

Traffic Management of small-Unmanned Aerial Systems in an Urban

Environment

A thesis submitted to the

Graduate School
of the University of Cincinnati

in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in the Department of Mechanical Engineering
of the College of Engineering and Applied Sciences

by

Matthew John Dechering

Master of Science, University of Cincinnati, 2019
Bachelor of Science, The Ohio State University, 2012

2019

Committee Chair: Dr. Manish Kumar

Abstract

Traffic Management of small-Unmanned Aerial Systems in an Urban Environment

by

Matthew John Dechering

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Master of Science Degree in the Department of Mechanical Engineering

University of Cincinnati
February 2019

Unmanned Aerial Systems Traffic Management (UTM) and Sense-And-Avoid (SAA) are impor-

tant topics as the number of civilian s-UAS applications grows. Civilian applications are due to

grow by leaps and bounds by 2021. These applications include Potential areas of application in-

clude emergency management, law enforcement, infrastructure inspection, precision agriculture,

package delivery, and imaging/surveillance. With this increased low-altitude air traffic, algorithms

capable of automating s-UAS trajectory planning are important. This thesis examines two algo-

rithms for handling s-UAS traffic in urban environments, including path planning and SAA el-

ements. The first algorithm operates in a 2D domain, uses Mixed Integer Linear Programming

(MILP) to provide Sense-And-Avoid features, and uses A* as a top level path planner. In this

approach, MILP provides in-depth optimization of the vehicle’s trajectory by modelling its dy-

namics. The top-level A* reduces the work MILP has to do to model the entire path, by reducing

the problem to a set of MILP optimizations within separate finite horizons. This combined algo-

rithm produced 2-dimensional solutions with satisfactory separation for up to 35 s-UAS in a 16000

m2 area. The second algorithm uses A* as a path planner, and uses a combination of priority and

re-routing to resolve 3D trajectory conflicts. It provides a faster, but less thorough solution to UTM

problems. It uses A* to route each s-UAS in three dimensions, and then steps through each route

until a conflict is detected. When a conflict is detected, it is resolved by re-routing the s-UAS of

lower priority around the higher priority s-UAS. The A* with re-routing algorithm provided satis-

factory separation for up to 50 s-UAS in areas up to 466556 m2 in size and volumes 56 m tall. For

ii

30 s-UAS in a 5184 m2 by 56 m volume, a solution was found with no more than 10 re-routes for a

single s-UAS. Both algorithms are analyzed using randomly generated s-UAS missions and terrain

data for the greater Cincinnati area. The algorithms provide adequate separation results at minimal

cost to traffic timing. The grid-based simulations, while simple to set up, are computationally ex-

pensive. Future work would include better models of the airspace with pre-optimized routes that

function like roads. A TIN would allow MILP to expand in optimization to 3D, further improving

routing.

Thesis Supervisor: Manish Kumar

Title: Associate Professor

iii

Copyright 2019, Matthew John Dechering

This document is copyrighted material. Under copyright law, no parts of this document may be
reproduced without the expressed permission of the author.

To my loving parents, and their unending support.

Acknowledgments

Manish Kumar

Mohammadreza Radmanesh

Hans Guentert

Matthew Dechering

vi

Contents

Abstract ii

Acknowledgments vi

Contents vii

List of Tables xi

List of Figures xii

List of Abbreviations xiv

1 Introduction 1

1.1 Problem Statement . 2

1.1.1 Regulations for s-UAS in Urban Environments 2

1.2 Solution Overview . 3

1.2.1 Top-level route planner . 4

1.2.2 Lower-level SAA type 1: Mixed Integer Linear Programming 5

1.2.3 Lower-level SAA type 2: Priority and Re-Routing 5

1.3 Organization of Thesis . 6

2 Background 7

2.1 Existing Technologies . 7

2.1.1 ADS-B . 7

2.1.2 LIDAR . 8

vii

2.1.3 RADAR . 10

2.1.4 Cameras and TOF . 10

2.1.5 Ground-Based Monitoring . 11

2.1.6 GPS and IMU . 11

2.1.7 Onboard Computing . 12

2.1.8 Communication . 14

2.2 Existing Solutions . 14

2.3 UTM Architecture . 18

2.4 Literature Survey . 21

3 Modelling Urban Airspace 29

3.1 Airspace Models . 29

3.1.1 Sky Tubes . 29

3.1.2 Voronoi clusters . 30

3.1.3 Grid-Based . 30

3.2 Building a grid-based Airspace Model . 31

3.2.1 Selecting an Area of Interest and Sizing the Grid 31

3.2.2 Selecting Model Data . 32

3.2.3 Interpreting Model Data . 32

4 Top-Level Algorithms 35

4.1 A* . 35

4.1.1 2D A* . 35

4.1.2 3D A* . 37

4.2 Rapidly-exploring Random Tree . 38

4.3 Transition between levels . 38

5 Lower Level type 1: Mixed Integer Linear Programming Algorithms 39

5.1 Main Section 1 . 39

viii

5.1.1 Existing Work and Inequality Framework 40

5.2 Inequalities to move to three dimensions . 45

5.2.1 Area Complexity . 48

5.2.2 Three-dimensional Complexity . 49

6 Lower-level type 2: Re-routing using A* 50

6.1 Motivation . 50

6.1.1 Path Planning and Re-Routing . 50

6.2 Routing Algorithm . 51

6.3 Conflict Detection . 51

6.4 Resolving Traffic Jams . 55

7 Numerical Simulations And Results 57

7.1 MILP results . 57

7.1.1 2D MILP without top-level . 58

7.1.2 2D MILP with top level . 60

7.2 Priority and Re-routing results . 62

8 Discussion, Conclusions and Future work 68

8.1 Discussion . 68

8.1.1 Lower-level MILP . 68

8.1.2 MILP with A* top level . 68

8.1.3 A* with Priority and Re-routing . 69

8.1.4 Surface Model Suitability to MILP and A* 69

8.2 Conclusions . 69

8.2.1 MILP and MILP with A* . 69

8.2.2 A* with Priority and Re-routing . 70

8.2.3 Surface Model Suitability to MILP and A* 70

8.3 Future Work . 70

ix

8.3.1 Improved Models of the City . 70

8.3.2 Improved Pre-processed Maps . 70

8.3.3 Combined Pre-processed Maps and Algorithms 71

Appendices 72

x

List of Tables

2.1 ADSB products for s-UAS . 8

2.2 LIDAR products for s-UAS . 9

2.3 RADAR products for s-UAS . 10

2.4 Ground-Based Tracking Methods . 11

2.5 s-UAS autopilots . 13

2.6 s-UAS WAVE Solutions . 14

2.7 s-UAS lte products . 14

2.8 NASA TCL Levels [1] . 15

7.1 Vehicle Statistics used in MILP simulations . 57

7.2 Lower-level MILP capacity test . 58

7.3 Separation Results for the MILP capacity test . 59

7.4 Simple MILP distance capacity . 59

7.5 Trials for MILP and A* top level . 62

7.6 A* with re-routing results for 30 s-UAS in 160m X 160m areas of downtown Cincinnati 63

7.7 More A* with priority and re-routing results . 64

7.8 Comparison Between Algorithm Times . 67

xi

List of Figures

1-1 Method 1: A*-MILP . 3

1-2 Method 2: A*-Priority and Re-routing . 4

2-1 NASA Proposed UTM Architecture . 17

3-1 Model after interpreting LIDAR data . 33

3-2 Close view of model . 33

3-3 Satellite view of area modelled . 34

6-1 Predicted Path for s-UAS . 54

6-2 Path for s-UAS with an obstacle in the way . 54

6-3 Corrected Path for s-UAS . 55

7-1 MILP distance trial 4 . 60

7-2 MILP path planning avoiding an obstacle . 61

7-3 MILP path planning avoiding obstacles and other aircraft 61

7-4 Re-routed results, Trial 1 . 65

7-5 Re-routed results, Trial 2 . 65

7-6 Re-routed results, Trial 3 . 66

7-7 Re-routed results, Trial 4 . 66

xii

List of Algorithms

1 A* pseudocode . 37

2 3D path-planning with re-routing: initial path planning 52

3 3D path-planning with re-routing: rerouting section 53

4 Resolving Traffic Jam Edge Cases . 56

xiii

List of Abbreviations

s-UAS . Small UAS
UAS . Unmanned Aircraft Systems
FAA . Federal Aviation Administration
NAS . National Airspace
UTM . Unmanned Traffic Management
SAA . Sense-And-Avoid
SARP . UAS ExCom Science and Research Panel
VMD . Vertical Miss Distance
HMD . Horizontal Miss Distance
AGL . Above Ground Level
UAM . Urban Air Mobility
MILP . Mixed-Integer Linear Programming
ADS-B Automated Dependent Surveillance-Broadcast
TOF . Time-Of-Flight
WAVE . Wireless Access in Vehicular Environments
GPS . Global Positioning System
IMU . Inertial Measurement Unit
RTK . Real-Time-Kinematic
ATC . Air Traffic Controller
ASP . Airspace Service Provider
NASA . National Aeronautics and Space Administration
V2V . Vehicle to Vehicle
SWAP . Size, Weight, and Power
BVLOS Beyond Visual Line of Sight
ODOT . Ohio Department of Transportation
ANSP . Air Navigation Service Provider
PKI . Public Key Infrastructure
LAANC Low Altitude Authorization and Notification Capability
USGS . United States Geological Survey
TIN . Triangular Irregular Network

xiv

Chapter 1

Introduction

Small UAS (s-UAS) have recently generated a lot of interest in civilian domains due to their

potential to revolutionize several applications. These areas of application include emergency man-

agement, law enforcement, infrastructure inspection, precision agriculture, package delivery, and

imaging/surveillance. The FAA expects an increase in number of unmanned flights, between 162%

to 432% by 2021 [2]. Several challenges will face safe operation of UAS, specifically in terms of

traffic management, with the increased numbers of drones expected to be in the air (FAA pre-

dicts at least 2.75 Million units by 2021, up from 1.10 million units). Safe separation needs to

be maintained between unmanned systems and other aircraft, unmanned systems and the ground,

and unmanned systems and stationary objects. Safe integration of UAS into the National Airspace

System (NAS) involves disciplinary areas that include recent technologies (sensing, command,

control, and communications) and regulations. Major challenges in integrating s-UAS in NAS

include Unmanned Traffic Management (UTM), and Sense-And-Avoid (SAA). UTM means keep-

ing s-UAS traffic safe and efficient. SAA means the specific methods by which s-UAS detect and

avoid obstacles, each other, and other aircraft. This thesis explores two solutions to unmanned

traffic management in an urban environment. Both solutions use a top-level algorithm to man-

age long-distance routing and obstacle avoidance, and a bottom-level algorithm to provide more

refined obstacle avoidance and conflict resolution.

1

1.1 Problem Statement

In this project, N s-UAS are operating in an urban environment. Each s-UAS has a mission

that consists of a start waypoint, a goal waypoint, and any number of intermediate waypoints.

The s-UAS are in communication with a centralized UTM service which gives them detailed path

instructions that lead to them accomplishing their mission. When planning a path for a s-UAS,

the UTM service takes into account the s-UAS’s current position and velocity, information on

the terrain, and trajectories for all other s-UAS in the area the UTM service covers. The UTM

service has two major objectives: maintaining safety for s-UAS and providing optimal paths for

efficient traffic flow. It maintains safety by keeping safe separation distances between all s-UAS,

and between s-UAS and the terrain. It provides optimal paths by minimizing path length and/or

minimizing acceleration, depending on the method used.

1.1.1 Regulations for s-UAS in Urban Environments

The FAA defines Sense-And-Avoid (SAA) as the capability of a UAS to remain well clear

from and avoid collisions with other airborne traffic, in the context of UAS [3]. The UAS ExCom

Science and Research Panel (SARP) published a recommendation for s-UAS which defines well

clear as a 250 ft. Vertical Miss Distance (VMD), and a 2000 ft. Horizontal Miss Distance (HMD).

Unlike the recommendations for large UAS well clear, no time-based definitions of well clear

were proposed. [4]. Under the FAA’s small UAS rule, remote operation is allowable in G-class

airspace under 400 ft. AGL, to provide a buffer between s-UAS operations and manned airspace.

Following these definitions, traffic in G-class airspace is quite limited. Only two s-UAS can op-

erate within the same vertical column. In un-congested rural areas, these rules would be effective

at meeting well clear requirements while permitting effective use of airspace, but in congested

urban environments these could severely limit airspace, especially between buildings taller than

400 ft. that are separated by less than 150 ft. Since such areas would be impassible with current

standards, if urban s-UAS become widespread, highly urban areas will likely be limited to highly

2

maneuverable s-UAS. The FAA and several major companies have suggested UTM strategies for

various environments. These are all developments towards Urban Air Mobility (UAM), a safe and

efficient system for urban UAS services.

1.2 Solution Overview

In this thesis, two UTM solutions are presented. Both involve a top-level route planner and a

lower-level Sense-And-Avoid. The top level route planner is similar in both cases, but they differ

in their lower-level Sense-And-Avoid methods. Figures 1-1 and 1-2 provide a brief comparison

between the two methods.

Figure 1-1: Method 1: A*-MILP

3

Figure 1-2: Method 2: A*-Priority and Re-routing

1.2.1 Top-level route planner

In both lower-level implementations, route management becomes computationally expensive

as the distance covered by the algorithm increases. The top-level algorithm uses an A* search to

provide an optimal-length path that safely avoids terrain. A* was chosen because it finds optimal

solutions, is reasonably fast, and is easy to implement. This path is then given to a lower-level algo-

rithm. Both lower level algorithms provide SAA functions while avoiding terrain and attempting to

4

remain as close to the optimal route as possible. There is some variation on how the top level is im-

plemented. In the first method (type 1), s-UAS routing requests are processed in a first-in, first-out

manner. In the second method (type 2), s-UAS routing requests are processed simultaneously.

1.2.2 Lower-level SAA type 1: Mixed Integer Linear Programming

In the Mixed Integer Linear Programming (MILP) solution, the path provided by the top level

is broken down into segments that fit within a spatial and temporal finite horizon. Then, for each

segment, the MILP solution applies a set of dynamic constraints that model how an s-UAS actu-

ally moves. The s-UAS is also constrained to be a safe distance from all obstacles within the finite

horizon and all pre-existing trajectories of other s-UAS within the finite horizon. The final set of

constraints set the s-UAS to visit all waypoints in the current segment in order. Given these con-

straints, a MILP solver is used to optimize a cost function that incorporates time and acceleration

of the s-UAS. This trajectory is returned to the top-level to be used in future trajectory calculations.

Because it includes s-UAS dynamics, the MILP method provides a more accurate picture of the

trajectory of an s-UAS, but is more computationally intensive than the second method.

