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Abstract

The analysis of growth curves has played a vital role in estimating the growth trajectory of
populations as well as identifying critical factors corresponding to various shapes of those
trajectories. In recent years, shape invariant modeling has become an active area of research
for non-parametric growth curve modeling, where a single function is transformed by scaling
and shifting it to fit each subject usually through affine transformations. Lawton, first
proposed SIM called it self-modeling regression; in their approach, the function for the
underlying shape is illustrated for various parametric functions. Later, Beath developed
a model to explain longitudinal growth patterns and extended the SIM to include time-
dependent covariates. As a type of SIM, the regression spline expressed as a basis function
consisting of a different set of knots; the resulting structure fitted as a nonlinear mixed
effects model and parameters are typically estimated using maximum likelihood. This allows
estimating the parameters for the between-subjects variation. The research in longitudinal
growth curve modeling utilizing the Bayesian inferential procedure is limited, and the wider
application is hindered by the computational complexities involved in such models. Cole
proposed Super Imposition by Translation and Rotation model and expressed individual
growth curves through three subject-specific parameters; named as size, tempo, and velocity.

It is an important inferential problem to test no association between two binary variables
based on data. A Test-based on sample odds ratio is commonly used. We bring in a
competing test based on the Pearson correlation coefficient. An Odds ratio does not extend

to higher order contingency tables, whereas the Pearson correlation does. It is a useful



exercise to understand how the Pearson correlation stacks against the odds ratio in 222
tables. Another measure of association is the canonical correlation. In my second chapter we
used power comparisons in 2x2 Contingency Tables: Odds Ratio versus Pearson Correlation
versus Canonical Correlation to understand how Pearson correlation stacks against the odds
ratio in 2x2 tables in the test of association.

Air pollution is a growing global challenge and may have a moderate to the severe nega-
tive impact on human health. Vehicles, households, and industries emit a complex mixture of
air pollutants, within which ambient particulate matter smaller than 2.5 micro m PMs 5 are
thought to have the greatest effect on human health. Prior epidemiologic evidence suggests
short-term P M, 5 exposure is associated with the development and exacerbation of several
health problems. Children are more susceptible to PM, 5 related health effects due to their
immature immune system and ongoing development and growth. The relationship of PM, 5
with asthma emergency department visit between 2011 and 2015 was identified within the
Cincinnati Children’s Hospital Medical Center electronic medical record based on Interna-
tional Classification of Disease (ICD-9) and we used a data-driven clustering algorithm to
find any clustering patterns existed by day within the study duration. In finding the impact
of PMs 5 on stoke. we used a case-crossover design, to examine the association of exposure

to PMs 5 and onset of incident stroke for the calendar year 2010.
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Chapter 1

Introduction



Bayestan growth curve modeling: The analysis of growth curves has played a vital
role in estimating the growth trajectory of populations as well as identifying critical fac-
tors corresponding to various shapes of those trajectories. Examples, which have motivated
statistical developments ranging from hierarchical linear models to multivariate analysis
methods, include psychological change over time, cardiovascular studies, and associations
between adolescent moderate-vigorous physical activity and depressive symptoms in young
adulthood and examination of longitudinal associations among cognition, function, and de-
pression in Alzheimer’s disease patients. In recent years, shape invariant modeling (SIM)
has become an active arca of research for non-parametric growth curve modeling, where a
single function (or, curve) is transformed by scaling and shifting it to fit each subject usually
through transformations. Lawton [126] , first proposed SIM called it self-modeling regression;
in their approach, the function for the underlying shape is illustrated for various parametric
functions. Later, Beath [23] developed a model to explain longitudinal growth patterns and
extended the SIM to include time-dependent co-variates. As a type of SIM, the regression
spline is expressed as a basis function consisting of a different set of knots; the resulting
structure fitted as a nonlinear mixed effects model and parameters are typically estimated
using maximum likelihood. This allows estimating the parameters for the between-subjects
variation.

Research in longitudinal growth curve modeling utilizing the Bayesian inferential procedure
is limited, and the wider application is hindered by the computational complexities involved
in such models. Cole [51] proposed Super Imposition by Translation and Rotation (SITAR)
model and expressed individual growth curves through three subject-specific parameters;
named as size, tempo, and velocity. We propose a Bayesian Shape invariant model for lon-
gitudinal data and the performance of the model is evaluated with real and simulated data.
Currently, instead of using a fixed knot for the spline function, we are trying to extend our

model as “Bayesian free knot growth curve fitting” using reversible jump MCMC.



Power Comparisons in 2x2 Contingency Tables: Odds Ratio versus Pear-
son Correlation versus Canonical Correlation: It is an important inferential problem
to test no association between two binary variables based on data. A Test-based on sample
odds ratio is commonly used. We bring in a competing test based on the Pearson corre-
lation coefficient. Odds ratio does not extend to higher order contingency tables, whereas
Pearson correlation does. It will be a useful exercise to understand how Pearson correlation
stacks against the odds ratio in 222 tables. Another measure of association is the canonical
correlation. In my work, we examine how competitive Pearson correlation is vis-a-vis odds
ratio in terms of power in the binary context, contrasting further with both the Wald 7
and Rao Score tests. We generate an extensive collection of joint distributions of the binary
variables and estimate the power of the tests under each joint alternative distribution based

on random samples. The consensus is none of the tests dominates the other.

Creating statistical computing tools for geo-coding and environmental expo-
sure assessment:

Air pollution is a growing global challenge and has a severe, negative impact on human
health. Vehicles, households, and industries emit a complex mixture of air pollutants, within
which ambient particulate matter smaller than 2.5 ym (PMs5) are thought to have the great-
est effect on human health. Prior epidemiologic evidence suggests short-term PMs 5 exposure
is associated with the development and exacerbation of several health problems. Children are
more susceptible to PM, 5 related health effects due to their immature immune system and
ongoing development and growth. In my study, I am trying to create statistical computing
tools for geo-coding and environmental exposure assessment. Daily ambient concentrations
of PM, 5 were estimated using residential addresses using a previously developed and val-
idated the spatiotemporal model. Briefly, our PMs5 model is based on satellite-derived
measurements of aerosol optical depth (AOD), a measure of the scattering of electromag-

netic radiation due to aerosols in the atmosphere. These measurements calibrated using



ground-based PMs; 5 monitoring and meteorological and land use data. Spatio-temporal
data sets harmonized to a 1 x 1 km grid, and random forests were used to train a model to
predict PM, 5 concentrations.

1. Source-specific contributions of particulate matter to asthma-related emer-
gency department utilization

In my first study, we downloaded all emergency department (ED), and urgent care (UC)
visits for asthma between 2011 and 2015 within the Cincinnati Children’s Hospital Medical
Center’s (CCHMC) electronic medical record (EHR) based on International Classification of
Discase (ICD-10). Daily estimations of the source-specific contributions of different PM, 5
sources were estimated using a chemical mass balance source apportionment model, and
then we used a model-based clustering method to group days with similar source profiles.
Using daily counts of pediatric, asthma-related hospital utilization for one urban county in
Cincinnati, Ohio, USA, we then tested whether or not the type PM,5, as determined by
cluster membership, significantly modified the effect of PMs 5 on utilization.

2. Differential impact of acute PM, 5 exposure on risk of stroke by stroke sub-
type, sex and race: A case-crossover study

In my second study, we downloaded all stroke patients from the electronic medical record
(EHR) based on the International Classification of Disease ICD9. Daily ambient concentra-
tions of PM, 5 were estimated using residential addresses and used a case-crossover design
to investigate the association between short term P M, 5 exposure and incidence of different

sub types of stroke.
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Abstract

Growth curve modeling should ideally be flexible, computationally feasible, and allow for the
inclusion of co-variates for better predictability and mechanistic explanations. The original
Super Imposition by Translation and Rotation (SITAR) growth curve model, motivated by
epidemiological research on the evolution of pubertal heights over time, fits the underlying
shape function for height over age and estimates subject-specific deviations from this curve
in terms of size, tempo, and velocity using maximum likelihood. This approach is effec-
tive in subsequent applications, but the estimation method does not provide uncertainty
estimates for unknown parameters, and predictive ability has been largely unexplored. A
more recent Bayesian implementation undertaken for multivariate SITAR modeling, and this
approach requires multiple longitudinal outcomes and has added a computational burden.
Modern growth curve studies of height measurements from children with attention-deficit
hyperactivity disorder (ADHD) have gained importance in epidemiological research due to
potentially adverse effects from stimulant medications. Motivated by a particular longitu-
dinal study on the heights of 197 pediatric ADHD patients who began stimulant treatment
at varying ages, we describe a Bayesian extension of the original SITAR model. We incor-
porate co-variate effects, assess mixing properties, and examine different spline formulations
to model the underlying growth shape. As demonstrated by the real data application and
simulation study, the Bayesian SITAR approach provides a natural, computationally feasible
way to generate uncertainty estimates for treatment-outcome associations. We also discussed
the future extensions to the approach.

Keywords: Bayesian inference, functional data analysis, growth curves, shape invariant

Introduction

The analysis of childhood growth curves has played a vital role in estimating the growth

trajectory of populations as well as identifying critical factors corresponding to various shapes



of those trajectories, such as sex. Indeed, early origins of growth curve modeling utilized
cross-sectional growth curves, in which the population data were used to derive the growth
patterns for various age and gender groups. The two widely known references of using cross-
sectional data are the CDC growth chart [120] And WHO growth standards [153], which are
mainstays in clinical care. More recently, growth curve analyses based on longitudinal data
have allowed more accurate identification of growth patterns, since the longitudinal data
allows incorporating within- and between-subject effects simultaneously [196].

Earlier work to fit growth curves was based on one of two parametric assumptions, namely
logarithmic or exponential. Logarithmic curves assume a quick growth increase at the begin-
ning, but the gains slowly disappear as time passes. Logarithmic growth curves are broadly
applied in bacterial growth [211, 19], biodegradation [175], fitness and strength training, and
learning ability. By contrast, the exponential curve assumes that growth is slower at the
beginning with gains that are more rapid over time. [112] explained growth curve model-
ing through exponential curves.[111] proposed a different model adding a linear term which
was fitted by [31] and found a poor fit of the data based on the systematic variation of the
residual [23]. Moreover,[32] also analyzed the model proposed by Count [56] and found an
exponential model as a better model. Different parametric growth curve models proposed
over the last two decades, such as the linear model, reciprocal model, logistic model, Gom-
pertz model, and the Weibull model. [142], [197] explored other approaches of growth curves
and found a poor fit.[198] Explained growth data analysis using polynomial regression. One
limitation of polynomial regression that it requires a higher degree of polynomial to provide
an adequate fit with the resulting coefficients without having any significant interpretation.
Alternative approaches to analyze growth curve data were proposed by [84] , [152] [146]
,[167]. Nonparametric models using regression splines to model the underlying shape func-
tion have been shown to decrease bias, thereby improving the estimation of subject-specific
effects [188]. Furthermore, regression splines, such as natural splines, have been shown to

provide a better-localized fit to the mean response, compared to global polynomials [122].



Equally important to finding an appropriate model to depict growth patterns is under-
standing the risk factors that contribute to adverse growth. The growth model is essential
for designing an intervention trial or to increase public health awareness surrounding po-
tential benefits and adverse effects of various environmental exposures and growth patterns.
Furthermore, having interpretable estimates for growth characteristics, such as peak height
velocity, can ameliorate confounding in epidemiologic studies.[178]. Other examples, which
have motivated statistical developments ranging from hierarchical linear models to multivari-
ate analysis methods, include psychological change over time [101], cardiovascular changes
[131], associations between adolescent moderate-vigorous physical activity and depressive
symptoms in young adulthood [42], associations among timing of sexual victimization and
timing of drinking behavior[92], examination of longitudinal associations among cognition,
function, and depression in Alzheimer’s Disease patients [204],and describing change in per-
sonality trait [108]

In recent years, shape invariant modeling (SIM) has become an active area of research for
non-parametric growth curve modeling, where a single function (or, curve) is transformed by
scaling and shifting it to fit each subject usually through affine transformations.[126], Who
first proposed SIM called it self-modeling regression; in their approach, the function for the
underlying shape illustrated for various parametric functions. Later,[23] developed a model
to explain longitudinal growth patterns and extended the SIM to include time-dependent co-
variates.[51] Extended the model by changing the sign of the velocity parameter and named
it SITAR (Superimposition by Translation and Rotation). As a type of SIM, the regres-
sion spline expressed as a basis function consisting of a different set of knots; the resulting
structure fitted as a nonlinear mixed effects model and parameters are typically estimated
using maximum likelihood. This allows estimating the parameters for the between-subjects
variation. Based on the underlying pattern of the data, various shape invariant models have
been proposed. When the data has logarithmic growth, SIM uses for the log-transformed

data.



Bayesian growth curve modeling has also seen similar progress with many applications
to real datasets as well as longitudinal growth datasets [19],[10], [69]. [159], [177]. One of the
main advantages of a Bayesian approach is that it generates the uncertainty estimates (i.e.,
the estimate for the variance) for all unknown parameters naturally since each parameter
explained by a probability distribution. Other advantages include the use of prior probability
distributions to assimilate information from previous studies or experts opinion and allows
control of confounding; having posterior probabilities is an easily interpretable alternative
to p-values; in hicrarchical modeling, incorporating latent variables such as an individual’s
true disease status in the presence of a diagnostic error. Moreover, MCMC methodology
facilitates the implementation of Bayesian analyses of complex data sets containing missing
observations and multidimensional outcomes [69]. Due to this flexibility and better pre-
diction of the exposure-outcome relationship, researchers are becoming more interested in
Bayesian modeling. Notable work in Bayesian growth curve modeling includes the multi-

variate extension by [196] the original SITAR model.

