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Abstract

Unmanned Aerial Vehicles (UAV) are gaining attention in the civilian domain with their

numerous potential applications. This has been demonstrated recently in light of devel-

opments around the pandemic, where UAVs were used by law enforcement departments

of various countries of the world. Multinational Corporations such as Mercedes Benz

partnered with Matternet for drone-based deliveries in Switzerland. Ford recently filed a

patent for a drone system that can be integrated with a car that could provide emergency

services. UAVs rely very much on positional signals for navigation. Positional signals such

as a global positioning system (GPS) are susceptible to an outage for periods ranging

from one second to a minute. This work provides a novel approach by introducing an Ar-

tificial Neural Network (ANN) in the cases where there are long gaps in positional signal

received by a UAV. During our prior research, similar problems were manifesting during

bridge inspection during flights flown by the drones. Even in our experiments with indoor

localization systems using ‘Decawave’, we faced similar problems. Decawave comprises

Ultra-Wide-band modules that use Positioning and Networking Stack (PANS), a software

library, that implements the Two-Way-Ranging method for localization. In the proposed

work, an ANN is trained on drone dynamics for a pre-traveled path. Then this pre-

trained network, during flight, uses back-propagation to update its weights/parameters

in an online fashion, where-by it learns to “fill in” the GPS signal gaps by predicting the

dynamics. In the event of a GPS Signal loss, this ANN, receiving the current state of the

body as input, performs a forward propagation to predict the rigid body dynamics for the

next state. The online learning capability ensures that this ANN’s weights are updated

to reflect changing dynamics arising from changes such as different payloads. The results

highlight a comparative study between a drone that implements only Extended Kalman

Filter (EKF) and one that uses the suggested new approach with ANNs, and show the

advantages of the proposed approach over the traditional EKF based approaches.
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Chapter 1

Introduction

Unmanned aerial vehicle, commonly known as a drone, is a flying robot or aircraft without

an on-board human pilot. In general, a drone system consists of a UAV platform, a ground

control station, and a system that maintains communication between the two. With

change in time these drones have increased autonomy. Now a days these drones can

be controlled by stationed human pilots or autonomously utilizing on board computers.

Drones were developed for tasks identified as ”dull, dirty or dangerous” as discussed in

the article [2]. Initially developed for military purposes, in this day and age drones are

gaining significant momentum in civilian applications such as agriculture, policing, first

responder, product deliveries, aerial photography, infrastructure inspections and many

more. FPV drone racing is also an upcoming sport. There is an estimated growth in

drone sales from $4.4 billion in 2018 to $63.6 billion by 2025, with an estimated shipment

of 29 million by 2021[3].

1.1 Motivation and Objectives

In our prior research, one of the requirements was to inspect bridges in the Ohio region

using drones.To generate an accurate 3D model for bridge inspection. A 3D rendering

software such as PX4D requires an accurate GPS coordinates of the images gathered.

While capturing pictures for creating the models, one of the problems was intermittent

GPS signal (fig 1.1) particularly when drone went underneath the bridge where GPS
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Figure 1.1: Intermittent Signal

signals were usually not available. Therefore an alternative localization tool was required

especially in the cases such as under the bridge. This led to our work firstly experimenting

in the field of WiFi based triangulation method.

The work involved experimentation with WiFi routers commonly available in the

market. The router used during the initial phase of the experiments is ‘NETGEAR

5000’(fig 1.3), Where signals were received using a raspberry-pi model 3 (fig 1.2). The

work involved evaluating the drop in received signal strength. During experiments, it was

found that with standard WiFi devices and receivers such as raspberry pi 3, it was hard

Figure 1.2: Raspberry Pi
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Figure 1.3: NETGEAR 5000

to find a gradual drop in Received Signal Strength Indicator(R.S.S.I) with distance (ref

figure). After a series of experiments with WiFi and a raspberry-pie 3 module discussed in

details later in the chapters, it was concluded that though these devices work, the results

are not accurate enough to solve the problem. Therefore we started to look into other

localization tools available in the market. During our search we came across a device

named Decawave, which uses Ultra Wide Band (UWB) technology for localization. Ultra

Wide Band is an upcoming technology discussed briefly in [4].

Decawave is built mainly for indoor localization and hence gives good results in an

indoor environment. But for Decawave to work in an outdoor environment, firmware

changes were made and tested, which are discussed further in the thesis. In one of our

last experiments we were able to successfully experiment these devices in an outdoor

soccer field. While experimenting with these devices in the outdoor environment, we

observed another issue of intermittent signal or a long gap in positional signal. While

experimenting with these devices it was found that due to some firmware issues there

were few of 5~10 seconds long gaps where no signal was received from these devices(fig).

Small Unmanned Aerial Vehicle (UAV) navigation depends on the combination of

global positioning system and Inertial Measurement Unit (IMU) to determine accurate

position, velocity and attitude. Even in cases of autonomous flight, reliability lies more

on the sensor part of the UAV, as sensors affect the feedback received by a controller.

Hence for this thesis, we implemented an artificial neural network, training itself using

back propagation in an online fashion. When there is no measurement from GPS for a

3



long time this neural network predicts the next state of the drone.

Artificial Neural Network (ANN) is an upcoming technology requiring good understand-

ing of mathematical principles for its implementation. With advancements in various

tools such as Tensor Flow and Pytorch, Artificial Neural Network implementation has

eased. However, it still needs an understanding of the mathematics behind neural network

and knowledge about Unmanned Aerial Vehicles. Work in this field is related to a variety

of methods implementing Artificial Neural Network to improve drone waypoint tracking.

PD and PID type controllers are standard in the industrial world. The well-established

rules for parameter tuning make them preferable in real-time applications. As discussed

in [5], when addressing from a practical viewpoint, the connection between the UAV and

the controller is maintained at pwm level. Henceforth, in the work [6], the author talks

about utilizing an ANN based nonlinear module to convert the controller output to pwm

signal. On the other hand, there are limitations in knowing all the required states for

achieving control objectives. In [7] the paper discusses the implementation of Artificial

Neural Network to predict states of a helicopter from the feedback control consisting

of a kinematic control to generate a desired velocity for the dynamic control, a virtual

controller and an optimal controller. Then from the approach discussed in [8] with ac-

ceptable results of prediction error less than 2.0 meters, the work [8] assumes that the

approach discussed should have limited dependency on the vehicle control system and

dynamic models, as getting data is a challenge since manufactures are not willing to share

their control system.

There are approaches discussing the implementation of ANN at controller input or out-

put. There is an approach where it is discussed that the controller output can be used as

an input for the ANN, and ANN output will be used to determine the pwm signal, thus

solving the challenge of underactuated mechanical system[6]. In the second approach,

the states of the Unmanned Aerial Vehicle are predicted using the feedback from the

controller consisting of positional controller and attitude controller. Then from [8], it can

be implied that trajectory modeling can be used in the cases where the vehicle control

system and dynamic model is unknown, as it is something not shared by the manufac-

4



turers. The system can be accurately trained and tested on the data obtained from the

trajectory. Combining the three approaches and answering the challenges that are, first

identifying the area where ANN can be implemented, second the input and the output

parameters of it, and third the way it can be trained and use, we developed a simulator

with scope of implementing an Artificial Neural Network. This ANN is supposed to im-

prove the feedback at the sensor fusion level. A network that is trained on the trajectory

model, based on the previous states of UAV, and the overall model predicts the upcoming

states, not relying on the type of control system.

1.2 Contributions

The work presented here represents an advancement in the field of robot localization.

Firstly, we tweaked indoor localization devices and determined standards that can help

us in developing a research platform, that enables outdoor localization, where GPS is

denied or scanty. The development involved a series of indoor and outdoor experiments

along with firmware enhancements. All this equipped the system with better outdoor

localization performance.

