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Abstract

In Parallel Discrete Event Simulation (PDES), the pending event set refers to the set of events available for
execution. These pending events are aggressively scheduled for execution in a Time Warp synchronized
parallel simulation without strict enforcement of the causal relationship between events [1, 2]. For most
discrete event simulation models, event processing granularity is generally quite small. On many-core and
multi-core platforms, this decrease in granularity aggravates contention for the shared data structures which
store these pending events. As the number of cores increase, a key challenge lies in providing effective,
contention-free event list management for scheduling events. Lock contention, sorting, and scheduling order
are the prime contributors to contention for access to the pending events set.

Possible solutions to this problem include atomic read-write operations [3], hardware transactional mem-
ory [4,5], or synchronization-friendly data structures [6,7]. The focus is on choosing efficient data structures
for the pending event set and optimization of scheduling techniques that can improve the performance of
the Time Warp synchronized parallel simulation. The following design concepts for optimizing the pending

event set are explored in this dissertation:

1. an exploration of a variety of different data structures that are commonly used in the management of
pending event set. In addition the management of the pending event set using a Ladder Queue [8]
data structure is explored. The Ladder Queue forms a self-adjusting hierarchically partitioned priority

queue that makes it particularly attractive for managing the pending event set;

2. the elimination of sorting within the Ladder Queue partitions. Events are then scheduled from the
lowest partition without concerns for their time order and causal independence of these events is

assumed;



3. an atomic read-write access to the the Ladder Queue partition that holds the smallest available events

is explored;

4. Objects containing groups of events are organized in the pending event set. Each group is dequeued
with one access and the collection of events are scheduled. Several different options for the definition

of these groups and how these groups are scheduled is explored.

Experimental results show that fully-sorted Ladder Queue is over 20% faster than STL MultiSet and
Splay Tree. It was also observed that Ladder Queue with unsorted lowest partition is at least 25% faster than
fully-sorted Ladder Queue for all discrete event simulation models studied. The atomic read-write access
to this lowest partition of the Ladder Queue allows simulation models to run 25-150% faster than the fully-
sorted Ladder Queue. Furthermore, studies indicate that scheduling events in groups provides up to 100%
gain in performance for some simulation models. The experiments also show that the modularity-based
partitioning of LPs makes a simulation run as fast as Ladder Queue with atomic read-write operations for
some kernel and model configurations. Overall Ladder Queue with atomic read-write access to its unsorted
lowest partition has the best performance among the scheduling data structures studied and multiple schedule
queues is the choice for scheduling strategy. Combining the two together results in the most effective
scheduling mechanism. There is over 100% boost in performance for some models when this combination
is compared to any of the other efficient configurations mentioned above.

Each of the aforementioned concepts explored address the contention to the shared data structures that
store the pending event set. The work on group and bag-centric scheduling draws inspiration from the study
on profile-driven data collected from discrete event simulations [9]. This study helped guide the design
and optimization of scheduling strategies for the pending event set in a Time Warp synchronized parallel

simulation.
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Chapter 1

Introduction

This principal focus of this dissertation is Pending Event Set Management for Parallel Discrete Event Sim-
ulation (PDES) running on stand-alone multi-core processors. A Discrete Event Simulation (DES) models
the behavior of a physical system whose state can change in discrete time intervals due to stimulus provided
by events generated within the system. Events in DES are sequentially processed on a single processor and
this unacceptably slow for large simulation models. Parallel Discrete Event Simulation (PDES) [1, 10] is an
alternative to sequential DES that uses parallel algorithms to efficiently execute and synchronize a DES on
a parallel compute platform. There are several possible synchronization mechanisms for PDES; some with
a centralized mechanism and others with a distributed synchronization mechanism. This thesis explores
the design of the pending event set for a PDES synchronized using the Time Warp Mechanism [2, 10].
Time Warp is a distributed synchronization mechanism that can be used with a variety of parallel process-
ing architectures such as shared-memory multiprocessors, clusters, or other systems that support parallel
execution [11, 12].

The rapid growth of multi-core and many-core processors in recent years is encouraging programmers
to explore the benefits of hardware support for software-driven parallelism. However, the scalability of
massively parallel software systems is limited by contention among threads for shared resources. A software
system designed for processors with low number of cores will not necessarily scale up proportionately when
executed on a many-core platform. This contention issue becomes particularly acute during scaling up of

Time Warp synchronized [2, 13] PDES on many-core processors.
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Time Warp is a checkpoint and rollback recovery mechanism that allows a discrete event simulation
to process events greedily without explicit synchronization. It operates under the assumption that events
will mostly arrive in time for the parallel simulator to process them in their intended order and, therefore,
minimize the frequency of rollbacks. The events in a simulation are causally ordered based on their times-
tamp. For any given architecture, the ‘critical path’ is a reference to the time needed to execute all events
using any conservative simulation mechanism (i.e. without any causal violations) [14]. This ‘critical path’
is, therefore, the lower bound on the time against which all parallel simulations can be compared. Due to
the relatively fine-grained computational nature of most discrete event simulation models, efficient shared
access to the pending event set scheduling mechanisms is of paramount importance to obtaining peak perfor-
mance from the parallel simulation engine. In particular, the shared data structures holding the pending event
set data and the mechanisms of safe access to them can have significant impact on the overall performance
of the simulation system. This is especially critical in shared memory, many-core processing systems.

In light of these developments, the objectives to peak performance are to minimize contention to the
shared data structures that hold the pending event set, while also allowing available events to be sched-
uled close to the critical path in order to minimize rollbacks. Lock contention, sorting, and order of event
execution are the key aspects that amplify contention for the shared data structures of the pending event
set. The focus here is to explore the limits of intra-node distributed event processing so that a Time Warp
synchronized parallel simulation can deliver scalable speedups with minimal overall rollback.

The significant avenues explored in this dissertation are:

e Ladder Queue: The Ladder Queue [8] is a variant of the well-known Calendar Queue [15]. It
is a novel data structure that can self-select the partition size for the months of the calendar. This
sizing problem is one of the main challenges that makes traditional Calendar Queues difficult to
employ. Thus, the Ladder Queue [8] potentially provides the performance benefits of a Calendar
Queue without the complicated issues accompanying the sizing of time interval boundaries for each
month (or partition). Dickman et al [6] proposed that the Ladder Queue can efficiently hold and
schedule the smallest timestamped events from each Logical Process (LP) assigned to the multi-
processor node. The ‘ladder’ structure also presents some additional opportunities for design space

optimization that have been outlined in the next two bullets. A detailed description of these design
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space optimizations is presented in Section 5.1.2 of this dissertation.

e Ladder Queue with Unsorted Bottom: The Ladder Queue organizes stored events into partitions that
can be arranged similar to rungs on a ladder. Conventionally, the Ladder Queue does not sort events
within a rung partition until the events in a particular partition are needed for execution. Since these
rungs partition events within fairly small time intervals, Gupta and Wilsey [3] proposed that events in
the lowest partition can be processed without sorting. The hypothesis is that pending events contained
within a rung are highly likely to be causally independent and they can therefore be scheduled for
execution without further sorting based on their timestamp [3]. The details of this implementation/-

variation of the Ladder Queue are presented in Section 5.1.3.

o Ladder Queue with Lock-Free Access to Unsorted Bottom: Partitioning the pending event set
into a Ladder Queue data structure provides direct access to the lowest timestamped events from the
LPs. However, since the Ladder Queue is a shared data structure, the locking costs and the fine-
grained nature of discrete event simulation can trigger considerable contention and negatively impact
overall performance. Gupta and Wilsey [3] proposed that atomic operations can be used to avoid lock
contention for the lowest time window in a Ladder Queue. The implementation details of this are

presented in Section 5.1.4.

e Group Scheduling: A traditional parallel simulation engine will schedule events one at a time for ex-
ecution. Results from a related project on profiling discrete event simulation (called DESMetrcs) [9]
suggests that there may be significant causal independence between the first few events in each LP’s
input event queue. Gupta and Wilsey [7] examined this concept with a preliminary implementation
and defined two different mechanisms for defining event groups to help reduce the frequency of ac-
cesses to the pending event set. This approach further extends causal independence among events at
the head of the pending event set (which contains the lowest timestamped events). The hypothesis is
that scheduling groups of events at a time will help minimize contention to the pending event set. Two
different group scheduling strategies were explored, namely: block scheduling and chain scheduling.

The design details for event groups is presented in Sections 5.2.2 and 5.2.3.

e Profile-driven Bag Scheduling: In another study by the DESMetrics group, Crawford et al [10]
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examined the modularity of LPs based on events communicated between the LPs in a Discrete Event
Simulation. Their results suggest that it is possible to partition the LPs into groups with higher inter-
LP event exchanges (which mirrors results from other empirical studies [17]). This tighter coupling
also suggests that it might be possible to expand the group scheduling of events as outlined in the
above bullet based on their modularity. This novel group scheduling practice organizes the lowest
timestamped input events from each LPs into a bag for scheduling. A detailed study of this approach

1s contained in Section 5.2.4.

1.1 Thesis Overview

The remainder of this dissertation is organized as follows:

Chapter 2 a description of background information on parallel simulation and parallel computing. This

knowledge is needed to understand the core concepts and ideas put forward in this dissertation.

Chapter 3 overviews several well-known parallel discrete event simulation kernels that are based on
the Time Warp-based synchronization protocol. These implementations have significant features that have
somewhat contributed to the overall design of the WARPED?2 simulation kernel which is the target platform

used in this dissertation.

Chapter 4 provides a detailed description of the WARPED2 the Time Warp-synchronized Parallel Discrete
Event Simulation kernel developed by Dr. Philip A. Wilsey and his students at University of Cincinnati.
The software architecture is discussed in detail and it serves as the experimental foundation for the ideas on

organizing the pending event set that is explored in this research and described in Chapter 5.

Chapter 5 explains the core ideas and hypothesis are examined in this dissertation for implementing effi-
cient data structures and algorithms within a Time Warp synchronized parallel simulation kernel executing

on shared memory, many-core processors.
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Chapter 6 presents an overview of the experimental setup and details of the simulation model benchmarks.

Performance data from these experiments along with detailed analysis is also included in Section 6.4.

Chapter 7 presents a consolidated overview of the most effective scheduler configurations found from the

quantitative study in Chapter 6.

Chapter 8 presents some final concluding remarks and suggestions for future research.



Chapter 2

Background

An overview of Parallel Discrete Event Simulation (PDES) and its Time Warp synchronization mechanism
is contained in this chapter. In addition to the specific paper citations contained in this chapter, an excellent

survey and book on PDES are also available [, 10].

2.1 Discrete Event Simulation

There are many types and modeling styles for simulation and Figure 2.1 illustrates the broad categories of
these. A physical system that is modelled as a sequence of events that are created at discrete time intervals
is called Discrete Event Simulation (DES) [18]. The work in this dissertation will focus on the efficient
implementation of the event processing engine in a parallel simulation kernel that is designed to execute
DES models.

A Discrete Event Simulation model consists of three main data structures, namely:

Simulation clock: that records the simulated time of the model under study. This clock can be used for two
primary purposes:
e measuring the progress of the simulation, and
e determining the order of events to be processed.
State variables: The snapshot of the simulated system at any specific point in time (otherwise called state)

can be described accurately by these set of variables.
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Figure 2.1: Discrete Event Simulation

Pending event set: A set of events that are yet to be processed.

A physical system can be described by a set of physical processes grouped together to form a Simulation
Model. Each of these physical processes corresponds to a Logical Process (LP). The LPs communicate
among themselves using timestamped events. The timestamp marks the simulation time used for ordering
and processing of events. The state of the system is updated only when an event is processed.

A Sequential Discrete Event Simulation is a type of simulation where events are globally sorted and
processed sequentially one at a time. A list holds all the events that are waiting to be processed and sorts
them in increasing order of timestamp. The event with the lowest timestamp is processed first. The state of
the system is updated and the simulation clock advances every time an event is processed. It is also likely
that one or more new events are produced when an event is processed. This sequential mechanism is too

slow and inefficient for large simulations and can be improved with parallelization.

2.2 Parallel Discrete Event Simulation

The method for running a discrete event simulation on a parallel computing platform is called Parallel Dis-
crete Event Simulation (PDES). The parallel computing platform can be a shared memory multiprocessor, a
distributed memory cluster, or a combination of both. A synchronization mechanism is used to coordinate
parallel processing of events from different LPs while preserving the causal order for the final result [19].

The Time Warp Mechanism [1,2,10] is one such synchronization mechanism that we will explore further in

8
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Figure 2.2: Violation of Event Causality

this dissertation. It is an optimistic synchronization mechanism which does not strictly preserve the causal
order of events at all times and sometimes temporarily allows violation by the simulation executive. The

next subsection provides a brief overview of the Time Warp mechanism.

2.2.1 Time Warp

The Time Warp mechanism is an optimistic method of simulation. It is based on the Virtual Time paradigm
[2] which is a method for ordering events in distributed systems without requiring any knowledge of real
time. Virtual Time is looked upon as the simulation time in case of parallel discrete event simulation.

Events from different LPs can be processed independently in an optimistically synchronized mechanism
such as Time Warp. No consideration is required for situations when lower timestamped events are received
i.e., when the causal order of event is violated. Figure 2.2 depicts a causality violation scenario by showing
the timing diagram for events in three LPs. An event with timestamp = 3 is processed by LP; and two
events are generated as a result, one with timestamp = 8 is sent to L P> and another with timestamp = 5 is
sent to L P3. L P3, on processing this received event, generates an event for L P, with timestamp = 6. This
event has a lower receive time than the previous event (timestamp = 8) received by L P». If this previously
received event is processed by L P, before the event with lower receive time is received, it would lead to
incorrect update of the state as well as new events could be sent to itself or other LPs incorrectly.

Rollback is the process of undoing the effects of incorrectly processed event(s) when a causality violation
is detected at an LP. Straggler event is that incoming event with a timestamp lower than the LP simulation

clock (the LP has advanced prematurely). The straggler event denotes a causality violation and triggers a

9
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Figure 2.3: Data Structures of Logical Process in Time Warp

rollback. According to Jefferson [2], three data structures per LP are necessary to handle rollbacks: (1) Input
Queue, (2) Output Queue, and (3) State Queue. Figure 2.3 shows the Input Queue which contains all past
and future event, the Output Queue contains all previously sent events, and the State Queue holds snapshots
of previous states.

On rollback, the state of an LP is restored back to a snapshot that was saved at a timestamp prior to the
straggler event’s receive time. The Output Queue keeps track of all events, with send time greater than the
straggler event, that were sent incorrectly. Those events are are re-sent but this time as an anti-message or
negative event. An anti-messages is a copy of the positive event that has already been sent, but with a crutial
differentiator — a bit within the event payload is set to indicate it is a negative event. The receiving LP does
not process an anti-message in the same way as it processes a positive event. The anti-message’s job is to
cancel out the positive counterpart in the input queue. The anti-message can also be a straggler if it causes
causality violation for the receiving LP. In that scenario, a rollback is triggered in the manner mentioned
above. This recursive process stops when the simulation is rid of causality violations.

The minimum timestamp of all unprocessed events and anti-messages at any given point during the
simulation is called the Global Virtual Time (GVT) of the simulation. Events that have been sent but not
yet received are also tracked for this metric [20]. Timestamp of the smallest unprocessed event in an LP
is referred to as its Local Virtual Time (LVT). Though irrelevant as a metric on its own, LVT is essential
to determine the GVT in a distributed environment. GVT calculation is a complex problem of estimation.

Several algorithms for GVT estimation have been discussed in [21]. Estimation of GVT allows us to fix a

10
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lower bound on how far back in time a rollback can occur. This is useful for selective elimination of events
from the input and output queues and the states from the state queue. Only those events and states that
have timestamp lower than GVT are eliminated since those will never be used again. This step is useful
for memory reclamation as well as to commit I/O operations that cannot be undone. The process is called
Jossil collection and it does not necessarily have to be GVT-based. There are several other methods of fossil

collection as discussed in [21].

2.3 Architecture of Parallel Processing Systems

Parallel processing systems [ 1,12] are generally characterized based on the manner in which processors and
memories are grouped together. A single machine which shares a common address space for all processes
is called a shared memory system. These systems can either have a single physical memory unit or multiple
memory units. Multiple machines with separate process address connected over interconnected network is

called a clustered system.

2.3.1 Shared Memory Multiprocessors

Symmetric Multiprocessor (SMP) consists of a group of identical processing cores connected to a single
shared memory with full access to the input/output devices in the system. This arrangement allows uniform
time access to the shared memory from each core. In general, this architecture fails to scale up linearly
with increasing core counts due to the steep increase in memory contention. As a results, the number
of processor cores in these configurations is generally bounded by some small number (generally < 16,

although this number continues to increase). Figure 2.4 illustrates a typical SMP system.

Non-Uniform Memory Access (NUMA) processor has multiple cores and multiple memories with vari-
able access times to different memory locations based on the transport path between the processing cores
and the memory module. In general, each core has a local memory module that provides fast access to its
contents while access to a non-local memory module (generally local to some other core) is accessed with
a longer access time. Due to the higher access time for remote memory units, the common programming

practice is to maximize local memory accesses for a processor. Compared to symmetric multiprocessors,
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Figure 2.4: A Symmetric Multiprocessor

contention to single memory does not necessarily increase when number of processors is increased in NUMA
systems. As a result, the latter system is capable of larger scale-up than SMP systems. Figure 2.5 illustrates

a typical NUMA system.

