B Delta: KRAS-RAF1
© 2 & @ L oo e 2 LD o
R R SR R R P E LTS QOHS_%
A375 88 . 70 | 52 . 78 1., A375 3.05 | 1.68 | 2.96 | 3.86 | 2.37 | 3.49 || |
A549| 88 85 | 55 | 38 | 61 | 51 |['®® A549|-3.05 -2.27|-0.13| 1.93 |-1.32| 1.01 || [232
97.2 1.54
HA1E. 85 76 | 40 | 72 | 59 s HA1E |-1.68| 2.27 2.09 | 3.81 | 1.07 | 3.1
. 0.77
HEPG2| 70 | 55 | 76 37 | 55 | 47 80 HEPG2|-2.96| 0.13 |-2.09 1.95 |-1.14| 1.09 0
1.4 0.
HT29| 52 | 38 | 40 | 37 38 | 39 ! HT29|-3.86|-1.93 |-3.81|-1.95 -3.12(-0.94 o
62.8 ~1.54
MCF7. 61 | 72 | 55 | 38 66 || |s542 MCF7 |-2.37| 1.32 [-1.07| 1.14 | 8.12 2.28 || Lo
PC3| 78 | 51 | 59 | 47 | 39 | 66 e PC3|-3.49|-1.01| -3.1 |-1.09| 0.94 |-2.28 309
— 37 El3.86

Figure 31: Pairwise values for delta (A) and the ), overlaps (B) for edge KRAS-RAF1. In (A) the cell
lines in the rows serve as the reference cell line and the columns represent the comparison cell lines.
Figure 31 displays the pair-wise similarities/differences for the edge with the largest
Y. 2 overlaps — KRAS and RAF1. The canonical relationship between these proteins is direct
activation of RAF1 by KRAS ultimately resulting in gene expression via the MEK/ERK pathway
[48]. Note that, despite its smaller z-score, the relationship between KRAS and RAF1 is slightly
more concordant in A375 than the other cell lines. The reason behind this is that although the
“raw” odds ratio is very large in A375, the standard error is larger than that of other cell lines
because there are so few observations in the off-diagonal cells. As demonstrated in the

corresponding entry in Table 22, the relationship between KRAS and RAF1 is highly concordant
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across cell lines which — as discussed earlier — allows for the opportunity for large Y overlaps
between cell line pairs. In fact, the ), overlaps between A549 and HA1E (123) is the largest

Y. overlaps for all documented KEGG edge across all cell line pairs.

Table 23 : Edges with the 20 smallest ), ) overlaps values

Edge YYoverlaps A375 A549 HA1E HEPG2 HT29 MCF7 PC3 BD §
FGFR3_PIK3CD 183 (105200 (880 -0.320 (11848 (100047 (-1.756 E8 73.01916 68.88525
PDGFRA_JAK3 191 (Bl 17s0 B 2429 SS9 001459 EBIEA) 195.88322  71.66492
WNT5A_FZD2 194 (5080 001728 505 10034 10393 10068 MO701 65.46090 36.78351
PLCG1_CALM3 203 (-0.002 (E2HZ1 (F2N45) (F2605 (71808 -0.087 8888 43.72154 56.55172
ANGPT1_INSR 207 (D (6HES (8033 (51607 808 -1.881 (-1.238 327.14182 78.57971
SETD7_FOXO1 200 (268 UEHEE (-1.760 (81223 B2 10572 BEHAE) 220.40914  74.65072

HLA-A_B2M 210 (E5l750 2728 1458 (S0 e A5 @B 20262394  64.20000
PTPN2_JAK3 212 (2880 10619 @BGED 0975 (1864 (1563 -1.508 74.74068 30.88679
MCCC2_EHHADH 213 [-0.221 (H4525 (61240 (F5N26) (P5I668) PBI248) 10684 158.45640 56.64789
FGFR3_PLCG1 213 (15630 (5858 (M4616 (2550 (5067 Sl 819979 171.37812 144.19718
PIK3CD_FOXOH1 214 [S1.000 (5559 B2 10759 (F8588 101457 WBHED 191.56079 152.02804
TFPI_F7 214 [A1.349 (-1.554 (2655 EHS (1652 MO0 W21248) 32.09414 33.68224
BTRC_WWTR1 215 (5502 (5560 5588 (1657 (2225 2EE8 el 5545408 61.71163
IL11RA_JAK3 215 (5282 (8D (99030 80D (1449 2812 BB 20341669 45.88837
PLCG1_PIK3CD 216 (E31545) (552 EHEY (0727 (JEI6E6) (0540 (E8I8E1) 273.91586 119.80556
PIP4K2B_PIK3CD 216 (21519 (2500 (56656 (280 WS (1260 @EEER 0394492  71.00000
ATF2_CPT1A 216 (116000 (1814 (-0.643 (61531 (P4I050 4512 10592 74.91524 31.33333
CTBP2_TCF7L2 217 (560D 115657 (51552 (S0 ES16 10256 10807 111.28730 58.90323
PDGFRB_SHCT 218 (S50 F2220) 8858 171656 (-1.711 (00008 6878 5258529 31.49541
GNGT2_MAPK1 21¢ (51207 (10497 (955 B0 (M550 BBI58 01851 243.22543  82.93578

Unlike the edges with large Y. ). overlaps, those with small }; )’ overlaps tend to have
smaller within cell line z-scores or — if the z-scores are moderate — are not in the same direction
across cell lines. Figure 32 displays the same pair-wise information for FGFR3-PIK3CD, the
edge with the smallest ), Y: overlaps from Table 23. This relationship if coded as “activation”

in KEGG; the individual cell lines PC3, A549 and to a lesser extent HEPG2 support this
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directionality/relationship whereas this relationship is not highly concordant or discordant in the

other cell lines.

Sum of Overlaps: FGFR3-PIK3CD

A375

A549

HA1E

HEPG2

HT29

MCF7

PC3

A375

A549

HA1E

HEPG2

HT29

MCF7

PC3

Delta: FGFR3-PIK3CD

v A
LLIELE e
-2.15| 0.59 [-0.95| 0.33 | 1.61 | -5.9
2.15 2.65 | 1.21 | 2.44 | 3.72 |-3.96
-0.59 | -2.65 -1.5 |-0.26 | 0.97 [-6.23
095 [-1.21| 1.5 1.26 | 2.55 [-5.05
-0.33|-2.44| 0.26 |-1.26 1.26 [-6.11
-1.61|-3.72|-0.97 | -2.55 | -1.26
59 | 3.96 | 6.23 | 5.05 | 6.11 | 7.24

m77.24
5.79
4.35

2.9

+1.45
—2.9
~4.35

~5.79

l~7.24

Figure 32: Pairwise values for delta (A) and the ), overlaps (B) for edge FGFR3-PIK3CD. In (A) the cell
lines in the rows serve as the reference cell line and the columns represent the comparison cell lines.
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4.4 Pathway Level Results

4.4.1 Results: Distribution of PCH and POH Across Pathways
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Figure 33: Distribution of Pathway Concordance Heterogeneity (PCH) score (A), Pathway Overlap
Heterogeneity (POH) score (B) and Pathway Overlap Median (POM) score (C) across 160 KEGG
pathways. Red lines indicate 90" percentile; 183.92 for PCH, 121.13 for POH and 415 for POM.

Figure 33 gives a summary of the concordance-based (PCH) and ) overlaps-based
pathway scores (POH and POM). All distributions are roughly bell-shaped with outliers at the
right-hand tail of the distributions.

4.4.2 Results: Most Differently Regulated Pathways across Cell Lines

Both POH and PCH are measurements of differences between cell lines and complement
one another, they will be observed in parallel. In Figure 34 the distributions of these values are
depicted; the correlation between the POH and PCH is 0.88. In Table 24, the top 20 of the 160
pathways considered in this analysis are ranked by their POH score and the same is done for
PCH (Table 25). Notice that these tables also contain columns to indicate how many [of the 21
pair-wise] comparisons are significantly different in terms of pathway concordance (mean delta)

or similarity (median ), overlaps). Although the pathways may be ranked by these values
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Table 25 : Top 20 KEGG Pathways ranked by pathway concordance heterogeneity (PCH)

Rank

© o N o o B~ W N =

20

PCH
285.87
227.42
215,99
203.43
200.46
199.64
197.99
197.01
194.89
190.88
188.61
187.65
186.43
185.34
184.75
184.25
183.88
183.00
181.69
181.44

POH
171.61
169.99
138.25
116.06
120.95
166.05
129.93
127.95

93.46
120.26
120.08
123.15
113.16
119.47
126.65
131.34
127.10
123.79
137.88

117.14

Title Pathway Code Category

Aldosterone-regulated sodium reabsorption hsa04960 —
Spinocerebellar ataxia hsa05017 —

Platelet activation hsao4611 (NI Grganismalsystems)

 Longevity reguiating pathway - multiple species  hsa0:213  Organismal Systems.
Progesterone-mediated oocyte maturation hsa04914 —

Fc epsilon Rl signaling pathway hsa04664 —

Melanoma hsa05218 —

Regulation of lipolysis in adipocytes hsa04923 —
pelidiabetesmelius)  hse04c00 (NGRS
Colorectal cancer hsa05210 —

ErbB signaling pathway hsa04012 —

Central carbon metabolism in cancer hsa05230 —
© TNFsignalingpathway  hsc0466 (Environmentalinformation Processing|
'~ Neuotrophinsignalingpathway  hsadii22  Organismal Systems.
Renal cell carcinoma hsa05211 —

Endometrial cancer hsa05213 —

Thyroid hormone signaling pathway hsa04919 —

EGFR tyrosine kinase inhibitor resistance hsa01621 —
Choline metabolism in cancer hsa05231 —

© Nonsmallcelungeancer  hsas22s [ Human Diseases

Subcategory #Edges #Sig. Delta #Sig. Yoverlaps

excretory system 1 8 12
neurodegenerative disease 21 4 17
immune system 36 3 17

aging 61 4 14

endocrine system 34 1 17

immune system 57 0 12

cancer specific types 106 1 16
endocrine system 23 5 12

endocrine and metabolic disease 26 0 10
cancer specific types 96 0 20

signal transduction 99 0 19

cancer overview 94 0 20

signal transduction 54 2 17

nervous system 143 0 15

cancer specific types 4 0 15
cancer specific types 63 0 20
endocrine system 70 0 16

drug resistance antineplastic 118 0 16
cancer overview 53 0 17

cancer specific types 76 0 18

Table 25: Top 20 KEGG Pathways ranked by pathway overlap heterogeneity (POH)

Rank
1

POH
171.61
169.99
166.05
138.25
137.88
135.54
132.86
131.34
129.93
127.95
127.10
126.65
123.79
12323
123.15
122.76
120.95
120.26
120.17

120.08

PCH
285.87
227.42
199.64
215.99
181.69
176.56
169.94
184.25
197.99
197.01
183.88
184.75
183.00
172.09
187.65
177.02
200.46
190.88
151.04

188.61

Title Pathway Code Category

Aldosterone-regulated sodium reabsorption hsa04960 _
Spinocerebellar ataxia hsa05017 _

Fc epsilon Rl signaling pathway hsa04664 —

Platelet activation hsao4e11 (N Grganismalsystems)

Choline metabolism in cancer hsa05231 _
erRHsecEtey nsaosc20 (NNNNGTESTAISSERS
| FogammaR-mediated phagocytosis  hsa04665  Organismal Systems
Endometrial cancer hsa05213 _

Melanoma hsa05218 —

Regulation of lipolysis in adipocytes hsa04923 _

Thyroid hormone signaling pathway hsa04919 _

Renal cell carcinoma hsa05211 _

EGFR tyrosine kinase inhibitor resistance hsa01521 —
e nsacc2s (D
Central carbon metabolism in cancer hsa05230 _
AiorE  hseos21+ (IEENERDEEEE
Progesterone-mediated oocyte maturation hsa04914 —
Colorectal cancer hsa05210 —
et drgvesistance)  nsaots2¢ (N GRERIDEEESE
ErbB signaling pathway hsa04012 _

Subcategory #Edges #Sig. Delta #Sig. Yoverlaps

excretory system 1 8 12
neurodegenerative disease 21 4 17
immune system 57 0 12

immune system 36 3 17

cancer overview 53 0 17

endocrine system 32 3 14

immune system 30 0 12

cancer specific types 63 0 20
cancer specific types 106 1 16
endocrine system 23 5 12

endocrine system 70 0 16

cancer specific types 41 0 15

drug resistance antineplastic 118 0 16
cancer specific types 154 0 15
cancer overview 94 0 20

cancer specific types 99 0 14
endocrine system 34 1 17

cancer specific types 96 0 20

drug resistance antineplastic 50 0 15
signal transduction 99 0 19
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themselves, the discrete-ness of the data would result in many ties but could still be differentiated

by POH and PCH (see Figure 35).

A Number of Significant Delta Values Across Pathways B Number of Significant Sum(overlaps) Values
Zero significant = 128 26-
24-
9_
22-
8- 20-
7 18-
6- 16-
= 14-
c
= 5-
§ § 12-
O 4- 10-
3- 8-
6-
2_
4-
) HH 3
0- 0-
1 ' ; ; : : 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of Significant Comparisons Number of Significant Comparisons

Figure 34: Discrete distribution of the number of significant delta values (A) and }; overlaps (B)
across all pathways. Note that (A) is truncated at 1 due to a very large number (128 out of 160) of pathways
that do not have any significant pathway delta values.

The first major take-away from Table 24 and Table 25 is the similarity of the pathways
that show up in each table. In fact, the intersection of pathways in both tables is 15 (75%); those
that are unique to the top 20 of either the POH or PCH ranking are highlighted in yellow (5
pathways each). While a few (2) Environmental Information Processing pathways are included
in the top 20 lists (ErbB signaling pathway [both] and TNF signaling pathway [top 20 by PCH]),
the majority of pathways are classified as either Human Disease (10) or Organismal Systems (8).
Notice that many of the most heterogeneous pathways as defined by PCH do not have any
significant delta values — in these cases, despite the individual edges showing large difference in
concordance amongst all cell lines, there is not evidence to suggest that one cell line is overall

more or less concordant than another cell line.
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The first pathway in both lists is the Aldosterone-regulated sodium reabsorption pathway
— this pathway is also the pathway with the largest number of significant delta values. From
Figure 35A, we can see that HEPG2 and MCF7 are more concordant than cell lines A375, A549
and HA1E; HT29 and PC3 are also more concordant than HA1E. The patterns in the median
Y. overlaps (Figure 35B) are not quite as obvious, but in general HT29 and MCF7 are more
different than HT29 A375, A549 and HA1E but are similar to one another — which reflects the
patterns seen in Figure 35A. However, somewhat counter-intuitively, the pairwise comparison

with the largest pathway delta, HEPG2 and A375, has the second highest number of median

Y. overlaps.
A Average Delta: B Median Sum of Overlaps:
Aldosterone-regulated sodium reabsorption Aldosterone-regulated sodium reabsorption
PN PR 2L
RSO R I R S S ¥ I E & L&
A375 -3.88 | -D68 | -2.69 | -)G2 A375 5 | 18 | 15

3.1

16

A549 =315 | D69 | 2.61 | —p01 || [238 A549

1.55

HA1E

HA1E -3.82

0.78

0 HEPG2

HEPG2| 3.88 | 3.15

HT29| 1088 | 189 HT29| 5

MCF7| 269 | 2.61 MCF7| 33

31 PC3| 5

—-3.88

PC3| &2 | 11

Figure 35: Matrices showing the pairwise pathway average delta (A) and median . overlaps (B)
for the aldosterone-regulated sodium reabsorption pathway.

The only issue with this particular pathway is that it just makes the criteria for inclusion
in the analysis with 11 edges (recall that the criteria for inclusion is at least 10 edges) — so it
could be the case that one or two edges are driving the results. Furthermore, we would like to
see if the patterns of difference are similar between and across cell lines. To investigate this

issue and introduce the structure of KEGG pathways, we will generate a pathway map with the

104



KEGGlincs package, compare it to the original KEGG rendering and take a look at a

complimentary matrix-type visualization of the edge-level test statistics.

| ALDOSTERONE-REGULATED SODIUM REABSORPTION | [ ALDOSTERONE-REGULATED SODIUM REABSORPTION |
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Figure 36: Renderings of the aldosterone-related sodium reabsorption pathway from KEGG from
the website ‘as is” (A) and with the pointer hovered above a gene with paralogues (B).

The aldosterone-regulated sodium reabsorption pathway depicted in its original form [i.e.
exactly as it appears on the pathway’s landing page when ‘homo sapiens’ is the species at
KEGG’s website [12] ] in Figure 36A and again with a tiny difference in Figure 36B to show an
important but perhaps not fully explicit feature of KEGG pathway maps. In Figure 36B there is
a gray box in the lower right-hand corner of the map; this box contains the gene symbols as well
as KEGG’s own internal reference codes (“KO code”) for all of the genes that are represented at
a particular node. In this case, the node labeled “PI3K” is actually 6 different nodes (PIK3CA,

PIK3CB, PIK3CD, and PIK3R1, PIK3R2, and PIK3R3)) that are represented by one node. One
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advantage of using KEGGlincs to render the pathway maps, as detailed in Chapter 5, is that this
information is made explicitly clear as demonstrated in Figure 37. Note that in an interactive
Cytoscape session each edge will have its own unique paralog combination label when a cursor

is hovered over that edge.

Aldosterone-regulated sodium reabsorption |

Color Legend

Red:
Activation/Expression
Blue: Inhibition
Orange: Activating
PTM*

Purple: Inhibiting PTM
Green: PTM [no
further defined]

*PTM = post-
translational
modification

Figure 37: Rendering of the aldosterone-related sodium reabsorption pathway using KEGGlincs to visualize
the exact nature (in terms of number and type) of relationships among genes in KEGG pathways.

This edge-based, or relationship-based approach to the representation of pathway edges is
amenable to the type of data we have been generating throughout this project as is showcased in
Figure 38. Figure 38 shows which of the KEGG pathway edges appear in our data and how
relationships in those edges compare between two cell lines in the L1000 data set using the delta
statistic for the comparison of cell lines HEPG2 and A375 (the pairwise comparison with the

largest delta value in Figure 35A). There are a few key points to be gleaned from the data
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represented Figure 38. First of all, we can see that most edges are more concordant in HEPG2

(9 out of 11) and that the most concordant edge (the edge with the largest width) is between

KRAS and a paralogue of PIK3CA. To figure out exactly which edge this is, and exactly which

edges are available from our data set, we could scroll over it in an interactive Cytoscape session;

this document includes this information in Figure 41A. In this case, we can see that

relationships from IRS1 and KRAS to PIK3CA, PIK3CB and PIK3R1 are all more concordant in

HEPG2 whereas the relationships from IRS1 and KRAS to the paralogue PIK3CD are more

concordant in A375.

| Aldosterone-regulated sodium reabsorption

Steroid hormone
biosynthesis o —
Cortisone
.9
sssssss m
3',5"-Cyclic
AMP
R
(e] SCNN1A
Saton +p =z
+u o
‘ Potassium
t
nsphal\dylmasno?ﬁA,5-Ulsphosphale ' ccccc
‘

Ubiquitin mediated
proteolysis

. o
Cortisol
Aldosterone
FXYD4
ATP1B4 o
Sodium
cation
INS
INSR
IGF1

Edge Color Legend

Orange: More
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Gray: Data for
relationship[s] not
available

Figure 38: Rendering of the aldosterone-related sodium reabsorption pathway for HEPG2 vs A375
using KEGGlincs functions that use mapping information from KEGG and are formatted according
to delta values between cell lines using L1000 data. The width of the edge represents the

magnitude of delta whereas the width represents delta’s direction.
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Figure 39: The edge-wise deltas (A) and Y overlaps (B) between nodes in the aldosterone-related
sodium reabsorption pathway for HEPG2 vs A375. The genes in the rows are the ‘from’/originating
nodes and those in the columns are the ‘to’/terminating nodes.
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Figure 40: Rendering of the aldosterone-related sodium reabsorption pathway for HEPG2 vs A375
where the width of the edge is formatted to reflect the magnitude of ), overlaps values between
cell lines using L1000 data.
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In Figure 40 the ), overlaps statistic is represented with the exact values for each edge
reported in Figure 39B. Here, the cell lines appear to be the most similar in edge IGF1-IRS1
and least similar in the relationships between IRS1/KRAS and PIK3CA — a pattern reflected in
the relatively low delta for IGF1-IRS1and relatively large deltas for IRSI/KRAS and PIK3CA.
As previously mentioned, the number of pathway edges for this first example pathway is
relatively low. Even though there was not one particular edge driving the difference in
concordance between HEPG2 and A375, there are many edges in this pathway that are not
available in our dataset. Rather than this entire pathway being characteristic of overall
differences in concordance among cell lines, it is likely that this method has identified a

submodule of genes that exhibit heterogeneous behavior across cell lines.
4.4.2 Results: Most Similarly Regulated Pathways across Cell Lines

Table 26: Top 20 KEGG Pathways ranked by pathway overlap median (POM) score

Rank
1

N O o A WN

© o™

POM Title Pathway Code Category Subcategory #Edges #Sig. Delta #Sig. Yoverlaps
465.5 Herpes simplex virus 1 infection hsa05168 _ infectious disease viral 92 0 20
4435 Central carbon metabolism in cancer hsaos5230 (EiRanDiseases cancer overview 94 0 20
442.0 Estrogen signaling pathway hsa04915 _ endocrine system 85 0 20
442.0 Spinocerebellar ataxia nsa05017 (i REniDiseases neurodegenerative disease 21 4 17
442.0 T cell receptor signaling pathway hsa04660 _ immune system 87 0 19
434.0 Endocrine resistance hsa01522 _ drug resistance antineplastic 141 0 20
4265 Colorectal cancer hsaos210 (iRanDiseases cancer specific types 96 0 20
425.0 Non-alcoholic fatty liver disease (NAFLD) hsa04932 _ endocrine and metabolic disease 44 0 18
423.0 Acute myeloid leukemia hsa05221 _ cancer specific types 98 0 21
423.0 Endometrial cancer hsa05213 _ cancer specific types 63 0 20
422.0 ErbB signaling pathway hsa04012 (ERVifonMentalinionmationiProcessing signal transduction 99 0 19
422.0 Pertussis hsa05133 _ infectious disease bacterial 31 2 17
419.0 Yersinia infection hsa05135 _ infectious disease bacterial 89 0 18
417.0 Hepatitis C hsaos160 (ElRanDiseases infectious disease viral 80 0 18
417.0 Thyroid hormone signaling pathway hsao4919 (I Grganismalsystems) endocrine system 70 0 16
4155 Chemokine signaling pathway hsao4o62 (N Grganismalsystems) immune system 136 0 18
415.0 Choline metabolism in cancer hsaos231 (A lRanDiseases cancer overview 53 0 17
415.0 Small cell lung cancer hsa05222 _ cancer specific types 67 0 16
414.0 B cell receptor signaling pathway hsa04662 _ immune system 61 0 19
413.0 VEGF signaling pathway hsa04370 (ERVifORMentaliniormationiProcessing signal transduction 62 3 15
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In Table 26 we have the top 20 pathways ranked by the POM score — a score that
indicates the over-all similarity of the downstream effects for perturbagens represented in that
pathway. In this table, the pathways highlighted in orange are the pathways that also make an
appearance in the top 20 lists ranked by PCH and POH. Note that are no pathways shared by
POM and PCH or POM and POH that are not shared by PCH and POH. Even though there is a
higher degree of overlap for the pathways represented by PCH and POH (15/20) vs POM and the
combination of PCH and POH (6/20), the degree of similarity is at first surprising given that
these statistics, in theory, are meant to capture different aspects of the data. However, recall that,
for individual edges, the edge with the largest BD value (KRAS-BRAF) is also among the edges
with the largest ), Y overlaps.