Secondly, during our experiments we identified another challenge. An intermittent

signal or a long gap in the positional signal. This long gap troubles a lot of localization

devices and results in an unstable drone flight. First, to solve it, we developed our own

simulator. A simulator that is written in python. A scalable module, developed using the

concepts of Object-oriented programming giving it a modularity advantage, flexibility for

performance improvement and developer-friendliness.

Second, unique to this work, we developed a module for the implementation of artificial

neural networks in this simulator. When we started this work, there were no popular

simulators available for it. Therefore, we built a simulator that can ease implementation

of Artificial Neural Network based model.

Third, this work presents a comparative study between only the Extended Kalman Fil-

5



ter(EKF) and suggested new approach with ANN. This online learning capability tested

in the simulator ensures that ANN’s weights are updated to reflect changing dynamics

arising from changes such as different payloads.
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1.3 Thesis Organization

The overall goal of this thesis is to highlight the long gaps in position signal, for robot

localization, and the study of an Artificial Neural Network approach to address it.

Chapter 1 is a general introduction to drones. This chapter discusses the motivation for

the thesis and advancement in UAV technology.

Chapter 2 of this thesis delves into various localization terminologies and technologies,

the literature behind these technologies, and some alternative work published in this field.

Chapter 3 discusses in detail the implementation of an indoor localization module ”De-

cawave”, and it’s implementation in an outdoor environment. Experimental work, results,

conclusion and,formulation of the idea from the experiments is discussed in the chapter.

Chapter 4 elaborates the design parameters considered to develop a simulator that can

provide an environment to test the idea.

Chapter 5 discusses the results of this comparative study. In this chapter one can find a

detailed discussion on the progress of the work and graphs related to the same.

Chapter 6 concludes this work with a short discussion on how the simulator can be used

to take this work further and also discusses the direction it take in the future.
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Chapter 2

Background and Literature Survey

The work progressed in three different phases. In the first phase we researched about

commonly used ranging techniques using WiFi network. In the second phase we ex-

perimented with indoor localization devices using Ultra Wide Band. And in the last or

third phase we developed a UAV simulator and implemented an Artificial Neural Network

module in it.

2.1 Localization and Ranging techniques

Localization[9]: The knowledge of it’s own position, by a robot, with respect to it’s

environment, based on the measurement data for that instance is called localization. It is

an important process in terms of navigation and mapping by a robot. Error in localization

has a chain effect, causing hindrance in the navigation of the robot.

The purpose of localization is to boost a robot with intelligence. From [10],[11] and [12] it

can be concluded that sonar and lidar are very effective sensors in an indoor environment

as they can very well identify corridors, flat walls and other structural regularities. But in

an outdoor environment these sensors become less effective due to structural irregularities.

Similarly, there is non-availability of GPS in partially enclosed environments such as

patios, bridges, closed campuses etc. or where there is no satellite visibility [13].

Well known methods for positioning of robots are Kalman filtering, Markov methods,

and Monte Carlo localization. Among which one can find a lot of good papers on Monte
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Carlo based localization. In these papers various categories of vision-based systems have

been discussed. For example, first according to two image view types, where some system

use ground-view images [14], [15] and other use omni-directional images [16], [17], [18].

Second based on weather or not the system is provided with a map. As discussed in

[19], where a combination of vision and laser has been used to perform SLAM. A 3D

laser is used for localization and loop closure through camera which is a unique approach

implementing a 3D laser-vision SLAM system with automated loop closure system. Ideas

like this provide a good insight into methodologies that can be implemented for outdoor

implementation of SLAM. In any case SLAM described well in [20], [21], [22] is still an

active branch of research in robotics.

Ranging[23]: Common techniques for ranging are as follows:

• Time of Arrival (ToA, time of flight): In this technique, distance is measured

by using known signal propagation time and known signal velocity between sender

and receiver.

• One-way ToA: In this method, a signal is propagated one way. To implement

this method an accurate synchronization between the sender and receiver clock is

required.

disti j = (t2 − t1)Xv

• Two-way ToA: In this method, a signal round trip time is measured at the sender

device. A third message is necessary at the receivers end to calculate it’s location.

disti j =
(t4 − t1) − (t3 − t2)

2
Xv
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• Time Difference of Arrival(TDoA): In TDoA technique, two radio signals with

different velocities (generally because of two different devices) are sent with no

clock synchronization, which can measure distance accurately by utilizing additional

hardware. Suppose a signal is sent at t1 and received at t2, followed by an acoustic

signal (sent at t3 = t1 + twait and received at t4) then -

dist = (v1 − v2)X(t4 − t2 − twait)

• Angle of Arrival (AoA): This method very much depends upon the direction

of signal propagation, achieved using an array of antennas or microphones. This

method can give high accuracy depending on orientation, spatial separation of the

antennas or microphones leading to differences in the arrival times, amplitudes, and

phases.

• Received Signal Strength(RSS): This approach relies on the phenomenon that

signal decays with distance.Now a days devices measure signal strength using re-

ceived signal strength indicator(RSSI). In open spaces RSS degrades with distance2

and is expressed by Friis transmission equation:

Pr/Pt = GtGrλ
2/(4π)2R2

Utilizing above ranging techniques, following methods are utilized to achieve localization:

• Triangulation: It is a range based localization employing geometric properties of a

triangle to estimate location. It relies on angle and the distance between the anchor

nodes in a two dimensional space.
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2.2 Ultra Wide Band / Decawave

Ultra wide band is a low energy, short range, high band width radio communication

technology. It can be used over a large portion of the radio spectrum.

Recently, ultra wide band has gained popularity as a WiFi based positioning sys-

tem for precise localization. One such example is [24] where, authors are proposing an

adaptive Kalman filter to solve positioning problem of intelligent luggage following. Two

way ranging approaches face significant drawbacks while scaling, because of exchange of

multiple frames during each ranging. In paper [25] the author puts forward and validates

a unique approach for a multi-user time-difference of arrival(TDOA) based localization

system utilizing wireless clock synchronization. In the experiment designed, accuracy of

the system is measured using a robotic movement and an optical reference system (Mo-

cap system) against the Decawave system. The paper puts forth that good accuracies

are achievable by the time difference of arrival positioning with wireless clock synchro-

nization and also claims that the results obtained are comparable with two way ranging

based approaches.

There are papers such as [26] where a low cost time of arrival(TOA) based localization

system is discussed. Paper [27] discusses about an experiment, where 90% quantile (which

means in normal/Gaussian/bell curve) of the two-dimensional positioning error is in the

range of 20 cm. In another reference [28], it is highlighted in the introduction that TWR

is not capable of scaling to a significant amount of tags, which was also observed by us

during extensive testing of the hardware.

Based on the above survey, we looked into paper [28] where methods for global position

estimation using inertial sensors, molecular vision, and ultra wide band(UWB) sensors

are discussed. The paper discusses an improved global pose estimation without using

a simultaneous localization and mapping framework, supported by a small number of

easy to hide (UWB) beacons with known positions. However, this paper uses a constant

velocity model and over a ground robot, which is a different case from our interest, where

we want to estimate accurate position of the drone without any loss of signals.
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Figure 2.1: One-Dimensional Neural Network

2.3 Artificial Neural Networks

An artificial neural network performs tasks on the basis of examples.In general, it learns

without being programmed with task-specific rules [29].

Forward Propagation:[30] Forward propagation is the way neural network makes

predictions. In forward propagation input data is successively propagated through net-

work layer to the final layer which outputs a prediction. For example, in Fig. 2.1 a single

pass of forward propagation can be written mathematically as:

Prediction = A(A(XWh)Wo)

Backward Propagation:[31] Backward propagation is a machine learning algorithm

for training feed forward neural network in case of supervised learning. In Back propaga-

tion the algorithm computes the gradient of the loss function with respect to the weight

of the network for a single input output example.
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Chapter 3

Localization using Decawave:

Experiments

Wireless sensor networks (WSN) based localization technologies are gaining popularity

in precise location based applications. A similar experiment, where UWB devices were

used to localize drone in an indoor environment, is discussed in [32]. Indoor experimental

results show that 20 cm level of precision can be achieved using DecaWave; also verified

in [33]. During our experiment, we used a kit named MDEK-1001 (quick detail available

at [34]) containing 12 such modules. The overall Decawave antenna works at 6.5 GHz.