2.3.2 Clustered Systems

A Beowulf Cluster (or simply cluster) is a loosely coupled set of machines (also called nodes) connected
together over a local network. It is designed to appear as a single machine to the user. All nodes on the
cluster execute the same program concurrently by launching multiple processes on each machine. A cluster
allows the program currently being processed to communicate among processes using some type of message
passing. This message passing is generally handled by a parallel communication software such as Message
Passing Interface (MPI) [22] or Parallel Virtual Machine (PVM) [23]. Figure 2.6 illustrates a commonly

used version of the Beowulf cluster.
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Figure 2.6: Beowulf Cluster
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2.4 Communication in Parallel Systems

Any application capable of parallel and independent execution on multiple processes/threads may need
to exchange information between these processes/threads. Processes/threads can communicate amongst

themselves in either of these two ways:

e Message Passing: explicitly pass messages to each other using well defined message formats, or

e Shared Memory: shared data structures accessible to all processes/threads.

There are fundamental differences between these two communication methods and both have their strengths

and weaknesses. Sections 2.4.1 and 2.4.2 explore these two communication models in further details.

2.4.1 Message Passing

Processes communicate only through serialized messages in a message passing system. These messages
can be passed either in synchronous mode or in asynchronous mode. To enable the sender and receiver to

communicate via serialized messages, the format of the messages must be pre-defined.

Synchronous message passing requires a specific ordering of the send/receive operations for each pro-
cess so that the sender/receiver processes can operate together in synchronized fashion. Until a message
is received by the receiver, a sender’s send operation will remain blocked. Similarly, a receiver’s receive
operation will remain blocked until the sent message is fully received. These strict rules make every pro-
cess follow a predictable and synchronized communication pattern. The whole system might suffer from a
slow down since processes are not allowed to execute other operations while communication operations are

ongoing.

Asynchronous message passing allows processes to continue with routine executions without blocking
immediately after the start of send/receive operations. All pending operations are held in temporary queues
and can be processed at any time and in any order. As a result, these processes do not have to follow a

predictable communication pattern when communicating in asynchronous mode.
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Figure 2.7: Message Passing Communication Model

If the workload can be partitioned sensibly to keep remote communication at a minimum, the number of
cooperating processes can be scaled to essentially any size. This is the chief advantage of message passing.
These processes can utilize separate address spaces on different machines while communicating over the lo-
cal network. However, it takes time to serialize, deserialize, and copy messages. This latency is significantly
higher when compared to the processing speed of modern processors. This latency is the chief disadvantage
of remote messaging. There might be further delays when processes use an interconnection network because
of extra communication latency. Fine-grained parallel applications need to send and receive lots of small
messages which is not something message passing is ideally suited. Message passing is illustrated in Figure

2.7.

Message Passing Interface (MPI)

MPI [22] is an extensive and popular message passing standard popularly used for parallel applications.
It supports both synchronous and asynchronous forms of communication and is a standard specified for
developers and other MPI users. Several implementations of the MPI library exist, most popular among

them being MPICH and OpenMPI.

2.4.2 Shared Memory

In parallel applications, it is possible for processes to communicate via shared data structures and share a
common address space. A producer can be allowed to insert data directly into the data structures of a remote
machine and the consumers can then remove this data for usage. Compared to message passing schemes,
data transmission via this shared data structure scheme takes less time. Pointers can be also be used instead

of copying large datasets to further improve the speed. To prevent multiple processes from corrupting the
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stored data by simultaneously performing read-modify-write operations on the same data, access to the
shared data structures is protected usually using lock synchronization mechanisms. Locks protect entire
sections of code that are executed by different processes when accessing the same data structures such as
mutexes or semaphores. If too many processes contend for the lock simultaneously, the performance of
shared memory data structures may be adversely affected. This makes it difficult to scale systems that use
shared memory only as means of communication. A simple shared memory system is illustrated in Figure

2.8.
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Related Work

There are several popular implementations of Time Warp synchronized parallel simulation engines. An

overview of some of the most popular ones is presented in this chapter.

3.1 Georgia Tech Time Warp (GTW)

Georgia Tech Time Warp [24] (GTW) is a general purpose Time Warp Simulator that is not used anymore.
However, it is significant in that it was one of the most popular shared-memory PDES engine available.
The shared memory multiprocessors such as the SparcStation and SGI PowerChallenge that GTW was
designed for are now obsolete. Inspite of being out-dated, GTW set the template for most modern Time Warp
simulators in use today. A single multi-threaded process runs a simulation model in GTW. Communication
between threads is handled via shared data structures bound to a single processor.

A thread processes events from a statically allocated LP group in a simulation model. This ensures
that the same processing core is used for processing events from a LP. Each thread has its own set of data
structures to manage the distributed pending event set for its assigned LP group. The pending event set for

each processor consists of three main data structures listed below [24]:

1. Message Queue is a linked list that holds positive messages for LPs. Each message is mapped to the
processor that handles that LP. Tasks running on any processor can access this shared data structure.

Access is usually synchronized via lock.
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2. Cancel Queue is similar to Message Queue but, instead of positive messages, it holds negative mes-

sages (also known as anti-messages). This queue also requires a lock for synchronized access.

3. Event Queue is a composite data structure that is used to directly schedule events for processing. It
holds both unprocessed and processed events. The event queue consists of two data structures, one
each for processed and unprocessed events. A doubly linked list holds the processed events while a
priority queue holds the unprocessed events. The priority queue can be configured by the user to be

either a calendar queue or a skew heap.

Positive messages sent between LPs are inserted directly into the Message Queue while negative ones are
directly inserted into the Cancel Queue. In order to process events, each thread first moves events from the
Message Queue to the Event Queue and then processes the rollbacks. Messages from the Cancel Queue are
removed next for event cancellations and any associated rollbacks are processed. The thread then processes
one or more of the smallest events from the Event Queue and adds those events to the processed event
list. The procedure mentioned above is repeated by all processors until the end of the simulation. Figure 1

presents the pseudo-code for GTW’s main event processing loop.

while Event Queue is not empty do

Transfer messages from Message Queue to Event Queue

Process any rollbacks

Remove anti-messages from Cancel Queue

Cancel events and process associated rollbacks

Remove one or more smallest events from unprocessed event pool in Event Queue
process those events and move them to processed event pool

Algorithm 1: Event Processing in GTW [20, 24]

Threads can remove multiple events from the Message Queues and Cancel Queues in order to avoid
frequent contention for access to these queues. This type of processing is called batch processing and the
number of events in any batch represents the batch interval. All events in a batch are processed serially
without consideration for rollbacks or cancellations.

In GTW, there is no need to send anti-messages explicitly since all communication is over shared mem-
ory. GTW calls its cancellation method direct cancellation because only a pointer to the event is needed

for event cancellation. GVT calculation also becomes faster on a shared memory platform since shared
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data structures can be used more effectively instead of messages passed between processors. This approach,
however, limits the use of GTW to only a single multiprocessor machine, that too optimized for specific
architectures.

The developer of a simulation model is responsible for partitioning the LPs among processors. This
partitioning must be done during initialization of the simulation model. This is an unreasonable expectation.
To effectively partition the LPs, the model developer would need to understand some the features of the
underlying architecture such as the number of processors. Additionally, this static partitioning approach does
not allow dynamic run-time balancing as there are no separate input queues for each LP. All unprocessed

events for each processor are held within a single message queue.

3.2 Clustered Time Warp (CTW)

Clustered Time Warp [25] (CTW) employs a novel hybrid approach to processing events in clusters. Events
within a LP group (or cluster) are processed sequentially while synchronization between different clusters
is via the Time Warp mechanism. CTW was developed primarily to support digital logic simulation. Digital
logic simulation tends to have localized computation within LP groups and is suited for the computational
framework of CTW. In addition, some simulation models such as digital logic have events with fine compu-
tational granularity and lots of LPs. In a Time Warp simulator, this can cause significant increase in rollback
count and memory footprint. Although CTW supports shared memory multiprocessors, it only uses shared
memory with a custom message passing system. Thus, CTW is best suited for NUMA architectures and is
not recommended for execution on a Beowulf Cluster.

Each LP cluster contains a timezone table, an output queue, and a set of LPs. Each LP has an input queue
and a state queue. Based on events received from different LP clusters, the timezones (and timestamps) are
recorded in the timezone table. A new timezone is added to the timezone table when an event is received
from a remote cluster. Since anti-messages can only be sent between clusters and between LPs inside a
cluster, a single output queue per cluster is sufficient.

CTW’s rollback scheme is called clustered rollback. When a cluster receives a straggler event, rollback
will occur for all intra-cluster LPs that have processed events with timestamps greater than the straggler

event. Local rollback, which is an alternative to clustered rollback, allows the straggler event to be inserted
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into the input queue of the receiver LP. The LP will trigger a rollback when it detects this straggler event.
Even though clustered rollbacks may slow down computation by triggering rollbacks unnecessarily in some
LPs, it eliminates the need to store processed events. This reduced memory footprint led CTW’s designers
to prefer clustered rollbacks.

The timezone table in CTW is used to determine the frequency of state savings. Here the timezone of
the last processed event is looked up before processing an event. The state is saved if this event belongs to a
different timezone. This infrequent approach can broadly be classified into two categories, namely /ocal and
clustered checkpointing. In local checkpointing, all LPs save their state every time an event is processed in
a new timezone, even if the event was received from a remote cluster. In clustered checkpointing, only the
LP that receives an event from a remote cluster saves its state. A higher state saving frequency of the latter
approach means more events must be saved for coast forwarding during state restoration. This increase in
rollback computation and higher memory consumption was the reason why CTW'’s designers preferred the

local checkpointing approach.

3.3 Rensselaer’s Optimistic Simulation System (ROSS)

Rensselaer’s Optimistic Simulation System (ROSS) [26] is a general purpose simulator that started life as a
re-implementation of GTW. Its capabilities were enhanced steadily over the years and now it can run both
conservatively and optimistically synchronized parallel simulations as well as sequential simulations. It is
widely used as a Timewarp-synchronized optimistic parallel simulator.

Although the event scheduling mechanism is similar to GTW, ROSS supports several priority queue
implementations. There are also choices for algorithms used in fossil collection, state saving, and GVT
calculation. A major difference between GTW and ROSS lies in the latter’s use of processes instead of
threads. ROSS uses MPI-based message passing instead of shared memory for inter-process communication.

ROSS, borrowing ideas from GTW, maps every LP to a process. Each process contains its own pending
event set data structures and since these are not shared among processes, locks are unnecessary. Although

similar to the data structures in GTW, ROSS uses different naming convention as mentioned below:

1. Event Queue for a process holds all the positive events for all LPs linked to that process. In addition, all
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remote events, both positive and negative, are held in the Event Queue. The structure is implemented

as a linked list and is analogous to the Message Queue in GTW.

2. Cancel Queue is similar to the data structure used in GTW but without the lock (which is unnecessary

here). It is a linked list that holds negative events for all LPs for the corresponding process.

3. Priority Queue holds events in increasing order of timestamp. ROSS allows the user to configure the
type of implementation, options available are Calendar Queue [15], heap [27], Splay Tree [28], or

AVL tree [29]. The Priority Queue is analogous to the unprocessed event queue in GTW.

ROSS partitions the LPs on any process into groups called Kernel Processes (KPs) in order to reduce the
time taken to fossil collect LPs. Similar to clustered rollback in CTW, all LPs in a KP undergo rollback and
fossil collection together.

Instead of relying solely on traditional copy state saving to rollback LPs to a previous state, ROSS also

uses reverse computation [30].

3.3.1 ROSS-MT

ROSS-MT [31] is a multi-threaded version of ROSS. Unlike the latter, ROSS-MT is optimized to use shared
memory for inter-thread communication. As message passing using MPI is completely absent, all events
are directly inserted into the event queues. Event Queues are further divided by possible senders in order to

reduce the added contention on them. The memory management in ROSS-MT suits NUMA architecture.

3.4 WARPED

WARPED [32,33] is a general-purpose discrete event simulator. It follows Jefferson’s classic model unlike
the Time Warp simulators that came before it. Here each LP has its own input, output, and state queues.
WARPED was initially a process-based solution with communication via message passing only. With the
development of multicore processors, in order to improve concurrent processing of events, each process was
extended into multiple threads. The complexity of WARPED became unmaintainable after few years because
multiple researchers kept adding new features and algorithms to it. Though configurable and modular in

design, WARPED became too complex for new developers to learn and enhance.
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This has led to the development of WARPED2, which is based on the design and architecture of WARPED.

Chapter 4 provides a detailed overview of WARPED?2.

3.5 The ROme OpTimistic Simulator (ROOT-Sim)

The ROme OpTimistic Simulator [34] (ROOT-Sim), a general purpose Time Warp simulator, shares sev-
eral common characteristics with WARPED. Both use MPI-based message passing and can be classified as
classic Time Warp implementations since each LP has its own input, state and output queues. ROOT-Sim
is distinctly different from other Time Warp simulators when it comes to internal instrumentation. Memory
usage can be optimized using Dynamic Memory Logger and Restorer (DyMeLoR). DyMeLoR analyzes the
performance of simulation models to understand which is a better fit — copy-state saving or incremental
state saving. It can also transparently make a runtime switch between these two state savings strategies.

Committed and Consistent Global Snapshot (CCGS) is a service that ROOT-Sim introduced for trans-
parently rebuilding the global snapshot of all LP states after each GVT calculation. During every GVT
calculation, each LP has access to its portion of the global snapshot. This service allows any simulation
model to implement its own custom global snapshot algorithm.

ROme simulator does not advocate the use of shared memory event processing pool for the threads on
an SMP node [35,36]. Instead, it relies heavily on a partitioned pending event structure with dynamic thread
count in each kernel instance. Depending on the current workload, the number of threads can be scaled up
or down.

In some of their recent papers [37—40], they have explored how all threads can fully share the work-
load of events by loosely coupling simulation objects and threads. Though this fully shared pending event
pool will allow concurrent processing of any event, it is necessary to design parallel “insertion” and “de-
queue” operations that are efficient. Loosely based on the Calendar Queue [15], they claim that this scalable
lock-free event pool is accessible concurrently with O(7) amortized time complexity for both “insert” and
“dequeue” operations.

Speculative processing and rollback techniques are currently used for causality maintenance by sev-
eral Time Warp-based PDES systems. Pellegrini et al [41] question the effectiveness of this approach and

propose an alternative preemptive approach which requires the CPU to be dynamically reassigned to past
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unprocessed events (or operations such as rollback). According to the results they present, this approach
allows the simulation to deviate less from the critical path by reacting promptly to the causal violations.

This reduces the overall number of causality violation and is ideal for multi-core x86-64 platforms.
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The WARPED2 Simulation Kernel

WARPED?2 is a C++-based Time Warp synchronized parallel discrete event simulation kernel. It is exten-
sively used for research on parallel simulations on multi-core processors and clusters. The kernel also
provides a complete set of APIs that anyone can use to construct a simulation model. However, a fair
amount of knowledge about Time Warp concepts is necessary at the beginning due to the low-level na-
ture of some of the APIs (e.g., state definition and copy constructors for the state). The WARPED2 kernel
and model git repositories are publicly available at ht tps://github.com/wilseypa/warped?2 and
https://github.com/wilseypa/warped2-models. WARPED2 supports two types of simula-

tion, namely:

e sequential simulation, and

e Time Warp synchronized parallel simulation.

4.1 Conceptual Overview

In order to make WARPED?2 easy to configure, extend and maintain, the simulation kernel uses a modular
design. At startup, all components are configured and created individually. The sub-components are ac-
cessed through pointers. The kernel’s event dispatcher supports both Sequential and Time Warp simulation.
Sequential simulator is a fairly simple software as it contains only a single list of unprocessed events and

does not require integration of any other component. On the other hand, the Time Warp event dispatcher
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requires integration of several components. Each component provides specialized algorithms that deals with

one of the following:

e event scheduling

e state saving

e cancellation

o GVT

e termination

e interprocess communication

e statistics

Figure 4.1 illustrates the WARPED2 implementation of Time Warp.

The components in Time Warp can be broadly classified as either local or global. Local components
are responsible for controlling the node-specific activities of all LPs on that node, namely event processing,
rollbacks and fossil collection. Global components, on the other hand, are responsible for cluster-wide con-
trol issues such as GVT, termination detection and calculation of statistics. Communication to all processes

in a cluster environment is essential for determination of global state of the system.

4.1.1 Local Time Warp Components

The principle local components of WARPED?2 are:

e The Event Set contains all unprocessed and processed events for the LPs on a node. The important

data structures include:

— Input Queue for each LP, and

— Schedule Queue for events waiting to be processed soon.
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The Event Set is responsible for storage and scheduling of unprocessed events for execution. It also
processes rollbacks, and takes care of fossil collection for processed events. The Event Set has been
designed for a multi-threaded environment and so the data structures that store pending events are

designed for thread-safe concurrent or serialized access.

e The Output Manager is the module that holds all the Output Queues necessary for storage and track-
ing of outgoing events. WARPED?2 supports only aggressive cancellation [10]. The Output Manager

allows the kernel to do the following:

— add newly generated events to its output queues,
— dequeue events from output queues for processing a rollback, and

— fossil collection of old output events to free up space on the output queues.

e The State Manager is the module that holds all the saved LP states inside its state queues. WARPED?2

WARPED-2 simulation model

Model-specific Partitioner q
A Logical Processes
(if present)

WARPED-2
simulation Partitioner ‘ ‘ Output Manager

kernel

Termination Manager | Statistics Manager
Communication Manager GVT Manager

State Manager

Event Set

Message Passing Library
(MPI / openMPI)

Figure 4.1: Time Warp Components in WARPED?2
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supports only periodic state saving [42]. The State Manager allows the kernel to do the following:

— saving the state of an LP,
— restore the state of an LP in case of a rollback, and

— fossil collection of old states in order to free up space in the state queues.

