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Abstract

Wireless camera networks are ubiquitously deployed in various distributed sensing applications.

The basic functions of each sensor node include video capture, video encoding or local video pro-

cessing, and data transmission. The process of video analysis is implemented either in the central

server or in the sensor node. Automatic video analysis can efficiently extract useful information

from a huge amount of videos without human intervention. Object detection is the first and the

most essential step of automatic video analysis. Thanks to abundant information provided by

cameras and the development of computer vision techniques, automatic video analysis in wireless

distributed systems is applied further. However, traditional network quality measures, such as QoS

and QoE, do not necessarily reflect the quality of automatic video analysis in wireless camera net-

works. The overall goal of this dissertation is to propose new quality measures that could reflect

the quality of automatic video analysis in wireless camera networks and to design efficient video

processing and encoding schemes for wireless cameras that could boost the quality of automatic

video analysis.

The impact of lossy compression on object detection is systematically investigated. It has been

found that current standardized video encoding schemes cause temporal domain fluctuation for

encoded blocks in stable background areas and spatial texture degradation for encoded blocks in

dynamic foreground areas of a raw video, both of which degrade the accuracy of object detec-

tion. Two measures, the sum-of-absolute frame difference (SFD) and the degradation of texture

(TXD), are introduced to depict the temporal domain fluctuation and the spatial texture degrada-

tion in an encoded video, respectively. A model of object detection quality on compressed videos

is established based on these two measures. Then we have proposed an efficient video encoding

framework for boosting the accuracy of object detection for distributed sensing applications. The

proposed encoding framework is designed to suppress unnecessary temporal fluctuation in stable



background areas and preserve spatial texture in dynamic foreground areas based on the two mea-

sures, and it introduces new mode decision strategies for both intra and inter frames to improve the

accuracy of object detection while maintaining an acceptable rate-distortion performance.

Video analysis at network edges in a distributed manner can alleviate bandwidth pressure, en-

able better real-time response and achieve higher system reliability. We investigate the impact of

imaging quality, such as noise and blur, on the performance of distributed in-network video analy-

sis. We propose a no-reference regression model based on a bagging ensemble of regression trees

to predict the accuracy of object detection using observable features in an image. Based on the

estimation of detection performance, we propose a quality adjustment framework to provide sat-

isfactory object detection performance on embedded cameras. Key components of the framework

include a blind regression model for predicting the performance of object detection and two classi-

fiers for determining the type of distortion in an image. The proposed framework achieves accurate

estimations of both image quality and image distortion types with low computational complexity

and it can effectively enhance the performance of object detection on embedded cameras.
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Chapter 1

Introduction

Wireless camera networks are ubiquitously deployed in various distributed sensing applications

such as surveillance, traffic monitoring, and environmental monitoring. Automatic video analysis

can efficiently extract useful information from a huge amount of videos collected by these sensing

applications without human intervention. In current wireless camera networks, each sensor node

is usually equipped with an embedded camera, a wireless transceiver, and a battery supply[10].

The basic functions of each node include video capture, video encoding or local video processing,

and data transmission. A typical automatic video analysis in wireless camera networks includes

the following stages: object detection, classification of objects, tracking, understanding and de-

scription of behaviors, and final human identification [11]. Object detection is the first and the

most essential step of the entire procedure, because detecting objects provides a focus of attention

for later processes such as tracking and behavior analysis. After detection, the goal of tracking is

to estimate the states of the target in the subsequent frames, given the initial state (e.g., position

and extent) of a target object in the first image. Behavior understanding involves the analysis and

recognition of motion patterns, and the production of high-level description of actions and interac-

tions. Final human identification can be treated as a special behavior-understanding task. Object

detection and tracking could be done automatically, and understanding of behaviors and other

high-level visual tasks are still application dependent and require much human/user involvement
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or feedback. Thanks to abundant multimedia information provided by camera and the develop-

ment of computer vision and related techniques, automatic video analysis in wireless distributed

systems is applied further and wider. However, traditional network quality measures, such as QoS

(Quality-of-Service) and (Quality-of-Experience), do not necessarily reflect the quality of auto-

matic video analysis in wireless camera networks. There is a lack of solutions for provisioning the

quality of video analysis in wireless camera networks. The overall goal of this dissertation is

to propose new quality measures that could reflect the quality of automatic video analysis in

wireless camera networks and to design efficient video processing and encoding schemes for

wireless cameras that could boost the quality of automatic video analysis.

Internet

Semantic data 
transmission

Video capture, 
Local processing

Video capture, 
video coding and 

transmission

Centralized processing, 
and data fusion

Figure 1.1: Typical architecture of wireless camera networks

The typical architecture of wireless camera networks is shown as Figure 1.1. The process of

video analysis for different applications is implemented either in the central server or in the cam-

era sensor node, depending on their computational capability, energy supply and the purpose of

applications. In the right implementation, raw videos acquired by camera sensors are usually pre-

processed, encoded, and compressed before being delivered to the base station [12]. A powerful

central server or a data center at the base station can fully utilize its powerful computing capability

and perform data fusion from multiple cameras to obtain much better understanding of the surveil-

lance videos than individual cameras [11, 13]. In the left implementation, wireless camera node

can perform object detection and object tracking locally, and communicate semantic information

with other nodes in real time for collaboration. In this dissertation, we address the modeling of
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video quality and its applications for both types of implementations.

1.1 Background

1.1.1 Image and video quality

Digital images are subject to a rich variety of distortions during acquisition, processing, compres-

sion, storage, transmission and reproduction, any of which may result in a degradation on image

quality. Since human eyes usually are the ultimate receivers in most image related applications, the

only correct method of quantifying visual image quality is through subjective evaluation. However,

subjective evaluation is usually too inconvenient, time-consuming and expensive. Image Quality

Assessment (IQA) is to develop quantitative measures that can objectively predict perceived image

quality [14].

IQA can be classified into three categories according to the availability of an original image:

1). Full-Reference (FR), meaning that a complete reference image is assumed to be known; 2).

Reduced-Reference (RR), meaning that reference image is only partially available in the form of

a set of extracted features; 3). No-Reference (NR) or ”blind”, meaning that the reference image is

not available, which is common in many practical applications.

Full-Reference IQA

The most widely used full-reference quality metric is the mean squared error (MSE), computed by

averaging the squared intensity differences of distorted and reference image pixels, along with the

related quantity of peak signal-to-noise ratio (PSNR). These have many attractive features because

they are simple to calculate, have clear physical meanings, and are mathematically convenient in

the context of optimization [15]. However, PSNR is not good representative for perceived visual

quality.

Taking advantage of known characteristics of the human visual system (HVS) in recent years,

Structural Similarity (SSIM) index [14] is proposed. Under the assumption that human visual

3



perception is highly adapted for extracting structural information from a scene, the authors intro-

duce an alternative complementary framework for quality assessment based on the degradation

of structural information. The framework separates the task of similarity measurement into three

independent comparisons: luminance, contrast and structure. The three components are calculated

in the local windows first, then a mean SSIM index is used to evaluate the overall image quality.

In summary, SSIM metric is simple to compute and consistent with perceptual quality.

Over several years, numerous variations of IQA algorithms which estimate quality based on

structural similarity and/or structural degradation have been proposed. In [16], a complex wavelet

SSIM version which adds robustness to small affine transformations of the distorted image is pro-

posed. In [17], a feature similarity index is proposed based on the fact that HVS understands an

image mainly according to its low-level features, which include the phase congruency and the im-

age gradient magnitude. Another way to measure changes in structure is to compute changes in

local image gradients. In [18], contraststructural changes, which can be effectively captured by

gradient similarity, and luminance change in image are combined together to effectively assess

image quality. In [19], the global variation of gradient magnitude similarity based local quality

map for overall image quality prediction is proposed.

Many IQA algorithms share a common two-stage structure: local quality/distortion measure-

ment followed by pooling. While significant progress has been made in measuring local image

quality/distortion, the pooling stage is often done in straightforward ways. In [20], the informa-

tion content weighting, which can be estimated in units of bit using advanced statistical models of

natural images, for perceptual image quality assessment is explored. The visual saliency/ attention

models can provide guides (weights) during pooling stag of IQA algorithms. In [21], an exhaustive

statistical evaluation is conducted to justify the added value of computational saliency in objective

image quality assessment, using 20 state-of-the-art saliency models and 12 best-known IQAs.
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No-Reference and Reduced-Reference IQA

Although FR IQA provides a useful and effective way to evaluate quality differences, in many

applications the reference image is not available or only limited information is available. Thus RR

and NR metrics are highly desirable.

In the application of RR IQA, for example, real-time video quality monitoring over multimedia

communication networks, feature extractor is applied to the reference visual signal at the sender

side first. Then, the extracted features are transmitted to the receiver as side information to eval-

uate the quality of the distorted signal [22, 23]. In [24], an RR IQA method based on a set of

extracted statistical features, which consider both primary visual information and unpredictable

uncertainty with negligible transmission overhead, from the perspective of screen content images

visual perception is proposed.

Since natural images have strong statistical regularities across different visual content, natural

scene statistic (NSS) models are used to capture those statistical properties for NR or blind IQA. In

[25], a simple Bayesian inference model to predict image quality scores is proposed, given exacted

features from NSS model of discrete cosine transform (DCT) coefficients. In [26], an effective

no-reference quality assessment of contrast distorted images based on the principle of NSS using

support vector regression is proposed.

Recently, deep learning techniques are also applied to NR IQA. In [27], the blind IQA is

reorganized as a five-grade classification problem to facilitate learning the qualitative descriptions

given by humans via deep learning, and then a quality pooling is applied to produce numerical

outputs. In [28], a multi-task end-to-end optimized deep neural network, which consists of two

sub-networks-a distortion identification network and a quality prediction network-sharing the early

layers, for blind image quality assessment is proposed.

1.1.2 Automatic image and video analysis

Intelligent video surveillance have been substantially growing from practical needs in the past

decade, being driven by a wide range of applications. This section summarizes the state-of-the-art,
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and various practical systems for intelligent video surveillance.

The prerequisites for intelligent video surveillance using a single camera include the following

stages: moving objects detection, object tracking, understanding and description of behaviors, and

object recognition and identification [11]. In order to extend the surveillance area and overcome

occlusion, fusion of data from multiple cameras is needed. This fusion can involve all the above

stages. We classify these stages by low level, middle level and high level. Among them, moving

objects detection is the low level, objects tracking is middle level, understanding and description

of behaviors, and object recognition and identification are high level.

Automatic video analysis techniques

Moving objects detection aims at segmenting regions corresponding to moving objects from the

rest of an image. The process of moving objects detection usually involves environment modeling,

motion segmentation, and object classification, which intersect each other during processing. The

active construction and updating of environmental models are indispensable to visual surveillance.

Motion segmentation in image sequences aims at detecting regions corresponding to moving ob-

jects such as vehicles and humans. At present, most segmentation methods use either temporal

or spatial information in the image sequence. Three main categories includes temporal differenc-

ing, background subtraction and optical flow. Temporal differencing makes use of the pixel-wise

differences between two or three consecutive frames in an image sequence to extract moving re-

gions [29]. Background subtraction detects moving regions in an image by taking the difference

between the current image and the reference background image in a pixel-by-pixel fashion. Gaus-

sian Mixture Model (GMM) is a popular method [30]. Optical flow motion segmentation uses

characteristics of flow vectors of moving objects over time to detect moving regions in an image

sequence. However, most flow computation methods are computationally complex and very sen-

sitive to noise, and cannot be applied to video streams in real time without specialized hardware

[31]. Different moving regions may correspond to different moving targets in natural scenes. To

further track objects and analyze their behaviors, it is essential to correctly classify moving objects.
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After moving object detection, surveillance systems generally track moving objects from one

frame to another in an image sequence. The tracking algorithms usually have considerable inter-

section with motion detection during processing. Tracking methods are divided into four major cat-

egories: region-based tracking, active-contour-based tracking, featurebased tracking, and model-

based tracking. Tracking over time typically involves matching objects in consecutive frames using

features such as points, lines, blobs or Histogram of Oriented Gradients (HOG) [32]. Useful meth-

ods for tracking include the Kalman filter [33], the hidden Markov models [34], Condensation

algorithm [35] and Particle filter[36].

On the other hand, collaborative object tracking using multiple-camera is also explored in some

recently works. For example, a new collaborative tracking algorithm is put forward to track mul-

tiple objects in video streams in [37]. A framework of a collaborative multiple-camera tracking

system for seamlessly object tracking across fixed cameras in overlapping and non-overlapping

fields of view (FOVs) is presented in [38]. An approach to track several subjects from video se-

quences acquired by multiple cameras in real time is presented in [39]. Pedestrian re-identification

is a difficult problem due to the large variations in a person’s appearance caused by different poses

and viewpoints, illumination changes, and occlusions. A new approach that takes the video of

a walking person as input and builds a spatiotemporal appearance representation for pedestrian

re-identification is proposed in [40].

After successfully tracking the moving objects from one frame to another in an image sequence,

the problem of understanding-object behaviors from image sequences follows naturally. Behavior

understanding involves the analysis and recognition of motion patterns, and the production of high-

level description of actions and interactions. Dynamic time warping [41], finite-state machine [42]

and hidden Markov model [43] are useful methods. Recognition and identification of objects,

such as human beings, vehicles, or animals, can be treated as a special behavior-understanding

problem. Human face and gait are now regarded as the main biometric features that can be used

for personal identification in visual surveillance systems. Bags-of-keypoints model [44] and deep

learning model [45] are most popular recognition methods in recent years.
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Distributed embedded cameras

Most of vision-computing techniques require powerful processors and large memory resources if

they are not customized for implementation in distributed smart camera platforms [46]. Most of

the platforms utilize background subtraction, frame differencing, and edge detection as the main

in-network processing techniques [47]. For example, Meerkats [48], Cyclops [49], MeshEye [50],

and MicrelEye [51] perform background subtraction and frame differencing as object detection

mechanisms. MicrelEye takes a fixed background frame at the beginning and then performs pixel-

by-pixel differencing between each frame and the background frame. Cyclops use moving average

filters to smooth background changes. Firefly Mosaic [52] uses a Gaussian Mixture Model (GMM)

to separate foreground from background, and it also support face detection function. Edges could

be considered as boundaries between dissimilar regions in an image. Computation of edges are

fairly cheap and recognition of an object is easy since it provides strong visual clues. Cyclops

supports Sobel libraries to perform edge detection. Delay incurred by edge detection as a function

of image size is investigated for XYZ platform [53].

In [54], CITRIC, a distributed smart camera platform, is introduced and used to perform dis-

tributed object recognition. A wireless embedded smart-camera system is presented for cooper-

ative object tracking and detection of composite events spanning multiple camera views in [55].

Each camera is a CITRIC mote consisting of a camera board and a wireless mote. Lightweight

and robust foreground detection and tracking algorithms are implemented on the camera boards.

In [56], adaptive methodologies are introduced for energy-efficient object detection and tracking

with battery-powered embedded smart cameras, which is also based on CITRIC platform.

There are many commercial applications of intelligent video surveillance. UTC Fire Safety

and Security (former GE Security) offers integrated security management, intrusion and property

protection, and video surveillance [57]. IBM smart surveillance system (S3) can provide not only

the capability to automatically monitor a scene but also the capability to manage the surveillance

data, perform event based retrieval, receive real time event alerts through standard web infras-

tructure and extract long term statistical patterns of activity [58]. FLIR Intelligent Transportation
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Systems (ITS) provide unique, field-proven solutions help keep vehicles, pedestrians, and bicycles

moving safely and smoothly [59]. For example, the TrafiCam series combines a CMOS camera

and a video detector in one, which is used for detection and monitoring of moving and stationary

vehicles at signalized intersections. C-Walk / SafeWalk product can improve safety and efficiency

at signalized intersections and pedestrian crossings. AID Boards product can integrate automatic

incident detection, data collection, recording of pre and post incident image sequences and stream-

ing video in one board. DAHUA security can provide illegal behavior detecting and recording in

road intersection [60].

1.1.3 Image and video quality for automatic analysis

The use of video and image analytics to automatically detect and track object, identify activities

and anomalous behaviors is very important. The accuracy of video and image analytics depends

on the input video quality. However, the video quality evaluated by automatic analysis may be

different with the perceptual quality perceived by human being.

