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Abstract

Mathematical operations that are applicable to the three and hyper-dimensional space remain a

key factor that act as a foundation for a wide range of applications of 3-d image processing and

computer vision.

The recently proposed Solid Vector Subtraction opened the way to propose the high pass spatial

filters of a field of vectors geometrical edge detectors.

Geometrical edge magnitude and direction detection has a wide spectrum of applications in-

cluding object recognition and detection, autonomous navigation systems, and three-dimensional

localization and mapping.

This dissertation proposed three research topics: (1) the first is the Solid Vector Addition,

Multiplication, Division, Dot Product and Cross Product operations and their coordinate system

definitions; (2) the second is the Gradient-based Laplacian of a field of vectors; and (3) the third is

the Unsharp Masking of a field of vectors.

The problem statement of the first research proposal is to define the Solid Vector: (1) coordinate

system (like whether it is Spherical or Polar or something else); (2) hyper dimensional space;

(3) whole complementary set of addition, multiplication, division, dot product and cross Product

operations.

The problem statement of the second research is that the definition of the Gradient-Based

Laplacian of a field of vectors (used for detecting 3-D surface geometrical edges) depends on

the definition of the Gradient of a field of vectors which was only just recently proposed. Also, the

Gradient-Based Laplacian must comply with the typical rules for the Laplacian operator.
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The problem statement of the third research is that the Cartesian Components-Wise mathemat-

ical subtraction operation used in the Unsharp Masking of a field of scalars is not useful to develop

the Unsharp Masking of a field of vectors for geometrical edge magnitude and direction detection

in point cloud surfaces.

The contributions of the first research are proposing novel definitions of: (1) the Rotated Polar

coordinate system; (2) the 2-d, 3-d, hyper dimensional Rotated Polar coordinate system space; (3)

the Solid Vector Addition; (4) the Solid Vector Multiplication; (5) the Solid Vector Division; (6)

the Solid Vector Dot Product; and (7) the Solid Vector Cross Product.

The contributions of the second research are: (8) proposing a novel definition of the Gradient-

Based Laplacian of the field of vectors; (9) doing its behavioral analyses when the absolute dif-

ference and when the signed difference are used; (10) doing its performance analyses on TUM

data set, and its comparison study with the state of the art edge detectors on NYUD data set which

shows that it is efficient.

The contributions of the third research are: (11) proposing a novel definition for the Unsharp

Masking of a field of vectors; (12) doing its behavioral analyses; and (13) doing its performance

analyses on TUM data set, and its comparison study with the state of the art edge detectors on

NYUD data set.

During the work of this dissertation, five research papers have been written; four published and

one submitted to international conferences and IEEE Explore.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Mathematical operations that are applicable to the three and hyper-dimensional space remain a

key factor that act as a foundation for a wide range of applications of 3-d image processing and

computer vision–such as: (1) developing 3-d and hyper dimensional artificial intelligence and

machine learning descriptors and algorithms, (2) detecting imaging similarities and dissimilarities,

(3) controlling of 3-D objects rotations in the 3-D space–such as drones, or CAD virtual reality

objects, (4) sculpturing 3-D objects using CAD applications (such as personalizing biomedical

equipment like artificial bones using Scada machines), (5) developing indoor or outdoor navigation

using vision-based GPS system, (6) developing vision-based obstacles avoiding applications (such

as for UAVs, and elderly falling alerting system).

The Solid Vector Subtraction operation was recently proposed by Al-Anssar J. Naser I. and

Ralescu A. [3].

The term Solid Vector is defined as that the vector is handled as one solid quantity by only two

components that are: 1) the first is an only one magnitude (length) layer (r), which keeps the vector

as a one solid quantity; and 2) the second is an only one directional (angular) component layer (θ),

which also keeps the vector as a one solid quantity and undivided into many angular directional

components.

Being 2d, 3d and hyper dimensional space, and being Solid Vector make such a coordinate

system and its mathematical operations quite useful for the above mentioned applications.

In literature, the typical mathematical coordinate systems and their mathematical operations

are the component-wise Cartesian, Spherical and Polar coordinate systems.

The component-wise Cartesian coordinate system and its mathematical operations (that consist

of a whole well defined complementary set of Subtraction, Addition, Multiplication, Division,

Dot Product and Cross product operations) are applicable to the 2d, 3-d and hyperspace, but their

problem is that they are not compliant to the Solid Vector definition, because they handle the vector

as a separate layers of x, y, z, . . . axes which makes building machine learning and data mining

algorithms processing and time consuming because in high dimensional data, they have to deal

3 Inam Naser



CHAPTER 1. INTRODUCTION

with too many layers at the same time. Therefore, in the current research, the Cartesian is out of

the interest.

The Spherical coordinate system and its mathematical operations are applicable to the 3-d

and hyperspace, but their problem is that they are not compliant to the Solid Vector definition,

because they handle the vector as: (1) two directional angular layers of θ and φ Spherical vector

components, not only one as the Solid Vector definition stated; and (2) its vector magnitude r

component. Therefore, in the current research, the Spherical is out of the interest.

The Polar coordinate system, here after refereed as the Fixed Polar coordinate system, and its

mathematical operations are compliant to the above definition of the Solid Vector, because their

vector has only two components: (1) one angular component θ and (2) one length component r;

but their problem is that they are not extendable to the 3d or hyper-dimensional space, because:

(1) they have a static coordinate system directional Zero vector that is PoleY , that is the lowest

starting point of its θ angular component, and (2) they are fixed to the two-dimensional still plane

of their x, y axes. Therefore, in the current research, the Polar is out of the interest.

On the other side, a novel mathematical operation that is called the Solid Vector Subtraction

operation was recently proposed in [3] by Al-Anssari J. et al.. This Solid Vector Subtraction

operation is applicable to the 2d, 3-d and hyper dimensional space and is compliant to the above

Solid Vector definition, because it handles the vector as a one solid quantity unit similarly to the

Fixed Polar coordinate system, because it has: only one directional angular component θ and only

one magnitude r vector component.

On the other hand, geometrical surface edge magnitude and direction detection is still important

for the applications 3-d object recognition and detection, 3-d Simultaneous Localization and Map-

ping, and many others. The traditional geometrical edge magnitude detectors (such as traditional

Gradient, Laplacian, Gradient-based Laplacian and Unsharp Masking of a field of scalars opera-

tors) have used the Component-Wise vector operations; furthermore they could not be extended to

detect geometrical edge directions.

According to [7] ”Unfortunately, the gradient discussed in section 3.6.4 is not defined for vector

Inam Naser 4



CHAPTER 1. INTRODUCTION

quantities... If accuracy is an issue, however, then obviously we need a new definition of the

gradient applicable to vector quantities....As we just mentioned, the gradient we studied in Section

3.6.4 is applicable to a scalar function f(x, y); it is not applicable to vector functions”, where

section 3.6.4 is the gradient for the field of scalars.

Inspired by the above quotes, J. Al-Anssari, I. Naser and Ralescu A. proposed in [3] their

novel mathematical Solid Vector Subtraction operation. Based on this Solid Vector Subtraction

operation, novel algorithms for the Gradient magnitude of a field of vectors and the Laplacian

magnitude and direction of a field of vectors were proposed and implemented in [3] and [4], which

were analogous to the Gradient of a field of scalars and the Laplacian of a field of scalars.

The recent advances in RGB-D cameras allow the capture of three-dimensional point clouds,

images, of indoor environments. The raw original surfaced point cloud is organized in geometrical

surfaces of one pixel width that reflects the environment that is captured by the depth sensor. Each

of the point cloud pixels holds the normal vector that is perpendicular to its surface. Segmenting

geometrical surfaces of the point cloud of the indoor environment into primitive shapes remains a

big problem.

In the current dissertation, three researches proposals are proposed in three chapters as follows:

(1) first is the Solid Vector operations research that extend the Solid Vector Subtraction operation

and in which its complementary Solid Vector Addition, Multiplication, Division, Dot Product and

Cross Product mathematical operations and their coordinate system definitions are proposed; (2)

second, based on this Solid Vector Subtraction operation, novel 3d Gradient-based Laplacian of a

field of vectors geometrical edge detector high pass spatial filter is proposed which is analogous

to the Gradient-Based Laplacian of a field of scalars; and (3) third, based on this Solid Vector

Subtraction operation, novel 3d Unsharp Masking geometrical edge detector high pass spatial filter

is proposed, which is analogous to the Unsharp Masking of a field of scalars.

The surfaced Gradient point cloud also consists of pixels that are organized in the geometrical

surfaces of one pixel width. Each of its pixels holds the value of the Gradient magnitude of the

surfaced original point cloud. The Gradient point cloud is successfully classified into two types of
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CHAPTER 1. INTRODUCTION

segments of pixels: (1) Plane edges, (2) Step and Ramp edges. In literature of the field of scalars

of the gray-scale images, the 2nd derivative, the Laplacian and the Unsharp Masking can further

segment the gray-scale intensity images into two segments: (1) Plane and Ramp intensity areas,

and (2) Step intensity edges; so the proposed Gradient-based Laplacian and Unsharp Masking do

as well.

1.2 The Objectives

As indicated above, there are three research proposals in this dissertation. The following are the

objectives of each one of these research proposals:

1. The objective of the first research is to extend this Solid Vector Subtraction operation by

proposing definitions of: (1) its coordinate system; (2) its hyper dimensional space; and

(3) its other whole complementary set of Solid Vector Addition, Multiplication, Division,

Dot Product, and Cross Product operations. This coordinate system, hereafter refereed as

the Rotated Polar coordinate system and these mathematical operations, hereafter refereed

as Solid Vector mathematical operation handle the vector as a one solid quantity unit, in

addition to its property of being applicable to the 2d, 3d and hyper dimensional space.

2. The objective of the second research is to design and implement the second-order derivative,

the Gradient-Based Laplacian, of a field of vectors in an analogous manner to the definition

of the Gradient-Based Laplacian of a field of scalars, which typically classify two types of

segments of the geometrical surfaces of the point cloud: (1) the Plane and Ramp areas; (2)

and the Step edge areas.

3. The objective of the third research is to propose a novel Unsharp Masking of a field of

Vectors that detects geometrical edge magnitude and direction of the 3-d point clouds, that is

analogous to the traditional Unsharp masking of a field of scalars that is used for the intensity

edge detection of the gray-scale images.

Inam Naser 6



CHAPTER 1. INTRODUCTION

1.3 The Problem Statement

The problem statement of each one of the three research proposals are as follows:

1. The problem statement of the first research proposal is how to answer the following ques-

tions that were surfaced from the recent proposal of the Sold Vector Subtraction operation:

1) what is the definition of its coordinate system (like whether it is Spherical or Polar or

something else), 2) what is the definition of its hyper dimensional space and 3) what are

the definitions of its other whole complementary set of Solid Vector 1) Addition, 2) Multi-

plication, 3) Division, 4) Dot Product and 5) Cross Product operations.

2. The problem statement of the second research is that the recently proposed Gradient of a

field of vectors high pass spatial filter is needed to define the Gradient-Based Laplacian, the

2nd derivative of a field of vectors edges detector that is analogous to the Gradient-Based

Laplacian of the field of scalars; and that produces two types of segments: (1) Step edges

areas segment; (2) Plane and Ramp areas segment of the point cloud 3-D surfaces of the

environment captured by the depth sensor.

3. The problem statement of the third research is that the Cartesian Components-Wise mathe-

matical subtraction operation used in the Unsharp Masking of a field of scalars, is not useful

to develop the Unsharp Masking of a field of vectors for geometrical edge magnitude and

direction detection in point cloud surfaces.

1.4 The Methodologies

The following are the methodologies to address the problem statements of each of the three re-

searches of current dissertation:

1. The methodologies to address the problem statement of the first research are:
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1) a) One of the operands vectors of the Solid Vector Subtraction operation is made as the

first axis of the coordinate system that is the Directional Zero vector that replaces the

PoleY of the Fixed Polar, and that is the lowest starting point of the angular component

θ; and b) the Directional Sign Axis of the Solid Vector Subtraction operation is made as

the second axis of the coordinate system, that replaces the x axis of the Fixed Polar; in

order to get a rotated version of the Fixed Polar that here after, in the current research,

refereed to it as the Rotated Polar coordinate system that is implemented in the 3-D

dimensional space and that is not fixed to the still plane of the x, y axes.

2) A pair of vectors are specified as components of a Hyper Rotated Polar when the Solid

Vector Subtraction operations between them and their Directional Zero vector produce

the same Directional Sign Axis (including both of its opposite directions the positive

and negative), in order to define its extension to the hyper dimensional space.

3) The triangulation is used in order to propose the Solid Vector 1) Addition, 2) Multipli-

cation, 3) Division, 4) Dot Product and 5) Cross Product operations.

2. The methodology of the second research is to use the recently proposed Gradient of a field of

vectors high pass spatial filter as a foundation and preliminary step to propose the Gradient-

based Laplacian of a field of vectors geometrical edge detector.

3. The methodology of the third research is to use the mathematical Solid Vector Subtraction

operation to propose the Unsharp Masking of a field of vectors, instead of the Cartesian

Component-Wise subtraction operation that is used in the Unsharp Masking of the field of

scalars.

1.5 The Contributions

There are thirteen contributions items in this dissertation that are distributed into three researches

as follows:
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The contributions of the first research are proposing:

1. A novel definition of a Rotated Polar coordinate system based on two novel axes: 1) first

axis is the dynamic Operation-Based Zero Vector; and 2) second axis is the Directional

Sign Axis of the Solid Vector Subtraction operation;

2. A novel definition of the 2-d, 3-d, hyper dimensional Rotated Polar coordinate system space;

3. A novel definition of the Solid Vector Addition;

4. A novel definition of the Solid Vector Multiplication;

5. A novel definition of the Solid Vector Division;

6. A novel definition of the Solid Vector Dot Product;

7. A novel definition of the Solid Vector Cross Product.

The contributions of the second research are:

8. Proposing a novel algorithm of the Gradient-Based Laplacian of a field of vectors (used for

detecting 3-D surface geometrical edges) that is based on the novel algorithm of the Gradient

of a field of vectors, that was proposed in [3] research. In the Gradient-Based Laplacian

algorithm, the first predefined operation of the convolution is defined as the absolute scalar

difference of the Gradient values of the neighbor pixels from the Gradient value of the center

pixel, in contrast to the existing work [10] of gray-scale edge detection, in which this is

defined as the signed Gradient difference operation.

9. Doing behavioral analysis for the Gradient-based Laplacian on Step edge, Plane, and Ramp

areas for two cases; when the absolute difference and when the signed difference are used in

order to prove that the former is the right one and the latter is the wrong.

10. Doing performance analysis for the Gradient-based Laplacian on TUM data set, and com-

parison study with the state of the art edge detectors on NYUD data set.
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The contributions of the third research are:

11. Proposing a novel algorithm for the Unsharp Masking of a field of vectors that is based on

the Solid Vector subtraction operation and that is analogous to the Unsharp Masking of a

field of scalars.

12. Doing behavioral analysis for the Unsharp Masking on the Step edges; Plane areas; and

onset, end and along Ramp areas.

13. Doing performance analysis for the Unsharp Masking on TUM data set, and comparison

study with the state of the art edge detectors on NYUD data set.

During the work of this dissertation, four research papers have been published in international

conferences and IEEE Explore. Those research papers are listed below:

1. I. Naser, J. Al-Anssari and A. Ralescu, ”Three-Dimensional Gradient-Based Laplacian Spa-

tial Filter of a Field of Vectors for Geometrical Edges Magnitude Detection in Point Cloud

Surfaces,” 2019 Joint 8th International Conference on Informatics, Electronics & Vision

(ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition

(icIVPR), Spokane, WA, USA, 2019, pp. 354-361 [1].

2. I. Naser, J. Al-Anssari and A. Ralescu, ”Three-Dimensional Unsharp Masking Spatial Filter

of a Field of Vectors for Geometrical Edges Magnitude and Direction Detection in Point

Cloud Surfaces,” 2019 IEEE International Conference on Humanized Computing and Com-

munication (HCC), Laguna Hills, CA, USA, 2019, pp. 68-76 [2].

3. J. Al-Anssari, I. Naser and A. Ralescu, ”Three-Dimensional Gradient Spatial Filter of a

Field of Vectors for Geometrical Edges Magnitude Detection in Point Cloud Surfaces,” 2019

Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019

3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane,

WA, USA, 2019, pp. 362-370 [3].
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4. J. Al-Anssari, I. Naser and A. Ralescu, ”Three-Dimensional Laplacian Spatial Filter of a

Field of Vectors for Geometrical Edges Magnitude and Direction Detection in Point Cloud

Surfaces,” 2019 IEEE International Conference on Humanized Computing and Communi-

cation (HCC), Laguna Hills, CA, USA, 2019, pp. 83-93 [4].

1.6 Dissertation Outline

From this point on, this dissertation is organized as follows:

Chapter 2 background theories; in which: section 2.1, 3d camera; section 2.2, the point cloud;

section 2.3, the point cloud normal vectors; section 2.4, the neighborhood search method; sec-

tion 2.5, edge detection; section 2.6, Unsharp Masking; section 2.7, Gradient-based second order

derivative; section 2.8, the convolution; section 2.9, the edges types.

Chapter 3, the solid vector operations; in which: section 3.1, introduction; section 3.2, the

literature review; section 3.3, the rotated polar coordinate system; section 3.4, the rotated polar

mathematical operations; section 3.5, the conclusions.

Chapter 4, the Gradient-Based Laplacian of a field of vectors; in which: section 4.1, introduc-

tion; section 4.2, the novel Laplacian algorithm; section 4.3, the design of the Laplacian algorithm;

section 4.4, the behavioral analyses; section 4.5, performance analyses, comparison Study, and

experimental Results; section 4.6, conclusions and directions of future work;

Chapter 5.4, the Unsharp Masking of a field of vectors; in which: section 5.1, introduction;

section 5.2 literature review; section 5.3 Smoothing spatial filter of a field of vectors; section 5.4

Unsharp Masking of a field of vectors; section 5.5 behavioral analyses; section 5.6 performance

analyses, comparison study, and experimental results; section 5.7 conclusions and future work;

Chapter 6, the conclusions and future work; in which: section 6.1, conclusions; section 6.2,

future work;

And bibliography.
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2.1 3D Camera

Three dimensional cameras (e.g. Kinect cameras) are the cameras that measure the depth between

each pixel of the sensor plane and the corresponding point of an object in the scene.