A brief outline of the paper is as follows. In Section 2, a brief description of the original
SITAR model and the interpretation of various model parameters provided. In a subsection,
we provide some descriptions for the spline function used in SITAR and how this model con-
nected to GAM. Section 3 describe the Bayesian implementation of the SITAR model with
and without subject-specific covariates, and also the DAG representations of these models.
Section 4 illustrates the MCMC implementation; the specification for the prior distributions;
the full conditional distribution and the posterior distribution for each model parameter; and
how the assessment of model performance. The full derivation of posterior distributions is
given in the Appendix. Applications with the real data are provided in Section 5, and with
simulated data in Section 6. The Final Section includes the discussion and some proposals

to the future extension.
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The Superimposition by Translation and Rotation model

Following the notation from [23], the SITAR model can be expressed as:
tij — Yin » :
Yij = 7Vi2 +h(—) +€ij,Z = 1,. . .N,and ] = 1,7—; (21)

Here, the y;; is the growth measure of i child at the ;™ time points which corresponds
to age (in years) in our motivating example.Subject-specific coefficients v; = (71, Vi2, Vi3)
enable each individual’s growth trajectory to be aligned to a common growth curve, h(-),
via transformations to the z— and y—axes.In this formulation, we will estimate A(-) using a
spline function and let ¢;; be measurement error.

The goal is to estimate the subject-specific vector +; such that the corresponding individ-
ual growth curve form deviations from the average curve h(-). Following previously described
work by Cole and others in equation (1), ;o is termed as Size. 72 can also be interpreted
as subject-specific shift up or down in the spline curve along the response axis. ~;, is a
random intercept term; when the response measure is height, 7,9 is larger for taller children
and smaller for shorter children. ~;; termed Tempo, which is a random time intercept and
corresponds to differences in the timing of the growth spurt. This subject-specific left-right
shift in the growth curves positive for late puberty and negative for early. The scaling factor
within the spline function, ~;3 is termed Velocity and corresponds to differences in the du-
ration of the growth spurt between individuals. The Velocity parameter shrinks or stretches

the time scale [51].
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(a): Horizantal Shift 1b): Vertical Shift {e): Harizontal Stretch

gh
Height
Height

Time

Figure 2.1: Schematic representation of Superimposition by Translation and Rotation model with
Horizontal shift(v;) , vertical shift(y2) and stretch(vys)

Bayesian Implementation of Superimposition by Trans-
lation and Rotation model

The above SITAR model presented in equation (1) can be written with basis representation
as follows;

Yij = Yiz + Z;Bes2) + €ij;i=1,...Nyand j = 1,...T;. (2.2)

Where,

Z;j = Bexp(vis)(tij — vi1)),
¥i = (Yir, Yiz: is), ¥s ~ N3(0,2), and €5 ~ N(0,07).

Z,; is the basis of the natural cubic spline, evaluated at (exp(7is)(ti; —vi1)). Thus, 2 is
a vector of length k 4 2, and 3 is the regression coefficient vector of same length. Here, K is
the number of inner knots and 2 represents the boundary knots. so the natural cubic spline
has kK + 2 independent coefficients. Subject-specific 4; is assumed to have multivariate nor-
mal of order 3 with 0 mean vector and X, variance-covariance matrix.We assume that €;; is

independently normally distributed with mean 0 and variance o2, and also independent of ~;.

The other distributions for €;; such as Student’s-t can also be considered depending on

the type of growth data.

12



With subject-specific covariates: In many growth curve analyses, there is need for the
inclusion of covariates for better predictability, as well as for better explanation of growth
mechanisms. For example, it may be of interest to know how the gender difference affects
the growth patterns, or how the medication at early age for a specific disease condition
affects the growth at later ages specifically by size, tempo, and velocity. The subject-specific
covariates can be included in the model specified for «; with a non-zero mean vector. If we

assume (p-1) subject-specific covariates, the mean and the variance of «; becomes,

i ~ N3(AX;, 3,),

where,
2
Q11 Qi ... Qqp " 01 012 013
_ - — 2
A=|ay ap ... gy | Xi = [z, @0, ..., SUip) ,and Xy = | gy 05 093
2
31 (32 ... Oégp 031 032 0'3

The first column of the regression coefficient matrix A is for the intercept, and the re-
maining columns are for each (p — 1) covariate coefficients. Similarly, the first column of the

design matrix X contains the value 1.

Directed acyclic graph (DAG): DAG is a graphical representation of a hierarchical model
which shows how the observed data and the unobserved parameters are conditionally depen-
dent on each other. In the graph, the circle indicates the stochastic node (or, the unobserved
parameters that need to be estimated), and the rectangle indicates observed data or the
hyper-parameters where they were assigned to fixed values apriori. When the Bayesian hier-
archical model has a complex dependency structure, DAG help to better visualize the model

as a whole, and the derivation of the posterior distribution for each stochastic node.

13



(a) Without Covariates (b) With Covariates

Figure 2.2: Graphical representation of the model without and with subject-specific covariates. The
subject-specific covariates are shown in red.

MCMC Implementation

Prior distributions :

The prior distribution for all model parameters are assumed to be independent apriori, and
follow an uninformative flat probability distribution in general. The residual variance was
assumed to follow an inverse gamma distribution with fixed shape and scale parameters such
that 02 ~ IG(0.001,0.001). Alternative prior distributions for residual variance parameter
can also be used following [82]. For covariate coefficients and the basis coefficient, we have
assumed a ~ N(0,1000) and 8 ~ N(0,1000), respectively. The vector o was defined after
stacking the A matrix. The variance-covariance matrix for «; is assumed to follow an inverse

Wishart distribution with 3 degree of freedom and 0.01 scale parameter, ¥, ~ ITW(3,0.01).

Full conditional distributions :

In the Bayesian framework the joint posterior distribution is proportional to the product of

the likelihood function and the prior distributions. Therefore, the full posterior distribution

14



for the model in (2) with subject-specific covariates is as follows;

N T; N

p(a7 /87 0-27 Y, Evly) (8 H H N(yzy|’%2 + Zij(’y)Tﬁv 02) H N3(7@ | Axia Z'y)

i=1 j=1 =1

3p k+2
[TV 0,00L,) x [ N(Bl0.03) x IG(0°|ag, Bs) x IW(S,]6,) (2.3)
=1 k=1

We follow the block update procedures in MCMC iterations whenever the posterior dis-
tribution has a standard form. It improves the convergence and mixing as well, and also
saves computational time. Following the Gibbs sampling procedure, the updates for each pa-
rameters are as shown below.For the sake of simplicity, covariate effects and subject-specific

notation (¢) are omitted for portions of the updates.
Updating «:

plalB, 0% 7,5, y) ox N(Z[(XT @ B0 e, [XTX @ 571 + 1, 02] )
where, ¥, = [XTX ® Yo+ I,02], and e is a vector of stacked *.
Updating 3:

p(Bla, 0%, v, 2., y) N(0 72852  (y — 72),0 2Z Z + 052[“2)

where, £5 = [07?Z"Z + 057 [1.15).
Updating o?:
%: {yi; — vi2 — Bleap(yis) (ti; — 7))}’

T; ,
p(o®|e, B,7, 2., y) x Inverse-Gamma | a + 2 b+

2 2

15



Updating 3, (without covariate):
p(E,|a, B,7,0% y) < Inverse- Wishart ((5 +n, (w_l + “/T’y)_l)

where, § is degrees of freedom, and 1 is the scale matrix.

Updating 3., (with covariate):
(X, |, B,7,0%,y) x Inverse- Wishart (5 +n, (Y (v = XA (v - XA))_1>

where, d is degrees of freedom and 4 is the scale matrix.

Moreover, for the full conditional of the subject-specific parameter, «; is given by,

Yilyi, vi, 00, B, 0%, 2, oc Na(viAwi, 2) % H N (yi;vio + Blexp(yiz) (ti; + i) B, 02)).
J
For updating ;, we used a random walk Metropolis-Hastings (M-H) algorithm to generate
posterior samples for the subject-specific effect. The candidate samples are generated from
multivariate Student’s — t distribution with 5 degrees of freedom and mean at the current
value. The variance parameter of the multivariate Student’'s — t was appropriately tuned to
ensure that the acceptance rate of candidate samples to posterior samples in M-H step was

around 20-30%.

Convergence, Mixing, and Identifiability

Before summarizing the MCMC samples (or, posterior samples) as posterior mean, median
or highest posterior region; it is important to check that the posterior samples for each

parameter are converging, mixing well and have less auto-correlation. The convergence of
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MCMC samples indicates how close we are to the true posterior distribution, and mixing
indicates how well the parameter space is explored. There are different ways of checking
these, namely, trace plot, autocorrelation plot, QQ plot, Brooks plot, Gelman-Rubin test,
etc. A simple exploration of the trace plot gives an insight into the characteristics of the
MCMC samples. Trace plots are produced for each parameter and checked whether different

starting values lead to better mixing and convergence, saving the computational time as well.

Sensitivity Analysis

In Bayesian inference, it is recommended to check the validity of the posterior estimates for
the choice of other prior distributions, or other hyper-parameters values. Sensitivity analysis
ensures this purpose. Even though we assigned a noninformative flat prior distributions to
all parameters, we checked the sensitivity of the estimates by changing the values for hyper-
parameters. We also did the sensitivity analysis following the method proposed by [113]
called perturbation function. We perturbed the model with different spline function (with
and without covariates) and analyzed the sensitivity of the model. Two spline functions:

basis spline and natural cubic spline functions were considered for this purpose.

Real Data Example: ADHD Children

Longitudinal data from a retrospective chart review of heights and weights for 197 ADHD
(Attention-deficit Hyperactivity Disorder) children who visited a community-based pediatric
primary care practices in Cincinnati (Ohio, USA) was collected. The children were in the
age range: 1-17 years, and under stimulant medications to effectively reduce symptoms
of ADHD. The objective of the original study was to evaluate how the age at the start

of stimulant medication may have impacted child growth trajectories. The original ADHD
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data had 6,134-time points recorded on 197 patients; among them, only 3084 height measures
were available for the analysis. The longitudinal study design is appeared to be unbalanced.
Figure 3 shows the growth heights of each patient at various ages. The study enrolled 138
males (70%). For the 197 unique patients the age range was (1.37, 16.76) with the mean
age 9.3 years, and the height range (76.2, 183.2) with the mean height 134.4 cm (Table 2.1).
Each patient was prescribed a stimulant medication at a certain visit. The mean age at

stimulant medication start was 7.9 years and ranged from 4.2 to 12.3 years.
Table 2.1: Summary statistics for the 197 ADHD patients

Variable Min | 1st.Q) | Median | Mean | 3rd.Q)Q | Max SD
Age 1.363 | 7.249 | 9.443 9.263 | 11.369 | 16.764 | 3.001
Height 76.2 | 122.6 | 134.6 134.4 | 147.3 | 183.2 | 18.86
Wight 9.072 | 21.32 | 28.12 31.71 | 38.33 | 114.3 | 31.51

Start age of
stimulant medication | 4.17 | 6.75 7.86 7.949 | 9.120 | 12.330 1.6

We applied the Bayesian SITAR model to the ADHD data and sought to describe the
size, tempo, and velocity parameters relevant to the height growth of these ADHD patients.
And simultaneously, we describe the model fitting procedure and its relative performances
in comparison to the frequentist SITAR model in details.

MCMC implementation: The SITAR model requires to specify the Spline function with
a specific number of knots. We used both B-spline and the natural cubic spline functions for
checking their relative performances. As for specifying the number of knots, we used eight
equally spaced knots for both spline function, six interior and two exteriors. The number
of knots was determined based on a compromise between optimizing a fit criterion and the
computational burden — the prior distributions specified according to prior Section. The
MCMC implementation followed a block update procedure with a mix of the Gibbs and M-H

algorithm. In implementation, the inverse-Wishart distribution for the posterior distribu-
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tion for 3., was redefined as a scaled inverse-Wishart distribution for correct estimation of
correlation matrix as well as for quick convergence.

We ran multiple chains with a relatively longer burn-in period. The model was runs for
500,000 iterations with 90% burn-in samples. This yielded 50,000 samples for posterior in-
ference. We further reduced the posterior samples to size 5,000 after thinning by parameter
10 for reducing the autocorrelation in posterior samples. All the results reported in this
manuscript were derived from these 5,000 posterior samples. Convergence was checked by
examining the trace plot of the posterior samples for each parameter and by using [83] test.
We also checked the autocorrelation from the autocorrelation plot, and it showed a much
faster rate of decreasing towards zero with the increasing lag values. The variance-covariance
matrix of the proposal density in the M-H algorithm was tuned accordingly so that the ac-

ceptance rate was approximately 20%.

Contour Plot: Mixing well of posterior samples is an important property to ensure that
there is no specific trend in posterior samples among the parameters, and independence is
maximized. We randomly selected three patients and their posterior samples for a horizontal
shift (41), and stretch (7s)parameters plotted in Figure 2.3. The plot shows there is no
specific trend in posterior samples for these two parameters, and they scattered around the

center, indicating a low correlation.
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Figure 2.3: Contour plot of posterior samples for horizontal shift () and stretch (v3) parameters for
randomly selected three patients.

Results

SITAR growth curve analysis utilizes the biology of growth. This model relies on the concept
of growth and assumes a linear relationship between chronological time and growth. An
individual growth spurt can progress or slow down concerning time. This progress and delay
is reflected in tempo parameter. Moreover, this processor delay can more or less proceed
over time, which is reflected in the velocity parameter. The analysis is modeled on both the
height scale (i.e., the size parameter) and the age scale, and in this sense, it mimics biology
as the appropriate age scale is developmental age, not chronological age.