4.1.2 Global Time Warp Components

The major global components of WARPED?2 are:

e The GVT Manager is the module responsible for tracking the global progress of any simulation. The
progress of a simulation is measured in terms of Global Virtual Time (GVT) which can be calculated
using either shared memory or message passing algorithms [20,43,44]. In WARPED2, the GVT is

calculated via a hybrid approach:

Step 1: multiple worker threads on each node regularly report the lowest timestamp for that node, and

Step 2: nodes communicate their locally calculated lowest timestamp to other nodes for computation

of the global progress as a minimum of these reported timestamps.

WARPED?2 currently supports the following two GVT calculation modes:

— Synchronous [20] mode focuses on synchronized global reduction between all threads from all

processes, and

— Asynchronous [43] mode uses Mattern’s message passing algorithm [43] and Fujimoto’s shared

memory algorithm [20].

A more detailed explanation of the GVT algorithms of WARPED?2 are available in [21].

e Termination Manager is the module in WARPED?2 that initiates termination when it realizes all pro-
cesses in the simulation have become inactive. Similar to the GVT Manager, the Termination Manager

requires a hybrid approach involving worker threads and Communication Manager.
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o Statistics Manager records local statistics on a distributed simulation. It also provides reduction
methods to allow WARPED?2 use the local statistics to compute and report consolidated statistics for

the whole simulation.

4.1.3 Communication Manager

The Communication Manager is the module that facilitates connection between the global Time Warp com-
ponents and the underlying message passing library. In WARPED2, the entire interprocess communication,
including remote events sent to or received from another process, is channeled through the this Communi-
cation Manager. The manager accepts registration from any class that needs interprocess communication.
This registration requires the class to inform the message type and provide a callback function for receiving

events.

4.1.4 Partitioner

The Partitioner is a module responsible for dividing the logical processes of a simulation into groups (or
partitions). At the time of initialization, the Partitioner is asked to create a defined number of partitions
from a provided list of LPs using a partitioning technique. The WARPED2 kernel provides support for the

following types of partitioning strategies:

e Round Robin partitioning is cyclic binning of LPs into different partitions. Figure 4.2 illustrates this

algorithm.

o Profile-Guided partitioning is a network statistics driven partitioning strategy. Alt et al [17] studied
how this partitioning can be done to minimize the number of remote messages sent in a distributed
environment. They presented data that showed the effectiveness of METIS [45] as an effective par-
titioning tool for the LPs. The profile-guided partitioning in WARPED?2 is done by partitioning a
weighted LP network graph using METIS, where weight is the count of events (or messages) ex-
changed between any two LPs. Section 5.2.4 explains the event bag scheduling technique which

relies on modular communities of LPs found by the Louvain partitioning algorithm [46].
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Figure 4.2: Round Robin Partitioning in WARPED2

e Users can define Custom partitioning strategies to suit the needs for the simulation model they are

building.

Fartitioning is an effective way to distribute workload across a parallel computing platform, especially
if the simulation size is too large for any individual machine. Figure 2.6 shows how different partitions can

be distributed on different nodes in a Beowulf cluster.

4.2 Journey of an Event

4.2.1 How are Events Ordered?

The implicit assumption for Time Warp is that every event is tagged with a totally ordered clock value based
on virtual time [2]. This is essential to ensure that results from different simulation runs are deterministic
[47]. Having a global tag for each event ensures the preservation of causal dependencies.

In order to ensure total ordering of events, WARPED?2 uses the following 4-tuple scheme:

1. Receive Timestamp
2. Send Timestamp
3. Name of Sender LP

4. Generation

For practical purposes, the Receive Timestamp is the tagged clock value for each event. In situations where
multiple events share the same Receive Timestamp value, the last three event parameters allow those events

to be ordered.
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Send Timestamp for virtual time systems is analogous to Lamport’s logical clock [19] in real time dis-
tributed systems. It can ensure correct ordering of events as long as an LP sends only one event with a
unique combination of Send Timestamp, Receive Timestamp and Receiver LP. Otherwise, strict ordering of

events would not be preserved and WARPED?2 forbids that.

Name of Sender LP is necessary when Send Timestamp fails to order all events correctly. Events received
with the same combination of Receive Timestamp and Send Timestamp from different senders can be ordered
using Name of the Sender LP. If this is not implemented, it is possible to get different results from different

runs of the simulation [47].

Generation is a per-LP counter that keeps track of the number of events sent from a particular LP. In
distributed memory systems, this counter value helps to differentiate between the same event which might
get re-sent after a rollback [47]. Each event is tagged with a Generation id before being sent. This value is

then used at the receiver’s end for resolving any conflicts in the event order.

4.2.2 Pending Event Set

The set of events that are waiting to be processed is referred to as Pending Event Set. In WARPED?2, each
process maintains a pending event set for its dedicated set of LPs. This pending event set is logically separate
from that of other processes. Events generated by a LP can either be sent locally to a LP present on the same
process (or node) or can be sent to a LP on a remote process. Local events are inserted directly into the
pending event set while remote events are inserted into a remote event send queue. The manager thread
present on each process removes these remote events from the queue, forms event messages and sends these
messages to the intended receiver process. The manager thread at the other end, on receiving an event
message, unpacks this message to re-form the event and then inserts this event into the pending event set of
the receiver. Each LP in the pending event set has its own Input Queue which temporarily holds all incoming
events for that LP till they are processed. This queue is directly accessible to all threads and is protected by
a lock.

The Input Queue holds both positive events and negative events (or anti-messages) and keeps all stored

events sorted in increasing order at all times. In terms of sorting order, anti-messages have priority over their
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positive counterparts. This mechanism ensures anti-messages are noticed first and, while processing it, the
positive counterpart (if present in the Input Queue) can be cancelled. This helps to eliminate ‘preventable’
rollbacks [48]. The Input Queue only stores pointers to unprocessed events which ensures events are not
unnecessarily copied. Event data replication will lead to an excessive use of available memory.

The Schedule Queue is a secondary data structure that is part of WARPED2’s pending event set. The
original design of WARPED?2 assumes that this Schedule Queue is a LTSF (Lowest TimeStamp First) Queue
(similar to an Input Queue) because it sorts lowest timestamped events from multiple LPs in increasing
order. One event from each LP is scheduled into a common Schedule Queue. Scheduling an event here
implies copying of event pointer into the Schedule Queue. The event is not removed from the Input Queue
while it is scheduled. A worker thread “dequeues” the smallest event available in the Schedule Queue for
processing. One or more Schedule Queues may be available for each process (or node). Since multiple
worker threads can access a particular Schedule Queue, access to this data structure is serialized using a
lock.

For each LP, it is necessary to keep track of the event that has been scheduled for the following reasons:

e [t provides a way to identify whether the smallest event from an LP has been scheduled. When an
event is into the Input Queue of an LP, it can be compared against the currently scheduled event. If it
turns out that the newly inserted event is smaller, the new event can then be scheduled in place of the

already scheduled event.

e [t prevents multiple worker threads from processing events in the same LP. This might lead to an un-
detected case of causality violation causing out of order event commits to happen without corrections

via rollback.

Figure 4.3 depicts the pending event set data structures used in WARPED2.

4.2.3 Processing of Events

At the start of simulation, each Schedule Queue is allocated one or more worker threads. Each thread
processes events following the exact same procedure. A scheduled event is “dequeued” from a Schedule

Queue but remains stored in the Input Queue until that event has been either processed or cancelled out. In
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Figure 4.3: WARPED2 Pending Event Set

order to ensure the dequeued event is not a straggler, it is first compared against the last processed event
for that receiving LP. If it turns out to be a straggler, rollback procedure is initiated for that LP. A straggler
may also be an anti-message if its positive counterpart has already been processed. Due to the manner in
which WARPED?2 cancels positive event in Input Queue on receiving an anti-message, it can be assumed that
if the scheduled event is an anti-message, it is a straggler and the LP needs to rollback. If the scheduled
event is a positive one and not a straggler, then it is processed normally and the LP State is saved. Any
new events that were generated are sent to the intended LPs. The recently processed event is then stored
in the Processed Queue and a new event is scheduled from the LP into the Schedule Queue. Algorithm 2
summarizes the worker thread event processing loop. In general, the algorithm proceeds as follows: before
an event is inserted into the Input Queue, it is compared to the event that is currently scheduled for that
LP. The new event is immediately scheduled if the corresponding LP has currently scheduled event or if
the new event is smaller than the currently scheduled event. This prompt initiative prevents a rollback from

occurring.

4.2.4 Rollbacks & Cancellation

According to Jefferson [2], three data structures are necessary for the rollback and event cancellation process,
namely: the Input Queue, the Output Queue, and the State Queue. The data structures used in WARPED2
are based on Jefferson’s description. But while Jefferson’s approach requires the Input Queue to hold both

unprocessed and processed events, separate data structures are maintained in WARPED?2 for ease of schedul-
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while signal to terminate not detected do
e < getNextScheduledEvent ()
LP < receiver of e

if e < last processed event for L P then
| Rollback LP

if e is an anti-message then
Cancel event with e (if possible)
Schedule new events for L P
continue

Process event e
Save state of LP
Send newly generated events to their destinations

Move e to Processed Queue
Replace scheduled event for L P with an event from the Input Queue (if available)

Algorithm 2: WARPED?2 Event Processing Loop

ing.

A 3-tuple value is stored for each entry in the State Queue. The tuple attributes are:

e The address of the memory location holding the saved copy of the LP state.

e The address of event that produced the LP State. If there is a rollback, this event will be compared
against the straggler event for identifying the restore point. It will also be compared against the GVT

value during fossil collection.

e In order to ensure deterministic results, state of the LP’s random number generator is saved. A linked

list holds these states and are restored during a rollback.

Each entry into the Output Queue is a tuple similar to that in a State Queue. The tuple attributes are:

e address of the source event, and

e address of the sent event.
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In order to figure out which sent events need to be cancelled out via anti-messages in case of a rollback,
the source event is compared against the straggler event. Processed Queue of an LP holds the addresses of

events processed from that LP.
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Chapter 5

Optimizing WARPED2’s Pending Event Set

This chapter is a continuation of the discussion on Pending Event Set started in Section 4.2.2. As mentioned
in that section, the Schedule Queue is a data structure that stores lowest unprocessed pending events from all
of the LPs in sorted order. Worker threads contest for dedicated access to this shared data structure in order
to “dequeue” events for processing. Conventional designs visualize this Schedule Queue as a priority queue
where events are arranged in increasing order of their timestamp. However, in this chapter, alternative ideas
on sorting data structures and scheduling techniques will be presented to show it is not always necessary to
fully sort all pending events. The remainder of this chapter is organized as follows. Section 5.1 presents
the different data structures that can be used as Schedule Queue in WARPED2. Section 5.2 presents some
scheduling techniques which, when used in combination with the data structures discussed in Section 5.1,

can boost the performance of the WARPED2 simulator.

5.1 Data Structures for Scheduling Pending Events

Ronngren et al [49] proposed that all unprocessed and processed events along with each event’s execution
status can be stored inside a common data structure called Linear List. The Linear List is a doubly linked
list [50] that is simple to implement. Though rollbacks and fossil collection become more efficient when
using Linear List, the authors [49] state that Linear List struggles to insert events into a large event pool. As
an alternative to linear list, they suggest that the improved skew heap [51] is a promising alternative.

Prasad et al [52, 53] proposed that, for medium to coarse-grained simulations, parallelized Calendar
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Queues [15] can be used. Each processor maintains its own separate Calendar Queue. The result from
their experiment showed that arranging the pending events into queues locally does not adversely impact the
balance of the simulator when compared to the standard global queue-based arrangement.

Santoro et al [54] proposed a modified version of the Calendar Queue that uses an array and a hier-
archical bitmap. They show that this modification allows the priority queue to access its stored events in
constant-time with low overhead.

In WARPED?2, several different data structures have previously been explored for managing the pending
event set. Similar to the aforementioned research on priority queues, a reduction of the overhead involved in
sorting events remains a major motivating factor. However, the advent of multi-core processors and the sub-
sequent analysis of the contention issues involved in using shared data structures has raised concerns about
the current design. In Sections 5.1.1, 5.1.2, 5.1.3 and 5.1.4 several different data structures are explored for

creating an effective Schedule Queue in WARPED?2.

5.1.1 STL MultiSet and Splay Tree

The C++ STL MultiSet and Splay Tree are both well-known tree-based implementations of a priority queue
and are used extensively in different applications. STL MultiSet is a sorted multiple associative container
present in the Standard Template Library [55] which is similar to a Set container but, unlike the latter,
allows multiple instances of any element. It permits lookup, insertion, and removal of an element in O(log
n) amortized time and is ideal for quickly verifying whether an element is present inside the container. The
STL MultiSet has been implemented using Red-Black Tree [56], a self-balancing binary search trees and
supports bidirectional iterators.

Similar to the STL MultiSet, the Splay Tree [28] is also a variation of self-adjusting binary search tree
that allows for quick access to recently accessed elements. It can insert, lookup, and remove an element in
O(log n) amortized time. The Splay Tree used in WARPED?2 is a faithful implementation of the original data

structure described in [28].
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5.1.2 Ladder Queue

The Ladder Queue [8] is a priority queue which utilizes the bucket-based sorting philosophy of a Calendar
Queue [15]. In case of a Calendar Queue, each bucket stores events within a certain time-window (or
month) and the entire data structure must sometimes be resized at regular intervals in order to balance the
changing range of event timestamp across the buckets. The Ladder Queue avoids the need for the resizing of
buckets by dynamically splitting only the bucket with earliest event timestamps into multiple buckets once
the number of events stored in that particular bucket exceed a pre-defined threshold. Figure 5.1 illustrates
the principle components of a Ladder Queue.

Initially the Ladder Queue data structure is empty. Incoming events are inserted into the 7op structure
without sorting. The minimum and maximum timestamp values for events stored inside Top are updated (if
needed) when any new event is inserted there. On receiving the first “dequeue event” request, the events
in Top are transferred to Rung;. The total bucket count in Rung; is configurable dynamically. The time
window of events transferred from Top is uniformly partitioned into all the buckets available in Rung;.
The buckets store events without sorting in Rung; and there is an upper threshold for the number of events
that can be stored in each bucket. When the number of events in the first non-empty bucket of the current
rung exceed this threshold, a new lower rung is created. Events from the first non-empty bucket are then
transferred to this new rung by splitting the bucket’s time window uniformly across all buckets in the new
rung. Figure 5.1 illustrates how this process works. Here events from the first non-empty bucket in Rung is
transferred to Rungs by splitting the time window of the bucket uniformly. Thus, the bucket size (defined as
the number of elements in the bucket) of each bucket in Rungs is a sub-range of the bucket size in Rung.

The final step in the “dequeue event” process is transfer of the first non-empty bucket (which holds events
with the smallest timestamps) to Bottom. The Bottom is a priority queue which sorts events in increasing
order of their timstamp. The “dequeue” operation is then able to pull the smallest event stored in Bottom.
Bottom then holds the smallest events available to the Ladder Queue. Events can be dequeued from Bottom
until it becomes empty. Any new dequeue request at this point initiates another transfer of events from the
rungs. The first non-empty bucket of the lowest available rung is transferred to the Bottom. When the events
in the rungs and Bottom of the ladder are exhausted, these ladder elements are replenished by transferring

events from the Top. Algorithm 3 explains how events are dequeued from the Ladder Queue.
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Figure 5.1: The Ladder Queue Structure
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After the initial events to the Ladder Queue are pulled from Top into the ladder rungs, any new incoming
events are inserted into that element of the Ladder Queue (Top, Rungs, or Bottom) based on the value of its
timestamp as consistent with the current timestamp ranges contained in those elements. That is, if an event’s
timestamp lies within the time window of any rung, it is inserted into a specific bucket on that rung; the event
is inserted into Bottom if the timestamp is lower than any of the available rungs; and finally any incoming
event with timestamp greater than Rung;’s time window is inserted into Top. Algorithm 4 explains the

“insert event” operation in details.

if Bottom not empty then
event e < dequeue event from head of Bottom
return e

if Rung(s) exist then

Find first non-empty bucket k in the lowest available rung x
Transfer events from bucket k in rung = to Bottom

Delete rung z if it has no non-empty buckets left

event e < dequeue event from head of Bottom

return e

/* Transfer events from Top into Rung(s) and Bottom */

Rung[l].bucketWidth <« TOp'ma;iz_sr‘fggminTs
Rung[1].minTS - Top.minTS$

Transfer Top into Rung|[1]

Top.minTS < Top.maxTS

Find first non-empty bucket k in Rung[1]

Transfer events from bucket k in Rung[1] to Bottom
Delete Rungl[1] if it has no non-empty buckets left

event e <— dequeue event from head of Bottom
return e

Algorithm 3: LADDER QUEUE Dequeue Operation
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ife » timestamp () > Top.minTS then
Insert event e into tail of T'op
return

while ¢ — timestamp () < Rung[r]|.minTs do
| x++

if x € valid rung then

e—timestamp () —Rung[z].minTS
Runglz].bucketWidth

bucket k +

Insert event e into tail of bucket %k of rung z
return

if Bottom.size > Bottom.sizeThreshold then

Create new rung whose index is y
Transfer events from Bottom to Rungly]

/* Insert event e into the Rung[y] */

e—timestamp () —Rung[y].minTS

bucket k < Rungly].bucketWidth

Insert event e into tail of bucket £k of rung y
return

Insert event e into Bottom
return

Algorithm 4: LADDER QUEUE Insert Operation
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What is exciting about the Ladder Queue?