This situation is likely playing out at the level of the pathway as well; the differences
attributed to certain edges may arise due to one cell line acting as the ‘odd one out’ vs the others
that have more in common amongst themselves for that edge compared to other edges that are
not different across the board. This may be the reason behind why so many pathways on this list
fall under the subcategory “cancer specific subtypes” despite all of the cell lines representing
different cancers or, in the case of HA1E, a cell line whose mutations have led to immortality
akin to those of the cancer cell lines. Each of these pathways could be explored using the

functionality provided by KEGGlincs, as is detailed in the following chapter.
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Chapter S: R Bioconductor Package: KEGGlincs

Kypto Encyclopedia of
Genesdnd Genomes Extract exact mapping information ~ RESTful API: transfer graph
Integrate data + pathway object from R to Cytoscape
Generate graph object

Pathway Information

Data (LINCS L1000)

Figure 41: A summary of information retrieval and processing for KEGGlincs.

5.1 KEGGlincs Introduction

The package KEGGlincs and the functions contained within it are designed such that users
can explore KEGG pathways in a more meaningful and informative manner both visually and
analytically. This method of pathway analysis is approached via functions that handle the

following (related) objectives:

o ‘Expanding’ node mapping for [paralogous node entries and grouped node entries
o Allowing data to be explicitly mapped to ‘expanded’ pathway edges (no summarization

necessary)

The idea of ‘expanded’ nodes and edges should become very clear after reviewing the following

example KEGGlincs workflows. Please keep in mind, the individual functions detailed in the
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following workflows are incorporated into the KEGGlincs ‘master function’; these workflows
are designed to provide users a with a better understanding of how this function works, how
pathway topology is represented in KGML files, and how this package could be used with non-

LINCS edge data (see Workflow 2).

5.2 KEGGIlincs Workflow 1: No data added

This workflow is intended to give users insight into the ‘expansion’ of KEGG pathway
mapping via manipulation of the source KGML file. The only input required is the KEGG
pathway ID for your pathway of choice. The primary goal for this method of pathway re-
generation is to give users insight into the complexity that underlies many KEGG pathways but
is in a sense ‘hidden’, yet hard-coded, in the curated KGML files. Users can also see
the exact pathway topology that is used for input in analyses such as SPIA (Signaling Pathway
Impact Analysis). The example is given for the FoxO signaling pathway and by following the
steps below, users can re-create their own KEGG pathway maps as well as retrieve the

information used to explicitly define any of the KEGG pathway architecture.

Stepl: Initialize KEGGlincs package

library(KEGGlincs)

Step2: Download and parse the most current KGML file for Fox0 signaling pathway

FoxO_KGML <- get_KGML("hsa04068")

#Information from KGML can be accessed using the following syntax:
slot(Fox0_KGML, "pathwayInfo")

## [ Title ]: FoxO signaling pathway

## [ Name ]: path:hsa04068

## [ Organism ]: hsa

## [ Number ] :04068

## [ Image ] :http://www.kegg.jp/kegg/pathway/hsa/hsab4068.png
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## [ Link ] :http://www.kegg.jp/kegg-bin/show_pathway?hsa04068

The code chunks below are useful for viewing the original pathway image within an R session:

#Get address for pathway with active Links:

slot(slot(Fox0O_KGML, "pathwayInfo"), "image")

## [1] "http://www.kegg.jp/kegg/pathway/hsa/hsa04068.png"
#Download a static pathway image (png file) to working directory:
image link <- slot(slot(FoxO_KGML, "pathwayInfo"), "image")
download.file(image link, basename(image_link), mode = "wb")
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Figure 42: Rendering of the .png file for the p53 signaling pathway from KEGG

The following commands produce ‘expanded’ node and edge sets Note that KEGG IDs
are converted to gene/compound symbols; this conversion accounts for the majority of
computing time behind the expand_KEGG_mappings function. For quicker map generation,
users may choose to change the argument convert_KEGG_IDs to FALSE; this will result in
edges being identified by pairs of accession numbers instead of symbols in the final pathway

map (example at end of this workflow using KEGG lincs master function).
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FoxO_KEGG_mappings <- expand_KEGG_mappings (Fox0O_KGML)
FoxO_edges <- expand_KEGG_edges(Fox0O_KGML, FoxO_KEGG_mappings)

Option - Compare counts for ‘expanded’ vs. ‘unexpanded’ nodes and edges:

length(graph: :nodes(Fox0_KGML)) # 'Un-expanded' nodes
## [1] 98

nrow(Fox0_KEGG_mappings) # 'Expanded' nodes
## [1] 164

length(graph: :edges(Fox0_KGML)) # 'Un-expanded' edges
## [1] 78

nrow(Fox0_edges) # 'Expanded' edges
## [1] 457

Step3: Add graphing information to nodes and edges and get graph object

#Modify existing data sets; specify as nodes and edges
Fox0_node_mapping_info <- node_mapping_info(Fox0_KEGG_mappings)
FoxO_edge_mapping info <- edge_mapping_info(Fox0_edges)

#Create an igraph object

GO <- get_graph_object(Fox0_node_mapping_info, FoxO_edge mapping_info)
class(GO)

## [1] "igraph"

Step 4. Transform graph object and send to Cytoscape

cyto_vis(GO, "FoxO Pathway with Expanded Edges[no data added]")
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Figure 43: Rendering of the FoxO pathway via KEGGlincs
Edge Color Key:

Red: Activation or Expression *
sk
Green: PTM (no activation/inhibition activity defined)
Blue: Inhibition
Purple: Inhibiting PTM
Black(solid): Binding/Association
Black(dashed): Indirect effect (no activation/inhibition activity defined)
* Any dashed colored line indicates that the effect is indirect

**PTM = post-translational modification or, as KEGG defines them, ‘molecular events’.

o The specific types of PTMS (indicated by edge label) include:
+p: phosphorylation

-p: dephosphorylation

+g: glycosylation

+u: ubiquitination

+m: methylation

O O O O O
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Notice that the original KEGG pathway image (Figure 42) includes visual elements such
as cellular-component-demarcations and certain edges (especially those ‘connecting’ genes to
other pathways) that are not rendered in Cytoscape (Figure 43). These are features that are
either not explicitly part of the pathway topology (i.e. not nodes or edges connecting nodes) or
have not been hard-coded in the KGML file. The node labels may also differ between maps
(KEGGlincs labels nodes as the first ‘alias’ in the respective KGML slot as there is no

corresponding ‘label’ slot).

The steps above may be avoided if the user does not wish to generate intermediary

files/objects by making use of the function KEGG_lincs as follows:
KEGG_lincs("hsa04068")

If users would like the Cytoscape-rendered map along with the detailed list of expanded edges

(as an R object), KEGG_1lincs can be invoked as follows:

FoxO_edges <- KEGG_lincs("hsa04068")

5.3 KEGGlincs Workflow 2: Overlay data to edges of KEGG pathway

Specific use case: LINCS L1000 Knock-out data

While the functions described in Workflow 1 are certainly useful for any users wishing to
gain deeper insight into KEGG pathway topology and ‘hard-coded” KGML information, the
driving force motivating the KEGGlincs package development is the association of experimental
data with pathway edges. The companion data package KOdata provides data for the edges
rendered by the master function KEGG_1lincs. This data package includes two unique data sets;

one contains lists of significantly up- and down-regulated genes corresponding to knocked-out
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genes (within individual experiments, genes are ‘turned off” via shRNA) across a variety of cell
lines measured at specific times and the other is a binary record of baseline gene expression
(gene is either expressed or not expressed) for most cell lines from the knock-out data set. Note
that the data in this set contains CGSs set at the original threshold of 50 as decided by the
BROAD institute. While this package was developed primarily as a way to compare pathway
topology between cell lines or within cell lines [across time] using LINCS L1000 data, this
workflow will demonstrate the package’s flexibility for users that wish to incorporate edge data

from any source.
Example: Comparing p53 Signalling Pathway between cell lines.

As a hypothetical scenario, our goal will be to compare pathway topology between cell lines for

an important cancer-related pathway: the p53 Signaling Pathway.

The ‘default’ pathway (with no data added to edges) can be generated either by following

Workflow 1 or by using the KEGG_1incs master function as follows:

KEGG_lincs("hsa04115")

P53 signaling pathway

=0 Pathway = hsa04115:pS3 signaling pathway ] 7 L3

&8 = @ Memory

Figure 44: Rendering of the p53 signaling pathway via KEGGlincs
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Note that the data available in KOdata is not limited to the 7 cell lines with 2,004
common perturbages that we have been focusing on thus far in this project. An important aspect
of the L1000 knock-out and expression data is that it is incomplete; experimental data is not
uniformly available for each cell line. Therefor (for this specific example with this specific data
set) it is instructive to find out which cell lines make sense to compare; intuitively, cell lines with
a similar percentage of pathway genes knocked out would be well suited for comparison. The
following command accomplished this task in the form of an easily interpretable graphical

output:

path_genes_by cell type(p53 KEGG_mappings)
Pathway Coverage by Cell-Type

B 60% +
O 40% to 60%
M Below 40%

60 —

50

30

20

10

Percentage of Pathway Genes Knocked Out

O>0AFFJOOOWY OO MIN MW
coxhgaeBunREEED0
Tns¢ guJOI =<y =
ST hIT T
zn ¥

Figure 45: Bar chart of percentage of gene perturbations available for a given cell line in the p53 pathway.

The bar chart in Figure 45 suggests that the group of cell lines colored in red have similar
amounts of pathway information; for this example, we will compare the PC3 (prostate cancer)

and HA1E (immortalized normal kidney epithelial) cell lines. Note that the seven cell lines that

118



we have used in our analyses discussed in other chapters are well represented in this pathway as
well as others which is the reason that they were chosen to begin with. The following commands
use the data objects generated above to generate cell line specific edge attributes corresponding

to specific pathway edges and the information from the L1000 knock-out data set:

p53 PC3 data <- overlap_info(p53 KGML, p53 KEGG_mappings, "PC3")
## Number of genes documented in selected pathway = 72

## Number of pathway genes in dataset = 48

## Coverage = 66.67%

p53 HA1lE data <- overlap_info(p53 KGML, p53 KEGG_mappings, "HA1E")
## Number of genes documented in selected pathway = 72

## Number of pathway genes in dataset = 50

## Coverage = 69.44%

The following function add_edge_data can be used with any dataset with gene symbols in the
first two columns and will append selected columns to the edge dataset. Note that the data
supplied does not need to be pre-arranged in correct source-to-target order as specified by the

pathway topology; the function automatically re-orients pairs correctly.

p53 PC3 edges <- add_edge_data(p53 edges, p53_KEGG_mappings,
p53 PC3 data, only mapped = TRUE,
data_column_no = ¢(3,10,12))

## Number of edges documented in selected pathway = 92
## Number of edges with corresponding user data = 60
## Coverage = 65.22%

p53 HAlE edges <- add_edge_data(p53_ edges, p53_KEGG_mappings,
p53 HAlE_data, only mapped = TRUE,
data_column_no = ¢(3,10,12))

## Number of edges documented in selected pathway = 92
## Number of edges with corresponding user data = 64

## Coverage = 69.57%
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The following series of commands follow from Workflow 1 (with minor adjustments to
arguments, notably ensuring that data_added = TRUE is specified). The edges in the resulting
pathway maps are conditionally formatted to represent both the significance and magnitude of
the relationship between corresponding nodes based on their concordance/discordance of

up/down-regulated genes as measured by Fisher’s Exact Test.

p53 node_map <- node_mapping_info(p53 KEGG_mappings)
p53 edge map PC3 <- edge_mapping_info(p53 PC3_edges, data_added =
TRUE,significance_markup = TRUE)

p53 edge map HA1lE <- edge_mapping_info(p53 HAlE edges, data_added =
TRUE, significance _markup = TRUE)

PC3_GO <- get_graph_object(p53 node_map, p53_edge map_PC3)

HA1E GO <- get_graph_object(p53 node_map, p53 edge map HA1E)
cyto_vis(PC3_GO, "Pathway = p53, Cell line = PC3")

#0Option: Save PC3 as .cys file and start a fresh session in Cytoscape
cyto_vis(HA1lE_GO, "Pathway = p53, Cell line = HA1lE")

As with Workflow 1, the KEGG_lincs master function can automatically generate pathway maps

identical to the final maps resulting from Workflow 2 as follows:

KEGG_lincs("hsa04115", "PC3", refine_by cell line = FALSE)
KEGG_lincs("hsa@4115", "HA1lE", refine_by cell line = FALSE)

These pathway maps are shown in Figure 46. Note that in Cytoscape graphs rendered in the
same session inherit certain style elements from existing graphs that are not updated when the
new graph gets pushed (such as range for conditional formatting); therefor it is best to start with
a fresh session when mapping requires conditional formatting. The edge colors represent the
following possible combinations of direction of Fisher’s Exact Test summary scores (a modified

Odd’s Ratio score; either positive(+) or negative (-)) and their corresponding p-values.
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Figure 46: p53 signaling pathway with conditionally-formatted edges that represent the within-cell line
concordance of the edges in PC3 (top) and HA1E (bottom).

Finally, the function KL compare can be used to generate a graph that compares the
concordance of edges between cell lines. Note that reversal of the order of cell lines will result
in opposite coloration. The ‘first’ cell line is the ‘reference’ cell line (in this example, PC3)

whereas the second cell line is the ‘comparison’ cell line (in this example HA1E). The map

above was produced with the following command:
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KL_compare("hsa@4115", "PC3", "HALlE")

Color Legend:

Dark Orange: Edge is
significantly more concordant in
reference cell line

Dark Green: Edge is
significantly more concordant in
comparison cell line

Figure 47: p53 signaling pathway with conditionally-formatted edges that represent the comparison of
concordance measurements between the cell lines PC3 (reference cell line) and HA1E (comparison cell line).

5.3 KEGGlincs Example and Discussion: The ErbB Signaling Pathway

The ErbB signaling pathway — also refered to as the epidermal growth factor or EGFR
pathway - describes the complex relationships involved in relaying signals from the environment
to proteins in the cell’s membrane that ultimately reach the nucleus and affect cellular growth.
This pathway is perhaps most notably associated with breast cancer [49] but research suggests
that it is involved with many different types of cancers including skin [50], colon [51], lung [52],
liver [53], prostate [54] and renal [55] — ie cancers represented by all of our model cell lines.
This pathway is also in the top 20 pathway lists for each of the pathway-level outcome

measurements discussed in Chapter 4.
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Figure 48: Matrics of the average delta values (A) and median ) overlaps (B) for the ErbB signaling pathway.
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Figure 49: Edges in the ErbB signaling pathway for MCF7 compared to A375 (A), A549 (B), HA1E (C),

HEPG?2 (D), HT29 (E) and PC3 (F).
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In Figure 49 we can see that, depending on the cell line it is compared to, we see
different patterns of differences in concordance. For example, many edges that are part of the
sub-network “Calcium signaling pathway” are more concordant in HT29 vs MCF7, but in MCF7
these edges tend to be either more concordant or approximately as concordant in other cell lines.
MCF7 also appears to be more concordant across paralogous relationships between PIK3 and
AKT to a different degree depending on the comparison cell line. The differences between
individual cell lines are descriptive, but the utility of pair-wise differences likely not as useful as

observing differences across cell lines.
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Figure 50: Edges in the ErbB signaling pathway conditionally formatted to represent the Breslow-Day
statistic.
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The goal of undertaking this project was to assert the notion that in a given pathway
analysis, it is of utmost importance to take into consideration the type of cell line being
considered for any given analysis and that any given pathway analysis may be underpowered to
find meaningful results given the heterogeneity of relationships between paralogues in a given
pathway. In Figure 50, edges in the ErbB are conditionally formatted to reflect the degree of
difference in association across cell lines. We can see that there are some edge paralogues, for
example between HRAS and ARAF, that are very similar across cell lines (thin line) but that
many are very different between cell lines — the edge KRAS-BRAF which had the largest single
edge BD value is a paralogue of this edge. In the chapter that follows, the functionality of

KEGGlincs will be demonstrated as it applies to a formal analysis.
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Chapter 6: Edge Set Enrichment Analysis (ESEA) of L1000 data set

6.1 GSEA

6.1.1 GSEA Introduction

Gene set enrichment analysis (GSEA) was briefly discussed in Section 4.2.1 as an
example of a second-generation or FCS (functional class scoring) approach to pathway analysis.
As opposed to first-generation or ORA (over-representation analysis) approaches, the input for
GSEA and other FCS methods includes gene-specific measurements — most often signal-to-noise
ratio — for each gene in a pathway or list of genes of interest. It is one of the most, if not the
most, commonly used methods for the downstream analysis of gene expression data; there have
been over 20,000 citations for the methods paper since its publication in 2005 [10]. In the
context of a 2-group gene expression comparison (for example mutant vs. wildtype, cases vs.
controls) where the first group has the phenotype of interest (typically the “mutant” or “cases”

group) the signal-to-noise ratio (S2N) for a single gene i is defined as follows:

Groupl Group?2
U; — U

Groupl Group?2

i 14 + O.i 14

SZNl ==

S2N reflects the correlation (association) of a gene with a phenotype in terms of size and
direction. In this type of comparison, a gene with a positive S2N would be correlated with
Group 1 — that is — it tends to be expressed at a higher frequency in the first group as opposed to
the second group. A gene with a negative S2N would be correlated with Group 2 or negatively
correlated with Group 1 — the gene tends to be expressed at a higher frequency in the second
group relative to the first group.

In GSEA, the focus is neither on the individual S2N measurements nor their significance

as determined by traditional differential expression analysis (though p-values are an alternate
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gene ranking mechanism). Instead, the goal of GSEA is to find coordinated patterns of gene
expression for transcripts in an a priori defined sets of genes. The choice of a gene set, or more
commonly gene sets, employed in GSEA depends on the research objective. In some cases,
researchers want to see if a list of genes found to be differentially expressed in a previous gene
expression analysis are enriched in their phenotype of interest. However, a more common
approach is to see how their data relates to a large number of gene sets after performing GSEA
with each set and then ranking them in terms of direction of enrichment and significance (the
calculation of these values will be summarized shortly). The Molecular Signatures Database
(MSigDB) maintained by the BROAD institute — the academic institution that pioneered GSEA —
contains nine different collections of gene sets, defined as follows [56]:

H (hallmark gene sets), C1 (positional gene sets), C2 (curated gene sets), C3 (regulatory target
gene sets), C4 (computational gene sets), C5 (ontology gene sets), C6 (oncogenic signature gene
sets), C7 (immunologic signature gene sets), and C8 (cell type signature gene sets).

The hallmark gene sets are 50 gene sets that are, perhaps, the most relevant in terms of
traditional gene expression analysis because the expression of the genes in those sets is related to
a given biological condition. Gene sets curated from KEGG pathways are part of the CP
(canonical pathways) subset of the C2 gene set (C2:CP). Note that there are nearly 3000
pathways (2868 to be exact) contained in C2:CP. While researchers are not limited in a strict
sense by the number of gene sets they wish to run through in GSEA, increasing the number of
sets will have an impact on the interpretation of the results both in terms of adjusting the
significance for multiple hypothesis testing. Therefore, it may be in the best interest of the
researcher to restrict the scope of considered gene sets before conducting GSEA and ensure that

the lists are the most relevant to the research objective.
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6.1.2 GSEA Methods: Enrichment Statistic
Although the per-gene measurements are not restricted to bi-directional measurements

such as S2N, we will restrict our discussion to input of this type as it is the most straight-forward
approach and makes the eventual output more interpretable from a directionality standpoint.
That being said, let L = (L4, L,, ..., Ly) be a list of all genes ranked by their S2N and let S =
(81,S,...,SK) bealistof genes. “Given an a priori defined set of genes S ... the goal of GSEA
is to determine whether the members of S are randomly distributed throughout L or primarily
found at the top or bottom” [10]. Formally,

H,: Membership in § +» Location in L

H,: Membership in § = Location in L (top or bottom)
The per-gene set output after conducting GSEA, namely the enrichment statistic (ES),
normalized ES (NES) and its false discovery rate (FDR) adjusted p-value (or “q-value”), will be
the basis for rejecting or failing to reject the null hypothesis for each gene set. In this section we
will demonstrate how the ES is calculated. The value of the ES for gene set S is the maximum
value of the running enrichment scores (RES), whose calculation is described below.
Let L and S be a ranked list of genes and a gene list as described above and let m =
(my, my,, ..., my) be the vector of corresponding measurements (i.e. S2N) for all genes in L.

