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Abstract 

Previous research has recognized the importance of edges to crime. Various 

scholars have explored how one specific type of edges such as physical edges or social 

edges affect crime, but rarely investigated the importance of the composite edge effect. 

To address this gap, this study introduces nightlight data from the Visible Infrared 

Imaging Radiometer Suite sensor on the Suomi National Polar-orbiting Partnership 

Satellite (NPP-VIIRS) to measure composite edges. This study defines edges as nightlight 

gradients—the maximum change of nightlight from a pixel to its neighbors. Using 

nightlight gradients and other control variables at the tract level, this study applies 

negative binomial regression models to investigate the effects of edges on the street 

robbery rate and the burglary rate in Cincinnati. The Akaike Information Criterion (AIC) 

of models show that nightlight gradients improve the fitness of models of street robbery 

and burglary. Also, nightlight gradients make a positive impact on the street robbery 

rate whilst a negative impact on the burglary rate, both of which are statistically 

significant under the alpha level of 0.05. The different impacts on these two types of 

crimes may be explained by the nature of crimes and the in-situ characteristics, 

including nightlight. 
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1. Introduction 

Previous studies have explored criminal opportunities in different geographical areas 

(PL Brantingham & Brantingham, 1981; Paul J Brantingham & Brantingham, 1977; Patricia 

L Brantingham & Brantingham, 1975; Duffala, 1976; Eck & Weisburd, 2015; Hunter, 1988; 

LeBeau, 1987; Mayhew & Britain, 1976; G. Rengert, 1980; G. F. Rengert, 1981; Stoks, 

1983). Crime rates are high in areas marked by a minimum of personal, intimate social 

interaction (Jeffery, 1958). These areas, containing mixes of land use and physical spaces, 

tend to have more crime generators and attractors (Bernasco & Block, 2011; P. 

Brantingham & Brantmgham, 1995; Patricia L Brantingham & Brantingham, 1975, 1993; 

Cohen & Felson, 1979; Herbert & Hyde, 1985; Suttles, 1968). A body of research has 

theorized the importance of boundaries of geographic units in the location of crime 

(Patricia L. Brantingham, Brantingham, Vajihollahi, & Wuschke, 2009; Kim & Hipp, 2018; 

Legewie, 2018; Song, Andresen, Brantingham, & Spicer, 2017; Song, Spicer, & 

Brantingham, 2013). These spatial boundaries, such as physical boundaries and social 

boundaries, are defined as “edges” by Brantingham and Brantingham (Patricia L 

Brantingham & Brantingham, 1993). Areas with more edges may motivate offenders to 

commit crimes (Davison & Smith, 2002). Scholars have explored the relationship between 

spatial boundaries and levels of crimes (Kim & Hipp, 2018; Legewie, 2018). Though there 

are studies that measure different types of edges using census variables and land use 

data, scholars mainly focus on one specific type of edges. Relationship between areas 

with composite edges, representing a combined set of all edges related to social and 

physical features, and crime remains untouched in the literature. Nightlight satellite data, 
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reflection of combined effect of socioeconomic developments (Chand, Badarinath, 

Elvidge, & Tuttle, 2009; Chen et al., 2015; C. H. Doll, Muller, & Elvidge, 2000; C. N. Doll, 

Muller, & Morley, 2006; Elvidge, Baugh, Anderson, Sutton, & Ghosh, 2012; Ghosh, Elvidge, 

et al., 2010; Ghosh, L Powell, et al., 2010; He, Ma, Liu, & Zhang, 2014; Proville, Zavala-

Araiza, & Wagner, 2017; Raupach, Rayner, & Paget, 2010; Shi, Yu, et al., 2014; P. Sutton, 

1997; P. Sutton, Roberts, Elvidge, & Meij, 1997; P. C. Sutton, Elvidge, & Ghosh, 2007; 

Townsend & Bruce, 2010) and urban constructions (Dou, Liu, He, & Yue, 2017; Elvidge et 

al., 2007; Henderson, Yeh, Gong, Elvidge, & Baugh, 2003; Imhoff et al., 1997; Li, Zhao, Li, 

& Xu, 2018; Z. Liu, He, Zhang, Huang, & Yang, 2012; Lo, 2002; Ma et al., 2014; McDonald, 

Kareiva, & Forman, 2008; Shi, Huang, et al., 2014; Wu, Ma, Li, Peng, & Liu, 2014; Yu et al., 

2014), could be a suitable source to measure such composite edges. This study aims to 

explore the possible impact of composite edges measured by nightlight gradients on 

street robbery and burglary. 

 

1.1. Edges and Crimes 

Edges are key concepts in the crime pattern theory (PL Brantingham & Brantingham, 

1981; Paul J Brantingham, Brantingham, & Molumby, 1977; Patricia L Brantingham & 

Brantingham, 1993; Lynch, 1960). In this theory, the spatial dimension of crime can be 

considered as the composition of activity nodes, paths, and edges. Activity nodes are 

places where people sleep, work, and entertain or shop; paths are places between activity 

nodes, for example, the road network and footpath; edges are boundaries where the 

noticeable change is distinctive from one part to another (Patricia L Brantingham & 
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Brantingham, 1993). This noticeable change can be defined by various characteristics 

ranging from the sharp and well-defined area to the diffused and progressive area, 

including physical, social or economic attributes (Song et al., 2013). Edges can be 

physically visible boundaries between different areas, such as rivers, regional or local 

parks, transit systems like highways and major roads (Patricia L. Brantingham et al., 2009; 

Song et al., 2017; Song et al., 2013). Physically visible edges may increase crime by 

affecting the perceived likelihood of detection such as reducing the sense of guardianship 

(Kim & Hipp, 2018). Research has investigated the relationship between crimes and the 

proximity to parks and highways (Groff, Weisburd, & Yang, 2010; Kim & Hipp, 2018; 

Kimpton, Corcoran, & Wickes, 2017; McCutcheon, Weaver, Huff-Corzine, Corzine, & 

Burraston, 2016). However, parks and highways are not considered as edges since they 

are theorized as crime attractors in most studies (Kim & Hipp, 2018). 

