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ABSTRACT 

This dissertation proposed an Eulerian-Lagrangian-Lagrangian (ELL) method for solving 

fluid-structure interaction (FSI) problems with an improved solution. The structures in ELL 

can be rigid or flexible, static or moving. The ELL method improves the accuracy of the 

solution in comparison with the regular immersed finite element method (IFEM) with bulk 

solid. The ELL for the thin structure is validated by solving, when conventional IFEM fails, 

two-dimensional (2D) and three-dimensional (3D) FSI problems with both rigid and 

flexible thin solid structures. The studies of mesh refinement, spatial convergence, and 

influence of the Lagrangian fluid domain are conducted in 2D and 3D cases with rigid 

structures. In the 2D flexible numerical examples, the continuum based beam (CB beam) 

element is adopted to model the thin structure. In the 3D flexible cases, the degenerated 

continuum-based shell (CB shell) element is employed. 
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CHAPTER 1. INTRODUCTION 

The fluid-structure interaction (FSI) problem, which depicts moving or deformable 

solids/structures interacting with an internal or surrounding fluid flow, is becoming one of 

the hottest topics in the scientific and engineering field in recent years. In an FSI problem, 

the movement of the immersed solid causes the change of the fluid’s pressure and velocity 

fields; in return, the pressure distribution of the fluid forces the solid to move and deform 

[1, 2]. Such problems have gained substantial interests, and many studies have been 

investigated in the literature. For instance, insect/bird wings, fish fins, falling seeds and 

leaves, human heart valves and vocal folds, and blood flow [3-15]. The interaction effects 

between fluids and structures have instinct complexities that make it still significant 

challenges, both theoretically and empirically. 

Though the theories for solid and fluid mechanics have been developed individually 

for hundreds of years, the comprehensive and systematic understanding of the FSI 

phenomena remains a challenge due to its strong nonlinearity and multidisciplinary nature. 

It is impossible, in general, to approach analytical solutions for most of the FSI problems. 

The experiments, on the other hand, are limited in scope due to their expensive setups and 

difficulties in measurement. For example, the measuring equipment might disturb the flow, 

or the flow may be inaccessible [16]. The numerical/computational method to model and 

analyze the FSI problems thus offers a compelling alternative and seems promising in the 

future. 

The computational mechanics, especially after the massive adoption of the 

supercomputer, renders a powerful tool to help both mathematicians and engineers for a 
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better understanding of the fundamental mechanism of the FSI problems. In the past 

decades, computational methods have been widely used to solve various types of FSI 

problems. Accuracy and efficiency are the most important aspects to be considered in these 

algorithms, but usually, they are not both achievable.  Hence, the long-term research goal 

of computational methods is to develop a more sophisticated algorithm that makes these 

two aspects compatible. Then an FSI simulation could be cheap and easy to achieve in the 

analysis, which would be beneficial to a wide range of engineering applications. 

1.1 FSI algorithms review 

The numerical method in solving the FSI problem can be dated back to the late 1970s, 

and numerous approaches have been proposed since then. Based on the treatment of 

meshes, these FSI computational methods can be broadly classified into two categories: 

the conforming meshes methods and the non-conforming meshes methods [17, 18]. The 

conforming meshes methods are also known as body-fitted methods or body-conforming 

methods; the non-conforming meshes methods are called non-conforming body methods. 

The distinction between the two methods is indeed the different treatments of the FSI 

interface, as shown in Figure 1.1. The conforming meshes methods always have the meshes 

that conform to the interface. This type of approach, such as the arbitrary Lagrangian-

Eulerian (ALE) method [19-22] and space-time (ST) method [23-25], requires moving 

mesh techniques to track the sharp FSI interface. The re-meshing process can be time-

consuming and computationally expensive. 
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Figure 1.1: The conceptual illustration of the distinction between two types of FSI 

methods: (a) the conforming mesh method and (b) the nonconforming mesh method. 

On the other hand, in the nonconforming techniques, the interface conditions are 

treated as constraints imposed between solid and fluid, therefore, avoiding re-meshing 

during computation. The immersed type method, such as immersed boundary method 

(IBM) [26, 27] and immersed finite element method (IFEM) [28], is among the most 

popular nonconforming mesh methods. The immersed type method uses a fixed Eulerian 

fluid domain, thus avoid re-meshing. Fluid and solid meshes can be generated 

independently.  

Another classification groups the FSI algorithms, based on the solving procedure, 

into two categories: the monolithic approach and the partitioned approach [29-35]. In the 

monolithic approach, the fluid and solid are treated in the same mathematical framework, 

thus making the entire FSI problem a single system of governing equations that can be 

solved simultaneously by a unified algorithm. The advantage of the monolithic approach 

is the seamless coupling of the FSI interface and mathematical simplicity of the modeling, 

which can approach a more accurate and physically realistic solution. However, the 
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disadvantages of the monolithic approach usually require more substantially computational 

resources and expertise to develop and maintain the code.  

The partitioned approach detaches the fluid and solid domain, and then separated 

solvers are applied. The approaching scheme of the partitioned procedure is more flexible 

and efficient, makes it the most heavily used method in real engineering applications. 

Nevertheless, the accuracy and stability of the solution might deteriorate due to the errors 

in the FSI coupling. This challenge arises from having an accurate and efficient FSI 

solution to coordinate the disciplinary algorithms. The automatically tracking of the 

interface can be cumbersome and easily error-prone. 

1.2 The immersed boundary method 

The immersed boundary method (IBM) is perhaps the most popular FSI method 

that is the non-conforming meshes method and partitioned approach. IBM was first 

proposed by Peskin in the 1970s to study the blood flow patterns around heart valves [36, 

37]. The most significant advantage of IBM is the structure meshes move on the top of the 

fixed fluid grids. Therefore, the Eulerian described fluid, and the solid of the Lagrangian 

described solid are solved separately. No re-meshing is needed. FSI force is first evaluated 

in the assumed fiber-like dimensionless structure, then transferred to the nearby fluid grids 

through a discretized Dirac delta function; the nodal velocity of the structure is summed 

from neighboring fluid grids by a reversed process, as illustrated in Figure 1.2 (a). The 

employment of such discretized Dirac delta function usually requires a uniform meshing 

scheme of fluid, thus limits the functionality of IBM when dealing with the complex 
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geometry of the fluid domain. The fiber-like framework of the solid, in IBM, also prevents 

it from adopting a wide range of physically-based solid modeling. 

 

Figure 1.2: Conceptual schemes of (a) IBM and (b) IFEM 

Despite its inaccuracy, the automatic tracking of the FSI interface, in IBM,  

circumvents the cumbersome re-meshing or adaptive mesh process in the conforming 

meshes methods. This most significant advantage makes it an efficient approach in 

analyzing complicated FSI problems. Many researchers have made efforts to enhance its 

accuracy and efficiency further [38-44 ]. For example, LeVeque and Li proposed the 

immersed interface method in [45]. Instead of using the Dirac delta function, a second-

order solution for Stokes fluid at the FSI interface based on the finite difference method 

(FDM) with uniform grids is imposed to have a second-order accuracy in Peskin’s IBM. 

The sharp-interface IBM proposed by Mitta et al. [46] employs the ghost-cell technique to 

precisely satisfy the boundary conditions in IBM. It can also handle complex FSI problems 

with unstructured fluid grids. Based on the fictitious domain methods, Glowinski et al. [47-

50] developed the distributed Lagrange multiplier (DLM) methods for simulation of a large 
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number of rigid particles in the fluid. Turek et al. [51-54] proposed the multigrid fictitious 

boundary method (FBM) and combined it with the deformable background meshes, which 

improves the solution accuracy with small computational effort. In these methods, the finite 

element meshes (FEM) are available for the background Eulerian fluid domain. 

Inspired by the fictitious domain method, the immersed domain method (IDM), 

such as the immersed finite element method (IFEM) [55-59], the immersed smoothed finite 

element method (IS-FEM) [60-63], and the immersed continuum method [64-66], was 

proposed to extend IBM for solving FSI problems with bulk solids. Like other immersed 

type methods, IDM has fixed background fluid grids by introducing a fictitious fluid 

domain to compensate for the area occupied by the solid. The Lagrangian described solid, 

and Eulerian described fluid domains are constructed independently, thus allowing the 

solid and fluid to be solved separately. The solid body with a finite volume is modeled 

using more realistic material constitutive laws. Also, the reproducing kernel particles 

method (RKPM) replaces the Dirac delta function in conventional IBM. Moreover, non-

uniform Eulerian fluid meshes can be adopted for the fluid solver.  

The critical issue of the immersed type method is to have a smooth function, such 

as Dirac delta function in the IBM or RKPM in the IFEM, to interpolate the FSI conditions 

from one domain to another near the interface. However, the accuracy of the solution 

largely depends on the quality of the grid. A high-resolution meshing scheme is usually 

required to guarantee good results, which leads to expensive computations. For the coarser 

grids, the interpolated solution near the interface would be smeared and typically thicken 

the fluid-structure interface. To alleviate this issue, Wang et al. used the direct finite 

element method (FEM) interpolation to track the FSI interface implicitly [67]. Such 
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interpolation is also more physically realistic and only requires one element layer instead 

of several smearing grids, as illustrated in Figure 1.2 (b). 

1.3 Finite Element Method  

The finite element method (FEM) has become an essential and vital tool for solving 

partial differential equations (PDEs) since the late 1950s [68, 69]. The fundamental idea of 

FEM is to address the PDFs in a continuous domain into a finite number of small 

discretized domains. These small domains are known as “elements”, and Clough named it 

with the terminology finite element method [70, 71]. Figure 1.3 shows the FEM 

discretization. These “elements” are usually some polygons, and in many different 

references, they are also named as “meshes” or “grids”. The vertexes of the elements are 

known as “nodes” or “points”, on which the unknown variables are prescribed. The values 

of any location within the element can be evaluated using interpolation by constructing a 

shape function. 

FEM is a powerful tool for solving solid and fluid mechanics. The original 

governing PDFs in these problems are called the strong form for the higher requirement of 

a strong continuity on the field variables (e.g., displacements, velocities, et al.). The strong 

form of the PDFs is usually analytically unsolvable. The equivalent integration form of the 

PDFs can be obtained by using the principle of minimum potential energy, virtual work 

principle, or Galerkin approach, et al. Such an integration form is called the weak form. 

The weak form reduces the order of the differentiation on trial function, which, in general, 

offers a more flexible way to get stable and convergent solutions. 
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Figure 1.3: An illustration of the FEM discretization 

A general FEM procedure usually contains the following main steps: Step (1) the 

establishment of the weak form; Step (2) domain dissertation; Step (3) shape function 

construction; Step (4) matrices and vectors formulation in elements. Step (5) global 

matrices/vectors assembly; Step (6) solution for assumed unknowns. 

1.4 Motivation 

Despite the advantage of IFEM in solving FSI problems with a solid of finite 

volume immersed in. The assumption of a fictitious fluid domain, having the same domain 

of the immersed solid, could be problematic, because, in situations when the solid is 

assumed as zero volume structures, the fictitious fluid domain also shrinks to occupy no 

volume. The coupling process of identifying the fictitious fluid particles in the solid meshes 

fails. Thus the IFEM is unsuitable for analyzing the FSI problems when the structures are 

modeled as reduced models such as a beam, plate, shell, and others. Although different 

approaches for accurate modeling of thin structures in solid mechanics have been 
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developed for decades, only a few of them have been adopted in IBM due to its complicated 

employment of FSI algorithms for more general cases.   

The element-based FEM interpolation, in the IFEM and immersed smoothed FEM 

(IS-FEM), also makes the influence domain of the solid smaller than the real solid [72]. 

For an FSI problem with a bulk solid, the problematic interpretation of the FSI interface in 

IFEM will lead to an undesirable solution even with an excellent meshing scheme. The 

inaccurate numerical interface is always changing during the calculation, which results in 

spurious forces oscillations and jeopardizes the convergence performance. The inaccurate 

interface is indeed the most substantial disadvantage in the immersed type methods that 

have been criticized for the most. 

In this dissertation, a novel Eulerian-Lagrangian-Lagrangian (ELL) method is 

proposed for solving FSI problems [73-75]. It alleviates the immersed-type methods of 

having an inaccurate interface and IFEM/IS-FEM trouble coping with thin structures. The 

key idea is to use a small portion of the fluid to wrap the solid. This “wrapping” fluid is 

described in the Lagrangian frame, in the same way as the solid, and they are treated as one 

enlarged “composite solid”. Then the conventional immersed domain methods can be 

implemented. The moving FSI conditions are explicitly and accurately imposed since the 

conforming meshes can always be achieved in the “composite solid” domain. The primary 

fluid is refilled by the fictitious fluid domain so that a fixed Eulerian fluid domain in the 

background is formed. In essence, this method uses Eulerian grids for the fluid, Lagrangian 

grids for the wrapping fluid, and Lagrangian grids for the immersed solid, and hence it is 

termed as ELL method for convenience. ELL combines the advantages of the conforming 
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meshes method that has an accurate FSI interface and the immersed method that has a fixed 

Eulerian fluid domain.  
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CHAPTER 2. THE EULERIAN-LAGRANGIAN-LAGRANGIAN 

FORMULATION 

 In this chapter, the immersed finite element method (IFEM) is reviewed before the 

detailed derivation of the ELL method. Based on the fictitious fluid domain method, IFEM 

was proposed by Zhang et al. in 2004 for solving FSI problems with a flexible solid or soft 

material occupying a finite volume in the fluid domain [28]. The reproducing kernel 

particles method (RKPM) replaces the Dirac delta function in conventional; thus, non-

uniform Eulerian fluid meshes can be adopted for the fluid solver. Wang et al. used the 

direct finite element method (FEM) interpolation to track the FSI interface implicitly [67]. 

However, this approach also has limitations of the inaccurate interpretation of the solid 

boundary in the fluid domain. It underestimates the influence domain of the solid and also 

fails when the solid domain shrinks to reduced models, such as beam and shell. Inspired 

by the IFEM theory, the ELL formulation is derived in detail in this chapter. 

2.1 Immersed FEM 

2.1.1 Fictitious fluid domain method 

Let us consider a typical FSI problem, an incompressible flexible solid with finite 

volume s  is immersed completely and moving in the fluid domain f , as shown in 

Figure 2.1 (a). The solid domain and fluid domain together occupy an entire computational 

domain = f s    and intersect at the enclosed surface of the solid =s f s   . The 

motion of a solid particle is defined by  = ,s s s tx x X , and its displacement is =s s su x X . 