1.2.3 Lower-level SAA type 2: Priority and Re-Routing

In the priority and re-routing method, the paths provided by the top-level are traced in time

until a conflict is detected. The priority of each s-UAS is calculated in such a way to favor s-UAS

with lower remaining battery life with higher priority or s-UAS that are nearer to their goal with

higher priority. When a conflict is detected, an algorithm similar to the one used in the top level is

called, except it re-routes the lower priority s-UAS away from the conflict and towards its goal. It

repeats this until no conflicts exist, then resolves tracing the new paths. This loop continues until

all paths are resolved successfully.

5

1.3 Organization of Thesis

Chapter 2 explores existing s-UAS technologies, existing UTM solutions, and proposed UTM

architecture. Chapter 3 discusses possible methods to model an urban airspace and the methods

by which the model used in this thesis was made. Chapter 4 describes the top-level algorithm and

the transition between it and lower-level algorithms. Chapter 5 describes the MILP (type 1) lower

level algorithm. Chapter 6 describes the priority and re-routing lower-level algorithm. Chapter 7

describes the results of each algorithm. Finally, Chapter 8 includes discussion, conclusions, and

future work.

6

Chapter 2

Background

2.1 Existing Technologies

This section focuses on an exhaustive market survey on existing state-of-the art technologies

available for achieving SAA and UTM. Limitations and capabilities of each of these technologies

have been catalogued in the previous report. Technologies include different onboard sensor modal-

ities, ground-based sensors (radar and cameras), Automated Dependent Surveillance-Broadcast

(ADS-B), communication devices and protocols, and computing. Onboard sensors include intruder

and obstacle detection (LIDAR, RADAR, vision, thermal vision, Time-Of-Flight (TOF) cameras)

and localization and position measurement (GPS, inertial measurement units (IMU)). Communi-

cation devices and protocols include cellular networks (LTE), satellite-based communication, and

Wireless Access in Vehicular Environments (WAVE). Computing includes the capabilities of on-

board computers for data processing and path planning and auto-pilots for lower-level control.

2.1.1 ADS-B

Automatic Dependent Surveillance-Broadcast (ADS-B) is a prominent part of the future of

aviation situational awareness. It is a surveillance system which an aircraft broadcasts its altitude,

airspeed, and GPS locations to ground stations and other aircraft via a dedicated radio frequency.

The major advantage for ADS-B (or a similar system) on a s-UAS is its ability to provide SAA

7

coverage to areas where traditional ground-based radar has difficulty (such as at low altitudes) [5].

Additionally, ADS-B has a faster update rate of 1 second versus radar’s 5-12 seconds. Recent

advances in ADS-B to allow it to be produced with small enough SWAP for a s-UAS. Table 2.1

shows a summary of prominent ADS-B solutions for the s-UAS market. Most ADS-B systems are

currently too expensive for the UAS community. uAvionix has a particularly strong offering with

their small, lightweight line of ping ADS-B transceivers. ADS-B is not a perfect system due its

vulnerability to electronic attack [6]. It should be paired with additional on-board sensors to detect

birds and other unexpected obstacles.

Table 2.1: ADSB products for s-UAS

Product Refernce
Input

Power (W)

Weight

(g)

ADS-B

in

ADS-B

out
Size (mm)

Internal

GPS

ping2020 uAvionix 0.5 20 yes yes 25 x 39 x 12 ping2020i

ping1090 uAvionix 0.5 20 yes yes 25 x 39 x 12 ping1090i

XPS-TR Sagetech 100 no yes 89 x 46 x 18 no

XPG-TR Sagetech 100 no yes 89 x 46 x 18 yes

MXS Sagetech 15 150 yes yes 84 x 64 x 19 available

2.1.2 LIDAR

LIDAR, a common obstacle detection sensor, is a laser rangefinder which scans a path radially

to detect objects. LIDAR is popular due to historical low cost with respect to other conventional

aviation technologies such as radar. It is available in planar scan 2D-scan and 3D-scan variations.

The 3D scan is more expensive, and typically heavier, but provides coverage a 3 dimensional space

rather than a 2 dimensional plane. A 3 dimensional scan is important for detecting small targets

as well as targets that do not approach from the UAV’s 2 dimensional plane of travel. A 2D lidar

will not be able to detect objects that approach from below or above the UAV unless the UAV

pitchs or rolls the LIDARs detection plane. A study presented a 3D-Scan LIDAR and algorithm

8

that can detect intruders at 88.4232 ft. per microsecond, which is sufficient to meet the FAA

Equivalent Level of Safety requirement [7]. LIDAR operates ideally in overcast conditions and

against reflective targets, but struggles in bright conditions and against non-reflective targets. A

list of LIDAR products available for s-UAS is shown in table 2.2.

Table 2.2: LIDAR products for s-UAS

Product Type Weight (g) Range (m) Power (W)

Hokuyo 3D-LIDAR YVT-X002 3D Scan 750 50 8.4

Hokuyo UST-10LX Planar Scan 130 30 3.6

Hokuyo UTM-30LX Planar Scan 210 30 8.4

Hokuyo UTM-30LX-EW Planar Scan 210 30 8.4

Hokuyo UTM-30LX-F Planar Scan 210 30 8.4

Hokuyo UXM-30LX-EW Planar Scan 800 30 7.2

Hokuyo UXM-30LXH-EWA Planar Scan 1200 80 7.2

Ibeo LUX Planar Scan 900 200 10

Ibeo LUX 8L Planar Scan 1000 200 10

Ibeo LUX HD Planar Scan 1000 120 10

Ibeo miniLUX Planar Scan 450 40 7

lightware SF40/C Planar Scan 229 100 4.5

Quanergy M8 3D Scan 800 150 15

Quanergy M8-1 3D Scan 900 200 18

Quanergy S3 3D Scan N/A 150 N/A

Quanergy S3-Qi 3D Scan N/A 150 N/A

RIEGL VQ-480-U Planar Scan 7500 950 55

RIEGL VUX-1UAV Planar Scan 3750 920 60

Scanse Sweep Planar Scan 120 40 3.25

Spectrolab SpectroScan 3D 3D Scan 2018 20 30

Velodyne HDL-32E 3D Scan 2000 100 12

Velodyne Puck Hi-res 3D Scan 830 100 8

Velodyne Puck LITE 3D Scan 590 100 8

Velodyne PUCK VLP-16 3D Scan 830 100 8

9

2.1.3 RADAR

Radar is a proven technology in aerospace and is a powerful Sense-And-Avoid tool. The main

challenge with radar for s-UAS is achieving low enough SWAP to be feasible while maintaining a

usable cost. There have been a few companies that have released small, lightweight radar systems

over the past two years. While there are not as many products on the market as LIDAR, those that

are have good statistics. Table 2.3 shows strong on-board radar for s-UAS.

Table 2.3: RADAR products for s-UAS

Product Range (m) Accuracy (m) Weight (g) Power (W) Update rate (Hz)

Aerotenna Sharp 360 40 0.22 243 2.5 80

Aerotenna Sharp Patch 120 0.22 43 1.25 90

Echodyne MESA SSR 750 3.25 1250 45 2

Echodyne MESA-DAA 750 3.25 817 35 1

Fortem DAA-R20 1500 0.0508 464 60 8

IMST DK-sR-1200e 307 0.6 280 4.5 10-200

Integrated Robotics IRIS Sensor 66 1.24 360 4.5 3.4

2.1.4 Cameras and TOF

Vision and thermal vision sensors have advantages of low cost and offer the ability to pilot the

drone via camera. Thermal vision has the advantage of being applicable in low-light conditions.

Systems often need to include multiple cameras to fulfill SAA FOV requirements (±110° azimuth,

±15° elevation) [8].

Time-of-Flight (TOF) cameras operate on a similar concept to LIDAR: it emits light and mea-

sures the time for the light to reflect [9]. Unlike LIDAR, it emits light as a single pulse rather than

a scan. They are relatively expensive and perform poorly in the same conditions as LIDAR, but

can come bundled with a camera, effectively being 2 sensors in one.

10

2.1.5 Ground-Based Monitoring

In addition to ADS-B and onboard sensors, there is a desire to monitor the airspace from the

ground using ground-based radar stations. Ground radar is challenging due to cover the low alti-

tudes s-UAS operation. Radar shadow caused by hills and buildings are more common. Ohio’s

Ground-Based Detect and Avoid system at Springfield-Beckley Airport fuses three FAA surveil-

lance to provide a 95% probability to track and avoid all aircraft at 500 ft. AGL and above. While

useful for keeping UAS out of manned airspace, this does not allow the system to track s-UAS

in their typical operating zone. Gryphon Sensors’ Skylight system includes a precision avoidance

radar that detects s-UAS at 10 km and general aviation at 27 km, a spectrum sensor with up to 5

km of range, and a camera with 3 km detection range [10]. It provides good coverage of the low

altitude operation area, but its limited range means more radar stations would be needed to cover

an area than typical air traffic control radar. There are similar low-altitude radar solutions, which

are summarized in table 2.4.

Table 2.4: Ground-Based Tracking Methods
Ground Unit Company Type s-UAS detection limit RADAR ADS-B

Skylight Gryphon Sensors non-cooperative detection 10 km yes yes

Harrier DSR-200 Detect non-cooperative detection 4.8 km yes yes

SharpEyeTM SxV Kevin Hughes non-cooperative detection 1 km yes

pingStation uAvionix ADS-B Station 241 km yes

FlightHorizon GCS Vigilant situational awareness, C2 solution yes yes

2.1.6 GPS and IMU

The ability of a s-UAS to maneuver is dependent on its ability to self-localize. For self-

localization, most s-UAS carry a GPS and an Inertial measurement unit (IMU). Low cost hobby

GPS units have a positional accuracy of ± 7.8 meters [11]. The GPS used for uAvionix’s ping

ADS-B has an integrated system with a 95% horizontal accuracy bound of 3 meters [12]. Further-

more, Real-Time-Kinematic (RTK) GPS has a positional accuracy of 1 centimeter, but it requires a

11

calibrated connection with a base station [13]. IMUs measure acceleration and rotation rate of the

s-UAS. Integrating these twice to find position can compounds the errors registered by these sen-

sors, so filtering is often employed. GPS and IMUs are either directly supported by most autopilot

boards, or are integrated with the onboard ADS-B system through sensor fusion.

2.1.7 Onboard Computing

To operate safely and autonomously, s-UAS use an autopilot and other onboard computing

resources. The ArduPilot Mega, Pixhawk, and PX4 are popular open-source autopilots used by

hobbyists and academia. Yuneec’s Typhoon H is capable of intelligently avoiding obstacles at low

altitude [14]. The Intel Falcon 8+ is an inspection, surveying, and mapping drone that is capable

of up to 1 millimeter accuracy in terms of data collection, indicating it has tightly controlled flight

performance [15]. DJI’s Guidance system boasts up to 0.05 m positioning accuracy and 0.04 m/s

positioning accuracy, which is powerful, but it is currently optimized to perform under 65 feet AGL

[16]. Qualcomm’s Snapdragon is a powerful all-in-one onboard computer and autopilot solution

[17]. Table 2.5 shows an overview of autopilot solutions.

12

Table 2.5: s-UAS autopilots
Company AutoPilot Source Control Waypoint Navigation ADS-B Compatibility

3DR APM 2.8 Open Source Yes Yes

PixHawk Mini Open Source Yes Yes

AeroQuad AeroQuad v2.2 Kit Open Source Optional No

DJI A2 Proprietary Yes Yes

Naza-M Lite Proprietary Optional Yes

Naza-M V2 Proprietary Yes Yes

Wookong Proprietary Yes Yes

Emlid Navio2 Open Source Yes Yes

Erle Robotics Erle Brain 3 Open Source Yes Yes

Erle-Brain PRO Open Source Yes Yes

Feiyu Tech FY-40A Unknown No No

FY-41AP Unknown Optional No

FY-41AP Lite Unknown Unknown No

FY-DOS Unknown Unknown No

Panda2 Unknown Yes No

Free Flight FF Auto Balance Controller Unknown No No

HobbyKing AfroFlight Naze32 Rev6 Acro Unknown Unknown No

KK 2.1 HC Open Source Unknown No

Hobbyking / Crius All In One PRO Open Source Optional No

MultiWii Lite Open Source Unknown No

MultiWii SE Open Source Optional No

Holybro Pixfalcon Open Source Yes Yes

Hoverfly HoverflyPRO Unknown Optional No

Intel Intel Aero Open Source Yes Yes

Intrinsyc Snapdragon Flight Autopilot Open Source Yes Yes

LibrePilot CopterControl/Atom Open Source Unknown No

Revolution Open Source Unknown No

MiKroKopter Flight-Ctrl ME 2.1 Complete Unknown Yes No

mRobotics Pixracer R14 Open Source Yes Yes

MultiWiiCopter iNav SiriusTM AIR3 F3 SPI Open Source Add-on No

ProfiCNC Pixhawk 2.1 Cube Open Source Yes Yes

QuadroUFO UAVX-ARM32 Full Sensors Open Source Unknown No

Range Video RVOSD 6 Unknown Yes No

SmartAP 3.0 Pro Unknown Yes No

4 Set Open Source Yes No

Viacopter / FlyDuino AutoQuad v6.6 Open Source Yes No
13

2.1.8 Communication

To operate successfully in the national air space, a s-UAS must maintain communication with

an ATC and/or an airspace service provider (ASP). Prominent Technologies include Wireless Ac-

cess in Vehicular Environments (WAVE), cellular networks (LTE), and satellite communication.

WAVE, also known as IEEE 802.11p, IEEE1609.xx, or dedicated short-range communication [18],

is mostly marketed for automotive applications, but could be used for s-UAS. Cellular vehicle-

to-vehicle communication was defined in March 2016 by 3GPP release 14 [19]. Qualcomm’s

Snapdragon X16 LTE Modem is strong, capable of 75 Mbps, and operates with LTE category 16

downlink and category 13 uplink [20]. Qualcomm has also completed a study where it showed re-

liable connection of a drone to an LTE network in G-class airspace [21]. Satellite communication

is more expensive and slower than LTE and WAVE, but it does not require infrastructure to be used

in remote locations [22]. This makes it a viable back-up in case where the first two are unavail-

able. Table 2.6 lists WAVE products available for s-UAS. Table 2.7 lists LTE products available

for s-UAS.

Table 2.6: s-UAS WAVE Solutions

Product

WaveCombo

LocoMate

SnapDragon

Table 2.7: s-UAS lte products

Product

Snapdragon

HUAWEI E3272

AES-ATT-M14A2A-IOT-ADD-G

Quectel Raspberry pi kit

2.2 Existing Solutions

Several novel architectures for UTM have been proposed that provide details about the com-

mand and control concept of operations. These include the Google and Amazon’s different Airspace

Service Provider concepts [23] [24] [25]. NASA also has many advances and simulations for

UTM operations [26]. Table 2.8 shows NASA’s Technical Capability Level Roadmap. [1] Rock-
14

well Collins also has made advances with their UAS services. [27] This thesis examines solutions

provided by industry, government, and academia to evaluate their respective effectiveness and fea-

sibility in terms of technologies available.