It also constitutes a 3-axis accelerometer and implements Two-Way-Ranging technique.

Other technical details about the hardware are available in [35]. The technique used in

our approach is described as DWM1001 Two-Way-Ranging Real Time Location System

(DRTLS) in [36]. Network components for the same are shown in Fig. 3.1. In this system

a bunch of DWM1001 modules are configured as an anchor(fixed in place), a tag(mobile)

or a bridge node on a gateway. A gateway is an optional unit in the system that connects

the system to outside network. These gateways provide access to configure the DRTLS,

and enable to display tag’s location at local or remote application. For our case we used

a Raspberry Pi 3 model B as a gateway hardware. To pivot the whole system across

Raspberry Pi as an on board computer.
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Figure 3.1: Decawave Based System Architecture

Figure 3.2: Experimental setup for indoor testing
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3.1 Indoor testing of the hardware:

In the paper [37], the author discusses the difficulties in acquisition and tracking of

GPS signal in an indoor environment. The author indicates the longer integration time

needed in case of successful acquisition and tracking of GPS signal. The paper discusses

an improvement in results using cellular networks. In any case, a major contributor

that makes Decawave an obvious choice is it’s wireless clock synchronization as discussed

in [38]. However, to have confidence on these devices, we conducted our own indoor

experiments.

3.1.1 Experiment 1: Heat map of accuracy

For our first indoor experiment, we used 4 anchors and one tag to measure accuracy at

various points in the room, as in Fig. 3.2. All errors and distances are in meters. Based on

the experimental work, we plotted the heat map of accuracy as shown in the Fig. 3.3 and

3.4. The room size was 6.1m X 6.1m with no obstacles in the room and all the communi-

cation channels are kept in line of sight. The tag is moved in a region enclosed by anchors.

Experimental Procedure:

• Calibration of the system (ref Fig. 3.2): In this step, we placed anchors at the

required spots in the room, indicated by the black dots in Fig. 3.2 and then let

the system generate it’s own map first. Once we got an estimate by the decawave

PANS, we used to manually measure the distances and enter the correct distances

in the mobile application provided along with the hardware. The end of this step is

a precisely working anchor system where each anchor knows about its exact location

in Cartesian coordinate system.

• Static reading between all anchors with a step size of 4 feet (ref Fig. 3.3 and 3.4):

In this step we navigated through the whole room in a manner discussed. Moved

4 feet, stayed for 1 min, made and noted an observation, and moved to the next

step. We traversed horizontally and then vertically in a zig-zag pattern.
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Figure 3.3: Heat Map from indoor testing only X

3.1.2 Experiment 2: Reliability on Decawave Positioning and

Networking Stack

In our second experiment instead of calibrating the system we completely used the De-

cawave Positioning and Networking Stack to identify the location of the a third device

based on other two.

Conclusion: From this and similar experiments, it was concluded that, Decawave

can indeed give an indoor accuracy of <30 cm.
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Figure 3.4: Heat Map from indoor testing X-Y both
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3.2 Outdoor testing of the hardware

3.2.1 Viability of System in outdoor environment.

To check the viability of the system in an outdoor environment, we conducted an exper-

iment with three different anchor distance configurations.

Objectives for the experiment:

• Firstly, to verify that these devices can work efficiently up to 60m outdoors.

• Secondly, to check signal continuity in the outdoor environment.

• Thirdly, to check reliability of the signal in outdoor environment.

In this set of experiments, we arranged 4 anchors at three different rectangular configu-

ration:-

• 14.9m X 26.8m (Experiment1.1)

• 30.5m X 26.8m (Experiment1.2)

• 46.65m X 26.8m (Experiment1.3)

The Following are observations and conclusions from the set of experiments

conducted; referring to Fig. 3.5 :

• Long Gaps in Positional Signal (LGPS) were observed in all three experiments.

These LGPS increase as the configuration gets bigger.

• Number of anchors in contact falls as the configuration is made bigger i.e. in

experiment 1, we can see that tag was able to connect with 4 anchors more times

as compared to experiment 2, and in experiment 3, we observed instances where it

was not able to communicate with any of the anchors.
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Figure 3.5: Experiment Set 1

3.2.2 Best distance/configuration for optimum results.

In our next set of experiments, we aim to identify the best possible distance/configuration

where a tag can get maximum number of anchors while moving in an outdoor environment

Objectives for the experiment:

• To identify an optimum configuration of anchors that provides best accuracy and

coverage.

Note: We have already done an experiment with acceptable results in a 6.1m X 6.1m

configuration outdoors.

In the experiment, we set up 2 different anchor configurations with

• 6 anchors, 14.9m X 26.8m (Experiment1), additional anchors added at 7.62m in X

direction.

• 8 anchors, 30.5m X 26.8m (Experiment2),

Conclusion from the experiment referring to Fig.3.7:
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Figure 3.6: Setup for the Experiment 2
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Figure 3.7: Experiment Set 2

• From experiment 1, we can conclude that there was an acceptable reduction in

Long Gaps in Positional Signal (LGPS) as we placed more anchors in the same

configuration.

• During experiment 2, we observed some LGPS. This observation was noted when

raspberry pi is somewhere between anchors 4, 5, 6, and 7. This can be assumed to

be happening because of interference of these anchors and system indecisiveness in

selecting anchors.

3.2.3 Noises and accuracy of the system outdoors.

From previous experiments, we have a promising configuration. Now to be more certain

about our claim we designed another experiment.

Objective for the experiment:

• To understand the type of noises this system can generate and what will be it’s

magnitude?

In the experiment we set up 6 anchors in a rectangular configuration with

• 14.9m X 26.8m (Experiment1) total configuration size, additional anchors added at

7.62m in X direction.

21



Figure 3.8: Experiment Set 3

Referring to Fig.3.8, following conclusions can be drawn from the experiment,:

• Obtained magnitude of noise was in acceptable range for x and y.

• Max peak to peak variation:

– X = 0.17m (0.58 ft)

– Y = 0.56m (1.84 ft)

– Z = 1.6m (5.25 ft)

• Observed a sudden loss of signal in the system for a duration of about 15 sec.

• System was able to maintain connection with 4 anchors for majority, duration of

the experiment.

3.2.4 Study of intermittent signal and accuracy of the system.

This set of experiment was performed to further study the LGPS and accuracy of the

data from the origin and w.r.t it’s previous position.

Objective for the experiment:
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Figure 3.9: Setup for the Experiment 4

• To measure number of Long Gaps in Positional Signal obtained during each exper-

iment.

• Identify the reason for Long Gaps in Positional Signal (e.g. time, temperature etc.).

• Find number of repetition in Long Gaps in Positional Signal.

• Measure the accuracy of the system.

In the experiment, we set up 6 anchors in a rectangular configuration with

• 14.9m X 26.8m total configuration size, additional anchors added at 7.62m in Y

direction.

Conclusion from the experiment, referring to Fig. 3.10, 3.11 and 3.12:

• No Long Gaps in Positional Signal observed in 1st experiment.

• Observed a sudden LGPS in the system. All gaps are about 15 20 sec.