Additionally, less physically visible edges also affect crime occurrence. Crimes occur 

in edges between social neighborhoods and districts (Paul J Brantingham et al., 1977). 

Brantingham and Brantingham found that burglary rates are much higher in street blocks 

bordering on edges than in the interiors of neighborhoods (Patricia L Brantingham & 

Brantingham, 1975, 1978). They applied “fuzzy topology algorithm” to measure changes 

from one dissemination area (a census unit in Canada, composed of block clusters) to 

another and found that street blocks on borders have higher burglary levels than those in 

the interior of neighborhoods (Patricia L. Brantingham et al., 2009). Brantingham et al. 

found that gang violence strongly clusters on edges between gangs (P Jeffrey 

Brantingham, Tita, Short, & Reid, 2012). Song et al. defined edges as the boundary 
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between single-family zones and other types of land use classifications and found that 

edges of single-family zones have more crime events since these edges perceptually 

reduce spatial ownership, while increase potential conflicts and decrease the feeling of 

safety (Song et al., 2013). Similarly, Song et al. found that rates of criminal victimization 

are high on edges where land use classifications change, but decrease quickly as the 

distance to edges increase (Song et al., 2017). Hart recognized that bus stops on edges of 

mixed types of land use such as commercial areas and residential areas can generate 

crimes (Hart & Miethe, 2015). Kim and Hipp demonstrated that the crime level is higher 

in the administrative boundaries on city boundaries in Southern California (Kim & Hipp, 

2018). Legewie found that violent crimes are more likely to occur at neighborhood 

boundaries than internal neighborhood characteristics (Legewie, 2018).  

To investigate the impact of edges on crimes, scholars use statistical models and 

define edges as one main independent variable. They define physically visible edges (i.e., 

rivers, regional or local parks, and highways or major roads) and administrative edges (i.e., 

city boundaries and school districts) as the binary variable (Yes/No) or define these edges 

as the continuous variable (distance from these boundaries). For example, Kim and Hipp 

found that street segments adjacent to administrative edges and physically visible edges 

have higher levels of crime (Kim & Hipp, 2018). For social edges, previous research focuses 

on where social edges exist and how sharp those edges are. Scholars measure social edges 

by socio-spatial features instead of using the proximity to differently composed areas. For 

example, Legewie used ethno-racial variables from the census data and detected the 

positive effect of racial neighborhood edges on violent crimes (Legewie, 2018). Though 
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scholars explored how one specific type of physical edges or social edges affect crimes, 

they paid less attention to how areas with composite edges may affect crime.  

Areas with composite edges represent that areas involve different types of edges. For 

example, both physical edges and social edges can exist in the same area. The importance 

of composite edges in levels of crimes should be recognized for two reasons. First, 

generally, areas in a city are not simply composed of only one specific type of edge. Since 

edges are defined as distinctive shifts from one part to another by various characteristics 

(Patricia L Brantingham & Brantingham, 1993; Song et al., 2013), edges in a place can not 

only be the physical change (i.e., boundaries between urban areas and non-urban areas) 

but also be the social change (i.e., boundaries between areas with high socioeconomic 

developments and areas with low socioeconomic developments). Therefore, one specific 

type of edge cannot fully explain how areas with composite edges are associated with 

crimes. Second, though previous studies explore how one specific type of edge is related 

to crimes conditional on other types of edges, the impact of composite edges cannot be 

simply equaled to the combination of effects of different types of edges. For example, 

though the importance of physical edges and social edges in crime occurrence has been 

recognized, it is hard to measure how areas with less physical edges and more social edges 

or areas with more physical edges and fewer social edges are associated with crimes. To 

research how sharp composite edges are and their impact on crimes, a new data source 

is required. To fill this research gap, this study introduces nightlight satellite data to 

measure composite edges in the city. 
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1.2. Edges Measured by Nightlight Satellite Data 

Nightlight satellite data is relatively easy to access, and thus it can be used to measure 

variables that are hard to observe. The burning of oil and gas, lights from fishing boats at 

sea, forest fires, and volcanic eruptions can all be detected on nightlight images. In urban 

areas, nightlight sensors mainly detect low-intensity lights at night emitted by street 

lights, lights of buildings in commercial areas and residential areas, and traffic flows (Zhuo, 

Zhang, Zheng, Tao, & Guo, 2015).  

The nightlight satellite data can measure several aspects of the city. First, nightlight 

satellite data can measure socioeconomic developments, such as gross domestic product 

(C. N. Doll et al., 2006; Ghosh, L Powell, et al., 2010; Proville et al., 2017; P. C. Sutton et 

al., 2007), carbon emission (C. H. Doll et al., 2000; C. N. Doll et al., 2006; Ghosh, Elvidge, 

et al., 2010; Raupach et al., 2010), electricity consumption (Chand et al., 2009; He et al., 

2014; Shi, Yu, et al., 2014; Townsend & Bruce, 2010), house vacancy (Chen et al., 2015), 

and population study (Elvidge et al., 2012; P. Sutton, 1997; P. Sutton et al., 1997). Second, 

nightlight satellite data can measure urban areas in cities. For instance, nightlight satellite 

data can be applied to investigate urban densities, urban land use, urban expansions, 

urban spatial clusters, and urban boundaries (Dou et al., 2017; Elvidge et al., 2007; 

Henderson et al., 2003; Imhoff et al., 1997; Li et al., 2018; Z. Liu et al., 2012; Lo, 2002; Ma 

et al., 2014; McDonald et al., 2008; Shi, Huang, et al., 2014; Wu et al., 2014; Yu et al., 

2014). Additionally, nightlight satellite data can measure urban areas inside the city. 

