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Abstract

High-dimensional statistical problems have been encountered in numerous modern ap-

plication fields including finance, biology, and engineering. The key of high-dimensional

statistics is to identify important variables among many features with sparse representation.

This dissertation consists of two essays.

In Essay I, we introduce a new class of mean regression estimators — penalized maximum

tangent likelihood estimation — for high-dimensional regression estimation and variable se-

lection. We first explain the motivations for the key ingredient, a novel robust method called

maximum tangent likelihood estimation (MTE), and establish its asymptotic properties.

The proposed MTE is highly efficient, and we numerically demonstrate this under various

simulation settings. Unlike traditional robust methods, the proposed MTE protects against

violation of any particularly assumed parametric model, hence can be easily extended to

various statistical models in practice, while we focus on linear regression in this article. To

robustly select important variables under high dimensional feature space, we further pro-

pose the penalized MTE. The optimal rate of convergence in the order of
√

ln(d)/n has been

established for ultra-high dimensional regression where the number of variables d grows ex-

ponentially with the sample size n, while
√
n-consistency and oracle property have been

shown for fixed dimensional linear regression. The proposed penalized MTE has a broad

spectrum that consists of penalized `2 distance, penalized exponential squared loss, penal-

ized least trimmed square and penalized least square as special cases, and can be regarded
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as a mixture of minimum Kullback-Leibler distance estimation and minimum `2 distance

estimation. We conduct extensive simulation studies and real data analysis to demonstrate

the advantages of the penalized MTE.

In Essay II, we introduce a flexible yet easy-interpretable index hazard model for corpo-

rate bankruptcy prediction under a semiparametric modeling framework. Motivated by the

long debate between accounting and finance researchers, we propose a penalized double-index

hazard model with automatic variable selection. The two indices are naturally constructed

by separate market and accounting based bankruptcy predictors. The unknown functions

are estimated by polynomial splines. In order to identify important predictors, a nonconcave

penalty function, SCAD, is adopted due to its attractive statistical properties. We develop

a comprehensive database of the publicly traded firms in North America manufacturing sec-

tor and focus our empirical studies on this largest sector among all industries. We show

that the proposed index hazard model reveals a novel nonlinear relationship. The proposed

double-index hazard model is superior to the state-of-the-art Shumway’s linear discrete haz-

ard model using Altman’s Z-score variables. The two newly constructed composite indices:

market and accounting index may be of great potential interest in practice. In addition,

we find that the accounting index would consist of more accounting based predictors as the

prediction horizon increases, while market index would include fewer market based variables.
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Chapter 1:

Penalized Maximum Tangent Likelihood Estimation

and Robust Variable Selection

1.1 Introduction

Selecting explanatory variables has become one of the most important tasks in statistics.

Tremendous progresses have been accomplished with incredible amount of efforts in studying

regularized methods. These accomplishments include but not limited to LASSO [53], SCAD

[18], adaptive-Lasso [72], and MCP [67] in both theoretical and practical viewpoints (see e.g.,

[18, 69, 41] for theoretical and [20, 61] for practical contributions). For regression problems,

these regularized estimators usually can be expressed as penalized likelihood estimation,

β̂ = arg max
β

{
n∑
i=1

ln f(zi;β)− n
d∑
j=1

pλ(βj)

}
, (1.1)

where {zi}ni=1 = {yi,xTi }ni=1 represents the response variable and covariates, f is likelihood

function that is commonly assumed to be normal density with zero mean for linear regres-

sion (note we use f(zi;β) and f(yi − xTi β) interchangeably) and other discrete distribution

functions for generalized linear models (GLMs), and pλ(βj) is a penalty function for jth

regression coefficient, j = 1, . . . , d.
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However, the performance of such an estimator usually degrades drastically once the

data disagree with the assumed distribution f . Such effect can be severe even if a small

proportion of data is contaminated while majority consist with the assumed distribution. A

natural question is then how to protect violation of f . To address this issue, we first propose

the maximum tangent likelihood estimation (MTE) as

β̃ = arg maxβ∈Rd

n∑
i=1

lnt(f(zi;β)), (1.2)

and then its penalized version as

β̂ = arg max
β∈Rd

{ n∑
i=1

lnt(f(zi;β))− n
d∑
j=1

pλnj(|βj|)
}

(1.3)

for robust variable selection, where lnt(·) is a piecewise function defined as

lnt(u) =


ln(u) if u > t,

ln(t) +
∑p

k=1
∂k ln(v)
∂vk

∣∣
v=t

(u−t)k
k!

if 0 ≤ u ≤ t.

(1.4)

Here t ≥ 0 is a tuning parameter that balances robustness and efficiency tradeoff. lnt(u) is

essentially a p-th order Taylor expansion of ln(u) for 0 ≤ u < t. Figure 1.1 compares the

shape of lnt(·) (bold black curve) with ln(·) (blue dashed curve) for various p and t. When

t = 0, lnt(u) = ln(u) (1st figure from left), hence MTE contains the maximum likelihood

estimation (MLE) as a special case. Although p also determines the shape of lnt(·) (2nd-4th

figures), we found out through simulation that its effect is much less significant than that of

t. We stress that p = 1 unless indicated otherwise throughout this article, hence the name

“tangent”. However, our results are expected to hold for a general p.
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Figure 1.1: Illustration of lnt(u) (in bold black) with different p and t. Blue dashed curve
represents nature logarithm function for comparison. Blue dotted line indicates the value of
tuning parameter t.

The mechanism of protecting violation of assumed distribution f can be easily seen from

above formulations. In contrast to MLE, the second piece in the formula (1.4) offers lower

bound by assuming t > 0, which would otherwise tend to negative infinity for observations

that deviate far from f . A small value of t is generally preferred. The intuition is that it

keeps the portion of MLE, the first piece of formula (1.4), as much as possible, so that MTE

would maintain high efficiency. Following such intuition, a data-driven approach is proposed

in section 1.5 to select optimal t in order to achieve high efficiency. With such formulation

and the intuitions behind, the proposed MTE is an ideal robust statistical procedure, which

performs nearly optimally when model assumptions are valid (t→ 0) and still maintains high

performance when the assumptions are violated (t > 0 is selected to maximize efficiency).

We will elaborate the proposed MTE, and discuss its statistical properties in section 1.2.

As a by-product, MTE can be considered as a mixture of minimum Kullback-Leibler (KL)

distance estimation and minimum `2 distance (MD) estimation [37] or equivalently, expo-

nential squared loss (ESL) estimation [60] when estimating the linear regression coefficients.
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It allows MTE to combine the merits of both, so that it obtains remarkable robustness and

still performs well for clean data. We will further show this nice hybrid in section 1.2.2.

Equipping MTE with penalty function
∑d

j=1 pλnj(|βj|), the penalized MTE (1.3), called

MTE-Lasso, is able to robustly select variables and estimate their coefficients simultane-

ously. As an attraction paralleling to MTE, with a single tuning parameter t, MTE-Lasso

bridges many existing variable selection methods such as penalized least square, penalized

exponential squared loss (ELS-Lasso) [60], penalized `2 distance estimation (MD-Lasso) [37],

and penalized least trimmed square estimation (Sparse LTS) [1]. In addition, Wang et al.

[56] has proposed to incorporate Lasso penalty to least absolute deviation (LAD-Lasso) for

robust linear regression, and Wang [59] studies theoretical properties of LAD-Lasso under

high dimensional regime. Zou and Yuan [73] has proposed composite quantile regression

(CQR-Lasso) for the case where the error variance is infinite. However, both LAD and CQR

are quantile based estimation, which may produce unreliable results for mean regression if

error term is asymmetric. Fan et al. [19] tackles this issue by proposing penalized Huber’s

loss (RA-Lasso) for asymmetric errors. However, with Huber’s loss, RA-Lasso may still be

sensitive to extreme values, while our proposed MTE-Lasso is able to completely degrade

their effect due to the natural of redescending influence function. Furthermore, unlike LAD

and Huber’s loss, our proposed estimator is statistically more efficient under linear regres-

sion with normality assumption, and enjoys the highest finite sample breakdown point of 0.5

[16, 64]. In section 1.6, we numerically demonstrate that MTE produces highest efficiency

for normal mean estimation under various settings.

Another advantage of the proposed MTE is that practically it can be readily extended to

other statistical models such as widely used logistic regression, Poisson regression, Gaussian

graphical models, and mixture models as long as appropriate forms of distribution function
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f in (1.2) and (1.3) are specified. However, it is not trivial for existing methods such as

Huber’s loss and LAD to be applied to these statistical models. Despite the immediate

applicability of MTE to different models, we leave their theoretical properties and details in

future works, yet in this article we focus on MTE and MTE-Lasso under linear regression

models.

The rest of this paper is organized as follows. In Section 1.2, we formally introduce

MTE, study its properties and discuss its links to other estimators. In Section 1.3, we

further introduce the penalized MTE for variable selection, and demonstrate its asymptotic

properties through an analysis of consistency, oracle property. We show the robustness

properties in Section 1.4. We discuss the implementation aspect of the method such as

selection of tuning parameters in Section 1.5 and present numerical results in Section 1.6.

Finally, we conclude with a discussion in Section 1.7 and relegate the proofs to Section 1.8.

1.2 Maximum Tangent Likelihood Estimation

1.2.1 General framework

Let {zi}ni=1 be an i.i.d. random sample from a probability model f(z;β) with parameter

β ∈ Rd. We define the maximum tangent likelihood estimator (MTE) of β as in (1.2).

Unlike traditional log-likelihood, the tangent likelihood function lnt(·) is a piecewise contin-

uous function with breakpoint t > 0. Therefore, a weighted score function is derived, so

that solving optimization problem (1.2) translates to solving a weighted likelihood equation

(assuming the regularities conditions in the appendix),

0 =
n∑
i=1

∂

∂β
lnt(f(zi;β)) =

n∑
i=1

wi
∂

∂β
ln(f(zi;β)), (1.5)
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where wi = [1 − (1 − f(zi;β)/t)p]1{f(zi;β)<t} and 1{·} is an indicator function. Clearly we

see that wi → 1 if t → 0, and wi = 1 if set {i : f(zi;β) < t} = ∅, which happens with

probability 1 when t = 0, hence MLE. On the other hand, wi → 0 if f(zi;β)/t→ 0, that is

when observation i is deviated far from the assumed model.

Equation (1.5) can be efficiently solved with an iterative reweighting algorithm as the

weight wi depends on the updated parameter estimates β̃. Specifically, we iterate the proce-

dures of solving the parameter β̃(k) given the weights wt(β̃
(k−1)) and updating the weights

wt(β̃
(k)) with new parameter estimates β̃(k), where k is iteration step. The tuning parame-

ter t can be optimally chosen at every iteration with certain data-driven approaches, one of

which has been discussed in section 1.5.

To show the broad spectrum of MTE, following we shall briefly discuss a few special cases

for p = 1 and p = 0, and later on we show the hybrid of MTE given p = 1 for estimating

linear regression model. When p = 1, the weight simplifies to wi = min{1, f(zi,β)/t}, hence

the tangent likelihood equation becomes

0 =
n∑
i=1

[
∂

∂β
ln(f(zi;β))

]
min

{
1,
f(zi,β)

t

}
. (1.6)

So if the observation has a likelihood below t, it is assigned partial weight, f(zi,β)/t. Oth-

erwise, the observation is assigned full weight. When estimating the mean of a normal

distribution, we have µ̃ = (
∑n

i=1 wizi)/
∑n

i=1wi where wi = min(1, ϕ(zi; µ̃, σ̃2)/t) and ϕ(·) is

the Gaussian density function. µ̃ is essentially a weighted mean.

When p = 0, we have wi = 1{f(zi;β) ≥ t} and the tangent likelihood equation becomes

0 =
n∑
i=1

[
∂

∂β
ln(f(zi;β))

]
1{f(zi;β) ≥ t} =

∑
i∈A

∂

∂β
ln(f(zi;β)),

6



where A = {i : f(zi;β) ≥ t}. That is, we completely discard the data points whose

likelihoods are below t. This follows similar spirit as in the trimmed likelihood/least square

estimation proposed by Hadi and Luceno [23] and Alfons et al. [1]. When estimating the

mean of a normal distribution, we have µ̃ = (
∑

i∈A zi)/|A| where A = {i : ϕ(zi; µ̃, σ̃2) ≥ t},

i.e., a trimmed mean with data points whose likelihoods below t are removed. We again

stress that p = 1 throughout this article unless otherwise indicated.

The maximum tangent likelihood estimator is essentially a redescending M -estimator

[33, 49], which usually rejects data points with extreme values while take moderate outliers

partially into account. This is because their score function, also called ψ-function, the first-

order derivative of loss, redescends after certain threshold. Figure 1.2 shows the shape of

ψ-function of our proposed MTE (i.e., right-hand side of (1.6)) by assuming f(·) is standard

normal density. As the ψ-function descends to 0 as |z| → ∞, the effect of large outlier is

negligible. In contrast, for robust estimators whose ψ-function becomes a constant rather

than redescending to 0, such as LAD and Huber’s loss, extreme outliers contribute the same

as moderate ones, hence their efficiency may be affected under certain model assumptions,

for instance, linear regression with normality assumption. Furthermore, redescending M -

estimators usually possess highest breakdown point of 0.5, i.e., the maximum fraction of

contaminations that is allowed without destroying the estimate [16], while the estimators

with monotone ψ-function have breakdown point of 0 [38]. We demonstrate the advantage

of our proposed MTE in Section 1.6.

7



−4 −2 0 2 4

−
4

−
2

0
2

4

z

ψ
(z

)

MTE (t=0.01)
MTE (t=0.1)
MTE (t=0.2)
Huber
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drawn.

1.2.2 MTE for linear regression

Consider a linear regression model

yi = xTi β + εi, i = 1, . . . , n, (1.7)

where zi = (yi,x
T
i ) is the ith observation, β = (β1, . . . , βd) ∈ Rd is an unknown regression

coefficient vector, and εi is the random error that is independently and identically distributed

with a parametric distribution.

The most widely used distribution assumption for εi is normal distribution with zero mean

and constant variance despite that the actual residual could have much heavier tail than the

assumed Gaussian density. Due to its optimality and convenience with the statistics pillar

— maximum likelihood estimation, such normality assumption is the most fundamental and

very first assumption for linear regression in almost every statistics textbook. Nonetheless,
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the model estimation is optimal only if the actual data consist with that assumption. Even a

very small deviation could destroy such optimality, and lead the estimation problematic. As

discussed in section 1.1, our proposed MTE is designed to protect violation of any presumed

parametric distribution. Thus, without changing or replacing the convenient and widely

used Gaussian assumption, the MTE offers nearly optimal performance as if the normality

assumption is valid. Although we assume f(·) to be a Gaussian probability density function

with zero mean and constant variance σ2, it is expected that our methodology holds for a

wide range of densities well beyond the Gaussian density.

As mentioned earlier, the MTE is related to the minimum KL and `2 distance estimation

for linear regression. To show this, we start by rewriting (1.2) as

β̃ = arg max
β∈Rd

{∑
i∈A

ln(f(zi;β)) +
1

t

∑
i∈Ac

f(zi;β)

}
, (1.8)

where A = {i : f(zi;β) ≥ t}. First, note that the minimum KL distance estimate β̃KL is

essentially the MLE, that is

β̃KL = arg max
β∈Rd

{∑
i∈A

ln(f(zi;β)) +
∑
i∈Ac

ln(f(zi;β))

}
. (1.9)

Second, the minimum `2 distance estimate β̃`2 for linear regression [47, 37] is equivalent to

β̃`2 = arg max
β∈Rd

{∑
i∈A

f(zi;β) +
∑
i∈Ac

f(zi;β)

}
. (1.10)
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Remark 1. To understand (1.10), consider the `2 distance between the parametric distribu-

tion of y given x, p(y|x,β), and the true distribution of y given x, p(y|x),

∫
(p(y|x,β)− p(y|x))2dy =

∫
p(y|x,β)2dy +

∫
p(y|x)2dy

− 2

∫
p(y|x,β)p(y|x)dy

=

∫
p(y|x,β)2dy +

∫
p(y|x)2dy − 2Ef(y − xTβ).

For linear regressions,
∫
p(y|x,β)2dy =

∫
f(y − xTβ)2dy does not depend on β. Hence,

minimizing the `2 distance with respect to β is equivalent to maximizing Ef(y−xTβ). When

observing a sample, we replace Ef(y − xTβ) with its empirical mean
∑n

i=1 f(zi;β)/n, and

obtain β̃`2 = arg maxβ∈Rd
∑n

i=1 f(zi;β).

Comparing (1.8) with (1.9) and (1.10), we understand that MTE can be considered as

minimizing a mixture of KL and `2 distances. When t = 0, all the observations fall into the

set A, and MTE becomes the minimum KL distance estimation. As t gradually increases

away from 0, some observations with relatively low likelihoods gradually move from A to Ac.

When t is sufficiently large, all observations have moved from A to Ac, and MTE becomes

the minimum `2 distance estimation.

With an appropriately selected t, we have observations in both A and Ac. The obser-

vations in Ac are the potential outliers. If they were to be used in the pure minimum KL

distance estimation, we would have an unstable estimate. Meanwhile, the observations in A

are the good observations. If they were to be used in the pure minimum `2 distance estima-

tion, we would have an inefficient estimate. Therefore, MTE minimizes the KL distance for

the observations in A and minimizes the `2 distance for the observations in Ac to preserve

efficiency and gain robustness.
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Finally, we summarize the links between MTE and other estimators for linear regression

as special cases. Suppose T is a sufficiently large number. When 0 < t < T and p = 0,

MTE is asymptotically equivalent to LTS [23, 1]. When 0 < t < T and p = 1, MTE can be

considered as a mixture of minimum KL distance and minimum `2 distance. When t ≥ T

and p = 1, MTE is equivalent to L2D or ESL. Lastly, when t = 0 or when p = +∞, MTE is

essentially MLE or minimum KL distance estimation.

1.2.3 Asymptotic properties of MTE

We present asymptotic properties of MTE. First define β∗t = arg maxβ∈B Eβ0 lnt(f(z;β))

where β0 is the true parameter and t ≥ 0.

Theorem 1.2.1. Under the regularity conditions specified in the supplementary materials,

with probability going to 1, there exists a unique solution β̃ for equation (1.2). Furthermore,

we have β̃
p→ β∗t as n→∞.

Theorem 1.2.2. Under the regularity conditions specified in the supplementary materials,

√
nΩ−1/2(β̃ − β∗t )

d→ N(0, I) as n→∞,

where I is a d × d identity matrix, Ω = A−1BA−1, A = ∂2Eβ0

[
lnt(f(z;β∗t ))

]
/∂β2, and

B = Eβ0

[
(∂ lnt(f(z;β∗t ))/∂β)(∂ lnt(f(z;β∗t ))/∂β)T

]
. When t → 0+, we have β∗t → β0 and

Ω becomes the inverse of Fisher information matrix.

In general, β∗t is not necessarily the same as β0 for t > 0. However, when β0 represents

the location parameter of a symmetric distribution such as linear regression coefficients, then

we have β∗t = β0, which means MTE is indeed a consistent estimator and has asymptotic

normality for such a case.
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Theorem 1.2.3 (Consistency and asymptotic normality). Under the regularity conditions

specified in the supplementary materials, for linear regression yi = xTi β0 + εi, suppose the

error εi follows a symmetric distribution with zero mean. Then we have β∗t = β0 for any

t > 0. That is, MTE of the regression coefficient β̃ defined in equation (1.2) is consistent

and asymptotically normal for any t > 0.

With a consistent MTE, we can further apply it into variable selection problem for linear

regression and study its properties.

1.3 Penalized MTE for Variable Selection

Selecting explanatory variables accurately and robustly is one of the most important

tasks in modern statistical problems. Due to computational attraction for large scale dataset,

penalized methods have been well studied and widely used for linear regression problems.

However, it remains challenging to consistently select and estimate coefficients in the presence

of contaminations as any model violation could easily cause instability in both selection and

estimation. We propose penalized MTE, defined in (1.3), for robust variable selection for

linear regression models. Without loss of generality, we assume β0 = (βT0S,β
T
0Sc)

T ∈ Rd to

be the true regression coefficients, where S = {j : β0j 6= 0, j = 1, . . . , d} = {1, . . . , s} and

the cardinality |S| = s. In the rest of this section, we develop consistency and asymptotic

normality for MTE-Lasso when the dimension of feature space is fixed. We also establish

the optimal convergence rate of β̂ under the modern high dimensional regime, where the

dimensionality d is allowed to grow exponentially.
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1.3.1 Asymptotic properties with fixed dimensionality

When the number of covariates d is fixed and the sample size n→∞, the penalized MTE

is
√
n-consistent under mild regularity conditions. In addition, it enjoys the oracle property

when the penalty function satisfies certain conditions. Let an = max{p′λnj(|β0j|) : β0j 6= 0}

and bn = max{p′′λnj(|β0j|) : β0j 6= 0}. We provide following theorems.