%Error =
S ystemMeasured − TapeMeasured

TapeMeasured
X100
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Figure 3.10: Experiment Set 4a

Figure 3.11: Experiment Set 4b
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Figure 3.12: Experiment Set 4c

• System was able to maintain good accuracy in the outside environment. % Error

ranges between 4.07 to 0.11. (for Euclidean distances)

Experiment Tape Measured
(in m)

System Measured
(in m)

Error(in m) Error(in %)

Experiment 1 22.27 23.1778 -0.9078 4.0762
Experiment 2 22.4536 23.2008 -0.7472 3.3276
Experiment 3 24.282 24.9739 -0.6919 2.8496
Experiment 4 25.8318 25.9354 -0.1036 0.4012
Experiment 5 18.34 18.5689 -0.2289 1.248
Experiment 6 16.5353 16.5551 -0.0197 0.1191
Experiment 7 15.9512 16.0518 -0.1006 0.6306

Table 3.1: Error Observed in each experiment
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Conclusion from Outdoor Experiments
Experiment Set Objectives Conclusion
1 Set Viability of System in out-

door environment.
Documentation claims about 60m range.
However, system has limitations and cannot
work in all distance configurations.

2 Set To identify best distance/-
configuration where we can
get optimum results.

Configuration identified. Experimental ob-
servation: intermittent signal and distur-
bance due to irregularity in the configura-
tions.

3 Set To identify noises and accu-
racy of the system outdoors.

Acceptable accuracy. Data gaps in positional
signal 15 20 sec in length.

4 Set Study of intermittent signal
and accuracy of the system.

Acceptable error. Irregularity in signal needs
more study.

3.3 Final conclusion

From Indoor experiment error obtained during the experiments was always < 30 cm. We

are able to exploit Decawave utility outdoors. But PANS calibration is a tedious process

and is required before any deployment.

It cannot be a ready to fly system, on every occasion, we have to spend time calibrating

it and then we will be able to use these devices. Also, DRTLS i.e. Decawave Real-Time

localization system limits our interaction with 4 anchors during localization.

However, we did a systemic study of using these devices outdoors and our experience from

indoor testing was able to set the stage for outdoor testing. We systematically analysed

each parameter of the hardware and made it to the point where it can give it’s best

performance for our outdoor experiment. The problem of an intermittent signal needs to

be addressed.

26



Chapter 4

Design of Simulator

The existing drone simulators don’t interface with machine learning models for training

or control. After some good research with these simulators the two simulators identified

were ’AirSim’ and ’Gazebo’. But both of these simulators need higher processing power.

Figuring out integration of ML algorithms or rewriting their filter model is another chal-

lenge. The purpose of this simulator is to provide quick and easy means to understand

platform and to develop the idea of filtering for positional signal using Artificial Neu-

ral Network. This chapter discusses the simulator in detail. The simulator is designed

in python programming language. The simulator design is based on Object Oriented

Programming (OOPS) to keep the code modular, easy to understand and for faster de-

velopment. The simulator constitutes of a controller module which is further divided into

position_control class and attitude_control class, a sensor module and a filter module

discussed further (Fig. 4.1).

In the module, the Earth is considered as the inertial reference of frame, which is a req-

uisite so that it can be modeled as a rigid body and required equations of motion can be

derived. The inertial reference frame is kept standard, i.e., NED. Which means X-axis

pointing in north, Y-axis pointing in east, and the Z-axis is pointing down.[39]
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Figure 4.1: Code Architecture
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4.1 main_code

The main computer program is represented by main_code in the Fig. 4.1 and named as

main_code.py in the simulator. This python script is suppose to connect all the different

code blocks discussed further and execute them in systematic order. The parameters

of the UAV are set to roughly match characteristics of a Hummingbird UAV sold by

Ascend technologies, as most of these parameters are referenced from [40]. This method

initializes drone parameters such as

• dt - size of each time step in the simulation.

• m - mass of the quad-rotor

• l - length of the arm of the quad-rotor

• g - gravity

• ωh - Motor speed

• KF = 2.2X10−4 - constant to relate force and motor speed

• KM = 5.4X10−6 - constant to relate moment and angular speed

It also initializes the way-point for the trajectory to be followed by the drone and

then initiates the simulation.

4.2 Controller

The purpose of a flight control is to ensure stable behavior of a UAV so that it is able

to reach it’s waypoints with acceptable accuracy even in the presence of external dis-

turbances. This block constitutes of scripts position_control.py and attitude_control.py

discussed in detail below. The design of controller is strongly inspired from [40] “Robot

controller” section. It is a linear controller, where the error in position (i.e, Position De-

sired - Current Position) generates an acceleration set point. This acceleration commands

desired thrust. The error in the angles (i.e. AngleDesired − AngleCurrent) generates angular
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rate set points, which then calculates desired moments. The states can be controlled by

using either PD or PID control.

4.2.1 Position Control

Based on the desired way point, current position and current velocity, this script calculates

the desired acceleration based on difference in the desired position and current position,

current velocity and desired velocity . For tuning purposes it has values of Proportional

gain (Kp), Derivative gain (Kd) and Integral gain (Ki).

To calculate error in position ep, the following approach is implemented:

ep = pdes − pcur (4.1)

Similarly, for error in velocity ev,

ev = vdes − vcur (4.2)

From the equation 4.1 and 4.2 we can calculate desired acceleration, r̈i as:

r̈i = kpXep + kdXev (4.3)

4.2.2 Attitude Control

Based on desired acceleration, desired angles (φ, Θ, Ψ ), angular velocities (p, q, r) and

δW f (total force required in z direction), desired rotor speed of all independent four rotors

is calculated.

Angles desired (φdes, θdes) are calculated as follows:

φdes = (1/g)X(r̈x
desXsin(ψdes) − r̈y

desXcos(ψdes)) (4.4)

θdes = (1/g)X(r̈x
desXcos(ψdes) + r̈y

desXsin(ψdes)) (4.5)
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∆ωF = (m/(8XKF Xωh))Xr̈z
des (4.6)

Angular velocities(pdes, qdes, rdes) desired are taken as 0.

• pdes = 0

• qdes = 0

• rdes = 0

From equation 4.4, 4.5 and 4.6, respective rotor speeds are calculated as follows:

∆ωφ = kp,φ(φdes − φ) + kd,φ(pdes − p) (4.7)

∆ωθ = kp,θ(θdes − θ) + kd,θ(qdes − q) (4.8)

∆ωψ = kp,ψ(ψdes − ψ) + kd,ψ(rdes − r) (4.9)

Based on above desired rotor speed equation 4.7, 4.8 and 4.9 corresponding rotor

speed by individual rotor (ωdes
1 , ωdes

2 , ωdes
3 , ωdes

4 ) can be calculated as:

ωdes
1 = (ωh + ∆ωF) − ∆ωθ + ∆ωψ (4.10)

ωdes
2 = (ωh + ∆ωF) + ∆ωφ − ∆ωψ (4.11)

ωdes
3 = (ωh + ∆ωF) + ∆ωθ + ∆ωψ (4.12)

ωdes
4 = (ωh + ∆ωF) − ∆ωφ − ∆ωψ (4.13)

This rotor speed is then used further for calculations of dynamics of the Quad-rotor.

4.3 Dynamics of Quadrotor

The design of quadrotor is referenced from [41]. Efforts are taken to keep the notation

close to that of typical aeronautics literature. Fig. 4.2 systematically represents following

nine state vectors:
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Figure 4.2: Definition of axis

u = body frame velocity in îb in Fb,

v = body frame velocity in ĵb in Fb,

w = body frame velocity in k̂b in Fb,

φ = roll angle respect to Fv2,

θ = pitch angle respect to Fv1,

ψ = yaw angle respect to Fv

additional three state variables used are:

pn = the inertial (north) position of the quadrotor along îi in F i,

pe = the inertial (east) position of the quadrotor along ĵi in F i,

h = the altitude of the aircraft measured along −̂k
i in F i

The quadrotor is in the inertial frame with position (pn, pe, h), with positive h defined

along negative Z-axis in the inertial frame. The velocities linear (u, v, w) and the angular

(p, q, r) are with respect to the body frame(Fb) of the quadrotor. The three Euler

angles roll φ, pitch θ and yaw ψ are given with respect to vehicle 2-frame(Fv2), vehicle

1-frame(Fv1) and the vehicle frame (Fv) as described in [41].