Figure 1 shows that different types of urban areas in Cincinnati and their corresponding 

nightlight satellite images in 2012. Except for the University of Cincinnati (UC) which is 
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also bright (UC does not turn off exterior lights at night), Central Business District (CBD) is 

much brighter than residential areas, industrial areas, and other non-urban areas. It is 

because roads in CBD are denser than other urban areas such as residential areas in the 

same city. With the denser and brighter streetlights, CBD is brighter, that is, values of 

nightlight satellite pixels in CBD are also higher than those of other urban areas. 

Additionally, Figure 1 shows that nightlight satellite pixels in non-urban areas like green 

areas have lower pixel values than urban areas. Typically, it is because the recorded 

radiance of nightlight satellite pixels in green areas is far lower than that in urban areas. 

Since nightlight satellite data can measure socioeconomic developments and urban 

constructions, this data is a suitable source to measure composite edges that combine 

both physical edges (changes of urban constructions) and social edges (changes of 

socioeconomic developments) in a city. 

Since nightlight satellite data is the raster data like the pixel grid, the sharp level of 

composite edges measured by this data is based on the level of changes from a nightlight 

cell to its neighbors. Table 1 describes some examples of areas where the sharp level of 

composite edges is typically high or low. The sharp level of composite edges can be low 

in areas where nightlight cells have the same level of values, such as areas within CBD (or 

residential areas) where values are consistently high (or moderate), or in the areas within 

parks or rivers where values are consistently low. In contrast, the sharp level can be high 

(or moderate) in the areas along the edges of CBD (or residential areas) where high or 

moderate values are surrounded by low values, or in the areas along the edges of parks 

or rivers where low values are surrounded by moderate values. 
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Figure 1. Nightlight Satellite Data of Cincinnati in 2012 from the band Day/Night 

Band (DNB) in the Visible Infrared Imaging Radiometer Suite sensor on the Suomi 

National Polar-Orbiting Partnership Satellite (NPP-VIIRS). 

Table 1. Examples of areas and their corresponding composite edges measured 

by nightlight satellite data. 

Types of Areas Nightlight Pixel Values 
Sharp Level of 

Composite Edges 

Areas within CBD or UC Super high surrounded by high Moderate 

Areas within residential areas Moderate surrounded by moderate Low 

Areas within parks or rivers Low surrounded by low Low 

Areas along the edges of CBD/UC High surrounded by low High 
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Areas along the edges of 

residential areas 
Moderate surrounded by low Moderate 

Areas along the edges of 

parks/rivers 
Low surrounded by moderate Moderate 

 

2. Research Questions and Conceptual Framework  

To assess the impact of composite edges measured by nightlight satellite data, this 

study focuses on street robbery and burglary. These two types of crimes are considered 

for two reasons. First, both street robbery and burglary belong to property crimes. Street 

robbery means the theft of property in an outdoor, noncommercial location (Wright & 

Jacques, 2010). Burglary means trespassing and theft into residential settings (i.e., a 

building or automobile) (Waller & Okihiro, 1978). Thus, both street robbery and burglary 

are related to socioeconomic developments that nightlight satellite data can capture. 

Second, street robbery occurs on the streets while burglary occurs inside buildings, both 

of which are associated with urban infrastructures that nightlight satellite data can 

capture.  

How do composite edges measured by nightlight satellite data affect street robbery 

and burglary? To answer the question effectively, this study applies the crime pattern 

theory and the social disorganization theory as the theoretical foundation. The crime 

pattern theory is applied since edges are key concepts in this theory. The social 

disorganization theory accounts for other characteristics in addition to edges. The social 

disorganization theory is selected because it interprets the rate of offenders at the 
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neighborhood level (Herbert & Hyde, 1985), emphasizes the impact of socioeconomic 

characteristics of local social neighborhoods (Clifford R Shaw & McKay, 2010), and focus 

on the geographical distribution of offender residence (Weisburd, Groff, & Yang, 2012). 

This theory focus on the social disorganization — the incapability of a social unit to keep 

effective social control, realize common values, and solve long-term problems (Bursik Jr, 

1988; Kornhauser, 1978; Kubrin & Weitzer, 2003). In the social disorganization theory, 

residential mobility, ethnic heterogeneity, and socioeconomic disadvantage contribute to 

the increase in the rate of delinquents (L. Liu, Feng, Ren, & Xiao, 2018; Rosenfeld & 

Fornango, 2014; Clifford Robe Shaw & McKay, 1942). Specifically, a socially disorganized 

geographic unit characterized by high residential instability, high ethnic heterogeneity, 

and severe socioeconomic disadvantage (low socioeconomic status) is preferred by street 

robbery and burglary.  

This study estimates a series of negative binomial regression models to reveal the 

relationship between the tract environment and street robbery/burglary (Figure 2). One 

scenario is considered in the models: Composite edges can affect street robbery and 

burglary statistically significantly. 
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Figure 2. The relationship between the tract environment and street 

robbery/burglary. 

 

3. Study Area and Data  

3.1. Study Area and Crime Data 

The study area of this research is the City of Cincinnati (hereafter Cincinnati), a major 

city in Ohio State, United States. Cincinnati is located in the southwest of Ohio and near 

the junction of Ohio, Kentucky, and Indiana. According to the FBI report, Cincinnati ranked 

the 16th most dangerous city in the United States (F.B.I., 2010). The five-year American 

Community Survey in 2012 showed that there were 324,732 residents in Cincinnati. 