We compared the frequentist SITAR model with Bayesian SITAR model applying on ADHD

patient data.
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Table 2.2: SITAR Fixed parameter value

Parameter | SITAR without | Bayesian SITAR without

Covariates Covariates
" 4.46 4.42
Yo 0.54 0.69
V3 0.07 0.06

SITAR with Bayesian SITAR with

Covariates Covariates

" 4.47 4.44
V1.Gender 0.05 0.07
Vl.ageFirstMed 0.01 0.03
Yo 0.57 0.53
V2.Gender 1.19 1.16
Y2.ageFirstMed 0.18. 0.20
V3 0.08 0.06
V3.Gender -0.07 -0.09
V3.ageFirstMed -0.01 -0.04

We were interested to see the pattern of the growth velocity of the ADHD patient children
and the effect of medication on their growth. Here, age at peak velocity (APV) is 12.38 years,

and peak velocity(PV) is 8.76 cm.
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Figure 2.4: Comparison between Age at peak velocity in bayesian and frequentist method

Model Selection and Predictive ability:

We implemented both the original SITAR model and the Bayesian SITAR model on the
ADHD data. Two spline functions, B-spline and natural cubic spline, was used in the
Bayesian SITAR model. In all spline functions, eight knots used. We calculated the root
mean square prediction error (RMSPE) for both the SITAR model and the Bayesian SITAR
model to check their predictive ability. It appeared that the Bayesian SITAR model with

natural cubic spline was performing better in both of these criteria (Table 2.3).
Table 2.3: Root mean square prediction error (RMSPE) values for the ADHD data

SITAR without | Bayesian SITAR without | SITAR with | Bayesian SITAR with

Covariates Covariates Covariates Covariates

RMSPE 0.20 0.19 0.18 0.15
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Cross-validation:

For checking the predictive ability of Bayesian SITAR model, we adopted the cross-validation
method where four patients with two early start ages of stimulant medication from each sex
and two late start ages from each sex were randomly left out from the analysis as a validation
sample. The remaining 193 patients constructed the derivation sample were analyzed using
the Bayesian SITAR model to generate the mean predictive curve. Figure 2.5 plots the mean
predictive curve with 95% credible interval from the derivation sample. The four patients
from the validation sample plotted in the same figure with red color for females and blue
for males. The results ensure that the randomly picked four patients with various start ages
of stimulant medication and sex to lie within 95% credible interval of the mean predictive

curve.
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Figure 2.5: Predicted mean growth curve for the 193 ADHD patients with
95% credible interval. The remaining four patients were plotted with red
color for females and blue for males
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Simulated Data Example

The simulated experiment was designed to assess the relative performances of the Bayesian
SITAR model concerning its frequentist counterpart. An R package "AGD (Analysis of
Growth Data)” Version 0.35 was used to simulate the height data using the LMS method
to obtain normalized growth. Using the growth charts data for the reference population,
AGD computes heights in cm conditioning on age, sex, and the growth percentile. The
current version of "AGD’ includes data for three reference populations: the United States,
The Netherlands, and WHO data from multiple countries. We used the United States
population as our reference population in simulating heights. To ensure wide variability and
some levels of grouping patterns existed in the simulated heights, we generated data from
three groups. In the first group, growth percentile range was set to (70 - 90)%; growth
percentile range for the second group set to (40 - 60)%; and the third group set to (10 -
30)%. In each group, the proportions for males and females were equal.

The steps involved in the data generation process are:

1. Generate the height, v;; using AGD package in R with the United States as a reference
population. Generate 150 subjects such that: a) 50 from each group, and b) 25 males

and 25 females in each group
2. , All subjects height data, were simulated for ages 5-20 years with six months increase

3. The simulated data in steps 1 and 2 was used in the SITAR package in R to get

SITAR BSITAR 2,SITAR
7 7

. and E:? ITAR

estimates of ~ o

4. Using these estimates, a new y;; for height was generated following the equation:

y?jew — A/gITAR + BS(eip(’ygITAR)(tij o ,\/;SiITAR))BSITAR + noise(O, JZ,SITAR)’

Where, the random noise generated from a normal distribution with mean 0 and variance
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o2SITAR and BS is for the B-spline function with 8 knots. This random noise can be
interpreted as a measurement error or that the errors that are still unaccounted for by
the SITAR parameters. Step 4 can be run many times, depending on the desired number
of realizations achieved for the simulated dataset. We run it five times to generate five
realizations. Figure a) and b) plots the data generated from the AGD package and one
realization after adding the random noise, respectively.

In the evaluation of model performance for the simulated datasets, we used the estimates
from the SITAR package at Step 3: */TA% GSITAR 2.SITAR 4y $5ITAR a5 true estimates
of all model parameters.

As similar to the real data example, we implemented both the original SITAR model and
the Bayesian SITAR model with Two spline functions, B-spline and natural cubic spline, on
the simulated data. The number of knots was assigned to eight. We checked the RMSPE
values for the most parsimonious model and for checking the predictive model ability, respec-
tively. It appeared that the Bayesian SITAR model with natural cubic spline was performing

better in both of these criteria (Table 2.4).
Table 2.4: Root mean square prediction error (RMSPE) for the simulated data

Covariates Covariates Covariates Covariates

SITAR without | Bayesian SITAR without | SITAR with | Bayesian SITAR with

RMSPE 0.24 0.21 0.22 18

Discussion

The original SITAR model is effective in explaining subject-specific deviations in terms of
size, tempo, and velocity from the underlying shape curve. The model is currently unable to
produce standard error estimates for subject-specific deviations for size, tempo, and velocity
parameters. Although bootstrap methods are often used to estimate the standard error,

this is a post-hoc analysis and often fails to estimate the true uncertainty specifically when
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the model has a complex structure, i.e., a non-linear mixed effects model. Estimating the
standard error for estimates of subject-specific deviations for size, tempo, and velocity in
Bayesian SITAR model comes naturally from the posterior samples for the subject-specific
parameter (7). Although we considered vague prior distributions in our analyses, the model
is flexible to assimilate information from previous studies or expert opinion through speci-
fying informative prior distributions.

We applied the Bayesian SITAR model with two spline functions and with an optimum
number of knots (i.e., 8) to real and simulated data sets, and compared the results with the
original SITAR model. We observed that for both data sets, the Bayesian SITAR model with
natural cubic spline function has better predictive ability than the original SITAR model.
With the real data application.

In our future work, we plan to examine the Bayesian SITAR model in finding clustering
patterns in shape invariant parameters tempo (7), size (72), and velocity (v3). In many ap-
plications of shape invariant models in growth curve modeling, finding the group of subjects
with similar growth patterns in terms of size, tempo, and velocity have real significance.
Another extension can include but not limited to, extending the model to free knot natural
cubic spline, where we will utilize the Bayesian adaptive regression spline (BARS). It has

been shown earlier that BARS provide a parsimonious fits [63].
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2.1 Appendix

Full Conditional Distribution:

Updating « :

p(a|67 02777 E'y»y) X H N(y1]|f}/l2 + ZZB]? 02) H N(V ‘ AX» 2’7)
i 7

x [TNBi10, 03 Li42) x [[ V(e | 0,001,) x IG(0°| s, Bs) x TW (4], 1))
i i=1

< [[N( [ AX, ) x [[ V(e | 0,001,,)

i=1

o Nap (Yvee| [X ® I3)a, I, ® £,)Na (a0, O'i]np)

1
x exp {—5[%% — (X ® L)a]"(I, ® Z;l)[%ec — (X ® I3)a] + aTa_QIQa}

X exp {—QQT(X ® I3)" (I, ® E,;l)’Yvec + o’ (X ® L)1, ® E;l)(X ® I3)a+ o’ o Lo
X exp {—QQT(XT ® 2;1)7116c + o' (XTX ® Z;l)a + CMTO'_zlg&}

ox N(E (X" @ 55 e, [XTX @ S0+ 1y, 02] )
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Updating /3 :

p(/@’av 0'2777 E’Y)y) X HN(ijh/zQ + Z?Jﬁ]v 02) H NW | 07 Z’y)

]

x [T NBil0, 05 1ks2) x [[ V(e | 0,001n,) x IG(0°| g, By) X TW (541, )

1=1

x H N (Yislviz + zz'j;ﬁjv %) H N (0, O-%Ikz—i-Q)

ij
ocexp — {|[y — 72 — ZB||*} /20% x exp — {|[8]]"} /203
o exp— {0 B2 ZB — 2072 (y — 12) 2B + 0523 B} /2
xexp—{p'[c7°Z"Z + ag21k+21ﬁ — 202y —2)"ZB}/2

251
xexp— {558 - 20?6 S, SsZ" (y —12) } /2
x exp— {[B— 0 *EsZ(y — 72)] 'S5 (B — 0 P82 (y — 72)]} /2

x N(o 552  (y —12). 0 °Z 2+ 0% 11 1)

Updating o? :

n

p(o®|e. B,7.5.y) o [ [ N(wijlvia + 2585, 0%) x [[ N(a] 0,00L,,) [[N(v 10, 5,)

ij i=1

< [T NBil0, 05 1k12) x IG(0° |0t Be) x TW (4], 1))

x | | N (yijlviz + zgﬁj,az) x 1G(0%| g, By)

1j
> Awis — vi2 — exp(7is) B(ti; + i)}
ij

I1G —.b
x (a—|—27+ 5
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Updating X, :

5. o2 X, 5,
p(Syls By 0% w) o [T Nlwsles + 2565, 0°) [[ N (v | AX:, 35)
¥ 7

2 IW(,]6,
x [T NBil0, 05 1ks2) x [[ V(e | 0,001n,) x IG(0°| g, By) X TW (541, )

1=1

x [[N(v | AX;, S,) x TW(2,]6,7))

o43+1

L 1 " ADST ™2 eap —lt'r’(E_ll/))}
x |2;1|—%e:pp—§tr[2,; (’y—XA ) (’7—X )” ~ 5 y

n+643+41

- T
x X7 exp{—itrﬁvl(fy—XAT)T(’y—XA )—l—z/)}

W (54, (47" + (7 = XATY (3 = XAT)) )
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Normality Assumption

check the normality assumption of the subject-specific parameter, we checked the Q-Q plot.

The Q-Q plot indicates the normality assumption is satisfied.
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Figure 2.6: Normality assumptions plot for Basis spline for the subject specific parameters (a) v1 (b) 72
and (c) vs.
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Figure 2.7: Auto correlation plot for Basis spline for the subject specific parameters (a) 1 (b) v2 and (c)
3.

Trace plot:

Trace plot indicates the convergence of the model parameters. We randomly selected a

person and checked the trace plot, which indicates the model parameters converged.
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Figure 2.8: Auto correlation plot for Basis spline for the subject specific parameters (a) 1 (b) v2 and (c)
V3-

Contour Plot

Mixing well of posterior samples is an important property to ensure that there is no specific
trend in posterior samples among the parameters, and they are independent as much as
possible. We randomly selected three patients and their posterior samples for a horizontal
shift (7;), and stretch (73) parameters plotted in Figure 4. The plot shows there is no specific
trend in posterior samples for these two parameters, and they scattered around the center,

indicating a low correlation.
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Figure 2.9: Contour plot of posterior samples for horizontal shift (y;) and stretch (y3) parameters for
randomly selected three patients.
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Chapter 3

Power Comparisons in 2x2
Contingency Tables: Odds Ratio
versus Pearson Correlation versus

Canonical Correlation.
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Abstract

It is an important inferential problem to test no association between two binary variables
based on data. Tests based on the sample odds ratio are commonly used. We bring in a
competing test based on the Pearson correlation coefficient. In particular, the Odds ratio
does not extend to higher order contingency tables, whereas Pearson correlation does. It is
important to understand how Pearson correlation stacks against the odds ratio in 2x2 tables.
Another measure of association is the canonical correlation. In this paper, we examine how
competitive Pearson correlation is vis-a-vis odds ratio in terms of power in the binary context,
contrasting further with both the Wald Z and Rao Score tests. We generated an extensive
collection of joint distributions of the binary variables and estimated the power of the tests
under each joint alternative distribution based on random samples. The consensus is that
none of the tests dominates the other.

keywords: Odds ratio, Pearson correlation, Canonical correlation, Contingency table,

Power, Simulations

Introduction

Let X and Y be two binary random variables with joint distribution,

P11 P12
Q —

P21 P22

Let the marginal probabilities be p14, pat, pi1, pro. The odds ratio is defined by,

9 — P11P22
P12P21
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which is a measure of association between X and Y.

Facts :

e 0<H<

X and Y are independent if and only if § = 1

Odds ratio measures to what extent the variables are away from independence.

The ratio # > 1 means Pr(X =1,Y =1) > Pr(X = 1)Pr(Y = 1). It is more likely

to get X =1 and Y = 1 than is possible under independence.

The joint distribution is unknown. Our test of Hypothesis is, Null Hypothesis (Hy): X and
Y are independent.
Vs

Alternative Hypothesis (H;): X and Y are not independent.

Both null and alternative hypotheses are composite. Several tests can be built based on

nip M2 . . L .
a random sample from the joint distribution.