Quality of automatic analysis on compressed video

In [61], one method of predicting accuracy for pedestrian detection on compressed video without

actually executing detection is proposed. The video dataset is transcoded 18 times, each time using

a unique quantization parameter (QP), which ranges from 15 to 55. The accuracy prediction has

three components: texture descriptor extraction, spatial and temporal averaging and random forest

regression. The spatial texture descriptors are used to capture video quality degradation caused by

video compression. In [62], a system to predict videos optimal compression rate for the task of

activity recognition is proposed. Videos are encoded into five different compressed versions (five

constant QPs: 20, 26, 32, 38, 44) in H.264 format. The system starts with feature extraction from

all compressed versions of the input video, and then applies the visual word assignment pipeline

to assign words to each descriptor. The resulting histogram represents the video. After that, the

histogram is input to the trained Random Forest to receive a classification result on whether the
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detection performance is success or failure for the given QP value. The final step is to collect the

classification results from the previous step and select the optimal QP.

In [63], an importance map that can guide bit allocation to areas that are important for object

detection for HEVC video encoding standard is created by using the initial convolutional layers

of a state-of-the-art object detector. Similarly in [64], the impact of both near-lossless and lossy

compression of feature data using HEVC standard on collaborative object detection is studied. The

relationship between human, object detection, and vision related application accuracy and video

coding rate mainly controlled by QP is explored and applied in rate allocation for video analysis

in mobile surveillance networks [65], in joint source and channel coding for human detections in

a mobile surveillance cloud [66], in license plate recognition and medical diagnosis [67], and in

edge computing for cooperative video processing in multimedia IoT systems [68].

In summary, all these works focus on exploring the quality of video analysis on compressed

video and they try to find the optimal compression rate for multimedia communication.

Quality of automatic analysis without compression

In [69], a detection probability model to estimate the quality of target detections by integrating the

target location uncertainty over polygonal domains, which represent the fields of view (FOV) of

the cameras, is proposed. Quadrature-based integration is combined with importance sampling to

provide accurate quality estimations while reducing the computational cost. This detection proba-

bility models the miss-detection rate and accounts, over time, for the number of undetected targets

that are within the fields of view FOV. In [70], image quality assessment for face recognition is

investigated. First, a number of techniques that measure image quality factors namely, contrast,

brightness, focus, sharpness, and illumination, are evaluated. Second, via a set of experiments

measuring the sensitivity of each matric to quality change, the most practical measure(s) for each

quality factor are selected. Finally, a novel face image quality index that combines the five afore-

mentioned quality factors is proposed.

In [71], the impact of common image distortions on infrared face recognition is explored,
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Natural Scene Statistics (NSS) is used to detect degradation of infrared images, and a method for

aggregating perceptual quality-aware features to improve the identification rates is proposed. In

[72], the degradation in performance of face detector is quantified when human-perceived image

quality is degraded by distortions commonly occurring in capture, storage, and transmission of

facial images, including noise, blur, and compression. In [73], a framework for predicting the

performance of a vision algorithm given the input image or video so as to maximize the algorithms

ability to provide the desired output is proposed. The input image/video quality is measured by a

combination of objective image quality measures.

There are a series of works about video and image quality of target detection, target tracking

and event detection for airborne reconnaissance applications by the same group from Charles Stark

Draper Laboratory. In [74], the applicability of the National Imagery Interpretability Ratings Scale

(NIIRS) to an automated target detection algorithm is examined. The findings indicate that NIIRS

is not a good predictor of target detection performance. In [75] and [76], the impacts of video

frame rate and two spatial factor (noise and spatial resolution) on the tracker performance are

investigated, respectively. In [77] and [78], the video quality models, which rest on a suite of

image metrics computed in real-time from the videos, are proposed for enhanced event detection.

Salient object detection or saliency estimation for common detection is also investigated in

[79, 80, 81]. For example, a novel quality constrained co-saliency estimation method for common

detection is proposed in [79]. A quality-based dynamic feature selection method for improving

salient object detection is introduced in [80]. A quality metric to measure the focus of the detected

object in quad-copters is proposed in [81].

In general, automatic video and image analysis techniques have the ability to provide a success-

ful output dependent on the input characteristics. Unfortunately, the acceptable input variability

for analysis techniques is not known a priori. Recent investigations have shown that human ob-

servers and automated processing methods are sensitive to different aspects of image quality. The

Detection quality model in [69] is the probability of a target to be detected within the FOV of

a camera without considering the impact of actual image or video captured quality on detection
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performance. The proposed IQAs in [70, 71, 72] are specified to face recognition and face de-

tection. The series of works in [74, 75, 76, 77, 78] are specified to video and image quality for

airborne reconnaissance applications. The quality model in [73] is realized for object tracking,

however, it does not consider the comprehensive image and video distortions. These literatures

either propose some specific video and image quality models for certain applications, such as, face

detection, recognition and airborne reconnaissance, or some video quality models for tracking and

event detection. There are still lack of general image and video quality models on comprehensive

distortions for automatic video and image analysis.

1.2 Overview of research objectives

The impact of video quality on object detection and its applications in wireless camera networks

are systematically investigated in this dissertation.

Firstly, in many distributed wireless surveillance applications, compressed videos are used for

performing automatic video analysis tasks. The accuracy of object detection, which is essential for

various video analysis tasks, can be reduced due to video quality degradation caused by lossy com-

pression. We introduces a video encoding framework with the objective of boosting the accuracy

of object detection for wireless surveillance applications. The proposed video encoding framework

is based on systematic investigation of the effects of lossy compression on object detection. It has

been found that current standardized video encoding schemes cause temporal domain fluctuation

for encoded blocks in stable background areas and spatial texture degradation for encoded blocks

in dynamic foreground areas of a raw video, both of which degrade the accuracy of object detec-

tion. Two measures, the sum-of-absolute frame difference (SFD) and the degradation of texture

in 2-D transform domain (TXD), are introduced to depict the temporal domain fluctuation and the

spatial texture degradation in an encoded video, respectively. The proposed encoding framework

is designed to suppress unnecessary temporal fluctuation in stable background areas and preserve

spatial texture in dynamic foreground areas based on the two measures, and it introduces new mode
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decision strategies for both intra and inter frames to improve the accuracy of object detection while

maintaining an acceptable rate-distortion performance. The quality model for object detection on

compressed video is introduced in Chapter 2, and the efficient video encoding for object detection

is presented in Chapter 3.

Video analysis at network edges in a distributed manner can alleviate bandwidth pressure, en-

able better real-time response and achieve higher system reliability. We investigate the quality of

distributed in-network video analysis. The accuracy of automatic analysis methods relies on the

quality of images that are processed, which could be degraded by factors such as noise and blur

during the imaging process. It is therefore essential to predict the quality of images as evaluated

by automatic analysis algorithms and to understand the types of distortion in an image, such that

measures could be taken to enhance image quality accordingly. We proposes a quality adjustment

framework to provide satisfactory object detection performance on embedded cameras. Key com-

ponents of the framework include a blind regression model for predicting the performance of object

detection and two classifiers for determining the type of distortion in an image. A video data set is

constructed that considers different factors related to quality degradation in the imaging process.

The performances of common low-complexity object detection algorithms are obtained for the data

set. Based on the data set and utilizing features that can be easily extracted from an image, a regres-

sion model and two classifiers are trained and tested. The proposed framework achieves accurate

estimations of both image quality and image distortion types with low computational complexity

and it can effectively enhance the performance of object detection on embedded cameras. The

quality model of object detection for local processing is introduced in Chapter 4, and the quality

adjustment framework to provide satisfactory object detection performance on embedded cameras

is presented in Chapter 5.
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Chapter 2

Modeling of object detection quality on

compressed videos

Wireless embedded camera sensors are ubiquitously deployed in many distributed sensing applica-

tions such as surveillance, environmental monitoring, and remote health care. In many distributed

wireless surveillance systems [47], camera sensors report their video observations to a central base

station through wireless communication, the typical architecture is shown as Figure 2.1. Due to

the low computing power and limited energy and bandwidth on embedded cameras, raw videos

acquired by camera sensors are usually preprocessed, encoded, and compressed before being de-

livered to the base station [10]. A powerful central server or a data center at the base station can

fully utilize its powerful computing capability and perform data fusion from multiple cameras to

obtain much better understanding of the surveillance videos than individual cameras [11, 13]. A

typical automatic surveillance system includes the following stages: object detection, classifica-

tion of objects, tracking, understanding and description of behaviors, and final human identifica-

tion [11]. Object detection is the first and the most essential step of the entire procedure, because

detecting objects provides a focus of attention for later processes such as tracking and behavior

analysis. While it is inevitable to introduce quality degradation in lossy compression, encoders

should properly control video quality to maintain satisfactory performance for object detection.
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Figure 2.1: Typical architecture of distributed wireless surveillance systems

Various video quality assessment (VQA) measures have been applied to monitor and control

video quality. The industrial standard measure Peak-Signal-to-Noise-Ratio (PSNR) characterizes

the Mean Square Error (MSE) between a compressed image and an original image, which has

been applied in rate-distortion optimization for various video encoders. A lot of VQA studies

have aimed at modelling the quality of videos as perceived by human users, including the classical

measures like Structural Similarity (SSIM) [14] and VQM [82], and several recent models such as

MOVIE [83], STRRED [84], and V-CORNIA [85].

The video quality as judged by an automatic vision algorithm, however, is not necessarily

sensitive to the same factors that drive human perceptions. Perceptual image quality assessment

solutions usually emulate known characteristics of the human visual system (HVS), such as the

contrast sensitivity and the visual attention mechanisms. The contrast sensitivity mechanism means

that the HVS is sensitive to the relative luminance change rather than the absolute luminance

change [14]. The visual attention mechanism is that only a local area in the image can be perceived

with high resolution by the human observer at one time instance at typical viewing distances, due

to the foveation feature of the HVS [86]. On the other hand, automatic analysis methods run
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by machines can “perceive” the absolute luminance change precisely and have a better global

“view”. For example, the problem of evaluating motion imagery quality for tracking in airborne

reconnaissance systems was studied in [75]. It has been found that automated target detection

algorithms are less sensitive to spatial resolution than humans, but factors such as jitter in the

temporal domain, texture complexity, edge sharpness, and level of noise have a strong effect on

the performance of target detection. The study in [75] focused on evaluating the quality of raw

videos without distortion introduced by compression. It is also worthwhile to investigate how

lossy compression can affect the accuracy of object detection. Studying this problem can provide

insight on the design of encoders to improve the accuracy of object detection under rate constraints.

The goal of this chapter is to build a new video quality model to estimate the performance

object detection using parameters that could be easily obtained in the encoding process, based on

which video encoders could be adjusted to enhance the accuracy of object detection. To achieve

this goal, we establish a distorted video database by applying several object detection algorithms

on a variety of videos that are encoded using different parameters. From statistical analysis results,

we construct a parametric model to predict the accuracy of object detection on compressed videos

in relative to uncompressed raw videos.

2.1 Description of dataset and tests

A distorted video database was constructed to study the impact of lossy compression on the per-

formance of object detection. Eight video sequences with different spatial and temporal details

were chosen. The snapshots of these videos are shown in Figure 2.2. Among them, container, GR

and GRHD [87] are typical test videos for traffic monitoring, hall, horizontal and overlook [88]

are indoor scenes, and people and vehicle [89] are outdoor scenes. The open source H.264/AVC

encoder x264 [90] was used to compress the raw videos, and compression settings are summarized

in Table 2.1. Each raw video was compressed using 19 different QPs ranging from 22 to 40, which

resulted in a total number of 152 compressed videos.

16



(a) container (b) GR (c) GRHD (d) hall

(e) horizontal (f) overlook (g) people (h) vehicle

Figure 2.2: Snapshots of video sequences

Table 2.1: Video compression parameters

Encoder x264 Resolution CIF (352×288)
Frame rate 25 Duration 20 sec

GOP structure IPPP GOP size 20
Rate control constant QP QP range 22-40

Object detection algorithms can be classified into two main groups: optical flow and back-

ground subtraction [91, 11]. Background-subtraction-based object detection algorithms attract the

most attention due to their high accuracy and moderate complexity. As suggested in [92], back-

ground subtraction algorithms can be summarized into several categories based on their principles.

Three algorithms from different categories were selected to be executed on the compressed videos:

the GMM algorithm [93] from the statistical category, the GMG algorithm [94] from the non-

parametric category, and the ABL algorithm [92] from the basic category.

It is unlikely to have prior knowledge on what object detection algorithm will be used by a

certain application. Therefore, it is hard to estimate the absolute accuracy of object detection at the

encoder side. We propose to estimate the relative performance of object detection on compressed

videos in comparison to uncompressed raw videos. Object detection results from the raw videos
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are regarded as ground truth, and results from the compressed videos are algorithm result. Recall

and Precision are common metrics to evaluate the performance of object detection [95]. Recall

denotes the percentage of detected true positive pixels compared with the total number of true

positive pixels in the ground truth, and Precision denotes the ratio of detected true positive pixels

to the total number of pixels detected in the algorithm result, which are given by:

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

(2.1)

where TP, FN, FP stand for the amount of true positive pixels, false negative pixels, and false

positive pixels, respectively. Since Recall and Precision selectively assess the level of missing TP

and mistaking TP, it is hard to evaluate the performance of algorithms using one of these metrics

alone. Therefore, the overall performance of detection algorithms could be measured by their

harmonic mean F1 [96], which is given by:

F1 = 2 · Recall · Precision
Recall + Precision

. (2.2)

2.2 Proposed quality model

A typical automatic vision system includes the following stages: object detection, classification of

objects, tracking, understanding and description of behaviors, and final human identification [11].

Object detection is the first and the most essential step of the entire procedure, because detecting

object provides a focus of attention for later processes such as tracking and behavior analysis.

Based on the definition of Recall and Precision, the accuracy of object detection is related to TP,

FN, and FP, and the union of TP and FN is the ground truth, a constant value if given the raw

video and the detection algorithm. Therefore, it is sufficient to characterize the relative object

detection performance of a compressed video by estimating the average values of FP and FN over

different detection algorithms. To enable such estimation, in the following analysis, we consider
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Figure 2.3: An example of temporal fluctuation in background

the scenario that a coarse-grained classification of foreground and background MBs can be done

in the encoder side. A simple frame differencing method was applied before encoding to label

coarse-grained foreground and background MBs in our distorted video database.

2.2.1 Estimating false positive

Unlike human beings that can easily extract and focus on a moving object from a blurred back-

ground, the performance of computer vision algorithms can be affected by the quality of the back-

ground. The background should be stable in the temporal domain to facilitate object detection;

however, the procedure of video coding might introduce temporal fluctuations of the background

that can cause FP. We take the traffic video GR as an example to demonstrate the variation of a

specific pixel in the background. The center of the blue circle in Figure 2.2 (b) indicates the lo-

cation of this background pixel. Figure 2.3 shows the intensity of this pixel in the encoded video

and the original video in the temporal domain. Figure 2.3 also displays the detection result for

this pixel using impulses of black line, where 1 indicates FP and 0 is correct. There is not much

fluctuation in the intensity of the pixel in the original video, but there are several sharp changes of

the intensity in the encoded video. When the intensity in the encoded video fluctuates intensively,
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Figure 2.4: The trends of FP vs. SFD

it often causes FP. This situation occurs commonly in our distorted video database.

To describe the temporal fluctuation of a background, we introduce SFD, the Sum-of-absolute

Frame Difference in MB unit between the current frame and the previous frame, which is given by:

SFD =

i,j=16∑
i,j=1

|mt(i, j)−mt−1(i, j)|, (2.3)

where mt(i, j) is the reconstructed pixel value at location (i, j) in an MB of the current frame and

mt−1(i, j) is the reconstructed pixel value at the same location in the corresponding MB of the

previous frame.

To establish statistical relationship between SFD and FP, the FP and SFD values were recorded

for constant background MBs in our entire dataset. The values of FP were obtained using the

aforementioned three different object detection algorithms. Analysis of Variance (ANOVA) was

conducted to the pairs of FP and SFD, where a small p-value (p ≤ 0.01) means significant correla-
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(a) (b) (c)

Figure 2.5: An example of texture degradation

tion [97]. The resulting p-values are very close to 0 and much smaller than 0.01, indicating that FP

is closely associated with SFD. For each object detection algorithm, the average value of FP over

all the background MBs were normalized based on x′ = (x−min(x))/(max(x)−min(x)). The

relationships between FP and SFD for the three detection algorithms are similar, and the averages

for the three algorithms are shown in Figure 2.4. To provide a better view, this figure only displays

the results under 7 different QPs.