The spatial and material coordinate of a particle is denoted by x and X, respectively. The 

material derivative of displacement obtains the velocity of the solid, i.e., s sD Dtv u . The 
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superscripts ‘f’ and ‘s’ represent fluid and solid, respectively. The existence of the solid 

causes the fluid only to occupy the real fluid domain f ; no fluid exists in the space 

occupied by the solid. The interaction conditions between the fluid and solid should be 

satisfied only on the intersection surface s . The solid and fluid domains are indeed time-

dependent due to the motion of the solid. Nonslip condition on the FSI interface s  is 

assumed. The governing equations for this FSI problem are, 

, ,
f

f f f f fi
ij j i

Dv
g

Dt
    x  (2.1a) 

, ,
s

s s s s si
ij j i

Dv
g

Dt
    x  (2.1b) 

FSI conditions on the fluid-solid interface: 

Velocity condition: , onf s s

i iv v   (2.1c) 

Forcing condition: , , , onFSI f FSI s s

i if f    (2.1d) 

where   is the density, iv  is velocity and 
ij  is Cauchy stress. ,FSI f

if and ,FSI s

if  are a pair 

of the interaction forces between the fluid and solid that exists at the interface. The forcing 

condition can also be expressed as 

f f s s

ij j ij jn n    (2.2) 

where f

in  and s

in  are the normal outward vectors on the interface from the fluid and solid 

sides, respectively. For the sake of simplicity, the external force and boundary conditions 

unrelated to FSI are not considered. 



 13 

 

Figure 2.1: (a) Configuration of solid and fluid particles of an FSI system. (b) The 

fictitious fluid particles in the fictitious fluid domain. The left superscript ‘0’ 

represents the initial configuration of the solid. 

The fluid domain is changing with the movement of the solid. To form a time-

independent Eulerian fluid domain, we introduce a so-called fictitious fluid domain, as 

illustrated in Figure 2.1 (b). This fictitious fluid occupies the same position of the solid 

domain, that is fc s   (the superscript ‘fc’ denotes for fictitious fluid). Two 

assumptions are prescribed for the fictitious fluid. (1) The fictitious fluid is the same as real 

fluid. Therefore its material parameters are the same as the real fluid, i.e., density =fc f   

and dynamic viscosity =fc f  . (2) The fictitious fluid particles are bounded to and move 

with solid particles. The first assumption lets the fictitious fluid fc  fill in the solid domain 

s . Thus, with the original fluid f , it forms a time-independent fluid domain, which 

denotes *f f fc   . The second assumption ensures the fictitious fluid has the same 

velocity of the solid, i.e., *f s

i iv v  in fc . In computational practice, it is treated as velocity 

conditions for the fixed fluid domain. Also, the interaction forces on the FSI interface 

penetrate the entire fictitious fluid domain to take care of FSI forcing conditions, i.e., 
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, ,FSI fc FSI s

i if f   in fc . The following equation can evaluate the FSI force in the fictitious 

fluid domain, 

 ,

, ,
fc

FSI fc fc fc fc fc fc fc si
i ij j i

Dv
f g

Dt
       x  (2.3) 

where 
fc

ij  is the Cauchy stress of the fictitious fluid calculated by using velocity gradient 

and pressure. The next step is to sum the governing equations in the fictitious fluid domain 

and the real fluid domain. For the solid part, an additional external force term is added that 

accounts for FSI forcing interaction. Also, the FSI conditions on the interface now merge 

into the fictitious fluid domain. The final governing equations of the FSI problem of an 

immersed moving solid are summarized, 

*
* * *

, ,
f

f f f f fi
ij j i

Dv
g

Dt
    x  (2.4a) 

, ,
s

s s s s si
ij j i

Dv
g

Dt
    x  (2.4b) 

The FSI conditions on the fluid-solid are, 

Velocity condition: 
*f s

i iv v  in  s s fc    (2.4c) 

Forcing condition: , ,FSI s FSI fc

i if f   in  s s fc    (2.4d) 

Note that, in the real physical problem, there is no such fictitious fluid. It is 

introduced for the easy understanding of the formulation. One can derive the same 

equations without introducing the concept of fictitious fluid if the same assumptions are 

imposed when evaluating the FSI forcing term in Equation (2.3). Also, one can regard the 

integral of external force ,FSI s

if  applied on the solid as the drag and lift forces often used 



 15 

in the computational fluid dynamics (CFD) simulation [40, 41]. A time-independent fluid 

domain *f  is constructed by introducing a fictitious fluid domain and thus enabling the 

employment of a fluid solver based on the Eulerian coordinate. Figure 2.2 illustrates the 

schematic of the IFEM. The solid is moving over the independent Eulerian fluid grids with 

a fictitious fluid filling in the overlapped domain of solid.  

 

Figure 2.2: Schematic of the IFEM 

2.1.2 IFEM algorithm 

The solution scheme of the IFEM in Equation (2.4), in principle, is composed of 

three modules: (1) solving for solid with FSI force condition; (2) solving for fluid with FSI 

velocity condition; and (3) identifying the FSI conditions. A four-step explicit FEM 

algorithm for solving immersed solid body FSI problems is given as follows, advancing 

from time step   to 1  .  
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Figure 2.3: The procedure of identifying and interpolating FSI conditions. (a) 

Searching for solid nodes (fictitious fluid nodes) resides in fluid elements. The nodal 

pressure of I and K can be calculated by FEM interpolation in fluid element 1 and 2, 

respectively, the pressure of node J can be interpolated either in fluid element 3 or 4. 

(b) Searching for fluid nodes reside in the solid elements. The nodal velocity of fluid 

node i is interpolated using solid nodes I, J, and K. (The quadrangular elements are 

fluid elements, and triangular represents a solid element. Small squares are fluid 

nodes, and small solid circles are solid nodes.) 

Firstly, the solid nodes residing in the fluid elements are searched for, and pressure 

is interpolated at identified nodes, as shown in Figure 2.3 (a). Secondly, FSI forcing term 

,FSI s

if
  at the time step   is computed using Equation (2.3) and prescribed onto the solid 

nodes using Equation (2.4d). With FSI force ,FSI s

if
  and other external forces applied, the 

solid velocity 1 s

iv   at the time step 1   is obtained by solving the solid part in Equation 

(2.4b). Thirdly, the fluid nodes residing in the solid elements are searched for, and their 

velocities 1 *f

iv   in  fc fc s    are calculated by FEM interpolation within the solid 

meshes, as shown in Figure 2.3 (b). Fourthly, the Eulerian fluid domain *f  in Equation  

(2.4a) is solved for the time step 1   concerns the fictitious fluid velocity as velocity 

constraints. 
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2.1.3 Drawbacks in IFEM 

 

Figure 2.4: (a) Inaccurate numerical FSI interface in the IFEM method. (b) The 

smoothed coupling of the velocity boundary condition from solid to fluid in the ELL. 

The couplings of the velocity from solid to fluid and the FSI force from fluid to 

solid are the crucial part of the IFEM approach. Figure 2.4 (a) illustrates the velocity 

transfer scheme in IFEM. To interpolate the velocity of a fluid node, a solid element to host 

the fluid node needs to be determined. Then a direct FEM interpolation is used to calculate 

the velocity of this fluid node within the solid element. The velocity boundary condition 

only applies to the fluid nodes covered by the solid elements. The computational interface 

in IFEM is represented by a set of segments connecting the fluid nodes close to the interface 

inside the solid body, as illustrated by the red lines. This interpretation of interface in the 

fluid is always smaller than the real interface. The accuracy of the IFEM largely depends 

on the quality of the fluid grids. The denser the fluid grids are, the more accurate the 

numerical interface is. The numerical error would be relatively large, especially for a coarse 

fluid meshing scheme in the FSI zone. Besides, the moving interface causes a 
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discontinuous change of the computational interface that causes oscillation of the pressure, 

leading to the spurious force oscillation.  

The IFEM method is also not suitable for solving FSI problems when structures are 

modeled with reduced models such as a beam, plate, and shell. In such cases, the solid 

meshes can no longer host the fluid nodes; thus, the process of finding fluid (factitious 

fluid) nodes residing in the solid elements fails (see Figure 2.5), IFEM fails.  

 

Figure 2.5: The failure of IFEM in identifying fluid nodes residing in the solid domain 

when the solid shrinks to have no volume. 

2.2 ELL method 

2.2.1 ELL for bulk solid 

Let us go back to the original FSI problem with a bulk solid s  immersed in a fluid 

domain f , as shown in Figure 2.1 (a). Now, we separate a small portion of the fluid Lf  

from the original fluid domain f to wrap the solid domain, as illustrated in Figure 2.6 (a). 

The equation for the fluid is divided into two parts, i.e. 

, ,
f

f f f f Lfi
ij j i

Dv
g

Dt
    x  (2.5a) 
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, ,
f

f f f f f Lfi
ij j i

Dv
g

Dt
     x  (2.5b) 

 
Figure 2.6: The ELL approach of (a) separation of the wrapping fluid and (b) 

construction of the “composite solid”.   

We regroup the wrapping fluid with the solid and regrade them as one enlarged 

“composite solid” domain, i.e. fs Lf s   . The governing equations of this new FSI 

system become,  

, ,
f

f f f f f Lfi
ij j i

Dv
g

Dt
     x  (2.6a) 

, ,
fs

fs fs fs fs fsi
ij j i

Dv
g

Dt
    x  (2.6b) 

FSI conditions on the fluid-solid interface fs  are, 

Velocity condition:  f fs

i iv v  on fs  (2.6c) 

Forcing condition:  , ,FSI f FSI fs

i if f   on fs  (2.6d) 
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The new FSI interface fs  is the enclosed surface of the composite solid, i.e. 

fs fs   . The density, velocity and Cauchy stress of the composite solid are assembled 

as,   

   ,fs Lf s s Lf fs        x x x  (2.7a) 

   ,fs Lf s s Lf fs    v v x x v v x  (2.7b) 

   ,fs Lf s s Lf fs    σ σ x x σ σ x  (2.7c) 

where   is the Dirac delta function. In practice, this can be done merely by generating 

sheared nodes at the interface between the solid and the Lagrangian fluid, and a system of 

matrixes can discretize the dynamics of this composite solid.  

 Notice that Equation (2.6) has a similar form as Equation (2.1). The difference is 

that the enlarged composite solid replaces the solid in the original FSI system. 

Implementing the IFEM approach in Equation (2.4), we have 

* *

, ,
f

f f f f fi
ij j i

Dv
g

Dt
    x  (2.8a) 

, ,
fs

fs fs fs fs fsi
ij j i

Dv
g

Dt
    x  (2.8b) 

FSI conditions on the fluid-solid domain,  

Velocity condition:  f fs

i iv v  in  fs fs fc    (2.8c) 

Forcing condition:  , ,FSI fs FSI fc

i if f   in  fs fs fc    (2.8d) 

The fixed Eulerian domain *f  in the ELL approach should have the same domain 

as in the original IFEM. The FSI force is evaluated in the new fictitious fluid domain.  
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The discrepancy of the FSI interface is from the inadequate number of fluid nodes 

used near the interface to transfer the velocity from solid to fluid, as discussed in the 

previous section. With the adoption of the ELL approach, this issue is resolved. Figure 

2.4(b) shows the meshing scheme of the ELL approach near the FSI interface. The solid 

domain is enlarged with the Lagrangian fluid. Now, the Eulerian fluid nodes outside the 

solid domain are also searched for to transfer the velocity coupling. The velocity at the 

interface is smoothly transferred to the fluid nodes nearby the sharp interface.   

Since the wrapped solid and the wrapping Lagrangian fluid are now regarded as 

one composite solid, shared nodes are always available to generate at the interface in this 

composite solid domain. If the Lagrangian fluid shrinks to zero, then the ELL degenerates 

to the regular IFEM with the solid meshes moving on the fixed Eulerian fluid grids. If the 

Lagrangian fluid domain stretches to have the same domain as the bulk fluid, there is no 

need to updated the fluid field through the background Eulerian fluid grids, and thus it 

becomes a body-fitted method. In essence, the ELL approach unifies the body-fitted 

method and immersed type method. 

2.2.2 ELL for thin solid 

Consider the situation when the immersed solid shrinks to a thin structure, thus occupying 

no volume; that is, the thickness of the solid can be ignored, as illustrated in Figure 2.7 (a). 

In this problem, the fluid domain is represented by f , and the thin structure domain is 

s . The governing equations for solid and fluid are then,  

, ,
f

f f f f fi
ij j i

Dv
g

Dt
    x  (2.9a) 



 22 

, ,
s

s s s s si
ij j i

Dv
g

Dt
    x  (2.9b) 

FSI conditions on the fluid-solid interface s , 

Velocity condition: f s

i iv v  on s  (2.9c) 

Forcing condition: , ,FSI s FSI f

i if f   on s  (2.9d) 

 
Figure 2.7: Illustrations of (a) the solid configuration and fluid configuration in an 

FSI system when the solid shrinks to zero thickness, (b) the wrapping fluid to 

implement the ELL method. 

