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Abstract 

Verification and validation are very important in the design of any system. For safety-critical 

systems, especially, the validation level is crucial. In this work, developing a robust procedure 

for designing smart, safe, secure systems is our eventual goal. There are different methods for 

verification and validation, but formal methods are used widely to validate these systems due to 

their high level of confidence for guaranteeing correctness, security, and safety properties. TLA+ 

is a formal specification language and its TLC model checker will be used in this work to 

formally verify and validate several example systems, and to find security hacks. Designing 

smart systems has recently received much attention because of the ability to connect 

heterogeneous sub-systems together to build a fully controlled smart system. Here we propose 

models for three systems: a smart school building system, an ADS-B system for avionics, and a 

SCADA system. We model the systems using UML diagrams to describe objects, states, and 

sequences of actions. Formal methods techniques are used to verify the properties of the systems. 

TLA+ is used for formal modeling. For the smart school building system, the ADS-B system, 

and the SCADA system, we verify their properties and correctness using the TLA+ toolbox and 

the TLC model checker. Also, we use the TLC model checker to find example security bugs we 

introduce into the designs. 
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Chapter 1: Introduction and Overview 

1.1 Introduction 

Formal methods have been used in the design cycle of different kinds of systems to guarantee 

correctness and safety for different applications. Many of these systems worked as specified 

because of formal methods help. Formal methods have the ability to catch errors and bugs that 

other methods can’t find. Many prominent companies have been using formal methods in the 

verification and validation of their complex systems [2,4,8]. Formal methods can interact with 

design systems like UML and SysML [48] and, in addition, they can provide a formal 

verification of the system properties. 

Researchers have modeled many smart systems such as smart office, home automation systems, 

smart library, smart campus, airport systems, and various vehicles. The way that most of these 

systems were modeled and implemented focused on correct operation and did not ensure security 

for the system. We have designed a smart school building system that achieves smart system 

features and safety properties [35, 45], a SCADA system with security protections, and an 

improved ADS-B system model for avionics [46].  

In this work, chapter 1 will present an introduction and overview of verification and validation, 

formal methods, specification languages, TLA+ and why we have chosen to use it, as well as the 

related work in using formal methods, especially TLA+, in different kinds of applications. 

Chapter 2 will provide an example of using TLA+ and its model checker TLC to solve a simple 

well-known problem, along with our work in modeling a smart school building model using 

TLA+ and TLC.  This chapter shows how the TLC model checker can find a security bug in the 

model. Chapter 3 will define the ADS-B system and explain why it is important, and will show 
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how we modeled the ADS-B system using UML, TLA+ and the TLC model checker for 

validation.  We model in detail one of the proposed security solutions and show its validity.  

Chapter 4 will illustrate what a SCADA system is and why it is vulnerable, and will show we 

modeled an example SCADA system using UML and TLA+.  For this example, we used the 

TLC model checker to validate our model first, then we added a security problem and the 

showed how the TLC model checker found this security bug. Chapter 5 will include the 

conclusions of all our work and discuss future work. 

 

1.2 Verification and Validation 

Verification and validation are independent terms that are used together to check the quality of a 

system and to check that it works as it supposed to work with no bugs or failures. Basically, 

these processes check whether or not the system meets its requirements and specifications. The 

difference between the two terms is as follows:  in validation we’re checking to see if we are 

building the right system, and in verification we’re checking to see if we’re building it in the 

right way. In other words, in validation we’re checking the user’s “requirements”, and in 

verification we’re checking if the “specifications” derived from those requirements are 

implemented correctly [10]. 

There can be a lot of uncertainty and vagueness in the process of determining if a model is 

“good”. In the modeling process, the most controversial step is evaluating a model with no 

uncertainty. Philosophical viewpoints can include differences that can lead to confusion. The 

central concern is usually validation, which is linked with terms like “verification”, 

“qualification”, and “confirmation” that are trying to ensure that “validation” is achieved in a 



3 
 

proper context. Some modelers use the term “validation” which means the model meets its 

performance requirements and is acceptable, while other modelers use the term “evaluation” to 

avoid the use of the term “validation” [11]. 

The term “verification” is a wide-ranging term that includes all approaches needed to show the 

system possesses specific properties. That may include a simple test case that proves a limited 

fact that the system will accomplish a certain result. The term “verification” has been used to 

increase the systematic and elaborated mathematical techniques to establish that the system 

possesses some specific properties. These properties may be a set of abstract specifications 

which include general terms like safety, liveness, and/or termination and which cover the 

implementation of the system’s specification or the correctness of realizations. There are 

different forms of verification. One of them is “formal verification” which uses formal 

mathematical languages [5]. 

If we take cyber-physical systems (CPSs) as an example, these systems have complex models 

because of the integration of software, hardware, and physical components which may cause a 

state explosion when modeling. In these models, formal verification is sometimes prevented by 

state explosion, because formal verification must include all of the system’s concerns. It’s 

important that any abstract model include all the important details to verify the system (or part of 

the system) [13]. 

From the software engineering point of view, a CPS has specific functional requirements that 

need to be validated to have a system accepted. But the non-functional requirements in our case 

of building and testing the CPS are not less important than functional requirements because 

we’re looking not only at functionality requirements for an accepted CPS, but we also want to be 

able to trust the CPS.  
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Software and hardware components, along with operating systems, need better development 

processes to improve the existing technologies. The software and hardware should be highly 

reconfigurable, dependable, and sometimes certifiable as components and as fully integrated 

systems, with respect to certain requirements. These complex systems should have 

trustworthiness which may not exist in current cyber infrastructures. Testing “till all money runs 

out” is not a smart strategy.  Scientific and evidence-based methods are necessary to improve 

reliability. So, new algorithms, models, tools, and methods are needed to incorporate validation 

and verification of systems and software at the control design level [14]. 

Using formal methods for verification and validation in different kinds of systems has increased 

and the power of using them has been demonstrated [2, 4]. In this work, we will work on using 

formal methods for verification. Section 1.3 will illustrate more details. 

 

1.3 Formal Methods 

In control theory, to achieve stability, systems of nonlinear differential equations (complicated 

dynamics) are used and must be shown to work not just theoretically, but also in practice. 

Sometimes optimality, which might require meeting certain cost restrictions, for example, must 

be shown, along with determining the paths of a stable system. In formal synthesis, a system’s 

specifications, such as safety and liveness, as well as the system’s extensive requirements can be 

specified using temporal logic for controlling simple systems like digital circuits or through 

modeling with finite state graphs. The integral development of safety critical systems and cyber 

physical systems increased the need for computational tools to validate more complex systems 

derived from temporal logic specifications [12].   
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Formal methods can be used as development, specification, and verification tools in software and 

hardware systems. Formal methods are mathematically based techniques. They use software 

tools to implement systems that will meet their specifications accurately. Formal methods 

provide clarity and simplicity and remove complexity, which is one of the main goals in the 

system development process. Formal methods use formal verification schemes that ensure the 

system must be correct before it is accepted, and this makes formal methods different from other 

methods. All these reasons make formal methods highly trusted, and an excellent alternative to 

replace or enhance existing verification tools [43]. 

As in [15], formal methods can be used for verification in different hardware/software 

applications. Some examples include Ethernet switches, routers, security applications, and seL4 

(OS microkernels) [15]. Many reputable high-tech companies such as NASA, Amazon, Intel, 

AMD, and IBM, have used formal methods. NASA has applied formal methods techniques in 

big projects like Unmanned Aircraft System (National Airspace System) and Air Transportation 

System (Next Generation). Intel used formal methods for verification in projects such as cache 

coherent protocol verification, Intel IA-64 architecture optimization, and iCore i7 processor 

validation. IBM has used formal methods as well for verification of registers and power gates, 

and for its IBM Power7 microprocessor [15]. 

There are several advantages to using formal methods, especially in industry. First, formal 

methods are highly trusted; they demonstrate system correctness better than other methods. 

Second, they have the ability to handle complex, very large problems and systems. Third, they 

decrease the cognitive burden, i.e., they support tools that allow engineers to use methods that 

are relatively easy to learn and apply. Finally, they can provide a big return on investment, which 

is interesting to industrial companies who can see them as a method that can work for a wide 
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range of applications and problems with minimum effort and time [4]. On the other hand, using 

formal methods has some drawbacks since it requires time and training to learn how to use them.  

In order to apply formal methods, we need to model the system by translating it into an abstract 

mathematical model and then developing a specification. This means describing a system’s 

duties and properties using a formal specification language. We’ll illustrate specification 

languages in more detail in the following section. 

 

1.4 Specification Languages 

Formal methods use formal languages, which are called specification languages. Specification 

languages are used during requirements and system analysis, as well as during system design. 

Specification languages provide a much better way to describe a system than programming 

languages that are used to generate executable code for a system. They are not used to describe 

the “how?”, they used to describe the “what?”. The importance of specification languages in 

verifying program correctness follows from their ability to support proofs [16]. 

Understanding formal system syntax, semantics, and proof rules is required to apply 

specification languages. A language is determined by the syntax and the semantics, while the 

proof system is supported by the proof rules. Specifications are represented in the language as 

expressions, and reasoning with respect to properties of these specifications is represented by the 

proof system. We can stipulate designs of computing systems (hardware and/or software) using 

specification languages or recommend requirements to the system, or formally describe a domain 

[5]. 
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A common essential assumption of many specification methods is that programs are modelled as 

model-theoretic or algebraic structures which contain a combination of sets of data values along 

with functions applied to those sets. This abstraction level agrees with the view that the 

correctness of the input/output behavior of a program takes priority over all its other properties. 

Specification should be able to allow a process of modification before implementing the 

specification. This modification process results in an executable algorithm which can then be 

represented by a programming language [16]. 

Specification languages have many useful features.   They have a mathematically precise base 

that gives them an accurate syntax and semantics. Also, specification languages support 

abstraction, which simplifies the main properties of the system and helps developers create 

better, clearer code. 

Many specification languages such as Raise [17], TLA+ [18], Z [19], VDM [20], and B [21] are 

used for modeling real world scenarios. In this work, we will focus on using the TLA+ 

specification language for verification. 

Section 1.5 illustrates more details about TLA+.  How is it defined? And why did we choose it? 

 

1.5 TLA+ 

1.5.1 Introduction 

TLA+ is high level modeling language that is used in modeling distributed and concurrent 

systems. It is mathematically based and used to describe systems precisely. TLA+ can be used to 

remove essential design errors that are hard and expensive to find and correct at the code level. 
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This section describes TLA+ based on work by Merz [3] and by Lamport [7]. It provides details 

about TLA+ and its TLC model checker. 

TLA stands for the Temporal Logic of Actions formulas. TLA+ was designed by Lamport for 

describing and reasoning about distributed algorithms formally. He published his Specifying 

Systems book [7] which defines TLA+ and shows how to use it along with all its supporting 

tools. Lamport also introduced linear-time temporal logic, and designed TLA+ specifications to 

be arranged in modules which can be independently reused.  

In a quest for minimality of concepts, TLA+ doesn’t formally differentiate between 

specifications and properties; both of them are written as logical formulas, while concepts such 

as hiding of the internal state, refinement, and composition of systems are represented using 

logical connectives of quantification, implication, and conjunction. In addition to its 

expressiveness, TLA+ is also supported by tools like theorem provers and model checkers to 

help a designer in developing formal specifications. 

The following section will introduce the TLC model checker which we will use in our work. 

 

1.5.2 TLC Model Checker 

TLC is the TLA+’s model checker that checks the specification.  It is where programs can be 

executed and compiled and the TLA+ module can be verified and validated. This process 

provides confidence that a model successfully imitates the intended system and thus that it is a 

basis for more comprehensive designs, and, eventually, for implementations.  
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Designers need supportive tools while doing analysis. Simulation helps the designer complete 

execution traces and helps in finding deadlocks or other unexpected behavior. Model checkers 

and theorem provers are deductive tools that help in the formal verification of properties. TLC 

model checker is extremely useful and powerful for verification and validation. For TLA+ 

models, TLC model checker can explore the state space of finite-state instances and compute 

results. Besides the model, TLC needs a configuration file as a second input file for defining the 

finite-state instance of the model to be analyzed, which states and which properties need to be 

verified over that finite-state instance, and which of the model’s formulas represent the system 

specification. 

In the following chapters, we will work on many systems’ applications using TLA+ and its TLC 

model checker. 

 

1.5.3 Why TLA+  

We decided to use TLA+ for many reasons. First, it possesses strong validation features which 

are useful for many different kinds of applications/systems which we will illustrate in section 1.6 

with more details. Second, it supports abstraction and works on the design level, which gives it 

the ability to build a more precise system with more confidence. Third, it’s relatively easy to 

learn. Forth, it has a powerful model checker (TLC). Fifth, it’s mathematically based and allows 

you to specify the system and its properties. Fifth, we can use its PlusCal language mode that 

looks very much like C. Sixth, we can check for safety and liveness properties, which are critical 

properties for many systems. Finally, TLA+ has a powerful TLC model checker that can check 

for specifications and supports overall system analysis. 
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In recent years, system designers have extended UML, originally designed to model software 

systems, to mixed hardware-software systems where each component is a black box which 

ultimately will be instantiated as hardware, software, or a combination.  TLA+ can also been 

extended to model systems of mixed hardware-software components, as explained, for example, 

in [83].    

 

1.5.4 TLA+ vs. Other Specification Languages 

 

There are several different specification languages that had been used in industry.  These include 

Alloy [38], Microsoft VCC [39], B [21], Z [19] and TLA+ [18]. 

In comparison to Alloy [38], TLA+ is direct, simple, and does not require so many layers of 

identifications in modeling nested structures. TLA+ is a more expressive language compared to 

Alloy, whose expressiveness is limited. TLA+ supports high-level functions, and it’s a flexible 

language when there is a need to edit the specification details, compared to Alloy, which is less 

flexible and does not support some high-level functions like recursion. On the other hand, Alloy 

Analyzer model checker is very efficient compared to TLC model checker and it has the ability 

to handle important large analyses which TLC is unable to handle.  Although Alloy Analyzer is 

faster than TLC, it crashes, or hangs in some cases when analyzing larger systems. 

In comparison to TLA+, VCC allows writing “ghost code” which is a superset of the C 

programming language, but the downside of it is that it’s much more verbose than TLA+. TLA+ 

has its efficient TLC model checker that is able to handle huge state-spaces at a very good 

throughput rate [4]. In addition it can efficiently use multiple cores instead of using single 
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memory like B, VCC, and Event-B model checker. TLA+ has an excellent feature called Trace 

Explore that allows tracing every single state and finding the results for each state, which makes 

tracing, finding, and fixing bugs much easier. In comparison to Alloy which has this same 

tracing feature, it does work for systems with only a few steps or variables (small systems). In 

comparison, TLA+ supports the liveness property (which means that something good will 

eventually occur) better than any of the other specification languages. TLA+ is so powerful 

because it is a very expressive language since it uses a mathematical formula [4]. 

In the following section we describe examples from the literature which show the use of formal 

methods (especially TLA+) for verification of different system applications.  This section 

provides a literature survey of the use of formal methods to verify and validate different systems 

applications. The sub section 1.6.2 contains a literature survey for modeling different systems 

applications using the TLA+ specification language. 