From a conceptual standpoint, the Ladder Queue is able to store events from different epochs' separately in
its different sub-structures. Events from one epoch (whose timestamps fall in the range ¢ and ¢ + At) are
held in the Bottom and Rung elements while events from the next epoch (timestamps above ¢t + At) are held
in the Top element. Any incoming event is inserted into one of these three Ladder Queue elements based
on its timestamp. When there are no more events left inside Bottom and Rung(s), a “dequeue” operation
moves the ladder queue to its next epoch. The events in Top are then transferred to the Rung(s) and Bottom.
The time window of an epoch (¢ to ¢t + At) is defined by the minimum and maximum timestamp of events
pulled from Top. The Calendar Queue [15] can also coarsely sort events into buckets based on time window
(or epoch) but needs manual intervention to re-evaluate the time window’s At interval. Manual intervention
is not needed in Ladder Queue because its inherent design characteristics force the time window to be split
whenever the event count in a Rung bucket or Bottom exceeds a certain threshold. Through experimental
evaluation, Tang et al [8] proposed that the ideal value for this threshold is 50. This setting will be revisited

in the experimental assessment section of this dissertation (Chapter 6).

Is it necessary to split Bottom when its event count exceeds threshold?

Algorithm 4 shows how the events in the Bottom element are split between Rungs and Bottom when Bot-
tom’s event count exceeds a specified threshold. In a Ladder Queue, the stimulus for all dynamic adjustments
to time window is event count. However, in the Pending Event Set of Time Warp, it turns out that event count
in this context is insignificant. The focus here is to group all events which are within a certain time window.
While dynamic splitting of time windows in the Ladder Queue is essential for scheduling an optimal group
of events for execution, the hypothesis of this dissertation is that over-reliance on event count can lead to
excessive and unnecessarily time-wasting splits. The time window splits and transfer of events from Top to
Rungs and between Rungs are computationally not so expensive when compared to the split of Bottom and
transfer of events from Bottom to the lowest Rung. Algorithm 5 shows how the “insert event” operation can
be modified to eliminate the need for splitting the Bottom in case of an event overflow. This is the “insert

event” operation used in Ladder Queue implementation of WARPED?2.

'Each pull of events from Top into the Rungs and Bottom of the ladder queue is termed a new epoch.
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ife » timestamp () > Top.minTS then
Insert event e into tail of T'op
return

while e — timestamp () < Rung[z].minTs do
| x++

if x € valid rung then

e—timestamp () —Rung[z].minTS

bucket k < Runglz].bucketWidth

Insert event e into tail of bucket k of rung z
return

Insert event e into Bottom
return

Algorithm 5: LADDER QUEUE Modified Insert Operation

5.1.3 Ladder Queue with Unsorted Bottom

Extending the narrative in Section 5.1.2, the Ladder Queue [8] structure can be modified for use as a partially
sorted priority queue. Since the Ladder Queue efficiently groups events within a small time interval, Bottom
most likely contains events that are causally independent. Any Time Warp-synchronized PDES simulator
greedily processes events and has the ability to recover from causal violations (events processed out-of-
order in an LP) if detected within a reasonable time interval. Under ideal circumstances, events inside
Bottom would be causally independent and it should be possible to process them without the need to sort
them based on their timestamp. Replacing the priority queue in the Bottom structure with any unsorted
container should allow the simulator to process events without incurring frequent rollbacks and also save
valuable time that otherwise would have been wasted on sorting. Even though Unsorted Bottom may not
be an effective event scheduling strategy for a wide spectrum of simulation models, results presented in [3]
indicate that it is suited for Time-Warp compatible models.

Similar to the modifications proposed to the “insert event” operation in Section 5.1.2, Bottom is not split
any further when the event count there exceeds a specified threshold. Separate algorithms for “insert” and

“dequeue” event are not presented in this section since it is mostly similar to Algorithms 5 and 3 in Section
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Figure 5.2: LADDER QUEUE with Unsorted Bottom
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How to track the minimum event timestamp for GVT calculation?

Section 4.1.2 gives an overview of the GVT estimation algorithm of WARPED2. In order to track the progress
made by any individual node, it is necessary to track the lowest timestamp of events currently present in
the Schedule Queue(s) on that node. If the Schedule Queue is a fully sorted priority queue (such as STL
MultiSet, Splay Tree or Ladder Queue), each “dequeue event” operation is sufficient to figure out what is
the smallest event present inside the Schedule Queue. However, for Ladder Queue with Unsorted Bottom,
the “dequeue event” operation is not a reliable source for reading the lowest timestamp. This is because the
Bottom structure is not sorted. In order to track the minimum timestamp, a record is kept of the minimum
timestamp whenever a bucket is transferred from the lowest rung to the Bottom. This record is updated every
time the Bottom runs out of events and another bucket is transferred to Bottom. This record is also updated
if the “insert event” operation inserts an event into Bottom whose timestamp is smaller than the recorded

minimum timestamp.

5.1.4 Ladder Queue with Lock-free Unsorted Bottom

In WARPED?2, locks (Mutex [57] or Ticket Lock [58]) regulate access to the shared Schedule Queue(s). Al-
gorithm 10 shows that 1lockScheduleQueue () and unlockScheduleQueue () are used to regulate
access to the Schedule Queue when worker threads try to access it for dequeuing and inserting events. This
coarse-grained locking strategy works efficiently for concurrent access to priority queues which do not have
any hierarchical internal arrangement. However, when hierarchically-structured Ladder Queue with Un-
sorted Bottom is used as the Schedule Queue, a fine-grained locking strategy may improve the efficiency of
concurrent operations on the queue. Based on the hypothesis proposed in Section 5.1.3 that eliminates the
need to sort pending events inside Bottom, a Lock-Free Unsorted List [59-02] could serve as Bottom while
the rest of the Ladder Queue (Top and Rungs) is protected by a common lock.

Survey of the literature available on non-blocking and lock-free data structures reveals several options
for lock-free lists and queues [59-67]. Among these choices, a promising option is the LFList, a lock-

free list developed by Zhang et al [62]. The LFList is easy to adopt into the Ladder Queue library but it
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lacks a “dequeue” mechanism. A modified version of the LFList, proposed by Gupta et al [3], provides this
dequeue functionality and also eliminates features which are unnecessary for WARPED2. The LFList uses
backward link (prev) and thread ID (t id) which are relevant for doubly linked lists and for a wait-free
queue derivative respectively. Such features are an overkill for unsorted Bottom in the Ladder Queue and
requires only a singly-linked list to store unsorted events within a small time window. Preliminary results
presented in [3] highlights the potential performance benefits of this approach.

The Ladder Queue (shown in Figures 5.1 and 5.2) allows three basic operations for manipulation of the

pending event set, namely:
1. Insert a newly scheduled event from an Input Queue to the Schedule Queue,
2. Dequeue a scheduled event from the Schedule Queue for processing, and
3. Erase a scheduled event from the Schedule Queue when a straggler or anti-message is detected.

In the default design of WARPED?2, a Schedule Queue lock makes these operations thread-safe for each
Schedule Queue. As the number of worker threads per Schedule Queue increases, contention for this lock
also increases. A lock-free list, on the other hand, uses compare-and-swap (CAS) instructions and can
scale significantly better than a lock-protected queue as the number of threads increase. As mentioned
above, Bottom can be implemented as a lock-free list but a common lock still needs to protect the internal
Ladder structures, namely Top and Rung(s). This arrangement will allow threads to atomically dequeue from
Bottom while another thread can acquire the lock in parallel and insert an event into Top or Rung(s) and
re-organize the buckets. The set of Schedule Queue operations needed for a Ladder Queue with Lock-free

Unsorted Bottom can be further simplified as follows:

1. If a newly scheduled event needs to be inserted into the lock-free Bottom, it can be inserted at the
head of the list using one CAS operation. Threads will still have to contest for access to the common

lock if this new event has to be inserted into Top or Rungs instead of Bottom.

2. A scheduled event can be dequeued from head of the lock-free Bottom using one CAS operation. If
the Bottom is empty, threads will need access to the common lock for pulling events down from Top
or Rungs into Bottom. The transfer of events from the chosen rung bucket to Bottom will be done

using lock-free operations.
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Step 1 : Create a node for event e3

HEAD DATA : event e2 event el

NEXT : NULL

Step 2: CAS operation to insert this new node as HEAD

event el

NULL

HEAD —» DATA : event e2

NEXT :
Figure 5.3: Insert Operation on Lock-Free List

3. Erase is not a necessary operation for Time Warp. The simulation can rollback to a consistent state
if a scheduled event is not immediately removed from the Schedule Queue when a straggler or anti-
message is detected. The erase operation is a relatively complex operation for lock-free lists and this
complexity is avoidable for Time Warp-synchronized simulators at the expense of delayed rollbacks

of longer length.

Lock-Free List in WARPED2

The Lock-Free List used to create the Unsorted Bottom for the Ladder Queue is a simple singly-linked list.
Each node on this list has two attributes: DATA for storing the event and NEXT for storing the address of the
next node on that list. The lock-free list only supports “insert” and “dequeue” operations on the HEAD of

the list. Figures 5.3 and 5.4 illustrate these operations. Algorithms 6 and 7 provide further details.

Create a new node x
r —DATA <+ event e

node m < HEAD

x —-NEXT < m

while CAS (&HEAD, &m, x) # SUCCESS do
m < HEAD

L r —-NEXT < m

Algorithm 6: Lock-Free List Insert Event

Algorithms 8 and 9 show how the “insert” and “dequeue” operations will work when a Lock-Free List is
used to create a Ladder Queue with Lock-Free Unsorted Bottom. The 1ock () and unlock () functions

acquire and release the common lock respectively and protects access to Top and any available Rungs.
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HEAD—» ! DATA : event e2 DATA : event e3
NEXT : NEXT : NULL

Step 1: CAS operation to set HEAD as HEAD->NEXT

HEAD g DATA : event e2 DATA : event e3
NEXT : NEXT : NULL

Step 2 : Return dequeued event el
Figure 5.4: Dequeue Operation on Lock-Free List

node m < HEAD
if m € NULL then
L return NULL

while CAS (&HEAD, &m, m—NEXT) # SUCCESS do
m < HEAD
if m € NULL then
| return NULL

return m —DATA

Algorithm 7: Lock-Free List Dequeue Event
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lock ()

ife > timestamp () > Top.minTS then
Insert event e into tail of T'op
unlock ()
return

while ¢ — timestamp () < Rung[z].minTs do
| x++

if x € valid rung then

e—timestamp () —Rung[z].minT$S

bucket k < Rung[z] bucketWidth

Insert event e into tail of bucket & of rung =
unlock ()
return

unlock ()

Insert event e into lock-free Bottom
return

Algorithm 8: LADDER QUEUE Lock-Free Insert Operation
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event e < dequeue from lock-free Bottom
if e € valid event then
L return e

lock ()

if Rung(s) exist then

Find first non-empty bucket & in the lowest available rung z
Transfer events from bucket & in rung x to Bottom

Delete rung z if it has no non-empty buckets left

unlock ()

event e < dequeue event from lock-free Bottom
return e

/* Transfer events from Top into Rung(s) and Bottom */

. TopmaxTS—Top.minTs
Rung[1].bucketWidth « “2HR == 2P0n

Rung[1].minTS - Top.minT$

Transfer T'op into Rung[1]

Top.minTS < Top.maxTS

Find first non-empty bucket k in Rung[1]

Transfer events from bucket k in Rung[1] to Bottom
Delete Rung[1] if it has no non-empty buckets left
unlock ()

event e < dequeue event from lock-free Bottom
return e

Algorithm 9: LADDER QUEUE Lock-Free Dequeue Operation
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5.2 Techniques for Scheduling Pending Events

The Pending Event Set in WARPED?2 uses a two-level hierarchical arrangement. Figure 4.3 illustrates this
design and Section 4.2.2 provides detailed explanation for the different different data structures that combine
together to form the pending event set. However, Algorithm 2 only provides a simplistic overview of how
events are processed in WARPED2. It does not provide any details about how locks are implemented to
serialize access by multiple threads to the Input Queue and Schedule Queue. Algorithm 10 presents the

missing details which will be needed to continue the discussion in later sections of this chapter.

while signal to terminate not detected do
lockScheduleQueue ()

e < getNextScheduledEvent ()
unlockScheduleQueue ()

LP <« receiver of e
reportMinTimeForGVT( thread-id , e — timestamp () )

if e < last processed event for L P then
| Rollback LP

if e is an anti-message then
Cancel event with e (if possible)
Schedule new events for L P
continue

Process event e
Save state of LP
Send newly generated events to their destinations

Call lockInputQueue () for the LP

Move e to Processed Queue

lockScheduleQueue ()

Replace scheduled event for L P with an event from the Input Queue (if available)

unlockScheduleQueue ()

Call unlockInputQueue () forthe LP

Algorithm 10: WARPED2 Event Processing Loop (Detailed)
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Time
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Figure 5.5: Multiple Schedule Queues in WARPED2

As shown in Algorithm 10, lockInputQueue () and lockScheduleQueue () protects access to
the Input Queues and the Schedule Queue respectively. Each thread reports the timestamp of the event it is

currently processing using reportMinTimeForGVT () for GVT estimation.

Should WARPED?2 process pending events in groups or in parallel instead of one at a time?

Due to the rapid growth in number of on-chip cores, contention for shared data structures has increased [68].
Multiple threads attempt to access the Pending Event Set data structures for scheduling the next event for
execution. Event executions are generally fine-grained in parallel simulation. This quickly leads to non-
trivial contention for the pending event set. If threads are provided the option to process events in either
groups or in parallel, they will spend less time in waiting for access to these shared data structures.

Section 5.2.1 describes a “divide-and-conquer” strategy of partitioning the pending event set into multi-
ple Schedule Queues in order to boost parallel processing of pending events. Sections 5.2.2, 5.2.3 and 5.2.4

proposes techniques for scheduling pending events in groups.

5.2.1 Multiple Schedule Queues

In order to reduce the contention for common Schedule Queue on a multi-core processing platform, Dickman

et al [6] proposed the use of multiple Schedule Queues in WARPED2. The Input Queues are split into groups
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where each LP group has its own Schedule Queue and Schedule Queue Lock. The thread pool is also split
into groups with each Schedule Queue having access to its own private pool of threads. Algorithm 11 shows
how events can be processed using this arrangement.

while signal to terminate not detected do
schedule_queue_id < get ScheduleQueueId(thread_id)
lockScheduleQueue(schedule_queue_id)
e < getNextScheduledEvent (schedule_queue_id)
unlockScheduleQueue(schedule_queue_id)
LP < receiver of e

reportMinTimeForGVT( thread_id, e — timestamp () )

if e < last processed event for L P then
| Rollback LP

if e is an anti-message then
Cancel event with e (if possible)
Schedule new events for L P
continue

Process event e

Save state of LP

Send newly generated events to their destinations

Call lockInputQueue () for the LP

Move e to Processed Queue

lockScheduleQueue(schedule_queue_id)

Replace scheduled event for L P with an event from the Input Queue (if available)

unlockScheduleQueue(schedule_queue_id)

Call unlockInputQueue () forthe LP

Algorithm 11: WARPED2 Event Processing Loop for Multiple Schedule Queues

There is a greater risk of events being processed out-of-order in this arrangement. Multiple Sched-
ule Queues processing events independently might process events “too greedily” and throw the scheduling

mechanism off-balance. If that happens, the Time Warp mechanism will identify any causal violation and
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Figure 5.6: Traffic Model : Local Event Chains

initiate the recovery process via rollbacks. The motivation behind splitting the common Schedule Queue is
to aim for overall gain in computing time by reducing contention for the Schedule Queue lock. Imbalance,
which is a side-effect of this arrangement, may lead to loss of computing time due to extra rollbacks. As
long as this loss does not override the gains made from reduction in lock contention, this arrangement would

be a promising option on multi-core processing platforms.

5.2.2 Chains
Inferences drawn from Quantitative Analysis

As evident from the details presented so far in this thesis, one of the the key areas of focus for WARPED?2
is contention management in the pending event set. Chapter 5 presents the various avenues that have been
explored to date. In addition, some foundational studies were also conducted in the past few years on
partitioning of simulation models [17] and transactional memory-based access to the pending event set [4],
but with only limited success.

Wilsey [9] published a quantitative study on the runtime profile of events generated from the simulation
traces of events processed. A key metric in that study was the event chain, which is a collection of pending
events from an LP that could potentially be executed as a group. The rationale is, at any point in the
simulation, an event chain would contain all events from an LP that are available for immediate execution in

the pending event set. The event chain of an LP is treated as a single entity and the scheduling mechanism
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Percent of Events in Local Event Chains Distribution of Local Event Chains

Figure 5.7: Epidemic Disease Propagation Model : Local Event Chains

progresses to the next event once all events in the current chain are processed. Chains can be classified into
three categories [9], namely: local, linked, and global. However, for this discussion, only the local chains
are of interest.