Same as in the ELL for the bulk solid, let us use a small portion of the fluid SET  

that enwraps the thin structure, as illustrated in Figure 2.7 (b). Combine the fluid in the 

domain SET  with the solid s  and regard them as one mixture composite solid, i.e., 

fs SET s    . The governing equation is rewritten as, 

, ,
f

f f f f f fsi
ij j i

Dv
g

Dt
     x  (2.10a) 

, ,
fs

fs fs fs fs fsi
ij j i

Dv
g

Dt
    x  (2.10b) 

FSI conditions on the fluid-solid interface, 
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Velocity condition: f fs

i iv v  on fs  (2.10c) 

Forcing condition: , ,FSI f FSI fs

i if f   on fs  (2.10d) 

where fs  is the enclosed surface of the composite solid. Again, the above equations are 

similar to the original governing equations in deriving the IFEM method. Substituting 

Equation (2.10) into Equation (2.4) gives 

, ,
f

f f f f fi
ij j i

Dv
g

Dt
    x  (2.11a) 

, ,
fs

fs fs fs fs fsi
ij j i

Dv
g

Dt
    x  (2.11b) 

FSI condition: 

Velocity condition: f fs

i iv v  in fs  (2.11c) 

Forcing condition: , ,FSI fs FSI fc

i if f   in fs  (2.11d) 

where ,FSI fc

if  is obtained by substituting the density, velocity and Cauchy stress variables 

of the assumed fictitious fluid for this case into Equation (2.3), that is 

 ,

, ,
fs

FSI fc f fs f fc fc fc fsi
i ij j i

Dv
f g

Dt
       x  (2.12) 

Figure 2.8 shows the scheme of the ELL approach for a thin solid. By enlarging the 

thin solid to a finite composite solid, ELL effectively overcomes the issue in the 

conventional IFEM when the immersed solid shrinks to occupy zero volume.  
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Figure 2.8: Schematic of the ELL approach with a thin solid body 

2.3 A physical interpretation of ELL  

Although the combination of a Lagrangian fluid and Eulerian fluid in one method 

is unusual, the mechanism behind it is simple and fundamental. Here, we address this idea 

with the emphasis on the two fluid parts. Figure 2.9 shows the illustration of the ELL 

method for thin structure within one algorithm loop from time steps   to 1  . The 

wrapping fluid is described by the Lagrangian frame and background fluid by the Eulerian 

frame. Since there is only one real fluid particle in a particular position. The field variables, 

such as velocities and pressure of this particle, should be the same despite what coordinate 

systems are used to observe. For example, point i in Lagrangian fluid should have the same 

field value to its corresponding point I in the Eulerian fluid. From the physical aspect of 

view, they are the same material particle at this transient time step  . The external forces 

at this pair of points should be equal. Now, we can calculate the Lagrangian fluid with the 

consideration of the external force in the new time step 1  ; it deforms to an updated 
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domain 1 Lf    (together with the solid). The Lagrangian fluid point i moves to a new 

spatial position i  and in Eulerian position, J. (i and i  are the same material fluid point, 

the i  means the material point at the new time step.) At the updated time step 1  , the 

fluid material point i   in the Lagrangian fluid is the same as its corresponding material 

point J in the Eulerian coordinate. Thus the velocity at point J must be the same as the point 

i at the time step 1  , which is then treated as the velocity boundary conditions for 

calculating field variables in the Eulerian fluid domain.  

 
Figure 2.9: Illustration of the Lagrangian fluid configuration and Eulerian fluid 

configuration in the ELL method. Solid circles are Lagrangian fluid particles; hollow 

squares are Eulerian fluid particles, and empty circles are solid particles. 



 26 

CHAPTER 3. ALGORITHMS 

The ELL method includes three fundamental components, as discussed previously, they 

are Eulerian fluid, a small portion of the Lagrangian fluid, and solid in the Lagrangian 

frame. The algorithms, based on the FEM discretization, accounting for all these three 

modules, will be illustrated in this chapter. For the thin structure, the CB beam is for the 

2D and CB shell for the 3D. Since the Cauchy stress is the stress measure for the fluid, the 

updated Lagrangian scheme is a natural choice for the Lagrangian fluid part. The Eulerian 

fluid is solved by a characteristic-based split (CBS) algorithm. The ELL algorithm 

assembles these modules are given at the end of this chapter.  

3.1 Updated Lagrangian FEM for fluid dynamics 

In a CFD simulation, Eulerian mesh, where the fluid domain and grids stay unchanged 

during the calculation, is usually the first choice. However, in many other cases, for 

example, the wave propagates to the shore, free-surface flow, and so on, a Lagrangian mesh 

for fluid flows can be more suitable [76, 77]. When a fluid is described under a Lagrangian 

frame, the general governing equation is written as, 

, ,
f

f f f f fi
ij j i

v
b

t
  


  


x  (3.1a) 

f

j ij in t   on f  (3.1b) 

The fluid domain f  in this subchapter represents the general fluid domain under 

the Lagrangian frame. ib  is the generalized body force, in  and it  are the normal vector and 
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traction on the boundary. Cauchy stress 
f

ij  in the fluid (Newtonian) is computed using the 

following constitutive equation, 

2f

ij ij ijp d       (3.2) 

where   is the dynamic viscosity, and p is the pressure. 
ijd  is the rate of deformation 

tensor 

 , ,

1

2
ij i j j id v v    (3.3) 

One significant difficulty in dealing with the incompressible fluid using a 

Lagrangian description is the pressure term in Equation (3.2). An artificial compressibility 

method or a penalty method is widely used to handle this difficulty [78 - 82]. In the artificial 

compressibility method, the relation between pressure and velocity is connected using the 

following equation, 

,2

1
i i

p
v

c t


 


 (3.4) 

where c is the speed of the sound, and in practice, we usually choose a sufficiently large 

number. The relation above is used to update the pressure term when a central difference 

based time discretized explicit method is employed to solve the nonlinear equation. 

Knowing the pressure at time step   and velocity field in time step 1 2  , we can 

calculate the pressure in time step 1  , 

1
1 2

,2

1
i i

p p
v

c t

 





 


 (3.5) 
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If one defines 2c t   , the artificial compressibility method becomes a penalty 

method, the equivalence of the two methods has been discussed in [80], and one physical 

interpretation of constant   is the bulk modulus of the fluid. 

To render the governing equations in finite element form, we should recast 

Equation (3.1) in the weak form [83], 

 
0

f f f f

i f f f

ij i i i i i i

j

v
d v b d v t d v v d

x


     

   


    

     (3.6) 

The discretization of Equation (3.6) is achieved by introducing the finite element 

interpolation of the test and trial function,  

f f

i I Iiv N v   (3.7a) 

f f

i I Iiv N v    (3.7b) 

where IN   is the so-called shape function, and f

Iiv  is nodal velocity, f

Iiv  is the virtual 

velocity at the node. I is the nodal number. By substituting the interpolation function into 

Equation (3.6), we can obtain the discretized form, 

0

f f f

f

f fI
iI ij iI I i iI I i

j

f

iI I J Ji

N
v d v N b d v N t d

x

v N N v d

    

 

  




  



  

  



 (3.8) 

Using the arbitrariness of the 
f

iIv , we arrive at, 

0
f f f f

f f fI
ij I i I i I J Ji

j

N
d N b d N t d N N v d

x
  

   


    

     (3.9) 
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A well-known concise discretization formulation for the nonlinear finite element is 

given as follows, 

, ,f f ext f int f

IJ Ji Ii IiM a f f    (3.10) 

where extf  is the external force vector accounts for the body force and the traction, and 

intf  is the internal force vector from the Cauchy stress. IJM  is the mass matrix and 

Ji Jia v  is the nodal acceleration vector.  

3.2 Continuum-based (CB) beam element 

Reduced elements in FEM, such as beam and shell elements, are invaluable in the 

modeling of thin and slender engineered components and natural structures, for example, 

turbine blades, flapping flags, and falling leaves. A large number of elements are required 

to model these types of structures using continuum elements, thus leading to costly 

computations. The continuum-based (CB) beam element is among the widely used method 

to model thin beams due to its simple and straightforward theory [83-85,]. Figure 3.1 shows 

a CB element and its parent continuum element. The master nodes are the nodes of 

common beam element where the unknowns or degrees of freedom are assumed and 

prescribed. The slave nodes are located on the top and bottom of the element and generated 

through master nodes to form a standard continuum element, i.e., the strain, stress, and the 

internal force of the beam are computed using slave nodes. Each of the master nodes has a 

couple of slave nodes.  
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Figure 3.1: A two-node CB beam element and its underlying parent 4-node (Q4) 

continuum element. 

The lines linking the adjacent master nodes or adjacent slave nodes are called 

laminae. Fibers are lines that span from the bottom slave node to the top slave node. The 

unit vector p along the fiber is named the director. The corotational basis  ˆ ˆ,x ye e  at any 

point in the element. Where ˆ
xe  is defined as being always tangent to the laminae, and ˆ

ye  

being normal to the laminae. Notice that ˆ
ye  is not necessarily in the same direction as the 

director. The corotational basis  ˆ ˆ,x ye e  can be expressed in terms of the Euclidean base 

vectors  ,x ye e  as follows, 

2 2 2 2

2 2 2 2
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x x

y y

x y
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 

     
    

    
   

e e

e e
 (3.11) 
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where ,x   and ,y   represent the derivatives of the current coordinates x and y of the 

considered point to the corresponding parent coordinate  . 

Three assumptions should be imposed for the CB beam theory to represent the 

behavior of a standard beam element feasibly. (1) The fibers remain straight; (2) the fibers 

are inextensible; (3) the transverse normal stress is negligible, i.e. ˆ 0yy  . The unknown 

displacement vector and position vector at master node I are 

T

I xI yI Iu u    d  (3.12a) 

 
T

I I I Ix y x  (3.12b) 

where xu  and yu  are displacement at x and y-direction, respectively.   is angular 

displacement. Other variables, if necessary, such as velocity and acceleration, could be 

obtained by calculating the time derivatives of either the displacement or position vector. 

By imposing the straight and inextensible fiber assumption, the coordinates of a couple of 

slave nodes thus can be calculated readily as, 

 
1

2
I I I Ih t  x x p  (3.13a) 

 
1

2
I I I Ih t  x x p  (3.13b) 

where  I tp  is the director at master node I, and Ih  is the thickness of the beam. The 

standard isoparametric Q4 element based on the continuum theory could be adopted in 

terms of the slave node motions, 
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 * *

2

1

,
Nn

I I
I

N  


x x  (3.14) 

 * ,
I

N    is the standard shape function for continua. The superscript asterisks 

represent all slave nodes within a CB element for the sake of convenience.  Nn  is the total 

number of the master nodes of an element, which is two in this thesis. Other variables, if 

necessary, such as displacement, velocity, and acceleration in an element, could also be 

calculated via the same interpolation. 

Cauchy stress ij  can be calculated by constitutive equation either using Green 

strain ijE   in large strain case or Almansi strain ij  in small strain case [86]. Alternatively, 

in many more general cases, Cauchy stress is obtained by using the rate of deformation 

tensor  , ,

1

2
ij i j j iD v v  . The corotational Cauchy stress should be calculated on a 

corotational basis to impose the third assumption, and given by, 

ˆ Tσ R σR  (3.15) 

ijR  is the orthogonal transformation tensor representing the rotation between the 

Euclidean basis  ,x ye e  and the corotational basis  ˆ ˆ,x ye e , that is defined as, 

ˆ ˆ

ˆ ˆ

x x x y

y x y y

  
  

  

e e e e
R

e e e e
 (3.16) 

The internal force at a slave node *I  can be obtained by integration over the 

corresponding structural volume, 
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* * ,i

int

ijI i I j
f N d


   (3.17) 

Neither full quadrature nor the selective-reduced quadrature used in the standard 

continuum element would result in shear locking. A single stack of quadrature points at 

0   is performed to circumvent shear locking. This quadrature scheme is also called 

selective-reduced quadrature. The trapezoidal rule is often considered because of its 

effectiveness for less smooth functions. Once the internal force of the slave node is 

obtained, the internal force at the corresponding master node I can then be calculated by a 

transformation formulation, such that, 

*

int int

Ii ij I j
f T f  (3.18) 

where int

Iif  represents the internal force at the master node I and is composed of three 

components. The vector form of the internal force is 

T
int int int int

I Ix Iy If f m   f  (3.19) 

int

Ixf   and 
int

Iyf  are the internal force at x and y-direction, respectively, and 
int

Im  denotes the 

corresponding bending moment. T is the transformation matrix, and the expanded form of 

the Equation (3.19) that calculates internal force at master node I in terms of its 

corresponding slave nodes is,  

1 0 1 0

0 1 0 1

-

-

+

+

int

I j
int

intIx

I jint

Iy int

int I j
I I I I II I I I

int

I j

f

f
f

f
f

m y y x x y y x x
f

   

 
   
   

    
            
  

 (3.20) 
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After the spatial discretization of the CB beam system, the equations of the motion 

at a master node are given by, 

, ,s s ext s int s

IJ Ji Ii IiM a f f   (3.21) 

The superscript ‘s’ denotes the CB beam here, to distinguish the discretized system 

of Lagrangian fluid. IJM  is the mass matrix. A lump mass matrix is required when 

adopting an explicit algorithm to achieve the transient solution of Equation (3.21). For the 

CB beam, two techniques are often used to obtain diagonal mass matrices that are, (1) the 

row sum technique, and (2) physical lumping. (See detail in [83]). The external force vector 

is first evaluated at the slave nodes and then deduced at the master nodes in the same 

manner of calculating internal force at master nodes in Equation (3.20).  

3.3 Continuum-based (CB) shell element 

This subchapter discusses the continuum-based (CB) shell element to model the thin 

structure in the 3D FSI problem. The mixed interpolation of the tensorial component is 

adopted to remedy the shear locking in the element. 

3.3.1 The fundamental idea and FEM formulation 

The analysis of shell is one of the most challenging problems in structural 

mechanics. Developing a general FEM shell element has been a very active research topic 

for many years. The continuum-based (CB) shell element has gained the hottest interest 

since Ahamd et al. first proposed its formulation [87]. In CB shell, the strain and stress 

conditions degenerate from a standard three-dimensional solid element. Based on this idea, 

Dvorkin and Bathe developed a mixed interpolation of the tensorial component, well 
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known as the MITC element, to remedy the shear locking in the CB shell element [88-90]. 

This MICT element can be effectively applied to geometric nonlinear problems with 

conditions of massive displacement and rotation but small strain, as well as material 

nonlinear analysis. Hughes and Liu further showed its extensive application in the general 

nonlinear analysis [91].  

 

Figure 3.2: A four-node CB shell element and its underlying parent 8-node (H8) 

continuum element. 

The kinematical formulation of the shell element is established on a three-

dimensional solid element. Figure 3.2 shows a CB element with four master nodes with 

eight slave nodes connecting to form a three-dimensional solid element. The nodes on the 

mid-surface are called master nodes illustrated in solid circles. Each master node has a pair 

of slave nodes shown in the hollow spheres located on the vertexes of the hexahedron. 
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Lines that connect master and slave nodes are directors. The underlying assumptions for 

the CB shell element are: 

(1) The director remains a straight line. 

(2) The stress along the shell thickness is zero. 

(3) The balance of the momentum along the director is ignored. 

The first assumption is also known as the revised Mindlin-Reissner assumption, 

and the second one is the plane stress assumption. The lengths of directors are 

conventionally defined as the thickness of the shell and usually assumed to remain 

constant. Each of the slave nodes has three degrees of freedom in general global coordinate. 

