

Using Formal Methods to Build and Validate Reliable and

Secure Smart Systems via TLA+

Doctor of Philosophy

 Department of Electrical Engineering and Computer Science

Collage of Engineering and Applied Science

by

Nawar Obeidat

Advisor

Dr. Carla Purdy

Committee Members:

Dr. Nan Niu

Dr. Massoud Maxwell Rabiee

Dr. Boyang Wang

Dr. Shaaban A Abdallah

April, 2021

ii

Abstract

Verification and validation are very important in the design of any system. For safety-critical

systems, especially, the validation level is crucial. In this work, developing a robust procedure

for designing smart, safe, secure systems is our eventual goal. There are different methods for

verification and validation, but formal methods are used widely to validate these systems due to

their high level of confidence for guaranteeing correctness, security, and safety properties. TLA+

is a formal specification language and its TLC model checker will be used in this work to

formally verify and validate several example systems, and to find security hacks. Designing

smart systems has recently received much attention because of the ability to connect

heterogeneous sub-systems together to build a fully controlled smart system. Here we propose

models for three systems: a smart school building system, an ADS-B system for avionics, and a

SCADA system. We model the systems using UML diagrams to describe objects, states, and

sequences of actions. Formal methods techniques are used to verify the properties of the systems.

TLA+ is used for formal modeling. For the smart school building system, the ADS-B system,

and the SCADA system, we verify their properties and correctness using the TLA+ toolbox and

the TLC model checker. Also, we use the TLC model checker to find example security bugs we

introduce into the designs.

iii

iv

Acknowledgments

First and foremost, all praise and thanks are due to “Allah” for allowing me to be able to

accomplish this work. I would like to express my acknowledgments to my advisor, Professor

Carla Purdy, for her mentorship, help and support during my stay at the University of Cincinnati.

Words cannot describe how appreciative I am to her. Also, I would like to thank the members of

my dissertation committee Dr. Massoud Maxwell Rabiee, Dr. Nan Niu, Dr. Boyang Wang, and

Dr. Shaaban A Abdallah for their effort, time, help and feedback regarding this work. I would

like to thank University of Cincinnati for granting me a scholarship and assistantship support. I

would like to acknowledge and thank my Dad and Mom and all my family, for always

supporting and encouraging me over the years. Finally, I would like to acknowledge my lovely

husband, Dr. Mohammed Ababneh, for his encouragement, support, and help in providing

valuable comments and technical feedbacks. Thanks for my beloved kids, Taha, Jad, and Naya.

Their smiles get rid of my exhaustion and fatigue.

v

Contents
Abstract .. ii

Chapter 1: Introduction and Overview .. 1

1.1 Introduction ... 1

1.2 Verification and Validation .. 2

1.3 Formal Methods .. 4

1.4 Specification Languages ... 6

1.5 TLA+ .. 7

1.5.1 Introduction .. 7

1.5.2 TLC Model Checker .. 8

1.5.3 Why TLA+ .. 9

1.5.4 TLA+ vs. Other Specification Languages .. 10

1.6 Related Work .. 11

1.6.1 Related Work Using Formal Methods ... 11

1.6.2 Related Work Using TLA+ ... 15

Chapter 2: Smart School Building System ... 24

2.1 Introduction ... 24

2.2 Work Related to a Smart School Building System .. 24

2.3 Example Using TLA+ ... 27

2.4 Smart School Building Model .. 30

2.5 The Initial Smart School Building Model (version I) .. 33

2.5.1 Unified Modeling Language (UML) ... 33

2.5.2 Formal Specifications Using TLA+ .. 36

2.5.3 TLA+ Model Analysis .. 40

2.6 The improved smart school model (version II) .. 42

2.6.1 Introduction .. 42

2.6.2 UML Modeling for the improved Smart School Building System 43

2.6.3 Formal Specifications of the Improved Model Using TLA+ .. 45

2.6.4 Formal Verification Using TLC .. 51

2.7 TLC Finds Security Break ... 53

2.8 Conclusion ... 56

Chapter 3: Automatic Dependent Surveillance – Broadcast (ADS-B) ... 58

3.1 Air Traffic Control Surveillance ... 58

vi

3.2 Surveillance Technologies .. 60

3.2.1 Primary Surveillance Radars (PSR)... 61

3.2.2 Secondary Surveillance Radar (SSR) ... 63

3.2.3 Multilateration (MLAT) .. 64

3.2.4 Automatic dependent surveillance (ADS-C) .. 66

3.2.5 Automatic Dependent Surveillance – Broadcast (ADS-B) ... 68

3.2.5.1 How ADS-B works .. 69

3.2.5.2 The benefits of ADS-B to airlines .. 71

3.2.5.3 Equipment required for ADS-B ... 73

3.2.5.4 ADS-B Critical issue ... 75

3.2.5.5 ADS-B: Economic Point of View ... 75

3.2.5.6 Security and Safety of the ADS-B .. 78

3.3 Our Work .. 80

3.3.1 Background and Related Work .. 80

3.3.2 UML Models for ADS-B security ... 81

3.3.3 TLA+ Work .. 84

3.3.3.1 Conversion ... 84

3.3.3.2 ADS-B response to GNSS spoofing and Ghost Aircraft .. 85

3.3.3.3 TLA+ Specifications .. 88

3.3.3.4 TLC Result .. 91

3.4 Conclusion ... 92

Chapter 4: Supervisory Control and Data Acquisition (SCADA) Systems ... 94

4.1 Introduction ... 94

4.2 SCADA Protocols .. 96

4.3 SCADA Systems Security and Vulnerability .. 97

4.3.1 Introduction .. 97

4.3.2 Attacks Against SCADA Systems ... 98

4.4 Our Work .. 100

4.4.1 Introduction .. 100

4.4.2 Implementing a Dishwasher Example .. 104

4.4.2.1 UML Modeling .. 104

4.4.2.2 TLA+ Specifications .. 105

4.4.2.3 TLC Model Checker ... 111

vii

4.4.3 TLC Finds Security Break .. 112

4.5 Conclusion ... 116

Chapter 5: Conclusion and Future Work ... 118

5.1 Conclusion ... 118

5.2 Publications Resulting from the Dissertation ... 121

5.3 Future Work .. 121

viii

List of Figures
Figure 1: Activity Diagram for Smart Office [22] .. 15

Figure 2: The physical configuration of the dock fire-fighting system [1] ... 19

Figure 3: The Activity Diagram of the Smart Parking System [26] ... 20

Figure 4: TLA+ Specification for jug problem ... 29

Figure 5: TLC Model Checking Results for JugModule problem .. 29

Figure 6: Smart school building system inputs and outputs [35] ... 35

Figure 7: Activity diagram of the smart school building system [35] .. 35

Figure 8: SmartSchool module with variables [35] .. 36

Figure 9: SmartSchool invariants [35] .. 37

Figure 10: SmartSchool Init function [35] .. 37

Figure 11: EnterSchool function [35] ... 38

Figure 12: VerifyVisitor function [35].. 38

Figure 13: SetLight function [35] ... 39

Figure 14: SetTemptature function [35] .. 39

Figure 15: DetectSmoke function [35] .. 39

Figure 16: Next function [35] ... 40

Figure 17: Spec function [35] ... 40

Figure 18: SmartSchool parsed model [35] .. 41

Figure 19: UML Use case diagram of the smart school system [45] .. 44

Figure 20: Sequence diagram for the smart school building system [45] ... 44

Figure 21: smartSchoolSystem module variables ... 45

Figure 22: Init function ... 46

Figure 23: System invariant .. 47

Figure 24: enter_school function .. 47

Figure 25: Smoke function .. 48

Figure 26: Light function [45] .. 48

Figure 27: HVAC function [45] .. 49

Figure 28: Terminating, Next, and Spec functions ... 50

Figure 29: TLA+ Parsed model for smart school system ... 50

Figure 30: Safety invariants setup in TLC .. 52

Figure 31: TLC model checker while running .. 52

Figure 32: TLC verification model ... 53

Figure 33: the modified Light function that turns the camera off ... 54

Figure 34: TLC model checker found the security hacking error ... 55

Figure 35: PSR Principle of Operation [49] .. 62

Figure 36: SSR Principle of Operation [49] .. 63

Figure 37: Transponder MLAT Principle of Operation [49] .. 65

Figure 38: ADS–C Principle of Operation [49] .. 67

Figure 39: ADS–B Principle of Operation [49] .. 71

Figure 40: UML Use Case Diagrams Convention [46] .. 81

Figure 41: Use Case Diagram of Multilateration and group verification [46] .. 83

Figure 42: Multilateration might help with GNSS unreliable position reports and spoofing [46] 84

ix

Figure 43: Sequence diagram: the aircraft’s true position reverse calculation that can be done using time-

delay analysis of transmitted signals [46] ... 86

Figure 44: UML State Diagram of the system under Figure 4 conditions [46] .. 87

Figure 45: TLA+ model specification [46] ... 90

Figure 46: TLC Model checker Validation for TLA+ spec in Figure 45 [46] .. 91

Figure 47: Classic SCADA System [72]... 95

Figure 48: The PLC/HMI Network and the HMI Output Screen [71] .. 100

Figure 49: Network diagram of final SCADA testbed setup [71] .. 102

Figure 50: Homepage of local server hosted by the PLC [71] .. 102

Figure 51: UML state diagram for the dishwasher example ... 104

Figure 52: scadaTest TLA+ module, variables, and invariants .. 105

Figure 53: scadaTest module vars and Init function ... 106

Figure 54: scadaTest module functions .. 107

Figure 55: finish_washing, Terminating, Next, Spec, and Termination functions 109

Figure 56: scadaTest parsed moule ... 110

Figure 57: The TLC model checker results .. 111

Figure 58: time_in_seconds variable is changed to break security ... 112

Figure 59: TLC model checker invariants .. 113

Figure 60: TLC model checker found the security hacking error ... 114

Figure 61: time_in_seconds Variable is Changed to 120 to Break Security ... 115

Figure 62: TLC Updated Invariants for time_in_seconds variable ... 115

Figure 63: TLC model checker found the security hacking error ... 116

x

List of Tables

Table 1: Examples of applying TLA+ to some of Amazon’s complex systems [4] 22

Table 2: Strength and Limitations of PSR [49] ... 62

Table 3: Strength and Limitations of SSR [49] ... 64

Table 4: Strength and Limitations of MLAT [49] .. 66

Table 5: Strength and Limitations of ADS-C [49] .. 68

Table 6: strength and limitations of ADS-B system [49] .. 74

Table 7: Surveillance technologies cost to support TMA airspace and enroute [49].................................. 78

1

Chapter 1: Introduction and Overview

1.1 Introduction

Formal methods have been used in the design cycle of different kinds of systems to guarantee

correctness and safety for different applications. Many of these systems worked as specified

because of formal methods help. Formal methods have the ability to catch errors and bugs that

other methods can’t find. Many prominent companies have been using formal methods in the

verification and validation of their complex systems [2,4,8]. Formal methods can interact with

design systems like UML and SysML [48] and, in addition, they can provide a formal

verification of the system properties.

Researchers have modeled many smart systems such as smart office, home automation systems,

smart library, smart campus, airport systems, and various vehicles. The way that most of these

systems were modeled and implemented focused on correct operation and did not ensure security

for the system. We have designed a smart school building system that achieves smart system

features and safety properties [35, 45], a SCADA system with security protections, and an

improved ADS-B system model for avionics [46].

In this work, chapter 1 will present an introduction and overview of verification and validation,

formal methods, specification languages, TLA+ and why we have chosen to use it, as well as the

related work in using formal methods, especially TLA+, in different kinds of applications.

Chapter 2 will provide an example of using TLA+ and its model checker TLC to solve a simple

well-known problem, along with our work in modeling a smart school building model using

TLA+ and TLC. This chapter shows how the TLC model checker can find a security bug in the

model. Chapter 3 will define the ADS-B system and explain why it is important, and will show

2

how we modeled the ADS-B system using UML, TLA+ and the TLC model checker for

validation. We model in detail one of the proposed security solutions and show its validity.

Chapter 4 will illustrate what a SCADA system is and why it is vulnerable, and will show we

modeled an example SCADA system using UML and TLA+. For this example, we used the

TLC model checker to validate our model first, then we added a security problem and the

showed how the TLC model checker found this security bug. Chapter 5 will include the

conclusions of all our work and discuss future work.

1.2 Verification and Validation

Verification and validation are independent terms that are used together to check the quality of a

system and to check that it works as it supposed to work with no bugs or failures. Basically,

these processes check whether or not the system meets its requirements and specifications. The

difference between the two terms is as follows: in validation we’re checking to see if we are

building the right system, and in verification we’re checking to see if we’re building it in the

right way. In other words, in validation we’re checking the user’s “requirements”, and in

verification we’re checking if the “specifications” derived from those requirements are

implemented correctly [10].

There can be a lot of uncertainty and vagueness in the process of determining if a model is

“good”. In the modeling process, the most controversial step is evaluating a model with no

uncertainty. Philosophical viewpoints can include differences that can lead to confusion. The

central concern is usually validation, which is linked with terms like “verification”,

“qualification”, and “confirmation” that are trying to ensure that “validation” is achieved in a

3

proper context. Some modelers use the term “validation” which means the model meets its

performance requirements and is acceptable, while other modelers use the term “evaluation” to

avoid the use of the term “validation” [11].

The term “verification” is a wide-ranging term that includes all approaches needed to show the

system possesses specific properties. That may include a simple test case that proves a limited

fact that the system will accomplish a certain result. The term “verification” has been used to

increase the systematic and elaborated mathematical techniques to establish that the system

possesses some specific properties. These properties may be a set of abstract specifications

which include general terms like safety, liveness, and/or termination and which cover the

implementation of the system’s specification or the correctness of realizations. There are

different forms of verification. One of them is “formal verification” which uses formal

mathematical languages [5].

If we take cyber-physical systems (CPSs) as an example, these systems have complex models

because of the integration of software, hardware, and physical components which may cause a

state explosion when modeling. In these models, formal verification is sometimes prevented by

state explosion, because formal verification must include all of the system’s concerns. It’s

important that any abstract model include all the important details to verify the system (or part of

the system) [13].

From the software engineering point of view, a CPS has specific functional requirements that

need to be validated to have a system accepted. But the non-functional requirements in our case

of building and testing the CPS are not less important than functional requirements because

we’re looking not only at functionality requirements for an accepted CPS, but we also want to be

able to trust the CPS.

4

Software and hardware components, along with operating systems, need better development

processes to improve the existing technologies. The software and hardware should be highly

reconfigurable, dependable, and sometimes certifiable as components and as fully integrated

systems, with respect to certain requirements. These complex systems should have

trustworthiness which may not exist in current cyber infrastructures. Testing “till all money runs

out” is not a smart strategy. Scientific and evidence-based methods are necessary to improve

reliability. So, new algorithms, models, tools, and methods are needed to incorporate validation

and verification of systems and software at the control design level [14].

Using formal methods for verification and validation in different kinds of systems has increased

and the power of using them has been demonstrated [2, 4]. In this work, we will work on using

formal methods for verification. Section 1.3 will illustrate more details.

1.3 Formal Methods

In control theory, to achieve stability, systems of nonlinear differential equations (complicated

dynamics) are used and must be shown to work not just theoretically, but also in practice.

Sometimes optimality, which might require meeting certain cost restrictions, for example, must

be shown, along with determining the paths of a stable system. In formal synthesis, a system’s

specifications, such as safety and liveness, as well as the system’s extensive requirements can be

specified using temporal logic for controlling simple systems like digital circuits or through

modeling with finite state graphs. The integral development of safety critical systems and cyber

physical systems increased the need for computational tools to validate more complex systems

derived from temporal logic specifications [12].

5

Formal methods can be used as development, specification, and verification tools in software and

hardware systems. Formal methods are mathematically based techniques. They use software

tools to implement systems that will meet their specifications accurately. Formal methods

provide clarity and simplicity and remove complexity, which is one of the main goals in the

system development process. Formal methods use formal verification schemes that ensure the

system must be correct before it is accepted, and this makes formal methods different from other

methods. All these reasons make formal methods highly trusted, and an excellent alternative to

replace or enhance existing verification tools [43].

As in [15], formal methods can be used for verification in different hardware/software

applications. Some examples include Ethernet switches, routers, security applications, and seL4

(OS microkernels) [15]. Many reputable high-tech companies such as NASA, Amazon, Intel,

AMD, and IBM, have used formal methods. NASA has applied formal methods techniques in

big projects like Unmanned Aircraft System (National Airspace System) and Air Transportation

System (Next Generation). Intel used formal methods for verification in projects such as cache

coherent protocol verification, Intel IA-64 architecture optimization, and iCore i7 processor

validation. IBM has used formal methods as well for verification of registers and power gates,

and for its IBM Power7 microprocessor [15].

There are several advantages to using formal methods, especially in industry. First, formal

methods are highly trusted; they demonstrate system correctness better than other methods.

Second, they have the ability to handle complex, very large problems and systems. Third, they

decrease the cognitive burden, i.e., they support tools that allow engineers to use methods that

are relatively easy to learn and apply. Finally, they can provide a big return on investment, which

is interesting to industrial companies who can see them as a method that can work for a wide

6

range of applications and problems with minimum effort and time [4]. On the other hand, using

formal methods has some drawbacks since it requires time and training to learn how to use them.

In order to apply formal methods, we need to model the system by translating it into an abstract

mathematical model and then developing a specification. This means describing a system’s

duties and properties using a formal specification language. We’ll illustrate specification

languages in more detail in the following section.

1.4 Specification Languages

Formal methods use formal languages, which are called specification languages. Specification

languages are used during requirements and system analysis, as well as during system design.

Specification languages provide a much better way to describe a system than programming

languages that are used to generate executable code for a system. They are not used to describe

the “how?”, they used to describe the “what?”. The importance of specification languages in

verifying program correctness follows from their ability to support proofs [16].