 

1.6 Related Work 

1.6.1 Related Work Using Formal Methods  

Using formal methods for verification has become more frequent recently because of the 

efficiency, reliability, and quality of testing for finding errors and bugs that are hard to detect 

easily. This section will illustrate work using formal methods for verification and validation with 

the focus on the TLA+ specification language. 

In 2006, Zafer et al. [23] applied the specification language Z to an automated train control 

system for the specifications of critical components of the system. First, they modeled the static 



12 
 

components of the system using graph theory, then they described the entire state space by 

integrating those components using Z notation. To model topology in graph theory, real topology 

was transferred and then crossings, switches, and level crossings were formalized. Finally, they 

interatred these components to define the entire interlocking system. They used Z notation to 

describe formal specification of the system, and the Z/EVES tool to analyze the model. 

One of the objectives of this research was to prove the power of formal methods and show how 

to apply it to complex systems instead of only to simple systems. Another objective of this work 

was to use Z notation at an abstract level to model the railway interlocking system. Even though 

this work does not represent a real-world problem, it shows the power of applying formal 

methods (Z notation in this case) to complex safety critical systems successfully and is a good 

example for all researchers who are interested in applying formal methods. This research is 

beneficial for the railway industry because it does not focus on a particular system, it focuses on 

general concepts and principles of an interlocking system. They used Z notation for integrating 

the system, formalizing graph theory, which was not an easy mission, and finally they analyzed 

the specification using the Z/EVES tool. 

In 2015, Afzaal et al. [24] worked on improving the wireless sensor and actor network (usually 

“activator” term used instead of “actor” network). This field has been attractive to researchers 

and has seen a lot of improvement in modeling recently. But still there is a need to work on big 

challenges in this field because of the critical large-scale applications and the safety and security 

critical aspects. In their work, Afzaal et al. designed a model for a Subnet Based Backup 

Assigning (SBBA) algorithm that partitions the wireless sensor and actor networks (WSAN) into 

subnets. 
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This work classifies critical and non-critical nodes in each subnet. Each critical node assigns a 

suitable backup to observe the primary critical node and inter-actor connectivity is preserved 

within the subnet. Also, in each subnet, a gateway node is selected to communicate with other 

subnets and this gateway node assigns a suitable backup to observe the primary gateway node 

and inter-gateway connectivity that is defined among subnets. In order to verify and validate the 

proposed algorithm, they used the VDM-SL formal approach to analyze and do formal 

specification of the SBBA algorithm in WSANs. First, they modeled a subnet of WSAN as a 

dynamic graph and used VDM-SL to implement SBBA in a formal specification. They 

successfully analyzed, verified, and validated the SBBA algorithm specification using the VDM-

SL toolbox. 

In 2017 Kamali et al. [25] focused on self-directed vehicles in their search. They stated that 

multiple autonomous vehicles will most likely be coordinated into platoons or convoys on our 

highways and that this is likely to occur in the near future. So the behaviors of the autonomous 

vehicles in platoons should be certified before deploying these platoons. This is not an easy 

mission, and it needs more than current certification requirements. 

This work showed how formal methods can be useful to analyze increasingly autonomous, new 

systems. They represent the vehicle platooning as a multi-agent system where each vehicle 

carries out “autonomous decisions” that will be captured by the other agents. They used formal 

verification to guarantee that the safety requirements will never be violated by these self-directed 

decision-making agents in vehicle platoons.  They verified the individual agent's code using 

formal methods. However, they didn’t scale it to the full system.  Thus, they combined two 

approaches because the primary verification of autonomous behavior was not captured by the 

global system verification technique. This allows safety requirements verification of a model of 
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the system and the actual agent code used to set up the autonomous vehicles. They verified the 

agent behavior using AJPPF, and they used Uppaal model checker to verify the real-time 

requirements, where a system is represented as timed automata generated by a translation 

algorithm. 

In 2019 Rehman et al. [22] modeled and verified a smart office system. Because people spend 8 

to 12 hours working in their office every day under normal circumstances, increasing 

performance and efficiency of the employees is an important issue. The modeling of smart 

offices supports visualizing and understanding of an office management system from many 

viewpoints. The modeling and verification are done using UML diagrams, a formal specification 

language VDM-SL, and automata theory. UML diagrams are used for behavioral and operational 

models. In term of states, automata-based models are used to model the behavior of the system. 

And finally, formal methods are used to achieve reliability, accuracy, and consistency of the 

smart office system. For verification and validation of the model, they used the Vienna 

Development Method and Specification Language (VDM-SL). 

Figure 1 shows the system’s transaction flow from one state to another state. 

In this work, they stated the behavior of the system using formal methods in a format of 

mathematical notations. And then they used the VDM-SL toolbox to verify these mathematical 

notations. The system properties are validated and verified using the VDM-SL toolbox to prove 

the correctness of the model. 
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Figure 1: Activity Diagram for Smart Office [22] 

 

1.6.2 Related Work Using TLA+ 

The examples above show the use of different specification languages for formal modeling. The 

next examples focus on using the TLA+ specification language for verification and validation for 

different kinds of applications.  

In 2002 Tasiran et al. [8] worked on examining functional correctness during simulation, 

formally analyzing simulation runs and guiding them towards coverage gaps automatically. They 

verified the Compaq Alpha 21364 microprocessor’s cache coherence engine. This work was a 
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collaboration with Intel Corporation, Microsoft Research Center, and Compaq Systems Research 

Center. Implementing a complex protocol on hardware and verifying the consistency using high-

level specifications is a process that is very labor-intensive and impossible to be completed in 

practice. Hand-written test programs or random patterns simulation are the only existing tools for 

this purpose. Usually, a hardware description language is used to describe the design and a text 

document is used for high-level specification. During simulation, high-level specification is 

checked for violations by a program. This approach is not enough for a number of reasons. First, 

it is difficult to verify whether the specification is complete and consistent since it is informal. 

Second, the code itself that is written for checking for specification violations may have errors. 

Last, and most important, it is hard to quantify how well different features of the specification 

have been discovered, and to guide simulation runs towards unmapped areas. In this work, the 

authors used a formal language to write the high-level specification. In the implementation, they 

mapped the related simulation steps to state transitions in the specification using TLA+. And 

they used the TLC model checker to check the consistency of each state transition. 

In 2006 Narayana et al. [6] used TLA+ with network protocols to check Denial-of-Service attack 

(DoS) vulnerability. Many researchers have proposed formal methods for vulnerability analysis 

and most current work focuses on security properties like correctness of authentication and 

perfect forwarding secrecy. The challenge is how to apply these approaches to analyze more 

challenging vulnerabilities like DoS attacks. In order to address this challenge, Narayana et al. 

proposed using TLA+ for checking DoS vulnerability automatically with completeness guarantee 

by developing new schemes to model attackers’ abilities for finding real attacks and avoiding 

state space explosion while property checking. They successfully identified threats to IEEE 

802.16 air interface protocols as their case study. They specified a network protocol using TLA+, 
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security properties to be checked, and an attack model. They used the TLC model checker to 

check the whole protocol state space and to find any possible attacks. This method can identify 

the attacks as well as faulty situations, and it can also guarantee completeness of the analysis. 

They showed how using TLA+ and TLC help with protocol design and improvements such as 

programming a modification or fix into TLA+ when a vulnerable design or fault is detected, then 

re-running TLC for problem solving verification.  This work represents a first step towards 

checking network protocol vulnerability automatically with correctness and completeness 

guarantees.   

In 2010 Zhang et al. [3] used TLA+ to express time specification. They presented a pattern-based 

method and introduced RealTimeNew which is a real-time module that contains commonly used 

time pattern definitions. A general framework was presented to differentiate system functionality 

with time constraints from the temporal characterizations. This method demonstrates the use of 

TLA+ in verifying and specifying time-sensitive systems. The real time module RealTime had 

been developed by Lamport to make time modeling applications easier to implement [7]. In 

time-sensitive systems, this module is not enough because it cannot specify the time intervals 

between actions, it only can specify the duration time of an action. 

It is important to understand the difference between RealTime and RealTimeNew. The RealTime 

module is designed to be used in specification composition, while the RealTimeNew module is 

designed in to be used in a single specification, which means that it can be verified directly by 

deductive verification or the TLC model checker. RealTimeNew also can then be applied to 

more applications because it contains richer time patterns. The time formulas are divided into 

four types: the time interval between actions, the time duration of an action, the advanced time 

patterns, and time evolving.  Zhang et al. used their module in a case study to demonstrate and 
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validate the module. The application used a simple answering machine case and they achieved a 

good result. 

Also, in 2010, Zhang et al. [1] proposed a method using TLA+ to specify programmable logic 

controllers (PLC) systems formally. The framework of specification is generic. It separates the 

description of the controller itself from the environment and the PLCs’ scan cycle mechanisms 

are consistent with the controller’s structure. Specifications can be represented by a number of 

replicated components. In [1] they showed that TLA+ structuring mechanisms help to obtain 

well-organized, configurable, and clear specifications that they were able to verify using the TLC 

model checker.    

As a case study to demonstrate their approach, they picked a controller for firefighting 

equipment in a ship dock. They used TLA+ for specifying the reaction cycle referring to the 

PLCs’ scan cycle mechanism. A generic specification pattern was obtained per module that 

differentiates between actions of the controller, the user, and the plant feedback. These different 

modules are used to describe the overall system specification and the pattern is defined for a 

concrete PLC. The dock fire-fighting system that is shown in Figure 2 is a system used to fight 

fires that might happen at ship docks. The user controls the fire-fighting equipment and receives 

information about the present operating state. The dock has two berths and two water cannons 

that may be used only for firefighting. The pump supplies the cannons with water from a water 

tank. Different components are connected by several valves, for example, cannon1 can only be 

used for firefighting if both valve1 and valve2 are opened. 

They successfully developed a format for the system specifications using TLA+, and 

successfully verified their work using the TLC model checker, which analyzed the results in a 
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reasonable time compared to other commonly used methods.  They also noted the potential to 

apply their methods to additional real-time PLC system specifications in future. 

 

 

Figure 2: The physical configuration of the dock fire-fighting system [1] 

 

In 2019 Latif et al. [26] used UML to describe an automata model, along with formal methods to 

propose a model for a smart parking system. The system represents smart objects that share 

information within a network by sensing, communicating, and also sending this information to 

additional IoT devices for analysis.  They used UML based models to describe a real-world 

parking system and to show the working flow of the system. Then they converted these UML 

diagrams to an automated system using automata models which define the smart mechanisms of 

the parking system. Their model is represented by states and transitions, where every state is 

defined functionally and has a unique identity. Figure 3 shows the activity diagram for the smart 

parking system. There are many models for many operations in this system, for example, search 

shortest path towards empty slot, find free spaces, and car entrances and exits within a region.  
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Figure 3: The Activity Diagram of the Smart Parking System [26] 

 

They used the formal specification language TLA+ to verify their proposed model and the TLC 

model checker to capture the system behavior. They successfully integrated UML, finite state 

automata, and the TLA+ language to provide proof of correctness, verification, and validation of 

the proposed system. 

In 2014 and 2015, Newcombe et al., who were working at Amazon, wrote an article [2] and a 

more detailed paper [4] explaining why they were using formal methods (in particular, TLA+) at 
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Amazon. At Amazon, they write their own complex algorithms that often deal with more than 1 

million requests/sec. Verifying the correctness of these algorithms is very difficult.  In 2011 

Amazon started using formal methods (TLA+ as a specification language) in place of other 

verification techniques for many reasons, including: 

➢ Formal methods are able to find bugs that cannot be found with any other technique used 

to verify system designs. 

➢ Amazon found that they could efficiently and routinely apply formal methods to complex 

real-world software designs in applications such as public cloud services. 

➢ They also found that mainstream software development is surprisingly feasible with 

formal methods and returns a good gain on investment. 

➢ Over the lifetime of a system, formal specification writing pays dividends. 

➢ They were able to use TLA+ on 10 big complex real-world systems (as of 2/2014); 

➢ Formal methods can precisely describe the abstract design and its abstract operating 

environment. 

➢ Formal methods can define correctness properties and specify what the system must do 

by applying: 

• Safety: which represents what the system is allowed to do. For instance, always; 

all committed data is correct and present. 

• Liveness: which represents what the system must finally do. For instance, 

whenever the system gets a request, it eventually must respond to that request. 

➢ There is a second language accompanied by TLA+ called PlusCal, which is closer to the 

C programming language style but more expressive. It is used by Amazon’s engineers as 

well. 
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Amazon implements many advanced distributed systems that process and store customers’ data. 

To protect this data, Amazon depends on the correctness of an ever-growing set of algorithms in 

the areas of consistency, replication, fault tolerance, auto-scaling, concurrency-control, and other 

coordination activities. This challenge to achieve correctness in these areas led Amazon to adopt 

formal methods. A significant value has been added by TLA+, because it prevents serious tricky 

bugs from ruining production and also provides enough confidence and understanding to make 

amazing performance optimizations without losing correctness.  Table 1 [4] shows an example of 

applying TLA+ to Amazon’s more complex systems. At Amazon, sometimes it is necessary to 

verify not only individual algorithms themselves but also the interactions between algorithms. 

 

Table 1: Examples of applying TLA+ to some of Amazon’s complex systems [4] 
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Amazon also evaluated other formal methods such as Alloy, which was not a good fit for their 

kinds of problems, and Microsoft VCC, which is good for low-level C programs, but whose 

abstraction features do not work well for verifying high-level designs. They also evaluated other 

formal methods such as Event-B, Coq, and PVS but after all these evaluations, they found that 

TLA+ was the best fit for their needs; it solves their problems and is simple to apply, simple to 

learn, and flexible. And on top of that, the TLC model checker works very well. 

In section 1.6.1 and 1.6.2, we discussed many examples of applying formal methods in general 

and TLA+ in many different areas and applications, and we illustrated how useful it is to apply 

formal methods to verify a system. As part of our work focuses on using TLA+ to verify and 

validate different system applications, we will also discuss additional results in this area in the 

following chapters.     

 

 

 

 

 

 

 

 



24 
 

Chapter 2: Smart School Building System 

 

2.1 Introduction  

In the previous chapter, we illustrated how formal methods are efficient in designing different 

systems applications. We illustrated with many reasons why we picked TLA+ as the formal 

specification language to use in our work. In this chapter we will show how we used TLA+ and 

its TLC model checker to design a smart school building system. In the following chapters, we 

will illustrate how we used TLA+ to design different systems applications. 

In our work, we did not focus on just designing a system, we focused on having a “safe” system, 

because we are dealing with human lives as part of our smart school building system. So safety is 

a very essential quality feature that we made sure to achieve in our designs. Also, achieving 

security is an important goal for us, since the secure system design will tend to increase the 

probability of safety also. 

In this chapter we first provide a literature survey about previous work on designing school 

systems. Second, we provide an example of how to use TLA+. Then we will explain our work in 

designing a smart school building system (version I) using UML, TLA+, and the system 

validation using the TLC model checker. Finally, we will describe our work on the improved 

smart school building system (version II) using UML, TLA+, and the TLC model checker. In 

addition, we will show how the TLC model checker can find a security bug in the model.  

 

2.2 Work Related to a Smart School Building System 

In 2017 Pocero et al. [30] investigated improving energy efficiency in public school buildings. 