Based on obtained ωdes values, position(at t-1) and velocity(at t-1) change in position of

the drone are calculated as follows:

First of all forces produced by each motor is calculated using:

F = KFω
2
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for all four rotors. Then added to find the actual force on the quad. As the state

variables pn, pe and −h are in inertial frame and the velocities in body frame. Hence, the

relationship between position and velocities can be given by:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ṗn

ṗe

−̇h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c(θ)Xc(ψ) c(θ)Xs(ψ) s(θ)

s(φ)Xs(θ)Xc(ψ) − c(φ)Xs(ψ) s(φ)Xs(θ)Xs(ψ) + c(φ)Xc(ψ) s(φ)Xc(θ)

c(φ)Xs(θ)Xc(ψ) + s(φ)Xs(ψ) c(φ)Xs(θ)Xs(ψ) − s(φ)Xc(ψ) c(φ)Xc(θ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u

v

w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
** where ’c’ represents cosine and ’s’ represents sine angles respectively.

Above represents rotational matrix to convert body frame Fb to world frame

The relationship between the absolute angles φ, θ and ψ and the angular rates p, q, and

r is complicated. The angular rates are defined in the body frame Fb, the roll angle ψ is

defined in Fv2, the pitch angle θ is defined in Fv1, and the yaw angle ψ is defined in the

vehicle frame Fv. To relate p, q and r with φ̇, θ̇ and ψ̇ we can use following transformation:

Rpqr =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 sin(φ)tan(θ) cos(φ)Xtan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)(cos(θ)−1) cos(φ)(cos(θ)−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ̇

θ̇

ψ̇

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 sin(φ)tan(θ) cos(φ)Xtan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)(cos(θ)−1) cos(φ)(cos(θ)−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p

q

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.15)

Based on the total force and the rotational matrix R, acceleration in the three direc-

tions is calculated.

r̈ = (1/m)X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0

0

−mg

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ RT .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0

0

Ftotal

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.16)

The angular velocity of the quadrotor airframe is with respect to the inertial frame. The

control force is computed and applied in the body coordinate system. To express accel-

33



eration in the body coordinate system we can use acceleration (r̈) obtained consecutively

velocity(v) and position (p) as follows:

v = vt−1 + r̈Xdt

then,

p = pt−1 + vXdt

Therefore, change in the angular velocities ( ṗ, q̇, ṙ) can be calculated using equation:

ṗ = (lXKF X(ω2
2 − ω

2
4) − qXrX(Izz − Iyy))/Ixx

q̇ = (lXKF X(ω2
3 − ω

2
1) − pXrX(Ixx − Izz))/Iyy

ṙ = Km((ω2
1 − ω

2
2 + ω

2
3 − ω

2
4) − pXqX(Iyy − Ixx))/Izz

Product of above equations with ∆t (time stamp) results in current angular velocities

(p,q,r)

From angular velocities respective angles can be calculated as follows.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ̇

θ̇

ψ̇

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Rpqr.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
pt−1

qt−1

rt−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.17)

Therefore we get: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ

θ

ψ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ̇

θ̇

ψ̇

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X∆t (4.18)
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4.4 Sensor Model

The purpose of this block or model is to simulate a sensor’s functionality. In the simulator,

we have modeled two sensors Inertial Measurement Unit (IMU) and global positioning

system (GPS). The IMU constitutes of gyro and accelerometer. A gyro constitutes a

small vibrating lever which on angular rotation undergoes a change in the frequency of

the vibration and detects the rotation based on the Coriolis effect. On the other hand,

an accelerometer contains a small plate or mass attached to the torsion lever or spring.

It measures acceleration by the change in capacitance between the fixed plate and the

moving mass or lever [42]. The output of an accelerometer is given by:

yacc = kaccA + βacc + ηacc

where yacc is in Volts, kacc is a gain, A is the acceleration in meters per second squared,

βacc is a bias term, and ηacc is zero-mean white noise. The gain kacc is given with the sensor

specification and varies with different manufacturers. As offsets like kacc and βacc can be

eliminated through a calibration before each flight and hence their values are assumed in

the simulator. For ηacc we have added a Gaussian noise of mean(µ) = 0 and variance(σ) =

1. Accelerometers are analog devices that are sampled by the on-board processor. In the

simulator, the sampling rate is set as 100Hz. A quick text for above can be found in [41]

and [43] or a detailed intuitive explanation is available in [44]. A GPS gives latitude and

longitude, which can be converted to the Cartesian system if the origin and orientation

of the drone is known and formulas for the same can be found in [45]. But it is still an

active field of research in terms of accuracy and methods[46]. As per [47] GPS signals

are accurate within a 4.9m radius and from [48] update rate is around 5 Hz, similar noise

and update rate is set in simulator.

Drone is a complex design and to exploit it’s ease of use, these drones are equipped with

a series of sensors. Aside from mechanical components that give lift and maneuver, the

purpose of sensors is to constantly collect information from their surroundings and pro-
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vide feedback, where feedback constitutes of information such as current position, speed,

nearby obstacles etc.

As an IMU experiences force, and based on it calculates acceleration, following equa-

tions are used for it’s design referred from [49].

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
u̇

v̇

ẇ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1/m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0

0

Ftotal

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−gsin(θ)

gcos(θ)sin(φ)

gcos(θ)cos(φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
rv − qw

pw − ru

qu − pv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.19)

Rest of the calculations for transformations, velocities, positions and angular velocities

are same as discussed in quadrotor model.

4.5 Filter Model

The objective of this section is to describe numerical filter, Dynamic observer theory and

implementation of Extended Kalman filter. A numerical filter executes a set of mathemat-

ical operations on a discrete-time signal to reduce noise that distorts the process-variable

measurement. The introduction of such a digital filter in the feedback loop generally

results in a smoother control effect and a stable flight [50][51]. According to statistics

and control theory, Kalman Filter is an algorithm that uses a series of measurements ob-

served over time to estimate unknown variables that tend to be more precise than a single

measurement, containing statistical noise and other variations [52]. Extended Kalman

Filter is a nonlinear variant of the Kalman filter, which linearizes about an estimate of

current mean and variance using Taylor Series. In short EKF helps in getting a linear

estimate of a nonlinear function [53].

In general an Extended Kalman Filter is a two step process; prediction and update. As

per dynamic observer theory a linear time-invariant system can be modeled as follows:

ẋ = Ax + Bu
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y = Cx

A continuous time observer for this system is given by the equation

˙̂x = Ax̂ + Bu + L(y −Cx̂)

where

L(y −Cx̂)

part is copy of the model and the latter part is the correction due to sensor reading In

general, the sensors are usually sampled and give an update at some sample rate Ts. To

modify observer equation such that it incorporates this behaviour, following equation is

implemented to channelize the system model between samples.

˙̂x = Ax̂ + Bu (4.20)

can also be written as:

˙̂x = f (x, u)

and then estimate is updated when a measurement is received using the equation

x̂+ = x̂− + L(y(tk) −Cx̂− (4.21)

, where tk is the time, measurement is received and x̂− is the state estimate from equation

4.20. An algorithm based on above approach can be found in [1] as Algorithm 1.

Extended Kalman Filter

• Predict

– Predict state estimate:

x̂k|k−1 = f (x̂k−1|k−1, uk)

– Predict Covariance estimate
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P̂k|k−1 = FkPk−1|k−1FT
k + Qk

• Update

– Kalman Gain

Kk = Pk|k−1CT
k (CkPk|k−1Ck + Rk)−1

k

– Updated State estimate

x̂k|k = x̂k|k−1 + Kkỹk

– Updated Covariance estimate

Pk|k = (I − KkHk)Pk|k−1

Similarly, a derivation of the Continuous-discrete Kalman filter can also be found in [1] at

section 8.5. For simulator implementation following equations have been used to define

state vector, i.e., x̂, quadrotor dynamic equations given by f (x, u) and ’A’ represent partial

derivative of f (x, u) w.r.t x.