Understanding formal system syntax, semantics, and proof rules is required to apply

specification languages. A language is determined by the syntax and the semantics, while the

proof system is supported by the proof rules. Specifications are represented in the language as

expressions, and reasoning with respect to properties of these specifications is represented by the

proof system. We can stipulate designs of computing systems (hardware and/or software) using

specification languages or recommend requirements to the system, or formally describe a domain

[5].

7

A common essential assumption of many specification methods is that programs are modelled as

model-theoretic or algebraic structures which contain a combination of sets of data values along

with functions applied to those sets. This abstraction level agrees with the view that the

correctness of the input/output behavior of a program takes priority over all its other properties.

Specification should be able to allow a process of modification before implementing the

specification. This modification process results in an executable algorithm which can then be

represented by a programming language [16].

Specification languages have many useful features. They have a mathematically precise base

that gives them an accurate syntax and semantics. Also, specification languages support

abstraction, which simplifies the main properties of the system and helps developers create

better, clearer code.

Many specification languages such as Raise [17], TLA+ [18], Z [19], VDM [20], and B [21] are

used for modeling real world scenarios. In this work, we will focus on using the TLA+

specification language for verification.

Section 1.5 illustrates more details about TLA+. How is it defined? And why did we choose it?

1.5 TLA+

1.5.1 Introduction

TLA+ is high level modeling language that is used in modeling distributed and concurrent

systems. It is mathematically based and used to describe systems precisely. TLA+ can be used to

remove essential design errors that are hard and expensive to find and correct at the code level.

8

This section describes TLA+ based on work by Merz [3] and by Lamport [7]. It provides details

about TLA+ and its TLC model checker.

TLA stands for the Temporal Logic of Actions formulas. TLA+ was designed by Lamport for

describing and reasoning about distributed algorithms formally. He published his Specifying

Systems book [7] which defines TLA+ and shows how to use it along with all its supporting

tools. Lamport also introduced linear-time temporal logic, and designed TLA+ specifications to

be arranged in modules which can be independently reused.

In a quest for minimality of concepts, TLA+ doesn’t formally differentiate between

specifications and properties; both of them are written as logical formulas, while concepts such

as hiding of the internal state, refinement, and composition of systems are represented using

logical connectives of quantification, implication, and conjunction. In addition to its

expressiveness, TLA+ is also supported by tools like theorem provers and model checkers to

help a designer in developing formal specifications.

The following section will introduce the TLC model checker which we will use in our work.

1.5.2 TLC Model Checker

TLC is the TLA+’s model checker that checks the specification. It is where programs can be

executed and compiled and the TLA+ module can be verified and validated. This process

provides confidence that a model successfully imitates the intended system and thus that it is a

basis for more comprehensive designs, and, eventually, for implementations.

9

Designers need supportive tools while doing analysis. Simulation helps the designer complete

execution traces and helps in finding deadlocks or other unexpected behavior. Model checkers

and theorem provers are deductive tools that help in the formal verification of properties. TLC

model checker is extremely useful and powerful for verification and validation. For TLA+

models, TLC model checker can explore the state space of finite-state instances and compute

results. Besides the model, TLC needs a configuration file as a second input file for defining the

finite-state instance of the model to be analyzed, which states and which properties need to be

verified over that finite-state instance, and which of the model’s formulas represent the system

specification.

In the following chapters, we will work on many systems’ applications using TLA+ and its TLC

model checker.

1.5.3 Why TLA+

We decided to use TLA+ for many reasons. First, it possesses strong validation features which

are useful for many different kinds of applications/systems which we will illustrate in section 1.6

with more details. Second, it supports abstraction and works on the design level, which gives it

the ability to build a more precise system with more confidence. Third, it’s relatively easy to

learn. Forth, it has a powerful model checker (TLC). Fifth, it’s mathematically based and allows

you to specify the system and its properties. Fifth, we can use its PlusCal language mode that

looks very much like C. Sixth, we can check for safety and liveness properties, which are critical

properties for many systems. Finally, TLA+ has a powerful TLC model checker that can check

for specifications and supports overall system analysis.

10

In recent years, system designers have extended UML, originally designed to model software

systems, to mixed hardware-software systems where each component is a black box which

ultimately will be instantiated as hardware, software, or a combination. TLA+ can also been

extended to model systems of mixed hardware-software components, as explained, for example,

in [83].

1.5.4 TLA+ vs. Other Specification Languages

There are several different specification languages that had been used in industry. These include

Alloy [38], Microsoft VCC [39], B [21], Z [19] and TLA+ [18].

In comparison to Alloy [38], TLA+ is direct, simple, and does not require so many layers of

identifications in modeling nested structures. TLA+ is a more expressive language compared to

Alloy, whose expressiveness is limited. TLA+ supports high-level functions, and it’s a flexible

language when there is a need to edit the specification details, compared to Alloy, which is less

flexible and does not support some high-level functions like recursion. On the other hand, Alloy

Analyzer model checker is very efficient compared to TLC model checker and it has the ability

to handle important large analyses which TLC is unable to handle. Although Alloy Analyzer is

faster than TLC, it crashes, or hangs in some cases when analyzing larger systems.

In comparison to TLA+, VCC allows writing “ghost code” which is a superset of the C

programming language, but the downside of it is that it’s much more verbose than TLA+. TLA+

has its efficient TLC model checker that is able to handle huge state-spaces at a very good

throughput rate [4]. In addition it can efficiently use multiple cores instead of using single

11

memory like B, VCC, and Event-B model checker. TLA+ has an excellent feature called Trace

Explore that allows tracing every single state and finding the results for each state, which makes

tracing, finding, and fixing bugs much easier. In comparison to Alloy which has this same

tracing feature, it does work for systems with only a few steps or variables (small systems). In

comparison, TLA+ supports the liveness property (which means that something good will

eventually occur) better than any of the other specification languages. TLA+ is so powerful

because it is a very expressive language since it uses a mathematical formula [4].

In the following section we describe examples from the literature which show the use of formal

methods (especially TLA+) for verification of different system applications. This section

provides a literature survey of the use of formal methods to verify and validate different systems

applications. The sub section 1.6.2 contains a literature survey for modeling different systems

applications using the TLA+ specification language.

1.6 Related Work

1.6.1 Related Work Using Formal Methods

Using formal methods for verification has become more frequent recently because of the

efficiency, reliability, and quality of testing for finding errors and bugs that are hard to detect

easily. This section will illustrate work using formal methods for verification and validation with

the focus on the TLA+ specification language.

In 2006, Zafer et al. [23] applied the specification language Z to an automated train control

system for the specifications of critical components of the system. First, they modeled the static

12

components of the system using graph theory, then they described the entire state space by

integrating those components using Z notation. To model topology in graph theory, real topology

was transferred and then crossings, switches, and level crossings were formalized. Finally, they

interatred these components to define the entire interlocking system. They used Z notation to

describe formal specification of the system, and the Z/EVES tool to analyze the model.

One of the objectives of this research was to prove the power of formal methods and show how

to apply it to complex systems instead of only to simple systems. Another objective of this work

was to use Z notation at an abstract level to model the railway interlocking system. Even though

this work does not represent a real-world problem, it shows the power of applying formal

methods (Z notation in this case) to complex safety critical systems successfully and is a good

example for all researchers who are interested in applying formal methods. This research is

beneficial for the railway industry because it does not focus on a particular system, it focuses on

general concepts and principles of an interlocking system. They used Z notation for integrating

the system, formalizing graph theory, which was not an easy mission, and finally they analyzed

the specification using the Z/EVES tool.

In 2015, Afzaal et al. [24] worked on improving the wireless sensor and actor network (usually

“activator” term used instead of “actor” network). This field has been attractive to researchers

and has seen a lot of improvement in modeling recently. But still there is a need to work on big

challenges in this field because of the critical large-scale applications and the safety and security

critical aspects. In their work, Afzaal et al. designed a model for a Subnet Based Backup

Assigning (SBBA) algorithm that partitions the wireless sensor and actor networks (WSAN) into

subnets.

13

This work classifies critical and non-critical nodes in each subnet. Each critical node assigns a

suitable backup to observe the primary critical node and inter-actor connectivity is preserved

within the subnet. Also, in each subnet, a gateway node is selected to communicate with other

subnets and this gateway node assigns a suitable backup to observe the primary gateway node

and inter-gateway connectivity that is defined among subnets. In order to verify and validate the

proposed algorithm, they used the VDM-SL formal approach to analyze and do formal

specification of the SBBA algorithm in WSANs. First, they modeled a subnet of WSAN as a

dynamic graph and used VDM-SL to implement SBBA in a formal specification. They

successfully analyzed, verified, and validated the SBBA algorithm specification using the VDM-

SL toolbox.

In 2017 Kamali et al. [25] focused on self-directed vehicles in their search. They stated that

multiple autonomous vehicles will most likely be coordinated into platoons or convoys on our

highways and that this is likely to occur in the near future. So the behaviors of the autonomous

vehicles in platoons should be certified before deploying these platoons. This is not an easy

mission, and it needs more than current certification requirements.

This work showed how formal methods can be useful to analyze increasingly autonomous, new

systems. They represent the vehicle platooning as a multi-agent system where each vehicle

carries out “autonomous decisions” that will be captured by the other agents. They used formal

verification to guarantee that the safety requirements will never be violated by these self-directed

decision-making agents in vehicle platoons. They verified the individual agent's code using

formal methods. However, they didn’t scale it to the full system. Thus, they combined two

approaches because the primary verification of autonomous behavior was not captured by the

global system verification technique. This allows safety requirements verification of a model of

14

the system and the actual agent code used to set up the autonomous vehicles. They verified the

agent behavior using AJPPF, and they used Uppaal model checker to verify the real-time

requirements, where a system is represented as timed automata generated by a translation

algorithm.

In 2019 Rehman et al. [22] modeled and verified a smart office system. Because people spend 8

to 12 hours working in their office every day under normal circumstances, increasing

performance and efficiency of the employees is an important issue. The modeling of smart

offices supports visualizing and understanding of an office management system from many

viewpoints. The modeling and verification are done using UML diagrams, a formal specification

language VDM-SL, and automata theory. UML diagrams are used for behavioral and operational

models. In term of states, automata-based models are used to model the behavior of the system.

And finally, formal methods are used to achieve reliability, accuracy, and consistency of the

smart office system. For verification and validation of the model, they used the Vienna

Development Method and Specification Language (VDM-SL).

Figure 1 shows the system’s transaction flow from one state to another state.

In this work, they stated the behavior of the system using formal methods in a format of

mathematical notations. And then they used the VDM-SL toolbox to verify these mathematical

notations. The system properties are validated and verified using the VDM-SL toolbox to prove

the correctness of the model.

15

Figure 1: Activity Diagram for Smart Office [22]

1.6.2 Related Work Using TLA+

The examples above show the use of different specification languages for formal modeling. The

next examples focus on using the TLA+ specification language for verification and validation for

different kinds of applications.

In 2002 Tasiran et al. [8] worked on examining functional correctness during simulation,

formally analyzing simulation runs and guiding them towards coverage gaps automatically. They

verified the Compaq Alpha 21364 microprocessor’s cache coherence engine. This work was a

16

collaboration with Intel Corporation, Microsoft Research Center, and Compaq Systems Research

Center. Implementing a complex protocol on hardware and verifying the consistency using high-

level specifications is a process that is very labor-intensive and impossible to be completed in

practice. Hand-written test programs or random patterns simulation are the only existing tools for

this purpose. Usually, a hardware description language is used to describe the design and a text

document is used for high-level specification. During simulation, high-level specification is

checked for violations by a program. This approach is not enough for a number of reasons. First,

it is difficult to verify whether the specification is complete and consistent since it is informal.

Second, the code itself that is written for checking for specification violations may have errors.

Last, and most important, it is hard to quantify how well different features of the specification

have been discovered, and to guide simulation runs towards unmapped areas. In this work, the

authors used a formal language to write the high-level specification. In the implementation, they

mapped the related simulation steps to state transitions in the specification using TLA+. And

they used the TLC model checker to check the consistency of each state transition.

In 2006 Narayana et al. [6] used TLA+ with network protocols to check Denial-of-Service attack

(DoS) vulnerability. Many researchers have proposed formal methods for vulnerability analysis

and most current work focuses on security properties like correctness of authentication and

perfect forwarding secrecy. The challenge is how to apply these approaches to analyze more

challenging vulnerabilities like DoS attacks. In order to address this challenge, Narayana et al.

proposed using TLA+ for checking DoS vulnerability automatically with completeness guarantee

by developing new schemes to model attackers’ abilities for finding real attacks and avoiding

state space explosion while property checking. They successfully identified threats to IEEE

802.16 air interface protocols as their case study. They specified a network protocol using TLA+,

17

security properties to be checked, and an attack model. They used the TLC model checker to

check the whole protocol state space and to find any possible attacks. This method can identify

the attacks as well as faulty situations, and it can also guarantee completeness of the analysis.

They showed how using TLA+ and TLC help with protocol design and improvements such as

programming a modification or fix into TLA+ when a vulnerable design or fault is detected, then

re-running TLC for problem solving verification. This work represents a first step towards

checking network protocol vulnerability automatically with correctness and completeness

guarantees.

In 2010 Zhang et al. [3] used TLA+ to express time specification. They presented a pattern-based

method and introduced RealTimeNew which is a real-time module that contains commonly used

time pattern definitions. A general framework was presented to differentiate system functionality

with time constraints from the temporal characterizations. This method demonstrates the use of

TLA+ in verifying and specifying time-sensitive systems. The real time module RealTime had

been developed by Lamport to make time modeling applications easier to implement [7]. In

time-sensitive systems, this module is not enough because it cannot specify the time intervals

between actions, it only can specify the duration time of an action.

It is important to understand the difference between RealTime and RealTimeNew. The RealTime

module is designed to be used in specification composition, while the RealTimeNew module is

designed in to be used in a single specification, which means that it can be verified directly by

deductive verification or the TLC model checker. RealTimeNew also can then be applied to

more applications because it contains richer time patterns. The time formulas are divided into

four types: the time interval between actions, the time duration of an action, the advanced time

patterns, and time evolving. Zhang et al. used their module in a case study to demonstrate and

18

validate the module. The application used a simple answering machine case and they achieved a

good result.

Also, in 2010, Zhang et al. [1] proposed a method using TLA+ to specify programmable logic

controllers (PLC) systems formally. The framework of specification is generic. It separates the

description of the controller itself from the environment and the PLCs’ scan cycle mechanisms

are consistent with the controller’s structure. Specifications can be represented by a number of

replicated components. In [1] they showed that TLA+ structuring mechanisms help to obtain

well-organized, configurable, and clear specifications that they were able to verify using the TLC

model checker.

As a case study to demonstrate their approach, they picked a controller for firefighting

equipment in a ship dock. They used TLA+ for specifying the reaction cycle referring to the

PLCs’ scan cycle mechanism. A generic specification pattern was obtained per module that

differentiates between actions of the controller, the user, and the plant feedback. These different

modules are used to describe the overall system specification and the pattern is defined for a

concrete PLC. The dock fire-fighting system that is shown in Figure 2 is a system used to fight

fires that might happen at ship docks. The user controls the fire-fighting equipment and receives

information about the present operating state. The dock has two berths and two water cannons

that may be used only for firefighting. The pump supplies the cannons with water from a water

tank. Different components are connected by several valves, for example, cannon1 can only be

used for firefighting if both valve1 and valve2 are opened.

They successfully developed a format for the system specifications using TLA+, and

successfully verified their work using the TLC model checker, which analyzed the results in a

19

reasonable time compared to other commonly used methods. They also noted the potential to

apply their methods to additional real-time PLC system specifications in future.

Figure 2: The physical configuration of the dock fire-fighting system [1]

In 2019 Latif et al. [26] used UML to describe an automata model, along with formal methods to

propose a model for a smart parking system. The system represents smart objects that share

information within a network by sensing, communicating, and also sending this information to

additional IoT devices for analysis. They used UML based models to describe a real-world

parking system and to show the working flow of the system. Then they converted these UML

diagrams to an automated system using automata models which define the smart mechanisms of

the parking system. Their model is represented by states and transitions, where every state is

defined functionally and has a unique identity. Figure 3 shows the activity diagram for the smart

parking system. There are many models for many operations in this system, for example, search

shortest path towards empty slot, find free spaces, and car entrances and exits within a region.

20

Figure 3: The Activity Diagram of the Smart Parking System [26]

They used the formal specification language TLA+ to verify their proposed model and the TLC

model checker to capture the system behavior. They successfully integrated UML, finite state

automata, and the TLA+ language to provide proof of correctness, verification, and validation of

the proposed system.

In 2014 and 2015, Newcombe et al., who were working at Amazon, wrote an article [2] and a

more detailed paper [4] explaining why they were using formal methods (in particular, TLA+) at

21

Amazon. At Amazon, they write their own complex algorithms that often deal with more than 1

million requests/sec. Verifying the correctness of these algorithms is very difficult. In 2011

Amazon started using formal methods (TLA+ as a specification language) in place of other

verification techniques for many reasons, including:

➢ Formal methods are able to find bugs that cannot be found with any other technique used

to verify system designs.

➢ Amazon found that they could efficiently and routinely apply formal methods to complex

real-world software designs in applications such as public cloud services.

➢ They also found that mainstream software development is surprisingly feasible with

formal methods and returns a good gain on investment.

➢ Over the lifetime of a system, formal specification writing pays dividends.

➢ They were able to use TLA+ on 10 big complex real-world systems (as of 2/2014);

➢ Formal methods can precisely describe the abstract design and its abstract operating

environment.

➢ Formal methods can define correctness properties and specify what the system must do

by applying:

• Safety: which represents what the system is allowed to do. For instance, always;

all committed data is correct and present.

• Liveness: which represents what the system must finally do. For instance,

whenever the system gets a request, it eventually must respond to that request.

➢ There is a second language accompanied by TLA+ called PlusCal, which is closer to the

C programming language style but more expressive. It is used by Amazon’s engineers as

well.

22

Amazon implements many advanced distributed systems that process and store customers’ data.

