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Abstract

Aerospace applications are composed of many dynamic systems which are coupled,

nonlinear, and difficult to control. Fuzzy logic (FL) systems provides a means by which

to encode expert knowledge into a set of rules which can produce highly nonlinear

control signals; this is possible because FL, like many other soft computational methods

is a universal approximator. While FL systems alone excel at encapsulating expert

knowledge bases, when coupled with genetic algorithms (GA), they can learn the

knowledge base from evolutionary repetition. It is the goal of this work to present the

efficacy of hybrid genetic fuzzy systems (GFS) in a variety of applications. This will

be achieved through exploring three specific use cases.

First, a variation of a benchmark problem presented at the 1990 American Control

Conference is used to demonstrate the robustness of FL control as well as the utility

of GAs in the learning process. The results are a controller that is far more resistant

to even large changes in the plant dynamics compared to a linear controller and a

process by which a class of controllers may be quickly tuned for changes to the plant

system.

The next problem applies the same approach to an elevator actuator for pitch

control of an F-4 Phantom. This controller is tuned for a nominal case and ten

subjected to the same plant with degraded aerodynamic coefficients. It is compared

to a well-tuned PID controller.
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The effort culminates in a practical application of a FL system to guide a small

unmanned aerial system (sUAS) to a precision landing on a target platform moving

with uncertain velocity. This was accomplished using custom developed Python

software for GFS control in conjunction with Robot Operating System (ROS) and

a simulation environment called Gazebo. Heavy emphasis was placed on using only

software components which can be easily implemented on popular hardware platforms.

ROS was critical to meeting this goal, as well as the open source flight controller project

PX4. A controller is presented which is capable of exerting the control necessary to

guide the vehicle to a successful landing on both a static and moving platform.
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Chapter 1: Introduction

Fuzzy logic (FL) and genetic algorithms are members of a family of so-called soft

computing methods, along with neural nets (NN) and probabilistic reasoning[1]. Each

of these methods has particular strengths in specific domains, but all are employed in

applications which require computation based on imprecise, vague, or uncertain data.

In recent years, NNs have risen greatly in popularity as improvements in compute

power and algorithm development have allowed their application to a wide variety of

problems via their role in deep learning[2]. While FL has seen much less application in

deep learning applications, it has long been shown to be particularly useful in feedback

control applications of nonlinear systems[3]. FL excels at encoding expert knowledge

of a human operator in machine-interpretable logic. In many cases, however, it is

difficult or impossible to encode a knowledge base which is sufficient to control a

system satisfactorily by hand due to the complexity of the system; in these cases, a

GA may be applied to tune, or enable a FL system to learn to accomplish the task.

1.1 Fuzzy Logic

The basic component of a FL system consists of fuzzy membership sets[4], which

are an extension of classical binary set theory. The advantage of fuzzy set theory is

that an element may share membership across many sets simultaneously, in contrast
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to traditional set logic (see figures 1.1 to 1.2). This formal encapsulation of “fuzziness”

provides a method for machine instructions to operate on imprecise values. Fuzzy sets

constitute the most basic element of a FL system; they are made useful in controls

application when combined with a rule base (RB).
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Figure 1.1: Crisp (classical) logic set transitions are discrete and abrupt

A fuzzy inference system (FIS) is a control system built on the basic principles

of fuzzy logic[5][6]. It can take an arbitrary number of analog inputs and map them

to a set of logical variables ranging from 0 to 1. This mapping is performed by

membership functions (MF), which determine the degree of membership each input

has to a function. Each input typically has multiple MFs, allowing the input value (a

so-called “crisp value” to be given membership in multiple sets simultaneously. The
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Figure 1.2: Fuzzy sets allow for multiple membership, so a value can smoothly
transition from being a member of one set to another.

memberships are used to make an inference about the input according to linguistic

rules. The RB is composed of IF-THEN statements which determine the crisp output

variable. For example, if the membership sets in figure 1.2 were to be the input to a

fan controller, and the output membership functions were as they are in figure 1.3,

the rules could be described as:

IF temperature is COOL, THEN fan speed is OFF
IF temperature is WARM, THEN fan speed is LOW
IF temperature is HOT, THEN fan speed is HIGH

These rules can be succinctly placed in a table as shown in table 1.1. This

representation becomes more useful still as another input is added to the controller.

By using the set of rules and the MFs, the FIS is able to determine an appropriate

3



crisp output given a set of crisp inputs. The FIS representation is in essence a transfer

function, but a transfer function which can be arbitrarily complex. The common

representation of a FIS shown in figure 1.4 shows the components of a FIS.

Table 1.1: Example rule base for a fictitious fan speed controller
Temperature Cool Warm Hot
Fan Speed Off Low High
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Figure 1.3: Possible output membership functions for a fan controller with figure 1.2
as the input.

One limiting constraint of FL systems is manifested in a type of state explosion.

As the number of inputs, specifically the number of input MFs, increases, the number

4
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Fuzzification Defuzzification
Crisp Input Crisp Output

Figure 1.4: Visual representation of a fuzzy inference system

of rules needed to cover every case increases as the product of the number of MFs

across all inputs. There have been numerous approaches to overcome this problem

such as cascading small FISs together[7], developing more robust methods to guide

convergence[8] or using approximate fuzzy rule bases[1]. The approach taken in this

work, however, has been to employ GA techniques to tune the MFs or even learn the

entire knowledge base. The dynamic systems being controlled in this research are

adequately small such that no special state reduction was deemed necessary in most

cases.

1.2 Genetic Algorithms

Genetic algorithms are an evolutionary computing strategy commonly used in

optimization and search problems [9]. Their effectiveness comes from the combined

ability to explore and exploit. The exploration of even large search spaces is made

possible with large populations of candidate solutions which are stochastically sampled

across the whole space. Candidates are ranked according to a fitness function and

recombined together to create the next generation. The algorithm exploits learning in

the selection process, favoring recombination of candidates which ranked well according

5



to the fitness function. In order to maintain gene pool diversity, random mutation is

introduced into each generation as it is created. This process is illustrated in figure 1.5.

Due to the stochastic nature of the algorithm, it is not guaranteed to provide an

optimal solution and may converge on a local optimum, but careful selection of hyper

parameters such as population size, mutation rates, recombination methods, and

random candidate injection can somewhat circumvent these deficiencies. As the goal

of a GA is to maximize some definition of a reward, they are commonly employed in

reinforcement learning applications[10].

initialize P (t = 0)

evaluate P (t)

select parents from P (t)

crossover parents into offspring

mutate offspring

form P (t+ 1) with new offspring

t = t+ 1
met

termination
criteria?

finished

Figure 1.5: Block diagram describing genetic algorithm
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Since the fitness function is the sole driver of the algorithm and the solution

it provides, great care must be taken in formulating a fitness function. In robotics

applications in particular, formulating a fitness which adequately encapsulates complex

outcomes can be a difficult task[11]. This issue will be revisited a number of times

throughout the course of this work.

Another major consideration when utilizing a GA is how to represent or encode a

candidate solution for optimization. A particularly simple method is to use a binary

encoded format[1], but this increases the distance between the candidate in its useful

form (phenotype) and its encoded form (genotype) for many real-values problems[12].

A genetic encoding of a FIS is an inherently heterogeneous structure with real values

describing the MFs and discrete classes describing the RB. The genetic operator chosen

for a specific genotype will depend on its representation; ideally, the mapping between

genotype and phenotype will be one-to-one such that the combination of two genes

will produce a candidate which performs similarly to its parents. This allows the GA

to properly exploit its inherent learning and converge on a solution.

1.2.1 Genetic Operators

The GA advances by applying operations to the chromosome candidates in its

population. The genetic operations employed in this work are crossover, mutation,

and randomization. Crossover is the operation which allows the genes from two

chromosomes to mix and create new children. If the chromosomes are binary encoded

or discrete valued, the crossover method is generally single-, double-, or n-point

crossover. This involves randomly selecting a point in the encoding string to “cut” the

7



chromosomes and swap the tails for single-point, or sections for n-point. Figure 1.6

demonstrates this process.

0 1 0 1 1 0 1 0 0
1 1 0 0 1 0 0 1 1

P 1:
P 2:

0 1 0 0 1 0 1 0 0
1 1 0 1 1 0 0 1 1

C1:
C2:

Figure 1.6: Double point crossover for binary or discrete valued chromosome.