4.5.1 Prediction

x̂ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p̂x

p̂y

p̂z

˙̂px

˙̂py

˙̂pz

ψ̂

θ̂

φ̂

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.22)
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Based on x̂ the propagation model is as follows:

f (x, u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ṗx

ṗy

ṗz

cos(φ)sin(θ)r̈z

−sin(θ)r̈z

g + cos(θ)cos(φ)r̈z

p + qsin(φ)tan(θ) + rcos(φ)tan(θ)

qcos(ψ) − rsin(ψ)

qsin(φ)/cos(θ) + rcos(ψ)/cos(θ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.23)

A = δ f /δx

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 s(φ)s(θ)r̈z c(φ)c(θ)r̈z 0

0 0 0 0 0 0 −1c(φ)r̈z 0 0

0 0 0 0 0 0 −1s(φ)c(θ)r̈z c(φ)s(θ)r̈z 0

0 0 0 0 0 0 qc(φ)tan(θ) − rs(φ)tan(θ) (rc(φ) + qs(φ))/c(θ)2 0

0 0 0 0 0 0 −qs(φ) −rc(φ) 0

0 0 0 0 0 0 (qc(φ) − rs(φ))/c(θ) −(qs(φ) + rc(φ))t(θ)/c(θ) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.24)
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4.5.2 Update

The algorithm for implementing Extended Kalman filter in the simulator is as follows

1. Initialize: x̂ = 0.

2. At each sample time dt:

3. for i = 1 to N do Prediction: propagate the equations.

4. x̂− > x̂ + (Tout/N)( f ((x̂, u)))

5. A = δ f /δx

6. P− > P + (Tout/N)(AP + PAT +GQGT )

7. end for

8. for A measurement has been received from sensor i then Correction: Measurement

Update

9. Ci = δ f /δx

10. P− > (I − LiCi)P

11. x̂− > x̂ + Li(yi − ci(x̂))
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4.6 Artificial Neural Network (ANN)

Figure 4.3: Schematics of a controller.

This section presents the solution designed to address the intermittent signal chal-

lenge. An intermittent signal is a long gap in the positional signal. In EKF this issue is

addressed by setting a sampling rate [54] and depends very much upon the sensor signal.

Due to various reasons such as heating and interference in wired/wireless communica-

tion, sensors are susceptible to faulty signals. These faults cause delays which results in a

sudden abrupt maneuver by a UAV causing damage to drone or giving rise to an abrupt

behavior [55]. The novel approach discussed is supposed to handle this abrupt maneuver

by giving smoother feedback. As discussed in the introduction of chapter 4, confidence

in the accuracy of the results suffers due to complexity involved in available simulators.

Hence to be confident about the working of this novel approach we designed our simulator

and a module for implementation of Artificial Neural Network based approach.

The basic goal of a autopilot design is to control the inertial position (px, py, pz) and

attitude (φ, θ and ψ) of the UAV. When designing a PD or PID controller, tuning gains

of the controller are an important aspect of control system design. Multiple methodolo-

gies are suitable for this purpose such as, Dahlin PID controller, Ziegler-Nichols criterion

method and successive loop closure based approach etc. But there are no formal analysis

or comparison studies regarding self-tuning controller[56]. Referring to figure 4.3 as dis-
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cussed in [57], controller output is basically pwm signals to the rotor. Based on the pwm

signal there is change in dynamics or state of a quadrotor. These changes in state are

sensed by an IMU, which in combination with GPS signal (which has a slower update rate

then IMU) is passed through the filter (EKF). Then Extended Kalman Filter calculates

a much accurate feedback for the controller which in turn generates better pwm signal

and the loop continues.

As discussed above and referring to Fig.4.4, the update received is not at regular intervals.

For example from the Fig.4.4 between the time stamp t5 and t6 there is a increase in the

deviation which gets corrected at the time stamp t6 due to long gap. This sudden change

give rise to a abrupt maneuver, and to control this behaviour we have implemented Ar-

tificial Neural Network, which in such situations is suppose to provide feedback based

on previous learning. Hence, ANN takes over the system and provides state variables

required by EKF in the cases of GPS cutoff. This effect will smoother the feedback and

will give linearity to the update rate as now there is update from only one sensor(IMU),

which has a higher frequency with the only disadvantage being drifting.

As in Fig.4.5, the loop is similar to that of a controller discussed above, with difference in

the feedback that reaches the controller. Feedback consisting of current states represented

by X in equation 4.26. X constitutes of inertial position (px, py, pz), velocity position

( ṗx, ṗy, ṗz) and attitude (φ, θ and ψ, p, q and r) at time t-1, and rotor angular velocities

(ω1, ω2, ω3, ω4). Mentioned states X are passed through a recursive neural network with

two hidden layers to keep training the module using Backward propagation while it is

receiving a GPS signal. When GPS signal is not available the system switches from EKF

to Neural Network based EKF.

Implementation of Kalman Filter with artificial neural network.
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Figure 4.4: continuous-discrete dynamic observer time-line representation. The vertical
lines represent sample times at which measurements are received. In between these
measurements, the state is propagated using equation (4.20). Once there is a received
measurement, the state is updated using equation(4.21) [1]

Figure 4.5: Schematics of Neural Network implementation.
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4.6.1 Algorithm

Case 1: Predicting States x̂ using Neural network

In this case we predicted x̂ using ANN.

Y or x̂ or output of ANN

Y(x̂) =
∣∣∣∣∣p̂x

t p̂y
t p̂z

t ˙̂pt
x

˙̂pt
y

˙̂pt
z φ̂t θ̂t ψ̂t

∣∣∣∣∣T (4.25)

Input to ANN

X = | p̂x
t−1 p̂y

t−1 p̂z
t−1 ˙̂pt−1

x
˙̂pt−1
y

˙̂pt−1
z φ̂t−1 θ̂t−1 ψ̂t−1 ω1 ω2 ω3 ω4 pt−1 qt−1 rt−1 |T (4.26)

4.6.2 Implementation

In the proposed approach Fig.:4.5 and Fig.:4.6

Figure 4.6: Implementation
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Extended Kalman Filter With Neural Network

• Predict

– Predict state estimate:

x̂k|k−1 = N̂NX

– Predict Covariance estimate

P̂k|k−1− > FkPk−1|k−1FT
k + Qk

• Update

– Kalman Gain

Kk = Pk|k−1CT
k (CkPk|k−1Ck + Rk)−1

k

– Updated State estimate

x̂k|k− > x̂k|k−1 + Kkỹk

– Updated Covariance estimate

Pk|k− > (I − KkHk)Pk|k−1

∗N̂N = NeuralNet
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Chapter 5

Simulation Results and Discussion

This chapter presents comparative results of Artificial Neural Network (ANN) based

filtering. Referring to Fig.(4.3), the goal of the research is to improve the feedback, i.e.,

X̂ of the controller input as good feedback will result in better estimate for a controller.

This chapter is divided into two sections. The first section discusses the comparative

study of flights with Extended Kalman Filter and Artificial Neural Network and the

second section talks about incorporating changes such as a change in the payload. A

detailed implementation and working of the simulation is discussed in chapter 4.

General understanding of these graphs [Fig.: 5.1]: The graphs that you will come across

further in this thesis will have distance on the y-scale and time on the x-scale. They

represent the motion of a drone in the x, y, and, z axis to reach their desired x, y and,

z (represented by a red line). The line representing ’true’ is the data obtained from

the IMU sensor.The line representing ekf/neural is the data obtained after filtering from

respective filters EKF or ANN. For all the cases the UAV is considered to be starting

from Origin i.e. [0,0,0] and reaches the given way point ([30,30,30]).
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Figure 5.1: The EKF flight transition of 3D to 2D representation.