Because 3D information is important for many computer vision tasks, several methods for

capturing 3D images (information) have been developed, for example stereo-matching method that

is presented in [11], and other method that is presented in [12] that measures the range through the

use of active sensors which allow achieving a high level of precision.

Recent developed range cameras, (e.g. time-of-flight (ToF) cameras [13] and structured-light

(SL) cameras (the Microsoft Kinect 1 [14]), are capable to produce range images, at high spatial

resolution and real-time frame rate, which contain, at every pixel, the range of the corresponding

element in the scene.

The time-of-flight (ToF) camera is the second generation of Kinect. It measures the time that

the light spends in flight to estimate distance (depth). While the structured light camera is the first

version of Kinect, which was introduced in origin as a motion sensor for Microsoft Xbox 360 video

game console [15]. A structured light camera projects a light pattern on the object and analyzes

the distortion of the pattern to get the depth [5], [16]. The time line of Kinect projects can be seen

in figure 2.1, which is taken from [5].

The Kinect for Windows camera has two separate sensors; color sensor which returns color

image data, and depth sensor which returns depth data. The authors in [5] show comparison of the

hardware characteristics of the two versions, Kinect v1 and Kinect v2, as figure 2.2 shows below.

In the current research images from TUM and NYUD datasets are used, both of these dataset

images are captured using Kinect for windows v1. These images include color images and depth

(range) images. The color images and depth images are used together to create the point cloud

data; which is actually the input to the current research algorithms.
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Figure 2.1: This figure shows the time line of the Kinect projects [5].

Figure 2.2: This figure shows the hardware specifications of the first- and second-generation Kinect
models [5].

2.2 Point Cloud

A point cloud is a set of data points defined by a given coordinate system. These points represent

the surface of an object in real world environment. The point cloud is captured by 3D scanners;

15 Inam Naser



CHAPTER 2. BACKGROUND THEORIES

one example of these scanners is Microsoft Kinect depth camera.

Point clouds from depth cameras, such as Microsoft Kinect, are classified into organized point

clouds, which identify an organized image (or matrix) like structure, where the data is represented

by rows and columns. In contrast, unorganized point clouds have no structure and the data is not

being divided into rows and columns [5], [17].

Organized point clouds have more advantages, where the data facilitates many types of vi-

sion algorithms such as registration [5]. In addition, the operations of nearest neighbor are more

efficient when the relationship between the adjacent pixels is known [17].

In the current research, the 3d point cloud data type is an input argument to the proposed

algorithms. This point cloud data type is convereted from both the RGB color image and its depth

image data types by using a Point Cloud library built-in function. This 3D point cloud data type has

a wide field range of computer vision and image processing applications. Also, this point cloud 3D

data type is perfect to achieve the objective of this work to detect the geometrical edges of indoor

environment.

The point cloud has been used for many purposes; for example, reconstructing the surface

of objects [18] and [19], representing and estimating the motion of 3D objects [20], creating 3D

meshes for medical imaging [21], and augmented reality system [22].

2.3 Point Cloud Normal Vectors

The development of affordable depth sensors, such as Microsoft Kinect cameras, has been a perfect

source of getting point clouds as inputs to develop many algorithms in computer vision applica-

tions, like geometrical edge detection. These cameras have the ability to capture high resolution

color and depth images at the same time, and these two images can be used to produce a point

cloud as data, as what has been done in this research.

One of the most distinctive information that can be gained from point clouds is normal vectors,

and it is suitable to be used in many applications, such as object detection approaches [23], sur-
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face reconstruction algorithm [24], point cloud registration [25], and extracting datum feature and

analyzing deformation [26].

The point cloud that is acquired from depth (range) sensors presents a noisy sampling of the

real world surfaces, and the specific information of these surfaces, like orientation and curvature, is

lost in the sampling procedure. To retrieve this information, a set of vectors, which are orthogonal

to the tangential plane of every surface point they contact, is constructed to estimate the normal

vectors [27].

The normal estimation methods have been divided into two different groups; averaging meth-

ods and optimization-based methods [23] and [27]. And there have been used only two types of

graph for normal vector estimation: k nearest neighbor (kNN) and Delaunay tessellation (DT) [27].

Different algorithms for normal vectors estimation have been proposed by different researchers.

The authors in [23] present two algorithms to perform efficient estimation using integral images

by employing an adaptive window size for analyzing local surfaces. While a novel method for

estimating the normal vector based on bi-linear interpolation was presented in [28]. Also, a new

normal vector estimation method for point clouds is presented in [24] based on the matching results

of the local Delaunay triangle mesh formed at each point. And, a method has been developed

by [29] of normal vector estimation for point cloud data depending on fitted directional tangent

vectors at the data point.

In this research, the method that is used to estimate the normal vectors of the point clouds is

the Integral Images, and exactly the Average3dGradient method. For specified information about

Integral Images, one can see the details in [23] and [30].

2.4 Neighborhood Search Method

In the current research, the algorithms that are proposed deal with every point and its neighbors,

and to find those neighbors; a neighborhood search method is needed to be used and the used

method here is k-d tree method.
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A k-d tree (k-dimensional tree), is a data structure used to organize points in a k-dimensional

space; in this research, the point clouds are 3D, so the K-D tree is 3D. It is a multidimensional

binary search tree developed by [31] as a data structure for information storage to be recovered by

searches associated with that information.

In K-D tree, a non-leaf node divides the space into two parts, and that parts are called half-

spaces. The left subtree of that node represents the points to the left of that space, and the right

subtree represents points to the right of the space.

A neighborhood search method is an imported process in many applications of computer sci-

ence and there are many neighborhood search methods available; the standard and common one is

the KNN (k-nearest neighbor), which finds the k closest points in the data to an inquiry point or set

of inquiry points. While radius search method finds all points in the data within a specific distance

from an inquiry point or set of inquiry points.

Also, many scholars have used the variable neighborhood search method (VNS), which is pro-

posed in [32] and is a metaheuristic method used to solve a set of combinatorial and global opti-

mization problems and manages a Local Search technique. For example, Khelifa M. and Boughaci

D. in [33] proposed a method for the traveling tournaments problem in sport scheduling (TTP)

based on VNS; while orienteering problem with hotel selection (OPHS) has been presented by

Divsalar A. et al.in [34] using a skewed variable neighborhood search.

Also, some researches proposed neighborhood search methods for special purposes. Such

as the augmented large neighborhood search (ALNS) method that was proposed by Kim B. et

al.in [35] for the team orienteering problem in which a team of vehicles tries to gather rewards

at a given number of stops within a specific time frame. And, a hierarchical neighborhood search

method was presented by Svanberg K. and Werme M. in [36] for solving topology optimization

problems defined on discretized linearly elastic continuum structures.

Inam Naser 18



CHAPTER 2. BACKGROUND THEORIES

2.5 Edge Detection

Edge detection is an approach used often for images segmentation basing on the sudden local

change in intensity; edges (or edge segments) are the connected edge pixels sets, when the edge

pixels are the pixels where the sudden change of intensity of an image function is happened, and

an example of edge segment is a line, when the background intensity of both sides of the line is

different than its intensity. Edge detectors are approaches for local image processing designed for

edge pixels detecting [7].

The information of edge detection is beneficial for many applications in image processing

and computer vision, such as 3D reconstruction, motion, recognition, image enhancement and

restoration, image registration, image compression, and so on [37], also the edge detection is basic

tool in feature detection and feature extraction areas [38]. This information is also applicable to

point cloud segmentation, data compression, and 3D modeling.

The basic edge detection, by detecting the change of the intensity, is done by using first-order

or second-order derivatives. The first-order derivative is the Gradient, which is a tool to find edge

strength and direction at location (x, y) of an image, and is defined by a vector. This vector points

in the direction of the greatest rate of change of the image function at location (x, y), so it has

important geometrical property. The magnitude (length) of that vector represented by the value of

the change rate in the direction of the Gradient vector, while its direction represented by the angle

that measured with respect to the x-axis. The second-order derivative is the Laplacian, which is

a method represented by defining a discrete formula of the second-order derivative and building a

filter mask based on that formula [7].

In this research, the edge detection is done in point cloud surfaces and the algorithms that

are proposed deal with the normal vectors (field of vectors), in contrast to the previous works

mentioned above. The first algorithm is the Gradient-based Laplacian of a field of vectors for

detecting 3-D surface geometrical edges magnitude that is based on the Gradient of a field of

vectors values that was proposed by [3] that is based of the Solid Vector subtraction operation that

was proposed by [3]. While the second algorithm uses the novel Solid Vector subtraction operation

19 Inam Naser



CHAPTER 2. BACKGROUND THEORIES

that was proposed by [3] to propose the novel Unsharp Masking of a field of vectors for detecting

geometrical edge magnitude and direction of the 3-d point clouds.

Edge detection in point cloud has been studied extensively and many methods were developed.

For example, one algorithm presented by [39] in which the two order polynomial surface on the

scattered point cloud in the local coordinate system was approximated, and the estimated differ-

ential curvature value of the point clouds was utilized for picking the possible edge points with

local maximum curvature. Another quadric surface approximation method was used by [40] for

estimating curvature and normal of local region and detecting the edge points based on curvatures.

2.6 Unsharp Masking

Unsharp Masking is a method used for image sharpening in computer vision. It has been used in

many researches as a classical tool to enhance the edge sharpness, and has been used in printing

and publishing areas.

This technique is presented briefly in [7], and includes three steps: blurring the original image,

subtracting the blurred image from the original one (getting a mask), and adding that mask to the

original image [7] and [41]. These steps can be represented also by adding a scaled version of an

image (high pass filtered) to the image itself as shown in figure 2.3 from [6].

In the current research, 3D Unsharp masking algorithm of a field of vectors was proposed to

detect edges magnitude and direction in point cloud, imitating the same three steps in the classic

Unsharp masking: 1) Rounding the vectors of the original point cloud using a smoothing spatial

filter. 2) Subtracting the original point cloud vectors from the smoothed version using the solid

vector subtracting operation [3] resulting the directional difference which consists of the edges

magnitude and direction. 3) Thresholding the edges magnitude according to a predefined certain

scalar threshold value. 4) Assigning the edges magnitude scalar values as colors to the same pixels

positions of a newly created point cloud. 5) Assigning the edges direction vectors quantities as

vectors to the same pixels positions of a newly created point cloud.
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Figure 2.3: Unsharp masking for edge detection [6].

There are varieties of algorithms that have been developed by scholars for Unsharp Masking.

For example, a generalized Unsharp Masking algorithm was proposed by [42] which addressed

three issues; simultaneous enhancing contrast and sharpness, reducing the halo effect, and solving

the out-of-range problem. Also, the overshoot artifacts that occurred around side-planar edges were

detected and measured by [43], when they were selected as features in sharpening identification. In

addition, an adaptive Unsharp Masking method is proposed by [44] exploiting the estimated local

blurriness as the information for pixel-wise enhancement, and this method was called blurriness

guided UM, or BUM. And the authors in [6] introduced an adaptive Unsharp Masking for image

enhancement employing two directional filters; where the coefficients of that filters are updated

using a GaussNewton adaptation strategy, to enhance the contrast in high detail areas, while in the

smooth areas, there is a little or no image sharpening occurs.

2.7 Gradient-Based Second Order Derivative

Second-order derivative (the Laplacian) is an approach used for edge detection and image seg-

mentation. The classic approach, 2D second-order derivative represented by defining a discrete

formulation of the second-order derivative and then creating a filter mask based on that formula-
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tion. The Laplacian is isotropic filter, which is rotation invariant [45], and it is a linear operator.

The Laplacian for a function (image) f(x,y) of two variables can be defined by equations 2.1, 2.2,

2.3 and 2.4 [7].

∇2(f) = δ2f
δx2

+ δ2f
δy2
, (2.1)

For expressing equation 2.1 in discrete form, equations 2.2 and 2.3 represent that in x-direction

and y-direction respectively.

δ2f
δx2

= f(x+ 1, y) + f(x− 1, y)− 2f(x, y), (2.2)

δ2f
δy2

= f(x, y + 1) + f(x, y − 1)− 2f(x, y), (2.3)

And from the preceding equations, the discrete Laplacian can be shown in equation 2.4 which

is implemented using the filter masks in figure 2.4 [7].

∇2(f) = [f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)]− 4f(x, y), (2.4)

The proposed Laplacian in the current dissertation is the second-order derivative of 3D field

of vectors of the geometrical surface of the point cloud. This approach consists of describing a

mathematical expression of the second-order derivative and then constructing a surfaced dynamic

filter mask dependents to that mathematical expression. The dynamic mask should be isotropic,

therefore; the Laplacian is an isotropic derivative operator. Chapter four explains the proposed

Laplacian design and equations in details.
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Figure 2.4: Shows variations of Laplacian filters: (a) top left, filter mask used to implement equa-
tion 2.4. (b) top right, mask used to implement the diagonal terms of the Laplacian. (c) and (d) are
two other variations of the Laplacian mask [7].

2.8 Convolution

Convolution is a fundamental mathematical operation to many popular image processing operators

performed by sliding a mask (kernel) over an image. In this operation, the mask is first rotated 180

degree, but when the filter mask is symmetric, the convolution produces the same result without

rotating. Convolution produces a multiplication way of two arrays of numbers of different sizes,

but of the same dimensionality, to result a third one of the same dimensionality. When the mask
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visits a new pixel (from the input signal), a neighborhood search method is used to find the pixels

of the signal area under that mask which are positioned around that new signal (image) pixel, then

two predened operations, the sum of the products, are computed between the corresponding pixels

of the mask and the signal area under that mask [7].

In the current research, the mask for the Unsharp masking algorithm is static, where all of its

values are equal to 1, while the mask of the Gradient-based Laplacian algorithm is dynamic, where

all of its values are set equal to the Gradient value of the center pixel of the signal area under the

mask.

2.9 Edges Types

Edges in general consist of three types: horizontal edges, vertical edges, and diagonal edges [46].

An edge in an image is represented by a local change in the image intensity related to a disconti-

nuity in the image intensity. This discontinuity is defined as edge in different types, such as in [8],

two types of edges are defined; step discontinuities, in which the image intensity suddenly changes

from one value on one side of the discontinuity to a various value on the opposite side, and line dis-

continuities in which the image intensity suddenly changes value but then goes back to the starting

value within some short distance. Where the intensity changes are not immediate but occur over

a finite distance, step edges become ramp edges and line edges become roof edges. Figure 2.5

from [8] illustrates these edge profiles. Also three types of edges have been mentioned in [7]; step

edge which include a transformation between two intensity levels happens over the distance of one

pixel, ramp edge which represented by a set of connected points with no thin (1 pixel thick) path,

and roof edge is represented as models of lines through a region when the width of a roof edge is

specified by the thickness and sharpness of the line.

The edges types that are depended in this research are the same edges that defined in [3], which

are: 1) Plane areas: areas of constant direction of their vectors; 2) Ramp areas: areas of constant

rate of change in the direction of their vectors; 3) Step edges: areas of varying rate of change in
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Figure 2.5: Shows one-dimensional edge profiles [8].

the direction of their vectors.

These three edges are classified by the Gradient-based Laplacian and the Unsharp Masking

of a field of vectors that are proposed in the current dissertation into two segments, the first one

represented by the plane and ramp areas and the second segment represented by the step edges.
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CHAPTER 3. THE SOLID VECTOR OPERATIONS

Abstract

Mathematical operations that are applicable to the three and hyper-dimensional space re-

main a key factor that act as a foundation for a wide range of applications of 3-D image pro-

cessing and computer vision. The Solid Vector Subtraction operation was recently proposed.

The objectives of the current research is to extend this Solid Vector Subtraction operation by

proposing definitions of: (1) its coordinate system; (2) its hyper dimensional space; and (3) its

other whole complementary set of Solid Vector Addition, Multiplication, Division, Dot Prod-

uct, and Cross Product operations. This coordinate system, hereafter refereed as the Rotated

Polar coordinate system and these mathematical operations, hereafter refereed as Solid Vector

mathematical operations handle the vector as a one solid quantity unit, in addition to its prop-

erty of being applicable to the 2d, 3d and hyper dimensional space. The contributions of the

current research are proposing, (1) novel definition of a Rotated Polar coordinate system based

on two novel axis: first axis that is the dynamic Operation-Based Zero Vector, and second axis

that is the Directional Sign Axis of the Solid Vector Subtraction operation; (2) novel definition

of the 2-D, 3-D, hyper dimensional Rotated Polar coordinate system space; (3) novel definition

of the Solid Vector Addition; (4) novel definition of the Solid Vector Multiplication; (5) novel

definition of the Solid Vector Division; (6) novel definition of the Solid Vector Dot Product;

(7) novel definition of the Solid Vector Cross Product.

3.1 Introduction

Mathematical operations that are applicable to the three and hyper-dimensional space remain a

key factor that act as a foundation for a wide range of applications of 3-D image processing and

computer vision–such as: (1) developing 3-D and hyper dimensional artificial intelligence and

machine learning descriptors and algorithms, (2) detecting imaging similarities and dissimilarities,

(3) controlling of 3-D objects rotations in the 3-D space–such as drones, or CAD virtual reality

objects, (4) sculpturing 3-D objects using CAD applications (such as personalizing biomedical

equipment like artificial bones using Scada machines), (5) developing indoor or outdoor navigation
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using vision-based GPS system, (6) developing vision-based obstacles avoiding applications (such

as for UAVs, and elderly falling alerting system).

The Solid Vector Subtraction operation was recently proposed by Al-Anssar J. Naser I. and

Ralescu A. [3].