For real-valued chromosome strings, the crossover methods can be much more

complex and more closely related to solution space. Throughout this work, variations

on flat crossover will be employed as the main crossover operation for real-valued

portions of the chromosomes[1]. Using this method, a new gene is created from its

parents by drawing a real value from the interval between the parent genes using a

uniform distribution. In many situations, it becomes simpler to write code which

always produces two children from a pair of parents; in these cases, the other gene

from a parent interval is selected to be the complement of the first. Given parents,

P 1 = {p11, p12, . . . , p1n} , P 2 = {p21, p22, . . . , p2n}, children C1 = {c11, c12, . . . , c1n} , C2 =

{c21, c22, . . . , c2n} are created such that:

c1i = λpmini + (1− λ)pmaxi (1.1)

c2i = (1− λ)pmini + λpmaxi (1.2)

8



where pmaxi = max(p1i , p
2
i ) and pmini = min(p1i , p

2
i ). An extension, BLX-α crossover, is

used to expand the selection region beyond the interval between the parents to allow

the crossover function to be more exploratory[1]. This method is described in more

detail in chapter 2.

Mutation for discrete-valued chromosomes consists of randomly choosing a value

from the set of possible values for a number of genes in a chromosome. For this work,

mutation is applied to the chromosomes after crossover is applied. The number of

genes in each chromosome to mutate is defined as a hyperparameter. Mutation for

real-valued chromosomes is done with a non-uniform mutation rate which decreases

as the generations progress. This process is detailed in chapter 2.

For each new generation of chromosomes, a small number of the best performers are

preserved untouched from the previous generation to allow the best genetic material

to survive. These chromosomes are called elite. All chromosomes are ranked according

to their fitness to the task and used in crossover proportional to their fitness. In other

words, parents are selected for mutation by drawing chromosomes from the ranked list

of chromosomes using a triangular distribution. Figure 1.7 shows a distribution laid

on top of a sorted population from which parents would be selected for recombination.

Parents are replaced after selection so that they may reproduce many times in one

generation.
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P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7

0.63 0.67 0.89 0.60 0.43 0.26 0.82 0.03

P 7 P 5 P 4 P 3 P 0 P 1 P 6 P 2

0.03 0.26 0.43 0.60 0.63 0.67 0.82 0.89

Figure 1.7: Population sorting and selection distribution overlay

1.3 Genetic Fuzzy Systems

Genetic Fuzzy Systems (GFS) here describe FL systems which have been tuned

or learned using GA strategies. Tuning a GFS implies that the rule base is static,

while the GA is allowed to operate on only the MF values or input/output scaling.

Learning, on the other hand, implies that the RB itself is allowed to vary. For this

research, except where otherwise stated, GFSs are allowed to learn the RB from scratch.

In order to effectively use GAs to interact with FISs, some simplifying constraints

are commonly imposed on the GFS to ease the use of genetic operators. One such

constraint that is frequently used in this research is to mandate strict triangular or

trapezoidal MFs. This allows the entire collection of MFs across all of the inputs to

be described by either 3- or 4-tuples of sorted real values. As the GA is allowed to

operate on the MFs, checks are placed to make sure that like MFs are recombined

and that the children contain valid MFs. All of this is eased by constraining a GFS

10



to only contain triangular or trapezoidal MFs. Additionally, it is assumed that the

RB completely covers the input combination possibilities. This is similar to a fully

connected layer of neurons in a NN. This forces the number of rules to be equal to

the product of the number of MFs across all inputs; as a result of this constraint, the

number of rules can quickly explode as inputs are added to the system or inputs are

granularized with additional MFs. To prevent RB explosion, FISs in this work are

kept minimal. Knowing the number of MFs, the RB can be reduced to a single string

of integers, where each integer is equal to the index of one of the output MFs. Thus

in this way, we can fully describe a FIS with one heterogeneous string of values. For

instance, the FIS illustrated in figures 1.2 to 1.3 with the RB in table 1.1 would be

described completely by the list:

(0, 0, 55, 65) (55, 65, 75) (65, 75, 100, 100) | (0, 0, 0.25) (0, 0.25, 1) (0.25, 1, 1) [0, 1, 2]

where each MF tuple is grouped in (), input is separated from output with |, and the

RB is in [ ]. The genetic operations on MF parameters are any operations which can

work with real values, and the RB is constrained to n-point crossover.

1.4 Motivation and Problem Statement

This work explores the utility of using the GFS approach to exert control on

dynamic systems. Because of the ability of a GFS to deal with imprecision and

uncertainty, it can be an adaptive controller which can respond to changes in plant

dynamics. Also, if the GFS is kept small, the trained system can be interpreted by

a human operator with linguistic rules. With the rise in popularity of black box

decision-making frameworks in recent years, interpretability has become a topic of
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fervent research[13, 14, 15, 16]. Learning provides the benefit of exhibiting emergent

behavior, but usually at the cost of interpretability. Genetic fuzzy systems may provide

a middle ground; starting with a hand-crafted template, and then allowing a GA to

learn behavior, the final model can still be assigned linguistic variables and given

meaning.

This thesis is composed of a handful of problems which were approached using a

GFS.

1. Two-cart flexible system. First, the problem of controlling a two-cart system

is addressed. The system is allowed to move freely along a track with the

objective of meeting, but not exceeding, a goal. This system exhibits two

modes of behavior: over large distances, it behaves similar to a rigid structure;

when finer control is needed in the terminal phase, the flexible body vibrations

dominate the behavior. A controller is tuned to handle this system in chapter 2.

2. F-4 Phantom Pitch Controller. Secondly, a pitch attitude controller for the

F-4 fighter jet is designed. This system is allowed to train on only a nominal

flight condition, but then subjected to large degradations in plant dynamics

and evaluated. The performance is shown to exceed that of a PID controller in

chapter 3.

3. sUAS Precision Landing Finally, a controller for a small quadrotor is designed

to guide the vehicle to a moving target using only visual feedback from an on-

board camera. This problem is constrained by physical systems, so simulation

environments, controllers, computations, and sensors are chosen such that the

system will be more readily physically realized. The use of the Robot Operating

12



System with the Gazebo simulation environment are also discussed at length.

This discussion comprises chapter 4.
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Chapter 2: Two-cart Flexible System

2.1 Introduction

The 1992 American Control Conference published a set of benchmark problems to

explore the capabilities of modern control techniques[17]. The second stated problem

solicited solutions to the stabilization of a two-body spring mass system which was

robust to uncertain masses and spring constants. This benchmark problem focuses

on disturbance rejection in minimum time. Stengel[18] surveyed the best performing

control strategies and quantified their stability and performance robustness using

stochastic robustness analysis. Cohen et. al [19] independently proposed a solution

using fuzzy logic which has more robust stability, performance and uses less control

effort.

This problem extends the benchmark problem with the addition of automatically

tuned fuzzy controllers for various plant models via a GA. The goal of the controller is

to move the dual-mass system from a stationary initial condition to a stationary end

goal in minimum time. Simplifications to the problem include a collocated sensor and

actuator, removed plant disturbance, and removed sensor noise. The model dynamics

are similar to those experienced by a robotic arm moving from one control point to

another. The system exhibits both rigid and flexible body modes and thus provides

14



a good test case for a nonlinear fuzzy controller. The controller is first developed

by hand and then automatic tuning strategies are employed using a GA. The plant

model masses are then changed significantly and the controller is retrained to test

the efficacy of the GA tuning process and to demonstrate the utility of having an

automated tuning method. The result is a system which can be quickly trained to

accommodate new plant dynamics within this class of models. The performance of

the hand- and GA-tuned controllers are compared.

2.2 Coupled Spring-Mass Simulation Model

A simulated environment is necessary to test the efficacy of the proposed FIS.

The simulation consists of two cars connected by a spring; this system is expected to

traverse a given distance as quickly as possible without exceeding a certain boundary

represented by a wall. The system is propelled by a force on the leading car which

represents the actuating output of the controller. At each time instant, the controller

must determine how much force to exert on the carts, and in which direction, to get

as close as possible to the wall in minimum time. The carts are represented by point

masses which may occupy the same position in space. The constants for the model are

the weight of each car, the spring constant, and the distance which must be traversed

to the wall. A diagram of the simulation is shown in figure 2.1.

m1 = 1 kg, m2 = 2 kg, K = 250
N

m
, L = 100 m

The modeled system contains displacement and velocity sensors on each cart;

therefore, the four inputs to the FIS are the distances traveled and the velocities of
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Figure 2.1: Diagram of two rigid bodies connected by a spring traversing distance L
in minimum time.

both carts. These inputs represent the state vector of the system. The output of the

controller is the force, F (t), applied to cart 2, limited to ±1 N. At each time step of

the simulation, the FIS uses the state of cart 2 to determine the force which must be

exerted according to a fuzzy rule base.