They presented an IoT hardware infrastructure that provides real-time monitoring in the school 
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buildings. Their system addressed some requirements related to collecting energy consumption 

and environmental data from school buildings, having a sensor network all around the school 

building (inside and outside) to monitor human comfort parameters, and ensuring that the sensor 

network used low-cost devices, that the IoT infrastructure would be extendable for new 

improvements in the system, and that hardware modules would be interoperable with the 

educational sector platform. Their design plan was based on an environmental comfort meter, a 

power consumption meter, and a set of IoT nodes that communicate through IEEE 802.15.4 [44]. 

In 2015 Amaxilatis et al. [31] designed a platform that allowed actuation and monitoring in many 

school buildings. This was based on research that was applied to a group of 12 school buildings 

in Greece. They installed IoT devices with a goal of achieving a more energy-efficient 

infrastructure and improved measurements in environmental parameters.  They followed the 

approach outlined in [30], developed many user interfaces to provide tools for both the 

administrators and the educators, and applied their work to a real classroom in Greece. 

In 2015 Borgan et al. [32] described an innovative methodology for energy management decision 

making in school buildings. It promises energy efficiency and energy savings. The project, called 

VERYSchool, was funded by the European Commission under their Competitiveness and 

Innovation Program. Based on the ISO-50001 standard [41], VERYSchool demonstrated 

effective energy action management and successfully connected many smart systems such as 

smart control functions for lighting and HVAC, smart meters, energy simulation modeling, and a 

complete energy action web-based navigator platform system. This innovative project had 

significant positive energy, socioeconomic, and environmental impacts. 

In 2011 Hirsch et al. [33] and in 2016 Veeramanickam et al. [34] illustrated the importance of 

using IoT technology to create a smart campus for universities and to improve and support e-
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learning. They also illustrated some of the challenges in applying this approach to an entire 

campus. 

A few researchers modeled smart school buildings which focused mostly on power management 

and power consumption [30-32]. Others modeled a smart campus system [33,34] which focuses 

on E-learning, mobile-learning domains, cloud learning, and an environmentally aware campus. 

Our system is somewhat different due to differences between a university campus and an 

elementary school. 

Our goal is to have a smart school building system that is safe and secure. Safety means, for 

example, having a smart building that uses IoT to connect sub-systems like smart lighting, smoke 

detection, and HVAC systems together. Secure means, for example, having a smart building that 

guarantees security for each student and employee in areas such as entering the system and 

having a secure file for each student and employee.   

As we mentioned before, we will focus on TLA+ in our work.  To learn TLA+ syntax and how 

to use TLA+ to solve problems, we used its tutorial [27] and we read the information in [5] and 

[7] as well. 

TLA+ is a high-level (at the design level, above the code or hardware) modeling language that is 

used for modeling digital systems (including computer systems, algorithms, and programs). It 

has many tools to check these models, including the TLC model checker, which is the most 

important tool in TLA+. In order to model using TLA+, you need to think in a different way. 

You need to simplify the system and think abstractly. Abstraction means simplifying by 

removing details. We cannot get complex systems right without understanding them.  

Abstraction helps us understand them, and TLA+ helps us understand abstraction. TLA+ can 
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specify high-level designs and algorithms. Specifications mean high-level models. Architecture 

represents a high-level specification, higher than the code level. TLA+ specifications represent 

the architecture, and we use TLA+ tools to debug this architecture. TLA+ was designed for 

modeling distributed and concurrent systems [42].  It can find and correct hard design errors that 

cannot be found by testing before writing the code or implementing the hardware. It is used to 

check the design precisely. TLA+ can also reduce the code size. Using TLA+ to develop the 

operating system OpenComRTOS in The European Space Agency's Rosetta spacecraft [28] 

reduced the code size by a factor of 10, which is so crucial in such applications. We use TLA+ to 

ensure that the system is “working right”, which means the system satisfies specific properties 

(these properties represent conditions on individual executions). TLA+ considers the system 

execution to be a sequence of discrete steps. TLA+ describes these steps as state changes. Some 

people describe their systems using state machines [9] and TLA+ is an extremely expressive, 

elegant language for describing state machines.  

 

2.3 Example Using TLA+ 

In this section, we will illustrate an example using TLA+ in order to understand more details 

about TLA+ and how it works. This is a method Lamport used to explain how TLA+ models the 

states of a system [7]. 

TLA+ can be used to solve specific problems that might arise in daily life. Our first example is 

simple but interesting challenge; if you are given a 3-gallon jug, a 5-gallon jug, and a water 

faucet, how can you put exactly 4 gallons of water in a jug? The informal solution for this 

problem is as follows:  we start with 2 empty jugs (3 and 5 gallons), then we fill out the 5 gallon 
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jug with water, then empty into the 3 gallon jug, then we will empty the 3 gallon jug into the 5 

gallon jug, then we will fill the 3 gallon jug and empty it again into the 5 gallon jug, so we will 

have 5 gallons full and 1 gallon of water in the 3 gallon jug, then we will empty the 3 gallon jug 

(which has 1 gallon of water in it at this level) into the 5 gallon jug, and finally, we fill the 3 

gallon jug with water and empty it into the 5 gallon to get exactly 4 gallons of water in the 5 

gallon jug. To solve this problem formally, we will use TLA+. TLA+ works on any problem by 

defining a sequence of states (behaviors). Figure 4 shows the TLA+ specification of this 

problem. 

As shown in figure 4, we created a module called JugModule. In this module, we declared the 

variables small (for the 3-gallon jug), and big (for the 5-gallon jug). We declared the initial state 

formula (Init) to give initial values of zero for small and big. We declared (TypeOK) invariant 

which represents a formula that asserts type correctness that is checked by TLC to be always true 

(asserts that each variable has a reasonable value in our example). And then we declared each 

possible step and had them all executed (one at a time) in the next state formula (Next) which 

describes all permitted steps. In TLA+, we must declare Init and Next state-formulas in every 

specification. 
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Figure 4: TLA+ Specification for jug problem 

 

Figure 5: TLC Model Checking Results for JugModule problem 
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To check our module, we run the TLC model checker that computes all possible behaviors 

allowed by the specification. It also checks type correctness, which means every reachable state 

satisfies the formula TypeOK. Figure 5 shows the model checking results page in TLC with no 

errors; 16 reachable states are found using behavior allowed by the spec as shown in the figure 

under “States Found” column.   

The following section illustrates a more realistic use of these tools.  It explains how we specify a 

smart school building using the Unified Modeling Language (UML) and TLA+. 

 

2.4 Smart School Building Model 

We capture the smart school system objects, sequences of actions, and system behavior using the 

Unified Modeling Language (UML) [29] and TLA+ [7, 18]. UML is an informal object-oriented 

modeling method. It provides different diagrammatical modeling techniques such as object 

interaction diagrams, state diagrams, and object diagrams. It encompasses many diagrams, 

presentation conventions, and notations that have emerged in the structured methods and object-

oriented domain. UML is defined as a set of graphical models that express different properties of 

an object-oriented design. The two most important model types are the behavioral and structural 

models [29]. In this work we use behavioral models which represent the dynamic behavior of the 

system. 

Modeling a smart system requires an integration of different sub-systems to have a complete 

smart system. The verification and validation of such a smart system is not an easy thing to 

accomplish. There are many methods for verification and validation. Using formal methods is 

one of the ways welcomed by many researchers due to their effectiveness and the ability to 
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design almost bug-free systems. We have used formal specification of our proposed smart school 

building model. We use the TLA+ specification language for this purpose. The system 

automation relies on several different kinds of sensors. Using TLA+ allows us to represent all 

system operations as in [35] which represents the smart school building system (version I), and 

in [45] which represents the smart school building system (version II). In version II, we used the 

TLC model checker to validate the TLA+ module and then to find a security bug in the module. 

Our system is mainly for elementary schools which are of medium size (with average of 450 

students) with the ability to be enlarged to become a big school (more than 600 students). The 

reason we chose an elementary school is because this design is an initial design of such a system 

and focuses on the overall basic smart school system design without too many complicating 

details. We worked on achieving many system design goals such as having a “smart” system 

which includes many sub-systems working together as one smart system, having a “safe” system 

design, having a secure login system, and controlling the power usage in the building via 

controlling the lights and the HVAC sub-systems. 

The smart school building system has integrated sub-systems that work together to achieve the 

design goals. The system has a secure login sub-system that requires the employee, student, and 

visitor to enter a valid username and password if they want to enter the school building. These 

usernames and passwords are given through the school district based on their own criteria which 

may be based on the registration numbers, names, grades, ...etc. Once a person enters a valid 

username and password, the main door will open automatically for him/her to enter. If the 

username and/or the password is invalid, the login sub-system will give the person the option to 

re-try entering them. The person will always have the option to contact the reception employee to 

check if there is any problem in the login sub-system and, if so, to provide an alternate 
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identification method to let the person enter the school building once he/she has an identity 

authentication. Once the first person enters the school building, the lighting and HVAC sub-

systems will automatically work. The lighting sub-system will work by taking the data of the 

light outside the building via a light sensor. If the light sensor senses that its clear outside, the 

sub-system will turn on the lights inside the building in a low_mode which means that the lights 

will be reduced. While, if the light sensor senses that its cloudy outside, the sub-system will turn 

on the lights inside the building in a high_mode which means that the lights will work using the 

normal level of power. This smart sub-system is designed this way to control the power in order 

to have efficient power consumption, which is one of the goals of our smart school system 

design.  (In practice there will be multiple subsystems, since different areas will have different 

exposures to external light and therefore different lighting needs). 

The HVAC sub-system will automatically start working once the first person enters the school 

building, along with the lighting sub-system. The HVAC sub-system takes the input data from 

temperature sensors inside the building. If the temperature sensors sense that the temperature 

inside the building is 69 F or less, the HVAC sub-system will turn on the heat in the building. If 

the temperature sensors senses that the temperature inside the building is 74 F or more, the 

HVAC sub-system will turn on the AC in the building. This smart sub-system is designed this 

way to control the power in order to have efficient power consumption, which is one of the goals 

of our smart school system design.  (In practice, there may again be multiple subsystems, as with 

the lighting). 

The fourth smart sub-system is the smoke detection sub-system. This sub-system is different than 

the other sub-systems since it is working all the time (not only when there are people inside the 

building). This sub-system takes its input data from smoke detection sensors which sense 
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smoke/fire in the school building and once they sense smoke, a fire alarm will be turned on and 

all exit doors will automatically open to let all people to leave the school building immediately. 

This sub-system works 24/7 to enhance safety in the school building. This smart sub-system is 

designed this way to enhance safety in the school building, which is one of the goals of our smart 

school system design. 

We designed two models of this smart school building system.  The initial design model of our 

work (version I) was published in [35] and the improved design model (version II) was published 

in [45]. The initial model [35] is described in section 2.5. The improved design model is 

described in section 2.6.  

 

2.5 The Initial Smart School Building Model (version I) 

2.5.1 Unified Modeling Language (UML) 

This section represents our designs using UML. UML stands for Unified Modeling Language 

that is used to model the system’s abstract model. It used to capture system properties by 

providing graphical notations [29]. Figure 6 represents the smart school system entities which are 

the variables of the initial smart school model. The system inputs are taken from three different 

sensors, the light, the temperature, and the smoke sensors. Also, the username and password for 

anyone desiring entry is an input through the login sub-system. The system actions are 

represented as outputs based on the inputs; temperature in the building, light brightness, 

valid/invalid login, or smoke detection. 

The activity diagram of the system is shown in figure 7. The figure makes the system easier to 

understand by showing the sequence of actions. First, school employees, students, and visitors 
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enter the school. Each employee or student has a unique username and password. If they enter 

the username and the password correctly, the main door will open for them to enter. Visitors 

need approval from the reception employee to enter the building.  In addition, if the visitor is 

allowed to enter the building, the reception door only will open. In case the visitor is not allowed 

to enter the building, all doors will remain closed. All sub-systems will start working 

automatically when the first person enters the building. Otherwise, if there are no people in the 

building, all sub-systems will be turned off. In the model designed initially, the temperature 

sensor senses the temperature in the building and the system will automatically turn the heat on 

in the building if the temperature is below 68 °F and will automatically turn the AC on if the 

temperature is above 73 °F. The lighting sub-system will control the lighting inside the building. 

If its cloudy outside, the lights will be turned on in the high_light mode, and if its sunny outside, 

the lights will be turned on in the low_light mode. The lighting sub-system works in this way to 

have low power consumption in the system. The smoke detection sub-system will sense the 

smoke in the school building and in case there is fire or smoke, it will automatically send an 

alarm and open all doors in the building for exiting to ensure safety in the school building. 
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Figure 6:  Smart school building system inputs and outputs [35] 

 

Figure 7: Activity diagram of the smart school building system [35] 
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2.5.2 Formal Specifications Using TLA+  

The formal specifications for the initial smart school model are illustrated in this section. We 

used the formal specification language TLA+ which lets us to represent all system operations. 

 

Figure 8: SmartSchool module with variables [35] 

Figure 8 shows the top module of our initial smartSchool system. The module has a set of 

variables as shown in the figure. For example, user variable represents any person who may 

enter the school building and it has three values (employee, student, and visitor). In this initial 

model, the visitor does not need a username or password to enter the school, he/she needs an 

approval from the reception employee in the school. Other variable examples in this module are 

username and password which must have a unique value. These values are usually given by 

aspecific criteria from the school district or the school itself based on the personal information of 

each employee and student, that’s why they can’t be shown in the module with specific values. 

The system invariants represent the strictions and conditions that the system must follow. In any 

TLA+ module, we need to declare the invariants. For example, in this initial model the user must 

have one of three values (1 for student, 2 for employee, and 3 for visitor). Also, a student and the 

employee are not able to enter the school without having a valid username and password. Figure 

9 shows the invariants in the module. 



37 
 

 

Figure 9: SmartSchool invariants [35] 

The Init and Next functions are essential functions in a TLA+ module. As shown in figure 10, the 

Init function gives initial values for the variables in the module. For example, the door variable 

which represents the main door of the school building will be closed in the default case. 

 

Figure 10: SmartSchool Init function [35] 
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Figure 11 shows the EnterSchool function. This function represents entering the school by the 

employees and the students. This function takes the input as the type of user (1 for student, 2 for 

employee) and the username and the password as well. The output is to open the doors for valid 

users. 

 

Figure 11: EnterSchool function [35] 

 

Figure 12 shows the VerifyVisitor function. This function authorizes the visitors to the school. It 

will open the reception door for valid users only. 

 

Figure 12: VerifyVisitor function [35] 

Figure 13 shows SetLight function. This function starts working once the school open its door for 

the first person. It takes the input from the light sensor to determine the brightness of the lights in 

the building. 
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Figure 13: SetLight function [35] 

Figure 14 shows the SetTemptature function. This function takes the input from the temperature 

sensor. The output depends on the temperature readings. 

 

Figure 14: SetTemptature function [35] 

Figure 15 shows the DetectSmoke function. This function takes its input from one or more smoke 

sensors. The output of this function is to turn on the fire alarm and open all doors in the building 

to let everyone in the building to exit immediately if smoke is sensed. This function enhances the 

safety in the system. 

 

Figure 15: DetectSmoke function [35] 
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Figure 16 shows the Next function. It is an essential function in any TLA+ module. It represents 

the collection and execution of all functions to move to the next state in the system after 

initialization. It describes the choices for the next-state action.  