The objective of the current research is to extend this Solid Vector Subtraction operation by

proposing definitions of: (1) its coordinate system; (2) its hyper dimensional space; and (3) its

other whole complementary set of Solid Vector Addition, Multiplication, Division, Dot Product,

and Cross Product operations. This coordinate system, hereafter refereed as the Rotated Polar

coordinate system and these mathematical operations, hereafter refereed as Solid Vector mathe-

matical operations handle the vector as a one solid quantity unit, in addition to its property of

being applicable to the 2d, 3d and hyper dimensional space.

The term Solid Vector is defined as that the vector is handled as one solid quantity by only two

components that are: 1) the first is only one magnitude (length) layer (r), which keeps the vector

as a one solid quantity; and 2) the second is only one directional (angular) component layer (θ),

which also keeps the vector as a one solid quantity and undivided into many angular directional

components.

Being 2d, 3d and hyper dimensional space, and being Solid Vector make such a coordinate

system and its mathematical operations quite useful for the above mentioned applications.

In literature, the typical mathematical coordinate systems and their mathematical operations

are the component-wise Cartesian, Spherical and Polar coordinate systems.

The component-wise Cartesian coordinate system and its mathematical operations (that consist

of a whole well defined complementary set of Subtraction, Addition, Multiplication, Division, Dot

Product and Cross product operations) are applicable to the 2D, 3-D and hyperspace, but their

problem is that they are not compliant to the Solid Vector definition, because they handle the

vector as a separate layers of x, y, z, . . . axes which makes building machine learning and data

mining algorithms processing and time consuming because in high dimensional data, they have to

deal with too many layers at the same time. Therefore, in the current research, the Cartesian is out
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of the interest.

The Spherical coordinate system and its mathematical operations are applicable to the 3-D

and hyperspace, but their problem is that they are not compliant to the Solid Vector definition,

because they handle the vector as: (1) two directional angular layers of θ and φ Spherical vector

components, not only one as the Solid Vector definition stated; and (2) its vector magnitude r

component. Therefore, in the current research, the Spherical is out of the interest.

The Polar coordinate system, hereafter refereed as the Fixed Polar coordinate system, and its

mathematical operations are compliant to the above definition of the Solid Vector, because their

vector has only two components: (1) one angular component θ and (2) one length component r;

but their problem is that they are not extendable to the 3d or hyper-dimensional space, because:

(1) they have a static coordinate system directional Zero vector that is PoleY , that is the lowest

starting point of its θ angular component, and (2) they are fixed to the two-dimensional still plane

of their x, y axes. Therefore, in the current research, the Polar is out of the interest.

On the other side, a novel mathematical operation that is called the Solid Vector Subtraction

operation was recently proposed in [3] by Al-Anssari J. et al.. This Solid Vector Subtraction

operation is applicable to the 2D, 3-D and hyper dimensional space and is compliant to the above

Solid Vector definition, because it handles the vector as a one solid quantity unit similarly to the

Fixed Polar coordinate system, because it has: only one directional angular component θ and only

one magnitude r vector component.

Al-Anssari J. et al.in [3] and Naser I. et al.in [1] used it as a foundation for their novel 3-

D Gradient of a field of vectors geometrical edge detector and their novel 3-D Gradient-Based

Laplacian geometrical edge detector high pass spatial filters respectively.

This usefulness of the Solid Vector Subtraction operation made it of a special interest and sur-

faced the problem statement of the current research of how to answer the following questions:

1) what is the definition of its coordinate system (like whether it is Spherical or Polar or some-

thing else), 2) what is the definition of its hyper dimensional space and 3) what are the definitions

of its other whole complementary set of Solid Vector 1) Addition, 2) Multiplication, 3) Divi-
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sion, 4) Dot Product and 5) Cross Product operations.

The methodologies to address the problem statement of the current research are: 1) a) making

one of the operands vectors of the Solid Vector Subtraction operation as the first axis of the coordi-

nate system that is the Directional Zero vector that replaces the PoleY of the Fixed Polar, and that

is the lowest starting point of the angular component θ; and b) making the Directional Sign Axis

of the Solid Vector Subtraction operation as the second axis of the coordinate system, that replaces

the x axis of the Fixed Polar; in order to get a rotated version of the Fixed Polar that here after, in

the current research, refereed to it as the Rotated Polar coordinate system that is implemented in

the 3-D dimensional space and that is not fixed to the still plane of the x, y axes., 2) specifying

a pair of vectors as components of a Hyper Rotated Polar when the Solid Vector Subtraction op-

erations between them and their Directional Zero vector produce the same Directional Sign Axis

(including both of its opposite directions the positive and negative), in order to define its extension

to the hyper dimensional space. and 3) using the triangulation in order to propose the Solid Vector

1) Addition, 2) Multiplication, 3) Division, 4) Dot Product and 5) Cross Product operations.

The contributions of the current research are proposing:

1) novel definition of a Rotated Polar coordinate system based on two novel axis: 1) first axis

that is the dynamic Operation-Based Zero Vector. and 2) second axis that is the Directional

Sign Axis of the Solid Vector Subtraction operation.

2) Novel definition of the 2-D, 3-D, hyper dimensional Rotated Polar coordinate system space.

3) Novel definition of the Solid Vector Addition.

4) Novel definition of the Solid Vector Multiplication.

5) Novel definition of the Solid Vector Division.

6) Novel definition of the Solid Vector Dot Product.

7) Novel definition of the Solid Vector Cross Product.
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From this point on, this chapter is organized as follows: section 3.2, the literature review; sec-

tion 3.3, the rotated polar coordinate system; section 3.4, the rotated polar mathematical operations;

section 3.5, the conclusions.

3.2 The Literature Review

The well known in literature three coordinate systems and their mathematical operations include:

(1) Cartesian coordinate system and its mathematical vector operations; (2) two-dimensional Polar

coordinate system and its mathematical vector operations; (3) Spherical coordinate system and

its mathematical vector operations; (4) Cartesian Magnitude Dot Product operation; (5) Cartesian

Magnitude Cross Product operation; and (6) Solid Vector Subtraction operation. Some other types

of coordinate systems can be found in [47]. The Hyper-Plane concept in literature is also presented

at the end of this section.

3.2.1 The Cartesian Coordinate System and Its Component-Wise Cartesian

Mathematical Vector Operations

The Cartesian Coordinate System

The Cartesian coordinate system is a three-dimensional system. Its unit vectors point to the direc-

tion of the increasing coordinates. A point P can be represented as a three numbers P (x, y, z),

where x, y, z are the coordinates of P . These coordinates range from −∞ to +∞. The Cartesian

vector can be represented by three components V (V1, V2, V3) and can be decomposed into a sum of

its components [48]. Some other papers about the Cartesian coordinate system can also be found

in [49–53].
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The Component-Wise Cartesian Mathematical Vector Operations

The features of the Component-Wise Cartesian Mathematical Vector Operations are specified as:

1. they can be of any number of dimensions, 2. they are implemented in the Cartesian coordinate

system, 3. they are component-wise operations because they handle the operands and resulting

vectors as a separated layers of Cartesian axes (e.g. x, y, z . . . ), 4. their Cartesian component-wise

subtraction vector operation produces the resulting vector that connects the end points of the two

vectors operands, 5. their Cartesian component-wise addition vector operation produces the re-

sulting vector that connects the tail point of the first vector operand to the end point of the second

vector operand as equation 3.1 shows, 6. their Cartesian component-wise multiplication of vector

times scalar operation produces the resulting vector that is the linear extension to the length of the

vector operand as equation 3.2 shows, and 7. their Cartesian component-wise division of vector

over scalar operation produces the resulting vector that is the linear shrink to the length of the

vector operand.

As Larson R. et al.presented in their book [54], let u= (u1,u2,u3,. . . ,un) and v= (v1,v2,v3,. . . ,vn)

be vectors in Rn and let c be a real number. Then the sum of u and v is defined as the vector

u+ v = (u1 + v1, u2 + v2, u3 + v3, . . . , un + vn), (3.1)

So on for the Subtraction.

While the scalar multiple of u by c is defined as the vector

cu = (cu1, cu2, cu3, . . . , cun), (3.2)

So on for the scalar division.

For more information, reference to the Cartesian coordinate system and its operations can also

be found in [55].
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The Cartesian Magnitude Dot Product

The Dot product (scalar product, or inner product), here after refereed as Magnitude Dot Product,

operation is a linearity measure of the two vectors.

The Magnitude Dot Product between V 1 and V 2 is defined by equation 3.3.

V1.V2 =< V1, V2 >= ||V 1||||V 2|| cos(θ) (3.3)

Its result is a scalar quantity. When it is applied on two perpendicular vectors, their result is

zero. The order of its vector operands in its multiplication does not matter [48].

The Cartesian Magnitude Cross Product

The Cross product (or Vector product), here after refereed as the Magnitude Cross Product, pro-

duces the resulting vector that is perpendicular on the vector operands and its length is the positive

area of the parallelogram having the two vector operands as sides.

The Magnitude Cross product operation between V1 and V2 results in a vector V C which has a

magnitude and direction, and is defined by equation 3.4.

V C = (V1 × V2)MagnitudeCross product (3.4)

The magnitude of the produced vector V C is defined by equation 3.5.

V CMagnitudeCross Product = ||V 1|| ||V 2|| sin(θ) (3.5)

The direction of the produced vector V C is computed using the right hand rule. When the

Magnitude Cross Product is applied on two parallel vectors, the result is zero vector, and the order

of the vector operands in the multiplication does matter [48].
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3.2.2 The Two-Dimensional Polar Coordinate System and Its Two-Dimensional

Component-Wise Polar Mathematical Vector Operations

The Two-Dimensional Fixed Polar Coordinate System

It is a two-dimensional system. Its unit vectors denoted as aθ and ar are not drawn at the origin but

at a convenient point in 2d plane. They point to the direction of the increasing coordinates variables

and are orthogonal to each other. A point P can be represented as a two numbers P (θ, r). Where

θ, r are the coordinates of P . The θ coordinate range from 0 to 2π. The r coordinate ranges from

zero to +∞. The Polar vector can be represented by two componentsA(Aθ, Ar), whereAθ andAr

are called the components of A. A Polar vector can be decomposed into a sum of its components

A = Aθ +Ar [56]. Another research that tackled applications for the Polar coordinate system can

be found in [57].

The Two-Dimensional Fixed Polar Mathematical Vector Operations

The features of the two-dimensional Fixed Polar mathematical vector operations are specified as:

1. They are implemented in the Polar coordinate system

2. They handle the vector as only two separated layers: (1) the first consists of only one angular

layer (e.g. θ) that starts from Pole Y; and (2) the second consists of only one magnitude layer

(e.g. r)

3. Their Polar Addition and Subtraction operations are defined as that: let u = (uθ, ur) and

v = (vθ, vr) be vectors in R2 and let c be a real number. Then the sum of u and v is defined

as the vector

u+ v = (uθ + vθ, ur + vr) (3.6)

So on for the Subtraction.
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While the Polar scalar multiplication and division of u by (cθ, cr) is defined as the vector

(cθ, cr)u = (cθuθ, crur) (3.7)

So on for the scalar division.

4. Their Dot product operation is defined as that: if A and B are Polar vectors represented in

terms of components A(Aθ, Ar) and B(Bθ, Br), their Scalar product is:

A.B = AθBθ + ArBr (3.8)

5. The Polar vector magnitude is

|A| =
√
A2
θ + A2

r (3.9)

3.2.3 The Three-Dimensional Spherical Coordinate System and Its Three-

Dimensional Spherical Mathematical Vector Operations

The Three-Dimensional Spherical Coordinate System

It is a three-dimensional system. Its unit vectors denoted as aθ, aφ and ar are not drawn at the origin

but at a convenient point in 3d space. They point to the direction of the increasing coordinates

variables and are orthogonal to each other. A point P can be represented as a three numbers

P (θ, φ, r), where θ, φ, r are the coordinates of P . The θ coordinate range from 0 to π. The φ

coordinate range from 0 to 2π. The r coordinate ranges from zero to +∞. The Spherical vector can

be represented by three componentsA(Aθ, Aφ, Ar), whereAθ,Aφ andAr are called the component

ofA. A Spherical vector can be decomposed into a sum of its componentsA = Aθ+Aφ+Ar [48].

In their research [58], Chao H. et al.established a linear model with spherical coordinates for

relative motion in an elliptical reference orbit. Wang J. et al.in [59] proposed an effective method
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to detect the recompression in the color images by using the conversion error, rounding error, and

truncation error on the pixel in the spherical coordinate system.

The Three-Dimensional Spherical Mathematical Vector Operations

The features of the 3d Spherical mathematical vector operations are:

1. They are implemented in the Spherical coordinate system.

2. They handle the vector as three separated layers: (1) the first consists of one angular layer

(e.g. θ) that starts from Pole Y; (2) the second consists of one angular layer (e.g. φ) that starts

from Pole X; and (3) the third consists of one magnitude layer (e.g. r).

3. Their Spherical Addition and Subtraction operations are defined such that: let u = (uθ, uφ, ur)

and v = (vθ, vφ, vr) be vectors in R3 and let (cθ, cφ, cr) be a real multipliers numbers. Then

the sum of u and v is defined as the vector

u+ v = (uθ + vθ, uφ + vφ, ur + vr) (3.10)

So on for the Subtraction.

While the Spherical scalar multiplication and division of u by (cθ, cφ, cr) is defined as the

vector

(cθ, cr)u = (cθuθ, cφuθ, crur) (3.11)

So on for the scalar division.

4. Their Dot product operation is defined in [48] as that if A and B are Spherical vectors

represented in terms of components A(Aθ, Aφ, Ar) and B(Bθ, Bφ, Br), their Scalar product

is:
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A.B = AθBθ + AφBφ + ArBr (3.12)

5. Their Cross product operation is defined in [48] as that if A and B are Spherical vectors

represented in terms of components A(Aθ, Aφ, Ar) and B(Bθ, Aφ, Br), their Cross product

can be obtained by evaluating the following determinant:

A×B =

∣∣∣∣∣
aθ aφ ar

Aθ Aφ Ar

Bθ Bφ Br

∣∣∣∣∣ (3.13)

6. The Spherical vector magnitude is

|A| =
√
A2
θ + A2

φ + A2
r (3.14)

3.2.4 The Mathematical Solid Vector Subtraction Operation

In the Solid Vector Subtraction operation, that was proposed by Al-Anssari J., Naser I. and Ralescu

A in [3], and is illustrated in figure 3.1, the given inputs are the two vector operands V (Pu) and

V (Pi), where the first vector operand V (Pu) is made as the Directional Pole Zero Axis, and the

produced outputs are: (1) the directional Solid Vector difference vector V T that consists of: (a)

the angular displacement θ that is in the direction of (b) the Directional Sign Axis V S, where the

Directional Sign Axis is the vector that is produced from the Cartesian vector subtraction of the

second vector operand V (Pi) from the projection of V (Pi) on the Directional Zero Axis V (Pu);

and (2) the length difference M .

3.2.5 The Hyper-Plane

A hyper-plane, in geometry, is a subspace that its dimension is one less than that of its ambient

space. For a 3d space, its hyper-planes are the 2d planes. For a 2d space, its hyper-planes are the
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Figure 3.1: Cited from [3], this figure shows the Solid Vector Subtraction operation.

1d lines. Hyper-planes are useful for applications related to machine learning especially to create

support vector machines for such tasks as computer vision and natural language processing [60,61].

3.3 The Rotated Polar Coordinate System

In this section, the Rotated Polar coordinate system is proposed which is a rotated version of the

Fixed Polar coordinate system from fixed two-dimensional x, y plane to a freely rotating plane/

hyper-plane in the Cartesian space around the origin point Null vector, where all of its vectors are

confined in this same Plane/ Hyper-Plane.

The Rotated Polar coordinate system that is shown in figure 3.2, is very convenient whenever

problems that having Spherical symmetry are being dealt with (e.g. edge detection in point clouds

surfaces that is based on the Solid Vector Subtraction operation). More specifically, it is used to

implement this Solid Vector Subtraction and its complementary set of the Solid Vector mathemat-

ical operations presented in section 3.4; while its corresponding Cartesian coordinate system is

used to localize its vectors in the space. In the following subsections, its center, polar axes, its

plane/ hyper-plane and its unit vectors are defined.
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Figure 3.2: This figure shows the Rotated Polar coordinate system.

3.3.1 The Rotated Polar Coordinate System Center

The center of the Rotated Polar coordinate system falls on the NullV ector origin point of its

Cartesian coordinate system.

3.3.2 The Rotated Polar Coordinate System Axes

The Rotated Polar coordinate system has only two axes that are: (1) The Directional Pole Zero

Axis, and (2) the Directional Sign Axis, as described below.

The Directional Pole Zero Axis

It is the first axis of the Rotated Polar coordinate system denoted by Vzero and has the following

properties:

1. It is operation-based that is specific for its Solid Vector mathematical operation, dynamically

change with it, and can be different from the others.

2. It does not have a fixed orientation that fall on the Cartesian axes, but it freely rotates around

the origin point Null Vector and can be pointing anywhere in the 3-D/ hyper-dimensional

space.
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3. Has a direction that is set up to describe the “no quantity”, “lowest starting”, “empty” di-

rection with respect to the other vectors operands, that are involved in the Solid Vector

mathematical operation, and can be one of them (e.g. in the Solid Vector Subtraction, the

subtrahend is the Directional Pole Zero Axis; and as will be proposed later in the current

research, the addend is the Directional Pole Zero Axes of the Solid Vector Addition).

The above properties of the first axis of the Rotated Polar enable the Solid Vector mathematical

operations to comply with the Solid Vector term definition (3.4.1).

They are on the contrary to the following properties of the first axis of Spherical and Fixed

Polar coordinate systems (Pole Y) that make the Spherical and Fixed Polar not compliant to the

Solid Vector definition:

1. It is coordinate system-based that is static (universal), the same for all its Spherical and Fixed

Polar mathematical operations.

2. It has a fixed orientation that falls on the Cartesian y axes, Pole Y.

3. Its Cartesian y axis direction describes the “no quantity”, “lowest starting”, “empty” direc-

tion with respect to the other vectors operands, that are involved in the Spherical and Fixed

Polar mathematical operations.