However, for the master nodes, it contains an additional two rotational degrees of freedom 

( and  ) about basis vectors 1e   and 2e . The director p and these two base vectors are a 

set of orthogonal base vectors at master nodes. They have the arbitrary choice and are 

usually predefined before simulation and updated during the simulation (see [83] for 

detailed definition and updating formulation). The coordinate of slave nodes pair can be 

translated in the coordinate of the master nodes using, 

I I II
h

 x x p  (3.22a) 

I I II
h

 x x p  (3.22b) 

where h  and h  are the upper and lower thickness of the director. They are not 

necessarily to be identical, but in most applications, it is a convenience to assume they are 

equal and remain constant during computation. Knowing the coordinate of the slave nodes, 

a standard isoparametric finite element approach can then be established on these nodes, 

i.e., 
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             * *

*

2

1 1 1

,
N N Nn n n

I I I I I I
I I I

t t N t N t N   

   

    x ξ x ξ x ξ x ξ  (3.23) 

The superscript asterisks represent all slave nodes in a CB shell element for the 

sake of convenience. N is the shape function for the solid element. Nn  is the total number 

of the master nodes. In this thesis, we use four master nodes with eight slave nodes that 

form a standard H8 (the hexahedral element with eight nodes) element. Other variables, 

such as displacement, velocity, and acceleration, could also be evaluated using similar 

interpolation. 

3.3.2 Local coordinate system and constitutive law 

To impose the zero stress assumption, a local coordinate system with base vectors 

( ˆ
xe , ˆ

ye  and ˆ
ze ) is established at each integral point. There are several different ways to 

build this local coordinate system, e.g., Dvorkin in [90] and Hughes in [91]. Hughes’ 

method is adopted; the objective is to find a set of orthonormal base vectors ˆ
ie  as close as 

possible to the covariant base vectors g . Where the base vectors g  define a plane 

tangent to the lamina that is, 

 





x
g  (3.24) 

The local base vector normal to this plane is defined by,  

1 2

1 2

ˆ
z






g g
e

g g
 (3.25) 

The other two new base vectors are constructed by,  
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ˆ
x






a b
e

a b
,   ˆ

y






a b
e

a b
 (3.26) 

where a and b are auxiliary vectors and defined as, 

1 2

1 2

 
g g

a
g g

, ˆ
z b e a  (3.27) 

The strain is then transformed to the local coordinate system after this setup, 

ˆ Tε R εR  (3.28) 

where R is the transformation matrix defined as ˆ
ij i jR e e . The CB shell element can adopt 

all forms of general material constitutive law used for 3D solid materials. A general 3D 

elastic constitutive law in the Voigt form is 

ˆˆ

ˆˆ

ˆ ˆ ˆˆ 2

ˆ ˆ ˆˆ 2

ˆˆ 2

ˆˆ

xx xx

yy yy

aa abxy xy
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xz xzab bb
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 
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   
   
   

       
     
     

   
   
      

C C

C C
 (3.29) 

The stress and strain components along the thickness are re-ordered to stay in the 

last row. The matrices ˆ
aaC  (5 5 ) and ˆ

abC  (5 1 ) are submatrices of the tangent modulus 

matrix. Introducing the plane stress condition ˆ 0zz   in the above equation, the nonzero 

stress can be obtained by eliminating the sixth equation, and giving a 5 5  modified 

modulus matrix, 

1ˆ ˆ ˆ ˆP T

aa ab bb ab

 C C C C C   (3.30) 



 39 

The constitutive law is then changed as, 

ˆˆ

ˆˆ

ˆˆ 2

ˆˆ 2

ˆˆ 2

xx xx

yy yy

P
xy xy

xz xz

yz yz

 
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 

 

 

   
   
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   

   
   
   
      

C   (3.31) 

3.3.3 Shear locking and assumed natural strain 

The CB shell element suffers a fundamental problem inherent in its use of FEM 

interpolation of displacement, and calculation of strain using derivative of displacement. 

More precisely, this is because the transverse shear strains are not able to vanish at all 

points of the lower order element, thus makes the element stiffer and ‘lock’ when the shell 

becomes thin.  

 

Figure 3.3: Tying positions A, B, C and D for the assumed transverse shear strain 

field of the MITC4 shell element. The constant transverse shear strain conditions are 

imposed along its edges. 

To circumvent this problem, instead of calculating transverse shear strain via strain-

displacement strain relation, Dvorkin and Bathe invented the mixed interpolation of 

tensorial component (MITC) element by interpolating the transverse shear strain using 
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strain value in a specific location [88-90]. This interpolation is also known as assumed 

natural strain (ANS) or assumed strain element [92]. The assumed transverse shear strains 

(
  and 

 ) within an element is interpolated by, 

   
1 1

1 1
2 2

A C

            (3.32a) 

   
1 1

1 1
2 2

B D

            (3.32b) 

The transverse shear strains in typing points A, B, C, D, as shown in Figure 3.3, are 

calculated by the regular strain-displacement relation.   

3.3.4 The discrete equation of motion 

The external and internal force vectors are first evaluated on the slave nodes and 

then translated on the master nodes. A transformation matrix IT  is used to correlate forces 

on the master node I and its corresponding pair slave nodes, 

T I

I I

I





 
  

 

f
f T

f
  (3.33) 

where T is a 6 5  matrix. Assuming the different value for the upper and lower thickness 

of the director, the transformation matrix has the following expression, 
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(3.34) 
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Then, the discrete equations of the motion are built at master nodes,  

, ,s s ext s int s

IJ Ji Ii IiM a f f   (3.35) 

The superscript ‘s’  here represents the CB shell. A lump mass matrix is always required. 

The lump mass matrix can be obtained either by (1) the row sum technique or (2) physical 

lumping.  

3.4 Matrices Assembly and Explicit algorithm 

The discretized formulation of the CB beam, CB shell, and Lagrangian fluid are 

discussed in sections 3.1, 3.2, and 3.3. Since the thin structure and the Lagrangian fluid are 

viewed as one composite solid, it is necessary to assemble them in one unified discretized 

system. In mathematical practice, this is available by joining the individual matrices and 

rewriting them as a so-called global matrix. The assembly of the discretized system for the 

“composite solid” can then be expressed as, 

, ,fs fs ext fs int fs

IJ Ji Ii IiM a f f   (3.36) 

An explicit time integration based on the central difference algorithm is employed 

to solve the transient dynamics of this nonlinear system from time step   to 1  . Because 

the Cauchy stress is the primary stress measure that used for both CB beam and Lagrangian 

fluid, an updated Lagrangian frame is thus a natural and straightforward choice for solving 

this composite solid. Note that, when the internal nodal forces are determined by 

sequentially evaluating the strain-displacement equations, the Cauchy stress is calculated 

by the constitutive equations that are usually expressed in the form of  E  (or  ε ) for the 
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CB beam and shell, and 1/2 
D  for the Lagrangian fluid. The detailed algorithm is shown 

in  Algorithm 1. 

Algorithm 1: updL_ExDyna_Solver: Explicit dynamics analysis for updated composite 

solid. 

(1) Getforce ext int

Ii Ii Iif f f     at step   

(2) Compute accelerations  1 1 2damp

Ji IJ Ii Iia M f C v     , dampC  is damping constant 

(3) Time update: 1 1 2t t t      ,  1 2 1 2t t t      

(4) First partial update nodal velocities:  1 2 1 2

Ii Ii Iiv v t t a         

(5) Enforce velocity boundary conditions 

(6) Update nodal displacements: 1 1 1 2 1 2

Ii Ii Iiu u t v          

(7) Getforce 1 1 1ext int

Ii Ii Iif f f       at step 1   

(8) Compute 1

Iia   

(9) Second partial update nodal velocities:  1 1 2 1 1 2 1

Ii Ii Iiv v t t a           , go back to 

step 1 

The superscript ‘fs’ is omitted for simplicity. 

3.5 CBS method for Eulerian flows 

For solving the Eulerian description of incompressible viscous fluid flow, i.e., 

solving the famous Navier-Stokes (N-S) equation, the Galerkin procedure based on the 

semi-implicit form of characteristic-based split (CBS) method is employed in this research 

[93, 94]. The conventional N-S equation in the Eulerian coordinate, 

 
ff f

ijf f fi
i j if f f

j i j

V p
v V g

t x x x




  
    

   
 (3.37a) 
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f f

i

f

i

V

x t

 
 

 
 (3.37b) 

where f f f

i iV v , 
f

ij  is the deviatoric stress 2f dev

ij ijd  . In a standard FEM approach, 

the Eulerian fluid domain is discretized by a set of Eulerian meshes. The elemental fields 

of  the fluid velocity and pressure are interpolated by the fluid nodes, 

f f

i I Iiv N v   (3.38a) 

f f

I Ip N p   (3.38b) 

After spatial discretization of the N-S equation, a three steps scheme base on CBS 

time discretization can be adopted to compute the fluid velocity and pressure from time 

step   to 1  . 

Step 1: On the intermediate momentum calculation 

*
, ,

* ,

2

f f
f f f f f f f t f gJi Ji

IJ IJ Ji Ii IJ Ji Ii Ii

f f g

Ii Ii

v v t
M C v F K v f f

t

RHS f


      



 
     



 

 (3.39) 

Step 2: On the pressure calculation 

1 *1f f f f

IJ J IJi JiH p Q v
t

  


 (3.40) 

Step 3: On the momentum correction 

1 *
1

f f f f
f f f f fJi Ji Ji Ji

IJ Ii IJ IJi J

v v v v
M RHS M G p

t t

  
 


 

  
 

 (3.41) 

where 
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(3.42) 

The mass matrix f

IJM  can be replaced by the lumped mass matrix for simplicity. 

The preconditioned conjugate gradient (PCG) scheme is employed to solve the Equation  

(3.30) in Step 2. The above semi-implicit CBS algorithm is conditionally stable, and the 

critical time step t  is determined accordingly. The flowchart to calculate the 

incompressible viscous fluid flow from step   to 1   is given in Algorithm 2. 

Algorithm 2. Fuild_CBS_solver: CBS for incompressible viscous fluid 

(1) Given fluid velocity f

Iiv , pressure f

Ip  and time step   

(2) Compute immediate fluid velocity * f

Jiv   in Equation (3.29) 

(3) Apply pressure boundary condition and solve for 1 f

Ip   in Equation (3.30) 

(4) Apply velocity boundary condition and compute fluid velocity 1 f

Jiv   in Equation 

(3.31)  

(5) Update 1f f

Ii Jiv v   , 1f f

I Ip p   , 1   ;  go back to step (2) 

3.6 ELL Computational Algorithm 
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The governing equations of the proposed ELL method for FSI problems with bulk 

and thin solids are present in subchapter 2.2. The discretization and implementation of 

FEM for solving thin structures using the CB beam, CB shell theories, Lagrangian, and 

Eulerian fluid flow are given in the previous sections. The outline of the ELL algorithm is 

summarized and illustrated in Algorithm 3. 

Algorithm 3: ELL algorithm for FSI problem  

(1) Given the Eulerian fluid velocity f

Iiv  and pressure f

Ip  at step  ; given Lagrangian 

mesh configuration (i.e. composite solid), fs

Iix  and velocity fs

Iiv  

(2) Verify whether the original wrapping Lagrangian fluid mesh distorts or not, if not 

distort; go to (a) else go to (b) 

(a)  If not distort 

(2.a.1) Find composite solid nodes in the fluid elements to interpolate pressure, 

and compute FSI force ,FSI s

IiF . 

(2.a.2) Impose velocity condition of moving boundary and call for 

updL_ExDyna_Solver 
(2.a.3) Update Lagrangian mesh position 1 fs

Iix  , and nodal velocity 1 fs

Iiv   

(b)  If distort 

(2.b.1) Abandon the original Lagrangian fluid and include a new portion of the 

fluid;  generate new Lagrangian fluid meshes and assemble the structure 

to form fs

Iix  

(2.b.2) Find Lagrangian nodes reside in Eulerian elements 

(2.b.3) Calculate Lagrangian nodal velocity   and pressure   from   background 

Eulerian   mesh, go to (2.a) 

(3) Find Eulerian fluid nodes reside in Lagrangian elements; interpolate the velocities 
1 f

Iiv   to the fictitious fluid nodes.  

(4) Impose velocity condition computed in step (3) and Call for Fluid_CBS_solver; solve 

for the Eulerian fluid velocity 1 f

Iiv    and pressure 1 f

Ip  , go back to step (2) and 

continue the calculation 

3.7 Re-meshing of the Lagrangian fluid 

Since the constitutive law governs the warping Lagrangian fluid, it would undergo 

real deformation during the simulation. Therefore, this Lagrangian meshes of the fluid 
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would distort after several iterative steps, as discussed in the ELL algorithm. To suppress 

this problem, we can merely abandon the wrapping fluid at the previous time step and 

include another fluid portion that wraps the structure instantaneously. Nodal velocity and 

pressure value of the new portion can be easily achieved from the Eulerian background 

grids by FEM interpolation. An element can be determined as distorted if it meets some 

criteria; for example, the Jacobian J of the element is less than 0.2. Various re-meshing 

algorithms used in other CFD techniques, e.g., ALE and overset grid methods, can be 

adopted [95-98]. Re-meshing of the ELL is much easier due to the flexibility of the 

wrapping fluid.  

 

Figure 3.4: Illustrations of step (2) of ELL algorithm, calculation of Lagrangian fluid 

from time step   to time step 1   in case of (a) Lagrangian meshes do not distort; 

(b) Lagrangian meshes distort. The red line represents the moving body, for example, 

rotating counterclockwise. 

For ELL with a rigid thin body, Figure 3.4 shows an easy way to generate the 

Lagrangian fluid meshes at the beginning and move them the same way as the rigid body 
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motion when the re-meshing process is needed. In our code implementation, it can be 

achieved by multiplying the coordinates of initial Lagrangian meshes by a set of translation 

and rotation matrices when re-meshing or reconstruction are needed. 

For ELL with a flexible thin body, it can also achieve the new Lagrangian fluid 

meshes by constructing the elements with the help of the directors at nodes of the CB beam 

and CB shell, as illustrated in Figure 3.5 and Figure 3.6. Then the computation is continued. 

 

Figure 3.5: The illustration of the re-meshing scheme of ELL method with CB beam 

element 
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Figure 3.6: The re-meshing of the wrapping fluid element in ELL with CB shell 

element 
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CHAPTER 4. NUMERICAL EXAMPLES FOR ELL WITH BULK 

SOLIDS 

In this chapter, three numerical examples with bulk solids immersed in the fluid are 

calculated to show the superiority of the proposed ELL method in comparison to the 

conventional IFEM. ELL improves the accuracy of the solution and has excellent 

performance even in a coarse mesh planning. 