 

Figure 16: Next function [35] 

 

Figure 17 shows the Spec function. This function is the last statement in the module and is 

responsible for the main running of the system. That means it runs all system specifications. 

These specifications will be verified using the TLC model checker. 

 

Figure 17: Spec function [35] 

 

2.5.3 TLA+ Model Analysis 

We used the TLA+ toolbox to write the initial smart school building specifications. One of the 

reasons why TLA+ is a powerful specification language is because of its powerful TLC model 

checker as we mentioned before in chapter 1. We used the TLA+ toolbox to verify that the 
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systems’ specifications are correct and have no syntax errors. Figure 18 represents the parsed 

model. As shown in the figure, there is a green button on the right corner which means that the 

model is parsed correctly.  

 

Figure 18: SmartSchool parsed model [35] 

This model was not validated using the TLC model checker. Before using TLC to validate our 

system, we decided to improve the model first. In [35] we published the version I model as we 

mentioned before, and we published version II in [45] where it is shown to be validated using the 

TLC model checker. Section 2.6 will illustrate the improved smart school model (version II).  
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2.6 The improved smart school model (version II) 

2.6.1 Introduction 

Smart systems have been getting more attention by researchers recently since they are very 

useful and can make life easier. Smart systems contain functions of actuation, sensing, and 

controlling in order to analyze and describe a situation and make decisions based on the available 

input data to perform a smart action [47]. The challenge in these smart systems is to integrate 

sub-systems or materials together to build a smart system that works efficiently [47]. 

We improved our previous smart school building system model in [35], adding more 

requirements and new specifications. The improved model is better, more efficient, safer, and 

more secure. 

Here’s a list of the improvements in the new model: 

➢ The new login system requires any person to have a username and password (even the 

visitors) which enhances security and safety in the system. 

➢ The login system allows a “re-try” option to login in case a username and/or a password 

was wrong. 

➢ To enhance safety in the system, we added “safe” invariant to the specifications to ensure 

that the smoke detection sub-system works all the time even if there is nobody in the 

building, and it sends a fire alarm immediately throughout the building and it can also 

send an alarm to the nearest fire station. 

➢ To enhance safety in the system, we added a surveillance camera (or cameras) in the 

building. 
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➢ To enhance safety in the system, we added “surveillance” invariant to the specifications 

to ensure that the surveillance camera or cameras work all the time even if there is 

nobody in the building. 

➢ The temperature thresholds were changed to reduce the power consumption in the 

building. 

➢ The capacity of the school is determined to be small to medium, a size preferable for 

elementary schools. If we want to expand the school size, we will need to add more 

sensors, cameras, and lights in the building. 

➢ The improved model was validated using the TLC model checker.  

➢ The results were published in ASTESJ. Advances in Science, Technology and 

Engineering Systems as shown in [45]. 

In the following sub-sections, we will illustrate the improved model using UML and TLA+, and 

we will discuss the results using the TLC model checker. 

 

2.6.2 UML Modeling for the improved Smart School Building System 

We again use the Unified Modeling Language (UML) to represent the smart school system’s 

informal abstract model. It is one of the most common languages that has been used for this 

purpose. There are many other modeling languages like SysML [48]. But for our current 

informal modeling, since we do not need to use differential equations for what we are modeling, 

the UML model is sufficient. UML provides graphical notations and captures the system 

properties we are interested in.  Figure 19 shows the use case diagram of the modified system 

[45]. In this use case diagram, when the actors (employee, visitor, and student) enter the 

username and password correctly to login to the system, the main door in the building will be 
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opened for the person to enter the building, and the actor will have access to all sub-systems in 

the system. 

 

Figure 19: UML Use case diagram of the smart school system [45] 

Figure 20 shows the UML sequence diagram of the system. This diagram demonstrates the 

sequence of actions which define how the system works.  

 

Figure 20: Sequence diagram for the smart school building system [45] 
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These diagrams define the UML informal modeling of the improved smart school building 

model. The following sub-section will demonstrate the formal specifications using TLA+.  

 

2.6.3 Formal Specifications of the Improved Model Using TLA+ 

This section demonstrates the formal specification of the improved smart school system model. 

We wrote the specifications using the TLA+ toolbox and we validated the model using the TLC 

model checker. We used TLA+ to represent all the system’s operations. 

Figure 21 shows the TLA+ definition of the revised smart school system. The figure shows all 

the module variables that we will use in the specifications. 

 

Figure 21: smartSchoolSystem module variables  

smartSchoolSystem represents the top module of the system. As shown in figure 21, there are 

many additional variables in this module. For example, camera variable represents the outside 

camera that is supposed to be working all the time.  It records whoever enters and leaves the 

building to enhance the safety in the system. Another addition is the inside_temp variable which 

represents the inside temperature of the building which is measured by the temperature sensor 

and represents the input for the HVAC sub-system. Also, there is a variable called pc which 

takes the value of the current state, and pc’ will represent the next state in the module to keep 

track of the module states. 
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Figure 22 shows the Init function of the smartSchoolSystem module. The init function declares 

all possible values of the system’s variables. For example, login_sys variable has the values of 

“ready” when it is ready to take inputs from the users, and “reTry” when a user enters an invalid 

username and/or password. Another example is the password variable which will have the values 

of “correct” or “wrong”. 

 

 

Figure 22: Init function  

 

To enhance safety in the system, we set up two important invariants in both the specifications 

and the TLC model checker. The safe invariant, which is shown in figure 23, guarantees the 

continuous working of the smoke detection sub-system. In addition, we set up the surveillance 

invariant to guarantee that the camera will also work continuously. 
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Figure 23: System invariant 

 

Figure 24 shows the enter_school function which represents the login sub-system. This function 

needs a correct username and password as an input. If the person who wants to enter the building 

enters an invalid username and/or password, the function will give him/her an option to retry. 

 

 

Figure 24: enter_school function 

 

Figure 25 shows the smoke function which represents the output in case of smoke/fire to turn on 

the fire alarm which can also be sent to the nearest fire station. In addition it will open all exit 

doors to let all people to exit the building immediately for their safety. 
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Figure 25: Smoke function 

 

Figure 26 shows the Light function. This function is responsible for controlling the lighting sub-

system. It starts working once the first person enters the school building. This function takes its 

input from the lighting sensors and sends its output to the lights in the building. It is designed in 

a way to reduce the power consumption in the building which is one of our design goals. 

 

 

Figure 26: Light function [45] 
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Figure 27 shows the HVAC function. This function is responsible for controlling the HVAC sub-

system. It adjusts the temperature in the building. The HVAC sub-system will automatically 

work once the first person enters the school building. The HVAC function takes its input from 

the temperature sensor in the building and sends the output to the heating or AC systems based 

on the temperature. If the temperature inside the school building is 74 °F or more, the AC will 

work. If the temperature inside the school building is 69 °F or less, the heat will work. 

 

Figure 27: HVAC function [45] 

 

Figure 28 represents the housekeeping functions that are essential to write a good TLA+ 

specification for a system. The Next function is one of the functions that must be written in any 

TLA+ specification. This function enables collection and execution of all functions in the spec 

and moving to the next state in the system after initialization. The Termination function 

guarantees the termination when pc reaches Done state. In TLA+, the Spec function is the main 

function that is responsible to run all system specifications in the main execution of the system. 
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Figure 28: Terminating, Next, and Spec functions 

 

 

Figure 29: TLA+ Parsed model for smart school system 

 

After finishing writing the specifications of the system, we need to make sure that these 

specifications are correct and have no syntax errors, which is the first verification step. The 
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TLA+ toolbox has the option to check the specification correctness by parsing the model. If the 

model is parsed correctly with no errors, a green button would appear on the bottom right corner 

in the TLA+ toolbox to verify that as shown in figure 29.  

After parsing the model correctly, the next step is to validate the model using the TLC model 

checker. This is a big step in the improved smart school model that we did not carry out in the 

initial model. Sub-section 2.6.4 will illustrate the improved smart school building system 

validation process using the TLC model checker. 

 

2.6.4 Formal Verification Using TLC 

As we illustrated above, we successfully wrote and verified the improved smart school building 

system using the TLA+ toolbox. The model was parsed correctly. The next step is to validate our 

work. We will use the powerful TLC model checker in order to validate our model. The TLC 

checks the invariance properties of the finite state model of the specification [6]. It also checks 

for deadlock and the invariants in the system. In our TLC model, we set up two invariants as 

shown in figure 30. The safe invariant guarantees that the smoke detection sub-system will keep 

working all the time to guarantee safety in the system. And the surveillance invariant guarantees 

that the camera will keep recording all the time to enhance safety in the system as well. The 

system’s safety is one of the main goals in our design. In this TLC model, we included the 

deadlock option to make the TLC check if there is a deadlock in the specifications.  
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Figure 30: Safety invariants setup in TLC 

 

After finishing setting up the TLC model checker, we clicked on a run button in the TLC model 

to run the model and verify it. Figure 31 shows the TLC model checker while running. 

 

Figure 31: TLC model checker while running 
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Figure 32 shows the smartSchoolSystem final result. The figure shows that the TLC model 

checker ran the model, checked the invariants and deadlock, and parsed it. That means that the 

TLC model checker verified and validated the smartSchoolSystem model successfully. This 

proves our system’s validation which achieves the most important goal for our system.  

 

Figure 32: TLC verification model 

 

 

2.7 TLC Finds Security Break 

As we mentioned before, one of our goals is to design a smart school that is safe and secure. We 

designed the improved smart system and validated our module successfully using the TLC model 

checker as we have shown. But what will happen if a hacker decides to break the system’s 

security and safety subsystems. 
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To check, we decided to test the system in one case where we break one of the system’s 

invariant. As we illustrated before, there are two invariants in the improved smart school module 

as was shown in figure 23. One of the invariants “surveillance” guarantees that the camera in the 

school building should be “on” all the time to record everything happening in order to achieve 

safety in the system. The invariant was: 

surveillance == camera = "on" 

We decided to run a case of breaking security by turning the camera “off” when the light 

function, which is responsible for the turning the lights on in the school building once the first 

person enters the building, started to work. 

The modified light function is shown in figure 33. The modified statement is in line 179. 

 

 

Figure 33: the modified Light function that turns the camera off 
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We decided to run the TLA+ toolbox to check if it will throw an error for breaking the 

“surveillance” invariant but Surprisingly the module was parsed correctly with no errors. 

Then, we ran the TLC model checker to see if it would validate the system. The TLC model 

checker throws an error as shown in figure 34. The figure shows that the TLC checker produced 

a message on the upper right side of the window that says, “invariant camera = “on” is violated”, 

and in the bottom right side of the window it shows the error-trace tool that the TLC model 

checker has and allows us to trace the error.  TLC also highlighted the states that were never 

visited due to the invariant violation which are in this case are the HVAC and the Termination 

states.  

This demonstrates that the powerful TLC model checker can find errors and bugs which may be 

parsed correctly using the TLA+ toolbox but cannot be parsed through the TLC. The TLC model 

checker can find the security and safety breaks in the system. 

 

Figure 34: TLC model checker found the security hacking error 
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2.8 Conclusion 

This chapter demonstrates the smart school building model. The system has many sub-systems 

that are integrated together to work as one smart system. There is a login sub-system, a smoke 

detection sub-system, an HVAC sub-system, and a lighting sub-system. The model shows in 

detail how each sub-system works and how we achieved the intended goal that we mentioned in 

section 2.6.1 for our system. We started by modeling an initial smart school system (version I) 

and published it in [35]. Then, we improved our work with new specifications and a new 

improved model (version II) which was published in [45].  

In this work, we used formal methods to validate our design and to make sure there are no errors. 

In the design, the informal model was designed using UML. The specifications were written, 

verified, and the system’s behavior was captured using the TLA+ toolbox. The final model was 

validated using the TLC model checker. 

In this design a failure may still happen. For example, if we simulated the design and built the 

school from this model, we could have a failure in the lighting system because in practice we 

will need a light sensor in each room.  But our simplified design assumes that the light will be 

the same in the whole building. In addition, many sensors will be needed throughout the building 

especially for larger school sizes.  This design is an initial and general design to show and 

explain our methodology, details such as the more complex lighting system would be needed in 

the final design.  

To enhance security and safety in the system, the system requires each person who enters the 

building to login by entering a valid username and password. To enhance the safety as well, the 

smoke detection sub-system is working all the time. In addition, we added a surveillance camera 

that records everyone who enters and leave the building. To control the power in the system, the 
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lighting sub-system will use natural light when possible to reduce the power consumption in the 

building. In addition, the way the HVAC sub-system works will reduce the power consumption 

in the building since it controls the heat and AC systems and turns them on only when necessary 

based on the temperature inside the building. 

We ran a security hacking case in this model, which consisted of breaking one of the system’s 

invariants. The hacking action was turning the camera off when turning on the light in the 

building. The modified module ran correctly through the TLA+ toolbox but the TLC model 

checker found the security break and threw an error. This showed that the TLC model checker is 

powerful and able not only to validate TLA+ modules, but also to find errors and bugs in the 

system that are hard to find, especially in the cases of security and/or safety errors in the system.  
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Chapter 3: Automatic Dependent Surveillance – Broadcast (ADS-B) 

3.1 Air Traffic Control Surveillance 

In Air Traffic Control (ATC), surveillance is very important. It determines the location of aircraft 

accurately and reliably, which directly influences the aircraft required separation distances as in 

the separation standards, which affects how to utilize a given airspace efficiently [49].  

Where there are no electronic surveillance systems, ATC must rely on pilots reporting their 

positions verbally. This results in requiring a relatively large separation distance between aircraft 

because of the estimated position uncertainty and the information timeliness. In contrast, where 

there is a reliable accurate electronic surveillance system and the aircraft positions are reported 

more often, there will be more efficient use of airspace along with a safe higher density of 

aircraft. Also, this will allow aircraft vectoring for reasons of safety, efficiency, and capacity 

[49]. 

As explained in [49], ATC surveillance helps in closing the gap between ATC expectations of 

aircraft movements based on instructions or clearances issued to pilots, and the real trajectories 

of these aircraft. This means that ATC needs to provide surveillance or “blunder detection” as an 

important safety function when expectations are not matched. 

There is a demand for airspace users to have increased flexibility.  This achieved by reducing 

fixed routes flying restrictions which requires improving the navigation capability on aircraft. At 

the same time, accurate surveillance is needed to help in the resolution and detection of any 

potential conflicts related to the flexible use of airspace, which is likely to create a more dynamic 

environment. 
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An accurate surveillance system can be used as a base for automatic alerting systems. Using the 

ability to actively track aircraft will alert the ATC when an aircraft is detected deviating from its 

assigned route or altitude, or when there is a conflict in predicting the aircraft’s future position. 

An accurate surveillance system also supports minimum area danger warnings, safe altitude 

warnings, and other alerts. 

Surveillance updates flight plans, improves future waypoints estimations, and removes the 

workload for pilots when they have to provide voice reports when they reach waypoints. 

The most important function of a surveillance system is to periodically provide an accurate 

estimation of the altitude, position, and identity of aircraft. There will also be other requirements 

of the system based on the ATC applications meant to be supported by the surveillance system. 