To protect this data, Amazon depends on the correctness of an ever-growing set of algorithms in

the areas of consistency, replication, fault tolerance, auto-scaling, concurrency-control, and other

coordination activities. This challenge to achieve correctness in these areas led Amazon to adopt

formal methods. A significant value has been added by TLA+, because it prevents serious tricky

bugs from ruining production and also provides enough confidence and understanding to make

amazing performance optimizations without losing correctness. Table 1 [4] shows an example of

applying TLA+ to Amazon’s more complex systems. At Amazon, sometimes it is necessary to

verify not only individual algorithms themselves but also the interactions between algorithms.

Table 1: Examples of applying TLA+ to some of Amazon’s complex systems [4]

23

Amazon also evaluated other formal methods such as Alloy, which was not a good fit for their

kinds of problems, and Microsoft VCC, which is good for low-level C programs, but whose

abstraction features do not work well for verifying high-level designs. They also evaluated other

formal methods such as Event-B, Coq, and PVS but after all these evaluations, they found that

TLA+ was the best fit for their needs; it solves their problems and is simple to apply, simple to

learn, and flexible. And on top of that, the TLC model checker works very well.

In section 1.6.1 and 1.6.2, we discussed many examples of applying formal methods in general

and TLA+ in many different areas and applications, and we illustrated how useful it is to apply

formal methods to verify a system. As part of our work focuses on using TLA+ to verify and

validate different system applications, we will also discuss additional results in this area in the

following chapters.

24

Chapter 2: Smart School Building System

2.1 Introduction

In the previous chapter, we illustrated how formal methods are efficient in designing different

systems applications. We illustrated with many reasons why we picked TLA+ as the formal

specification language to use in our work. In this chapter we will show how we used TLA+ and

its TLC model checker to design a smart school building system. In the following chapters, we

will illustrate how we used TLA+ to design different systems applications.

In our work, we did not focus on just designing a system, we focused on having a “safe” system,

because we are dealing with human lives as part of our smart school building system. So safety is

a very essential quality feature that we made sure to achieve in our designs. Also, achieving

security is an important goal for us, since the secure system design will tend to increase the

probability of safety also.

In this chapter we first provide a literature survey about previous work on designing school

systems. Second, we provide an example of how to use TLA+. Then we will explain our work in

designing a smart school building system (version I) using UML, TLA+, and the system

validation using the TLC model checker. Finally, we will describe our work on the improved

smart school building system (version II) using UML, TLA+, and the TLC model checker. In

addition, we will show how the TLC model checker can find a security bug in the model.

2.2 Work Related to a Smart School Building System

In 2017 Pocero et al. [30] investigated improving energy efficiency in public school buildings.

They presented an IoT hardware infrastructure that provides real-time monitoring in the school

25

buildings. Their system addressed some requirements related to collecting energy consumption

and environmental data from school buildings, having a sensor network all around the school

building (inside and outside) to monitor human comfort parameters, and ensuring that the sensor

network used low-cost devices, that the IoT infrastructure would be extendable for new

improvements in the system, and that hardware modules would be interoperable with the

educational sector platform. Their design plan was based on an environmental comfort meter, a

power consumption meter, and a set of IoT nodes that communicate through IEEE 802.15.4 [44].

In 2015 Amaxilatis et al. [31] designed a platform that allowed actuation and monitoring in many

school buildings. This was based on research that was applied to a group of 12 school buildings

in Greece. They installed IoT devices with a goal of achieving a more energy-efficient

infrastructure and improved measurements in environmental parameters. They followed the

approach outlined in [30], developed many user interfaces to provide tools for both the

administrators and the educators, and applied their work to a real classroom in Greece.

In 2015 Borgan et al. [32] described an innovative methodology for energy management decision

making in school buildings. It promises energy efficiency and energy savings. The project, called

VERYSchool, was funded by the European Commission under their Competitiveness and

Innovation Program. Based on the ISO-50001 standard [41], VERYSchool demonstrated

effective energy action management and successfully connected many smart systems such as

smart control functions for lighting and HVAC, smart meters, energy simulation modeling, and a

complete energy action web-based navigator platform system. This innovative project had

significant positive energy, socioeconomic, and environmental impacts.

In 2011 Hirsch et al. [33] and in 2016 Veeramanickam et al. [34] illustrated the importance of

using IoT technology to create a smart campus for universities and to improve and support e-

26

learning. They also illustrated some of the challenges in applying this approach to an entire

campus.

A few researchers modeled smart school buildings which focused mostly on power management

and power consumption [30-32]. Others modeled a smart campus system [33,34] which focuses

on E-learning, mobile-learning domains, cloud learning, and an environmentally aware campus.

Our system is somewhat different due to differences between a university campus and an

elementary school.

Our goal is to have a smart school building system that is safe and secure. Safety means, for

example, having a smart building that uses IoT to connect sub-systems like smart lighting, smoke

detection, and HVAC systems together. Secure means, for example, having a smart building that

guarantees security for each student and employee in areas such as entering the system and

having a secure file for each student and employee.

As we mentioned before, we will focus on TLA+ in our work. To learn TLA+ syntax and how

to use TLA+ to solve problems, we used its tutorial [27] and we read the information in [5] and

[7] as well.

TLA+ is a high-level (at the design level, above the code or hardware) modeling language that is

used for modeling digital systems (including computer systems, algorithms, and programs). It

has many tools to check these models, including the TLC model checker, which is the most

important tool in TLA+. In order to model using TLA+, you need to think in a different way.

You need to simplify the system and think abstractly. Abstraction means simplifying by

removing details. We cannot get complex systems right without understanding them.

Abstraction helps us understand them, and TLA+ helps us understand abstraction. TLA+ can

27

specify high-level designs and algorithms. Specifications mean high-level models. Architecture

represents a high-level specification, higher than the code level. TLA+ specifications represent

the architecture, and we use TLA+ tools to debug this architecture. TLA+ was designed for

modeling distributed and concurrent systems [42]. It can find and correct hard design errors that

cannot be found by testing before writing the code or implementing the hardware. It is used to

check the design precisely. TLA+ can also reduce the code size. Using TLA+ to develop the

operating system OpenComRTOS in The European Space Agency's Rosetta spacecraft [28]

reduced the code size by a factor of 10, which is so crucial in such applications. We use TLA+ to

ensure that the system is “working right”, which means the system satisfies specific properties

(these properties represent conditions on individual executions). TLA+ considers the system

execution to be a sequence of discrete steps. TLA+ describes these steps as state changes. Some

people describe their systems using state machines [9] and TLA+ is an extremely expressive,

elegant language for describing state machines.

2.3 Example Using TLA+

In this section, we will illustrate an example using TLA+ in order to understand more details

about TLA+ and how it works. This is a method Lamport used to explain how TLA+ models the

states of a system [7].

TLA+ can be used to solve specific problems that might arise in daily life. Our first example is

simple but interesting challenge; if you are given a 3-gallon jug, a 5-gallon jug, and a water

faucet, how can you put exactly 4 gallons of water in a jug? The informal solution for this

problem is as follows: we start with 2 empty jugs (3 and 5 gallons), then we fill out the 5 gallon

28

jug with water, then empty into the 3 gallon jug, then we will empty the 3 gallon jug into the 5

gallon jug, then we will fill the 3 gallon jug and empty it again into the 5 gallon jug, so we will

have 5 gallons full and 1 gallon of water in the 3 gallon jug, then we will empty the 3 gallon jug

(which has 1 gallon of water in it at this level) into the 5 gallon jug, and finally, we fill the 3

gallon jug with water and empty it into the 5 gallon to get exactly 4 gallons of water in the 5

gallon jug. To solve this problem formally, we will use TLA+. TLA+ works on any problem by

defining a sequence of states (behaviors). Figure 4 shows the TLA+ specification of this

problem.

As shown in figure 4, we created a module called JugModule. In this module, we declared the

variables small (for the 3-gallon jug), and big (for the 5-gallon jug). We declared the initial state

formula (Init) to give initial values of zero for small and big. We declared (TypeOK) invariant

which represents a formula that asserts type correctness that is checked by TLC to be always true

(asserts that each variable has a reasonable value in our example). And then we declared each

possible step and had them all executed (one at a time) in the next state formula (Next) which

describes all permitted steps. In TLA+, we must declare Init and Next state-formulas in every

specification.

29

Figure 4: TLA+ Specification for jug problem

Figure 5: TLC Model Checking Results for JugModule problem

30

To check our module, we run the TLC model checker that computes all possible behaviors

allowed by the specification. It also checks type correctness, which means every reachable state

satisfies the formula TypeOK. Figure 5 shows the model checking results page in TLC with no

errors; 16 reachable states are found using behavior allowed by the spec as shown in the figure

under “States Found” column.

The following section illustrates a more realistic use of these tools. It explains how we specify a

smart school building using the Unified Modeling Language (UML) and TLA+.

2.4 Smart School Building Model

We capture the smart school system objects, sequences of actions, and system behavior using the

Unified Modeling Language (UML) [29] and TLA+ [7, 18]. UML is an informal object-oriented

modeling method. It provides different diagrammatical modeling techniques such as object

interaction diagrams, state diagrams, and object diagrams. It encompasses many diagrams,

presentation conventions, and notations that have emerged in the structured methods and object-

oriented domain. UML is defined as a set of graphical models that express different properties of

an object-oriented design. The two most important model types are the behavioral and structural

models [29]. In this work we use behavioral models which represent the dynamic behavior of the

system.

Modeling a smart system requires an integration of different sub-systems to have a complete

smart system. The verification and validation of such a smart system is not an easy thing to

accomplish. There are many methods for verification and validation. Using formal methods is

one of the ways welcomed by many researchers due to their effectiveness and the ability to

31

design almost bug-free systems. We have used formal specification of our proposed smart school

building model. We use the TLA+ specification language for this purpose. The system

automation relies on several different kinds of sensors. Using TLA+ allows us to represent all

system operations as in [35] which represents the smart school building system (version I), and

in [45] which represents the smart school building system (version II). In version II, we used the

TLC model checker to validate the TLA+ module and then to find a security bug in the module.

Our system is mainly for elementary schools which are of medium size (with average of 450

students) with the ability to be enlarged to become a big school (more than 600 students). The

reason we chose an elementary school is because this design is an initial design of such a system

and focuses on the overall basic smart school system design without too many complicating

details. We worked on achieving many system design goals such as having a “smart” system

which includes many sub-systems working together as one smart system, having a “safe” system

design, having a secure login system, and controlling the power usage in the building via

controlling the lights and the HVAC sub-systems.

The smart school building system has integrated sub-systems that work together to achieve the

design goals. The system has a secure login sub-system that requires the employee, student, and

visitor to enter a valid username and password if they want to enter the school building. These

usernames and passwords are given through the school district based on their own criteria which

may be based on the registration numbers, names, grades, ...etc. Once a person enters a valid

username and password, the main door will open automatically for him/her to enter. If the

username and/or the password is invalid, the login sub-system will give the person the option to

re-try entering them. The person will always have the option to contact the reception employee to

check if there is any problem in the login sub-system and, if so, to provide an alternate

32

identification method to let the person enter the school building once he/she has an identity

authentication. Once the first person enters the school building, the lighting and HVAC sub-

systems will automatically work. The lighting sub-system will work by taking the data of the

light outside the building via a light sensor. If the light sensor senses that its clear outside, the

sub-system will turn on the lights inside the building in a low_mode which means that the lights

will be reduced. While, if the light sensor senses that its cloudy outside, the sub-system will turn

on the lights inside the building in a high_mode which means that the lights will work using the

normal level of power. This smart sub-system is designed this way to control the power in order

to have efficient power consumption, which is one of the goals of our smart school system

design. (In practice there will be multiple subsystems, since different areas will have different

exposures to external light and therefore different lighting needs).

The HVAC sub-system will automatically start working once the first person enters the school

building, along with the lighting sub-system. The HVAC sub-system takes the input data from

temperature sensors inside the building. If the temperature sensors sense that the temperature

inside the building is 69 F or less, the HVAC sub-system will turn on the heat in the building. If

the temperature sensors senses that the temperature inside the building is 74 F or more, the

HVAC sub-system will turn on the AC in the building. This smart sub-system is designed this

way to control the power in order to have efficient power consumption, which is one of the goals

of our smart school system design. (In practice, there may again be multiple subsystems, as with

the lighting).

The fourth smart sub-system is the smoke detection sub-system. This sub-system is different than

the other sub-systems since it is working all the time (not only when there are people inside the

building). This sub-system takes its input data from smoke detection sensors which sense

33

smoke/fire in the school building and once they sense smoke, a fire alarm will be turned on and

all exit doors will automatically open to let all people to leave the school building immediately.

This sub-system works 24/7 to enhance safety in the school building. This smart sub-system is

designed this way to enhance safety in the school building, which is one of the goals of our smart

school system design.

We designed two models of this smart school building system. The initial design model of our

work (version I) was published in [35] and the improved design model (version II) was published

in [45]. The initial model [35] is described in section 2.5. The improved design model is

described in section 2.6.

2.5 The Initial Smart School Building Model (version I)

2.5.1 Unified Modeling Language (UML)

This section represents our designs using UML. UML stands for Unified Modeling Language

that is used to model the system’s abstract model. It used to capture system properties by

providing graphical notations [29]. Figure 6 represents the smart school system entities which are

the variables of the initial smart school model. The system inputs are taken from three different

sensors, the light, the temperature, and the smoke sensors. Also, the username and password for

anyone desiring entry is an input through the login sub-system. The system actions are

represented as outputs based on the inputs; temperature in the building, light brightness,

valid/invalid login, or smoke detection.

The activity diagram of the system is shown in figure 7. The figure makes the system easier to

understand by showing the sequence of actions. First, school employees, students, and visitors

34

enter the school. Each employee or student has a unique username and password. If they enter

the username and the password correctly, the main door will open for them to enter. Visitors

need approval from the reception employee to enter the building. In addition, if the visitor is

allowed to enter the building, the reception door only will open. In case the visitor is not allowed

to enter the building, all doors will remain closed. All sub-systems will start working

automatically when the first person enters the building. Otherwise, if there are no people in the

building, all sub-systems will be turned off. In the model designed initially, the temperature

sensor senses the temperature in the building and the system will automatically turn the heat on

in the building if the temperature is below 68 °F and will automatically turn the AC on if the

temperature is above 73 °F. The lighting sub-system will control the lighting inside the building.

If its cloudy outside, the lights will be turned on in the high_light mode, and if its sunny outside,

the lights will be turned on in the low_light mode. The lighting sub-system works in this way to

have low power consumption in the system. The smoke detection sub-system will sense the

smoke in the school building and in case there is fire or smoke, it will automatically send an

alarm and open all doors in the building for exiting to ensure safety in the school building.

35

Figure 6: Smart school building system inputs and outputs [35]

Figure 7: Activity diagram of the smart school building system [35]

36

2.5.2 Formal Specifications Using TLA+

The formal specifications for the initial smart school model are illustrated in this section. We

used the formal specification language TLA+ which lets us to represent all system operations.

Figure 8: SmartSchool module with variables [35]

Figure 8 shows the top module of our initial smartSchool system. The module has a set of

variables as shown in the figure. For example, user variable represents any person who may

enter the school building and it has three values (employee, student, and visitor). In this initial

model, the visitor does not need a username or password to enter the school, he/she needs an

approval from the reception employee in the school. Other variable examples in this module are

username and password which must have a unique value. These values are usually given by

aspecific criteria from the school district or the school itself based on the personal information of

each employee and student, that’s why they can’t be shown in the module with specific values.

The system invariants represent the strictions and conditions that the system must follow. In any

TLA+ module, we need to declare the invariants. For example, in this initial model the user must

have one of three values (1 for student, 2 for employee, and 3 for visitor). Also, a student and the

employee are not able to enter the school without having a valid username and password. Figure

9 shows the invariants in the module.

37

Figure 9: SmartSchool invariants [35]

The Init and Next functions are essential functions in a TLA+ module. As shown in figure 10, the

Init function gives initial values for the variables in the module. For example, the door variable

which represents the main door of the school building will be closed in the default case.

Figure 10: SmartSchool Init function [35]

38

Figure 11 shows the EnterSchool function. This function represents entering the school by the

employees and the students. This function takes the input as the type of user (1 for student, 2 for

employee) and the username and the password as well. The output is to open the doors for valid

users.

Figure 11: EnterSchool function [35]

Figure 12 shows the VerifyVisitor function. This function authorizes the visitors to the school. It

will open the reception door for valid users only.

Figure 12: VerifyVisitor function [35]

Figure 13 shows SetLight function. This function starts working once the school open its door for

the first person. It takes the input from the light sensor to determine the brightness of the lights in

the building.

39

Figure 13: SetLight function [35]

Figure 14 shows the SetTemptature function. This function takes the input from the temperature

sensor. The output depends on the temperature readings.

Figure 14: SetTemptature function [35]

Figure 15 shows the DetectSmoke function. This function takes its input from one or more smoke

sensors. The output of this function is to turn on the fire alarm and open all doors in the building

to let everyone in the building to exit immediately if smoke is sensed. This function enhances the

safety in the system.

Figure 15: DetectSmoke function [35]

40

Figure 16 shows the Next function. It is an essential function in any TLA+ module. It represents

the collection and execution of all functions to move to the next state in the system after

initialization. It describes the choices for the next-state action.

Figure 16: Next function [35]

Figure 17 shows the Spec function. This function is the last statement in the module and is

responsible for the main running of the system. That means it runs all system specifications.

These specifications will be verified using the TLC model checker.

Figure 17: Spec function [35]

2.5.3 TLA+ Model Analysis

We used the TLA+ toolbox to write the initial smart school building specifications. One of the

reasons why TLA+ is a powerful specification language is because of its powerful TLC model

checker as we mentioned before in chapter 1. We used the TLA+ toolbox to verify that the

41

systems’ specifications are correct and have no syntax errors. Figure 18 represents the parsed

model. As shown in the figure, there is a green button on the right corner which means that the

model is parsed correctly.