Theorem 1.3.1 (
√
n-consistency). Under the regularity conditions specified in the supple-

mentary materials, suppose an = Op(n
−1/2), bn = op(1) and t > 0, then there exists a local

maximizer β̂, such that ‖β̂ − β0‖2 = Op(n
−1/2).

Theorem 1.3.2 (Oracle property). Assume that the penalty function satisfies

lim inf
n→∞

lim inf
θ→0+

{
min

s+1≤j≤d
p′λnj(β)/λnj

}
> 0, (1.11)

and the regularization parameter λnj satisfies

max
1≤j≤s

(
√
nλnj) = op(1) and 1/ min

s+1≤j≤d
(
√
nλnj) = op(1). (1.12)

Suppose t > 0, then β̂ satisfies:

(a) Sparsity: β̂Sc = 0 with probability 1;

(b) Asymptotic normality for β̂S:

√
n(JS + Σ1)

{
β̂S − β0S + (JS + Σ1)−1b

}
d−→ N(0,Σ2),

where b = (p′λn1(|β01|)sgn(β01), . . . , p′λns(|β0s|)sgn(β0s))
T , JS = E[∂2 lnt(f(z;β0))/∂βS∂β

T
S ],

Σ1 = diag(p′′λn1(|β01|), . . . , p′′λns(|β0s|)), and Σ2 = cov[∂ lnt(f(z;β0))/∂βS].
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Remark 2. Conditions (1.11) and (1.12) are necessary for the oracle property, stating that

the estimator is able to set apart zero and nonzero regression coefficients with probability 1

as if the true sets are known in advance. It is known that penalty functions such as adaptive-

Lasso [72], where the regularization parameters λnj essentially varies across each individual

βj, satisfy conditions (1.11) and (1.12), hence it enjoys oracle property. This property does

not hold for estimators with the traditional Lasso penalty function due to the fixed value of

regularization parameter λn for all regression coefficients. However, the penalized MTE with

the traditional Lasso penalty is still a consistent estimator under certain conditions. We

show this for high-dimensional regression in section 1.3.2.

By Theorem 1.3.2, it is straightforward to derive the asymptotic covariance matrix of β̂S,

Var(β̂S) =
1

n
{JS + Σ1}−1Σ2{JS + Σ1}−1. (1.13)

This asymptotic form of the variance-covariance matrix of β̂S enables us to select tuning

parameter t that minimizes its determinant. The details are discussed in Section 1.5.2.

1.3.2 Consistency under high dimensional regression

We further consider the penalized MTE under modern high-dimensional linear regression

setting, where the number of covariates d is allowed to approach infinity as well as the sample

size n in model (1.7). In particular, we consider ln(d)/n→ 0 as n→∞ and d→∞. Under

this setting, the true coefficient vector β0 is usually assumed to be sparse. Regularization

method with `1 penalty is among the popular methods to produce sparse solution for β̂.

Combining MTE with the traditional Lasso penalty function, pλn(β) = λn
∑d

j=1 |βj|, we are

able to establish the statistical consistency of MTE-Lasso by establishing the `2-norm bound
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‖β̂ − β0‖2. Specifically, we rewrite (1.3) as

β̂ = arg min
β∈Rd

{
L(β) + λn

d∑
j=1

|βj|
}
, (1.14)

where L(β) = −(1/n)
∑n

i=1 lnt(f(zi;β)) is MTE loss function, and λn is the regularization

parameter of `1 penalty. Let ∆̂ = β̂ − β0 and define C(S) = {∆ ∈ Rd : 3‖∆S‖1 ≥ ‖∆Sc‖1}

where ∆S and ∆Sc are the projections of ∆ onto the coordinate sets S and Sc respectively.

We further have the following assumptions.

A1 The regressors are bounded, i.e., ‖xi‖∞ = M < +∞ for all i = 1, . . . , n.

A2 The design matrix X = (x1, ...,xn)T satisfies the restricted eigenvalue condition, ‖X∆‖2
2/n ≥

κRE‖∆‖2
2, for all ∆ ∈ C(S) where κRE > 0.

A3 For any ν ∈ Rd, and xi, i = 1, . . . , n, the random variable xTi ν is sub-Gaussian with

parameter at most κ2
s‖ν‖2

2.

A4 The error term εi is independently and identically distributed with symmetric distribu-

tion with mean 0.

In order to establish the bound for ‖β̂ − β0‖2 in high-dimensional regressions, we need

to verify two critical conditions: (1) the boundedness of the gradient of the loss function L

at the true parameter β0 and (2) the restricted strong convexity (RSC) condition of the loss

function L in the neighborhood of the true parameter β0.

We show that the first condition holds with high probability in the following Lemma.

Lemma 1. Under Assumption 1, for t > 0, we have

P

(∥∥∥∥∂L(β0)

∂β

∥∥∥∥
∞
≤ ξ

√
ln(d)

n

)
≥ 1− 2 exp(−α1 ln(d)),
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where α1 > 0 is a constant, ξ = Ct
√

2(α1 + 1) and Ct = Mf(σR)/(tσR).

Lemma 1 shows that ∂L(β0)/∂β is bounded with high probability and also provides the

form of the bound. This bound plays an important role in deciding the convergence rate

of β̂ as shown in Theorem 1.3.3. Since f represents the normal density function, when t

increases, Ct decreases, hence the bound also decreases. It implies that the surface of the

loss function around the true parameter β0 becomes flatter as t becomes larger. Lemma 1

corresponds to the sub-Gaussian tail condition, which ensures the boundedness of gradient

of least square loss [41]. The proof is given in the supplementary materials. In the proof, we

particularly discuss the normal density case and give the form of Ct.

It is understood that the estimation error ∆̂ belongs to C(S) when the regularization pa-

rameter λn ≥ 2‖∂L(β0)/∂β‖∞ [41, Lemma 1, p.543-544]. Therefore, our Lemma 1 suggests

that we could choose the regularization parameter λn = 2ξ
√

ln(d)/n in the penalized MTE

to force ∆̂ ∈ C(S). Such a choice of λn is valid with probability at least 1− 2 exp(−α2nλ
2
n)

where α2 = α1/(4ξ
2).

Given that ∆̂ ∈ C(S), we next verify the RSC condition of the loss function L to establish

the estimation error bound. Before showing the result, we provide the definition of RSC.

Definition 1 (Restricted strong convexity). The loss function L satisfies restricted strong

convexity (RSC) with curvature κ1 > 0 and tolerance τ over the set C(S) if L(β0 + ∆) −

L(β0)− [∂L(β0)/∂β]T∆ ≥ κ1‖∆‖2
2 + τ 2 for all ∆ ∈ C(S).

Lemma 2. Assume that the random error ε satisfies the tail condition

P
(
|ε| >

√
c0R− 2κs

√
lnn
)

= κu ≤
(

1 +
c0

c1

2e−3/2
)−1

,
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where c0 = σ2
R, c1 = c

3/2
0 t
√

2π, and R = −2 ln(t
√

2πc0) with tuning parameter t. Under

Assumptions A2–A4, consider the set H(S, u) = {∆ ∈ C(S) : ‖∆‖2 = u}, for any u <

√
c0R/(2κs

√
lnn), and ∆ ∈ H(S, u), it holds that

L(β0 + ∆)− L(β0)−
(
∂L(β0)

∂β

)T
∆ ≥ κ1‖∆‖2(‖∆‖2 − κ2

√
ln(d)

n
‖∆‖1)

with probability at least 1 − α3 exp(−α4n) for some positive constants α3 and α4, where

κ1 = (1/c0 − c2κu)κRE/2, κ2 = 49κ2
sc2

√
lnn/κ1, and c2 = 1/c0 + 2e−3/2/c1.

As we can see, the curvature of the loss function within the neighborhood of β0 in the

direction of C(S) is measured by κ1. It can be shown that this curvature increases as t

decreases to 0. In particular, when t decreases to 0, R increases to +∞, and κu decreases to

0. Furthermore, for most of the distributions of ε, it is straightforward to show that when

t decreases to 0, κ1 increases to κRE/(4c0). It implies that as t decreases, the surface of the

loss function become more convex which leads to a better convergence rate.

Note that since ∆ ∈ C(S), we have ‖∆‖1 ≤ 4‖∆S‖1 ≤ 4
√
s‖∆‖2, therefore, the results

of Lemma 2 becomes

L(β0 + ∆)− L(β0)−
(
∂L(β0)

∂β

)T
∆ ≥ κ1

2
‖∆‖2

2,

when n > 64κ2
2s ln(d). With the results provided by Lemmas 1 and 2, we are able to establish

the bound for `2 norm of the estimation error.

Theorem 1.3.3. Under the assumptions specified in Lemmas 1 and 2, with regularization

parameter λn = 2ξ
√

ln(d)/n, any of the solutions of equation (1.14) in the set Kβ0 = {β+∆ :
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‖∆‖2 ≤
√
c0R/(12M

√
s)}, β̂, satisfies

‖β̂ − β0‖2 ≤
8ξ

κ1

√
s ln d

n

with probability at least 1−α5 exp(−α6nλ
2
n) for n > max{64κ2

2s ln d, 162κ2
sξ

2s lnn ln d/(κ2
1c0R)},

where α5 and α6 are positive constants.

The theorem implies that the convergence rate of β̂ depends on two critical quantities,

the bound of the gradient of the loss function at the true parameter and the curvature of

the loss function around the true parameter. In particular, when the loss function becomes

flatter at the true parameter and hence has a smaller bound of the gradient, the penalized

MTE converges faster. Similarly, when the loss function becomes more convex (i.e. larger

curvature) in the restricted direction within the neighborhood of the true parameter (i.e.,

C(S)), the penalized MTE also converges faster.

However, as illustrated by Lemmas 1 and 2, the effects of t on these two quantities are

often in the opposite directions. For example, as t increases, the entire loss function generally

becomes flatter which leads to a smaller bound of the gradient at the true parameter. But

an increasing t also leads to a smaller curvature. Therefore, selecting t involves controlling

both the bound and the curvature. To gain a faster convergence rate, we need t to be large

to control the bound of the gradient, but also need t to be small to increase the curvature of

the loss function. Therefore, a trade-off has to be made when selecting t. Note that when

t > f(0), the penalized MTE becomes penalized minimum `2 distance estimation. Therefore,

penalized MTE offers a more refined trade-off between efficiency and robustness.
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1.4 Robustness Properties

In addition to the properties presented in the manuscript, we also derive the finite sample

breakdown point and influence function that characterize the robustness properties of our

proposed penalized MTE.

The finite sample breakdown point for an estimator is the maximum proportion of con-

taminated data points in a sample that the estimator can tolerate before it yields an arbi-

trarily bad result (i.e., breakdown). The finite sample breakdown point was introduced by

Donoho and Huber [16]. Earlier versions of breakdown point can be also found in Hodges Jr

[30], Hampel [26] and Hampel [24]. The finite sample breakdown point quantifies the es-

timator’s overall resistance to outliers. Under regression settings, estimators such as MM-

estimator [64] and S-estimator [45] can achieve the highest breakdown point of 1/2.

We denote the entire sample as Zn = {z1, . . . , zn}. Among these n observations, there are

m bad data points Zm = {z1, . . . , zm} and n−m good data points Zn−m = {zm+1, . . . , zn}.

Following Donoho and Huber [16], the finite sample breakdown point is defined as

BP(β̂; Zn−m) = min

{
m

n
: sup

Zm

‖β̂(Zn)− β̂(Zn−m)‖2 =∞
}
.

The following theorem shows the finite sample breakdown point of the penalized MTE.

Theorem 1.4.1 (Finite sample breakdown point). Let

anm =
1

n−m
max

β∈Rd\{0}
#
{
i : m+ 1 ≤ i ≤ n,xTi β = 0

}
.

For strictly increasing penalty function pλnj(|βj|) = λnjg(|βj|) defined on [0,∞] with reg-

ularization parameter λnj > 0, if m/n ≤ ε < (1 − 2anm)/(2 − 2anm), anm < 0.5, and
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ζ(t) < (1− ε)(1− anm) hold, then, for any initial estimator ˜̃β, we have

BP(β̂; Zn−m, t) ≥ min

{
BP(˜̃β; Zn−m),

1− 2anm
2− 2anm

, 1− ζ(t)

2− 2anm

}
,

where ζ(t) = 2m
n

+ 2
n

∑n
i=m+1 φt(yi − xTi

˜̃β), and φt(r) = lnt(f(0))−lnt(f(r))
lnt(f(0))−lnt(0)

.

By Theorem 1.4.1, we can obtain a lower bound of the breakdown point for our penalized

MTE. This lower bound depends on the breakdown point of the initial estimate ˜̃β. In

addition, by the definition of anm, when n → ∞, (1 − 2anm)/(2 − 2anm) → 1/2 and 1 −

ζ(t)/(2− 2anm)→ 1/2 if t is chosen such that ζ(t) ∈ (0, 1]. Therefore, with an appropriate

t and initial estimate, we can have the breakdown point of the penalized MTE as high as

1/2. Note that the theorem holds for strictly increasing and unbounded penalty functions

such as Lasso type penalty that has been adopted in this paper. For other types of bounded

penalty functions, the theorem remains a challenge.

The influence function [25] is another important measure of robustness. It measures

the effect of an infinitesimal contamination to an estimator. Let T (F ) be the estimator of

interest (i.e., penalized MTE) at population level under the assumed distribution F , i.e.,

T (F ) = arg maxβ{
∫

lnt(f(y− xTβ))dF −
∑d

j=1 pλ0j(|βj|)} where pλnj(·) is supposed to have

a limit denoted as pλ0j(·). Suppose we have a mixture distribution Fε = (1−ε)F +εδz where

δz represents a point mass distribution function at fixed point z = (y∗,x∗T )T . Then the

influence function of T (F ) at the point z is defined as IF(z, T ) = limε→0(T (Fε)− T (F0))/ε.

The following theorem shows that the influence function of the penalized MTE is bounded

in the response variable domain.
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Theorem 1.4.2 (Influence function). For the penalized MTE, the j-th element of its influ-

ence function IFj(z, T ) takes the following form

IFj(z, T ) =



0 if β0j = 0[
(−
∫

∂2

∂r2
lnt(f(r))xxTdF + v∗)−1

]
j

×( ∂
∂r

lnt(f(r∗))(−x∗)− v) if β0j 6= 0,

where [·]j denotes the j-th row of a matrix, r∗ = y∗ − x∗Tβ0, v∗ =

diag(p′′λ01(|β01|), . . . , p′′λ0d(|β0d|)), and v = (p′λ01(|β01|)sgn(β01), . . . ,

p′λ0d(|β0d|)sgn(β0d))
T .

Note that β0 is the true parameter and β0 = T (F0) because of the consistency. Following

condition (1.12) in Theorem 1.3.2, λ0j = 0 if β0j 6= 0 and λ0j = +∞ if β0j = 0. Therefore, for

the zero coefficients, the influence function is equal to zero, while for the nonzero coefficients,

the influence function can be written as

IFj(z, T ) =
[
(−
∫

∂2

∂r2
lnt(f(r))xxTdF + v∗)−1

]
j
(
∂

∂r
lnt(f(r∗))(−x∗)).

1.5 Tuning Parameters and Algorithm

1.5.1 Choice of regularization parameter λ

The performance of penalized estimator heavily relies on the choice of the regularization

parameter λ. For fixed dimensional regression, in order to achieve oracle property, we apply

adaptive-Lasso penalty, where the λnj is chosen to satisfy condition (1.12). A simple BIC-

type criterion [56, 60] is adopted for choosing the optimal λ̂nj. To be specific, we minimize
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the following objective function

−
n∑
i=1

lnt (f(zi;β)) + n

d∑
j=1

λnj|βj| − ln(0.5nλnj) ln(n),

which leads to the solution of regularization parameter

λ̂nj =
ln(n)

n| ˜̃βj|
, (1.15)

where ˜̃βj is an initial estimate of βj. It is easy to see that the necessary condition for the

oracle property (1.12) is satisfactory with above choice of regularization parameter. Note

that for high-dimensional regression, our theoretical properties are established based on Lasso

penalty, where the regularization parameter λn does not depend on jth regression coefficient

βj. Therefore the choice of regularization parameter as shown in (1.15) is not applicable

due to lack of theoretical justification. Instead, the optimal λn is determined by minimizing

median absolute prediction error through cross-validation over a grid.

1.5.2 Choice of tuning parameter t

As discussed in Sections 1.2 and 1.3, the tuning parameter t controls the trade-off between

robustness and efficiency, hence the choice of t cannot be neglected. We use a simple data-

driven method to grid search the optimal value of t such that it minimizes the determinant of

asymptotic covariance matrix of β̂S as in (1.13). The idea of this approach is that t is selected

such that the proposed estimator has minimum variance in order to achieve high efficiency.

Similar approach has been adopted by Wang et al. [60] to select the tuning parameter in the

exponential squared loss function. As an illustration, Figure 1.3 shows one example of the
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value of the determinant of (1.13) denoted as Ĥ(t) against different values of t under fixed

dimensional setting.
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Figure 1.3: Determinant of covariance matrix Ĥ(t) against t

It remains challenging to select t under high dimensional settings due to instability of

large variance-covariance matrix estimation. Certain regularized approaches can be adopted,

but most of them require significant computing effort. To be computationally efficient, in

practice we fix the value of t at first, and then the proposed data-driven approach is applied

once the number of nonzero estimates are significantly dropped. This is often achieved after

the first one or two iterations.

To see the appropriateness of this approach, we demonstrate that t has a relatively large

forgiven region, in which model estimates differ slightly. With extensive simulations of both

clean and contaminated data, Figure 1.4 shows the change of model error [18] along with its
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1-standard error (vertical bars) across different values of t. The model error is defined as

ME =
1

n
(β̂ − β0)TXTX(β̂ − β0). (1.16)

The clean data (left figure) are generated as follows: ε
i.i.d.∼ N(0, 1), x ∈ R500 are indepen-

dently drawn from N(0, I500), while the contaminated data (right figure) are generated by

replacing 20% of the random error ε with heavy tailed data from N(0, 202). Clearly, only

if t = 0 under contaminated data is the model error extremely large, the model errors are

very similar for the rest of nonzero t. However, we notice that the standard error increases

when t > 0.4 roughly. This is due to the penalty function in the penalized MTE, where only

the first component (tangent likelihood) involves t, so that optimizing the penalized MTE

is more sensitive for t > max(f(z,β)).
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Figure 1.4: Model error against different initial value of t. The dot is mean of model error
and vertical bar indicates 1-standard error over 100 random samples.
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1.5.3 Choice of initial values

When solving the optimization problem (1.3) and (1.14), MTE could potentially lead to

local maximums as the tangent likelihood loss function is nonconvex. Therefore, assigning

suitable initial values for the optimization is critical. For our proposed method, we need

to assign initial values for β as well as the preliminary scale estimate σ2
R. For β, we can

use unpenalized LAD estimates as a candidate initial value because LAD is a monotone

regression M-estimate whose objective function is always convex. For σ2
R, we have adopted

one of the well known robust scale parameter estimates, σR = 1.4826×MAD, where MAD

can be the median absolute deviance of residuals from LAD estimates, as the initial estimate.

Other types of robust scale parameter estimation are also well developed and available [46]

to serve as potential initial values.

1.5.4 Computational algorithm

Coordinate descent (CD) algorithm has recently been well recognized and appreciated for

its surprisingly fast and efficient capability in solving `1-regularization problem . It updates

a single parameter one at a time while the rest are fixed. We choose the coordinate descent

algorithm for its simplicity, speed and stability [61, 20, 21, 6], and apply it for both fixed

and high-dimensional regression settings. We propose following 2-step iterative algorithm.

Step 1. Update tuning parameter t and λnj: Given current estimates β̂(k−1), find

optimal value t(k) such that t(k) minimizes the determinant of (1.13) by grid search.

Meanwhile, the optimal regularization parameter λ̂
(k)
nj can be calculated by (1.15).

For high-dimensional problem, choice of t and λ follows approaches we discussed

earlier to reduce computational effort.
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Step 2. Update parameter estimates: Based on t(k) and λ̂
(k)
nj that are obtained from

Step 1, we use the coordinate descent algorithm to solve the optimization problem

(1.3), and obtain updated coefficients β̂(j). Then the scale parameter σ̂R can be

estimated using robust scale estimator such as 1.4826×MAD. Repeat Steps 1 and

2 until β̂ converges.

