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Abstract

The design of large-scale, complex systems such as plug-in hybrid electric vehicles (PHEVs) motivates the use of

formal optimization methods from both multidisciplinary design optimization (MDO) and optimal control theory.

Traditionally, MDO methods have been used to address the integrated design of engineering systems comprised of

multiple, interacting components and/or disciplines for superior static system performance. Optimal control theory,

on the other hand, is often used to select the best operation strategy of a given dynamic system for superior dynamic

system performance. Although many times in practice the optimal design and control of such dynamic systems are

addressed almost independently [7, 38, 48], this approach generally yields sub-optimal overall design solutions [4]

. This is because the system architecture, or physical design, is inherently coupled with its operation strategy, or

control design. Combined optimal design and control techniques, also known as co-design, can address this issue by

using an integrated approach to enable superior design solutions for dynamic systems [45, 48]. This thesis focuses

on the co-design of large-scale systems, specifically PHEVs based on simultaneous multidisciplinary dynamic system

design optimization (MDSDO) methods using direct transcription (DT). In order to enable a simultaneous approach

for optimizing the design and control of the PHEV, a toolbox was developed to design all the critical component of a

PHEV powertrain including: electric motor, generator, engine, transmission, and high voltage battery. This toolbox

takes the size related design variables as inputs and by using the embedded analytical equations, generates the output

performance characteristics of each component. The MDSDO problem formulation is then solved using GPOPS-

II [39],a DT-based MATLAB software for solving multiple-phase optimal control problems. DT-based simultaneous

problem formulations in MDSDO has already been successfully used in moderate scale problems, however there has

been very few attempts to implement this method on large-scale problems. The current study addresses this issue

and examines the practicality of DT-based simultaneous problem formulations in MDSDO for large-scale, complex

dynamic systems.
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Chapter 1: INTRODUCTION

The design of large-scale, complex systems such as plug-in hybrid electric vehicles (PHEVs) motivates the use of

formal optimization methods from both multidisciplinary design optimization (MDO) and optimal control theory.

Traditionally, engineers use a hierarchical approach for designing the complex systems. In this approach, the physical

design of the system is decided first, then control engineers design the optimal control strategies which are capable

of optimizing the overall performance of the system. However, this procedure generally yields sub-optimal overall

design solutions [4], due to the intrinsic coupling of system architecture, or physical design to its operation strategy,

or control design. Combined optimal design and control techniques, also known as co-design, addresses this issue

by considering both the design and control aspects of the system in the design process [45, 48]. Co-design can be

compared to design for manufacturing (DFM) [4]. In other words, the coupling between system design and control is

comparable to product design and manufacturing. The traditional approach for both is hierarchical which generally

yields sub-optimal solutions and designs for the problem. Unlike the traditional approaches, co-design and DFM take

advantage of an integrated approach, considering all the aspects of the system design in each stage of the product

development. This simultaneous approach in co-design problems can ensure a truly optimal system solution for

dynamic systems and it becomes even more critical for large scale systems.

This thesis is focused on the co-design of large-scale systems, specifically plug-in hybrid electric vehicles (PHEVS).

A new branch of multidisciplinary design optimization (MDO) theory known as multidisciplinary dynamic system de-

sign optimization (MDSDO) which can address the limitations of the traditional co-design approach is used in this

work. A common and efficient approach to handle simultaneous co-design problem formulations from an MDSDO per-

spective is to use direct transcription (DT) techniques from optimal control theory to parameterize infinite-dimensional

input control decision variables and their associated constraints [4]. Despite the success of DT-based simultaneous

problem formulations in MDSDO for moderate-scale, complex dynamic systems, there have been very few studies

to date that extend such methods to large scale, complex dynamic systems. This thesis examines the practicality of

DT-based simultaneous problem formulations in MDSDO for large-scale, complex dynamic systems.