The Directional Sign Axis

Denoted by V S, it is the second axis of the Rotated Polar coordinate system which is produced by

the Directional Solid Vector Subtraction operation between the Directional Pole Zero Axis and the

other vector operand that is involved in the mathematical Solid Vector Subtraction operation. It is

perpendicular to the Directional Pole Zero Axis and describes the directional sign of the orientation

divergence between their Zero Vector and operand vectors.
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3.3.3 The Rotated Polar Coordinate System Plane/ Hyper-Plane

The Rotated Polar plane/ hyper-plane is defined by the two axes; the Directional Pole Zero Axis

and the Directional Sign Axis of its Rotated Polar coordinate system, and according with their

rotation, it freely rotates around its corresponding Cartesian coordinate system origin point Null

Vector. It also contains all of the other Rotated Polar coordinate system vectors.

The definition 3.3.1 of the theory of vector spaces of the Rotated Polar Coordinate System 2D,

3D Plane and Hyper-Plane of a set of vectors is proposed here, that is:

Definition 3.3.1. A set of vectors is said to be planar/ hyper-planar if a plane/ hyper-plane in the

space contains the origin point Null Vector, the Directional Pole Zero vector, and all the other

vectors in this set with at least one of them non parallel with the Directional Pole Zero Vector;

if no plane/ hyper-plane in the space can be written in this way, then the vectors are said to be

non-planar/ hyper-planar.

Also, its mathematical definition 3.3.2 is proposed, that is:

Definition 3.3.2. A set of vectors is said to be planar/ hyper-planar if the Solid Vector subtraction

operations between each of its vectors and their shared same Directional Pole Zero Vector produces

the same Directional Sign Axis (including both of its positive and negative signs). If any of the

Solid Vector subtraction operations between any one of its vectors and their shared same Direc-

tional Pole Zero Vector produces a different Directional Sign Axis (including both of its positive

and negative signs), the set of vectors is said to be non-planar/ hyper-planar.

3.3.4 The Rotated Polar Coordinate System Unit Vectors

In the Rotated Polar coordinate system, where V (Pu) is the Directional Pole Zero Axis, and V (Pi)

is a vector in this coordinate system, V S is the Directional Sign Axis that is produced from the

Solid Vector Subtraction operation between V (Pu) and V (Pi). Unit vectors of V (Pi) in this sys-

tem, denoted V (Pi)R, V (Pi)θ are usually not drawn at the origin point Null Vector, but at a con-

venient point in space, that is the end point of V (Pi). They are orthogonal to each other. V (Pi)θ
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points in the direction of the increasing Absolute Solid Vector Directional Difference between

V (Pi) and the Directional Pole Zero axis V (Pu) on the plane/ hyper-plane that contains V (Pu)

and V S and on the side of the Directional Sign Axis V S. V (Pi)R points in the direction of the

increasing vector length.

V (Pi) : (R, θ@V S) (3.15)

Where R, θ@V S are called V (Pi) Rotated Polar vector components; θ is the angular displace-

ment, @ means “belongs to”, and V S is the Directional Sign Axis that θ belongs to.

The ranges of these components variables are

0 ≤ V (Pi)R <∞ (3.16)

0 ≤ V (Pi)θ ≤ 1 (3.17)

Where the θ Zero number starts from Directional Pole Zero vector V (Pu), measured by the radian

angle unit.

3.4 The Rotated Polar Mathematical Operations

In this section, the novel Solid Vector mathematical Addition, Multiplication, Division, Dot Prod-

uct and Cross Product operations are proposed that are a whole complementary set to the Solid

Vector Subtraction operation that Al-Anssari J. proposed in [3]. They are called Solid Vector be-

cause they handle the vector as a one solid quantity unit where they handle the only two Rotated

Polar vector components θ@V S and R, where the Zero reference for their θ@V S directional polar

component is the Directional Pole Zero Axis VZero, that is dynamic specific for each operation and

change with it.

The Solid Vector term is defined as:
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Definition 3.4.1. The vector that has only two polar components that are: (1) only one directional

θ@V S component; and (2) only one length r component.

Note that, the symbol V T refer to θ@V S, as equations 3.18 shows, therefore, sometimes the

θ@V S symbol is used instead of V T or vice versa. So on for M and R, as equation 3.19 shows.

V T = θ@V S (3.18)

M = R (3.19)

Their corresponding Cartesian vector components are used to localize their vectors in the space.

The given inputs and produced output of each of the Solid Vector operation are listed as follows:

3.4.1 Solid Vector Addition Operation

In the Solid Vector Addition operation, that is illustrated in figure 3.3, the given inputs are the

vector operand V (Pu) that is, in this operation, considered the Rotated Pole Zero Axis, and the

Rotated Polar components V T = θ@V S and M = R; the produced output is the Cartesian result

vector V (Pi).

The mathematical Solid Vector addition operation of the vector operand V (Pu) with V T and

M consists of two sub-operations: (1) the Directional addition operation; (2) and the Magnitude

addition operation, as equation 3.20 shows.

V (Pi) = (V (Pu) + {V TV (Pi) V (Pu),MV (Pi) V (Pu)})SV (3.20)

1. First, to compute the Directional Solid Vector Addition operation, as the following steps

show, V (Pu) is added to V TV (Pi) V (Pu):-

(a) It is supposed that the length of the prime output vector, V ′(Pi) is equal to the length

of V (Pu) as shown in equation 3.21.
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||V ′(Pi)|| = ||V (Pu)||, (3.21)

(b) Therefore, the vector V ′(Pi) is computed by the Cartesian vector addition operation

of the two vectors: (1) ProjV (Pu) V ′(Pi), the projection of V ′(Pi) on V (Pu); (2) and

ProjV TV (Pi) V (Pu) V
′(Pi), the projection of V ′(Pi) on V TV (Pi) V (Pu), as equation 3.22

shows.
V ′(Pi)

= ProjV (Pu) V ′(Pi) + ProjV TV (Pi) V (Pu) V
′(Pi)

(3.22)

Where in equation 3.22, the vector ProjV (Pu) V ′(Pi) is computed by using equation

3.23, and the vector ProjV TV (Pi) V (Pu) V
′(Pi) is computed by using equation 3.24.

ProjV (Pu)V
′(Pi) =

||V ′(Pi)|| cos(θ)

||V (Pu)||
V (Pu), (3.23)

ProjV TV (Pi) V (Pu)
V ′(Pi)

= ||V ′(Pi)|| sin(θ)
||V TV (Pi) V (Pu)||

V TV (Pi) V (Pu),
(3.24)

Where in equation 3.23 and equation 3.24, the radian angle θ between V (Pu) and

V ′(Pi) is equal to the length of the vector V TV (Pi) V (Pu), as equation 3.25 shows; and

the name of the vector V T is a shortcut name for the same vector V TV (Pi) V (Pu).

θ = ||V TV (Pi) V (Pu)||, (3.25)

2. Second, the magnitude difference, MV (Pi) V (Pu), is added to V ′(Pi) to get the result outcome

of the Solid Vector addition operation, V (Pi), as shown by equation 3.26.

V (Pi) =
||V ′(Pi)||+MV (Pi) V (Pu)

||V ′(Pi)||
V ′(Pi) (3.26)

The produced result vector V (Pi) is represented in the Cartesian coordinate system.
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Figure 3.3: shows the Solid Vector addition operation.

3.4.2 Solid Vector Multiplication Operation

In the Solid Vector Multiplication operation, the given inputs are: the Directional Pole Zero Axis

Vzero, the vector operand V (P2), and the Rotated Polar angular θ multiplier and magnitude M

multiplier. The Directional Sign Axis is computed by the Directional Solid Vector Subtraction

operation between the vector operand V (P2) and the Directional Pole Zero Axis Vzero. And the

produced outputs are: the angular component θ@V S and the magnitude component M combined

in the produced Cartesian vector V (P1) result.

There are two types of the multiplication process between a vector and a scalar: (1) multipli-

cation of the vector V (P2) direction by an angular scalar multiplier (θmultiplier); (2) multiplication

of the vector V (P2) length by a magnitude scalar multiplier (Mmultiplier), as equation 3.27 shows.

V (P1) =
(
V (P2) ∗

{ θmultiplier

Mmultiplier

})
SV with respect to Vzero

(3.27)

To perform the multiplication process of equation 3.27, first V (P2) is multiplied by the an-

gular multiplier (θmultiplier), then the produced vector is multiplied by the magnitude multiplier

(Mmultiplier) as the following two sub-processes.
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Multiplication of The Vector Direction by an Angular Scalar Multiplier

In order to multiply the vector direction by the angular scalar, θmultiplier, it is needed to get the

Directional Pole Zero Axis, Vzero, of this multiplication process, then to perform the following

steps sequentially:

1. Getting the input Directional Pole Zero vector Vzero.

2. Solid Vector Subtracting V (P2) from Vzero in order to compute Absolute Directional Solid

Vector difference (θV (P2) Vzero) and the Directional Sign Axis (V S) according to the Solid

Vector Subtraction operation presented in [3].

3. Multipling the Absolute Directional Solid Vector difference (θV (P2) Vzero) by the radian angu-

lar multiplier (θmultiplier) to produce the prime output vector (V ′(P1)) Rotated Polar angular

component (θV ′(P1) Vzero).

θV ′(P1) Vzero = θV (P2) Vzero ∗ θmultiplier (3.28)

4. The length of the prime output vector (V ′(P1)) is supposed to be equal to the length of the

input vector (V (P2)) as equation 3.29 shows.

||V ′(P1)|| = ||V (P2)|| (3.29)

5. Computing the projection of the prime output vector (V ′(P1)) on both the Directional Pole

Zero vector (Vzero) and the Directional Sign Axis (V S).

ProjVzeroV
′(P1) =

||V ′(P1)|| cos (θV ′(P1) Vzero)

||Vzero||
Vzero (3.30)

ProjV SV
′(P1) =

||V ′(P1)|| sin(θV ′(P1) Vzero)

||V S||
V S (3.31)
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Figure 3.4: Solid Vector Directional Multiplication of a vector by an angular scalar.

6. Computing the prime output vector (V ′(P1)) by adding the above produced two vectors

(ProjVzeroV ′(P1)) and (ProjV SV ′(P1)) using the Cartesian vectors addition operation as

shown in equation (3.32).

V ′(P1) = ProjVzeroV
′(P1) + ProjV SV

′(P1) (3.32)

Multiplication of The Vector Length by a Magnitude Scalar Multiplier

To multiply the vector length by a magnitude multiplier, the length of the vector is just multiplied

by the magnitude multiplier and the direction of the vector is kept the same.

V (P1) = Mmultiplier ∗ V ′(P1); (3.33)

Where in equation 3.33 the multiplication here is a Cartesian scalar by a Vector multiplication.

3.4.3 Solid Vector Division Operation

In the Solid Vector Division operation, the given inputs are: the Directional Pole Zero Axis Vzero,

the vector operand V (P2), and the Rotated Polar angular θ divisor and magnitude M divisor.

The Directional Sign Axis V S is computed by the Directional Solid Vector Subtraction operation
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between the vector operand V (P2) and the Directional Pole Zero Axis Vzero. And the produced

results are: the angular component θ@V S and the length component M combined in a Cartesian

vector V (P1) result.

There are two types of the division process between a vector and a scalar: (1) division of the

vector direction by the Rotated Polar angular divisor (θdivisor); (2) division of the vector length by

a magnitude divisor (Mdivisor), as equation 3.34 shows.

V (P1) =
(
V (P2) ∗

{ 1
θDivisor

1
MDivisor

})
SV with respect to Vzero

(3.34)

To perform the division process of equation 3.34, first V (P2) is multiplied by the angular

divisor ( 1
θdivisor

), then the produced vector is multiplied by the magnitude divisor ( 1
Mdivisor

) in a

similar way to the Solid Vector Multiplication process described above.

3.4.4 Solid Vector Directional Dot Product Operation

In the Solid Vector Directional Dot Product operation, the given inputs are the vector operands

V (P1) and V (P2), and the Directional Pole Zero Axis (Vzero); the produced result is a scalar

quantity; This operation is performed by the following steps:

1. The vector V (P1) is Solid Vector subtracted from Vzero in order to get V TV (P1) Vzero as shown

in equation 3.35.

V TV (P1) Vzero = (V (P1)− Vzero)SV (3.35)

2. The vector V (P2) is Solid Vector subtracted from Vzero in order to get V TV (P2) Vzero as shown

in equation 3.36.

V TV (P2) Vzero = (V (P2)− Vzero)SV (3.36)
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Figure 3.5: Directional dot product.

3. The Solid Vector Directional Dot Product operation between V (P1) and V (P2) is equal to the

Cartesian Magnitude Dot Product operation, that is presented in the section 3.2.1, between

the two vectors computed above (V TV (P1) Vzero) and (V TV (P2) Vzero) as shown in equation

3.37.

(V (P1).V (P2))SV DirectionalDot Product

= (V TV (P1) Vzero .V TV (P2) Vzero)CartesianDot Product

= ||V TV (P1) Vzero||||V TV (P2) Vzero||

cos(θV TV (P1) Vzero V TV (P2) Vzero
)

(3.37)

3.4.5 Solid Vector Directional Cross Product Operation

In the Solid Vector Directional Cross Product operation, the given inputs are the vector operands

V (P1) and V (P2), and the Directional Pole Zero Axis (Vzero); the produced output is the Cartesian

result vector V (P3); This operation is performed by the following steps:

1. The vector V (P1) is Solid Vector subtracted from Vzero in order to get V TV (P1) Vzero as shown

in equation 3.38.
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V TV (P1) Vzero = (V (P1)− Vzero)SV (3.38)

2. The vector V (P2) is Solid Vector subtracted from Vzero in order to get V TV (P2) Vzero as shown

in equation 3.39.

V TV (P2) Vzero = (V (P2)− Vzero)SV (3.39)

3. The Solid Vector Directional Cross Product operation between V (P1) and V (P2) produces

a vector V (P3) which is equal to the Cartesian Magnitude Cross Product operation between

the two vectors computed above (V TV (P1) Vzero) and (V TV (P2) Vzero) as shown in equation

3.40.

V (P3) = (V (P1)× V (P2))SV Directional Cross Product

= (V TV (P1) Vzero×

V TV (P2) Vzero)CartesianCross Product

(3.40)

Thus, the produced vector V (P3) magnitude is computed using equation 3.41.

V (P3)Magnitude = ||V TV (P1) Vzero|| ||V TV (P2) Vzero||

sin(θV TV (P1) Vzero V TV (P2) Vzero
)

(3.41)

The direction of the produced vector V (P3) is computed using the right hand rule that is

implemented on the two vectors (V TV (P1) Vzero) and (V TV (P2) Vzero).

3.5 The Conclusions

The recently proposed Solid Vector Subtraction operation has surfaced up the questions of the

current research problem statement. Those questions are about the definition of its coordinate
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system, hyper-space, and its other whole complementary set of Solid Vector operations. In order

to answer these questions, the following were proposed: (1) a novel definition for Rotated Polar

coordinate system based on two novel axes: (a) the dynamic Operation-Based Zero Vector, and

(b) the Directional Sign Axis of the Solid Vector Subtraction operation; (2) a novel definition for

the 2d, 3d, hyper dimensional Rotated Polar coordinate system; (3) a novel definition of the Solid

Vector Addition; (4) a novel definition of the Solid Vector Multiplication; (5) a novel definition of

the Solid Vector Division; (6) a novel definition of the Solid Vector Dot Product; and (7) a novel

definition of the Solid Vector Cross Product.

These Solid Vector mathematical operations are applicable to 2d, 3d and hyper-dimensional

space; and they handle the vector as only two layers: one directional angular component, and one

magnitude component; which make them Solid Vector compliant and act as a foundation for the

future work that will be building 2d, 3d and hyper-dimensional artificial intelligence and machine

learning applications–such as 3d object recognition and detection, 3d SLAM, 3d rotation control

of virtual and physical objects rotation and 3d virtual sculpturing.
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Abstract

Also known as the second derivative, the Gradient-Based Laplacian, that is used for geo-

metrical edge magnitude detection in point clouds, is still an important problem that can form

a basis for a wide range of applications such as object recognition and detection. Typically, the

Laplacian of a field of scalars is used as gray-scale edge detector and classifier. The problem

statement is defining the Gradient-Based Laplacian of a field of vectors (used for detecting

3-D surface geometrical edges) that is analogous to the Gradient-Based Laplacian of a field

of scalars (used for detecting intensity edges) in the sense that it complies with the typical

rules for the Laplacian operator. The contributions of the current research are: (1) proposing

a novel definition of the Gradient-Based Laplacian of the field of vectors (used for detecting

3-D surface geometrical edges) using the absolute difference of the Gradient values; (2) doing

behavioral analysis on the Step edge, Plane, and Ramp areas for two cases; when the absolute

difference and when the signed difference are used; (3) doing performance analysis on TUM

data set, and comparison study with the state of the art edge detectors on NYUD data set which

shows that the proposed Gradient-Based Laplacian is efficient.

4.1 Introduction

The recent advances in RGB-D cameras allow the capture of three-dimensional point clouds, im-

ages, of indoor environments. The raw original surfaced point cloud is organized in geometrical

surfaces of one pixel width that reflects the environment that is captured by the depth sensor. Each

of the point cloud pixels holds the normal vector that is perpendicular to its surface. Segmenting

geometrical surfaces of the point cloud of the indoor environment into primitive shapes remains

a big problem. A novel algorithm for the Gradient magnitude of a field of vectors was proposed

and implemented in [3], which is analogous to the Gradient of a field of scalars. The surfaced

Gradient point cloud also consists of pixels that are organized in geometrical surfaces of one pixel

width. Each of its pixels holds the value of the Gradient magnitude of the surfaced original point

cloud. The Gradient point cloud is successfully classified into two types of segments of pixels:
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(1) Plane edges, (2) Step and Ramp edges. In literature of the field of scalars of the gray-scale

images, the 2nd derivative, the Laplacian can further segments the gray-scale intensity images into

two segments: (1) Plane and Ramp intensity areas, and (2) Step intensity edges.