Additionally, Cincinnati is a high ethnically diverse city. White occupied the largest 

number of residents, followed by African American in 2012. The rental vacancy rate had 

the largest decrease in 2012 after it peaked in 2006 (12.97%), fallen by 11.30% in 2011 to 

6.92% in 2012. The household income was the lowest in 2012 since 2006 according to the 
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Department of Number. The boundary of Cincinnati is downloaded from the Cincinnati 

Area Geographic Information System (CAGIS, http://cagis.org/Opendata/). Additionally, 

the 2012 tract-level census data are downloaded from the United States Census Bureau 

TIGER/Line Shapefiles. This data includes the tract shapefile and demographic 

information from the five-year ACS data such as population and household income. The 

2012 tract-level demographic and economic data released by census bureau are from 

2008–2012 five-year ACS data. The typical census data in USA is not available for 2012 

since it is collected in every ten years (i.e., 2000 and 2010). Boundaries of census tracts 

are generally defined by permanent, visible features, such as streets and roads according 

to the geographic areas reference manual by US Census Bureau. Some of this 

demographic information is applied as control variables in this research. Since some tracts 

extend beyond the boundary of Cincinnati, tracts which have caused large noticeable 

discrepancies are erased. After removing these tracts, there are 114 tracts in Cincinnati 

in 2012. 

Crime data in Cincinnati in 2012 is provided by the Cincinnati Police Department. 

There are 36770 geocoded crime incidents reported between January 2012 and 

December 2012. These crime records include the type of crimes, address, report time, 

location code such as “street”, “residential facility”, etc. This study selects street robbery 

data by the type of crime “robbery” and the location code “street”, and burglary data by 

the type of crime “burglary”. The crime data of this research includes 1050 incidents for 

street robberies and 3384 incidents for burglaries (Figure 3). Crime data of both street 
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robbery and burglary are aggregated to the tract level. There are 14 tracts that did not 

witness any street robbery or burglary in 2012. 

 

Figure 3. Street robbery and burglary in Cincinnati. 

Previous studies investigated the patterns of crimes on spatial boundaries through 

the proximity analysis (Kim & Hipp, 2018; Song et al., 2017; Song et al., 2013). They found 

that the curve of the crime density has the distance decay effect: The crime density peaks 

on or near the edge but drops rapidly and then keeps stable when moving away from the 

edge. This study applies the same approach to investigate whether the patterns of street 

robbery or burglary on boundaries of tracts in Cincinnati have the same decay pattern as 

previous research. The crime density is calculated by dividing the amount of street 
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robbery or burglary by the area of this region for every 50-meter increment. Figure 4 

shows that burglary and street robbery have a similar crime pattern: As the distance from 

the tract boundary increases, the crime densities of both street robbery and burglary 

decrease sharply, and then reach relatively stability. The crime density of burglary is 

nearly three times the crime density of street robbery because incidents of burglary are 

three times as many as incidents of street robbery. Both street robbery and burglary in 

this research match the crime decay pattern in previous studies.  

 

Figure 4. Patterns of street robbery and burglary on boundaries of tracts. 

 

3.2. Nightlight Satellite Data 
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In a city, nightlight satellite data hardly captures radiated emissions from the earth 

or the sun but captures lights emitted by the urban constructions or human activities. 

Sensors on nightlight satellites obtain the radiation intensity of the visible and near-

infrared waves emitted by the night surface. They detect the wavelengths at the range of 

0.5 to 0.9 μm (Elvidge et al., 2009; Iona et al., 2012). This range covers most waves in the 

visible bands (0.38 to 0.74 μm) and a few waves in near-infrared bands (0.74 to 1.4 μm). 

According to the black-body emission curves of the earth, the emission spectrum of the 

earth reaches the peak (nearly 17 w·cm-2·sr-1·um-1) in the wavelength of 10 μm and drops 

closed to 0 w·cm-2·sr-1·um-1 when the wavelength is lower than 5 μm. Therefore, during 

the nighttime, there is no radiation emission from the sun and the earth, and nightlight 

satellites capture only visible nightlights from humans.  

Nightlight satellite data can be derived from three sources: Defense Meteorological 

Satellite Program–Operational Linescan System (DMSP-OLS), the Visible Infrared Imaging 

Radiometer Suite sensor on the Suomi National Polar-orbiting Partnership Satellite (NPP-

VIIRS, hereafter VIIRS), and Luojia 1-01. DMSP-OLS releases data from 1992 to 2013 while 

VIIRS launched in 2012 and Luojia 1-01 launched in June 2018 still work. Sensors on these 

satellites apply the low-light imaging ability to capture the nightlight data at 7:30 pm 

(DMSP-OLS), 1:30 am (VIIRS), or 10:00 pm (Luojia 1-01). Luojia 1-01 has the highest spatial 

resolution (130m) compared with DMSP-OLS (30 arc seconds, nearly 1km) and VIIRS (15 

arc seconds, nearly 500m). However, Luojia 1-01 needs the ground control points to make 

on-orbit geometric calibration whereas the other two satellites have produced products 

that do not require the geometric calibration (Zhang et al., 2019). Additionally, unlike 
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DMSP-OLS and VIIRS which have established data that cover most countries in the world, 

so far Luojia 1-01 only releases data that covers very few regions out of China with a 

limited time range. Hence, Luojia 1-01 is not considered in this study. Moreover, DMSP-

OLS also have limitations. Since DMSP-OLS only records radiance from 10-10 to 10-8 w·cm-

2·sr-1·um-1 above the earth’s surface, when the visible and the near-infrared radiance on 

the earth's surface such as the bright cores of urban centers and large gas flare is over 10-