This algorithm is directly applicable to both the fixed and high-dimensional regression

settings with little modification (the optimal regularization parameter λn is chosen by cross-

validation, and need not to be updated between two steps). In practice, the range of t in the

grid-search procedure can be set from 0 to 0.2 in order to maintain high efficiency. From our

limited numerical studies, the algorithm is computationally efficient with fast convergence.

1.6 Numerical Studies

1.6.1 Location parameter estimation

We first demonstrate the advantage of our proposed MTE for a single location parameter

estimation µ̂. As discussed in Section 1.2.1, due to the redescending influence function, MTE

offers more efficiency than traditional M -estimators such as Huber’s and least absolute de-

viance (LAD) loss, while it maintains high robustness. This has been numerically evidenced

in Figure 1.5, which compares MTE (black solid line) with different methods including MLE

(red dashed line), LAD (green dotted line), Huber’s loss (blue dash-dotted line), and a

well-known redescending M -estimator, Tukey’s Bisquare loss (light-green dashed line).

Figure 1.5 shows the mean squared error of normal mean estimates across different con-

tamination ratios. We generate 1000 random samples with each sample size being 500,

where the clean data are from standard normal distribution, while contaminations are from
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Figure 1.5: Mean squared error of normal mean estimation by different estimators. 1000
random samples are generated for different settings of contamination ratio from 0 to 40%.

N(0, 52). For each individual sample, the optimal tuning parameters of MTE, Huber’s, and

Bisquare loss are chosen over a grid such that the squared error of µ̂ is minimum 1. Clearly,

our proposed MTE dominates the alternatives at all contamination ratio. For clean data,

where contamination ratio is zero, although theoretically MTE and MLE should have exactly

the same (optimal) performance, the little difference is due to bias brought by sample size.

The form of Huber loss is defined as

ρh(z) =


z2 if |z| ≤ α−1;

2α−1|z| − α−2 if |z| > α−1,

1We minimize squared error given the true parameter in order to have all candidate methods to produce
their best possible estimation results hence fair enough to be compared, although this selection criteria is
not possible for real data due to unknown true parameters.
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and Tukey’s Bisquare loss is defines as

ρb(z) =


k2

6

{
1−

[
1−

(
z
k

)2
]3
}

if |z| ≤ k;

k2

6
if |z| > k.

We further breakdown above settings and show how the statistical efficiency changes

across different tuning parameter t. Under three different settings: (1) clean data (z
i.i.d.∼

N(0, 1)); (2) 10% contamination; and (3) 20% contamination, where the contaminated data

are from N(0, 52), Figure 1.6 compares MTE with Huber’s, LAD and MLE in terms of

empirical efficiency, which is calculated as I−1(µ)/V ar(µ̂), where I(µ) = 1/N is the fisher

information given true parameter. With clean data (left), MLE is the most efficient es-

timator, while LAD has the lowest efficiency. MTE and Huber’s loss achieve the highest

efficiency when they are in the special forms that are equivalent to MLE, i.e., t = 0, α = 0,

while their efficiency decrease as the tuning parameters increase. In both contaminated data

(middle and right), MLE loses efficiency significantly due to the model violation, while LAD

maintains relatively good efficiency as it resists to outliers in certain degree. MTE again has

the highest efficiency when the tuning parameter t is optimally chosen.2

Last, we also numerically demonstrate the advantage of MTE when the data are asym-

metrically distributed. Similar to the settings as in Figure 1.5, we change the distribution of

contaminations to N(5, 52) so that the sample as a whole is asymmetric. Figure 1.7 shows

both MSE in log scale (left) and variance (right) of the mean estimation. Again, for all differ-

ent ratios of contamination, MTE produces the dominating results, while Tukey’s bisquare

loss performs similar to MTE only when the data is heavily contaminated.

2Note that the tuning parameters of MTE and Huber’s loss are not associated vertically in Figure 1.6.
We plot their efficiency against relatively larger range of the tuning parameters as we are rather interested
in the optimal efficiency for both estimators and how it changes across the tuning parameter.
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Figure 1.6: Empirical efficiency of mean estimation under clean (left), 10% (middle) and
20% contaminated data (right). Clean data are from standard normal distribution, and
contaminations are from N(0, 52).

1.6.2 Fixed dimensional regressions

For fixed dimensional regression, in order to achieve oracle estimates, we adopt the

adaptive-Lasso penalty for MTE as well as its competitors, LAD [56], ESL [60], CQR [73]

and MLE 3 [72]. The criteria used for comparison are median and median absolute de-

viation (MAD) of model error as defined in (1.16). Model selection errors are measured

by false negative rate (FNR) and false positive rate (FPR). Specifically, FNR is defined

as the proportion of zero coefficient estimates whose corresponding true coefficients are

nonzero, i.e., #{j : β̂j = 0, β0j 6= 0}/#{j : β0j 6= 0}. FPR is defined as the propor-

tion of nonzero coefficient estimates whose corresponding true coefficients are zero, i.e.,

#{j : β̂j 6= 0, β0j = 0}/#{j : β0j = 0}.

We set the true regression coefficient β0 = (1, 1.5, 2, 1, 0, 0, 0, 0,−2.5,−1, 0,

0)T ∈ R12, and consider following simulation designs: (1) εi
iid∼ 0.7N(0, 1) + 0.3Unif(−10, 50)

3For CQR and MLE with adaptive-Lasso penalty, we directly employ the existing R packages cqrReg and
parcor, respectively.
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Figure 1.7: Mean squared error (in log scale) and variance of the mean estimation by different
estimators. 1000 random samples are generated for different settings of contamination ratio
from 0 to 40%.

and xi
iid∼ N(0,Ω); (2) εi

iid∼ 0.7N(0, 1) + 0.3N(10, 102) and xi
iid∼ 0.8N(0, I) + 0.2N(3,Ω),

where I is a 12 × 12 identity matrix, and Ω = {Σij}12×12 is a 12 × 12 covariance matrix

with Σij = 0.5|i−j|. Under each setting, we simulate 1000 Monte Carlo samples for different

sample sizes, n = 100, 200, 400, 800. The results are reported in Tables 1.1 and 1.2.

As Tables 1.1 and 1.2 illustrate, MTE outperforms all other methods in terms of model

errors and variable selection accuracy. As the sample size n increases, the performance of all

methods improve, but MTE dominates all other methods uniformly.

1.6.3 High dimensional regressions

We further demonstrate the performance of MTE under high-dimensional regression

settings with d = 500 through a Monte Carlo simulation. We set the true coefficient

β0 = (3, 1.5, 2,−2.5,−2, 3, 1.5, 2,−2.5,−2, 0, . . . , 0)T ∈ R500, a 500-dimensional coefficient
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Table 1.1: Monte Carlo Simulation for regression models with error following mixture

distribution: εi
iid∼ 0.7N(0, 1) + 0.3Unif(−10, 50) and covariates following distribution:

xi
iid∼ N(0,Ω).

Model Error
n Method FNR FPR Median MAD
100 MTE 0.010 0.000 0.126 0.054

LAD 0.019 0.006 0.237 0.113
ESL 0.557 0.000 3.198 2.960
CQR 0.343 0.234 10.951 1.367
MLE 0.649 0.136 16.884 5.112

200 MTE 0.000 0.000 0.056 0.022
LAD 0.001 0.002 0.097 0.040
ESL 0.387 0.000 2.208 2.111
CQR 0.334 0.204 10.202 0.923
MLE 0.460 0.191 10.054 3.880

400 MTE 0.000 0.000 0.025 0.010
LAD 0.000 0.000 0.046 0.019
ESL 0.014 0.000 0.111 0.066
CQR 0.333 0.169 9.932 0.561
MLE 0.286 0.220 4.877 1.746

800 MTE 0.000 0.000 0.011 0.005
LAD 0.000 0.000 0.021 0.009
ESL 0.000 0.000 0.030 0.012
CQR 0.333 0.141 9.818 0.346
MLE 0.175 0.225 2.627 0.843

vector with 3 non-zeros. We conduct 100 Monte Carlo simulations from model (1.7) with sam-

ple size n = 200. We consider three types of covariates: (1) xi
iid∼ N(0, I); (2) xi

iid∼ N(0,Ω);

and (3) xi
iid∼ 0.8N(0, I) + 0.2N(3,Ω), where I is a d× d identity matrix, and Ω = {Σij}d×d

with Σij = 0.5|i−j|. We also consider six types of random errors:

(1) εi
iid∼ N(0, 1);

(2) εi
iid∼ 0.8N(0, 1) + 0.2N(0, 202);

(3) εi
iid∼ 0.8N(0, 1) + 0.2N(50, 102);

(4) εi
iid∼ 0.6N(0, 1) + 0.2N(20, 102) + 0.2N(−50, 102);
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Table 1.2: Monte Carlo Simulation for regression models with random error following mixture

distribution: εi
iid∼ 0.7N(0, 1) + 0.3N(10, 102) and covariates following mixture distribution:

xi
iid∼ 0.8N(0, I) + 0.2N(3,Ω).

Model Error
n Method FNR FPR Median MAD
100 MTE 0.009 0.001 0.126 0.058

LAD 0.011 0.007 0.263 0.122
ESL 0.654 0.000 9.336 9.073
CQR 0.336 0.206 35.432 4.658
MLE 0.306 0.255 7.584 2.743

200 MTE 0.000 0.000 0.057 0.023
LAD 0.000 0.002 0.125 0.051
ESL 0.278 0.000 2.269 2.144
CQR 0.333 0.172 32.780 3.070
MLE 0.137 0.295 4.639 1.372

400 MTE 0.000 0.000 0.025 0.010
LAD 0.000 0.001 0.066 0.026
ESL 0.000 0.000 0.085 0.033
CQR 0.333 0.153 31.479 1.721
MLE 0.051 0.294 3.042 0.781

800 MTE 0.000 0.000 0.012 0.005
LAD 0.000 0.001 0.043 0.015
ESL 0.000 0.000 0.027 0.017
CQR 0.333 0.129 30.924 1.241
MLE 0.008 0.267 2.257 0.467

(5) εi
iid∼ Cauchy;

(6) εi
iid∼ t(2).

We compare our methods to famous robust estimators, Huber (RA-Lasso) [19] and LAD-

Lasso [59]. All methods are equipped with Lasso penalty function. We also add traditional

LASSO (implemented using R package parcor) in the comparison. The optimal tuning pa-

rameter λ is chosen by minimizing median absolute prediction error through cross-validation.

Figure 1.8 shows the box plots of model errors. The range of vertical axis is truncated from

above for better comparison. As we can see, traditional LASSO estimator fails when the

32



data is contaminated. For the rest three robust estimator, MTE performs the best in most

scenarios. We exclude CQR in the comparison because the R package cqrReg yields poor

performance using the default algorithm and may not be appropriate for high-dimensional

settings. We do not include ESL because to our best knowledge, there is no published work

that studies ESL in high-dimensional regression.

We also report mean, median and MAD of model errors in Table 1.3. In addition, we

further investigate the variable selection accuracy, and report the averaged counts of true

positive covariates (TP) and false positive covariates (FP), i.e., TP = #{j : β̂j 6= 0, β0j 6= 0}

and FP = #{j : β̂j 6= 0, β0j = 0}.

1.6.4 Real data examples

We demonstrate the performance of the proposed penalized MTE using some real data

examples. We first apply it to Boston housing price dataset (https://archive.ics.uci.

edu/ml/datasets/Housing), which is commonly used as an example for regressions. It is

particularly of interest for robust regression analysis as the dataset contains outliers and

skewed variables. There are 14 variables in total: medv, rm, tax, ptratio, lstat, nox, dis, crim,

zn, indus, age, black, chas, rad. Detailed explanations of these variables can be found in

the supplementary materials. We use medv (median house price) as the response variable.

Following Wu et al. [62] and references therein, we take logarithm of variables crim, lstat

and tax, and standardize all variables before fitting the model. Table 1.4 gives the variable

selection results. Standard errors are obtained based on 500 bootstrapping samples. We

find that the traditional adaptive-Lasso (MLE) selects many (10 out of 13) variables. MTE

and CQR select 5 variables rm, ln(tax), ptratio, ln(stat), and dis. This finding is largely

consistent with variables commonly used in the literature. For example, four variables rm,
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Figure 1.8: Box plots of model errors for different methods. Six types of errors are in row
direction and three types of covariates are in column direction.
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Table 1.3: Comparison of MTE, Huber, LAD and LASSO on model error and variable
selection accuracy under high-dimensional regression setting with n = 200, d = 500. TP is
the average count of correctly estimated nonzero coefficients; and FP is the average count
of nonzero estimates whose corresponding true coefficients are zero. Note that there are 10
nonzero and 490 zero true coefficients in total. The average is based on 100 Monte Carlo
simulations.

ε xi
iid∼ N(0, I) xi

iid∼ N(0,Ω) xi
iid∼ 0.8N(0, I) + 0.2N(3,Ω)

Mean Med. MAD TP FP Mean Med. MAD TP FP Mean Med. MAD TP FP
ε(1) MTE 0.24 0.24 0.04 10.0 28.4 0.29 0.24 0.04 9.9 26.9 0.25 0.21 0.05 10.0 18.6

Huber 0.28 0.28 0.05 10.0 29.5 0.31 0.29 0.05 10.0 29.9 0.33 0.29 0.06 9.9 26.3
LAD 0.37 0.38 0.05 10.0 48.2 0.41 0.42 0.06 10.0 55.0 0.37 0.37 0.06 10.0 51.5
Lasso 0.28 0.28 0.05 10.0 41.6 0.30 0.30 0.04 10.0 43.9 0.28 0.27 0.04 10.0 43.8

ε(2) MTE 0.33 0.32 0.07 10.0 21.9 0.68 0.37 0.10 9.9 26.3 0.64 0.43 0.14 9.9 20.7
Huber 0.64 0.62 0.14 10.0 25.4 1.12 0.75 0.22 9.9 28.2 1.05 0.81 0.26 9.9 25.3
LAD 0.77 0.71 0.16 10.0 47.2 0.93 0.89 0.16 10.0 50.4 0.88 0.79 0.20 10.0 48.0
Lasso 21.20 19.97 4.63 8.3 33.5 21.45 20.96 3.56 6.3 27.1 16.49 16.36 1.91 3.9 19.1

ε(3) MTE 0.31 0.30 0.06 10.0 23.4 0.78 0.34 0.08 9.8 31.8 0.58 0.38 0.12 9.8 24.6
Huber 0.57 0.53 0.11 10.0 26.6 1.16 0.77 0.22 9.9 33.4 1.00 0.84 0.35 9.8 35.0
LAD 0.71 0.65 0.13 10.0 51.4 0.83 0.84 0.18 10.0 58.4 0.76 0.73 0.15 10.0 56.3
Lasso 48.21 48.55 3.57 0.4 1.0 45.78 46.79 2.61 0.5 1.2 24.89 24.62 3.88 0.4 2.8

ε(4) MTE 1.01 0.39 0.13 9.8 16.5 2.91 2.46 1.95 9.2 22.3 1.78 1.34 0.88 9.4 29.1
Huber 11.12 8.54 5.50 9.0 23.5 13.19 12.42 4.50 7.8 22.7 6.51 6.24 1.89 8.2 29.5
LAD 12.34 10.46 7.27 8.8 37.4 12.88 11.66 5.64 8.2 38.4 7.08 6.72 2.93 8.3 35.7
Lasso 50.70 50.16 4.26 0.7 3.9 47.81 47.50 3.77 0.6 3.7 27.35 27.24 4.20 0.3 5.0

ε(5) MTE 0.86 0.79 0.19 10.0 22.4 1.38 1.02 0.42 9.8 25.0 1.66 1.38 0.57 9.8 34.1
Huber 0.97 0.91 0.25 10.0 28.2 1.29 1.07 0.28 9.9 30.1 1.42 1.28 0.39 9.8 31.7
LAD 1.15 1.07 0.27 10.0 47.1 1.37 1.28 0.28 10.0 52.2 1.32 1.28 0.35 10.0 46.7
Lasso 35.90 40.87 12.12 4.0 14.1 35.00 40.36 10.78 3.1 13.1 21.09 20.67 6.97 2.2 9.6

ε(6) MTE 0.59 0.56 0.12 10.0 26.7 0.71 0.55 0.12 9.9 26.8 0.88 0.71 0.26 9.9 23.7
Huber 0.56 0.53 0.11 10.0 29.2 0.60 0.55 0.12 10.0 27.5 0.72 0.65 0.18 9.9 29.0
LAD 0.69 0.66 0.12 10.0 50.1 0.72 0.69 0.14 10.0 52.3 0.70 0.67 0.15 10.0 50.0
Lasso 2.96 1.44 0.44 9.9 38.7 3.42 1.73 0.71 9.8 43.1 2.64 1.72 0.62 9.7 41.8

ln(tax), ptratio, and ln(stat) are considered in Opsomer and Ruppert [43], Yu and Lu [65]

and Wu et al. [62], whereas three variables rm, ln(stat), dis are used in Chaudhuri et al. [11].

Next, we apply the proposed method to an expression quantitative trait loci (eQTL)

dataset under a high-dimensional regression. The dataset can be accessed at NCBI Gene Ex-

pression Omnibus data repository (http://www.ncbi.nlm.nih.gov/geo) with access num-

ber GSE3330. The dataset contains a sample of n = 60 individuals of F2-ob/ob(B) mice with

22,575 different Affymetrix probe sets. The expression value for each prob set is microarray-

derived gene expression measurements (mRNA abundance traits), and they are obtained
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Table 1.4: Coefficients estimates of Boston housing price data using different methods. The
standard errors of coefficient estimates are in parenthesis and they are based on 500 bootstrap
samples. “0” indicates that the corresponding variable is not selected.

Variable MTE LAD ESL CQR MLE
rm 0.379 (0.108 ) 0.323 (0.134 ) 0.308 (0.209 ) 0.448 (0.146 ) 0.200 (0.063 )
ln(tax) -0.131 (0.070 ) 0 0 -0.019 (0.034 ) -0.134 (0.044 )
ptratio -0.161 (0.031 ) -0.156 (0.060 ) -0.130 (0.071 ) -0.083 (0.036 ) -0.201 (0.026 )
ln(lstat) -0.436 (0.078 ) -0.436 (0.125 ) -0.453 (0.177 ) -0.453 (0.119 ) -0.609 (0.077 )
nox 0 0 0 0 -0.152 (0.045 )
dis -0.069 (0.068 ) 0 0 -0.025 (0.038 ) -0.233 (0.043 )
ln(crim) 0 0 0 0 0
zn 0 0 0 0 0
indus 0 0 0 0 0
age 0 0 0 0 0.037 (0.052 )
black 0 0 0 0 0.078 (0.029 )
chas 0 0 0 0 0.054 (0.036 )
rad 0 0 0 0 0.140 (0.060 )

using the Affymetrix MOE430B microarrays (Array B of GeneChip Mouse Expression Set

430). Lan et al. [34] developed and studied this sample to identify regulatory networks. We

investigate the linear relationship of gene expressions and PEPCK, the numbers of phos-

phoenopyruvate carboxykinase (NM 011044) measured by quatitative real-time RT-PCR.

Similar study has been done by [51]. First, we pre-screened all 22,575 probes variables

by calculating the correlation coefficients with the response variable PEPCK. We use 1000

gene expression variables who have the highest marginal correlation to repsonse variable as

covariates. We compare our method with LAD-Lasso, Huber-Lasso, and LASSO.

MTE selects four probe sets: “1438937 x at”, “1437871 at”, “1439163 at”, and “1439617 s at”.

Among them, “1438937 x at” is the common one that has been selected by all methods, and

“1437871 at” has been selected by three methods. More importantly, the four selected probe

sets by MTE are all covered by LASSO, which has selected five probe sets. The selection
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results from LAD and Huber, however, are very different from MTE and LASSO. By ex-

ploratory analysis, we found that the response variable in this dataset is little contaminated.

In this case, as we expected, MTE and LASSO should produce similar estimates.

We further evaluate the out-of-sample prediction performance of these methods. The

dataset is randomly split to training set (54 observations) and testing set (6 observations).

Table 1.5 reports the average mean squared prediction error (MSPE) and average model size,

i.e. number of significant genes, over 100 random splits. From Table 1.5, we can see that the

out-of-sample prediction performance of MTE is uniformly better than the other methods.

We notice that the standard deviation of model size (number of selected variables) of MTE

is also the smallest among all methods.

Table 1.5: Mean squared prediction errors (MSPE) and model sizes obtained from different
methods using the eQTL dataset. The average MSPE and model size based on 100 random
splits are reported. Numbers in the parenthesis are standard errors.