Input : ~y(t) =


x1(t)
x2(t)
ẋ1(t)
ẋ2(t)


Output : |F (t)| ≤ 1 N

At time t = 0, both carts are at rest at position x = 0. The maximum allowed run

time of the simulation is 500 s. The system requirement for the final condition is that

both carts come to rest between 99 m to 100 m with minimal oscillation. Neither cart

is allowed at any point in the simulation to exceed 100 m.

~y0 =


0 m
0 m
0 m

s

0 m
s

 , ~y(500) =


99 m < x1 < 100 m
99 m < x2 < 100 m

0 m
s

0 m
s


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The acceleration of cart 1 is determined by the displacement between the two

carts, the spring constant, and the mass of the cart. The acceleration of cart 2 is also

a function of these parameters as well as the control force. The equations of motion

for the system are represented by simple second-order differential equations.

Cart1 : ẍ1 =
K

m1

(x2 − x1) (2.1)

Cart2 : ẍ2 =
K

m2

(x1 − x2) +
F

m2

(2.2)

2.2.1 System Performance Cost

The efficiency of a FIS’s control of the system is based upon the amount of time it

expends traversing the distance to the wall and how close the carts are to the wall

when they settle. Any breach of the wall results in immediate system failure. A cost

function, J , is defined by the settling time tf , the time taken to settle within 1 m of

the wall and the steady state error, the distance between the leading cart and the

wall. The control system that produces the lowest J value will be proven to be the

most fit solution for the simulation. This cost function in particular was provided in

order to compare to results previously obtained[20, 21, 22, 23].

tf = |L− x̄(tf )| ≤ 1 m (2.3)

J =
tf

100
+ 2[L− x2(500)] (2.4)

where the constants 100 and 2 are scaling factors. In order to provide a frame of

reference for the performance of any control system, the theoretical limits of the
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simulation were calculated to provide a lower bound for the value of equation (2.4).

Assuming a single rigid body assembly with no dynamic coupling, the model is greatly

simplified to a single equation where the acceleration of the body is a function of only

the control force. Since no energy is lost to a spring, the optimal solution to this

system is assumed to be a lower bound on the flexible system with losses.

ẍ =
F

M
(2.5)

where M is the total mass of the system. The total mass of the system is 3 kg,

whereas the maximum input force is limited to 1 N, rendering equation (2.5)

ẍ =
1 N

3 m
=

1

3

m

s2

as the maximum acceleration. Given this acceleration and the distance to be traversed

to the wall, the minimum time to complete the trip can be calculated. There are,

however, two scenarios to consider.

1. Applying maximum force over the entire distance and instantaneously stopping

the carts at (but not touching) the wall provides an absolute, if unfeasible,

optimum simulation completed in minimum time. Given an initial velocity of

zero and a constant accelerating force of 1 N, the traversal time is calculated.

Note that once the carts have breached 99 m, the system may come to rest and

be considered settled.

x(t) = ẋ0t+
1

2
ẍt2, ẋ0 = 0

x(t) =
1

2
ẍt2

Letting x(t) = 99 m

t =

√
2x(t)

ẍ
=

√
2 · 99 m

1
3

m
s2

= 24.37 s
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2. Applying maximum force over half of the distance and then applying maximum

negative force in the second half to slow the velocities of the carts to zero at the

wall position.

First half:

t =

√
2x(t)

ẍ
=

√
2 · 50 m

1
3

m
s2

= 17.23 s

Traversing the second half and stopping at the wall takes the same amount of

time, therefore the total time expended in reaching 100 m is 34.46 s; however,

the interest lies in the time taken to breach the 99 m mark. The time taken

to travel the last meter is 2.45 s, so the best possible time to reach the 99 m

position is :

t = 32.19 s

As this is a much more realistic scenario, this is the limit used as the benchmark

in this research. Using this time to evaluate equation (2.4)

J =
32.19

100
+ 2[100− 100] = 0.3219

results in the minimum possible cost. The addition of harmonic oscillation and

non-linear dynamics ensures that this limit will not be reached, but merely

provides a standard against which a controller may be measured.

2.3 Fuzzy Inference System

The FIS built during this project uses two measured inputs: the position and

velocity of cart 2. The output of the FIS is the force exerted on cart 2 at a given point

in the simulation.
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2.3.1 Membership Functions and Rule Base

Position

The first input variable, position, is composed of three membership functions

to which it can map. The position of the car, from 0 m to 100 m, is described in

human-understandable language as far away, close to, or very close to the wall. If the

simulation has just begun and the cart is as far away from the wall as it can be, the

“Far” membership function will map to 1 and the “Close” and “VeryClose” functions

will evaluate to 0. Conversely, at the end of the traverse, as the car approaches

the wall, “VeryClose” will map to 1 and “Far” to 0. “Close” may evaluate to some

value in between. The membership functions are shown in figure 2.2. As the system

predominately behaves as a rigid body on a large scale, the membership functions

mirror the ideal simulation of a rigid body for the majority of the carts’ travel. Each

function is represented by a vector of values expressing the points at which the function

switches from 0 to 1 or 1 to 0. For the FIS used in this research, trapezoidal- and

triangular-shaped membership functions are utilized. Trapezoids are represented by

a four-element vector as they start at 0, rise to 1, remain at 1, and finally fall to 0.

Likewise, triangular functions are expressed as three-element vectors. The parameters

of the position membership functions shown in figure 2.2 are:

Far :


0 m
0 m

49.8 m
50.1 m

 , Close :


49.8 m
50.1 m
99.9 m
100 m

 ,

VeryClose :

 99.9 m
100 m

100.1 m


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Velocity

The second input variable, velocity, is composed of three membership functions.

The velocity of the cart, within a range from −6 m
s

to 6 m
s
, can either be classified as

“Negative”, “Zero”, or “Positive”. When the simulation starts, the carts are at rest

and the degree of membership to “Zero” velocity will be 1 whereas “Negative” and

“Positive” will be 0. For the majority of the simulation, the carts are moving forward

with a fast pace; therefore, the “Negative” membership function does not come into

play until close to the very end of the simulation when the oscillatory effects dominate

the motion of the cart system. It is at this point that the true dynamic nature of

the system is exhibited and the controller does the most calculation in an attempt to

damp the oscillations. The membership functions for ẍ2 are shown in figure 2.3.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Far
Close

VeryClose

Figure 2.2: x2 membership functions
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Figure 2.3: ẋ2 membership functions

The velocity membership function parameters are:

Negative :


−6 m

s

−6 m
s

−0.2792 m
s

0 m
s

 , Zero :

−0.2792 m
s

0 m
s

0.2792 m
s

 ,

Positive :


0 m

s

0.2792 m
s

6 m
s

6 m
s


Rule Base

As previously discussed, the rule base of an FIS is a series of IF-THEN (antecedent-

consequent) conditions that use the membership functions of all the inputs in order

to determine the output variable. There are also several membership functions for

the output variable that the rule base maps to. Each of the rules has an influence on
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what the output of the system should be. The weight of these influences again varies

from 0 to 1 and the final output value is determined by calculating the centroid of all

of the rules. For instance, one rule dictates that if the car is far away then the output

force should be positive and large so that the car will move towards the wall. Another

rule will say that when the car is close to the wall the output force should be negative

in order to slow the car down. All of these rules have influence over all input ranges

determined by how the input variables map to the given membership functions in that

specific rule.

The antecedent of each statement contains memberships of both input variables

and the consequent maps to the output membership functions. The rules for this FIS

were developed based upon intuitive decision making. The rules developed for our

FIS are shown in table 2.1.

Table 2.1: Rule Base of the Fuzzy Inference System
Velocity Measurement

Negative Zero Positive

Position
Measurement

Far Positive
Close Positive Zero Negative

VeryClose Positive Zero Negative
Control Force

Control Force

The output variable, force, is also composed of three membership functions. The

output force is bounded from −1 N to 1 N thus the membership functions allow for the

output to be “Negative”, “Zero”, or “Positive”. As the centroid of the area beneath
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Figure 2.4: Control force membership functions.

each function is used to evaluate the control force, the upper and lower bounds are

centered over 1 and -1 respectively. These functions represent the “defuzzification”

stage of the FIS and these outputs are determined by evaluating each rule in the rule

base (see section 2.3.1) in parallel[24]. The controller emulates bang-bang control for

the majority of the simulation lifetime, sharply transitioning from full acceleration to

full deceleration. As the cart system nears the wall, the oscillation damping rules will

dictate the force to apply on the system. Typically, the output force will be directed

opposite to the velocity of cart 2. The membership functions for the control force are

shown in figure 2.4.

Negative :

−2 N
−1 N
0 N

 , Zero :

−1 N
0 N
1 N


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Positive :

0 N
1 N
2 N


2.3.2 Simulation Performance

−1

−0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

F
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,

N

Time, s

FIS Force Output

Figure 2.5: System control force over time.