Here is a list of parameters that may characterize a surveillance system [49]:  

1. Coverage volume, which represents the airspace volume when the system works to 

specification. 

2. Accuracy, which represents a measuring difference between the true and estimated 

aircraft position.  

3. Integrity, which represents a clue that the aircraft’s estimated position is within a declared 

containment area of its true position. Integrity contains the concept of generating an 

alarm if this ceases to be the case, in a defined time to alarm. Also, integrity may be used 

to indicate if the system operates normally.  

4. Update rate, which represents the rate of the updates of the aircraft’s position relative to 

other users.  
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5. Reliability, the probability within a defined period that the system will remain operating 

to specification. This is called continuity sometimes.  

6. Availability, which represents the total operating time percentage while the system is 

executing according to specification.  

 

When designing an ATC surveillance system, we need to consider other issues such as:  

1. The ability to identify targets uniquely.  

2. The loss of surveillance impact of individual aircraft in both the long term and the short 

term (few seconds).  

3. The loss of surveillance impact over an extended area.  

4. Applying emergency procedures or backup in cases of ground system failure or of 

unexpected aircraft events.  

5. The ability to operate to specification with the traffic density expectation.  

6. The ability to work in harmony with other systems like the Airborne Separation 

Assistance Systems (ASAS) and the Airborne Collision Avoidance Systems (ACAS).  

7. The ability to gain Aircraft Derived Data (ADD).  

8. The interaction between navigation, communication, and surveillance functions [49]. 

 

3.2 Surveillance Technologies 

Knowledge of the aircraft position is crucial to an Air Traffic Controller in providing most air 

traffic services. A certain knowledge of the aircraft position is necessary to provide separation 

services. Knowledge of the aircraft position is referred to as surveillance. Pilots can provide 
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position reports which then provide aircraft position knowledge to a controller. However, scope 

for misunderstanding errors, the infrequent updates, and the inherent inaccuracy mandate huge 

spacing in between aircraft in order to maintain safety. This is called a procedural separation 

technique. 

Currently there are four main classes of surveillance technology to support air traffic control 

services — PSR, SSR, MLAT, and ADS-C [49].  These are described in the following sections. 

 

3.2.1 Primary Surveillance Radars (PSR)  

Figure 35 shows how PSR uses the plane’s radio waves reflection to detect presence of planes. It 

supports the controller with a trustworthy, accurate plan view on-screen of the position of aircraft 

in real-time. The antenna of the radar which usually rotates at 5-12 rpm emits a pulse of radio 

wave. When it reaches an aircraft, the wave will be reflected and some of the energy will be 

returned to the antenna [50]. 

The radar uses the elapsed time between reception and transmission of the reflection to 

determine the position of the aircraft. The aircraft direction is the same as the direction that the 

narrow beam antenna of the radar is facing [49].  

The polar coordinate system is used by the PSR output data. It provides bearing and range of the 

targets found based on antenna position. The slant distance from the antenna determines the 

range, not the horizontal distance [50]. 
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Figure 35: PSR Principle of Operation [49] 

 

Table 2 [49] shows the strength and limitations of PSR. 

 

Table 2: Strength and Limitations of PSR [49] 
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3.2.2 Secondary Surveillance Radar (SSR) 

Figure 36 shows the SSR which contains two elements, an aircraft transponder and a ground-

based receiver/interrogator. The aircraft’s transponder responds to interrogations from the 

ground station, and this enables the aircraft’s range and bearing to be determined by the ground 

station [49]. SSR not only measures and detects the bearing and range of aircraft, it also requests 

further information, such as altitude and identity, from the aircraft itself [51]. 

Military Identification Friend or Foe (IFF) systems evolved the development of SSR and allowed 

some services for civil aviation such as the use of the Mode A/C. It has been significantly 

developed since then to include the Mode S service. The SSR frequencies of 1090 and 1030 

MHz continue to be shared with the military. Most of the times PSR is co-located with SSR, 

usually with the SSR mounted on the PSR antenna [49]. 

 

 

Figure 36: SSR Principle of Operation [49] 
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Table 3 [49] shows the strength and limitations of SSR. 

 

Table 3: Strength and Limitations of SSR [49] 

 

3.2.3 Multilateration (MLAT) 

 

MLAT is a system used to calculate 2D or 3D positions using aircraft transponder transmissions. 

Figure 37 shows the Transponder MLAT Principle of Operation. MLAT is an important system 

that is used in large airports as an important identification and surveillance system. A number of 

measurement stations (e.g., 15-20) make up a typical MLAT system which will be capable of 

time-tag, receive, and transmit, replies, and squitters to the Central Processing Station (CPS) 

over a Local Area Network (LAN) in the airport. Furthermore, one or more Reference 

Transponders whose basic function is to transfer Mode S “squitter” signals (hence the Squitter 

Generation Unit name) allow monitoring and synchronization of the whole system. The times-of-
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arrival of squitters/replies because of the Reference Transponders, equipped vehicles, and SSR 

equipped aircraft are forwarded to the Central Processing Station (CPS) where the mobiles are 

located by multilateration algorithms. Due to the airport traffic increasing (particularly on 

channel 1090 MHz), both the robustness to interference and the MLAT resolution/accuracy have 

to be improved without the number of MLAT stations increasing too much. The “non 

transponder device” and the SSR Mode S transponder has the same main functionalities with a 

smaller cost, lower power, and with no “flyability” certification. The total MLAT position error 

is usually below 7.5 m for 95% of time, as given in [49][52][53][54]. 

 

 

Figure 37: Transponder MLAT Principle of Operation [49] 
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Table 4 [49] shows the strength and limitations of MLAT. 

 

Table 4: Strength and Limitations of MLAT [49] 

 

3.2.4 Automatic dependent surveillance (ADS-C) 

Figure 38 shows the ADS-C system.  ADS-C supports an exchanged agreement between the 

aircraft and the ground system using a data link, specified under ADS-C conditions. ADS-C 

reports these conditions and determines what would be initiated, and what information would be 

included in the reports. To determine its velocity, position, and other data, the aircraft with ADS-

C uses on-board navigation systems and reports this data to the in-charged air traffic control 

center [49][50]. 

Reports with ADS-C are sent by point-to-point VHF data links or satellite. Service providers are 

typically providing the data links. There is a transmission fee for each message that airlines 
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borne most of it, which makes using ADS-C for more than (10-15 minutes) between messages is 

a reluctance. There is a limitation of using HF datalink sometimes, just when there is a reduced 

performance. With ADS-C the ground systems and the airborne aircraft negotiate the conditions 

under the aircraft reports submissions (i.e., event reports, periodic reports, emergency reports, 

and demand reports). When the ground system has received the reports, these reports are 

processed to track the aircraft using the ATC display as the same as surveillance data gained 

from SSR. ADS-C is normally used in remote and oceanic areas with no radar, and therefore it is 

mostly fitted to aircraft with long range air transport. The aircraft avionics picks VHF 

communication when it costs less with improved performance. At other times, when the aircraft 

is over the ocean, satellite data-communications are used. Typically, transmitting messages 

happens infrequently (~ each 15 minutes). a “figure of merit” value is accompanied by the 

positional data which indicates the accuracy, not the integrity value [49]. 

 

Figure 38: ADS–C Principle of Operation [49] 
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Table 5 [49] shows the strength and limitations of ADS-C. 

 

Table 5: Strength and Limitations of ADS-C [49] 

 

3.2.5 Automatic Dependent Surveillance – Broadcast (ADS-B)  

 

ADS-B is a new surveillance system designed to improve the air transportation system. It 

supports foundational technology for developments related to (ATM) Single European Sky Air 

Traffic Management Research Program (or SESAR) and Next Generation Air Transportation 

System (NextGen). NextGen indicates the effort that the U.S. Federal Aviation Administration 

(FAA) is making to change the ATC system to service larger airplane volume more efficiently. 

SESAR in Europe is making a similar effort [55]. 
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ADS-B uses transmissions from aircraft to give geographical position, positional integrity 

measures, 24-bit aircraft address, flight identity, velocity, pressure altitude data, and other 

information which has been determined by airborne sensors [49]. Then, the ground receivers 

transmit that data to cockpit and controller screens which display on aircraft included with ADS-

B avionics [56]. 

ADS-B is certified and developed as a workable low-cost replacement for typical radar.  ATC is 

allowed to control and monitor airplanes with greater accuracy, and it covers a much larger 

percentage of the earth’s surface, much greater than when using ADS-B. For example, large 

expanses of Hudson Bay in Canada and in Australia do not have any radar coverage currently, 

but these are now apparent on ATC screens after the replacement of ADS-B receiving stations. 

For SESAR and NextGen, ADS-B is one of the best underlying technologies in the ATC plan 

transforming from the current surveillance radar to surveillance using satellite-based the global 

positioning system (GPS). Furthermore, the FAA declares that ADS-B will be the cornerstone 

for the transformation, bringing the reliability and precision of satellite-based surveillance 

technology to the nation’s skies [55]. 

 

3.2.5.1 How ADS-B works 

 

ADS-B uses a combination of transmitters, receivers, and satellites to provide both ground 

control personnel and flight crews with very specific data about the speed and location of 

airplanes in the area as shown in figure 39. There are two aspects to ADS-B from the airplane 

perspective. The transmitting airplanes send ADS-B Out signals to receivers which can be other 



70 
 

airplanes or located on the ground. These signals travel from transmitter to receiver as a line-of-

sight. Then the ATC ground stations receive these ADS-B Out signals to display the traffic to air 

traffic controllers. Also, other airplanes receive ADS-B Out signals if they are nearby the 

transmitting airplanes. After the receiving airplane receives the ADS-B signals, the lateral 

position (longitude and latitude), the transmitting airplane flight number, altitude, and velocity 

are given to the receiving airplane pilot on CDTI, a Cockpit Display of Traffic Information. The 

ADS-B received signal known as ADS-B In. The maximum range between the receiving and the 

transmitting and airplanes is more than 100 nautical miles (nmi), which allows the CDTI to 

display both far and near traffic. Navigation satellites send accurate timing information that lets 

airplanes equipped with GPS receivers or a global navigation satellite system (GNSS) define 

their own velocity and position. The ADS-B Out equipped airplanes broadcast accurate velocity 

and position to the ground ADS-B receivers and to other airplanes using a digital datalink 

(1090 megahertz) as well as sending other information, such as the emergency status and the 

airplane’s flight number. The ADS-B receivers which are installed on other airplanes (i.e., ADS-

B In) or integrated on the ground into the ATC systems provide users with a precise description 

of real-time aviation traffic. In contrast to traditional radar, ADS-B works on the ground and at 

low altitudes which makes it able to be used to monitor the traffic on the runways and taxiways 

of an airport. In remote areas with limited radar coverage or no radar coverage, ADS-B is also 

effective [55]. 
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Figure 39: ADS–B Principle of Operation [49] 

 

3.2.5.2 The benefits of ADS-B to airlines 

 

With appropriate operational procedure readiness, and airborne and ground equipage updates, 

ADS-B may support airlines with many benefits, including:  

1. Safety:  

ADS-B provides the aviation industry with the capability to improve or maintain existing 

safety standards along with increasing system capacity and efficiency.  
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• ADS-B develops flight crews’ situational recognition significantly because they are 

aware of their relation to other airplanes. 

• It gives a common real-time surveillance picture in sharing data quickly when 

participating airplanes are deviating from their allocated flight paths. 

• It offers more commonly shared and accurate traffic info. This makes all users have a 

common operational picture.  

• It provides more timely surveillance and accurate information than radar. ADS-B updates 

the information more frequently than radar.  

• It displays both ground and airborne traffic.  

• It allows much greater margin in implementing conflict resolution and detection than 

what is available with any other system. This happens because it provides high accuracy 

with an effective range of more than 100 nmi.  

• It immediately and clearly indicates changes such as when conflicting traffic accelerates, 

turns, climbs, or descends.  

• ADS-B In applications can give automatic traffic warnings or callouts of imminent 

runway incursions.  

 

2. Capacity:  

ADS-B can provide a fundamental increase in the ATC system number of flights that it 

can accommodate. Many more airplanes can use a given airspace at the same time if 

separation standards are decreased, and the increased accuracy of ADS-B enables 

significantly reduced separation standards along with providing safety. Not only does 

ADS-B increase the integrity and accuracy of the position reports, but it also increases 
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the frequency of the reports, providing a better understanding of the air traffic 

environment on the ground and in the air.  

ADS-B also:  

• Improves arrival precision to the metering fix along with increasing runway capacity. 

• Helps sustain runway approaches by using cockpit display of traffic info in minimal 

visual weather conditions. 

• Allows using the same runway for more airplanes by enhancing visibility of all 

airplanes in the area. 

• Compared to current procedural separation, it allows 5 nmi of separation in (NRA) 

non-radar airspace, and in radar airspace it allows a potential reduction of separation 

from 5 to 3 nmi. 

 

3.2.5.3 Equipment required for ADS-B  

 

Special equipment is needed both on the ground and on board airplanes to receive and transmit 

ADS-B signals. 

Airborne components for ADS-B Out: A GNSS (Global Navigation Satellite System) with 

associated antennas and receiver on board allows the airplane to process and receive GNSS 

satellite signals to send the airplane’s velocity and position. The velocity and position 

information are received by the ATC transponder that creates ADS-B Out messages and the ATC 

antennas broadcast them.  

Airborne components for ADS-B In: An airborne collision avoidance traffic/system alert and 

associated antennas and collision avoidance system unit are used to receive the ADS-B Out 
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message from a target airplane. Then this target airplane information is processed and sent to a 

cockpit display of traffic info (CDTI) for display to the flight crew. Other airborne systems that 

could be affected based on the ADS-B In application requirements include control panels, flight 

management computer, electronic flight bag, associated wiring, and displays.  

Ground components: The ATC system must have ADS-B ground stations in order to receive 

the airplanes’ ADS-B Out messages. ADS-B ground stations contain an ADS-B antenna receiver 

with a clear view toward the horizon, power supply, an ADS-B receiver, physical and data 

security, and a communications link (terrestrial or satellite) [55]. 

Table 6 [49] shows the strengths and limitations of the ADS-B system. 

 

 

Table 6: strength and limitations of ADS-B system [49] 



75 
 

3.2.5.4 ADS-B Critical issue 

 

ADS-B has a critical issue in requiring ADS-B avionics which include GPS or a similar system 

in practicing aircraft. While a lot of airliner manufacturers manufacture aircraft with ADS-B out 

avionics, there still a need for equipping a large legacy fleet. In different areas of the world, this 

situation is different. Some countries have rapidly growing new airliner fleets, and the ADS-B is 

fitted in the new aircraft. In other countries, huge numbers of legacy aircraft stay unequipped. In 

different aviation segments. the situation is also different. 

Few regional airliners are equipped while large aircraft are typically being better equipped. And 

an additional potentially problematic area is General Aviation (GA). The cost is low to equip the 

GA fleet in some countries compared to other countries where it may be very expensive. Some 

countries predict subsidies in assisting GA equipage. Some countries also predict the needed 

fitment of ADS-B with/without subsidies. For many countries, timing of transition will be 

critical to match aircraft equipage of ADS-B. However, the benefits of ADS-B equipage are 

significant and might allow other surveillance systems to support delivery and be 

decommissioned from air-to-air surveillance applications. The ADS-B application is most likely 

supported by ADS-B avionics in all locations where the aircraft travels [49]. 