N2 Mag
Tests based on sample odds ratio

The likelihood estimator of 6 is given by

N11M22

é\:

N12MN91

Let the marginal totals be nyy, noy, nyy, and ny,,. The asymptotic variance of In (é\) is

given (Courtesy: Delta method [57], [4], [3]) by

~ 1 1 1 1
AsyVar (ln «9) = +
npi npi2  npo npaa

35



and it is estimated by

— ~ 1 1 1 1
AsyVar <ln9> = — 4+ — 4 — 4+ —
ni nio U UDP

The Wald’s Z-statistic is given by

7, = Infg —1In6 (3.1)

JAsuvar (1s0)

Ind
Var(lné)
has the standard normal distribution N(0, 1) under the null hypothesis. An alternative to

which has a standard normal distribution, in large samples. In particular, Z; =

the Wald statistic is Rao’s Score statistic. The variance of In 9 is calculated under the null

hypothesis and then estimated. The statistic is given by

Zy = b (3.2)

ws/yv\% (1n6)

The statistic Zy has a standard normal distribution under the null hypothesis for large

samples. The formula for the asymptotic variance is given by:

= + +
npi1+P+1 NPryP+2 NP2yP1 NP24P2

- 1 1 1 1
Varg, (ln «9) +

and it is estimated by

n n n n

As/yﬁz'r H, (ln é) =

+ + + )
N14Ny1 NNy NogNgr Noag Ny

Of course, we could have used the traditional chi-squared statistic for testing independence.

However, unlike the odds ratio, there is no population chi-squared measure of association. We
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showed the relationship between chi-squared statistic and the likelihood estimate of Pearson

correlation.

Tests based Pearson correlation

We are looking for a competitor to the odds ratio. One competitor is the Pearson Correlation

[99]. The population correlation is given by

P11P22 — P12P21
(Z) =

vV P1+P2+P+1DP+2 ’

Where the entities under the square root are the marginal probabilities and it has the prop-
erty —1 < ¢ < 1. The random variables X and Y are independent if and only if ¢ = 0. The

likelihood estimate of ¢ is given by

N11M22 — N12N2

VN2 Ny 172

¢ =

A Z-statistic known as Wald can be built based on the likelihood estimator qg of ¢. For the

record, it is defined by

o~

Zy = ¢ . (3.3)

As/y‘?ar (g/g)

The asymptotic variance of gg defined by the delta method is given in Appendix. For a

description of the delta method, see [57]. Another alternative is the canonical correlation

[123] defined by

P11 P12 P21 P22
P = \/P14P+1D24+D+2 - - +

P1+P+1  P1+P+2  D2+P+1  DP2+DP+2

It can be shown that ¢ = p. We use the notation ¢ and p interchangeably.Our motivation

for including the canonical correlation into the mix goes a bit deeper. Canonical correlations
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arise from the singular value decomposition of a transform of the joint distribution. Several
layers of dependence between X and Y can explained through (singular values) the canonical
correlations. In the 222, there is only one canonical correlation p and it is exactly the same
as the Pearson ¢.

As an alternative to Wald’s Z statistic, we have Rao’s score statistic based on ¢

o~

7y = ¢ : (3.4)

wgm,,o (9)

It turns out that, AsyVarp, (QAS) = 1 [149]. It can be checked that ng? = x2 ([150],[151)),
the usual chi-squared statistic of the data in the 222 contingency table [99]. We set the level

of significance at 5%. Reject the null hypothesis at 5% level of significance if |Z;| > 1.96.

The goals in this work are as defined below.

e Compare and contrast the properties of the measures of association: ¢ and 6 (Sections

2 and 3).

e Make power comparisons between the Wald’s test (Z;) and Rao’s score test (Z3) based
on the odds ratio and between Wald’s test (Z3) and Rao’s score test (Z;), which is the
same as the chi-squared test, based on the Pearson correlation or canonical correlation

(Section 4).

Description of Power comparisons using simulations.

1. Draw randomly 100 distributions from the space Q = {(p11,p12.p21.p22) ;pij > 0, sum = 1}.
For sampling, we use the uniform Dirichlet distribution: Dirichlet (p11, p12, P21, p22; 1,1,1,1)

whose joint density is given by f (p11, P12, po1, P22) = 6, (P11, P12, Po1, P22) € 2. Marginally,

pijs are identically distributed. The marginal distribution of pq; is Beta (1,3) with

E(p) = 7 and Var (p11) = &.
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2. With probability one, under each joint distribution, X and Y are associated.

3. From each joint distribution (pi1, pio, po1, P22) generated from the uniform Dirichlet
distribution, generate a random sample (711, n12, No1, o) of 100 observations from
the Multinomial(nyq, n12, no1, nag; prob = (p11, P12, Po1, P2e)). The justification for the
sample size to be 100 is that we can reasonably expect each n;; > 5. All the tests
methods are asymptotic in nature and the methods described by [50], [49] for the
applicability of the asymptotic tests are being followed. For each Multinomial sample,
we apply all the four tests defined by (1), (2), (3), and (4) at 5% level of significance.
A counter was used for each test by: Counter = 1 if the null hypothesis is rejected,
0, if not rejected. Repeat the Multinomial sampling 1000 times. The estimated power

under a test is the proportion of times the null hypothesis is rejected.
4. Present the results by tables and graphs.

In Section 2, we contrast Pearson ¢ and In(Oddsratio). In Section 3, we explain the back-
) )
ground of canonical correlation. In Section 4, we present the results. In Section 5, we discuss

the results. The asymptotic variance of g is presented in the Appendix.

Canonical Correlation (Pearson correlation) versus Odds

Ratio

A number of assumptions are as follows, .

e The event {X =1,Y =1} is more likely than under the independence of X and Y if

and only if 8 > 1 if and only if In (0) > 0 if and only if p > 0.

e The event {X =1,V = 1} is less likely than under the independence of X and Y if and

only if @ < 1 if and only if In (#) < 0 and if and only if p < 0.

e —o0<In(f) <o
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e —1<p<l1

The correlations are more attractive in that their ranges are bounded. However, the

odds ratio has better interpretability than the correlation.

0.5 0
e If the joint distribution is ,In(f) =00 and p=1.
0 0.5
0 0.5
e If the joint distribution is ,In(f) = —oc0 and p = —1.
0.5 0
We introduce variables of the joint distribution: A = 21— . B = P2 . O = P2 _ .
P1+P+1 P1+P+2 P2+P+1
= pzﬁfﬁ. Another characterization in terms of the variables emerges as follows:

A>1D>10>1<p>0.

Let, Gy = geometric mean of A and D = (AD)*
Gy = geometric mean of B and C' = (B x C)*°,
A; = Arithmetic mean of A and D = AJFTD,
Ay = Arithmetic mean of B and C = %.
The measures 6 and p are functions of these pillars through their arithmetic and geometric
means.
Odds ratio = 0 = <%>2 and Inf = 2(InG, — InG,)

The canonical correlation p is connected to the pillars.

P11 P12 P21 P22

- - +
VP1+D+1 /P1+P+2 \/P2+P+1 /D2+D+2
= 2y/P14 P+ 1D2+ Pr2( A1 — As)

(]9111922 - p12p21)

VP14+P+1P2+P+2
= \/p1+p+1p2+p+2(G% - Gé)

P = \/P14P+1P2+P+2 [
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Genesis of Canonical Correlations and Pearson ¢

Given any 2x2 matrix A there exist two orthogonal matrices L and M each of order 2x2 such

that

0
paM? = [ 7

0 P2

where p; (> 0) and ps (> 0) are the singular values of the matrix A with a conventional
ordering of p; > py > 0 As a matter of fact, p;? and p,? are the eigenvalues of AA” and the
singular values are the non-negative square root of the eigenvalues. Let the bivariate binary

distribution along with the marginals be given by

P11 P12 DPi+
Q= P21 D22 D2+

Py1 Py2 1

P11 P12

B= VP14D+1  \/P1+Py2
Dp21 P22

VP2+P+1 /P24P+2

The singular values p; and py of B are called canonical correlations of X and Y. It turns
out that p; = 1 and ps; = p has the property that 1 > p > 0. The canonical correlation p
characterizes independence of X and Y. That is p = 0 if and only if X and Y are independent
[123]. We do not follow this definition of canonical correlation. Technically, p is taken to be
the non-negative square root of one of the cigenvalues of BBY. Where, one of the eigenvalues
is always equal to one. The other one is given by

2 2 2 2
2 Pn P1o P Daa

/PP VP14DP+2  \/D2+D41 \/D24DP+2

p — 1.
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We want to show both positive and negative square roots of p?. We have found that the

following takes both positive and negative values in [—1, 1] whose square is p*:

p = /PLiP DD P11 P12 P21 i P22
= VP14 P+1P24P+2 - -
VP1+D+1 \/P1+DP+2  \/D2+P+1 /D2+D+2

We keep the same notation p. One can check that p = ¢ [68].

Results

The power of the tests based on Z; and 7, is compareed graphically under the 100 randomly
generated a bivariate distribution of X and Y (Figure 3.1). The numerical results are pre-

sented in Appendix.

100
|
100
|

60
|
60

Power (Wald)
Power (Wald)

40
40

20
|

Log Odds Ratio Phi

Figure 3.1: Wald tests: Odds ratio and canonical correlation
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Figure 3.2: Rao tests: Odds ratio and canonical correlation

Comments on Figure 3.1 and Figure 3.2 : Structurally, the graphs are similar, even
though the true values of In(odds ratio) and Person ¢ are on a different scale. As (n(f) and
p moves away from the null value, the powers rise steeply towards 100 percent as expected.
The spline model provides information of the underlying smoothness of power as a function
of the measures of association. Similar comments do apply to the tests of Rao. A compre-

hensive comparison of the 4 tests is provided and in Figures 3.1 and 3.2

Comments on Figure 3.3: Each diagonal graph is a density histogram describing the dis-
tribution of power associated with one test. Structurally, the histograms are similar meaning
that the distributions are similar. Every graph below the diagonals gives the scatter plot of

a pair of powers coming from two different tests with a regression line drawn on the scatter
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Figure 3.3: Correlation plots and histograms of powers

plot. Power pairs do lie more or less on the line. The graphs above the diagonal line give a
Pearson correlation coefficient of the two power series. For Figure 3.3, we have generated 100
bivariate distributions of X and Y from the Uniform Dirichlet distribution on the simplex.
For each distribution generated, in(Oddsratio) and Pearson ¢ was calculated. The scatter

plot presented in Figure 3.3.

Comments on Figure 3.3: The Figure clearly indicates the similarity between the mea-

sures.

Discussion:

For testing independence of two binary variables, we examined the power of tests built upon
In(Odds ratio) and Pearson ¢ (Canonical correlation p) due to Wald and Rao. These tests

use asymptotic variance formulas. Our comparisons are based on a random selection of
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Scatter plot + linear regression of 100 bivariate distributions
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Figure 3.4: Correlation plot of (In(6), p) for 100 bivariate distributions of X and Y.

bivariate distributions from the uniform Dirichlet distribution on the simplex of bivariate
distributions. We suggest that any of the four tests use in large samples.

A challenging task would be the determination of sample size for given level, power, and
alternative values of the measure of association choice. There are pros and cons in using any
measure of association for testing independence. The In(Odds ratio) has an infinite range
and confidence intervals based on Odds ratio could be very wide to interpret meaningfully.
Pearson ¢ does not have this problem. The Odds ratio does not extend beyond the 2x2
case, where Pearson ® is extendable to higher dimensional contingency tables. In case-
control studies, the primary focus is testing equality of proportions of subjects achieving a
cure. The odds ratio is used in this scenario, but Pearson ¢ or canonical correlation p are
inappropriate to use in such a context.

We have shown that Rao scores statistic based on Pearson ¢ is related to the traditional x?

statistic of independence. Thus the y? statistic is in the ambit of the main theme of the
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paper.
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Appendix

Asymptotic variance of the likelihood estimator of Pearson ¢

Asymptotic variance of the maximum likelihood estimator of Pearson correlation ¢ Steps:

1. Joint distribution of X and Y

2. Pearson correlation

ad — be
P Jatrtat et dbtd)

=¢

= UV ™% where, U = ad - bc and V = (a+b)(a+c)(c+d)(b+d)

3. Generate data

N1 M2
D- (
o1 Tog
4. Estimator of Q ,
ni 2
@ o n n
no1 n22
n n

For ease, in the description of the asymptotic formula, use a simple notation for the

entries of @ ,
- j k

I m
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5. Estimate of p,

gm — Lk
VG +E)G D +m)(k+m)
= f(j, k,1,m)

= 2.y~ %" where, x = jm - Ik and V = (j+k)(j+1)(14+m) (k-+m)

p=

6. Asymptotic variance of p using the delta method evaluated at their expectations, j =

E(j), k= E(k),l = E(l),m = E(m)

N\ 2 -\ 2 -\ 2
AsymptoticVariance = <Z—‘;) s var(j) + <%) s var(k) + (%) s var(l)+

(%) x var(m) + 2 (%) * (%) x cov(j, k)+

2 (%) * (%) % cov(7,1) + 2 (%) * <%) % cov(j, m)+
df df df df

2 <%> * <E> x cov(k, 1) + 2 <%> * (—) s cov(k,m)+

dm
d d
2 <d—‘];) * <_d7];> x cov(l,m)

7. Calculate the variances and covariances,

var (j) = “(17—?“);\/ar (k) = @

var (1) —C(ln_c);var (m) = —d(ln_d)cov (J, k) = —%b;cov (4, 1) = -
cov (j,m) = =% cov (k1) = —&
cov (k,m) = =% cov (I, m) = —<
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af — (dy™? o5 (dx
i “U< g )" \g

_gd _ dx
— 2(—0.5)y 2d—jy, +y 0P (d—j)

= —(0.5)zy™ "y~ (25 + k+ 1) +m)(k +m) +y'm

9.
87 = —Lyp="Rp=1 (20 + b d) (b+d) + v %d
(ag )j:E(j),k:E(k),le(l),m:E(m) suv” 27 (2a+b+c)(c+d) (b+d)+v
=—1pv ' 2a+b+c)(c+d)(b+d)+ v=d
10.
(ﬁ> = —Jpv @b+ atd)(ato)(c+d) —v e
ok J=E(j),k=E(k),I=E(l),m=E(m)
11.
(ﬁ) = Lo Qe+ atd)(atb)(b+d)— v B
ol J=E(j),k=E(k),I=E(l),m=E(m)
12.