Methods MSPE Model Size
MTE 0.565 (0.034 ) 5.58 (1.210 )
LAD 0.683 (0.038 ) 5.02 (1.461 )
Huber 0.574 (0.034 ) 6.16 (1.436 )
LASSO 0.712 (0.039 ) 5.80 (3.296 )

1.7 Conclusion

We have proposed a new class of robust mean regression estimators that can produce

robust and efficient estimates. Our proposed maximum tangent likelihood estimate (MTE)

covers a number of existing estimators, such as MLE, minimum distance estimator, Mallows

type estimator, and trimmed likelihood estimator as special cases. More interestingly, we
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show that solving the proposed MTE is equivalent to minimizing a combination of Kullback-

Leibler (KL) and `2 distance, where the weights depend on the choice of tuning parameter

t. Our proposed penalized maximum tangent likelihood estimator performs well in robust

estimation and variable selection under both fixed and high-dimensional regression. In ad-

dition to various numerical studies that demonstrate superior performance in practice, we

have shown that the unpenalized MTE enjoys nice theoretical properties such as consistency

and asymptotic normality, and the oracle property holds for the penalized MTE under fixed

dimensional regression. Further, we show that under an ultra-high-dimensional regression

setting when d can grow exponentially with n, for any positive t, the penalized MTE is

consistent in the optimal order of
√

ln(d)/n.

1.8 Technical Proofs

Proof of Theorem 1.2.1. For some β, let Bl ↓ β be a decreasing sequence of open balls

around β of diameter l converging to 0. Define mB(z) = supβ∈B lnt(f(z;β)), and the

sequence mBl(z) is decreasing and greater than lnt(f(z;β)) for every l. Since lnt(f(z;β)) is

upper-semicontinuous in β for almost all z, we have

lim sup
βn→β

lnt(f(z;βn)) < lnt(f(z;β)). a.s.

Furthermore, we know mBl(z) ↓ lnt(f(z;β)) almost surely. Since Eβ0 [supβ∈B lnt(f(x;β))] <

∞, by the monotone convergence theorem, we have Eβ0 [mBl(z)] ↓ Eβ0 [lnt(f(z;β))]. For

any β 6= β∗t , Eβ0 [lnt(f(z;β))] < Eβ0 [lnt(f(z;β∗t ))]. Therefore, there exists an open ball Bβ

around β with Eβ0 [mBβ
(z)] < Eβ0 [lnt(f(z;β∗t ))]. The set D = {β ∈ B : ||β − β∗t || ≥ δ} is

compact and is covered by the balls {Bβ : β ∈ D}. Let Bβ1 , ...,Bβq be a finite subcover.
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Then, by the law of large numbers,

sup
β∈D

1

n

n∑
i=1

lnt(f(zi;β)) ≤ sup
j=1,...,q

1

n

n∑
i=1

mBβj
(zi)

a.s.→ sup
j=1,...q

Eβ0 [mBβj
(z)] < Eβ0 [lnt(f(z;β∗t ))].

If β̃ ∈ D, then supβ∈D
1
n

∑n
i=1 lnt(f(zi;β)) ≥ 1

n

∑n
i=1 lnt(f(zi; β̃)). Since β̃ is the maximizer

of 1
n

∑n
i=1 lnt(f(zi;β)), we also have 1

n

∑n
i=1 lnt(f(zi; β̃)) ≥ 1

n

∑n
i=1 lnt(f(zi;β

∗
t )). By the law

of large numbers, 1
n

∑n
i=1 lnt(f(zi;β

∗
t )) = Eβ0 [lnt(f(z;β∗t ))]− op(1). Therefore,

{β̃ ∈ D} ⊆
{

sup
β∈D

1

n

n∑
i=1

lnt(f(zi;β)) ≥ Eβ0 [lnt(f(z;β∗t ))]− op(1)
}
.

Since P (supβ∈D
1
n

∑n
i=1 lnt(f(zi;β)) ≥ Eβ0 [lnt(f(z;β∗t ))]− op(1))→ 0, we have β̃

p→ β∗t .

Proof of Theorem 1.2.2. First we define Gn[g] = n−1/2
∑n

i=1

(
g(zi)−E[g(z)]

)
. Since we have

the Lipschitz property and the differentiability of the function β 7→ lnt(f(z;β)), by Lemma

19.31 in van der Vaart [54], for every random sequence hn, a d × 1 vector, that is bounded

in probability, we have

Gn

[√
n
(

lnt(f(zi;β
∗
t + hn/

√
n))− lnt(f(zi;β

∗
t + hn/

√
n))
)
− hTn

∂

∂β
lnt(f(zi;β

∗
t ))
]

p→ 0.

In addition, by Corollary 5.53 in van der Vaart [54], the Lipschitz condition and the twice

differentiability of the function β 7→ lnt(f(z;β)) also imply that the sequence
√
n(β̃ − β∗t )

is bounded in probability. By the twice differentiability, we also have

n∑
i=1

lnt(f(z;β∗t + hn/
√
n))−

n∑
i=1

lnt(f(z;β∗t )) =
1

2
hTn

∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]
hTn+

hTnGn

[
∂ lnt(f(z;β∗t ))

∂β

]
+ op(1).
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Since the sequence β̃ is
√
n-consistent, it is valid for hn if we let

h̃n =
√
n(β̃ − β∗t ),

or let

ȟn = −
[
∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]]−1

Gn

[
∂ lnt(f(z;β∗t ))

∂β

]
.

Therefore, we have

n∑
i=1

lnt(f(z;β∗t + h̃n/
√
n))−

n∑
i=1

lnt(f(z;β∗t )) =
1

2
h̃Tn

∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]
h̃Tn+

h̃TnGn

[
∂ lnt(f(z;β∗t ))

∂β

]
+ op(1) (1.17)

and

n∑
i=1

lnt(f(z;β∗t + ȟn/
√
n))−

n∑
i=1

lnt(f(z;β∗t ))

=
1

2
ȟTn

∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]
ȟn + ȟTnGn

[
∂ lnt(f(z;β∗t ))

∂β

]
+ op(1)

=− 1

2
Gn

[
∂ lnt(f(z;β∗t ))

∂β

]T[
∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]]−1

Gn

[
∂ lnt(f(z;β∗t ))

∂β

]
+ op(1). (1.18)

Because β̃ is the maximizer of
∑n

i=1 lnt(f(z;β)), the left side of equation (1.17) is larger

than the left side of equation (1.18) up to op(1), hence the same relation is true for the right

sides. Taking the difference of these two, complete the square, we have

1

2

{
h̃n +

[
∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]]−1

Gn

[
∂ lnt(f(z;β∗t ))

∂β

]}T
∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]{
h̃n+
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[
∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]]−1

Gn

[
∂ lnt(f(z;β∗t ))

∂β

]}
+ op(1) ≥ 0.

Note that ∂2E[lnt(f(z;β∗t ))]/∂β
2 is negative definite, therefore, the quadratic form has to

converge to 0 in probability, which implies

∥∥∥∥∥h̃n +

[
∂2

∂β2

[
E[lnt(f(z;β∗t ))]

]]−1

Gn

[
∂ lnt(f(z;β∗t ))

∂β

]∥∥∥∥∥ p→ 0.

The normality result follows by applying Slutsky’s Lemma.

Proof of Theorem 1.2.3. To prove the consistency of MTE for β0 in linear regressions, we

only need to show β0 = arg maxβ∈B Eβ0 lnt(f(z;β)). By the first order condition, we have

∂

∂β
Eβ0 lnt(f(z;β)) =

∫ ∫
lnt(f(z;β))dF (x, ε)

=

∫ ∫
h(f(y − xβ))f ′(y − xβ)(−x)dF (x, ε)

=

∫ ∫
h(f(xT (β0 − β) + ε))f ′(xT (β0 − β) + ε)(−x)dF (x, ε)

=

∫ ∫
h(f(xT (β0 − β) + ε))f ′(xT (β0 − β) + ε)(−x)dF (x)dF (ε)

=

∫ (∫
h(f(xT (β0 − β) + ε))f ′(xT (β0 − β) + ε)f(ε)dε

)
(−x)dF (x),

where we have used the independence between x and ε. Note that
∫
h(f(ε))f ′(ε)f(ε)dε = 0

which is due to the fact that f is an even function (i.e., a symmetric distribution) and f ′

is an odd function, therefore, the integral of an odd function equals to zero. In order to

have ∂
∂β
Eβ0 lnt(f(z;β)) = 0, we need xT (β0 − β) = 0 ∀x, by the regularity condition R8, it

implies β0 = β. Hence, β0 = arg maxβ∈B Eβ0 lnt(f(z;β)). By Theorems 1.2.1 and 1.2.2, we

obtain the consistency and asymptotic normality.
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Proof of Theorem 1.3.1. Given an appropriate choice of t, define

Qn(β) =
n∑
i=1

lnt(f(zi;β))− n
d∑
j=1

pλnj(|βj|); (1.19)

Ln(β) =
n∑
i=1

lnt(f(zi;β)). (1.20)

Let αn = n−1/2 + an, where an = max{p′λnj(|β0j|) : β0j 6= 0}. To show the results, we need

to show that for any given ε > 0, there exists a large constant C such that

P

{
sup
‖u‖=C

Qn(β0 + αnu) < Qn(β0)

}
≥ 1− ε, (1.21)

where u is a d -dimensional vector such that ‖u‖ = C. This implies with probability at least

1− ε that there exists a local maximizer such that ‖β̂ − β‖ = Op(αn).

Note that by SLLN, we have 1
n

∑n
i=1

∂2

∂β∂βT
lnt(f(zi,β)) = J(β){1 + op(1)}. By Taylor

expansion, given an appropriate t fixed, we have

Dn(u) ≡ Qn(β0 + αnu)−Qn(β0)

= Ln(β0 + αnu)− Ln(β0)− n
s∑
j=1

{
pλnj(|β0j + αnuj|)− pλnj(|β0j|)

}
≤ αnL′n(β0)Tu− 1

2
nα2

nu
T [−J(β0)]u{1 + op(1)}

−
s∑
j=1

[
nαnp

′
λnj

(|β0j|)sgn(β0j)uj +
1

2
nα2

np
′′
λnj

(|β0j|)u2
j{1 + o(1)}

]
= αn[L′n(β0) + op(

√
n)]Tu− 1

2
nα2

nu
T [−J(β0) + op(1)]u{1 + op(1)}

−
s∑
j=1

[
nαnp

′
λnj

(|β0j|)sgn(β0j)uj +
1

2
nα2

np
′′
λnj

(|β0j|)u2
j{1 + o(1)}

]
, (1.22)
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where J(β) = Eβ0

[
∂2

∂β∂βT
lnt(f(z;β))

]
is a negative definite matrix. By Theorem 1.2.3 and

CLT, n−1/2L′n(β0) = Op(1). Thus, the first term on the right-hand side of (1.22) is of the

order Op(n
1/2αn). Furthermore, the condition an = Op(n

−1/2) implies that Op(n
1/2αn) =

Op(nα
2
n). By choosing a sufficiently large C, the second term dominates the first term

uniformly in ‖u‖ = C. In addition, the third term is bounded by
√
snαnan‖u‖+ 1

2
nα2

nbn‖u‖2,

where bn = max{p′′λnj(|β0j|) : β0j 6= 0}. Since bn = op(1), the third term is also dominated

by the second term of (1.22). Hence, by choosing a sufficiently large C, (1.21) holds. This

completes the proof of Theorem 1.3.1.

To prove Theorem 1.3.2, we first prove the following lemma that presents the sparsity of

the penalized tangent likelihood estimation.

Lemma 3. Under the conditions in Theorem 1.3.1, for any given β satisfying ‖β − β0‖ =

Op(n
−1/2) and any constant C, we have

Qn((βS,0)) = max
‖βSc‖≤Cn−1/2

Qn((βS,βSc))

with probability 1, where Qn(β) is defined in (1.19).

Proof of Lemma 3. First we show that with probability 1, for any βS such that βS = β0S +

Op(n
−1/2), and for some small εn = Cn−1/2, and j = s+ 1, . . . , d,

∂Qn(β)

∂βj
< 0 for 0 < βj < εn

∂Qn(β)

∂βj
> 0 for − εn < βj < 0,
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where Qn(β) is defined in (1.19). By Taylor expansion, we have

∂Qn(β)

∂βj
=
∂Ln(β)

∂βj
− np′λnj(|βj|)sgn(βj)

=
∂Ln(β0)

∂βj
+

d∑
l=1

∂2Ln(β0)

∂βj∂βl
(βl − β0l)

+
d∑
l=1

d∑
k=1

∂3Ln(β∗)

∂βj∂βl∂βk
(βl − β0l)(βk − β0k)− np′λnj(|βj|)sgn(βj), (1.23)

where β∗ is between β and β0. Note that

1

n

∂Ln(β0)

∂βj
= Op(n

−1/2),

and

1

n

∂2Ln(β0)

∂βj∂βl
= Eβ0

[
∂2

∂βj∂βl
lnt f(z,β0)

]
+ op(1).

Since β − β0 = Op(n
−1/2) by Theorem 1.3.1, the first three term of (1.23) is Op(n

1/2). We

can write (1.23) as

∂Qn(β)

∂βj
= −np′λnj(|βj|)sgn(βj) +Op(n

1/2)

= nλnj

{
−sgn(βj)p

′
λnj

(|βj|)/λnj +Op(n
−1/2/λnj)

}
.

By conditions (1.11) and (1.12), that is

lim inf
n→∞

lim inf
θ→0+

{
min

s+1≤j≤d
p′λnj(θ)/λnj

}
> 0 and 1/ min

s+1≤j≤d
(
√
nλnj) = op(1),

the sign of the derivative ∂Qn(β)/∂βj is completely determined by the sign of βj. This

completes the proof of Lemma 3.
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Proof of Theorem 1.3.2. Part (a) holds due to Lemma 3. For part (b), we have shown that

there exists a β̂S that is
√
n-consistent local maximizer of Qn((βS,0)) such that

∂Qn((β̂S,0))

∂βj
= 0 for j = 1, . . . , s.

Because β̂S is a consistent estimator, we have

0 ≡ ∂Ln((β̂S,0))

∂βj
− np′λnj(|β̂j|)sgn(β̂j)

=
∂Ln(β0)

∂βj
+

s∑
l=1

{
∂2Ln(β0)

∂βj∂βl
+ op(1)

}
(β̂l − β0l)

− n
[
p′λnj(|β0j|)sgn(β0j) +

{
p′′λnj(|β0j|) + op(1)

}
(β̂j − β0j)

]
.

It follows by Slutsky’s lemma and the central limit theorem that

√
n(JS(β0) + Σ1)

{
β̂S − β0S + (JS(β0) + Σ1)−1b

}
D−→ N(0,Σ2).

Note that for the results above, it is supposed that lnt(f(z,β)) admits a third-order Taylor

expansion (i.e. p ≥ 3) to allow continuous differentiability for ease of presentation.

Lemma 4. Let Zn = {z1, . . . , zn} be any sample of size n, Zm = {z1, . . . , zm} be a contam-

ination sample of size m, and anm = 1
n−m maxβ∈Rd #

{
i : m+ 1 ≤ i ≤ n,xTi β = 0

}
. Assume

anm < 0.5, ε < (1− 2anm)/(2− 2anm) and ζ(t) < (1− ε)(2− 2anm). For the weighted vector

λ = (λn1, . . . , λnd), if

0 < min
{j:1≤j≤d}

λnj < +∞,
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there exists a b such that m/n ≤ ε implies

sup
‖β‖≥b

{
1

n

n∑
i=1

lnt(f(yi − xTi β))−
d∑
j=1

λnjg(|βj|)

}

<
1

n

n∑
i=1

lnt(f(yi − xTi
˜̃β))−

d∑
j=1

λnjg(| ˜̃βj|),

where ˜̃β is an initial estimator of β.

Proof of Lemma 4. First, we define

φ(r) =
lnt(f(0))− lnt(f(r))

lnt(f(0))− lnt(0)

ζ(t) =
2m

n
+

2

n

n∑
i=m+1

φ(yi − xTi
˜̃β).

Since anm = 1
n−m maxβ∈Rd\{0}#

{
i : m+ 1 ≤ i ≤ n,xTi β = 0

}
, for all β, we have,

1− anm =
n−m−maxβ∈Rd\{0}#

{
i : m+ 1 ≤ i ≤ n,xTi β = 0

}
n−m

=
1

n−m
inf

β∈Rd\{0}
#
{
i : m+ 1 ≤ i ≤ n,xTi β 6= 0

}
.

Because ε < (1− 2anm)/(2− 2anm) and ζ(t) < (1− ε)(2− 2anm) in the assumptions, we can

find a a∗n > anm such that ε < (1 − 2a∗n)(2 − 2a∗n) and ζ(t) < (1 − ε)(2 − 2a∗n). Using the

compacity argument [64], there exists a δ > 0 such that

1− a∗n ≤
1

n−m
inf
‖β‖=1

#
{
i : m+ 1 ≤ i ≤ n, |xTi β| > δ

}
.

Since ε < (1 − 2a∗n)/(2 − 2a∗n), we have (1 − ε)(1 − a∗n) > 1/2. Therefore, there exists a

η ∈ (1− (1− ε)(1− a∗n), 1/2) such that (1 − ε)(1 − a∗n)/(1 − η) > 1. In addition, since
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ζ(t) < (1− ε)(2− 2a∗n), we have (1− ε)(2− 2a∗n)/ζ(t) > 1. Therefore, we define

a0 =
(1− η)(1 + δ∗)ζ(t)

(1− ε)(2− 2a∗n)
,

where δ∗ > 0 and

δ∗ < min

(
(1− ε)(1− a∗n)

1− η
,
(1− ε)(2− 2a∗n)

ζ(t)

)
− 1

We can show that a0 < 1− η and a0 < ζ(t)/2. Then m/n ≤ ε implies (n−m) ≥ n(1− ε).

By the definition of φt(r) (i.e., continuous, bounded and even function), there exists a R ≥ 0

such that φt(R) = a0/(1 − η) < 1. Let b1 ≥ (R + maxm+1≤i≤n |yi|)/δ, given that m/n ≤ ε,

we have

inf
‖β‖≥b1

{
n∑
i=1

φt(yi − xTi β)

}
≥ inf
‖β‖=1

{∑
i∈A

φt(|yi| − b1|xTi β|)

}
≥ (n−m)(1− a∗n)φt(R)

= (n−m)(1− a∗n)
a0

1− η
≥ n(1− ε)(1− a∗n)

a0

1− η

= 0.5n(1 + δ∗)ζ(t) > 0.5nζ(t) ≥
n∑
i=1

φt(yi − xTi
˜̃β),

where A = {i : m+ 1 ≤ i ≤ n, |xiβ| > δ}. Therefore,

sup
‖β‖≥b1

{
n∑
i=1

lnt(f(yi − xTi β))

}
≤

n∑
i=1

lnt(f(yi − xTi
˜̃β)). (1.24)

We further define b2 =
√
dg−1

{∑d
j=1 λnjg(| ˜̃βj|)/(min{λnj})

}
such that λnj′g(b2/

√
d) ≥∑d

j=1 λnjg(| ˜̃βj|) for j′ = 1, ..., d. By defining b = max{b1, b2}. We have

sup
‖β‖≥b

{
1

n

n∑
i=1

lnt(f(yi − xTi β))−
d∑
j=1

λnjg(|βj|)

}
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≤ sup
‖β‖≥b

{
1

n

n∑
i=1

lnt(f(yi − xTi β))

}
+ sup
‖β‖≥b

{
−

d∑
j=1

λnjg(|βj|)

}

≤ sup
‖β‖≥b1

{
1

n

n∑
i=1

lnt(f(yi − xTi β))

}
+ sup
‖β‖≥b2

{
−

d∑
j=1

λnjg(|βj|)

}

≤
n∑
i=1

lnt(f(yi − xTi
˜̃β)) + sup

‖β‖≥b2

{
−

d∑
j=1

λnjg(|βj|)

}
. (1.25)

where the last step uses (1.24). For the second term of (1.25), note that ‖β‖ ≥ b2 implies

that there exists at least one element βj′ (e.g., maximum) of β such that |βj′ | ≥ b2/
√
d for

some j′. Hence,

sup
‖β‖≥b2

{
−

d∑
j=1

λnjg(|βj|)

}
≤ −λnj′g(|βj|) ≤ −λnj′g(b2/

√
d) ≤ −

d∑
j=1

λnjg(| ˜̃βj|),

where we have used the fact that g is strictly increasing. Therefore, substituting the result

into (1.25), we have

sup
‖β‖≥b

{
1

n

n∑
i=1

lnt(f(yi − xTi β))−
d∑
j=1

λnjg(|βj|)

}

≤
n∑
i=1

lnt(f(yi − xTi
˜̃β))−

d∑
j=1

λnjg(| ˜̃βj|).