 

3.2.5.5 ADS-B: Economic Point of View 

 

Aviation is a key sector in the economy.  In gross domestic product (GDP), its contribution is at 

least 3% in the US and UK. Currently, there is a three-month delay in publishing airline 
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performance statistics. However, aircraft now use ADS-B systems to broadcast their real-time 

location. Since July 2016, Sam et. al. analyzed a flights global dataset [57]. First, they showed 

that there is a possibility to use ADS-B to accurately estimate airline fight volumes accurately, 

which is immediately available. Then, they explained that the knowledge of fight volumes in 

real-time could be a main indicator for aviation’s immediate contribution to GDP in both the US 

and the UK. Therefore, using ADS-B data might help moving towards real-time estimation of 

GDP, this will equip policymakers to respond to shocks from this information more quickly [57]. 

The cost of deploying and maintaining surveillance systems is high. The cost not only includes 

the ground based electronic equipment, but it also includes much more than that. When 

examining the total cost of many systems, consideration of the following points is required: 

1. Aircraft operator/owner costs: 

In comparison to the total cost of surveillance systems, some consideration should be given such 

airborne equipment requirements, that are considerable for some technologies. Some points are 

noted when take under consideration for many ground-based surveillance technologies: 

➢ Main radar surveillance does not need avionics that is deployed in aircraft. 

➢ Multilateration surveillance be able to work with ADS-B avionics, Mode S, or Mode C. But 

it works better when aircraft are ADS-B equipped or Mode S. 

➢ Mode C based surveillance needs either Mode C or Mode S transponders on board aircraft.  

Any aircraft equipage program associated cost (for retrofit as well as new production aircraft) 

will be airframe dependent and highly variable. Hundredfold cost variations for fitting the same 

avionics to various aircraft types are common. Aircraft type is highly sensitive for determining 

the operating costs, fleet nature and size of operation but include: 
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• Costs of engineering support.  

• Scheduled and unscheduled maintenance.  

• Costs of flight crew training.  

• Aircraft simulator upgrades costs.  

For these reasons avionics costs related to each surveillance technology should be very FIR 

(Flight Information Region) or ANSP (Air Navigation Service Provider) specific. However, the 

aviation industry nature (in particular, international operations and cross FIR, and the prevalence 

and fleet turnover of aircraft leasing) mean that it is unhelpful and impossible to refer the 

avionics equipage total cost to any one ANSP, FIR, or surveillance system. It should be noted 

that a few of the avionics needed to support surveillance, particularly, ADS-C and ADS-B, have 

other applications and therefore benefits to operators. 

2. ANSP costs: 

ANSP costs include:  

• Equipment purchase. 

• Costs of installation and system testing.  

• Project costs including procurement activities, planning, etc.  

• Site costs. 

• Operating costs. 

Taking the above points under consideration, and using experience of the technologies, the cost 

of surveillance to support TMA airspace and enroute and is shown in table 7. Table 7 supposed 

that the selected areas are NOT “Greenfield” areas so do not include environmental clearance, 
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land purchase, road and shelter building costs. Also, Table 7 does NOT include avionics costs 

[49]. 

 

Table 7: Surveillance technologies cost to support TMA airspace and enroute [49] 

 

As shown in table 7, ADS-B is much more economical than the current radar system. It costs 

around $6 M using SSR, $10-14 M using PSR, and only $380,000 using ADS-B to monitor 200 

nautical miles of air space [49]. However, although ADS-B is cost effective, it has weaknesses in 

security and safety. 

 

3.2.5.6 Security and Safety of the ADS-B 

Under the 2020 ADS-B mandate, the FAA has specified that almost all private traffic and 

commercial traffic must be compatible with ADS-B through software and hardware updates by 
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the date of January 1. 2020 [58,59]. The ADS-B system is intended to replace legacy approaches 

like secondary and primary radars by using global satellite navigation systems to make accurate 

air pictures for air traffic management. The ADS-B security is a main concern due to 

broadcasting detailed info about aircraft, their velocities, positions, and other data through 

unencrypted data links, which makes it easy to launch message modification attacks, 

eavesdropping, and jamming on aircraft in flight [60]. 

In the ADS-B protocol, the inherent lack of security measures has long been an important topic 

in both the academic community and aviation circles. Because of the recent published proof-of-

concept attacks, this topic is becoming even more pressing, specifically with the deadline for 

compulsory implementation in most airspaces. It looks like the solutions that are under 

consideration now (and some of them, such as multilateration, are in use) can only be supported 

by a rapid improvement of the current system’s security. For overall security (and maybe 

privacy), completely new protocols and/or new message types are required. Work on generating 

a long-term security solution in dependent surveillance air traffic should consider the impact of 

both secure location verification and secure broadcast authentication approaches. To avoid hard 

new challenges in the near future, this should include a detailed analysis of the expected traffic 

density on today’s wireless navigation channels, and the possible impact of the message and 

communication overhead of a new protocol [61]. 

After evaluating realistic ADS-B attacks systematically, there are different threats and factors 

that impact the success of attacks. These attacks on ADS-B can be highly successful and 

inexpensive. There are some insights from a real-world feasibility analysis using a controlled 

experimental design that led to the conclusion that any decision process related to safety-critical 

air traffic should not depend on the ADS-B system exclusively [62]. 
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3.3 Our Work 

3.3.1 Background and Related Work 

As we explained above, security is a big challenge in an ADS-B system. Now efforts are ongoing 

to add security to the existing ADS-B system. But it has been shown that security should be 

implemented from the design level in any system [63]. Adding security later will likely result in 

some underestimation of running security requirements.  

The domain of ADS-B is not limited to 1090/978 MHz. In [64], the authors described a future in 

which the communications backbone is the Internet Protocol for this system, even for aircraft 

flying voice communication. for a long time, the radio was not the only point of communication 

for an aircraft. Now an aircraft component subsystems ‘talk’ independently to route and 

maintenance the operator planning departments using Aircraft Communications Addressing and 

Reporting System [65]. To take this communication load, IP is also slated.   

The goal of our work is to rethink the ADS-B system from a security point of view. Descriptions 

of how ADS-B subsystems interact with each other in case of an attack exist [66].  

Our methodology is to pick an attack, and a solution for this attack. Then, we will use a UML 

use case diagram to informally model the attack and response, a UML sequence diagram to show 

the sequence of actions needed, and a UML state diagram to show the states and what will 

happen in each state. We will then formally model the system using TLA+ and validate the 

model using the TLC model checker as the final step.  

We chose UML [68] to informally model the system. Also, in the model, we don’t need too 

many details in the design. The author in [67] modeled the Controller Area Network Bus (CAN-

Bus) using UML. However, reserchers in [69,70] used UML to create security parameters. So 

UML can be used to model cyber-physical, software/hardware systems.  
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As we mentioned before, ADS-B system has many security issues that need to be solved, 

including lack of authentication, lack of encryption, and other vulnerabilities. It is vulnerable to 

some common attacks suck as ghost contacts, hybrid attacks, legacy systems, and physical access 

[46]. In addition, ADS-B uses GNSS, which also causes some risks. Using GNSS in aviation has 

many risks related to survivability, deliberate shutdown, jamming, and spoofing [46]. 

In this work, we picked TLA+ to show how a “built-in security” ADS-B system model will look 

and behave. It will give a good vision for reserchers to model their own systems or improve the 

current ADS-B models. 

Section 3.3.2 will illustrate our work using UML diagrams to informally model ADS-B with 

some possible attacking scenarios. The work in section 3.3.2 and section 3.3.3 was published in 

[46]. 

 

3.3.2 UML Models for ADS-B security 

For such a big and distributed system as ADS-B, it should be known that there is no single 

solution to security problems. In [60], the authors tested the possibility of many solutions and 

discovered that none of these solutions is without a loophole. In this section we will define UML 

diagrams to deploy various cybersecurity tools which can be used alone or in combination to 

ensure protection.   

Figure 40 shows the use case diagram convention we use.  

 

Figure 40: UML Use Case Diagrams Convention [46] 
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In Figure 41, multilateration is used to estimate the transmitter’s location by using the time delay 

of signal arrival at multiple points (>2) [60]. Time stamps (on any message) are used to calculate 

the Time Delay of Arrival (TDOA) of the signal. Transmission and reception comparison of 

timestamps gives a rough idea of the travel time, so the distance can be roughly calculated. If 

there are 3 receivers, estimated X-Y-Z coordinates can be back-calculated. This is close to the 

SONAR equation. 

If the GNSS transmitter’s reported coordinate is reasonably close to this back-calculated 

position, the message sender allegiance can be confirmed. This multilateration could be used to 

combat message modification, man-in-the-middle attack, ghost aircraft, and, if PSR was absent, 

it can be used in providing a GNSS breakdown backup.  

Figure 41 is the most important here and will be extended into a state diagram, a sequence 

diagram, and a TLA+ specification. The figure shows a use case diagram of multilateration and 

group verification that can protect against ghost aircraft injections. It matches the physical source 

of the signal to the reported one. 

In multilateration, using static ground posts as receivers has some weaknesses such as the system 

might be fooled by the attacker. If the attacker knows these ground antennas’ locations, he/she 

can customize his transmission time stamps to give a ‘false but accurate’ image to the 

multilateration systems. One solution to this is trusted aircraft in the airspace as multilateration. 
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Figure 41: Use Case Diagram of Multilateration and group verification [46] 

 

Figure 42 shows multilateration multi-point which may help with GNSS unreliable position 

reports and spoofing. Group verification [60] is a type of multilateration executed in the air.  

Aircraft already use TDOA to multilaterate each other which works exactly like the Traffic 

Collision Avoidance System (TCAS). The algorithms and equipment are already available on 

board, and this is matched with our philosophy in causing minimal modification. 

Each aircraft use TDOA to locate each member of received ADS-B IN signals and then estimates 

the other aircraft positions. If there is a difference in the calculated position from the reported 

aircraft, a ‘suspect’ airframe will be identified, and all group members fly away from it.  This 

cannot be successful unless 100% of ADS-B implementation is achieved. Fixing location from 

various sources is independent of GNSS.  The fusion of this information can be another method 

to know aircraft location. This will counter GNSS jamming and GNSS spoofing attacks. 
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Figure 42: Multilateration might help with GNSS unreliable position reports and spoofing [46] 

 

3.3.3 TLA+ Work 

3.3.3.1 Conversion 

TLA+ allows writing formal specifications for different system applications. Here we will 

include a TLA+ formal specification for the ADS-B system and its components with included 

security protocols. Every system has states that could be defined by a set of specific values. 

When the values are changed, the states will be changed too.  

The whole system could be modeled as a superset of all potential state sets. We do not dig so 

deep into the details of each state, we focused on “what” rather than “how”. Abstraction is a very 

important skill which must be mastered before modeling in TLA+. While computer overhead and 

economics are major factors in systems design, we ignore them while dealing with TLA+. Our 
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work can be presented as a guide to designing large systems in future with analysis comparison 

and model-driven design extensions. GNSS is responsible for determining the aircraft position 

and reporting it. Aircraft reports their position to (ATCS) air traffic control.  

Aircraft get aerodrome and weather information, and, for preventing collision, aircraft share 

position information with each other. All this communication occurs over the 978/1090 MHz 

spectrum. So, there are some independent operations as well as some independent failure points. 

These systems must be included in any formal method examination related to the ADS-B system. 

The solutions provided for responding to attack are the work of other researchers as mentioned 

before. In this work, we will model a security solution for the ADS-B system for achieving 

security and safety by by designing a procedure, simulating it, and validating it. 

TLA+ defines a system as a collection of states. A system can have many states, each defined as 

a ‘step’, or a sequence of events, in going from one state to another. We developed a sequence 

diagram first, which illustrates all the steps between states, and second, a state diagram which 

illustrates the states themselves. After that, we draw a true TLA+ model.  

We will apply this methodology as we did in [45] and [46] to GNSS spoofing issues and ghost 

aircraft as shown in figure 42. 

 

3.3.3.2 ADS-B response to GNSS spoofing and Ghost Aircraft 

In the previous sections, we talked about security issues if an aircraft is either a fake contact or 

reports untruthful position info about itself to ADS-B, by GNSS spoofing. Because ADS-B 

envisions doing away with SSR/ PSR, we examined a few other backup systems that may be able 
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to physically locate an aircraft in case of unreliable GNSS reports. Figure 42 was the UML use 

case diagram for this. Now, figure 43 will illustrate the sequence diagram for this situation.   

GNSS reports any aircraft position to airplanes, which includes the ‘good’ and ‘bad’ airplane. 

Then, all aircraft will report their position to ATCS. From all aircraft, a time delay analysis will 

be performed on the signals, and this will be used in physical space to fix a location of the 

aircraft. Also, aircraft will be able to do triangulation and multilateration on each other in 

airspace in a ‘4-ship-cell’ for instance. Also, this fixes location for each other’s locations.

 

Figure 43: Sequence diagram: the aircraft’s true position reverse calculation that can be done using time-delay 

analysis of transmitted signals [46] 
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GNSS reports position information which will be compared to the back-calculated position data 

to determine which aircraft is reporting true information and which is not. Based on this, the 

aircraft will be considered as “SAFE” or “UNSAFE”. Then, this information will be broadcast to 

ATCS and all aircraft in the area. Now, we will explain figure 44 which represents the UML 

state diagram for the system. 

 

 

Figure 44: UML State Diagram of the system under Figure 4 conditions [46] 

 

This assigns a one-minute interval foe each whole cycle repetition. This is arbitrary, and it will 

be practically a decision made by radio traffic and economic factors. Due to the aircraft’s fast 

movement in all 3 dimensions, this interval cannot be very long. Furthermore, when we say 

‘ATCS’, this means a regional or local airspace manager. We do not mean a global central ATCS 

system.  
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The next step is to use the 3 inputs, Figures 42, 43 and 44 to develop the TLA+ formal 

specification and then the TLC model checker validation for the above response.  

 

3.3.3.3 TLA+ Specifications 

 

Now, we present the TLA+ specification for the attack response model which was sequenced in 

Figure 43 and stated in Figure 44. The following will be a block-by-block explanation. 

In this module, the variables are represented by the keyword “VARIABLES”, where “vars” is 

the tuple of variables:  

<objects, sender1, receiver1, sender2, receiver2, ATCS, Calculations, Report, pc > 

In any TLA+ module, there is an “Init” function/state and a “Next” function/state. The variables 

get their initial values In the Init state, while the Next state visits all possible next states. In this 

module, the Next state is: 

 

Next == checking \/ Timestamp \/ Report_ATCS \/ Verification\/ Terminating 

 

In this module there are 5 different states. The ‘Checking’ state will be entered when the GNSS 

sends positioning information to all aircraft, and then all aircraft report their locations to ATCS. 

 

Figure 42 showed the group verification strategy. Airplanes triangulate each other with time 

delay of transmission using timestamps on exchanged signals.  This communication between 

airplanes is represented by the ‘Timestamp’ state. When a new airplane that might be an attacker 
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appears, it should communicate with other trusted airplanes (even if only for TCAS) and sends 

timestamps.  

In the ‘Report_ATCS’ state, all airplanes report to ATCS as well with timestamps as a routine 

process, and these timestamps could be used to verify the position from a ground point of view.  