Each gene is marked with two indicator variables, “Tag” and “No.Tag” whereby

1, L;€S

Tag; = {0' olse and No.Tag; —{

0, else Then, define the following quantities:
M= Z{'c=1|mi| where Tag; = 1and T = Z%\Ll No.Tag;. M is the sum of the ranking metric for
all genes that are members of S and 7 is equal to N — k, that is, the number of genes that are in L

but not in S. The RES starts at zero and then, at the first gene will either increase if that gene is in

S or decrease if that gene is not in that list.
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At any given gene j,
RES; =%i_,(Im;] « /p) * Tag;) = Ty (/) * No.Tag))

At the final gene N, RESy = M/, — T/ =0, thus RES begins and ends at zero. Let

R be the vector of all RES. Then, the ES is maximum deviation from zero encountered in the
‘random walk’ across the ranked list of genes:

ES = max|R| * sign(max|R]|)

This non-parametric statistic is defined as a weighted Kolmogorov-Smirnoff-like statistic and is
restricted to values between -1 and +1 [10]. Recall the group definitions whereby Group 1 has
the phenotype of interest (cases, etc.) and Group 2 is the control group. If ES > 0, then the
genes in S are said to be positively correlated with cases and, as a group, tend to be
overexpressed or enriched in the cases versus the controls. If ES < 0, then the genes in S are
said to be negatively correlated with cases and, as a group, tend to be under-expressed in the
cases versus the controls. Note that the interpretation switches if the groups are defined in the
opposite manner (i.e. controls are Group 1 and cases are Group 2).

Oftentimes, gene set results are accompanied by an enrichment plot, which plots the RES across
L for a given gene set as is shown in Figure 51.

The exact visualizations included with an enrichment plot will depend on the choice of
software used to conduct GSEA; the plot in Figure 51 was generated using the JAVA package
GSEA-P, a software tool provided to researchers by the BROAD institute. There are also R
Bionconductor packages that conduct GSEA such as fgsea [57] and phenoTest [58] that provide
similar visualizations. The dashed lines in Figure 51 were added in to show how the leading-

edge (LE) subset of genes is defined. If we define L as the gene corresponding to the
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maximum RES (represented by the x-axis in Figure 51), then the genes up to and including Lgg
that are part of S are members of the LE subset. The LE subset of genes contributes to the
magnitude of the ES and can be thought of as the drivers of the biological process for the

phenotype being considered.
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Figure 51: Example of an enrichment plot for gene set with a positive ES (ES = 0.77). The dashed
line (horizontal) marks the maximum ES on the y-axis. The gene hits that fall before the vertical
dashed line (circled) are part of the leading-edge subset for this gene set.

6.1.3 GSEA Methods: Empirical p-value, Normalized ES and FDR determination
The Kolmogorov-Smirnoft-like ES values require permutation tests in order to estimate
an empirical p-value. There are two ways of permuting the data when the input is gene

expression data. The first is by permuting or ‘shuffling’ sample labels; however, since our
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eventual analysis of the L1000 data set is not amenable to this kind of permutation we will focus
our attention on the second kind of permutation. This kind of permutation involves selecting
gene sets that are the same size as S and calculating an ES for each permutation. Researchers are
free to choose how many permutations they wish to consider, but typically 1000 is considered
the standard. Let ESP be the vector of ES values obtained via permutation of genes for gene set
S, let ES, s be the ES associated with the original gene set, and let nperm be the number of

permutations. Then, the empirical p-value is calculated as follows:

Z?:plerm ESPL" ESPi = ESobs (25)
nperm + 1

p:

Figure 52 is included to show the bi-modal nature of the permuted ES values as well as how
there may be a slight bias for either positive or negative ES values (there is a slight positive bias

in this example).
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Figure 52: Example of a distribution of permuted enrichment scores

The bias in permuted ES values is taken into account when calculating the normalized

enrichment score or NES for a gene set. The NES takes into account gene set size and makes
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gene sets comparable to one another in the interpretation of the results. Let ESP™ be the positive
ES values in ESP, ESP™ be the negative ES values, and let npos and nneg be the number of
positive and negative ESs respectively. Then, the NES for a given gene set is calculated as
follows:

ES + Y P ESP}Y (26)

=1
npos + 1
ES+ Y9 ESP

i=1
nneg + 1

ES >0,
NES =

ES <0,

With the empirical p-values and NES values in place, the last component of the GSEA analysis
is to correct for multiple hypothesis testing.

If a researcher is only interested in estimating the significance of the enrichment for one
gene set, there is no need to correct for multiple hypothesis testing — sometimes referred to as
multiplicity — and the empirical p-value will suffice. However, as is often the case with
bioinformatics-based analyses, multiple hypotheses are tested with the same data set. The
Bonferroni correction is the traditional approach to the problem of multiplicity and aims to
control the familywise-error rate (FWER) across a ‘family’ (set) of hypotheses. The involves
adjusting the significance criteria in order to maintain the Type | error rate, a, namely by
dividing this critical value by the number of hypotheses being tested.

When the Bonferroni correction is applied, the probability of falsely rejecting any (one or
more) of the null hypotheses is maintained at the original critical value. However, this is a very
conservative approach and, depending on the research objective, is even considered to be
irrelevant and counterproductive as it drastically reduces the power of a study [59]. With this in
mind, Benjamini and Hochberg introduced the concept of the false discovery rate (FDR) as an
alternative approach for handling multiplicity. The control of FDR as opposed to Type I error

increases power and is a suggested as a multiple comparison procedure (MCP) that balances the
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number of true and false positives in gene expression and other genomewide studies [60].
Benjamini and Hochberg borrow the nomenclature “discovery” from Sori¢, who used the term to
define hypotheses that are rejected based on making some significance threshold regardless of
their nature (rejected erroneously or non-erroneously) [61]. Table 27, adapted from their paper
describing their approach [62], allows for a straight-forward comparison of how FDR operates
relative to the Bonferroni correction.

Table 27: Number of true and false rejections for m different hypotheses tested in same dataset.

Not Rejected Rejected Total
True null hypotheses
(“Should not” be rejected) u v Mo
Non-true null hypotheses
(“Should” be rejected) T S m = Mo
m—R R m

In this table, m is the total number of hypotheses being tested and of those tested R
“discoveries” are made; S of the R are correct rejections whereas V of the R are falsely rejected.
The per-comparison error rate (PCER) is the expected number of false rejections across all
hypothesis tests, E(V /m), and the FWER is the chance of committing at least one type one error
or P(V = 1). When the significance level is set at a and there is no correction for multiple
testing, E(V/m) < a. When the Bonferroni correction is applied, it ensures that the probability
of making one or more false rejection is less than or equal to alpha: P(V > 1) < a@. The FDR,
on the other hand, is the expectation of @, which is equal to V /(V + S), or simply V /R.

Once the NES and empirical p-values have been calculated for each gene set, the sets are
separated into those with positive and negative NES values before they are assigned FDR g-
values. For gene set S, the g-value represents the chance that S is a false positive finding given

the distribution of empirical p-values for the other gene sets being tested at the same time. As
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with alpha levels, the threshold chosen for FDR g-values in a given study is somewhat arbitrary
but should help researchers filter their results in a meaningful way. For example, the authors of
the seminal GSEA paper chose FDR < 0.25 for their analyses but in the upcoming discussion of
ESEA, those authors chose FDR < 0.05 as FDR < 0.25 would not have effectively filtered their

results.
6.2 ESEA Overview

The ‘raw’ starting input for the original incarnation of edge set enrichment analysis,
ESEA, is exactly the same as GSEA — the expression levels for all genes measured in an
experiment across all samples in both groups (typically cases and controls). However, instead of
using this data to make a background list (L) that ranks each gene by its normalized difference
between cases and controls, the intermediary step of ESEA is to assign a measurement of
differential correlation between cases and controls to pairs of genes. The background set is not
all possible pairs of genes but rather pairs of genes with a relationship documented in one or
more of seven databases (KEGG, Reactome, Biocarta, NCI, SPIKE, HumanCyc, Panther).
Importantly, the databases contain pathways with genes as nodes and biological relationships as
edges between genes.

The authors of the ESEA paper, titled “ESEA: Discovering the Dysregulated Pathways
based on Edge Set Enrichment Analysis”, state that the goal of this approach is to “quantify the
change of correlation between genes for each edge” in order to “identify dysregulated pathways
associated with a specific phenotype by investigating the changes of biological relationships of
pathways in the context of gene expression data” [63]. Although the objective is somewhat
different than that of GSEA, the methodological background for ESEA is nearly identical with

exception of the input for L and S. As opposed to assigning single-gene-based measurements
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such as S2N to each gene i, an EdgeScore for each pair of genes, gene; and gene; or simply
EdgeScore;;, is the difference in correlation between cases and controls and is calculated as

follows:

EdgeScoreij = Mlall[i;j] - Mlcontrol[i;j] (27)

Here, MI stands for mutual information. MI is an information theoretic measurement,
which is to say that it comes from a branch of applied mathematics concerned with the
quantitative study of information, namely as it applies to communication [64]. The ‘information’
is the entropy of a system, or rather the balance of entropy and redundancy (non-random
behavior) within that system [65]. Although this information theoretic approach to statistical
systems had been introduced and described in the mid-20™ century, it was not until the end of the
20™ century that the technology to generate large amounts of biological data made the approach
amenable to the study of systems biology. Then, the use of MI started to receive attention for its
applications in reverse engineering gene networks from gene expression data [66] [67]. The
measure of entropy in this context is, specifically, called Shannon’s entropy and for gene 4 with

n different expression patterns represented by x, the value is calculated as [65]:

< (28)
H(A) = = ) p(log, (p(x)
i=1
When H(A) is large for a gene, that gene has a more random distribution of its expression
values; i.e. they are more difficult to predict [68]. Note that this is technically the form for
discretized data; integration is performed as opposed to summation in the continuous case [69].
Then, for two different sources of information, for example genes 4 and B, their mutual

information is calculated as:
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MI(A,B) =H(A)+ H(B) —H(A,B) (29)
where H (4, B) is the joint entropy of genes 4 and B. If the joint entropy is zero, then the
information on the behavior from one gene can perfectly predict the behavior of the other and
vice versa; there is no randomness when they are considered together. MI will be large if one or
both marginal entropies is large and the joint entropy is low. When MI is zero, this means that
the entropy of the two genes considered at the same time is the same as the entropy when each
gene is considered separately — they function completely independently of one another. Ml is a
correlation-type measurement with two key differences between itself and the traditional
Pearson’s correlation coefficient; it is always non-negative (positive and negative relationships
of the same magnitude reduce entropy by the same amount), and it can detect strength in non-
linear relationships.

Recall equation 27 where the EdgeScore;; for gene; and gene; is equal to the MI of all
samples considered together minus the MI calculated when only the control samples are part of
the MI equation. EdgeScore;; > 0 implies that MI between gene; and gene; increases when
the cases are added to the control samples whereas EdgeScore;; < 0 suggests the opposite.
After EdgeScore;; has been calculated for all edges in the background set L, ESEA proceeds in
a manner identical to GSEA for each pathway with edges in S; the only difference is that instead
of matching single genes in S to L for the calculation of an enrichment score ES, edges from
pathways are matched to pairs of genes in L to calculate an edge enrichment score EES. EES(P)
is used to denote the EES for pathway P. If EES(P) > 0, then the edges in pathway P collectively
exhibit gains in MI when cases are taken into consideration along with the controls and the
pathway is labelled as a gain in correlation (GoC) pathway. When EES(P) < 0, the opposite is

true (MI collectively decreases) and the pathway is described as a loss of correlation (LoC)
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pathway and in the event that EES(P) = 0 then pathway P is a no change (NC) pathway [63].
The authors also describe a core set of edges for pathway P that we will call the leading edge
edge (LEE) subset as they consists of the edges in P that are part of the leading edge subset —
they are the members of P that contribute to the magnitude of EES(P) and are likely most
associated with the biological process of interest.

Once the empirical EES(P) is calculated for pathway P, the calculation of the empirical
p-value associated with that EES proceeds in a manner analogous to the calculation of the
empirical p-value for the ES in GSEA. In their paper, the authors describe a gene-based
permutation test procedure that shuffles gene labels and recomputes EES(P) however the
algorithm they employ to obtain their published results is actually an edge-based permutation
procedure whereby an EES is calculated for a random list of edges (as many edges as are in
pathway P). Normalized edge enrichment scores (NEES) are then calculated based on the
permuted edge set just as NES are calculated from the permuted gene sets in GSEA to allow for
inter-pathway comparisons. Finally, the same FDR correction is applied to a set of pathways
with their corresponding empirical p-values to account for multiple testing. Before interpreting
the results, the pathways are separated into those with positive and negative NEES and then
ranked by FDR g-value. Plots of the running edge enrichment score may be produced and are
identical in concept to the plot shown in Figure 51.

The authors give three examples of how ESEA may be applied to different gene
expression datasets and compare the results to those obtained with GSEA. The most relevant
with regard to our eventual analysis, which we will review to show the proof-of-concept, comes
from a dataset that spans 50 cell lines classified by their p5S3 mutation status (17 native, 33

mutated) from the collection of NCI-60 (National Cancer Institute) panel of 60 cancer cell lines;
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the rationale for the use of this subset can be found in [70]. The pathways chosen for this
example are all KEGG pathways with more than 15 but less than 1000 edges; 187 pathways
altogether (note: in this analysis and in the ESEA R package, the pathways are from the
databases as they existed in 2015 [71]). With an FDR g-value cutoff of 0.05, five KEGG
pathways are deemed significantly enriched, all in the positive (gain of correlation) direction.
Note that this FDR cutoff is much more stringent than the FDR cutoff of 0.25 suggested in the
GSEA paper; although the ESEA authors do not explain their choice of this threshold, an FDR of
0.25 in this first example would result in 30 pathways deemed significantly enriched. The five
significant ESEA pathways are Cysteine and methionine metabolism, Alcoholism, Dilated
cardiomyopathy, ECM-receptor interaction, and Colorectal cancer, all of which have at least one
example in the literature of being related to p53.

Although the authors do not elaborate on the results for each pathway, they do spend time
discussing the results of the colorectal pathway and map the members of the LEE subset to edges
in the pathway as it appears in KEGG. As with many KEGG pathways, the Colon cancer
pathway is an amalgamation of many pathways, including the Wnt, PI3K/AKT, MAPK, and
TGF signaling pathways. Mapping the LEE subset to the KEGG pathway helps identify key
GoC relationships in the PI3K/AKT sub-network that may explain why a mutation in p53 results
in an overall GoC for the colon cancer pathway. When the parallel GSEA analysis is performed
on the same data set with the same pathways, only the N-glycan synthesis pathway is significant
at the GSEA default FDR threshold of 0.25.

When the same parallel analysis of GSEA and ESEA on the cell line data was performed
with 157 Biocarta pathways as opposed to KEGG pathways with the same cutoffs applied as

before, ESEA produced one significant pathway (CDK regulation of DNA replication) whereas
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GSEA led to three significant pathways (hypoxia and p53 in the cardiovascular system, BCR
signaling pathway and nerve growth factor pathway). The authors do not discount the results
GSEA but, rather, argue that the ESEA approach identifies a “new” pathway that shows promise
for further research.

The purpose of giving a detailed summary of this example is to support the notion that
ESEA successfully applies existing node-based methodological architecture to an edge-based
approach to data analysis which, at least in the context of gene expression data, can support
hypothesis generation and bolster previous research finding. It is also to import the idea that the
results are heavily dependent on the database of choice and that the biological interpretation may
require a closer inspection of pathway-level results. In the p5S3 mutation status example, all of
the significant pathways have an overall gain in correlation in the mutant samples but are still
described as ‘dysregulated’; at least in the colon cancer example, the authors are able to identify
key relationships to explain why an increase in correlation for a few key relationships may

provoke differential regulation in the positive direction across the pathway.
6.3 ESEA of LINCS Dataset

6.3.1 Review of Concordance Measurements

The research question behind GSEA is whether the expression of groups of genes is
correlated with a with a phenotype of interest; in ESEA it is whether the edges in pathways are
differently regulated in cases versus controls. Our research question when we apply ESEA to the
LINCS data is, specifically, “are the edges in a given KEGG pathway more concordant [or
discordant] in one cell line vs other cell lines?”. Before moving on with the methods for this
analysis, we will spend some time covering what it means to be concordant or discordant in the

context of cell line comparisons.
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Recall equation 5, where delta between the reference cell line A and comparison cell line

B for edge (gene knock downs) X|Y is the standardized difference between the log of their odd’s

L~ log(84y)-log (88 ) )
ratios, A48 = 20 XY)Z 2( X’;) . Briefly, let N2 be the numerator of equation 5 and D{E be the
(SExy)”+(SE%y)
denominator such that NA8 = —1 * NB4 and DAE = DBZ2. The denominator is a function of the
XY XY 0% b %

number of L1000 genes (out of 200 up and 200 down, as decided based on the power analysis)
that fall into each cell of the odds ratio table for the two different cell lines and will be small
when there are many genes and large if there are few genes for one or both cell lines. Although
D#Z will have an impact on the magnitude of A%%, it does not have any influence on its
direction. For an individual cell line, say cell line A, the term log (éﬁy) will be:
- Positive when more genes fall into concordant cells than discordant cells (i.e.
L1000 genes are up or down for both gene knockdowns X and Y).
- Negative when more genes fall into discordant cells than concordant cells (i.e.
L1000 genes tend to be up for knockdown X but down for knockdown Y or vice
versa).
- Approaches zero when the number of genes in discordant cells is equal to the
number of genes in concordant cells (no association).
With this in mind, A% will be positive (more concordant or less discordant for cell line A
relative to cell line B) for the following conditions:
1) log (@j?y) is positive (concordant) and lo g(éfy) is negative (discordant).
2) log(B%y) is positive (concordant) and log (02, ) is positive but log (8% ) > log(8%y).
3) log(0%y) is negative (discordant) and log(8%, ) is negative but log(83y) > log (0%, ).

4) log(0%y) is positive (concordant) and log (g, ) is close to zero.
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Notice that in condition (3), the individual ORs are both in the discordant direction, but the OR
for cell line A is less discordant and, hence, more concordant when compared to cell line B. For
completeness, A4E will be negative (more discordant or less concordant for cell line A relative
to cell line B) for the following conditions:

1) log (@,‘?Y) is negative (discordant) and lo g(@}?y) is positive (concordant).

2) log(0%y) is negative (discordant) and log(85%y ) is negative but log(85y) < log (85, ).

3) log(0%y) is positive (concordant) and log(8%y ) is positive but log (84 ) < log(8%y).

4) log(0%y) is negative (discordant) and log(8%y ) is close to zero.
Delta measurements will be the input values for L1000 ESEA with KEGG pathways. Therefore,
when we make claims about pathways being more concordant or discordant in one cell line vs
another (or others), we are saying that deltas tend to be positive or negative with regard to the
reference cell line, but individual relationships may fall into one of the many categories listed

above.

6.3.2 Database and Input for ESEA with LINCS

The underlying mathematical and statistical methodology we use to calculate edge
enrichment scores and determine statistical significance for ESEA with LINCS data is identical
to the methods detailed in GSEA and ESEA — the main difference is the nature of the input used
to rank edges. Also, instead of using the pathway database ‘snapshot’ provided by the ESEA R
package from 2015, we will be using current (as of January 2021) KEGG pathway infrastructure
to build our background edge set and specifically testing non-metabolic pathways with more than
5 but less than 1000 edges for concordance enrichment (162 pathways). We have already gone
through our dataset and calculated pairwise (local, as described below) concordance-based

measurements for all of the 5,604 edges in KEGG pathways that are ‘in” our dataset (both nodes
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[genes] have corresponding sShRNA gene knockdown profiles in all 7 cell lines). In order to

account for potential bias among certain cell line comparisons, we will use the matrix in Figure
23A to adjust the delta values as follows. Let A be the matrix in Figure 23A and let a,z be the
value corresponding to the entry for reference cell line A and comparison cell line B. Then, the

adjusted delta for any edge X|Y is:

4P = R4% — aup (30)
The experimental setup for the GSEA approach is to make pairwise comparisons,
therefor in this analysis we will perform all pairwise comparisons between all seven cell lines.
However, in a manner similar to the example given for p53 status among cell lines for ESEA, we
will also consolidate information across cell lines in order organize the results of this analysis
using a global complement to a local approach as follows:
1. Local: pairwise comparisons between all cell lines (21 unique comparison each with
two different directional arrangements; i.e. A vs B and B vs A).
Ranking metric = pairwise adjusted delta values = AjE

2. Global: reference cell line vs all other cell lines (7 unique comparisons).

Ranking metric = average adjusted delta values = A%, = %Zgﬂ A4 (1)
where A = (reference cell line) and B = (cell lines # A)
The global comparisons will allow us to make broad claims about pathway level results
which can then be interrogated at the local level to see if the differences hold across cell lines or
if they are driven by specific cell lines. To be clear, let EES(P4E) be the edge enrichment score
for pathway P when A is the reference cell line and B is the comparison cell line for a local
comparison and EES(P#) be the EES when A is the reference cell line for a global comparison.