The efficiency of this FIS was determined by using it as the control mechanism in

the simulation. The goal was to approach the realistic theoretical limits calculated

above and reach this goal with minimum force. Table 2.2 shows the settling time,

final position of cart 2 and the calculated J value for the controller’s performance.

Figure 2.5 shows the controller’s output force over time for each step of the simulation.
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Figure 2.6: Cart position time history. Note that the displacement between the carts
is negligible.

It is clear that the controller expends less energy than a traditional bang-bang

type controller would in the oscillation damping process. It can be seen that the FIS

responds quickly to control needs and applies the needed force with low-latency.

Much work was done to hand-tune this controller to perform optimally, thus

the work was undertaken to develop a genetic algorithm to produce similar results

autonomously. Automating the tuning process ultimately produces a controller which

is as good as the hand-tuned controller, but requires little to no effort from the

programmer.
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Table 2.2: Results from hand-tuned FIS.
tf x2(500) J

32.303 s 99.999 821 m 0.32328

2.4 Genetic Algorithm

The performance of the FIS depends directly on the value of each parameter

of the membership functions. These values were hand-tuned by a time-consuming

process of trial and error. To quicken this process, a genetic algorithm was utilized to

autonomously tune the membership functions and approach an optimal solution.

As previously discussed, a genetic algorithm is a computational mechanism which

imitates evolutionary behavior to achieve optimality. It consists of a population

of individuals which undergoes a process similar to natural selection, reproduction,

and mutation over the course of a number of generations[1]. Selection is attained

by evaluating the fitness of each individual FIS according to equation (2.4). The

individual which most effectively minimizes the cost function is considered most fit

for the control environment.

In order to manipulate the FIS structure in an algorithmic manner, it is necessary

to represent it as a genetic individual. Since the values of the parameters of the

membership functions of the FIS have significant impact on the control performance,

it was decided to manipulate only these parameters with the algorithm; however, of

the thirty-one parameters which comprise this FIS model, many are trivial to the

overall performance. It is desirable to reduce the number of parameters to facilitate

the optimization process.
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2.4.1 State Reduction

To simplify the genetic tuning of the parameters, the symmetry of the system was

exploited. The parameters were reduced from thirty-one to seven.

The position membership functions were simplified to only three parameters by

defining a center point (center) between far and close functions, a distance from the

center point at which the far and close functions will be valued at 0 and 1 respectively

(iTrap1), and half of the base of the triangular membership function which decides

when the car is very close to the wall (iTriBase1). The velocity membership function

parameters were reduced to two parameters. One parameter describes the distance

from 0 to the point at which each of the velocities reach 1 (iTrap2). The other

parameter is defined as half of the base of the zero velocity triangular membership

function (iTriBase2). The output force membership functions were reduced similarly

by allowing the negative and positive membership functions to become trapezoidal

(oTrap and oTriBase).

• Position Membership Function Parameter

Far :


0
0

(center − iT rap1)
(center + iT rap1)

 , Close :


(center − iT rap1)
(center + iT rap1)

99.9
100

 ,

VeryClose :

(100− iT riBase1)
100

(100 + iT riBase1)


• Velocity Membership Function Parameters

Negative :


−6
−6

(0)− iT rap2)
0

 , Zero :

(0− iT riBase2)
0

(0 + iT riBase2)

 ,
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Positive :


0

(0 + iT rap2)
6
6


• Control Force Membership Function Parameters

Negative :


−2

(−1− oTrap)
(−1 + oTrap)

0

 , Zero :

(0− oTriBase)
0

(1 + oTriBase)

 ,

Positive :


0

(1− oTrap)
(1 + oTrap)

2


These state reductions allow an individual to be defined by a single vector of seven

variables.

• Individual Definition 

iT rap1
center

iTriBase1
iT rap2

iT riBase2
oTrap

oTriBase


2.4.2 Population Initialization

An initial population is generated by assigning random values to each of the

individual parameters within given ranges. iTrap1, iTriBase1, and oTriBase are

allowed to vary between 0.05 and 1. iTrap2 and iTriBase2 are allowed to vary between

0.05 and 2. Center values fall between 45 and 55, and oTrap between 0.05 and 0.95.

Twenty individuals comprise a population. Each individual is evaluated for fitness

and brought up for selection to produce a new generation.

29



2.4.3 Parent Selection and Reproduction

A new generation consists of three individuals which remain unchanged from

the previous generation, called elite individuals, ten children which are created from

recombination of two parents each, five individuals which are created from mutating

recombined children, and two individuals randomly defined from the previously defined

ranges. The parents for this population consist of the three elite individuals as well

as seven more individuals. Each of the seven is selected by randomly choosing three

individuals from the previous population, selecting the most fit, and returning the

other two. This tournament style of selection is repeated until all parents are selected.

Reproduction occurs by blended crossover process with an α modification (BLX-α),

by selecting a new parameter x′i from the range [xmin − Iα, xmax + Iα], where

xmin = min(x1i , x
2
i ) and xmax = max(x1i , x

1
i )

Parents are defined as

C1 = (x11, x
1
2, · · · , x17) and C2 = (x21, x

2
2, · · · , x27)

I =
xmax − xmin

bi − ai

α = min(d1, d2)

d1 = xmin − ai and d2 = bi − xmax

The interval [ai, bi] is the parameter-specific range. This mechanism allows the

algorithm to create a child from two parents which is a blend of both parents, while

still expanding the search space. As a population generally converges on a solution,

so too do the children of the population.
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2.4.4 Mutation

Five of the recombined children are selected by random sampling and then two

randomly sampled parameters are selected from each of these child for mutation.

Mutation is defined to be nonuniform such that the mutation has a smaller effect in

later generations as follows:

x′i =

{
ai + ∆(t, xi − ai), if τ = 0

bi −∆(t, bi − xi), if τ = 1

where τ represents a coin flip such that P (τ = 1) = P (τ = 0) = 0.5

∆(t, x) = x(1− λ(1− t

tmax
)b)

where t is the current generation, and tmax is the maximum number of generations.

The variable λ is a random value from the interval [0, 1]. The function ∆ computes

a value in the range [0, x] such that the probability of returning a zero increases as

the algorithm advances. The value of b determines the impact of the time on the

probability distribution of ∆. The value of b is set to 1.5 for the algorithms used in

this research.

2.5 Results

Running the algorithm for 50 generations yields a FIS which performs as well as

the hand-tuned FIS from section 2.3.2. This result converges out of the evolution

process quickly as can be seen in figure 2.7. Though the algorithm finds a near optimal

solution quickly, it continues to search similar solutions, selecting the best individuals

each time to produce progressively better fit children each generation. Figure 2.8

shows the average fitness of generation. It is clear from this plot that the algorithm
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Table 2.3: Final Results from algorithm-generated FIS
tf x2(500) J

32.308 s 99.999 999 m 0.32311
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Figure 2.7: Best fit individual by generation.

produces many unfit children in its search for optimality. This satisfies the need of a

good algorithm to expand the search area to eliminate premature convergence.

The results of the performance of the most fit individual produced by the genetic

algorithm are shown in table 2.3. It is shown in figure 2.9 that the output force of the

GA-tuned controller is very similar to the hand-tuned version. Examining figure 2.10

shows that the GA has changed the membership functions appreciably within the

allotted envelopes while still yielding a near-optimal result.
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Figure 2.8: Individual fitness average by generation.
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Figure 2.9: The force signals over time from the hand- and GA-tuned controllers.
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(e) Force output partition before GA tuning
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Figure 2.10: FIS comparison between hand- and GA-tuned membership functions
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Table 2.4: Genetic algorithm FIS performance compared to the hand-tuned FIS and
rigid body limit.

Mass 1 (kg), Mass 2 (kg)
1 kg, 2 kg 2 kg, 4 kg 4 kg, 8 kg 4 kg, 16 kg

Theoretical Limit 0.3191 0.4553 0.6438 0.8312
GA FIS 0.3231 0.4562 0.6579 0.8434

Hand-tuned FIS 0.3233 0.6125 5.3072 3.3240

GA Error 1.3% 0.2% 2.2% 1.5%
Hand-tuned Error 1.3% 34.5% 724.4% 299.9%

2.5.1 Genetic Adaptability

These results demonstrate the ability of the genetic algorithm to tune a FIS to

near-optimal performance. All tuning and development heretofore was done with an

unchanging system setup of known masses connected by a known spring. Although

a robust controller[19], introducing changes to the masses of each car significantly

alters the performance of the FIS as it was carefully tuned to only a certain envelope;

however, utilizing the genetic algorithm to generate an optimum FIS for each new

system setup is an efficient method of developing good active controllers. This is

demonstrated by changing the masses m1 and m2 to 2 kg and 4 kg respectively. They

are again changed to 4 kg and 8 kg, and finally 4 kg and 16 kg. The algorithm was

deployed for each case to optimize a controller for that envelope. After fifty generations

of evolution, the genetically optimized FIS performed within 3% of the theoretical

rigid body limit in all four cases. These results are displayed in table 2.4.