The objective is to design and implement the second-order derivative, the Gradient-Based

Laplacian of a field of vectors in an analogous manner to the definition of the Gradient-Based

Laplacian of a field of scalars, which typically classifies two types of segments of the geometrical

surfaces of the point cloud: (1) the Plane and Ramp areas; (2) and the Step edge areas.

Therefore, the problem statement is defining the Gradient-Based Laplacian, the 2nd derivative

of a field of vectors edges detector that is analogous to the Gradient-Based Laplacian of the field

of scalars; and that produces two types of segments: (1) Step edges areas segment; (2) Plane and

Ramp areas segment of the point cloud 3-D surfaces of the environment captured by the depth

sensor.

The contributions of this research are: (1) Proposing a novel algorithm of the Gradient-Based

Laplacian of a field of vectors (used for detecting 3-D surface geometrical edges) that is based on

the novel algorithm of the Gradient of a field of vectors, that was proposed in [3] research. In the

Gradient-Based Laplacian algorithm, the first predefined operation of the convolution is defined as

the absolute scalar difference of the Gradient values of the neighbor pixels from the Gradient value

of the center pixel, in contrast to the existing work [10] of gray-scale edge detection, in which this

is defined as the signed Gradient difference operation. (2) Doing behavioral analysis on Step edge,

Plane, and Ramp areas for two cases; when the absolute difference and when the signed difference

are used in order to prove that the former is the right one and the latter is the wrong. And (3)

doing performance analysis on TUM data set, and comparison study with the state of the art edge

detectors on NYUD data set.

From this point on, this chapter is organized as follows: the remainder of this section is a review

of existing researches on computing the Laplacian. The novel Laplacian algorithm is presented

in section 4.2, the design of the Laplacian algorithm is presented in section 4.3. The behavioral

analyses is presented in section 4.4 and performance analyses, comparison Study, and experimental
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Results are discussed in section 4.5. Conclusions and directions of future work are presented in

section 4.6.

4.1.1 Literature Review

The existing works on the definition of the Laplacian compute it directly from the original signal

[7], or from the Gradient image [10]. In the former one, the Laplacian mask was static, the first

predefined operation that this mask implemented was the signed scalar difference between the

gray-scale intensity value of the center pixel and the intensity value of the neighboring pixels.

Some approaches to compute the Laplacian can be found in [62–68].

An approach to the Laplacian of the 3-D field of vectors of the RGB images [7] was also

defined based on vector analysis as a “vector whose components are equal to the Laplacian of the

individual scalar components of the input vector”.

In contrast, in the current work, the definition of the Gradient-Based Laplacian of a field of

vectors is proposed in a mathematically consistent manner to the derivative of the Gradient of a

field of vectors. The novel definition and implementation of this Gradient was proposed in the [3]

research.

On the other hand, several methods for computing the Gradient of a 3D field of scalars and 3D

field of vectors of the point cloud have been developed [69–84]. However, none of these produce

a Gradient which can be used to compute the Gradient-Based Laplacian of a field of vectors.

The novel Gradient magnitude definition for a field of vectors was presented in [3], where the

vector is handled as solid unit vector, without decomposing it along its components. Also new

definitions for the Plane, Ramp, and Step geometrical edges were proposed [3] as follows: (1) a

Plane edge corresponds to an area with small rate of change in the direction of its normal vector

(i.e., the rate of change is within a given threshold), as shown in figure 4.1(B1); (2) a Step edge

corresponds to an area with significant rate of change of the direction of its normal vector (i.e.,

above a given threshold), as shown in figure 4.1(C1); (3) a Ramp edge corresponds to an area with

constant rate change in the direction of its normal vector, as shown in figure 4.1(D1). The change
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Figure 4.1: Cross section of geometrical shape of the surface of the surfaced point cloud. (A)
Angles Direction Measurements. (B1), No Change. (C1), Step. (D1), Ramp. (E1), Onset and End
of Ramp. (F1), series of Step edges of Spiral of constant acceleration [3].

in direction is measured by the angle between the normal vectors of the neighbor pixels and the

center pixel. It is worth mentioning here that in physics one can define the distance between two

pixels, as angle between the normal vectors of the neighbor pixels, the first-order derivative as the

speed, and the second-order derivative as the acceleration.

4.2 Gradient-Based Laplacian Spatial Filter of a Field of Vec-

tors

In this section, the Gradient-Based Laplacian geometrical edge detector spatial filter of a field of

vectors, the second order derivative is described.
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4.2.1 Definition of the Gradient-Based Laplacian for two-dimensional field

of vectors

First, the Gradient-Based Laplacian of a 2-D field of vectors signal, i.e., a cross section of 3-D field

of vectors is defined. That is, the behavior of the Gradient-Based Laplacian in Plane areas, onset

and end of Step and Ramp areas, and along the Ramp areas is of special interest. By analogy to

the 2nd derivative of a 2-D intensity image [7], the 2nd derivative of the 3D surfaced geometrical

point cloud must satisfy the following requirements: (1) must be zero in Plane areas; (2) must be

non-zero at the onset and end of a geometrical Step or Ramp; (3) must be zero along the Ramp.

The input to the Gradient-Based Laplacian, LG(f(p)), is the Gradient point cloud, G(f(p)),

which is a field of scalars and which is the first-order derivative of the original signal field of

vectors, f(p), as shown in equation (4.1).

G(f(p)) =
df(p)

dp
(4.1)

In turn, the Gradient-Based Laplacian, LG(f(p)), is the first-order derivative of the Gradient,

G(f(p)), and the second-order derivative of the original signal field of vectors, f(p) as shown

in equation (4.2).

LG(f(p)) =
dG(f(p))

dp
=
d2f(p)

dp2
(4.2)

The Gradient-Based Laplacian, LG(f(p)), of only two neighbor pixels is defined by the summa-

tion of the outcome of the absolute mathematical scalar difference operations between the Gra-

dient of the center pixel, G(f(Pu)), and the Gradient of all the neighbor pixels, G(f(Pleft)) and

G(f(Pright)), as shown in equation (4.3). Since the scalars of the Gradient point cloud are in [0, 1],

the Gradient-Based Laplacian is also in [0, 1]. The shortest distance over which the geometrical

change can occur is between the neighboring pixels, where neighboring pixels are defined as the
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closest pixels within a specific radius.

LG(f(Pu)) = dG(f(Pu))
dPu

= |G(f(Pu))− G(f(Pleft)|+ |G(f(Pu))− G(f(Pright))|,
(4.3)

where in equation (4.3), Pu is an arbitrary pixel in the x, y coordinates of the two dimensional signal

field of vectors; also, Pu indicates the center pixel of the signal area under the mask; G(f(P )) is

the Gradient magnitude of its pixel argument; Pleft and Pright are the pixels closest to Pu, to the

left and right, respectively, within a specific radius. Letting Pleft = P1 and Pright = P2, equation

(4.3) becomes equation (4.4).

LG(f(Pu)) = dG(f(Pu))
dPu

= |G(f(Pu))− G(f(P1)|+ |G(f(Pu))− G(f(P2)|.
(4.4)

More generally, let f1Pu Pi
denotes the first predefined operation, f1Pu Pi

, as it will be de-

scribed in the following sections. Where in equation 4.5, n is the maximum number of neighbors.

f1 is a scalar value that is the absolute difference between the Gradient magnitude of the two

neighboring pixels Pu and Pi.

f1Pu Pi
= |G(f(Pu))− G(f(Pi)|, i = 1, · · · , n, (4.5)

For N neighboring pixels, equation (4.4) can then be rewritten as equation (4.6), which is the

second predefined operation to compute the Laplacian.

LG(f(Pu)) = dG(f(Pu))
dPu

= f2(Pu) =
∑N

i=1 f1Pu Pi
.

(4.6)

Definition 4.2.1. The Gradient-Based Laplacian, LG(f(Pu)), is defined as the absolute change

between the Gradient values of the center pixel and its neighbor pixels by the change of the center

pixel.
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The center pixel of the signal area under the mask is changed when the mask visits a new pixel

of the signal.

4.2.2 Definition of the Gradient-Based Laplacian for three-dimensional field

of vectors

Next, the implementation of Gradient-Based Laplacian, the second order derivative, of a 3-D field

of vectors of the geometrical surface of the surfaced point cloud is defined. The second-order

derivative on the surfaced gradient point cloud is implemented; where the surfaced point cloud is

defined as a group of pixels that are arranged in surfaces of one pixel width like geometrical shapes

that reflects the environment that is captured by the depth sensor.

The approach to compute the second-order derivative consists of defining a mathematical ex-

pression of the second-order derivative and then constructing a surfaced dynamic filter mask based

on this mathematical expression. The dynamic mask should be isotropic (i.e., invariant with re-

spect of the filter rotation). Therefore, the Laplacian is an isotropic derivative operator. Given a

location Pu, in the geometrical surface of a point cloud, the Gradient-Based Laplacian is defined

by equation (4.7).

LG(f(Pu)) = ∇G(f(Pu)) (4.7)

Where Pu, is the center pixel of the signal area under the mask; f(Pu) is is the original signal

point cloud normal vectors.

More precisely, where Pu is the center pixel of the signal area under the mask; Pleft, Pright

are the closest pixels to Pu on the left and right respectively. Similarly for Pup, Pdown that are

the closest pixels to Pu on the up and down respectively. The combined discrete Gradient-Based

Laplacian for the horizontal and vertical local axes, for the directions right, left, up, and down is
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defined by equation (4.8).

LG(f(Pu)) = ∇G(f(Pu) =

|G(f(Pu)− G(f(Pleft)|

+|G(f(Pu)− G(f(Pright)|

+|G(f(Pu)− G(Pup)|

+|G(f(Pu)− G(f(Pdown)|

(4.8)

More generally and because the point cloud is surfaced, for N number of neighbors, and using

f1Pu Pi
of equation (4.5), equation (4.8) leads to equation (4.9).

Definition 4.2.2. Given an arbitrary location, Pu(x, y, z), in the geometrical surface of a point

cloud, the Gradient-Based Laplacian of a three-dimensional field of vectors is defined by equation

4.9.
LG(f(Pu(x, y, z)) = ∇g(f(Pu(x, y, z))

= f2 =
∑N

i=1 f1Pu Pi
,

(4.9)

Where in equation 4.9, x, y, z are the global coordinate axes of the point cloud.

4.3 Design of The Gradient-Based Laplacian Algorithm

The Gradient-Based Laplacian is implemented by the convolution process, the neighborhood search

method, the dynamic mask, the two predefined mathematical expressions of equation (4.5) and

equation (4.9), and the threshold operation as described below.

The convolution is defined as evaluating a mask of two-dimensional field of scalars over the

surface of the three-dimensional field of scalars of the gradient point cloud signal. When the mask

visits a new pixel of the signal, the two predefined operations are performed. After the mask slides

over all the pixels of the signal, the result is a field of scalars of the Gradient-Based Laplacian

of the field of vectors. This output is stored in a newly created point cloud in where the x, y, z

coordinates of the signal are preserved, and each pixel value is its computed Laplacian value.

The neighborhood search method that is used to find the neighbor pixels is the K-D tree method.

Inam Naser 62



CHAPTER 4. THE GRADIENT-BASED LAPLACIAN OF A FIELD OF VECTORS

Table 4.1: Signal Area Under Mask
P1 P2 P3

G(P1) G(P2) G(P3)
P4 Pu P5

G(P4) G(Pu) G(P5)
P6 P7 P8

G(P6) G(P7) G(P8)

Table 4.2: Dynamic Mask
P1 P2 P3

G(Pu) G(Pu) G(Pu)
P4 Pu P5

G(Pu) G(Pu) G(Pu)
P6 P7 P8

G(Pu) G(Pu) G(Pu)

The dynamic mask is shown in table (4.2) where all of the values of its pixels are set equal to the

Gradient value of the center pixel of the signal area under the mask. This organization of the mask

is required to implement the two predefined mathematical expressions that define the Gradient-

Based Laplacian algorithm. The dynamic mask is updated every time it visits a new pixel of the

signal by setting the mask pixels values to the Gradient magnitude of that newly visited center

pixel of that signal area under the mask. The signal area under the mask is shown in table (4.1)

in which every pixel holds the Gradient magnitude value of the Gradient point cloud of the input

signal.

The following two predefined operations implement the approximation of the Gradient-Based

second-order derivative that satisfies the conditions of the Gradient-Based Laplacian operator of a

field of vectors that is defined by equation (4.8).

1. The first predefined operation, f1Pu Pi
, is the derivative term which is needed in the ap-

proximation of equation (4.8) and shown in equation (4.5). It equals the absolute value of

the difference between the Gradient magnitude of the center pixel, G(Pu), and the Gradient

magnitude of every neighboring pixel, G(Pi). Therefore, this operation produces a scalar

real value for every neighboring pixel Pi.

2. The second predefined operation, f2, is the sum of scalars that were produced from the first

predefined operation, as shown in equation (4.9). This operation results in the Gradient-

Based Laplacian scalar value.

The threshold operation is performed by setting to zero every Gradient-Based Laplacian that is

below a certain given threshold value.
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4.3.1 The Classification

The classification results of the Gradient-Based Laplacian consists of two segments of the pixels of

the three-dimensional geometrical surface of the field of vectors, which are: (1) the first segment

consists of areas of constant direction of their vectors (e.g. Planes) and areas of constant rate of

change in the direction of their vectors (e.g. Ramps); and (2) the second segment consists of areas

of varying rate of change of the direction of their vectors (e.g. Step edges).

4.3.2 The Pseudo Code and The Complexity

The pseudo code of the Gradient-Based Laplacian algorithm of the field of vectors is shown in

algorithm (1). The input is the Gradient magnitude point cloud. The output is the Gradient-Based

Laplacian point cloud. The algorithm has two nested for-loops, one controlled by the size of the

point cloud, |P |, the other by the number of neighbors, γ. Therefore, the complexity is of order

O(|P |γ).

4.4 Behavioral Analyses

To illustrate the algorithm of the second-order derivative, the Gradient-Based Laplacian of a field

of vectors, consider examples B1, C1, D1, E1, and F1 of figure (4.1). Those examples illustrate

all possible types of edges and shapes of the geometrical surface of the surfaced 3-D point cloud.

Example (B) shows a Plane surfaced area; example (C) shows a Step edged surfaced area; example

(D) shows a Ramp surfaced area; example (E), from top-left to bottom-left, shows a series of a three

connected surfaces of Plane-Ramp-Plane, for the purpose of describing the behavior of the second-

order derivative at the onset and end of the Ramp areas, and at the pixels that precede and come

after the onset and end of the Ramp areas; and example (F) shows a series of Step edges of a spiral

of constant acceleration that is connected to a Plane area. The Spiral area has decreasing rate of

change of direction with constant acceleration. The rate of change of the direction of the last four

vectors of the plane area is zero, since they have constant direction. The purpose of this example is
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Algorithm 1 The Gradient-Based Laplacian Algorithm
1: Input:

1. Gradient Point Cloud of a Field of Vectors=G(P{i}) that is defined in [3]

2. Neighbors Search Method and Parameters:-

• MethodΩ(.) = KDTree

• SearchRadius = (0.05)

• Maxnumber of neighbors γ = (4)

3. Laplacian Threshold Value, Lthreshold.

2: Output:

• Point Cloud={Output} . The Laplacian

3: procedure MAIN ALGORITHM

4: for i = 0 to sizeG(P{i}) do
5: Laplacian = 0
6: if (P{i}=Nan) then continue
7: {Bc} = Ω(G(P{i}))
8: if ({Bc}=0) then continue
9: for j = 1, j ≤ γ, j + + do

10: if (P{i} ∨G(P{i}) ∨Bc{j} ∨G(Bc{j}) = NAN then continue
. Laplacian Calculation Start

11: Difference = |G(P{i})−G(Bc{j})|
12: Laplacian+ = Difference . Laplacian Calculation End
13: if Laplacian < Lthreshold then Laplacian = 0

14: Output{i}(rgb) = Laplacian

15: Return {Output}
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to describe the behavior of the second-order derivative at the Spiral areas of constant acceleration.

The directions of the vectors of the examples are measured with the standard measurement that

is illustrated in figure (4.1)(A), where the vector that points to the top measures zero π radian

angle, then the radian angular measurement of the directions of the other vectors increase in the

clock-wise direction. Those five examples are explained in the following paragraphs where two

cases of the Gradient-Based Laplacian for each example are discussed: (1) the first case is when

the absolute difference is used; (2) the second case is when the signed difference is used.

Figures 4.1(B1, C1, D1, E1, F1) illustrate their corresponding geometrical area, specifically to

where all the normal vectors point.

Figures 4.2(B2), 4.2(C2), 4.2(D2), 4.2(E2), and 4.2(F2) show the corresponding scan-line of

the radian angle measurements of the directions of those normal vectors, and a plot to visualize

those measurements.

Figures 4.2(C3), 4.2(D3), 4.2(E3), and 4.2(F3) show the first-order derivative.

Example (B) is illustrated in figure 4.1(B1), and figure 4.2 (B2-B5): (1) in the absolute differ-

ence case, the second derivative of Plane areas is zero, as shown by a scan line and a chart in figure

4.2(B4); (2) and in the signed difference case, the second derivative of Plane areas is also zero, as

shown by a scan line and a chart in figure 4.2(B5).

Example (C) which is illustrated in figure 4.1(C1), and figure 4.2(C2-C5): (1) in the absolute

difference case, the second-order derivative is non-zero at the Step edges, as well as at the pixels

that precede and come after this step edges as shown in figure 4.2(C4); (2) and in the signed

difference case, the second-order derivative is non-zero at the Step edges, and it has negative values

at the pixels that precede and come after those Step edges. This case shows the zero-crossing

behavior, that is when the line that connects the Step edge pixels with the pixels that precede and

come after them crosses the horizontal line of the zero value and changes its sign from the negative

to the positive (or vice versa) as shown in figure 4.2(C5). Gonzales and Woods stated in [7] that the

zero-crossing behavior is quite useful for locating edges in the field of scalars gray-scale images.