For local comparisons, when EES(P4E) > 0, pathway P is enriched with concordant edges in
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cell line A relative to cell line B and when EES(P4B) < 0 the edges in pathway P are discordant
in cell line A relative to cell line B. In a global comparison, if EES(P4) > 0 then the edges in
pathway P are more concordant on average than in other cell lines whereas EES(P#) < 0 implies
more discordant edges on average for cell line A compared to other cell lines.
6.3.3 Results

The presentation of our results will proceed as follows. A summary of the global and
local results will be given to describe the overall breakdown of results with regard to significance
as well as direction (concordant or discordant). We will then showcase results from the MCF7
breast cancer cell line to demonstrate how this approach might be used to support existing
research findings and support hypothesis generation.

6.3.3.1 Summary of Results by FDR g-value and Direction

FDR g-value Summary: Global Comparisons Significant Pathways Summary: Cell line vs. Average Delta
Direction not Specified FDR <0.10
60-
30-
[ [
§ FDR §
% 40- < 204 Direction
g [ o1 <for<ozs S
— — . Concordant
o B oos<for<ot 5
g . (o <0.05 g . Discordant
S ’ S
= =
z z
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Reference Cell Line Reference Cell Line

Figure 53: Breakdown of ESEA results by FDR g-value (A) and direction of results (B).

The global results across 162 are broken down by FDR g-value in Figure 53A. The bins

for FDR g-values were chosen to demonstrate how power might be affected under the liberal
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GSEA-suggested criteria (FDR < 0.25), conservative ESEA-suggested criteria (FDR < 0.05),
and a traditional criteria level considered to be more moderate (FDR < 0.10). Regardless of the
criteria, the cell line A549 does not have any pathways that are significantly enriched with
concordant or discordant edges in this global comparison. When FDR < 0.05, the same is true
for the cell line A375. When FDR < 0.10, six of the seven cell lines have pathways that meet
criteria for significance and the same is true for FDR < 0.25. By increasing FDR from a
moderate to a liberal level, however, three out of the six cell lines have significant results for
over one third of the pathways that are tested (HA1E, MCF7 and PC3). Appendix Figure A7
breaks down the local comparisons by FDR in a manner identical to Figure 53A for each cell
line acting as a reference and similarly, across the board, FDR < 0.05 yields very few results
whereas FDR < 0.25 leads to an unwieldy number of pathways to consider. Therefore, we will
present results for pathways with FDR < 0.10 as significant pathways of interest for both the
global and local analyses as it provides an effective filtering mechanism for our results while still
yielding meaningful outcomes.

With FDR < 0.10 chosen as the thresholding level, Figure S3B breaks down the results
by the direction of the EES value in the positive (concordant; less discordant) and negative
(discordant; less concordant) directions. In the global analysis, MCF7 [breast cancer] has the
most enriched pathways (n = 36), followed by HA1E [immortalized kidney] (n = 21), PC3
[prostate cancer] (n = 20), A375 [skin cancer] (n = 14), HEPG2 [liver cancer] (n = 7), HT29
[colon cancer] (n = 6) and finally A549 [lung cancer] (n = 0). In the case of MCF7, most (32/36)
of the pathways are enriched in the positive direction whereas in HA1E and PC3 the opposite is

true with 17/21 and 16/20 pathways respectively enriched in the negative direction.

145



The results for the global analysis are presented in Appendix Tables A4a-A4f (no global
results table for A549) and the local analysis results are in Appendix Tables ASa-AS5g. The
results are ordered by FDR g-value and the magnitude of the NEES as well as by comparison
cell line for the local results. ESEA was performed in both directions for the local comparisons,
for example with A375 as a reference cell line and A549 as the comparison cell line as well as
with A549 as a reference cell line and A375 as the comparison cell line. Although the results are
somewhat redundant, having the results laid out this way helps with interpretation and showcases
some particular elements of the results that are introduced when permutation procedures are used
to calculate the NEES and FDR g-values.

Consider, for example, the result for the pathway Human T-cell leukemia virus 1
infection between cell lines A374 and A549 as shown in Table 28. This pathway is the
concordant pathway with the lowest FDR g-value for the A549 vs A375 comparison (q-value =
0) and also has a very low, but not exactly equal, g-value for A375 vs A549 (g-value = 0.081).
Although the EES has the same magnitude in opposite directions as we would expect (0.324 in
A549 vs A375 and -0.324 in A375 vs A549), the g-values as well as the NEES (1.506 and
-1.518) and nominal p-values (0, 0.004) are close, but not equivalent in magnitude since they are
calculated from different permuted EES distributions.

Table 28: Results of Human T-cell leukemia virus 1 infection between A375 and A549.

Comparison | # Edges EES NEES | NOM p-val FDR g-val Direction
A549 vs A375 119 0.324 1.506 0 0 | Concordant

A375 vs A549 119 | -0.324 -1.518 0.004 0.081 | Discordant

The directional breakdowns for local comparisons at FDR < 0.10 are included in
Appendix Figure A8. Note that pathways are considered in this figure and are included in

Appendix Tables AS5a-AS5g only if FDR < 0.10 in both comparisons; for example, the pathway
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Melanoma has FDR = 0.097 in A375 vs A549 but FDR = 0.13 in A549 vs A375 thus it is not

included in Appendix Tables ASa or Appendix Tables ASb nor does it contribute to the counts

in Appendix Figure A8. The local pathway comparisons are, as we might expect, more

powerful than the global comparisons since individual cell line behavior may be more extreme

than the average behavior of all cell lines. The only local comparisons with no enriched

pathways are between A375 and HT29. On the other hand, A549, which had no significant

pathways at the global level, has enriched pathways in both directions across the panel of other

cell lines. Otherwise, the local results reflect the global results, for example, MCF7 has the most

significant pathways across all cell lines and the majority of them are enriched in the positive

direction.

6.3.3.1 MCF7 Results

Table 29: Top 15 pathways for MCF7 global analysis

Rank Reference

1

10

11

12

13

14

15

MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

Comparison

AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE

Pathway hsa

Regulation of lipolysis in adipocytes 04923
Platelet activation 04611

Acute myeloid leukemia 05221
Chemokine signaling pathway 04062
mTOR signaling pathway 04150
Neurotrophin signaling pathway 04722
Choline metabolism in cancer 05231
VEGF signaling pathway 04370

B cell receptor signaling pathway 04662
Prostate cancer 05215

Longevity regulating pathway 04211
Colorectal cancer 05210

Dopaminergic synapse 04728

C-type lectin receptor signaling pathway 04625

Estrogen signaling pathway 04915

# Edges
23

33

112

119

106

135

50

60
150
60
106

170
111

EES

0.667

0.575

0.458

0.437

0.377

0.349

0.464

0.443

0.410

0.330

0.427

0.385

-0.411

0.373

0.353

NEES

2.134

2.009

1.972

1.967

1.647

1.588

1.800

1.768

1.642

1.530

1.678

1.646

-1.613

1.546

1.477

NOM p-val
0

0

0

0

0

0
0.001
0.001
0.002
0.002
0.003
0.004
0.004
0.003

0.004

FDR g-val
0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.020
0.032
0.032
0.040
0.040
0.040
0.040

0.040

Direction
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant

Concordant

Table 29 lists the results of the 15 most enriched pathways for the MCF7 cell line (breast

cancer) global analysis; the full table of results for this global analysis is in Appendix Table
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ASf. There is a six-way tie for most significantly enriched pathway; all of these pathways have

nominal p-values of zero which means that in each case, the permuted EES values were never

more extreme than the empirical EES values. While these pathways may have identical FDR g-

values, they have their own rank due to unique NEES values. All of the pathways in this subset

have positive NEES values and thus their direction is “Concordant”, thus we would expect that

evidence for their association with breast cancer to be in the positive direction. That is, in fact,

what we find in the literature, as is summarized below for each of the pathways with FDR g-

values of zero.

Y

2)

3)

4)

Regulation of lipolysis in adipocytes. A very recent review article titled ‘Adipocytes in
Breast Cancer, the Thick and the Thin’ states that “Numerous studies demonstrated that
adipocyte lipolysis stimulated by cancer cells is at the very heart of the synergy between
[breast] cancer cells and adipocytes” [72]. Specifically, MCF7 cells co-cultured with
adipocytes have been shown to increase the lipolytic rate of those adipocytes which in
turn drives cell proliferation and migration [73].

Platelet activation. A review article states that “platelet activation has been observed for
decades in women with breast cancer” [74]. Furthermore, MCF7 cells specifically have
been shown to induce platelet activation/aggregation [75] [76].

Acute myeloid leukemia (AML) pathway. There are quite a few papers have been
published that conclude having breast cancer [and receiving therapy] increases a patient’s
risk for developing AML [77] [78] [79].

Chemokine signaling pathway. This pathway has also been implicated in the

progression of breast cancer and even specifically in MCF7 cells [80] [81] [82].
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5) mTOR signaling pathway. The mTOR signaling pathway is often found to be

upregulated in breast cancer due to either mutations in mTOR or increased activity of

upstream receptors or pathways [83]. For this reason, mTOR is often targeted with

inhibitors in certain types of breast cancer [84]. Furthermore, mTOR inhibitors have been

shown to specifically inhibit cellular grown in the MCF7 cell line [85].

6) Neurotrophin signaling pathway. Neurotrophin nerve growth factor (NGF) receptors

have been found in breast cancer cells, specifically MCF7, where NGF has been shown to

be a mitogenic factor leading to cell growth [86]. Neurotrophin signaling has also been

associated with an anti-apoptotic effect in the MCF7 cell line [87].

These are just a few noteworthy examples of this global analysis. Note that the Dopaminergic

synapse pathway is only pathway with a negative NEES value in Table 29 (though three more

pathways with FDR < 0.10 are included in Appendix Table AS5f). While dopamine acts as a

neurotransmitter in the brain, it acts as a hormone elsewhere in the body [88]. Studies have

shown that the MCF7 cell line in particular does not respond to dopamine agonists, unlike other

breast cancer cell lines which may mean that this pathway is less active in this cell line [89].

Table 30: Global and local results for RLA pathway with MCF7 as reference cell line.

Reference Comparison
MCF7 AVERAGE
MCF7 A375
MCF7 A549
MCF7 HA1E
MCF7 HEPG2
MCF7 HT29
MCF7 PC3

Pathway
Regulation of lipolysis in adipocytes
Regulation of lipolysis in adipocytes
Regulation of lipolysis in adipocytes
Regulation of lipolysis in adipocytes
Regulation of lipolysis in adipocytes
Regulation of lipolysis in adipocytes

Regulation of lipolysis in adipocytes

hsa # Edges
04923 23
04923 23
04923 23
04923 23
04923 23
04923 23
04923 23

EES
0.667
0.495
0.568
0.598
0.476
0.497

0.576

NEES NOM p-val FDR g-val

2.134
1.591
1.894
1.954
1.562
1.657

1.830

0
0.015
0.001
0.001
0.012
0.006

0.001

0.000
0.136
0.016
0.014
0.100
0.122
0.008

Direction
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Running Enrichment Score (RES)

0.0 0.5

-0.5

-1.0

The results for each pathway can be probed for specific pairwise differences as is

demonstrated in Table 30. This table breaks down the results for the pathway Regulation of

lipolysis in adipocytes (RLA) — the pathway with the largest NEES value when MCF7 is the

reference cell line. The RLA pathway is enriched with concordant edges in MCF7 not only in

the global comparison, but across the board when compared to every other cell line in this study.

Furthermore, 4 of the six pairwise comparisons yield FDR g-values at or below our prespecified

threshold and the remaining two are very close to this threshold as well. The same tables with

the other six cell lines as the reference cell lines are included in Appendix Tables A6a-A6f and

they show how this pathway is not significantly enriched globally for any of these cell lines and

only one of the non-MCF7 local comparisons reaches the criteria for significance. Taken

together, this information suggests that the edges in this pathway are indeed more concordant for

MCF7 and that the results are not heavily influenced by the behavior of one cell line.

B

Regulation of lipolysis in adipocytes: MCF7 vs Average

Poak at 1534 Zero crossing at 2769

| ‘.u.mmmmmmmmnlm\I\I\IHI\I\I\IHI\I\IHI\IHHMH
Concordant Discordant

T T T T T T
0 1000 2000 3000 4000 5000

Edge List Index
Number of edges: 5604 (in list), 23 (in pathway)

| Regulation of lipolysis in adipocytes
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Arachidonic acid
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CAMP signaling pathway
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Figure 54: Visualization of results for RLA pathway via enrichment plot (A) and annotated
KEGG pathway (B). In (B), the leading edge edges circled in (A) are depicted in red; those
that are concordant in MCF7 but not in the LEE subset are orange and those that are

discordant in MCF7 are green.
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The functionality provided in the KEGGlincs package also helps to interpret results at the
pathway level. With ESEA results mapped to KEGG pathways, we can answer questions such
as: Are the results being driven by specific parts of the pathway? Is there agreement between
paralogs? And, Are certain edges common across significant pathways? In Figure 54B, we see
the RLA pathway with edges formatted to reflect the concordance patterns among the edges as
well as their membership in the LEE subset from Figure 54A. This pathway is a relatively small
pathway, and we can see that many of the edges that contribute to the large pathway EES are
between the twelve combinations of paralogs for PI3K (PIK3CA, PIK3CB, PIK3CD, PIK3R1)
and AKT (AKT1, AKT2, AKT3) that have corresponding shRNA knockdowns in the L1000
data.

This same approach is, perhaps, more useful when dealing with more complex pathways.
Take, for example, the mTOR pathway with 106 edges. Similar to the RLA pathway, the
direction of enrichment is concordant in MCF7 across the panel of cell lines and, in addition to
reaching the criteria for significance in the global comparison, achieves FDR < 0.10 in 3 of the
local comparisons (A375, HEPG2 and PC3) and FDR < 0.25 for the other three (A549, HA1E,
and HT29). One important question that visualization with KEGGlincs for this pathway in
particular can help us answer is, do we see high concordance in MCF7 edges that are part of the
mTOR complexes or is ESEA picking up on less integral relationships?

In Figure 55, it is clear that many of the edges in the mTOR pathway are between
paralogs for Wnt (WNT1, WNTS5A, WNT7B, WNT9A WNT9B, WNT10B) and Frizzled (FZDI,
FZD2, FZD4, FZDS5, FZD7, FZD8). We would be skeptical that ESEA was picking up a true
mTOR signal if most of the members in the LEE subset were part of the 36 different connections

between these paralogs. Instead, only a small subset of these edges (7) contributes to the large
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magnitude of the mTOR pathway NEES and most of (5) are between one Wnt paralog (WNT7B)
and five of the six Frizzled paralogs (FZD1, FZD4, FZDS5, FZD7, FZD8). Remarkably, the Wnt
paralogs WNT7B has been singled out for being significantly up-regulated in breast cancer and

suppression of its activity has been suggested to mediate breast cancer angiogenesis [90] [91].
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Figure 55: mTOR signaling pathway with formatting to reflect results of MCF7 global ESEA.
Edges in the LEE subset are depicted in red; those that are concordant in MCF7 but not in the LEE
subset are orange and those that are discordant in MCF7 are green.

Rather than the mTOR ESEA results depending on connections between, perhaps,
redundant paralogs, Figure 55 suggests that edges throughout the pathway contribute to the large
NEES. Furthermore, five edges in the LEE subset involve relationships with mTOR itself. The
relationship between Rheb and mTOR has been studied specifically in the MCF7 cell line and

Rheb, as an activator of mTOR, has been suggested as a target for inhibition in treatment of
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breast cancer [92]. Of the four PIK3 paralogs, the one with the relationship between itself and
mTOR falling into the LEE subset is PIK3CA. Gain of function PIK3CA mutations specifically
are among the most common in breast cancer and dual PIK/mTOR inhibitors have shown
promise in the treatment of some breast cancers [93]. Two edges in the mTOR complex,
between mTOR and MLSTS8 and RICTOR, are also in the LEE subset. RICTOR, while not
frequently mutated in breast cancer, has been suggested to be more active in breast cancer via
gene amplification, transcription, and/or catalytic activity and is implicated in tumor progression
[94]. MLSTS, which is essential in the formation of both mTORC1 and mTORC2 (mTOR
complexes 1 and 2), has also been recently suggested as a therapeutic target for breast cancer

treatment [95].

Table 31: Global and local results for Cell cycle pathway with MCF7 as reference cell line.

Reference = Comparison Pathway hsa # Edges EES NEES NOM p-val FDR g-val Direction
MCF7 AVERAGE Cellcycle 04110 110 -0.304 -1.347 0.019 0.096 Discordant
MCF7 A375 Cellcycle 04110 110 -0.190 -0.873 0.328 0.451 Discordant
MCF7 A549 Cellcycle 04110 110 -0.273 -1.269 0.037 0.171 Discordant
MCF7 HA1E Cellcycle 04110 110 -0.223 -1.071 0.12 0.252 Discordant
MCF7 HEPG2 Cellcycle 04110 110 -0.217 -0.973 0.251 0.385 Discordant
MCF7 HT29 Cellcycle 04110 110 -0.338 -1.484 0.006 0.122 Discordant
MCF7 PC3 Cellcycle 04110 110 -0.373 -1.630 0.001 0.008 Discordant

The most relevant discordant pathway that reaches significance for MCF7 in the ESEA
global analysis is the cell cycle pathway (NEES = -1.347, FDR g-value = 0.96). Although
Table 31 singles out the local comparison between MCF7 and PC3 as the only significant local
comparison at our threshold, a few other comparisons approach significance (A549, HT29) and

across the panel the sign for the EES/NEES is negative — that is the edges in MCF7 are less
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concordant/more discordant in all local comparisons. Figure 56 shows this pathway formatted
to reflect the ESEA results and, while there is a lot to untangle in this particular pathway, one
notable observation is that most of the edges that make up the LEE subset (26 out of 41) are
inhibitory in this case. While we have not made any claims with regard to inhibiting
relationships and their association with discordance, this example demonstrates an added layer of

dimensionality given to the interpretation of results.
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Figure 56: Cell cycle pathway with formatting to reflect results of MCF7 global ESEA.
Edges in the LEE subset are depicted in blue; those that are concordant in MCF7 but not in the
LEE subset are orange and those that are discordant in MCF7 are green.

Sustained proliferative signaling, evasion of growth suppressors, and resisting cell death

(apoptosis) are hallmarks of cancer associated with disruption of the cell cycle program [96].

154



While we would expect all cell lines to exhibit abnormal behavior in this pathway when
compared to normal cells, MCF7 is the only cell line in our panel with a significant ESEA result
when compared to other cancer cell lines with this particular KEGG-defined pathway. 8 of the
edges in the LEE subset involve relationships with RB1. RBI, first identified in retinoblastoma
patients, was the first tumor suppressor gene to be molecularly defined [97]. Although its exact
characterization as a tumor suppressor is complex, one of the main routes of growth inhibition is
via repression of the transcription factor E2F. Though somewhat difficult to see against the blue
edge connecting the RB1 and E2F1 nodes in Figure 56, the edge label “-+-” between these
nodes is KEGG’s way of labeling dissociative relationships; thus, in this pathway representation,
active RB1 prevents the association of the proteins forming the complex. Although mutation of
RBI is associated with triple negative breast cancers, a subtype not characterized by the MCF7
cell line, these results support the body of evidence that RB1 function is often compromised —
either by decreased expression or dysregulation of upstream regulators - across molecular
subtypes [98].

6.3.3.2 Examples from Other Cell Lines

Table 32: Global and local results for Melanogenesis pathway with A375 as reference cell line.

Reference Comparison Pathway hsa # Edges EES NEES NOM p-val FDR g-val Direction
A375 AVERAGE Melanogenesis 04916 71 -0.395 -1.610 0.001 0.081 Discordant
A375 A549 Melanogenesis 04916 71 -0.308 -1.298 0.044 0.255 | Discordant
A375 HA1E Melanogenesis 04916 71 -0.362 -1.564 0.002 0.027 | Discordant
A375 HEPG2 Melanogenesis 04916 71 -0.363 -1.521 0.008 0.118 | Discordant
A375 HT29 Melanogenesis 04916 71 -0.276 -1.148 0.131 0.383 | Discordant
A375 MCF7 Melanogenesis 04916 71 -0.370 -1.524 0.009 0.104 | Discordant
A375 PC3 Melanogenesis 04916 71 -0.369 -1.542 0.006 0.061 Discordant
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Although we went into detail with the results for one particular cell line, the results for
other cell lines also suggest the utility of this approach. For example, as shown in Table 32, the
Melanogenesis pathway is significantly enriched with discordant edges in the A375 skin cancer
cell line global results as and the direction is discordant in all local comparisons (3 with FDR <
0.10). In melanoma, loss of pigmentation is common because of dysfunction in melanogenesis
proteins which, though not directly represented by edges in this pathway, may have their
dysfunction attributed to deregulated proteins in this pathway. In fact, there is research to
suggest that malignancy in skin cancer may be reversed when using A375 as a model cell line
[99]. Another pertinent example is the Platinum drug resistance pathway in the HT29 colon
cancer cell line with significant enrichment in the concordant direction in the global comparison
and concordant direction in all local comparisons. HT29 is actually a model cell line for the

development of platinum drug resistance in colon cancer [100].

Table 33: Global and local results for Platinum drug resistance pathway with HT29 as reference
cell line.