If multi-event sized chains are a majority, multiple events can be dequeued for execution by each pro-
cessing thread. Plots on the left side in Figures 5.6, 5.8, and 5.7 show the percentages of total events in local
event chains. This data is from a previous study [9] and it shows that majority of events in Portable Cellular
Service (PCS) and Traffic models are part of event chains whose length exceeds 1. However, only about

27% of events in Epidemic model are part of chains whose length exceeds 1. Based on this observation,

Percent of Events in Local Event Chains Distribution of Local Event Chains
2

1

>=5

Figure 5.8: Portable Cellular Service Model : Local Event Chains
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4
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Figure 5.9: WARPED2 Scheduling Technique : Chains

it would be better from a performance standpoint if pending events from PCS and Traffic are scheduled in
groups. For detailed description of the above-mentioned simulation models, please refer to Section 6.3.

The event chain data also helps us identify chains of variable lengths available at different points during
the simulation. This helps us quantify the percentages of multi-event scheduling opportunities available.
Plots on the right in Figures 5.6, 5.7 and 5.8 show the fraction of chains of length 1-4 and higher. If events
from Traffic and PCS models are scheduled for processing in groups of size > 2, the simulator may have to
deal with causality violation 36% of the time. The Epidemic model has 85% chance of suffering causality
violations when chain size is > 2.

As evident from the discussion above, some models benefit by scheduling events in groups from the
pending event set. This study presents a conservative snapshot of the event’s availability. Time Warp syn-
chronization, on the other hand, benefits from the delayed approach to enforcement of causal order. Thus,
performance of a Time Warp simulation when events are scheduled in groups may exceed what the profile

data suggests.

Chain Scheduling

Chain Scheduling technique is an attempt to understand the extent of parallelism available when a set of
smallest available events from a LP are scheduled for processing. The goal is to schedule this set (or chain)
of events without adversely hampering the performance of WARPED2 due to too many causal violations.
Each “dequeue event” request will remove multiple events from the LP’s Input Queue along with the event

at the head of the Schedule Queue. These dequeued events are then processed in serial order.
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It would be too optimistic to expect there will not be any causal violations when a chain of events is
processed. However, Time Warp is a “checkpointing-and-rollback™ based mechanism that can detect and
rectify itself when it detects causal violations. This extra workload will add some delay to the overall com-
puting time. On the other hand, “dequeuing” a set of events from the Input Queue saves valuable computing
time that would otherwise be wasted on the wait to acquire the Schedule Queue Lock had all events been
scheduled via the Schedule Queue. Thus, Chain Scheduling is a compromised design choice which can
out-perform WARPED2’s default scheduling mechanism (discussed in Section 4.2.3) if the computing time
saved by reduced lock contention exceeds the time lost due to extra rollbacks.

There are two approaches for how the output events, generated as a result of this processing, can be

inserted back into the simulation as pending events. These are:

e Wait till all events from the chain have been processed and then all the output events are inserted
back into the simulation in bulk. This approach allows for efficient contention management since
worker threads will not need to acquire locks inside pending event set frequently. However, any
causal violation (due to delay in insertion of output events) will not be detected till at a later time.
This could result in rollbacks of longer duration. While testing, this approach proved to be hugely
inefficient compared to the approach discussed next. Therefore, WARPED2 does not currently support

bulk sending of stored output events. A detailed study is available in [7].

o Insert the output events into the simulation as soon as they are generated. This approach will increase
the contention overhead in the shared data structures of the pending event set but will allow the simu-
lator to detect causality violations quicker than the the former approach. A detailed study is available

in [7].

After all the “dequeued events” in a chain have been processed, the Schedule Queue is replenished
with the smallest available unprocessed event from the LP whose events were present in that chain. The
configurable parameter chain size is vital for adjusting the sliding time window within which events are
processed in bulk. Thus, chain size impacts the performance of WARPED2 by affecting the frequency of
rollbacks.

Algorithm 12 shows how chains are scheduled in WARPED2. The smallest available event from the
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Figure 5.10: WARPED2 Scheduling Technique : Blocks

Schedule Queue is dequeued using getNextScheduledEvent () and then the n smallest available
events from the corresponding Input Queue are read to form the chain. Another interesting point to note
here is that each thread uses reportMinTimeForGVT () to report the smallest event timestamp for GVT
calculation. Normally this would be a simple operation when scheduling only one event at a time for
processing, but here only the timestamp of the smallest event in the chain is reported. In this case it happens

to be the first event stored inside the event_chain.

5.2.3 Block Scheduling

The Block Scheduling technique is an attempt to understand the extent of parallelism available when a set
of smallest available pending events from the Schedule Queue are scheduled for processing. The goal is
to process this set (or block) of events in serial order without adversely hampering the performance of
WARPED?2 due to too many causal violations. No two events in this block belong to the same LP.

It would be too optimistic to expect there will not be any causal violations when a block of events
is processed. Fortunately, the Time Warp is a “checkpointing-and-rollback™ based mechanism that can
detect and rectify itself when it detects causal violations. This extra workload will add some delay to the
overall computing time. On the other hand, “dequeuing” a set of events from the Schedule Queue saves
valuable computing time that would otherwise be wasted on the wait to acquire the Schedule Queue Lock
for every scheduled event. Thus, Block Scheduling is a compromised design choice which can out-perform
WARPED2’s default scheduling mechanism (discussed in Section 4.2.3) if the computing time saved by

reduced lock contention exceeds the time lost due to extra rollbacks.
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while signal to terminate not detected do

schedule_queue_id < get ScheduleQueueId(thread_id)
lockScheduleQueue(schedule_queue_id)

e «+ getNextScheduledEvent (schedule_queue_id)
unlockScheduleQueue(schedule_queue_id)

LP < receiver of e

LP — lockInputQueue ()

event_chain < read n events from the Input Queue

LP — unlockInputQueue ()

reportMinTimeForGVT( thread_id , event_chain[0] — timestamp () )

while event e € event_chain do

if e < last processed event for LP then
Rollback LP
break

if e is an anti-message then
Cancel event with e (if possible)
continue

Process event e
Save state of LP
Send newly generated events to their destinations

Call lockInputQueue () forthe LP

Move processed events to Processed Queue
lockScheduleQueue(schedule_queue_id)

Replace scheduled event for L P with an event from the Input Queue (if available)

unlockScheduleQueue(schedule_queue_id)

Call unlockInputQueue () for the LP

Algorithm 12: WARPED2 Event Processing Loop for Chain Scheduling
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In block scheduling, each “dequeue event” request will remove multiple events from the Schedule
Queue. These dequeued events are then processed sequentially. There are two approaches as to how the
output events, generated as a result of this processing, can be inserted back into the simulation as pending

events. These are:

e Wait till all events from the block have been processed and then all the output events are inserted
back into the simulation in bulk. This approach allows for efficient contention management since
worker threads will not need to acquire locks inside pending event set frequently. However, any
causal violation (due to delay in insertion of output events) will not be detected till at a later time.
This could result in rollbacks of longer duration. While testing, this approach proved to be hugely
inefficient compared to the approach discussed next. Thus, WARPED2 does not currently support bulk

sending of stored output events. A detailed study is available in [7].

o Insert the output events into the simulation as soon as they are generated. This approach will increase
the contention overhead in the shared data structures of the pending event set but will allow the simu-
lator to detect causality violations quicker than the the former approach. A detailed study is available

in [7].

After all the “dequeued events” in a block have been processed, the Schedule Queue is replenished with
the smallest available unprocessed event from each of the LPs whose events were present in that block. Bulk
replenishment of the Schedule Queue after processing a block of events would help reduce time wasted on
contention management in the pending event set. Similar to chain size, the configurable parameter block
size is vital for adjusting the sliding time window within which events are processed in bulk. That is, block
size impacts the performance of WARPED?2 by affecting the frequency of rollbacks.

Algorithm 13 shows how blocks are scheduled in WARPED2. The getNextEventBlock () dequeues
n smallest available events from the Schedule Queue. Each thread reports the smallest event timestamp for
GVT calculation using reportMinTimeForGVT (). Normally this would be a simple operation when
scheduling only one event at a time for processing, but here only the timestamp of the smallest event in the

block is reported. In this case, it happens to be the first event stored inside the event block.
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while signal to terminate not detected do

schedule_queue_id + get ScheduleQueueId(thread_id)
lockScheduleQueue(schedule_queue_id)

event_block <— getNextEventBlock (schedule_queue_id)
unlockScheduleQueue(schedule_queue_id)

reportMinTimeForGVT( thread_id , event_block[0] — timestamp () )

Create an empty L P _list

while event e € event_block do
LP < receiver of e

Insert LP into LP _list

if e < last processed event for L P then
| Rollback LP

if e is an anti-message then
Cancel event with e (if possible)
continue

Process event e
Save state of LP
Send newly generated events to their destinations

for LP € LP_list do
| Call lockInputQueue () for the LP

lockScheduleQueue(schedule_queue_id)
for LP € LP_list do
Move e to Processed Queue
L Replace scheduled event for L P with an event from the Input Queue (if available)

unlockScheduleQueue(schedule_queue_id)

for LP ¢ LP_list do
L Call unlockInputQueue () for the LP

Algorithm 13: WARPED2 Event Processing Loop for Block Scheduling
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5.2.4 Bags
Why are bags an interesting option for scheduling pending events?

Extending the theme set by chain and block scheduling techniques, contention management is the key moti-
vating factor for organizing pending events into bags. The goal of this design is to enable threads to process
events from different bags in parallel without long waits for access to the shared data structures. This design
relies on the hypothesis that pending events grouped into profile-driven partitions will mostly retain causal
order even when these event partitions are processed in parallel. Thus, in theory, processing bags in parallel
combines the best of both worlds: low contention for shared resources and minimal performance trade-off

due to marginal increase in rollbacks.

The Louvain Partitioner

The Louvain method [460] is a greedy optimization method that can partition large weighted networks into
communities. Its output is a dendogram that captures the hierarchies of communities.

Modularity [69] is a metric used to quantify how effectively the network was partitioned into different
communities (or clusters). Its value ranges between -/ and / and is a measure of edge density inside commu-
nities compared to edges outside communities. A high modularity index indicates dense intra-community
nodal connections along with sparse inter-community nodal connections.

Though optimization should in theory yield the best possible solution, it is impractical due to the sheer
volume of cluster combinations possible. As a result, the Louvain method uses a 2-step heuristic approach

to iteratively optimize the modularity of partitions:

1. search for “small” communities through local optimization of modularity, and

2. group together nodes belonging to the same community and construct a secondary network between

communities.

Accurate modularity optimization is considered to be a NP-hard problem. However, estimates suggest
that the Louvain method has O(n log n) amortized time complexity [40]. Figure 5.11 illustrates a network

partitioned into different communities (each color indicates a different community).
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Figure 5.11: Louvain-based Partitions (shown in different colors)

Crawford et al [16] analyzed the distribution of communities in a simulation of epidemic disease prop-
agation for /0,000 LPs (refer to Section 6.3.1 for details regarding the Epidemic model). They found 54
communities whose LP counts were distributed in the range 50-425 with the mean at approximately /90.

Figure 5.12 shows this distribution of communities.
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Figure 5.12: Distribution of Communities in ‘epidemic-10k-ws’ model (refer to Table 6.3 for model speci-
fications)

62



CHAPTER 5. PENDING EVENT SET 5.2. SCHEDULING TECHNIQUES

Modulo 6 Counter
(Atomic)

-

Bag 0

EEEEEEE-—
ENEEEEEN-——
HEEEN-——
HEREEN-——
EREEN-

[

Bag - LP id map (static)
Figure 5.13: WARPED2 Scheduling Technique : Bags
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Organizing Partitions into Bags

From the perspective of Discrete Event Simulation, let us assume that each node in Figure 5.11 represents a
Logical Process (LP). The weight of any edge in the network equals number of events exchanged between
the two LPs connected by that edge. A network partition (or community) with high modularity index ideally
has dense connections between LPs inside a partition and sparse connections to LPs outside the partition.
The hypothesis is that densely connected LPs are more likely to generate events which are causally linked
than events generated by LPs which are sparesly connected. Based on this assumption, the LPs from each
community can be grouped together to form a bag for that community. Figure 5.13 presents a static Circular
Array whose each element points to a bag of LPs. The color and size of each bag in Figure 5.13 matches
those of the corresponding community in Figure 5.11.

Each worker thread requests the modulo N atomic counter for access to the next available bag in the
circular array. The size of the static circular array (also called carousel) equals the number of bags (V). Once
the thread gets access to a bag, it locks access to that bag and copies the smallest available unprocessed event
from the Input Queue of each LP mapped to that bag into an array. It then schedules a part or whole of this

unsorted array for processing. There are three potential benefits to organizing LPs in the aforementioned
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way:

1. The LPs in one bag generally share sparse connections to LPs in other bags. Assuming this sparse
connection means events in one bag are more likely to be causally independent of events in other
bags over a large time window, different threads should be able to process events from different bags
in parallel without a drastic increase in rollbacks. The modulo N counter, built using CAS atomic

operation, can allow a thread to access a bag from the carousel without the need for any central lock.

2. Dense connections between LPs inside a bag may signify that some or all events in the above-
mentioned array are causally linked. However, as discussed in Section 5.1.3, it is reasonable to
assume that events within a relatively small time window are causally independent of each other.
Therefore, instead of processing all events from the array, a worker thread can only process those
events whose timestamps are within a specified time window. Much like the Unsorted Bottom in the
Ladder Queue, the events within this time window are not sorted before being processed. During
every event processing cycle in WARPED2, the worker thread calculates the time window’s lower and

upper bounds using one of the following two configurable parameters: T

o Window Size (T'Syindow)

[Tsmzn ) TSmin + TSwindow ]; where

5.1
T'Sin = timestamp of smallest event in the array.
e Fraction of Bag’s Total Window Size (fracgac) :
[Tszn , Tszn + (Tsmax - TSmm) X fracBAG ]7 where
T Sinin = timestamp of smallest event in the array , and (5.2)

T'Smaz = timestamp of largest event in the array.

3. The carousel and the bags linked to it are static structures. This means there is no loss of performance
due to memory allocation and deallocation after initialization. Even the array used to temporarily
copy the smallest unprocessed events for the bag can be reused for processing the next bag. This

drastically reduces the fluctuations in memory usage and boosts performance through reduced need
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for memory I/O.

After the worker thread finishes processing all events scheduled from a bag, it moves these events from
the Input Queue to the Processed Queue of the corresponding LPs. It unlocks the bag it was currently
processing and request the atomic counter for the next available bag in the carousel. It is worth noting here
that the lock for a bag is an atomic flag that is used to prevent multiple worker threads from accessing a
particular bag at the same time. It is unlikely that there is any significant contention for this flag because the
modulo counter ensures serialized allocation of bags to waiting threads. Even if a thread is forced to wait
while another thread finishes processing events from a bag, this wait is unlikely to be long since the thread

currently holding the lock is processing events for the previous cycle, but was delayed due to some reason.

Distributed Tracking of Simulation’s Progress

The distributed organization of bags complicates how worker threads can asynchronously report the smallest
event timestamp for calculation of the GVT. As mentioned in Section 4.1.2, worker threads in WARPED?2
work for a process and regularly report the lowest timestamp for that process. A worker thread learns the
smallest timestamp among events in a bag when it acquires access to that bag. A GVT cycle for bags is
considered complete when worker threads have processed events from all bags in the carousel in that cycle.
Depending on the speed at which events are processed, a worker thread may process multiple bags during
any GVT cycle but it only reports the smallest timestamp among all events it processed during that cycle.
During an ongoing GVT cycle, the worker thread reports its minimum timestamp as the one recorded in the
previous GVT cycle.

In order to keep track of the minimum timestamp among events processed during any ongoing GVT
cycle while also retaining the minimum timestamp recorded in the previous cycle, each worker thread uses

a data structure called minTS_record with the following attributes:

e Current GVT Cycle Count (curr_cycle_count)

e Minimum Timestamp recorded during the previous GVT cycle (minTS_prev)

e Minimum Timestamp recorded during the ongoing GVT cycle (minTS_curr)
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Algorithm 14 presents how events are processed in bags. Some of the event set functions used here have

been explained below:

e lockInputQueue () and unlockInputQueue () controls access to the Input Queues.

e getBag () fetches the next available bag from the carousel and locks it. It also increments the
modulo N atomic counter using Compare-and-Swap (CAS) operation. If the curr_cycle_count
is smaller than the current GVT cycle count, the worker thread realizes it has entered a new GVT
cycle. In that case, it transfers minTS_curr tominTS_prev and updates curr_cycle_count to

the current GVT cycle count.

e releaseBag () releases the lock a worker thread acquired on a bag before processing events from

that bag.

e fetchLPs () fetches the list of LPs from the static carousel for a particular bag.

e getEvent () find the smallest available event from the Input Queue of an LP. The worker thread
compares this event’s timestamp to minTS_curr and updates the latter if the event’s timestamp is

smaller.

e reportMinTimeForGVT () is used by each thread to report the smallest timestamp for GVT cal-

culation.
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while signal to terminate not detected do

bag_id < getBag ()
LP _list < fetchLPs(bag-id)

buf fer := array for temporarily storing events
for LP € LP_list do
Call lockInputQueue () for the LP
e < getEvent (LP)
Call unlockInputQueue () for the LP
Insert e into bu f fer

reportMinTimeForGVT( min_ts)

while event e € buf fer do
ife — timestamp () > T'Sypper then
L continue

if e < last processed event for L P then
| Rollback LP

if e is an anti-message then
Cancel event with e (if possible)
continue

Process event e
Save state of LP
Send newly generated events to their destinations

Call lockInputQueue () for the LP
Move e to Processed Queue
Call unlockInputQueue () for the LP

releaseBag (bag_id)

min_ts <— minimum timestamp from the previous GVT cycle for this thread

Calculate the upper limit (7°S,,pe) for admissible events. Refer to Equations 5.1 and 5.2.