4.1 Rotating ring in the square fluid 

This numerical example studies a 2D FSI problem of a rotating solid ring immersed 

in a square fluid domain. Figure 4.1 shows the geometry of the problem. The interior and 

exterior radii of the ring are r = 25 cm and R = 30 cm, respectively. The length of the fluid 

domain is L = 1 m. The center of the ring coincides with the center of the fluid field. The 

ring is considered as a rigid body rotating with a constant angular velocity 2 rad ss  . 

The density of the fluid is 1 kg mf  , and the dynamic viscosity of the fluid is  

 10 kg m sf   . Nonslip boundary conditions are imposed on the interior, and exterior 

surfaces of the ring and nonslip boundary conditions are also assumed at the four edges of 

the fluid domain. The zero pressure boundary condition is at the center of the circle. No 

gravity effect is considered. The fluid and solid are initially assumed to be at rest; the ring 

begins to rotate when the simulation starts. The rotation of the ring induces the fluid flow 

in the square fluid domain. The simulation is determined to reach a steady-state when 

1 6ef e  , where velocity residual ef is defined as 
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1 /ef v v v     (4.1) 

where  is L2-norm. 

At steady state, the fluid inside the ring would rotate with an angular velocity  

2 rad sf   about the center of the ring as the flow remains laminar. The flow outside 

the ring should achieve a maximum speed at the exterior surface of the ring and decrease 

to zero on the wall boundaries, as reported in [61].  

 

Figure 4.1: The geometry of a rotating ring in the square fluid domain. 

Both the IFEM and ELL methods are used to calculate this example. Figure 4.2 

shows the meshing plans for IFEM and ELL. Different from IFEM, one layer of the 

Lagrangian fluid wrap the ring to implement the ELL method. In both approaches, the 

Eulerian fluid domain is discretized by 20 20  uniform Q4 (quadrilateral with four nodes) 

elements with size 1/ 20 mEfh  . The element sizes of the solid and the composite solid 
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are the same as the Eulerian fluid s cs Efh h h  . Theoretically, the velocity of the fluid 

node ‘A’, attached to the top of the exterior surface of the ring, should have the same as 

the solid point at that location, which is a constant velocity, e.g., 0.6 m/sf s

A Av v  . 

However, the arbitrary discretization of the fluid and solid domain cannot guarantee a 

shared node at this point. 

 

Figure 4.2: The meshing schemes of a rotating ring in the square fluid based on (a) 

the IFEM method and (b) the ELL method. The uniform squares at the background 

are Eulerian fluid meshes, the solid triangles are solid meshes, and the blue 

quadrangles are the wrapping Lagrangian fluid meshes. 

The fluid node ‘A’ is outside of the solid domain; therefore, the velocity condition 

on the solid boundary cannot be smoothly transferred to the fluid nodes nearby when using 

the IFEM approach. The velocity contour of the fluid at the steady-state solved by the 

IFEM is shown in Figure 4.3 (a). Although the solution converges, the inaccurate solid 

boundary shape results in an erroneous fluid pattern. The velocity at fluid node ‘A’ is 0.44 

m/s, which has a relative error of 26.67%. For the ELL method, point ‘A’ is covered by the 
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composite solid mesh. The velocity field is now smoothly transferred from solid to fluid. 

The velocity contour of the fluid solved by the ELL method is shown in Figure 4.3 (b). The 

results are improved even with such a coarse mesh scheme. The velocity at fluid node ‘A’ 

is 0.59 m/s, which is 98.33% accurate. 

To investigate the spatial convergence property of the ELL method, we use four 

meshing sets for the Eulerian fluid. MS (1), 1 20 mEfh  ; MS (2), 1 40 mEfh  ; MS (3),  

1 80 mEfh   and MS (4) 1 160 mEfh  . For each set, the element size of the solid ring is 

the same as the Eulerian fluid, and one layer of the Lagrangian fluid meshes attaches to the 

interior and exterior surfaces of the ring. The streamlines of the fluid flow for MS (3) at 

the steady-state is shown in Figure 4.4, which is the same as in [61]. In the plot, the fluid 

inside the ring has a laminar fluid flow and rotates like a solid body. Thus it is ideal for 

measuring the relative fluid velocity error, i.e. 
2 2

f f f f

v r rL L
e  v v v , where f

rv  is the 

reference nodal fluid velocity inside the ring. The spatial convergence rates of the ELL and 

IFEM methods are illustrated in Figure 4.5. The theoretical convergence rate of the second 

order is also plotted for reference. Both methods have a second-order convergence rate. 

The relative error given by the ELL method based on the MS(2) meshing is smaller than 

the IFEM method based on the MS(4). The efficiency and accuracy of the numerical 

solutions of the rotating ring are largely improved by the ELL method.  
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Figure 4.3: Contours of fluid velocity solved by (a) IFEM, (b) ELL using element size 

of 1/20 m. 

 

 

Figure 4.4: Streamlines of the solid ring rotating in a square fluid solved by MS(3). 
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Figure 4.5: Spatial convergence rates of the ELL and IFEM methods. 

4.2 2D flapping wing 

A more complex FSI problem of a flapping wing interacting with the fluid is 

calculated. This example has been reported using IBM and its variants, such as in 

references [99-101]. The cross-section of this 2D flapping wing is modeled as an ellipse 

with a large aspect ratio of 10, as shown in Figure 4.6 (a).  The length of the elliptical wing 

is c, and the computational fluid domain is 20 20c c . The wing is translating in a 

sinusoidal movement in the horizontal direction and rotating about the centroid 

simultaneously. The prescribed sinusoidal translation and rotational motions are given by, 

   cos 2
2

mA
x t ft ,      0y t   (4.2a) 

    0sin 2
4

t ft


     (4.2b) 
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Figure 4.6: (a) The geometry of the 2D flapping wing model. (b) The meshes for the 

elliptical wing and the wrapping fluid around the wing. 

The rotating angle    is measured counterclockwise relative to the positive x-axis. 

The corresponding constants for this numerical example are 2.8mA c , 0.25 Hzf   and 

0 2  to replicate the results in [100]. The Reynolds number is defined as 

Re f fU c   and is set to 75, where U  is the maximum translation velocity of the 

wing centroid, that is mfA . Both the IFEM and ELL calculate the example. For the ELL 

method, an additional small portion of the fluid is included to transfer the velocity from the 

solid to the fluid smoothly. Figure 4.6 (b) shows the discretized model of the wrapping 

fluid and solid with the element size of 0.01c. The total number of the 1,800 T3 (triangle 

with three nodes) elements are used for the 2D elliptical wing and 1654 Q4 elements for 

the wrapping fluid. For the background Eulerian domain, two meshing sets are used with 
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the total number of MS (1) 52,908 and MS (2) 144,048 Q4 elements. The refined element 

sizes in the FSI zone are 40Efh c  for MS (1) and 80Efh c  MS (2). Pressure outlet 

boundary conditions are specified for all outer boundaries.  

 

Figure 4.7: (a) The contour plots of the horizontal velocity solved by (a) the IFEM 

method and (b) the ELL method. The contour plots of the pressure solved by (c) the 

IFEM and (d) The ELL method. All the cases are resolved using Eulerian mesh MS(1) 

and at the instance of  1.1875T. 
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Figure 4.8: The lift/drag coefficients of the 2D flapping wing in four complete cycles 

using the Eulerian meshing scheme MS(2). 

Since the coarser Eulerian fluid meshes are used in MS (1), the effect of the 

inaccurate interface in the fluid using IFEM would be more notable.  Figure 4.7 shows the 

comparison of the horizontal velocity and pressure of the fluid using the IFEM method and 

the ELL method based on the MS (1). The time instance is 1.1875T, where T is the time of 

one period. The wing is translating towards negative x-axis while rotating 

counterclockwise. Thus the tip at the leading edge of the wing would have the minimum 

horizontal velocity. The fluid attached to the tip should also have the same horizontal 

velocity. However, as shown in Figure 4.7 (a), the fluid field in the vicinity of the tip has a 

more significant horizontal velocity as if fluid penetrates the solid. Such penetration is due 

to the inaccurate description of the solid shape that makes the real solid domain smaller, 

thus reducing its impact on the fluid. The ELL approach can effectively remedy the 

discrepancy of the FSI interface in the fluid grids. As shown in Figure 4.7 (b), the velocity 
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at the FSI interface is now smoothly transferred to the fluid. No fluid particles penetrate 

the solid body. The inaccurate description of the solid shape also causes the undesirable 

pressure distribution of the IFEM, as shown in Figure 4.7 (c). Furthermore, this undesirable 

pressure distribution is improved by the ELL method, as shown in Figure 4.7 (d). 

 

Figure 4.9: The zoom-in plot of the drag coefficients from 2T to 2.5T 

Figure 4.8 shows the comparison between the lift/drag force coefficients obtained 

by the IFEM and ELL methods using MS (2) within four complete cycles, the results in 

[100] is also presented. The lift force is defined as the vertical component of the resultant 

force applied on the wing, i.e. 
L yF F . The drag force is established as the horizontal force 

opposing the translation movement, that is  D xF sign U F  , where U is the horizontal 
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velocity at the centroid of the elliptical wing. The lift/drag coefficients are given by 

22 f

L LC F U c   and 22 f

D DC F U c   respectively. The results from both methods 

have good agreements compared with the reference shown in Figure 4.8. The curves of the 

drag coefficient from 2T and 2.5T are amplified and plotted in Figure 4.9. The IFEM 

method provides a more wavy result of the force over time due to the blurred boundary of 

the solid body, while the ELL method has a more smooth drag coefficient curve. The 

vorticity contours at different time instants from the second cycle to the fourth cycle are 

shown in Figure 4.10. The flapping wing induces the vortices at the leading and trailing 

edges. A sequence of the vortex pairs is formed due to the detaching and shedding of the 

vortices at the trailing edge. These flow structures are quite identical to the results in [100].  
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Figure 4.10: Vorticity field contours for different instants for the 2D flapping wing 

movement. 
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4.3 Vertical beam in the fluid tunnel 

In this example, we studied the bending of a flexible beam in the fluid tunnel. Figure 

4.11 illustrates the schematic of the problem; the beam is standing vertically with the 

incoming flow from the horizontal direction. The width of the beam is a = 0.04 cm, and 

the height is b = 0.8 cm. The Saint Venant–Kirchhoff material is considered for the beam, 

and it is fixed at the bottom. The density of the beam is 3=7.8 g / cms , Young’s modulus 

 5 210 g / cm sE    and Poisson’s ratio 0.3  . Gravity and damping are not considered 

in this case. The length of the tunnel is L = 4 cm, and the height H = 1 cm. The bottom 

edge of the fluid domain is applied with nonslip boundary conditions , 0f f

x yv v  . The 

symmetric condition is assumed, i.e. 0f

yv  , at the top edge. The left edge defines the 

velocity inlet with a parabolic velocity profile  21.5 2 cm sf

xv y y    and 0f

yv  . The 

pressure outlet is at the right edge, with the reference pressure set as p = 0. The fluid density 

is 31.0 g cmf  , and the dynamic viscosity is  0.1 g cm s    . The system stays at 

rest in the initial state.  

 

Figure 4.11: The problem geometry of the flow passing a vertical beam. 
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We use 4,894 nodes for the Eulerian fluid, 124 nodes for the beam in MS (1), with 

element sizes in FSI zone 2Ef sh h a    ; 16,354 nodes for the Eulerian fluid, 407 

nodes for the beam in MS (2), with element sizes in FSI zone 4Ef sh h a    ; 38,596 

nodes for the Eulerian fluid, 1,453 nodes for the beam in MS(3), with element sizes in FSI 

zone 8Ef sh h a    . In each scenario, two lawyers of the Lagrangian fluid are used for 

implementing the ELL approach. 

 

Figure 4.12: (a) The horizontal velocity contour (b) the pressure contour of the flow 

passing a vertical beam in three different time instances; solved by MS(2). 

With the inlet flow coming in, the beam would eventually bend with significant 

deformation. A nozzle is formed between the top of the beam and the top edge of the tunnel 

that the liquid passes through with increasing speed. Figure 4.12 shows the contour plots 

of the horizontal velocity and pressure at different time instances. These results are the 

same as provided in [61]. The histories of the velocity component and the displacement 
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measured at the tip ‘A’ of the beam are plotted in Figure 4.13. The results solved by IFEM 

based on the MS (3) are also plotted. Theoretically, the FSI interface in IFEM is only 

implicitly represented by the fluid nodes close to and inside the solid surface. Therefore, 

the impact of the solid domain on the fluid would be weakened.  As indicated by the 

streamlines in Figure 4.14, the beam completely blocks the fluid in the ELL solution. 

Whereas, in the IFEM solution, the liquids near the interface would penetrate through the 

solid. Thus only requiring a smaller opening of the nozzle, and resulting in smaller bending 

magnitude.  

 

Figure 4.13: Time history of the (a) horizontal displacement and (b) horizontal 

velocity of the flow passing a vertical beam in three seconds. 
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Figure 4.14: The streamlines at the final times step solved by (a) the ELL method and 

(b) the IFEM method using MS (3). 

In contrast, the FSI interface, in the ELL approach, can be accurately described at 

the composite solid domain, and then smoothly spread onto the fluid nodes nearby. For 

both methods, the finer grid provides larger deformation. Table 4.1 presents the comparison 

of the horizontal displacement after three seconds using both methods. The beam deforms 

more significantly even when using a coarse meshing scenario in ELL than the most 

excellent meshing in the IFEM. Reference [61] reported that the system tends to have a 

steady-state, which is determined as ef < 1e-8, after three seconds using IS-FEM solver. 

The convergence time for IFEM and ELL are recorded in Table 4.1. For the coarse meshing 

sets, such as MS (1) and MS (2), the simulations cannot converge even after 10 s using 

IFEM. The beam is oscillating due to the inadequate interpretation of the FSI interface. A 

small location change of the solid meshes would lead to a re-evaluation of the FSI interface 
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in implementing the Eulerian fluid solver.  ELL method can always obtain convergent 

solutions with different meshing sets. 

Table 4.1. The comparison of the horizontal displacement at three seconds and 

convergence time of IFEM and ELL for solving example 4.3. 