Reference Comparison Pathway hsa #Edges EES NEES NOM p-val FDR g-val Direction
HT29 AVERAGE  Platinum drug resistance 01524 49 0463 1.788 0 o.000 (JCSREeraanY
HT29 A375  Platinum drug resistance 01524 49 0.366 1.429 0.019 0.202 (JCORESraanD
HT29 A549  Platinum drug resistance 01524 49 0315 1.231 0.087 0.2s5 (JCoRcoraant
HT29 HA1E  Platinum drug resistance 01524 49 0410 1613 0.006 0.0s6 (JiConcoraany
HT29 HEPG2  Platinum drug resistance 01524 49 0347 1.357 0.038 0.232 (JIGoREeraany
HT29 MCF7  Platinum drug resistance 01524 49 0.387 1.502 0.017 0.187 (JCoRcoraany
HT29 PC3  Platinum drug resistance 01524 49 0323 1.248 0.071 0.205 (JCOREorGany

6.4 Discussion
There are two readily identifiable limitations of this approach. The first is the

completeness, or perhaps lack thereof, of the L1000 data set. We are using a subset of the
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available data for which all cell lines have the same shRNA perturbation. The second limitation
is the dynamic nature of KEGG pathways both in terms of available pathways and pathway
specification. KEGG pathways are manually curated with new pathways being added and
existing pathways being modified as experimental evidence for the relationships between genes
becomes available. That being said, we have demonstrated how to conduct an unsupervised
analysis of L1000 data with KEGG pathways that provides meaningful results without requiring
any of our own manual pathway alterations.

There are also opportunities to apply this same type of analysis to the L1000 data set with
different research objectives. We have performed this analysis on a ‘slice’ of the data that
considers records at the same dose of perturbagen (concentration = 1pl) measured at the same
time (96 hours after perturbation). The same approach that we used to make comparisons across
cell lines could readily be applied within cell lines to see how pathway activity changes across
dose or time. Furthermore, as the database grows, new cell lines could be incorporated into the
analysis.

The LINCS L1000 dataset contains millions of data points, each with its own set of
attributes with regard to specific cellular perturbation, cell line, and record for L1000 gene
expression. We have demonstrated a bioinformatics-based approach to the analysis of this multi-
dimensional data set that leverages existing methods with the format of our data. As part of this
effort, we have procured up-to-date records of pathway topology and incorporated interactive
visualization tools in an effort to make the results relevant and interpretable. The results of this
analysis could be used to support ongoing research efforts or aid in hypothesis generation in an

effort to further enrich the field of cancer research.
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Appendix Tables

Complete Null Parameterization

Table Al.a: Group Size

Scenario | m, m, ms
3RG 333 333 333
5SRG 200 200 200
7RG 142 142 142
9RG 111 111 111

Table Al.b: Selection Weights

Scenario w4 W5 W3
3RG 1 1 1
5RG 1 1 1
7RG 1 1 1
9RG 1 1 1

Table Al.c: Direction Weights
Scenario | ¢V oY @y
3RG 0.5 0.5 0.5
S5SRG 0.5 0.5 0.5
7RG 0.5 0.5 0.5
9RG 0.5 0.5 0.5

Null Selection Weight
Table A2.a: Group Size

Scenario | my m, ms
3RG 100 100 800
5SRG 50 50 200
7RG 50 50 100
9RG 50 50 75

Table A2.b: Selection Weights

Scenario w4 W5 W3
3RG 1 1 1
5RG 1 1 1
7RG 1 1 1
9RG 1 1 1
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Table A2.c: Direction Weights
Scenario | ¢V oY oy
3RG 0.9 0.1 0.5
5SRG 0.9 0.1 0.7
7RG 0.9 0.1 0.8
9RG 0.9 0.1 0.8

Null Direction Weight
Table A3.a: Group Size

Scenario | m,y m, ms
3RG 100 100 800
5SRG 50 50 200
7RG 50 50 100
9RG 50 50 75
Table A3.b: Selection Weights
Scenario w4 W, w3
3RG 1 1 1
5SRG 1 1 1
7RG 1 1 1
9RG 1 1 1

Table A3.c: Direction Weights
Scenario | ¢V oY @y
3RG 0.5 0.5 0.5
5SRG 0.5 0.5 0.5
7RG 0.5 0.5 0.5
9RG 0.5 0.5 0.5
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Table A4a: Global Comparisons for A375 - FDR g-value < 0.10

Reference
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375

A375

Comparison
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE

Pathway

Toll-like receptor signaling pathway 04620

Melanogenesis 04916

Th1 and Th2 cell differentiation 04658

Salmonella infection 05132

Pertussis 05133

Longevity regulating pathway - multiple species 04213

Basal cell carcinoma 05217

Yersinia infection 05135

GnRH signaling pathway 04912

Colorectal cancer 05210

Longevity regulating pathway 04211

Human immunodeficiency virus 1 infection 05170

HIF-1 signaling pathway 04066

Pathogenic Escherichia coli infection 05130

hsa # Edges EES

70 0.422
71 -0.395
87 0.360
124 0.293
31 0.456
90 -0.430
66 -0.381
92  0.351
59 0.369
106  0.330
60 -0.369
111 0.315
163 -0.304
88 0.316

Table A4b: Global Comparisons for HA1E - FDR g-value < 0.10

Reference

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

Comparison
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE

Pathway

VEGF signaling pathway
Osteoclast differentiation
Hepatitis B

Salmonella infection
AGE-RAGE signaling pathway in diabetic complications
Neurotrophin signaling pathway
HIF-1 signaling pathway

Apelin signaling pathway

TNF signaling pathway
Cushing syndrome

Longevity regulating pathway
Acute myeloid leukemia
Endocrine resistance
Tuberculosis

Toll-like receptor signaling pathway
Ras signaling pathway

Platelet activation

Adherens junction

Endometrial cancer

Chemokine signaling pathway

MAPK signaling pathway
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hsa # Edges EES

04370

04380

05161

05132

04933

04722

04066

04371

04668

04934

04211

05221

01522

05152

04620

04014

04611

04520

05213

04062

04010

66 -0.479

98 -0.427

154 -0.400

124 -0.358

139 -0.345

135 -0.327

163 -0.320

85 0.336

66 -0.437

82 0.345

60 -0.406

112 -0.361

177 -0.343

88 0.303

70 -0.399

256 -0.271

33 -0.437

34 0.429

71 -0.365

119 -0.310

353 -0.248

NEES NOM p-val

1.772

-1.610

1.588

1.403

1.642

-1.623

-1.558

1.551

1.518

1.465

-1.461

1.441

-1.420

1.413

0.001

0.001

0.002

0.002

0.005

0.004

0.004

0.003

0.006

0.007

0.008

0.008

0.007

0.007

NEES NOM p-val

-1.960

-1.909

-1.892

-1.661

-1.633

-1.546

-1.534

1.687

-1.785

1.576

-1.685

-1.601

-1.590

1.420

-1.669

-1.379

-1.560

1.567

-1.505

-1.432

-1.305

0

0

0.001

0.002

0.002

0.003

0.003

0.003

0.004

0.005

0.009

0.011

0.013

0.013

0.012

FDR g-val
0.081
0.081
0.081
0.081
0.093
0.093
0.093
0.093
0.093
0.093
0.093
0.093
0.093

0.093

FDR g-val
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.032
0.032
0.037
0.037
0.037
0.046
0.054
0.091
0.095
0.099
0.100
0.100

0.100

Direction
Concordant
Discordant
Concordant
Concordant
Concordant
Discordant
Discordant
Concordant
Concordant
Concordant
Discordant
Concordant
Discordant

Concordant

Direction
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant
Discordant
Concordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant

Discordant



Table A4c: Global Comparisons for HEPG2 - FDR g-value < 0.10

Reference
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2

HEPG2

Comparison
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE

AVERAGE

Pathway

Adherens junction

Antigen processing and presentation

Longevity regulating pathway - multiple species

Longevity regulating pathway

Thermogenesis

Oocyte meiosis

Necroptosis

hsa # Edges
04520 34
04612 77
04213 90
04211 60
04714 45
04114 37
04217 81

EES

-0.576

0.537

0.460

0.440

-0.462

0.443

-0.360

Table A4d: Global Comparisons for HT29 - FDR g-value < 0.10

Reference
HT29
HT29
HT29
HT29
HT29

HT29

Comparison
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE

AVERAGE

Pathway

Apoptosis - multiple species
Melanoma

Platinum drug resistance
Prostate cancer

Focal adhesion

Pathways in cancer

hsa # Edges
04215 17
05218 115
01524 49
05215 150
04510 208
05200 554
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EES
-0.692
0.456
0.463
0.365
0.312

0.248

NEES
-2.043
1.983
1.788
1.682
1.522

1.320

NEES NOM p-val

-1.946 0
1.915 0
1.741 0.001
1.737 0.001

-1.747 0.002
1.595 0.003

-1.520 0.004

NOM p-val
0

0

0

0

0

0.001

FDR g-val
0.000
0.000
0.040
0.040
0.065
0.081

0.093

FDR g-val
0.000
0.000
0.000
0.000
0.000

0.027

Direction
Discordant
Concordant
Concordant
Concordant
Discordant
Concordant

Discordant

Direction
Discordant
Concordant
Concordant
Concordant
Concordant

Concordant



Table A4e: Global Comparisons for MCF7 - FDR g-value < 0.10

Reference Comparison

MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

MCF7

AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE
AVERAGE

Pathway

Regulation of lipolysis in adipocytes
Platelet activation

Acute myeloid leukemia

Chemokine signaling pathway

mTOR signaling pathway
Neurotrophin signaling pathway
Choline metabolism in cancer

VEGF signaling pathway

B cell receptor signaling pathway
Prostate cancer

Longevity regulating pathway
Colorectal cancer

Dopaminergic synapse

C-type lectin receptor signaling pathway
Estrogen signaling pathway
Proteoglycans in cancer

GnRH secretion

HIF-1 signaling pathway

Fluid shear stress and atherosclerosis
Signaling pathways regulating pluripotency of stem cells
Chagas disease (American trypanosomiasis)
Thyroid cancer

ErbB signaling pathway

Endocrine resistance

Spinocerebellar ataxia
Melanogenesis

Gap junction

Cholinergic synapse

Small cell lung cancer

Human cytomegalovirus infection
Thermogenesis

Cell cycle

Tuberculosis

Apoptosis - multiple species
Prolactin signaling pathway

Central carbon metabolism in cancer
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hsa # Edges
04923 23
04611 33
05221 112
04062 119
04150 106
04722 135
05231 50
04370 66
04662 60
05215 150
04211 60
05210 106
04728 54
04625 170
04915 111
05205 221
04929 34
04066 163
05418 109
04550 170
05142 79
05216 42
04012 124
01522 177
05017 21
04916 71
04540 37
04725 44
05222 65
05163 208
04714 45
04110 110
05152 88
04215 17
04917 83
05230 96

EES
0.667
0.575
0.458
0.437
0.377
0.349
0.464
0.443
0.410
0.330
0.427
0.385

-0.411
0.373
0.353
0.311
0.475
0.303
0.337
0.332
0.348

-0.465
0.354
0.323
0.501
0.353
0.423
0.388
0.350
0.282
0.383

-0.304

-0.307
0.530
0.342

0.310

NEES NOM p-val FDR g-val

2.134

2.009

1.972

1.967

1.647

1.588

1.800

1.768

1.642

1.630

1.678

1.646

-1.613

1.546

1.477

1.435

1.638

1.416

1.488

1.482

1.466

-1.579

1.458

1.450

1.566

1.458

1.622

1.464

1.421

1.307

1.441

-1.347

-1.336

1.521

1.410

1.343

0

0

0.001

0.001

0.002

0.002

0.003

0.004

0.004

0.003

0.004

0.004

0.005

0.005

0.006

0.006

0.007

0.008

0.008

0.009

0.01

0.01

0.011

0.016

0.017

0.017

0.018

0.019

0.02

0.021

0.022

0.022

0.000

0.000

0.000

0.000

0.000

0.000

0.020

0.020

0.032

0.032

0.040

0.040

0.040

0.040

0.040

0.040

0.045

0.045

0.049

0.049

0.054

0.056

0.056

0.061

0.062

0.062

0.066

0.092

0.092

0.092

0.094

0.096

0.098

0.099

0.099

0.099

Direction
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant

Discordant
Concordant
Concordant

Concordant



Table A4f: Global Comparisons for PC3 - FDR g-value < 0.10

Reference Comparison Pathway hsa # Edges EES NEES NOM p-val FDR g-val Direction
PC3 AVERAGE Serotonergic synapse 04726 26 -0.625 -2.077 0 0.000 Discordant
PC3 AVERAGE Long-term depression 04730 38 -0.569 -1.997 0 0.000 Discordant
PC3 AVERAGE Long-term potentiation 04720 35 -0.536 -1.897 0 0.000 Discordant
PC3 AVERAGE Inflammatory mediator regulation of TRP channels 04750 29 0.555 1.865 0 0.000 Concordant
PC3 AVERAGE Melanoma 05218 115 -0.381 -1.691 0 0.000 Discordant
PC3 AVERAGE Hippo signaling pathway 04390 125 0.371  1.661 0 0.000 Concordant
PC3 AVERAGE Rap1 signaling pathway 04015 209 -0.329 -1.621 0 0.000 Discordant
PC3 AVERAGE MAPK signaling pathway 04010 353 -0.267 -1.398 0 0.000 Discordant
PC3 AVERAGE Estrogen signaling pathway 04915 111 -0.434 -1.828 0.001 0.016  Discordant
PC3 AVERAGE Regulation of actin cytoskeleton 04810 139 -0.362 -1.654 0.001 0.016  Discordant
PC3 AVERAGE Thermogenesis 04714 45 0.444 1.679 0.003 0.037 Concordant
PC3 AVERAGE Central carbon metabolism in cancer 05230 96 -0.357 -1.556 0.003 0.037  Discordant
PC3 AVERAGE Endocrine resistance 01522 177 -0.336 -1.548 0.003 0.037  Discordant
PC3 AVERAGE GnRH secretion 04929 34 -0.481 -1.653 0.004 0.046  Discordant
PC3 AVERAGE cGMP-PKG signaling pathway 04022 27 -0.479 -1.597 0.006 0.065 Discordant
PC3 AVERAGE Th1 and Th2 cell differentiation 04658 87 0352 1.471 0.007 0.067 Concordant
PC3 AVERAGE Ras signaling pathway 04014 256 -0.269 -1.324 0.007 0.067  Discordant
PC3 AVERAGE Bladder cancer 05219 33 -0.471 -1.588 0.009 0.073  Discordant
PC3 AVERAGE Natural killer cell mediated cytotoxicity 04650 68 -0.377 -1.520 0.009 0.073  Discordant
PC3 AVERAGE Acute myeloid leukemia 05221 112 -0.319 -1.396 0.009 0.073  Discordant
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Table ASa: Local Comparisons A375 (1 - 40): FDR g-value < 0.10

Reference Comparison

A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375

A375

A549
A549
A549
A549
A549
A549
A549
A549
A549
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E

HA1E

Pathway

Colorectal cancer

Pertussis

PI3K-Akt signaling pathway

Toll-like receptor signaling pathway

Renal cell carcinoma

Sphingolipid signaling pathway

Yersinia infection

Human T-cell leukemia virus 1 infection
Endometrial cancer

Renal cell carcinoma

Toll-like receptor signaling pathway
Colorectal cancer

VEGF signaling pathway

AGE-RAGE signaling pathway in diabetic complications
Endocrine resistance

Hepatitis B

GnRH signaling pathway

Yersinia infection

Osteoclast differentiation

Melanogenesis

Salmonella infection

PI3K-Akt signaling pathway

TNF signaling pathway

B cell receptor signaling pathway

Acute myeloid leukemia

Cushing syndrome

Th1 and Th2 cell differentiation

Basal cell carcinoma

Endometrial cancer

Human immunodeficiency virus 1 infection
Platelet activation

Necroptosis

Progesterone-mediated oocyte maturation
Toxoplasmosis

Chagas disease (American trypanosomiasis)
Pathogenic Escherichia coli infection
Growth hormone synthesis, secretion and action
Prostate cancer

Shigellosis

Neurotrophin signaling pathway
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hsa # Edges
05210 106
05133 31
04151 417
04620 70
05211 40
04071 87
05135 92
05166 119
05213 71
05211 40
04620 70
05210 106
04370 66
04933 139
01522 177
05161 154
04912 59
05135 92
04380 98
04916 71
05132 124
04151 417
04668 66
04662 60
05221 112
04934 82
04658 87
05217 66
05213 71
05170 111
04611 33
04217 81
04914 34
05145 48
05142 79
05130 88
04935 116
05215 150
05131 118
04722 135

EES

0.407

0.463

-0.251

0.412

0.458

-0.354

0.344

-0.324

0.381

0.545

0.472

0.435

0.429

0.349

0.348

0.392

0.418

0.382

0.359

-0.362

0.327

-0.234

0.401

0.378

0.350

-0.354

0.347

-0.352

0.370

0.322

0.422

0.336

0.412

0.383

0.343

0.327

0.308

0.290

0.299

0.286

NEES NOM p-val

1.815

1.679

-1.374

1.741

1.678

-1.560

1.507

-1.518

1.658

1.991

1.975

1.885

1.745

1.658

1.641

1.869

1.710

1.664

1.609

-1.564

1.634

-1.322

1.593

1.567

1.655

-1.536

1.524

-1.508

1.498

1.475

1.629

1.477

1.510

1.510

1.465

1.449

1.425

1.409

1.361

1.351

0

0.001

0.001

0.002

0.003

0.003

0.003

0.004

0.006

0.001

0.001

0.002

0.002

0.002

0.002

0.004

0.007

0.006

0.007

0.006

0.006

0.005

0.006

0.007

0.009

0.009

0.013

0.012

0.013

0.013

0.013

0.012

0.012

0.012

FDR g-val
0.000
0.054
0.054
0.069
0.069
0.069
0.069
0.081
0.097
0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.020
0.027
0.027
0.027
0.027
0.050
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.063
0.063
0.066
0.066
0.066
0.066
0.066
0.066
0.066

0.066

Direction
Concordant
Concordant

Discordant
Concordant
Concordant

Discordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant

Discordant
Concordant
Concordant
Concordant

Discordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Concordant



Table ASa: Local Comparisons A375 (41 - 80): FDR g-value < 0.10

Reference Comparison

A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375

A375

HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

Pathway

MAPK signaling pathway

ErbB signaling pathway

Sphingolipid signaling pathway
Spinocerebellar ataxia

T cell receptor signaling pathway

Prion diseases

Inflammatory mediator regulation of TRP channels
Rap1 signaling pathway

C-type lectin receptor signaling pathway

Ras signaling pathway

Non-alcoholic fatty liver disease (NAFLD)
Longevity regulating pathway - multiple species
Th1 and Th2 cell differentiation

Longevity regulating pathway

Pertussis

Antigen processing and presentation

Human T-cell leukemia virus 1 infection

HIF-1 signaling pathway

Pathogenic Escherichia coli infection
AGE-RAGE signaling pathway in diabetic complications
Toll-like receptor signaling pathway

Longevity regulating pathway - multiple species
Longevity regulating pathway

mTOR signaling pathway

HIF-1 signaling pathway

Thyroid cancer

GnRH signaling pathway

Long-term depression

Long-term potentiation

Toll-like receptor signaling pathway

GnRH signaling pathway

Regulation of actin cytoskeleton

Endocrine resistance

Bladder cancer

Natural killer cell mediated cytotoxicity

MAPK signaling pathway

Basal cell carcinoma

Longevity regulating pathway

Estrogen signaling pathway

Autophagy - animal
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hsa # Edges
04010 353
04012 124
04071 87
05017 21
04660 86
05020 19
04750 29
04015 209
04625 170
04014 256
04932 46
04213 90
04658 87
04211 60
05133 31
04612 77
05166 119
04066 163
05130 88
04933 139
04620 70
04213 90
04211 60
04150 106
04066 163
05216 42
04912 59
04730 38
04720 35
04620 70
04912 59
04810 139
01522 177
05219 33
04650 68
04010 353
05217 66
04211 60
04915 111
04140 71

EES

0.240

0.339

-0.311

0.489

0.306

0.768

0.425

0.254

0.317

0.250

0.371

-0.512

0.420

-0.440

0.495

-0.476

-0.345

-0.327

0.336

0.306

0.400

-0.489

-0.508

-0.377

-0.320

0.508

0.366

0.607

0.528

0.419

0.400

0.326

0.312

0.517

0.383

0.241

-0.389

-0.399

0.352

-0.368

NEES NOM p-val

1.288

1.452

-1.393

1.565

1.356

1.572

1.517

1.284

1.374

1.269

1.410

-1.983

1.890

-1.784

1.761

-1.728

-1.565

-1.560

1.489

1.466

1.694

-1.867

-2.040

-1.656

-1.500

1.780

1.519

2.214

1.976

1.788

1.642

1.574

1.495

1.827

1.605

1.326

-1.575

-1.594

1.630

-1.505

0.011

0.014

0.014

0.016

0.018

0.022

0.022

0.022

0.024

0.025

0.028

0

0

0.001

0.001

0.001

0.001

0.001

0.002

0.002

0.003

0.001

0.001

0.001

0.002

0.004

0.001

0.001

0.001

0.002

0.002

0.002

0.003

0.004

0.005

0.005

FDR g-val
0.066
0.067
0.067
0.074
0.081
0.091
0.091
0.091
0.096
0.096
0.099
0.000
0.000
0.023
0.023
0.023
0.023
0.023
0.036
0.036
0.049
0.000
0.040
0.040
0.040
0.065
0.093
0.000
0.000
0.000
0.027
0.027
0.027
0.036
0.036
0.036
0.049
0.054
0.054

0.054

Direction
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant

Discordant
Concordant

Discordant

Discordant

Discordant
Concordant
Concordant
Concordant

Discordant

Discordant

Discordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant

Discordant
Concordant

Discordant



Table AS5a: Local Comparisons A375 (81 - 88): FDR g-value < 0.10

Reference

A375

A375

A375

A375

A375

A375

A375

A375

Comparison
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

Pathway

Rap1 signaling pathway
PI3K-Akt signaling pathway
Melanogenesis

Oxytocin signaling pathway
Colorectal cancer
Melanoma

Serotonergic synapse

Hippo signaling pathway

hsa  #Edges
04015 209
04151 417
04916 71
04921 35
05210 106
05218 115
04726 26
04390 125
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EES