Algorithm 14: WARPED2 Event Processing Loop for Bags
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Chapter 6

Experiments

6.1 Setup

The focus of this thesis is to explore different options to explore how the performance of the pending event set
can be improved in a Time Warp synchronized Discrete Event Simulator. The goal is to reduce the contention
for shared data structures. As mentioned in the introduction, the key aspects that amplify contention for the
shared data structures containing the pending event set are lock contention, sorting, and scheduling order.
The ideas discussed in Chapter 5 are closely tied to the architecture of SMP / NUMA nodes and how its
performance is affected by thread synchronization, and memory allocation. Therefore, all experiments for
this dissertation have been performed on a single node NUMA machine.

Table 6.1 presents how the WARPED2 kernel was configured for the experiments.

H Parameter Values H
Number of Worker Threads 4,8,16, 32 or 64
Number of Schedule Queues 1,2,4,80r16
GVT Method Asynchronous
GVT Period (milliseconds between each estimation) 1,000
State Save Period (events processed between state saves) 32
Bag Window Size 4,16, 32, 64, 128, 256 or Full
Fraction of Bag Window 0.05, 0.25, 0.5, 0.75 or Full
Chain Size (events) 4,8,120r 16
Block Size (LPs) 32, 64, 128 or 256

Table 6.1: WARPED?2 setup
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H Intel® Xeon® E5-2670 H

ISA x86_64
# Cores 8
# Threads 16
# Sockets 2
Processor Frequency 2.60 GHz
L1 Data Cache 32 kB
L1 Inst Cache 32 kB
L2 Cache 256 kB
L3 Cache 20 MiB
Memory 64 GB
OS Kernel Linux 4.9.0-4-amd64
C Library Debian GLIBC 2.24-11+deb9u3
Compiler GCC v6.3.0
Runtime MPI MPICH v3.2
Python 2.7.13
Python-numpy 1.12.1
Python-networkx 1.11

Table 6.2: Experimental Setup

The computational platform for the experiments performed and reported in this thesis is defined in Table
6.2.
6.2 Performance Metrics
The performance metrics used in this study are:

e Simulation Runtime (in seconds): This metric is useful for comparing performance of different

configurations and to compare the effectiveness of different ideas discussed in Chapter 5.

e Event Commitment Ratio for a configuration equals

Total number of events processed for that configuration

Total number of committed events

Total number of committed events is independent of the effects of different configurations. This metric
is useful to understand how different scheduling techniques (discussed in Chapter 5) adversely impact

performance of the simulation due to fluctuations in frequency of causal violations.
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e Events Processing Rate (per second) for a configuration equals

Total number of events processed for that configuration

Simulation Runtime (in seconds)

This metric is a good indicator of the degree of contention that exists in the pending event set. A high
value on this metric indicates lower contention and is useful for analyzing the effectiveness of group

scheduling and bags.

6.3 Simulation Models

This section describes three WARPED2 simulation models. These models have been used as benchmarks to
study and compare the performance of the WARPED?2 kernel for the design hypotheses presented in Chapter
5. Some of these models are based on simulation models developed elsewhere and are commonly used as

test-benches by Discrete Event Simulation researchers.

6.3.1 Epidemic Disease Propagation

The Epidemic model is a Discrete Event Simulation model that simulates how an infectious disease would
spread across a set of geographic locations. It is based on a reaction-diffusion epidemic model proposed by
Perumalla et al [70].

In the simulation model, each location represents an LP. It is home to a population in which each
individual has varying degree of susceptibility to the disease. A probabilistic reaction function has been
used to model the intra-location transmission of the disease amongst its residents [71]. The spread of disease
within an individual has been modelled as a finite state machine called Probabilistic Timed Transition System
(PTTS) [71]. A diffusion network models the inter-location migration of individuals between locations. The

design of diffusion network is based on one of these two available options:

e 3 model proposed by Watts et al [72] because it allows the model to mimic the “small-world” prop-

erties of the human network.

e Some properties of the human network mirror that of a “scale-free” network. As a result, the diffu-
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sion network can also be configured to use the Barabsi-Albert model [73] which is an algorithmic

approximation of a “scale-free”” network.

A limitation of the S-model [72] is that it produces an unrealistic degree distribution. Real networks, on
the other hand, are often “scale-free” networks, in-homogeneous in degree, and have hubs and a scale-free
degree distribution. Thus, real networks are better described by the Barabsi-Albert (BA) model [73] which
supports preferential attachment. However, unlike the 5-model, the Barabsi-Albert model cannot produce
the high levels of clustering seen in real networks. Thus, neither the 3 model nor the Barabsi-Albert model
are fully realistic. Figure 6.1 compares the diffusive behavior of people when using these two networks on a
population of 7,000,000. Both heatmaps show whether the population has increased, decreased or remained
fairly stable at each of the 70,000 locations after the end of simulation. It is evident from the distribution
of red and green across the simulation space that the Barabsi-Albert model has an in-homogeneous degree
distribution and sparse clusters. The 5-model, on the other hand, has a fairly regular degree distribution and
denser clustering.

The LP state keeps track of the population residing in that location. Individuals can leave one location and
travel to any of the connected locations. The connections depends on the diffusion network layout. The

following attributes are tracked in each individual:

ID (unique for each individual in the entire population),

susceptibility to the disease (value € [0,1]),

vaccination status : yes / no, and

PTTS infection status (uninfected, latent, incubating, infectious, asympt or recovered). Refer to Figure

6.2 for details of the PTTS.

An exponential distribution mimics the creation of events within the epidemic model. The following are the

event types used in this simulation:

e Disease Update Trigger: self-initiated by the LP for updating the infection status of its resident

population,
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Figure 6.3: Epidemic Model

e Diffusion Trigger: self-initiated by the LP for sending one resident to any neighboring location with

uniform randomness, and

e Diffusion: used when welcoming an arriving individual from a neighboring location.

Figure 6.3 presents an illustration of the model. Table 6.3 shows the different configurations of the

epidemic model that have been used in Section 6.4 and appendix. Tables A.3, A.5, A.4 and A.6 provide the

detailed configuration for these models.

Configuration Diffusion Network | Number of locations | Population
epidemic-10k-ws Watts-Strogatz 10,000 1,000,000
epidemic-10k-ba Barabasi-Albert 10,000 1,000,000
epidemic-100k-ws Watts-Strogatz 100,000 500,000
epidemic-100k-ba Barabasi-Albert 100,000 500,000

Table 6.3: List of Epidemic Configurations
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Figure 6.4: Portable Cellular Service Model

6.3.2 Portable Cellular Service (PCS)

This model simulates a wireless communication network capable of providing service to a number of sub-
scribers (or portables). The network service area comprises of cells, each of which represents the smallest
building block in the simulation. Each cell has a certain number of channels that can be used for making or
receiving calls. Whenever there is an incoming or outgoing call, an available channel from the cell is allo-
cated. In the event of channel unavailability, the call is blocked [74]. Each cell represents a logical process
in this simulation and they are organized as a rectangular grid (refer to Figure 6.4). The test configuration
uses a grid of size /00 x 100 which translates to a LP count of /0,000. Table A.7 presents the configurations
used for this model.

Portables can migrate to adjacent cells and there is a wrap around which occurs when a portable reaches
one of the edges. Migration to an adjacent cell is a regular activity for portables and the time period is
based on a Poisson distribution. A handoff block happens for a migrating portable when the ongoing call is
dropped because all available channels are busy. The state of Logical Process keeps track of the following

attributes for each cell:
e count of idle channels,

e count of call attempts,
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Intersection
Departure from : Direction Arrival at
. . L Arrival — ——  Departure . .
previous intersection Select next intersection

Figure 6.5: Sequence of events at each intersection

e count of channel blocks, and

e count of handoff blocks.

Call requests to a portable follow a Poisson distribution. The following are the types of events used in this

model:

Next Call: self-initiated by the cell to start a new call,

Call Completion: self-initiated by the cell to set the call duration,

Portable Move Out: self-initiated by the cell to send a portable to any of its adjacent cells with uniform

randomness, and

Portable Move In: receive a portable migrating from an adjacent cell.

6.3.3 Traffic

The traffic model simulates how cars move through a grid of intersections in a city. It models the nature of
traffic flow — delays and choice of turns at intersections based on destination of the car. The model assumes
that each road has three lanes in either direction and all intersections are four way. This model has been
adapted from the ROSS [26] simulator for WARPED?2.

Each intersection has been modeled as a Logical Processes and an event represents the movement of cars

through and between intersections. Figure 6.5 shows the three phases of an event at an intersection, namely

e Arrival: signifies the arrival of a car at an intersection from any of its adjacent intersection.

75



CHAPTER 6. EXPERIMENTS 6.3. BENCHMARKS

e Direction Select is a self-initiated event that helps the car to decide which direction to travel from the
intersection it is currently at. This decision is based on the final destination the car is trying to reach

and regulations controlling the flow of cars through that intersection.

e Departure is a self-initiated event which tells the intersection the car is currently located at that it is

ready to travel to a different intersection.

The final destination for each car is a randomly assigned intersection. At the initial stage, all available
cars are uniformly distributed across all intersections. Once a car arrives at an intersection, it tries to go in
the direction that would get it closer to its target intersection. There are thresholds in place to help regulate
and spread the flow of traffic. This limits congestion on certain roads and may lead to a car being denied
permission to travel in the direction of its choice. The car can randomly choose to either wait or take an
alternate route. Events follow an exponential distribution and a new one is created when an existing one is
processed.

The status of traffic at each intersection at any point in time is tracked by the Logical Process state.
The state has the following attributes which are used to decide whether a car can be allowed to travel in the

direction of its choice:

e number of cars arriving from each direction,

e number of cars departing in each direction,

e total number of cars arriving at the intersection, and

e total number of cars departing from the intersection.

The grid has been modeled as a rectangular mesh to allow the traffic model to be scaled. The traffic
model in ROSS adopts a similar approach. This grid arrangement is similar to the network structure used
by PCS (as shown in Figure 6.4). Two configurations of traffic have been used for different studies in this
thesis. Table 6.4 presents these two configurations and details for each have been presented in Tables A.1

and A.2 respectively.
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Configuration | Grid Dimension | Number of Cells
traffic-10k 100 x 100 10,000
traffic-1m 1024 x 1024 1,048,576

Table 6.4: List of Traffic Configurations

6.4 Analysis of Performance

6.4.1 Schedule Queue Data Structure

This quantitative study is aimed at understanding the effectiveness of different data structures for storing and
scheduling events for execution in WARPED-2. The data structures being studied are STL MultiSet, Splay
Tree and Ladder Queue. Three separate variants of the Ladder Queue are under consideration, namely:
(i) one with a fully sorted Bottom and accessed with a mutex lock, (ii) one with an unsorted Bottom and
accessed with a mutex lock, and (iii) one with an unsorted Bottom that is accessed with a lock-free, atomic
read-write access setup. The details for each data structure can be found in Section 5.1. In order to eliminate
the side-effects of load imbalance in this study, only a single schedule queue has been used. The performance
of these data structures for different thread counts (4, 8, 16, 32 and 64) has been presented. Additional plots
for multiple schedule queues with different data structures can be found in the Appendix. Threshold is a
critical parameter in Ladder Queue which triggers the split of a bucket when its event count exceeds this
threshold. Here three separate values of threshold have been studied, namely 16, 50 (as recommended by
in [8]) and 96.

Figure 6.6 (parts (a), (b), and (c)) show the performance impact of the different data structures used for
the Schedule Queue. The number attached to the different Ladder Queue variants in the plot keys represent

the threshold of a Ladder Queue. The significant observations from these plots have been explained below:

1. As expected, the Ladder Queue with Lock-free Unsorted Bottom outperforms the sorted Ladder
Queue, Splay Tree and STL MultiSet by generally over 50% as the number of worker threads in-

crease. However, it only marginally outperforms Ladder Queue with Unsorted Bottom.

2. In the original description of the Ladder Queue [8], Tang et al stipulate that the optimal value for
threshold should be 50. However, as can be seen in the performance data of Figure 6.6, the setting for

this threshold has nominal impact on the overall performance. Section 5.1.2 describes a modification
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to the original Ladder Queue algorithm which eliminates the need to split Bottom when its event count
exceeds this threshold. This is probably why we don’t see a huge variation in performance for the three
threshold values. The penalty of this split would have been higher for a smaller threshold but there
would be increased likelihood of causal violations when a larger threshold is used. It is likely that if
this threshold value is increased further than 100, a point will be reached when this choice of threshold
will start to negatively impact performance. This is because for that threshold value and beyond, the

Ladder Queue will lose its ability to effectively put causally independent events into Bottom.

3. The Ladder Queue with an unsorted bottom is generally 50% faster than the Ladder Queue with a
sorted bottom. This is expected because, in case of the former, no time is wasted on sorting events
inside Bottom. The Event Commitment Ratio (Figure 6.6(b)) indicates there were no rollbacks in
either case which means no time was lost due to recovery from causal violations. The epidemic
model generally tends to have low event density within a small time window. This means sorting

inside Bottom is not a significant overhead in case of this model.

4. The performance of most data structures marginally improves with increase in number of worker
threads till about 16 threads and then marginally degrades. On the other hand, Ladder Queue with
Lock-free Unsorted Bottom shows slight improvement in performance when thread count goes above
16. This is because atomic read-write operations are not affected adversely by increase in number
of threads. However, the performance of other data structures here is surprising because contention
for access to the shared Schedule Queue should increase with increase in number of worker threads.
This should significantly degrade the performance as the thread count increases beyond 16 but that is
not what has been observed. The architecture of the NUMA machine used may provide some clues.
As mentioned in Table 6.2, each processor has 2 sockets of 8 cores each and each core supports 2
hardware threads. This explains why the best performance is observed for 16 threads. However, it is

difficult to speculate why the performance beyond 16 threads does not degrade significantly.
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Figure 6.6: Impact of the schedule queue data structure: Epidemic Model (/10,000 LPs, Barabsi-Albert

diffusion network)
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Figure 6.7 (parts (a), (b), and (c)) show that the performance results of the Epidemic model with Watts-
Strogatz |72] diffusion network is generally similar to that of Epidemic model with Barabsi-Albert [73]

diffusion network (shown in Figure 6.6).
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Figure 6.7: Impact of the schedule queue data structure: Epidemic Model (/10,000 LPs, Watts-Strogatz

diffusion network)
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Compared to Epidemic Model plots in Figures 6.6 and 6.7, Traffic model behaves differently for Ladder
Queue with Lock-free Unsorted Bottom. Figure 6.8 shows its performance is nearly 90% faster than Ladder
Queue with Unsorted Bottom, which in turn is over 25% faster than sorted Ladder Queue. Traffic model
tends to have higher event density within a small time window. The simulation’s performance benefits from

not having to sort a large number of events that are stored inside Bottom.
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Figure 6.8: Impact of the schedule queue data structure: Traffic Model (10,000 LPs)
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The PCS model, on the other hand, shows mixed performance for Ladder Queue with Lock-free Un-
sorted Bottom. In Figure 6.9, it starts off strongly but the performance tapers off with increase in number
of worker threads. Ladder Queue with Lock-Free Unsorted Bottom is still faster than its locked counterpart
but only by a small margin. Ladder Queue with Unsorted Bottom is around 20% faster than sorted Ladder

Queue. Splay Tree is consistently the worst performer in every simulation model studied.
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Figure 6.9: Impact of the schedule queue data structure: PCS Model (10,000 LPs)
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6.4.2 Multiple Schedule Queues

This quantitative study aims to understand the impact of distributed event processing by multiple schedule
queues for different thread counts (4, 8, 16, 32 and 64). The schedule queue count never exceeds the thread
count because each schedule queue is allocated atleast one thread for processing its stored events. Detailed
description is available in Section 5.2.1. In order to retain clarity of presentation, only STL MultiSet is used
as the underlying schedule queue data structure. The performance impact of multiple schedule queues when
the underlying data structure is Splay Tree or Ladder Queue or any of its variants can be studied in plots
presented in the Appendix.

Figure 6.10 shows the impact of partitioning the pending event set uniformly across multiple Sched-
ule Queues. Section 5.2.1 explains this organization in details. The plots show that performance improves
steadily as the number of schedule queues is increased up to 4, beyond which there is no further improve-
ment. This is because there is a significant increase in number of rollbacks when 8 or 16 schedule queues

are used.
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Figure 6.10: Impact of the multiple schedule queues: Epidemic Model (10,000 LPs, Barabsi-Albert diffu-
sion network)
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Figure 6.11 shows performance which is quite similar to that shown in Figure 6.10, except for the low
rollback count for higher number of schedule queues. The low event event density within any time window
of an epidemic model helps to preserve better balance in a distributed simulation by not throwing rollbacks

too frequently.
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Figure 6.11: Impact of the multiple schedule queues: Epidemic Model (10,000 LPs, Watts-Strogatz diffusion
network)
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In comparison, Figure 6.12 shows improvement in performance for traffic model till the number of

schedule queues is increased up to 8 beyond which there is no further gain. The behavior of rollbacks here

is a bit surprising given the reduction in their number for thread count 32 and higher.
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Figure 6.13 shows the performance of PCS model. It is similar to that of traffic model shown in Figure

6.12.
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6.4.3 Chain Scheduling

This quantitative analysis aims to study the effect of different chain sizes on the performance of of WARPED-
2. Section 5.2.2 presents a detailed description of event chain and its size selection parameter. In order to
simplify this analysis, only one schedule queue has been used in order to avoid the adverse effects of load
imbalance that often plagues simulations using multiple schedule queues. The performance of WARPED-2
when chains are used in combination with multiple schedule queues can be studied from plots presented
in the Appendix. The underlying data structure for the schedule queue here is STL MultiSet and different
thread counts used are 4, 8, 16, 32 and 64.