5
(_f) =~ (2b+b+c)(a+b)(a+c)+v a
M) () ke=15(0k) = (1) em=13(m)

13. The expression derived in steps 1 through 12 are plugged into the asymptotic variance

formula in Step 6.

14. if p = 0 then Asymptotic variance (p) = <

n
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Chapter 4

Differential impact of acute PM2.5
exposure on risk of stroke by stroke
subtype,age,sex and race: A

case-crossover study
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Abstract:

Objective: To assess the relationship between acute ambient fine particulate matter (P M, 5)
and stroke onset and to determine whether this relationship is modified by stroke subtype,
age, sex, and race.

Method: We used a case-crossover design, to examine the association of exposure to PMs 5
and onset of incident stroke for the calendar year 2010. Data collected for the Greater
Cincinnati Northern Kentucky Stroke Study (GCNKSS), for patients 20 years and older,
initially ascertained using in-hospital ICD-9 discharge codes, were utilized.

Results: Of the 3267 incident strokes 2872 (88%) were infarct (INF) and Transient Ischemic
Attack (TTA) and 395 (12%) hemorrhagic stroke; intracerebral hemorrhage (ICH) or sub-
arachnoid hemorrhage (SAH). of these patients, 1855 (56%) were female, and 750 (23%) were
Black. The overall mean daily PM, 5 concentration for the year 2010 was 14.3 and standard
deviation (SD) 6.0, the mean daily air temperature was 12.5C and SD 11.2 and relative
humidity 76.0 kg/m?/s with a SD of 11.2. We found a significant association between PM, 5
and stroke of any subtype three days prior to stroke onset, odds ratio (OR) 1.12 (95% CI:
[1.03, 1.21]). For INF or TIA, PM, 5 and stroke onset were associated at two days prior; OR
1.10 (95% CI: [1.01, 1.19]) and three days prior; OR 1.12 (95% CI: [1.03, 1.22]). Similarly,
for patients > 65 years, male patients and white patients PMs 5 and infarct or TTA onset
were associated at three days prior; OR 1.15 (95% CI: [1.04, 1.27]) OR 1.18 (95% CI: [1.05,
1.34]) and OR 1.12 (95% CI: [1.02, 1.23]), respectively. These associations were not seen for
patients with hemorrhagic stroke.

Conclusion: Higher PM, 5 exposure, particularly at three days before the event, was asso-

ciated with stroke onset with differences evident by stroke subtype, age, sex, and race.
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Introduction:

Globally, stroke is the second leading cause of death and long-term disability [67] and re-
mains the fifth leading cause of death and fourth in long-term disability in the US [180].
Air pollution has a severe, negative impact on human health [116]. With rapid indus-
trialization and economic growth, air pollution has become a serious concern all over the
world [37]. According to the World Health Organization (WHO) report, 92% of the peo-
ple in the world breathe unhealthy air and 6.5 million people die annually from exposure
and identified air pollution as the most significant cause of premature death[153]. Addi-
tionally, arguments have been expressed leading to the expectation that exposure to el-
emental climate change impacts the risk for onset of stroke; in particular, acting as a
trigger for the event [190],[156], [124]. Published studies have examined the association
between the risk of cardiovascular events including stroke and exposure to air pollution
[67], [61],[39],[37].[158],[187],][20],[172],[181],[195],[192],[130]. Some of these studies evaluated
the effect of PMy5 on stroke risk; however overall results remain conflicting [190], [124],
[138].[38]. Both changes from warm to cold and from cold to warm temperatures, and from
higher to lower and from lower to higher humidity, have been associated with increased risk
of stroke [136],[148], suggesting change rather than level of actual exposure act as the trig-
ger. Also, increased exposure to particulate matter has been reported as both associated and
not associated with an increased risk of stroke [172],[181],[195], [192],[130].[202]. Scientific
statements from the American Heart Association (AHA) were released in 2004 and updated
in 2010 showing evidence of causal relationships between PMs 5 exposure and cardiovascular
disease leading to morbidity and mortality [39], [37]. Moreover, several studies have shown
that the impact of PMs 5 on stroke is cumulative and that direct effects on stroke or other
morbidity and mortality can be triggered occur through increases in heart rate and blood
pressure [187], [20]. The majority of studies, however, have limitations such as “small”
sample size and sub-optimal monitoring techniques associated with the specific particulate

exposure under investigation. So, to clarify and fill the knowledge gap, we sought to examine
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the association between exposure to PM, 5, using state of the art exposure estimation, and
stroke occurrence in a time sensitive manner employing a novel statistical approach, the
time-stratified case-crossover design. We achieved this by the integration of remote sensing
satellite systems data with air monitoring network data to estimate the exposure. To address
this aim we used data, for patients 20 years and older, from the 2010 Greater Cincinnati
Northern Kentucky Stroke Study (GCNKSS). We included the first stroke in 2010 for each

patient, ascertained by in-hospital methods.

Study population and design:

Stroke cases:

The GCNKSS is a population-based epidemiology study evaluating incidence and preva-
lence of stroke every b-years; July 1993 to June 1994 and calendar years 1999, 2005 and
2010, data validation for 2015 is currently ongoing. The catchment area involves residents
within the 5-counties encompassing Cincinnati, two within Ohio and three within Kentucky.
This area includes about 1.3 million people, who are representative of the US population
with respect to race (black/white) distribution and socioeconomic status. Ascertainment
methods have remained the same over the study periods and have been described in detail
elsewhere [34],[116]. Briefly, we captured events presenting at one of the area hospitals and
discharged with an ICD9 stroke code. Also, other strokes ascertained in the outpatient set-
tings; coroner’s offices, public health, and hospital-based clinics and family practice centers,
plus a weighted sample of events identified in nursing homes and doctor’s offices, were col-
lected. However, for the current study, we included only the first stroke within the calendar
year 2010 for those who are greater or equal to 20 years of age at the onset of stroke and
were ascertained in-hospital. The GCNKSS study was approved by the institutional review
board at all participating hospitals. Study research nurses reviewed all medical records with

discharge ICD9 codes (430 to 436) and decided as to whether a stroke event had occurred.
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For all potential events the nurses abstracted demographics (including address at the time
of stroke onset), presenting symptoms, co-morbidities, laboratory results, and diagnostic
and neuroimaging data. All of the abstracted records were reviewed by study physicians
and those determined to be cases were defined as one of five stroke categories adapted from
the Classification for Cerebrovascular Diseases III and epidemiological studies of stroke as:
cerebral ischemia (INF), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH),
stroke of uncertain cause (UNK), or transient ischemic attack (TIA, symptoms lasting <24
hours). Residential locations of study participants at the time of each event were geocoded
using our standalone and validated geocoder [36]. Only cases within the GCNKSS area that

geocoded precisely enough to assign PMs 5 concentrations were retained for analysis.
Table 4.1: Characteristics of the stroke patients (GCNKSS, 2010)

Characteristic | Allstroke(n%) | Hemorrhage(n%) | INF&TTA(n%)

N 3267 305 (12) 2872 (88)

Age (> 65 years) | 2045 (63) 211 (53) 1834 (63)
Age (< 65 years) 1222 (37) 184 (47) 1038 (37)
Female 1855 (56) 223 (56) 1632 (56)
Male 1412 (44) 172 (44) 1240 (44)
White 2517 (77) 295 (75) 2292 (77)
Black 750 (23) 100 (25) 650 (23)

PMs; 5 Exposure:

Daily ambient concentrations of PM, 5 were estimated using residential addresses included
with the GCNKSS study extracted from the EHR using a previously developed and validated
spatiotemporal model [35]. Briefly, our PMs 5 model is based on satellite-derived measure-
ments of aerosol optical depth (AOD), a measure of the scattering of electromagnetic radia-

tion due to aerosols in the atmosphere. These measurements calibrated using ground-based
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PM,; 5 monitoring and meteorological and land use data. Spatiotemporal datasets harmo-
nized to a 1 x 1 km grid, and random forests were used to train a model to predict PM 5
concentrations. Our model demonstrated a leave-one-out cross-validated R? of 0.91. For
analysis purposes, we considered the lagged effects of PM, 5 by estimating concentrations
at their residence for the days 0 (case day), and days 1, 2, 3, 4 and 5 before the case date
(stroke onset date) and similarly for the days 0, 1, 2, 3, 4 and 5 the control dates (themselves

beginning at 7 (day 0) and 14 (day 0) days before the date of stroke onset).

Statistical analysis:

We used a case-crossover design [136] to investigate the association between short term
P M, 5 exposure and incidence of different subtypes of stroke hemorrhagic (ICH, SAH), and
non- hemorrhagic (INF, TTA). The advantage of a case-crossover study is that each case
serves as its own control and, as such, is self-matched for fixed individual characteristics
namely sex, age and socio-economic status, stroke risk factors such as smokng, underlying
cardiovascular disease, obesity ,diabetes and controls for potential confounders that didn’t
vary during the month. For each person there is a ‘case window’ (the period of time during
which a person was a case) and a ‘control window’ (The period of time when the person’s
time period was not associated with being a case). Using the case-crossover design the risk
exposure during the case period is compared with risk exposure during the control period.
Control periods are generally defined as fixed time intervals preceding and/or following the
case period. In this analysis, the start of the case period was defined by the date of the
stroke and the start of the control periods was defined as 7 days and 14 days before the case
period [56]. The period of interest for exposure to PMy 5 for both case and control dates
was defined as the previous 5 days. The reason for just a 7 day “wash out” time between
the case and control periods is to limit the potential for time-varying confounders including

season, temperature and humidity [134],[180],[93],[79]. Daily average PM, 5 concentration
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and weather conditions were linked by geocoding of residential location and day of stroke
onset and all the other days of interest for each individual, as described above. Conditional
logistic regression models were used to estimate the odds of a stroke at zero to five days given
a 10 pg/m? increase in PM, 5 exposure, adjusting for: if the day of stroke is a holiday or
not, lag holiday (whether the day before the case day is a holiday or not) and daily average
temperature and relative humidity. A natural cubic spline (NCS) function of calendar time
was used to adjust for seasonality, daily average temperature and relative humidity on the
same day and 5 previous days to allow for the potential nonlinear confounding effects of
weather condition [4]. The knots for each spline were selected separately based on Akaike
information Criterion (AIC) values. To control for the difference in the baseline hospital
admission rates, day of the year, holiday and lag holiday were also incorporated in the
model. A holiday is defined as a federal holiday in USA. Lag day, is defined as the time
between the exposure and outcome [44]. The results are presented as adjusted odds ratio
and 95% confidence interval (CI) for the stroke onset day per 10 pg/m?® increase in PM,
concentration. Temporal associations of PMs 5 were examined with different lag structures
from the case onset date (lag0) up to 5 lag days (lagh). Considering purely the single day lag
estimate may underestimate the effect of PMs 5, so cumulative effects were also evaluated
using 2-days combined (lag 0-1), 3-days combined (lag 0-2), 4-days combined (lag 0-3), 5
days combined (lag 0-4) and 6-days combined (lag 0-5) to create a moving average of PMs 5
concentrations [45]. We also conducted a sensitivity analysis to examine the robustness of the
results in terms of the lag exposure; the degrees of freedom in the smoothing function of time
trend (described above as NCS), daily mean temperature and daily relative humidity. Effect
modification occurs when exposure has a different effect on subgroups of the population.
Effect modification was examined for stroke subtype (hemorrhagic (ICH or SAH) versus
non-hemorrhagic (INF or TIA)), age (<65, > 65 years)[116], sex (Male, Female) and race
(White, Black) in order to define any high-risk subgroup. To assess the effect modification,

a Chi-squared test was used to test if there was a significant reduction in the log-likelihood
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after the addition of an interaction term between PM, 5 and stroke subtype, age, sex and
race separately, interactions with a resulting p-value of less than 0.1 were considered to be
statistically significant. Including interaction terms in the model increases the precision of
estimates by taking subgroup heterogeneity into account. Data management was conducted
using SAS, version 9.4 (SAS, Cary, NC). All statistical and geospatial computing was done

in R, version 3.4.3, using the survival and spline packages [184].

Results:

Of 3267 first stroke events per patient between January 1st 2010 to December 31st 2010,
2872 (88%) had INF and TIA, and 395 (12%) had hemorrhage (ICH or SAH). Of these
patients, 1855 (56%) were female, and 750 (23%) were Black. The overall mean daily PMs 5
concentration was 14.3 mg/m3 and standard deviation (SD) 6.0, with an interquartile range
(IQR) from 4.2 to 34.8. The mean air temperature and relative humidities were 12.5(C) and
76.0 (kg/m?/s), respectively. Characteristics of the stroke patients (GCNKSS, 2010) are

presented in Table 4.2.

Association of PMs; 5 and stroke:

We found a significant association between PMs 5 and stroke of any type at lag day 3 with
adjusted odds ratio (OR) 1.12 (95% CI: [1.03, 1.21]) and an adjusted OR of 1.10 (95% CI:
[1.01, 1.19]) and 1.12 (95% CI: [1.03, 1.22]) for infarct or TIA at lag days 2 and 3, respec-
tively. On examination of cumulative lag days we found a significant association between
P M, 5 and stroke of any type for cumulative 0-2 days with adjusted OR 1.15 (95% CI: [1.04,
1.28]), increasing to adjusted OR 1.17 (95% CI: [1.03, 1.32]) for cumulative lag days 0-5. We
found the same association for the same lag days for infarct or TIA with adjusted OR 1.18
(95% CI: [1.06, 1.31]), increasing to adjusted OR 1.23 (95%CT: [1.08, 1.40]) for cumulative

lag days 0-5. There were no significant associations detected between PM, 5 exposure and

58



onset of hemorrhagic stroke. Adjusted odds ratios and 95% CIs for the odds of stroke of
any type, and by stroke subtype, and PMs 5 exposure for day of stroke and lag days 1-5 and

associated cumulative lag days are shown in Table 4.2.