From Figure 2.4, we can find that when SFD increases, FP also grows, and the curve looks like

a power function. Moreover, FP goes up quickly when QP becomes large, indicating that higher

compression can introduce more artifacts. Base on these observations, FP could be estimated by:

FP = a · SFDb, (2.4)

where a and b are function parameters related to QP. a and b are quadratic functions of QP as

a = p0 + p1QP + p2QP
2, b = p3 + p4QP + p5QP

2, and the detailed value of the parameters can

be found in Table 2.4.

2.2.2 Estimating false negative

Edge and texture are the key elements for object detection. If there is no clear boundary between

the foreground and the background, it is difficult to detect an object accurately. After comparing
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Figure 2.6: The trends of FN vs. TXD

algorithm results with ground truth in our entire dataset, we find that foreground areas with large

texture deterioration are highly likely to be detected as FN. As an example, Figure 2.5 presents

detection results for the 69th frame of the hall sequence at 65 kbps. Figure 2.5 (a) and (b) are

snapshots of the original frame and the encoded frame. In Figure 2.5 (c), the TP points are marked

in green and the FN points in black. The blue ellipses on the shoulder and legs of the person

indicate the locations where texture details are largely lost, and there are considerable FN points in

these areas.

Based on this phenomenon, we introduce TXD, the absolute difference of texture in MB unit

between the encoded frame and the original frame, to describe texture degradation as:

TXD = |
i,j=16∑
i,j=1

gt(i, j)−
i,j=16∑
i,j=0

Gt(i, j)|, (2.5)

where
∑i,j=16

i,j=0 gt(i, j) is the texture value in an MB of the encoded frame and
∑i,j=16

i,j=0 Gt(i, j) is
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Table 2.2: Goodness of fitting the model parameters

a b c d e
adjR2 0.939 0.881 0.9 0.983 0.968
RMSE 0.00557 0.0918 7.1e-08 2.0e-05 0.0162

the texture value in the corresponding MB of the original frame.

To obtain texture information, we have applied a simple texture analysis method that uses the

range value of the 3-by-3 neighborhood around the corresponding pixel to represent the pixel’s

texture [98]. Values of TXD and FN were obtained for each foreground MB in our entire dataset.

ANOVA analysis was also conducted to the pairs of FN and TXD. The resulting p values are

tiny numbers much smaller than 0.01, indicating that FN is significantly correlated with TXD.

Similar with the post-process of FP vs. SFD, we took the average value of FN for a given TXD

value, normalized the results for each algorithm, and obtained the average of the three algorithms.

As shown in Figure 2.6 (b), FN increases when TXD grows, and the curve looks like a quadratic

function. When QP becomes larger, the starting point of the curve is higher, and FN grows slower.

In a small QP mode (high bit rate) the encoded video has less distortion, the overall level of FN

is low and a little texture degradation would cause a relatively large increase of FN. Whereas in a

large QP mode (low bit rate) the encoded video has higher distortion, the overall degree of FN is

high and the growth ratio of FN is slow.

Based on these observations, FN can be estimated by:

FN = c · TXD2 + d · TXD + e, (2.6)

where c, d, and e are function parameters related to QP. c and d are cubic and quadratic functions

of QP as c = p6 + p7QP + p8QP
2 + p9QP

3, d = p10 + p11QP + p12QP
2 + p13QP

3 + p14QP
4,

and e is a linear funciton of QP as e = p15 + p16QP . The values of the parameters are listed in

Table 2.4.

In summary, at the encoder end, using a simple frame differencing operation, we can easily
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Table 2.3: Goodness of fitting in two models

FP = f(SFD,QP )
max min average std

adjR2 0.973 0.866 0.94 0.0282
RMSE 0.0397 0.00429 0.0198 0.0109

FN = f(TXD,QP )
max min average std

adjR2 0.995 0.915 0.971 0.0189
RMSE 0.0259 0.00526 0.0131 0.0054

Table 2.4: The list of model parameters

p0 p1 p2 p3 p4 p5 p6 p7 p8
5.55e-2 -6.13e-3 1.57e-4 4.42 -0.205 2.61e-3 -1.34e-5 1.45e-6 -4.94e-8
p9 p10 p11 p12 p13 p14 p15 p16 —

5.37e-10 8.91e-2 -1.13e-2 5.26e-4 -1.08e-5 8.15e-8 -5.53e-2 1.59e-2 —

label coarse-grained foreground and background MBs of the current frame. And then we can

obtain SFD and TXD in real time, since the computing complexity of SFD is comparable with

MSE used in RDO and the texture analysis for obtaining TXD is lightweight. An encoder could

easily make use of the model to optimize the performance of object detection.

2.3 Performance evaluation

For performance evaluation, we first evaluated the accuracy of the model using adjustedR2 (adjR2)

and Root-Mean-Squared Error (RMSE). We gathered adjR2 and RMSE values for estimating the

parameters in Eq. (2.4) and (2.6) (a, b, c, d, e) and for estimating FP and FN based on these

parameters. A good curve fitting result is supposed to have adjR2 close to one and RMSE close to

zero. In Table 2.2, the results for estimating parameters a-e are listed, where all the adjR2 values

are fairly close to one and all the RMSE values are close to zero. The performance for estimating

FP and FN was evaluated for each QP value in our dataset, and the results are shown in Table

2.3. The average values for adjR2 are above 0.9, and the average RMSE values are close to 0.
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Table 2.5: Correlation for the estimation of FP

Model LCC SROCC KRCC
f(SFD,QP ) 0.977 0.988 0.940

PSNR -0.146 -0.136 -0.081
SSIM -0.153 -0.134 -0.092

Table 2.6: Correlation for the estimation of FN

Model LCC SROCC KRCC
f(TXD,QP ) 0.971 0.972 0.885

PSNR -0.451 -0.436 -0.318
SSIM -0.493 -0.456 -0.333

The adjR2 and RMSE values for different QPs are consistent, as indicated by the small standard

deviation values in the table.

The performance of the proposed model was also compared with PSNR and SSIM, in terms

of the Linear Correlation Coefficient (LCC), the Spearman Rank Order Correlation Coefficient

(SROCC), and the Kendall Rank Correlation Coefficient (KRCC). The average results on our entire

video dataset are shown in Table 2.5 and Table 2.6. The correlation values for both PSNR and

SSIM are negative, and this is because higher PSNR or higher SSIM values can indicate better

video quality, resulting in lower values of FP and FN. However, the absolute values of correlation

can be used for comparison between the proposed method and PSNR/SSIM. PSNR and SSIM are

both computed between an encoded frame and an original frame, but they could not capture the

temporal fluctuation of reconstructed frames, which is a contributing factor for FP. This explains

the low absolute correlation values between PSNR/SSIM and FP in Table 2.5. On the other hand,

PSNR and SSIM could reflect the degradation of texture, which explains the relatively higher

correlation between PSNR/SSIM and FN. The proposed model outperforms both PSNR and SSIM

in predicting FP and FN. It can potentially be applied in encoders to achieve better performance in

object detection on compressed videos.
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2.4 Conclusion

In this chapter, we systematically investigate the effects of lossy compression on object detection,

and propose a new quality model to predict the performance of object detection. Firstly, we intro-

duce two features that are highly correlated with object detection performance: sum-of-absolute

frame difference and texture degradation. Then, the parametric quality prediction model is built

using these two features that can be easily obtained during the encoding process. Experimental

results show that the model can achieve high accuracy in predicting the performance of object de-

tection. The model introduces low computation cost and can be easily integrated in video encoders

for rate-quality optimization.
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Chapter 3

Efficient video encoding for object detection

in wireless camera networks

3.1 Motivation

In Chapter 2, we have systematically investigated the effects of lossy compression on object detec-

tion, and proposed a new quality model to predict the performance of object detection using two

features that can be easily obtained during the encoding process. The model introduces low com-

putation cost and can be easily integrated in video encoders for rate-quality optimization. Since

the inevitable degradation of video quality caused by lossy compression at embedded cameras has

a significant impact on object detection [99, 100], video encoders for surveillance systems should

be designed to improve the performance of object detection.

The block-based hybrid approach (intra-/inter-picture prediction and 2-D transform coding)

is employed in all modern video compression standards such as H.264/AVC [101] and the latest

HEVC (also known as H.265). As shown in Figure 3.1, this approach measures the encoding

distortion by comparing the encoded video with the original video (A direction) using the metric

SSD, namely Sum of Squared Differences, which is obtained by the sum of squared differences

of the intensity between the encoded video and the original video in the macroblock (MB) unit.

27



ft-1 ftft-2

Original sequence

Encoded sequenceA

B

Figure 3.1: Schematic diagram of encoding distortion calculation

This strategy can result in two problems: 1) temporal domain fluctuation in the encoded video (B

direction in Figure 3.1) when co-located regions of consecutive frames (e.g., ft−1 to ft) are not

consistently encoded, especially when intra frames are periodically inserted at low and medium

bit rates; and 2) spatial texture degradation, since SSD could not effectively reflect the degradation

status of spatial texture. In Chapter 2, we have studied the effects of lossy compression on object

detection in depth, and we have found that the temporal domain fluctuation in stable background

areas and the spatial texture degradation in dynamic foreground areas degrade the accuracy of

object detection in a compressed video.

In this chapter, we propose an efficient video encoding framework for distributed wireless

surveillance systems with the objective to improve the performance of object detection on com-

pressed videos. The proposed framework uses the sum-of-absolute frame difference (SFD) to

depict the temporal domain fluctuation, and the degradation of texture (TXD) to quantify the de-

gree of spatial texture degradation in an encoded video. Both measures have been demonstrated

to be highly correlated with the accuracy of object detection in Chapter 2. For the encoding of

background areas in a raw video, we introduce a Temporal-Fluctuation-Reduced video Encoding

scheme (TFRE) based on the SFD, and for the encoding of dynamic foreground areas, we introduce
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a Spatial-Texture-Preserved video Encoding scheme (STPE) based on the TXD in 2-D transform

domain (TXDSIT ). Both schemes are standard-compliant, in which new mode decision strategies

are incorporated in the standardized encoding procedure to optimize the performance of object

detection. Our preliminary results on the TFRE scheme have been presented in our recent work

[6, 5]. Unique contributions of this chapter includes: 1) the STPE scheme is designed based on

a new spatial textual descriptor in the 2-D transform domain, which is presented for the first time

in this chapter; 2) the STPE scheme is integrated with the TFRE scheme to a standard-compliant

video encoding framework; 3) in addition to the original dataset in our preliminary work, a new

dataset is introduced to evaluate the proposed algorithms; 4) using both the original dataset and

the new dataset, the performance of the proposed algorithms are thoroughly evaluated in terms of

computational complexity, pixel level detection accuracy, and object level detection accuracy.

There exist several encoding algorithms especially designed for improving the performance of

object detection. In [102], regions of individual frames containing high-frequency spatial features,

corners, and edges, which are detected by FAST and Sobel detectors, are preserved while other

regions are smoothed in the encoding process. For efficient video processing and analysis in the

compressed domain, a coding method is proposed that optimizes the accuracy of motion infor-

mation embedded in a code stream based on the affine motion model [103]. In [67], two typical

usage of task-based video, license plate recognition and medical diagnosis, are studied, and a task-

based video quality optimization approach is proposed, which is driven by object recognition rates

during encoding process. A model of human detection accuracy based on object area and video

compression ratio is established in [65], and based on this model, an appropriate amount of bit

rate is allocated to each moving camera in mobile surveillance networks. Although these existing

encoding algorithms could improve the performance of object detection, they have not addressed

the problem of temporal fluctuation in background areas that can reduce the accuracy of object

detection.

On the other hand, the problem of temporal fluctuation has been investigated with the objective

to improve the perceptual quality of compressed videos. The temporal fluctuation perceived by
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human is defined as flicker, which usually refers to frequent luminance or chrominance perceptual

changes that does not appear in uncompressed raw videos [104]. A temporal low-pass filtering

scheme is proposed that smooths the luminance changes on a block-by-block basis in [104]. A

two-pass coding scheme is proposed in [105], which involves a first pass of simplified P-frame

coding to derive a no-flicker reference of the current frame, and a second pass of actual I-frame

coding with small QPs for closely approaching the no-flicker reference. A modified distortion

measure that considers the distortions in both A and B directions in Figure 3.1 to reduce flicker

is applied during intra prediction mode rate distortion optimized selection process in [106]. For

the flicker artifact in HEVC, a region-classification-based rate control for Coding Tree Units in

I-frames is proposed to improve the reconstructed quality of I-frames to suppress flicker in [107].

Different from these methods that are designed to optimize human visual perception, our proposed

work addresses the temporal fluctuation problem to improve the performance of object detection.

It is worthwhile to address this problem since the human vision system and the computer vision

system may have different responses to an encoded video.

The conservation of spatial texture has been studied in several video encoding solutions. A

region-based rate control scheme for better subjective quality is proposed in [108], in which each

frame is firstly divided into complex textural regions, flat regions and moving regions, based on

their inter-frame rate-distortion behaviors. Then, the regions containing complex texture are treated

as one basic unit for rate control. In [109], a perspective motion model is employed to warp static

textures and utilize texture synthesis to encode dynamic textures, which results in bitrate savings at

the same video quality. For facilitating visual retrieval, textural features in spatial domain, such as

gradient-based features like SIFT and SURF are better preserved by designing specific rate control

strategies in [110]. A HEVC framework of jointly compressing the visual feature descriptors

and video content is proposed for visual retrieval in [111], in which the high efficiency coding

is achieved by exploiting the interactions between video features and visual content. While the

purposes of these methods are to improve either objective and subjective quality or the performance

of visual retrieval, our proposed work utilize the relationship between spatial texture and the 2-
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D transform encoding to preserve spatial texture for the better performance of automatic video

analysis.
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Figure 3.2: Flow chart of proposed video encoding framework

3.2 Proposed video encoding framework

To obtain better performance of object detection on compressed videos, we propose an efficient

video encoding framework for distributed wireless surveillance systems. This framework includes

a Temporal-Fluctuation-Reduced video Encoding scheme (TFRE) for the encoding of stable back-

ground areas and a Spatial-Texture-Preserved video Encoding scheme (STPE) for the encoding

of dynamic foreground areas. Both schemes are designed to comply with the hybrid block-based
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video encoding architecture, in which new mode decision and Rate-Distortion Optimization (RDO)

strategies are applied for intra and inter frames. The current implementation of this framework is

based on the H.264/AVC standard. We consider the case that a coarse-grain classification of dy-

namic foreground and stable background MBs is obtained by a simple frame-differencing-based

method at the encoder. The entire process for the proposed video encoding framework is illustrated

in the flow chart in Figure 3.2, which includes two main branches, Intra and Inter MB encoding

processes, for encoding the current MB of an input frame. Depending on whether the current MB

is a stable background block or a dynamic foreground block, the TFRE scheme (gray color blocks)

or the STPE scheme (black color blocks) is applied.

3.2.1 Temporal-fluctuation-reduced video encoding scheme

The TFRE scheme is designed to encode stable background areas to suppress unnecessary temporal

fluctuation in these areas. For stable background MBs in intra frames, during the RDO process for

deciding type mode and prediction mode, SFD is calculated and jointly optimized with the RDO

cost. For the inter frame analysis process, new strategies are introduced in the analysis of P SKIP

and P 16×16 type modes, which are highlighted in the dashed box in Figure 3.2, with the objective

to reduce temporal fluctuation for inter blocks while maintaining acceptable distortion.

Intra frame coding/mode selection

The intra frame RDO process of H.264/AVC consists of two steps: type mode decision from

I 16×16, I 8×8, I 4×4 and I PCM based on RDO cost, and then prediction mode decision from

nine prediction options, such as vertical prediction, horizontal prediction, etc., based on RDO cost.