It is easily seen in these results that the use of the genetic algorithm is advantageous

in the autonomous development of near optimal FIS controllers. Given a generic
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control architecture, the genetic algorithm is able to tune a FIS rapidly and accurately

for a varied set of circumstances.

2.6 Conclusions

Fuzzy logic provides a robust framework for control. It has been demonstrated

that proper fuzzy control is efficient and computationally inexpensive. The inherent

vagueness of set membership and linguistic operation of fuzzy logic allows the controller

to mimic expert human control. This superior control, however, comes with a steep

cost in FIS development. Hand-tuning a FIS is time-consuming and tedious.

The use of the genetic algorithm facilitates FIS development. Once a FIS has been

developed for a general type of control situation, it is relatively simple to define the

FIS as a genetic element and automate the tuning through the evolutionary process.

These results imply that if a general fuzzy controller is developed for a family of

control situations, then a genetic algorithm can be implemented to tune each FIS

to its specific task. The tuning, therefore, can be accomplished by someone with no

expertise in the control of the situation. As the computation is quick, efficient control

could be widely distributed due also to the low-cost of development.
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Chapter 3: F-4 Pitch Attitude Control

3.1 Introduction

This chapter outlines a fuzzy PID system for the approach condition of an F-4

fighter jet. The F4 stands in for more modern jets with fly-by-wire systems, and was

chosen because the equations of motion were available. The task at hand is to design

a pitch attitude hold controller for the F4 that is robust enough at be used across

the entire flight envelope without modification. The controller was designed for the

approach condition due to its complexity.

The main challenge of this problem lies in the fact that the flight conditions that a

fighter jet experiences are wide and varied. It is not feasible to design and implement

an optimal controller for each one individually. A common approach to this situation

would be to derive a gain schedule which allows the controller to automatically adjust

the linear gains to meet the control needs at any time. However, the approach explored

in this chapter is to train a GFS to determine a set of PID gains based on state

feedback. This allows the controller to adapt to new flight situations similarly to a

PID gain schedule, but without the need to explicitly tune a PID controller for each

case.
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3.2 Fuzzy PID

While seeking to design a controller robust enough to be used across the entire

flight envelope, the approach condition was chosen for its challenging dynamics. Once

the controller is tuned for the approach condition , it is tested across many off-design

cases to determine its robustness. The cases chosen for robustness analysis are the

approach condition with a 50% reduction in aerodynamic coefficients , subsonic cruise

condition , and the supersonic cruise condition (see table 3.1). Each of these scenarios

presents a challenging dynamic control problem with poles very close to the right half

of the plane. Fuzzy logic is well-suited to this task in that it will allow the control

gains to move around in a way which may keep the poles in the left half of the plane.

The system dynamics studied here were used by Bossert and Cohen[25] to design both

a PID and a Fuzzy controller, which will be used as benchmarks. The equations for

the four scenarios

One large downside to fuzzy systems are that they require a significant expense

of effort to tune. This task becomes even more cumbersome with an increase of

membership functions, which, in turn, increase the number of rules (possibly exponen-

tially). The FIS designer is then relegated to either drawing on a store of heuristic

knowledge or experience (perhaps from an expert), or to trial-and-error iteration to

incrementally improve the controller. The method used here is a GA which plays the

part of automating and guiding the trial-and-error process (see next section). This

method effectively circumvents the difficulty of tuning a FIS, and makes the job of

controlling this near-unstable system more feasible.
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Table 3.1: Transfer functions for various flight conditions of the F-4 fighter jet

Flight Condition Transfer Function

Approach
3361s2 + 1357s+ 102.2

230.6s5 + 2508s4 + 2161s2 + 63.04s+ 32.01

Approach 50% deg
3361s2 + 1372s+ 105

230.6s5 + 2472s4 + 1731s3 + 744.8s2 + 36.92s+ 16

Subsonic Cruise
9.99e4s2 + 5.105e4s+ 623.4

877.6s5 + 9884s4 + 1.82e4s3 + 7.114e4s2 − 61.19s− 114.1

Supersonic Cruise
1.3e5s2 + 2.183e4s− 31.29

1742s5 + 1.83e4s4 + 3.553e4s3 + 2.677e5s2 + 1247s+ 123.9

3.3 System Controller Design Methodology

At first, an attempt was made to utilize Simulink R© and Matlab R© to design a

genetic algorithm (GA) which would simulate the plant transfer functions with a

fuzzy-PID controller in the feedback loop. The GA, written in Matlab, would call

the Simulink model and evaluate the performance of the controller. This methodology

presented a number of problems to the designer. The Simulink Fuzzy Logic Block

seemed to slow down the execution of the control loop siginificantly, making a single

simulation run up to an order of magnitude slower than one with only PID control.

This shortcoming can be circumvented by using a lookup table in place of the fuzzy

controller, but the overhead time needed to generate the lookup table negates the

simulation speed gains.
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In light of the issues with using a Simulink GA, the GA was implemented in

traditional Matlab using ODE45 as the ordinary differential equation solver; however,

due to the adaptive timestep of the solver, it is prohibitively difficult to accurately

obtain error derivative and integral terms for use in the PID controller. This led the

author to eventually write a simple ordinary differential equation solver in Matlab

which gives access to all errors at each time step, but the execution of a single

simulation was expectedly and prohibitively slow.

As a result, a genetic fuzzy system was implemented using the C programming

language[26]. This GA uses the comparable rk8pd (Runge-Kutta Prince-Dormand

(8,9)) stepping function from the Gnu Scientific Library (GSL) to solve the ordinary

differential equation. This method allows the user to specify some basic parameters

which are desired in the final FIS, a cost function to be applied to each solution,

and some basic parameters for the GA, at which point the GA starts generating and

evaluating FIS’s until a suitable stop condition has been met.

To avoid the need to tune three individual FISs, a multi input multi output FIS

was created which outputs the three gains Kp, Ki, and Kd. The FIS accepts as its

inputs the absolute error in elevator angle, the error integral, and the error derivative,

e, ei, and ed respectively. To determine the quality of a controller, a number of metrics

with respect to its response to a step input are gathered as a means for comparison.

These metrics are the settling time, Ts, rise time, Tr, time to peak value, Tp, maximum

value, Mp and final value, FV .

The cost function used to describe the desired controller behavior plays an integral

role in the success or failure of any evolutionary strategy. The problem of designing

this fuzzy PID controller presents a nice case study in which to observe undesired
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side effects of an overly simplistic cost function. The first cost function which is

implemented is simply to minimize the settling time of the system. This has the side

effect of increasing the overshoot of the elevator pitch angle. The cost function is

then adjusted to take into account the overshoot and yields a more amenable response

behavior.

3.4 Results for Nominal and Other Flight Conditions

Figure 3.1 shows the responses of the aircraft to the fuzzy PID controller as trained

by a GA using the simple minimal settling time cost function. This cost function

yields a significant overshoot as an outcome. To lessen the magnitude of this effect,

the GA was given a new cost function which places a higher premium on overshoot,

yielding a more amenable result, as shown in figure 3.2.

As can be seen from tables 3.2 to 3.3, the settling time of the step response is

significantly slower when training a controller using the new cost function. However,

the overall response is arguably better due to the reduced overshoot. Additionally,

though not nearly as good for the nominal and degraded flight conditions as was

Bossert and Cohen’s solution, the response for the subsonic and supersonic cruise

conditions show arguably better performance (see table 3.4).
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(b) Degraded aerodynamic derivative approach
condition
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(c) Subsonic cruise condition
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(d) Supersonic cruise condition

Figure 3.1: Step response for various flight conditions. Note the increased overshoot
for nominal conditions from the Fuzzy-PID controller.

Table 3.4: Comparison of response times for subsonic and supersonic cruise conditions
for original and modified cost function. Modifying the cost function showed no
improvements for this set of conditions, rather only proved to slow the response time
with no gain in overshoot.