Figure 18: SmartSchool parsed model [35]

This model was not validated using the TLC model checker. Before using TLC to validate our

system, we decided to improve the model first. In [35] we published the version I model as we

mentioned before, and we published version II in [45] where it is shown to be validated using the

TLC model checker. Section 2.6 will illustrate the improved smart school model (version II).

42

2.6 The improved smart school model (version II)

2.6.1 Introduction

Smart systems have been getting more attention by researchers recently since they are very

useful and can make life easier. Smart systems contain functions of actuation, sensing, and

controlling in order to analyze and describe a situation and make decisions based on the available

input data to perform a smart action [47]. The challenge in these smart systems is to integrate

sub-systems or materials together to build a smart system that works efficiently [47].

We improved our previous smart school building system model in [35], adding more

requirements and new specifications. The improved model is better, more efficient, safer, and

more secure.

Here’s a list of the improvements in the new model:

➢ The new login system requires any person to have a username and password (even the

visitors) which enhances security and safety in the system.

➢ The login system allows a “re-try” option to login in case a username and/or a password

was wrong.

➢ To enhance safety in the system, we added “safe” invariant to the specifications to ensure

that the smoke detection sub-system works all the time even if there is nobody in the

building, and it sends a fire alarm immediately throughout the building and it can also

send an alarm to the nearest fire station.

➢ To enhance safety in the system, we added a surveillance camera (or cameras) in the

building.

43

➢ To enhance safety in the system, we added “surveillance” invariant to the specifications

to ensure that the surveillance camera or cameras work all the time even if there is

nobody in the building.

➢ The temperature thresholds were changed to reduce the power consumption in the

building.

➢ The capacity of the school is determined to be small to medium, a size preferable for

elementary schools. If we want to expand the school size, we will need to add more

sensors, cameras, and lights in the building.

➢ The improved model was validated using the TLC model checker.

➢ The results were published in ASTESJ. Advances in Science, Technology and

Engineering Systems as shown in [45].

In the following sub-sections, we will illustrate the improved model using UML and TLA+, and

we will discuss the results using the TLC model checker.

2.6.2 UML Modeling for the improved Smart School Building System

We again use the Unified Modeling Language (UML) to represent the smart school system’s

informal abstract model. It is one of the most common languages that has been used for this

purpose. There are many other modeling languages like SysML [48]. But for our current

informal modeling, since we do not need to use differential equations for what we are modeling,

the UML model is sufficient. UML provides graphical notations and captures the system

properties we are interested in. Figure 19 shows the use case diagram of the modified system

[45]. In this use case diagram, when the actors (employee, visitor, and student) enter the

username and password correctly to login to the system, the main door in the building will be

44

opened for the person to enter the building, and the actor will have access to all sub-systems in

the system.

Figure 19: UML Use case diagram of the smart school system [45]

Figure 20 shows the UML sequence diagram of the system. This diagram demonstrates the

sequence of actions which define how the system works.

Figure 20: Sequence diagram for the smart school building system [45]

45

These diagrams define the UML informal modeling of the improved smart school building

model. The following sub-section will demonstrate the formal specifications using TLA+.

2.6.3 Formal Specifications of the Improved Model Using TLA+

This section demonstrates the formal specification of the improved smart school system model.

We wrote the specifications using the TLA+ toolbox and we validated the model using the TLC

model checker. We used TLA+ to represent all the system’s operations.

Figure 21 shows the TLA+ definition of the revised smart school system. The figure shows all

the module variables that we will use in the specifications.

Figure 21: smartSchoolSystem module variables

smartSchoolSystem represents the top module of the system. As shown in figure 21, there are

many additional variables in this module. For example, camera variable represents the outside

camera that is supposed to be working all the time. It records whoever enters and leaves the

building to enhance the safety in the system. Another addition is the inside_temp variable which

represents the inside temperature of the building which is measured by the temperature sensor

and represents the input for the HVAC sub-system. Also, there is a variable called pc which

takes the value of the current state, and pc’ will represent the next state in the module to keep

track of the module states.

46

Figure 22 shows the Init function of the smartSchoolSystem module. The init function declares

all possible values of the system’s variables. For example, login_sys variable has the values of

“ready” when it is ready to take inputs from the users, and “reTry” when a user enters an invalid

username and/or password. Another example is the password variable which will have the values

of “correct” or “wrong”.

Figure 22: Init function

To enhance safety in the system, we set up two important invariants in both the specifications

and the TLC model checker. The safe invariant, which is shown in figure 23, guarantees the

continuous working of the smoke detection sub-system. In addition, we set up the surveillance

invariant to guarantee that the camera will also work continuously.

47

Figure 23: System invariant

Figure 24 shows the enter_school function which represents the login sub-system. This function

needs a correct username and password as an input. If the person who wants to enter the building

enters an invalid username and/or password, the function will give him/her an option to retry.

Figure 24: enter_school function

Figure 25 shows the smoke function which represents the output in case of smoke/fire to turn on

the fire alarm which can also be sent to the nearest fire station. In addition it will open all exit

doors to let all people to exit the building immediately for their safety.

48

Figure 25: Smoke function

Figure 26 shows the Light function. This function is responsible for controlling the lighting sub-

system. It starts working once the first person enters the school building. This function takes its

input from the lighting sensors and sends its output to the lights in the building. It is designed in

a way to reduce the power consumption in the building which is one of our design goals.

Figure 26: Light function [45]

49

Figure 27 shows the HVAC function. This function is responsible for controlling the HVAC sub-

system. It adjusts the temperature in the building. The HVAC sub-system will automatically

work once the first person enters the school building. The HVAC function takes its input from

the temperature sensor in the building and sends the output to the heating or AC systems based

on the temperature. If the temperature inside the school building is 74 °F or more, the AC will

work. If the temperature inside the school building is 69 °F or less, the heat will work.

Figure 27: HVAC function [45]

Figure 28 represents the housekeeping functions that are essential to write a good TLA+

specification for a system. The Next function is one of the functions that must be written in any

TLA+ specification. This function enables collection and execution of all functions in the spec

and moving to the next state in the system after initialization. The Termination function

guarantees the termination when pc reaches Done state. In TLA+, the Spec function is the main

function that is responsible to run all system specifications in the main execution of the system.

50

Figure 28: Terminating, Next, and Spec functions

Figure 29: TLA+ Parsed model for smart school system

After finishing writing the specifications of the system, we need to make sure that these

specifications are correct and have no syntax errors, which is the first verification step. The

51

TLA+ toolbox has the option to check the specification correctness by parsing the model. If the

model is parsed correctly with no errors, a green button would appear on the bottom right corner

in the TLA+ toolbox to verify that as shown in figure 29.

After parsing the model correctly, the next step is to validate the model using the TLC model

checker. This is a big step in the improved smart school model that we did not carry out in the

initial model. Sub-section 2.6.4 will illustrate the improved smart school building system

validation process using the TLC model checker.

2.6.4 Formal Verification Using TLC

As we illustrated above, we successfully wrote and verified the improved smart school building

system using the TLA+ toolbox. The model was parsed correctly. The next step is to validate our

work. We will use the powerful TLC model checker in order to validate our model. The TLC

checks the invariance properties of the finite state model of the specification [6]. It also checks

for deadlock and the invariants in the system. In our TLC model, we set up two invariants as

shown in figure 30. The safe invariant guarantees that the smoke detection sub-system will keep

working all the time to guarantee safety in the system. And the surveillance invariant guarantees

that the camera will keep recording all the time to enhance safety in the system as well. The

system’s safety is one of the main goals in our design. In this TLC model, we included the

deadlock option to make the TLC check if there is a deadlock in the specifications.

52

Figure 30: Safety invariants setup in TLC

After finishing setting up the TLC model checker, we clicked on a run button in the TLC model

to run the model and verify it. Figure 31 shows the TLC model checker while running.

Figure 31: TLC model checker while running

53

Figure 32 shows the smartSchoolSystem final result. The figure shows that the TLC model

checker ran the model, checked the invariants and deadlock, and parsed it. That means that the

TLC model checker verified and validated the smartSchoolSystem model successfully. This

proves our system’s validation which achieves the most important goal for our system.

Figure 32: TLC verification model

2.7 TLC Finds Security Break

As we mentioned before, one of our goals is to design a smart school that is safe and secure. We

designed the improved smart system and validated our module successfully using the TLC model

checker as we have shown. But what will happen if a hacker decides to break the system’s

security and safety subsystems.

54

To check, we decided to test the system in one case where we break one of the system’s

invariant. As we illustrated before, there are two invariants in the improved smart school module

as was shown in figure 23. One of the invariants “surveillance” guarantees that the camera in the

school building should be “on” all the time to record everything happening in order to achieve

safety in the system. The invariant was:

surveillance == camera = "on"

We decided to run a case of breaking security by turning the camera “off” when the light

function, which is responsible for the turning the lights on in the school building once the first

person enters the building, started to work.

The modified light function is shown in figure 33. The modified statement is in line 179.

Figure 33: the modified Light function that turns the camera off

55

We decided to run the TLA+ toolbox to check if it will throw an error for breaking the

“surveillance” invariant but Surprisingly the module was parsed correctly with no errors.

Then, we ran the TLC model checker to see if it would validate the system. The TLC model

checker throws an error as shown in figure 34. The figure shows that the TLC checker produced

a message on the upper right side of the window that says, “invariant camera = “on” is violated”,

and in the bottom right side of the window it shows the error-trace tool that the TLC model

checker has and allows us to trace the error. TLC also highlighted the states that were never

visited due to the invariant violation which are in this case are the HVAC and the Termination

states.

This demonstrates that the powerful TLC model checker can find errors and bugs which may be

parsed correctly using the TLA+ toolbox but cannot be parsed through the TLC. The TLC model

checker can find the security and safety breaks in the system.

Figure 34: TLC model checker found the security hacking error

56

2.8 Conclusion

This chapter demonstrates the smart school building model. The system has many sub-systems

that are integrated together to work as one smart system. There is a login sub-system, a smoke

detection sub-system, an HVAC sub-system, and a lighting sub-system. The model shows in

detail how each sub-system works and how we achieved the intended goal that we mentioned in

section 2.6.1 for our system. We started by modeling an initial smart school system (version I)

and published it in [35]. Then, we improved our work with new specifications and a new

improved model (version II) which was published in [45].

In this work, we used formal methods to validate our design and to make sure there are no errors.

In the design, the informal model was designed using UML. The specifications were written,

verified, and the system’s behavior was captured using the TLA+ toolbox. The final model was

validated using the TLC model checker.

In this design a failure may still happen. For example, if we simulated the design and built the

school from this model, we could have a failure in the lighting system because in practice we

will need a light sensor in each room. But our simplified design assumes that the light will be

the same in the whole building. In addition, many sensors will be needed throughout the building

especially for larger school sizes. This design is an initial and general design to show and

explain our methodology, details such as the more complex lighting system would be needed in

the final design.

To enhance security and safety in the system, the system requires each person who enters the

building to login by entering a valid username and password. To enhance the safety as well, the

smoke detection sub-system is working all the time. In addition, we added a surveillance camera

that records everyone who enters and leave the building. To control the power in the system, the

57

lighting sub-system will use natural light when possible to reduce the power consumption in the

building. In addition, the way the HVAC sub-system works will reduce the power consumption

in the building since it controls the heat and AC systems and turns them on only when necessary

based on the temperature inside the building.

We ran a security hacking case in this model, which consisted of breaking one of the system’s

invariants. The hacking action was turning the camera off when turning on the light in the

building. The modified module ran correctly through the TLA+ toolbox but the TLC model

checker found the security break and threw an error. This showed that the TLC model checker is

powerful and able not only to validate TLA+ modules, but also to find errors and bugs in the

system that are hard to find, especially in the cases of security and/or safety errors in the system.

58

Chapter 3: Automatic Dependent Surveillance – Broadcast (ADS-B)

3.1 Air Traffic Control Surveillance

In Air Traffic Control (ATC), surveillance is very important. It determines the location of aircraft

accurately and reliably, which directly influences the aircraft required separation distances as in

the separation standards, which affects how to utilize a given airspace efficiently [49].

Where there are no electronic surveillance systems, ATC must rely on pilots reporting their

positions verbally. This results in requiring a relatively large separation distance between aircraft

because of the estimated position uncertainty and the information timeliness. In contrast, where

there is a reliable accurate electronic surveillance system and the aircraft positions are reported

more often, there will be more efficient use of airspace along with a safe higher density of

aircraft. Also, this will allow aircraft vectoring for reasons of safety, efficiency, and capacity

[49].

As explained in [49], ATC surveillance helps in closing the gap between ATC expectations of

aircraft movements based on instructions or clearances issued to pilots, and the real trajectories

of these aircraft. This means that ATC needs to provide surveillance or “blunder detection” as an

important safety function when expectations are not matched.

There is a demand for airspace users to have increased flexibility. This achieved by reducing

fixed routes flying restrictions which requires improving the navigation capability on aircraft. At

the same time, accurate surveillance is needed to help in the resolution and detection of any

potential conflicts related to the flexible use of airspace, which is likely to create a more dynamic

environment.

59

An accurate surveillance system can be used as a base for automatic alerting systems. Using the

ability to actively track aircraft will alert the ATC when an aircraft is detected deviating from its

assigned route or altitude, or when there is a conflict in predicting the aircraft’s future position.

An accurate surveillance system also supports minimum area danger warnings, safe altitude

warnings, and other alerts.

Surveillance updates flight plans, improves future waypoints estimations, and removes the

workload for pilots when they have to provide voice reports when they reach waypoints.

The most important function of a surveillance system is to periodically provide an accurate

estimation of the altitude, position, and identity of aircraft. There will also be other requirements

of the system based on the ATC applications meant to be supported by the surveillance system.

Here is a list of parameters that may characterize a surveillance system [49]:

1. Coverage volume, which represents the airspace volume when the system works to

specification.

2. Accuracy, which represents a measuring difference between the true and estimated

aircraft position.

3. Integrity, which represents a clue that the aircraft’s estimated position is within a declared

containment area of its true position. Integrity contains the concept of generating an

alarm if this ceases to be the case, in a defined time to alarm. Also, integrity may be used

to indicate if the system operates normally.

4. Update rate, which represents the rate of the updates of the aircraft’s position relative to

other users.

60

5. Reliability, the probability within a defined period that the system will remain operating

to specification. This is called continuity sometimes.

6. Availability, which represents the total operating time percentage while the system is

executing according to specification.

When designing an ATC surveillance system, we need to consider other issues such as:

1. The ability to identify targets uniquely.

2. The loss of surveillance impact of individual aircraft in both the long term and the short

term (few seconds).

3. The loss of surveillance impact over an extended area.

4. Applying emergency procedures or backup in cases of ground system failure or of

unexpected aircraft events.

5. The ability to operate to specification with the traffic density expectation.

6. The ability to work in harmony with other systems like the Airborne Separation

Assistance Systems (ASAS) and the Airborne Collision Avoidance Systems (ACAS).

7. The ability to gain Aircraft Derived Data (ADD).

8. The interaction between navigation, communication, and surveillance functions [49].

3.2 Surveillance Technologies

Knowledge of the aircraft position is crucial to an Air Traffic Controller in providing most air

traffic services. A certain knowledge of the aircraft position is necessary to provide separation

services. Knowledge of the aircraft position is referred to as surveillance. Pilots can provide

61

position reports which then provide aircraft position knowledge to a controller. However, scope

for misunderstanding errors, the infrequent updates, and the inherent inaccuracy mandate huge

spacing in between aircraft in order to maintain safety. This is called a procedural separation

technique.

Currently there are four main classes of surveillance technology to support air traffic control

services — PSR, SSR, MLAT, and ADS-C [49]. These are described in the following sections.

3.2.1 Primary Surveillance Radars (PSR)

Figure 35 shows how PSR uses the plane’s radio waves reflection to detect presence of planes. It

supports the controller with a trustworthy, accurate plan view on-screen of the position of aircraft

in real-time. The antenna of the radar which usually rotates at 5-12 rpm emits a pulse of radio

wave. When it reaches an aircraft, the wave will be reflected and some of the energy will be

returned to the antenna [50].

The radar uses the elapsed time between reception and transmission of the reflection to

determine the position of the aircraft. The aircraft direction is the same as the direction that the

narrow beam antenna of the radar is facing [49].

The polar coordinate system is used by the PSR output data. It provides bearing and range of the

targets found based on antenna position. The slant distance from the antenna determines the

range, not the horizontal distance [50].

62

Figure 35: PSR Principle of Operation [49]

Table 2 [49] shows the strength and limitations of PSR.

Table 2: Strength and Limitations of PSR [49]

63

3.2.2 Secondary Surveillance Radar (SSR)

Figure 36 shows the SSR which contains two elements, an aircraft transponder and a ground-

based receiver/interrogator. The aircraft’s transponder responds to interrogations from the

ground station, and this enables the aircraft’s range and bearing to be determined by the ground

station [49]. SSR not only measures and detects the bearing and range of aircraft, it also requests

further information, such as altitude and identity, from the aircraft itself [51].

Military Identification Friend or Foe (IFF) systems evolved the development of SSR and allowed

some services for civil aviation such as the use of the Mode A/C. It has been significantly

developed since then to include the Mode S service. The SSR frequencies of 1090 and 1030

MHz continue to be shared with the military. Most of the times PSR is co-located with SSR,

usually with the SSR mounted on the PSR antenna [49].

Figure 36: SSR Principle of Operation [49]

64

Table 3 [49] shows the strength and limitations of SSR.

Table 3: Strength and Limitations of SSR [49]

3.2.3 Multilateration (MLAT)

MLAT is a system used to calculate 2D or 3D positions using aircraft transponder transmissions.