Table 4.2: Model estimates for the odds of stroke given PM2.5 exposure at 0 (case day) to lag day 5 and
cumulative lag days 0 (case day) through lag day 5, overall and by stroke subtype

Strokesubtype LagDay Oddsratio(95%C1T) | Cumulative Lagday | Oddsratio(95%CT)
All 0(Case day) 1.05 (0.97, 1.14)
1 1.05 (0.96, 1.13) 0-1 1.09 (0.99, 1.19)
2 1.08 (1.00, 1.17) 0-2 1.15 (1.04, 1.28)
3 1.12 (1.03, 1.21) 0-3 1.20(1.08, 1.34)
4 1.04 (0.95. 1.12) 0-4 1.19(1.06, 1.33)
5 1.04 (0.96, 1.12) 0-5 1.17(1.03, 1.32)
Infarct / TIA | 0(Case day) | 1.06 (0.97, 1.15)
1 1.06 (0.97, 1.15) 0-1 1.10(1.00, 1.21)
2 1.10 (1.01, 1.19) 0-2 1.18(1.06, 1.31)
3 1.12 (1.03, 1.22) 0-3 1.23(1.09, 1.38)
4 1.06 (0.97, 1.16) 0-4 1.23(1.08, 1.39)
5 1.07 (0.98, 1.16) 0-5 1.23(1.08, 1.4)
Hemorrhagic | 0 (Case day) 1.03(0.84, 1.26)
1 0.99 (0.80, 1.20) 0-1 1.03(0.83, 1.28)
2 1.02 (0.83. 1.25) 0-2 1.08(0.85, 1.37)
3 1.06 (0.86, 1.31) 0-3 1.12(0.86, 1.45)
4 0.88 (0.71, 1.08) 0-4 1.04(0.78, 1.39)
) 0.87 (0.71, 1.08) 0-5 0.96(0.70, 1.31)
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PM, 5 and Infarct or TTA; association by age:

We found a significant association between P M, 5 and Infarct or TTIA stroke for patients of
the age greater than 65 years, for lag day 2 with an adjusted OR of 1.16 (95% CI: [1.05,
1.28]) and lag day 3 with an adjusted OR of 1.15 (95% CI: [1.04, 1.27]). Cumulative lag
days 0-1 for age greater than 65 had an adjusted OR of 1.12 (95% CI: [1.01, 1.26]), increas-
ing to 1.24 (95% CI: [1.06, 1.45]) for cumulative lag days 0-5. Adjusted odds ratios and
95% CIs for the odds of stroke for age groups and PMs 5 exposure with a day of stroke and

1-5 lag days and associated cumulative lag days are shown in Table 4.3 and Figure 4.1 and 4.2.

Table 4.3: Model results for the likelihood of INF or TIA associated with PM5.5 exposure for lag day 0
(case day) to lag day 5 and cumulative exposure for lag day 0 (case day) through lag day 5, by Age group

Lag Subgroup Oddsratio Cumulative Oddsratio
Day (95%C1T) Lagday (95%CT)
Age
0 (Case day) | Age < 65 | 1.05 (0.92, 1.19)
Age > 65 | 1.06 (0.96, 1.18)
1 Age < 65 | 1.01 (0.88, 1.15) 0-1 1.07 (0.93 ,1.24)
Age > 65 | 1.09 (0.98, 1.2) 1.12 (1.01,1.26)
2 Age < 65 | 1.00 (0.88, 1.14) 0-2 1.10 (0.94, 1.29)
Age > 65 | 1.16 (1.05, 1.28) 1.22 (1.08, 1.39)
3 Age < 65 | 1.08 (0.95, 1.24) 0-3 1.14 (0.96, 1.36)
Age > 65 | 1.15 (1.04, 1.27) 1.28 (1.12, 1.47)
4 Age < 65 | 1.12 (0.98, 1.28) 0-4 1.17 (0.97, 1.41)
Age > 65 | 1.03 (0.94, 1.14) 1.26 (1.09, 1.46)
5 Age < 65 | 1.15 (1.01, 1.3) 0-5 1.20 (0.98, 1.46)
Age > 65 | 1.03 (0.93, 1.14) 1.24 (1.06, 1.45)
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PM, 5 and Infarct or TTA; association by sex:

We found that at lag days 3 to 5, male patients are more susceptible to Infarct or TIA
stroke with an adjusted OR of 1.18 (95% CT: [(1.05, 1.34]), 1.15 (95% CT: [(1.01, 1.30]), and
1.13 (95% CI: [(1.01, 1.27]), respectively. No single lag day was significant for females. For
cumulative lag days, we found a significant association between P M, 5 and stroke for males
for cumulative lag days 0-2 with adjusted OR 1.17 (95% CI: [1.01, 1.36]), increasing to 1.30
(95% CI: [1.09, 1.56]) for cumulative lag days 0-5. For females significance was found for
cumulative lag days 0-2 with adjusted OR 1.18 (95% CI: [1.04, 1.35]), and 1.17 (95% CI:
[1.00, 1.38]) for cumulative lag days 0-5. Model results for the odds of stroke for PM,
exposure with 0-5 day lag and cumulative lag days for infarct or TIA by sex are shown in

Table 4.4 and Figures 4.1 and 4.2.
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Table 4.4: Model results for the likelihood of INF or TIA associated with PM>.5 exposure for lag day 0
(case day) to lag day 5 and cumulative exposure for lag day 0 (case day) through lag day 5, by Sex

Lag Sub Oddsratio) Cumulative Oddsratio
Day group (95%CT) Lagday (95%C1T)
Sex
0 (Case day) | Female | 1.06 (0.95, 1.18)
Male | 1.06 (0.94, 1.19)
1 Female | 1.08 (0.97, 1.20) 0-1 1.12 (0.99, 1.26)
Male | 1.03 (0.91, 1.16) 1.09 (0.95, 1.24)
2 Female | 1.08 (0.97, 1.20) 0-2 1.18 (1.04, 1.35)
Male | 1.12 (0.99 ,1.26) 1.17 (1.01 ,1.36)
3 Female | 1.08 (0.97, 1.2) 0-3 1.21 (1.05, 1.4)
Male | 1.18 (1.05, 1.34) 1.25 (1.06, 1.46)
4 Female | 1.01 (0.91, 1.12) 0-4 1.19 (1.02, 1.38)
Male 1.15 (1.01, 1.3) 1.28 (1.08, 1.52)
5 Female | 1.03 (0.93, 1.14) 0-5 1.17 (1.00, 1.38)
Male | 1.13 (1.01, 1.27) 1.30 (1.09, 1.56)

PMs 5 and Infarct or TIA; association by race:

We found a significant association between PMs 5 and Infarct or TIA stroke for patients of
the white race, for lag day 3 with an adjusted OR of 1.12 (95% CI: [1.02, 1.23]). Cumulative
lag days 0-2 for white patients had an adjusted OR of 1.16 (95% CI: [1.04, 1.31]), for 0-4
cumulative days, the adjusted OR was 1.20 (95% CI: [1.05, 1.38]). These results are shown
in Table 4.5 and Figures 4.1 and 4.2.
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Table 4.5: Model results for the likelihood of INF or TIA associated with PM>.5 exposure for lag day 0
(case day) to lag day 5 and cumulative exposure for lag day 0 (case day) through lag day 5, by race

Lag Sub Oddsratio) Cumulative Oddsratio
Day group (95%C1T) Lagday (95%C1T)
Race
0 (Case day) | Black | 1.10 (0.93, 1.30)
White | 1.05 (0.96, 1.15)
1 Black | 1.12 (0.95, 1.32) 0-1 1.17 (0.97, 1.40)
White | 1.04 (0.95, 1.14) 1.09 (0.98, 1.21)
2 Black | 1.12 (0.94, 1.33) 0-2 1.24 (1.01, 1.52)
White | 1.09 (1.00, 1.20) 1.16 (1.04, 1.31)
3 Black | 1.14 (0.96, 1.35) 0-3 1.29 (1.04, 1.61)
White | 1.12 (1.02, 1.23) 1.21 (1.07, 1.38)
4 Black | 1.15 (0.96, 1.36) 0-4 .33 (1.05, 1.69)
White | 1.04 (0.95, 1.15) 1.20 (1.05, 1.38)
5 Black | 1.21 (1.02, 1.43) 0-5 1.38 (1.07, 1.78)
White | 1.04 (0.95, 1.14) 1.19 (1.03, 1.37)
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Figure 4.1: Odds ratios and 95% CI for the likelihood of stroke given PMs 5 exposure at 0 (case day) to
5 day lag by subgroup a) stroke subtype, and odds ratios and 95% CI for the likelihood of INF or TIA for

subgroups b) age, ¢) sex and d) race.

Effect modification for stroke of any type and for Infarct or TIA

by age, sex, and race:

The association of PM, 5 and risk for stroke of any type was significantly modified by age

greater than 65 (p = 0.03) and the association of PMy5 and risk for infarct or TIA was

significantly modified by sex (p = 0.09), race (p = 0.09) and age group (p = 0.06).
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Figure 4.2: Odds ratios and 95% CI for the likelihood of stroke given PMs 5 exposure for cumulative lag
days (where 5 represents an accumulation from lag day 5 to day of stroke) by subgroup a) stroke subtype,
and odds ratios and 95% CI for the likelihood of INF or TIA for subgroups b) age, c) sex and d) race.
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Discussion:

The Greater Cincinnati Northern Kentucky Stroke Study (GCNKSS) data for the year 2010
were utilized in this study to estimate the effect of PMs 5 on the risk of stroke of any type and
by stroke subtype defined as hemorrhagic or non-hemorrhagic (infarct or TIA). Additional
stratification by age, sex, and race was also examined for patients with infarct or TIA. The
potential effect modification, due to age, sex and race, was also examined by considering the
inclusion of an interaction term in the models. Air pollutant and weather data from each
study day were obtained from a previously developed and validated spatiotemporal model
[36] were combined with the GCNKSS data [67]. This is a reproducible approach which
may also be applied to other health surveillance systems to monitor different adverse health
effects. We used the case-crossover design to analyze the association between PMs; 5 and
incident of stroke [110],[134], [79]. In the case-crossover design, the study population consists
of subjects who have experienced an episode of the health outcome of interest. Similar to
a crossover study, each subject serves as his or her control. As in a matched case-control
study, the inference is based on a comparison of exposure distribution rather than the risk of
disease. The case-crossover study is most suitable for studying relations with the following
characteristics: 1) the individual exposure varies within short time intervals; 2) the disease
has an abrupt onset and short latency for detection and 3) the induction period is short.
The case-crossover design allows the use of routinely monitored air pollution information
and at the same time makes it possible to study individuals rather than days as the unit
of observation. This design is also amenable for studying the effects of varying short-term
air pollution exposure on health outcomes with an abrupt onset. In recent studies, the
relationship between particulate matter and cardiovascular disease has been examined; Peng
et al [156], Larrieu et al 3[124], Dominici et al [67], showed particulate matter air pollution is
associated with hospital admission for cardiovascular disease, Want et al [192], Lisabeth et
al [130], Yistiak et al [202] and Yaohua Tian et al [45] showed positive relationship between

PMj 5 and the first hospital admission for ischemic stroke. However, O’Donnell et all [148]
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didn’t find any association between air pollution and the risk of acute ischemic stroke and
McClure et al [138] didn’t find any association between fine particulate matter (PMys)
and the risk of stroke in the REGARDS cohort. In our study, we found evidence of an
association between PM, 5 and stroke, in particular for non-hemorrhagic stroke of infarct or
TIA. The short-time exposure to PMs 5 was significantly associated with stroke, adjusted
for temperature, relative humidity, the day of the week, long term trend, and seasonality
of stroke events. The EPA is required to set a particulate matter National ambient air
quality standard that is safe for the public health, and our findings indicate that PMs 5 is an
ongoing threat to public health and need further research to explore the source of pollutants
and monitor the air quality for a healthy environment.

The source of particles for this air pollution needs to be identified for future strategic
plans to control the health-related adverse effects. However, the source of air pollutants
differs across location and time. Identifying the relationship between strokes about PM, 5
concentration is of public health and regulatory interest. The EPA is required to set a par-
ticulate matter National ambient air quality standard that is safe for the public health. Our
findings indicate that PMs 5 is an ongoing threat to public health and need further research

to explore the source of pollutants and monitor the air quality for a healthy environment.

67



Chapter 5

Source-specific contributions of
particulate matter to asthma-related

emergency department utilization

68



Source-specific contributions of particulate matter to
asthma-related emergency department utilization

Mohammad Alfrad Nobel Bhuiyan'? Patrick Ryan®?3, Sivaraman Balachandran?®, Cole

Brokamp*?

Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
2Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, Ohio, USA
3Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, 45267, USA
1 Department of Environmental Engineering, University of Cincinnati, Cincinnati, Ohio,

USA

Corresponding Author:
Mohammad Alfrad Nobel Bhuiyan
University of Cincinnati
Kettering Lab Building, 160 Panzeca Way, Cincinnati, OH 45267-0056

E-mail: bhuiyvama@mail.uc.edu

69



Abstract

Few studies have linked specific sources of ambient particulate matter smaller than 2.5 pm
(PMs5) and asthma. In this study, we identified specific sources of PMs5 and examined
their association with daily asthma hospital utilization in Cincinnati, Ohio, USA. We used
Poisson regression models to estimate the daily number of asthma ED visits the day of and
one, and two days following a 10 pg/m? increase in PM, 5, adjusting for temporal trends,
holidays, temperature, and humidity. In addition, we estimated the contributions of nine
sources to daily concentrations of PMs 5 using a chemical mass balance method and used a
model-based clustering method to group days with similar source-specific contributions into
six distinct clusters. Specifically, elevated PMs 5 concentrations occurring on days character-
ized by low contributions of coal combustion showed a significantly reduced risk of hospital
utilization for asthma (rate ratio: 0.86, 95% CI: [0.77, 0.95]) compared to other clusters.
Reducing the contribution of coal combustion to PMs 5 levels would be expected to reduce

asthma-related hospital utilization.