Table 2.8: NASA TCL Levels [1]

Capability 1 Capability 2

• Airspace volume use notification

• Over unpopulated land or water

• Minimal general aviation traffic in area

• Contingencies handles by UAS pilot

• Enable agriculture, firefighting, infras-

tructure monitoring

• Beyond visual line-of-sight

• Tracking and low density operations

• Sparsely populated areas

• Procedures and rules-of-the-road

• Longer range application

Capability 3 Capability 4

• Beyond visual line-of-sight

• Over moderately populated land

• Some interaction with manned aircraft

• Tracking, vehicle-to-vehicle, internet

connected

• Public safety, limited package delivery

• Beyond visual line-of-sight

• Urban environments, higher density

• Autonomous vehicle-to-vehicle, internet

connected

• Large-scale contingencies mitigation

• News gathering, deliveries, personal use

As the airspace becomes more congested, determining permission to access airspace becomes

15

more important. Amazon’s best-equipped, best-served model [24] is a straightforward implemen-

tation that only allows s-UAS to fly where they can maneuver and perform SAA functions effec-

tively. This will mean that new s-UAS will need to have their capabilities rated, a service which

most federal s-UAS test sites already perform. Furthermore, cooperative SAA requires a well-

defined communications protocol. Considering the weaknesses of ADS-B, a well-defined ADS-B

like system will be one of the next major steps in terms of in terms of inter s-UAS communica-

tion. Google’s public key infrastructure is one example that would be more secure than the current

unencrypted system. [23] With the large amount of data produced by and needed to handle high-

volume s-UAS flights, major computational services like Rockwell Collins’ WebUASTM [27] will

play a role in the future of s-UAS management. Airspace monitoring, flight abortion/re-routing,

and separation assurance will be key features. Airspace service providers interfacing with the FAA

UAS data exchange are the current direction that flight management is headed. They are currently

very useful because to the FAA, because it can outsource the automation of flight management

to several partners. The challenge will be having all partners acting cooperatively in the same

airspace. Not all partners use the same airspace model for obstacles, but they do share the FAA’s

flight data, which is how traffic is currently managed.

The UTM architecture proposed by NASA is shown in figure 2-1. [28] Here, the Air Navigation

Service Provider (ANSP) provide traditional air traffic management (ATM) services. UTM is

separate from and complementary to UTM; UTM operators and stakeholders conduct and provide

support for s-UAS operations independent of the ANSP’s scope of influence, but not in isolation

of it. Interactions between the two are coordinated by the Flight Information Management System

(FIMS), a central cloud-based component that also acts as a broker of information between UTM

stakeholders. UAS Service Suppliers (USS) that meet minimum requirements for functionality,

quality of service, and reliability. USS then support missions by UAS operators. Connections and

communications are internet-based and built on industry standards and protocols.

16

Figure 2-1: NASA Proposed UTM Architecture [28]1

With this centralized architecture, Vehicle to Vehicle (V2V) communication can play a key

role in SAA and conflict resolution. SAA applications often rely on knowledge of an s-UAS’s

position and velocity and knowledge of intruder position and velocity. [5] More detailed knowl-

edge of intended maneuvers of the intruder are also seen as helpful. [5] ADS-B or an ADS-B

like V2V communication system that also provides information on intended maneuvers (i.e. turns)

would therefore be the most needed form of V2V communication. In the absence of any V2V

communication, SAA must be provided by onboard sensors and/or coordination through possibly

multiple USS. For an example of two UAS with separate operators subscribing to separate USS,

the coordination would go through communication between the separate USS.

S-UAS situational awareness is set to grow by leaps and bounds soon, because of the expedient

decrease in the cost of low-SWAP sensors. After the initial survey of sensor technologies and

UTM solutions, we began investigating algorithms for traffic management. The accuracy of the

1Reproduced from [28] as per the copyright policy on: https://www.nasa.gov/multimedia/guidelines/
index.html

17

https://www.nasa.gov/multimedia/guidelines/index.html
https://www.nasa.gov/multimedia/guidelines/index.html

sensors means completely cooperative vehicles can operate near one another. Intruders still pose

a problem, despite some models being equipped with sensors sufficient to anticipate anything that

their maneuverability allows them to avoid. Initially, package delivery in an urban environment was

considered because large numbers of package delivery s-UAS pose a challenging problem in a sky

where traffic between s-UAS is codified to the extent of other vehicles i.e. conventional aircraft

or cars. The mission definition was easy to define for package delivery s-UAS. The algorithms

covered in this thesis will be effective for package-delivery s-UAS or any s-UAS with a similar

mission definition. The mission definition for a package delivery service leaving a depot and

travelling to N destinations is: take off from depot, travel to destination 1, perform delivery, travel

to the next destination (for n destinations), then return to the depot.

2.3 UTM Architecture

Amazon’s strategy follows the best equipped, best served model. [24] This means a UAV’s

permission to access an airspace is decided based on how well equipped the UAV is for that

airspace. To operate BVLOS and/or in the most challenging airspace, a UAV needs five equipage

elements: geospatial data for safe separation from known hazards, online flight planning and man-

agement, a reliable internet connection, collaborative vehicle-to-vehicle Sense-And-Avoid, and

non-collaborative sensor-based Sense-And-Avoid. To implement this model, Amazon wants to

partition the airspace under 500ft. AGL into areas of different required levels of safety. [25] These

partitions are not one-size fits all: a remote area with less air traffic has a lower required level of

safety than an urban area. Under 200 feet AGL is the low speed, localized traffic area. It is used for

terminal non-transit operations, such as surveying and inspection. Vehicles with low equipage are

restricted to areas in this airspace where they meet the required level of safety. Between 200 and

400 feet AGL class G airspace is the High-Speed transit zone. It is meant for transit operations and

requires a higher required level of safety. They are allowed access in emergencies only. In addition

to an area’s required level of safety being dependent on how urban it is, the aviation authorities are

18

also expected to designate predefined low-risk locations, limited areas with a lower required level

of safety. Because load on Air Navigation Service Providers (ANSP) is proportional to number

of UAVs in the air, amazon wants ANSPs to delegate some of their responsibilities to automation,

although they will remain the central offline authority. Amazon envisions several distributed oper-

ators controlling fleets that must coordinate with each other via established protocols and services

and vehicle-to-vehicle communication.

Google’s strategy focuses licensing and information exchange. [23] They discuss operations

under 500 feet AGL class G airspace, and hope for future allowances for UAS in lower altitude

airport airspace. They expect UAS to give way to manned aircraft via ADS-B, and envision an

ADS-B like system for UAS-UAS collision avoidance. The Airspace service providers will license

aircraft for operation and provide separation and planning to the UAS via cellular networks. They

want Project Wing to have its own service provider, and expect other operations will have their own

service providers. The ASP is the interface between the UAS operators and air traffic control. The

ASP maintains a database of Temporary flight restrictions, no-fly zones, weather, obstacles and

terrain, traffic, and flight plans. It will also take data from airspace authorities and data sources,

including NOAA, FAA, ATCs, and weather data sources. Google emphasizes all pilots, aircraft,

and operators having some form of traceable ID (pilot license, aircraft registration, or operator

registration). A UAS ID system would be scalable, allows for authentication, and gives traceability.

It wants to do this using the proven public key infrastructure (PKI). The PKI is a security process

where a participant creates a public/private key pair and shares one with the registration authority.

The registration authority verifies the ID of the participant and provides this verification to the

certificate authority. The certificate authority uses this information to provide the participant with

a signed certificate, which is a secure encapsulation of the participant’s identification data. This

certificate will then be used whenever a participant submits a flight plan request to the ASP, who

verifies the certificate with a verification authority. The ASP signs off on the flight plan (assuming

no conflicts exist). The Airspace participant can now use this signed plan for operations. For the

future, Google wants ASPs to be allowed to operate as manned aviation does today in uncontrolled

19

G-Class airspace. ASPs need to be open and collaborative with each other and air traffic control

authorities. Google also wants the ADS-B ruling for 2020 amended to also apply to helicopter

flying below 500 feet AGL over populated areas, as these are the manned aircraft s-UAS will

encounter most often. The public key infrastructure is one step that is more secure than the current

unsecured ADS-B communications.

Considering the expansion of s-UAS in the near future, Rockwell Collins speaks about its

WebUASTM services, which are a set of secure cloud-based services for UAS operators to interface

together and with air traffic control. [27] It emphasizes computational engines which are separate

from the services infrastructure, allowing an operator to select the engine elements computa-

tional engines and services they need to operate well when setting up a server. It supports FAA

System Wide Information Management, and is flexible to further standardization. WebUASTM

supports third-party engines because its computational engines are separate from its infrastructure,

and dedicates servers to fulfill specific needs. WebUASTM uses AviNet (a secure global network

for airlines and airports) to interface to FAA systems, and uses the same FAA approved firewalling

it uses with all aviation customers. WebUASTM iis based on national centralized servers that are

peers to and under the same constraints as Aircraft Situation Display servers. It will support future

expansion by adding regional servers. WebUASTM has dedicated servers for ATC tower interfaces,

other industry partners, and large operators of UTM. WebUASTM supports a number of services for

BVLOS operations. WebUASTM is able to generate many service packages by combining a wide

selection of specialized servers and computational engines. It includes a flight plan authorization

engine that is able to make recommendations instead of simply accepting or rejecting the plan. A

list of engine elements available for service customization include: a measure of how well airspace

is monitored, the ability to abort or reroute flights in emergencies, real-time separation assurance,

specific industry requirements, collaborative decision making for all types of service providers,

graphic depiction of recommended routes, and a measure of the proactive prediction and warning

capabilities of the engine.

NASA, Google, and Amazon all refer to an Airspace Service Provider (ASP) in their models.

20

An ASP is a company that provides separation and planning services and interface with FAA

data. The beginnings of ASP’s are seen in the FAA UAS data exchange, an umbrella agency

for partnerships between the FAA and industry to facilitate the sharing of airspace data. [29]

Its first partnership is the Low Altitude Authorization and Notification Capability (LAANC), an

application through which the FAA may authorize operations under the small UAS rule. It allows

operators to interact with maps and provide automatic notification and requests to the FAA. Users

can apply through a part 107 process, or through an approved UAS service provider. Approved

UAS service providers include AirMap, Project Wing, and Skyward.

AirMap allows users to plan flights with a phone or web app. [30] Paths may be constructed

from points, lines, and areas. The app also provides a list of keep-out zones to make low altitude

flight planning easy. AirMap does not include topographic information or building information, but

does allow users to set the height of their flights. Project Wing claims to safely manage complex

flight paths across multiple drones, and was tested with drone delivery to residential yards. The

Project Wing UTM platform ensures a route that is clear from buildings, terrain, obstacles and

participating aircraft. [31] Skyward has an interactive airspace map that allows users to view flight

restrictions and mark hazards. [32] They also have a map of elevations and obstacles driven by

LATAS flight planning software. For all of these UAS service providers, communication will be

highly important as the skies become more congested. For now, communication is done through

the LAANC posting flight notifications.

2.4 Literature Survey

There are several advances that have been made in the areas of SAA and UTM. Collision

avoidance has been examined based on distributed dynamic optimization and causal analysis [33].

It generates trajectories that are globally valid and not limited to the 2-UAS scenario. It uses

solution clustering to reduce the problem size and fires a sense-and-avoid function whenever the

trajectories become too close. It models the trajectory of each UAS as discrete waypoints with a

21

discrete kinematic model and minimizes an objective function to resolve conflicts. It additionally

uses causal analysis to limit the number of conflict resolutions necessary

NASA has made several advances in the development of UTM algorithms. ICAROUS [34] is

a software architecture meant to build safety-central, autonomous s-UAS applications. It provides

stand-off distances from obstacles and intruders to ensure safe s-UAS operations. There is also a

path-planning algorithm to enable well-clear low altitude BVLOS operations [35]. In this algo-

rithm, a heuristic is used to limit decision tree growth, the decision space is searched with an RRT

(Rapidly exploring random tree) [36], and DAIDALUS [37] is used to check for well-clear, and

PolyCARP [38] is used to provide obstacle avoidance. These algorithms work in real-time for a

generic UAS architecture.

Collision detection is seen with several algorithms. In a survey [38] on unmanned vehicle

collision algorithms, several categories are discussed. In geometric approaches the turning-away

angle is optimized (path optimality vs safety). Optimized trajectory approaches use path-planning

algorithms to determine an optimal path while still maintaining safety. Bearing angle-based ap-

proaches are simpler, but have synergy with a pure visual system. Guidance and control algorithms

for s-UAS use GPS=based waypoint navigation. [39] Adaptive autopilots have more robust perfor-

mance than pure PID-based controllers. LIDAR is a resource for localization and mapping, which

can be used for obstacle detection and avoidance. [40] It has been shown to work in the 2D case

with 3D data, even in GPS-denied environments. Stereo vision is also an autonomous collision

avoidance resource. [41] It has been shown to effectively give resolution solutions in low altitude

scenarios.

In Feasibility of Varying Geo-Fence around an Unmanned Aircraft Operation based on Vehicle

Performance and Wind [42], DSouza et al describe a method for determining appropriate geo-fence

size for a UAV based on its performance parameters and wind data. Their geofences were smaller

than the 30m geofences which have been used as a standard in prototypes, but they did not account

for position uncertainty from GPS or other position sensors. Despite this, their models still showed

satisfactory performance in real-world wind data: they achieved 15m horizontal and 5m vertical

22

geofence with basic vehicle parameters and algebraic-geometric equations of motion, and less than

5m of geofence with a gain-scheduled PID controller. Their wind data came from three sources:

the NOAA High Resolution Rapid Refresh (HRRR) model, which has the best spatio-temporal

resolution of 15 minutes and 3 kilometers. HRRR provides horizontal components recorded at 10

and 80 m AGL. They derived a maximum vertical component with data from the California State

University-Mobile Atmospheric Profiling System. For the PID design, they used real wind data and

an OpenFOAM flow simulation for a simplified building. For their algebraic-geometric geo-fence,

their vehicle parameters were maximum vehicle airspeed and time from detection of disturbance

to vehicle recovery. Control time was not provided by any authority, and was estimated to be 1

second. Worst-case wind data from HRRR was used, and the geo-fence was set at the point of

farthest divergence from the path, which was calculated using algebraic-geometric equations of

vehicle motion over the time till vehicle recovery. Their result indicated a larger geofence is re-

quired for a UAV at higher speed and/or in stronger wind. For their PID controlled geo-fence, they

simulated the vehicles control dynamics, and set the size of the geofence as the maximum devi-

ation from the desired path. They simulated their vehicle moving through a path given flow data

from OpenFOAM. Their controller was a gain-scheduled PID controller with simplified equations

of motion as the plant. The gain scheduling was done with a gradient-free artificial bee colony

genetic optimizer. They modelled an AscTec Pelican quadrotor, and their model could maintain

less than 5m of error in the simulated flow.