8 w·cm-2·sr-1·um-1, DMSP-OLS data has saturation. Thus, when applying DMSP-OLS in the 

urban study, researchers need several approaches to solve saturation, such as the EVI-

based method (Zhuo et al., 2015). Since VIIRS has a higher spatial resolution and no 

saturation compared with DMSP-OLS, VIIRS is more superior in mapping nightlight data 

(Elvidge, Baugh, Zhizhin, & Hsu, 2013; Li, Xu, Chen, & Li, 2013). For example, VIIRS can 

detect intra-urban variations in brightness in urban cores saturated in the DMSP-OLS 

imagery. VIIRS can also distinguish small point sources of nightlight at scales approaching 

1000 meters where DMSP-OLS captures only low luminance background light often 

indistinguishable from overglow (Small, Elvidge, & Baugh, 2013). Therefore, this study 

uses VIIRS nightlight data. Nightlight satellite data in this study is the suite of average 

radiance monthly composites in 2012 from the band Day/Night Band (DNB) in VIIRS. This 

data is available at National Centers for Environmental Information (NCEI) of National 

Oceanic and Atmospheric Administration (NOAA) The monthly data has screened out the 

impact of stray light, lightning, lunar illumination, and cloud-cover before taking the 

average of the daily data to obtain the monthly data. However, this monthly nightlight 

satellite data has not been filtered to exclude lights from the aurora, fires, boats, and 
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other temporal lights. Hence, nightlight satellite data in this study has undergone an 

outlier removal process to filter out fires and other ephemeral lights (Chen et al., 2015). 

Furthermore, since VIIRS nightlight data has a relatively high radiance in winter due to the 

blocking effect of vegetation canopy (Li, Elvidge, Zhou, Cao, & Warner, 2017; Zhao, Hsu, 

Cao, & Samson, 2017), the nightlight satellite image in December is clearer than other 

months to show street, industry, and business center. Hence, this study applies VIIRS 

nightlight imagery in December 2012. We project this data as NAD 1983 State Plane Ohio 

South coordinates system which is the projection of the study area, and then clip it to the 

spatial extent of the city of Cincinnati at a spatial resolution of 500 m. 

 

3.3. Edges Defined as Nightlight Gradients 

Since edges are defined as the change from one part to another (Patricia L 

Brantingham & Brantingham, 1993; Song et al., 2013), this study applies nightlight 

gradients—gradients of nightlight satellite pixels—to measure composite edges at the 

tract level in Cincinnati. The nightlight gradients are assigned by the maximum change of 

values from one nightlight cell to its neighbors measured as the degree level (0°–90°). A 

higher result value of a cell represents a higher difference to its neighbors. This study 

applies the Slope function in ArcMap to calculate the nightlight gradients. Figure 5 shows 

the result of nightlight gradients in Cincinnati. Cells which have high nightlight gradient 

values (over 10 degrees) are all located in areas surrounding CBD in downtown. The 

nightlight gradient value of the cell fully inside CBD is not far lower than values of cells in 

the boundary of CBD because the nightlight value in the center of CBD is far higher than 
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its surrounding neighbor cells. Since the analysis unit in this study is tract, this study 

introduces a new approach to back up the rationality to aggregate nightlight gradients at 

the tract level—calculating between variance and within variance of nightlight gradients 

at the tract level (Table 2). Since between variance is much larger than within variance, 

the difference of nightlights between tracts is larger than that within tracts. Hence, it is 

reasonable to aggregate nightlight gradients into the tract level in Cincinnati. 

 

Figure 5. Nightlight gradients in Cincinnati and details in/around CBD. 

Table 2. Nightlight Gradients in Cincinnati. 
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Analysis 

Unit 

Mean Area 

(km²) 

Between 

(Variance of Mean) 

Within 

(Mean of Variance) 

Unit 

Amount 

Tract 1.80 3.91 0.81 114 

 

3.4. Operationalization of Variables 

In this study, the tract is chosen as the analysis unit. Data employed in this study 

include criminal records, variables from census data, and nightlight gradients. Table 3 

provides the operationalization of variables, and Table 4 summarizes the descriptive 

statistic of these variables. The dependent variables are rates of street robbery and 

burglary at the tract level. Crime rates can be defined as the number of crime incidents 

by the residential population per 100,000 in a large unit like the county or per 1000 in a 

small unit like the block group (James & Smith, 2017; Osgood, 2000). Since the population 

size of tracts is close to the size of block groups and far smaller than the size of counties, 

this study defines street robbery rate and burglary rate as the number of crime incidents 

by the residential population per 1000 at the tract level. The average value of the crime 

rate of street robbery is 3.90, and the average value of the crime rate of burglary is 10.52. 

Figure 6 shows the distributions of street robbery rate and burglary rate in Cincinnati. The 

tracts with high street robbery rates are mainly located in the southern part of Cincinnati, 

while the tracts with high burglary rates are scattered throughout the city.  
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(a) 

 

(b) 

Figure 6. Distributions of (a) street robbery rate and (b) burglary rate in Cincinnati. 
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The independent variables include Nightlight Gradient and the control variables. 

Derived from VIIRS nightlight data, Nightlight Gradient is calculated by the average value 

of gradients of nightlight satellite pixels at each tract. Since some nightlight gradient cells 

are not fully inside a tract, this study assigns values of these cells at that tract by 

multiplying original values with the percentage of these cells that overlap the tract. A tract 

with a higher value of Nightlight Gradient represents more edges in this tract. Figure 7 

shows the distribution of nightlight gradients at the tract level. Tracts with larger values 

of Nightlight Gradient are in the downtown and its surrounding areas and UC main 

campus (the lower left of UC in Figure 7).  