5.1 Comparative Study

The comparative study discusses on following cases:

• Comparison in an Extended Kalman Filter flight and an Artificial Neural Network

flight. Where improvement in the feedback is discussed and explained by the means

of graphs.

• Comparison in an Extended Kalman Filter flight and an Artificial Neural Network

flight with time variation in GPS signal received.

5.1.1 Comparison between flight with an EKF and flight with

ANN based filter

Figure 5.2 and 5.3 represent flight with EKF and flight with ANN respectively for PD

controller. It is simulated that GPS/Positional signal is received every second. In the

Fig. 5.2 and 5.3 the UAV is trying to reach desired way point [30, 30, 30] in x, y and z

direction respectively. As it can be inferred from the figures the flight with ANN is much

smooth compared to the one with EKF.
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Figure 5.2: EKF

Figure 5.3: Artificial Neural Network
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Figure 5.4: EKF Flight with Positional signal every 1 sec

Figure 5.5: ANN Flight with Positional signal every 1 sec

5.1.2 Comparison in an EKF flight and an ANN flight with time

variation in GPS signal received

As from the graphs Fig. 5.4 and Fig. 5.5 represent flight when UAV receives signal every

1 second. Similarly, Fig. 5.6 and Fig. 5.7 represent flight when UAV receives signal every

6th second. Referring to Fig. 4.4 in chapter 4, it can be inferred that as the frequency

of the updates increases there are higher number of corrective steps, which indicates the

sensitivity and correctness of the simulator.
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Figure 5.6: EKF Flight with Positional signal every 6 sec

Figure 5.7: ANN Flight with Positional signal every 6 sec
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Figure 5.8: ANN based PID controller with drop of payload at 20 sec

5.2 Change in Payload

In this part of the work, considering payload of the drone to be 1 Kg which is approx-

imately 15% of the weight of the drone. This payload is dropped during mid flight at

around 20 seconds. The ANN based feedback system is able to cope up with the change

in payload ref Fig.5.8.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

UAV technology is an upcoming field. It is just a matter of time that drones will be

a part of many enterprises from law enforcement, to construction management to ware-

house management to home deliveries, etc. A robust system is the need of the hour.

Localization is still a challenge and everywhere researchers are developing a variety of

robust mechanisms to tackle it. This work discusses a systematic approach implemented

to use indoor localization hardware (UWB modules) in an outdoor environment. Diffi-

culties faced and a step by step approach implemented to tackle the challenge and build

up a UWB based system that can be used in bridge inspection, are discussed in detail in

Chapter 3.

To develop a further robust solution we dug deeper and implemented a state of art Ar-

tificial Neural Network-based algorithm that trains in an online fashion and during the

case of an intermittent signal stabilizes the drone maneuver by forward propagation. In

the process of addressing the challenge, a python-based simulator was developed bringing

in the benefits of modular code, ease of understanding, and faster development. This

helped in the comparative study of the novel approach of ANN-based Kalman filtering

and Extended Kalman filtering across the cases such as a 1-sec intermittent signal, then

a 6-sec intermittent signal, and then system withstand in case of a change in the payload.
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Based on the results, it can be concluded that ANN-based filtering gives better control

feedback and hence improves the overall flight maneuver.

6.2 Future Work

The work shows a possibility of improvement in the feedback of the controller input using

Artificial Neural Network. For works such as [58] where they improved performance

of their model by choosing appropriate sampling algorithm, implementing ANN based

Extended Kalman filter can further improve the performance or could be an interesting

approach to observe.

A much trained model or a model with Recurrent neural network (RNN) may provide

better results as RNN were designed to work with sequential prediction problems.

Changing the piece of code into Cython can further improve the performance of the

simulator for faster and better computation.
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Appendix A

Python code for Artificial Neural

network based EKF implementation

1 # −∗− cod ing : u t f −8 −∗−

2 ##

##############################################################

3 # KALMAN FILTER:

4 # I t i s an i t e r a t i v e mathemat ica l p roc e s s t h a t uses a s e t o f

e qua t i on s and c o n s e c u t i v e data i n p u t s to q u i c k l y

5 # es t ima t e the t ru e va lue , p o s i t i o n , v e l o c i t y o f t h e o b j e c t

b e ing measured . When the measured v a l u e s con ta in

6 # unpred i c t ed or random error , u n c e r t a i n i t y or v a r i a t i o n .

7 ##

##############################################################

8 import numpy as np

9 from numpy import sin , cos , tan , pi , sign

10 from s c i py . i n t e g r a t e import ode

11 from g loba l_var s import g loba l_var s
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12 import params

13 import l o g g i n g

14 import to r ch

15 import sy s

16

17 c l a s s neural_net_based_EKF :

18

19 de f __init__( s e l f ) :

20 s e l f .Q = np . i d e n t i t y ( 9 ) ∗0 .01

21 s e l f . x_hat = np . ar ray ( [ [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] ,

[ 0 ] , [ 0 ] , [ 0 ] ] )

22 s e l f .P = np . i d e n t i t y ( 9 )

23 s e l f .R = np . ar ray ( [ [ 0 . 0 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

24 [ 0 , 0 . 0 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

25 [ 0 , 0 , 0 . 0 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

26 [ 0 , 0 , 0 , 0 . 0 1 , 0 , 0 , 0 , 0 , 0 ] ,

27 [ 0 , 0 , 0 , 0 , 0 . 0 1 , 0 , 0 , 0 , 0 ] ,

28 [ 0 , 0 , 0 , 0 , 0 , 0 . 0 1 , 0 , 0 , 0 ] ,

29 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 . 0 1 , 0 , 0 ] ,

30 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 0 1 , 0 ] ,

31 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . 0 1 ] ] )

32

33 #

################################################################

34 # Pred i c t

######################################################

35 #

###############################################################
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36

37 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

38 # Pred i c t s t a t e e s t ima t e

39 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

40 de f s t a t e_es t imate ( s e l f , dt , g lb ) :

41 # p r i n t ( ’ t : ’ , t , ’Ts : ’ , Ts )

42 s t a t e = g lb . s t a t e

43 u = s t a t e [ 0 ]

44 v = s t a t e [ 1 ]

45 w = s t a t e [ 2 ]

46 phi = s t a t e [ 3 ]

47 the ta = s t a t e [ 4 ]

48 p s i = s t a t e [ 5 ]

49 p = s t a t e [ 6 ]

50 q = s t a t e [ 7 ]

51 r = s t a t e [ 8 ]

52 # x_hat = px_hat , py_hat , pz_hat , phi_hat , theta_hat ,

ps i_hat

53 x_hat = s e l f . x_hat

54 # p r i n t ( x_hat )

55 az = −1∗ s t a t e [ 1 5 ] / params .m

56 # p r i n t ( az )

57

58 DynamicsDot = np . ar ray ( [
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59 [

u ] ,

60 [

v ] ,

61 [

w] ,

62 [ cos ( phi ) ∗

sin ( the ta ) ∗ az ] ,

63 [

−sin ( phi ) ∗ az ] ,

64 [ params . g + cos ( the ta )

∗cos ( p s i ) ∗ az ] ,

65 [ p + r ∗cos ( phi ) ∗tan ( the ta ) + q∗ sin ( phi )

∗tan ( the ta ) ] ,

66 [ q∗cos ( phi )

− r ∗ sin ( phi ) ] ,

67 [ ( r ∗cos ( phi ) ) /cos ( the ta ) + ( q∗ sin ( phi )

) /cos ( the ta ) ] ] )

68

69

70 x_hat = x_hat + DynamicsDot∗dt

71 # p r i n t ( ’ s e l f . x_hat : ’ , np . shape ( s e l f . x_hat ) )

72 # p r i n t ( ’ x_hat : ’ , np . shape ( x_hat ) )