NASAs UTM simulation capabilities and lab environment are extensive. [43] The airspace

operations lab at NASA AMES is equipped to enable test capabilities at each TCL. Their outward-

facing TCL2 release is available to properly credentialed users. The users can access it through a

variety of Clients. Their python client is the primary client for live flight testing and demonstra-

tion. It interfaces with the mission planner ground control station to create operational plans and

volumes based on waypoint definitions. It also establishes a web connection to the UTM research

platform, allowing the operator to submit plans and receive feedback. The multi-aircraft control

system (MACS) provides users with the ability to develop custom, map-aided flight profiles and

23

operational volumes, and is capable of simulating flight of UASs according to developed profiles

while sending position reports. It allows any number of flights to be operated in autonomous and

manual modes, and interfaces with google earth to display the flights. Furthermore, the research

lab has simulation and support activities. Their flight test support is based on the mission planner

software, a software for making UAV flight profiles. The initial flight profile is done with mission

planner, and the software simulates the flight to see if it is feasible. It also outputs a waypoints file,

which is used to calculate operational volumes, altitudes, and the duration for each. The simulation

services include concept developing and testing, which allows for simulated flights in addition to

the real-world flight tests, which are limited by safety and logistics. MACS is the primary soft-

ware used for these services. The simulation platform also allows for live, virtual, constructive

activities, which means integrating simulated flights and services with live flights and the types

of environments allows researchers to evaluate features that would be impractical to test in a live

setting.

NASAs AMES research center also includes a Human/Systems component. [1] It focusses on

API-based coordination of UAS operations and services into a research software environment. The

research software is used to test and evaluate increasingly complex operations. Their lab includes

multiple test areas and a distributed network of client stations, servers and display media. Although

the entire facility can be leveraged for UTM, there are generally two main test areas used for sim-

ulation and demonstration. The test set-up can simulate multiple environments for multiple clients

simultaneously, and there is a test area for concept and capability demonstrations. There are large

displays to show currently running simulations, and the infrastructure is designed to reflect com-

ponents of an outward-facing system. It also tests the scalability of future environments. Test bed

and rapid prototyping for human/systems interfaces and procedures are required for field demon-

strations and LVC testing with partners. The system includes many human-friendly interfaces to

support the research teams needs.

In Rapid Trajectory Prediction for a Fixed-Wing UAS in a Uniform Wind Field with Specified

Arrival Times, [44] Ishihara et al discuss a method to determine flight plan feasibility given an

24

operator submitted flight plan, wind forecast, and vehicle parameters. This feature would be part

of a high-level UTM system where the client submits a flight plan, the clients identity is validated

by authorities, static airspace constraints are checked, dynamic capabilities including vehicle ca-

pabilities and weather are checked. If these are satisfactory, the plan is accepted. They formulated

the problem with a 4D trajectory, a forecast from HRRR for a given position and time. All wind

fields are modeled as uniform at the measured point. Each segment between two waypoints with

a kinematic model and a cost function based on the integral of bank controls and the distance be-

tween current state and segment goal. The model is non-dimensionalized with respect to the length

of the current segment and the velocity magnitude for the current segment. The model finds the

inputs to minimize the cost function given the desired waypoints and wind data. In the higher-level

system, they assume verified vehicle identification provides the vehicles maximum, minimum, and

cruise velocities, as well as maximum turn rate. The dynamic simulation generates an error metric

for each waypoint given distance between simulated aircraft and waypoint at client supplied time

of arrival. The high-level model would reject a plan if any waypoint exceeds an acceptable error

threshold. In the results of their simulation, they showed that their model could find an optimal

velocity if the cruise velocity was infeasible. They also simulated 24 trials of a trajectory for 4

days of weather data, where the system decided to accept or reject a trajectory based on weather

data. On the windiest day (average wind speed 5.88 m/s), the system rejected 14 of the 24 flight

plans, and on the calmest day (average wind speed 3.46 m/s) it rejected 6.

In Multi-Rotor Aircraft Collision Avoidance using Partially Observable Markov Decision Pro-

cesses [45], Mueller and Kochenderfer present an extension to the FAAs Airborne Collision Avoid-

ance System X (ACAS X) for small multirotor UAVs. ACAS X alerting logic is based on a numeric

lookup table optimized with respect to a probabilistic model of the airspace and a set of safety and

operational considerations. Their algorithm is formulated in two dimensions, and uses horizontal

plane acceleration for resolution maneuvers. They optimized it with respect to a partially observ-

able Markov decision process with dynamic programming, and found optimal parameters for the

process with a gaussian process-based surrogate model. They aimed to maintain separation mini-

25

mums and closely track mission trajectory. They formulated the problem as a partially observable

Markov decision process and used the bellman update and dynamic programming to find the opti-

mal policy. Their dynamics included relative range rates between intruder and ownship, velocities

of both, and displacement of ownship from desired trajectory. All variables are normalized by

ownships forward speed. Their reward function included the inverse square of the range between

intruder and ownship, squared distance from desired trajectory and a maximum cost to prevent cost

from becoming infinite. The model used states where the dynamics variables were discretized to

selected values. The stopping criteria was a combination of maximum error between iterations and

the maximum number of optimal action changes between iterations. Since the real-world process is

not discrete, and the states are not precisely known, the potential of each state was calculated based

on the sigma point sampling technique, and the actual states are interpolated from the discretized

states. The Markov decision process was optimized using an objective function that incorperated

the minimum separation that was achieved in the top 95% of encounters and the average deviation

distance over time for all simulated encounters. A Gaussian process was used to determine the

set of reward parameters in the Markov decision process that resulted in the minimum objective

function. The optimization was run several times to determine the tradeoff between separation and

deviation parameters. All designs were sorted to find designs for which no parameter selection

was better, to allow users to select the most optimal design for their situation. They further sim-

ulated the algorithm for multiple intruders. The only difference for this scenario was the Markov

decision process selected the belief state with the highest minimum weight over all intruders. They

implemented uncertainty for ownship and intruder acceleration for optimization and simulation.

They also implemented position and velocity uncertainties in simulation. They simulated intruder

trajectories with constant nominal speed and with realistic UAV flight data. For a constant-velocity

intruder, their results showed optimal designs where desired minimum separation and maximum

trajectory deviation formed a clear trade-off. In separation metrics, maximum deviation was found

to decrease weakly as uncertainty decreases, and their dynamic encounters had less difference in

metrics with uncertainty because the uncertainty came from the model itself. The minimum sepa-

26

ration distance increased with uncertainty of the intruder because there is a greater chance of the

intruder moving away from a collision trajectory.

In [46], Xue and Rios present the need for a faster-than-real-time simulation platform for

sUASs and the impacts and importance of key factors for such a platform. The need for fast-time

simulation arises because of the low operation altitude, small size, and large scale of anticipated

operations. There are several existing traffic simulation systems in three main categories. The first

covers multiple aircraft operations and rules such as CTAS, FACET, ACES, and platforms built by

independent researchers. The second category includes simulations dealing with conflict detection

and resolution, which tend to focus on encounters between only 2 aircraft. The third category cov-

ers simulations developed for simulating a vehicles model and control. Because sUAS navigation

errors are more sensitive to wind, vehicle speed, and the vehicle control system because of their

low altitude, size, and power, dynamic and controller models are important for a sUAS fast-time

simulation platform. The navigation system error plays a significant role, but so does the con-

trollers response to disturbances. In the preliminary study, Xue and Rios applied a PD controller

to a trajectory model that was implemented with Coriolis terms, the small-angle approximation,

and Newton-Euler equations. They examined the controllers response to different cross-winds. Its

performance varies greatly, taking over 50 meters to recover in an 8.7 meter/second crosswind.

This response is also worse for greater desired ground speeds. Monte Carlo simulation is impor-

tant because a statistical study of system parameters is necessary to understand and evaluate the

safety of future UTM systems. Parameters and uncertainties may involve many sources, including

onboard sensors, navigation and communication devices, right of way rules, collision avoidance

rules, weather conditions, and vehicle systems. Monte Carlo simulation is an appropriate tool for

this because it is fairly independent of problem dimension, has a rate of convergence of O(1/N),

and has a percent error determined by number of simulations run for a given confidence interval. In

their Preliminary experiments, Xue and Rios had 6 sUASs with flight plans crossing a region with

an added cross wind. They performed 1000 Monte Carlo simulations with varying wind speeds,

and simulated collision avoidance conducted with vehicle-to-vehicle communication. The simple

27

collision avoidance rule was avoid vehicles at less than 20 meters, and give way to aircraft on the

right. The simulation showed greater chance of loss of separation and greater flight time at higher

average wind speed. Three different collision avoidance maneuvers were tested-turn right, turn left,

and hover. Right had no collisions, hover had few and lower average flight time than right, and

left performed very poorly, causing collisions in 84% of simulations. A for the type of simulation

proposed by Xue and Rios, an effective platform needs models that include more than 100 vehicles

per scenario, greater than medium-fidelity vehicle models, vehicle controller models, wind effects,

a flight duration that is not limited, small UAS models, and collision avoidance. These simulations

also need to be able to be capable of Monte-Carlo simulations. The wind effects need to include

along-track, cross-track, and vertical wind effects.

In [5], the authors presented a coordinated path-planning with re-routing method for s-UAS in

a 2D Voronoi tessellation of airspace. Paths for vehicles are planned using RRT in the local (within

cell) level, and an A* algorithm [47] on the high level.

Mixed-Integer linear programming (MILP) has been used in a number of cases to solve s-UAS

sense and avoid problems. MILP has been used with s-UAS in several flight formations with

dynamic intruder responses based on ADS-B data. The particular method used in this paper is

verified to be faster compared to a standard MILP method [48]. Dynamic optimal s-UAS trajectory

planning has been shown in the dynamic sense for the NAS. It shows dynamic waypoint navigation

and obstacle avoidance [49]. It has also been used for distributed trajectory optimization using a

receding horizon strategy [50]. Another method for handling dynamically challenging s-UAS

management is using Grey Wolf Optimization with a Distance Based Value Function [51].

28

Chapter 3

Modelling Urban Airspace

3.1 Airspace Models

To design and test algorithms for traffic management in a three-dimensional urban environ-

ment, an accurate model of an urban environment was first needed. For the purposes of algorithm

design, there are many ways to model an urban environment, each with their own advantages and

disadvantages. This section describes three different options: Sky Tubes, Voronoii Clusters, and a

Grid-Based solution.

3.1.1 Sky Tubes

Sky Tubes are a set of 3-dimensional features that are meant to serve as roads for aircraft.

Described by [52], a system of sky tubes is composed of three main elements: horizontal tubes,

intersections, and vertical elements. While travelling in a horizontal tube or vertical element, an

aircraft maintains a following distance between itself and the next vehicle, like a car on a road. The

major difference is vertical elements need to be designed to match the needs of aircraft using them;

a simple vertical space would be suitable for a multicopter, while a fixed-wing aircraft requires an

inclined space. Intersections are areas where different traffic flows intersect. This system greatly

simplifies algorithm design because an elements are not placed through static obstacle, and traffic

can be modelled similarly to automobile traffic or fluid-based traffic models. Traffic management

29

becomes a matter of selecting an appropriate intersection management algorithm, route planning

algorithm, and a following distance algorithm. However, constructing a system of Sky Tubes

requires substantially more effort, as good locations need to be chosen for intersections and the

capabilities of vehicles need to be determined to select appropriate vertical and horizontal elements

for the terrain, structures, and no-fly zones. Other models simply exclude volumes based on no-fly

zones, terrain, and structures.

3.1.2 Voronoi clusters

In the study [5], Voronoi clusters were used to separate airspace into cells that would be oc-

cupied by no more than one aircraft at a time. They used this to demonstrate a preliminary path

planning and re-routing system. Random Voronoi clusters chosen randomly may be more like a

final airspace model, in that permanent obstacles mean navigation nodes may not need to be dis-

tributed uniformly, but this study also did not include a height-map. Their work seemed more

geared towards open airspace, although some obstacles were included. The grid-based solution

can be considered a highly regular version of the Voronoi solution, with no randomness element.

3.1.3 Grid-Based

The area of interest, in the grid based solution, is divided into rectangular prisms of a specified

east-west and north-south resolution, with a height chosen to accommodate the size and maneuver-

ability of the aircraft. At each square in the horizontal grid, there are three elements: the elevation,

the height of the tallest obstacle, and the airspace ceiling. The elevation determines where the ac-

tual ground is located (not including structures like trees or buildings), and influences the airspace

ceiling, which is typically in reference to local elevation. The airspace ceiling is the height above

which s-UAS are not allowed to fly for operations in the area. A cell is valid if it is above the

minimum clearance to elevation and the tallest obstacle in its footprint, below the minimum clear-

ance from the airspace ceiling, and not within any no-fly zone. It was selected because elevation

and tallest obstacle height are easily determined from raw elevation and LIDAR data, airspace

30

ceiling is determined by adding the maximum allowable height above ground level to the eleva-

tion, and no additional processing is needed to determine complex features. The trade-off is this

results in a graph with far more nodes than Sky Tubes would, meaning more of the burden is on

the path-planning algorithms.

3.2 Building a grid-based Airspace Model

To construct a grid-based airspace model, area of interest is selected, then corresponding data

for the elevation and structures within the area. Finally, the data was converted into a grid-based

model from point-cloud representation.

3.2.1 Selecting an Area of Interest and Sizing the Grid

To model an urban area, the Greater Cincinnati Area was selected. The area has several fea-

tures that make it attractive as a model for urban air mobility. It has hills with over 200ft. of

elevation change, meaning the model needed to account for the change in elevation when deter-

mining airspace ceiling. Additionally, it has buildings that are taller than the airspace ceiling, with

the tallest being Great American Tower at 660 ft. This means that some buildings cannot be flown

over and must be flown around.

The horizontal size of the grid was chosen to be 8 meters, because the reliability of most

off-the-shelf GPS is 7.8m [11]. This could be reduced if higher accuracy GPS become standard.

Furthermore, most s-UAS are capable of holding position control under 1m [16], so it may be ap-

propriate to decrease the grid size if strong positional awareness is shown and the airspace becomes

more crowded. For vertical spacing, 8m was chosen so that distance calculations were the same

independent of direction. A lower distance could be chosen because vertical keep-away distance

is typically far less than horizontal keep-away distance [3].