Meshing Scheme 
Horizontal displacement (cm) Convergence time (s) 

IFEM  ELL IFEM  ELL 

MS(1) 0.4452 0.5186 - 2.9 

MS(2) 0.4592 0.5213 - 2.7 

MS(3) 0.4648 0.5225 3.1 2.7 
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CHAPTER 5. 2D NUMERICAL EXAMPLES FOR ELL WITH 

THIN STRUCTURES 

In this chapter, numerical examples of ELL for solving 2D FSI problems with thin 

solid bodies are calculated. We first study the FSI problems with rigid bodies moving in 

the fluid. The method is well validated. Then, the CB beam element is adopted for 

implementing ELL for solving 2D FSI problems with thin flexible structures. 

5.1 2D rigid 

5.1.1 Rotating thin ring in a square fluid domain 

 

Figure 5.1: (a) Geometry and (b) meshing plan of the rotating thin ring in a square 

fluid domain.  

In this example, we re-calculate the case of the rotating ring in section 4.1, but with 

zero thickness, as illustrated in Figure 5.1 (a). The radius of the ring is 25 cmr  . All the 

other setups are the same as in example 4.1. 
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To implement the ELL method with a thin structure, we include a small portion of 

the fluid to wrap the ring. Two layers of the Lagrangian fluid mesh (one layer on each side) 

are generated, as shown in Figure 5.1 (b). The ratio of the Eulerian and Lagrangian fluid 

mesh size is 1Ef Lfh h  . Four sets of the Eulerian and Lagrangian fluid meshes are 

employed in terms of the size of Eulerian fluid mesh: MS (1), 1 30 mEfh  ; MS (2), 

1 60 mEfh  ; MS (3), 1 120 mEfh  ; MS (4), 1 240 mEfh  . Figure 5.2 (a) and Figure 

5.2 (b) show the contour of fluid velocity and streamlines of the fluid flow for mesh MS 

(3) when the system reaches the steady-state. The velocity vector field of the fluid domain 

for mesh MS (1) is shown in Figure 5.2 (c). Laminar fluid flow can be observed inside the 

ring from these plots. The spatial convergence property is illustrated in Figure 5.2 (d). The 

spatial convergence rate is 1.7665, which is also close to the theoretical convergence rate 

of 2.0.  
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Figure 5.2: (a) The contour plot of the amplitude of the fluid velocity solved using MS 

(3); (b) streamlines of the fluid domain solved by MS (3); (c) velocity vector field of 

the fluid domain by MS (1); (d) spatial convergence properties of the fluid velocity. 

5.1.2 Flow over a hollow cylinder 

Laminar flow over a hollow cylinder with no thickness placed asymmetrically 

inside a tunnel is studied here. The diameter of the cylinder is 0.15 mD  , and the 

distances from the center of the cylinder to the upper and lower walls are 2.1D and 2.0D, 

respectively, as shown in Figure 5.3 (a). A total number of 15,995 nodes and 15,698 
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elements are used for the fluid domain. In order to implement the ELL method, we need to 

include a small portion of the Lagrangian fluid to wrap the circle. Figure 5.3 (b) shows a 

close-up image of a ring with an inner radius of 0.06 m and an outer radius of 0.09 m. The 

red circle in the middle represents the cylinder. The total number of nodes and elements 

for the Lagrangian fluid are 760 and 658, respectively.  

 

Figure 5.3: (a) Model of 2D flow over asymmetrically-placed cylinder; (b) zoom-in 

Lagrangian fluid meshes warp the thin structure. 

A parabolic velocity profile of maximum speed max 1m sxv   in the x-direction is 

assigned to the inlet. The upper and lower walls are assumed as nonslip boundaries where 

0, 0x yv v  . The pressure condition p = 0 is enforced on the outlet. In this case, since the 
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cylinder is static, the nonslip velocity boundary condition is also applied to the nodes of 

the middle circle.   

The density of the fluid is 3=1kg m , and the dynamic viscosity is 

2=0.001Ns m . The Reynolds number, based on the average inlet velocity, is defined as 

Re avg

xv D  , with max= 2 3avg

x xv v , i.e., Re = 100 in this case. The flow becomes unsteady 

at Re = 100, and a periodic vortex shedding can be observed. Figure 5.4 shows the vorticity 

and velocity of a single instant time, which are similar to in [41].  

The drag and lift coefficients are defined as 

 
21

2

D
D

avg

x

F
C

v D

  
(5.1) 

 
21

2

L
L

avg

x

F
C

v D

  
(5.2) 

where DF  and LF are the sum of the applied external force in the x and y-direction, 

respectively. The variations of lift and drag coefficients are presented in the Figure 5.5. 

The effects of the slightly asymmetric geometry can be captured by the slightly non-

symmetric drag coefficient in this method. The same results are in [41]. The maximum lift 

coefficient ,maxLC  in this method is 0.95, which is 4.04%~5.91% below the results from 

references [41, 102], and the maximum drag coefficient ,maxDC  is 3.248 that has negligible 

error compared with the references’ 3.22~3.255. The Strouhal number (defined as

q avgSt Df v , where 
qf  is shedding frequency) is 0.295, which agrees well with Strouhal 

number (0.295~0.305) in references. The inclusion of the Lagrangian fluid meshes and the 
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transfer of FSI conditions also require additional computational effort. To evaluate this 

effort, this case is simulated by using only FEM with the same amount of Eulerian meshes. 

In one time step, the average CPU times for the ELL and FEM are 0.255 s and 0.221 s. The 

additional CPU cost is 0.034 s, due to the wrapping Lagrangian fluid to transfer FSI 

conditions. That only accounts for approximately 15% extra computational work. 

 

Figure 5.4: Instantaneous (a) velocity and (b) vorticity contours of flow over a 

cylinder. 
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Figure 5.5: Time evolution of (a) drag and lift coefficients and (b) zoom-in drag 

coefficient for Re = 100. 

5.1.3 2D flapping wing 

To further explore the capability of the ELL method for computing a thin rigid body 

moving in the fluid, the flow over a flapping wing is calculated in this numerical example. 

This example has been thoroughly studied in example 4.2. Instead of using an elliptical 

wing, we can also use a rod with no thickness to represent the 2D wing, as shown in Figure 

5.6 (a). The length of the rod is c. 

The total number of the elements is 144,404 for the Eulerian domain and 640 for 

the wrapping Lagrangian fluid. The size of the element for the Lagrangian fluid and the 

interaction zone of the Eulerian fluid are refined as 80Lf Efh h c  , as in Figure 5.6 (b).  
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Figure 5.6: (a) Model of the 2D flapping thin wing at the initial stage; (b) zoom-in plot 

of the Lagrangian fluid meshes (blue) warp the thin structure (red) immersed in the 

background Eulerian fluid meshes (black). 

Figure 5.7 shows the comparison between the lift/drag force coefficients obtained 

by the rod model using ELL thin, rigid body, and results from reference [99, 100] using 

the elliptical wing. There are small differences as expected due to the different geometries 

of the models. The vorticity contours at different time instants are shown in Figure 5.8, and 

those figures are quite identical with the results in [100]. The proposed method can deal 

with the FSI problem of a thin, rigid body moving in the fluid, and the results show an 

excellent agreement with those in references.  
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Figure 5.7: Time history of (a) lift and (b) drag force coefficients for the flapping wing. 

(ELL method uses rod model, Eldredge and Martins use elliptical wing with a 

thickness ratio of 10) 
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Figure 5.8: Vorticity field contours for different instants for the flapping wing 

movement 

5.2 2D flexible 

5.2.1 Vertical beam in a fluid tunnel 
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The vertical beam in the fluid tunnel, in example 4.3, is re-calculated based on the 

ELL incorporates CB beam element. The detailed model and geometry are shown in Figure 

5.9 (a). All the setups are the same as in the previous case. 

 

Figure 5.9: (a) Geometry and Model of the fluid and beam. (b) Zoom-in plot of the 

meshes near the free end of the beam and illustration of the beam and Lagrangian 

fluid element (MS1).   

5.2.1.1 Thick beam and validation  

First, a ‘relative’ thick beam, the same as in example 4.3, where 0.04 cma   and 

the ratio between length and thickness is 20b a  , is analyzed. The beam loses its 

thickness when applying a CB beam theory, and small layers of the Lagrangian fluid with 

the thickness 0.04 cmd  are intentionally designed to wrap the beam in every time step, 

as illustrated in Figure 5.9 (b).  
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Three sets of the meshes are employed as follows: MS(1), 4,894 nodes for the 

Eulerian fluid and 41 nodes for the beam and 123 nodes for the Lagrangian fluid so that 

the element size near the beam is 2Ef Lf sh h h a      ; MS(2) 16,354 nodes for the 

Eulerian fluid, 81 nodes for the beam, and 405 nodes for the Lagrangian fluid, element size 

near the beam is 4Ef Lf sh h h a      ; MS(3) 38,596 nodes for the Eulerian fluid, 161 

nodes for the beam, and 1,449 nodes for the Lagrangian fluid, element size near the beam 

is 8Ef Lf sh h h a      .  

 

Figure 5.10: Time history of the (a) horizontal displacement and (b) horizontal 

velocity of the tip “A”. 

The histories of the velocity component s

xv  and the displacement s

xu  measured at 

the tip ‘A’ of the beam are displayed in Figure 5.10. These results match well in [61]. The 

relative error of the bending deformation after reaching a steady-state is below 5%. The 

CB beam deforms a bit larger than the continuum beam in reference due to the third 
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assumption of CB beam theory that ignores the transverse normal stress; therefore, it 

releases some internal energy and makes the beam a little softer.  

The contour plots of the horizontal velocity field and pressure at different time steps 

are illustrated in Figure 5.11, and the close-up images of these plots in the vicinity of the 

free end of the beam are also shown on the right side of each plot. The pressure oscillation 

is also observed using the ELL method near the sharp corner of the free end due to the 

singularity in the velocity gradient. However, this singularity does not affect the 

smoothness of the velocity field itself; hence the distribution of the velocity field matches 

well with the reference as well as the pressure field reaches the steady-state. The 

streamlines at steady state are shown in Figure 5.12, and a stable vortex is formed in the 

downwind side of the beam. 

 

Figure 5.11: The snapshot of the contours: (a) horizontal velocity; (b) pressure. 

(Solved by MS3) 



 79 

 

Figure 5.12: The streamline of at the steady-state. (Thick beam). 

5.2.1.2 Thin beam 

A thin beam with thickness 0.01cma  , so 80b a  , is computed in this 

subsection. Two cases with different Young’s modules Case (1)  5 210 g / cm sE    and 

Case (2)  7 210 g / cm sE    are computed to extend the capability of the ELL method. 

Other parameters are set to be the same as the previous case. 

A total number of 80 elements and 81 master nodes of the CB beam are used to 

model the beam, and a total of 405 nodes and 320 Q4 elements are used for Lagrangian 

fluid (thickness of the Lagrangian fluid is 0.04 cmd  ). A total number of 13,664 nodes 

and 13,442 elements are used for Eulerian fluid. The histories of the velocity components 

s

xv  and displacement s

xu  at the top of the beam are shown in Figure 5.13. It illustrates the 

contour plot of the horizontal velocity for both cases at different time steps, and the close-

up image of the velocity field in the vicinity of the free end of the beam is also shown in 

the figures. It is interesting to find that, for the softer beam, the deformation begins from 

the bottom of the beam. While for the stiffer one, the deformation begins from the top of 

the beam, thus leading to the substantial velocity change for the stiffer one at the beginning 
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(shown in Figure 5.14 (a) and Figure 5.14 (b) around 0.1st  ). After both two cases reach 

a steady-state, it is reasonable to observe that the deformation of the softer beam is larger 

than the stiffer beam.  

 

Figure 5.13: Time history of (a) the horizontal velocity xv  and (b) the horizontal 

displacement xu  at the top of the beam. 

The streamlines at the steady-state for both cases are illustrated in Figure 5.15. For 

the stiffer beam, a stable vortex is produced similarly to the case in the previous subsection. 

The softer beam with smaller thickness differs from the stiffer beam or beam with the larger 

thickness (previous example) in the fact that the softer beam bends largely and forms a 

long narrow gap between the beam and the boundary, therefore excites no vortex in 

between.  

When the ratio of length and thickness b/a becomes large, it will be a challenge to 

utilize the IMD method. The difficulty is due to the minimum requirement of at least five 
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elements across the beam thickness, if the continuum element is used, to avoid shear 

locking. The usage of the continuum element would lead to the extremely small size of the 

element, thus requiring a large number of meshes for both solid and fluid in the FSI zone. 

Figure 5.16 shows the comparison of the zoom-in mesh scheme in the FSI zone using 

conventional IFEM and ELL. Finer Eulerian fluid meshes are generated due to the small 

solid meshes in IFEM with a total number of 114,147 nodes. It has approximately sixteen 

times more degrees of freedom (DOFs) than in the ELL approach and thus computationally 

much more expensive. 

 

Figure 5.14: Snapshots of the contours of horizontal velocity xv  with Young’s 

modulus: (a)  5 210 g / cm sE    and (b)  7 210 g / cm sE   . 
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Figure 5.15: Streamlines at the steady-state of (a) Case 1 and (b) Case 2.(Thin beam) 

 

Figure 5.16: Zoom-in plot of meshing schemes for (a) IFEM and (b) ELL. 

5.2.2 Flow passing a flexible beam attached to a cylinder 

The 2D benchmark problem of a flexible beam attached to a rigid cylinder in the 

downstream flow is simulated [103-105]. This problem has been used widely to validate 
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the FSI solver involving a large displacement of the solid model. The detailed geometry of 

the problem is illustrated in Figure 5.17. The nonslip boundary condition is applied on the 

top and bottom walls. The fluid inlet is placed on the left side and has a parabolic velocity 

profile with mean inlet velocity U . The pressure outlet is set on the right side. The diameter 

of the cylinder is D. The length of the beam is L=3.5D, and the thickness is h=0.2D. The 

Reynolds number is defined as Re fUD  . Two cases are computed, 

     Case (1).   10s f   , Re=100;  

     Case (2).  1s f   , Re=200. 