73

74 return x_hat

75
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76 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77 # Pred i c t covar i ance e s t ima t e

78 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

79 de f covar i ance_es t imate ( s e l f , dt , g lb ) :

80

81 s t a t e = g lb . s t a t e

82 u = s t a t e [ 0 ]

83 v = s t a t e [ 1 ]

84 w = s t a t e [ 2 ]

85 phi = s t a t e [ 3 ]

86 the ta = s t a t e [ 4 ]

87 p s i = s t a t e [ 5 ]

88 p = s t a t e [ 6 ]

89 q = s t a t e [ 7 ]

90 r = s t a t e [ 8 ]

91 az = −1∗ s t a t e [ 1 5 ] / params .m

92 P = s e l f .P

93 # P = np . i d e n t i t y (6)

94 Q = s e l f .Q

95

96

97 F_matrix = np . ar ray ( [

98 [ 0 , 0 , 0 , 1 , 0 , 0 , 0 ,

0 , 0 ] ,
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99 [ 0 , 0 , 0 , 0 , 1 , 0 , 0 ,

0 , 0 ] ,

100 [ 0 , 0 , 0 , 0 , 0 , 1 , 0 ,

0 , 0 ] ,

101 [ 0 , 0 , 0 , 0 , 0 , 0 , sin ( phi ) ∗ sin ( the ta ) ∗az , cos (

phi ) ∗cos ( the ta ) ∗az , 0 ] ,

102 [ 0 , 0 , 0 , 0 , 0 , 0 ,

−1∗cos ( phi ) ∗az ,

0 ,

0 ] ,

103 [ 0 , 0 , 0 , 0 , 0 , 0 , −1∗ sin ( phi ) ∗cos (

the ta ) ∗az , cos ( phi ) ∗ sin ( the ta ) ∗az ,

0 ] ,

104 [ 0 , 0 , 0 , 0 , 0 , 0 , q∗cos ( phi ) ∗tan (

the ta )−r ∗ sin ( phi ) ∗tan ( the ta ) , ( r ∗cos

( phi )+q∗ sin ( phi ) ) /cos ( the ta ) ∗∗2 ,

0 ] ,

105 [ 0 , 0 , 0 , 0 , 0 , 0 ,

−q∗ sin ( phi ) ,

−r ∗cos ( phi ) ,

0 ] ,

106 [ 0 , 0 , 0 , 0 , 0 , 0 , ( q∗cos ( phi ) − r ∗ sin ( phi ) ) /cos (

the ta ) , −(q∗ sin ( phi )+r ∗cos ( phi ) ) ∗tan ( the ta ) /cos (

the ta ) , 0 ] ] )

107

108 # p r i n t ( np . dot ( F_matrix ,P∗Ts) )

109 P_k = P + (np . dot ( F_matrix ,P) + np . dot (P , F_matrix .

t r an spo s e ( ) ) + Q) ∗dt

110 return P_k
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111

112 #

###############################################################

113 # Update

######################################################

114 #

###############################################################

115

116 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

117 # Kalman Gain

118 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

119 de f cal_kalman_gain ( s e l f , dt , nn_model , ann_input , measure

, ymea_nn , s i g na l , t , g lb ) :

120 # p r i n t ( ’ pos : ’ , quad . pos )

121 # x_hat = s e l f . s t a t e _ e s t i m a t e ( dt , g l b )

122 # x_hat = nn_model . neura l_ne t_pred ic t ( x_new)

123 # p r i n t ( ’XXHat−shape : ’ , x_hat )

124 # Pk = s e l f . covar iance_es t imate ( dt , g l b )

125 # p r i n t ( ’ Pk : ’ , Pk)

126 i f t < 10 :

127 s e l f . x_hat = s e l f . s t a t e_es t imate ( dt , g lb )

128 s e l f . Pk = s e l f . c ovar i ance_es t imate ( dt , g lb )

129 # t r y :

61



130 C = np . i d e n t i t y ( 9 )

131 R = s e l f .R

132 I = np . i d e n t i t y ( 9 )

133 # p r i n t ( f ’ s i g n a l : { s i g n a l } ’ )

134 i f s i g n a l :

135 x_hat = s e l f . x_hat

136 s e l f . Pk = s e l f . Pk

137 s e l f .Y = np . ar ray ( [ [ measure [ 0 ] ] , [ measure [ 1 ] ] ,

[ measure [ 2 ] ] , [ measure [ 3 ] ] , [ measure [ 4 ] ] , [

measure [ 5 ] ] , [ measure [ 6 ] ] , [ measure [ 7 ] ] , [

measure [ 8 ] ] ] )

138 L = np . nan_to_num(np . dot ( np . dot ( s e l f . Pk ,C.

t r an spo s e ( ) ) , np . l i n a l g . inv (R + np . dot ( np . dot

(C, s e l f . Pk) ,C. t r an spo s e ( ) ) ) ) ) #kalman_gain

139 f oo = ( x_hat + np . dot (L , ( s e l f .Y − np . dot (C,

x_hat ) ) ) )

140 # foo = ( x_hat + np . dot (L , np . t r an spo s e ( s e l f .

Y − np . t r an spo s e ( np . dot (C, x_hat ) ) ) ) ) #same

as EKF

141 s e l f . Pk = np . dot ( ( I − np . dot (L ,C) ) , s e l f . Pk)

142 else :

143 x_hat = nn_model . neura l_net_pred ic t ( ann_input )

. detach ( ) . numpy ( )

144 x_hat = np . reshape ( x_hat , ( l en ( x_hat ) , 1 ) )

145 s e l f . Pk = s e l f . c ovar i ance_es t imate ( dt , g lb )

146 s e l f .Y = np . ar ray ( [ [ measure [ 0 ] ] , [ measure [ 1 ] ] ,

[ measure [ 2 ] ] , [ measure [ 3 ] ] , [ measure [ 4 ] ] , [

measure [ 5 ] ] , [ measure [ 6 ] ] , [ measure [ 7 ] ] , [

measure [ 8 ] ] ] )
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147 L = np . nan_to_num(np . dot ( np . dot ( s e l f . Pk ,C.

t r an spo s e ( ) ) , np . l i n a l g . inv (R + np . dot ( np . dot

(C, s e l f . Pk) ,C. t r an spo s e ( ) ) ) ) ) #kalman_gain

148 # foo = ( np . t r an spo s e ( x_hat ) + np . dot (L , ( s e l f .

Y − np . dot (C, x_hat ) ) ) )

149 f oo = ( x_hat + np . dot (L , ( s e l f .Y − np . dot (C,

x_hat ) ) ) )

150 s e l f . Pk = np . dot ( ( I − np . dot (L ,C) ) , s e l f . Pk)

151 # p r i n t ( foo )

152 i f np . shape ( x_hat ) ==(9 ,1) and np . shape (ymea_nn)

==(9 ,1) :

153 x_hat = np . reshape ( x_hat , ( l en ( x_hat ) , 1 ) )

154 else :

155 x_hat = np . reshape ( x_hat , ( l en ( x_hat ) , 1 ) )

156 ymea_nn = np . reshape (ymea_nn , ( l en (ymea_nn) , 1 ) )

157

158 ann_input = np . reshape ( ann_input , ( l en ( ann_input )

, 1 ) )

159 l o s s_va l = nn_model . neural_net_update ( to r ch .

from_numpy(np . t r an spo s e (ymea_nn) ) , to r ch .

from_numpy( x_hat ) , to r ch . from_numpy(np . t r an spo s e

( ann_input ) ) , dt )

160 # p r i n t ( foo )

161 s e l f . x_hat = foo

162 g lb . kalman_gain_array . append (L)

163 # re turn np . t r an spo s e ( foo ) , s e l f . Pk , l o s s _ v a l

164 return np . t r an spo s e ( f oo ) , s e l f . Pk , l o s s_va l

165 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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