31

3.2.2 Selecting Model Data

Most models of heights and elevation are only concerned with ground elevation, not building

height. LIDAR data sets, however, do include all structures hit by the LIDAR scan. The USGS had

a LIDAR Point Cloud model from the USGS National Map 3DEP Downloadable data collection.

This covered the entire area of interest and provided building height data in addition to surface

height data. Because it included data relevant to the 3D space of interest, it was used to construct

the grid-based model. Since LIDAR is a point-cloud model, rather than a raster, this data needed

to be interpreted to fit into the grid based model. Cells were selected in 8m intervals over the entire

rectangular area of interest. Elevation data was simpler: points were generated at 8m intervals

from the southwest corner of the data, and transformed into latitude and longitude coordinates.

Google’s elevation service was then queried for the points desired.

3.2.3 Interpreting Model Data

A quick examination of the LIDAR data in MATLAB showed a few anamalous point returns

that were clearly sensor errors. These were eliminated by removing outliers that were not within

15 median absolute deviations of the median for that tile. Where tiles overlapped, the average

maximum height between the two was used to smooth portions of structures that crossed boreders

betweeen LIDAR tiles. For a given cell, the tallest point return within the tile was selected as the

height of the structure in that cell. A portion of the resulting model is shown in figure 3-1. A

closeup of the model is shown in figure 3-2. A satellite image of the area is shown in figure 3-3,

for comparison.

32

Figure 3-1: Model after interpreting LIDAR data

Figure 3-2: Close view of model

33

Figure 3-3: Satellite view of area modelled

34

Chapter 4

Top-Level Algorithms

4.1 A*

The first and most revisited top-level algorithm was the A* algorithm. It was chosen for the

simplicity of its implementation and ease for interfacing grid-based airspace model. A* is a graph-

based search algorithm that keeps track of the cost of its current path and uses a heuristic to select

from potential candidates when examining nodes to explore. [47] Because it selects a lower cost

path whenever one becomes available, optimallity the solution within the A* graph space is guaran-

teed. It has been used for top-level graph-based solutions to UTM problems. [5] The graph-based

nature of A* made it easy to implement with the grid-based nature of the airspace model, as a grid

is a specific type of graph with obvious connectivity.

4.1.1 2D A*

For the Simple 2D A*, nodes are snapped to a grid with 8m spacing and added to the closed set

if they are too close to an obstacle. ”Too close” here means that an s-UAS would be less than the

MILP safety factor as determined by the s-UAS’s max speed and position uncertainty. To limit the

rate at which the tree grows, a visibility criteria of 64m was used. A node was considered visible if

it was within a 64m radius of the parent node, and a straight line between the nodes did not come

too close to any obstacle. In the simple case, this connectivity was calculated each time A* was

35

called.

In addition to the simple A*, the algorithm was kept the same, but a preprocessed map was

used where all the connectivity of all obstacles was computed before the first call. The criteria for

connectivity between nodes was kept the same between A* calls.

For both cases, the same A* algorithm was used. The initial and final coordinates were snapped

to the closest node that was not within an obstacle. Pseudocode for this algorithm is shown in

pseudocode 1.

36

Algorithm 1: A* pseudocode

startNode.coordingates←− start coordinates
startNode.parent ←− no parent
startNode.gS core←− 0
startNode. f S core←− 0
for each other node in nodes do

node.parent ←− no parent
node.gS core←− 0
node. f S core←− 0

OpenS et ←− new PriorityQueue
ClosedS et ←− new set
OpenS et.add(startNode)
ClosedS et.add(invalidnodes)
while not empty(OpenSet) do

bestNode←− OpenS et.pop()
ClosedS et.add(bestNode)
if bestNode.coordinates == goal coordinates then

Path←− new set
currentNode←− bestNode
while currentNode has a parent do

Path.prepend(currentNode)
currentNode←− currentNode.parent

return path

for each neighbor of bestNode do
if neighbor not in ClosedSet then

tentativeGS core←− bestNode.gS core + distance(bestNode, neighbor)
if tentativeGS core < neighbor.gS core then

neighbor.gS core←− tentativeGS core
neighbor. f S core←− neighbor.gS core + distance(neighbor, goal)
neighbor.parent ←− bestNode
OpenS et.update(neighbor)

return path unavailable message

4.1.2 3D A*

The 3D A* algorithms worked similarly to the 2D algorithms, except expanded to 3 dimen-

sions. Since quadcopters were chosen, paths were planned to be horizontal at any angle or vertical

one 8m node at a time. However, the 3D MILP planner was not strong enough to work with a 3D

A* algorithm.
37

4.2 Rapidly-exploring Random Tree

A rapidly-exploring random tree algorithms was considered as an alternative to the 2D A*, and

to solve dimensionality problems in the three dimensional case. The main reason for this is RRT is

supposed to suffer less from the ”curse of dimensionality” associated with other search algorithms.

[35] RRT has also been shown to give consistently sub-optimal solutions, although they may be

corrected with additional improvements. [53]. In this implementation, the RRT was a poor fit for

the grid-based system, and was not able to take advantage of the same preprocessing as A*. RRT

methods typically favor continuous maps, as they generate points on their own, while A* must use

a pre-generated set of points or method for generating points. RRT was not selected as a top level

algorithm for MILP because initial testing of the implementation had a tree that grew very slowly.

The A* algorithm simply matched the data model better.

4.3 Transition between levels

To transition between the A* or RRT algorithm and the MILP algorithms, several steps were

used. MILP calculates trajectories, which have a time component, rather than paths, which are just

a series of points. Therefore in order for the waypoints presented by A* to be use-able by MILP,

the points were waypoints were selected such that all original waypoints and dwell times from the

flight request were included, and waypoints were included such that the expected time between any

two sequential waypoints was less than but close to 40 times the length of a MILP time step for a

vehicle travelling at cruise velocity. MILP algorithm did not have to perform routing duties around

large obstacles, but and also did not have to find a path through more waypoints than necessary.

This allows the MILP algorithm to be flexible in its solutions while also running at a good speed.

38

Chapter 5

Lower Level type 1: Mixed Integer Linear

Programming Algorithms

5.1 Main Section 1

Mixed Integer Linear Programming, or MILP, is an optimization method that solves problems

based on a set of linear inequalities. For the initial algorithm trials, the drone was assumed to

be a DJI phantom drone, the obstacle data was taken from a 2007 LIDAR survey of the state of

Ohio. Downtown Cincinnati was chosen because it allowed us to prove out avoiding tall buildings

relative to ground level while also being able to deal with hills. The initial algorithms were 2D

MILP algorithms based on the work of Mohammadreza Radmanesh. [48] [49] An Initial trial

showed 10 s-UAS entering an area of airspace at once, which was centered on a tall building. The

s-UAS were given priority in first-come, first-served order, and their paths were planned using

MILP. Subsequent MILP calls listed the predicted positions of all paths planned using MILP so

far. If MILP could not find a solution, the request for airspace was instead delayed until MILP

could find a solution.

39

5.1.1 Existing Work and Inequality Framework

In adapting Radmanesh’s work [54] [48] [54] [49] to the urban problem, obstacles are rep-

resented by 8m x 8n meter rectangles, where m and n are nonzero integers. Each obstacle has

minimum and maximum x and y coordinates. Each vehicle has a minimum and maximum speed,

a mass, and a maximum acceleration. Each vehicle submits a flight plan at a specified time with a

start point, end point, and K destinations, where K is a nonnegative integer.

MILP functions by solving a set of mixed-integer linear programming equations with the

Gurobi package. When called, it is given a time during which the s-UAS is expected to traverse a

waypoint or set of waypoints from its initial state and a finite horizon it is expected to stay within

during this timeframe, in addition to vehicle, intruder trajectory, and obstacle information.

The first constraint is the initial state, i.e., the position and velocity:

x1 = xinitial y1 = yinitial vx1 = vx,initial vy1 = vy,initial (5.1)

Where xinitial, yinitial, vx,initial, vy,initial are all provided by the flight plan or a previous iteration of

MILP. x1, y1, vx1, vy1 are all of form xn, yn, vxn, vyn, where n is the nth timestep, here equal to 1. The

finite horizon constraint is given by:

xinitial − Lhorizon ≤xn ≤ xinitial + Lhorizon ∀ n ∈ Nsteps (5.2)

yinitial − Lhorizon ≤yn ≤ yinitial + Lhorizon ∀ n ∈ Nsteps (5.3)

Nsteps =

{
n ∈ Z+ |n ≤ ceil

(
T
Td

)}
(5.4)

Where Lhorizon is the length of the finite horizon and T is the length of time the segment is to be

completed in. The constraints for the dynamic model are given by:

S n+1 = AdS n + BdFn ∀

{
n ∈ Nsteps|n < ceil

(
T
Td

)}
(5.5)

40

S n =



xn

yn

vxn

vyn


Ad =



1 0 Td 0

0 1 0 Td

0 0 1 0

0 0 0 1


(5.6)

Bd =



T 2
d

m 0

0 T 2
d

m

Td
m 0

0 Td
m


Fn =

 fxn

fyn

 (5.7)

where m is the mass of the vehicle, fxn and fyn are the force of the vehicle in the x and y directions,

respectively. Acceleration and velocity constraints are given by:

fxnsin
(
2πh
H

)
+ fyncos

(
2πh
H

)
≤ fmax (5.8)

∀n ∈ Nsteps, h ∈ Z+, h ≤ H (5.9)

vxnsin
(
2πh
H

)
+ vyncos

(
2πh
H

)
− vmin ≤(vmax − vmin)(1 − bspeed,h,n) (5.10)

∀n ∈ Nsteps, h ∈ Z+, h ≤ H (5.11)

vxnsin
(
2πh
H

)
+ vyncos

(
2πh
H

)
− vmin ≥η + (−vmin − vmax − η)bspeed,h,n (5.12)

∀n ∈ Nsteps, h ∈ Z+, h ≤ H (5.13)
H∑

h=1

bspeed,h,n ≤ H − 1 (5.14)

∀n ∈ Nsteps (5.15)

Where fmax is the maximum force the vehicle can generate, H is an integer chosen to discretize

the circle, vmin and vmax are the minimum and maximum velocity of the vehicle, respectively,

41

bspeed,h,n is the binary variable for velocity at time step n in direction h, and η is a very small number.

If the minimum horizontal velocity is zero, as in multicopter vehicles, the binary variables bspeed,h,n

can be excluded, and the constraint on velocity becomes:

vxnsin
(
2πh
H

)
+ vyncos

(
2πh
H

)
≤ vmax ∀n ∈ Nsteps, h ∈ Z+, h ≤ H (5.16)

The constraints for arriving at the waypoints were modified to allow the vehicles to dwell at

each waypoint for a specified amount of time. The constraints for this are given by:

xn − xw ≤rmin + Mbig(1 − bw,n) ∀n ∈ Nsteps, w ∈ Z+, w ≤ W (5.17)

yn − yw ≤rmin + Mbig(1 − bw,n) ∀n ∈ Nsteps, w ∈ Z+, w ≤ W (5.18)

xn − xw ≤ − rmin − Mbig(1 − bw,n) ∀n ∈ Nsteps, w ∈ Z+, w ≤ W (5.19)

yn − yw ≤ − rmin − Mbig(1 − bw,n) ∀n ∈ Nsteps, w ∈ Z+, w ≤ W (5.20)

bw,1 =bTOA,w,1 ∀w ∈ Z+, w ≤ W (5.21)

bw,n =

 n∑
t=1

bTOA,w,t

 − n−1∑
t=1

bTOD,w,t ∀n ∈ Nsteps, w ∈ Z+, w ≤ W (5.22)

NMAX∑
t=1

n(bTOD,w,t)

 −
NMAX∑

t=1

n(bTOA,w,t)

 ≥ Wdwell,w ∀w ∈ Z+, w ≤ W (5.23)

42

NMAX∑
t=1

bTOA,w,t = 1 ∀w ∈ Z+, w ≤ W (5.24)

NMAX∑
t=1

bTOD,w,t = 1 ∀w ∈ Z+, w ≤ W (5.25)

NMAX = ceil
(

T
Td

)
(5.26)

rmin =
mv2

min

fmax
(5.27)

n∑
t=1

bTOA,w+1,t ≤

n∑
t=1

bTOD,w,t ∀n ∈ Nsteps, w ∈ Z+, w ≤ W (5.28)

Where xw and yw are the coordinates of waypoint w. Mbig is a number that is large with respect

to the finite horizon. bw,n is the binary variable for being at waypoint w at time step n. W is the

number of waypoints. bTOA,w,n and bTOD,w,n are binary variables for arriving at and departing from

waypoint w at time step n, respectively. Wdwell,w is the amount of time the vehicle is instructed to

dwell at waypoint w.