Figure 37 shows the Transponder MLAT Principle of Operation. MLAT is an important system

that is used in large airports as an important identification and surveillance system. A number of

measurement stations (e.g., 15-20) make up a typical MLAT system which will be capable of

time-tag, receive, and transmit, replies, and squitters to the Central Processing Station (CPS)

over a Local Area Network (LAN) in the airport. Furthermore, one or more Reference

Transponders whose basic function is to transfer Mode S “squitter” signals (hence the Squitter

Generation Unit name) allow monitoring and synchronization of the whole system. The times-of-

65

arrival of squitters/replies because of the Reference Transponders, equipped vehicles, and SSR

equipped aircraft are forwarded to the Central Processing Station (CPS) where the mobiles are

located by multilateration algorithms. Due to the airport traffic increasing (particularly on

channel 1090 MHz), both the robustness to interference and the MLAT resolution/accuracy have

to be improved without the number of MLAT stations increasing too much. The “non

transponder device” and the SSR Mode S transponder has the same main functionalities with a

smaller cost, lower power, and with no “flyability” certification. The total MLAT position error

is usually below 7.5 m for 95% of time, as given in [49][52][53][54].

Figure 37: Transponder MLAT Principle of Operation [49]

66

Table 4 [49] shows the strength and limitations of MLAT.

Table 4: Strength and Limitations of MLAT [49]

3.2.4 Automatic dependent surveillance (ADS-C)

Figure 38 shows the ADS-C system. ADS-C supports an exchanged agreement between the

aircraft and the ground system using a data link, specified under ADS-C conditions. ADS-C

reports these conditions and determines what would be initiated, and what information would be

included in the reports. To determine its velocity, position, and other data, the aircraft with ADS-

C uses on-board navigation systems and reports this data to the in-charged air traffic control

center [49][50].

Reports with ADS-C are sent by point-to-point VHF data links or satellite. Service providers are

typically providing the data links. There is a transmission fee for each message that airlines

67

borne most of it, which makes using ADS-C for more than (10-15 minutes) between messages is

a reluctance. There is a limitation of using HF datalink sometimes, just when there is a reduced

performance. With ADS-C the ground systems and the airborne aircraft negotiate the conditions

under the aircraft reports submissions (i.e., event reports, periodic reports, emergency reports,

and demand reports). When the ground system has received the reports, these reports are

processed to track the aircraft using the ATC display as the same as surveillance data gained

from SSR. ADS-C is normally used in remote and oceanic areas with no radar, and therefore it is

mostly fitted to aircraft with long range air transport. The aircraft avionics picks VHF

communication when it costs less with improved performance. At other times, when the aircraft

is over the ocean, satellite data-communications are used. Typically, transmitting messages

happens infrequently (~ each 15 minutes). a “figure of merit” value is accompanied by the

positional data which indicates the accuracy, not the integrity value [49].

Figure 38: ADS–C Principle of Operation [49]

68

Table 5 [49] shows the strength and limitations of ADS-C.

Table 5: Strength and Limitations of ADS-C [49]

3.2.5 Automatic Dependent Surveillance – Broadcast (ADS-B)

ADS-B is a new surveillance system designed to improve the air transportation system. It

supports foundational technology for developments related to (ATM) Single European Sky Air

Traffic Management Research Program (or SESAR) and Next Generation Air Transportation

System (NextGen). NextGen indicates the effort that the U.S. Federal Aviation Administration

(FAA) is making to change the ATC system to service larger airplane volume more efficiently.

SESAR in Europe is making a similar effort [55].

69

ADS-B uses transmissions from aircraft to give geographical position, positional integrity

measures, 24-bit aircraft address, flight identity, velocity, pressure altitude data, and other

information which has been determined by airborne sensors [49]. Then, the ground receivers

transmit that data to cockpit and controller screens which display on aircraft included with ADS-

B avionics [56].

ADS-B is certified and developed as a workable low-cost replacement for typical radar. ATC is

allowed to control and monitor airplanes with greater accuracy, and it covers a much larger

percentage of the earth’s surface, much greater than when using ADS-B. For example, large

expanses of Hudson Bay in Canada and in Australia do not have any radar coverage currently,

but these are now apparent on ATC screens after the replacement of ADS-B receiving stations.

For SESAR and NextGen, ADS-B is one of the best underlying technologies in the ATC plan

transforming from the current surveillance radar to surveillance using satellite-based the global

positioning system (GPS). Furthermore, the FAA declares that ADS-B will be the cornerstone

for the transformation, bringing the reliability and precision of satellite-based surveillance

technology to the nation’s skies [55].

3.2.5.1 How ADS-B works

ADS-B uses a combination of transmitters, receivers, and satellites to provide both ground

control personnel and flight crews with very specific data about the speed and location of

airplanes in the area as shown in figure 39. There are two aspects to ADS-B from the airplane

perspective. The transmitting airplanes send ADS-B Out signals to receivers which can be other

70

airplanes or located on the ground. These signals travel from transmitter to receiver as a line-of-

sight. Then the ATC ground stations receive these ADS-B Out signals to display the traffic to air

traffic controllers. Also, other airplanes receive ADS-B Out signals if they are nearby the

transmitting airplanes. After the receiving airplane receives the ADS-B signals, the lateral

position (longitude and latitude), the transmitting airplane flight number, altitude, and velocity

are given to the receiving airplane pilot on CDTI, a Cockpit Display of Traffic Information. The

ADS-B received signal known as ADS-B In. The maximum range between the receiving and the

transmitting and airplanes is more than 100 nautical miles (nmi), which allows the CDTI to

display both far and near traffic. Navigation satellites send accurate timing information that lets

airplanes equipped with GPS receivers or a global navigation satellite system (GNSS) define

their own velocity and position. The ADS-B Out equipped airplanes broadcast accurate velocity

and position to the ground ADS-B receivers and to other airplanes using a digital datalink

(1090 megahertz) as well as sending other information, such as the emergency status and the

airplane’s flight number. The ADS-B receivers which are installed on other airplanes (i.e., ADS-

B In) or integrated on the ground into the ATC systems provide users with a precise description

of real-time aviation traffic. In contrast to traditional radar, ADS-B works on the ground and at

low altitudes which makes it able to be used to monitor the traffic on the runways and taxiways

of an airport. In remote areas with limited radar coverage or no radar coverage, ADS-B is also

effective [55].

71

Figure 39: ADS–B Principle of Operation [49]

3.2.5.2 The benefits of ADS-B to airlines

With appropriate operational procedure readiness, and airborne and ground equipage updates,

ADS-B may support airlines with many benefits, including:

1. Safety:

ADS-B provides the aviation industry with the capability to improve or maintain existing

safety standards along with increasing system capacity and efficiency.

72

• ADS-B develops flight crews’ situational recognition significantly because they are

aware of their relation to other airplanes.

• It gives a common real-time surveillance picture in sharing data quickly when

participating airplanes are deviating from their allocated flight paths.

• It offers more commonly shared and accurate traffic info. This makes all users have a

common operational picture.

• It provides more timely surveillance and accurate information than radar. ADS-B updates

the information more frequently than radar.

• It displays both ground and airborne traffic.

• It allows much greater margin in implementing conflict resolution and detection than

what is available with any other system. This happens because it provides high accuracy

with an effective range of more than 100 nmi.

• It immediately and clearly indicates changes such as when conflicting traffic accelerates,

turns, climbs, or descends.

• ADS-B In applications can give automatic traffic warnings or callouts of imminent

runway incursions.

2. Capacity:

ADS-B can provide a fundamental increase in the ATC system number of flights that it

can accommodate. Many more airplanes can use a given airspace at the same time if

separation standards are decreased, and the increased accuracy of ADS-B enables

significantly reduced separation standards along with providing safety. Not only does

ADS-B increase the integrity and accuracy of the position reports, but it also increases

73

the frequency of the reports, providing a better understanding of the air traffic

environment on the ground and in the air.

ADS-B also:

• Improves arrival precision to the metering fix along with increasing runway capacity.

• Helps sustain runway approaches by using cockpit display of traffic info in minimal

visual weather conditions.

• Allows using the same runway for more airplanes by enhancing visibility of all

airplanes in the area.

• Compared to current procedural separation, it allows 5 nmi of separation in (NRA)

non-radar airspace, and in radar airspace it allows a potential reduction of separation

from 5 to 3 nmi.

3.2.5.3 Equipment required for ADS-B

Special equipment is needed both on the ground and on board airplanes to receive and transmit

ADS-B signals.

Airborne components for ADS-B Out: A GNSS (Global Navigation Satellite System) with

associated antennas and receiver on board allows the airplane to process and receive GNSS

satellite signals to send the airplane’s velocity and position. The velocity and position

information are received by the ATC transponder that creates ADS-B Out messages and the ATC

antennas broadcast them.

Airborne components for ADS-B In: An airborne collision avoidance traffic/system alert and

associated antennas and collision avoidance system unit are used to receive the ADS-B Out

74

message from a target airplane. Then this target airplane information is processed and sent to a

cockpit display of traffic info (CDTI) for display to the flight crew. Other airborne systems that

could be affected based on the ADS-B In application requirements include control panels, flight

management computer, electronic flight bag, associated wiring, and displays.

Ground components: The ATC system must have ADS-B ground stations in order to receive

the airplanes’ ADS-B Out messages. ADS-B ground stations contain an ADS-B antenna receiver

with a clear view toward the horizon, power supply, an ADS-B receiver, physical and data

security, and a communications link (terrestrial or satellite) [55].

Table 6 [49] shows the strengths and limitations of the ADS-B system.

Table 6: strength and limitations of ADS-B system [49]

75

3.2.5.4 ADS-B Critical issue

ADS-B has a critical issue in requiring ADS-B avionics which include GPS or a similar system

in practicing aircraft. While a lot of airliner manufacturers manufacture aircraft with ADS-B out

avionics, there still a need for equipping a large legacy fleet. In different areas of the world, this

situation is different. Some countries have rapidly growing new airliner fleets, and the ADS-B is

fitted in the new aircraft. In other countries, huge numbers of legacy aircraft stay unequipped. In

different aviation segments. the situation is also different.

Few regional airliners are equipped while large aircraft are typically being better equipped. And

an additional potentially problematic area is General Aviation (GA). The cost is low to equip the

GA fleet in some countries compared to other countries where it may be very expensive. Some

countries predict subsidies in assisting GA equipage. Some countries also predict the needed

fitment of ADS-B with/without subsidies. For many countries, timing of transition will be

critical to match aircraft equipage of ADS-B. However, the benefits of ADS-B equipage are

significant and might allow other surveillance systems to support delivery and be

decommissioned from air-to-air surveillance applications. The ADS-B application is most likely

supported by ADS-B avionics in all locations where the aircraft travels [49].

3.2.5.5 ADS-B: Economic Point of View

Aviation is a key sector in the economy. In gross domestic product (GDP), its contribution is at

least 3% in the US and UK. Currently, there is a three-month delay in publishing airline

76

performance statistics. However, aircraft now use ADS-B systems to broadcast their real-time

location. Since July 2016, Sam et. al. analyzed a flights global dataset [57]. First, they showed

that there is a possibility to use ADS-B to accurately estimate airline fight volumes accurately,

which is immediately available. Then, they explained that the knowledge of fight volumes in

real-time could be a main indicator for aviation’s immediate contribution to GDP in both the US

and the UK. Therefore, using ADS-B data might help moving towards real-time estimation of

GDP, this will equip policymakers to respond to shocks from this information more quickly [57].

The cost of deploying and maintaining surveillance systems is high. The cost not only includes

the ground based electronic equipment, but it also includes much more than that. When

examining the total cost of many systems, consideration of the following points is required:

1. Aircraft operator/owner costs:

In comparison to the total cost of surveillance systems, some consideration should be given such

airborne equipment requirements, that are considerable for some technologies. Some points are

noted when take under consideration for many ground-based surveillance technologies:

➢ Main radar surveillance does not need avionics that is deployed in aircraft.

➢ Multilateration surveillance be able to work with ADS-B avionics, Mode S, or Mode C. But

it works better when aircraft are ADS-B equipped or Mode S.

➢ Mode C based surveillance needs either Mode C or Mode S transponders on board aircraft.

Any aircraft equipage program associated cost (for retrofit as well as new production aircraft)

will be airframe dependent and highly variable. Hundredfold cost variations for fitting the same

avionics to various aircraft types are common. Aircraft type is highly sensitive for determining

the operating costs, fleet nature and size of operation but include:

77

• Costs of engineering support.

• Scheduled and unscheduled maintenance.

• Costs of flight crew training.

• Aircraft simulator upgrades costs.

For these reasons avionics costs related to each surveillance technology should be very FIR

(Flight Information Region) or ANSP (Air Navigation Service Provider) specific. However, the

aviation industry nature (in particular, international operations and cross FIR, and the prevalence

and fleet turnover of aircraft leasing) mean that it is unhelpful and impossible to refer the

avionics equipage total cost to any one ANSP, FIR, or surveillance system. It should be noted

that a few of the avionics needed to support surveillance, particularly, ADS-C and ADS-B, have

other applications and therefore benefits to operators.

2. ANSP costs:

ANSP costs include:

• Equipment purchase.

• Costs of installation and system testing.

• Project costs including procurement activities, planning, etc.

• Site costs.

• Operating costs.

Taking the above points under consideration, and using experience of the technologies, the cost

of surveillance to support TMA airspace and enroute and is shown in table 7. Table 7 supposed

that the selected areas are NOT “Greenfield” areas so do not include environmental clearance,

78

land purchase, road and shelter building costs. Also, Table 7 does NOT include avionics costs

[49].

Table 7: Surveillance technologies cost to support TMA airspace and enroute [49]

As shown in table 7, ADS-B is much more economical than the current radar system. It costs

around $6 M using SSR, $10-14 M using PSR, and only $380,000 using ADS-B to monitor 200

nautical miles of air space [49]. However, although ADS-B is cost effective, it has weaknesses in

security and safety.

3.2.5.6 Security and Safety of the ADS-B

Under the 2020 ADS-B mandate, the FAA has specified that almost all private traffic and

commercial traffic must be compatible with ADS-B through software and hardware updates by

79

the date of January 1. 2020 [58,59]. The ADS-B system is intended to replace legacy approaches

like secondary and primary radars by using global satellite navigation systems to make accurate

air pictures for air traffic management. The ADS-B security is a main concern due to

broadcasting detailed info about aircraft, their velocities, positions, and other data through

unencrypted data links, which makes it easy to launch message modification attacks,

eavesdropping, and jamming on aircraft in flight [60].

In the ADS-B protocol, the inherent lack of security measures has long been an important topic

in both the academic community and aviation circles. Because of the recent published proof-of-

concept attacks, this topic is becoming even more pressing, specifically with the deadline for

compulsory implementation in most airspaces. It looks like the solutions that are under

consideration now (and some of them, such as multilateration, are in use) can only be supported

by a rapid improvement of the current system’s security. For overall security (and maybe

privacy), completely new protocols and/or new message types are required. Work on generating

a long-term security solution in dependent surveillance air traffic should consider the impact of

both secure location verification and secure broadcast authentication approaches. To avoid hard

new challenges in the near future, this should include a detailed analysis of the expected traffic

density on today’s wireless navigation channels, and the possible impact of the message and

communication overhead of a new protocol [61].

After evaluating realistic ADS-B attacks systematically, there are different threats and factors

that impact the success of attacks. These attacks on ADS-B can be highly successful and

inexpensive. There are some insights from a real-world feasibility analysis using a controlled

experimental design that led to the conclusion that any decision process related to safety-critical

air traffic should not depend on the ADS-B system exclusively [62].

80

3.3 Our Work

3.3.1 Background and Related Work

As we explained above, security is a big challenge in an ADS-B system. Now efforts are ongoing

to add security to the existing ADS-B system. But it has been shown that security should be

implemented from the design level in any system [63]. Adding security later will likely result in

some underestimation of running security requirements.

The domain of ADS-B is not limited to 1090/978 MHz. In [64], the authors described a future in

which the communications backbone is the Internet Protocol for this system, even for aircraft

flying voice communication. for a long time, the radio was not the only point of communication

for an aircraft. Now an aircraft component subsystems ‘talk’ independently to route and

maintenance the operator planning departments using Aircraft Communications Addressing and

Reporting System [65]. To take this communication load, IP is also slated.

The goal of our work is to rethink the ADS-B system from a security point of view. Descriptions

of how ADS-B subsystems interact with each other in case of an attack exist [66].

Our methodology is to pick an attack, and a solution for this attack. Then, we will use a UML

use case diagram to informally model the attack and response, a UML sequence diagram to show

the sequence of actions needed, and a UML state diagram to show the states and what will

happen in each state. We will then formally model the system using TLA+ and validate the

model using the TLC model checker as the final step.

We chose UML [68] to informally model the system. Also, in the model, we don’t need too

many details in the design. The author in [67] modeled the Controller Area Network Bus (CAN-

Bus) using UML. However, reserchers in [69,70] used UML to create security parameters. So

UML can be used to model cyber-physical, software/hardware systems.

81

As we mentioned before, ADS-B system has many security issues that need to be solved,

including lack of authentication, lack of encryption, and other vulnerabilities. It is vulnerable to

some common attacks suck as ghost contacts, hybrid attacks, legacy systems, and physical access

[46]. In addition, ADS-B uses GNSS, which also causes some risks. Using GNSS in aviation has

many risks related to survivability, deliberate shutdown, jamming, and spoofing [46].

In this work, we picked TLA+ to show how a “built-in security” ADS-B system model will look

and behave. It will give a good vision for reserchers to model their own systems or improve the

current ADS-B models.

Section 3.3.2 will illustrate our work using UML diagrams to informally model ADS-B with

some possible attacking scenarios. The work in section 3.3.2 and section 3.3.3 was published in

[46].

3.3.2 UML Models for ADS-B security

For such a big and distributed system as ADS-B, it should be known that there is no single

solution to security problems. In [60], the authors tested the possibility of many solutions and

discovered that none of these solutions is without a loophole. In this section we will define UML

diagrams to deploy various cybersecurity tools which can be used alone or in combination to

ensure protection.

Figure 40 shows the use case diagram convention we use.

Figure 40: UML Use Case Diagrams Convention [46]

82

In Figure 41, multilateration is used to estimate the transmitter’s location by using the time delay

of signal arrival at multiple points (>2) [60]. Time stamps (on any message) are used to calculate

the Time Delay of Arrival (TDOA) of the signal. Transmission and reception comparison of

timestamps gives a rough idea of the travel time, so the distance can be roughly calculated. If

there are 3 receivers, estimated X-Y-Z coordinates can be back-calculated. This is close to the

SONAR equation.