Case Ts (s) Tr (s) Tp (s) Mp (deg) FV (deg)
Subsonic Cruise (Orig. Cost) 0.93 0.38 3.91 1.022 1.00

Supersonic Cruise (Orig. Cost) 3.84 0.73 11.10 1.018 1.01
Subsonic Cruise (Mod. Cost) 7.97 0.59 4.09 1.026 1.00

Supersonic Cruise (Mod. Cost) 15.53 0.73 11.74 1.020 1.00
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(b) Degraded aerodynamic derivative approach
condition
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(d) Supersonic cruise condition

Figure 3.2: Step response for various flight conditions using the controller created
with modified cost function. Note the significantly decreased overshoot for nominal
and degraded flight conditions.
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3.5 Conclusion

In order to demonstrate the flexibility of a fuzzy PID controller, a controller was

designed to meet the demands of the approach condition of an F4 fighter. It was

shown that this controller exhibited good behavior across a wider domain than that

in which it was trained. This demonstrates that an adaptive fuzzy PID controller can

be an effective approach to problems with a wide variety of scenarios.

Future will work include assessing the response of the aircraft to fuzzy PID control

according to the C* criterion, Gibson’s drop back criterion, and other flying qualities

standards[27]. This will provide a richer assessment of the controller’s performance.
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Chapter 4: Fuzzy Landing

4.1 Introduction

With the ever-increasing proliferation of small unmanned air vehicles (sUAVs) and

their use in commercial and emergency response applications, there is a growing need for

intelligent, reliable control methodologies to safely manage their navigation, especially

in possibly congested areas such as disaster areas or urban centers. Commercial

delivery companies are moving towards an automated model with reduced human

operator intervention to increase the efficiency of their deliveries. One such model

consists of a vehicle-based sUAV which departs from the delivery vehicle to make a

delivery to a remote residence. Upon completing the delivery, the sUAV returns to

the vehicle and docks to receive additional packages. Considering the small target

size of a landing platform affixed to the potentially moving vehicle, and the highly

dynamic conditions in which deliveries may be accomplished, the control effort must

be accurate and robust in the face of disturbances.

Fuzzy control is able to accommodate nonlinearities in the dynamic system such as

are found in the situation of an air vehicle to ground transport rendezvous[28]. Current

approaches for developing trajectory paths have focused on time-optimality[29][30] and

not necessarily on lightweight, on-board controllers. In contrast, this work optimizes
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for reduced control effort, as well as computational simplicity and efficiency. Accuracy

is paramount, as the target platform is nearly equally-sized to the sUAV.

4.2 System Architecture

The research setup consists of a quadrotor aircraft of size 450 mm on the diagonal

and a mobile rover robot with a 255 mm radius landing platform affixed to it (as

shown in figure 4.1). The quadrotor is controlled by a Pixhawk flight controller which

uses the PX4 flight control firmware. This flight controller allows for an on-board

computer to take over control of the aircraft via a serial wire connection. A small

Linux-based computer is placed on the quadrotor which sends velocity setpoints to the

flight controller. All control logic is written in Python using a collection of softwares

called Robot Operating System (ROS). ROS allows for easy integration of sensors

and control actuation due to a distributed computation framework. As a highly

event-driven, publish-subscribe model, ROS maintains an accurate, up-to-date view of

internal states which are then exposed to any connected nodes.

An assumption is made that GPS (or some other global positioning) data is

available for the simulation; however, this positioning has a margin of error which is

far too large to be used exclusively for precision landing. For this reason, an on-board

camera is utilized to detect and locate the target. Using the characteristics of the

camera focal length and distortion coefficients, an accurate positional error can be

obtained for the feedback control loop.

4.2.1 Simulation

Gazebo is a 3D simulation software which uses open source dynamics engines

Bullet, Dart, and ODE to model its components. While Gazebo has very high fidelity
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Figure 4.1: The test sUAV with the mobile target platform.

simulation capabilities for robots (its initial purpose), the complexities of aerodynamics

in general, and multicopter physics in particular, can only be modeled with many

simplifications. Even with the simplified dynamics, the simulation environment that

Gazebo provides is very useful for high-level controller development. Gazebo allows

for the simulation of many sensor types and nicely integrates with ROS and the PX4

flight controller firmware. The simulation provides a real time interface for tuning the

controller with visual feedback. This is the process which was used to tune the fuzzy

controller.

The most important aspect of sensing for the system is the image sensor. A

camera sensor is simulated from the underside of the quadrotor to test the efficacy and

efficiency of the computer vision algorithms. Care was taken to accurately represent

the field of view and pixel noise of the physical camera sensor to be used.

4.2.2 Onboard Software

ROS is an open source framework developed specifically to ease the development

of software for robotics and robotics control[31]. Using ROS, it becomes a simple
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task to distribute computational loads across a computational graph of separate

nodes. Additionally, ROS has a rich library of packages which are useful for both

low-level processing of sensor information or managing hardware interfaces, and also

high-level behavioral control or localization schemes. This project use a number of

such packages to perform tasks in the areas of visual odometry[32], kalman filtering

[33], and flight control[34, 35]. ROS allows for a system designer to aggregate any

number of processing units, called nodes, into a complex computational graph. An

example of the graph structure created to complete this work is shown in figure 4.2 and

provides a visualization of this complex structure. Each node in the graph represents

a unit of computation which consumes information from another node in the graph.

Each edge in the graph represents a direct message passing pipeline through which

information is transmitted. Each node runs continuously and in parallel, facilitating

the creation of reactive, concurrent systems.
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Sensing nodes

Action statesControl loop

/vision_estimator

/ekf_odom

/vision_estimate

/apriltag_detector

/apriltag_estimator

/tag_detections

/apriltag_estimate

/camera1/image_proc

/camera1/image_rect /camera1/image_rect

/camera1/image_mono

/flc_action

/tf

/land_action

/arm_action

/arm_action/goal

/approach_action

/land_action/feedback

/mavros

/mavros/setpoint_velocity/cmd_vel_unstamped

/arm_action/result

/arm_action/result

/land_action/goal

/arm_action/cancel

/seek_action

/seek_action/goal

/flc_action/goal

/seek_action/status/mavros/setpoint_position/local

/flc_action/result/mavros/setpoint_velocity/cmd_vel_unstamped

/mavros/imu/data /mavros/extended_state

/mavros/local_position/pose

Figure 4.2: Computational node graph for a typical landing simulation. Note that
this graph may change over time as node may be dynamically started and stopped.
Likewise, message passing pipelines may be opened or closed at any time.

The nodes can be broadly categorized into three groups: Sensing nodes, Action

states, and Control loop nodes. The Sensing nodes consume image sensor output

and pre-process it for Kalman filtering. The Action states each represent a state in

the state machine. These represent basic actions which the vehicle can perform and

can be aggregated to construct more complex behavior. The nodes in the Control

loop represent the plant (/mavros), the sensor (/ekf_odom), and the compensator

(/flc_action). In this way, it becomes easy to visualize the canonical form of a

feedback control loop. As can be seen in figure 4.2, the structure allows a roboticist

to build and manage highly complex systems in a maintainable way.
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Figure 4.3: State machine of robotic lander
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Figure 4.4: Image of the simulation and live state diagram while vehicle is approaching
the platform.

Control of the quadcopter is handled in discrete stages based on vehicle state. It is

assumed that the vehicle will have a rough estimate of the target location given to it

so that it can travel to the appropriate region and find the target in the field of view

of the camera sensor. Vehicle motion from arming until target location is handled by

sending waypoints to the flight controller. Once the target is located in the image, the

vehicle gives control over to a set of FISs. The controller is described in more detail

in section 4.3. The vehicle behavior over an entire mission is handled using a state

machine[36]. Using a state machine allows the control to be handled in well-defined

domains and ensures that transitions between states are handled smoothly. The states

comprising a full mission from takeoff to landing are shown in figure 4.3. A link to the

video showing a full landing mission can be found in the references section[37]. An

annotated image of the simulation at each state can be found in appendix A (example

in figure 4.4).

The state of the vehicle is managed by fusing together the positional estimate from

the camera sensor and the AprilTag estimate (see section 4.2.3), as well as orientation
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information from the onboard IMU using an extended kalman filter (EKF). This

estimate is only valid when the vehicle has a visual track on the target platform;

otherwise, it is assumed that the vehicle is still in transit from its launch location, or

it has landed.

As can be seen in figure 4.3, a mission starts in the “ARM” by arming the vehicle

and immediately sending it a waypoint which is near the target’s location. Once the

vehicle has received the waypoint, it enters the “TRACK” state and is en route to the

target location. While in this state, it monitors the quality of its visual estimation of

the target location by evaluating the norm of the covariance matrix computed by the

EKF. Only when the covariance is sufficiently small does the vehicle transition to the

next state.