Then the system must enter the ‘verification’ state. In this state, the ATCS calculates the time 

delay and radio directional on these signals and then compares them to the very first GNSS 

location reports that were sent from all airplanes.  

The ATCS will identify which airplanes are faithfully in their reporting position and which is 

not. Then, ATCS will broadcast a reported result with a safe/unsafe field to everyone in the 

airspace.  

To prevent deadlock on the termination, the termination state allows infinite stuttering (when pc 

= “Done”). 

The Spec statement,  

Spec == Init /\ [][Next]_vars 

 

represents the specification of the entire system, where Init represents the starting state and 

[]Next_vars represents Next state which need be true for the entire behavior with keeping all 

variables unchanged.   

Figure 45 shows the TLA+ ADSBsystem module (TLA+ specifications) of the system.  
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Figure 45: TLA+ model specification [46] 
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3.3.3.4 TLC Result 

 

The TLC model checker is a TLA+ tool that is used to check the TLA+ module for any errors 

and validate it. For our TLA+ ADS-B module, we ran the TLC model checker as shown in figure 

46 and the result shows that the model is valid with no errors and no deadlock. Also, as shown in 

the figure, the TLC model checker shows the number of times each state was visited in the TLA+ 

module, and which values changed to reach the next state. 

 

 

Figure 46: TLC Model checker Validation for TLA+ spec in Figure 45 [46] 
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3.4 Conclusion 

 

We described Air Traffic Control Surveillance and then we talked about each surveillance 

technology; PSR, SSR, MLAT, ADS-C, and ADS-B. We talked about the strengths and 

weaknesses of each one of these technologies. We compared them and found out that the ADS-B 

is the best system to use because of its strength and cost effectiveness compared to the other 

surveillance systems. 

Although ADS-B is efficient, it has security issues that need to be addressed. The current 

security solution is added to the system on the design level, but after the initial design has been 

completed. This makes it harder to find a really strong solution for solving the security issues. In 

this work, we highlighted the current solutions available, then we picked one of them to be 

modeled, designed, and finally validated using UML, TLA+, and TLC model checker.  

We used multi-level modeling to model a large system like ADS-B; the UML modeling (use 

case then sequence then state diagrams), then TLA+ specification module, and finally the TLC 

model. We showed how the system can be modeled and what could fail in it since what TLC 

does is to go through each iteration and find any failure point. At this level, we can conclude that 

our procedure in modeling the ADS-B and the ability to test the model is valid. It is always much 

better to design security into a system at the beginning of the design process. Hopefully, our 

method of using UML state diagrams, UML sequence diagrams, and TLA+ can provide the 

reader with a practical and stable ADS-B model that is realistic and secure. Also, it can serve as a 

model of how to design security into other discrete systems in the future.  

There is a weakness in our model in that it is not detailed enough. A real ADS-B system model 

will be much larger with all subsystems and security systems and many attackers. We only 
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modeled one attack in this work, a real-world model will have all security systems integrated and 

all attacks defined and will test them in many ways to see where and when two security systems 

collide. This is what will be our future work. 
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Chapter 4: Supervisory Control and Data Acquisition (SCADA) Systems 

 

4.1 Introduction 

SCADA is an abbreviation for Supervisory Control and Data Acquisition. SCADA systems are 

used to control and monitor equipment or plants in industries such as energy, 

telecommunications, transportation, oil and gas refining, manufacturing, and water and waste 

control. These systems include the transfer of information between several Remote Terminal 

Units (RTUs) and a SCADA central host computer or/and Programmable Logic Controllers 

(PLCs), as well as the operator terminals and the central host. A SCADA system gathers data 

(such as where a pipeline leakage has occurred), transfers this data back to a central site, and 

alerts the home station about that leakage, carrying out necessary control and analysis, such as 

deciding if this leak is critical, and presenting the data in an organized and logical fashion. 

SCADA systems vary from a relatively simple SCADA system, such as an environmental 

condition monitoring system of a small office building, to very complex SCADA systems, such 

as a monitoring system for all the activity of a community water system or the activity in a 

nuclear power plant. For monitoring purposes, SCADA systems usually use a Public Switched 

Network (PSN). Today a lot of systems are monitored using a corporate Wide Area Network 

(WAN) / Local Area Network (LAN) infrastructure. For monitoring purposes, wireless 

technologies are being widely used now [72]. SCADA systems contain of: 

➢ One or more RTUs or PLCs which connect with data interface devices, they used to sense 

devices, control valve actuators and switchboxes. 
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➢ A communications system to transfer data between control units and field data interface 

devices and the computers in the SCADA main host. The system could be telephone, 

radio, satellite, cable, etc., or a combination of any of these. 

➢ A main host computer server (sometimes called a SCADA Center, Master Terminal Unit 

(MTU), or master station). 

➢ A collection of standard and/or custom software (sometimes called Man Machine 

Interface (MMI) software or Human Machine Interface (HMI) software) systems used in 

providing the operator terminal application and SCADA central host, supporting the 

communications system, and controlling and monitoring field data interface devices 

remotely [72].  Figure 47 shows a classic SCADA system. 

 

 

Figure 47: Classic SCADA System [72] 
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At first, the goal of a SCADA system focused on efficient and accurate process execution in a 

specific location, for example, a manufacturing plant, without having an emphasis on securing 

network information. Today, due to the increase in interconnectivity of networks and the remote 

systems accessibility on a SCADA network, there is increased danger from different cyber-

attacks and vulnerabilities. It has become necessary to include adequate safety measures to 

improve SCADA network security. General safeguards include strong cryptography, patch 

management, restricted perimeters, and most importantly, control network and corporate network 

separation, along with in depth security mechanisms. However, these security guards are 

challenging to apply due to inherited security weaknesses in legacy systems as well as the high 

risk of exploitation during real-time communication [73]. 

 

4.2 SCADA Protocols 

 

Protocols are an essential part of SCADA systems, because they ensure efficient and correct 

communication between the RTUs and the central station and also between RTUs. Since the 

advent of SCADA systems, protocols have been generated [74] to optimize communication. 

Normally, SCADA systems protocols are specifically designed for the SCADA system use. 

Within the SCADA system, they ensure efficient communication, but at the same time they 

represent a hacker’s possible attack points. There are a number of known SCADA protocols 

attacks such as man-in-the-middle attacks [75] and also denial-of-service attacks [76]. Hence, it 

is essential that the protocols have security features. Additionally, they should not be very 

complex, because having more complex protocols will increase the risk of mistakes made in the 
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system. If the system has more decentralized control, it may also be essential to let remote 

devices communicate directly with each other. Therefore, protocols have to also allow peer-to-

peer communication. It also has to be mentioned that the system state might not be consistent 

when applying peer-to-peer communication, as pointed out in [77]. When designing a protocol, 

the possible possession of per-to-peer capabilities thus has to be considered. Furthermore, 

protocols may need to be capable to deal with smart grid security [78] and the Internet of Things 

(IoT)  [79]. Among all the most used SCADA protocols, there is no protocol that is obviously 

better than the others. Moreover, these protocols might not even be suitable for working with 

smart grids or the IoT as concluded by [78] where the protocol MQTT (Message Queuing 

Telemetry Transport) is proposed as a potential alternative. The regularly used DNP3 protocol, 

the legacy protocol Modbus, and IEC 61850 were tested in [80] and the authors concluded that 

an IEC 61850 extended version could be useful more than the traditional SCADA protocols. In 

[77], the authors found out through experiments that neither TCP nor UPD based DNP3 is quick 

enough in meeting the delay requirements in the smart grids that are controlled by decentralized 

systems. 

 

4.3 SCADA Systems Security and Vulnerability  

 

4.3.1 Introduction 

SCADA systems have developed recently and are often based on open COTS products and open 

standards these days. Most SCADA hardware and software vendors have supported Internet 

Protocol (TCP/IP)/Transmission Control Protocol and Ethernet communications, and many of 

them have used TCP/IP packets to encapsulate their proprietary protocols. All of this evolution 
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in having more open-based standards made things easier for the industry to integrate many 

diverse systems, but, on the other hand, it increased the risks of less technical methods of gaining 

access and less control of industrial networks [72]. 

 

4.3.2 Attacks Against SCADA Systems  

In today’s corporate environment, all corporate communications are typically done using internal 

networks, including SCADA. Therefore, SCADA systems are vulnerable to most of the same 

threats that any TCP/IP-based system may face. Industrial Systems Analysts and SCADA 

Administrators are often tricked into thinking that they are safe against outside attacks because 

their industrial networks are using separate systems from the ones that the corporate network is 

using. RTUs and PLCs are usually selected by a third-party vendor-specific protocols and 

networks such as RS-485, RS-232, DNP, and MODBUS, which are usually done over satellite 

systems, phone lines, spread and licensed spectrum radios, leased private frame relay circuits, 

and other token-ring topology bus systems. This frequently gives a false sense of security to the 

SCADA System Administrators since they assume a protection for these end devices using these 

non-corporate network connections [81]. 

In an industrial network, security can be compromised in many ways in the system, and it is most 

easily compromised at the SCADA control room level or host. SCADA computers logging out 

the data to certain back-office database repositories should be with the back-end database 

systems on the same physical network or have a path for accessing these database systems. This 

means that there will be a path back to the SCADA systems as well as to the end devices and 

eventually through their corporate network. When the corporate network is compromised, any 

computer system or IP-based device can be accessed. To allow full-time logging, these 
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connections are open 24/7, which gives an opportunity to attack the SCADA host system using 

any of the following kinds of attacks:  

• A Denial of Service (DoS) attack can be used to make the SCADA server leading to a 

shutdown condition (Loss of Operations and System Downtime) 

• Deleting the system files on the server (Loss of Operations and System Downtime) 

• Taking complete control of system or planting a Trojan 

• Preparing for future take down by logging keystrokes from operators to get usernames 

and passwords 

• Logging any company-sensitive operational information for competition or personal 

usage 

• Deceiving operators or changing data points to make it seem that the control process is 

not functioning and should be shut down (Loss of Corporate Data and Downtime).  

• Modifying any logged information in a remote database system (Corporate Data Loss).  

• IP spoofing: using the SCADA Server as a starting point to compromise and deface other 

system elements within the corporate network [82]. 

 

In the following section, we will illustrate our work in SCADA system. We used informal and 

formal languages to design the system and validate it. Also, we will run a security hacking case 

in our module and show how to find it. 
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4.4 Our Work 

4.4.1 Introduction 

In this section we will illustrate our work in using UML, TLA+, and the TLC model checker as 

an extension of work in [71]. That work focused on building a SCADA system. They did an 

impressive job building a testbed using one of the University of Cincinnati’s labs. The testbed is 

shown in figure 48. 

 

 

Figure 48: The PLC/HMI Network and the HMI Output Screen [71] 

 

The question is, what is the benefit of building this SCADA testbed and running simple 

examples on it? Testing is the answer. SCADA systems are widely used in industrial processes 

(fabrication, manufacturing, refining), as well as in infrastructure processes (oil and gas 

pipelines, water treatment, power distribution and generation). Down time in these kinds of 

systems may causes physical damage, profit loss, and even life loss. This means that, after 

installation, some SCADA systems may have little to no down time. And when there is down 
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time, this time will not be used for security testing or system upgrading, it will typically be used 

for system maintenance. The SCADA testbed is useful because a testbed is a precise model of a 

real-world process and is reconfigurable and modular.  With few hardware devices, it can 

simulate a large network. Other important uses for the testbed are penetration testing and 

vulnerability assessment which we will illustrate later. 

In [71] the SCADA testbed was built so as to in ease the learning process by breaking up the 

construction into many different parts. First the hardware was set up and then the latest version 

of the firmware was installed. Specifically, an Allen-Bradley PanelView 5310 HMI and an 

Allen-Bradley 1756-A7 PLC were used. After setting up both systems. Ethernet on a simple 

LAN network was used to integrate them together. Next, a PLC basic program was installed 

using Studio 5000 Logix Designer to show the connection. This setup is shown in figure 48. And 

the final SCADA testbed network diagram setup is shown in figure 49. 

The PLC is set up to provide the end user with as much data as possible. This is very helpful for 

PLCs set up after installation where physical access is limited because equipment is in remote 

locations. The PLC responds with the default configurations to service scans, ARP requests, ping 

requests, and TCP port scans.  This provides data including applications that run on the PLC, 

MAC address, and the operating system of the devices. Furthermore, the PLC is hosting a 

website as well that has data about the firmware version, program running, controller mode, fault 

status, and controller status as shown in Figure 50. This valuable information could be used to 

exploit the system internally using the MAC address or externally using the website itself. 
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Figure 49: Network diagram of final SCADA testbed setup [71] 

 

Figure 50: Homepage of local server hosted by the PLC [71] 
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In [71], Pycomm was used to access the PLCs in the system. It is available at 

https://pypi.org/project/pycomm/. This version compatible with Python 2.7 and has an ab-comm 

module which can be interfaced with the Allen Bradley PLCs by the Ethernet/IP protocol.  

They used one laptop to download the Pycomm software, plugged it into the switch, and then 

connected it to the local network to communicate with the PLC.  In a real production 

environment, wireless connection or this type of connection is exactly how engineers would 

communicate with their PLC controller.  

They used Pycomm to write a code to do the following:   

 

1) Use IP address to communicate with the PLC controller. 

2) Read the word’s tag value.  

3) Print that value. 

4) Write a value to the PLC tag.  

5) Close the connection. 

 

As shown above, the authors in [71] built and tested the SCADA testbed and they ran a 

dishwasher example using it. The following section will illustrate the dishwasher example in 

detail. First, we used the dishwasher example as a basis for our work. Then we modeled it using 

a UML state diagram, and a TLA+ specification module. Next, we used the TLC model checker 

to validate our module. 

https://pypi.org/project/pycomm/
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4.4.2 Implementing a Dishwasher Example 

4.4.2.1 UML Modeling 

In this section, we will illustrate how we modeled the SCADA testbed dishwasher example using 

the UML state diagram. 

The dishwasher example sequence of actions as illustrated [71] were: 

1. Open the soap solenoid for 4 seconds. 

2. Open the hot water input valve for 5 minutes. 

3. Open the washer impeller for 12 seconds.  

4. Open the rainwater valve for 1 second.  

5. Open the drain for 3 seconds.  

6. Turn on the heat for 6 seconds. 

We used a UML state diagram to show these steps as shown in figure 51.  

 

Figure 51: UML state diagram for the dishwasher example 
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The figure illustrates what is happening in each state. In the soap_solenoid state, the soap 

solenoid will be opened. After 4 seconds, we will move to the next state which is the input_valve 

state.  In this state, the soap solenoid will be turned off and the hot water input valve will be 

turned on. After 5 minutes (300 seconds), we will move to the water_impeller state. In this state, 

the hot water will be turned off and the washer impeller will be turned on. After 12 seconds, we 

will move to the rainwater_valve state. In this state, the washer impeller will be turned off and 

rainwater turned on. After 1 second, we will move to the drain state. In this state, the rainwater 

will be turned off and the drain will be opened. After 3 seconds, we will move to the heat state. 

In this state, the drain will be turned off and the heat will be turned on. After 6 seconds, we will 

move to the finish_washing state when the heat will be turned off. This is the last state in this 

state diagram. This state diagram will help in implementing the TLA+ specifications in the next 

section. 