Figures 6.14 and 6.15 show the performance of Epidemic model when chains of varying sizes are used.
Both configurations of the model have identical performance which remains fairly steady with increase in
number of worker threads. Chain size only has marginal effect on performance. It is interesting to note that
rollback count is invariant for varying number of worker threads and fairly similar for different chain sizes.
The similar rollback count is likely because the local event chain size is mostly 1 (as shown in Figure 5.7).
The performance of Chain Scheduling, which uses STL MultiSet as Schedule Queue, is similar to that of
a single Schedule Queue (shown in Figure 6.6). Refer to Section 5.2.2 for a detailed explanation of event

chain.
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Figure 6.14: Performance of Event Chains: Epidemic Model (/0,000 LPs, Barabsi-Albert diffusion net-
work)
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Figure 6.15: Performance of Event Chains: Epidemic Model (/0,000 LPs, Watts-Strogatz diffusion network)
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Figure 6.16 shows that the performance of Traffic model with 10,000 LPs remains invariant with change
in chain size and worker thread count. Similar to Figures 6.14 and 6.15, rollback count is invariant for
varying number of worker threads but is significantly different for different chain sizes.

For Traffic simulation with 1,048,576 LPs, Figure 6.17 shows an unexpected loss of performance for 16

threads. The simulation is fairly stable for other configurations.
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Figure 6.16: Performance of Event Chains: Traffic Model (10,000 LPs)
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Figure 6.17: Performance of Event Chains: Traffic Model (1,048,576 LPs)
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6.4.4 Block Scheduling

This quantitative analysis aims to study the effect of different block sizes on the performance of of WARPED-
2. Section 5.2.3 presents a detailed description of blocks and its size selection parameter. In order to simplify
this analysis, only one schedule queue has been used in order to avoid the adverse effects of load imbalance
that often plagues simulations using multiple schedule queues. The performance of WARPED-2 when blocks
are used in combination with multiple schedule queues can be studied from plots presented in the Appendix.
The underlying data structure for the schedule queue here is STL MultiSet and different thread counts used
are 4, 8, 16, 32 and 64.

Figures 6.18 and 6.19 show the performance of Epidemic model when blocks of varying sizes are used.
Both configurations of the model have identical performance which remains fairly steady with increase in
number of worker threads. Block size only has marginal effect on performance. It is interesting to note that
block scheduling has better performance when compared to that of chain scheduling. Refer to Section 5.2.3

for a detailed explanation of event blocks.
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Figure 6.18: Performance of Event Blocks: Epidemic Model (/0,000 LPs, Barabsi-Albert diffusion net-

work)
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Figure 6.19: Performance of Event Blocks: Epidemic Model (/0,000 LPs, Watts-Strogatz diffusion network)
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Figure 6.20 shows that the performance of Traffic model with 10,000 LPs remains invariant with change

in block size and worker thread count.
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Figure 6.20: Performance of Event Blocks: Traffic Model (10,000 LPs)
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Figure 6.21 shows a Traffic simulation with 1,048,576 LPs behaves similar to the 10,000 LP traffic

simulation.

109



CHAPTER 6. EXPERIMENTS

6.4. ANALYSIS OF PERFORMANCE

1.000004

[128 —— 256 F><— 32 64 |

TRAFFIC model with 1,048,576 LPs
Schedule Queue Count = 1, key = Block Size

1.000003 —

1.000003 —

1.000002 —

1.000001 —

1.000001 —

Event Commitment Ratio (C.I. = 95%)

1.000000 —

1.000000 —

0.999999

— I

0

230000

10 20 30 40 50

Worker Thread Count

(b) Event Commitment Ratio

[128 —— 256 =< 32 64 |

TRAFFIC model with 1,048,576 LPs
Schedule Queue Count = 1, key = Block Size

60

70

220000 [~

210000 —

200000 [—

190000 —

180000 —

170000 —

Event Processing Rate (per sec) (C.I. = 95%)

160000 —

150000 —

140000

Figure 6.21: Performance of Event Blocks: Traffic Model (1,048,576 LPs)

10 20 30 40 50

Worker Thread Count

(c) Event Processing Rate (per second)

110

60

70



CHAPTER 6. EXPERIMENTS 6.4. ANALYSIS OF PERFORMANCE

[128 —— 16 F—>¢ 256 32 4 64 |

EPIDEMIC model with 10,000 LPs
key = Static Window Size

45 T T T T T T

40 -

35 - —

30 -

25 -

Simulation Runtime (secs.) (C.I. = 95%)

Worker Thread Count

(a) Simulation Runtime (in seconds)

6.4.5 Bags with Static Window Size

In this study, the performance of bags and its static window size selection parameter are being quantitatively
analyzed. Section 5.2.4 presents a detailed description of bags. The profile-driven partitioning for each
benchmark model is driven by the event profile collected during sequential simulation. Configuration for
this sequential simulation can be found in the configuration tables in the Appendix, namely Tables A.3, A .4,
A.5, A.6, A.1, A.2 and A.7. The performance of WARPED-2 is being evaluated for different thread counts
(4, 8, 16, 32 and 64) when using bags with different static window sizes, namely 4, 16, 32, 64, 128 and 256.

Figures 6.22 and 6.23 show the performance of Epidemic Model where events are scheduled from
profile-driven LP partitions (refer to Section 5.2.4 for details). Both configurations show fairly similar
performance which peaks at 16 threads. From the plots, it is evident that static window size has little or no
impact up to thread count of 32. Similar to event chains, the rollback count remains invariant to increase in
number of worker threads and static window size. Epidemic model using Watts-Strogatz diffusion network
has lesser number of rollbacks compared to the Epidemic model using Barabasi-Albert diffusion network.
It is worth noting that performance of bags is similar and sometimes superior to that of Ladder Queue with

Lock-free Unsorted Bottom in Figures 6.6 and 6.7.
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Figure 6.22: Performance of Bags with Static Window Size: Epidemic Model (/0,000 LPs, Barabsi-Albert

diffusion network)
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Figure 6.23: Performance of Bags with Static Window Size: Epidemic Model (/0,000 LPs, Watts-Strogatz
diffusion network)
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Figures 6.24 and 6.25 show the performance of bags when using static window size for Traffic and PCS
models respectively. Similar to the behavior shown by the two different configurations of the Epidemic
model, Traffic and PCS models also have rollback count that remains invariant with increase in number of
worker threads. Peak performance is for 16 threads. The static window size parameter has very little or no

impact on the simulation.
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Figure 6.25: Performance of Bags with Static Window Size: PCS Model (/0,000 LPs)
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6.4.6 Bags with Fractional Time Window

Similar to Section 6.4.5, the performance of bags and its fractional window selection parameter are being
quantitatively analyzed in this study. The performance of WARPED-2 is being evaluated for different thread
counts (4, 8, 16, 32 and 64) when using bags with fractional window. The fractional parametric values
evaluated are 0.05, 0.25, 0.50 and 0.75.

Figures 6.26 and 6.27 show the performance of Epidemic Model where events are scheduled from
profile-driven LP partitions (refer to Section 5.2.4 for details). Both configurations show fairly similar
performance which peaks at 16 threads. From the plots, it is evident that fraction of time window has lit-
tle or no impact. Similar to event chains and bags using static window size, the rollback count remains
fairly invariant to increase in number of worker threads and fraction of time window. Epidemic model using
Watts-Strogatz diffusion network has lesser number of rollbacks compared to the Epidemic model using

Barabasi-Albert diffusion network.
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Figure 6.26: Performance of Bags with Fractional Time Window: Epidemic Model (/0,000 LPs, Barabsi-
Albert diffusion network)
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Figure 6.27: Performance of Bags with Fractional Time Window: Epidemic Model (/0,000 LPs, Watts-
Strogatz diffusion network)
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Figures 6.28 and 6.29 show the performance of bags when using fractional time window for Traffic and
PCS models respectively. Similar to the behavior shown by the two different configurations of the Epidemic
model, Traffic and PCS models also have rollback count that remains invariant with increase in number of
worker threads. Peak performance is for 16 threads. The fractional time window parameter has very little

or no impact on the simulation.
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Figure 6.28: Performance of Bags with Fractional Time Window: Traffic Model (/0,000 LPs)
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Figure 6.29: Performance of Bags with Fractional Time Window: PCS Model (10,000 LPs)

6.5 Summary of Performance Analysis

Based on the data presented in Section 6.4, it can be observed that different models react differently to
the various options for schedule queue data structures and scheduling mechanisms. In spite of these subtle
differences in behavior, a common pattern does emerge. Ladder Queue with lock-free access to unsorted
bottom is generally the most efficient candidate for the schedule queue. Its event processing rate is only
eclipsed by multiple schedule queues. A possible configuration, therefore, can be multiple schedule queues
with each schedule queue being a Ladder Queue with Lockfree Unsorted Bottom. Figures 6.30 and 6.31
present the performance of the aforementioned configuration for two separate models. The network structure
and event density of these two models, namely Epidemic model with Watts-Strogatz network and Traffic
model, are different which should aid in model-specific comparisons. Since the threshold parameter in a
Ladder Queue has only negligible effect on simulation performance, threshold value of 96 is the only one
used for this presentation. Plots for multiple Ladder Queue-based schedule queues using Lockfree Unsorted
Bottom and other threshold values can be studied in the Appendix.

Figure 6.30 shows gain in performance for the traffic model when compared against Figure 6.12 (multi-
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Figure 6.31: Epidemic (Watts-Strogatz network) for Multiple Ladder Queue-based Schedule Queues with

Lockfree Unsorted Bottom (/0,000 LPs)
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ple STL MultiSet-based schedule queues ) or Figure 6.8 (single schedule queue with different data structure
options). The gain is substantial when event processing rate is compared but marginal when simulation
times are compared.

Figure 6.31 shows gain in performance for the epidemic model when compared against Figure 6.11
(multiple STL MultiSet-based schedule queues ) or Figure 6.7 (single schedule queue with different data
structure options). The gain for event processing rate is marginal by comparison. Epidemic model has
sparse event density when compared to traffic model. This explains the increase in event processing rate
for traffic. However, this higher event density also increases the risk of causality violation in traffic. Infact
there is a 5-10% increase in rollbacks for traffic while epidemic’s rollback count increases by less than 1%.
As a result, any performance gains in event processing rate for traffic is mostly cancelled by the increased

number of rollbacks it needs to take care of.
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Chapter 7

Performance Comparison to Sequential

Simulation

Speedup with respect to Sequential Simulation, for a WARPED-2 configuration, is a metric used in this
chapter to present a consolidated overview of the most effective scheduling data structures and scheduling

strategies found during the quantitative study presented in Chapter 6 and Appendix. The metric equals

Time needed by Sequential Simulation to reach a certain timestamp

Time needed by that Time Warp configuration to reach the same timestamp (or GVT)

According to [ 14], this speedup value represents the ‘supercritical speedup’ of any optimistically-synchronized

parallel simulation such as WARPED-2.

7.1 Quantitative Analysis of Configurations

7.1.1 Top Performers

Figures 7.1(a) and 7.2(a) show that Ladder Queue with Lock-free Unsorted Bottom is a top performing
configuration for the two Traffic models. The choice of schedule queue count varies for the two models: 16
schedule queues is a top performer for the 10,000 LPs Traffic model while 4 or 8 schedule queues work for
the 1,000,000 LPs Traffic model. Speedup against sequential simulation for both Traffic models are similar

across a range of scheduling techniques. The difference in schedule queue count is most likely due to higher
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Figure 7.7: Top performers for PCS (/0,000 LPs) model

138



CHAPTER 7. PERFORMANCE VS. SEQUENTIAL 7.1. QUANTITATIVE ANALYSIS

event processing ratio for the larger Traffic model.

Figure 7.7(a) shows Ladder Queue with Lock-free Unsorted Bottom is the clear choice for the PCS
model. PCS seems to prefer one schedule queue most likely due to high causal event density. This obser-
vation is significant because although both Traffic and PCS models use mesh network, their performance
window do not correlate so closely.

In case of the two Epidemic models with 10,000 LPs, the performance pattern looks strikingly different
when Epidemic with Watts-Strogatz network is compared to Epidemic with Barabasi-Albert network. Figure
7.4(a) shows block scheduling is quite effective for Watts-Strogatz network but Figure 7.3(a) shows Ladder
Queue with Lock-free Unsorted Bottom dominates for Barabasi-Albert network. The change in network
structure seems to drastically affect the density of causally-linked events. It can also be observed that it is
easier to pinpoint a good scheduling technique for Barabasi-Albert based Epidemic model when compared
to Watts-strogatz based model. In case of the latter model, many scheduling configurations show good
speedup.

Figures 7.5(a) and 7.6(a) show that, for the Epidemic models with 100,000 LPs, Ladder Queue with
Lock-free Unsorted Bottom is the clear choice. Unlike Epidemic models with 10,000 LPs, both models here
seem to prefer low number of schedule queues (2, 4 and sometimes 8). The smaller 10,000 LPs Epidemic
models prefer 8 or 16 schedule queues. In general, a wide variety of scheduling techniques work for the
Watts-Strogatz network while the preference is less wide for Barabasi-Albert based Epidemic simulation.
Additionally, Barabasi-Albert based Epidemic model prefers lower number of schedule queues. This is
indicative of higher density of causally linked events in case of the BA model. It explains why a wide
variety of scheduling techniques work for the WS model while the selection window is smaller for the BA

model.

Summary

The overwhelming choice for most models is Ladder Queue wih Lock-free Unsorted Bottom. Larger models
prefer lower schedule queue count (2,4 or maybe even 8) while smaller models generally work better with
higher number of schedule queues (8 or 16). Bags and chains are generally absent from the 95t h percentile

group for all models. In few cases like Traffic model, Block scheduling is a powerful option as well.
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Additionally, the underlying network seems to play a key role in determining which scheduling techniques

are effective for a model, but PCS and Traffic defy this trend.

7.1.2 Worst Performers

Figures 7.1(b), 7.2(b), 7.7(b), 7.5(b) and 7.6(b) show that scheduling techniques in the lowest 10th per-
centile are all slower than sequential simulation, except for Epidemic models with 10,000 LPs (Figures
7.3(b) and 7.4(b)). Most scheduling techniques (type of schedule queue, blocks and chains) use one sched-
ule queue for a wide variety of worker threads. It is expected that contention will slow down simulation but
it is surprising that the speedup is less than 1.

Chain and Bag scheduling techniques are some of the worst performers for the Epidemic models. The
performance of Chain scheduling suffers more than Block scheduling when LP count increases for the
Traffic model. Both Chain and Block scheduling techniques perform very poorly for the 10,000 LP sized
Traffic model but performance of Block scheduling improves when LP count increases. Usually Block
scheduling techniques perform poorly for larger block sizes of 64, 128 or 256.

These observations for Chain, Bag and Block scheduling indicates that over-aggressive estimates of
causal independence are ineffective. The simulation models which suffer most from these over-aggressive
thresholds are Traffic and PCS - both have a higher density of causally-linked events when compared to the

Epidemic models.

Summary

The lowest 10t h percentile results are good for understanding the effects of contention. Since most of the
scheduling techniques here use one schedule queue, we can assume load imbalance is not an issue for the
simulation models. This means only model-specific causal density and contention can affect performance
of different scheduling techniques. Epidemic models are of special interest here because these models
have the lowest density of causally-linked events. So contention for shared pending event set is its primary
hindrance for the Epidemic models. Based on observations from Figures 7.3(b) and 7.4(b), Epidemic models
with 10,000 LPs suffer less than other models and shows speedup > 1. This observation indicates that

causal violations due to over-aggressive thresholds adversely affect performance equally or even more than
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contention for the shared event pool.

7.1.3 Anomalies in Performance

Epidemic model with Barabasi-Albert network and 10,000 LPs shows extremely high speedup values in
Figure 7.3(a). This behavior indicates that some aspect of the processing architecture is making WARPED-2
simulations extremely efficient. Since these simulations were executed on NUMA-based computing plat-
forms, the effect of distributed caches is worth exploring. Section 7.2 presents a small study on a SMP node
which does not have such distributed cache arrangements. This study is useful for pinpointing that cache

effects in NUMA machines do play a major role in artificially boosting the performance of WARPED-2.

7.2 Performance of WARPED-2 on SMP machine

Figures 7.8,7.9,7.14,7.12,7.13,7.10 and 7.11 show the speedup vs. sequential simulation for all simulation
models. These simulations were executed on a SMP machine (refer to Table 7.1). All configurations in
these experiments use 6 worker threads because this study only aims to capture how cache effects affect
performance on a SMP machine when compared to a NUMA machine. Section 7.1.3 presents the anomalies

that exist in the data collected on the NUMA-based machines.