To prevent the vehicle’s path from intersecting with obstacles or intruders between time steps,

a safety factor is used. The Constraints on this safety factor are:

−S f ,x,n ≤vx,nTd +
fx,nT 2

d

2m
+ σ ≤ S f ,x,n ∀n ∈ Nsteps (5.29)

−S f ,y,n ≤vy,nTd +
fy,nT 2

d

2m
+ σ ≤ S f ,y,n ∀n ∈ Nsteps (5.30)

Where σ is the minimum safe distance allowed between the vehicle and an obstacle or intruder

S f ,x,n and S f ,y,n are the safety factors in the x direction and y direction, respectively. The equations

43

to prevent obstacle collisions are:

xn ≤xmin,o − S f ,x,n + Mbigbobs,o,n,1 ∀n ∈ Nsteps, o ∈ Z+, o ≤ O (5.31)

−xn ≤ − xmax,o − S f ,x,n + Mbigbobs,o,n,2 ∀n ∈ Nsteps, o ∈ Z+, o ≤ O (5.32)

yn ≤ymin,o − S f ,y,n + Mbigbobs,o,n,3 ∀n ∈ Nsteps, o ∈ Z+, o ≤ O (5.33)

−yn ≤ − ymax,o − S f ,y,n + Mbigbobs,o,n,4 ∀n ∈ Nsteps, o ∈ Z+, o ≤ O (5.34)
4∑

k=1

bobs,o,n,k ≤ 3 ∀n ∈ Nsteps, o ∈ Z+, o ≤ O (5.35)

Where xmin,o, xmax,o, ymin,o, and ymax,o are the minimum x, maximum x, minimum y, and maximum y

of obstacle o, respectively. bobs,o,n,k with k = 1, 2, 3, and4 are the binary variables for being outside

of the minimum x, maximum x, minimum y, and maximum y, respectively, of obstacle o at time

step n. O is the total number of obstacles in the finite horizon. A similar set of constraints is used

to construct the intruder avoidance.

xn ≤xmin,i,n − 2S f ,x,n + Mbigbi,1,n ∀n ∈ Nsteps, i ∈ Z+, i ≤ I (5.36)

−xn ≤ − xmax,i,n − 2S f ,x,n + Mbigbi,2,n ∀n ∈ Nsteps, i ∈ Z+, i ≤ I (5.37)

yn ≤ymin,i,n − 2S f ,y,n + Mbigbi,3,n ∀n ∈ Nsteps, i ∈ Z+, i ≤ I (5.38)

−yn ≤ − ymax,i,n − 2S f ,y,n + Mbigbi,4,n ∀n ∈ Nsteps, i ∈ Z+, i ≤ I (5.39)
4∑

k=1

bi,k,n ≤3 ∀n ∈ Nsteps, i ∈ Z+, i ≤ I (5.40)

Here xmin,i,n, xmax,i,n, ymin,i,n, and ymax,i,n are the minimum x, maximum x, minimum y, and maximum

y, respectively, of intruder i at time step n. bi,k,n, with k = 1, 2, 3, and 4 are binary variables for

excluding the vehicle from the area covered by intruder i at time step n. I is the total number

of intruders in the timeframe and finite horizon. The cost function for this 2D maneuver has

44

acceleration and time components. The time component is given by:

Jtime =

W∑
w=1

NMAX∑
n=1

(n − 1)bTOD,w,n (5.41)

The acceleration component is given by:

J f orce =

2∑
k=1

NMAX∑
n=1

Wslack,k,n (5.42)

Where Wslack,k,n are slack variables constrained by:

fxn ≤Wslack,1,n ∀n ∈ Nsteps (5.43)

− fxn ≤Wslack,1,n ∀n ∈ Nsteps (5.44)

fyn ≤Wslack,2,n ∀n ∈ Nsteps (5.45)

− fyn ≤Wslack,2,n ∀n ∈ Nsteps (5.46)

5.2 Inequalities to move to three dimensions

To modify the MILP equations for three dimensions, equation 5.5 becomes:

S n+1 = AdS n + BdFn ∀n ∈ Nsteps, n ≤ NMAX (5.47)

45

Where:

Ad =



1 0 0 Td 0 0

0 1 0 0 Td 0

0 0 1 0 0 Td

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



S n =



xn

yn

zn

vxn

vyn

vzn



(5.48)

Bd =



T 2
d

2m 0 0

0 T 2
d

2m 0

0 0 T 2
d

2m

Td
m 0 0

0 Td
m 0

0 0 Td
m



(5.49)

The acceleration and velocity constraints become:

VT
n ηh, j ≤vmax ∀n ∈ Nsteps,

{
h ∈ Z | 0 ≤ h < H

}
,
{
j ∈ Z | 0 ≤ j < H/2

}
(5.50)

FT
n ηh, j ≤ fmax ∀n ∈ Nsteps,

{
h ∈ Z | 0 ≤ h < H

}
,
{
j ∈ Z | 0 ≤ j < H/2

}
(5.51)

Where:

Vn =


vxn

vyn

vzn


ηh, j =


cos(θh)cos(φ j)

sin(θh)cos(φ j)

sin(φ j)


(5.52)

θh =
2πh
H

φ j =
2π j

H
2 − 1

−
π

2
(5.53)

46

Unlike the obstacles in the 2D version, the 3D version uses a grid of terrain heights. The first 3

constraints determine whether the vehicle is over a grid square:

−
Lgrid

2
bgrid,p,n − Mbig,x(1 − bgrid,p,n) ≤ xn − xgrid,p ∀n ∈ Nsteps, p ∈ [1, P] (5.54)

Lgrid

2
bgrid,p,n + Mbig,x(1 − bgrid,p,n) ≥ xn − xgrid,p ∀n ∈ Nsteps, p ∈ [1, P] (5.55)

−
Lgrid

2
bgrid,p,n − Mbig,y(1 − bgrid,p,n) ≤ yn − ygrid,p ∀n ∈ Nsteps, p ∈ [1, P] (5.56)

Lgrid

2
bgrid,p,n + Mbig,y(1 − bgrid,p,n) ≥ yn − ygrid,p ∀n ∈ Nsteps, p ∈ [1, P] (5.57)

1 ≤
P∑

p=1

bgrid,p,n ≤ 4 ∀n ∈ Nsteps (5.58)

Where Lgrid is the size of a grid cell, Mbig,x and Mbig,y are just larger than the x and y horizons,

respectively. bgrid,p,n is a binary variable for whether the vehicle is over grid cell p at time step n.

xgrid,p and ygrid,p are the x and y coordinates of the center of grid cell p. P is the total number of

grid cells. The vehicle is kept above the terrain by a safety factor:

zn − zgrid,low,p ≥ bgrid,p,nS f ,z − Mbig,z(1 − bgrid,p,n) ∀n ∈ Nsteps, p ∈ [1, P] (5.59)

−zn + zgrid,high,p ≥ bgrid,p,nS f ,z − Mbig,z(1 − bgrid,p,n) ∀n ∈ Nsteps, p ∈ [1, P] (5.60)

Where zgrid,low,p and zgrid,high,p are the lower and upper limits of grid cell p, respectively. S f ,z is

the safety factor in the z direction. To find the cost, the slack variables for force were calculated

similarly to the 2D version:

J f =

NMAX∑
n=1

3∑
k=1

Wslack,n,k (5.61)

47

Where Wslack,n,k is the slack variable constrained by:

fxn ≤Wslack,n,1 ∀n ∈ Nsteps (5.62)

− fxn ≤Wslack,n,1 ∀n ∈ Nsteps (5.63)

fyn ≤Wslack,n,2 ∀n ∈ Nsteps (5.64)

− fyn ≤Wslack,n,2 ∀n ∈ Nsteps (5.65)

fzn ≤Wslack,n,3 ∀n ∈ Nsteps (5.66)

− fzn ≤Wslack,n,3 ∀n ∈ Nsteps (5.67)

Initial and final conditions were specified in a similar manner to the 2D version, but as a trial run

the start and endpoint were simply fixed, as seen here:

S 1 =



xinitial

yinitial

zinitial

vx,initial

vy,initial

vz,initial



S NMAX =



x f inal

y f inal

z f inal

vx, f inal

vy, f inal

vz, f inal



(5.68)

The 3D equations were used in several trial runs but were severely hindered by area complexity.

This will be further discussed in section 5.2.1.

5.2.1 Area Complexity

Larger finite horizons improve the optimality of solutions, however, they increase the time

to solve the MILP optimization problems for several reasons. The first is simply a larger finite

horizon in an obstacle-rich environment means more obstacles proportional to the area of the finite

horizon. Also, the distance a s-UAS can cover is limited by its top speed given a finite number

48

of time steps. Therefore, in order to cover a larger finite horizon, the number of time steps in the

simulation must be increased. This means there are N × M equations that must be solved, where

N is the number of time steps, and M is the number of equations that must be solved per time step.

Therefore, there is an upper limit on the finite that MILP equations can be applied to while still

allowing for acceptable and speedy solutions.

To combat this, the finite horizon was set to a value that allows for good solutions in a short

amount of time. Because this limits the possible missions that can be flown to a finite horizon,

this was expanded by solving MILP equations with waypoints generated by A* in a sequence of

appropriate finite areas based on start and end points of each area. A complete description of this

process can be found in section 5.

5.2.2 Three-dimensional Complexity

Transitioning MILP into three dimensions was not as successful as its two dimensional counter-

part. This was due the computational complexity added from the third dimension. s-UAS motion

was discretized as a sphere, rather than a circle, which added an additional set of constraints on

top of each set for an individual dimension shown above. Additionally, obstacles were now more

complex. Rather than the sets of rectangles used in the two-dimensional case, a binary grid was

used to determine which sector the s-UAS was in. In that sector, the s-UAS was constrained to be

above the floor for that sector. This makes the number of obstacles much larger than the simpli-

fied rectangles used in the two dimensional case. This was all clearly reflected in the number of

time steps that could be computed comfortably. The 2D case comfortably managed 60 time steps,

while the 3D case struggled to perform more than 10. A less computationally intense solution was

pursued because of the difficulties with the 3D complexity.

49

Chapter 6

Lower-level type 2: Re-routing using A*

6.1 Motivation

Because of the complexities and computational demands associated with full path planning

using MILP and a top-level algorithm, exploring a simpler method of three dimensional path plan-

ning and traffic management was desirable. Rather than model the full physics of every vehicle,

the vehicle motion would be simplified, allowing a greater quantity of vehicles to be simulated

over larger areas and time steps. For this purpose, the path planning and re-routing method was

used.

6.1.1 Path Planning and Re-Routing

The path planning and re-routing method divides the airspace up into sections, which only

one s-UAS may occupy at a time. This follows and expands upon work done in [5]. For the

purposes of this study, airspace was divided into 8m cubes. The path planning and re-routing

method has several major components. The first, the initial routing algorithm determines a path

from a vehicle’s starting point to its goal agnostic of the positions of intruders in the airspace.

Secondly, the vehicles are allowed to fly their paths until a conflict is detected. When a conflict is

detected, a resolution method is used to determine which UAS to re-route solve the conflict. In this

case, a priority-based solution was used, but there are other methods, like a market-based solution.

50

Additionally, a method to resolve traffic conflicts, where two s-UAS are occupying each other’s

global destination was used to handle edge cases.

6.2 Routing Algorithm

The initial routing algorithms follow a simple 3D A* approach. The inputs are the vehicle posi-

tion and its global destination. The A* algorithm works as described in 5, but no visibility criteria

is used and the s-UAS is only permitted to travel from one 8m cube to one of the cube’s neighbors

via one of the cube’s faces. The s-UAS were not permitted to travel through a neighboring cube

if it was occupied by an obstacle. The re-routing algorithm was identical to the initial routing al-

gorithm, but in addition to the obstacle restrictions, the vehicle was not permitted to route through

a cube currently occupied by a vehicle or that would be occupied by a vehicle in the next time

step. In the priority case, only vehicles that have no option to move or higher-priority vehicles are

considered in this manner. The pseudocode for the priority-based solution is shown in pseudocode

2 and 3.

6.3 Conflict Detection

The Sense-And-Avoid algorithm detects conflicts using the current position, current heading

and velocity, and planned mission of the s-UAS. For all t in a time window greater than or equal to

the stopping time for all vehicles in the airspace, the position is predicted for all s-UAS as in figure

6-1. Outside of more complicated commands, a UAS will attempt to reach the next waypoint by

following a linear path. A conflict is detected if two or more UASs have their keep-away volumes

intersect at a time t. The safety radius and horizontal separation for each s-UAS is determined

from the sum of error in position and velocity measurements, the s-UAS’s maneuverability, and

the expected maximum deviation from the s-UAS’s mission trajectory. Each s-UAS has an initial

mission entered by a user. Straight lines between waypoints for this mission may conflict with

known obstacles or geofences, as shown in figure 6-2. Because of this, for each pair of waypoints

51

the A* conflict avoidance algorithm provides a set of waypoints that form a viable path, as seen in

figure 6-3. The conflict avoidance algorithm is also called whenever a conflict is detected. Each

s-UAS has a priority rating based on its remaining battery life, remaining mission time, and any

other factors for mission importance. In a conflict, the lower-priority s-UAS is re-routed to avoid

the keep-away volumes of each s-UAS of higher priority.

Algorithm 2: 3D path-planning with re-routing: initial path planning

//set up terrain as 8m cubes that are either occupied or not
emptyTerrain←− setupTerrainModel()
//calculate initial routes
for each s-UAS, s do

path(s)←− AS tar(start(s), goal(s), emptyTerrain)
currentPosition(s)←− start(s)
currentGoal(s)←− path(s,waypoint = 2)
currentVelocity(s)←− 0

52

Algorithm 3: 3D path-planning with re-routing: rerouting section

//check and resolve conflicts
while any s-UAS hasn’t reached its final goal do

//keep track of positions currently occupied and positions that will be occupied in the
near future

reservedTerrain←− emptyTerrain
//update positions of s-UAS and remove s-UAS that have reached their goal
for each s-UAS, s do

if path(s) not complete then
update currentPosition(s) based on currentVelocity(s)
update currentGoal(s) based on currentPosition(s) and path(s)
if currentPosition(s)==end(s) then

path(s) is complete
else

update remaining flight time of s
determine priority(s) based on nearness to its final goal and remaining flight
time

update the position in reserved terrain occupied by s to inaccesible

else
remove s from the model

//check if the next position will cause a conflict, and resolve it
Reset Vacate variable used to resolve edge cases
for s-UAS, in order of priority do

set desiredVelocity(s) based on currentGoal(s), max speed of s, and currentPostion(s)
temporaryTerrain←− emptyTerrain for all spaces not neighbors of
currentPosition(s)

temporaryTerrain←− reservedTerrain for all spaces that are neighbors of
currentPosition(s)

set futurePosition(s) based on currentPosition(s) and desiredVelocity(s)
//see 6.4 for more details on the following
resolve traffic jam edge cases
if futurePosition(s) is inaccassible in temporaryTerrain then

if no reroute is possible then
desiredVelocity←− 0

else
reroute←− AS tar(currentPosition(s), end(s), temporaryTerrain)
modify path(s) to indicate the re-route
update currentGoal(s)
update desiredVelocity(s)

predict futurePosition(s)

update futurePosition(s) in reservedTerrain to inaccessible

53

Figure 6-1: Predicted Path for s-UAS

Figure 6-2: Path for s-UAS with an obstacle in the way

54

Figure 6-3: Corrected Path for s-UAS

6.4 Resolving Traffic Jams

The re-routing algorithm can encounter a problem if two s-UAS occupy each other’s final

goals. A* for either s-UAS does not find a solution if used independently, because the final goal

position is occupied. To remedy this, an s-UAS will ask for its final goal to be vacated if the final

goal is the future position it will occupy next. If a s-UAS is asked to vacate a position, it finds

the open neighbor that has the shortest A* path to its final goal, and chooses that as its current

goal, updating its desired velocity and future position appropriately. If the vacating vehicle has no

accessible neighbors in the temporary terrain, it waits, and asks that its own final goal be vacated

if it is occupied. The pseudocode for this is shown below, in pseudocode 4.

55

Algorithm 4: Resolving Traffic Jam Edge Cases

if f uturePosition(s) == goal(s) & futurePosition(s) is inaccassable in temporaryTerrain
then

if NOT vacate(currentPosition(s)) then
vacate(goal(s))←− True
desiredVelocity(s)←− 0
predict futurePosition(s)

else
shortestLength←− in f inity
amendingPath←− empty path
for each neighbor n of currentPosition(s) do

if temporaryTerrain(n) is inaccessible then
continue

else
tempPath←− AS tar(n, goal(s), emptyTerrain)
if Length(tempPath) < shortestLength then

amendingPath←− tempPath
shortestLength←− Length(tempPath)

if no path was found then
currentVelocity(s)←− 0

else
amend path(s) so from currentGoal(s) on is replaced by amendingPath
update desiredVelocity(s)
predict futurePosition(s)

56

Chapter 7

Numerical Simulations And Results

To examine the effectiveness of the algorithms, several tests were run. The MILP lower level

algorithm, A* top level, and the priority and re-routing algorithms were all inspected individually.