4.4.2.2 TLA+ Specifications 

In this section, we modeled a TLA+ module called scadaTest to implement the dishwasher 

example in [71].  

 

Figure 52: scadaTest TLA+ module, variables, and invariants 
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Figure 52 shows the scadaTest module, the variables, and the invariants in the module. These 

variables include the module states along with other variables such as time_in_seconds variable 

which represents the time (in seconds) needed for each state, and the whole_washing_time 

variable which represents the total time needed for the dishwasher to finish the whole washing 

cycle from start to the end.  

The invariants in this module are represented by timer which guarantees that the time required in 

each state should not exceed 300 seconds. Also, the total_time invariant in this module 

guarantees that total washing time per cycle should not exceed 326 seconds. 

 

Figure 53: scadaTest module vars and Init function 

 

Figure 53 shows the vars which represents a tuple of the variables, and the Init function which 

represents the initial values of the variables. In the Init function, we also can declare all possible 

values as shown in the figure. 
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Figure 54: scadaTest module functions 
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Figure 54 represents the soap_solenoid_, input_valve_, washer_impeller_, rainwater_valve_, 

drain, and heat functions in the scadaTest TLA+ module. In the soap_solenoid_ function, the 

soap solenoid will be opened for 4 seconds, the whole_washing_time will be calculated as the 

previous washing time (which was initially 0) and the time needed by each state to be finished 

which will be 4 seconds in total by the end of this state. The next state will be input_valve_, and 

no other variables will be changed. 

In the input_valve_ function, the soap solenoid will be closed, and the hot water input valve will 

be opened for 300 seconds (5 minutes), the whole_washing_time will be calculated as the 

previous washing time (which was 4) and the time needed by this state to be finished which will 

be 304 seconds in total by the end of this state. The next state will be washer_impeller_, and no 

other variables will be changed. 

In the washer_impeller_ function, the hot water input valve will be closed, and the washer 

impeller will be opened for 12 seconds, the whole_washing_time will be calculated as the 

previous washing time (which was 304) and the time needed by this state to be finished which 

will be 316 seconds in total by the end of this state. The next state will be rainwater_valve_, and 

no other variables will be changed. 

In the rainwater_valve_ function, the washer impeller will be closed, and the rainwater valve 

will be opened for 1 second, the whole_washing_time will be calculated as the previous washing 

time (which was 316) and the time needed by this state to be finished which will be 317 seconds 

in total by the end of this state. The next state will be drain, and no other variables will be 

changed. 
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In the drain function, the rainwater_valve_ will be closed, and the drain will be opened for 3 

seconds, the whole_washing_time will be calculated as the previous washing time (which was 

317) and the time needed by this state to be finished which will be 320 seconds in total by the 

end of this state. The next state will be heat, and no other variables will be changed. 

In the heat function, the drain will be closed, and the heat will be opened for 6 seconds, the 

whole_washing_time will be calculated as the previous washing time (which was 320) and the 

time needed by this state to be finished which will be 326 seconds in total by the end of this 

state. The next state will be finish_washing, and no other variables will be changed. 

 

Figure 55: finish_washing, Terminating, Next, Spec, and Termination functions 

 

Figure 55 represents finish_washing, Terminating, Next, Spec, and Termination functions in the 

scadaTest TLA+ module.  
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In the finish_washing function, the heat will be turned off, the whole_washing_time will be 

calculated as the previous washing time (which was 326) and the time needed by this state to be 

finished which will be 326 seconds in total by the end of this state since this state will be 

responsible for finishing the washing cycle. The next state will be Done state, and no other 

variables will be changed. 

As we mentioned in the previous chapters, the Next function represents all states in the Spec. 

The Spec is the main function that runs all module specification. And the Termination state is 

responsible for terminating the module. 

 

 

Figure 56: scadaTest parsed moule 
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Figure 56 represents the scadaTest module which was parsed successfully using the TLA+ 

Toolbox as shown by the green button on the bottom right of the screen. In order to validate our 

module, we ran the TLC model checker. The result will be represented in the next section. 

 

4.4.2.3 TLC Model Checker 

In the previous section, we successfully parsed the TLA+ scadaTest module. In this section we 

will prove that our module is validated using the TLC model checker. 

 

Figure 57: The TLC model checker results 

Figure 57 shows that the module was validated using the TLC model checker with no errors or 

bugs. This is the final result for the module. But there is an important question, what if this 

system is vulnerable? We will find the answer in the following section.  
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4.4.3 TLC Finds Security Break 

 

As was mentioned before, SCADA systems are vulnerable. Authors in [71] tried a case of 

security breakage in their SCADA dishwasher example. In this section we will illustrate a 

security breaking case in our module, and we will illustrate how to find this bug in the module. 

As we mentioned before in our scadaTest module, the time required for the input_valve_ state to 

be finished is 300 seconds which is the longest time needed in all states of the module. Also, we 

set up an invariant in the module called “timer” which guarantees that the time needed for any 

state should be less than or equal to 300 seconds.  

As a security hacking case, we changed the time needed in the input_valve_ state to 600 seconds. 

We change it manually in the TLA+ specifications as shown in figure 58. 

 

 

Figure 58: time_in_seconds variable is changed to break security 

 

We ran the TLA+ toolbox with breaking the “timer” invariant. Surprisingly, the TLA+ module 

ran successfully and parsed correctly with no errors. But how we will find this error then? 
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We ran the TLC model checker, but first, we set up the invariant in the TLC model checker as 

shown in figure 59. These invariants are the same in the TLA+ module, but the TLA+ toolbox 

was not able to find the error. 

 

Figure 59: TLC model checker invariants 

 

After setting up the invariants, we ran the TLC model checker and it threw an error, and error 

tracing (in the bottom right side), and a message (in the top right side) that said, “Invariant 

time_in_seconds <= 300 is violated”.  The yellow highlighted states will not be visited since this 

invariant violation was found before reaching these states. All this is shown in figure 60. 
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Figure 60: TLC model checker found the security hacking error 

 

We analyzed in a particular security hack when time_in _seconds variable equals 600, which 

exceeds the maximum needed for any washing cycle. We set the TLC invariant to find an error 

in this particular case (when time_in_seconds >= 300). What if someone hacked the system and 

changed any of the washing cycle times? Any time could be made larger or smaller by a hacker. 

As an example, we chose the case where the hacker changed the time_in_seconds in the 

washer_impeller_ state from 12 to 120 seconds, which is still less than 300 seconds and is hard 

to detect through the current invariants.  

We implemented this security hack as shown in figure 61. The change was set up manually (line 

141). 
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Figure 61: time_in_seconds Variable is Changed to 120 to Break Security 

 

Before running the TLA+ toolbox, we changed the timer invariant to be: 

 

timer == time_in_seconds \in {4, 300, 12, 3, 6, 1, 0} 

 

We then ran the TLA+ toolbox and it parsed the module successfully but was unable to find the 

security hack. In order to find the security hack, we re-set up the TLC model invariant to the 

modified timer invariant as shown in figure 62. This updated invariant can catch any security 

hack that has changed any time needed for any of the cycles in the system. 

 

 

Figure 62: TLC Updated Invariants for time_in_seconds variable 

 

After setting up the TLC invariants, we ran the TLC model checker, and the TLC threw an error.  

Error tracing (in the bottom right side), and a message (in the top right side) said, “Invariant 

time_in_seconds \in {4, 300, 12, 3, 6, 1, 0} is violated”.  The yellow highlighted states will not 

be visited since this invariant violation was found before these states were reached. All this is 

shown in figure 63. 
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Figure 63: TLC model checker found the security hacking error 

 

As a result, the TLC model checker is not only validating the TLA+ modules but is also finding 

the errors and bugs in the design as shown before.  This model is for a dishwasher, but similar 

models to check security could be developed for similar but more complicated systems such as 

transportation systems (railways, highways, city traffic, etc.), water purification systems, electric 

power systems, material storage and retrieval systems, and other SCADA systems.  

 

 

4.5 Conclusion 

 

In this chapter, we discussed SCADA systems and their vulnerabilities, and we also discussed 

specific possible attacks on SCADA systems. 
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We also described the work in [71] and showed how the authors built a SCADA testbed in their 

lab.  We described the system and how it works, and we also explained the dishwasher example. 

As an extension of this work, we used the dishwasher example to first, informally model it using 

the UML state diagram. Then we used the formal TLA+ specification language to design it and 

simulate it successfully. The last step was to validate our model using the TLC model checker 

which validated it successfully.  

 Because an important part of our research is to include security in our systems, we implemented 

a case of security hacking in our dishwasher module, and we proved that the TLC model checker 

is powerful since it not only validated the TLA+ modules, but also found the security errors and 

bugs implemented in the modules. 

Our future work is to analyze more complex SCADA examples, and to find more security issues 

and how to harden these systems against them.    
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Chapter 5: Conclusion and Future Work 

 

5.1 Conclusion 

 

In this work, we were working on designing safe and secure systems using formal methods. Our 

methodology was to design a system informally first using UML, and then to design the system 

module using the TLA+ specification language and its TLC model checker to validate our 

module. To improve system safety, we designed the model to have some safety invariants in the 

model specifications and worked on the sub-systems to achieve the system’s desired quality. To 

achieve security in our models, we included some security invariants. We also defined sub-

systems in some modules to support system quality. Moreover, we ran some security break cases 

in different modules and proved that the TLC model checker can find these security breaks. This 

was an additional step in modeling and designing secure systems using formal methods. 

We have made a number of contributions.  First, we showed by examples that formal methods 

are powerful tools for designing different systems applications. We designed three different 

systems using UML and TLA+, the smart school building system (two versions [35, 83]), the 

ADS-B system, and a SCADA system. In all these systems, we designed, modeled, and parsed 

our models successfully using the TLA+ Toolbox. Then, we proved and validated these models 

using the TLC model checker. Another important contribution is the use of the TLC model 

checker to find the security break in the smart school model (version II), and the SCADA 

system. This showed how the TLC model checker is not only powerful in validation, but also in 

finding errors, bugs, and security breaks in the model. 
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Our contribution in each system was different. In the smart school building system [45], we 

designed the model to be smart and concentrated on integrating different sub-systems that work 

together to define a one smart module that also achieves safety and security as one of the main 

goals. Most reserchers did not design smart schools or they only focused on having a design that 

reduced the power consumption in the building, which was one of our goals as well. Moreover, 

we proved the efficiency of using formal methods in designing smart systems as well as in 

finding security breaks in the system using TLA+ and the TLC model checker. The smart school 

building system has different sub-systems: the login sub-system which requires a username and 

password to enter the building from anyone (student, employee, and visitor). This sub-system 

increases the security and safety as a result in the design. The lighting sub-system which is 

responsible for controlling the lights in the building, is designed to be smart and to reduces the 

power consumption in the building. The HVAC sub-system, which is responsible for controlling 

the temperature in the building, is designed to be smart and to reduces the power consumption in 

the building as well. The smoke detecting system, which is responsible for sensing the 

smoke/fire in the building, is designed in a way to be smart and to achieve safety in the building 

by working 24/7. We also added another component to the system which is a surveillance camera 

to increase safety by recording everything. This smart school building system was designed 

using UML diagrams and a TLA+ specification module and validated using the TLC model 

checker. To prove the security in our model, we considered a case where the camera, which was 

designed to be on 24/7, was turned off, and the TLC model checker found this bug, 

demonstrating that it can catch errors and bugs that may be hard to identify. And it can find 

security weaknesses in a design.  Our work on the school system has been published in [35] and 

[45]. 
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Another system that we worked on was the ADS-B avionics system. This system is already built 

and in use, but it is a vulnerable system since when it was designed, the designers did not add 

security to it. Many researchers have tried to find a solution for the security issues in this system. 

We redesigned the ADS-B, adding a security solution. The solution was to make the airplanes 

send timestamps to each other and to the ATCS. At the same time, the GNSS will broadcast the 

locations of all airplanes which will reached to the ATCS. The ATCS will then calculate the 

locations and compare the information to determine if an airplane is safe or it is a malicious one. 

It will then broadcast the result to all airplanes. This design was implemented using UML 

diagrams first. And then the TLA+ specifications module was used. The module was validated 

using the TLC model checker. This work was published in [46]. 

We also worked on a SCADA system. We extended the work in [71] which described building a 

SCADA testbed using hardware and software components. That work implemented a dishwasher 

example using the SCADA testbed. We designed this dishwasher example using a UML state 

diagram and the TLA+ specifications module. The model was validated using the TLC model 

checker. To prove that the TLC model checker can find the security flaws in the model, we ran a 

case where the TLA+ module included hacking and showed how the TLC model checker found 

this bug. This proves that using formal methods is efficient in finding security flaws in a design. 

This work is being submitted for publication. 
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5.2 Publications Resulting from the Dissertation 

 

This research has produced the following publications: 

1. Conference paper — Smart school building system (version I) 

Nawar Obeidat, and Carla Purdy. "Modeling a Smart School Building System Using 

UML and TLA+." In 2020 3rd International Conference on Information and Computer 

Technologies (ICICT), pp. 131-136. IEEE, 2020. (Published) 

 

2. Journal paper — Smart school building system (version II) 

Nawar Obeidat, and Carla Purdy. " Using Formal Methods to Model a Smart School 

System via TLA+ and its TLC Model Checker for Validation " 2021 ASTESJ Advances 

in Science, Technology and Engineering Systems Journal. ASTESJ, 2021. (Published) 

 

3. Journal paper — ADS-B system 

Pranay Bhardwaj, Nawar Obeidat, and Carla Purdy. "A novel way to design ADS-B 

using UML and TLA+ with security as a focus." 2020 ASTESJ Advances in Science, 

Technology and Engineering Systems Journal. ASTESJ, 2020. (Published) 

 

4. Conference paper — SCADA system 

Nawar Obeidat and Carla Purdy. “Improving security in SCADA systems through model-

checking using TLA+” 2021 64th International IEEE Midwest Symposium on Circuits 

and Systems, Lansing Michigan, August 2021. (Submitted) 

 

 

 

 

5.3 Future Work 

 

In the smart school building system, future work can be in adding more sub-systems to the 

school design. Also, adding more security features like sending an alarm in case of fire can be 

added. In addition, we can add a method for specifying the number of sensors needed related to 

the size of the building and the number of rooms. For example, the building in this current 

system work is a theoretical model that uses one sensor for light in the building, which is in real 

life is not enough.  The building needs more light sensors in different locations inside the 
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building. Can we determine an optimal placement?  These kinds of design details can be added 

to the current design to make it more realistic, secure, and safe. Additional work that can be done 

in future is to add a number of hardware inputs and outputs to the system along with the 

specifications for variables such as time rates of updates for the input/output ports. 

In the ADS-B system design, a weakness in our model is that it is not detailed enough. A real 

ADS-B system model will be larger and much more detailed.  It will have more subsystems and 

security systems, and many attackers. We only modeled one attaching scenario. In future, the 

goal is to design a more detailed model that can handle different kinds of attaches and be closer 

to the real ADS-B system. 

In the SCADA system, we modeled a dishwasher example and demonstrated one security case. 

In future, we can work on modeling a more complicated SCADA system and making it hardened 

against different kinds of attacks, not only one case. 
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