Therefore and similarly, it is suggested that the zero-crossing behavior should be quite useful for
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locating geometrical edges in geometrical surfaces of the field of vectors.

Example (D) is illustrated in figures 4.1(D1) and 4.2(D2-D5): (1) in the absolute difference

case, the second-order derivative is zero along the Ramp areas as shown in figure 4.2(D4); (2) and

in the signed difference case, the second-order derivative is zero along the Ramp areas as shown in

figure 4.2(D5).

Example (E) is illustrated in figures 4.1(E1) and 4.2(E2-E5):(1) in the absolute difference case,

the second-order derivative at the pixels of the onset and end of the Ramp area is non-zero; and

at the pixels that precede and come after the pixels of the onset and end of Ramps respectively is

non-zero as well as shown in figure 4.2(E4); (2) and in the signed difference case, the second-order

derivative at the pixels of the onset and end of the Ramp area is zero, which violates the rules

of the second-order derivatives that state that it must be non-zero. Also, in this case, the second-

order derivative at the pixels that precede the onset, and come after the end of Ramps is a negative

non-zero value; and at the pixels that come after the onset and precede the end of the Ramp is a

positive non-zero value as shown in figure 4.2(E5). This shows that the line that connects the pixels

that precede and come after the onset and the line that connects the pixels that precede and come

after the end cross the horizontal line of the zero value at the onset and end pixels respectively.

As mentioned in the preceding paragraph, this behavior is called the zero crossing which is quite

useful in locating edges.

Example (F) is illustrated in figure 4.1(F1), and figure 4.2(F2-F5): (1) in the absolute difference

case, the second-order derivative is constant non-zero at the pixels of the Spiral area of constant

acceleration. Then the second-order derivative decreases until it becomes zero in the plane areas

of zero acceleration as shown with a chart that visualizes it in figure 4.2(F4); (2) and in the signed

difference case the second-order derivative at the pixels of the spiral area of constant acceleration

is zero, which is a wrong behavior. The second-order derivative is -0.1 for the first two pixels of

the Plane area, and it is zero for the last two pixels of the plane area. This is a wrong behavior that

the second-order derivative must not show. However, for future work, this behavior may be useful

in locating the edges that connect spiral areas of constant acceleration with Plane areas as shown

67 Inam Naser



CHAPTER 4. THE GRADIENT-BASED LAPLACIAN OF A FIELD OF VECTORS

with a chart that visualizes it in figure 4.2(F5).

In conclusion, when the absolute difference is used in computing the second-order derivative, it

can be seen that: (1) it is zero in Plane areas (example B); (2) it is non-zero at Step edges (example

C); (3) it is zero along the Ramp areas (example D); (4) it is non-zero at the onset and end of

the Ramp areas (example E); (5) it has non-zero constant values at the Spiral areas of constant

acceleration, then it decreases until it becomes zero when it transitions from the Spiral to the

Plane area (example F). Therefore, in this case, the second-order derivative is consistent with the

requirements of the second-order derivative of the field of scalars.

When the signed difference is used to compute the second-order derivative, it can be seen that:

(1) it is zero in Plane areas (example B); (2) it is non-zero at Step edges, and it shows the zero

crossing behavior (example C); (3) it is zero along the Ramp areas (example D); (4) it is zero at the

onset and end of the Ramp areas (example E) which contradicts the conditions of the second-order

derivatives, though it also shows the zero crossing behavior at the onset and end of Ramps; (5) it

has zero values at the Spiral areas of constant acceleration, then it is -0.1 at the first two pixels

of the plane area, when it transitions from the Spiral to the Plane area, and it is zero in Plane

areas (example F). Therefore, in this case, the second-order derivative is not consistent with the

conditions of the second derivatives of the field of scalars, even though it shows the zero crossing

behavior which is useful for locating edges.

4.5 Performance Analyses, Comparison Study, and Experimen-

tal Results

In this section, performance analyses of the proposed Gradient-Based Laplacian edge detector on

the TUM data set are done. After that, comparison study of it on the NYUD data set with the

well-known edge detectors in the literature is done. Non of any pre-processing on the data, nor any

post-processing on the result were done.

The Precision-Recall frame work that Lejeune et al.used in [9] was done, in order to analyze
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Figure 4.2: Shows examples B, C, D, E, and F.
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the performance of the Gradient-Based Laplacian edge detector. This Precision-Recall framework

has three indicators: (1) the ODS which is a measure of the best F score of the harmonic mean of

the precision and the recall when implemented on the data set with the same set of parameters; (2)

the OIS which is the aggregate F score resulted when implemented on the data set with the best set

of parameters of each image;(3) and the AP that is the average of the precision along the full recall

range that represents the area under the precision-recall curve.

4.5.1 Performance Analyses on The TUM data set

First, the performance on the Gradient-Based Laplacian edge detector on two examples of the

TUM data set (a box and a sphere objects) [85] was analyzed. Those two examples include all

the three types of geometrical edges the plane area of the sides of the box, the step edges of the

box edges, and the ramp area of the surface of the sphere. The ground truth of the data set was

annotated.

By visual observation of figure 4.3 that shows the Gradient-Based Laplacian edges magnitude

for the box and the sphere examples, it can be verified that the Gradient-Based Laplacian classifies

two segments: (1) the first segment consists of the planes of the box sides (Plane area), and the

ball round shape (Ramp area) which are segmented with light color; (2) and the second segment

consists of the box sides intersections (Step edges) with dark color.

Table 4.3 presents the best performance of the Gradient-Based Laplacian detector obtained by

extensively searching the threshold parameter space on the TUM data set. The threshold parameter

is the most important parameter of the Gradient-Based Laplacian edge detector.

The performance analysis on the ODS, precision, and recall with respect to the threshold pa-

rameter scale on the TUM data set show that the threshold θthreshold produces the best performance

for a value around 0.17.

The duration of the processing time was 79.2402 seconds of total time, including the time

spent for the preparation (the neighborhood search method time). The size of the point clouds

was 307200 points. The processor was Intel Core i7-4710HQ CPU @2.50 GHz×8. The operating
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Table 4.3: Best performance of the proposed Gradient-Based Laplacian edge detector used to
detect edges on the TUM data set.

ODS OIS AP
Gradient-Based Laplacian .951 .962 .982

system was Ubuntu 64 bit. A K-D tree neighborhood search method was used, with n = 4 neighbor

points, radius r = 0.05. The normal vectors estimation is done by the Integral Images method.

Figure 4.3: Edge detection results of the Gradient-Based Laplacian magnitude operators on the
TUM data set. Black, red, green, light blue, and dark blue pixels represent the true positives, false
positives caused by algorithm, false negatives caused by algorithm, false positive caused by noise,
and false negative caused by noise, respectively.

4.5.2 Comparative Study on the NYUD data set

Second, the performance of the Gradient-Based Laplacian edge detector was compared with the

traditional edge detectors on the NYUD data set. Noting that the Gradient-Based Laplacian edge

detector detects Plane areas, Ramp areas, and Step edges; in contrast with the traditional edge

detectors that detects jump and roof edges that have a different definitions from the Plane, Ramp,

and Step edges definitions.

In table 4.4, the performance of the proposed Gradient-Based Laplacian edge detectors on

NYUD data set was presented [86]. Also the performances of the state of the art edge detectors

were presented, that were obtained from Lejeune et al.research [9], of PED 0 [9], PED 1 [9], PED

2 [9], Jiang [87], Lejeune [88], Sobel, Dollar [89], Gupta [90], and Xie [91] on the same data set.
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According to Lejeune, the machine learning edge detectors (Dollar, Gupta, Xie) were duplicated

to show their complete NYUD model performance and Jump model performance.

As Lejeune et al.did, the parameter space of the Gradient-Based Laplacian detector was exten-

sively searched to obtain the maximum scores results presented in table 4.4, and the same matching

tolerance of 1.1% was used.

The data that were not counted are the false positive (light blue) and false negative (dark blue)

because they are not caused by the Gradient-Based Laplacian detector, but they are caused by the

camera depth misreading–such as: infrared reflective pixels (mirrors pixels), infrared penetrative

pixels (glass pixels), noisy pixels under ambient light, pixels out of the range of the camera, and

infrared shadow border pixels.

Figure (4.4) shows the edge detection magnitude results, produced by the Gradient-Based

Laplacian operator, from the same representative selection of images that Lejeune et al.used in

figure (9) of their research [9] in which they show the edge detection results by PED 1 [9], Leje-

une [88], Gupta [90], and Xie [91].

Note that, the ground truth of the Gradient-Based Laplacian operator is different from the

ground truth of Lejeune et al.detectors in [9].

The performance analysis results presented in table (4.4) show that the Gradient-Based Lapla-

cian detector performs above the machine leaning detectors of complete model on the NYUD data

set, therefore it is more robust to noises that preserve 3-D surface edges geometrical features. Ma-

chine leaning detectors perform better than the PED 0, PED 1, and PED2 detectors. PED 1, PED

perform better than Dollar, Gupta, Xie of the Jump model. Jiang and Sobel detectors perform the

worst.

Although it has a thick edges, but the extra thickness is only one pixel width along each side

of the edges; therefore, it is negligible and not disadvantage to further applications. The Gradient-

Based Laplacian detector is efficient; more robust to noise. It is not subject to over fitting or under

fitting, and it does not require training like the machine learning methods, it does not use any

surface model like PED, and it can be used for any depth sensor.
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Figure 4.4: This figure shows the edge detection results of the Gradient Based Laplacian magnitude
operators on the NYU Depth data set. Black, red, green, light blue, and dark blue pixels represent
the true positives, false positives caused by algorithm, false negatives caused by algorithm, false
positive caused by noise, and false negative caused by noise, respectively.
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Table 4.4: Best performance indicators obtained for each of the 13 detectors on the NYU Depth
dataset. The first 12 performance indicators are obtained from Lejeune et al. [9].

ODS OIS AP
Jiang [87] .447 .487 .574

Lejeune [88] .537 .568 .562
Sobel .490 .519 .560

Dollar [89] (NYUD model) .642 .655 .660
Gupta [90] (NYUD model) .640 .650 .660
Xie [91] (NYUD model) .682 .695 .702

Dollar [89] (JUMP model) .519 .529 .389
Gupta [90] (JUMP model) .541 .561 .507
Xie [91] (JUMP model) .341 .349 .123

PED 0 [9] .502 .504 .705
PED 1 [9] .554 .577 .614
PED 2 [9] .541 .569 .595

Gradient-Based Laplacian .683 .695 .703

4.6 Conclusions and Future Work

A novel algorithm was proposed to compute the second-order derivative of a field of vectors,

Gradient-Based Laplacian for 3-D geometrical edge detection in which the first predefined oper-

ation of the convolution was defined as the absolute scalar difference of the Gradient values of

the neighbor pixels from Gradient value of the center pixel, in contrast to the existing work [10]

of gray-scale edge detection, in which this is defined as the signed Gradient difference operation.

This Gradient-Based Laplacian complies with the rules of the second-order derivative. It classifies

the pixels of the point cloud of the three-dimensional field of vectors into two classes: (1) pixels

of Plane and Ramp areas; and (2) pixels of Step areas. Behavioral analyses were done on the Step

edge, Plane, and Ramp areas for two cases when the absolute difference and when the signed dif-

ference are used in order to prove that the former is the correct approach (and the latter is the wrong

one). Performance analyses were done on TUM data set, and comparison study was done with the

state of the art edge detectors on NYUD data set as well. Future work will consider segmentation

of the Ramp areas only.
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Abstract

The detection of the edges magnitude and direction of the geometrical surfaces of the

indoor environment remains an important problem. This problem has a wide spectrum of

applications including object recognition and detection, autonomous navigation systems, and

three-dimensional localization and mapping.

The problem statement of the current research is to detect edges magnitude and direction of

the geometrical surfaces of the point cloud field of vectors of the indoor environment which is

captured by a depth sensor; and the Cartesian Components-Wise mathematical subtraction op-

eration used in the Unsharp Masking of a field of scalars, is not useful to develop the Unsharp

Masking of a field of vectors for geometrical edge magnitude and direction detection in point

cloud surfaces. The objective of the current research is to propose a novel algorithm of the

Unsharp Masking that is applicable to the field of vectors and analogous to the Unsharp Mask-

ing of the field of scalars. The contributions of the current research includes: (1) proposing a

novel algorithm for the Unsharp Masking of a field of vectors that is analogous to the Unsharp

Masking of a field of scalars; (2) doing behavioral analyses on the Step edges; Plane areas;

and onset, end and along Ramp areas; and (3) doing performance analyses on TUM data set,

and comparison study with the state of the art edge detectors on NYUD data set of the indoor

environment that was acquired by Microsoft Kinect depth sensor.

5.1 Introduction

Geometrical surface edge magnitude and direction detection is still important for the applications

of 3-D object recognition and detection, 3-D Simultaneous Localization and Mapping, and many

others. The traditional geometrical edge magnitude detectors (such as traditional Gradient and

Laplacian of a field of scalars operators) have used the Component-Wise vector operations; fur-

thermore they could not be extended to detect geometrical edge directions. According to [7] ”Un-

fortunately, the gradient discussed in section 3.6.4 is not defined for vector quantities... If accuracy

is an issue, however, then obviously we need a new definition of the gradient applicable to vec-

77 Inam Naser



CHAPTER 5. THE UNSHARP MASKING OF A FIELD OF VECTORS

tor quantities....As we just mentioned, the gradient we studied in Section 3.6.4 is applicable to a

scalar function f(x, y); it is not applicable to vector functions”, where section 3.6.4 is the gra-

dient for the field of scalars. Inspired by the above quotes, J. Al-Anssari et al.proposed in [3]

their novel mathematical Solid Vector Subtraction operation, and based on it, they proposed a

novel Gradient of a field of vectors edge detector in [3] as well; Also, I. Naser et al.proposed a

novel Gradient-Based Laplacian of a field of vectors edge magnitude detector in [1] based on this

novel mathematical Solid Vector Subtraction operation. The objective is to propose a novel Un-

sharp Masking of a field of Vectors that detects geometrical edge magnitude and direction of the

3-D point clouds, and is analogous to the traditional Unsharp Masking of a field of scalars that is

used for the intensity edge detection of the gray-scale images. The problem statement is that the

Cartesian Components-Wise mathematical subtraction operation used in the Unsharp Masking of

a field of scalars, is not useful to develop the Unsharp Masking of a field of vectors for geomet-

rical edge magnitude and direction detection in point cloud surfaces. The methodology is to use

the mathematical Solid Vector Subtraction operation to propose the Unsharp Masking of a field of

vectors, instead of the Cartesian Component-Wise subtraction operation that is used in the Unsharp

Masking of the field of scalars. The contributions of the current research include: (1) Proposing

a novel algorithm for the Unsharp Masking of a field of vectors that is based on the Solid Vector

subtraction operation, and that is analogous to the Unsharp Masking of a field of scalars; (2) Doing

behavioral analyses on the Step edges; Plane areas; and onset, end and along Ramp areas; (3) And

doing performance analyses on TUM data set, and comparison study with the state of the art edge

detectors on NYUD data set. This chapter is organized as follows: section 5.2 literature review;

section 5.3 Smoothing spatial filter of a field of vectors; section 5.4 Unsharp Masking of a field of

vectors; section 5.5 behavioral analyses; section 5.6 performance analyses, comparison study, and

experimental results; and section 5.7 conclusions and future work.
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5.2 Literature Review

5.2.1 Traditional Edge Detection Methods

There have been four main approaches that the traditional edge detectors followed.

The first approach that was presented in [7], has been implemented on the field of scalars

images–such as gray-scale images, in order to detect the intensity edges.

The second approach that was presented in [92] has been implemented on the 2-D field of the

3-D vectors of the RGB color vectors in order to detect RGB color edges in the RGB color images.

The third approach was intended to detect the geometrical edges of the surface of the 3-D

images–such as the Point Clouds. Some of these researches presented a 2-D Gradient operator

that was implemented on the 2-D field of scalars depth images such as [69–73]; Other researches

presented a scanline-based segmentation approach such as [74–78]; Other group of researches

presented the layer and skeleton extraction method in order to detect the geometrical edges such

as [79].

The fourth approach has been implemented on the three-dimensional field of scalars of the

point cloud. Some researches presented the edge-based segmentation such as [70,80,81,83]; Other

researches presented the surface-based segmentation such as [74] and [84]; and other researches

presented the curvature-based segmentation such as [82].

It is also worth mentioning here that in [93], two derivative operators for the field of vectors

were presented: (1) the first is the Divergence which produces a scalar quantity; and (2) the second

is the Curl which produces a vector quantity.

Some other approaches that tackled the Laplacian can also be found in [62–68].

5.2.2 Unsharp Masking of a field of scalars

The method of the Unsharp Masking of a field of scalars was presented by Gonzales et al.in [7]. It

works on the field of scalars of the gray-scale images. It applies a smoothing spatial filter on the

gray-scale image to smooth it first; then it subtract the smoothed image from the original image to
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get a mask. Where the mask emphasizes the edges of the gray-scale image. Then it adds the mask

to the original image in order to have a sharper edges.

5.2.3 The Gradient and Gradient-Based Laplacian of a field of vectors

In their respective researches [3] and [1], Al-Anssari J. et al.and Naser I. et al.proposed their novel

Gradient and Gradient-Based Laplacian of a field of vectors that are based on their novel mathe-

matical Solid Vector Subtraction operation. Also their Gradient and Gradient-Based Laplacian

edge magnitude detectors detect edges according to their proposed novel definitions of the Plane,

Ramp, and Step edges. In the current research, the novel proposed Unsharp Masking is also based

on their novel mathematical Solid Vector Subtraction operation as, and detects edges magni-

tude and direction according to their proposed novel definitions of Plane, Ramp, and Step edges.

Therefore, the descriptions of their novel definitions of Plane, Ramp, and Step edges, and their

novel mathematical Solid Vector Subtraction operation are presented as follows.