0.256

-0.253

-0.369

0.425

0.314

0.296

0.451

-0.312

NEES

1.340

-1.325

-1.542

1.565

1.407

1.386

1.546

-1.409

NOM p-val
0.005
0.004
0.006
0.007
0.008
0.008
0.012

0.012

FDR g-val
0.054
0.054
0.061
0.067
0.068
0.068
0.093

0.093

Direction
Concordant
Discordant
Discordant
Concordant
Concordant
Concordant
Concordant

Discordant



Table A5b: Local Comparisons A549 (1 - 40): FDR g-value < 0.10

Reference  Comparison Pathway hsa # Edges EES NEES NOM p-val FDR g-val Direction
A549 A375 Colorectal cancer 05210 106 -0.410 -1.811 0 0.000  Discordant
A549 A375 Toll-like receptor signaling pathway 04620 70 -0.413 -1.754 0 0.000 Discordant
A549 A375 Human T-cell leukemia virus 1 infection 05166 119 0.324 1.506 0 0.000 Concordant
A549 A375 Pertussis 05133 31 -0.463 -1.653 0.003 0.069  Discordant
A549 A375 Endometrial cancer 05213 71 -0.382 -1.615 0.003 0.069  Discordant
A549 A375 Yersinia infection 05135 92 -0.344 -1.523 0.002 0.069 Discordant
A549 A375 PI3K-Akt signaling pathway 04151 417 0.251  1.369 0.003 0.069 Concordant
A549 A375 Renal cell carcinoma 05211 40 -0.458 -1.695 0.004 0.072  Discordant
A549 A375 Sphingolipid signaling pathway 04071 87 0.354 1.550 0.004 0.072 Concordant
A549 HA1E Osteoclast differentiation 04380 98 0.384 1.742 0 0.000 Concordant
A549 HA1E GnRH signaling pathway 04912 59 0.421 1.727 0 0.000 Concordant
A549 HA1E Hepatitis B 05161 154 0.349 1.666 0 0.000 Concordant
A549 HA1E Apelin signaling pathway 04371 85 -0.378 -1.727 0.001 0.032  Discordant
A549 HA1E Hippo signaling pathway 04390 125 -0.328 -1.570 0.001 0.032  Discordant
A549 HEPG2 Longevity regulating pathway 04211 60 -0.458 -1.888 0 0.000 Discordant
A549 HEPG2 Longevity regulating pathway - multiple species 04213 90 -0.463 -1.839 0 0.000 Discordant
A549 HT29 Progesterone-mediated oocyte maturation 04914 34 -0.530 -1.926 0 0.000 Discordant
A549 HT29 Melanoma 05218 115 -0.406 -1.817 0 0.000 Discordant
A549 HT29 Non-alcoholic fatty liver disease (NAFLD) 04932 46 -0.445 -1.696 0.002 0.072 Discordant
A549 HT29 Longevity regulating pathway - multiple species 04213 90 -0.428 -1.653 0.004 0.072 Discordant
A549 HT29 Colorectal cancer 05210 106 -0.368 -1.624 0.003 0.072  Discordant
A549 HT29 VEGF signaling pathway 04370 66 -0.389 -1.589 0.004 0.072 Discordant
A549 HT29 Chemokine signaling pathway 04062 119 -0.332 -1.535 0.002 0.072 Discordant
A549 HT29 GnRH signaling pathway 04912 59 0.391 1.633 0.005 0.074 Concordant
A549 HT29 Prostate cancer 05215 150 -0.322 -1.514 0.005 0.074  Discordant
A549 MCF7 Platelet activation 04611 33 -0.552 -2.003 0 0.000 Discordant
A549 MCF7 B cell receptor signaling pathway 04662 60 -0.450 -1.858 0 0.000 Discordant
A549 MCF7 VEGF signaling pathway 04370 66 -0.442 -1.818 0 0.000 Discordant
A549 MCF7 Chemokine signaling pathway 04062 119 -0.369 -1.730 0 0.000 Discordant
A549 MCF7 Colorectal cancer 05210 106 -0.378 -1.645 0 0.000  Discordant
A549 MCF7 Dopaminergic synapse 04728 54 0.443 1.831 0.001 0.016  Concordant
A549 MCF7 Spinocerebellar ataxia 05017 21 -0.545 -1.734 0.001 0.016 Discordant
A549 MCF7 Acute myeloid leukemia 05221 112 -0.379 -1.648 0.001 0.016 Discordant
A549 MCF7 C-type lectin receptor signaling pathway 04625 170 -0.379 -1.611 0.001 0.016 Discordant
A549 MCF7 JAK-STAT signaling pathway 04630 561 -0.288 -1.555 0.001 0.016  Discordant
A549 MCF7 Regulation of lipolysis in adipocytes 04923 23 -0.568 -1.884 0.002 0.027 Discordant
A549 MCF7 Longevity regulating pathway 04211 60 -0.414 -1.685 0.002 0.027 Discordant
A549 MCF7 T cell receptor signaling pathway 04660 86 -0.377 -1.655 0.003 0.032 Discordant
A549 MCF7 cAMP signaling pathway 04024 77 -0.365 -1.592 0.003 0.032 Discordant
A549 MCF7 Fluid shear stress and atherosclerosis 05418 109 -0.327 -1.494 0.003 0.082  Discordant
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Table ASb: Local Comparisons A549 (41 - 50): FDR g-value < 0.10

Reference
A549
A549
A549
A549
A549
A549
A549
A549
A549
A549

Comparison
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

PC3
PC3
PC3
PC3

Pathway

Focal adhesion

GnRH secretion

Toll-like receptor signaling pathway

Prostate cancer

Neurotrophin signaling pathway

Longevity regulating pathway - multiple species
Long-term depression

Long-term potentiation

Hippo signaling pathway

MAPK signaling pathway

hsa # Edges
04510 208
04929 34
04620 70
05215 150
04722 135
04213 90
04730 38
04720 35
04390 125
04010 353

176

EES
-0.277
-0.485
-0.367
-0.299
-0.306
-0.384

0.535
0.519
-0.353

0.254

NEES NOM p-val

-1.409

-1.703

-1.540

-1.443

-1.435

-1.510

1.963

1.926

-1.624

1.410

0.004
0.006
0.007
0.007
0.007
0.01
0
0.001
0.001
0.001

FDR g-val
0.040
0.057
0.057
0.057
0.057
0.077
0.000
0.040
0.040

0.040

Direction
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant
Concordant
Discordant

Concordant



Table AS5c: Local Comparisons HA1E (1 - 40): FDR g-value < 0.10

Reference Comparison

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375

A375

Pathway

Renal cell carcinoma

Toll-like receptor signaling pathway
Colorectal cancer

Hepatitis B

AGE-RAGE signaling pathway in diabetic complications
Yersinia infection

Osteoclast differentiation

VEGF signaling pathway

Endocrine resistance

Salmonella infection

GnRH signaling pathway

Melanogenesis

Acute myeloid leukemia

Cushing syndrome

B cell receptor signaling pathway

Th1 and Th2 cell differentiation

Endometrial cancer

PI3K-Akt signaling pathway

TNF signaling pathway

Pathogenic Escherichia coli infection

MAPK signaling pathway

Basal cell carcinoma

ErbB signaling pathway

Human immunodeficiency virus 1 infection
Growth hormone synthesis, secretion and action
Prostate cancer

Platelet activation

Toxoplasmosis

Chagas disease (American trypanosomiasis)
Necroptosis

Sphingolipid signaling pathway
Progesterone-mediated oocyte maturation
Ras signaling pathway

Spinocerebellar ataxia

Prion diseases

Neurotrophin signaling pathway
Inflammatory mediator regulation of TRP channels
T cell receptor signaling pathway
Shigellosis

Rap1 signaling pathway

177

hsa # Edges
05211 40
04620 70
05210 106
05161 154
04933 139
05135 92
04380 98
04370 66
01522 177
05132 124
04912 59
04916 71
05221 112
04934 82
04662 60
04658 87
05213 71
04151 417
04668 66
05130 88
04010 353
05217 66
04012 124
05170 111
04935 116
05215 150
04611 33
05145 48
05142 79
04217 81
04071 87
04914 34
04014 256
05017 21
05020 19
04722 135
04750 29
04660 86
05131 118
04015 209

EES

-0.545

-0.472

-0.438

-0.394

-0.349

-0.383

-0.359

-0.429

-0.355

-0.327

-0.418

0.362

-0.353

0.352

-0.378

-0.348

-0.371

0.234

-0.403

-0.327

-0.240

0.352

-0.344

-0.322

-0.308

-0.291

-0.422

-0.383

-0.344

-0.336

0.311

-0.412

-0.254

-0.489

-0.770

-0.287

-0.425

-0.306

-0.300

-0.254

NEES NOM p-val

-1.954

-1.948

-1.915

-1.883

-1.678

-1.676

-1.624

-1.759

-1.659

-1.535

-1.688

1.598

-1.567

1.546

-1.571

-1.540

-1.615

1.312

-1.598

-1.457

-1.290

1.527

-1.476

-1.460

-1.430

-1.408

-1.518

-1.502

-1.465

-1.464

1.407

-1.483

-1.289

-1.561

-1.590

-1.354

-1.476

-1.365

-1.359

-1.300

0

0

0.001

0.001

0.001

0.002

0.002

0.002

0.002

0.004

0.004

0.004

0.004

0.007

0.007

0.007

0.009

0.009

0.009

0.008

0.008

0.011

0.013

0.013

0.013

0.014

0.015

0.015

0.016

0.017

0.018

0.021

0.021

0.02

0.02

FDR g-val
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.016
0.016
0.016
0.023
0.023
0.023
0.023
0.036
0.036
0.036
0.036
0.054
0.054
0.054
0.056
0.056
0.056
0.056
0.056
0.066
0.070
0.070
0.070
0.073
0.074
0.074
0.076
0.079
0.081
0.085
0.085
0.085

0.085

Direction
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant
Discordant
Concordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Discordant



Table AS5c: Local Comparisons HA1E (41 - 80): FDR g-value < 0.10

Reference

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

Comparison
A375
A375
A549
A549
A549
A549
A549

HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

MCF7

Pathway hsa # Edges

C-type lectin receptor signaling pathway 04625 170
Non-alcoholic fatty liver disease (NAFLD) 04932 46
Osteoclast differentiation 04380 98

Hepatitis B 05161 154

Hippo signaling pathway 04390 125

Apelin signaling pathway 04371 85

GnRH signaling pathway 04912 59

Longevity regulating pathway 04211 60
Adherens junction 04520 34

VEGF signaling pathway 04370 66

Osteoclast differentiation 04380 98

HIF-1 signaling pathway 04066 163

VEGF signaling pathway 04370 66

Longevity regulating pathway 04211 60
Osteoclast differentiation 04380 98

Melanoma 05218 115

Long-term potentiation 04720 35

Longevity regulating pathway - multiple species 04213 90
Retrograde endocannabinoid signaling 04723 104
TNF signaling pathway 04668 66

Salmonella infection 05132 124

Acute myeloid leukemia 05221 112

Hepatitis B 05161 154

Neurotrophin signaling pathway 04722 135

Focal adhesion 04510 208

Prostate cancer 05215 150

HIF-1 signaling pathway 04066 163

Platinum drug resistance 01524 49

Endometrial cancer 05213 71

Apelin signaling pathway 04371 85

VEGF signaling pathway 04370 66

Platelet activation 04611 33

Acute myeloid leukemia 05221 112

Regulation of lipolysis in adipocytes 04923 23
Chemokine signaling pathway 04062 119
Longevity regulating pathway 04211 60
Osteoclast differentiation 04380 98

Fc epsilon Rl signaling pathway 04664 53
Neurotrophin signaling pathway 04722 135
Spinocerebellar ataxia 05017 21

178

EES

-0.329

-0.371

-0.384

-0.351

0.328

0.378

-0.421

-0.454

0.478

-0.405

-0.343

-0.309

-0.470

-0.448

-0.408

-0.401

0.424

-0.420

-0.411

-0.407

-0.334

-0.346

-0.317

-0.316

-0.289

-0.308

-0.291

-0.410

-0.388

0.292

-0.557

-0.600

-0.442

-0.598

-0.383

-0.415

-0.387

-0.397

-0.339

-0.547

NEES NOM p-val

-1.413 0.023
-1.406 0.024
-1.737 0
-1.662 0

1.562 0

1.692 0.001
-1.714 0.002
-1.924 0

1.769 0.002
-1.684 0.002
-1.586 0.001
-1.546 0.003
-1.958 0
-1.826 0
-1.820 0
-1.793 0.002

1.649 0.002
-1.653 0.007
-1.608 0.006
-1.596 0.007
-1.561 0.005
-1.516 0.008
-1.512 0.006
-1.492 0.005
-1.453 0.004
-1.453 0.007
-1.413 0.008
-1.586 0.01
-1.572 0.01

1.376 0.013
-2.307 0
-2.164 0
-1.984 0
-1.981 0
-1.807 0
-1.753 0
-1.743 0
-1.615 0
-1.607 0
-1.794 0.001

FDR g-val
0.091
0.093
0.000
0.000
0.000
0.040
0.054
0.000
0.081
0.081
0.081
0.081
0.000
0.000
0.000
0.065
0.065
0.076
0.076
0.076
0.076
0.076
0.076
0.076
0.076
0.076
0.076
0.085
0.085
0.100
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.012

Direction
Discordant
Discordant
Discordant
Discordant

Concordant
Concordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Discordant



Table AS5c: Local Comparisons HA1E (81 - 118): FDR g-value < 0.10

Reference Comparison

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

HA1E

MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

PC3

PC3

PC3

PC3

PC3

PC3

PC3

PC3

Pathway

Adherens junction

Endocrine resistance

Fluid shear stress and atherosclerosis
HIF-1 signaling pathway

GnRH secretion

Colorectal cancer

C-type lectin receptor signaling pathway
B cell receptor signaling pathway
Endometrial cancer

ErbB signaling pathway

Choline metabolism in cancer

Hepatitis B

AGE-RAGE signaling pathway in diabetic complications
Prostate cancer

Cholinergic synapse

Tuberculosis

Cushing syndrome

Rap1 signaling pathway
Progesterone-mediated oocyte maturation
Thermogenesis

Salmonella infection

Sphingolipid signaling pathway

Bladder cancer

Long-term potentiation

Estrogen signaling pathway

Focal adhesion

Renal cell carcinoma

Small cell lung cancer

Apelin signaling pathway

Toll-like receptor signaling pathway
Osteoclast differentiation

Hepatitis B

Salmonella infection

Serotonergic synapse

Long-term potentiation

Inflammatory mediator regulation of TRP channels
AGE-RAGE signaling pathway in diabetic complications

Rap1 signaling pathway

179

hsa # Edges
04520 34
01522 177
05418 109
04066 163
04929 34
05210 106
04625 170
04662 60
05213 71
04012 124
05231 50
05161 154
04933 139
05215 150
04725 44
05152 88
04934 82
04015 209
04914 34
04714 45
05132 124
04071 87
05219 33
04720 35
04915 111
04510 208
05211 40
05222 65
04371 85
04620 70
04380 98
05161 154
05132 124
04726 26
04720 35
04750 29
04933 139
04015 209

EES

0.488

-0.357

-0.344

-0.328

-0.505

-0.377

-0.362

-0.402

-0.396

-0.370

-0.428

-0.314

-0.303

-0.319

-0.410

0.306

0.312

-0.276

-0.444

-0.390

-0.310

0.296

0.424

0.394

-0.352

-0.271

-0.426

-0.343

0.293

-0.347

-0.388

-0.346

-0.347

0.487

0.454

-0.481

-0.313

0.237

NEES NOM p-val

1.777

-1.675

-1.600

-1.594

-1.788

-1.656

-1.557

-1.661

-1.633

-1.600

-1.721

-1.508

-1.434

-1.622

-1.586

1.454

1.418

-1.398

-1.589

-1.617

-1.461

1.382

1.531

1.517

-1.501

-1.381

-1.524

-1.435

1.347

-1.454

-1.786

-1.663

-1.626

1.745

1.786

-1.713

-1.623

1.317

0.001

0.001

0.001

0.001

0.002

0.002

0.003

0.004

0.004

0.004

0.005

0.005

0.005

0.006

0.007

0.007

0.008

0.008

0.01

0.01

0.01

0.012

0.012

0.014

0.014

0.018

0.019

0.019

0.021

0.001

0.002

0.003

0.004

0.005

0.007

FDR g-val
0.012
0.012
0.012
0.012
0.020
0.020
0.029
0.032
0.032
0.032
0.035
0.035
0.035
0.040
0.044
0.044
0.046
0.046
0.049
0.049
0.049
0.049
0.056
0.056
0.061
0.061
0.077
0.077
0.077
0.083
0.000
0.000
0.054
0.065
0.076
0.076
0.076

0.076

Direction
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Concordant
Concordant
Discordant
Discordant
Discordant
Discordant
Concordant
Concordant
Concordant
Discordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Discordant
Concordant
Concordant
Discordant
Discordant

Concordant



Table A5d: Local Comparisons HEPG2 (1 - 40): FDR g-value < 0.10

Reference Comparison

HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2

HEPG2

A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A549
A549
HA1E
HA1E
HA1E
HA1E
HA1E
HT29
HT29
HT29
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

MCF7

Pathway

Longevity regulating pathway - multiple species
Th1 and Th2 cell differentiation

HIF-1 signaling pathway

Pertussis

Longevity regulating pathway

Toll-like receptor signaling pathway

Human T-cell leukemia virus 1 infection
Antigen processing and presentation
Pathogenic Escherichia coli infection
AGE-RAGE signaling pathway in diabetic complications
Longevity regulating pathway

Longevity regulating pathway - multiple species
Longevity regulating pathway

VEGF signaling pathway

Adherens junction

Osteoclast differentiation

HIF-1 signaling pathway

Pertussis

Melanoma

Antigen processing and presentation

Platelet activation

Acute myeloid leukemia

Antigen processing and presentation
Necroptosis

Cholinergic synapse

Thermogenesis

AGE-RAGE signaling pathway in diabetic complications
Signaling pathways regulating pluripotency of stem cells
JAK-STAT signaling pathway

Gap junction

Chemokine signaling pathway

B cell receptor signaling pathway

Neurotrophin signaling pathway

Small cell lung cancer

Natural killer cell mediated cytotoxicity
Colorectal cancer

mTOR signaling pathway

Fc epsilon Rl signaling pathway

Relaxin signaling pathway

Fluid shear stress and atherosclerosis

180

hsa # Edges
04213 90
04658 87
04066 163
05133 31
04211 60
04620 70
05166 119
04612 77
05130 88
04933 139
04211 60
04213 90
04211 60
04370 66
04520 34
04380 98
04066 163
05133 31
05218 115
04612 77
04611 33
05221 112
04612 77
04217 81
04725 44
04714 45
04933 139
04550 170
04630 561
04540 37
04062 119
04662 60
04722 135
05222 65
04650 68
05210 106
04150 106
04664 53
04926 154
05418 109

EES

0.507

-0.421

0.327

-0.495

0.440

-0.401

0.345

0.469

-0.336

-0.306

0.458

0.458

0.454

0.404

-0.479

0.343

0.308

-0.525

-0.357

0.500

-0.525

-0.410

0.475

-0.386

-0.422

-0.409

-0.328

-0.337

-0.257

-0.465

-0.323

-0.361

-0.304

-0.387

-0.385

-0.344

-0.327

-0.384

-0.338

-0.310

NEES NOM p-val

1.955

-1.865

1.548

-1.788

1.762

-1.665

1.570

1.682

-1.478

-1.466

1.866

1.829

1.903

1.689

-1.756

1.679

1.629

-1.828

-1.578

1.822

-1.842

-1.762

1.738

-1.646

-1.629

-1.567

-1.550

-1.544

-1.365

-1.697

-1.482

-1.446

-1.440

-1.604

-1.635

-1.500

-1.469

-1.540

-1.425

-1.408

0

0

0

0.001

0.002

0.002

0.003

0.006

0.007

0.007

0.001

0.001

0.001

0.003

0.002

0.003

0.002

0.002

0.002

0.003

0.001

0.003

0.003

0.004

0.004

0.005

0.005

0.006

0.007

0.007

0.008

0.009

0.01

0.01

FDR g-val
0.000
0.000
0.000
0.040
0.054
0.054
0.069
0.094
0.094
0.094
0.000
0.081
0.081
0.081
0.097
0.097
0.097
0.000
0.000
0.081
0.000
0.000
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.059
0.059
0.062
0.062
0.069
0.071
0.071
0.076
0.077
0.077

0.077

Direction
Concordant
Discordant
Concordant
Discordant
Concordant
Discordant
Concordant
Concordant
Discordant
Discordant
Concordant
Concordant
Concordant
Concordant
Discordant
Concordant
Concordant
Discordant
Discordant
Concordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Discordant



Table A5d: Local Comparisons HEPG2 (41 - 66): FDR g-value < 0.10

Reference Comparison

HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2

MCF7
MCF7
MCF7
MCF7
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

Pathway

Proteoglycans in cancer

VEGF signaling pathway

Mitophagy - animal

Choline metabolism in cancer
Long-term potentiation

Rap1 signaling pathway
Thermogenesis

Serotonergic synapse
Spinocerebellar ataxia

Regulation of actin cytoskeleton
Hippo signaling pathway

Long-term depression

Longevity regulating pathway - multiple species
Estrogen signaling pathway

Thyroid hormone signaling pathway
Melanoma

Th1 and Th2 cell differentiation
Pathways in cancer

Fc epsilon Rl signaling pathway
Amyotrophic lateral sclerosis (ALS)
Necroptosis

Longevity regulating pathway

TNF signaling pathway

AGE-RAGE signaling pathway in diabetic complications
Relaxin signaling pathway

Endocrine resistance

181

hsa # Edges
05205 221
04370 66
04137 17
05231 50
04720 35
04015 209
04714 45
04726 26
05017 21
04810 139
04390 125
04730 38
04213 90
04915 111
04919 72
05218 115
04658 87
05200 554
04664 53
05014 15
04217 81
04211 60
04668 66
04933 139
04926 154
01522 177