Proof of Theorem 1.4.1. Since ˜̃β is the initial estimate and the penalized MTE β̂ maximizes

the objective function, we have

1

n

n∑
i=1

lnt{f(yi − xTi β̂)} −
d∑
j=1

λnjg(|β̂nj|) ≥
1

n

n∑
i=1

lnt{f(yi − xTi
˜̃β)} −

d∑
j=1

λnjg(| ˜̃βnj|).
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However, for a contaminated sample Zn with m/n ≤ ε, by Lemma 4, we know that if

‖β̂‖ ≥ b, we have

1

n

n∑
i=1

lnt{f(yi − xTi β̂)} −
d∑
j=1

λnjg(|β̂nj|) <
1

n

n∑
i=1

lnt{f(yi − xTi
˜̃β)} −

d∑
j=1

λnjg(| ˜̃βnj|),

which is a contradiction. Therefore, we conclude

BP(β̂; Zn−m, t) ≥ min

{
BP(˜̃β; Zn−m),

1− 2anm
2− 2anm

, 1− ζ(t)

2− 2anm

}
.

Proof of Theorem 1.4.2. Under the contaminated distribution Fε, the penalized MTE func-

tional, βε, is the solution of

0 =
∂

∂β

{∫
lnt(f(y − xTβ))dFε −

d∑
j=1

pλ0j(|βj|)

}
.

In other words,

0 = (1− ε)
∫

∂

∂β
lnt(f(y − xTβε))dF + ε

∂

∂β
lnt(f(y∗ − x∗Tβε))− v

0 = (1− ε)
∫

∂

∂r
lnt(f(r))

∣∣∣
r=y−xTβε

(−x)dF + ε
∂

∂r
lnt(f(r))

∣∣∣
r=y∗−x∗Tβε

(−x∗)− v,

where v(βε) = (p′λ01(|βε,1|)sgn(βε,1), ..., p′λ0d(|βε,d|)sgn(βε,d))
T . We further take derivative

with respect to ε and let ε→ 0, we have

0 =−
∫

∂

∂r
lnt(f(r))

∣∣∣
r=y−xTβ0

(−x)dF +

∫
∂2

∂r2
lnt(f(r))

∣∣∣
r=y−xTβ0

(−x)(−xT )
∂

∂ε
βεdF

+
∂

∂r
lnt(f(r))

∣∣∣
r=y∗−x∗Tβ0

(−x∗)− ∂

∂ε
v(βε)

∣∣∣
ε=0

.
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Note that when ε → 0 we have βε → β0 because of the consistency. Furthermore, by the

definition of βε, we have
∫

∂
∂r

lnt(f(r))
∣∣∣
r=y−xTβ0

(−x)dF − v(β0) = 0.

−
∫

∂2

∂r2
lnt(f(r))(−x)(−xT )

∂

∂ε
βεdF +

∂

∂ε
v(βε)

∣∣∣
ε=0

=
∂

∂r
lnt(f(r))

∣∣∣
r=y∗−x∗Tβ0

(−x∗)− v(β0)

Therefore, the influence function satisfies

IF(β̂)[−
∫

∂2

∂r2
lnt(f(r))xxTdF + v∗] =

∂

∂r
lnt(f(r∗))(−x∗)− v(β0),

where v∗ = diag(p′′λ01(|β01|) + p′λ01(|β01|)δ(β01), ..., p′′λ0d(|β0d|) + p′λ0d(|β0d|)δ(β0d)) and

δ(u) =


+∞ if u = 0,

0 otherwise.

Hence, we have

IF(β̂) =


0 if β0j = 0,

[[−
∫

∂2

∂r2
lnt(f(r))xxTdF + v∗]−1]j(

∂
∂r

lnt(f(r∗))(−x∗)− v(β0)) if β0j 6= 0,

where [A]j denotes the j-th row of the matrix A.

Proof of Lemma 1. Let εi = yi−xTi β0 be i.i.d. random error. The assumed density function

is f . Suppose that the scale parameter is preliminarily estimated as σ2
R by a robust estimate.

Define

dj(ε1, ..., εn) =
∂

∂βj

[
1

n

n∑
i=1

lnt(f(zi;β))

] ∣∣∣∣∣
β=β0
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=
∂

∂βj

[
1

n

n∑
i=1

lnt(f(yi − xTi β))

] ∣∣∣∣∣
β=β0

=
1

n

n∑
i=1

f ′(yi − xTi β)(−xij)
f(yi − xTi β)

w(f(yi − xTi β))

∣∣∣∣∣
β=β0

=
1

n

n∑
i=1

f ′(εi)(−xij)
f(εi)

w(f(εi)).

We first find bounds Bi such that for all εi and ε̃i, i = 1, . . . , n,

|dj(ε1, ..., εi, ..., εn)− dj(ε1, ..., ε̃i, ..., εn)| ≤ Bi. (1.26)

Because E[dj(ε1, ..., εn)] = 0, by McDiarmid’s inequality we have for all v > 0 and for all

j = 1, . . . , d,

P (|dj(ε1, ..., εn)| > v) ≤ 2 exp

{
− 2v2∑n

i=1B
2
i

}
. (1.27)

Let gj(εi) =
f ′(εi)(−xij)

f(εi)
w(f(εi)). We can show that maxεi |gj(εi)| ≤ Ct, where Ct is a constant

depending on the choice of t and σR. Given that the tangent likelihood order p = 1, we have

∣∣gj(εi)∣∣ =

∣∣∣∣∣εixijσ2
R

[
f(εi)

t

]
1(f(εi)<t)

∣∣∣∣∣ =


1
σ2
R
|εixij| if |εi| < εt

1
σ2
R
|εixijf(εi)/t| if |εi| ≥ εt

, (1.28)

where εt > 0 such that f(εt) = t. It is easy to see that the piecewise function (1.28) is

continuous for all εi, and the first part is monotonically increasing while second part is

bounded above. Therefore, the maximum value of |gj(εi)| is taken at the second part of
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(1.28). Hence,

max
εi

∣∣gj(εi)∣∣ ≤ M

σ2
R

max
|εi|≥εt

|εif(εi)/t| ≤
M

σ2
R

max
|εi|≥0

|εif(εi)/t| .

By assuming that f(·) is normal density with zero mean, arg maxεi |εif(εi)/t| = σR, so that

M
σ2
R

maxεi |εif(εi)/t| = M
tσR
f(σR).

It is worth noting that although maxεi |gj(εi)| is globally bounded by M
tσR
f(σR), the

maximum of |gj(εi)| may have two different values depending on whether εt ≥ σR or εt ≤ σR.

If the threshold point εt > σR, then maxεi |gj(εi)| = M
σ2
R
εt, which is strictly smaller than the

bound M
tσR
f(σR). On the other hand, if εt ≤ σR, maxεi |gj(εi)| = M

tσR
f(σR). Therefore, we

have Ct = Mε̌
tσ2
R
f(ε̌), where ε̌ = max{σR, εt}.

In general, it can be shown that Ct is a finite constant that depends on t and σ2
R. For

fixed ε1,... εi−1,εi+1,...εn, we have

max
εi,ε̃i

∣∣dj(ε1, ..., εi, ..., εn)− dj(ε1, ..., ε̃i, ..., εn)
∣∣ = max

ε,ε̃

1

n

∣∣gj(ε)− gj(ε̃)∣∣ ≤ 2

n
Ct.

It implies that
∑n

i=1B
2
i ≤ n(2Ct/n)2 = 4C2

t /n. By (1.27), we have

P (|dj(ε1, ..., εn)| > v) ≤ 2 exp

{
− nv

2

2C2
t

}
.

By union bound over the predictors we obtain

P

{
max
j=1,...,d

|dj(ε1, . . . , εn)| > v

}
≤ 2 exp

{
− nv2

2C2
t

+ ln(d)

}
. (1.29)

We can set v = λn/2 = Ct
√

2(α1 + 1) ln(d)/n, where α1 ≥ 0. This completes the proof.
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Proof of Lemma 2. Denote ri = yi−xTi β, the tangent loss function L(β) := − 1
n

∑n
i=1 lnt(f(ri)).

Consider the approximation error of the first order Taylor expansion of L(β) around β0 and

β0 + ∆, where ∆ ∈ Rd. For some a ∈ [0, 1], we have

δL(β0,∆) = L(β0 + ∆)− L(β0)− 〈∇L(β0),∆〉

= ∆T∇2L(β0 + a∆)∆. (1.30)

The following proof is based on the assumptions that f is normal density function and that

the tangent likelihood order p = 1. Let ri = yi − xTi (β0 + a∆). By simple algebra,

∆T∇2L(β0 + a∆)∆ =
1

n

n∑
i=1

h(zi)(x
T
i ∆)2,

with

h(zi) =


1/c0 if zi ≤ R

1
c1

(1− zi) exp(−zi/2) if zi > R

,

where c0 = σ2
R, zi = r2

i /c0, c1 = c
3/2
0 t
√

2π, and R = −2 ln(t
√

2πc0). We require 0 < t < f(0),

where f(·) is normal density function with mean equal to 0. Note that if t > f(0), the MTE

reduces to minimum `2 distance estimation and h(zi) = 1
c1

(1− zi) exp(−zi/2) is always true.

The corresponding proof can be found in Lozano et al. [37]. By requiring 0 < t < f(0), our

proof is simplified without introducing extra constants, and needs weaker conditions than

that of Lozano et al. [37].
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It is easy to see that function (1 − zi) exp(−zi/2) attains its minimum −2e−3/2 when

zi = 3. Then we have

∆T∇2L(β0 + a∆)∆ ≥ 1

n

n∑
i=1

φ(zi)(x
T
i ∆)2, (1.31)

where

φ(zi) =


1/c0 if zi ≤ R

−2e−3/2/c1 if zi > R

.

To complete the proof, we will show that with high probability,

1

n

n∑
i=1

φ(zi)(x
T
i ∆)2 ≥ κ1‖∆‖2

(
‖∆‖2 − κ2

√
ln d

n
‖∆‖1

)
(1.32)

for any ∆ ∈ H(S, u; v) := C(S) ∩ {∆ : ‖∆‖1 = v, ‖∆‖2 = u}. It is equivalent to show that

the complement event of (1.32) holds with very small probability. In particular,

1

n

n∑
i=1

φ(zi)(x
T
i ∆)2 < κ1u

(
u− κ2

√
ln d

n
v

)
, for some ∆ ∈ H(S, u, v). (1.33)

Following is the outline of the proof:

1. Establish the lower bound for E
[

1
n

∑n
i=1 φ(zi)(x

T
i ∆)2

]
.

2. Show tail bound for Q(v), where

Q(v) := sup
∆∈H(S,u,v)

∣∣∣∣∣ 1n
n∑
i=1

[φ(zi)− Eφ(zi)] (xTi ∆)2

∣∣∣∣∣ . (1.34)

To show the tail bound, we need to
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2a. establish upper bound for Q(v);

2b. establish upper bound for E [Q(v)].

3. Use the peeling argument in Negahban et al. [41] to show that v can be arbitrary.

First, we establish the lower bound for E
[

1
n

∑n
i=1 φ(zi)(x

T
i ∆)2

]
. Note that

Eφ(zi) =
1

c0

P (zi ≤ R)− 2e−3/2

c1

P (zi > R) =
1

c0

−
(

1

c0

+
2e−3/2

c1

)
P (zi > R),

and

P (zi > R) = P (r2
i > c0R)

= P
(∣∣(yi − xTi β0)− axTi ∆

∣∣ >√c0R
)

= P
(

(yi − xTi β0) >
√
c0R + axTi ∆

)
+ P

(
(yi − xTi β0) < −

√
c0R + axTi ∆

)
.

By assumption [A3], that is, xTi ∆ is sub-Gaussian with parameter at most κ2
s‖∆‖2

2, we have

P (|xTi ∆| ≥ w) ≤ 2 exp

(
− w

2

2κ2
s

‖∆‖2
2

)
for all w > 0. (1.35)

It implies that maxi |xTi ∆| ≤ 2κs‖∆‖2

√
lnn with probability at least 1 − 1/n2. Then we

have

P
(

(yi − xTi β0) >
√
c0R + axTi ∆

)
≤ P

(
(yi − xTi β0) >

√
c0R− 2aκs‖∆‖2

√
lnn
)

;

P
(

(yi − xTi β0) < −
√
c0R + axTi ∆

)
≤ P

(
(yi − xTi β0) < −

√
c0R + 2aκs‖∆‖2

√
lnn
)
.
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Therefore, P (zi > R) ≤ P
(
|yi − xTi β0| >

√
c0R− 2κsu

√
lnn
)

= κu. We need u <
√
c0R

2κs
√

lnn

so that κu < 1. Further, we need κu ≤ (1 + c0
c1

2e−3/2)−1 in order to have

Eφ(zi) ≥
1

c0

−
(

1

c0

+
2e−3/2

c1

)
κu ≥ 0. (1.36)

By the restricted eigenvalue condition, we have

E
[
∆T∇2L(β0 + a∆)∆

]
≥ 1

n

n∑
i=1

Eφ(zi)(x
T
i ∆)2 ≥

(
1

c0

− c2κu

)
κREu

2, (1.37)

where c2 =
(

1
c0

+ 2e−3/2

c1

)
.

Next, we show the tail bound of Q(v). By Massart concentration inequality [39, 7],

P (Q(v) ≥ EQ(v) + ξ) ≤ exp

(
− ξ2

2L2

)
, (1.38)

where L2 = sup∆∈H(S,u,v)

∑n
i=1 [bi(∆)]2, and bi(∆) is the upper bound of

∣∣∣∣ 1n [φ(zi)− Eφ(zi)] (xTi ∆)2

∣∣∣∣ .
To show (1.38), we need to determine L2, and the upper bound of EQ(v). We fisrt show

|φ(zi)− Eφ(zi)| ≤
(

1

c0

+
2

c1

e−3/2

)
.

Note that 0 ≤ Eφ(zi) ≤ 1/c0, and φ(zi) = 1/c0 if zi ≤ R, φ(zi) = −2e−3/2/c1 otherwise.

Therefore, |φ(zi)− Eφ(zi)| ≤ Eφ(zi)− (−2e−3/2/c1) ≤
(

1
c0

+ 2
c1
e−3/2

)
. Hence,

∣∣∣∣ 1n [φ(zi)− Eφ(zi)] (xTi ∆)2

∣∣∣∣ ≤ 1

n
|φ(zi)− Eφ(zi)| (xTi ∆)2 ≤ 1

n
c2(xTi ∆)2,
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where c2 =
(

1
c0

+ 2
c1
e−3/2

)
, and (xTi ∆)2 ≤ 4κ2

su
2 lnn. Therefore, we have L2 = (4c2κ

2
su

2 lnn)2/n.

Next, we upper bound EQ(v). Let wi be i.i.d. Rademacher variable. By symmetrization

theorem (Theorem 14.3 in Bühlmann and Van De Geer [7]), we have

EQ(v) ≤ 2E sup
∆∈H(S,u,v)

∣∣∣∣∣ 1n
n∑
i=1

wiφ(zi)(x
T
i ∆)2

∣∣∣∣∣
≤ 2

c0

E sup
∆∈H(S,u,v)

∣∣∣∣∣ 1n
n∑
i=1

wi1 {zi ≤ R} (xTi ∆)2

∣∣∣∣∣
+

4

c1

e−3/2E sup
∆∈H(S,u,v)

∣∣∣∣∣ 1n
n∑
i=1

wi1 {zi > R} (xTi ∆)2

∣∣∣∣∣
≤ 2c2E sup

∆∈H(S,u,v)

∣∣∣∣∣ 1n
n∑
i=1

wi(x
T
i ∆)2

∣∣∣∣∣ .
Since (xTi ∆)2 is Lipschitz continuous with parameter K = 4κsu

√
lnn for all ∆ ∈ H(S, u, v),

using Ledoux-Talagrand Contraction inequality [35], we have

EQ(v) ≤ 8κsuc2

√
lnnE sup

∆∈H(S,u,v)

∣∣∣∣∣ 1n
n∑
i=1

wi(x
T
i ∆)

∣∣∣∣∣ .
Further, by Hölder’s inequality,

EQ(v) ≤ 8κsuvc2

√
lnnE

∥∥∥∥∥ 1

n

n∑
i=1

wixi

∥∥∥∥∥
∞

.

Since xTi ∆ is sub-Gaussian with parameter κ2
su

2, 1
n

∑n
i=1wixi is also sub-Gaussian with

parameter κ2
s/n. The existing bounds of expectation of sub-Gaussian maxima [35] yield

E

∥∥∥∥∥ 1

n

n∑
i=1

wixi

∥∥∥∥∥
∞

≤ 6κs

√
ln d

n
.
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Therefore,

EQ(v) ≤ 48κ2
suvc2

√
lnn ln d

n
. (1.39)

Now, combine (1.38) and (1.39), and let

ξ =
1

2

(
1

c0

− c2κu

)
u2κRE + κ2

suvc2

√
lnn ln d

n
,

we have

P

(
Q(v) ≥ 1

2

(
1

c0

− c2κu

)
u2κRE + 49κ2

suvc2

√
lnn ln d

n

)

≤ exp

−n
(

1
2

(
1
c0
− c2κu

)
u2κRE + κ2

suvc2

√
lnn ln d

n

)2

32κ4
su

4c2
2(lnn)2

 .

Note that P (sup |a − b| ≥ c) ≥ P (|a − b| ≥ c) ≥ P (a − b ≤ −c) ≥ P (a ≤ −c + b∗) given

b ≥ b∗. Hence, for any ∆ ∈ H(S, u, v), the event (1.33) holds with small probability. In

particular,

1

n

n∑
i=1

φ(zi)
(
xTi ∆

)2 ≤ 1

2

(
1

c0

− c2κu

)
u2κRE − 49κ2

suvc2

√
lnn ln d

n

holds with the probability at most

exp

−n
(

1
2

(
1
c0
− c2κu

)
u2κRE + κ2

suvc2

√
lnn ln d

n

)2

32κ4
su

4c2
2(lnn)2


≤ exp

−n
(

1
2

(
1
c0
− c2κu

)
κRE

)2

32κ4
sc

2
2(lnn)2

− ln d

32 lnn

 .
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Therefore, by a peeling argument [44], we have the restrict strong convexity with proba-

bility at least 1− α3 exp(−α4n).

Proof of Theorem 1.3.3. We consider the set H(S, u) := C(S)∩
{
∆ ∈ Rd : ‖∆‖2 = u

}
, where

u <
√
c0R/(2κs

√
lnn). Define function F : Rd → R as:

F(∆) := L(β0 + ∆)− L(β0) + λn (‖β0 + ∆‖1 − ‖β0‖1) .

We first give the following Lemma, and use this result to complete the theorem proof.

Lemma 5. If F(∆) > 0 for all ∆ ∈ H(S, u), then ‖∆̂‖ ≤ u, where ∆̂ = β̂ − β0.

Proof of Lemma 5. We show the lemma by contradiction. Suppose that for some optimal β̂

(i.e. minimizer of L(β) + λn‖β‖1), ‖∆̂‖2 > u. Then the line joining ∆̂ and 0 must intersect

with the set H(S, u) at a∗∆̂ for some a∗ ∈ (0, 1). We know that L(·) is locally convex, so is

F(·). Therefore, F(a∗∆̂) = F(a∗∆̂ + (1− a∗)0) ≤ a∗F(∆̂) + (1− a∗)F(0) = a∗F(∆̂).

Since β̂ is optimal, F(∆̂) ≤ 0, hence F(a∗∆̂) ≤ 0. However, a∗∆̂ ∈ H(S, µ). This is a

contradiction.

We now complete the proof of Theorem 1.3.3. By (1.30), we know that L(β0 + ∆) −

L(β0) = 〈∇L(β0),∆〉+ δL(β0,∆). Then we have

F(∆) = 〈∇L(β0),∆〉+ δL(β0,∆) + λn (‖β0 + ∆‖1 − ‖β0‖1) .

By Lemma 2, we know that the restricted strong convexity, δL(β0,∆) ≥ κ1
2
‖∆‖2

2, holds with

probability at least 1− α3 exp(−α4n). Therefore, with the same probability,

F(∆) ≥ 〈∇L(β0),∆〉+
κ1

2
‖∆‖2

2 + λn (‖β0 + ∆‖1 − ‖β0‖1)
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≥ 〈∇L(β0),∆〉+
κ1

2
‖∆‖2

2 + λn (‖∆Sc‖1 − ‖∆S‖1) .

Note that β0 and ∆Sc are in complementary model subspaces. Hence, by definition of

decomposability of `1 regularizer in Negahban et al. [41], ‖β0 + ∆Sc‖1 = ‖β0‖1 + ‖∆Sc‖1.