And the RDO cost C is calculated by:

C = D + λ×R, (3.1)
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where D denotes the distortion of a candidate encoding option, R denotes the total bits of this

option, and λ is the Lagrange multiplier that controls the trade-off of rate and distortion.

We formulate a joint Temporal-fluctuation and RD (joint T-RD) mode selection problem, as

follows:
Given : {Mi, Ci, SFDi},

Find : M∗,

Minimize : C,

Subject to : SFDi ≤ SFDth,

(3.2)

where Mi denotes the i-th available type mode or prediction mode, Ci is the corresponding RDO

cost, and SFDi is the SFD value of mode i. The problem seeks to minimize the RDO cost C from

a set of available modes that satisfy the SFD constraint SFDi ≤ SFDth. SFDth is the Ntop-th

SFD in the ascending-order sorted array of SFDi, and Ntop is given by:

Ntop = dN × Ptope, (3.3)

where N is the total number of available modes, and Ptop is a custom parameter that stands for

how many top percent of total available modes N will be considered in joint T-RD selection.

Algorithm 1 is designed to solve this problem for both type mode and prediction mode selec-

tion. For a stable background MB, first, all available type modes are tried, the corresponding RDO

costs and SFD values are recorded (lines 2-5 in Algo. 1), then the best type mode is determined

based on the SFD threshold (lines 6-9); second, all available prediction modes of the selected type

mode are tried, the corresponding RDO costs and SFD values are recorded (lines 10-13), and then

the best prediction mode is determined based on the SFD threshold (lines 14-17). We take the

x264 encoder [90] as our reference encoder. From above description, the complexity of our pro-

posed Algorithm 1 can stay comparable with the corresponding algorithm in the reference encoder,

since the extra computations related with SFD are embedded in the original loops of the reference

encoder.
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Algorithm 1: Intra frame joint T-RD selection
if current MB belongs to stable background then

for available type mode Mti do
encode current MB and store Cti;
calculate and store SFDti;

end
sort records in ascending order based on SFD value, and obtain valid number of records
(Nt);

obtain SFDtth based on Nttop = dNt × Ptope;
find the minimum Ct, subject to SFDti ≤ SFDtth;
output the corresponding M∗

t as the selected type mode;
for available prediction mode Mpi of the selected type M∗

t do
encode current MB and store Cpi;
calculate and store SFDpi;

end
sort records in ascending order based on SFD value, and obtain valid number of records
(Np);

obtain SFDpth based on Nptop = dNp × Ptope;
find the minimum Cp, subject to SFDpi ≤ SFDpth;
output the corresponding M∗

p as the selected prediction mode;
end

Inter frame coding/mode selection

A typical inter frame analysis process includes three steps, shown as below:

1. Probe P SKIP mode–that is, encode the current MB assuming no encoding residuals and

no Motion Vector (MV) difference, and use only the predictive MV. The decimate score is

computed, which indicate whether we could set the DCT coefficients to 0 given the DCT

coefficients after the actual encoding of this inter MB [112]. If the decimate score of the

current MB is less than 6, then the current MB can be encoded as P SKIP and return [90].

2. Otherwise, other inter type modes, including P 16×16, P 8×16, P 16×8, P 8×8, P 4×8,

P 8×4, and P 4×4 modes, are all tried and the corresponding MVs are estimated, and also

search is performed on those intra modes.

3. Run the RDO process and determine the best mode from all available modes.
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(a) original f.8 (b) original f.9 (c) original f.10

(d) proposed f.8 (e) proposed f.9 (f) proposed f.10

Figure 3.3: Fluctuation of P SKIP distribution

However, the typical inter frame analysis process can result in temporal fluctuation for stable

background areas, which will reduce the accuracy of object detection. For example, three consec-

utive inter frames (frame 8, 9, and 10) of the GR video clip is shown in the first row of Figure 3.3.

In this figure, each block represents one MB unit, and yellow, blue, and red colors denote P SKIP

mode, other inter mode, and intra mode, respectively. Obviously, there is fluctuation of P SKIP

location distribution in these consecutive inter frames. For an MB in the stable background area,

when the inter mode changes between P SKIP and other inter prediction modes in consecutive

frames, there will be temporal fluctuation in the encoded frames, and such fluctuation might result

in FP for object detection due to mistaking for new object appearing.

We propose to reduce temporal fluctuation in inter frames by designing new criteria in the

analysis of inter type modes. Specifically, we expect to classify more MBs in stable background

areas as P SKIP or set the MVs of these MBs to zeros, meanwhile we expect to maintain acceptable

traditional distortion SSD, the Sum of Squared Differences between the intensities of an original
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Algorithm 2: Inter frame Probe P SKIP
Input: decimate score of current MB.
if decimate score of current MB < 6 then

current MB is set as P SKIP;
return

else if current MB belongs to stable background then
encode current MB based on predictive MV;
calculate SSDr and SFDr based on the reconstructed MB;
calculate SSDs and SFDs assume current MB as P SKIP;
if SSDs ≤ d w × SSDr and SFDs ≤ s w × SFDr then

current MB is set as P SKIP;
return

end
end

MB and the intensities of an encoded MB. Based on the typical inter MB analysis process, we

design new schemes in the probe P SKIP process and the analysis of P 16×16 mode.

In probe P SKIP process, for MBs dissatisfied with the original criterion in [112], we compare

the encoding option of P SKIP with the encoding option of using predictive MV, and if the P SKIP

option brings less SFD while maintaining acceptable SSD, the current MB will be set as P SKIP.

The detailed steps are described in Algorithm 2, where SSDr and SFDr are SSD and SFD of

the reconstructed MB based on predictive MV, SSDs and SFDs are SSD and SFD of the current

MB assuming P SKIP encoding, and d w and s w are weight variables that can be customized

by encoders. Compared with the x264 reference encoder, Algorithm 2 is additional; however, the

overall computational complexity of inter frame coding/mode selection can be reduced because

more MBs can be set as P SKIP that do not need any other inter type modes analysis and RDO.

Furthermore, for the analysis of P 16×16 mode, we design an inter frame P 16×16 Direct

Copy mode: direct copy from the corresponding MB in the previous frame due to negligible motion

in the stable background area. If the distortion brought by assuming no motion is comparable

with the distortion of reconstructed MB after motion estimation, the process will skip other inter

modes analysis and jump to Encode current MB process without RDO, as shown in the flow chart

in Figure 3.2. The detailed steps of inter frame P 16×16 Direct Copy mode are described in

Algorithm 3, where SSDme is the distortion of the MB based on MVme after motion estimation,
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Algorithm 3: Inter frame P 16×16 Direct Copy mode
Input: MVme after motion estimation in P 16×16 inter analysis.
if current MB belongs to stable background then

encode current MB based on MVme;
calculate SSDme based on the reconstructed MB;
calculate SSDdc assume current MB as Direct Copy mode;
if SSDdc ≤ d w × SSDme then

current MB is set as P 16×16 Direct Copy mode;
return

end
end

SSDdc is the distortion of the MB based on the assumption that there is no motion and that a direct

copy from the corresponding MB in the previous frame is applied, and d w is a custom weight

parameter that restricts SSDdc inside a threshold of d w × SSDme. Encoding an MB in Inter

P 16×16 Direct Copy mode could skip other Inter modes analysis and RDO, which reduces the

overall computational complexity of inter frame coding/mode selection.

An example of the proposed inter coding scheme (combining Algo. 2 and Algo. 3) is shown in

the second row of Figure 3.3. Compared with the first row which shows results from the standard

inter analysis process, after applying the proposed scheme, more background MBs are encoded

as P SKIP modes, and the distribution of P SKIP stays stable for consecutive frames. The video

snapshots from the two rows look similar, both with acceptable video quality.

3.2.2 Spatial-texture-preserved video encoding scheme

Spatial texture also plays a critical role in automatic object detection. Since 2-D transform en-

coding, such as the Discrete Cosine Transform (DCT), is indispensable in the modern block-based

hybrid video encoders, it is natural to explore the properties of spatial texture in the 2-D transform

domain. The texture features of an image are extracted from DCT coefficients for saliency detec-

tion in the JPEG bit-stream adaptive image retargeting applications [113]. In [114], the texture fea-

tures in video saliency are detected through DCT coefficients in the MPEG4 compressed domain.

Recent progresses of perceptual image coding with DCT are summarized in [115], in which each
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(a) 4×4 SIT coefficients (b) 4×4 SIT basis patterns

Figure 3.4: 2-D transform in H.264/AVC (4×4 SIT)

image block is classified into plain, edge, or texture class based on the sum of DCT absolute coef-

ficients. The above works are all based on 8×8 DCT in JPEG or MPEG4 but not 4×4 transform in

H.264 or H.265. The features of 4×4 transform are studied in [116] with the purpose of designing

a tracking-aware H.264 video compression algorithm for transportation surveillance: It has been

observed that each coefficient’s corresponding basis in the 4×4 transform of the H.264/AVC sharp-

ens vertical and/or horizontal edges to varying degrees, and a new quantization table is designed

that can help to identify and concentrate compression bit rate on frequencies useful to tracking, at

the cost of bit rate allocated to frequencies confusing or useless to tracking.

From the above works, we learn that the coefficients of 2-D transform are highly related with

spatial texture. In JPEG and MPEG4 standards, the DCT coefficients in a 8×8 block includes one

DC coefficient and 63 AC coefficients. Among them, the DC coefficient is the average energy over

all the 64 pixels in this block, and the left AC coefficients characterize the properties of the block

in the frequency domain. Previous studies [113, 114, 115] show that the DCT AC coefficients

can be used to represent the texture information for a block. For example, in [113] the DCT AC

coefficients are classified into three parts: low-frequency (LF), medium-frequency (MF), and high-

frequency (HF) parts. However, H.264/AVC uses a simplified Separable Integer 4×4 Transform

(SIT) instead of 8×8 DCT [101]. The coefficients of 4×4 SIT in H.264/AVC standard is shown
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(a) DC coef (b) AC coef 1 (c) AC coef 2 (d) AC coef 3

(e) AC coef 12 (f) AC coef 13 (g) AC coef 14 (h) AC coef 15

Figure 3.5: Scatter figure of SIT coefficients with spatial texture information

in Figure 3.4 (a), in which the first block (No. 0) with gray color denotes DC coefficient, and the

rest fifteen blocks (No. 1-15) denote 15 AC coefficients. Figure 3.4 (b) shows the standard basis

patterns for 4×4 SIT, and the coefficients of SIT can be considered as weighting factors of a set of

these basis patterns. Any image block can be reconstructed by combining the sixteen basis patterns

with the appropriate weight.

Firstly, we inspect the correlation between each coeff of SIT with spatial texture information.

The original Y channel images of hall are used as examples to analyze the dynamic foreground

regions. All foreground MBs are applied in 4×4 SIT and the texture analysis method mentioned in

Chapter 2.2.2. Scatter figures of the absolute value of single SIT coeff with texture are inspected,

DC coeff and AC coeffs 1, 2, 3, 12, 13, 14, and 15 with spatial texture information are shown

in Figure 3.5. We can find that DC coeff could not reflect the spatial texture level and AC coeffs

are related with spatial texture in a certain degree. With the number of AC coeff increasing, the

absolute value of AC coeff decreases generally and even close to zero (e.g., AC coeffs 13, 14 and

15), which indicates that texture details in too high frequency are in the minority. However, any

single AC coeff is not significant correlated with spatial texture status.

We further investigate the relationship between AC coefficients of SIT with spatial texture in-

formation. We use the sum of the first x AC coefficients to represent spatial texture information,
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(a) Sum of the first 2 AC coefs (b) Sum of the first 3 AC coefs (c) Sum of the first 4 AC coefs (d) Sum of the first 5 AC coefs

(e) Sum of the first 7 AC coefs (f) Sum of the first 10 AC coefs (g) Sum of the first 13 AC coefs (h) Sum of the first 15 AC coefs

Figure 3.6: Scatter figure of sum of the first x AC coefficients with spatial texture information

where x is an integer more than 0 and less than 16. In Figure 3.6, scatter figures are shown for the

sum of the first 2, 3, 4, 5, 7, 10, 13 and 15 AC coefficients with spatial texture information, re-

spectively. And the scatter figure of the first 1 AC coefficient has been already shown in Figure 3.5

(b). We can find that the correlation become more clear when more AC coefficients are considered

with x increasing from 1 to 5, and as x continues to increase, there is no obvious improvement of

the correlation. It is well known that different computer vision algorithms work based on different

levels of features, and therefore, we prefer not to select to preserve specific frequencies, in other

words, we try to protect all the frequency details as the original ecology.

Consequently, we introduce the measure SSAC, Sum-of-absolute 15 SIT AC Coefficients, to

depict the spatial texture information of a 4×4 image block as:

SSAC =
i=15∑
i=1

|ACi|, (3.4)

where ACi is the i-th SIT AC coefficient of one 4×4 image block in an MB. We investigate the

entire video dataset, which includes different compression level videos (QP from 24 to 48, step

size is 2) and the original raw videos. The scatter figures of the original raw videos (where QP is

marked as 00) and the encoded video using QP 24, 36 and 48 are shown in Figure 3.7. Based on
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(a) original video (QP=00) (b) encoded video at QP=24

(c) encoded video at QP=36 (d) encoded video at QP=48

Figure 3.7: Scatter figure of SSAC with spatial texture information

the scatter figures of the entire video dataset, the distribution become more and more concentrated

and regular as the compression ratio (QP) increases. We use SSAC value 10 as intervals to average

data points in the scatter figure and then obtain curves for all QP setting, which are shown Figure

3.8. We can find that there is a positive linear correlation between SSAC and spatial texture, no

matter how much compression is introduced.

The correlation between spatial texture and SSAC is inspected using the Linear Correlation

Coefficient (LCC), the Spearman Rank Order Correlation Coefficient (SROCC), and the Kendall

Rank Correlation Coefficient (KRCC), respectively. The correlation coefficients are summarized

in Table 3.1, in which QP 00 denotes the original raw video. The results of LCC are all above 0.96
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Figure 3.8: The relationship between SSAC and spatial texture information

(average value 0.965), the ones of SROCC are all higher than 0.97 (average value 0.978), and the

ones of KRCC are all higher than 0.87 (average value 0.879). These results indicate that there is a

significant positive linear correlation between SSAC and spatial texture.

Table 3.1: Correlation coefficients between spatial texture information and SSAC

QP 00 24 26 28 30 32 34 36 38 40 42 44 46 48
LCC 0.962 0.964 0.964 0.964 0.965 0.965 0.965 0.965 0.966 0.966 0.966 0.966 0.966 0.965

SROCC 0.975 0.977 0.977 0.977 0.978 0.978 0.978 0.978 0.978 0.979 0.979 0.979 0.979 0.980
KRCC 0.871 0.874 0.875 0.875 0.876 0.877 0.878 0.879 0.881 0.882 0.883 0.884 0.886 0.889

By far, we have proposed the ideal descriptor in 2-D transform domain, SSAC, to depict the

spatial texture information in video encoding scenario. Inheriting the concept of texture degrada-

tion from TXD, which is defined in (2.5), we introduce a new TXDSIT as a basic unit to represent
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texture degradation in a 4×4 block, which is given by:

TXDSIT =

∣∣∣∣∣
i=15∑
i=1

|ACi| −
i=15∑
i=1

|aci|

∣∣∣∣∣ , (3.5)

where
∑i=15

i=1 |ACi| is texture information of a 4×4 block in an MB of the original frame and∑i=15
i=1 |aci| is texture information of the corresponding 4×4 block in the same MB of the encoded

frame. The descriptor of texture degradation TXDSIT brings unique benefits in video encoding

context, including: 1) convenient calculation; 2) low computational complexity; 3) finer-grained

tuning than original TXD in MB unit.

The block-based video coding can be summarized as Intra/Inter type mode (macroblock parti-

tions) decision and Intra/Inter prediction (nine prediction options or motion compensated predic-

tion) mode decision. To protect spatial texture during the video encoding process, we formulate a

joint Spatial-texture and RD (joint S-RD) mode selection problem for both Intra and Inter frames

as follows:
Given : {Mi, Ci, TXD

SIT
i },

Find : M∗,

Minimize : C,

Subject to : TXDSIT
i ≤ TXDSIT

th ,

(3.6)

where Mi denotes the i-th available type mode or prediction mode in Intra/Inter frame, Ci is the

corresponding RDO cost, and TXDSIT
i is the TXDSIT value of mode i. The problem seeks

to minimize the RDO cost C from a set of available modes that satisfy the TXDSIT constraint

TXDSIT
i ≤ TXDSIT

th . TXDSIT
th is the Ntop-th TXDSIT in the ascending-order sorted array of

TXDSIT
i , and Ntop is given by:

Ntop = dN × Ptope, (3.7)

where N is the total number of available modes, and Ptop is a custom parameter that stands for

how many top percent of total available modes N will be considered in joint S-RD selection.