 

Figure 7. Nightlight Gradients in Cincinnati. 
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To minimize the possibility of obtaining spurious results, the control variables are 

obtained from the 2012 ACS data in 2012 to measure residential instability, ethnic 

heterogeneity, and socioeconomic disadvantage in the social disorganization theory. 

First, the rental rate and the vacant rate are applied to measure residential instability 

(Peterson, Krivo, & Harris, 2000). The rental rate is measured by the percentage of 

occupied housing units that are renter-occupied at each tract, and the vacant rate is 

measured by the percentage of housing units that are vacant at each tract. Second, the 

percentage of the African-American population is used to measure ethnic heterogeneity 

since both robbery and burglary rates increase as it increases (Danzinger, 1976). Third, 

the low median household income, fewer people with the advanced degree level, and the 

high young male rate (aging 18–29) can represent socioeconomic disadvantage 

(HABERMAN & RATCLIFFE, 2015; L. Liu et al., 2018). Since the range of the median 

household income from the census data is far larger than ranges of the dependent 

variable and other variables, the effect of this variable for the dependent variable can be 

weakened. Thus, this study applies the natural logarithm of the median household 

income. The young male, aged between 18 and 29, is a common variable in past research 

(Braungart, Braungart, & Hoyer, 1980). The advanced degree level is commonly applied 

in previous research as well (Gibson, Zhao, Lovrich, & Gaffney, 2002; L. Liu et al., 2018). 

An increase in the percentage of the population with a college degree significantly 

reduces the robbery rate (Danzinger, 1976). This paper uses the percentage of the 

population with a bachelor's degree or above in population 25 years and over. Therefore, 

a tract is expected to have more street robberies and more burglaries if it has higher 
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residential instability (a higher vacancy rate and a higher rental rate), higher ethnic 

heterogeneity (a higher African-American rate), and higher socioeconomic disadvantage 

(a lower household income, fewer people with the high level of education, and a higher 

percentage of young males). Figure 2 summarizes how these control variables are 

associated with factors in the social disorganization theory. 

Table 3. All variables in negative binomial regression models (N = 114). 

Variables Description 

Dependent All variables are at Tract Level 

Street Robbery Rate Counts of reported street robberies per 1000 people 

Burglary Rate Counts of reported burglaries per 1000 people 

Independent All variables are at Tract Level 

Nightlight Gradient Mean of nightlight gradient values 

Vacancy Rate Percentage of vacant buildings among all buildings 

Rental Rate Percentage of rental buildings among occupied buildings 

African American Rate 
Percentage of the African American population among total 

population 

Household Income (Log) The natural logarithm of the median household income 

Advanced Degree Level 
Percentage of population with bachelor's degree or higher 

degree among population aged 25 or more 

Young Male Rate Percentage of 18 to 29 male among total population 

Table 4. Descriptive information of variables. 
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Variables Minimum Maximum Mean Standard Deviation VIF 

Crime Counts      

Street Robbery  0 50 9.32 9.68  

Burglary  0 158 30.03 24.61  

Dependent      

Street Robbery Rate 0 44 3.90 5.87  

Burglary Rate 0 32 10.52 6.73  

Independent      

Nightlight Gradient 0.32 11.48 1.75 1.98 1.78 

Vacancy Rate 0.02 0.71 0.22 0.13 2.25 

Rental Rate 0.10 1.00 0.59 0.21 4.03 

African American Rate 0.00 0.95 0.42 0.30 2.42 

Household Income (Log) 8.92 11.60 10.37 0.55 5.80 

Advanced Degree Level 0.03 0.83 0.30 0.21 2.42 

Young Male Rate 0.01 0.50 0.11 0.09 1.76 

 

 3.5. Models 

The negative binomial regression analysis is employed to investigate the relationship 

between nightlight gradients and rates of street robbery/burglary. Since Street Robbery 

Rate and Burglary Rate street robbery rate and burglary rate are both small, distributions 

of these crime rates do not follow normal or even symmetrical error distributions (James 
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& Smith, 2017; Osgood, 2000). Both Poisson regression models and negative binomial 

regression models are appropriate for the count data, but negative binomial regression 

models can also work for the overdispersed count outcomes (Hilbe, 2011; McCullagh, 

2019; Nelder & Wedderburn, 1972; Osgood, 2000). To test whether these two dependent 

variables are overdispersed, this study calculates the likelihood ratio test of alpha with 

the negative binomial regression model using Stata 13.0. The alpha coefficients are 

greater than zero and the likelihood ratio tests for alpha=0 are significant (Prob > chi2 in 

Table 5 are all lower than 0.01), which indicates that these two dependent variables are 

overdispersed. Therefore, this study applies negative binomial regression models. The 

probability distribution of the negative binomial regression model is shown in Equation 

(1) where y is the non-negative integer, λ is the mathematical expectation of Y, and  is a 

fuzzy parameter representing overdispersed. λ and  are larger than 0. 

𝑃𝑟(𝑌 = 𝑦)  =  
Γ(𝑦 + τ)

𝑦! Γ(τ)
(

τ

𝜆 + τ
)τ(

𝜆

𝜆 + τ
)𝑦 (1) 

Additionally, to test how Nightlight Gradient improves the performance of models to 

fit street robbery and burglary, this study also applies the negative binomial regression 

models that exclude Nightlight Gradient. Hence, with the use of the same control 

variables, there are four negative binomial regression models in this study. In Model 1, 

the dependent variable is Street Robbery Rate, and the independent variables are only 

control variables. In Model 2, the dependent variable is Street Robbery Rate, and the 

independent variables include Nightlight Gradient and control variables; In Model 3, the 

dependent variable is Burglary Rate, and the independent variables are only control 
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variables. In Model 4, the dependent variable is Burglary Rate, and the independent 

variables include Nightlight Gradient and control variables. Before running the model, this 

study applies IBM SPSS Statistic 25 to calculate the variance inflation factors (VIF) of these 

independent variables to check the collinearity. The VIF values of variables are far below 

10 (Table 4), so there is no evidence of collinearity problem. This study uses IBM SPSS 

Statistic 25 to estimate these four negative binomial regression models.  