The other material property parameters of the beam are chosen * 2fE E U . E is 

Young’s modulus, and Passion’s ratio is 0.4  . A total number of 35,451 nodes and 

35,084 Q4 elements are used for the background Eulerian fluid for both cases. The meshes 

are refined in the FSI zone around the cylinder and beam system, and the size of the finest 

mesh is 0.025Efh D  . In order to implement the ELL method, a small portion of the 

Lagrangian fluid is generated to wrap the beam. In case (1), we discretized the beam with 

the same size of the Eulerian fluid mesh in the FSI zone, i.e. s Lf Efh h h     . A total 

number of 140 CB elements are thus used to model the beam. Four layers of the Lagrangian 

fluid with a total number of 705 nodes and 560 elements are generated and used for this 

case. In case (2), we used a double-sized element, i.e. 2s Lf Efh h h     , for the beam 

and wrapping Lagrangian fluid.  
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Figure 5.17: The geometry of the fluid flow passing a flexible beam attached to a rigid 

cylinder 

The flexible beam will settle into a large amplitude self-induced periodic 

oscillation, and reach a stable-state vibration eventually. The time-varying displacement of 

the free end (point marked with ‘A’ in Figure 5.17) in x- and y-direction for case (1) is 

shown in Figure 5.18. The results from Turek & Hron [103] are also plotted in the figure 

as reference. The snapshots of the pressure contour, streamlines, deformation of the beam 

at four-time instances in one cycle of oscillation are shown in Figure 5.19 for case (1). The 

Strouhal number is defined by St fD U , where f is the vibrating frequency of the beam 

reaches a stable-state oscillation. Table 5.1 shows the displacement amplitude Am of free 

end in the y-direction along with Stouhal number St for both cases. Data of several 

references are also collected and provided in the table. From the results in these figures and 

data in the table, the present ELL method shows an excellent agreement with results in the 

references.  
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Figure 5.18: History of the displacement of the free end of the beam for case (1). 

 

 

Figure 5.19: A snapshot of fluid pressure contours and streamlines at four instances 

labeled in Figure 5.18 (b).   
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Table 5.1. 2D flow over a flexible beam attached to a cylinder. The amplitude of the 

displacement in the y-direction of the free end along with the Strouhal number. 

Sources 

Case (1) Case (2) 

Am/D St Am/D St 

ELL 0.78 0.19 0.39 0.28 

Turek & Hron [103] 0.83 0.19 0.36 0.26 

Tian et al [104]  0.78 0.19 0.32 0.29 

Bhardwaj & Mittal [105]  0.92 0.19 0.41 0.28 

5.2.3 Flapping flag in the uniform flow 

There have been many studies of the unsteady phenomenon [106-115] of the 

flapping flag in the uniform flow since Zhang et al. addressed it experimentally [116]. 

Since the problem has been studied using many different algorithms, we solve this problem 

to validate the ELL method in solving the FSI problem with a very thin structure. A beam 

(flag) is placed in the middle of a tunnel pinned (not clamped) at the left end, and the right 

end is free. The detailed geometry of the model is shown in Figure 5.20 (a). The beam is 

placed in an initial orientation angle 0.1   with respect to the constant incoming flow 

and constant gravity g in the x-direction. The length of the beam is L. The thickness of the 

beam is 0.01h L , so the ratio of length and thickness is 100L h   in this case. The 

computational domain for the Eulerian fluid is    5 ,50 10 ,10L L L L   . Uniform flow 

f

xv U , 0f

yv   is prescribed at the inlet, as well as on the upper and bottom sides. The 

right side wall is defined as an outlet.  
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Figure 5.20: (a) Problem setup of the flapping flag (beam) in uniform flow. (b) 

Flapping flag configuration at several time steps at stable-state oscillation. The free 

end of the flag is labeled in red dots and shows the “figure of eight” trajectory. 

A total number of 65,170 nodes and 64,696 elements are used for the Eulerian fluid 

with the finest mesh  0.02Efh L   near the beam    0.5 ,2 ,L L L L   . A total number of 

60 elements and 61 nodes are used for the CB beam. Four layers of the Lagrangian fluid 

meshes with the same size of the finest Eulerian fluid mesh are included in this simulation. 

The number of nodes and elements for the Lagrangian fluid is 305 and 240, respectively.  

The beam would be excited to oscillate if proper parameters are chosen. The first 

dimensionless parameter that would affect the system is the Reynolds number, which is 
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defined as Re fUL  . The other three dimensionless parameters that govern the 

system are a structure-to-fluid mass ratio, non-dimensional bending rigidity and the Froude 

number given respectively as, 

s

f

h

L





 ,   

2 3B f

EI
K

U L
 ,    

U
Fr

gL
  (5.3) 

where  3 212 1I h    is the second moment of area. To validate the proposed ELL 

algorithm, we replicate the test delivered by Huang et al. [106] and Lee and Choi [112]. 

The dimensionless parameters are chosen as Re 200 , 1.5  , 0.0015BK   and 

1.4Fr  .  

 

Figure 5.21: Time history of the vertical location at trailing-edge (free end) in 

comparison with the reference. 

Figure 5.21 shows the time history of the vertical location at trailing-edge (the free 

end) of the beam along with the results from Huang et al. and Lee and Choi. From the 

figure, we note that the flexible beam reaches a stable-state periodic oscillation after an 

approximately dimensionless time of 20. The configurations of the flag at several time 

steps during stable-state oscillating are shown in Figure 5.20 (b). The free end of the flag 

is labeled in red dots and shows the “figure of eight” that has been observed in [116]. 
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Strouhal number is calculated by St fL U , where f is the frequency during stable-state 

vibration. The qualitative comparison of the y-component displacement amplitude Am/L 

and Strouhal number St between present ELL method and several references are also listed 

and shown in Table 5.2. Figure 5.22 shows the instantaneous vorticity contours at four-

time instants with releasing vortex structure along the downstream of the flag. These results 

are all in good agreement with results in references, which shows the novel capability and 

feasibility of ELL in solving FSI problems with the thin structures. 

 

Figure 5.22: Instantaneous plots of the vorticity contours for fully developed flow at 

dimensionless time step tU/L = 20.0, 20.8, 21.6 and 22.4 (labeled in solid circles in 

Figure 15). 
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Table 5.2. 2D flapping flag in the uniform flow. The amplitude of the displacement in 

the y-direction of the free end along with the Strouhal number. 

Sources Amplitude Am/L Strouhal number St 

ELL 0.32 0.31 

Huang et al. [106] 0.35 0.30 

Lee & Choi [112] 0.38 0.31 

Wang & Eldredge [114] 0.35 0.31 

Goza & Colonius [115] 0.38 0.32 
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CHAPTER 6. 3D NUMERICAL EXAMPLE FOR ELL WITH 

THIN STRUCTURES 

In this chapter, numerical examples of ELL for solving 3D FSI problems with thin 

solid bodies are studied. FSI problems with rigid bodies moving in the fluid are first 

calculated and validated. Then, the CB shell element is employed in ELL to solve 3D FSI 

problems with thin flexible structures. 

6.1 3D rigid 

6.1.1 Plate piston in a fluid tunnel 

 

Figure 6.1: (a) The 3D geometry of the moving plate piston (represented by the red 

line) in the tunnel, and the illustration of H8 meshes for the Lagrangian fluid. (b) The 

T4 meshes for Eulerian fluid for the fluid tunnel. 

In this example, we calculate a plate piston moving inside the tunnel with an 

incompressible viscous fluid, as illustrated in Figure 6.1. The plate piston, represented by 

the red line in Figure, is thin enough that it has no thickness. The detailed geometry 

parameters of the problem are given as a = 0.5 m, and b = 2 m, the piston moves from the 
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initial position as l = 0.3 m. A small portion of the Lagrangian fluid with a thickness of h 

is used to wrap the piston. The incompressible fluid has a density of  31 kg mf  and 

viscosity 0.5 Pa sf   .  

To show the versatile property of the ELL method in solving the 3D problem, two 

different thicknesses of the Lagrangian fluid is used in this example (a)  h = 0.1 m and h = 

0.4 m  with total 363 nodes (element size 0.05 m) and 180 nodes (element size 0.1 m) for 

each thickness respectively. A total of 4,436 nodes with element size 0.05 m is obtained 

for the Lagrangian fluid. The Eulerian fluid element is a four-node tetrahedron (T4), and 

the Lagrangian fluid element is an eight-node hexahedron (H8). The initial and boundary 

conditions of the Eulerian fluid are given as (i) symmetric velocity boundary condition on 

surfaces x = 0, x = a; z = 0 and z = a; (ii) pressure boundary 0fp  on y = 0 and y = b; (iii) 

initial velocity   0 0, 1,2,3f

iv i   and initial pressure 0 0fp  . The Lagrangian fluid has 

the same velocity boundary and initial conditions. Additionally, a constant moving velocity 

2.0 m ss

yv   is applied to the shared nodes of the plate piston and Lagrangian fluid.  

The motion of the piston along the y-direction would induce a laminar fluid flow 

inside the tunnel. The analytical velocity solution of the fluid flow is 0f f

x zv v   and

2.0m sf

yv  . The system is quick to reach the steady-state defined as 1e 6ef   , therefore, 

we set a certain length of time 0.2st   to stop the simulation. The time interval for each 

step is 1e-5s. Figure 6.2 shows the contour plots of the velocity component 
f

yv  and 

pressure fp  with the streamlines on the slice surfaces 2x a  and 2z a at the terminal 

time 0.2 st  . The stable laminar flow is shown in terms of streamlines and velocity 
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contour plots. These results show that ELL can handle different thicknesses of the 

wrapping Lagrangian fluid and different combinations of the mesh size of Lagrangian fluid 

and Eulerian. 

 

Figure 6.2: The contour plots of the velocity component 
f

yv  and pressure fp  with the 

streamlines with the wrapping Lagrangian fluid with total thickness (a) h = 0.4 m and 

(b) h = 0.1 m. 

6.1.2 3D rotating ring in a cuboid fluid 

The rotating ring immersed in a square fluid is examined to be an excellent 

numerical example to verify the ELL method in 2D previously. The model is extended in 

3D to check the performance of ELL for solving the 3D FSI problem with a thin moving 

rigid body. The geometry and mesh schemes of the problem are illustrated in Figure 6.3, 

with the thickness of the fluid domain is 0.1md  . Other parameters are the same as in 

the 2D case. 
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Figure 6.3: (a) 3D Geometry and model of the rotating ring in the fluid; (b) 

Lagrangian fluid meshes; (c) Eulerian fluid meshes. 

The 3D solution of the x-y plane would be comparable to the 2D solution under the 

following boundary conditions:  

V.B.C for the Eulerian fluid: (a) Non-slip conditions, i.e. 0, 1,2,3f

iv i  , are 

enforced on the four surfaces x = 0, x = l, y = 0, and y l , (b) Symmetric boundary 

conditions for surfaces where z = 0 and z = b. 

P.B.C for the Eulerian fluid: Zero pressure 0fp   on the line  2, 2,l l z . 

The system is initially at rest where velocity and the pressure are all set to zero that 

is 0 0, 1,2,3f

iv i   and 0 0fp  . The ring rotates when the simulation begins. A small 

portion of the Lagrangian fluid is required to warp the moving boundary. The rotational 

velocity of the ring can then be prescribed on the nodes of the Lagrangian fluid meshes as 
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the velocity boundary condition when solving Lagrangian fluid. H8 elements are for the 

Lagrangian fluid, and T4 elements are for the Eulerian fluid.  

Several sets of the Eulerian fluid meshes are investigated, i.e., (a) 1 30Efh  ; (b)

1 44Efh  ; (c) 1 60Efh  ; (d) 1 80Efh   and (e) 1 160Efh  . In this example, we confine 

two layers of the Lagrangian fluid meshes to warp the ring and its element size changes 

with respect to the Eulerian mesh, i.e. Lf Efh h . 

 

Figure 6.4: (a) The velocity and the streamline on the surface 2z d . (b) The velocity 

vectors on surfaces 2x l  and 2y l  of the 3D rotating ring. 

The rotating ring induces fluid flow in the fluid domain. The flow inside the ring 

would perform a solid body rotation after reaching a steady-state if the flow remains 

laminar; thus, the exact solution can be obtained. Figure 6.4 (a) shows the velocity and the 

streamline of the fluid domain on the slice surface 2z d , and Figure 6.4 (b) shows the 

velocity vectors on the slice surface 2x l and 2y l . These plots show the fluid flow 

inside the ring is rotating like a solid. The maximum velocity 5.0m sfv   is attained at 

nodes nearest to the ring, as proved in the 2D solution. Figure 6.5 shows the spatial 
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convergence corresponding to the size of the Eulerian fluid size. The spatial convergence 

rate for the fluid velocity is 1.65. 

 

Figure 6.5: The spatial convergence rate in the example 6.1.2. 

6.1.3 Symmetric flapping wings of a butterfly 

This example is a simulation of the symmetric flapping wings of a butterfly using 

the ELL method. In this case, the geometry of the model is more complex, which includes 

a combination of a bulk body and thin wings. Therefore, we use a combination of IFEM 

for the body and ELL for the wings. The actual kinematics of the butterfly is more 

complicated involving rolling amplitude, pitch angles, and frequency change of the 

flapping wing, and so on for different purposes of flight. In this simulation, a simplified 

motion of symmetric flapping is considered.  
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Figure 6.6: (a) 3D geometry of the flapping butterfly (b) meshes of the butterfly 

The detailed geometry and meshing are illustrated in Figure 6.6. A total of 1,054 

nodes and 3,856 T4 elements are used for the body, and two layers of H8 elements with a 

total number of 2,327 are included for the Lagrangian fluid. The size of the computation 

domain for the Eulerian fluid is 44 44 44c c c  , where c is the root chord length of the 

wing, and the maximum length of the single wingspan is 2.85c. The total numbers of nodes 

and elements for the Eulerian fluid are 956,397 and 5,500,300, and we refine the elements 

in the fluid-structure interaction region. Initially, the wing plate of the butterfly is parallel 
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to the x-y plane. The root chord of the butterfly, parallel to the z-direction, services as the 

pivot, and each wing undergoes a symmetric sinusoidal up-stroke and down-stroke 

flapping motion about the chord during the simulation. The angle of the flapping wing is 

prescribed as 

 sin t    (6.1) 

where   is the amplitude of the stroking angle, and two cases of (i) 6   and (ii) 

4  . The angular frequency is 100  . The butterfly begins up-stoke in simulation 

at the time 0t  . The Reynolds number of flapping wings is defined as Re U c  , 

where U
 is the average velocity and   is the dynamic viscosity of the fluid [42, 46]. 

Reynolds number is Re 224  for case (i) and Re 336  for case (ii).  