If the GNSS transmitter’s reported coordinate is reasonably close to this back-calculated

position, the message sender allegiance can be confirmed. This multilateration could be used to

combat message modification, man-in-the-middle attack, ghost aircraft, and, if PSR was absent,

it can be used in providing a GNSS breakdown backup.

Figure 41 is the most important here and will be extended into a state diagram, a sequence

diagram, and a TLA+ specification. The figure shows a use case diagram of multilateration and

group verification that can protect against ghost aircraft injections. It matches the physical source

of the signal to the reported one.

In multilateration, using static ground posts as receivers has some weaknesses such as the system

might be fooled by the attacker. If the attacker knows these ground antennas’ locations, he/she

can customize his transmission time stamps to give a ‘false but accurate’ image to the

multilateration systems. One solution to this is trusted aircraft in the airspace as multilateration.

83

Figure 41: Use Case Diagram of Multilateration and group verification [46]

Figure 42 shows multilateration multi-point which may help with GNSS unreliable position

reports and spoofing. Group verification [60] is a type of multilateration executed in the air.

Aircraft already use TDOA to multilaterate each other which works exactly like the Traffic

Collision Avoidance System (TCAS). The algorithms and equipment are already available on

board, and this is matched with our philosophy in causing minimal modification.

Each aircraft use TDOA to locate each member of received ADS-B IN signals and then estimates

the other aircraft positions. If there is a difference in the calculated position from the reported

aircraft, a ‘suspect’ airframe will be identified, and all group members fly away from it. This

cannot be successful unless 100% of ADS-B implementation is achieved. Fixing location from

various sources is independent of GNSS. The fusion of this information can be another method

to know aircraft location. This will counter GNSS jamming and GNSS spoofing attacks.

84

Figure 42: Multilateration might help with GNSS unreliable position reports and spoofing [46]

3.3.3 TLA+ Work

3.3.3.1 Conversion

TLA+ allows writing formal specifications for different system applications. Here we will

include a TLA+ formal specification for the ADS-B system and its components with included

security protocols. Every system has states that could be defined by a set of specific values.

When the values are changed, the states will be changed too.

The whole system could be modeled as a superset of all potential state sets. We do not dig so

deep into the details of each state, we focused on “what” rather than “how”. Abstraction is a very

important skill which must be mastered before modeling in TLA+. While computer overhead and

economics are major factors in systems design, we ignore them while dealing with TLA+. Our

85

work can be presented as a guide to designing large systems in future with analysis comparison

and model-driven design extensions. GNSS is responsible for determining the aircraft position

and reporting it. Aircraft reports their position to (ATCS) air traffic control.

Aircraft get aerodrome and weather information, and, for preventing collision, aircraft share

position information with each other. All this communication occurs over the 978/1090 MHz

spectrum. So, there are some independent operations as well as some independent failure points.

These systems must be included in any formal method examination related to the ADS-B system.

The solutions provided for responding to attack are the work of other researchers as mentioned

before. In this work, we will model a security solution for the ADS-B system for achieving

security and safety by by designing a procedure, simulating it, and validating it.

TLA+ defines a system as a collection of states. A system can have many states, each defined as

a ‘step’, or a sequence of events, in going from one state to another. We developed a sequence

diagram first, which illustrates all the steps between states, and second, a state diagram which

illustrates the states themselves. After that, we draw a true TLA+ model.

We will apply this methodology as we did in [45] and [46] to GNSS spoofing issues and ghost

aircraft as shown in figure 42.

3.3.3.2 ADS-B response to GNSS spoofing and Ghost Aircraft

In the previous sections, we talked about security issues if an aircraft is either a fake contact or

reports untruthful position info about itself to ADS-B, by GNSS spoofing. Because ADS-B

envisions doing away with SSR/ PSR, we examined a few other backup systems that may be able

86

to physically locate an aircraft in case of unreliable GNSS reports. Figure 42 was the UML use

case diagram for this. Now, figure 43 will illustrate the sequence diagram for this situation.

GNSS reports any aircraft position to airplanes, which includes the ‘good’ and ‘bad’ airplane.

Then, all aircraft will report their position to ATCS. From all aircraft, a time delay analysis will

be performed on the signals, and this will be used in physical space to fix a location of the

aircraft. Also, aircraft will be able to do triangulation and multilateration on each other in

airspace in a ‘4-ship-cell’ for instance. Also, this fixes location for each other’s locations.

Figure 43: Sequence diagram: the aircraft’s true position reverse calculation that can be done using time-delay

analysis of transmitted signals [46]

87

GNSS reports position information which will be compared to the back-calculated position data

to determine which aircraft is reporting true information and which is not. Based on this, the

aircraft will be considered as “SAFE” or “UNSAFE”. Then, this information will be broadcast to

ATCS and all aircraft in the area. Now, we will explain figure 44 which represents the UML

state diagram for the system.

Figure 44: UML State Diagram of the system under Figure 4 conditions [46]

This assigns a one-minute interval foe each whole cycle repetition. This is arbitrary, and it will

be practically a decision made by radio traffic and economic factors. Due to the aircraft’s fast

movement in all 3 dimensions, this interval cannot be very long. Furthermore, when we say

‘ATCS’, this means a regional or local airspace manager. We do not mean a global central ATCS

system.

88

The next step is to use the 3 inputs, Figures 42, 43 and 44 to develop the TLA+ formal

specification and then the TLC model checker validation for the above response.

3.3.3.3 TLA+ Specifications

Now, we present the TLA+ specification for the attack response model which was sequenced in

Figure 43 and stated in Figure 44. The following will be a block-by-block explanation.

In this module, the variables are represented by the keyword “VARIABLES”, where “vars” is

the tuple of variables:

<objects, sender1, receiver1, sender2, receiver2, ATCS, Calculations, Report, pc >

In any TLA+ module, there is an “Init” function/state and a “Next” function/state. The variables

get their initial values In the Init state, while the Next state visits all possible next states. In this

module, the Next state is:

Next == checking \/ Timestamp \/ Report_ATCS \/ Verification\/ Terminating

In this module there are 5 different states. The ‘Checking’ state will be entered when the GNSS

sends positioning information to all aircraft, and then all aircraft report their locations to ATCS.

Figure 42 showed the group verification strategy. Airplanes triangulate each other with time

delay of transmission using timestamps on exchanged signals. This communication between

airplanes is represented by the ‘Timestamp’ state. When a new airplane that might be an attacker

89

appears, it should communicate with other trusted airplanes (even if only for TCAS) and sends

timestamps.

In the ‘Report_ATCS’ state, all airplanes report to ATCS as well with timestamps as a routine

process, and these timestamps could be used to verify the position from a ground point of view.

Then the system must enter the ‘verification’ state. In this state, the ATCS calculates the time

delay and radio directional on these signals and then compares them to the very first GNSS

location reports that were sent from all airplanes.

The ATCS will identify which airplanes are faithfully in their reporting position and which is

not. Then, ATCS will broadcast a reported result with a safe/unsafe field to everyone in the

airspace.

To prevent deadlock on the termination, the termination state allows infinite stuttering (when pc

= “Done”).

The Spec statement,

Spec == Init /\ [][Next]_vars

represents the specification of the entire system, where Init represents the starting state and

[]Next_vars represents Next state which need be true for the entire behavior with keeping all

variables unchanged.

Figure 45 shows the TLA+ ADSBsystem module (TLA+ specifications) of the system.

90

Figure 45: TLA+ model specification [46]

91

3.3.3.4 TLC Result

The TLC model checker is a TLA+ tool that is used to check the TLA+ module for any errors

and validate it. For our TLA+ ADS-B module, we ran the TLC model checker as shown in figure

46 and the result shows that the model is valid with no errors and no deadlock. Also, as shown in

the figure, the TLC model checker shows the number of times each state was visited in the TLA+

module, and which values changed to reach the next state.

Figure 46: TLC Model checker Validation for TLA+ spec in Figure 45 [46]

92

3.4 Conclusion

We described Air Traffic Control Surveillance and then we talked about each surveillance

technology; PSR, SSR, MLAT, ADS-C, and ADS-B. We talked about the strengths and

weaknesses of each one of these technologies. We compared them and found out that the ADS-B

is the best system to use because of its strength and cost effectiveness compared to the other

surveillance systems.

Although ADS-B is efficient, it has security issues that need to be addressed. The current

security solution is added to the system on the design level, but after the initial design has been

completed. This makes it harder to find a really strong solution for solving the security issues. In

this work, we highlighted the current solutions available, then we picked one of them to be

modeled, designed, and finally validated using UML, TLA+, and TLC model checker.

We used multi-level modeling to model a large system like ADS-B; the UML modeling (use

case then sequence then state diagrams), then TLA+ specification module, and finally the TLC

model. We showed how the system can be modeled and what could fail in it since what TLC

does is to go through each iteration and find any failure point. At this level, we can conclude that

our procedure in modeling the ADS-B and the ability to test the model is valid. It is always much

better to design security into a system at the beginning of the design process. Hopefully, our

method of using UML state diagrams, UML sequence diagrams, and TLA+ can provide the

reader with a practical and stable ADS-B model that is realistic and secure. Also, it can serve as a

model of how to design security into other discrete systems in the future.

There is a weakness in our model in that it is not detailed enough. A real ADS-B system model

will be much larger with all subsystems and security systems and many attackers. We only

93

modeled one attack in this work, a real-world model will have all security systems integrated and

all attacks defined and will test them in many ways to see where and when two security systems

collide. This is what will be our future work.

94

Chapter 4: Supervisory Control and Data Acquisition (SCADA) Systems

4.1 Introduction

SCADA is an abbreviation for Supervisory Control and Data Acquisition. SCADA systems are

used to control and monitor equipment or plants in industries such as energy,

telecommunications, transportation, oil and gas refining, manufacturing, and water and waste

control. These systems include the transfer of information between several Remote Terminal

Units (RTUs) and a SCADA central host computer or/and Programmable Logic Controllers

(PLCs), as well as the operator terminals and the central host. A SCADA system gathers data

(such as where a pipeline leakage has occurred), transfers this data back to a central site, and

alerts the home station about that leakage, carrying out necessary control and analysis, such as

deciding if this leak is critical, and presenting the data in an organized and logical fashion.

SCADA systems vary from a relatively simple SCADA system, such as an environmental

condition monitoring system of a small office building, to very complex SCADA systems, such

as a monitoring system for all the activity of a community water system or the activity in a

nuclear power plant. For monitoring purposes, SCADA systems usually use a Public Switched

Network (PSN). Today a lot of systems are monitored using a corporate Wide Area Network

(WAN) / Local Area Network (LAN) infrastructure. For monitoring purposes, wireless

technologies are being widely used now [72]. SCADA systems contain of:

➢ One or more RTUs or PLCs which connect with data interface devices, they used to sense

devices, control valve actuators and switchboxes.

95

➢ A communications system to transfer data between control units and field data interface

devices and the computers in the SCADA main host. The system could be telephone,

radio, satellite, cable, etc., or a combination of any of these.

➢ A main host computer server (sometimes called a SCADA Center, Master Terminal Unit

(MTU), or master station).

➢ A collection of standard and/or custom software (sometimes called Man Machine

Interface (MMI) software or Human Machine Interface (HMI) software) systems used in

providing the operator terminal application and SCADA central host, supporting the

communications system, and controlling and monitoring field data interface devices

remotely [72]. Figure 47 shows a classic SCADA system.

Figure 47: Classic SCADA System [72]

96

At first, the goal of a SCADA system focused on efficient and accurate process execution in a

specific location, for example, a manufacturing plant, without having an emphasis on securing

network information. Today, due to the increase in interconnectivity of networks and the remote

systems accessibility on a SCADA network, there is increased danger from different cyber-

attacks and vulnerabilities. It has become necessary to include adequate safety measures to

improve SCADA network security. General safeguards include strong cryptography, patch

management, restricted perimeters, and most importantly, control network and corporate network

separation, along with in depth security mechanisms. However, these security guards are

challenging to apply due to inherited security weaknesses in legacy systems as well as the high

risk of exploitation during real-time communication [73].

4.2 SCADA Protocols

Protocols are an essential part of SCADA systems, because they ensure efficient and correct

communication between the RTUs and the central station and also between RTUs. Since the

advent of SCADA systems, protocols have been generated [74] to optimize communication.

Normally, SCADA systems protocols are specifically designed for the SCADA system use.

Within the SCADA system, they ensure efficient communication, but at the same time they

represent a hacker’s possible attack points. There are a number of known SCADA protocols

attacks such as man-in-the-middle attacks [75] and also denial-of-service attacks [76]. Hence, it

is essential that the protocols have security features. Additionally, they should not be very

complex, because having more complex protocols will increase the risk of mistakes made in the

97

system. If the system has more decentralized control, it may also be essential to let remote

devices communicate directly with each other. Therefore, protocols have to also allow peer-to-

peer communication. It also has to be mentioned that the system state might not be consistent

when applying peer-to-peer communication, as pointed out in [77]. When designing a protocol,

the possible possession of per-to-peer capabilities thus has to be considered. Furthermore,

protocols may need to be capable to deal with smart grid security [78] and the Internet of Things

(IoT) [79]. Among all the most used SCADA protocols, there is no protocol that is obviously

better than the others. Moreover, these protocols might not even be suitable for working with

smart grids or the IoT as concluded by [78] where the protocol MQTT (Message Queuing

Telemetry Transport) is proposed as a potential alternative. The regularly used DNP3 protocol,

the legacy protocol Modbus, and IEC 61850 were tested in [80] and the authors concluded that

an IEC 61850 extended version could be useful more than the traditional SCADA protocols. In

[77], the authors found out through experiments that neither TCP nor UPD based DNP3 is quick

enough in meeting the delay requirements in the smart grids that are controlled by decentralized

systems.

4.3 SCADA Systems Security and Vulnerability

4.3.1 Introduction

SCADA systems have developed recently and are often based on open COTS products and open

standards these days. Most SCADA hardware and software vendors have supported Internet

Protocol (TCP/IP)/Transmission Control Protocol and Ethernet communications, and many of

them have used TCP/IP packets to encapsulate their proprietary protocols. All of this evolution

98

in having more open-based standards made things easier for the industry to integrate many

diverse systems, but, on the other hand, it increased the risks of less technical methods of gaining

access and less control of industrial networks [72].

4.3.2 Attacks Against SCADA Systems

In today’s corporate environment, all corporate communications are typically done using internal

networks, including SCADA. Therefore, SCADA systems are vulnerable to most of the same

threats that any TCP/IP-based system may face. Industrial Systems Analysts and SCADA

Administrators are often tricked into thinking that they are safe against outside attacks because

their industrial networks are using separate systems from the ones that the corporate network is

using. RTUs and PLCs are usually selected by a third-party vendor-specific protocols and

networks such as RS-485, RS-232, DNP, and MODBUS, which are usually done over satellite

systems, phone lines, spread and licensed spectrum radios, leased private frame relay circuits,

and other token-ring topology bus systems. This frequently gives a false sense of security to the

SCADA System Administrators since they assume a protection for these end devices using these

non-corporate network connections [81].

In an industrial network, security can be compromised in many ways in the system, and it is most

easily compromised at the SCADA control room level or host. SCADA computers logging out

the data to certain back-office database repositories should be with the back-end database

systems on the same physical network or have a path for accessing these database systems. This

means that there will be a path back to the SCADA systems as well as to the end devices and

eventually through their corporate network. When the corporate network is compromised, any

computer system or IP-based device can be accessed. To allow full-time logging, these

99

connections are open 24/7, which gives an opportunity to attack the SCADA host system using

any of the following kinds of attacks:

• A Denial of Service (DoS) attack can be used to make the SCADA server leading to a

shutdown condition (Loss of Operations and System Downtime)

• Deleting the system files on the server (Loss of Operations and System Downtime)

• Taking complete control of system or planting a Trojan

• Preparing for future take down by logging keystrokes from operators to get usernames

and passwords

• Logging any company-sensitive operational information for competition or personal

usage

• Deceiving operators or changing data points to make it seem that the control process is

not functioning and should be shut down (Loss of Corporate Data and Downtime).

• Modifying any logged information in a remote database system (Corporate Data Loss).

• IP spoofing: using the SCADA Server as a starting point to compromise and deface other

system elements within the corporate network [82].

In the following section, we will illustrate our work in SCADA system. We used informal and

formal languages to design the system and validate it. Also, we will run a security hacking case

in our module and show how to find it.

100

4.4 Our Work

4.4.1 Introduction

In this section we will illustrate our work in using UML, TLA+, and the TLC model checker as

an extension of work in [71]. That work focused on building a SCADA system. They did an

impressive job building a testbed using one of the University of Cincinnati’s labs. The testbed is

shown in figure 48.

Figure 48: The PLC/HMI Network and the HMI Output Screen [71]

The question is, what is the benefit of building this SCADA testbed and running simple

examples on it? Testing is the answer. SCADA systems are widely used in industrial processes

(fabrication, manufacturing, refining), as well as in infrastructure processes (oil and gas

pipelines, water treatment, power distribution and generation). Down time in these kinds of

systems may causes physical damage, profit loss, and even life loss. This means that, after

installation, some SCADA systems may have little to no down time. And when there is down

101

time, this time will not be used for security testing or system upgrading, it will typically be used

for system maintenance. The SCADA testbed is useful because a testbed is a precise model of a

real-world process and is reconfigurable and modular. With few hardware devices, it can

simulate a large network. Other important uses for the testbed are penetration testing and

vulnerability assessment which we will illustrate later.

In [71] the SCADA testbed was built so as to in ease the learning process by breaking up the

construction into many different parts. First the hardware was set up and then the latest version

of the firmware was installed. Specifically, an Allen-Bradley PanelView 5310 HMI and an

Allen-Bradley 1756-A7 PLC were used. After setting up both systems. Ethernet on a simple

LAN network was used to integrate them together. Next, a PLC basic program was installed

using Studio 5000 Logix Designer to show the connection. This setup is shown in figure 48. And

the final SCADA testbed network diagram setup is shown in figure 49.