7.1 MILP results

For all simulations using MILP, the capabilities of the vehicles needed to be specified. The

simulations used the vehicle statistics listed in table 7.1. These were similar to the performance

characteristics advertised for the DJI phantom.

Table 7.1: Vehicle Statistics used in MILP simulations
vehicle property value

maximum horizontal velocity 20 m/s

minimum horizontal velocity 0 m/s

mass 1.38 kg

maximum horizontal force 4.9 N

position uncertainty 1.5 m

maximum flight time 1680 s

In all simulations, s-UAS were generated with random mission. These missions consisted of a

random start point and random end point. Both points were generated a safe distance away from

57

all obstacles.

7.1.1 2D MILP without top-level

For the 2D MILP case without a top-level algorithm, the maximum number of s-UAS that could

enter a space was examined. For all 2D MILP without the top level s-UAS capacity simulations,

a 3584 m2 area was chosen. s-UAS were added until MILP was unable to generate a solution for

three consecutive random missions. The third simulation had an additional complication: after no

more missions could be generated for the area at time t=1 second, random missions were generated

at time t=2 seconds, until that time period was also congested with s-UAS. This continued until

t=n seconds, where n is the time at which no solutions could be found for 5 consecutive time steps.

At this point, the airspace could be considered near or at saturation. This was to demonstrate the

MILP algorithm’s ability to continue to integrate new flight plans as new flight plan requests are

made. A summary of the situation for the 2D MILP capacity test is shown in table 7.2.

Table 7.2: Lower-level MILP capacity test

Trial Area (m2) Obstacles s-UAS simulated total runtime (s)

simple capacity 1 3584 1 14 88.19

simple capacity 2 3584 1 16 94.92

continuous capacity 3584 1 22 930.7

The continuous capacity trial was stopped earlier than originally intended because the algo-

rithm was taking over 15 minutes to find a route for the 23rd s-UAS. Since this time is far longer

than the algorithm is meant to run, this was considered the algorithm’s capacity.

The statistics for separation between s-UAS during the capacity simulations are shown in table

7.3. They show that the s-UAS remain safely separated even as the number of s-UAS in the

simulation increases.

58

Table 7.3: Separation Results for the MILP capacity test

Trial 1 2 3

Average s-UAS separation (m) 25.72 27.41 29.78

Minimum s-UAS separation (m) 6.28 6.34 6.50

Standard deviation, s-UAS separation (m) 4.00 0.940 0.0623

Average obstacle separation (m) 31.03 34.22 30.56

Minimum obstacle separation (m) 14.15 13.78 3.239

Standard deviation, obstacle separation (m) 67.10 89.62 115.98

Additionally, the 2D MILP simulation was tested with 2 s-UAS with random paths, each start-

ing at t=1 second, but with increasing operating area and finite horizon. The size of the finite

horizons and the time these trials took is shown in table 7.4. Trial 4 was aborted due to long run

time, but the inability of the lower level MILP to handle area complexity efficiently is clear.

Table 7.4: Simple MILP distance capacity

Trial Area (m2) Time steps permitted Obstacles Total runtime (s)

distance 1 1024 98 0 17.50

distance 2 3584 184 1 32.52

distance 3 12544 344 8 90.52

distance 4 43264 640 30 >250

Finally, it was observed that the lower-level MILP algorithm experienced the most difficulty

when it had to take a significant detour between its starting point and its goal. Figure 7-1 shows

the start and goal locations for MILP distance trial 4.

59

Figure 7-1: MILP distance trial 4

The top level A* algorithm allows the MILP function to better handle both distance and capac-

ity.

7.1.2 2D MILP with top level

In the 2D case, MILP with the top level was capable of handling the same UAV density while

also planning longer paths. In several trials, n simulated s-UAS plan to simultaneously leave a

base at where they were within 200m of each other. This shows that the system could handle

large concentrations of s-UAS in one location. Starting positions were random locations in a

200m square around a center point. Waypoint locations were random locations within 200m of

the starting point. This was chosen to make the path of each vehicle relatively unique while still

remaining in a nearby area. After reaching its waypoint, each vehicle would then return to its

starting point. The system could delay takeoff if no movement was available for the s-UAS. All

s-UAS were able complete their missions completely. No s-UAS approached within the keep-away

zone of any other s-UAS or any obstacle. Figures 7-2 and 7-3 show two scenarios where MILP

60

was successful.

Figure 7-2: MILP path planning avoiding an obstacle

Figure 7-3: MILP path planning avoiding obstacles and other aircraft

Additionally, a MILP trial was done with hexagonal cells with 25m side lengths. The graph’s
61

connectivity was pre-processed to speed up the top level. Statistics for three trial are shown in table

7.5.

Table 7.5: Trials for MILP and A* top level

Trial 1 2 3

Area (m2) 160000 160000 160000

s-UAS 38 14 35

Obstacles 61 61 61

Average s-UAS separation (m) 184.1 151.7 198.0

Minimum s-UAS separation (m) 6.276 6.420 6.287

Standard deviation, s-UAS separation (m) 75.83 81.40 0.7690

Average obstacle separation (m) 279.8 264.3 288.6

Minimum obstacle separation (m) 41.35 97.03 104.1

Standard deviation, obstacle separation (m) 5785 5540 5900

Top-level runtime (s) 1.087 0.460 0.679

Lower-level runtime (s) 5736.4 802.1 2348.9

7.2 Priority and Re-routing results

The priority and re-routing using the models of simulated downtown Cincinnati Airspace. Tri-

als were performed in a randomly selected 160m by 160m area, with 30 simulated s-UAS par-

ticipating. In all trials, s-UAS submit their flight plans simultaneously. Waypoints are randomly

generated with an even probability anywhere within the area. Five trials were selected and shown

in table 7.6. In most cases, each s-UAS was not needed to be re-routed more than once. the outlier

was trial 4, where at least one s-UAS required 3 re-routes and a total of 12 re-routes were required.

This is still low, considering there were 30 s-UAS in the simulation. Each s-UAS was still able to

get to its destination effectively.

62

Table 7.6: A* with re-routing results for 30 s-UAS in 160m X 160m areas of downtown Cincinnati

Trial
Re-Routes Number of

Time Steps

Re-Routes per Time Step

Total Max per UAS Total Max per UAS

1 5 1 68 0.074 0.015

2 1 1 59 0.017 0.017

3 6 2 60 0.100 0.033

4 12 3 72 0.167 0.042

5 4 2 66 0.061 0.030

Average

5.6 1.8 65 0.084 0.027

In the following trials, s-UAS are generated like above, except the number of s-UAS and dis-

tance were also varied. Table 7.7 shows the parameters for and results of these simulations, which

were performed in random areas of the downtown Cincinnati model. Figures 7-4, 7-5, 7-6, and 7-7

show the resulting paths from these trials.

63

Table 7.7: More A* with priority and re-routing results

Trial 1 2 3 4

Area (m2) 5184 5184 5184 46656

height 56 56 56 56

s-UAS 30 35 50 50

Average re-routes 2.90 1.03 1.50 0.420

Maximum re-routes 10 5 6 2

Standard deviation, re-routes 2.56 1.32 1.59 0.64

Average s-UAS separation (m) 32.65 41.59 37.43 114.8

Minimum s-UAS separation (m) 8.00 8.00 7.00 8.00

Standard deviation, s-UAS separation (m) 14.89 16.38 14.91 51.47

Average obstacle separation (m) 11.84 50.19 26.03 22.57

Minimum obstacle separation (m) 8.00 18.98 11.58 8.00

Standard deviation, obstacle separation (m) 5.70 21.66 9.99 10.13

top-level runtime(s) 0.960 1.877 2.410 10.322

lower-level runtime (s) 85.06 53.29 80.12 148.97

64

Figure 7-4: Re-routed results, Trial 1

Figure 7-5: Re-routed results, Trial 2

65

Figure 7-6: Re-routed results, Trial 3

Figure 7-7: Re-routed results, Trial 4

To compare the algorithms across an even playing field, the 2D case was chosen. Three s-UAS

were simulated within a 72 m radius around a central point, at a height 64m above the lowest point

in nearby terrain. Each vehicle submits a flight plan with the same take-off time-step, but in the

66

MILP cases, the system solves the trajectory of the vehicles in order UAS 1, then UAS 2, then

UAS 3. In the A* with re-routing, the trajectories are solved simultaneously. For each algorithm,

the start and end points are the same. Each vehicle has a start point on the edge of a 68m radius

circle, and an end point on the point closest to the point opposite it on the circle that was outside

of an obstacle and each other vehicle’s end point. The start points were attempted to be distributed

evenly around the circle, but some adjustments were made when obstacles interfered. The times

for MILP without the top level A*, MILP with the top level A*, and the combined re-routing

algorithm are listed in table 7.8. Since the re-routing algorithm finds the routes all at once, the

average time per UAS is listed for each.

Table 7.8: Comparison Between Algorithm Times

Algorithm: MILP by itself MILP with top level A* w/ re-routing

UAS 1 10.7075 27.4082 9.1775

UAS 2 111.5738 25.8690 9.1775

UAS 3 59.8562 34.8445 9.1775

Average: 60.7125 29.3739 9.1775

67

Chapter 8

Discussion, Conclusions and Future work

8.1 Discussion

8.1.1 Lower-level MILP

The lower-level MILP simulations show that MILP is able to provide a consistent level of safety

while taking into account the dynamics of the s-UASs. At saturation, average s-UAS separation

was 29.78, or 1.5 times the distance an s-UAS in the simulation could cover in a second. The longer

runtime near capacity indicates that MILP can experience significant slowdown as an airspace

becomes increasingly crowded. The distance capacity simulations illustrate the desirability of

a top level simulation. MILP provides the fastest results when it does not have to make paths

with large detours around obstacles and other s-UAS. The results of adding a top level are further

illustrated in the next section.

8.1.2 MILP with A* top level

The top-level A* with MILP results are promising. Pre-processed graphs allow the top-level

runtime to be kept low. It runs consistently under a second for the simulated criteria. The lower-

level algorithm runs consistently at about 70 seconds per s-UAS for when provided with this top

level. This is a great improvement on the runtime of the lower-level algorithm, which could stretch

to over 20 minutes when not time-limited if it had to process an s-UAS that had to make a signifi-

68

cant detour. The results still present good separation between obstacles and s-UAS throughout the

runtime.

8.1.3 A* with Priority and Re-routing

The A* with priority and re-routing results show a significant reduction in runtime over the

MILP counterparts. This reduction comes, in a large part, from the minimal modelling of the

dynamics of the s-UAS flight. However, it does demonstrate an ability to route in three dimensions,

which the MILP algorithms always took prohibitively long runtimes to do. It also demonstrates

that an individual s-UAS would not need to be re-routed an extremely large amount of times, even

if the terrain is complex and the intruders are many.

8.1.4 Surface Model Suitability to MILP and A*

Of note is the decision to model the surface as a grid. For the simple 2D MILP algorithms,

reducing the obstacles to a single layer and combining adjacent models allowed the algorithm to

run quickly. The pre-processed 2D A* graph largely ignores the problems with obstacle mod-

elling by allowing it to happen offline or mostly offline. When moving to the third dimension, the

raster was prohibitively difficult to use with MILP. The much simpler A* with re-routing algorithm

managed it much better, but not as well as a simplified, pre-processed graph. A TIN, as noted in

chapter 3, would be better suited to the needs of MILP and A* with re-routing because it is a less

data-intensive surface model.

8.2 Conclusions

8.2.1 MILP and MILP with A*

MILP is strongest as a SAA technology, because it takes in more information about its sur-

roundings and can better respond to the chaotic events of close encounters and the unforeseen. It

69

is computationally expensive to model an entire three dimensional mission with, however.

8.2.2 A* with Priority and Re-routing

The re-routing section allows for strong traffic management, even as the airspace becomes

crowded and the geometry becomes complex. It does not provide strong SAA procedures, because

information on other s-UAS is so limited.

8.2.3 Surface Model Suitability to MILP and A*

The model is not very suitable to MILP and A* in three dimensions, as it becomes computa-

tionally cumbersome over large distances.

8.3 Future Work

8.3.1 Improved Models of the City

A TIN (Triangular irregular network) is a better representation that would improve perfor-

mance for MILP, A*, or any algorithm to generate pre-processed streamlines, by reducing the data

overhead.

8.3.2 Improved Pre-processed Maps

Simplifying to an airspace to streamlines would be a better alternative, because then the stream-

lines could act as a more efficient 3D preprocessed graph, that could be evaluated with A* or a

better graph processing algorithm. SAA only then has to care about avoiding other s-UAS (and

popup threats) while in a streamline, returning to a streamline when outside of one, and avoiding

obstacles while outside of a streamline. One potential way to do this would be to model select

random nodes a suitable distance from each other and obstacles, then connect them with straight

lines and circular arcs if possible. If this process is continue until the entire airspace is reachable,

70

a potential set of streamlines has been created. The suitability of this model could be examined

using a trial with A* and re-routing, and a most effective set of streamlines for an airspace could

be generated using a genetic algorithm.

8.3.3 Combined Pre-processed Maps and Algorithms

With pre-processed streamlines, the A* search could be an effective graph search over long dis-

tances, although other graph searches should also be investigated. Rerouting can also be included

at the traffic management level. Market-based solutions can also be effective. For the SAA level,

MILP, or a comparable algorithm would then also have ideal streamlines to match and navigate

with respect to. The algorithms in this thesis could also be adapted to handle a more dynamic case.

If each vehicle conducts SAA operations for an appropriate look-ahead time, it can detect when a

conflict occurs that necessitates a route change. It then sends this conflict information and a route

change request to the routing service, which provides a new route as the vehicle avoids the con-

flict. The routing service will also respond to pop-up threats and dynamic issues by detecting the

effected airspace element in its airspace model and updating it appropriately. Then, for all paths

that are passing through the element or will pass through the element, it issues new routes.

71

Appendices

72

List of Publications and Presentations

• Dechering, M., Radmanesh, M. and Kumar, M., 2018. Technologies for Integration of small

Unmanned Aerial Systems (s-UAS) in National Airspace System (No. FHWA/OH-2018-12).

• Kumar, R., Dechering, M., Pai, A., Ottaway, A., Radmanesh, M. and Kumar, M., 2017, June.

Differential flatness based hybrid PID/LQR flight controller for complex trajectory tracking

in quadcopter UAVs. In Aerospace and Electronics Conference (NAECON), 2017 IEEE Na-

tional (pp. 113-118). IEEE.