This study uses the Akaike Information Criterion (AIC) and Incident Rate Ratios (IRRs) 

to evaluate the fitness of the models. The AIC is an estimator of the quality of each model 

relative to each of the other models (Hilbe, 2011). A smaller AIC value represents better 

fitness. The IRRs, calculated by exponentiating the coefficient of a model, interpret the 

effects of independent variables on the dependent variable. An IRR represents a 

percentage change in the dependent variable per one-unit increase in an independent 

variable (Cameron & Trivedi, 2013). IRRs larger than 1 indicate positive effects whereas 

IRRs lower than 1 indicate negative effects. Furthermore, this study applies the 2013 and 

2014 data in Cincinnati to validate the impact of composite edges by VIIRS nightlight data.  

 

4. Results  

Table 5 summarizes the results of the four negative binomial regression models. The 

fact that AIC values in Model 2 and Model 4 are lower than those in Model 1 and Model 

3 respectively suggests that nightlight gradients consistently improve the negative 

binomial regression models for both the street robbery rate and the burglary rate.  The 

IRRs in Table 5 show that nightlight gradients in Model 2 and Model 4 make a positive 
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impact on Street Robbery Rate and a negative impact on Burglary Rate, both of which are 

statistically significant under the alpha level of 0.05. It means that a higher average value 

of nightlight gradients in a tract increases the street robbery rate but decreases the 

burglary rate. Since gradients of nightlight pixels represent composite edges – the change 

from areas with more urban constructions and higher socioeconomic developments to 

areas with less urban constructions and lower socioeconomic developments, this result 

also interprets that composite edges measured by VIIRS nightlight data affect both street 

robbery and burglary statistically significantly. 

In each model, at least half of the control variables are statistically significant under 

the alpha level of 0.05. Vacancy Rate and Rental Rate make a positive impact on crime 

rates except for Rental Rate in Model 3. It represents that a tract with higher residential 

instability has higher rates of street robbery and burglary. African American Rate makes 

a positive impact on crime rates in all models, so a tract with higher ethnic heterogeneity 

is associated with a higher rate of street robbery and burglary. The negative impact of 

Advanced Degree Level and the positive impact of Young Male Rate in all models, and the 

negative impact of Household Income (Log) in Model 3 and Model 4, demonstrate the 

contribution of socioeconomic disadvantage to occurrence of street robbery and 

burglary. In short, except Rental Rate in Model 3 and Household Income (Log) in Model 1 

and Model 2, the impact of control variables on the street robbery and burglary replicate 

the results from previous research that crimes prefer a tract with higher residential 

instability, higher ethnic heterogeneity, and higher socioeconomic disadvantage (L. Liu et 

al., 2018; Rosenfeld & Fornango, 2014; Clifford Robe Shaw & McKay, 1942). 
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For the validation of the model, the 2013 and 2014 nightlight data together with the 

corresponding control variables are used to verify the fitness of the models. As is shown 

in Table 6, IRRs of Nightlight Gradient are relatively stable, and Nightlight Gradient 

consistently makes positive impacts (IRR > 1) on models of street robbery and negative 

impacts (IRR < 1) on models of burglary. The AIC values remain relatively stable for all 

three years. Additionally, in a parenthesis of Table 6, the first value is the AIC value before 

adding Nightlight Gradient, and the second value is the AIC value after adding Nightlight 

Gradient for the same dependent variables in the same year. Results of AICs show that 

Nightlight Gradient consistently improves the performance of models in all three years.  

Table 5. Results of negative binomial regression models. 

Variables 

  Incident Rate Ratios (IRRs) 

 

Street Robbery Rate 
 

Burglary Rate 

 

Model 1   Model 2 

 

Model 3   Model 4 

Nightlight Gradient 

 

  
1.11** 

   
0.90*** 

Vacancy Rate 

 

55.85*** 
 

22.82*** 
 

1.05 
 

2.20 

Rental Rate 

 

13.23*** 
 

5.02* 
 

0.74 
 

1.16 

African American Rate 

 

2.32* 
 

2.14* 
 

1.14 
 

1.17 

Household Income (Log) 

 

1.39 
 

1.04 
 

0.53** 
 

0.61** 
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Advanced Degree Level 

 

0.29* 
 

0.12** 
 

0.38** 
 

0.48* 

Young Male Rate 

 

20.60** 
 

21.21** 
 

4.94* 
 

5.92** 

(Constant) 
 

0.00 
 

0.19 
 

9423.42*** 
 

1483.40*** 

Alpha 

 

0.20 
 

0.17 
 

0.10 
 

0.08 

Prob > = chi2 
 

0.00 
 

0.00 
 

0.00 
 

0.00 

AIC 
 

450.10 
 

445.77 
 

667.33 
 

657.93 

Note: ⁎p < 0.05, ⁎⁎p < 0.01, ⁎⁎⁎p < 0.001. 

Table 6. Results of IRR of Nightlight Gradient and AIC reduction in 2012–2014. 