The PLC is set up to provide the end user with as much data as possible. This is very helpful for

PLCs set up after installation where physical access is limited because equipment is in remote

locations. The PLC responds with the default configurations to service scans, ARP requests, ping

requests, and TCP port scans. This provides data including applications that run on the PLC,

MAC address, and the operating system of the devices. Furthermore, the PLC is hosting a

website as well that has data about the firmware version, program running, controller mode, fault

status, and controller status as shown in Figure 50. This valuable information could be used to

exploit the system internally using the MAC address or externally using the website itself.

102

Figure 49: Network diagram of final SCADA testbed setup [71]

Figure 50: Homepage of local server hosted by the PLC [71]

103

In [71], Pycomm was used to access the PLCs in the system. It is available at

https://pypi.org/project/pycomm/. This version compatible with Python 2.7 and has an ab-comm

module which can be interfaced with the Allen Bradley PLCs by the Ethernet/IP protocol.

They used one laptop to download the Pycomm software, plugged it into the switch, and then

connected it to the local network to communicate with the PLC. In a real production

environment, wireless connection or this type of connection is exactly how engineers would

communicate with their PLC controller.

They used Pycomm to write a code to do the following:

1) Use IP address to communicate with the PLC controller.

2) Read the word’s tag value.

3) Print that value.

4) Write a value to the PLC tag.

5) Close the connection.

As shown above, the authors in [71] built and tested the SCADA testbed and they ran a

dishwasher example using it. The following section will illustrate the dishwasher example in

detail. First, we used the dishwasher example as a basis for our work. Then we modeled it using

a UML state diagram, and a TLA+ specification module. Next, we used the TLC model checker

to validate our module.

https://pypi.org/project/pycomm/

104

4.4.2 Implementing a Dishwasher Example

4.4.2.1 UML Modeling

In this section, we will illustrate how we modeled the SCADA testbed dishwasher example using

the UML state diagram.

The dishwasher example sequence of actions as illustrated [71] were:

1. Open the soap solenoid for 4 seconds.

2. Open the hot water input valve for 5 minutes.

3. Open the washer impeller for 12 seconds.

4. Open the rainwater valve for 1 second.

5. Open the drain for 3 seconds.

6. Turn on the heat for 6 seconds.

We used a UML state diagram to show these steps as shown in figure 51.

Figure 51: UML state diagram for the dishwasher example

105

The figure illustrates what is happening in each state. In the soap_solenoid state, the soap

solenoid will be opened. After 4 seconds, we will move to the next state which is the input_valve

state. In this state, the soap solenoid will be turned off and the hot water input valve will be

turned on. After 5 minutes (300 seconds), we will move to the water_impeller state. In this state,

the hot water will be turned off and the washer impeller will be turned on. After 12 seconds, we

will move to the rainwater_valve state. In this state, the washer impeller will be turned off and

rainwater turned on. After 1 second, we will move to the drain state. In this state, the rainwater

will be turned off and the drain will be opened. After 3 seconds, we will move to the heat state.

In this state, the drain will be turned off and the heat will be turned on. After 6 seconds, we will

move to the finish_washing state when the heat will be turned off. This is the last state in this

state diagram. This state diagram will help in implementing the TLA+ specifications in the next

section.

4.4.2.2 TLA+ Specifications

In this section, we modeled a TLA+ module called scadaTest to implement the dishwasher

example in [71].

Figure 52: scadaTest TLA+ module, variables, and invariants

106

Figure 52 shows the scadaTest module, the variables, and the invariants in the module. These

variables include the module states along with other variables such as time_in_seconds variable

which represents the time (in seconds) needed for each state, and the whole_washing_time

variable which represents the total time needed for the dishwasher to finish the whole washing

cycle from start to the end.

The invariants in this module are represented by timer which guarantees that the time required in

each state should not exceed 300 seconds. Also, the total_time invariant in this module

guarantees that total washing time per cycle should not exceed 326 seconds.

Figure 53: scadaTest module vars and Init function

Figure 53 shows the vars which represents a tuple of the variables, and the Init function which

represents the initial values of the variables. In the Init function, we also can declare all possible

values as shown in the figure.

107

Figure 54: scadaTest module functions

108

Figure 54 represents the soap_solenoid_, input_valve_, washer_impeller_, rainwater_valve_,

drain, and heat functions in the scadaTest TLA+ module. In the soap_solenoid_ function, the

soap solenoid will be opened for 4 seconds, the whole_washing_time will be calculated as the

previous washing time (which was initially 0) and the time needed by each state to be finished

which will be 4 seconds in total by the end of this state. The next state will be input_valve_, and

no other variables will be changed.

In the input_valve_ function, the soap solenoid will be closed, and the hot water input valve will

be opened for 300 seconds (5 minutes), the whole_washing_time will be calculated as the

previous washing time (which was 4) and the time needed by this state to be finished which will

be 304 seconds in total by the end of this state. The next state will be washer_impeller_, and no

other variables will be changed.

In the washer_impeller_ function, the hot water input valve will be closed, and the washer

impeller will be opened for 12 seconds, the whole_washing_time will be calculated as the

previous washing time (which was 304) and the time needed by this state to be finished which

will be 316 seconds in total by the end of this state. The next state will be rainwater_valve_, and

no other variables will be changed.

In the rainwater_valve_ function, the washer impeller will be closed, and the rainwater valve

will be opened for 1 second, the whole_washing_time will be calculated as the previous washing

time (which was 316) and the time needed by this state to be finished which will be 317 seconds

in total by the end of this state. The next state will be drain, and no other variables will be

changed.

109

In the drain function, the rainwater_valve_ will be closed, and the drain will be opened for 3

seconds, the whole_washing_time will be calculated as the previous washing time (which was

317) and the time needed by this state to be finished which will be 320 seconds in total by the

end of this state. The next state will be heat, and no other variables will be changed.

In the heat function, the drain will be closed, and the heat will be opened for 6 seconds, the

whole_washing_time will be calculated as the previous washing time (which was 320) and the

time needed by this state to be finished which will be 326 seconds in total by the end of this

state. The next state will be finish_washing, and no other variables will be changed.

Figure 55: finish_washing, Terminating, Next, Spec, and Termination functions

Figure 55 represents finish_washing, Terminating, Next, Spec, and Termination functions in the

scadaTest TLA+ module.

110

In the finish_washing function, the heat will be turned off, the whole_washing_time will be

calculated as the previous washing time (which was 326) and the time needed by this state to be

finished which will be 326 seconds in total by the end of this state since this state will be

responsible for finishing the washing cycle. The next state will be Done state, and no other

variables will be changed.

As we mentioned in the previous chapters, the Next function represents all states in the Spec.

The Spec is the main function that runs all module specification. And the Termination state is

responsible for terminating the module.

Figure 56: scadaTest parsed moule

111

Figure 56 represents the scadaTest module which was parsed successfully using the TLA+

Toolbox as shown by the green button on the bottom right of the screen. In order to validate our

module, we ran the TLC model checker. The result will be represented in the next section.

4.4.2.3 TLC Model Checker

In the previous section, we successfully parsed the TLA+ scadaTest module. In this section we

will prove that our module is validated using the TLC model checker.

Figure 57: The TLC model checker results

Figure 57 shows that the module was validated using the TLC model checker with no errors or

bugs. This is the final result for the module. But there is an important question, what if this

system is vulnerable? We will find the answer in the following section.

112

4.4.3 TLC Finds Security Break

As was mentioned before, SCADA systems are vulnerable. Authors in [71] tried a case of

security breakage in their SCADA dishwasher example. In this section we will illustrate a

security breaking case in our module, and we will illustrate how to find this bug in the module.

As we mentioned before in our scadaTest module, the time required for the input_valve_ state to

be finished is 300 seconds which is the longest time needed in all states of the module. Also, we

set up an invariant in the module called “timer” which guarantees that the time needed for any

state should be less than or equal to 300 seconds.

As a security hacking case, we changed the time needed in the input_valve_ state to 600 seconds.

We change it manually in the TLA+ specifications as shown in figure 58.

Figure 58: time_in_seconds variable is changed to break security

We ran the TLA+ toolbox with breaking the “timer” invariant. Surprisingly, the TLA+ module

ran successfully and parsed correctly with no errors. But how we will find this error then?

113

We ran the TLC model checker, but first, we set up the invariant in the TLC model checker as

shown in figure 59. These invariants are the same in the TLA+ module, but the TLA+ toolbox

was not able to find the error.

Figure 59: TLC model checker invariants

After setting up the invariants, we ran the TLC model checker and it threw an error, and error

tracing (in the bottom right side), and a message (in the top right side) that said, “Invariant

time_in_seconds <= 300 is violated”. The yellow highlighted states will not be visited since this

invariant violation was found before reaching these states. All this is shown in figure 60.

114

Figure 60: TLC model checker found the security hacking error

We analyzed in a particular security hack when time_in _seconds variable equals 600, which

exceeds the maximum needed for any washing cycle. We set the TLC invariant to find an error

in this particular case (when time_in_seconds >= 300). What if someone hacked the system and

changed any of the washing cycle times? Any time could be made larger or smaller by a hacker.

As an example, we chose the case where the hacker changed the time_in_seconds in the

washer_impeller_ state from 12 to 120 seconds, which is still less than 300 seconds and is hard

to detect through the current invariants.

We implemented this security hack as shown in figure 61. The change was set up manually (line

141).

115

Figure 61: time_in_seconds Variable is Changed to 120 to Break Security

Before running the TLA+ toolbox, we changed the timer invariant to be:

timer == time_in_seconds \in {4, 300, 12, 3, 6, 1, 0}

We then ran the TLA+ toolbox and it parsed the module successfully but was unable to find the

security hack. In order to find the security hack, we re-set up the TLC model invariant to the

modified timer invariant as shown in figure 62. This updated invariant can catch any security

hack that has changed any time needed for any of the cycles in the system.

Figure 62: TLC Updated Invariants for time_in_seconds variable

After setting up the TLC invariants, we ran the TLC model checker, and the TLC threw an error.

Error tracing (in the bottom right side), and a message (in the top right side) said, “Invariant

time_in_seconds \in {4, 300, 12, 3, 6, 1, 0} is violated”. The yellow highlighted states will not

be visited since this invariant violation was found before these states were reached. All this is

shown in figure 63.

116

Figure 63: TLC model checker found the security hacking error

As a result, the TLC model checker is not only validating the TLA+ modules but is also finding

the errors and bugs in the design as shown before. This model is for a dishwasher, but similar

models to check security could be developed for similar but more complicated systems such as

transportation systems (railways, highways, city traffic, etc.), water purification systems, electric

power systems, material storage and retrieval systems, and other SCADA systems.

4.5 Conclusion

In this chapter, we discussed SCADA systems and their vulnerabilities, and we also discussed

specific possible attacks on SCADA systems.

117

We also described the work in [71] and showed how the authors built a SCADA testbed in their

lab. We described the system and how it works, and we also explained the dishwasher example.

As an extension of this work, we used the dishwasher example to first, informally model it using

the UML state diagram. Then we used the formal TLA+ specification language to design it and

simulate it successfully. The last step was to validate our model using the TLC model checker

which validated it successfully.

 Because an important part of our research is to include security in our systems, we implemented

a case of security hacking in our dishwasher module, and we proved that the TLC model checker

is powerful since it not only validated the TLA+ modules, but also found the security errors and

bugs implemented in the modules.

Our future work is to analyze more complex SCADA examples, and to find more security issues

and how to harden these systems against them.

118

Chapter 5: Conclusion and Future Work

5.1 Conclusion

In this work, we were working on designing safe and secure systems using formal methods. Our

methodology was to design a system informally first using UML, and then to design the system

module using the TLA+ specification language and its TLC model checker to validate our

module. To improve system safety, we designed the model to have some safety invariants in the

model specifications and worked on the sub-systems to achieve the system’s desired quality. To

achieve security in our models, we included some security invariants. We also defined sub-

systems in some modules to support system quality. Moreover, we ran some security break cases

in different modules and proved that the TLC model checker can find these security breaks. This

was an additional step in modeling and designing secure systems using formal methods.

We have made a number of contributions. First, we showed by examples that formal methods

are powerful tools for designing different systems applications. We designed three different

systems using UML and TLA+, the smart school building system (two versions [35, 83]), the

ADS-B system, and a SCADA system. In all these systems, we designed, modeled, and parsed

our models successfully using the TLA+ Toolbox. Then, we proved and validated these models

using the TLC model checker. Another important contribution is the use of the TLC model

checker to find the security break in the smart school model (version II), and the SCADA

system. This showed how the TLC model checker is not only powerful in validation, but also in

finding errors, bugs, and security breaks in the model.

119

Our contribution in each system was different. In the smart school building system [45], we

designed the model to be smart and concentrated on integrating different sub-systems that work

together to define a one smart module that also achieves safety and security as one of the main

goals. Most reserchers did not design smart schools or they only focused on having a design that

reduced the power consumption in the building, which was one of our goals as well. Moreover,

we proved the efficiency of using formal methods in designing smart systems as well as in

finding security breaks in the system using TLA+ and the TLC model checker. The smart school

building system has different sub-systems: the login sub-system which requires a username and

password to enter the building from anyone (student, employee, and visitor). This sub-system

increases the security and safety as a result in the design. The lighting sub-system which is

responsible for controlling the lights in the building, is designed to be smart and to reduces the

power consumption in the building. The HVAC sub-system, which is responsible for controlling

the temperature in the building, is designed to be smart and to reduces the power consumption in

the building as well. The smoke detecting system, which is responsible for sensing the

smoke/fire in the building, is designed in a way to be smart and to achieve safety in the building

by working 24/7. We also added another component to the system which is a surveillance camera

to increase safety by recording everything. This smart school building system was designed

using UML diagrams and a TLA+ specification module and validated using the TLC model

checker. To prove the security in our model, we considered a case where the camera, which was

designed to be on 24/7, was turned off, and the TLC model checker found this bug,

demonstrating that it can catch errors and bugs that may be hard to identify. And it can find

security weaknesses in a design. Our work on the school system has been published in [35] and

[45].

120

Another system that we worked on was the ADS-B avionics system. This system is already built

and in use, but it is a vulnerable system since when it was designed, the designers did not add

security to it. Many researchers have tried to find a solution for the security issues in this system.

We redesigned the ADS-B, adding a security solution. The solution was to make the airplanes

send timestamps to each other and to the ATCS. At the same time, the GNSS will broadcast the

locations of all airplanes which will reached to the ATCS. The ATCS will then calculate the

locations and compare the information to determine if an airplane is safe or it is a malicious one.

It will then broadcast the result to all airplanes. This design was implemented using UML

diagrams first. And then the TLA+ specifications module was used. The module was validated

using the TLC model checker. This work was published in [46].

We also worked on a SCADA system. We extended the work in [71] which described building a

SCADA testbed using hardware and software components. That work implemented a dishwasher

example using the SCADA testbed. We designed this dishwasher example using a UML state

diagram and the TLA+ specifications module. The model was validated using the TLC model

checker. To prove that the TLC model checker can find the security flaws in the model, we ran a

case where the TLA+ module included hacking and showed how the TLC model checker found

this bug. This proves that using formal methods is efficient in finding security flaws in a design.

This work is being submitted for publication.

121

5.2 Publications Resulting from the Dissertation

This research has produced the following publications:

1. Conference paper — Smart school building system (version I)

Nawar Obeidat, and Carla Purdy. "Modeling a Smart School Building System Using

UML and TLA+." In 2020 3rd International Conference on Information and Computer

Technologies (ICICT), pp. 131-136. IEEE, 2020. (Published)

2. Journal paper — Smart school building system (version II)

Nawar Obeidat, and Carla Purdy. " Using Formal Methods to Model a Smart School

System via TLA+ and its TLC Model Checker for Validation " 2021 ASTESJ Advances

in Science, Technology and Engineering Systems Journal. ASTESJ, 2021. (Published)

3. Journal paper — ADS-B system

Pranay Bhardwaj, Nawar Obeidat, and Carla Purdy. "A novel way to design ADS-B

using UML and TLA+ with security as a focus." 2020 ASTESJ Advances in Science,

Technology and Engineering Systems Journal. ASTESJ, 2020. (Published)

4. Conference paper — SCADA system

Nawar Obeidat and Carla Purdy. “Improving security in SCADA systems through model-

checking using TLA+” 2021 64th International IEEE Midwest Symposium on Circuits

and Systems, Lansing Michigan, August 2021. (Submitted)

5.3 Future Work

In the smart school building system, future work can be in adding more sub-systems to the

school design. Also, adding more security features like sending an alarm in case of fire can be

added. In addition, we can add a method for specifying the number of sensors needed related to

the size of the building and the number of rooms. For example, the building in this current

system work is a theoretical model that uses one sensor for light in the building, which is in real

life is not enough. The building needs more light sensors in different locations inside the

122

building. Can we determine an optimal placement? These kinds of design details can be added

to the current design to make it more realistic, secure, and safe. Additional work that can be done

in future is to add a number of hardware inputs and outputs to the system along with the

specifications for variables such as time rates of updates for the input/output ports.

In the ADS-B system design, a weakness in our model is that it is not detailed enough. A real

ADS-B system model will be larger and much more detailed. It will have more subsystems and

security systems, and many attackers. We only modeled one attaching scenario. In future, the

goal is to design a more detailed model that can handle different kinds of attaches and be closer

to the real ADS-B system.

In the SCADA system, we modeled a dishwasher example and demonstrated one security case.

In future, we can work on modeling a more complicated SCADA system and making it hardened

against different kinds of attacks, not only one case.

123

References

[1] Zhang, Hehua, Stephan Merz, and Ming Gu. "Specifying and verifying PLC systems with

TLA+: A case study." Computers & Mathematics with Applications 60, no. 3 (2010): 695-705.