73

References

[1] Thomas Prevot, Jeffrey Homola, and Joey Mercer. From rural to urban environments: hu-

man/systems simulation research for low altitude uas traffic management (utm). In 16th AIAA

Aviation Technology, Integration, and Operations Conference, page 3291, 2016.

[2] Federal Aviation Administration (FAA). Faa aerospace forecast fiscal years 2017–2037,

2017.

[3] FAA. sense and avoid (saa) for unmanned aircraft system (uas). In Final Report of the FAA

SAA sponsored workshop, 2009.

[4] Andrew Joseph Weinert. An information theoretic approach for generating an aircraft avoid-

ance Markov decision process. PhD thesis, Pennsylvania State University, 2015.

[5] Swee Balachandran, César Munoz, and Maria C Consiglio. Implicitly coordinated detect

and avoid capability for safe autonomous operation of small uas. In 17th AIAA Aviation

Technology, Integration, and Operations Conference, page 4484, 2017.

[6] Donald McCallie, Jonathan Butts, and Robert Mills. Security analysis of the ads-b imple-

mentation in the next generation air transportation system. International Journal of Critical

Infrastructure Protection, 4(2):78–87, 2011.

[7] Christian Carreon-Limones, Andrew Rashid, Phillip Chung, and Subodh Bhandari. 3-d map-

ping using lidar and autonomous unmanned aerial vehicle. In AIAA Information Systems-

AIAA Infotech@ Aerospace, page 1155. American Institute of Aeronautics and Astronautics,

2017.

74

[8] Aaron Mcfadyen and Luis Mejias. A survey of autonomous vision-based see and avoid for

unmanned aircraft systems. Progress in Aerospace Sciences, 80:1–17, 2016.

[9] Gonzalo R Rodrı́guez-Canosa, Stephen Thomas, Jaime Del Cerro, Antonio Barrientos, and

Bruce MacDonald. A real-time method to detect and track moving objects (datmo) from

unmanned aerial vehicles (uavs) using a single camera. Remote Sensing, 4(4):1090–1111,

2012.

[10] Product showcase. http://gryphonsensors.com/products/#product-showcase,

2017. [Online; accessed 27-October-2017].

[11] Navigation National Coordination Office for Space-Based Positioning and Timing. Gps accu-

racy. https://www.gps.gov/systems/gps/performance/accuracy/, 2017. [Online;

accessed 27-October-2017].

[12] uAvionix. products: ping 1090. https://www.uavionix.com/products/ping1090/,

2017. [Online; accessed 27-October-2017].

[13] Gemunu Gurusinghe, Takashi Nakatsuji, Yoichi Azuta, Prakash Ranjitkar, and Yordphol Tan-

aboriboon. Multiple car-following data with real-time kinematic global positioning system.

Transportation Research Record: Journal of the Transportation Research Board, 1802(1):

166–180, 2002.

[14] Yuneec. Typhoon h. http://us.yuneec.com/

typhoon-h-intel-realsense-technology, 2017. [Online; accessed 25-October-

2017].

[15] Intel. newsroom uploads: Intel news fact sheet, intel falcon 8+ system. https:

//newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/07/

Intel-Falcon-8-Fact-Sheet.pdf, 2017. [Online; accessed 27-October-2017].

[16] DJI. Guidance. http://www.dji.com/guidance, 2017. [Online; accessed 27-October-

2017].
75

http://gryphonsensors.com/products/#product-showcase
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.uavionix.com/products/ping1090/
http://us.yuneec.com/typhoon-h-intel-realsense-technology
http://us.yuneec.com/typhoon-h-intel-realsense-technology
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/07/Intel-Falcon-8-Fact-Sheet.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/07/Intel-Falcon-8-Fact-Sheet.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/07/Intel-Falcon-8-Fact-Sheet.pdf
http://www.dji.com/guidance

[17] Qualcomm. Snapdragon flight. https://developer.qualcomm.com/hardware/

snapdragon-flight, 2017. [Online; accessed 27-October-2017].

[18] Federal Communications Commission. Dedicated short range communications (dsrc) ser-

vice. https://www.fcc.gov/wireless/bureau-divisions/mobility-division/

dedicated-short-range-communications-dsrc-service, 2017. [Online; accessed

29-August-2017].

[19] 3GPP. Release 14. http://www.3gpp.org/release-14, 2017. [Online; accessed 27-

October-2017].

[20] Qualcomm. Products: Snapdragon: Modems: 4g-lte: X16. https://www.qualcomm.

com/products/snapdragon/modems/4g-lte/x16, 2017. [Online; accessed 27-October-

2017].

[21] Qualcomm. Qualcomm technologies releases lte drone trial results: Lte unmanned

aircraft systems trial report. https://www.qualcomm.com/news/onq/2017/05/03/

qualcomm-technologies-releases-lte-drone-trial-results, 2017. [Online; ac-

cessed 27-October-2017].

[22] Imad Jawhar, Nader Mohamed, Jameela Al-Jaroodi, Dharma P Agrawal, and Sheng Zhang.

Communication and networking of uav-based systems: Classification and associated archi-

tectures. Journal of Network and Computer Applications, 84:93–108, 2017.

[23] Inc. Google. Google uas airspace system overview. https://utm.arc.nasa.gov/

docs/GoogleUASAirspaceSystemOverview5pager[1].pdf, 2015. [Online; accessed

20-August-2017].

[24] Amazon Prime Air. Determining safe access with a best-equipped, best-served model for

small unmanned aircraft systems, 2015.

[25] Amazon Prime Air. Revising the airspace model for the safe integration of small unmanned

aircraft systems. Amazon Prime Air, 2015.
76

https://developer.qualcomm.com/hardware/snapdragon-flight
https://developer.qualcomm.com/hardware/snapdragon-flight
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service
http://www.3gpp.org/release-14
https://www.qualcomm.com/products/snapdragon/modems/4g-lte/x16
https://www.qualcomm.com/products/snapdragon/modems/4g-lte/x16
https://www.qualcomm.com/news/onq/2017/05/03/qualcomm-technologies-releases-lte-drone-trial-results
https://www.qualcomm.com/news/onq/2017/05/03/qualcomm-technologies-releases-lte-drone-trial-results
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1].pdf
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1].pdf

[26] Joseph Rios, Daniel Mulfinger, Jeff Homola, and Priya Venkatesan. Nasa uas traffic man-

agement national campaign: Operations across six uas test sites. In Digital Avionics Systems

Conference (DASC), 2016 IEEE/AIAA 35th, pages 1–6. IEEE, 2016.

[27] George Elmasry, Diane McClatchy, Rick Heinrich, and Boe Svatek. Integrating uas into

the managed airspace through the extension of rockwell collins’ arinc cloud services. In

Integrated Communications, Navigation and Surveillance Conference (ICNS), 2017, pages

1–14. IEEE, 2017.

[28] Joseph Rios and Marcus Johnson. Unmanned aircraft systems traffic management (utm)

concepts and architecture overview. AIAA Aviation Forum, 2018.

[29] Federal Aviation Administration. Uas data exchange. https://www.faa.gov/uas/

programs_partnerships/uas_data_exchange/, 2017. [Online; accessed 14-December-

2017].

[30] airmap.com. https://www.airmap.com/, 2017. [Online; accessed 12-January-2018].

[31] Project wing. https://x.company/projects/wing/, 2017. [Online; accessed 12-

January-2018].

[32] skyward.io. https://skyward.io/, 2017. [Online; accessed 12-January-2018].

[33] Mingrui Lao and Jun Tang. Cooperative multi-uav collision avoidance based on distributed

dynamic optimization and causal analysis. Applied Sciences, 7(1):83, 2017.

[34] Marı́a Consiglio, César Muñoz, George Hagen, Anthony Narkawicz, and Swee Balachan-

dran. Icarous: Integrated configurable algorithms for reliable operations of unmanned sys-

tems. In Digital Avionics Systems Conference (DASC), 2016 IEEE/AIAA 35th, pages 1–5.

IEEE, 2016.

[35] Swee Balachandran, Anthony Narkawicz, César Muñoz, and Marı́a Consiglio. A path

planning algorithm to enable well-clear low altitude uas operation beyond visual line of
77

https://www.faa.gov/uas/programs_partnerships/uas_data_exchange/
https://www.faa.gov/uas/programs_partnerships/uas_data_exchange/
https://www.airmap.com/
https://x.company/projects/wing/
https://skyward.io/

sight. In Twelfth USA/Europe Air Traffic Management Research and Development Seminar

(ATM2017), 2017.

[36] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The interna-

tional journal of robotics research, 20(5):378–400, 2001.

[37] César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron Dutle, Maria

Consiglio, and James Chamberlain. Daidalus: detect and avoid alerting logic for unmanned

systems. 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), 2015.

[38] Anthony Narkawicz and George E Hagen. Algorithms for collision detection between a point

and a moving polygon, with applications to aircraft weather avoidance. In 16th AIAA Aviation

Technology, Integration, and Operations Conference, page 3598, 2016.

[39] Elisa Capello, Giorgio Guglieri, and Gianluca Ristorto. Guidance and control algorithms for

mini uav autopilots. Aircraft Engineering and Aerospace Technology, 89(1):133–144, 2017.

[40] Roberto Opromolla, Giancarmine Fasano, Giancarlo Rufino, Michele Grassi, and Al Sav-

varis. Lidar-inertial integration for uav localization and mapping in complex environments.

In Unmanned Aircraft Systems (ICUAS), 2016 International Conference on, pages 649–656.

IEEE, 2016.

[41] Yang Lyu, Quan Pan, Chunhui Zhao, and Jinwen Hu. Autonomous stereo vision based col-

lision avoid system for small uav. In AIAA Information Systems-AIAA Infotech@ Aerospace,

page 1150. AIAA SciTech Forum, 2017.

[42] Sarah D’Souza, Abe Ishihara, Ben Nikaido, and Hashmatullah Hasseeb. Feasibility of vary-

ing geo-fence around an unmanned aircraft operation based on vehicle performance and wind.

In Digital Avionics Systems Conference (DASC), 2016 IEEE/AIAA 35th, pages 1–10. IEEE,

2016.

78

[43] Jeffrey Homola, Thomas Prevot, Joey Mercer, Nancy Bienert, and Conrad Gabriel. Uas traffic

management (utm) simulation capabilities and laboratory environment. In Digital Avionics

Systems Conference (DASC), 2016 IEEE/AIAA 35th, pages 1–7. IEEE, 2016.

[44] Abraham K Ishihara, Jaewoo Jung, and Joey Rios. Rapid trajectory prediction for a fixed-

wing uas in a uniform wind field with specified arrival times. In 16th AIAA Aviation Technol-

ogy, Integration, and Operations Conference, 2018.

[45] Eric R Mueller and Mykel Kochenderfer. Multi-rotor aircraft collision avoidance using par-

tially observable markov decision processes. In AIAA Modeling and Simulation Technologies

Conference, page 3673, 2016.

[46] Min Xue and Joseph Rios. Initial study of an effective fast-time simulation platform for un-

manned aircraft system traffic management. In 17th AIAA Aviation Technology, Integration,

and Operations Conference, page 3073, 2017.

[47] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 3rd. Essex, UK:

Parentice Hall, page 1152, 2009.

[48] Mohammadreza Radmanesh and Manish Kumar. Flight formation of uavs in presence of

moving obstacles using fast-dynamic mixed integer linear programming. Aerospace Science

and Technology, 50:149–160, 2016.

[49] Mohammadreza Radmanesh, Manish Kumar, Alireza Nemati, and Mohammad Sarim. Dy-

namic optimal uav trajectory planning in the national airspace system via mixed integer linear

programming. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of

Aerospace Engineering, 230(9):1668–1682, 2016.

[50] Razvan-Viorel Mihai and Mirela-Madalina Bivolaru. Cooperative distributed trajectory opti-

mization for a heterogeneous uav formation. In AIP Conference Proceedings, volume 2046,

page 020061. AIP Publishing, 2018.

79

[51] Mohammadreza Radmanesh and Manish Kumar. Grey wolf optimization based sense and

avoid algorithm for uav path planning in uncertain environment using a bayesian framework.

In Unmanned Aircraft Systems (ICUAS), 2016 International Conference on, pages 68–76.

IEEE, 2016.

[52] Dae-Sung Jang, Corey A Ippolito, Shankar Sankararaman, and Vahram Stepanyan. Concepts

of airspace structures and system analysis for uas traffic flows for urban areas. In AIAA In-

formation Systems-AIAA Infotech@Aerospace, page 0449. American Institute of Aeronautics

and Astronautics, 2017.

[53] Fahad Islam, Jauwairia Nasir, Usman Malik, Yasar Ayaz, and Osman Hasan. Rrt*-smart:

Rapid convergence implementation of rrt* towards optimal solution. In Mechatronics and

Automation (ICMA), 2012 International Conference on, pages 1651–1656. IEEE, 2012.

[54] Mohammadreza Radmanesh. UAV traffic management for national airspace integration. PhD

thesis, University of Cincinnati, 2016.

80

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Statement
	 Regulations for s-UAS in Urban Environments

	Solution Overview
	Top-level route planner
	Lower-level SAA type 1: Mixed Integer Linear Programming
	Lower-level SAA type 2: Priority and Re-Routing

	Organization of Thesis

	Background
	Existing Technologies
	ADS-B
	LIDAR
	RADAR
	Cameras and TOF
	Ground-Based Monitoring
	GPS and IMU
	Onboard Computing
	Communication

	Existing Solutions
	UTM Architecture
	Literature Survey

	Modelling Urban Airspace
	Airspace Models
	Sky Tubes
	Voronoi clusters
	Grid-Based

	Building a grid-based Airspace Model
	Selecting an Area of Interest and Sizing the Grid
	Selecting Model Data
	Interpreting Model Data

	Top-Level Algorithms
	A*
	2D A*
	3D A*

	Rapidly-exploring Random Tree
	Transition between levels

	Lower Level type 1: Mixed Integer Linear Programming Algorithms
	Main Section 1
	Existing Work and Inequality Framework

	Inequalities to move to three dimensions
	Area Complexity
	Three-dimensional Complexity

	Lower-level type 2: Re-routing using A*
	Motivation
	Path Planning and Re-Routing

	Routing Algorithm
	Conflict Detection
	Resolving Traffic Jams

	Numerical Simulations And Results
	MILP results
	2D MILP without top-level
	2D MILP with top level

	Priority and Re-routing results

	Discussion, Conclusions and Future work
	Discussion
	Lower-level MILP
	MILP with A* top level
	A* with Priority and Re-routing
	Surface Model Suitability to MILP and A*

	Conclusions
	MILP and MILP with A*
	A* with Priority and Re-routing
	Surface Model Suitability to MILP and A*

	Future Work
	Improved Models of the City
	Improved Pre-processed Maps
	Combined Pre-processed Maps and Algorithms

	Appendices