Keywords: fine particulate matter, source apportionment, cluster, asthma, time-series

Introduction:

Air pollution is a global challenge (World Health Organization, 2018) and has a severe,
negative impact on human health (Pascal et al., 2013, Abdalla et al., 2007, Pope III et
al., 2006). Vehicles, housecholds, and industries emit a complex mixture of air pollutants
(Austin et al., 2012, Austin et al., 2013), including ambient particulate matter smaller than
2.5 um (PMss) (Anderson et al., 2012, Adams et al., 2015 Burnett et al., 1997, Deschamps
et al., 2003). Despite reductions in PMs 5 concentrations in the United States and other
developed countries, industrialization and economic growth in Pakistan, Bangladesh, India,

and other developing and highly populated countiries has led to an 18% increase in the
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global population-weighted PMj, 5 concentrations from 2010 to 2016 (HEI 2019). In total,
an 92% of people worldwide breath unhealthy levels of air pollution, contributing to 6.5 mil-
lion annual deaths (World Health Organization, 2018). In addition to chronic disease and
mortality, epidemiologic evidence suggests short-term P M, 5 exposure is associated with the
development and exacerbations of asthma (Lam et al., 2016, Ding et al., 2017, Stevanovic et
al., 2006), triggering emergency department and hospital utilization in children (Iskander et
al., 2012, Villeneuve et al., 2007). Asthma is a highly prevalent chronic respiratory disease
(Sha et al., 2015) that contributes greatly to morbidity and hospital utilization worldwide.
Children are particularly susceptible to P M, 5 related health effects due to their immature
immune system (Zhang et al. 2019) and ongoing development and growth. The compo-
sition of PM, 5 varies according to its sources (Prieto-Parra et al., 2017), including fuel
combustion from mobile sources like vehicles and stationary sources like power plants, in-
dustrial processes, and biomass burning (World Health Organization, 2017). Several studies
have aimed to quantify the heterogeneous composition of PM, 5, including identification of
distinct multipollutant profiles (Austin et al., 2012), spatial clustering of air pollution mon-
itoring sites (Austin et a., 2013), analyzing source specific contributions (Feng et al., 2018),
and studying the effect of individual chemical constituents (Adams et al., 2015). However,
much less attention has been focused on the source-specific contributions of particulate mat-
ter to health outcomes (Feng et al., 2018). Identifying sources contributing to PMs 5 related
health effects is critical to control the harmful sources of PMs5 (Heal et al., 2012) and to
identify primary prevention strategies. In this study, we aimed to determine underlying
P M, 5 sources responsible for asthma-related pediatric hospital utilization. Daily estimates
of the source-specific contributions of different P M, 5 sources were estimated using a chemi-
cal mass balance source apportionment model, and a model-based clustering method (Fraley
et al., 2002) was applied to group days having similar source profiles. Using daily counts
of pediatric, asthma-related hospital utilization for one urban county in Cincinnati, Ohio,

USA, we then examined whether the type PMs5, as determined by cluster membership,
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significantly modified the effect of PMs 5 on hospital utilization.

Methods:

Source Apportionment:

A chemical mass balance (CMB) model (Pace et al., 1991) was used to estimate the contri-
bution of the sources of fine particulate organic carbon at Ohio from 2011 to 2015. One in
every three day PMs 5 and elemental source measurements extracted from an AirData mon-
itor (monitor ID: 39-061-0040) maintained by the Environmental Protection Agency (EPA).

The measurements were taken as average from hourly measurements.

Health Outcome Data:

All emergency department (ED) and urgent care (UC) visits for asthma between 2011 and
2015 were identified within the Cincinnati Children’s Hospital Medical Center’s (CCHMC)
electronic medical record (EHR) based on International Classification of Disease (ICD-9)
codes 493.00-493.92) (World Health Organization, 2018). CCHMC is a pediatric academic
health center that has a market share of 99% of all hospital admissions, and 81% of all hospital
encounters among 0 to 14 year olds in Hamilton County (Beck et al., 2018). Hamilton County
is located in Cincinnati, Ohio, USA and has 222 urban, suburban, and rural census tracts
containing about 190,000 total children. The CCHMC Institutional Review Board approved

this study and granted a waiver of informed consent.

Meteorological Data:

Average daily temperature and relative humidity were obtained from the North American

Regional Reanalysis (NARR) dataset (Mesinger et al., 2006).
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Statistical Analysis

We used Poisson regression models to investigate the association between daily counts of
asthma-related hospital utilization and PM, 5 concentrations on the same day as well as one
and two days prior. Models were adjusted for day of the week, the day of the year, a federal
holiday in the USA, temperature, and relative humidity. We used one dummy variable to
indicate if one of the previous two days was a federal holiday or not and another dummy
variable to indicate if the current day was a federal holiday. The continuous day of the year
was used to adjust for seasonality and long-term trends by modeling it as a natural cubic
spline with 8 degrees of freedom. We adjusted for daily average temperature and relative
humidity using natural cubic splines with six and three degrees of freedom, respectively,
to allow for the non-linear effect of weather conditions. The day of the week was also
included in the model as a dummy variable. To emulate a “naive” approach, we also created
similar models separately for each source component of PM,5. Lastly, we created models
where the effect of average PMs 5 for each day could be modified by cluster membership,
described below. This was accomplished by adding an explicit interaction term between
the PM, 5 concentration and a dummy variable for cluster membership within each Poisson
model to determine if significant effect modification existed. A Chi-squared test was used to
determine if there was a significant reduction in the Akaike information criterion (AIC) after
the addition of the interaction term. Model with a resulting p-value of less than 0.1 was
considered to be significantly modified by the composition of PM; 5. We utilized a model-
based clustering method, specifically a Gaussian finite mixture model (Fraley et al., 1998), to
group together days of the study period with similar source profiles. We chose model-based
clustering over non-parametric clustering methods, like k-means or hierarchical clustering,
to utilize a data-driven method for selecting the number of clusters. In the model-based
clustering, we assumed sample observations arose from a finite normal mixture distribution,
with a mixture probability or weight. Each component in the mixture model was called

a cluster. The mixture model parameters were fitted using an expectation-maximization
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algorithm (Hastie et al., 2001). To select the number of clusters, we compared different
models with different numbers of clusters and different parameterizations of the variance-
covariance matrix and chose the model with the lowest Bayesian information criterion (BIC)
(Fraley et al., 1998). A graph of the BIC for each combination of some clusters and variance-
covariance matrix parameterizations included in the appendix (Figure A.16). To cluster
based on the relative contributions of each source, rather than their absolute mass, we
expressed each source as a modified Z-score (Austin et al., 2013). The modified Z-score
allowed us to eliminate bias due to differences in scales and prevented outlier values from

having too much influence on the cluster selection:

(Sourcefraction — Median(Source fraction))

A Todified — . ; ) ]
Modsficd Median(|Source fraction — Median(Source fraction)|)

All statistical and geospatial computing was done in R (R Core Team, 2017), version 3.4.3,

using the mclust package (Fraley et al., 2006).

Results:

Demographic Characteristics:

From 2011 — 2015, the daily total of asthma-related ED and/or UC visits ranged from 1 to
26 with a median of 8 total visits (25th percentile: 4, 75th percentile: 10). Figure 1 shows
the dates of our study period arranged temporally and shaded by the magnitude of the daily
visit totals. The number of total visits was fewer during the warm, summer season consisting

of June, July, and August.

PMs 5 Source Characteristics:

Throughout the study period, the median level of PM,5 was 9.9 pg/m3. Source appor-

tionment analysis revealed nine distinct sources of PMs 5 within our study region: gasoline
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Figure 5.1: Calendar heat map of asthma-related hospital utilization from January 2011 to May 2015.



vehicles (GV), diesel vehicles (DV), dust (DUST), biomass burning (BURN), coal burning
(COAL), organic carbon (SOC), sulfate (SO,), ammonium (N H,), and nitrate (NO3). Ob-
served PMs 5 and each individual source were examined as time series plots from January
2011 to May 2015 (Figure A.1- A.10). From 2011 to 2015, the median concentration for GV
was 0.21 pg/ m3, DV was 0.76 ug/ m3, BURN was 0.75 pug/m3, SOC was 0.76 p1g/m3, NH,
was 0.91pg/ m3, and NOs was 0.90 ug/ m3. SO4 had the highest median concentration
(2.08 pg/m3) whereas COAL and DUST concentrations had the lowest median concentra-
tions (both 0.06 p1g/m3). Summary statistics on the characteristics of PM, 5, sources of air
pollutants, and meteorological variables are provided in Table 1. The daily values of the
concentration of PM; 5 and the sources of PM, 5 for the study period as a modified Z score

are shown in Figure 2.
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Table 5.1: Summary statistics of air pollution, meteorological, and ED utilization variables.

Variable Median | Min | 25" 75t Mazx
Percentile | Percentile
Daily Utilization (count) 7 1 4 10 26
PMs.5(ug/m?) 9.9 2 | 68 13.5 30.8
Temperature(K) 284.8 | 257.4 | 276.1 294.2 303.8
Humidity (kg/m2/s) 76.7 | 37.3 | 69.3 81.9 96.5
PM; sSource
Concentration(pg/m?)
DV 0.21 0.00 | 0.06 0.42 1.62
GV 0.76 0.02 | 0.58 0.93 2.24
BURN 0.75 0.00 | 0.54 1.09 6.36
COAL 0.06 0.00 | 0.02 0.10 0.50
DUST 0.06 0.00 | 0.00 0.16 1.31
NH4 0.91 0.03 | 0.57 1.41 4.99
NO3 0.90 0.06 | 0.49 2.00 12.50
SO4 2.08 0.00 | 1.31 3.11 12.97
SOC 0.74 0.00 | 0.44 1.15 3.46

Association between daily PM, 5 concentrations and asthma-related
hospital utilization:

We did not observe a significant association between total PM, 5 and the rate of asthma-
related hospital utilizations. The rate ratio (RR) and 95% confidence interval (CI) for
hospital utilizations per 10 pg/m3 increase in PMs 5 was 1.00 (95% CI: [0.93, 1.08]) on the
same day, 0.97 (95% CI: [0.89, 1.05]) one day later, and 1.04 (95% CI: [0.96, 1.12]) two days
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later. Model results for PM, 5 concentrations and asthma-related hospital utilization are

depicted Figure A.12.

Association between source-specific PMs 5 and asthma-related hos-

pital utilization:

Model results for each individual PMs 5 source are shown in Figure 3. When using individ-
ual models for each PMs 5 source, PM, 5 concentraitons due to DUST, DV, NH,, BURN,
and SOC were not associated with an increased risk for asthma-related hospital utilization.
However, there was a significantly increased risk of asthma-related hospital utilization the
same day of increased NO3 (RR: 1.06, 95% CI: [1.01,1.13]), one day after increased GV (RR:
0.92, 95% CI: [0.86,0.99]), and both one and two days after increased COAL (RR: 1.01, 95%
CL [1.01, 1.06] and RR: 1.02, 95% CI: [1.00, 1.04], respectively).

Clustering sources of PM,5:

Our study period consisted of 522 total days, and we found that six clusters best fit the
source apportionment fractional contributions as modified Z-scores. The heat map of the
sources by cluster membership is shown in Figure 4. Cluster allocation of days and the mean
and variance of the fractional contribution of each source for each cluster are presented in
Table 2. Cluster 1 was allocated hundred and ninety-three days (36.97% of all days) and
was characterized by high dust, SOC, and DV in conjunction with moderately high PM, 5
and SO, and low NO3z. We nicknamed this cluster “high S04, SOC, and BURN with low
COAL”. This cluster mostly occurred in April (26 days), May (31 days), June (22 days),
August (20 days), September (20 days) and October (21 days). Cluster 2 mostly occurred
during the fall. Sixty days (11.49% of all days) allocated in this cluster and characterized by
high dust, SOC, and DV in conjunction with moderately high nitrate, GV and ow DV. We
nicknamed this cluster “high DUST and NOs, with low SOC and DV”. It occurred mostly
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Figure 5.3: Risk ratio for the number of daily asthma-related hospital emergency department utilization
for a 10 pg/m? increase in each source of PM, 5 and for each lag day.
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during January (11 days), February (12 days) and March (14 days). Cluster 3 characterized
by high NOs3, N Hy, and GV. Hundred and five days (20.11% of all days) allocated in cluster
3.This cluster occurred more often in the earlier years. We nicknamed this cluster “high SOy,
NHy, NO3 with low DUST”. Cluster 3 mostly occurred in January (25 days) February (21
days), March (17 days ) and December (16 days). Cluster 4 consisted of 81 days (15.51%
of all days) with low coal, high NHy, and NOs. This cluster mostly occurred during the
middle of the study period. We nicknamed this cluster “high N H,, NO5; with low COAL.”
It occurred mostly during January (10 days), November (10 days) and December (11 days).
Cluster 5 mostly occurred during spring and characterized by high DV, high SOy, and low
GV and fifty-nine days (11.30% of all days) allocated in cluster 5. We nicknamed this cluster
“high SOC, SO, with low GV.” Tt occurred mostly during July (12 days), August (11 days)
and September (11 days). Cluster 6 characterized by high burn, dust, low GV DV, and
SOC. Fifteen days (2.87% of all days) allocated in cluster 6. We nicknamed this cluster
“high BURN, SOC with low DUST, COAL, and DV.” It occurred mostly during May (2
days), June (2 days) and July (7 days). Calender heat map of the clusters by day shown
in Figure 5.Cluster-specific risk ratios and 95% ClIs for the number of daily asthma-related
hospital utilizations for a 10 ug/m3 increase in PM2.5 and for each lag day. Bar plot of the

clusters by week, month and year presented in Appendix A.11.
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Table 5.2: The mean and standard deviation of the source fractions both overall and for each cluster.