EES

-0.295

-0.362

0.521

-0.376

0.508

0.292

-0.501

0.544

0.540

0.338

-0.344

0.488

0.433

0.372

0.373

0.339

-0.350

-0.236

-0.401

-0.566

-0.356

0.369

-0.385

-0.305

-0.355

0.286

NEES NOM p-val

-1.387

-1.461

1.575

-1.472

1.819

1.449

-1.888

1.794

1.732

1.594

-1.575

1.801

1.659

1.677

1.659

1.639

-1.629

-1.274

-1.579

-1.631

-1.540

1.507

-1.476

-1.404

-1.507

1.346

0.01

0.011

0.015

0.015

0

0

0.001

0.001

0.001

0.001

0.001

0.002

0.004

0.004

0.004

0.004

0.003

0.005

0.007

0.01

0.009

0.009

0.009

0.008

0.012

0.013

FDR g-val
0.077
0.081
0.097
0.097
0.000
0.000
0.023
0.023
0.023
0.023
0.023
0.040
0.050
0.050
0.050
0.050
0.050
0.058
0.076
0.077
0.077
0.077
0.077
0.077
0.085

0.088

Direction
Discordant
Discordant

Concordant
Discordant
Concordant
Concordant
Discordant
Concordant
Concordant
Concordant
Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Concordant
Discordant
Discordant
Discordant

Concordant



Table ASe: Local Comparisons HT29 (1 - 40): FDR g-value < 0.10

Reference  Comparison Pathway hsa # Edges EES NEES NOM p-val FDR g-val Direction
HT29 A549 Progesterone-mediated oocyte maturation 04914 34 0.530 1.913 0 0.000 Concordant
HT29 A549 Melanoma 05218 115 0.405 1.835 0 0.000 Concordant
HT29 A549 Non-alcoholic fatty liver disease (NAFLD) 04932 46 0.445 1.709 0 0.000 Concordant
HT29 A549 Chemokine signaling pathway 04062 119 0.332 1.538 0.001 0.032 Concordant
HT29 A549 Prostate cancer 05215 150 0.321 1.524 0.001 0.082 Concordant
HT29 A549 Longevity regulating pathway - multiple species 04213 90 0.422 1.649 0.002 0.046 Concordant
HT29 A549 Colorectal cancer 05210 106 0.366 1.580 0.002 0.046 Concordant
HT29 A549 GnRH signaling pathway 04912 59 -0.391 -1.661 0.003 0.054 Discordant
HT29 A549 VEGF signaling pathway 04370 66 0.389 1.570 0.004 0.065 Concordant
HT29 HA1E VEGF signaling pathway 04370 66 0.469 1.928 0 0.000 Concordant
HT29 HA1E Longevity regulating pathway 04211 60 0.448 1.829 0 0.000 Concordant
HT29 HA1E Osteoclast differentiation 04380 98 0.408 1.843 0.001 0.032 Concordant
HT29 HA1E Melanoma 05218 115 0.399 1.807 0.001 0.032 Concordant
HT29 HA1E Salmonella infection 05132 124 0.334 1.562 0.001 0.032 Concordant
HT29 HA1E Long-term potentiation 04720 35 -0.424 -1.654 0.003 0.069  Discordant
HT29 HA1E Hepatitis B 05161 154 0.315 1.496 0.003 0.069 Concordant
HT29 HA1E Longevity regulating pathway - multiple species 04213 90 0.415 1.639 0.007 0.086 Concordant
HT29 HA1E Platinum drug resistance 01524 49 0.410 1.613 0.006 0.086 Concordant
HT29 HA1E TNF signaling pathway 04668 66 0.405 1.609 0.007 0.086 Concordant
HT29 HA1E Endometrial cancer 05213 71 0.387 1.584 0.007 0.086 Concordant
HT29 HA1E Retrograde endocannabinoid signaling 04723 104 0.402 1.575 0.007 0.086 Concordant
HT29 HA1E Neurotrophin signaling pathway 04722 135 0.315 1.476 0.008 0.086 Concordant
HT29 HA1E Focal adhesion 04510 208 0.289 1.454 0.008 0.086 Concordant
HT29 HA1E Prostate cancer 05215 150 0.307 1.452 0.009 0.086 Concordant
HT29 HA1E HIF-1 signaling pathway 04066 163 0.290 1.419 0.009 0.086 Concordant
HT29 HA1E Apelin signaling pathway 04371 85 -0.292 -1.398 0.009 0.086  Discordant
HT29 HA1E Acute myeloid leukemia 05221 112 0.343 1.495 0.011 0.099 Concordant
HT29 HEPG2 Antigen processing and presentation 04612 77 -0.507 -1.875 0 0.000 Discordant
HT29 HEPG2 Melanoma 05218 115 0.356 1.558 0 0.000 Concordant
HT29 HEPG2 Pertussis 05133 31 0.525 1.835 0.001 0.054 Concordant
HT29 MCF7 Melanoma 05218 115 0.404 1.790 0 0.000 Concordant
HT29 PC3 Melanoma 05218 115 0.523 2.276 0 0.000 Concordant
HT29 PC3 Hippo signaling pathway 04390 125 -0.394 -1.799 0 0.000 Discordant
HT29 PC3 VEGF signaling pathway 04370 66 0.411 1.623 0.001 0.040 Concordant
HT29 PC3 Prostate cancer 05215 150 0.349 1.598 0.001 0.040 Concordant
HT29 PC3 Progesterone-mediated oocyte maturation 04914 34 0488 1.713 0.003 0.072 Concordant
HT29 PC3 Acute myeloid leukemia 05221 112 0.359 1.567 0.004 0.072 Concordant
HT29 PC3 Chemokine signaling pathway 04062 119 0.338 1.535 0.004 0.072 Concordant
HT29 PC3 Central carbon metabolism in cancer 05230 96 0.349 1.485 0.003 0.072 Concordant
HT29 PC3 MAPK signaling pathway 04010 353 0.250 1.290 0.004 0.072 Concordant
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Table ASe: Local Comparisons HT29 (41 - 49): FDR g-value < 0.10

Reference Comparison

HT29

HT29

HT29

HT29

HT29

HT29

HT29

HT29

HT29

PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

Pathway

Serotonergic synapse

Insulin signaling pathway

Inflammatory mediator regulation of TRP channels
Non-small cell lung cancer

Thermogenesis

Regulation of actin cytoskeleton

GABAergic synapse

EGFR tyrosine kinase inhibitor resistance

Glioma
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hsa # Edges
04726 26
04910 98
04750 29
05223 82
04714 45
04810 139
04727 32
01521 158
05214 177

EES

0.509

0.321

-0.488

0.387

-0.403

0.323

0.567

0.350

0.342

NEES NOM p-val

1.724

1.406

-1.663

1.672

-1.554

1.462

1.675

1.497

1.454

0.005

0.005

0.007

0.008

0.008

0.008

0.01

0.01

0.01

FDR g-val
0.074
0.074
0.081
0.081
0.081
0.081
0.085
0.085

0.085

Direction
Concordant
Concordant

Discordant
Concordant
Discordant
Concordant
Concordant
Concordant

Concordant



Table A5f: Local Comparisons MCF7(1 - 40): FDR g-value < 0.10

Reference  Comparison Pathway hsa # Edges EES NEES NOM p-val FDR g-val Direction
MCF7 A375 Longevity regulating pathway 04211 60 0.508 2.038 0 0.000 Concordant
MCF7 A375 Longevity regulating pathway - multiple species 04213 90 0.483 1.836 0 0.000 Concordant
MCF7 A375 HIF-1 signaling pathway 04066 163 0.319 1.506 0 0.000 Concordant
MCF7 A375 mTOR signaling pathway 04150 106 0.377 1.658 0.001 0.040 Concordant
MCF7 A375 Thyroid cancer 05216 42 -0.510 -1.758 0.002 0.065 Discordant
MCF7 A375 GnRH signaling pathway 04912 59 -0.366 -1.510 0.006 0.097  Discordant
MCF7 A549 Platelet activation 04611 33 0.552 1.998 0 0.000 Concordant
MCF7 A549 Chemokine signaling pathway 04062 119  0.369 1.724 0 0.000 Concordant
MCF7 A549 JAK-STAT signaling pathway 04630 561 0.265 1.428 0 0.000 Concordant
MCF7 A549 Regulation of lipolysis in adipocytes 04923 23 0.568 1.894 0.001 0.016  Concordant
MCF7 A549 B cell receptor signaling pathway 04662 60 0.450 1.860 0.001 0.016  Concordant
MCF7 A549 Dopaminergic synapse 04728 54 -0.443 -1.808 0.001 0.016  Discordant
MCF7 A549 VEGF signaling pathway 04370 66 0.441 1.794 0.001 0.016  Concordant
MCF7 A549 Longevity regulating pathway 04211 60 0.414 1.670 0.001 0.016  Concordant
MCF7 A549 Acute myeloid leukemia 05221 112 0.376 1.645 0.001 0.016  Concordant
MCF7 A549 Fluid shear stress and atherosclerosis 05418 109 0.327 1.499 0.001 0.016  Concordant
MCF7 A549 GnRH secretion 04929 34 0485 1.712 0.002 0.025 Concordant
MCF7 A549 Colorectal cancer 05210 106 0.376 1.661 0.002 0.025 Concordant
MCF7 A549 T cell receptor signaling pathway 04660 86 0.377 1.657 0.002 0.025 Concordant
MCF7 A549 Spinocerebellar ataxia 05017 21 0.545 1.759 0.003 0.035 Concordant
MCF7 A549 cAMP signaling pathway 04024 77 0.365 1.562 0.005 0.054 Concordant
MCF7 A549 C-type lectin receptor signaling pathway 04625 170 0.366 1.548 0.006 0.057 Concordant
MCF7 A549 Focal adhesion 04510 208 0.277 1.384 0.006 0.057 Concordant
MCF7 A549 Toll-like receptor signaling pathway 04620 70 0.366 1.549 0.008 0.068 Concordant
MCF7 A549 Neurotrophin signaling pathway 04722 135 0.305 1.424 0.008 0.068 Concordant
MCF7 A549 Prostate cancer 05215 150 0.298 1.412 0.01 0.081 Concordant
MCF7 A549 Longevity regulating pathway - multiple species 04213 90 0.379 1.490 0.012 0.093 Concordant
MCF7 HA1E VEGF signaling pathway 04370 66 0.556 2.285 0 0.000 Concordant
MCF7 HA1E Platelet activation 04611 33 0.600 2.188 0 0.000 Concordant
MCF7 HA1E Acute myeloid leukemia 05221 112 0.439 1.950 0 0.000 Concordant
MCF7 HA1E Chemokine signaling pathway 04062 119 0.383 1.806 0 0.000 Concordant
MCF7 HA1E Osteoclast differentiation 04380 98 0.387 1.743 0 0.000 Concordant
MCF7 HA1E B cell receptor signaling pathway 04662 60 0.402 1.668 0 0.000 Concordant
MCF7 HA1E Endocrine resistance 01522 177 0.350 1.668 0 0.000 Concordant
MCF7 HA1E Neurotrophin signaling pathway 04722 135 0.338 1.617 0 0.000 Concordant
MCF7 HA1E HIF-1 signaling pathway 04066 163 0.327 1.587 0 0.000 Concordant
MCF7 HA1E Regulation of lipolysis in adipocytes 04923 23 0.598 1.954 0.001 0.014  Concordant
MCF7 HA1E Longevity regulating pathway 04211 60 0.415 1.709 0.001 0.014 Concordant
MCF7 HA1E Colorectal cancer 05210 106 0.375 1.637 0.001 0.014  Concordant
MCF7 HA1E GnRH secretion 04929 34 0.505 1.796 0.002 0.022 Concordant
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Table A5f: Local Comparisons MCF7(41 - 80): FDR g-value < 0.10

Reference Comparison

MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

MCF7

HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2

HEPG2

Pathway

Choline metabolism in cancer

Prostate cancer

Spinocerebellar ataxia

Adherens junction

Fc epsilon RI signaling pathway

Fluid shear stress and atherosclerosis
Progesterone-mediated oocyte maturation
Endometrial cancer

Tuberculosis

C-type lectin receptor signaling pathway
Hepatitis B

Cushing syndrome

ErbB signaling pathway

Rap1 signaling pathway

Estrogen signaling pathway

Focal adhesion

Bladder cancer

Salmonella infection

AGE-RAGE signaling pathway in diabetic complications
Cholinergic synapse

Renal cell carcinoma

Thermogenesis

Long-term potentiation

Toll-like receptor signaling pathway
Sphingolipid signaling pathway

Apelin signaling pathway

Small cell lung cancer

Antigen processing and presentation
Acute myeloid leukemia

Small cell lung cancer

Platelet activation

Gap junction

Necroptosis

Cholinergic synapse

Chemokine signaling pathway
AGE-RAGE signaling pathway in diabetic complications
Fc epsilon Rl signaling pathway

Natural killer cell mediated cytotoxicity
Thermogenesis

mTOR signaling pathway
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hsa # Edges
05231 50
05215 150
05017 21
04520 34
04664 53
05418 109
04914 34
05213 71
05152 88
04625 170
05161 154
04934 82
04012 124
04015 209
04915 111
04510 208
05219 33
05132 124
04933 139
04725 44
05211 40
04714 45
04720 35
04620 70
04071 87
04371 85
05222 65
04612 77
05221 112
05222 65
04611 33
04540 37
04217 81
04725 44
04062 119
04933 139
04664 53
04650 68
04714 45
04150 106

EES

0.428

0.318

0.547

-0.489

0.397

0.344

0.444

0.394

-0.306

0.349

0.312

-0.313

0.364

0.276

0.347

0.271

-0.424

0.309

0.303

0.410

0.426

0.390

-0.394

0.347

-0.296

-0.293

0.343

-0.482

0.407

0.387

0.525

0.465

0.386

0.422

0.323

0.328

0.384

0.384

0.409

0.327

NEES NOM p-val

1.7117

1.623

1.763

-1.733

1.693

1.580

1.628

1.588

-1.437

1.528

1.496

-1.442

1.682

1.397

1.488

1.366

-1.688

1.450

1.454

1.693

1.654

1.521

-1.519

1.451

-1.376

-1.361

1.446

-1.759

1.756

1.600

1.884

1.734

1.675

1.595

1.5612

1.542

1.517

1.658

1.551

1.478

0.002

0.002

0.004

0.004

0.004

0.004

0.005

0.005

0.005

0.006

0.006

0.006

0.007

0.007

0.008

0.008

0.009

0.009

0.01

0.011

0.013

0.013

0.015

0.015

0.017

0.021

0.022

0.001

0.001

0.002

0.002

0.002

0.003

0.005

0.006

0.007

0.007

FDR g-val
0.022
0.022
0.034
0.034
0.034
0.034
0.037
0.037
0.037
0.039
0.039
0.039
0.042
0.042
0.045
0.045
0.047
0.047
0.051
0.054
0.060
0.060
0.066
0.066
0.072
0.087
0.089
0.000
0.000
0.000
0.032
0.032
0.040
0.040
0.040
0.054
0.081
0.086
0.086

0.086

Direction
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant

Discordant

Discordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Concordant



Table A5f: Local Comparisons MCF7(81 - 120): FDR g-value < 0.10

Reference Comparison

MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

MCF7

Pathway

HEPG2 Signaling pathways regulating pluripotency of stem cells

HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HT29
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

Neurotrophin signaling pathway
Colorectal cancer

B cell receptor signaling pathway
Mitophagy - animal

VEGF signaling pathway

Choline metabolism in cancer

Relaxin signaling pathway

Fluid shear stress and atherosclerosis
Proteoglycans in cancer

JAK-STAT signaling pathway
Melanoma

GnRH secretion

Serotonergic synapse

Platelet activation

Acute myeloid leukemia

Chemokine signaling pathway

VEGF signaling pathway

Estrogen signaling pathway

Natural killer cell mediated cytotoxicity
Endocrine resistance

Colorectal cancer

Prostate cancer

Melanoma

Gap junction

Regulation of lipolysis in adipocytes
Oxytocin signaling pathway

Cell cycle

Chagas disease (American trypanosomiasis)
Neurotrophin signaling pathway
Proteoglycans in cancer

Fluid shear stress and atherosclerosis
Rap1 signaling pathway

Regulation of actin cytoskeleton
Epstein-Barr virus infection

B cell receptor signaling pathway
Central carbon metabolism in cancer
Glioma

Renal cell carcinoma

ErbB signaling pathway
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hsa # Edges
04550 170
04722 135
05210 106
04662 60
04137 17
04370 66
05231 50
04926 154
05418 109
05205 221
04630 561
05218 115
04929 34
04726 26
04611 33
05221 112
04062 119
04370 66
04915 111
04650 68
01522 177
05210 106
05215 150
05218 115
04540 37
04923 23
04921 35
04110 110
05142 79
04722 135
05205 221
05418 109
04015 209
04810 139
05169 119
04662 60
05230 96
05214 177
05211 40
04012 124

EES

0.327

0.303

0.342

0.361

-0.521

0.361

0.376

0.329

0.310

0.285

0.234

-0.406

0.587

0.613

0.568

0.449

0.420

0.469

0.448

0.464

0.397

0.391

0.348

0.368

0.530

0.576

0.480

-0.373

0.388

0.350

0.341

0.344

0.303

0.350

-0.354

0.388

0.348

0.359

0.457

0.385

NEES NOM p-val

1.466

1.415

1.474

1.466

-1.655

1.461

1.454

1.404

1.390

1.349

1.239

-1.788

2.016

1.982

1.962

1.884

1.882

1.856

1.852

1.798

1.783

1.639

1.616

1.576

1.904

1.830

1.708

-1.630

1.584

1.574

1.564

1.622

1.463

1.658

-1.565

1.645

1.488

1.541

1.608

1.578

0.008

0.008

0.01

0.01

0.015

0.014

0.016

0.015

0.015

0.012

0.016

0

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.002

0.003

0.003

0.003

0.004

0.005

0.005

FDR g-val
0.086
0.086
0.095
0.095
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.015
0.019
0.019
0.019
0.025
0.028

0.028

Direction
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant

Concordant



Table A5f: Local Comparisons MCF7(121 - 139): FDR g-value < 0.10

Reference Comparison

MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

Pathway

Signaling pathways regulating pluripotency of stem cells

Spinocerebellar ataxia

cAMP signaling pathway

Chronic myeloid leukemia

mTOR signaling pathway

Endometrial cancer

Prolactin signaling pathway

Long-term potentiation

Cholinergic synapse

Dopaminergic synapse

Alzheimer disease

Complement and coagulation cascades
Alcoholism

Long-term depression

Inflammatory mediator regulation of TRP channels
T cell receptor signaling pathway
C-type lectin receptor signaling pathway
PPAR signaling pathway

Progesterone-mediated oocyte maturation
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hsa # Edges
04550 170
05017 21
04024 77
05220 111
04150 106
05213 71
04917 83
04720 35
04725 44
04728 54
05010 81
04610 26
05034 60
04730 38
04750 29
04660 86
04625 170
03320 58
04914 34

EES
0.333
0.560
0.365
0.355
0.323
0.375
0.357
0.429
0.393

-0.387
0.342
0.459
0.440
0.452

-0.429
0.320
0.328
0.382

0.406

NEES NOM p-val FDR g-val

1.470

1.707

1.515

1.507

1.411

1.482

1.472

1.514

1.462

-1.488

1.421

1.622

1.541

1.526

-1.467

1.348

1.358

1.400

1.416

0.005

0.006

0.006

0.006

0.006

0.007

0.007

0.012

0.012

0.013

0.013

0.014

0.016

0.016

0.022

0.022

0.024

0.029

0.03

0.028

0.029

0.029

0.029

0.029

0.032

0.032

0.053

0.053

0.054

0.054

0.057

0.062

0.062

0.081

0.081

0.086

0.094

0.095

Direction
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant
Concordant

Discordant
Concordant
Concordant
Concordant

Concordant



Table AS5g: Local Comparisons PC3(1 - 40): FDR g-value < 0.10

Reference Comparison

PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A375
A549
A549
A549
A549
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HA1E
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2

HEPG2

Pathway

Long-term depression

Long-term potentiation

Bladder cancer

Toll-like receptor signaling pathway
Endocrine resistance

GnRH signaling pathway
Regulation of actin cytoskeleton
MAPK signaling pathway

Longevity regulating pathway
Oxytocin signaling pathway

Natural killer cell mediated cytotoxicity
Basal cell carcinoma

Estrogen signaling pathway
Melanogenesis

Autophagy - animal

Colorectal cancer

Rap1 signaling pathway

PI3K-Akt signaling pathway
Serotonergic synapse

Hippo signaling pathway
Melanoma

Long-term potentiation

Long-term depression

Hippo signaling pathway

MAPK signaling pathway
Osteoclast differentiation
Salmonella infection

Hepatitis B

Long-term potentiation
Inflammatory mediator regulation of TRP channels
AGE-RAGE signaling pathway in diabetic complications
Serotonergic synapse