The transition to the “APPROACH LAND” state signals the transfer of control

from the flight controller’s waypoint manager to the FISs. The ”APPROACH LAND”

state is simply a composition of two substates, ”APPROACH” and ”LAND”. During

the ”APPROACH” substate, the EKF is still running, sending estimates to the fuzzy

logic controller. The fuzzy logic controller is sending velocity setpoints to the onboard

flight controller, thus closing the feedback loop. The desired outcome of this state

is to get the vehicle in a position above the platform such that we can initiate the

landing sequence. When the vehicle meets a proximity threshold, it transitions to the

“LAND” substate and puts down onto the landing pad. The details of the simulation,

control, vision estimation, and development process are discussed at length in the

following sections.
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4.2.3 Computer Vision

Image processing is handled by a node in the ROS computation graph that is

constantly processing image outputs from the onboard camera. Once it senses the

platform, it then publishes a state estimation to the rest of the nodes in the ROS

graph. Much emphasis is put on the sensing algorithms to be computationally efficient

to decrease the load on the on-board computer. For this purpose, only a small number

of image processes are required to detect and locate the target. As a first pass, the

image is brought into the Hue-Saturation-Value (HSV) color space. This has been

shown to be a robust space in which to perform color detection and segmentation

in uncontrolled and unpredictable lighting conditions[38]. A simple thresholding is

performed on the image to isolate a sufficiently wide band of yellows to match the

color of the target and dilate this to a binary blob. From this binary image, the image

moments are calculated by

Figure 4.5: Simulated image sensor detection of AprilTag marker.
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mij =
∑
x,y

xiyjIxy (4.1)

where Ixy is the pixel intensity value for each pixel (x, y) (equal to 1 for this binary

blob) and i, j = 0, 1, 2. From this it can be seen that m00 describes the area and m10

m00

and m01

m00
describe the centroids xp and yp in terms of pixels[39]. The blob is assumed

to be circular and hence a diameter is extracted from the pixel area. Using the focal

length of the sensor, these image points are then projected onto the ground plane

using the known diameter of the landing pad and a vertical offset estimate is obtained

as is shown in equation (4.2).

dz =
d · f
m · dp

(4.2)

where f is the focal length of the camera in units of length, d is the known diameter

of the landing pad, dp is the estimated diameter in pixels, and m represents a scaling

factor in units of pixel
mm

(unity in the simulation). Assuming that the image plane and

the ground plane are parallel, the center of the image can be assumed to point directly

below the vehicle and the horizontal offsets to the landing pad can then be calculated

as

dx = dz ·
mxp
f

(4.3)

dy = dz ·
myp
f

(4.4)

Unless the camera is mounted to a perfect gimbal, the image plane cannot be

assumed to be parallel to the ground plane, thus invalidating equations (4.3) to (4.4).

To overcome this, the rotation sequence needed to transform the image into body-

relative coordinates is found and applied to the image data. The camera is assumed to
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be rigidly affixed to the body of the vehicle, thus this is a simple static transformation.

Then, the vehicle body frame is related to the inertial frame by another rotation. The

landing pad is assumed to be on level ground and the distance between the vehicle

and pad is estimated from equation (4.2). Note that although there will be image

skew when the vehicle is under some rotation, the error in estimated distance this

introduces is small compared to the actual distance of the vehicle from the target. As

the vehicle approaches the target, the estimate improves in quality due to a crisper

image, level flight, and the addition of AprilTag estimation.

In order to account for vehicle attitude, a rotation sequence is applied to the

projected target location. Let R (φ, θ, ψ) be the rotation matrix defined as

R(φ, θ, ψ) =

 cθcψ −cθsφ sθ
cφsψ + cψsφsθ cφcψ − cψsφsθ −cθsφ
sφsψ − cφcψsθ cψsφ + cφsθsψ cφcθ

 (4.5)

where φ, θ, and ψ are vehicle roll, pitch and yaw respectively. cα and sα represent

cosα and sinα respectively. Let Ry
x represent the rotation from frame x to y, then

Ry
xR

z
y is the rotation from frame x to frame z with respect to the stationary frame

x. Now assuming the vehicle can estimate its orientation from the onboard inertial

measurement unit, the following rotation matrices can be defined.

Rbody
cam = R(π, 0, 0) (4.6)

Rinert
body = R(φ, θ, ψ) (4.7)

where Ry
x represents the rotation from frame x to frame y. These rotations are then

prefixed to the projected point found in equations (4.2) to (4.4) to find the point in
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world units with respect to the vehicle.

Pi =

dxdy
dz

 (4.8)

Pr = Rinert
body R

body
camPi (4.9)

where Pi is the projected point of the target in the plane parallel to the image plane,

and Pr is the rotated point of the target with respect to the vehicle.

As the vehicle approaches the landing pad, the image field of view is overtaken

by the landing pad itself and the former segmentation no longer becomes effective.

For this purpose, an AprilTag[32] (see figure 4.5) is placed on the center of the

target. In figure 4.6, a landing approach is illustrated from the viewpoint of the image

sensor. This figure shows three different stages of the image processing pipeline: raw

image capture ( figures 4.6(a) to 4.6(d)), AprilTag detection (figures 4.6(e) to 4.6(h)),

and platform detection (figures 4.6(i) to 4.6(l)). Individual estimates from both the

AprilTag detection and platform detection are then fused using an EKF (section 4.3.2).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.6: A time series of images taken during the landing maneuver.
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4.3 Controller

Control is actuated on the vehicle by providing velocity setpoints to the flight

controller, vx, vy, vz, and yaw rate, ψ̇. Ideally either linear acceleration setpoints

or forces would be the control output, but limitations in the flight controller make

this impossible at this time. Setting velocities allows the controller to cope with step

changes to position offset well, but have difficulties tracking ramps. The yaw angle,

ψ of the vehicle at landing is irrelevant for this project, but the controller is able to

control that axis regardless.

4.3.1 PID Controller

A PID controller was created which uses error estimates and sends velocity setpoints

to the flight controller. Due to the lack of a mathematical model of the system, the

PID gains were found by iterating the simulation with various position setpoints

and dynamically adjusting the gains while observing the response visually. This

closely mimics the method by which PID gains are attained in the tuning of an actual

quadrotor by flying a series of test flights and adjusting gain values by feel. In this

way, a reasonable response and landing sequence was achieved for first a static target

and then repeated for a dynamic target moving with constant velocity. The results

are presented in figures 4.7 to 4.8 in which the normed horizontal offset from target

is shown in conjunction with the vertical distance to the platform. This view of the

data gives an overall sens of how the controller performs by showing how smooth the

trajectory of the vehicle is as it approaches the platform. Viewing the charts, it is

apparent that as the vehicle approaches the target, it tends to accumulate horizontal

errors and must correct more frequently, particularly in the dynamic case. In both
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Figure 4.7: (kp, ki, kd) = (2.1, 0.015, 0.2) for static target interception.

cases, the quadrotor managed to successfully land on the target. In the static case, the

final offset from the center of the target was less than 5 cm. For the dynamic case, the

error was 7 cm which nearly displaced it from the target surface. In both cases, the

sink rate and yaw rates were controlled by simple PD controllers. It can be seen that

the controller took a significantly longer time to intercept and land on the moving

target as it repeatedly had trouble responding to the motion and would temporarily

lose its visual track. This is apparent in the large spiking errors in figure 4.8.

4.3.2 Kalman Filter

In order to reduce the deleterious effect of instantaneous error accumulation when

losing a visual track, a kalman filter is introduced. The filter provides a continuous,
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Figure 4.8: (kp, ki, kd) = (1.8, 0.012, 0.02) for dynamic target interception. The target
is moving with a velocity of 0.1 m

s
in a straight line.
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fused estimate of the vehicle’s position relative to the platform whenever there is

at least visual sensing of the platform. This is done using the robot_localization

package from ROS[33]. This package is an implementation of an extended kalman

filter (EKF). The EKF provides a means by which to predict the vehicle state even in

the absence of current measurement[40]. The prediction is then corrected when new

measurement values are obtained. The measurements used to update the filter state

are 1) the estimate from the computer vision algorithm to update the vehicle position,

2) the estimate from the AprilTag[32] routine to update both position and orientation,

and 3) the IMU to update angular rates and linear accelerations. These measurements

are fused together to build an internal model estimate of the dynamics of the vehicle.

It is this model which provides the predictions between measurements. An example of

the EKF measurement is shown in figure 4.9. It can be seen in this data that though

the visual estimate is very noisy, the EKF fusion follows the truth signal closely even

between the infrequent update periods of the accurate AprilTag measurement.

Appendix B contains annotated screenshots (example in figure 4.10) of a video of a

simulated vehicle landing on a moving platform. This video also includes a visualization

of the EKF state over time and various estimates which are fused together. A link to

this video is found in the references section[41].