[2] Newcombe, Chris, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael

Deardeuff. "How Amazon web services uses formal methods." Communications of the ACM 58,

no. 4 (2015): 66-73.

[3] Zhang, Hehua, Ming Gu, and Xiaoyu Song. "Specifying time-sensitive systems with TLA+."

In 2010 IEEE 34th Annual Computer Software and Applications Conference, pp. 425-430. IEEE,

2010.

[4] Newcombe, Chris. "Why amazon chose TLA+." In International Conference on Abstract

State Machines, Alloy, B, TLA, VDM, and Z, pp. 25-39. Springer, Berlin, Heidelberg, 2014.

[5] Bjørner, Dines, and Martin C. Henson, eds. Logics of specification languages (The

Specification Language TLA+) Page 401- 448 written by Stephan Merz. Springer Science &

Business Media, 2007.

[6] Narayana, Prasad, Ruiming Chen, Yao Zhao, Yan Chen, Zhi Fu, and Hai Zhou. "Automatic

vulnerability checking of IEEE 802.16 WiMAX protocols through TLA+." In 2006 2nd IEEE

Workshop on Secure Network Protocols, pp. 44-49. IEEE, 2006.

[7] Lamport, Leslie. Specifying systems: the TLA+ language and tools for hardware and

software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

124

[8] Tasiran, Serdar, Yuan Yu, Brannon Batson, and Scott Kreider. "Using formal specifications

to monitor and guide simulation: Verifying the cache coherence engine of the Alpha 21364

microprocessor." In In Proceedings of the 3rd IEEE Workshop on Microprocessor Test and

Verification, Common Challenges and Solutions. 2002.

[9] Börger, Egon. "The abstract state machines method for high-level system design and

analysis." In Formal Methods: State of the Art and New Directions, pp. 79-116. Springer,

London, 2010.

[10] Verification and Validation. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Verification_and_validation.

[11] Wang, Hsiao-Hsuan, and William E. Grant. "How good (“valid”) are models?." In

Developments in Environmental Modelling, vol. 31, pp. 191-214. Elsevier, 2019.

[12] Zamani, Majid, and Damien Zufferey. "Numerical Software Verification." 2019.

[13] Thacker, Robert A., Kevin R. Jones, Chris J. Myers, and Hao Zheng. "Automatic

abstraction for verification of cyber-physical systems." In Proceedings of the 1st ACM/IEEE

International Conference on Cyber-Physical Systems, pp. 12-21. ACM, 2010.

[14] Baheti, Radhakisan, and Helen Gill. "Cyber-physical systems." The impact of control

technology 12, no. 1 (2011): 161-166.

[15] Formal Methods. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Formal_methods

[16] Specification Languages. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Verification_and_validation.
https://en.wikipedia.org/wiki/Formal_methods

125

https://en.wikipedia.org/wiki/Specification_language

[17] RAISE. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Rigorous_Approach_to_Industrial_Software_Engineering

 [18] TLA+. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/TLA%2B

[19] Z. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Z_notation

[20] VDM. Wikipedia. [Online], Available 905/13/2021):

https://en.wikipedia.org/wiki/Vienna_Development_Method

[21] B. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/B-Method

[22] Rehman, Aniqa, Saba Latif, and Nazir Ahmad Zafar. "Formal Modeling of Smart office

using Activity Diagram and Non Deterministic Finite Automata." In 2019 International

Conference on Information Science and Communication Technology (ICISCT), pp. 1-5. IEEE,

2019.

[23] Zafar, Nazir Ahmad. "Modeling and formal specification of automated train control system

using Z notation." In 2006 IEEE International Multitopic Conference, pp. 438-443. IEEE, 2006.

[24] Afzaal, Hamra, and Nazir Ahmad Zafar. "Formal modeling and algorithm of subnet-based

backup assigning in WSAN." In 2015 International Conference on Information and

Communication Technologies (ICICT), pp. 1-6. IEEE, 2015.

https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Rigorous_Approach_to_Industrial_Software_Engineering
https://en.wikipedia.org/wiki/TLA%2B
https://en.wikipedia.org/wiki/Z_notation
https://en.wikipedia.org/wiki/Vienna_Development_Method
https://en.wikipedia.org/wiki/B-Method

126

[25] Kamali, Maryam, Louise A. Dennis, Owen McAree, Michael Fisher, and Sandor M. Veres.

"Formal verification of autonomous vehicle platooning." Science of computer programming 148

(2017): 88-106.

[26] Latif, Saba, Aniqa Rehman, and Nazir Ahmad Zafar. "NFA Based Formal Modeling of

Smart Parking System Using TLA+." In 2019 International Conference on Information Science

and Communication Technology (ICISCT), pp. 1-6. IEEE, 2019.

[27] The TLA+ Video Course. By: Lamport. [Online], Available (05/13/2021):

http://lamport.azurewebsites.net/video/videos.html

[28] Verhulst, Eric, Raymond T. Boute, José Miguel Sampaio Faria, Bernhard HC Sputh, and

Vitaliy Mezhuyev. Formal Development of a Network-Centric RTOS: software engineering for

reliable embedded systems. Springer Science & Business Media, 2011.

[29] Clark, Anthony, and Andy Evans. "Foundations of the Unified Modeling Language." In

Proceedigs of the 2nd Northern Formal Methods Workshop. Springer, 1997.

[30] Pocero, Lidia, Dimitrios Amaxilatis, Georgios Mylonas, and Ioannis Chatzigiannakis.

"Open source IoT meter devices for smart and energy-efficient school buildings." HardwareX 1

(2017): 54-67.

[31] Amaxilatis, Dimitrios, Ioannis Chatzigiannakis, and Georgios Mylonas. "Design and

Implementation of a Platform for Smart Connected School Buildings." In AmI

(Workshops/Posters). 2015.

http://lamport.azurewebsites.net/video/videos.html

127

[32] Brogan, Mike, and Alfio Galata. "The VERYSchool Project: Valuable EneRgY for a Smart

School-Intelligent ISO 50001 Energy Management Decision Making in School Buildings." In

AIAI Workshops, pp. 46-58. 2015.

[33] Hirsch, Benjamin, and Jason WP Ng. "Education beyond the cloud: Anytime-anywhere

learning in a smart campus environment." 2011 International Conference for Internet

Technology and Secured Transactions. IEEE, 2011.

[34] Veeramanickam, M. R. M., and M. Mohanapriya. "Iot enabled futurus smart campus with

effective e-learning: i-campus." GSTF journal of Engineering Technology (JET) 3.4 (2016).

[35] Obeidat, Nawar H., and Carla Purdy. "Modeling a Smart School Building System Using

UML and TLA+." In 2020 3rd International Conference on Information and Computer

Technologies (ICICT), pp. 131-136. IEEE, 2020.

[36] Bhardwaj, Pranay, and Carla Purdy. "System Design Methodologies for Safety and Security

of Future Wireless Technologies in Aviation." In 2019 IEEE 62nd International Midwest

Symposium on Circuits and Systems (MWSCAS), pp. 235-238. IEEE, 2019.

[37] Prince, B. "Air traffic control systems vulnerabilities could make for unfriendly skies [black

hat]. Security Week (2012)."

[38] Alloy. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Alloy_(specification_language)

[39] Microsoft VCC. Github. [Online], Available (05/13/2021):

https://github.com/microsoft/vcc

[40] SCADA. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Alloy_(specification_language)
https://github.com/microsoft/vcc

128

https://en.wikipedia.org/wiki/SCADA

[41] ISO 50001. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/ISO_50001

[42] Agha, Gul A. Actors: A model of concurrent computation in distributed systems.

Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1985.

[43] Pierre, Laurence, and Thomas Kropf, eds. Correct Hardware Design and Verification

Methods: 10th IFIP WG10. 5 Advanced Research Working Conference, CHARME'99, Bad

Herrenalb, Germany, September 27-29, 1999, Proceedings. Springer, 2003.

[44] IEEE 802.15.4. Wikipedia. [Online], Available (05/13/2021) :

https://en.wikipedia.org/wiki/IEEE_802.15.4

[45] Nawar Obeidat, and Carla Purdy. " Using Formal Methods to Model a Smart School System

via TLA+ and its TLC Model Checker for Validation " 2021 ASTESJ Advances in Science,

Technology and Engineering Systems Journal. ASTESJ, 2021.

[46] Pranay Bhardwaj, Nawar Obeidat, and Carla Purdy. "A novel way to design ADS-B using

UML and TLA+ with security as a focus." 2020 ASTESJ Advances in Science, Technology and

Engineering Systems Journal. ASTESJ, 2020.

[47] Smart System. Wikipedia. [Online], Available (05/13/2021):

https://en.wikipedia.org/wiki/Smart_system

[48] Friedenthal, Sanford, Alan Moore, and Rick Steiner. A practical guide to SysML: the

systems modeling language. Morgan Kaufmann, 2014.

https://en.wikipedia.org/wiki/SCADA
https://en.wikipedia.org/wiki/ISO_50001
https://en.wikipedia.org/wiki/IEEE_802.15.4
https://en.wikipedia.org/wiki/Smart_system

129

[49] Cao, I. "Guidance material on comparison of surveillance technologies (GMST)."

International Civil Aviation Organization (2007).

[50] Primary Surveillance Radar (PSR). [Online], Available (05/13/2021):

https://www.skybrary.aero/index.php/Primary_Surveillance_Radar_(PSR)

[51] Schejbal, Vladimir, Pavel Bezousek, Jan Pidanic, and Milan Chyba. "Secondary

surveillance radar antenna [Antenna Designer's Notebook]." IEEE Antennas and Propagation

Magazine 55, no. 2 (2013): 164-170.

[52] Galati, G. "Sistema di sorveglianza ad alta precisione mediante multilaterazione di segnali

SSR." Italian patent RM (2004): A000249.

[53] Galati, Gaspare, Mauro Leonardi, Patrizio De Marco, Luca Menè, Pierfrancesco Magarò,

and Maurizio Gasbarra. "New time of arrival estimation method for multilateration target

location." Proc. JISSA (2005): 1-11.

[54] EUROCAE, "Minimum Operational Performance Specification for Mode S Multilateration

System for use in A-SMGCS", ED-117, April 2003.

[55] New Air Traffic Surveillance Technology. [Online], Available (05/13/2021):

http://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/pdfs/AERO_Q2-

10_article02.pdf

[56] Fact Sheet – Automatic Dependent Surveillance-Broadcast (ADS-B). [Online], Available

(05/13/2021):

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsid=7131

https://www.skybrary.aero/index.php/Primary_Surveillance_Radar_(PSR)
http://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/pdfs/AERO_Q2-10_article02.pdf
http://www.boeing.com/commercial/aeromagazine/articles/qtr_02_10/pdfs/AERO_Q2-10_article02.pdf
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsid=7131

130

[57] Miller, Sam, Helen Susannah Moat, and Tobias Preis. "Using aircraft location data to

estimate current economic activity." Scientific reports 10, no. 1 (2020): 1-7.

[58] FEDERAL AVIATION ADMINISTRATION, May 2010, Federal regulation 14 CFR

91.225S, [Online], Available (05/13/2021):

http://www.ecfr.gov/cgi-bin/text-idx?node=14:2.0.1.3.10#_top

[59] FEDERAL AVIATION ADMINISTRATION, May 2010, Federal regulation 14 CFR

91.227, [Online], Available (05/13/2021):

http://www.ecfr.gov/cgi-bin/text-idx?node=14:2.0.1.3.10#se14.2.91_1225

[60] Manesh, Mohsen Riahi, and Naima Kaabouch. "Analysis of vulnerabilities, attacks,

countermeasures and overall risk of the Automatic Dependent Surveillance-Broadcast (ADS-B)

system." International Journal of Critical Infrastructure Protection 19 (2017): 16-31.

[61] Strohmeier, Martin, Vincent Lenders, and Ivan Martinovic. "On the security of the

automatic dependent surveillance-broadcast protocol." IEEE Communications Surveys &

Tutorials 17, no. 2 (2014): 1066-1087.

[62] Schäfer, Matthias, Vincent Lenders, and Ivan Martinovic. "Experimental analysis of attacks

on next generation air traffic communication." In International Conference on Applied

Cryptography and Network Security, pp. 253-271. Springer, Berlin, Heidelberg, 2013.

[63] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Ravi, “Security as a new dimension in

embedded system design,” in Proceedings - Design Automation Conference, 2004,

doi:10.1145/996566.996771.

http://www.ecfr.gov/cgi-bin/text-idx?node=14:2.0.1.3.10#_top
http://www.ecfr.gov/cgi-bin/text-idx?node=14:2.0.1.3.10#se14.2.91_1225

131

[64] K. Sampigethaya, R. Poovendran, S. Shetty, T. Davis, C. Royalty, “Future E-enabled

aircraft communications and security: The next 20 years and beyond,” Proceedings of the IEEE,

2011, doi:10.1109/JPROC.2011.2162209.

[65] ICAO International Communications Group, April 2006, Introduction to ACARS messaging

services as implemented via Iridium satellite link, [Online], Available (05/13/2021):

http://www.icao.int/safety/acp/inactive%20working%20groups%20library/acp-wg-m-iridium-

7/ird-swg07-wp08%20-%20acars%20app%20note.pdf

[66] C. W. Lin, A. G. Vincentelli, Security-aware design for cyber-physical systems, Springer,

2017, doi: 10.1007/978-3-319-51328-7.

[67] G. Kalakota, Hierarchical partition based design approach for security of CAN bus based

automobile embedded system, Electronic Thesis or Dissertation, University of Cincinnati, 2018.

[68] Object Management Group, 2005, Introduction to OMG's Unified Modeling Language

(UML®), [Online], Available (05/13/2021):

http://www.uml.org/what-is-uml.htm

[69] J. Vidal, F. De Lamotte, G. Gogniat, P. Soulard, J.P. Diguet, “A co-design approach for

embedded system modeling and code generation with UML and MARTE,” in Proceedings -

Design, Automation and Test in Europe, DATE, 2009, doi:10.1109/date.2009.5090662.

[70] J. Jürjens, P. Shabalin, “Tools for secure systems development with UML,” in International

Journal on Software Tools for Technology Transfer, 2007, doi:10.1007/s10009-007-0048-8.

http://www.icao.int/safety/acp/inactive%20working%20groups%20library/acp-wg-m-iridium-7/ird-swg07-wp08%20-%20acars%20app%20note.pdf
http://www.icao.int/safety/acp/inactive%20working%20groups%20library/acp-wg-m-iridium-7/ird-swg07-wp08%20-%20acars%20app%20note.pdf
http://www.uml.org/what-is-uml.htm

132

[71] Fall, Moustapha, Chris Chuvalas, Nolan Warning, Max Rabiee, and Carla Purdy.

"Enhancing SCADA System Security." In 2020 IEEE 63rd International Midwest Symposium on

Circuits and Systems (MWSCAS), pp. 830-833. IEEE, 2020.

[72] Office of the manager national communications system. October 2004. "Supervisory

Control and Data Acquisition (SCADA) Systems" (pdf). National communications system.

Archived from the original (pdf) on 14 July 2015.

[73] Nazir, Sajid, Shushma Patel, and Dilip Patel. "Assessing and augmenting SCADA cyber

security: A survey of techniques." Computers & Security 70 (2017): 436-454.

[74] Byres, Eric J., Matthew Franz, and Darrin Miller. "The use of attack trees in assessing

vulnerabilities in SCADA systems." In Proceedings of the international infrastructure

survivability workshop, pp. 3-10. Citeseer, 2004.

[75] Maynard, Peter, Kieran McLaughlin, and Berthold Haberler. "Towards understanding man-

in-the-middle attacks on iec 60870-5-104 scada networks." In 2nd International Symposium for

ICS & SCADA Cyber Security Research 2014 (ICS-CSR 2014) 2, pp. 30-42. 2014.

[76] Lu, Zhuo, Xiang Lu, Wenye Wang, and Cliff Wang. "Review and evaluation of security

threats on the communication networks in the smart grid." In 2010-Milcom 2010 Military

Communications Conference, pp. 1830-1835. IEEE, 2010.

[77] Wei, Mingkui, and Wenye Wang. "Toward distributed intelligent: A case study of peer to

peer communication in smart grid." In 2013 IEEE Global Communications Conference

(GLOBECOM), pp. 2210-2216. IEEE, 2013.

https://web.archive.org/web/20150714225002/https:/scadahacker.com/library/Documents/ICS_Basics/SCADA%20Basics%20-%20NCS%20TIB%2004-1.pdf
https://web.archive.org/web/20150714225002/https:/scadahacker.com/library/Documents/ICS_Basics/SCADA%20Basics%20-%20NCS%20TIB%2004-1.pdf
https://scadahacker.com/library/Documents/ICS_Basics/SCADA%20Basics%20-%20NCS%20TIB%2004-1.pdf

133

[78] Teodorowicz, Thomas. "Comparison of SCADA protocols and implementation of IEC 104

and MQTT in MOSAIK." Bachelorarbeit. Münster: University of Münster 15 (2017).

[79] Johnson, Chris. "Securing the participation of safety-critical SCADA systems in the

industrial internet of things." (2016).

[80] Mohagheghi, Salman, J. Stoupis, and Z. Wang. "Communication protocols and networks for

power systems-current status and future trends." In 2009 IEEE/PES Power Systems Conference

and Exposition, pp. 1-9. IEEE, 2009.

[81] MODBUS Protocol is a messaging structure developed by Modicon in 1979, used to

establish master-slave/client-server communication between intelligent devices more info.

[Online], Available (05/13/2021): www.modbus.org

[82] Lee, Newton. "Counterterrorism and Cybersecurity: Total Information Awareness. [Online]

Springer International, April 8, 2015."

[83] Asavoae, Mihail, Imane Haur, Mathieu Jan, Belgacem Ben Hedia, and Martin Schoeberl.

"Towards Formal Co-validation of Hardware and Software Timing Models of CPSs." In Cyber

Physical Systems. Model-Based Design, pp. 203-227. Springer, Cham, 2019.

http://www.modbus.org/