Rap1 signaling pathway
Thermogenesis

Long-term potentiation

Long-term depression

Hippo signaling pathway
Serotonergic synapse

Regulation of actin cytoskeleton

Longevity regulating pathway - multiple species
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hsa # Edges
04730 38
04720 35
05219 33
04620 70
01522 177
04912 59
04810 139
04010 353
04211 60
04921 35
04650 68
05217 66
04915 111
04916 71
04140 71
05210 106
04015 209
04151 417
04726 26
04390 125
05218 115
04720 35
04730 38
04390 125
04010 353
04380 98
05132 124
05161 154
04720 35
04750 29
04933 139
04726 26
04015 209
04714 45
04720 35
04730 38
04390 125
04726 26
04810 139
04213 90

EES

-0.608

-0.528

-0.518

-0.420

-0.318

-0.400

-0.327

-0.241

0.399

-0.425

-0.384

0.389

-0.357

0.369

0.368

-0.317

-0.256

0.253

-0.451

0.311

-0.297

-0.519

-0.536

0.353

-0.254

0.388

0.347

0.345

-0.454

0.481

0.313

-0.487

-0.237

0.501

-0.508

-0.489

0.344

-0.544

-0.340

-0.438

NEES NOM p-val

-2.170

-1.996

-1.879

-1.792

-1.507

-1.672

-1.577

-1.328

1.598

-1.593

-1.591

1.577

-1.549

1.507

1.505

-1.417

-1.329

1.304

-1.571

1.396

-1.363

-1.939

-1.937

1.606

-1.389

1.774

1.628

1.658

-1.767

1.677

1.498

-1.758

-1.303

1.908

-1.867

-1.743

1.581

-1.836

-1.562

-1.722

0

0

0.001

0.001

0.002

0.006

0.006

0.004

0.003

0.006

0.005

0.006

0.005

0.004

0.005

0.009

0.013

0.013

0.001

0.002

0.001

0.001

0.002

0.003

0.003

0.005

0.005

0.002

0.002

0.003

FDR g-val
0.000
0.000
0.000
0.000
0.000
0.023
0.023
0.040
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.077
0.088
0.088
0.000
0.054
0.054
0.054
0.000
0.000
0.040
0.065
0.069
0.069
0.090
0.090
0.000
0.000
0.000
0.000
0.054
0.054

0.061

Direction
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant
Discordant
Discordant

Concordant
Discordant

Concordant

Concordant
Discordant
Discordant

Concordant
Discordant

Concordant
Discordant
Discordant
Discordant

Concordant
Discordant

Concordant

Concordant

Concordant
Discordant

Concordant

Concordant
Discordant
Discordant

Concordant
Discordant
Discordant

Concordant
Discordant
Discordant

Discordant



Table AS5g: Local Comparisons PC3(41 - 80): FDR g-value < 0.10

Reference Comparison

PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HEPG2
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
HT29
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

MCF7

Pathway

Rap1 signaling pathway

Estrogen signaling pathway

Th1 and Th2 cell differentiation
Melanoma

Longevity regulating pathway
Necroptosis

Spinocerebellar ataxia

Thyroid hormone signaling pathway

Fc epsilon Rl signaling pathway

Relaxin signaling pathway

Pathways in cancer

Amyotrophic lateral sclerosis (ALS)
AGE-RAGE signaling pathway in diabetic complications
TNF signaling pathway

Endocrine resistance

Melanoma

Hippo signaling pathway

Prostate cancer

Acute myeloid leukemia

Chemokine signaling pathway
Progesterone-mediated oocyte maturation
Inflammatory mediator regulation of TRP channels
VEGF signaling pathway

EGFR tyrosine kinase inhibitor resistance
Glioma

Regulation of actin cytoskeleton

MAPK signaling pathway

Non-small cell lung cancer

Central carbon metabolism in cancer
Serotonergic synapse

GABAergic synapse

Insulin signaling pathway
Thermogenesis

Serotonergic synapse

GnRH secretion

Platelet activation

Acute myeloid leukemia

Gap junction

Chemokine signaling pathway

Estrogen signaling pathway
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hsa # Edges
04015 209
04915 111
04658 87
05218 115
04211 60
04217 81
05017 21
04919 72
04664 53
04926 154
05200 554
05014 15
04933 139
04668 66
01522 177
05218 115
04390 125
05215 150
05221 112
04062 119
04914 34
04750 29
04370 66
01521 158
05214 177
04810 139
04010 353
05223 82
05230 96
04726 26
04727 32
04910 98
04714 45
04726 26
04929 34
04611 33
05221 112
04540 37
04062 119
04915 111

EES

-0.292

-0.377

0.350

-0.341

-0.369

0.356

-0.540

-0.373

0.401

0.345

0.231

0.566

0.305

0.383

-0.293

-0.525

0.394

-0.350

-0.362

-0.338

-0.488

0.488

-0.411

-0.357

-0.357

-0.324

-0.250

-0.389

-0.350

-0.509

-0.570

-0.321

0.403

-0.613

-0.587

-0.568

-0.452

-0.530

-0.420

-0.453

NEES NOM p-val

-1.459

-1.683

1.546

-1.524

-1.516

1.506

-1.754

-1.562

1.554

1.472

1.258

1.637

1.416

1.470

-1.375

-2.257

1.823

-1.603

-1.650

-1.516

-1.734

1.667

-1.635

-1.534

-1.623

-1.470

-1.300

-1.579

-1.500

-1.686

-1.674

-1.391

1.621

-2.047

-2.025

-1.973

-1.946

-1.906

-1.882

-1.858

0.003

0.005

0.005

0.004

0.005

0.004

0.007

0.006

0.006

0.007

0.007

0.008

0.009

0.012

0.013

0

0

0.001

0.001

0.001

0.002

0.004

0.004

0.003

0.004

0.003

0.004

0.005

0.005

0.007

0.007

0.009

0.013

FDR g-val
0.061
0.062
0.062
0.062
0.062
0.062
0.063
0.063
0.063
0.063
0.063
0.068
0.073
0.093
0.096
0.000
0.000
0.032
0.032
0.032
0.054
0.054
0.054
0.054
0.054
0.054
0.054
0.058
0.058
0.071
0.071
0.081
0.100
0.000
0.000
0.000
0.000
0.000
0.000

0.000

Direction
Discordant
Discordant

Concordant
Discordant
Discordant

Concordant
Discordant
Discordant

Concordant

Concordant

Concordant

Concordant

Concordant

Concordant
Discordant
Discordant

Concordant
Discordant
Discordant
Discordant
Discordant

Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Discordant



Table ASg: Local Comparisons PC3(81 - 120): FDR g-value < 0.10

Reference Comparison

PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3
PC3

MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7
MCF7

MCF7

Pathway

VEGF signaling pathway

Endocrine resistance

Colorectal cancer

Cell cycle

Glioma

Natural killer cell mediated cytotoxicity
Melanoma

Prostate cancer

Proteoglycans in cancer

Neurotrophin signaling pathway
Regulation of actin cytoskeleton

Fluid shear stress and atherosclerosis
Oxytocin signaling pathway

Chagas disease (American trypanosomiasis)
Epstein-Barr virus infection

Rap1 signaling pathway

ErbB signaling pathway

Signaling pathways regulating pluripotency of stem cells
Regulation of lipolysis in adipocytes
Spinocerebellar ataxia

Chronic myeloid leukemia

cAMP signaling pathway

Central carbon metabolism in cancer
mTOR signaling pathway

B cell receptor signaling pathway
Prolactin signaling pathway

Renal cell carcinoma

Alcoholism

Long-term depression

Complement and coagulation cascades
Long-term potentiation

Dopaminergic synapse

Alzheimer disease

Endometrial cancer

PPAR signaling pathway

C-type lectin receptor signaling pathway
Cholinergic synapse

T cell receptor signaling pathway
Inflammatory mediator regulation of TRP channels

Progesterone-mediated oocyte maturation
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hsa # Edges
04370 66
01522 177
05210 106
04110 110
05214 177
04650 68
05218 115
05215 150
05205 221
04722 135
04810 139
05418 109
04921 35
05142 79
05169 119
04015 209
04012 124
04550 170
04923 23
05017 21
05220 111
04024 77
05230 96
04150 106
04662 60
04917 83
05211 40
05034 60
04730 38
04610 26
04720 35
04728 54
05010 81
05213 71
03320 58
04625 170
04725 44
04660 86
04750 29
04914 34

EES

-0.470

-0.403

-0.394

0.372

-0.374

-0.465

-0.370

-0.349

-0.351

-0.351

-0.351

-0.344

-0.480

-0.388

0.352

-0.303

-0.390

-0.343

-0.576

-0.560

-0.357

-0.365

-0.349

-0.323

-0.388

-0.358

-0.457

-0.443

-0.453

-0.459

-0.429

0.387

-0.342

-0.376

-0.383

-0.340

-0.393

-0.320

0.429

-0.406

NEES NOM p-val

-1.858

-1.812

-1.655

1.633

-1.609

-1.824

-1.606

-1.606

-1.606

-1.590

-1.570

-1.542

-1.700

-1.605

1.545

-1.453

-1.692

-1.500

-1.828

-1.738

-1.632

-1.503

-1.498

-1.410

-1.542

-1.482

-1.606

-1.682

-1.658

-1.622

-1.508

1.506

-1.425

-1.456

-1.426

-1.398

-1.472

-1.355

1.467

-1.425

0

0

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.002

0.002

0.002

0.002

0.003

0.003

0.004

0.004

0.005

0.005

0.005

0.005

0.006

0.007

0.01

0.01

0.01

0.009

0.009

0.01

0.009

0.014

0.017

0.017

0.018

0.019

0.023

0.026

FDR g-val
0.000
0.000
0.000
0.000
0.000
0.009
0.009
0.009
0.009
0.009
0.009
0.009
0.014
0.014
0.014
0.014
0.019
0.019
0.024
0.024
0.026
0.026
0.026
0.026
0.030
0.034
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.055
0.064
0.064
0.066
0.068
0.081

0.090

Direction
Discordant
Discordant
Discordant

Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant
Discordant
Discordant
Discordant
Discordant
Discordant
Discordant

Concordant

Discordant



Table A6a: Global and local ESEA results for RLA pathway with A375 as reference.

Reference Comparison Pathway hsa # Edges EES NEES NOM p-val FDR g-val Direction
A375 AVERAGE Regulation of lipolysis in adipocytes 04923 23 -0.270 -0.875 0.37 0.460 Discordant
A375 A549  Regulation of lipolysis in adipocytes 04923 23 0321 1.057 0174  0.381 ([Conceraany
A375 HA1E Regulation of lipolysis in adipocytes 04923 23 0429 1.430 0.025 0.096 ([Goncoraant
A375 HEPG2 Regulation of lipolysis in adipocytes 04923 23 -0.246 -0.812 0.403 0.484 Discordant
A375 HT29 Regulation of lipolysis in adipocytes 04923 23 -0.368 -1.184 0.113 0.383 Discordant
A375 MCF7 Regulation of lipolysis in adipocytes 04923 23 -0.495 -1.586 0.016 0.136 Discordant
A375 PC3 Regulation of lipolysis in adipocytes 04923 23 0234 0.787 0.367 0.437 ([GORcoraany

Table A6b: Global and local ESEA results for RLA pathway with A549 as reference.

Reference Comparison Pathway hsa #Edges EES NEES NOM p-val FDR g-val Direction
A549 AVERAGE Regulation of lipolysis in adipocytes 04923 23 -0.395 -1.311 0.054 0.307 Discordant
A549 A375 Regulation of lipolysis in adipocytes 04923 23 -0.321 -1.071 0.169 0.376 Discordant
A549 HA1E Regulation of lipolysis in adipocytes 04923 23 0.223 0.746 0.446 0.544 ([Goncordant
A549 HEPG2 Regulation of lipolysis in adipocytes 04923 23 -0.405 -1.335 0.061 0.289 Discordant
A549 HT29 Regulation of lipolysis in adipocytes 04923 23 -0.436 -1.432 0.033 0.177 Discordant
A549 MCF7 Regulation of lipolysis in adipocytes 04923 23 -0.568 -1.884 0.002 0.027 Discordant
A549 PC3 Regulation of lipolysis in adipocytes 04923 23 -0.313 -1.017 0.232 0.422 Discordant

Table A6c: Global and local ESEA results for RLA pathway with HA1E as reference.

Reference Comparison Pathway hsa #Edges EES NEES NOM p-val FDR g-val Direction
HA1E AVERAGE Regulation of lipolysis in adipocytes 04923 23 -0.442 -1.445 0.039 0.150 | Discordant
HA1E A375 Regulation of lipolysis in adipocytes 04923 23 -0.429 -1.401 0.044 0.130 | Discordant
HA1E A549 Regulation of lipolysis in adipocytes 04923 23 -0.223 -0.731 0.44 0.544  Discordant
HA1E HEPG2 Regulation of lipolysis in adipocytes 04923 23 -0.435 -1.459 0.024 0.197 | Discordant
HA1E HT29 Regulation of lipolysis in adipocytes 04923 23 -0.453 -1.492 0.029 0.130 | Discordant
HA1E MCF7 Regulation of lipolysis in adipocytes 04923 23 -0.598 -1.981 0 0.000 | Discordant
HA1E PC3 Regulation of lipolysis in adipocytes 04923 23 -0.335 -1.101 0.182 0.328 | Discordant
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Table A6d: Global and local ESEA results for RLA pathway with HEPG?2 as reference.

Reference Comparison Pathway hsa #Edges EES NEES NOM p-val FDR g-val Direction
HEPG2  AVERAGE Regulation of lipolysis in adipocytes 04923 23 0.208 0.652 0.491 0.508 ([Goncordant
HEPG2 A375 Regulation of lipolysis in adipocytes 04923 23 0.246 0.798 0.401 0.431 ([GORcoraany
HEPG2 A549 Regulation of lipolysis in adipocytes 04923 23 0.405 1.342 0.054 0.273 ([GORcoraany
HEPG2 HA1E Regulation of lipolysis in adipocytes 04923 23 0.435 1.467 0.029 0.204 ([GoRcEraant
HEPG2 HT29 Regulation of lipolysis in adipocytes 04923 23 -0.335 -1.090 0.166 0.320 Discordant
HEPG2 MCF7 Regulation of lipolysis in adipocytes 04923 23 -0.476 -1.564 0.017 0.106 Discordant
HEPG2 PC3 Regulation of lipolysis in adipocytes 04923 23 0.321 1.045 0.189 0.359 ([Goncoraant

Table A6e: Global and local ESEA results for RLA pathway with HT29 as reference.

Reference Comparison Pathway hsa #Edges EES NEES NOM p-val FDR g-val Direction
HT29  AVERAGE Regulation of lipolysis in adipocytes 04923 23 0.362 1.163 0.129 0.294 ([GORcoraany
HT29 A375 Regulation of lipolysis in adipocytes 04923 23 0.368 1.198 0.119 0.3s3 ([GOncoraany
HT29 A549 Regulation of lipolysis in adipocytes 04923 23 0.436 1.408 0.041 0.208 ([GBRcoraany
HT29 HA1E Regulation of lipolysis in adipocytes 04923 23 0.453 1.496 0.024 0.122 ([GBRcoraany
HT29 HEPG2 Regulation of lipolysis in adipocytes 04923 23 0.335 1.087 0.175 0.335 ([GORcoraany
HT29 MCF7 Regulation of lipolysis in adipocytes 04923 23 -0.497 -1.646 0.006 0.126 Discordant
HT29 PC3 Regulation of lipolysis in adipocytes 04923 23 0.417 1.339 0.053 0.178 (JConcoraant

Table A6f: Global and local ESEA results for RLA pathway with HT29 as reference.

Reference Comparison Pathway hsa #Edges EES NEES NOM p-val FDR g-val Direction
PC3 AVERAGE Regulation of lipolysis in adipocytes 04923 23 -0.375 -1.208 0.103 0.253 Discordant
PC3 A375 Regulation of lipolysis in adipocytes 04923 23 -0.234 -0.797 0.368 0.438 Discordant
PC3 A549 Regulation of lipolysis in adipocytes 04923 23 0313 1.025 0.224 0.427 ([Goncordant
PC3 HA1E Regulation of lipolysis in adipocytes 04923 23 0335 1.104 0.176 0.333 ([GBRcoraany
PC3 HEPG2 Regulation of lipolysis in adipocytes 04923 23 -0.321 -1.051 0.191 0.376 Discordant
PC3 HT29 Regulation of lipolysis in adipocytes 04923 23 -0.417 -1.333 0.06 0.197 Discordant
PC3 MCF7 Regulation of lipolysis in adipocytes 04923 23 -0.576 -1.828 0.004 0.024 Discordant
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Appendix Figures

A1 Scenario 3RG A2  Scenario 3RG A3  Scenario 3RG
s =100 s =1000 s =10000
v v v
Group(i) Group(i) Group(i)
1 01 > 1 0.1 5 1
0.1 e 2 e 2 e 2
® 3 e 3 e 3
?ol; A \:cvl; Al A ?cvl; a4
B A method ¢ 00 ’g@' T method ¢ 00 ,” 553 = method
0.0 »
S R 4 O Mia 5 v O Mia o5 v O Mia
Y & Mib O Mib O Mib
A M2a A M2a A M2a
o1 v M2b 019 v M2b -0.1- v M2b
X M3 X M3 X M3
-0.010-0.005 0.000 0.005 0.010 -0005 0000 0005 -0.002-0.001 0.000 0.001 0.002
i =Pi—E[P] ti=Pi—E[P] ti=Pi—E[P]
B1  Scenario 5RG B2  Scenario 5RG B3  Scenario 5RG
s =100 s =1000 s =10000
v Group(i) v Group(i) v Group(i)
1 1 1
o e 2 o e 2 01 e 2
® 3 N ® 3 ® 3
A A
o 4 ® 4 ® 4
N v v
R g s % s s % - s
| ™ ™ 1 1 _
g oo—ﬁﬂw——z—‘- g o.u—lﬂzr—\a;E—I*— S ooJ—r@l*—@l‘—
b ¢ A method " method ' \ method
& A Ve & & A
w O Mia A = O Mia v O Mia
O Mib < M1b <& M1b
019 A M2a 019 A M2a 011 A M2a
v M2b v M2b v M2b
X M3 X M3 X M3
70.2)10 70..005 0.000 0. 0.05 0. (510 -0. EJO4 -0. 2)02 0.000 0.0.02 0.0.04 70.2)02 70..001 0.000 0.601 0.602
T =Pi—E[P] ti=Pi—E[P] ti=Pi-E[P]
C1  Scenario 7RG C2 Scenario 7RG C3  Scenario 7RG
s=100 Group(i) s =1000 Group(i) s = 10000 Group(i)
\ 4 1 1 v 1
® 2 e 2 e 2
0.1 A ® 3 e 3 0.1- e 3
Y o 4 o 4 y A ® 4
X e s ® s s
T L] 6 6 6
| 9&@
o oo—q—gw 7 7 d 7
I
e )
method method v method
Y vy O Mia O Mia VAV O Mia
-0.1- T <& Mib <& Mib -0.1- <& Mib
A M2a A M2a A M2a
A YV M2b v M2b h V Mzb
-0010 -0.005 0000 0005 0010 X M3 0004 -0002 0000 0002 0004 KX M3 -0.002 -0.001 0000 0.001 0.002 X M3
i =Pi—E[P] 7i=Pi—E[P] ti=Pi—E[P]
D1 Scenario 9RG Group() D2  Scenario 9RG Group() D3  Scenario 9RG Group(i)
s=100 4 s =1000 4 s = 10000 1
0.15- = ® 2 v ® 2 b e 2
e 3 e 3 e 3
0104 ® 4 0.1- v ® 4 01- ® 4
A v v
® 5 I ® 5 A ® 5
005 A a
05 ® 6 ® 6 A ® 6
=3 1%(% o7 A o7 T M ® 7
' oo0 ® e B2 8 ! a i 8 ! —‘fg-fﬁg@g—w CHl B~ 8
S O o X S 0. -
e L e M * * . ? 0.0 S : ﬁ' 0.0 ¢ 3 :
o 0.05 \ A v o A ( o A
vy Yv
v method A method ) method
-0.10- Al O Mia -0.1- O Mia -0.1- O Mia
& Mib < M1b <& M1b
_0.15- A M2a A M2a s A M2a
0004 0000  0.004 v M2b -0002 0,000 0.002 v M2b 0002 -0.001 0000 0001 0002 / M2b
7 =P—E[P] X M3 ti=Pi—E[P] X M3 7 =Pi—E[P] X M3

Figure Al: Biased Condition Scatterplots comparing sampling methods across two dimensions of
bias at different numbers of simulations: s = 100 (A1 —D1), s = 1000 (A2-D2), s = 10000 (A3-D3).
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Figure A2: Null Condition Scatterplots comparing sampling methods across two dimensions of
bias at different numbers of simulations: s = 100 (A1 — D1), s = 1000 (A2-D2), s = 10000 (A3-D3).
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Figure A3: Null CW Scatterplots comparing sampling methods across two dimensions of bias
at different numbers of simulations: s = 100 (A1 — D1), s = 1000 (A2-D2), s = 10000 (A3-D3).
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Figure A4: Biased Condition Scatterplots comparing sampling methods across two dimensions of
bias at different numbers of simulations: s = 100 (A1 — D1), s = 1000 (A2-D2), s = 10000 (A3-D3).
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Figure AS5: Individual cell line power plots — Delta These graphs represent those from Figure 19
broken up by each cell line acting as a reference; A375(A), A549(B), HA1E(C), HEPG2(D),

HT29(E), MCF7(F) and PC3(G).
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Figure A7: Local Results for ESEA Bar plots for the number of significantly enriched pathways
broken down by FDR for each cell line; A375(A), A549(B), HA1E(C), HEPG2(D), HT29(E),

MCF7(F) and PC3(G).
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Figure A8: Local Results for ESEA Bar plots for the number of significantly enriched pathways
broken down by direction for each cell line; A375(A), A549(B), HA1E(C), HEPG2(D), HT29(E),

MCF7(F) and PC3(G).
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