By Hölder’s inequality, |〈∇L(β0),∆〉| ≤ ‖∇L(β0)‖∞‖∆‖1. By Lemma 1, we know that

λn ≥ 2‖∇L(β0)‖∞ holds with probability at least 1− 2 exp(−α2nλ
2
n). Then with the same

probability, |〈∇L(β0),∆〉| ≤ λn
2
‖∆‖1. Hence,

F(∆) ≥ κ1

2
‖∆‖2

2 + λn (‖∆Sc‖1 − ‖∆S‖1)− λn
2
‖∆‖1

=
κ1

2
‖∆‖2

2 + λn

(
1

2
‖∆Sc‖1 −

3

2
‖∆S‖1

)
≥ κ1

2
‖∆‖2

2 −
3λn
2
‖∆S‖1

≥ κ1

2
‖∆‖2

2 −
3λn
√
s

2
‖∆‖2.

Let G(‖∆‖2) = κ1
2
‖∆‖2

2 −
3λn
√
s

2
‖∆‖2 where G(‖∆‖2). Then the root of G(·) is 3λn

κ1

√
s > 0.

Therefore, F(∆) > 0 for all ‖∆‖2 >
3λn
κ1

√
s with probability at least 1−2 exp(−α2nλ

2
n). Let

u = 4λn
κ1

√
s so that F(∆) is strictly positive. We then only need 4λn

κ1

√
s ≤
√
c0R/(2κs

√
lnn),

which holds as long as n > 162ξ2κ2ss lnn ln d

κ21c0R
. By results of Lemma 5, we have

‖∆̂‖ ≤ 4λn
κ1

√
s.

By choosing λn = 2ξ
√

ln(d)/n, we have with probability at least 1− 2 exp(−α2nλ
2
n),

‖β̂ − β0‖ ≤
8

κ1

ξ

√
s ln(d)

n
.
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Chapter 2:

Corporate Bankruptcy Prediction:

A Penalized Semiparametric Index Hazard Model Approach

2.1 Introduction

Corporate bankruptcy prediction is of paramount interest in risk management. Default

probabilities are necessary inputs to pricing credit derivatives [12]. Accurate default predic-

tions are critical to financial institutions that are required by the international Basel Com-

mittee to reserve enough cash to cover risks incurred by operations. Consequently, corporate

bankruptcy forecasting has attracted great attention in the past decades. Both reliable and

easy-interpretable statistical models are desired to accurately predict firms bankruptcy risk

in order to help government and financial institution to early detect default and minimize

the potential losses.

One of the most cited bankruptcy prediction models, Altman’s Z-score in a linear dis-

criminant analysis, was introduced by Altman [2], where a static model with cross-sectional

data was developed. Their empirical study is based on the largest sector–manufacturing

sector on a small matched sample. Five financial ratios, Working capital/total assets, Re-

tained earnings/total assets, Earnings before interests and taxes/total assets, Market value

equity/book value of total debt, and Sales/total assets are used as predictors. Shumway [50]

proposed a discrete hazard model, often termed as Shumway’s model, arguing that static
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model brings bias as it ignores the panel structure of data. Shumway’s model is widely

adopted by later researchers and becomes the state-of-the-art model in the current literature

(see, e.g. [12], [8]). Ding et al. [15] note that the popular Shumway discrete hazard model is

indeed the discrete logistic model [13] for time-varying covariates, and statistically equivalent

to multi-period logit model.

The aforementioned popular bankruptcy prediction models are based on a linear model

framework, whereas the linearity assumption may often not hold and the model may be

subject to misspecification. In this article, we investigate potential nonlinearity between

firm’s default risk and financial variables by considering a semiparametric index hazard

model [28, 27, 9, 32, 66] for bankruptcy prediction:

g (P [Yi,t+1 = 1|Yi,t = 0,xi,t]) = φ
(
αTxi,t

)
, (2.1)

where Yi,t = 1 if firm i goes bankrupt at time t and 0 otherwise, xi,t is a vector of predictors

for firm i at time t, α is a vector of index coefficient, g(·) is a prespecified canonic link

function, i.e. the logit link function g(π) = log( π
1−π ) for π ∈ (0, 1) in our study, and φ(·) is

an unspecified link function that needs to be estimated. Model (2.1) is a natural combina-

tion of single-index models [28] and generalized linear model [40] for binary responses. The

single-index model has been increasingly popular in many fields of quantitative research,

exhibiting many appealing features. It circumvents the so-called “curse of dimensionality”

as the “single-index” projects p-dimensional explanatory vector space to a one-dimensional

vector so that it only demands a univariate nonparametric estimation. The unknown non-

parametric function φ(·) is flexible to handle nonlinearity. When φ(·) is monotonic, the

signs of single-index coefficients can be interpreted similarly as in the linear model. When
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φ(·) is identity, (2.1) reduces to Shumway’s model. In our study, the “single-index” can be

viewed as a composite financial index, which makes model (2.1) particularly appealing to

the bankruptcy prediction. Many developed algorithms can be adopted to estimate model

(2.1).

With numerous financial variables being available, it is crucial to determine important

variables to be included in the predictive model. This investigation may also shed light

on the debate between accounting and market researchers [52]. Accounting ratios are often

adopted to predict default risk in early works by accounting researchers [2, 42, 71]. Shumway

[50] is among the first to introduce market based variables as predictors and show noticeable

gains. Campbell et al. [8] further modified accounting based variables with market infor-

mation. Chava and Jarrow [12] show clear and even dominating advantages using market

variables. Most previous work prespecifies somewhat different fixed set of explanatory vari-

ables. Many accounting and market based variables have been suggested, yet there are few

studies to formally determine important predictors. Tian et al. [52] are among the first to

introduce LASSO variable selection to the bankruptcy literature under the linear hazard

model framework and find important roles of both accounting ratios and market variables.

In fact, identifying important variables among a large number of predictors is challenging

but crucial in many scientific research fields. Irrelevant variables may bring additional noise,

and simpler model is often preferred for its interpretability. The traditional best subset vari-

able selection method not only causes heavy computational duty but also brings stochastic

errors (see, e.g., 18). Instead, the regularized methods, such as LASSO [53], Adaptive-Lasso

[72], SCAD [18], and MCP [67], can select important variables and estimate the coefficients

simultaneously. Furthermore, such regularized methods are computationally efficient and
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scalable to large dataset with high-dimensional features whereas classical stepwise variable

selection is infeasible.

In order to capture potential nonlinearity and select important predictors, in this paper,

we propose a penalized index hazard model for bankruptcy prediction and variable selec-

tion. Motivated by the long debate between accounting and finance researchers, we further

propose a novel penalized double-index hazard model. Market and accounting variables nat-

urally form the candidate variable sets of the two indices. Automatic variable selection is

achieved by the shrinkage estimation with a penalty, such as SCAD. We show that the pro-

posed penalized double-index hazard model is specifically tailored for corporate bankruptcy

prediction with the following advantages: (1) important market variables and accounting ra-

tios are used to construct two indices naturally; (2) two nonparametric link functions allow

nonlinear effect of the constructed two indices, market and accounting index, to the firm’s

default risk; (3) important variables can be automatically selected; and (4) more interest-

ingly, interpretation of the index coefficients as well as two constructed composite indices:

market and accounting index may be of great potential interest in practice.

We focus on the publicly traded manufacturing firms that form the largest industry

sector in size with the highest bankruptcy rates. We construct the comprehensive database

from 1980 to 2015 by merging monthly equity data from the Center for Research in Security

Prices (CRSP) and quarterly financial data from the Standard & Poor’s COMPUSTAT. The

dataset is discrete in nature over the time. We construct a total of 23 financial variables,

among which 10 are market variables and the rest are accounting ratios that have been

considered in the previous bankruptcy literature (e.g. [2, 42, 71, 50, 12]). Default dummy is

the response of interest, indicating a company’s filing of bankruptcy protection under either

Chapter 7 or Chapter 11. We describe further details in Section 2.4.
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The rest of this paper is organized as following: Section 2.2 describes the database we

have constructed and used for our empirical study. Section 2.3 introduces the proposed

double-index hazard model along with the penalized estimation and algorithm. A Monte

Carlo simulation study has been conducted in the end of Section 2.3 in order to demonstrate

the effectiveness of the proposed model and efficient estimation algorithm. Our empirical

results are shown in Section 2.4.

2.2 Data

In this section, we describe our bankruptcy database. Our bankruptcy database is con-

sisting of a panel dataset of 65,220 firm-year observations for a total of 5,547 firms in the

manufacturing sector from 1980 to 2015.

To estimate the default risk, we need a binary response variable that indicates a firms

bankruptcy status and a set of explanatory variables. To construct firm-level explanatory

predictor variables, we merge daily and monthly equity information from CRSP with the

annually updated accounting information from COMPUSTAT database through the Whar-

ton Research Data Services (WRDS). In this study, we consider both market-based and

accounting-based predictor variables at each individual firm level. There are a total of 23

candidate explanatory variables. Such set of predictor variables is a tailored list of variables

that have appeared in studies including [3, 2, 42, 71, 50, 12, 4, 29, 5], and many others. We

further partition this predictor variable set into two groups: market and accounting variables.

In specific, if the variable is formulated only by using the balance sheet or income statement

data from COMPUSTAT, we classify the predictor variable as an accounting variable, for

example, the leverage ratio of total liability over the total assets and the profitability ratio

of net income over the total assets. If the variable is constructed using the market trading
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information from CRSP, for example, the stock price or return, we classify the predictor

variable as a market variable. As a result, our predictor variable set includes 10 market

and 13 accounting based variables. The detailed description for each predictor variable is

summarized in Table 2.1.

Table 2.1: Variable names and descriptions of bankruptcy predictors

Variable Description
Panel A: Market-based Variables

SIGMA Stock volatility
EXRET Excess return over S&P 500 index
NIMTA Net income/(market equity+total liabilities)
LTMTA Total liabilities/(total liabilities+market equity)
CASHMTA Cash and short-term investment/(market equity + total liabilities)
SIZE log(market capitalization)
LOG PRICE log(price)
MBE Market-to-book ratio
LCTMTA Current liabilities/(market equity+total liabilities)
MVEF Market equity/total debt

Panel B: Accounting-based Variables
LTAT Total liabilities/total assets
LCTAT Current liabilities/total asset
NIAT Net income/total assets
EBITAT Earnings before interest and tax/total asset
REAT Retained earnings/total assets
RELCT Retained earnings/current liabilities
LCTSALE Current liabilities/sales
LOG SALE log(sales)
CHAT Cash/total asset
ACTLCT Current asset/current liabilities
WCAPAT Working capital/total assets
LCTLT Current liabilities/total liabilities
SALEAT Sales/total assets

In this study, a bankruptcy is defined to occur only if the company filed under either

Chapter 7 (liquidation) or Chapter 11 (reorganization) protection code. Even though it is
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not necessary for firms that filed for Chapter 11 to end with Chapter 7 filing, such definition

is quite common in most bankruptcy literatures in order to identify the firms with financial

difficulties. To estimate a company’s default risk, the bankruptcy indicator is set to unity

in the year that the firm exits the database due to either Chapter 7 or Chapter 11 filing

deletion. The bankruptcy indicator is set to zero for all other firms that are either healthy or

deleted or delisted due to other reasons such as merge and acquisition. For bankrupted firms,

bankruptcy indicator is set to zero until the time the company survives through prior to the

deletion or delisting. As a result, we have a total of 543 bankrupted firms in manufacturing

industry over the sampling period. Table 2.2 summarizes the firm distribution by year. The

first column shows the number of bankruptcies reported and the second column reports the

number of active firms each year. The last column summarizes the corresponding bankruptcy

percentage. It is quite apparent that high bankruptcy frequency and the business recession

coincide, for example, the early 1990s recessions, the internet bubble in early 2000s, the 2008

financial crisis and the recent subprime mortgage crisis. Figure 2.1 plots the bankruptcy

frequency across years, where we can see that it changes along with the economy.

Consistent to prior literatures [50, 12, 8], we also carefully align the company’s fiscal year

to the calendar year and lag the temporally aligned annual records by four month to ensure

the accounting information is available to the market at the time of prediction. Winsorization

is common in bankruptcy literature to avoid potential outliers. In this work, we winsorize

selected predictors at either or both top and bottom percentiles if their histograms suggest

a heavy-tail feature. Specifically, we replace any value that is lower than the 1st percentile

or higher than the 99th percentile with its 1st percentile value or its 99th percentile value

for winsorization.
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Table 2.2: Count of bankruptcy firms and total number of firms over year.

Year Bankruptcies Active Firms (%)
1980 11 1637 0.67
1981 12 1691 0.71
1982 12 1781 0.67
1983 16 1796 0.89
1984 14 1937 0.72
1985 15 1977 0.76
1986 24 1992 1.20
1987 9 2027 0.44
1988 16 2084 0.77
1989 19 2013 0.94
1990 31 2001 1.55
1991 31 1935 1.60
1992 18 1944 0.93
1993 17 1984 0.86
1994 18 2127 0.85
1995 11 2217 0.50
1996 10 2307 0.43
1997 24 2433 0.99
1998 35 2444 1.43
1999 17 2276 0.75
2000 20 2149 0.93
2001 30 2087 1.44
2002 36 1955 1.84
2003 15 1767 0.85
2004 7 1664 0.42
2005 10 1594 0.63
2006 4 1530 0.26
2007 5 1502 0.33
2008 11 1454 0.76
2009 17 1386 1.23
2010 3 1324 0.23
2011 5 1293 0.39
2012 9 1267 0.71
2013 4 1221 0.33
2014 3 1201 0.25
2015 4 1223 0.33

Table 2.3 reports the summary statistics for the winsorized data set. In specific, the left

(right) panel summarizes the distribution for the bankrupted (non-bankrupted) firms at the

firm-year level. One apparent conclusion we observe from Table 2.3 is that the bankruptcy

group demonstrates quite different financial behaviors from the non-bankruptcy firm group.
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Figure 2.1: Number of bankrupted firms across years from 1980-2015.

The bankruptcy firms tend to have high debt and liabilities relative to their assets, smaller

size in terms of their asset values and market capitalization, lesser profitability values and

very negative reported earnings and returns. The table also shows that the bankruptcy firms

are usually more volatile, where the average market return volatility for the bankruptcy

group is 1.553 while it is only 0.612 for the non-bankruptcy group. The bankrupted firms

also have a lower average trading price of -0.488, comparing to 1.938 at log scale for the

non-bankruptcy firms.
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Table 2.3: Summary statistics for bankruptcy predictors

Bankrupt Firm Nonbankrupt Firm
(No. Firm-year = 543) (No. Firm-year = 64677)

Variable Mean Std. Min Median Max Mean Std. Min Median Max
Panel A: Market Variable

SIGMA 1.553 0.806 0.000 1.549 2.722 0.612 0.466 0.000 0.475 2.722
EXRET -0.732 0.786 -1.638 -0.664 2.345 -0.116 0.535 -1.638 -0.064 3.376
NIMTA -0.251 0.273 -0.787 -0.165 0.214 -0.013 0.138 -0.787 0.025 0.214
LTMTA 0.796 0.228 0.057 0.892 0.999 0.434 0.261 0.001 0.413 1.002
CASHMTA 0.108 0.152 -0.010 0.043 0.587 0.093 0.125 -0.009 0.045 0.587
SIZE -13.573 1.667 -18.567 -13.759 -7.617 -10.461 2.193 -18.949 -10.505 -2.878
LOG PRICE -0.488 1.224 -1.856 -0.693 2.708 1.938 1.074 -1.856 2.526 2.708
MBE 0.665 2.066 -3.412 0.204 10.386 1.901 1.897 -3.412 1.457 10.386
LCTMTA 0.464 0.271 0.015 0.409 0.981 0.205 0.163 0.000 0.161 0.996
MVEF 0.031 0.183 0.000 0.001 1.776 0.081 0.290 0.000 0.005 1.776

Panel B: Accounting Variable
LTAT 0.796 0.299 0.042 0.799 1.301 0.530 0.231 0.005 0.533 1.301
LCTAT 0.442 0.252 0.009 0.393 0.848 0.255 0.152 0.000 0.224 0.848
NIAT -0.304 0.380 -1.259 -0.164 0.239 -0.026 0.218 -1.259 0.034 0.239
EBITAT -0.193 0.305 -1.015 -0.091 0.754 0.025 0.195 -1.015 0.068 0.736
REAT -1.035 1.655 -6.546 -0.383 0.830 -0.147 1.061 -6.546 0.123 3.186
RELCT -2.418 4.439 -17.292 -0.904 6.704 -0.205 3.866 -17.292 0.563 6.704
LCTSALE 0.577 0.479 0.075 0.390 1.782 0.316 0.290 0.075 0.235 1.782
LOG SALE 3.875 2.248 -4.605 3.926 11.912 5.168 2.382 -6.908 5.116 12.478
CHAT 0.075 0.114 -0.014 0.035 0.604 0.084 0.114 -0.069 0.039 0.604
ACTLCT 1.584 1.534 0.016 1.182 11.844 2.458 1.915 0.000 1.954 11.844
WCAPAT 0.065 0.286 -0.400 0.074 0.850 0.250 0.239 -0.400 0.243 0.971
LCTLT 0.603 0.295 0.016 0.623 1.000 0.538 0.266 0.001 0.516 1.000
SALEAT 1.092 0.763 0.000 1.031 3.017 1.024 0.590 -0.149 0.973 3.017

2.3 Semiparametric Index Model

2.3.1 Double-index hazard model

We propose the double-index hazard model for bankruptcy prediction, which is a simple

extension of the single-index model (2.1). In particular, the proposed model is of form

g (P [Yi,t = 1|xi,t−l, zi,t−l]) = φ1

(
αTxi,t−l

)
+ φ2

(
βTzi,t−l

)
, ‖α‖ = ‖β‖ = 1, (2.2)

where xi,t ∈ Rs and zi,t ∈ Rd are two different sets of predictive information, i.e., market-

based and accounting-based variables, that are observed from firm i at time t. Comparing
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to model (2.1), the only difference is that the double-index model (2.2) involves a second

unknown link function φ2(·) for another index term βTz. A key restriction condition for the

index coefficients α and β is that ‖α‖ = 1, ‖β‖ = 1. This is a common assumption in semi-

parametric index model such that the index parameters can be uniquely identified through

certain type of reparameterization. One popular way to reparameterize the index coefficient

is called “delete-one” method. In particular and without loss of generality, for parameter

vector β, we first let β∗ = β/β1 = (1, β∗2 , . . . , β
∗
d) for the sign identifiability, and then nor-

malize the parameter vector as β∗∗ = β∗/‖β∗‖ = (1, β∗2 , . . . , β
∗
d)/(1 +

∑d
j=2 β

∗2
j )1/2, so that

only d−1 parameters need to be estimated. The parameter vector α can be reparameterized

using the same way.

Model (2.2) covers many statistical models as special cases. If one or both of the unknown

nonparametric functions are identity, (2.2) reduces to partially linear single-index models

[9, 36] or traditional Shumway’s hazard model. Note that the single-index hazard model

(2.1) can be also viewed as a special case of (2.2). Specifically for our bankruptcy prediction,

a composite index with both market and accounting based variables can be constructed

under the single-index hazard model (2.1), while the double-index hazard model (2.2) can

characterize group effect of the two types of financial variables separately through the two

unknown link functions. Throughout this section, we replace the subscript {it} with {i} in

order to simplify the notation, unless otherwise indicated.
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2.3.2 Polynomial spline approximation

To estimate model (2.2), the most common approach is to use maximum likelihood

estimation (MLE) by maximizing the quasi log-likelihood function [40]

L(α,β) =
n∑
i=1

{yiηi − log(1 + eηi)} , (2.3)

where yi is the binary response, and ηi = φ1

(
xTi α

)
+ φ2

(
zTi β

)
, is a functional predictor

term instead of the linear predictor term in traditional logit model. Clearly, the key to

estimate the index hazard model (2.2) with MLE comprises two parts, (1) estimating the

unknown univariate functions φ1(·) and φ2(·) nonparametrically, and (2) estimating the index

coefficients α and β parametrically. These two parts of estimation can be achieved in two

steps with an iterative algorithm, which will be discussed shortly in Section 2.3.3.

Typical methods for nonparametric regression include kernel smoothing [55] and spline

approximations [22, 14]. Kernel smoothing is a local method that commonly applies Gaussian

density as the local weight and obtains the estimates through weighted maximum likelihood

estimation. As an alternative, spline regression essentially employs basis functions, the spline

basis, and approximates the unknown function piece-wisely with a linear combination of the

pre-specified basis functions. Higher polynomial order of the spline ensures smoothness at

the piece-wise boundaries. In this paper, we adopt polynomial spline approximation to es-

timate the nonparametric component in model (2.2), due to its fast computation and many

attractive statistical properties [22, 70, 66]. A computationally stable B-Spline basis func-

tions [17, 10] are implemented with available statistical software packages. For illustration

purpose, below we present the truncated power basis [66], which has little difference with

B-Spline in terms of numerical performance. In particular, the unknown link function φ(·)
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can be expressed as

φ(u) ≈ γ0 + γ1u+ . . .+ γpu
p +

K∑
k=1

γp+k(u− tk)p+ = γTB(u), (2.4)

where B(u) = (1, u, . . . , up, (u− t1)p+, . . . , (u− tK)p+)T is the truncated power basis of order p

with K interior knots that take values at t1, . . . , tK . γ = (γ0, γ1, . . . , γp+k)
T is the coefficient

vector of spline basis. The truncation function (u−tk)p+ = (u−tk)p if u > tk and 0 otherwise.