Figure 6.7 shows the flow structure of the symmetric flapping butterfly at three 

different stages in the flapping cycles. These figures show the iso-surfaces of the vorticity 

magnitude. In Figure 6.7 (a) and (d), the flapping angle of the wings is increasing to a peak 

value, while velocity is decreasing to zero. At this stage, vortices of the tip and wake are 

forming on the lower surfaces. The wings reach the center position of a cycle down-stoking 

with maximum velocity in Figure 6.7 (b) and (e). The magnitude of the vorticities is larger 

because the wings have the highest velocity in this stage. The vortices dominate on the 

upper surface of the wings, and some remnant vortex can also be observed at the edge of 

the lower wingtips. Figure 6.7 (c) and (f) show the wings up-strokes accelerate from the 

lowest position. At the stage, the vortex on the surface has shifted to the lower wing 

surfaces while a large portion of the wake vortices remains on the upper wing surfaces. 

Vortex is also observed on the body of the butterfly, although it is set at rest during the 
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simulation. It oscillates around the body to the wing’s motion. Case (ii) has larger vorticity 

than case (i) because it has a larger flapping angle. 

 

Figure 6.7: Vortex structures at three different stages in a flapping cycle with 

different magnitude of the flapping angle. (a), (b) and (c) are for case (i) and (d), (e) 

and (f) are for case (ii). The timestamps are 3.2t T  for (a) and (d), 3.5t T for (b) 

and (e) and 3.9t T for (c) and (f). T is the period of a full cycle. 

Figure 6.8 shows the time-varying force coefficients for a single wing during the 

first five cycles. The force coefficients are defined as xC , 
yC  and zC . They are obtained 

by adding the external nodal force in each direction and normalizing them by 2 20.5 U c 
. 
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From the plots, zC  is nearly zero since the wings are flapping symmetrically about the 

pivot, which is parallel to the z-axis; no significant resistant force is obtained. The vertical 

force 
yC  decreases dramatically at the beginning of the simulation, which can be attributed 

to the up-stroking of the wing from a stationary state. It is symmetric during the simulation, 

which has a good match that the butterfly is undergoing a symmetric flapping motion. The 

horizontal force xC  also changes periodically synchronizing with the sinusoidal flapping 

wings. However, it is not necessary to be symmetric as the Reynolds number is bigger than 

200, as reported in [117]. 

 

Figure 6.8: Time histories of the normalized force components 
xC , 

yC  and 
zC  (a) for 

case (i) and (b) for case (ii) in the first five flapping cycles. 

6.2 3D flexible 

6.2.1 Vertical beam in a fluid tunnel 
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This example extends the 2D vertical beam in a fluid tunnel to 3D, as illustrated in 

Figure 6.9 (a) with a thickness in-depth d. The inlet is defined at the left surface of the fluid 

domain. The symmetric velocity condition is assumed at the top surface along with the 

front and rear surfaces.  

 

Figure 6.9: (a) Geometry of the flow over a vertical beam. (b) The meshes of the 

problem. (c)  The meshes of the CB shell element. (d) The zoom-in plot of the 

Lagrangian fluid meshes and the shell element on the top. 

Figure 6.9 (b) illustrates the meshing scheme of the problem with the finest mesh 

around the FSI interaction zone. The beam is modeled as a 3D plate discretized by CB shell 

elements shown in Figure 6.9 (c). Several layers of the Lagrangian fluid mesh wrap the 

shell in every time step, as shown in Figure 6.9 (d). In terms of the finest fluid mesh, three 
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sets of the meshes are employed as follows: MS(1), 2Ef Lf sh h h h       ; MS(2), 

4Ef Lf sh h h h      ; MS(3), 8Ef Lf sh h h h      .  

 

Figure 6.10: Time history of the (a) horizontal displacement and (b) horizontal 

velocity of the tip ‘A’. 

The histories of the velocity component s

xv   and the displacement s

xu  measured at 

the tip ‘A’ of the beam are shown in Figure 6.10. The results are compared with results 

from the references, and they match well. The contour plots of the horizontal velocity field 

and pressure at three different time steps are illustrated in Figure 6.11. The pressure 

oscillation is observed due to the singularity in the velocity gradient. Nevertheless, it does 

not affect the smoothness of the velocity field. The distribution of the velocity field matches 
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well with the reference at a steady state. The streamlines at steady state are shown in Figure 

6.12, and a stable vortex is formed in the downwind side of the beam. 

 

Figure 6.11: The snapshot of the contours: (a) horizontal velocity; (b) pressure. 

(Solved by MS3). 

 

Figure 6.12: The streamline of at the steady-state. 
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6.2.2 Flow passing a beam attached to a cylinder 

The benchmark problem of a flexible beam attached to a rigid cylinder in the 

downstream in 2D is solved by the 3D ELL method with CB shell modeling the flexible 

beam. The detailed geometry of the problem is illustrated in Figure 6.13. The 2D model is 

extended in 3D with a width of W in the third dimension. Two cases are computed, 

     Case (1).   10s f   , Re = 100;  

     Case (2).  1s f   , Re = 200. 

 

Figure 6.13: 3D geometry of the fluid flow passing a flexible beam attached to a rigid 

cylinder. 

The other parameters of the beam are the same as in the 2D case. In Case (1), we 

discretized the shell, the Lagrangian fluid, and the finest Eulerian fluid mesh in the FSI 

zone with the size of 0.25s Lf Efh h h h      . In Case (2), we used double-sized 

elements, i.e. 0.5s Lf Efh h h h      , for the beam and wrapping Lagrangian fluid and 

the finest Eulerian fluid meshes. Both cases use four layers of the Lagrangian fluid meshes 

to wrapping the beam. 
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The time-varying displacement of the free end (point marked with ‘A’ in Figure 

6.13) in x- and y-direction for case (1) is shown in Figure 6.14. The results from Turek & 

Hron [103] are also plotted in the figure as reference. The snapshots of the pressure contour, 

streamlines, deformation of the beam at four-time instances in one cycle of oscillation are 

shown in Figure 6.15 for Case (1) along with the distribution of the dominated Cauchy 

stress xx  in the beam. Table 6.1 records the displacement amplitude Am of free end in the 

y-direction along with Strouhal number St for both cases in comparison to the results from 

references. From the results in these figures and data in the table, the present ELL method 

shows an excellent agreement with results in the references.  

 

Figure 6.14: History of the displacement of the free end of the beam for case (1). 
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Figure 6.15: A snapshot of fluid pressure contours and streamlines along with the 

stress distribution ( xx ) on the beam at four instances labeled in Figure 6.14. 

Table 6.1. 3D flow over a flexible beam attached to a cylinder. The amplitude of the 

displacement in the y-direction of the free end along with the Strouhal number.   

Sources 

Case (1) Case (2) 

Am/D St Am/D St 
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ELL 3D 0.72 0.19 0.41 0.27 

ELL 2D 0.78 0.19 0.39 0.28 

Turek & Hron [103] 0.83 0.19 0.36 0.26 

Tian et al [104] 0.78 0.19 0.32 0.29 

Bhardwaj & Mittal [105] 0.92 0.19 0.41 0.28 

6.2.3 3D Flapping flag in the uniform flow 

In this example, a 3D flapping flag in the uniform flow is investigated. This 

example has only been solved by a few references using IBM. Herein we solve this problem 

to validate our ELL method in solving 3D FSI problems with a very thin structure. The 

detailed schematic of the problem is illustrated in Figure 6.16; a square flag is placed in 

the middle of a tunnel pinned (not clamped) at the left edge with the other three edges free. 

The flag is placed in an initial orientation angle of  0 0.1   with respect to the constant 

incoming flow. The length of the flag is L. The thickness of the flag is 0.01h L , i.e., the 

ratio of length and thickness is 100L h  . The computational domain for the Eulerian fluid 

is      2 ,8 4 ,4 2 ,2L L L L L L      with a uniform flow ( f

xv U , 0f

yv   and 0f

zv  ).  

A total number of 1,387,200 nodes and 8,220,008 T4 elements are used for the 

Eulerian fluid with the finest mesh 0.02Efh L   near the beam and in the near field wake. 

A total number of 2,500 CB shell elements with the same size of the finest Eulerian fluid 



 108 

mesh to model the flag. Four layers of the Lagrangian fluid meshes are included to employ 

the ELL implementation.  

 

Figure 6.16: Schematic of the 3D flapping flag problem   

To validate the proposed ELL algorithm with the adoption of the CB shell theory, 

we replicate the test presented by Huang et al. [118]. Reynolds number is defined as 

Re fUL  . Without the consideration of the gravity, the other two dimensionless 

parameters that affect the system are the structure-to-fluid mass ratio, non-dimensional 

bending rigidity respectively as, 

s

f

h

L





 ,   

2 3B f

B
K

U L
  (6.2) 

where B is the flexural rigidity of the flag, they are set as Re 200 , 1   and 

0.0001BK  . 
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Figure 6.17: Time history of the transverse displacement of the flag in point A 

(marked in Figure 6.16). 

Figure 6.17 shows the time history of the transverse location at the middle point of 

the trailing-edge (point labeled ‘A’ in Figure 6.16) along with the results from several 

results in the literature. The amplitude of the peak-to-peak oscillation Am and the Strouhal 

number defined as St fL U , where f is the frequency during stable-state oscillation 

measured in point A, are provided in Table 6.2 with some references in comparison. A 

good agreement is obtained. The time traces of the forces coefficients (drag and lift), 

normalized by 2 20.5 fU L , are plotted in  

Figure 6.18, compared with the results in [104, 112, 118, 119]. The agreement is 

satisfactory. Figure 6.19 plots a snapshot of the vertical structures for the flag identified by 

Q-criterion and showing the characteristic hairpin-like structure flow pattern.  

 



 110 

 

Table 6.2. 3D flapping flag in the uniform flow. The transversal amplitude of the 

peak-to-peak displacement of the free end along with Strouhal number.   

Sources Amplitude Am/L Strouhal number St 

ELL 0.708 0.270 

Huang & Sung [118] 0.780 0.260 

Lee & Choi [112] 0.752 0.265 

Tian et al [109] Flag 1 0.812 0.263 

de Tullio & Pascazio [119] 0.795 0.265 

 

 

 

Figure 6.18: Time history of (a) the drag coefficient and (b) the lift coefficient. 
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Figure 6.19: Snapshot of the vortical structures of the flapping flag in the uniform 

flow. 

6.2.4 Symmetric flapping flexible wings of a butterfly 

To explore the capacity of the ELL method with CB shell modeling the thin 

structure in solving real engineering 3D FSI problems, the symmetric flapping wing of a 

butterfly in section 6.1.3 is studied with the CB beam for the flexible wings. 

The butterfly begins up-stoke in simulation at the time 0t  , with the Reynolds 

number Re 200 . A soft material is used for the thin wings. 

Four complete cycles of the flapping wings of the butterfly are computed. Figure 

6.20 shows the flow structure of the symmetric flapping butterfly at three different stages 

in flapping cycles. These figures show the iso-surfaces of the vorticity along with the von 

Mises stress (VMS) distribution on the wings. The flapping angle of the wings is increasing 

to a peak with the velocity reaching zero, as shown in Figure 6.20 (a). At this stage, vortices 

of the tip and wake are mainly forming on the lower surfaces. Since the sum of the forces 
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is close to zero, the value of VMS is relatively small. The wings reach the center position 

of a cycle down-stoking with maximum velocity in Figure 6.20 (b). The vortices dominate 

on the upper surface of the wings, and some remnant vortexes having small magnitudes 

can also be observed at the edge of the lower wingtips. The wing shows an arched structure 

as the movement of the wing lags behind the movement of the leading rims. Figure 6.20  

(c) shows the wings up-strokes accelerate from the lowest position. At the stage, the vortex 

begins to shift to the lower wing surfaces while a large portion of the vortex remains on 

the upper wing surfaces. The VMS on the wing at the last two stages have a larger 

magnitude due to the more significant external force from the fluid.  
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Figure 6.20: Vortical structures and von Mises stress distributions of the symmetric 

flapping wings of the butterfly in three different instants. 

Figure 6.21 shows the time-varying force coefficients for a single wing during the 

first five cycles. zC  is nearly zero since the wings are flapping symmetrically about the 

pivot, which is parallel to the z-axis thus no significant resistant force. The vertical force 
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yC  decreases dramatically at the beginning of the simulation, which can be attributed to 

the up-stroking of the wing from a stationary state. 
yC  is symmetric during the simulation, 

which is a good match for the fact that the butterfly is undergoing a symmetric flapping 

motion. The horizontal force xC  also changes periodically synchronizing with the 

sinusoidal flapping wings.  

 

Figure 6.21: Time history of the force coefficient in x, y, and z-direction of a single 

wing in four complete cycles. 
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CHAPTER 7. CONCLUSION 

This dissertation, a novel method, the Eulerian-Lagrangian-Lagrangian method, is 

presented for solving FSI problems with an improvement in the accuracy of the solution. 

The derivation of the ELL presents the mathematical and physical basis aiming at (1) 

developing a promising approach that unifies the two categories of the FSI algorithms, i.e., 

the conforming and non-conforming mesh methods,  into one configuration; (2) explaining 

the physical meaning behind the usage of added wrapping fluid.  

 In ELL, a small portion of the fluid is used to enlarge the volume of the solid, such 

that they can be treated as one “composite solid” within the Lagrangian frame. The 

interface velocity is smoothly transferred from the solid to the fluid nodes with the help of 

the fictitious fluid, thus making the FSI interface being resolved more accurately in the 

ELL as compared to the existing IFEM approach. The superior accuracy of ELL is 

demonstrated by solving different FSI problems. 

It also resolves the issue in IDM when dealing with a thin solid moving in the fluid. 

The CB beam element and CB shell element are successfully adopted to solve the FSI 

problems with thin structures, in which the realistic solid modeling is employed.  

Some advantages of the proposed ELL method are concluded as follows. 

 With the help of a wrapping fluid, the moving FSI interface is accurately imposed 

on the Lagrangian fluid meshes.  
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 It inherits the most significant advantage of the immersed type method, which has 

a fixed Eulerian fluid. 

 With the adoption of FEM interpolation, the widely used discretized Dirac delta 

function in the IBM method is thus removed. Thus, it enables the use of non-

uniform grids when the geometry or boundary of fluid is complex.   

 Due to the flexibility in the inclusion of the wrapping fluid, the re-meshing process 

for the “composite solid” becomes independent of the geometry of the bulk 

Eulerian fluid domain.  

 With the extension of the solid, ELL for a thin body moving in the fluid is available 

for incorporating reduced elements, thus primarily improve the efficiency of the 

computation.  

The ELL provides an ideal framework to combine the conforming meshes methods 

and the non-conforming meshes method. It is believed that the new configuration may open 

the door to coding FSI algorithms with both high accuracy and efficiency.  
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