Edge Types

According to J. Al-Anssari et al.research [3], three edge types, geometrical Step edge, geometrical

Plane, and geometrical Ramp are defined: (1) the geometrical Step edge is defined as the set of

points where the rate of change in the local surface properties, direction of the normal vectors, is

inconstant (varying) and exceeds a given threshold; (2) the geometrical Plane is defined as the set

of points where the rate of change in the local surface properties, direction of the normal vectors, is

zero, or under a given threshold; (3) the geometrical Ramp is defined as the set of points where the

rate of change in local surface properties, direction of normal vectors, is constant without increase

or decrease over a given threshold.

Solid Vector Subtraction Operation

According to J. Al-Anssari et al.research [3], the Solid Vector subtraction operation between any

two vectors V (Pu) and V (Pi) produces two outcomes: (1) the Directional Difference; and (2) the
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Figure 5.1: Cross section of geometrical shape of the surface of the surfaced point cloud. (A)
Angles Direction Measurements. (B1), No Change. (C1), Step. (D1), Ramp. (E1), Onset and End
of Ramp. (F1), Step. This figure is cited from [3].

Length Difference.

The Directional difference consists of the Absolute value, that is the radian angle θ between the

two vectors operands, and the Directional Sign Axis V S, that is the vector that connects the end

point of V (Pi) to the end point of the projection of V (Pi) on V (Pu). After assigning the absolute

value θ to the Directional Sign axis V S, the signed Directional Difference V T is produced.

The Length difference is the scalar difference between the lengths of the two vectors operands.

Figure 5.2 shows this Solid Vector subtraction operation.

5.3 The Smoothing Spatial Filter of a Field of Vectors

The smoothing spatial filter, in this research, is applied to the signal field of vectors function, f(Pu).

The value of the signal field of vectors function at every pixel (Pu) of an arbitrary location (u) is

the normal vector, V (Pu), that is perpendicular to the surface surrounding this pixel, as expression

(5.1) shows.
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Figure 5.2: This figure shows the Solid Vector subtraction operation [3].

f(Pu) = V (Pu) (5.1)

The smoothing filter, is used for rounding the normal vectors directions of the point cloud of

the indoor environment of the field of vectors. This rounding is used for pre-processing task of the

Unsharp Masking of a field of vectors that is used for edges magnitude and direction detection.

The response of the smoothing spatial filter of a field of vectors is the Component-Wise Aver-

age operation of the vectors contained in the signal area under the mask. The average linear spatial

filter is also called a low pass filter.

In the smoothing filtering process, the value of every vector in the produced point cloud is re-

placed with the Component-Wise average of the vectors in the signal area under the filter mask.

This process results in a point cloud with reduced “sharp” geometrical edges, more round, of

the surfaces of the point cloud environment. All non-plane and non-ramp areas of the geometri-

cal surface–such as Step edges, onset and end of Ramp areas are characterized by sharp normal

vectors directions transitions, so averaging filters have the effect that they make the edges of the

geometrical surfaces more round. One application of the averaging filter is to detect edges using

the Unsharp Masking.

A basic definition of the averaging spatial linear filter, ∫(f(Pu)), that is applied on pixel (Pu) of
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an arbitrary location (u) of the signal function of the field of vectors, f , is the Cartesian Component-

Wise summation of all the vectors included in the signal area under the mask. That summation is

divided by the number of the vectors, as equation 5.2 shows.

∫(f(Pu)) =
1

N + 1

( n=N∑
n=u,1

f(Pn)
)

(5.2)

The general mathematical expression of the averaging spatial filter of equation 5.3 implements

the smoothing 3× 3 mask (filter) of table (5.2). Use of this filter yields the standard average of the

vectors under the mask. This filter is called a box filter because all the coefficients are equal.

∫(f(Pu)) = 1
9
×(

1× f(P1) + 1× f(P2) + 1× f(P3)

+1× f(P4) + 1× f(Pu) + 1× f(P5)

+1× f(P6) + 1× f(P7) + 1× f(P8)
)

(5.3)

The smoothing spatial filter of a field of vectors is implemented by the convolution operation.

The convolution is implemented by evaluating a surfaced static mask over the surface of the sur-

faced field of vectors. The surfaced field of vectors is defined as a group of vectors that their field

points are organized in surfaces of one pixel width. The surfaces reflect the shape of the indoor

environment that is captured by the depth camera sensor. When the center of the static mask visits

a new pixel in the signal field of vectors, the neighborhood search method is used to find the neigh-

bors of the center pixel of the signal, then two predefined mathematical operations are performed

between the corresponding pixels of the static mask and the signal area under the mask. Table 5.1

shows the signal area under the mask that is a field of vectors. Table 5.2 shows the static mask.

The static mask is a field of scalars where all the scalars are equal to 1 value. Therefore, it is called

a box smoothing filter.

Equation 5.4 shows the first predefined operation, P1i(f(Pu)). It consists of a unit scalar
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Table 5.1: Signal Area Under Mask
P1 P2 P3

V (P1) V (P2) V (P3)
P4 Pu P5

V (P4) V (Pu) V (P5)
P6 P7 P8

V (P6) V (P7) V (P8)

Table 5.2: Static Mask
P1 P2 P3

1 1 1
P4 Pu P5

1 1 1
P6 P7 P8

1 1 1

multiplied by every vector of the signal area under the mask.

P1i(f(Pu)) = 1× f(Pi), i = u, 1, . . . , N (5.4)

The second predefined operation, P2(f(Pu)), is shown in equation 5.5. It consists of the Carte-

sian Component-Wise vector summation of all the output vectors of the first predefined operation

divided by the scalar counts of the number of the signal pixels inside the area under the mask.

P2(f(Pu)) =
1

(N + 1)

( i=N∑
i=u,1

P1i(f(Pu))
)

(5.5)

The mask slide on every pixel of the signal field of vectors function, f(P )Original, and the produced

result is stored in a newly created field of vectors function, f(P )Rounded, stored in a point cloud

file format.

5.4 The Unsharp Masking of a Field of Vectors

5.4.1 Definition of The Unsharp Masking

The Unsharp Masking of a field of vectors is defined as a process that consists of Solid Vector

subtracting of the original version of the vectors of the point cloud field of vectors from the rounded

one. In the current research, this process is used for the detection of the edges magnitude and

direction of the three-dimensional geometrical surfaces of the point cloud. This process consists

of the following steps:
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1. Rounding the vectors of the original point cloud field of vectors using the Smoothing spatial

filter of a field of vectors described above.

2. Solid Vector subtracting the original vectors of the point cloud field of vectors from the

vectors of the rounded point cloud field of vectors. The resulting Directional difference

consists of the edges magnitude and direction.

3. Thresholding the Unsharp Masking edges magnitudes according to a predefined certain

scalar threshold value.

4. Assigning the Unsharp Masking edges magnitude scalar values as colors to the same pixels

positions of a newly created point cloud.

5. Assigning the Unsharp Masking edges direction vectors quantities as vectors to the same

pixels positions of a newly created point cloud.

As the case of the smoothing spatial filter, the Unsharp Masking function is applied to the

signal field of vectors function, f(Pu). The value of the signal field of vectors function at every

pixel (Pu) of an arbitrary location (u) is the normal vector, V (Pu), that is perpendicular to the

surface surrounding this pixel, as expressions (5.6) and (5.7) show.

f(Pu)Original = V (Pu)Original (5.6)

f(Pu)Rounded = V (Pu)Rounded (5.7)

Letting f(Pu)Rounded denotes the rounded version of the original signal field of vectors func-

tion, where the value of this signal smoothed function at every pixel (Pu) of an arbitrary location

(u) is the rounded (smoothed) vector of pixel (Pu).

And letting f(Pu)Original denotes the original version of the signal field of vectors function,

where the value of this original signal function at every pixel (Pu) of the same arbitrary location

(u) is the original normal vector which is perpendicular to the surface of pixel (Pu). The Unsharp
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Masking of the field of vectors, U(f(Pu)), applied on the signal function at pixel (Pu) is expressed

in the form of equation 5.8.

U(f(Pu)) =
(
f(Pu)Rounded − f(Pu)Original

)
SV Signed

(5.8)

Where in equation (5.8), the abbreviation SV Signed stands for the mathematical Signed

Solid Vector Subtraction operation.

In equation (5.9), the Unsharp Masking edge magnitude and direction of pixel (Pu) is rep-

resented by the Directional vector quantity, V TV (Pu)Rounded V (Pu)Original
that is produced from the

mathematical Signed Solid Vector Subtraction operation.

U(f(Pu)) =

V TV (Pu)Rounded V (Pu)Original

MV (Pu)Rounded V (Pu)Original

 (5.9)

The Unsharp Masking edge magnitude of pixel (Pu), Mag(U(f(Pu)), is represented by the

Euclidean length of the vector, V TV (Pu)Rounded V (Pu)Original
, which is actually the radian angle,

θV (Pu)Rounded V (Pu)Original
, as shown in equation (5.10).

Mag(U(f(Pu)) =

= ||V TV (Pu)Rounded V (Pu)Original
||

= θV (Pu)Rounded V (Pu)Original

(5.10)

The Unsharp Masking edge direction of pixel (Pu), Dir(U(f(Pu)), is represented by the direc-

tion of V TV (Pu)Rounded V (Pu)Original
vector, which is actually the V SV (Pu)Rounded V (Pu)Original

Direc-

tional Sign Axis, as shown in equation (5.11).
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Dir(U(f(Pu)) =

=
V TV (Pu)Rounded V (Pu)Original

||V TV (Pu)Rounded V (Pu)Original
||

= V SV (Pu)Rounded V (Pu)Original

(5.11)

In the current research, only the Signed Directional Solid Vector Subtraction result is con-

sidered, and the Signed Length Solid Vector Subtraction result of equation (5.9) is neglected;

because it produces the Signed Length Solid Vector difference, M , which is out of the scope

of the application of the current research because the interest is only in detecting edges of Plane,

Ramp, and Step definitions that can be computed using the Directional difference only.

Although the Signed Length Solid Vector difference, M , ranges from zero value to 1 value;

where a zero value of M indicates that the vectors form a plane surface; and a 1 value of M

indicates that the normal vectors form a polygon shape of (N+1) number of sides; however the

distances between the pixels of the normal vectors of the point cloud surface are normally so small,

compared to the size of the point cloud surface, to the degree that it cannot be used to classify the

shape of the point cloud surface (how many sides its polygon shape has) based on the value of M .

f(P )Unsharp = U(f(P )Original) (5.12)

After the Unsharp Masking process is performed on the vectors of all the pixels of the original

field of vectors signal function point cloud, a newly produced resulting function of the field of

vectors of the Unsharp Masking point cloud, f(P )Unsharp is created, as equation (5.12) shows.

5.4.2 Classification

The proposed Unsharp Masking of a field of vectors classifies the signal into two segments: (1)

the first segments consists of plane areas and ramp areas; (2) the second segment consists of step
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edges areas.

5.4.3 Pseudo Code and Complexity

The pseudo code of the Unsharp Masking algorithm, that includes the edge magnitude and direc-

tion algorithm, is shown in algorithm 2. The algorithm has two nested for loops, one controlled by

the size of the point cloud, |P |, the other by the number of neighbors, γ. Therefore, the complexity

is of order O(|P |γ).

5.5 Behavioral analyses

Examples B, C, D, E, and F explain how the Unsharp Masking works.

Example B is shown in figures 5.1(B1), 5.3(B2,B3,B4,B5,B6). Figure 5.1(B1) shows the vec-

tors directions profile of a plane area of the original signal. Figure 5.3(B3) shows the scan line

of the radian angle measurements of the vector directions profile of the original signal. Figure

5.3(B4) shows the scan line of the radian angle measurements of the vectors directions profile of

the smoothed (rounded) signal. Figure 5.3(B2) shows the rounded smoothed vectors directions

profile (shown solid) superimposed on the original signal (shown dashed) for reference and shows

the radian angles between every corresponding original and smoothed vectors which are equal

to the edges magnitudes. Figure 5.3(B5) shows the scan line edges magnitudes of the unsharp

mask obtained by Solid Vector subtracting the original vectors from the smoothed vectors. Figure

5.3(B6) shows a plot of the unsharp mask.

So on for example C which illustrates a Step edge, and is shown in figures 5.1(C1), 5.3(C2,

C3, C4, C5, C6); example D which illustrates a Ramp area, and is shown in figures 5.1(D1),

5.3(D2,D3,D4,D5,D6); example E which illustrates the onset and end of Ramp area, and is shown

in figures 5.1(E1), 5.3(E2,E3,E4,E5,E6); and example F which illustrates the Spiral area, and is

shown in figures 5.3(F1), 5.3(F2,F3,F4,F5,F6).

The Unsharp Masking magnitude classification result is similar to the Gradient-Based Lapla-
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Algorithm 2 Unsharp Masking algorithm
1: Input:

1. Point Cloud={P},
2. Point Cloud Normal {N} Estimation Mehtod and Parameters:-

• Normal Estimation Method Ψ(.) = Avarage 3dGradient

• Max Depth Change Factor=(0.02f)

• Normal Smoothing Size=(10.0f)

3. Neighbors Search Method and Parameters:-

• Method Ω(.) = KDTree

• Search Radius=(0.05)

• Max number of neighbors γ = (4)

4. Unsharp Masking magnitude threshold value Uthreshold

2: Output:

• Point Cloud={Output} . The Unsharp Masking Edges

3: procedure MAIN ALGORITHM

4: {N} = Ψ(P )
5: for i = 0 to size {P} do
6: neighbor vectors addition = 0
7: vectors addition = 0
8: if (P{i}=Nan) then continue
9: {Bc} = Ω(P{i})

10: if ({Bc}=0) then continue
11: for j = 1, j ≤ γ, j + + do
12: if (P{i} ∨N(P{i}) ∨Bc{j} ∨N(Bc{j})) = NAN then continue

. Normal Smoothing Calculation Start
13: neighbor vectors addition+ = N(Bc{j})
14: vectors addition = N(P{i}) + neighbors vectors addition
15: smoothed vector = vectors addition/(γ + 1) . Normal Smoothing Calculation End

. Unsharp Masking Magnitude Calculation Start
16: dot product =< N(P{i}), smoothed vector >
17: radian angle = 1

π arccos
( dot product
||smoothed vector||

)
18: unsharp magnitude = radian angle . Unsharp Masking Magnitude Calculation End

. Unsharp Masking Direction Calculation Start
19: ProjN(P{i})smoothed vector = dot product×N(P{i});
20: unsharp dir = smoothed vector − ProjN(P{i})smoothed vector
21: unsharp dir = unsharp dir/||unsharp dir|| . to make its length equal unit scalar value .

Unsharp Masking Direction Calculation End
22: if unsharp magnitude < Uthreshold then unsharp magnitude = 0

23: Output{i}(rgb) = unsharp magnitude
24: Output{i}(x, y, z) = P{i}(x, y, x)
25: Output{i}(nx, ny, nz) = unsharp dir(nx, ny, nz)

26: Return {Output}
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cian spatial filter of a field of vectors of [1].

The magnitudes of the Unsharp Masking of the field of vectors is a field of scalars in which its

values, at the geometrical surface Step edges and the onset and end of the ramp areas, are above

certain threshold value, and emphasized (keep non-zero) after the threshold operation; while its

values, at the plane and along ramp areas, are below certain threshold value, and not emphasized

(keep zero) after the threshold operation.

Example B proves that there are no edge magnitudes emphasized in plane areas (all are zeros).

Example C proves that there are edge magnitudes emphasized in step areas (keep non-zeros).

Example D proves that there are no edge magnitudes emphasized along ramp areas (all are zeros).

Example E proves that there are edge magnitudes emphasized at the onset and end of ramp areas

(keep non-zeros). Example F proves that there are equal edge magnitudes emphasized at the Spiral

areas of constant acceleration (keep fixed non-zeros). The edge magnitudes decrease, when the

Spiral area changes to plane area. Then the edge magnitude becomes zeros at the plane area.

5.6 Performance Analyses, Comparison Study, and Experimen-

tal Results

In this section, performance analyses are done of the proposed Unsharp Masking edge detector

on the TUM data set. After that, comparison study of it is done on the NYUD data set with the

well-known edge detectors in the literature.

The Precision-Recall frame work that Lejeune et al.used in [9] is used, in order to analyze

the performance of the proposed Unsharp edge detector. This Precision-Recall framework has

three indicators: (1) the ODS which is a measure of the best F score of the harmonic mean of the

precision and the recall when implemented on the data set with the same set of parameters; (2) the

OIS which is the aggregate F score resulted when implemented on the data set with the best set

of parameters of each image;(3) and the average precision, AP, that is the average of the precision

along the full recall range that represent the area under the precision-recall curve.
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There were no pre-processing on the data–such as the median filter, nor any post-processing on

the result–such as the edge thinning operation involved in this algorithm.

5.6.1 Performance Analyses on The TUM data set

First, the TUM data set was used to analyze the performance on the Unsharp Masking edge de-

tector. The ground truth of the data set was annotated. Two object examples were used from the

TUM data set [85] a box example and a sphere example. These two examples include all the three

types of geometrical edges the Plane area of the sides of the box, the Step edges of the box edges,

and the Ramp area of the surface of the sphere. Six images were used for each object example to

analyze the performance of the Unsharp Masking edge detector.

By visual observation of figure 5.5 that shows the Unsharp Masking edges magnitude and

direction for the box and the sphere examples, it can be verified that:

• The Unsharp Masking magnitude produces two segments: (1) the first segment consists

of the planes of the box sides (Plane area), and the ball round shape (Ramp area) which are

segmented with light color; and (2) the second segment consists of the box sides intersections

(Step edges) with dark color.

• The Unsharp Masking direction vectors: (1) in the Step edges, point to the direction of the

greatest change in the geometrical surface surrounding the center vector; while (2) in Plane

areas of the box, and Ramp area of the ball, have zero length (light color), because the

Unsharp Masking magnitude is zero.

The most important parameter of the Unsharp Masking edge detector is the threshold θthreshold

that was analyzed in order to find a default value.