A popular way to choose the knots is to place them at equally-spaced sample quantiles,

such that each piece-wise interval has the same number of data points, which ensures the

estimation stability. In practice, 2 to 4 knots are adequate in our application, while larger

number of knots may be placed along with the roughness penalty. In our empirical study,

the 2 equally-spaced quantile knots are determined through a simple grid search. For the

spline order, we set p = 3, which is the commonly used cubic spline. The cubic spline has

continuous second-order derivatives so that smoothness at boundaries is guaranteed.

2.3.3 Algorithm

By using (2.4) to approximate the unknown nonparametric functions φ1(·) and φ2(·), the

systematic component ηi in likelihood function (2.3) can be written as

ηi = γT1 B1

(
xTi α

)
+ γT2 B2

(
zTi β

)
. (2.5)

Therefore, given the spline basis B1(u) and B2(u), i.e., given α and β, the optimization

problem (2.3) is equivalent to the estimation of a traditional logit model with unknown
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spline coefficients γ1 and γ2. For the case of single-index hazard model,

γ̂ = arg max
γ

1

n

n∑
i=1

[yiηi − log(1 + eηi)] , (2.6)

while for the proposed double-index hazard model, γ̂1 and γ̂2 are obtained separately with

back-fitting algorithm. Specifically, γ̂1 is estimated by fixing φ̂2(·) from last iteration, hence

φ̂1(·) is updated by plugging γ̂1. Then we estimate γ̂2 by fixing previously updated φ̂1(·),

hence φ̂2(·) is estimated.

In next step, given the updated φ̂1(·) and φ̂2(·), the index coefficients α and β can be

estimated with linear approximation on the link functions. We illustrate this approach by

using single-index model for simplicity. That is

φ(u) ≈ φ(u0) + φ′(u0)(u− u0), (2.7)

where φ′(u0) is first-order derivative of φ(u) evaluated at u0, the estimated index term α̂Tx

from last iteration. Such linear approximation again reduces the optimization problem to

traditional logit model estimation with unknown parameter α, where φ(u0), φ′(u0), and u0

are all constant, while u = αTx contains the unknown parameter α as a linear function.

Comparing to directly optimizing the objective function with respect to parameter α using

a nonlinear optimization algorithm, the linear approximation significantly reduces the com-

putational cost, and standard software can be used. For double-index model, α and β are

estimated separately as we shall specify different penalty levels for the two indices in the

penalized estimation for the purpose of variable selection. More details will be discussed

shortly in next section. Following we summarize our algorithm:
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Step 0 Use Shumway’s linear hazard model to obtain an initial estimates α̂(0), β̂(0). One

can also obtain the initial values by other estimators or use random starting values.

Normalize α̂(0) and β̂(0) separately, and multiply by sign of the first index element

such that ‖α̂(0)‖2 = ‖β̂(0)‖2 = 1, and the first element is positive.

Step 1 Given α̂(0), fix φ2(zTi β
(0)) (set φ2(·) = 0 at first step), and estimate the spline

coefficient γ̂1, where φ1(xTi α̂
(0)) ≈ γT1 B1(xTi α̂

(0)).

Step 2 Fix φ̂1(xTi α), and estimate the spline coefficients γ̂2, where φ2(zTi β̂
(0)) ≈ γT2 B2(zTi β̂

(0))

similar as step 1 and hence φ̂2(zTi β).

Step 3 Given φ̂1(xTi α) and φ̂2(zTi β), we develop block-wise coordinate descent algorithm

to first estimate α̂ while φ̂2(zTi β) is fixed. Then estimate β̂ by fixing φ̂1(xTi α).

Step 4 Repeat steps 1, 2, 3 until the parameters α̂, β̂ both converge.

This algorithm is computationally efficient and converges quickly, which is largely con-

tributed by the coordinate descent (CD) algorithm in step 3 in which index coefficients are

estimated. The idea of coordinate descent algorithm is to update a single parameter one at

a time while the rest parameters are fixed. It has recently been well recognized and appre-

ciated for its simplicity, speed and stability [61, 20, 21] in solving `1-regularization problem,

i.e., LASSO [53], especially when predictor is in high dimensional space. Breheny and Huang

[6] also shows that coordinate descent algorithm is significantly faster than other competing

methods for regularized problem with nonconvex penalty functions such as SCAD [18] and

MCP [67], which has been demonstrated to have attractive statistical properties.

Although above algorithm is proposed for estimating double-index hazard model (2.2),

it can be simplified for the case of single-index hazard models (2.1). In particular, the
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steps of estimating γ2 and β can be omitted. Our algorithm can be simply implemented

with available statistical software such as R and Matlab. In our implementation, we use the

function bsplineS() in R package “fda” to construct B-spline basis and its derivatives, and

use standard function glm() to obtain the spline coefficients γ̂.

2.3.4 Penalized estimation for variable selection

A key research question in bankruptcy prediction is to identify important variables as

bankruptcy predictors among many candidates. To address this question, we propose the

penalized double-index hazard model, which is able to select important variables and estimate

the model simultaneously.

Variable selection and dimension reduction are fundamental problems in statistical anal-

ysis. Traditional subset selection method through an exhaustive search suffers from com-

putational infeasibility if there are many predictors. Regularized methods such as LASSO

[53], Adaptive-Lasso [72], SCAD [18], and MCP [67], have been increasingly popular in

modern data analytics due to its fast computational speed and statistical consistency. Such

regularized method is able to select important variables and estimate the coefficient simulta-

neously by adding a certain type of penalty function for parameters, hence called penalized

estimation. Statistical consistency and asymptotic normality has been proved for most pe-

nalized estimator under appropriate conditions. SCAD is among one of the most widely

used penalty functions for penalized estimation. Its nonconcavity shape ensures the variable

selection consistency or the so-called oracle property, i.e. with probability attending to 1,
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true model can be identified. The SCAD penalty function is defined as

pλ(θ) =


λ|θ|; if |θ| ≤ λ

− |θ|
2−2aλ|θ|+λ2

2(a−1)
; if λ < |θ| ≤ aλ

(a+1)λ2

2
; if |θ| > aλ,

(2.8)

where the tuning parameter λ > 0 can be chosen by cross-validation or a Bayesian informa-

tion criteria (BIC) [36], and a = 3.7 has been suggested according to Fan and Li [18].

To select bankruptcy predictors and estimate their coefficients for constructing the com-

posite indices of the proposed double-index hazard model (2.2), we attach the SCAD penalty

function (2.8) to the quasi-likelihood function L(α,β) that is defined in (2.3), and maximize

the following penalized quasi-likelihood function,

Qn(α,β) =
1

n

n∑
i=1

L(α,β)−
s∑
j=1

pλα(αj)−
d∑
l=1

pλβ(βl), (2.9)

where pλα(·) and pλβ(·) are penalty functions defined in (2.8) with potentially different reg-

ularization parameters λα and λβ, which controls the shrinkage level. A larger value of λ

results in more sparse model. In other words, fewer predictors are selected. Specifying two

penalty functions with different regularization parameters λα and λβ for two indices pro-

vides following advantages to the proposed double-index model. First, it is flexible enough

for practitioners to choose different penalization levels for market and accounting based vari-

ables with his/her expertise and preference. Second, it is convenient and straightforward to

develop a block-wise coordinate descent algorithm enabling fast and stable computation.

As discussed above, appropriate choice of regularization parameter is essential for regu-

larized method. Large value of λ may lead to high sparse model where only few variables are
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selected, while small λ often yields complex model by including some unimportant variables.

Different methods for tuning parameter selection have been proposed in previous studies

(e.g. [57, 58, 68]). A Bayesian Information Criteria (BIC) based tuning parameter selector

proposed by Wang et al. [57] has been shown to satisfy model selection consistency [48, 63].

In particular, the optimal value of λBIC is chosen by minimizing

BICλ = −2 log(L̂) +
log(n)

n
DFλ, (2.10)

where L̂ the likelihood function defined in (2.3), DFλ is the number of effective param-

eters defined in Fan and Li [18] with the form DFλ = tr
{
X (X ′X + nΣλ)

−1X ′
}

, and

Σλ = diag {p′λ(|α̂1|)/|α̂1|, . . . , p′λ(|α̂s|)/|α̂s|}. For our proposed double-index hazard model,

we choose λa and λb separately by minimizing (2.10) through a two-dimensional grid search.

2.3.5 Simulation study

In order to demonstrate the performance of our proposed penalized double-index model,

we conduct Monte Carlo simulations. Consider model (2.2), we set the true index parameter

vector α0 = (2,−1.5, 1, 0, 0, 0, 0, 0, 0) and β0 = (1,−1, 1.5, 0, 0, 0, 0). The covariate xi is

generated from multivariate Gaussian distribution with mean zero and identity covariance

matrix. For covariate zi, we let zi1 ∼ N(0, 1), zi2 ∼ Bernoulli(0.2), zi3 ∼ U(−2, 2), and

zi,4−7 ∼ MN(0, I4×4). Let φ1(xTi α) = 2 sin(π(xTi α + 2)/3), and φ2(zTi β) = − sin(π(zTi β −

1)/1.5) + zTi β. Then, the binary response variable Yi can be simulated from Bernoulli

distribution with probability of 1/(1+exp(−φ1−φ2)). We run 1000 replications with sample

size n being 500, 1000, and 2000.
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We report the average of nonzero coefficient estimates over 1000 Monte Carlo simulations

in Table 2.4. Standard errors are also reported. To evaluate how the unknown link functions

φ1(·) and φ2(·) are estimated, we report the averaged `2-norm across all simulated samples.

In addition, the average false negative rate (FNR) and false positive rate (FPR) of both

two index coefficients are reported in the Table 2.5 in order to assess the variable selection

accuracy. FNR is defined as the proportion of zero coefficient estimates whose corresponding

true coefficients are nonzero, i.e., #{j : β̂j = 0, β0j 6= 0}/#{j : β0j 6= 0}. FPR is defined

as the proportion of nonzero coefficient estimates whose corresponding true coefficients are

zero, i.e., #{j : β̂j 6= 0, β0j = 0}/#{j : β0j = 0}. We can see from Table 2.4 and Table

2.5, our proposed double-index model performs well in terms of estimation consistency and

variable selection accuracy.

Table 2.4: Monte Carlo simulation for the proposed double-index hazard model. Avg.Est. is
the averaged coefficient estimates across 1000 simulation samples. S.E. is the standard error
of the coefficient estimates. ‖φ̂ − φ0‖2 is `2 distance between estimated and the underlying
true unknown nonparametric functions.

n α1 α2 α3 β1 β2 β3

True 0.743 -0.557 0.371 0.485 -0.485 0.728
Avg.Est. 0.724 -0.557 0.375 0.467 -0.489 0.710

500 S.E. 0.078 0.078 0.085 0.072 0.157 0.071

‖φ̂− φ0‖2 0.394 0.362
Avg.Est. 0.740 -0.554 0.371 0.481 -0.484 0.723

1000 S.E. 0.041 0.051 0.055 0.044 0.086 0.044

‖φ̂− φ0‖2 0.235 0.250
Avg.Est. 0.742 -0.556 0.370 0.485 -0.482 0.725

2000 S.E. 0.027 0.033 0.038 0.031 0.062 0.031

‖φ̂− φ0‖2 0.199 0.192
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Table 2.5: False negative rate (FNR) and False positive rate (FPR) for variable selection for
two indices. FNR is defined as the proportion of zero coefficient estimates whose correspond-
ing true coefficients are nonzero, i.e., #{j : θ̂j = 0, θ0j 6= 0}/#{j : θ0j 6= 0}. FPR is defined
as the proportion of nonzero coefficient estimates whose corresponding true coefficients are
zero, i.e., #{j : θ̂j 6= 0, θ0j = 0}/#{j : θ0j = 0}.

n α β
FNR FPR FNR FPR

500 0.033 0.019 0.049 0.026
1000 0.003 0.000 0.010 0.005
2000 0.000 0.000 0.001 0.000

2.4 Empirical Results

We apply the proposed penalized double-index hazard model to the annual manufac-

turing database described in Section 2.2. In addition, the single-index model (2.1) is also

implemented as a special case of model (2.2). We first build one-year ahead prediction

model and assess the performance in Section 2.4.1. Two-year and three-year ahead predic-

tion models are investigated in Section 2.4.2. For each bankruptcy prediction horizon, we

align the bankruptcy indicator with predictors by 1, 2, and 3 lags for each firm, such that

the predictive information is of the time prior to the bankruptcy event. As a result, the total

number of bankruptcy in each sample is 490, 419, and 346 respectively. Such difference is

due to that some companies filed bankruptcy within one, two, or three years after they went

public, so that these firms would be removed after the lags. For comparison, in addition to

our proposed index hazard models, we fit the popular Shumway’s hazard models with differ-

ent prespecified predictors as a benchmark: (1) variables constructed and used in Campbell

et al. [8] (CHS), (2) financial ratios used in Altman’s Z-score [2], and (3) automatic variable

selection with LASSO for bankruptcy prediction [52] .
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2.4.1 One-year ahead forecast

By applying our proposed semiparametric index hazard model, we find interesting non-

linearity between bankruptcy predictors and default risk through our empirical study. It

is important to provide empirical evidence of nonlinearity between predictive variables and

default risk before we show the model results. One way to explore the relationship between

binary response and continuous covariate is to construct contingency table with the contin-

uous variable being categorized based on quantiles. Graphically, a scatter plot between the

bin average of the continuous variable against event (bankruptcy) occurrence frequency or

proportion in each bin can serve as an exploratory analysis to visualize relationship between

binary response and continuous covariate. Figure 2.2 shows the scatter plot of bankruptcy

frequency against different predictors that have been frequently used in the literature of

bankruptcy prediction. These predictors are also selected later in our empirical results (see

Table 2.6) of one-year ahead forecast model. Smooth curve is fitted for each scatter plot

for better view of the nonlinearity. Not surprisingly, nonlinearity is clearly shown, while

the majority portion for each scatter plot appears to be monotone relationship. Intuitively,

if individual variable has nonlinear relationship to the response variable, their linear com-

bination is not guaranteed to be linearly related to the response. This coincides with our

proposed index hazard model, which is able to capture the nonlinearity between the index,

a linear combination of individual predictors, and default risk.

Table 2.6 shows the coefficient estimates and standard errors (reported in parenthesis)

of one-year ahead forecast models based on the full sample period, i.e., 1980-2015. For the

double-index hazard model, five market based variables: SIGMA, EXRET, NIMTA, LTMTA

and LOG(PRICE), are selected to construct the market index, and three accounting based

variables: LTAT, NIAT, EBITAT, are identified as the important variables to construct the
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Figure 2.2: Bankruptcy frequency across quantile bins of individual predictors.

accounting index. For the single-index hazard model, selected bankruptcy predictors are

consistent with the double-index model despite the model structural difference. LASSO

selects the same market based variables while NIAT is excluded for accounting index. More

importantly, we notice that the signs of coefficient estimates are consistent across different
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modeling approaches. This implies that the interpretation of individual predictors are the

same in a qualitative manner. In parenthesis we also report standard errors of coefficient

estimates for which the index models and LASSO are obtained through bootstrapping with

500 resampling, while the standard formula is used for CHS and Altman. It is worth noting

that, for double-index hazard model, one could adjust the tuning parameter for each index

based on the analyst’s intuition, so that the number of selected variables could be subjective

yet flexible. The optimal values of λ’s in our empirical results is based on the BIC criteria

defined in (2.10) with a two-dimensional grid search method.

Figure 2.3 is the estimated nonparametric functions. From left to right, the first plot

is the estimated link function of single-index hazard model, and the second and third plots

correspond to the estimated functions of market and accounting indices in the double-index

hazard model. Nonlinearity is obvious and majority portion of the functions are monotonic.

The shape of the curve qualitatively agrees with the fitted curve of individual predictors

shown in Figure 2.2 after applying the sign of estimated index coefficients. The single index

function has a similar shape as the market index function estimated by the double-index

model, while the accounting index function is nearly linear. This is because that for one-

year ahead forecast model, more market than accounting based variables are selected as a

result of data-driven automatic variable selection.

To evaluate the performance of our bankruptcy prediction models, we report three pop-

ular statistical measures: Pseudo-R2, Area Under the Curve (AUC), and Hosmer-Lemeshow

goodness-of-fit test statistic [31], which are widely used for assessing binary classification

models. Pseudo-R2 is defined as 1 − L1/L0, where L1 and L0 are residual deviance from

fitted model and null model which is estimated only with intercept. Larger value of pseudo-

R2 means better fitting. AUC is a commonly used prediction accuracy measure for binary
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Table 2.6: Coefficient estimates for different models under one-year ahead forecasting hori-
zon. The time period of the training dataset is 1980-2015. Panel A and B separates market
and accounting based variables. The data used for penalized methods is scaled to (0, 1)
range. Standard errors are reported in parenthesis with italic font. For index model, the
standard error is obtained by 500 bootstrapped samples.

Double-Index Single-Index Lasso CHS Altman
Intercept -3.181 (0.329 ) -6.381 (0.484 ) -4.902 (0.094 )

Panel A: Market Variable
SIGMA 0.137 (0.042 ) 0.060 (0.022 ) 0.471 (0.236 ) 0.168 (0.086 )
EXRET -0.640 (0.044 ) -0.568 (0.039 ) -3.950 (0.477 ) -0.768 (0.096 )
NIMTA -0.618 (0.058 ) -0.188 (0.039 ) -0.085 (0.319 ) -0.948 (0.230 )
LTMTA 0.199 (0.034 ) 0.175 (0.023 ) 2.054 (0.278 ) 2.564 (0.228 )
LOG(PRICE) -0.387 (0.032 ) -0.353 (0.033 ) -2.452 (0.277 ) -0.543 (0.061 )
CASHMTA -1.025 (0.363 )
SIZE -0.029 (0.035 )
MBE 0.072 (0.026 )
LCTMTA
MVEF -0.419 (0.266 )

Panel B: Accounting Variable
LTAT 0.437 (0.032 ) 0.358 (0.023 ) 1.657 (0.318 )
NIAT 0.673 (0.044 ) 0.272 (0.045 )
EBITAT -0.596 (0.042 ) -0.501 (0.052 ) -1.954 (0.511 ) -2.725 (0.226 )
REAT 0.069 (0.046 )
WCAPAT -1.669 (0.193 )
SALEAT 0.423 (0.066 )
LCTAT
RELCT
LCTSALE
LOG(SALE)
CHAT
ACTLCT
LCTLT

classification problem. It evaluates the models discriminative power, where a value close

to 1 indicates strong discriminative ability. The formal Hosmer-Lemeshow goodness-of-fit

test is another popular statistical test for calibration performance. A p-value smaller than

0.05 indicates that the model is lack of fitting. Hosmer-Lemeshow test statistics is rarely

reported in the bankruptcy literature because it is frequently rejected in practice [15]. In

addition, we also report the cumulative Decile Ranking Tables that has been widely used
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Figure 2.3: From left to right, the plots are estimated unknown link function of single-
index (model (2.1)), market-index and accounting-index (model (2.2)) for one-year ahead
forecasting horizon. The training dataset is based on full sample, i.e., the time period is
1980-2015.

in bankruptcy prediction literatures [50, 12] to evaluate the models discrimination and cali-

bration power. In particular, the common decile ranking table is generated by ranking the

predicted probability of default in deciles. The top decile contains the firms with highest

predicted bankruptcy probability. Within each decile, we calculate the proportion of the

bankruptcies that are captured in that decile over the total number of observed bankrupt-

cies. Higher proportion in the top decile is more desirable, which implies a model with

higher prediction accuracy. By cumulating, we obtain the cumulative decile ranking table.

These measures are evaluated for both in and out-of-sample dimensions. Table 2.7 shows

the in-sample results based on the full sample period 1980-2015, and Table 2.8 shows both

training and testing performance with different periods (train: 1980-2007, 1980-2003, and

1980-1997; test: 2008-2015, 2004-2015, and 1998-2015) for the purpose of robustness check.