Algorithm 4 is designed to solve this problem for both Intra/Inter type mode and Intra/Inter
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Algorithm 4: Intra/Inter MB joint S-RD selection
Input: Intra prediction options or Inter motion vectors based on SATD scores
if current MB belongs to dynamic foreground then

4×4 SIT on the original video, and store the original SSAC;
for available type mode Mti of Intra/Inter MB do

encode current MB based on Intra/Inter prediction, store Cti and the corresponding
SSAC;

calculate and store TXDSIT
ti

;
end
sort records in ascending order based on TXDSIT value, and obtain valid number of
records (Nt);

obtain TXDSIT
tth

based on Nttop = dNt × Ptope;
find the minimum Ct, subject to TXDSIT

ti
≤ TXDSIT

tth
;

select the corresponding M∗
t as the optimal type mode;

for available prediction mode Mpi based on the selected type M∗
t do

encode current MB or , store Cpi and the corresponding SSAC;
calculate and store TXDSIT

pi
;

end
sort records in ascending order based on TXDSIT value, and obtain valid number of
records (Np);

obtain TXDSIT
pth

based on Nptop = dNp × Ptope;
find the minimum Cp, subject to TXDSIT

pi
≤ TXDSIT

pth
;

output the corresponding M∗
p of the selected type M∗

t as the optimal mode;
end

prediction mode selection. For a dynamic foreground MB, first, the SSAC of the original video

is calculated and stored as a benchmark, then all the available Intra/Inter type modes are tried,

the corresponding RDO costs and TXDSIT values are recorded (lines 4-7 in Algo. 4), and the

best type mode is determined based on the TXDSIT threshold (lines 8-11); second, all available

Intra/Inter prediction modes of the selected type mode are tried, the corresponding RDO costs and

TXDSIT values are recorded (lines 12-15), and then the best prediction mode is determined based

on the TXDSIT threshold (lines 16-19). Based on above procedure, our proposed Algorithm 4 can

maintain the same level as the x264 reference encoder in the computational complexity, since the

computing related with TXD does not bring extra loops to the reference encoder.
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3.3 Performance evaluation

Table 3.2: Video information for data set 2

Video name AD right AD left AD ahead AD behind ID stern ID sv 1 ID sv 2 ID sv 3
SI index 83.71 91.78 95.62 123.63 75.69 53.37 47.08 59.64
TI index 21.14 61.45 42.73 47.37 10.47 12.86 16.99 8.86

Length (sec) 20 60 40 40 60 100 70 90

Table 3.3: Video compression parameters

GOP structure IPPP GOP size 20
Rate control constant QP QP range 28-46
Intra/Inter

custom parameters
Ptop d w s w
0.1 6 0.1

We evaluate the proposed video encoding framework by applying object detection algorithms

on a variety of compressed videos. The eight raw videos shown in Figure 2.2 and a new video

dataset from PETS 2017 datasets [117] are used for this test. There are uniform resolution (352×288),

frame rate (25 fps), and duration (12 sec) in the dataset 1. Dataset 2 contains the ARENA dataset

(AD), which includes 4 non-overlapping field of views at each corner of a truck outdoor, and the

maritime IPATCH dataset (ID), which includes 1 view at stern and 3 starboard views (sv) of one

ship. Different from dataset 1, eight videos in dataset 2 covers higher resolution (1280×960),

higher frame rate (30 fps), and longer durations (20∼100 sec), and more details can be found in

Table 3.2. Spatial Information (SI) index and Temporal Information (TI) index of a sequence,

which are defined by ITU-T P.910 [118] and are directly related to video compression complexity,

are also includes in Table 3.2. The x264 encoder (version 0.142.x) is configured to encode videos

using one-pass mode with medium speed, and the compression settings are summarized in Table

4.3. The aforementioned three object detection algorithms (GMM, GMG, and ABL) are applied

on these compressed videos. One motivation to include relatively higher QP values in our tests is

that medium and high compression ratios are used in many wide-area, large-scale, or sparse wire-

less camera networks with limited bandwidth and energy constraints. For example, a wide-area
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and large-scale camera network is implemented in [119], a long-duration and large-scale environ-

mental monitoring application is introduced in [120], the deployment of sparse sensor networks

in large areas is studied in [121], and the deployment of airborne camera networks is introduced

in [122]. These practical systems operate in a bandwidth range of 40 kbps - 300 kbps, providing

video observations with around 0.01-0.1 bits per pixel (BPP). The QP values in our experiments

could produce videos with bandwidth and BPP ranges consistent with these practical wireless cam-

era systems. Moreover, a similar QP range (28-44) was adopted by other researchers for studies

on subjective video quality in [123] and [124], which demonstrated that the perceptual quality of

videos encoded with medium and high QP is acceptable.

We evaluate the performance of the proposed algorithms in terms of both pixel level detection

accuracy and object level detection accuracy on the two datasets. Evaluation of detection at object

level is straightforward, while more precise detection at pixel level provides more insight into

strengths and weaknesses of detection performance [125, 126], based on which solutions could be

designed to improve object detection performance.

3.3.1 Evaluation of the proposed algorithms in pixel level

The performances of the proposed TRFE scheme, STPE scheme and the combined TFRE with

STPE scheme (short for cTwS) are compared to the H.264/AVC-based open source encoder x264

and the Reducing Flicker video Coding approach (RFC) [106]. The objective of RFC is to im-

prove perceptual video quality by reducing flicker effects, and it considers the distortions not only

between the encoded video and the original video but also in the temporal domain in the encoded

video during intra rate distortion optimization process.

First, we compare the objective video quality and the corresponding bit rate of the five schemes

in dataset 1 and dataset 2. The industrial standard PSNR and Structural Similarity (SSIM) are

applied to the compressed videos. We evaluate the average performance of the eight different

video sequences in dataset 1 and dataset 2 separately at the same QP. The resulting PSNR and

SSIM with the corresponding bit rates are shown in Figure 3.9. The R-D performances of RFC
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Figure 3.9: Rate-Distortion curves of proposed schemes

are nearly identical with those of x264 in every QP for both datasets. The curves of STPE almost

overlap completely with the ones of x264 for both SSIM and PSNR, which indicates that the

proposed STPE scheme has little impact on the Rate-Distortion performance. The PSNR and SSIM

values of TFRE scheme decrease slightly, whereas the bit rate is saved compared with ones of x264

encoding. The slight decrease in bit rate is due to the fact that TFRE encodes more inter MBs in

P SKIP modes. For the combined cTwS scheme, comparing with x264 encoding: in dataset 1, the

PSNR and SSIM values of cTwS decrease slightly by 0.102 dB and 0.001 on average, respectively,

whereas cTwS brings down the bit rate by 2.04 kbps on average; in high resolution videos of

dataset 2, its PSNR and SSIM decrease by 0.157 dB and 0.004 on average, respectively, whereas
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it saves the bit rate by 31.67 kbps on average. Overall speaking, the Rate-Distortion performances

of the proposed algorithms are comparable to those of the x264 encoder.

Next, we evaluate the overall performance of object detection in pixel level through F1 scores.

The average F1 scores of the eight videos in each dataset for the three object detection algorithms

are shown in Figure 3.10. Though the three object detection algorithms have different ranges

of F1 in two datasets, the detection performance degrades when QP increases. The curves of

RFC scheme always nearly overlap with those of x264 except negligible improvements of ABL

algorithm. The performance gains of STPE scheme are larger than ones of RFC and distributed

evenly over different QPs. The benefits of TFRE scheme upon x264 for three algorithms on both

datasets are noticeable, and the gain of TFRE is higher with larger QP values. The cTwS scheme

results in the largest F1 scores for different QP values in every algorithm on both datasets. More

specifically, there are noticeable gains of cTwS over x264 for ABL (average 2.96 and 2.99% for

two datasets), and modest gains for GMG (1.92 and 1.94%) and GMM (1.72 and 1.76%).

Finally, we summarize the average F1 scores of the three object detection algorithms on two

datasets in Table 3.4. The numbers in the ∆ rows denote the gains of cTwS over the x264 encoder.

Three points could be reached based on the summary table and above figures: 1) both the R-D

and the object detection performances of RFC are nearly identical with that of x264; 2) the R-D

performance of cTwS is comparable to that of the x264 encoder and RFC; 3) the improvement on

detection performance of cTwS at every QPs is obvious, and the gain of cTwS is higher with larger

QP values. These results indicate that, by reducing temporal fluctuation in stable background areas

and preserving spatial texture in foreground areas, the proposed video encoding framework could

effectively improve the accuracy of object detection in pixel level for different types of detection

algorithms with no impact on the R-D performance.

3.3.2 Evaluation of the proposed algorithms in object level

To evaluate the performance of the proposed algorithms in object level, a uniform post-processing

procedure is adopted to the pixel-level results of three detection algorithms. The post-processing
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(f) F1 for GMM algorithm in dataset 2

Figure 3.10: F1 scores of test videos in proposed schemes

modules includes:

1. Median filtering (5×5 rectangular aperture);

2. Morphological operations (first opening then closing with 3×3 square structure);

3. Connected-component labeling (8-way connectivity); and

4. Region thresholding (240 pixels).

For the object-level detection accuracy, we calculate the Configuration Distance (CD) [96],

which measures the difference between the amount of GT objects and AR objects according to

their presence. For one given frame, the CDf can be calculated by:

CDf =

∣∣∣∣ ARo −GTo
max(GTo, 1)

∣∣∣∣ , (3.8)
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Table 3.4: Average results of proposed algorithms in pixel level

QP 28 30 32 34 36 38 40 42 44 46

Dataset
1

F1 (%)

x264 77.03 73.80 70.51 67.06 63.45 59.25 55.62 51.94 48.17 45.31
RFC 77.21 73.97 70.74 67.33 63.77 59.65 56.06 52.42 48.56 45.92

TFRE 77.70 74.42 71.19 67.72 64.16 59.98 56.43 52.85 49.10 46.37
STPE 77.43 74.34 71.34 68.14 64.81 60.96 57.88 54.83 51.46 49.20
cTwS 77.81 74.71 71.70 68.48 65.13 61.27 58.23 55.18 51.94 49.68

∆ 0.78 0.91 1.19 1.42 1.68 2.02 2.61 3.24 3.77 4.37

Dataset
2

F1 (%)

x264 75.41 72.35 69.25 66.09 61.98 58.27 54.19 50.75 48.28 45.18
RFC 75.57 72.54 69.49 66.38 62.32 58.69 54.63 51.23 48.68 45.80

TFRE 75.92 73.03 70.08 67.17 63.33 59.98 56.42 53.60 51.53 49.02
STPE 76.21 73.13 70.08 66.91 62.83 59.14 55.12 51.77 49.32 46.35
cTwS 76.34 73.43 70.47 67.54 63.68 60.31 56.79 53.97 52.02 49.52

∆ 0.93 1.08 1.22 1.45 1.70 2.04 2.60 3.22 3.74 4.34

where ARo and GTo are the numbers of AR objects and GT objects in the frame. The CD of

a video sequence is obtained by the average of CDf in each frame. In our experiments, object

detection results from the raw videos are regarded as GT, and results from the compressed videos

are AR. Ideally, if a video is compressed in a lossless way, the corresponding CD is 0. Lossy

compression inevitably degrades the performance of object detection, and both false positives and

false negatives (i.e., detection mistaking and detection missing) could result in an increase of CD.

The performance of proposed algorithms in object level through CD value in two datasets is

shown in Figure 3.11. Despite different ranges of CD value in two datasets, the trends of the

three detection algorithms are similar. The curves of RFC are always very close to the ones of

x264 for three algorithms. The minimum gains of STPE over x264 for ABL, GMG, and GMM

algorithms (-0.94%, -0.77% and -1.03% in dataset 1, -1.13%, -1.21% and -1.12% in dataset 2) are

larger than the maximum gains of RFC (-0.60%, -0.53% and -0.56% in dataset 1, -0.71%, -0.61%

and -0.60% in dataset 2). The TFRE scheme improves the detection performance significantly.

The combined cTwS scheme attains the remarkable improvement (average gains: -4.82%, -3.73%

and 3.68% in dataset 1, -6.10%, -4.22% and -4.12% in dataset 2, respectively). The average

CD values of the three object detection algorithms on two datasets are also summarized in Table

3.5. The values in the ∆ rows denote the gains of cTwS over the x264 encoding. In summary,
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(f) CD for GMM algorithm in dataset 2

Figure 3.11: Configuration Distance (CD) of testing videos in proposed schemes

the average gains of RFC over x264 is quite limited (average -0.42% in dataset 1 and -0.47% in

dataset 2, respectively), STPE achieves better improvement than RFC (with average gains -1.60%

and -1.86% ), the improvement of TFRE is considerable (with average gains -3.42% and -4.04%),

and cTwS achieves the maximum average gains (-4.08% and -4.82%).

3.3.3 Evaluation of the computational complexity

The computational complexity of algorithms is a crucial design factor for distributed wireless

surveillance systems. All video encoding in this chapter was performed exclusively on a computer

based on Intel Xeon E5-2637 v3 (3.50 GHz) processor running on Windows 7 Enterprise oper-

ating system. Computational complexity was measured by the encoding time for x264 encoder,

RFC approach, TFRE scheme, STPE scheme, and the combined TFRE with STPE scheme (cTwS).

Computational complexity is evaluated by the average encoding time of running separately three

times for both the 80 test cases in dataset 1 and the 80 test cases dataset 2, which is summarized in

Table 3.6. Each dataset consists of 8 different videos in 10 different QP configurations.

51



Table 3.5: Average results of proposed algorithms in object level

QP 28 30 32 34 36 38 40 42 44 46

Dataset
1

CD (%)

x264 8.26 9.64 10.84 12.00 13.11 14.15 14.87 16.07 17.56 19.06
RFC 7.91 9.34 10.41 11.62 12.64 13.69 14.48 15.64 17.08 18.61

TFRE 7.35 8.52 9.61 10.61 11.51 12.46 13.10 14.14 15.48 16.83
STPE 6.87 7.80 8.74 9.40 10.34 10.83 11.30 11.43 11.98 12.65
cTwS 6.42 7.38 8.24 8.93 9.69 10.22 10.45 10.63 11.13 11.70

∆ -1.84 -2.26 -2.60 -3.07 -3.42 -3.93 -4.42 -5.44 -6.43 -7.36

Dataset
2

CD (%)

x264 9.32 10.91 12.28 13.44 14.84 16.07 16.80 18.29 20.09 21.75
RFC 8.93 10.57 11.79 13.01 14.30 15.55 16.36 17.79 19.54 21.24

TFRE 8.17 9.52 10.77 11.85 13.00 14.13 14.77 16.08 17.70 19.19
STPE 7.72 8.79 9.87 10.45 11.66 12.39 12.43 12.57 13.32 14.17
cTwS 7.22 8.33 9.32 9.94 10.95 11.57 11.48 11.57 12.23 13.00

∆ -2.10 -2.58 -2.96 -3.50 -3.89 -4.50 -5.32 -6.72 -7.86 -8.75

Table 3.6: The computational complexity of algorithms

Algorithms x264 RFC TFRE STPE cTwS
Dataset 1 complexity (ms) 1934.985 2131.977 1278.990 2021.941 1309.986

Gains (%) — +10.18 -33.90 +4.49 -32.30
Dataset 2 Complexity (ms) 18743.861 20622.032 14814.014 19655.053 15391.520

Gains (%) — +10.02 -20.97 +4.86 -17.89

The computational complexity of x264 encoder in Table 3.6 is regarded as a benchmark. The

RFC approach increases more than 10% in complexity due to extra computing introduced during

intra RDO process. The proposed TFRE scheme reduces computational complexity significantly (-

33.90% and -20.97%, respectively) thanks to avoiding unnecessary Inter modes analysis and RDO

process. The proposed STPE scheme maintains comparable complexity (less than 5%). Finally the

combined TFRE with STPE scheme achieves -32.30% and -17.89% reductions in computational

complexity for dataset 1 and dataset 2, respectively. The reduction in complexity will provide

considerable benefits for distributed wireless surveillance applications.
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3.4 Conclusion

In this chapter, we have proposed an efficient video encoding framework that aims at improving the

performance of object detection on compressed videos in distributed wireless surveillance systems.