character | Total | Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 4 ) 6
Day(%) 522 193 (37) 60 (11) 105 (20) 81 (16) 59 (11) 15 (3)
PM, 5
Source
BURN 0.11 | 0.11 (0.04) | 0.12 (0.08) | 0.09 (0.03) | 0.10 (0.04) | 0.10 (0.05) | 0.28 (0.18)
COAL 0.01 | 0.01 (0.01) | 0.01 (0.01) | 0.01 (0.01) | 0.01 (0.01) | 0.01 (0.01) | 0.01(0.01)
DUST | 0.02 | 0.03 (0.02) | 0.02 (0.03) | 0.01 (0.01) | 0.01 (0.02) | 0.01 (0.01) | 0.02 (0.03)
DV 0.03 | 0.05 (0.03) | 0.01 (0.00) | 0.02(0.02) | 0.03 (0.03) | 0.05 (0.02) | 0.02 (0.05)
GV 0.1 | 0.10 (0.04) | 0.11 (0.05) | 0.10 (0.04) | 0.11 (0.05) 11 (0.07) | 0.09 (0.09)
NH4 0.12 | 0.10 (0.02) | 0.14 (0.04) | 0.15 (0.03) | 0.12 (0.04) | 0.10 (0.04) | 0.09 (0.05)
NO3 | 0.17 [ 0.10 (0.05) | 0.25 (0.12) | 0.29 (0.08) | 0.19 (0.12) | 0.07 (0.04) | 0.08 (0.05)
S04 0.27 | 0.28 (0.08) | 0.25 (0.08) | 0.23 (0.07) | 0.27 (0.09) | 0.34 (0.14) | 0.28 (0.19)
SOC 0.1 |0.22 (0.07) | 0.10 (0.04) | 0.10 (0.05) | 0.17 (0.08) | 0.21 (0.09) | 0.13 (0.19)

A.15).

tion:
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with low COAL had a significantly lower RR of 0.86 (95% CI: [0.77,0.95]).

Effect modification of PM; 5 by cluster-defined fractional composi-

Examining the effect modification of daily PMs 5 by cluster membership allowed us to assess
the health impact of the composition of PMs 5 independently of its total mass. We found
significant effect modification on lag day one (p = 0.004), but not lag zero or two-day
effects. Within the lag day one model, we estimated the individual RR and 95% confidence
intervals for each type of PM, s composition presented in the appendix (Figure A.13 —

Compared to the other clusters, the cluster that was identified as high NH4, NO;

This suggests
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Figure 5.5: Heatmap of the sources of PM2.5 as modified Z scores grouped by cluster.
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Figure 5.7: Calendar heat map of clusters. PM2.5 was observed only 1 in every three days and days with
unobserved PM2.5 are grey.
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Figure 5.9: Cluster-specific risk ratios and 95% ClIs for the number of daily asthma-related hospital uti-
lizations for a 10 ug/m3 increase in PM2.5 and for each lag day
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that an increase in PM, 5 occurring on days characterized by high contributions of N Hy and
NQOj and low contributions of COAL is associated with a smaller increased risk concerning

asthma-related hospital utilization in comparison to other types of PM, 5.

Discussion:

It has been of importance to figure out the most health-relevant sources of PM, 5, both from
scientific standpoints and regulatory perspectives (Bell et al., 2012, Hime et al., 2018, Heal et
al., 2012). Association between source-specific exposure and health effect plays an important
role to protect public health as well as develop policies (Brook et al., 2004, Brunekreef
et al., 2002). Even though sources of air pollution were informative, these studies were
often challenging to conduct because source- specific exposure was not directly observed but
estimated (Zanobetti et al., 2009). Frequently, a two-stage approach was applied to estimate
the source-specific health effect by adding source exposure assessment and health outcome
regression (Krall et al., 2017). The previous study showed the ultrastructural study of the
effect of air pollution by sulfate (SO2) on the respiratory system (Abdallah et al., 2007),
the impact of climate and nitrate (NO3) on prevalence of asthma (de Marco et al., 1999),
effect of source-specific particulate matter on health (Adams et al., 2015), differential effect
of source-specific particulate matter on emergency hospital utilization (Pun et al., 2014),
health effect of short term exposure to source-specific particles (Samoli et al., 2016), source-
specific fine particulate air pollution on heart disease (Siponen et al., 2015). Several studies
highlighted the differential toxicities of fine particulate matter from various sources (Park et
al., 2018) and clustered air pollution monitoring sites (Austin et al., 2013). In this study,
we used model-based cluster analysis to classify days based on their source fraction profile.
We observed a significant association of asthma with high coal. Previously, various research
articles have also analyzed the adverse effect of PM;5 components in China (Deng et al.,

2018, Norbéck et al., 2018, Zhao et al., 2007, Lee at al., 2006, Cai et al., 2014) and USA

86



(Nardone et al., 2018, Kravitz-Wirtz et al., 2018, Gharibi et al., 2018, Hansel et al., 2018).
Limited research has been done on the impact of source-specific air pollution on asthma in
the USA (Krall et al., 2017). We clustered each day based on the sources and assessed the
seasonal variability in emission sources and source-specific health effects.

This article aimed to determine the source-specific contributions of PMs 5 on daily hos-
pital utilization rates related to asthma. We found that during summer its mostly high dust,
organic carbon, and diesel vehicles in conjunction with moderately high PM; 5 and sulfate.
During the spring season high ammonium, nitrate, sulfate, and in the winter season organic
carbon, sulfate, gasoline vehicle, and nitrate were the major sources of PM,5.0ur results
were in line with emerging evidence that supports source-specific emission regulation (Krall
and Strickland, 2017).

The strength of this study is, we have used a novel data-driven clustering method to iden-
tify the sources of PMs; 5 and investigated the impacts of exposure to source-specific PM, 5
on daily asthma ED utilization. Clustering on the fraction of sources allowed us to examine
the effect of the composition of PM, 5 independently of its mass. Model-based clustering has
more advantages than other clustering methods. K-mean clustering and hierarchical clus-
tering based on distance connectivity, and the number of clusters are preselected, and the
cluster orientation changes with the scale. Another strength is that we have used EPA ap-
proved Chemical Mass Balance (CMB) model for PMs 5 source apportionment (Al-Naiema
et al., 2018, Ashrafi et al., 2018, Lu et al., 2018).CMB model has a powerful advantage to
the source attribution process because the model interprets the actual measurement of the
ambient data (Pace et al., 1991). However, several potential limitations should also be taken
into consideration. First of all, the measurements taken in every three days of sampling.
But due to varied lag days according to health data, we utilized all days of asthma counts.
Another limitation was the lack of spatial resolution of sources. The spatial resolution of
sources was not possible due to only one elemental PM, 5 monitor in the study region. Coal

burning identified as the major source of PM; 5 associated with an increased risk of asthma
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ED utilization in this study. By previous findings, Yu et al., 2018 observed that coal burning
associated with increased health risk. Our big takeaway is that cluster 4 (low coal) did not
show as much risk compared to other types of PMs; 5 exposures. Our study warrants further
studies on identifying which types of PMj5 are most harmful to human health and also
further explorations into how to direct primary prevention strategies towards the types of

air pollution that show the most health effects.
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Figure 5.11: Bar plot of the clusters by week, month and year
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Figure 5.12: Calendar heat map of (a)PMs 5, (b) DV, (¢) COAL, (d) GV concentration from January

2011 to May 2015
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Discussion

In this dissertation, I have proposed four statistical modeling approaches with methodologic
developments and applications to real data. The common focus was to extend the existing
methods to overcome the limitations that may hinder wider applications. The first approach,
I focused on modeling growth curves. Growth curve models can be useful whenever there is
a focus on the analysis of change over time, such as when examining developmental changes,
evaluating treatment effects, or analyzing diary data. Although growth models go by a
variety of different names, all of these approaches share a common focus on the estimation
of individual differences in within-person change over time. Growth curve models estimate
smoothed trajectories that are unique to each individual based on the set of observed repeated
measures. One, of the limitation of current approaches is that they do not provide estimates
of uncertainty of model parameters. The Bayesian paradigm produces uncertainty estimates
of all model parameters inherently. It also handles the correlations among variables that
are observed at various levels through hierarchical modeling framework. For example, the
correlations between subject-specific covariates and within subject longitudinally observed
data. I extended the widely used shape invariant model (SITAR) to Bayesian framework.
Using the real data (heights of ADHD patients), I compared my Bayesian version to the
original SITAR model and found similar parameter estimates (average age at peak velocity,
size, tempo, and velocity) with slightly lower predictive errors. This development is amenable
to other extensions, such as modeling the clustering patterns in growth curves and evaluating

the impacts of various spline functions on parameter estimates. My future work will focus
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on methodologic development along these directions. One of the limitations of Bayesian
SITAR is that it requires considerable time to converge depending on the data size, model
complexity, and correlations among parameters. My future work will also focus on gaining
efficiency in computation time by leveraging the recent advancement of Bayesian algorithms
and parallel processing.

In the second approach, I focused on measures of association for categorical data. .Mea-
sures of association are used in various fields of research but are especially common in the
areas of epidemiology and psychology, where they are frequently used to quantify relation-
ships between exposures and diseases or behaviors. A measure of association may be deter-
mined by several analytic methods, including correlation analysis and regression analysis.
The method used to determine the strength of association depending on the characteristics
of the data for each variable. Data may be measured on an interval/ratio scale, an ordi-
nal/rank scale, or a nominal/categorical scale. These three characteristics can be thought
of as continuous, integer, and qualitative categories, respectively. A typical example for
quantifying the association between two variables measured on an interval/ratio scale is the
analysis of relationship between a person’s height and weight. Each of these two character-
istic variables is measured on a continuous scale. The appropriate measure of association for
this situation is Pearson’s correlation coefficient, r (rho), which measures the strength of the
linear relationship between two variables on a continuous scale. The coefficient r takes on
the values of —1 to +1. Values of —1 or +1 indicate a perfect linear relationship between
the two variables, whereas a value of 0 indicates no linear relationship and negative values
simply indicate the direction of the association, whereby as one variable increases, the other
decreases. Correlation coefficients that differ from 0 but are not —1 or +1 indicate a linear
relationship, although not a perfect linear relationship. In practice, p (the population corre-
lation coefficient) is estimated by r, which is the correlation coefficient derived from sample
data. Although Pearson’s correlation coefficient is a measure of the strength of an association

(specifically the linear relationship), it is not a measure of the significance of the association.
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The significance of an association is a separate analysis of the sample correlation coefficient,
r, using a student’s t-test to measure the difference between the observed r and the expected
r under the null hypothesis. Similarly, an odds ratio is an appropriate measure of strength
of association for categorical data derived from a case-control study. The odds ratio is often
interpreted the same way that relative risk is interpreted when measuring the strength of
the association, although this is somewhat controversial when the risk factor being studied is
common. Using simulated data, I compared the power and equality of three commonly used
statistical method for testing association in clinical categorical data (the odds ratio, Pearson
correlation, and canonical correlation). I showed the mathematical equality of the canonical
correlation and Pearson correlation coefficients and found similar power for testing associa-
tion between odds ratios and canonical correlation based on the Wald test and the Rao test.
My future work will focus on expanding the 2*2 contingency table to k*k contingency table
and compare the power analysis with real and simulated data.

In the third and fourth approaches, I focused on modeling the heath impact due to ex-
posure to fine particles, PM, 5. Health studies have shown a significant association between
exposure to particle pollution and health risks. Health effects may include cardiovascular
effects such as cardiac arrhythmia and heart attacks, and respiratory effects such as asthma
attacks and bronchitis. Exposure to particle pollution can result in increased hospital ad-
missions, emergency room visits, absences from school or work, and restricted activity days,
especially for those with pre-existing heart or lung disease, older people, and children. The
size of particles is directly linked to their potential for causing health problems. Fine parti-
cles (PM,5) pose the greatest health risk. The composition of PMs 5 varies according to its
sources, including fuel combustion from mobile sources like vehicles and stationary sources
like power plants, industrial processes, and biomass burning. Several studies have aimed to
quantify the heterogeneous composition of PM, 5, including identification of distinct multi
pollutant profiles, spatial clustering of air pollution monitoring sites, analyzing source specific

contributions, and studying the effect of individual chemical constituents. However, much
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less attention has been focused on the source-specific contributions of particulate matter to
health outcomes. Identifying sources contributing to PMs 5 related health effects is critical
to control the harmful sources of PMs 5 and to identify primary prevention strategies. These
fine particles can get deep into lungs and some may even get into the bloodstream. Exposure
to these particles can affect a person’s lungs and heart. In the third chapter I have shown the
association between onset of Stroke and P M, 5 using a novel case-crossover design and found
differential impact by type of stroke and age at stroke. In the fourth and final chapter, I
have shown the association of different sources of PM, 5 with emergency hospital utilization
due to asthma using a novel data-driven clustering technique and found scasonal variability
in emission sources and source-specific impact on asthma admissions. My future work will

focus on confirming these findings in upcoming studies with spatially observed data sets.
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