Table 5.3 presents the best performance of the Unsahrp Masking detector obtained by exten-

sively searching the threshold parameter space on the TUM data set. The performance analyses on

the ODS, precision, and recall with respect to the threshold parameter scale on the TUM data set

shows that the threshold θthreshold produces the best performance for a value around 0.015.

91 Inam Naser



CHAPTER 5. THE UNSHARP MASKING OF A FIELD OF VECTORS

Table 5.3: Best performance of the proposed Unsahrp Masking edge detector used to detect edges
on the TUM data set

ODS OIS AP
Unsahrp .953 .964 .984

The duration of the processing time was 0.488391 seconds of total time, including the time

spent for the preparation (the neighborhood search method time). The size of the point clouds

was 307200 points. The processor was Intel Core i7-4710HQ CPU @2.50 GHz×8. The operating

system was Ubuntu 64 bit. A K-D tree neighborhood search method was used, with n = 4 neighbor

points, radius r = 0.05. The normal vectors estimation is done by the Integral Images method.

5.6.2 Comparative Study on the NYUD data set

Second, the NYUD data set was used to compare the performance of the proposed Unsharp Mask-

ing edge detector with the traditional edge detectors. In table 5.4, the performance of the proposed

Unsharp Masking edge detectors on NYUD data set [86] is presented. Also the performance of

the state of the art edge detectors is presented, that was obtained from Lejeune et al.research [9],

of PED 0 [9], PED 1 [9], PED 2 [9], Jiang [87], Lejeune [88], Sobel, Dollar [89], Gupta [90], and

Xie [91] on the same data set. According to Lejeune, the machine learning edge detectors (Dollar,

Gupta, Xie) were duplicated to show their complete NYUD model performance and Jump model

performance.

Figure (5.6) shows the edge detection magnitude and direction results, produced by the pro-

posed Unsharp Masking operator, from the same representative selection of images that Lejeune et

al.used. These results can be compared with the results of figure (9) of [9]. Note that, the ground

truth of the Unsharp Masking operator is different from the ground truth of Lejeune et al.detectors

in [9].

The performance analyses results presented in table (5.4) show that the Unsharp Masking de-

tector performs above the machine leaning detectors of complete model on the NYUD. The latter

performs better than the PED 0, PED 1, and PED2 detectors. PED 1, PED perform better than
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Table 5.4: Best performance indicators obtained for each of the 13 detectors on the NYU Depth
dataset. The first 12 performance indicators are obtained from Lejeune et al. [9].

ODS OIS AP
Jiang [87] .447 .487 .574

Lejeune [88] .537 .568 .562
Sobel .490 .519 .560

Dollar [89] (NYUD model) .642 .655 .660
Gupta [90] (NYUD model) .640 .650 .660
Xie [91] (NYUD model) .682 .695 .702

Dollar [89] (JUMP model) .519 .529 .389
Gupta [90] (JUMP model) .541 .561 .507
Xie [91] (JUMP model) .341 .349 .123

PED 0 [9] .502 .504 .705
PED 1 [9] .554 .577 .614
PED 2 [9] .541 .569 .595
Unsharp .682 .696 .703

Dollar, Gupta, Xie of the Jump model. Jiang and Sobel detectors perform the worst.

5.7 Conclusions and Future Work

In this research, a novel Unsharp Masking of a field of vectors algorithm was proposed that is based

on the mathematical Solid Vector Subtraction operation, and that is useful for the geometrical

edges magnitude and direction detection. Behavioral analyses were done of the Step edge, Plane

areas, and Ramp areas. Performance analyses on TUM data set was done, and comparison study

with the state of the art edge detectors on NYUD data set was done as well. The Unsharp Masking

detector used for geometrical edge detection is fast and efficient. It is not subject to over fitting

or under fitting, and it does not required training like the machine learning methods, it does not

use any surface model like PED, and it can be used for any depth sensor. Future works can be

developing 3-D object recognition and detection applications.
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Figure 5.3: Illustrates the behavioral analyses of the Unsharp Masking applied on the areas of
examples B,C,D,E and F.
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Figure 5.4: Illustrates the Unsharp Masking edge directions of the Plane area (top-left), Step edge
(top-right), and Ramp area (bottom-left).

Figure 5.5: This figure shows the edge detection results of the proposed Unsharp magnitude and
direction operators on the TUM data set. Black, red, green, light blue, and dark blue pixels rep-
resent the true positives, false positives caused by algorithm, false negatives caused by algorithm,
false positive caused by noise, and false negative caused by of noise, respectively.
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Figure 5.6: This figure shows the edge detection results of the proposed Unsharp Masking mag-
nitude and direction operators on the NYU Depth data set. Black, red, green, light blue, and dark
blue pixels represent the true positives, false positives caused by algorithm, false negatives caused
by algorithm, false positive caused by noise, and false negative caused by of noise, respectively.
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6.1 The Conclusions

In the current dissertation, three researches proposals are proposed in three chapters as follows.

The first research is the Solid Vector operations research to achieve the objective of extending the

Solid Vector Subtraction operation by proposing definitions of its coordinate system, its hyper di-

mensional space, and its other whole complementary set of Solid Vector Addition, Multiplication,

Division, Dot Product, and Cross Product operations. That coordinate system and the mathemat-

ical operations handle the vector as a one solid quantity unit, in addition to its property of being

applicable to the 2d, 3d and hyper dimensional space. Achieving the objective of this research is

the answer of the questions that were surfaced from the recent proposal of the Sold Vector Subtrac-

tion operation about its coordinate system, the definition of its hyper dimensional space, and the

definitions of its other whole complementary set of Solid Vector Addition, Multiplication, Divi-

sion, Dot Product, and Cross Product operations. The methodologies for achieving the objective of

this research are done by: 1. a) making one of the operand vectors of the Solid Vector Subtraction

operation as the first axis of the coordinate system that is the Directional Zero vector that replaces

the PoleY of the Fixed Polar, and that is the lowest starting point of the angular component θ; and

b) making the Directional Sign Axis of the Solid Vector Subtraction operation as the second axis

of the coordinate system, that replaces the x axis of the Fixed Polar; in order to get a rotated ver-

sion of the Fixed Polar that, in the current research, refereed to it as the Rotated Polar coordinate

system that is implemented in the 3-D dimensional space and that is not fixed to the still plane of

the x, y axes, 2. specifying a pair of vectors as components of a Hyper Rotated Polar when the

Solid Vector Subtraction operations between them and their Directional Zero vector produce the

same Directional Sign Axis (including both of its opposite directions the positive and negative), in

order to define its extension to the hyper dimensional space, and 3. using the triangulation in order

to propose the Solid Vector Addition, Multiplication, Division, Dot Product, and Cross Product

operations. The contributions of the first research are proposing: 1. Novel definition of a Rotated

Polar coordinate system based on two novel axes; the first axis is the dynamic Operation-Based

Zero Vector and the second axis is the Directional Sign Axis of the Solid Vector Subtraction op-
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eration, 2. Novel definition of the 2-d, 3-d, hyper dimensional Rotated Polar coordinate system

space,, 3. Novel definition of the Solid Vector Addition, 4. Multiplication, 5. Division, 6. Dot

Product and 7. Cross Product operations.

The second research is the second-order derivative, the Gradient-based Laplacian of a field of

vectors, 3d geometrical edge detector high pass spatial filter is proposed in an analogous manner

to the definition of the Gradient-Based Laplacian of a field of scalars. This proposed Gradient of

a field of vectors classifies two types of segments of the geometrical surfaces of the point cloud:

the Plane and Ramp areas; and the Step edge areas. And to do that design and implementation,

the recently proposed Gradient of a field of vectors high pass spatial filter is used to define the

Gradient-Based Laplacian, the 2nd derivative of a field of vectors edges detector. The contribu-

tions of the second research are: 8. Proposing a novel algorithm of the Gradient-Based Laplacian

of a field of vectors (used for detecting 3-D surface geometrical edges) that is based on the novel

algorithm of the Gradient of a field of vectors, that was proposed in [3] research. In the Gradi-

ent-Based Laplacian algorithm, the first predefined operation of the convolution is defined as the

absolute scalar difference of the Gradient values of the neighbor pixels from the Gradient value

of the center pixel, in contrast to the existing work [10] of gray-scale edge detection, in which

this is defined as the signed Gradient difference operation, 9. Doing behavioral analyses for the

Gradient-based Laplacian on Step edge, Plane, and Ramp areas for two cases; when the absolute

difference and when the signed difference are used in order to prove that the former is the right one

and the latter is the wrong, and 10. Doing performance analyses for the Gradient-based Laplacian

on TUM data set, and comparison study with the state of the art edge detectors on NYUD data set.

The third research is the Unsharp Masking of a field of vectors which proposes a 3d Unsharp

Masking geometrical edge detector high pass spatial filter in an analogous way to the Unsharp

Masking of a field of scalars for detecting geometrical edge magnitude and direction of the 3-d

point clouds. The Cartesian Components-Wise mathematical subtraction operation used in the

Unsharp Masking of a field of scalars is not useful to develop the Unsharp Masking of a field

of vectors, so the mathematical Solid Vector Subtraction operation is used to propose the current
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Unsharp Masking of a field of vectors. The contributions of the third research are: 11. Proposing

a novel algorithm for the Unsharp Masking of a field of vectors that is based on the Solid Vector

subtraction operation, and that is analogous to the Unsharp Masking of a field of scalars, 12. Doing

behavioral analyses for the Unsharp Masking on the Step edges; Plane areas; and onset, end and

along Ramp areas, and 13. Doing performance analyses for the Unsharp Masking on TUM data

set, and comparison study with the state of the art edge detectors on NYUD data set.

6.2 The future work

The above mentioned Solid Vector mathematical operations are applicable to 2d, 3d and hyper-

dimensional space; and they handle the vector as only two layers: one directional angular com-

ponent, and one magnitude component; which make them Solid Vector compliant and act as a

foundation for the future work. So the future work for the proposed three proposals the Solid Vec-

tor operations, the Gradient-based Laplacian and the Unsharp Masking of a field of vectors can be

building 2d, 3d and hyper-dimensional artificial intelligence and machine learning applications–

such as 3d object recognition and detection, 3d SLAM, 3d rotation control of virtual and physical

objects, 3d virtual sculpturing and segmentation of the Ramp areas only.

101 Inam Naser



Bibliography

[1] I. Naser, J. Al-Anssari, and A. Ralescu, “Three-dimensional gradient-based laplacian spatial

filter of a field of vectors for geometrical edges magnitude detection in point cloud surfaces,”

2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and

2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp.

354–361, 2019. 10, 30, 78, 80, 90

[2] ——, “Three-dimensional unsharp masking spatial filter of a field of vectors for geometrical

edges magnitude and direction detection in point cloud surfaces,” 2019 IEEE International

Conference on Humanized Computing and Communication (HCC), pp. 68–76, 2019. 10

[3] J. Al-Anssari, I. Naser, and A. Ralescu, “Three-dimensional gradient spatial filter of a field

of vectors for geometrical edges magnitude detection in point cloud surfaces,” 2019 Joint

8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd

International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 362–370,

2019. xi, xii, 3, 4, 5, 9, 10, 19, 20, 24, 29, 30, 38, 39, 43, 47, 55, 56, 57, 58, 65, 78, 80, 81,

82, 100

[4] ——, “Three-dimensional laplacian spatial filter of a field of vectors for geometrical edges

magnitude and direction detection in point cloud surfaces,” 2019 IEEE International Confer-

ence on Humanized Computing and Communication (HCC), pp. 83–93, 2019. 5, 11

[5] A. Kadambi, A. Bhandari, and R. Raskar, 3D Depth Cameras in Vision: Benefits and

Limitations of the Hardware. Cham: Springer International Publishing, 2014, pp. 3–26.

102



BIBLIOGRAPHY

[Online]. Available: https://doi.org/10.1007/978-3-319-08651-4 1 xi, 14, 15, 16

[6] A. Polesel, G. Ramponi, and V. J. Mathews, “Image enhancement via adaptive unsharp mask-

ing,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 505–510, March 2000. xi,

20, 21

[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 2006. xi, 4, 19, 20, 22, 23, 24, 57, 59, 66, 77, 79

[8] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision. USA: McGraw-Hill, Inc., 1995.

xi, 24, 25

[9] A. Lejeune, J. G. Verly, and M. V. Droogenbroeck, “Probabilistic framework for the charac-

terization of surfaces and edges in range images, with application to edge detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2018. xiv, 68, 71, 72,

74, 90, 92, 93

[10] “Open CV laplacian operator,” https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/

laplace operator/laplace operator.html, accessed: 2018-09-20. 9, 56, 57, 74, 100

[11] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo machine for video-

rate dense depth mapping and its new applications,” in Proceedings CVPR IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, June 1996, pp. 196–202.

14

[12] F. Blais, “Review of 20 years of range sensor development,” Journal of Electronic Imaging,

vol. 13, no. 1, pp. 231 – 243, 2004. [Online]. Available: https://doi.org/10.1117/1.1631921

14

[13] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE Journal of Quantum

Electronics, vol. 37, no. 3, pp. 390–397, March 2001. 14

103 Inam Naser

https://doi.org/10.1007/978-3-319-08651-4_1
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/laplace_operator/laplace_operator.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/laplace_operator/laplace_operator.html
https://doi.org/10.1117/1.1631921


BIBLIOGRAPHY

[14] B. FREEDMAN, A. SHPUNT, Y. ARIELI, and M. MACHLINE, “Depth mapping using

projected patterns,” 2008. 14

[15] “Kinect,” accessed in January 2020, wikipedia page. [Online]. Available: https:

//en.wikipedia.org/wiki/Kinect 14

[16] R. A. Zeineldin and N. A. El-Fishawy, “Fast and accurate ground plane detection for the

visually impaired from 3d organized point clouds,” in 2016 SAI Computing Conference (SAI),

July 2016, pp. 373–379. 14

[17] “Getting started / basic structures,” accessed in January 2020, point Cloud Documentation.

[Online]. Available: http://pointclouds.org/documentation/tutorials/basic structures.php 16

[18] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine,

A. Sharf, and C. T. Silva, “A survey of surface reconstruction from point clouds,”

Comput. Graph. Forum, vol. 36, no. 1, p. 301329, Jan. 2017. [Online]. Available:

https://doi.org/10.1111/cgf.12802 16

[19] G.-T. Michailidis, G.-T. Michailidis, R. Pajarola, and R. Pajarola, “Bayesian graph-cut op-

timization for wall surfaces reconstruction in indoor environments,” The Visual Computer,

vol. 33, no. 10, pp. 1347–1355, 2017. 16

[20] S. Orts-Escolano, J. Garcia-Rodriguez, M. Cazorla, V. Morell, J. Azorin, M. Saval,

A. Garcia-Garcia, and V. Villena, “Bioinspired point cloud representation: 3d object

tracking,” Neural Comput. Appl., vol. 29, no. 9, p. 663672, May 2018. [Online]. Available:

https://doi.org/10.1007/s00521-016-2585-0 16

[21] A. Sitek, R. H. Huesman, and G. T. Gullberg, “Tomographic reconstruction using an adaptive

tetrahedral mesh defined by a point cloud,” IEEE Transactions on Medical Imaging, vol. 25,

pp. 1172–1179, 2006. 16

Inam Naser 104

https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Kinect
http://pointclouds.org/documentation/tutorials/basic_structures.php
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1007/s00521-016-2585-0


BIBLIOGRAPHY

[22] H.-R. Wang, J. Lei, A. Li, and Y.-H. Wu, “A geometry-based point cloud reduction method

for mobile augmented reality system,” Journal of Computer Science and Technology, vol. 33,

no. 6, pp. 1164–1177, Nov 2018. [Online]. Available: https://doi.org/10.1007/s11390-018-

1879-3 16

[23] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, “Adaptive neighborhood selec-

tion for real-time surface normal estimation from organized point cloud data using integral

images,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct

2012, pp. 2684–2689. 16, 17

[24] J. Ma, H.-Y. Feng, and L. Wang, “Normal vector estimation for point clouds via local

delaunay triangle mesh matching,” Computer-Aided Design and Applications, vol. 10, no. 3,

pp. 399–411, 2013. [Online]. Available: https://www.tandfonline.com/doi/abs/10.3722/

cadaps.2013.399-411 17

[25] X. Zhan, Y. Cai, H. Li, Y. Li, and P. He, “A point cloud registration algorithm based on nor-

mal vector and particle swarm optimization,” Measurement and Control, p. 2029401985821,

2019. 17

[26] W. Sun, J. Wang, F. Jin, Z. Liang, and Y. Yang, “Datum Feature Extraction and Deformation

Analysis Method Based on Normal Vector of Point Cloud,” ISPRS - International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42.3, pp.

1601–1606, Apr 2018. 17

[27] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of surface normal estimation

methods for range sensing applications,” in 2009 IEEE International Conference on Robotics

and Automation, May 2009, pp. 3206–3211. 17

[28] X. Meng, W. He, and J. Liu, “An investigation of the high efficiency estimation approach of

the large-scale scattered point cloud normal vector,” Applied Sciences, vol. 8, no. 3, 2018.

[Online]. Available: https://www.mdpi.com/2076-3417/8/3/454 17

105 Inam Naser

https://doi.org/10.1007/s11390-018-1879-3
https://doi.org/10.1007/s11390-018-1879-3
https://www.tandfonline.com/doi/abs/10.3722/cadaps.2013.399-411
https://www.tandfonline.com/doi/abs/10.3722/cadaps.2013.399-411
https://www.mdpi.com/2076-3417/8/3/454


BIBLIOGRAPHY

[29] D. OuYang and H.-Y. Feng, “On the normal vector estimation for point cloud data from

smooth surfaces,” Computer-Aided Design, vol. 37, no. 10, pp. 1071 – 1079, 2005. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S001044850400226X 17

[30] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-time plane segmentation using rgb-d

cameras,” in RoboCup 2011: Robot Soccer World Cup XV, T. Röfer, N. M. Mayer, J. Savage,
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