This framework includes the Temporal-Fluctuation-Reduced video Encoding scheme (TFRE) for

the encoding of stable background areas and the Spatial-Texture-Preserved video Encoding scheme

(STPE) for the encoding of dynamic foreground areas. Besides, this framework is compliant with

the block-based hybrid encoding architecture, and its computational complexity of H.264-based

implementation is reduced significantly to that of common H.264 encoding schemes. Experimental

results on a variety of encoder settings and object detection algorithms indicate that, compared

with traditional encoding schemes, the framework improves the accuracy of object detection and

results in lower bit rate and significantly reduced complexity with comparable video quality in

terms of PSNR and SSIM. This standard-compliant video encoding framework can promote the

development and applications of many distributed wireless surveillance systems.
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Chapter 4

Modeling of object detection quality for

local processing on embedded cameras

Apart from the distortion introduced by compression, the quality of an image or a video could be

degraded during the data acquisition or sensing process, e.g., distortion caused by noise or motion

blur, or reduced image resolution due to storage or bandwidth constraints on embedded cameras.

These factors should also be taken into consideration to evaluate the quality of an image.

Object detection is the first and the most important step in the process of automatic analysis,

because the detected objects provide a focus of attention for the following tasks such as tracking

and recognition. In this chapter, we propose a blind regression model based on a bagging ensemble

of trees to predict the performance of object detection on an image. The model utilizes local fea-

tures in an image such as edge and oriented gradient and global features including image gradient

and estimated object size, which could be easily extracted from an image. The model is trained

using a large number of images with different scene characteristics and four types of distortions

including noise, Gaussian blur, motion blur, and reduced spatial resolution. The accuracy of the

proposed model is evaluated on a separate test data set and compared against commonly used IQA

measures.

There are only a few studies on the problem of quality evaluation for automatic analysis algo-

54



(a) MOT15-02 (b) MOT17-02 (c) MOT17-04 (d) MOT17-10 (e) MOT17-13

(f) DMcam01 (g) DMcam02 (h) DMcam04 (i) DMcam06 (j) DMcam08

Figure 4.1: Snapshots of video data set.

rithms. Image quality assessment for face recognition applications was studied in [70, 71, 72]. Five

quality factors were evaluated, including contrast, brightness, focus, sharpness, and illumination,

and a face image quality index combining the five factors was proposed in [70]. In [71], natural

scene statistics was used to detect degradation of infrared images for face recognition. In [72],

the degradation in the performance of face detectors were quantified considering different factors

including noise, blur, and compression.

There are also a few studies on the quality for target detection, target tracking, and event de-

tection for airborne reconnaissance applications. In [74], the applicability of the National Imagery

Interpretability Ratings Scale (NIIRS) to an automated target detection algorithm was examined,

and it was found that NIIRS is not a good predictor of target detection performance. In [75] and

[76], the impacts of video frame rate and two spatial factors (noise and spatial resolution) on the

tracker performance were investigated.

The aforementioned studies investigated the performance of automatic analysis on specific

applications like face recognition and airborne reconnaissance. Our work advances the state of the

art by addressing the challenge of building a more general quality prediction model for a wide range

of object detection algorithms and diverse scene characteristics. Moreover, our model considers

four common types of distortions during the imaging process.
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4.1 Data set and object detection measure

In this section, we introduce the data set, the object detection algorithms, and the measure used for

evaluating object detection accuracy in our study.

4.1.1 Data set

We have selected 10 high resolution original video sequences with different scene characteristics,

illumination levels, and object scales. Among them, 5 videos are chosen from the Multiple Object

Tracking (MOT) dataset [127], and 5 videos are chosen from the Duke Multi-Target Multi-Camera

Tracking (DM) dataset [128]. The resolutions of these videos are mostly 1920×1080 except for

one video with 640×480 resolution, and the average number of frames is 741. The snapshot of

these videos are shown in Figure 4.1.

Blur and noise are major factors that degrade imaging quality for surveillance or mobile cam-

eras. To understand how the performance of object detection could be affected by blur and noise

during the image sensing process, we have generated distorted video sequences based on the orig-

inal videos, including videos with Gaussian blur, motion blur, and imaging noise. For each type of

distortion, distortion levels are set to low, medium, high, higher, extreme level, and the simulation

parameters and setting are selected based on the experiments conducted in recent works [129, 130].

We have also included reduced spatial resolution versions of the original videos to study the effect

of spatial resolution on object detection.

• The blurring effect of a video is generated by 2D circularly symmetric Gaussian blur kernels

with standard deviations of [1.2, 2.5, 6.5, 15.2, 33.2] for five levels, respectively.

• The motion blur is simulated to approximate the linear motion of a camera by [5, 12, 20, 40,

100] pixels with an angle of 45 degrees.

• White Gaussian noise is added to the original images, where variances are set to be [0.001,

0.006, 0.022, 0.088, 1].
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Figure 4.2: Samples of different distortions.

• For reduced spatial resolution, 1:2 and 1:4 down-sampling rates are applied in both horizon-

tal and vertical directions on the original images.

Samples for the four types of distortion are shown in Figure 4.2, in which the original image

frame is the 581th frame of DMcam01 video. Figure 4.2 (a) shows the image with reduced spatial

resolutions, which includes 3 resolutions overlaying in one image, corresponding to original, half,

and quarter resolutions in both horizontal and vertical directions. Figure 4.2 (b) is a sample of blur

to simulate out-of-focus blur, Figure 4.2 (c) is a sample of motion blur to simulate camera shake

during exposure, and Figure 4.2 (d) is a sample of white noise to simulate imaging noise in low-

light scenarios. For each original video sequence shown in Figure 4.1, we have generated a total

number of 17 distorted videos, including 2 videos from reduced spatial resolution and 5 videos

from each type of other three distortions. This results in a total number of 180 video sequences

(including the original ones), and it correspond to a total number of 133344 images in our data set.
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4.1.2 Object detection algorithms

There are two categories of object detection algorithms in the field of computer vision: one based

on building models of backgrounds and the other based on building models for objects. Algorithms

based on background modeling require multiple frames to build a stable background, while meth-

ods based on object modeling could generate detection results on a single image. In this Chapter,

we aim at evaluating the quality of single images, such that the wireless embedded camera could

adjust its sensing strategy based on the predicted quality and energy supply. Therefore, we focus

on object modeling methods. Furthermore, we consider the scenario that the embedded camera

perform local object detection in a fast manner, so low-complexity object detection algorithms

are preferred. We use the following three representative lightweight algorithms based on object

modeling:

1. Histograms of Oriented Gradients (HOG) [32];

2. Discriminatively Part Models (DPM) [131]; and

3. Locally Decorrelated Channel Features (LDCF) [132].

4.1.3 Object detection measure

The evaluation measures for object detection could be either sequence-based or image-based. Since

our goal is to predict and adjust the performance of object detection once an image is taken, we

evaluate the object detection accuracy of each frame in a video. The Frame Detection Accuracy

(FDA) is a comprehensive metric that accounts for important measures of system performance

(such as number of objects detected, missed objects, false positives, and localization error of de-

tected objects) in a single score [133]. For a given frame, the optimal matching pairs is assigned

firstly by computing the spatial overlap between ground truth and detected objects. Then, the FDA

measure calculates the spatial overlap between the ground truth and system output objects as a

ratio of the spatial intersection between the two objects and the spatial union of them. The sum

of all of the overlaps is normalized over the average number of ground truth and detected objects.

58



Figure 4.3: Detection sample.

For one image, where there are NG ground-truth objects G and ND detected objects D, Nm is the

number of mapped object pairs, FDA is defined as:

FDA =

∑Nm

i=1

Gi ∩Di

Gi ∪Di

(NG +ND)/2
. (4.1)

A detection system needs to take an image and return a bounding box and a confidence for each

detection. The provision of a confidence level allows results to be ranked such that the trade-off be-

tween false positives and false negatives can be evaluated, without defining arbitrary costs on each

type of classification error [134]. However, the original FDA measure does not reflect the trade-off

between false positives and false negatives. Thus, we introduce a revised FDA measure, rFDA

for short, which is the average of FDA based on different thresholds (T ) of detection confidence

levels (C). rFDA is defined as:

rFDA =
Nm∑
j=1


∑NTj

i=1

Gi ∩Di

Gi ∪Di

NG +ND

2

 /Nm, (4.2)

where Nm is the number of mapped object pairs, NTj
is the number of true positives when the

threshold of detection confidence Tj equals to Cj , j ∈ {1, ..., Nm}, and Cj denotes the detection

confidence level of the j-th mapped detected object.
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We use the detection sample shown in Figure 4.3 to explain how to compute rFDA. Figure

4.3 corresponds to a part of the 581th frame of high blur distorted DMcam01 video by the LDCF

detector. The ground truth is highlighted in solid line, and three detected objects in dash line

with confidence levels 34.71, 128.2, and 43.5, respectively. When the threshold T equals to the

minimum confidence C(min), i.e., T = 34.71, the three detection results are all true positives,

which is the same with the original FDA definition; when T = 43.5, only two detection results

are regarded as true positives. On the other hand, the SSIM (0.51) and PSNR (21.14 dB) values

of this image actually are quite low and poor, however, detection performance is pretty good,

which indicates that the popular image quality assessments can not reflect the detection quality.

The original FDA measure in (4.1) can be regarded as FDAT (min), which uses the minimum

detection confidence level C(min) in mapped pairs as threshold such that all mapped object pairs

are true positives.

In order to validate the proposed rFDA measure, we compare the correlation of FDA and rFDA

with Average Miss Rate (AMR), which is the most popular metric used in the object detection

area. The AMR of an image sequence [135] can be determined as follows: first, a detected object

and a ground truth form a match if they overlap sufficiently, which is evaluated by the ratio of the

intersection between two objects and the union of them, and a threshold ratio of 0.5 is commonly

used; then, the miss rates against false positives per image (FPPI) is plotted (using log-log plots)

by varying the threshold on detection confidence; finally, the log-average miss rate is used to

summarize the detector performance by averaging miss rate at nine FPPI rates evenly spaced in

log-space in the range of 0.01 to 1. Since AMR is calculated based on an entire image sequence,

we measure the detection performance for the whole sequence using Sequence Frame Detection

Accuracy (SFDA) introduced in [133]. SFDA is an average of the FDA measured over all frames

in sequence. The average is normalized to the number of frames in the sequence where at least a

ground truth or a detected object exists. SFDA is formulated as:

SFDA =

∑Nframes

t=1 FDA(t)∑Nframes

t=1 ∃(N t
G OR N t

D)
, (4.3)
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Table 4.1: Comparison of rFDA and FDA in correlation and variation

Detectors DPM HOG LDCF Average ∆
Correlation of

0.9183 0.6807 0.8872 0.8288 –
SFDA vs. AMR
Correlation of

0.9536 0.7734 0.9307 0.8859 0.0571
SrFDA vs. AMR

Variation (σ)
0.2600 0.1657 0.2347 0.2202 –

of FDA
Variation (σ)

0.1818 0.1187 0.1669 0.1558 -0.0643
of rFDA

where N t
G and N t

D denote the number of ground-truth objects and the number of detected objects

in frame t, respectively, Nframes is the number of frames in the sequence, and FDA(t) is the FDA

value for frame t.

Table 4.2: The consistency between different detectors

DPM vs. HOG DPM vs. LDCF HOG vs. LDCF Average
0.8715 0.8266 0.8352 0.8445

Similarly, we can compute the sequence level measure of the proposed rFDA, which could be

referred to as SrFDA. We evaluate the correlation of AMR with the sequence level FDA measures

on our entire data set. The correlation coefficients of SFDA with AMR and the ones of SrFDA

with AMR for the three different detectors are summarized on Table 4.1. We can find that there

are obvious improvements comparing SrFDAs correlation with SFDAs for all the three detectors.

Specifically, gains are 0.0353, 0.0927, and 0.0435 for DPM, HOG, and LDCF detectors, respec-

tively. The average of correlation coefficients between SrFDA and AMR for the three detectors

reaches 0.8859, and the average gain is 0.0571, which indicates that SrFDA is more consistent

with AMR. It indicates that rFDA can depict the performance of object detection and it is a better

metric for single image detection performance. In addition, the variations of each frames FDA and

rFDA in the image sequences are inspected based on standard deviation, and the results are sum-

marized in Table 4.1. We can notice that the variations of rFDA are always smaller than the ones of
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FDA for the three different detectors, which indicates that rFDA can reduce arbitrary fluctuations

and maintain more stable measurements.

The correlation between the different object detectors are also investigated, as shown in Table

4.2. The correlation coefficients are all above 0.82, and the average of them reaches 0.8445. Al-

though the operating principles of the three detectors are different, the correlation results indicate

that their detection performances are consistent. Therefore, we target at predicting the average

performance of the three detectors in the proposed image quality adjustment framework.

4.2 Blind model for object detection quality

We build a blind/no-reference regression model to predict the performance of object detection on

an image, given by rFDA in the previous section. The regression model utilizes four categories of

features: gradient, edge, compact HoG, and estimated object size.

Boundary information in an image plays an important role in object detection and pattern recog-

nition, since boundaries represent the transition regions between objects and background where the

image intensities vary abruptly or have discontinuities. Gradient is a good indicator for the variance

of image intensities. For an image f(x, y), the gradient of f at location (x, y) is defined as the two

dimensional column vector: [∂f/∂x, ∂f/∂y]T , where ∂f/∂x = f(x+ 1, y)− f(x− 1, y), and

∂f/∂y = f(x, y + 1)− f(x, y − 1) using finite difference filters. The magnitude and direction of

this gradient at location (x, y) are given by:

mag(x) =

√
(∂f/∂x)2 + (∂f/∂y)2, (4.4)

dir(x, y) = tan−1
[
∂f/∂y

∂f/∂x

]
. (4.5)

One sample of image gradient is shown in Figure 4.4. The original image in Figure 4.4 (a) is a

portion of the 581th frame of DMcam01 video, and Figure 4.4 (b) and (c) show the corresponding

image gradient directions and magnitudes, respectively. We can observe that the image gradient
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Figure 4.4: Sample of image gradient and HOG descriptor.

direction and magnitude can depict the boundary of objects precisely. Thus, the statistical prop-

erties of gradient could be used to depict the characteristics of an image. We calculate 4 related

features: (1) meanGmag: the average of gradient magnitude; (2) stdGmag: the standard devia-

tion of gradient magnitude; (3) meanGdir: the average of gradient direction; and (4) stdGdir: the

standard deviation of gradient direction.

The local oriented gradient can describe object appearance and shape through counting oc-

currences of gradient orientation in localized portions of an image based on the HOG descriptor

defined in [32]. The local window for one HOG descriptor is set as 16×16 pixels, and the num-

ber of orientation bins for one HOG descriptor is set as 9. For each histogram with 9 orientation

bins, 4 different normalizations using adjacent histograms are employed, which results in a 36-

dimensional feature vector. In order to summarize the information provided, we simplify the HOG

descriptor through the average frequency wm and the frequency’s variation level ws of the his-

togram’s bins, which are defined to one window as follows:

wm =
∑Nb

i=1
hi/Nb, (4.6)

ws =

√∑Nb

i=1
(hi − wm)2/(Nb − 1), (4.7)

where hi is the frequency of the ith bin in a local window, and Nb is the number of bins in a
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local window. Based on two statistical values for one local window, we introduce 4 compact HOG

features: (5) hog mm: the average of every blocks’ wm; (6) hog ms: the standard deviation of

every blocks’ wm; (7) hog sm: the average of every blocks’ ws; and (8) hog ss: the standard

deviation of every blocks’ ws.