H Intel® Xeon® E5675 H

ISA x86_64
# Cores 6
# Threads 12
# Sockets 1
Frequency 3.06 GHz
Processor Cache 12 MiB
Memory 28 GB
OS Kernel 4.9.0-6-amd64
C Library Debian GLIBC 2.24-11+deb9u3
Compiler GCC v6.3.0
Runtime MPI MPICH v3.2
Python 2.7.13
Python-numpy 1.12.1
Python-networkx 1.11

Table 7.1: Experimental Setup for SMP machine
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Figure 7.8: Top performers for Traffic (/0,000 LPs) model

The following observations can be made from the data:

1. The speedup numbers from the SMP machine are low for all simulation models. This indicates that
the NUMA architecture is making the performance of WARPED-2 look better in Section 7.1 than it

should have been.

2. Ladder Queue with Lock-free Unsorted Bottom is generally the best option but not by a huge margin
unlike what we observed from the NUMA experiments. That is partly due to use of lower number of
threads (6) here. Locked queues do not suffer a lot from contention issues for lower thread count and
so they tend to perform at a level comparable to Ladder Queue with Lock-free Unsorted Bottom when

only 6 worker threads are used.

3. The results show that 6 threads with 6 schedule queues is generally not a good option, mostly due to
load imbalance which triggers too many rollbacks. The configurations that seem to perform well are

6 threads with 2 or 3 schedule queues.
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Figure 7.12: Top performers for Epidemic-BA (100,000 LPs) model
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Chapter 8

Conclusions and Suggestions for Future

Research

8.1 Conclusion

This dissertation studies the problem of contention that prevents Time Warp-synchronized Parallel Discrete
Event Simulations from scaling up substantially on a multi-core computing platform. The data structure
that holds the pending events is a major point of contention for threads trying to access and process these
scheduled events in parallel. Several different data structures, namely STL MultiSet [55], Splay Tree [28]
and Ladder Queue [8], have been explored and discussed in details. The Ladder Queue, a hierarchically
organized priority queue, is of particular interest because of its ability to self-split pending events into time-
bound partitions without requiring any manual intervention like the Calendar Queue [15]. This self-split of
pending events forces the smallest available events to accumulate inside the lowest partition of the Ladder
structure. If one assumes that these events within the lowest partition are causally independent, there is no
further need to sort these events. This approach saves computational time otherwise wasted on sorting and
also reduces contention to this shared pool by increasing availability. The contention can be further reduced
through atomic read-write operations on this lowest partition. Experimental results presented in Section
6.4.1 show that atomic operations on the unsorted lowest partition in a Ladder Queue improves performance

of parallel simulation by over 100% when compared to a sorted Ladder Queue.
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A parallel approach to contention management lies in exploration of alternative scheduling techniques.
Traditional PDES kernels maintain a common pending event pool which is accessed by threads for process-
ing events. This organization prevents a simulation from scaling up massively on large multi-core computing
platforms. Splitting this common pending event pool and distributing it uniformly among groups of threads
was successfully explored by Dickman et al [6]. The benefit from reduction in contention compensates for
the extra rollbacks due to imbalance in distributed scheduling. Experimental results presented in Section
6.4.2 show that performance of simulation can be improved by upto 150% when the pending event pool is
split into several pools, each having its own group of threads.

The combination of multiple schedule queues with each schedule queue being a Ladder Queue with
lockfree unsorted bottom is the best scheduling strategy for all simulation models studied in this thesis. The
gain in performance from this configuration depends heavily on the event density of each model and tends
to favor the models with relatively high event density. This is because this configuration improves the event
processing rate by reducing contention. A models with high event density is ideally placed to benefit more
from this reduction in contention. Section 6.5 presents a detailed discussion on this topic.

Wilsey’s [9] analysis of profile-driven data collected from Discrete Event Simulation showed that it is
possible for threads to schedule multiple events for processing without causing too many causal violations.
Unlike traditional PDES where one event is scheduled at a time, scheduling multiple events at once from a
pending event pool reduces the overall time a thread wastes in waiting for access to this event pool. Gupta
and Wilsey [3] explored two different approaches: one where multiple events are scheduled from a common
pending event pool, and another where multiple events are scheduled from the LP that holds the smallest
unprocessed event. Experimental results presented in Sections 6.4.3 and 6.4.4 show that this arrangement
can speed up performance by upto 100% for some simulation models. The results validate the findings in [9]
that not all simulation models benefit from events processed in groups.

Alt and Wilsey [17] showed that network statistics driven partitioning of LPs into ‘close-knit’ commu-
nities is effective for reducing remote messaging in a distributed environment. This dissertation explores
the use of modularity-based techniques [46] to partition LPs into dense communities which are sparsely
connected to other communities. Section 5.2.4 explains that it is possible to process a groups (or bag) of

pending events from each community in parallel without drastic increase in number of causal violations.
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This arrangement extends the existing benefits of processing events in groups (as discussed in the previous
paragraph). This organization also allows cyclic atomic scheduling of bags to a waiting thread. Experi-
mental results presented in Sections 6.4.5 and 6.4.6 show that, for some models, the performance of bag

scheduling technique equals that of Ladder Queue with Lock-free Unsorted Bottom.

8.2 Suggestions for Future Work

8.2.1 Hybrid Group Scheduling

Sections 5.2.2 and 5.2.3 explain how events can be scheduled for processing using chains and blocks re-
spectively. An idea that has not been explored in this dissertation involves combining the two scheduling
strategies together in order to schedule events from different LPs that are within a bounding time window.
Event block can serve as the first-level filter for defining the bounding time window. Each LP within the
block can then be allowed to schedule multiple events within this specified time window for processing. The
assumption here would be that events within this time window are generally causally independent of each

other.

8.2.2 Load Balancing on Multi-Core Processors

For the past two decades, researchers have been exploring ways to balance workload in a Parallel Discrete
Event Simulation. Several approaches have been proposed. Deelman and Szymanski [75] studied dynamic
load balancing for unbalanced simulation of spatially explicit problems. Their proposed min-max based
approach balances the workload for a ring of processes by using an estimate for arrival time of future events.
Schlagenhaft et al [76] proposed that clusters of LPs can be moved between processing elements. Alt and
Wilsey [17] showed that LPs can be partitioned using METIS [45] and assigned to different nodes on a
clusters by minimizing the number of remote events communicated over the network.

The world of parallel computing has evolved significantly in the past two decades. The advent of multi-
core processors has made it necessary to balance the workload distributed among threads within the same
node. Dickman et al [6] studied the problem of intra-node load balancing for multiple schedule queues.

They proposed that LPs with the smallest events can migrate within a ring of schedule queues in order
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to keep the simulation balanced and closer to the critical path. While this approach works well for some
simulation models, the design is sensitive to cache architecture of the host processor. The performance of
such an arrangement is significantly poor on NUMA-based systems. Linden et al [77] describes a similar
load migration protocol for fine-grained dynamic load balancing, albeit one where LPs are visualized as
voxels.

In WARPED?2, the pending events are partitioned and processed by several threads in parallel. While the
event processing rate for each thread is approximately equal, the rate at which events are committed varies
for each thread. Regulating the event processing rate across a group of threads may help keep the simulation
closer to the critical path. This should reduce the number of rollbacks and result in an overall improvement
in simulation time. Further research on this topic is required before arriving at a possible solution. An event

profiler for Time Warp-based PDES may prove to be a valuable tool for this study.
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Appendix A

Performance Results from all

Configurations and Simulation Models

Section 6.3 describes the different benchmarks used in the quantitative study of different optimizations
discussed in Chapter 5. The following sections present all the data collected for this study. Tables in each

section provide configuration details for all benchmark models.

A.1 Traffic Model Configured with 10,000 LPs

Table A.1 shows the configuration for this model.

H Parameter Values H
Number of Intersections (or LPs) 10,000
Type of network connecting LPs 4-directional grid
Grid Size 100x100
Number of Cars initially at each intersection 25
Mean car arrival interval at each intersection 400 timestamp units
Simulation Time 10,000 timestamp units
Sequential Simulation Time for calculating modularity 6000 timestamp units

Table A.1: TRAFFIC MODEL setup
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A.1. TRAFFIC-10K LPS
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Event Commitment Ratio (C.I. = 95%)
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A.l. TRAFFIC-10K LPS
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Figure A.13: traffic 10k/plots/scheduleq/threads vs count key type lockfree-unsorted-bottom 50
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Figure A.36: traffic 10k/plots/blocks/threads vs count key blocksize 64
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A.2 Traffic Model Configured with 1,048,576 LPs

Table A.2 shows the configuration for this model.

H Parameter Values H
Number of Intersections (or LPs) 1,048,576
Type of network connecting LPs 4-directional grid
Grid Size 1024x1024
Number of Cars initially at each intersection 25
Mean car arrival interval at each intersection 400 timestamp units
Simulation Time 500 timestamp units
Sequential Simulation Time for calculating modularity | 300 timestamp units
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Figure A.53: traffic Im/plots/scheduleqg/threads vs count key type lockfree-unsorted-bottom 16
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A.3 Epidemic Model with 10,000 LPs and Watts-Strogatz Network

Table A.3 shows the configuration for this model.

95%)

Simulation Runtime (secs.) (C.I.

H Parameter Values H
Number of Intersections (or LPs) 10,000
Type of network connecting LPs Watts-Strogatz [72]
Population Size 1,000,000

Simulation Time
Sequential Simulation Time for calculating modularity

15,000 timestamp units
8,000 timestamp units

40

35

30

25

20

Table A.3: EPIDEMIC MODEL WITH WATTS-STROGATZ setup
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Figure A.71: epidemic 10k ws/plots/chains/threads vs chainsize key count 8
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Figure A.72: epidemic 10k ws/plots/chains/threads vs chainsize key count 2
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Figure A.73: epidemic 10k ws/plots/chains/threads vs count key chainsize 16
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Figure A.75: epidemic 10k ws/plots/scheduleq/threads vs count key type stl-multiset
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Figure A.83: epidemic 10k ws/plots/scheduleq/threads vs count key type ladder-queue 50
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A.4 Epidemic Model with 100,000 LPs and Watts-Strogatz Network

Table A.4 shows the configuration for this model.

95%)

Simulation Runtime (secs.) (C.I.

H Parameter Values H
Number of Intersections (or LPs) 100,000
Type of network connecting LPs Watts-Strogatz [72]
Population Size 500,000

Simulation Time

Sequential Simulation Time for calculating modularity

6,000 timestamp units
200 timestamp units
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Table A.4: LARGE EPIDEMIC MODEL WITH WATTS-STROGATZ setup
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Figure A.107: epidemic 100k ws/plots/chains/threads vs chainsize key count 8
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e — 4 8 ]

EPIDEMIC model with 100,000 LPs
Schedule Queue Type = LADDER-QUEUE:96 , key = Schedule Queue Count

6 T T T T T T
55 [— .
5 |
2
0
© 45 - ,
I ]
S
< 4 — —
s
s
=}
E 35 : : .
w
8
5 3 - -
g
o
Jo)
ow
< 251 .
E
o
g
3 2t -
o
jo N
o
15 .
T et * AF i
05 L L L L L L
0 10 20 30 40 50 60 70

Worker Thread Count

(d) Speedup w.r.t. Sequential Simulation

382



APPENDIX A. ALL RESULTS A.4. EPIDEMIC-WS-100K LPS

[T 16>+ 2% 4 8 ]

EPIDEMIC model with 100,000 LPs
Schedule Queue Type = STL-MULTISET , key = Schedule Queue Count

% T T T T
80 [— N
70 -
*
0
60 —
S
T T O —
8
(0]
£
£ 4fb e BT T ST
> .
o
[=4 T X
s - I S S
% 30 KK 4 -
£
w
20 NTF R I ST e B EATETTEE EERRRRRER
10 - .
X X
0 L L L L L L
0 10 20 30 40 50 60 70
Worker Thread Count
(a) Simulation Runtime (in seconds)
[T 16 > 2 4 8 ]
EPIDEMIC model with 100,000 LPs
Schedule Queue Type = STL-MULTISET , key = Schedule Queue Count
1.00035 : : : :
1.0003 |~ -
1.00025 |- 1
X
0
o
A 1.0002 |- -
S
°
3
o
= 1.00015 — -
(7]
£
€
3
8 1.0001 |- -
z
2
w
1.00005 — 1
1_ —
0.99995 L L L L L L
0 10 20 30 40 50 60 70

Worker Thread Count

(b) Event Commitment Ratio

383



APPENDIX A. ALL RESULTS A.4. EPIDEMIC-WS-100K LPS

Event Processing Rate (per sec) (C.I. = 95%)

Speedup w.r.t. Sequential Simulation (C.I. = 95%)

1< 2 4 8 ]

EPIDEMIC model with 100,000 LPs
Schedule Queue Type = STL-MULTISET , key = Schedule Queue Count

1.4e+06 ,

1.2e+06 |— —

1e+06 — —

800000 — —

600000 — —

400000 |~ —

200000 — —

o | | | | | |
0 10 20 30 40 50 60 70

Worker Thread Count
(c) Event Processing Rate (per second)

Figure A.111: epidemic 100k ws/plots/scheduleq/threads vs count key type stl-multiset
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Figure A.129: epidemic 100k ws/plots/blocks/threads vs blocksize key count 8
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Figure A.134: epidemic 100k ws/plots/blocks/threads vs count key blocksize 64
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A.5 Epidemic Model with 10,000 LPs and Barabasi-Albert Network

Table A.5 shows the configuration for this model.

H Parameter Values H
Number of Intersections (or LPs) 10,000
Type of network connecting LPs Barabasi-Albert [73]
Population Size 1,000,000

Simulation Time

Sequential Simulation Time for calculating modularity

15,000 timestamp units
8,000 timestamp units

Table A.5: EPIDEMIC MODEL WITH BARABASI-ALBERT setup
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Figure A.135: epidemic 10k ba/plots/chains/threads vs count key chainsize 8
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Figure A.138: epidemic 10k ba/plots/chains/threads vs chainsize key count 16
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Figure A.139: epidemic 10k ba/plots/chains/threads vs count key chainsize 4
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Figure A.144: epidemic 10k ba/plots/scheduleq/threads vs count key type ladder-queue 96

e — 4 8 ]

EPIDEMIC model with 10,000 LPs
Schedule Queue Type = LADDER-QUEUE:96 , key = Schedule Queue Count

6 T T T T T T
55 |- 4
T

N 4 [
0
[}
n

S 45 4
c
S
k]

g 4 .
E
8
=

S 85 / : : —
o
Jo)
ow

E 3 -
o
g
o
(7]
&

& 25 - 4

2 - 4

=+
15 L L L L L L
0 10 20 30 40 50 60 70

Worker Thread Count

(d) Speedup w.r.t. Sequential Simulation

451



APPENDIX A. ALL RESULTS A.5. EPIDEMIC-BA-10K LPS

[T 16>+ 2% 4 8 ]

EPIDEMIC model with 10,000 LPs
Schedule Queue Type = STL-MULTISET , key = Schedule Queue Count

30 T T T T
25 TT .
9
0
o
n
I T T T-——— ik B
g
3
(0]
£
z
s \
T 15 - * 1
[=4
S T
s \
8 : T .
z (X ” S —
'(7) T
10 - —=
5 | | | | | |
0 10 20 30 40 50 60 70
Worker Thread Count
(a) Simulation Runtime (in seconds)
O 18 > 21— 4 8 ]
EPIDEMIC model with 10,000 LPs
Schedule Queue Type = STL-MULTISET , key = Schedule Queue Count
1.25 T T T T
12 [ —
9 b
] 1.15 - -
"
S
2o
T
< 1.1 I & |
& ’ X
E
2 1
£
Q
[$)
H 1.05 - : —
>
w
1+ ' } —
0.95 | | | | | |
0 10 20 30 40 50 60 70

Worker Thread Count

(b) Event Commitment Ratio

452



APPENDIX A. ALL RESULTS A.5. EPIDEMIC-BA-10K LPS

[T+ 16> 2 4 8 ]

EPIDEMIC model with 10,000 LPs
Schedule Queue Type = STL-MULTISET , key = Schedule Queue Count

700000 : : : :
600000 |- g
= 4
2
el
=3
[
500000 |- ] g
S
B
Q
2]
o]
s
@ 400000 - g
5
o
j=2}
£
a
1%
Q
S
& 300000 | g
£
o
>
w
200000 |- g
100000 ' ' ' ' ' '
0 10 20 30 40 50 60 70

Worker Thread Count
(c) Event Processing Rate (per second)

Figure A.145: epidemic 10k ba/plots/scheduleq/threads vs count key type stl-multiset
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Figure A.146: epidemic 10k ba/plots/scheduleq/threads vs count key type unsorted-bottom 50
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Figure A.147: epidemic 10k ba/plots/scheduleq/threads vs count key type lockfree-unsorted-bottom 50
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A.6 Epidemic Model with 100,000 LPs and Barabasi-Albert Network

Table A.6 shows the configuration for this model.

95%)

Simulation Runtime (secs.) (C.I.

H
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Values H

Number of Intersections (or LPs)

Type of network connecting LPs
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Simulation Time

Sequential Simulation Time for calculating modularity
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Table A.6: LARGE EPIDEMIC MODEL WITH BARABASI-ALBERT setup
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A.7 PCS Model with 10,000 LPs

Table A.7 shows the configuration for this model.

H Parameter Values H
Number of Intersections (or LPs) 10,000
Type of network connecting LPs 4-directional grid
Grid Size 100x100
Maximum number of channels 15
Mean call interval 200 timestamp units
Mean call duration 50 timestamp units
Mean move interval 100 timestamp units
Total number of portables 500,000
Simulation Time 500 timestamp units
Sequential Simulation Time for calculating modularity | 350 timestamp units

Table A.7: PCS MODEL setup
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