4.3.3 Fuzzy Controller

Four fuzzy controllers of similar architecture were created as shown in figure 4.11.

Each input fuzzy partition was multiplied by a scaling factor to bring it into the range of

the controller. Likewise, the outputs were then again scaled to match actuation limits.

The rule base was developed using common intuition about the system dynamics. A
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Figure 4.9: EKF estimate with input estimates over short time sample.

full rule matrix was defined to fully cover the system possibilities. This rule matrix is

shown in table 4.1.

These rules provide a process by which to lend the controller a decision-making

system with a foundation in human reasoning. The tuning process of the fuzzy

controller then becomes the task of defining the membership functions which decide

how much of each rule should be activated for certain inputs. Triangular membership

functions are used exclusively for their simplicity in definition and tuning[42] while

the aggregation of rules is the popular min-max method put forth by Mamdani[3].

The membership functions shown in figure 4.11 are the result of a number of iterative

tuning steps and were found to be the most effective of the configurations attempted.
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Figure 4.10: Image of the simulation environment and along with estimate visualization
and camera feeds

Table 4.1: Fuzzy rule base. The error and error rate membership sets correspond
to velocity output membership sets according to this table. N-negative, SN-small
negative, Z-zero, SP-small positive, P-positive

re intuitive and easy to understand and pr
error

error rate

N SN Z SP P

N P P SP SP Z
SN P SP SP Z SN
Z SP SP Z SN SN

SP SP Z SN SN N
P Z SN SN N N

The result of this controller was sufficient to land the quadrotor on both the static

and constant linear velocity dynamic platforms. Figures 4.12 to 4.13 show the results

of the static and dynamic landings using the fuzzy controllers. These figures begin

at takeoff of the vehicle, and it is clearly seen where the controller locks onto the

visual image and initiates the landing state. It is also clearly seen that with the
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ė

N
SN

Z
SP
P

(b) Error rate input

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5 1 1.5

µ
,

M
em

b
er

sh
ip

va
lu

e

rate setpoint

N
SN

Z
SP
P

(c) Rate command output

Figure 4.11: Membership function definitions for fuzzy logic controller.

implementation of both the kalman filter and the fuzzy controller, the errors resulting

from image loss are eliminated, providing a smoother landing approach.
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Figure 4.12: Fuzzy-controlled static target interception.
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4.4 Conclusion

It has been shown that a pure FLS controller is capable of controlling the position

of a multirotor vehicle in the task of precision landing on a small target. The

small size of the platform presents a challenging landing target; the FLS proved

capable enough to overcome this challenge easily. The kalman filtering was an integral

component in providing the controller with a steady estimate of its error state. The

components chosen to accomplish this task are readily available in university laboratory

environments and the physical realization of this system was kept in the forefront of

the design process.
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Chapter 5: Conclusions

5.1 Summary

Genetic Fuzzy Systems are not a silver bullet solution to every problem; however,

this can be said of any architecture, paradigm, or approach. It becomes the job of an

engineer to know the breadth of tools at their disposal and be able to chose the best

for a job. It is the proposition of this thesis that FL systems should be considered

as first-class citizens in the tool chest of any controls engineer. They are more than

capable of performing the low-level control tasks required in dynamics problems and

are remarkably well-suited to make decisions at higher levels as well. The ability of

FLS to translate the intuition of expert controls designers into machine-executable

signals is a unique benefit that is worth exploring for a wide array of problems we

face every day.

It was shown in this work that the combination of manual construction and genetic

tuning of a FLS produces a controller which performs near-optimally in a highly

non-linear system. It was also shown that a FLS which is learned almost solely via a

GA can attain results which meet any number of physically realizable specifications.

The expert intuition in these cases emerges in the development of a fitness (or cost)

function which accurately describes the desired behavior. Finally, it was shown that a

purely hand-tuned system can perform remarkably well. This system is perhaps far
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from optimal, but has the distinction of being implementable on affordable hardware

in real time.

In conclusion, fuzzy logic systems and genetic fuzzy systems are valuable tools in

the controls engineering field and should be considered as viable alternatives when

working with many systems. Indeed, there are many applications in which FL control

provides a nearly optimal controller and does so with minimal computational overhead

and little control effort.

5.2 Future Work

This thesis opens the door to many opportunities for future work. First, there is

still much work which could be done with regards to the components of the controller

itself. There are many corollaries to the controller which remain unexplored. The

computer vision algorithm is simplified and could be expanded greatly to produce a

much more robust and versatile application. Also, the EKF is minimally tuned, more

work could be done to produce a cleaner estimate signal.

Second, this thesis showed the effectiveness of landing a FL-controlled multirotor

aircraft on a moving platform. It is the author’s belief that layering a GA-automated

tuning process to the simulation would result in even better performance. Some

preliminary work has been done in developing a cost function which will aid the

development of evolutionary approaches in the future.

Third, it is the author’s hope that the work will be continued in the laboratory

and eventually be applied to hardware. The use of ROS to implement the control

architecture allows this control architecture to operate in physical hardware, as has

been shown in other projects in the laboratory environment in recent projects.
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Finally, integration of this work with other projects within the UAV Master Labs

at the University of Cincinnati would facilitate this project in being used in real

applications. The controller could rather easily be ported into the FlyMASTER

framework as a controller module. This would ease the integration of this work with

other projects in the future and work towards the goal of unifying many projects in

the lab towards a greater whole.
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Appendix A: Static landing sequence state machine video

description

The following screen shots come from a video of a simulation using the kalman

filter and fuzzy controller, landing the vehicle on a stationary platform (figures A.1

to A.6). The video shows the simulation environment on the left of the screen, and

tracks progress of the state machine on the right of the screen. Any active state in the

state diagram is highlighted in green. Multiple states are commonly active at the same

time. As a state is completed, its color reverts. In the screenshots, you can clearly see

the vehicle taking off, traveling to the communicated waypoint, locating and locking

the location of the platform via image recognition, and initiating the approach and

land states.
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Figure A.1: The “ARM” state as the vehicle is arming its motors.

Figure A.2: The transition to “TRACK” sends the command to go to a waypoint
via the “SEEK” substate. The vehicle immediately takes off and navigates to the
commanded position. During this state, the covariance is monitored to trigger the
transition to the next state (“COV MONITOR”).
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Figure A.3: The “SEEK” substate has completed and the state machine is waiting for
“COV MONITOR” to verify that the EKF estimate covariance is sufficiently small to
signal that the vehicle has a visual track.

Figure A.4: The vehicle has transitioned now to the landing approach. At this point,
the FL controller is in command of the vehicle and all pose estimation is based on
visual sensor feedback. The “APPROACH” state will continue to apply FL control
until either the vehicle is sufficiently close to the platform to transition to the “LAND”
state or loses track of the platform which will force the vehicle to abort it’s approach
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Figure A.5: The vehicle has successfully approached the platform and started the
landing sequence.

Figure A.6: The vehicle is landed on the platform and motors are disarmed at mission
success.
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Appendix B: Moving target platform landing simulation

video description

In this video, the simulation appears on the left of the screen. The upper right

window shows a coordinate frame representation of the environment. It is in this that

various frame transformations are. A frame transformation is represented by a small

unit coordinate system showing orientation, and a line to some parent frame denoting

translation. There will be four frames representing the vehicle. These four frames are

the three estimates (visual, AprilTag, EKF) and simulation truth. The images show

that before the on-board camera can see the platform, the EKF estimate is invalid as

it has no data. Once the platform appears in the image, an EKF estimate starts to

converge. When the vehicle is close enough to the platform to resolve the AprilTag,

the estimate accuracy increases and continues to converge on truth until the vehicle

has landed.

Also shown in the images are the raw camera feed (below and to the left of the

coordinate frames) and the AprilTag detection images (to the right of the raw feed).
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Figure B.1: The vehicle before its camera has had an opportunity to image the target.
Truth data is the only frame depicted in the coordinate transformation space.

Figure B.2: The state of the simulation shortly after the platform has come into view.
Note that the platform is shown in the camera’s image feed, but there is no AprilTag
detection as the vehicle is too far away to resolve the tag. The EKF coordinate frame
is now visible, but not yet stable. Note that the visual estimate frame is a child of the
platform frame.
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Figure B.3: After some small amount of time, the EKF estimate has now started to
converge onto truth data, but still shows large error as the visual estimate from the
camera is the only input as of yet.

Figure B.4: The AprilTag has now returned a detection and the EKF estimate is
likewise converging towards truth with two estimate to fuse together.
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Figure B.5: The simulation state just before the landing sequence has completed. The
estimates at this range are very reliable.
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