The boundary or edge, representing transition areas between objects and background, is ob-

tained by Sobel operator through convolving the image with two 3x3 kernels in the horizontal

and vertical directions. The local information of edge is collected based on a block of 16×16

pixels, and 4 related features are calculated: (9) edge mm: the average of every blocks’ average;

(10) edge ms: the standard deviation of every blocks’ average; (11) edge sm: the average of ev-

ery blocks’ standard deviation; and (12) edge ss: the standard deviation of every blocks’ standard

deviation.

If the size of an object is too small or too large in the image, it is hard to detect the object

from the background. We introduce (13) estimated object size as another feature. This feature is

obtained based on Otsu’s method [136] with low computational overhead. Four feature channels

are employed together to determine the optimal threshold for binarizing the gray image. In a

gray image, let OTi
and BTi

denote the pixel sets of potential objects and background obtained

with a threshold Ti. The optimal threshold T ∗ is determined through searching for a possible Ti

that maximizes the total variance of four features between the potential objects and background

according to

T ∗ = argmax
Ti

N=4∑
j=1

ωOωB(Oj
Ti
−Bj

Ti
)2,

s.t. 0 < ωO < 1, ωO + ωB = 1,

(4.8)

where ωO and ωB denote the percentages of potential objects and background in the image, Oj
Ti

and Bj
Ti

represent the average values of the potential objects and background in feature channel j,

j ∈ {fgm, fr, fg, fb}, and fgm, fr, fg, and fb are the gradient’s magnitude, red color channel, green

color channel, and blur color channel of the image, respectively.

We use the bootstrap aggregating, or bagging, ensemble of trees to train a regression model to

64



predict detection performance based on the aforementioned 13 features on a single image. Every

decision tree in the bagging ensemble is grown on an independently drawn bootstrap replica of

input observations [137]. The ensemble tree prediction is formed by taking the average over base

learners. The tuning parameters of ensemble trees include the number of trees and the minimum

leaf size to control the tree depth.

4.3 Performance evaluation

To evaluate the performance of the proposed quality model and classifiers of distortion types, we

divide the entire data set into a training set and testing set, which are described in Table 4.3. The

total number of images in our data set is 133344. The images from 8 raw videos and their distorted

versions are used for training (75.03%), and the images from the remaining 2 raw videos and

their distorted versions are used for testing. Through 5-fold cross validation during the training

procedure, 30 base learners and a minimum leaf size of 8 are used to build the ensemble of trees

for the proposed quality model.

Table 4.3: The setting of training and testing sets

Category video name image number percentage

Training set

MOT17-02, MOT17-10,

100044 75.03%
MOT17-13, MOT15-02,
DMcam01, DMcam02,
DMcam04, DMcam08

Testing set MOT17-04, DMcam06 33300 24.97%

First, the regression performance of the proposed quality model is investigated. Figure 4.5

(a) shows the scatter figure of the actual response VS. the predicted response. There are a huge

number of observations (33300 images) in the testing data set, and one point is selected from

every 50 observations to generate a clear figure. The perfect regression results should be all on

the diagonal line, and most of the predictions in our proposed model are near or on the diagonal

line, which indicates that the regression of proposed model can depict the image quality for object
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(a) Actual response VS. predicted response

(b) Distribution comparison in different distortion categories

Figure 4.5: Regression performance of the proposed quality model.
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Table 4.4: Regression metrics of the proposed quality model

Metrics RMSE R2 adjR2 MSE MAE
Overall performance 0.0461 0.8416 0.8416 0.0021 0.0347

Down-sampling 0.0511 0.7896 0.7892 0.0026 0.0425
Blur 0.0412 0.8715 0.8713 0.0017 0.0293

Motion blur 0.0502 0.8104 0.8102 0.0025 0.0382
Noise 0.0433 0.8465 0.8463 0.0019 0.0320

detection quite well. Figure 4.5 (b) illustrates the distributions of the actual response and the

predicted response in different categories of images, down-sampling in the spatial domain (ds),

blur (bl), motion blur (mb), and imaging noise (ns), in which the actual responses (act) are in red

color and the predicted responses (pre) are in blue color with wider boxes. We can find that the 25th

and 75th quartiles and the medians of the predicted responses are all close to the actual responses

in the distribution of the four categories, indicating that the proposed model can accurately predict

image quality for object detection for different types of distortions.

The regression performance of the proposed quality model on the testing data set is measured

in terms of Root Mean Square Error (RMSE), R2, adjR2, Mean Squared Error (MSE), and Mean

Absolute Error (MAE), as shown in Table 4.4. Among these metrics, smaller values of RMSE,

MSE and MAE indicate better performance. R2, or coefficient of determination, is always smaller

than 1 and usually larger than 0. Adjusted R2, short for adjR2, adjusts R2 for the number of

explanatory terms (features) in a model relative to the number of observations. R2 and adjR2

values close to 1 indicates good regression performance. From Table 4.4, we can find that the

overall performance in terms of RMSE, MSE and MAE are all quite close to 0, and both R2 and

adjR2 reaches 0.8416 after rounding, which indicates that the proposed model fits data well and

that only a few features can explain the observations. The performances of specific distortion

categories are also inspected and summarized in Table 4.4. For the blur and the noise categories,

the values of RMSE, MSE, and MAE are all less than the ones of the overall performance, and

the values of R2 and adjR2 are larger than the ones of the overall performance. For the down-

sampling category, the values of RMSE, MSE, and MAE are slight larger to the ones of the overall

67



(a) rFDA VS. SSIM (b) rFDA VS. PSNR

Figure 4.6: Full-reference IQAs performance.

performance, and the values of R2 and adjR2 are close to 0.8. For the motion blur category, the

values of RMSE, MSE, and MAE are close to the ones of the overall performance, and both of R2

and adjR2 values reach above 0.81. Generally speaking, the proposed model can handle different

distortion categories and achieve a decent overall performance.

The performance of the proposed model is compared with two well-known full-reference IQAs:

PSNR and SSIM. The performance of these models are evaluated in terms of the Linear Correlation

Coefficient (LCC), the Spearman Rank Order Correlation Coefficient (SROCC), and the Kendall

Rank Correlation Coefficient (KRCC). Because full-reference PSNR and SSIM measures could

not evaluate the quality of down sampling versions and original video sequences, results from

these images are excluded in this comparison. The correlation results are shown in Table 4.5. The

correlation coefficients of LCC and SROCC for the proposed model reach above 0.90, while the

ones for SSIM and PSNR fall between 0.6 and 0.8; the correlation coefficients of KRCC for the

proposed model also reach above 0.70, which is 17.9% and 40.8% higher over the ones for PSNR

and SSIM, respectively. The results show that the proposed model is a good predictor for the image

quality for object detection, and SSIM and PSNR can not be good indicators for the image quality

for object detection. The conclusion also can be drawn from Figure 4.6, in which scatter figures

between PSNR, SSIM and rFDA values are plotted. From Figure 4.6, we can find that there is

no significant relationship between either PSNR or SSIM and rFDA values. The reason is that
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SSIM and PSNR are designed for the perceptual quality but not for the quality evaluated by object

detection algorithms.

Table 4.5: Full-reference correlation coefficients

Algorithms LCC KRCC SROCC
SSIM 0.6187 0.5198 0.7068
PSNR 0.7792 0.6208 0.8165

Proposed 0.9205 0.7319 0.9049

The proposed quality model is also evaluated against two popular no-reference IQAs: BRISQUE

and BLIINDS-II. BRISQUE [138] is a distortion-generic no-reference IQA model, which exploits

scene statistics of locally normalized luminance coefficients in spacial domain to quantify possible

losses of naturalness in the image. BLIINDS-II [25] is a blind IQA algorithm using a Bayesian in-

ference approach on extracted features that are based on a natural scene statistics model of discrete

cosine transformation coefficients. All images in the testing set are included in this comparison

thanks to the no-reference property of these two IQAs. Since both algorithms regard a quality

score (QS) of 100 as the worst quality, and a QS of 0 as the best quality, we convert the QS us-

ing QSnew = 1 − QS/100 and compare QSnew from the two algorithms with the predictions of

rFDA from our proposed quality model. The correlation results are presented in Table 4.6. For the

proposed model, compared with the results obtained from the reduced testing set (shown in Table

4.5), the correlation coefficients on this complete testing set keep the same magnitude order, just

slight decreasing with 0.2%, 1.6%, and 0.5% for LCC, KRCC, and SROCC, respectively. This

indicates that the proposed model can also achieve good performance on the original videos and

the down-sampled versions. The correlation coefficients of BRISQUE and BLIINDS-II are quite

low, among them, the maximum value is 0.6007 and the mimnum value is 0.3737. The scatter fig-

ures between BRISQUE, BLIINDS-II and rFDA values are shown in Figure 4.7, in which a certain

level of perceptual quality indicated by BRISQUE or BLIINDS-II could correspond to a diverse

range of rFDA values. These results indicate that the proposed model is a good image quality

estimator of object detection for various kinds of distoriton; however, BRISQUE and BLIINDS-II
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(a) rFDA VS. BRISQUE (b) rFDA VS. BLIINDS-II

Figure 4.7: No-reference IQAs performance.

Table 4.6: No-reference correlation coefficients

Algorithms LCC KRCC SROCC
BRISQUE 0.4371 0.3737 0.5342

BLIINDS-II 0.5392 0.4337 0.6007
Proposed 0.9184 0.7204 0.9002

are limited in predicting image quality for object detection since they are intended for predicting

perceptual quality.

It is important to factor computational complexity into an algorithm selection for embed-

ded cameras, which are usually constrained in processing capabilities. Three algorithms, i.e.,

BLIINDS-II, BRISQUE, and our proposed one, are inspected. Computational complexity is mea-

sured exclusively on a computer based on an Intel Xeon E5-2637 v3 (3.50GHz) processor running

on a Windows 7 Enterprise operating system. It is evaluated by the average computational time

over 800 images of the original 1080P resolution (1920×1080), half resolution (960×540), and

quarter resolution (480×270) of DMcam06 video. In Table 4.7, it can be noticed that the time

consumption is significantly long of up to 159 seconds for the BLIINDS-II algorithm to compute

a quality score of each original-sized input image; meanwhile the BRISQUE algorithm took ap-

proximately 0.785 seconds, which doubles the time of our proposed quality model. As input video
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Table 4.7: Average computational complexity measured in second

Algorithms 1920×1080 960×540 480×270
BLIINDS-II 158.987 (±1.491) 40.065 (±0.698) 10.140 (±0.202)
BRISQUE 0.785 (±0.070) 0.324 (±0.061) 0.235 (±0.053)
Proposed 0.436 (±0.021) 0.210 (±0.011) 0.136 (±0.010)

resolution decreases, quality assessment time also drops. Using the proposed quality model, it

takes only 0.21 seconds to process a half resolution frame and 0.136 seconds for a quarter reso-

lution frame. In conclusion, among the three algorithms, our proposed quality model requires the

least time for evaluating the quality of the input frames, which is suitable for implementation on

embedded cameras.

4.4 Conclusion

In this chapter, we have proposed a no-reference image quality model based on a wide range of

object detection algorithms that can be executed on embedded cameras. The proposed model

could predict image quality for object detection by considering different types of quality degrada-

tion in the imaging process, including reduced resolution, noise, and blur. The proposed model

is built based on a diverse range of scene characteristics. Utilizing easily extracted local and

global features, the model achieves more accurate predictions of image quality for object detec-

tion than common full-reference image quality measures, such as PSNR and SSIM, and popular

no-reference IQAs.
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Chapter 5

Image quality adjustment framework for

object detection on embedded cameras

In this chapter, we propose an image quality adjustment framework to provide satisfactory ob-

ject detection performance for imaging applications based on embedded cameras. The framework

includes a blind regression model based on a bagging ensemble of trees for predicting the perfor-

mance of object detection on an image and two distortion type classifiers based on support vector

machines for determining whether or not there is noise or blur in the image. The regression model

and the classifiers utilize local features in an image such as edge and oriented gradient and global

features including image gradient, image contrast, and estimated object size. All of the features

could be easily obtained from an image, providing a light-weight solution for embedded cameras.

The regression model and the classifiers are trained using a large number of images with different

scene characteristics and three types of distortions including noise, out-of-focus blur, and motion

blur. Their performances are evaluated through extensive experiments on a separate test data set.

The effectiveness of the entire image quality adjustment framework is also evaluated using images

with different types and levels of distortions. Our preliminary results on the regression model has

been presented in Chapter 4. New contributions in this article include: a systematic image quality

adjustment framework, two distortion type classifiers, and comprehensive experimental results and
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discussions based on a larger data set.

There is a rich literature on enhancing the perceptual quality of images. An image fusion and

enhancement framework based on spectral total variation was proposed in [139]. This framework

extracted the main features of the input images and achieved improvement for edge details and con-

trast. For low-light image enhancement, the robust Retinex model in [140] additionally considered

a noise map compared with the conventional Retinex model, to improve the performance of en-

hancing low-light images accompanied by intensive noise. A guided image contrast enhancement

framework based on retrieved images in cloud was proposed in [141], in which context-sensitive

contrast and context-free contrast were jointly improved via solving a multi-criteria optimization

problem. A no-reference IQA model through analysis of contrast, sharpness, brightness and etc.,

was proposed in [142]. Then, a robust image enhancement framework through histogram modifi-

cation to rectify image brightness and contrast is established based on the NR-IQA model.

There are a few works on adjusting image quality for automatic analysis tasks. In [72], based

on the quantification of the degradation in the performance of face detectors, a new set of features

were proposed for robust face detection that could augment face-indicative features with perceptual

quality-aware spatial natural scene statistics features. A similar enhancement strategy, based on

aggregating IQA features that are more robust to image quality degradation, was employed by

face recognition in infrared images in [71]. A closed-loop computing framework of enhancing

image steganography through optimizing picture quality was proposed in [143]. For poor license

plate recognition due to low quality of images, a new mathematical model based on Riesz fractional

operator for enhancing details of edge information in license plate images was proposed to improve

the performances of text detection and recognition methods in [144].

The aforementioned studies proposed quality enhancing or control approaches for either per-

ceptual quality or specific applications like face recognition, image steganography, and plate recog-

nition. However, two more challenges in image quality adjustment remain unsolved. First, there

are different types of distortion during the imaging process, and the type of distortion (e.g., noise

or blur) should be determined before applying image enhancement algorithms. Second, the es-
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timation of distortion should be achieved through low complexity considering the limitation of

processing on embedded cameras. Existing studies on the estimation of noise and blur involves

intensive computation [145, 146]. Our work aims to advance the state of the art by addressing

these two challenges.

Figure 5.1: The quality adjustment framework.

5.1 Proposed image quality adjustment framework for object

detection

We propose a quality adjustment framework to provide satisfactory image quality for object detec-

tion during the image sensing process. The components of the framework are shown in Figure 5.1.

Once an image is captured, both the quality for object detection and the perceptual quality of the

image are estimated, as the image may be used for further automatic analysis or be delivered in

front of human users. The prediction of perceptual quality could be achieved through existing no-

reference perceptual quality models, such as BRISQUE [138] and BLIINDS-II [25]; however, the

evaluation of object detection quality requires further studies. We propose to build a new quality
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model for predicting the performance of object detection. If the image has satisfactory perceptual

and object detection quality, it will be further processed or analyzed. Otherwise, the framework

will determine if there is any noise or blur in the image, which are common types of distortions

in the imaging process. If so, pre-processing methods for removing noise or blur will be applied

to enhance its quality. If the restored image still cannot provide satisfactory quality, an image

re-capturing action will be executed. Although several existing denoise and deblurring algorithms

could be applied here to restore the images [147, 148, 149, 150], there is a lack of mechanisms to

distinguish noisy or blurred images with normal ones. To solve this problem, we propose to build

a noise classifier and a blur classifier.

In the rest of this section, we explain the three core components in the proposed framework:

quality prediction for object detection, blur classifier, and noise classifier. Using the aforemen-

tioned data set, we apply supervised learning algorithms to build these components. We introduce

a total number of 18 local and global features, all of which could be obtained from an image with

low computational complexity. Figure 5.2 illustrates the high level relationship of the features. All

of them are extracted from the converted gray image and the RGB image, and they can be shared

among the three core components. The “Edge” and “Compact HOG” modules with grids in the

background denote that these features are collected locally. Other features are summarized over an

entire image.