According to Table 2.7 and 2.8, our proposed double-index model uniformly dominates

other approaches in terms of all assessments of both in-sample and out-of-sample perfor-

mance. It is worth noting that both the double-index and single-index hazard model easily
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Table 2.7: Decile ranking table, area under the curve (AUC), and the p-value of the Hosmer-
Lemeshow goodness-of-fit test for different models under one-year ahead forecasting horizon.
The time period of the training dataset is 1980-2015.

Double-Index Single-Index Lasso CHS Altman
90-100% 0.706 0.702 0.692 0.686 0.408
80-100% 0.847 0.847 0.841 0.824 0.573
70-100% 0.908 0.902 0.898 0.900 0.657
60-100% 0.931 0.929 0.924 0.922 0.712
50-100% 0.957 0.939 0.941 0.941 0.765
0-100% 1.000 1.000 1.000 1.000 1.000
Pseudo-R2 0.251 0.248 0.241 0.231 0.067
AUC 0.893 0.890 0.887 0.884 0.733
H-L pval 0.380 0.407 0.009 0.009 0.000

pass the Hosmer-Lemeshow goodness-of-fit test (H-L pval > 0.05), while the other models

do not pass for most training and testing periods. For out-of-sample period 2008-2015, the

Pseudo R2 is 0.349 for the proposed double-index model comparing to 0.287 from the best

linear model (LASSO), which delivers 22% improvements. The relatively underperformed

model with Altman’s variable again shows evidence that market based variables carry much

more predictability than accounting based variables for one-year-ahead forecast horizon.

2.4.2 Different forecasting horizon

We further investigate how the predictors vary across different forecasting horizons. We

report the selected variables of double and single-index hazard models in Table 2.9, and

the model estimation in Appendix B. Meanwhile, the variables used in Campbell et al. [8]

and Altman [2] are reported for reference. An interesting yet intuitive finding is that more

market based variables play role in short forecasting horizon, while more accounting based

predictors are more likely to be selected for longer forecasting horizons. This is intuitive

because the change of market variables are very dynamic and can only reflect investors fear
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Table 2.8: In-sample and out-of-sample performance for the one-year ahead forecast model.
The criteria consist of decile ranking table, Pseudo-R2, area under the curve (AUC), and the
p-value of the Hosmer-Lemeshow goodness-of-fit test. The time period of training sample
are 1980-2007, 1980-2003 and 1980-1997.

Double-
index

Single-
index

Lasso CHS Altman
Double-
index

Index-
index

Lasso CHS Altman

Panel A Panel B
In-sample (1980-2007) Out-of-sample (2008-2015)

90-100% 0.688 0.686 0.684 0.675 0.416 0.829 0.805 0.805 0.829 0.244
80-100% 0.835 0.831 0.826 0.813 0.568 0.976 0.976 0.951 0.951 0.341
70-100% 0.906 0.893 0.886 0.884 0.659 0.976 0.976 0.976 0.976 0.512
60-100% 0.924 0.915 0.920 0.915 0.713 0.976 0.976 0.976 0.976 0.610
50-100% 0.944 0.938 0.938 0.938 0.768 0.976 0.976 0.976 0.976 0.683
0-100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AUC 0.888 0.884 0.881 0.877 0.735 0.947 0.942 0.939 0.938 0.651
H-L pval 0.322 0.340 0.077 0.077 0.002 0.548 0.344 0.014 0.009 0.174
Psuedo R2 0.243 0.242 0.235 0.227 0.070 0.349 0.330 0.287 0.274 0.037

In-sample (1980-2003) Out-of-sample (2004-2015)
90-100% 0.692 0.682 0.673 0.664 0.419 0.809 0.765 0.750 0.765 0.309
80-100% 0.829 0.834 0.818 0.801 0.566 0.926 0.926 0.956 0.956 0.397
70-100% 0.900 0.891 0.884 0.879 0.656 0.971 0.956 0.956 0.956 0.515
60-100% 0.922 0.910 0.912 0.912 0.718 0.985 0.985 0.985 0.971 0.618
50-100% 0.938 0.931 0.934 0.938 0.775 1.000 0.985 0.985 0.971 0.691
0-100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AUC 0.885 0.880 0.877 0.873 0.734 0.936 0.934 0.932 0.929 0.672
H-L pval 0.257 0.315 0.075 0.065 0.011 0.527 0.281 0.003 0.004 0.003
Psuedo R2 0.241 0.239 0.233 0.224 0.072 0.316 0.306 0.282 0.273 0.043

In-sample (1980-1997) Out-of-sample (1998-2015)
90-100% 0.713 0.697 0.697 0.684 0.498 0.689 0.705 0.705 0.678 0.268
80-100% 0.850 0.837 0.827 0.827 0.632 0.869 0.858 0.863 0.842 0.432
70-100% 0.909 0.902 0.889 0.886 0.691 0.923 0.907 0.907 0.918 0.552
60-100% 0.932 0.912 0.912 0.925 0.749 0.951 0.945 0.945 0.940 0.645
50-100% 0.935 0.932 0.935 0.941 0.795 0.973 0.973 0.962 0.962 0.721
0-100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AUC 0.890 0.885 0.881 0.881 0.765 0.904 0.903 0.898 0.894 0.664
H-L pval 0.457 0.523 0.061 0.108 0.008 0.390 0.163 0.037 0.010 0.059
Psuedo R2 0.256 0.253 0.247 0.239 0.097 0.240 0.236 0.227 0.213 0.015

and favor in short term. In other words, the market variables are more informative for

short-term investment, while investors often study firm’s accounting ratios to make decision

of long-term investment.

Similar to one-year ahead forecast model, we also report the same criteria in Table 2.10

for assessing the models’ out-of-sample performance (in-sample performance is also available

upon request). We notice that the out-of-sample Psuedo R2’s of the proposed double-index
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Table 2.9: Variable selection of different models across different forecasting horizons.

Double-Index Single-Index Lasso CHS Altman
One Two Three One Two Three One Two Three

Panel A: Market Variable
SIGMA X X X X X X X X X X
EXRET X X X X X X X X X X
NIMTA X X X X X X X X
LOG(PRICE) X X X X X X X
LTMTA X X X X X
CASHMTA X
SIZE X X X
MBE X
LCTMTA
MVEF X

Panel B: Accounting Variable
LTAT X X X X X X X X X
NIAT X X X X X X
EBITAT X X X X X X X X X X
LOG(SALE) X X X X X X
REAT X X X X X
RELCT X X X
WCAPAT X
SALEAT X
LCTAT
LCTSALE X
CHAT
ACTLCT
LCTLT

model are dominating across all different testing periods for two-year forecasting horizon.

The Hosmer-Lemeshow goodness-of-fit test is again easily passed for the semiparametric

models in most testing periods. These results provide strong evidences that our proposed

double-index, as well as single-index hazard models dominate other approaches that are based

on linear model framework for two-year ahead prediction. For three-year ahead forecast

model, Shumway’s hazard model performs better than semiparametric models. However, we

note that even the best model for three-year ahead forecasting still performs poorly. This is

true as the predictability of any information is weakened for longer horizon. Overall, short

term prediction is more accurate than long term horizon.
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Table 2.10: Out-of-sample performance for the two and three-year ahead forecast models.
Panel A (left) is for two-year ahead and Panel B (right) is for three-year ahead forecast
model. The criteria consist of decile ranking table, Pseudo-R2, area under the curve (AUC),
and the p-value of the Hosmer-Lemeshow goodness-of-fit test. The time period of training
sample are 1980-2007, 1980-2003 and 1980-1997, respectively

Double-
index

Single-
index

Lasso CHS Altman
Double-
index

Index-
index

Lasso CHS Altman

Panel A: Two-year ahead forecast model Panel B: Three-year ahead forecast model
Out-of-sample (2008-2015) Out-of-sample (2008-2015)

90-100% 0.435 0.391 0.391 0.435 0.217 0.389 0.444 0.278 0.222 0.167
80-100% 0.826 0.783 0.826 0.739 0.478 0.556 0.556 0.556 0.444 0.222
70-100% 0.870 0.870 0.870 0.826 0.522 0.667 0.667 0.778 0.722 0.222
60-100% 0.913 0.957 0.913 0.870 0.696 0.778 0.722 0.833 0.778 0.389
50-100% 1.000 0.957 0.957 0.913 0.739 0.833 0.889 0.944 0.944 0.500
0-100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AUC 0.855 0.843 0.851 0.822 0.676 0.727 0.745 0.790 0.765 0.443
H-L pval 0.260 0.068 0.006 0.003 0.004 0.249 0.000 0.069 0.016 0.010
Psuedo R2 0.179 0.147 0.122 0.083 0.060 0.082 0.078 0.077 0.042 0.003

Out-of-sample (2004-2015) Out-of-sample (2004-2015)
90-100% 0.538 0.462 0.519 0.538 0.327 0.297 0.324 0.270 0.243 0.270
80-100% 0.750 0.788 0.827 0.750 0.481 0.541 0.541 0.595 0.486 0.351
70-100% 0.885 0.827 0.885 0.846 0.654 0.622 0.676 0.838 0.757 0.432
60-100% 0.942 0.904 0.923 0.904 0.731 0.838 0.757 0.892 0.892 0.459
50-100% 0.962 0.942 0.923 0.904 0.788 0.865 0.919 0.946 0.919 0.622
0-100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AUC 0.869 0.841 0.852 0.835 0.721 0.740 0.759 0.800 0.785 0.577
H-L pval 0.422 0.001 0.009 0.016 0.000 0.002 0.000 0.002 0.001 0.003
Psuedo R2 0.184 0.137 0.152 0.123 0.046 0.071 0.077 0.093 0.077 0.017

Out-of-sample (1998-2015) Out-of-sample (1998-2015)
90-100% 0.490 0.443 0.443 0.409 0.208 0.351 0.315 0.270 0.279 0.225
80-100% 0.691 0.698 0.664 0.617 0.443 0.568 0.577 0.459 0.486 0.360
70-100% 0.805 0.819 0.805 0.752 0.591 0.757 0.712 0.766 0.640 0.514
60-100% 0.899 0.879 0.866 0.839 0.651 0.847 0.829 0.865 0.856 0.658
50-100% 0.933 0.919 0.913 0.866 0.711 0.910 0.937 0.946 0.910 0.730
0-100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AUC 0.830 0.826 0.811 0.791 0.674 0.789 0.781 0.779 0.765 0.656
H-L pval 0.015 0.332 0.025 0.006 0.000 0.000 0.000 0.000 0.000 0.005
Psuedo R2 0.123 0.127 0.101 0.075 0.018 0.071 0.066 0.058 0.045 0.011
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Appendix A: Supplementary Materials for

“Penalized Maximum Tangent Likelihood Estimation and Robust

Variable Selection”

A.1 Regularity Conditions

Regularity Conditions for Theorem 1.2.1

R1 The parameter space B is compact.

R2 The target parameter β∗t = arg maxβ∈B Eβ0 lnt(f(z;β)) exists and is unique.

R3 β∗t and β0 are interior points in B.

R4 The function β 7→ lnt(f(z;β)) is upper-semicontinuous for almost all z.

R5 For every sufficiently small ball B ⊂ B, the function x 7→ supβ∈B{lnt(f(z;β))} is mea-

surable and satisfies

Eβ0 [sup
β∈B

lnt(f(z;β))] <∞.

Regularity Conditions for Theorem 1.2.2

R6 The function β 7→ Eβ0 [lnt(f(z;β))] is twice continuously differentiable (admits a second-

order Taylor expansion) in a neighborhood of β∗t with a nonsingular symmetric second

derivative matrix.
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R7 For any β in an open subset of parameter space, let the function z 7→ lnt(f(z;β)) be

measurable such that β 7→ lnt(f(z;β)) is differentiable at β∗t for z almost everywhere,

with derivative ∂ lnt(f(z;β))/∂β. For every β1 and β2 in a neighborhood of β0, we have

| lnt(f(z;β1))− lnt(f(z;β2))| ≤ ||β1 − β2||
∂ lnt(f(z;β∗t ))

∂β
.

Regularity Conditions for Theorem 1.2.3

R8 All eigenvalues of the matrix E[xxT ] are finite and lower bounded by a positive value.

Regularity Conditions for Theorem 1.3.1

R9 The matrix

J(β) = Eβ0

[
∂2

∂β∂βT
lnt(f(z;β))

]
is finite and negative definite at β = β0.

R10 Let B be the parameter space of β. There exists an open subset B ⊂ B that contains

the true parameter β0 such that for almost every z = (y,xT ) the density f(z;β) admits

all third derivatives (∂3f(z;β))/(∂βj ∂βk ∂βl) for all β ∈ B. Furthermore, there exist

functions Mjkl such that

∣∣∣∣ ∂3

∂βj∂βk∂βl
lnt(f(z;β))

∣∣∣∣ ≤Mjkl(z) for all β ∈ B and for almost every z.

where mjkl = Eβ0 [Mjkl(z)] <∞ for j, k, l.

A.2 List of Variables of Boston Housing Dataset

Response variable:
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medv : median value of owner-occupied homes in thousand dollars.

Covariates:

rm: average number of rooms per dwelling.

tax : full-value property-tax rate per 10,000 dollars.

ptratio: pupil-teacher ratio by town.

lstat : pct. lower status of the population.

nox : nitric oxides concentration (parts per 10 million).

dis : weighted distances to five Boston employment centers.

crim: per capita crime rate by town.

zn: proportion of residential land zoned for lots over 25,000 sq.ft.

indus : proportion of non-retail business acres per town.

age: proportion of owner-occupied units built prior to 1940.

black : 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town.

chas : Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

rad : index of accessibility to radial highways.
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Appendix B: Coefficient estimates of two and three-year ahead

forecast models

Table B.1: Coefficient estimates for different models under two-year ahead forecasting hori-
zon. The time period of the training dataset is 1980-2015. Panel A and B separates market
and accounting based variables. The data used for penalized methods is scaled to (0, 1)
range. Standard errors are reported in parenthesis with italic font. For index model, the
standard error is obtained by 500 bootstrapped samples.

Double-Index Single-Index Lasso CHS Altman
Panel A: Market Variable

Intercept -2.625 (0.389 ) -7.102 (0.501 ) -5.075 (0.106 )
SIGMA 0.365 (0.142 ) 0.203 (0.022 ) 0.986 (0.280 ) 0.330 (0.102 )
EXRET -0.851 (0.169 ) -0.396 (0.037 ) -2.685 (0.489 ) -0.463 (0.097 )
NIMTA -0.264 (0.107 ) -0.266 (0.041 ) -0.688 (0.300 )
LTMTA 1.027 (0.335 ) 1.650 (0.218 )
LOG(PRICE) -0.269 (0.067 ) -0.703 (0.313 ) -0.297 (0.066 )
CASHMTA -0.900 (0.415 )
SIZE -1.102 (0.723 ) -0.130 (0.036 )
MBE 0.129 (0.025 )
LCTMTA
MVEF -0.784 (0.360 )

Panel B: Accounting Variable
LTAT 0.528 (0.041 ) 0.451 (0.028 ) 2.475 (0.309 )
NIAT 0.420 (0.053 ) 0.376 (0.043 )
EBITAT -0.577 (0.057 ) -0.389 (0.051 ) -0.872 (0.443 ) -2.317 (0.274 )
REAT 0.225 (0.071 ) 0.144 (0.044 ) -0.012 (0.053 )
WCAPAT -0.824 (0.215 )
SALEAT 0.460 (0.075 )
LCTAT
RELCT
LCTSALE -0.063 (0.275 )
LOG(SALE) -0.402 (0.064 ) -0.463 (0.036 ) -2.942 (0.831 )
CHAT
ACTLCT
LCTLT
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Table B.2: Decile ranking table, area under the curve (AUC), and the p-value of the Hosmer-
Lemeshow goodness-of-fit test for different models under two-year ahead forecasting horizon.
The time period of the training dataset is 1980-2015.

Double-Index Single-Index Lasso CHS Altman
90-100% 0.516 0.470 0.489 0.463 0.329
80-100% 0.692 0.709 0.687 0.663 0.518
70-100% 0.816 0.814 0.797 0.771 0.640
60-100% 0.890 0.869 0.862 0.852 0.706
50-100% 0.924 0.912 0.916 0.905 0.785
0-100% 1.000 1.000 1.000 1.000 1.000
Pseudo-R2 0.137 0.131 0.122 0.106 0.039
AUC 0.834 0.824 0.822 0.808 0.713
H-L pval 0.598 0.787 0.010 0.005 0.000

Table B.3: Coefficient estimates for different models under three-year ahead forecasting
horizon. The time period of the training dataset is 1980-2015. Panel A and B separates
market and accounting based variables. The data used for penalized methods is scaled to
(0, 1) range. Standard errors are reported in parenthesis with italic font. For index model,
the standard error is obtained by 500 bootstrapped samples.

Double-Index Single-Index Lasso CHS Altman
Panel A: Market Variable

Intercept -2.342 (0.401 ) -7.211 (0.547 ) -5.157 (0.120 )
SIGMA 0.534 (0.096 ) 0.156 (0.021 ) 0.862 (0.335 ) 0.280 (0.123 )
EXRET -0.769 (0.125 ) -0.286 (0.028 ) -2.160 (0.529 ) -0.325 (0.107 )
NIMTA -0.351 (0.137 ) -0.172 (0.044 ) -0.773 (0.367 )
LTMTA 1.186 (0.235 )
LOG(PRICE) -0.461 (0.355 ) -0.237 (0.076 )
CASHMTA -0.764 (0.474 )
SIZE -1.834 (0.668 ) -0.158 (0.039 )
MBE 0.149 (0.026 )
LCTMTA
MVEF 0.018 (0.236 )

Panel B: Accounting Variable
LTAT 0.417 (0.029 ) 0.398 (0.024 ) 2.618 (0.282 )
NIAT 0.438 (0.047 ) 0.388 (0.042 )
EBITAT -0.466 (0.038 ) -0.433 (0.041 ) -0.373 (0.490 ) -2.314 (0.319 )
REAT 0.334 (0.067 ) 0.304 (0.052 ) 0.005 (0.062 )
WCAPAT -0.334 (0.237 )
SALEAT 0.370 (0.087 )
LCTAT
RELCT -0.207 (0.037 ) -0.186 (0.031 ) -0.477 (0.379 )
LCTSALE
LOG(SALE) -0.512 (0.044 ) -0.490 (0.039 ) -2.440 (0.681 )
CHAT
ACTLCT
LCTLT
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Table B.4: Decile ranking table, area under the curve (AUC), and the p-value of the Hosmer-
Lemeshow goodness-of-fit test for different models under three-year ahead forecasting hori-
zon. The time period of the training dataset is 1980-2015.

Double-Index Single-Index Lasso CHS Altman
90-100% 0.393 0.387 0.364 0.344 0.315
80-100% 0.621 0.607 0.569 0.564 0.462
70-100% 0.746 0.743 0.760 0.697 0.581
60-100% 0.853 0.824 0.841 0.824 0.688
50-100% 0.916 0.884 0.902 0.902 0.769
0-100% 1.000 1.000 1.000 1.000 1.000
Pseudo-R2 0.099 0.100 0.083 0.071 0.027
AUC 0.794 0.792 0.792 0.778 0.698
H-L pval 0.176 0.956 0.000 0.000 0.000

Figure B.1: From left to right, the plots are estimated unknown link function of single-index
(mixture of market and accounting variables), market-index and accounting-index (double-
index model). Top panel is for two-year ahead forecasting horizon, and bottom penal is for
three-year ahead forecasting. The training dataset is based on full sample, i.e., the time
period is 1980-2015.

104


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Penalized Maximum Tangent Likelihood Estimation and Robust Variable Selection
	Introduction
	Maximum Tangent Likelihood Estimation
	General framework
	MTE for linear regression
	Asymptotic properties of MTE

	Penalized MTE for Variable Selection
	Asymptotic properties with fixed dimensionality
	Consistency under high dimensional regression

	Robustness Properties
	Tuning Parameters and Algorithm
	Choice of regularization parameter 
	Choice of tuning parameter t
	Choice of initial values
	Computational algorithm

	Numerical Studies
	Location parameter estimation
	Fixed dimensional regressions
	High dimensional regressions
	Real data examples

	Conclusion
	Technical Proofs

	Corporate Bankruptcy Prediction: A Penalized Semiparametric Index Hazard Model Approach
	Introduction
	Data
	Semiparametric Index Model
	Double-index hazard model
	Polynomial spline approximation
	Algorithm
	Penalized estimation for variable selection
	Simulation study

	Empirical Results
	One-year ahead forecast
	Different forecasting horizon


	Appendices
	Supplementary Materials for  ``Penalized Maximum Tangent Likelihood Estimation and Robust Variable Selection"
	Regularity Conditions
	List of Variables of Boston Housing Dataset
	Coefficient estimates of two and three-year ahead forecast models