Variables 
 

Street Robbery Rate 
 

Burglary Rate 

 

2012 2013 2014 

 

2012 2013 2014 

IRR of Nightlight 

Gradient 

 

1.11** 1.41*** 1.24*** 
 

0.90*** 0.88** 0.95* 

AIC Reduction 
 

Yes 

(450.10 > 

445.77) 

Yes 

(464.36 > 

442.80) 

Yes 

(435.96 > 

421.99) 

 

Yes 

(667.33 > 

657.93) 

Yes 

(709.73 > 

707.21) 

Yes 

(662.57 > 

661.15) 

Note: ⁎p < 0.05, ⁎⁎p < 0.01, ⁎⁎⁎p < 0.001. AIC values are shown in the parentheses. 

 

5. Discussion 
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While this study has underscored the impact of composite edge effects derived VIIRS 

nightlight data in modeling crime at the tract level, the relatively low spatial resolution of 

500m makes it unsuitable for smaller units such as census block groups. Fortunately, 

Wuhan University has released Luojia 1-01 nightlight imageries with a high resolution of 

130m, which can be applied to block groups or even blocks. 

Although there are data sources such as census data and land use data that can also 

be applied to measure edges, nightlight satellite data still represents an attractive option. 

First, compared with census variables and land use data, nightlight satellite data can 

directly measure composite edges. Though land use data and census variables can 

measure physical edges and social edges respectively, it is hard to combine them to 

measure composite edges. It is because land use data are the category variables and 

census variables are the continuous variables. Additionally, so far no research provides 

the theoretical support for deciding the weights of each variable to measure composite 

edges. However, nightlight satellite data can directly capture the combination of physical 

edges (changes of urban constructions) and social edges (changes of socioeconomic 

developments). Second, nightlight satellite data can apply the measure of edges to 

geographic units and statistical analysis. Since values of land use data are category instead 

of continuous, scholars mainly used the proximity analysis to measure the impact of edges 

where different types of land use adjoin on levels of crime (Song et al., 2017; Song et al., 

2013). However, values of nightlight satellite data are countable, and thus nightlight 

satellite data can be aggregated to geographic units and work as a continuous variable in 

statistical models. Third, nightlight satellite data has a higher time resolution than land 
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use data which does not update frequently. For example, the latest land use data in the 

United States that the public can access is established in 2011, while nightlight satellite 

data updates yearly or monthly.  

Previous studies have specified that more edges contribute to more crimes (Patricia 

L Brantingham & Brantingham, 1975, 1978; Davison & Smith, 2002; Kim & Hipp, 2018). 

This is recognized by the positive impact (IRR > 1) of nightlight gradients on the street 

robbery rate in this study. Nevertheless, the negative impact (IRR < 1) of nightlight 

gradients on the burglary rate shows a contradictive conclusion. The different impacts 

may be explained by the typical location of these two crimes and the local characteristics 

of nightlights. Street robbery occurs on the streets, so areas with denser streets tend to 

have more street robberies. Since streetlights on streets still work at 1:30 am when the 

VIIRS satellite captures nightlight, nightlight satellite pixels covering more streets have 

higher values than pixels with fewer or no streets. Therefore, nightlight gradient values 

of cells with more streets surrounded by cells with fewer streets can be large, which 

represents that the sharp level of composite edges is high. This means that composite 

edges measured by nightlight satellite data are positively related to street robbery. 

Therefore, tracts with sharper composite edges should have more street robberies. In 

contrast to street robbery, according to the locational code of the burglary data, 3340 out 

of 3384 burglary incidents occurred within family zones or residential facilities. Nightlight 

gradients are low within residential areas but moderate along the edges (Table 1). 

Therefore, composite edges measured by nightlight satellite data are negatively related 

to burglary. Therefore, tracts with sharper composite edges should have less burglaries. 
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Besides the tract level, this study has also explored the effect of nightlight gradients 

on the street robbery rate and the burglary rate at the neighborhood level in Cincinnati. 

The patterns of street robbery and burglary also show the same distance decay pattern 

as the one in Figure 4 and as those from previous studies (Song et al., 2017; Song et al., 

2013), and between variance is also much larger than within variance. Using the same 

control variables at the neighborhood level, we find consistent results as those of tract 

level. We have also tested the 2013 and 2014 nightlight data, and they yielded consistent 

results like those of the 2012 data. This confirms that the models are robust across both 

the neighborhood level and the tract level and time periods. 

 

6. Conclusions  

This study represents the first attempt at introducing nightlight satellite data to 

measure composite edges in the criminology and assesses the impact of edges on 

different types of crimes. This study applies nightlight gradients — the maximum change 

from one nightlight satellite pixel to its neighbor pixels – to represent composite edges. 

With the use of VIIRS nightlight data in December, crime incidents, and the ACS data in 

2012, this study demonstrates the effect of composite edges on street robbery and 

burglary in Cincinnati after controlling residential mobility, ethnic heterogeneity, and 

socioeconomic disadvantage. Results of AICs in the negative binomial regression models 

reveal that nightlight gradients consistently improve the fitness of models of street 

robbery and burglary. Further, nightlight gradients affect the street robbery rate 

positively (IRR > 1) and the burglary rate (IRR < 1) negatively, both of which are statistically 
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significant under the alpha level of 0.05. This study also applies the 2013 and 2014 VIIRS 

nightlight data to validate the impact of composite edges. With the corresponding control 

variables, the 2013 and 2014 nightlight data yielded consistent results like those of the 

2012 data based on AICs and IRRs. The different effects of nightlight gradients on street 

robbery and burglary are attributed to their contrasting spatial distributions. According 

to the crime data in this study, street robbery occurred on the streets whilst burglary 

incidents occurred within family zones or residential facilities. The robust performance of 

models underscores that nightlight gradients are a reasonable measure of composite 

edges. Since nightlight satellite data is relatively easy to access globe wide, it can play a 

vital role in modeling crime, especially in areas where quality census data and land use 

data are not available.  
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