5.1.1 Features for blur classification

Blur, including motion blur and out-of-focus blur, can smooth the boundary information in an

image. Thus, statistical features based on image gradient, a good indicator for the variance of

image intensities, are extracted from the gray image. Except for the average and standard deviation

previously introduced in Section 4.2, we introduce two concepts known as Skewness and Kurtosis

to better describe the nature of the distribution. Skewness means lack of symmetry. A distribution,

or data set, is symmetrical when the data points are uniformly distributed around the mean. The
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Figure 5.2: The architecture of feature extraction.

skewness of a random variable X is the third standardized moment, defined as:

s =
E(x− µ)3

σ3
, (5.1)

where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the expected value

of the quantity t.

A measure of the peakness or convexity relative to a normal distribution is known as Kurtosis.

A high kurtosis value indicates that the distribution has heavy tails, or more outliers, and a low

kurtosis value means the data set has light tails, or lack of outliers. The kurtosis of a random

variable X is the fourth standardized moment, defined as:

k =
E(x− µ)4

σ4
, (5.2)

where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the expected value
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(a) Original Gmag (b) High motion blur Gmag (c) High blur Gmag

(d) Original Gdir (e) High motion blur Gdir (f) High blur Gdir

Figure 5.3: Distribution comparison of original and blur images.

of the quantity t.

One sample of histograms for gradient of the original and the blur images is shown in Figure

5.3. The first row is the histograms of gradient magnitude (Gmag) for the original image, high blur

version, and high motion blur version. The second row is the corresponding histograms of gradient

direction (Gdir) calculated from images. The skewness (Sk) and kurtosis (Ku) for gradient’s direc-

tion and magnitude are calculated and shown on the top-right corner of each figure. We can notice

that the shape/distribution for the histograms of blur version is different from the one of the origi-

nal image, and such difference is also reflected on the skewness and the kurtosis values. Thus, we

calculate 4 more related global features based on the image gradient: (14) skewGmag: the skew-

ness of gradient magnitude; (15) kurtGmag: the kurtosis of gradient magnitude; (16) skewGdir:

the skewness of gradient direction; and (17) kurtGdir: the kurtosis of gradient direction.
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5.1.2 Features for noise classification

Noise has always been associated with image acquisition equipments and it is a setback for object

detection and further analysis or processing. Due to the randomness of noise, it can cause arbi-

trary changes of intensities locally, which will bring more inconsistency of intensities compared

with normal or natural images. Thus, we utilize one feature, (18) image contrast, to depict this

inconsistency. The image contrast is defined as:

C =

√∑M

x=1

∑N

y=1
(I(x, y)− µ)2/MN, (5.3)

where I(x, y) denotes the intensity value of the gray image at location (x, y), µ is the mean value

of the entire gray image, and M ×N stands for image size.

5.1.3 Binary classifiers for blur and noise

We propose to build binary classifiers to indicate whether or not there is blur or noise in an image.

Considering the requirements of high accuracy and good robustness as well as the property of

binary classification, we train two Support Vector Machines (SVM) as the blur classifier and the

noise classifier. An SVM can construct an optimal hyperplane in high-dimensional space as a

decision surface such that the margin of separation between the two classes in the data set is

maximized [151]. The mechanism of finding the maximal margin can bring good tolerance for the

classifier, which is a key point in our proposed framework. The training procedures of an SVM

includes transforming input data to a high-dimensional feature space using a kernel, and solving a

quadratic optimization problem to find an optimal hyperplane to classify the transformed features

into two classes.

Finally, the blur classifier is established based on 8 gradient related features, i.e., feature No.

(1)-(4) and (14)-(17), and 4 compact HOG features, i.e., feature No. (5)-(8). The noise classifier

is constructed based on 1 image contract feature namely feature No. (18) and 4 compact HOG

features namely feature No. (5)-(8).
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5.2 Performance evaluation

To evaluate the performance of the proposed quality model and classifiers of distortion types, we

divide the entire data set into a training set and testing set, which are described in Table 4.3. The

total number of images in our data set is 133344. The images from 8 raw videos and their distorted

versions are used for training (75.03%), and the images from the remaining 2 raw videos and

their distorted versions are used for testing. Through 5-fold cross validation during the training

procedure, 30 base learners and a minimum leaf size of 8 are used to build the ensemble of trees

for the proposed quality model. For two classifiers of distortion types, the box constraint parameter

with 1 and the standardized predictor data are utilized to train two linear kernel-based SVMs.

5.2.1 Evaluation of blur and noise classifiers

We use the same training set and testing set to train and test two linear kernel-based SVMs for

the proposed blur and noise classifiers. The confusion matrices of the two classifiers are shown in

Figure 5.4. The total amount of test images is 33300, which includes original images, 2 versions

of down-sampling in spatial resolution, 5 distorted levels of out-of-focus blur, motion blur, and

imaging noise. Since there are two kinds of blur and one type of noise, the amount of blur images

is twofold the amount of noise image. In such a diversified data set, both the noise classifier

and blur classifier can precisely distinguish noise and blur distortions among other interference

factors. The accuracies for both classifiers reach to 100%. The accurate classifications can help

to determine whether or not denoise and/or deblurring algorithms could be applied to restore a

distorted image.

All the features in the blur and noise classifiers could be obtained through light-weight compu-

tation, and it is worth noticing that, the majority of the features for the classifiers are reused from

the features extracted for the proposed quality model. The entire computational complexity of the

proposed quality model and two classifiers is also tested on the same configuration and machine

used in Section ??. The averaging time consumptions of the proposed quality model and two clas-

79



(a) Confusion matrix of blur classifier (b) Confusion matrices of noise classifier

Figure 5.4: Classification results for two classifier of distortion types.

sifiers for the original 1080p, half, and quarter resolution are 0.473 (±0.028), 0.245 (±0.017), and

0.153 (±0.014) seconds, respectively. Comparison with the time consumptions in Table 4.7, there

is only slight increasement over the proposed quality model and it is still less than the BRISQUE

algorithm, which indicates that the proposed classifiers can be implemented on embedded cameras

with low complexity.

5.2.2 Evaluation of image quality adjustment

After determining the distortion type, the quality adjustment framework can call appropriate image

restore algorithms, i.e., denoise and deblurring, to adjust image quality. For the denoise, Wiener

filter is deployed to suppress noise and preserve edge, texture, and other high frequency details

based on noise level estimation using [145]. For the deblurring, we employ an efficient method

via dark channel prior in [152], which is based on the observation that the dark channel, i.e., the

minimum value in an image patch, of blurred is less sparse.

From each of the 10 scenes shown in Figure 4.1, one image frame is randomly selected, and

the corresponding distorted images with five levels of distortion are restored. Samples of distorted

images and restored images are shown in Figure 5.5, in which the original image frame is the

1th frame of DMcam01 video. Figure 5.5 (a) and (b) shows one pair of distorted image and
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(a) Sample of high level motion blur (b) Sample of restored high level motion blur

(c) Sample of high level noise (d) Sample of restored high level noise

Figure 5.5: Sample of distorted images and restored images.

restored image for high level motion blur, we can find that there is significantly improvement

for restored image. Figure 5.5 (c) and (d) shows one pair of distorted image and restored image

for high level noise, we can notice that there is obvious improvement for restored image. Object

detection performances on the distorted images and the restored images are compared. Due to

space limit, results from only the low level and the medium level distortions are visualized in

Figure 5.6. Results from high, higher, and extreme levels are consistent with the ones of low

and medium levels. The results on distorted images are labeled with light color bars with dash

line, and the ones on restored images are labeled with deep color bars with solid line. From

Figure 5.6 (a), the restored motion blur images result in better object detection accuracy in most

cases. Figure 5.6 (b) describes the detection performance on out-of-focus blur images, and overall

the restored images performs better than the distorted ones except in rare cases. The reason for

different gains in Figure 5.6 (a) and Figure 5.6 (b) is that the algorithm used performs better with

motion blur than out-of-focus blur [152]. Figure 5.6 (c) presents the detection results on noisy
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(a) Detection accuracy comparison for motion blur restore

(b) Detection accuracy comparison for out-of-focus blur restore

(c) Detection accuracy comparison for imaging noise restore

Figure 5.6: Detection accuracy comparisons for three distortion restore.
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images and their restored counterparts, and the results indicate that restored images for the majority

of scenes have higher detection accuracy than the distorted ones. From Figure 5.6, we can also

find that the improvement on low level distortions is not as much as the ones on medium level

distortions. This is because distortion at a low level does not degrade the performance of object

detectors significantly. For most cases of the different scenes, the restored images produces a better

detection accuracy performance. Specifically, the average improvements for restoring the five level

distortions on detection accuracy are 72.26%, 18.93%, and 42.87% for motion blur, out-of-focus

blur, and imaging noise, respectively. One reason for different ranges of gain is that the content

characteristics of different scenes can also affect the object detection performance.

5.3 Conclusion

In this chapter, we have proposed an image quality adjustment framework with the objective to

provide satisfactory object detection performance on embedded cameras. The core components of

the framework are: a new image quality model that could predict the performance of object detec-

tion, a classifier for detecting out-of-focus and motion blur, and a classifier for detecting imaging

noise. All the components are designed based on a data set that includes diverse scene charac-

teristics and commonly used light-weight object detection algorithms. Utilizing easily extracted

local and global features, we have designed a regression model for predicting quality based on the

ensemble of trees and two classifiers for detecting blur and noise based on the SVM. Evaluation

results have shown that the framework achieves accurate estimations of both image quality and

image distortion types with low computational complexity. It has also been demonstrated that the

framework could effectively enhance the performance of object detection on images captured by

embedded cameras.
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Chapter 6

Conclusion and future work

6.1 Research contributions

The impact of video quality on object detection and its applications are systematically investigated

in the dissertation for compressed videos and local processing on embedded cameras.

For object detection on compressed videos, it has been found that current standardized video

encoding schemes cause temporal domain fluctuation for encoded blocks in stable background ar-

eas and spatial texture degradation for encoded blocks in dynamic foreground areas of a raw video,

both of which degrade the accuracy of object detection. Two measures, the sum-of-absolute frame

difference (SFD) and the degradation of texture (TXD), are introduced to depict the temporal do-

main fluctuation and the spatial texture degradation in an encoded video, respectively. A model of

object detection quality on compressed videos is established based on these two measures. Then we

have proposed an efficient video encoding framework for boosting the accuracy of object detection

for distributed sensing applications. The proposed encoding framework is designed to suppress

unnecessary temporal fluctuation in stable background areas and preserve spatial texture in dy-

namic foreground areas based on the two measures, and it introduces new mode decision strategies

for both intra and inter frames to improve the accuracy of object detection while maintaining an

acceptable rate-distortion performance. Experimental results show that, compared with traditional
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encoding schemes, the proposed scheme improves the performance of object detection and results

in lower bit rates and significantly reduced complexity with comparable quality in terms of PSNR

and SSIM.

For object detection performed locally on embedded cameras, we have investigated the impact

of imaging quality, such as imaging noise, motion blur, and out-of-focus blur, on the performance

of distributed in-network video analysis. We have proposed a no-reference regression model based

on a bagging ensemble of regression trees to predict the accuracy of object detection using observ-

able features in an image. Based on the estimation of detection performance, we have proposed a

quality adjustment framework to provide satisfactory object detection performance on embedded

cameras. Key components of the framework include a blind regression model for predicting the

performance of object detection and two classifiers for determining the type of distortion in an im-

age. A video data set is constructed that considers different factors related to quality degradation

in the imaging process. The performances of common low-complexity object detection algorithms

are obtained for the data set. Based on the data set and utilizing features that can be easily ex-

tracted from an image, a regression model and two classifiers are trained and tested. The proposed

framework achieves accurate estimations of both image quality and image distortion types with

low computational complexity and it can effectively enhance the performance of object detection

on embedded cameras.

6.2 Future work

Considering the constraint of energy on embedded cameras, the trade off between detection quality

and energy consumed for local processing on individual cameras should be explored further. After

object detection, object tracking and other high level analysis are employed. The quality of object

tracking also should be investigated. Since the view of a single camera is finite and limited by

scene structures, collaborative tracking scheme for wireless camera networks should be explored

accordingly.
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Quality-Rate-Energy optimization for local processing on individual cameras

Firstly, we can model the rate for local processing on wireless cameras based on extracted fea-

tures. The amount of transmitted data is determined mainly by local processing algorithms, since

different video processing algorithms generate different semantic information. Then, the seman-

tic information is encoded by specific algorithms, and the encoded data is transmitted based on

specific communication protocol. Then, we can optimize detection accuracy with rate and energy

together for local processing on wireless cameras. In principle, this problem can be rephrased as

– how to achieve the best object detection quality under the network bandwidth and battery power

constraints at individual wireless camera sensors. The CPU can reduce its energy consumption

substantially by running more slowly. Reducing the supply voltage in conjunction with the clock

frequency eliminates the idle cycles and saves the energy significantly. Therefore, we can dynami-

cally adjust the processing power for tracking for saving energy. For evaluation the performance of

proposed Quality-Rate-Energy optimization scheme, we can try to perform simulation on certain

software platforms, such as WiSE-Mnet++ [153], or conduct testbed experiments.

A quality-of-tracking model for collaborative object tracking using multiple cameras

The view of a single camera is finite and limited by scene structures. In order to monitor a wide

area, such as tracking a person walking through the road network of a city, video streams from

multiple cameras have to be used for collaborative object tracking.

Collaborative object tracking includes two scenarios: 1) one object appear in multiple cameras

at the same time, i.e., multiple cameras in overlapping fields of view (FOVs); 2) one object appear

sequentially in multiple cameras, i.e., multiple cameras in non-overlapping FOVs. For one object

appearing in multiple cameras at the same time, which view of camera should be selected and

when views of camera should be switched decide the collaborative object tracking quality. For one

object appearing sequentially in multiple cameras, re-identification and relay tracking play a key

part in the collaborative object tracking quality. In summary, tracking accuracy is always a key

issue to be considered, while strategies of tracking in multiple cameras is also critical.
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When the FOVs of different cameras overlap, not all cameras are equally needed for localizing

a tracking target. It is possible to base the tracking on the observations of only a subset of cameras,

where this subset is selected such that the associated drop in tracking quality is limited. When only

these selected cameras do processing to track the target and data is transmitted only between the

relevant cameras, a substantial saving of resources is achieved. The nonselected cameras can be

left idle or can be used for other, additional network tasks. An example of an additional task in a

camera network used for tracking is the discovery of new tracking targets.

Object tracking in nonoverlapping multiple cameras is more challenging because 1) the predic-

tion of the spatio-temporal information of objects across camera views is much less reliable than

in the same camera view; 2) the appearance of objects may undergo dramatic changes because of

variations of many factors, such as camera settings, viewpoints and lighting conditions, in different

camera views. The most typical way of multi-camera tracking is to track objects in a 3D coordinate

system or on a single global ground plane or based on the homography between camera views after

calibration. In order to track objects across disjoint camera views, appearance cues have to been

integrated with spatio-temporal reasoning.

To study collaborative object tracking quality for multiple cameras, we can firstly search for

video dataset, which should include two scenarios of collaborative object tracking. Then, we can

choose several classical object tracking algorithms. Object tracking includes target representation

scheme, search mechanism, and model update. Object representation is one of the major compo-

nents in any visual tracking algorithm. Since objects have been detected before tracking, we can

utilize detected objects’ information to construct features that might affect the quality of tracking,

such as: illumination conditions, changes of objects’ appearance, changes in shape and size, targets

motion, and occlusion.

A quality-aware collaborative object tracking scheme for wireless camera networks

According to the quality-of-tracking model for collaborative object tracking using multiple cam-

eras, we can design a quality-aware collaborative object tracking scheme for wireless camera net-
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works. This collaborative object tracking scheme can achieve better tracking accuracy and preserve

more information of object for further analysis through calculating the quality of tracking in real-

time and dynamical adjustment and allocation of computing resources in networks.

We cast collaborative tracking in wireless camera networks as a resource allocation problem

where cameras are available network resources. The general target is to find the specific paradigm

each active camera node should adopt and the related transmission rate to maximize the accuracy

of the analysis task. The problem formulation explicitly considers bandwidth, energy, timeliness

of response and routing constraints dictated by the individual nodes and network topology, as well

as the costs of operating each camera node.
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