The PHEV powertrain architecture is the case study chosen in this thesis to examine the practicality of DT-based

simultaneous problem formulations in MDSDO for large-scale, complex dynamic systems. In particular, this research

investigates the combined design and supervisory control of a complete PHEV powertrain to minimize the fuel cost of

the vehicle. Plug-in hybrid electric vehicles are hybrid vehicles that have a battery that can be charged using an external

source of electric power and thus can improve fuel economy and reduce emission significantly compared to non-plug-

in hybrid electric vehicles and conventional internal combustion engine (ICE) vehicles [47]. Due to the coupling

between the control strategies and design of the components in a PHEV, it is necessary to study the effects of both the
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design and control of the system on the overall fuel efficiency for having the optimal design of the system. The general

approach that has been used in the literature to optimize the design of the PHEV powertrain, is using the experimental

driven performance maps of the components and some scaling factors to scale the performance for different designs.

In other words, instead of changing the physical design of the system, a scaling factor is chosen that can shift the

performance maps to the desirable regions. Although this is a straightforward approach, it has some limitations.

Scaling factors only work within a limited range and do not imply anything about how the actual design parameters

should change. These limitations prevent us from obtaining meaningful design parameters for the system. To overcome

this issue, in this work, a toolbox is developed that generates the performance characteristics of important components

of the PHEV powertrain using analytical equations based on their design parameters. This toolbox generates the

performance models for the electric motor, generator, high-voltage battery and engine by having up to four design

parameters as the input for each model. After developing the toolbox to generate the output performance of the

vehicle based on the design parameters, we had to come up with a mathematical strategy to solve the co-design problem

formulations from an MDSDO perspective. GPOPS-II [39],a DT-based MATLAB software for solving multiple-phase

optimal control problems, was implemented to solve the simultaneous problem formulation.

Two MDSDO studies for a power-split PHEV powertrain have been performed in this thesis. The first study investi-

gates the component sizing of the high-voltage battery along with the supervisory control of the engine, electric motor,

and generator such that the overall system energy cost is minimized and the system performance-related constraints

are satisfied. In the second study, we have investigated the component sizing of the complete powertrain, including

the engine, electric motor, generator, transmission, and high-voltage battery, along with the supervisory control of the

engine and electric motor for the same system decision objectives and constraints. Note that the component models

used in both studies contains sufficient details such that their sizing is described by up to four decision variables (four

design variables for motor and generator, three for engine, and two for battery). Also, in both studies a DT-based si-

multaneous problem formulation was used to facilitate efficient solution strategies. The results from these two studies

were compared to one another to determine the extent to which their optimal design solutions differ since previous

work on a similar problem suggested that only battery design was significant in such co-design problems [24, 32, 38].

Hence, we have examined the importance of including the entire propulsion system for the co-design problem while

fully demonstrating the capability of MDSDO methods for large-scale, complex system design problems.
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Chapter 2: BACKGROUND

2.1 Combined Design and Control

Traditionally, designers use a sequential process for design and optimization of the systems. In this approach, the

plant is designed and the design variables are being optimized to satisfy the objective function; then an optimal control

strategy is chosen [7, 48]. In other words, the optimal control and optimal design are addressed independently. The

aforementioned approach, generally yields to sub-optimal overall design solutions [4]. This is because the system

architecture, or physical design, is inherently coupled with its operation strategy, or control design. Combined optimal

design and control techniques, also known as co-design, can address this issue by using an integrated approach [19] that

enables superior design solutions for dynamic systems [45, 48]. Co-design problems have been historically classified

into two broad categories known as simultaneous and nested formulations [4,43]. Simultaneous problem formulations

solve a single optimization problem for a comprehensive (physical architecture and control) dynamic system design

objective and associated constraints. Nested problem formulations, however, solve two optimization problems for a

comprehensive dynamic system design objective by embedding an optimal control problem within an optimal physical

system design problem [18]. Both of these approaches have been theoretically proven to yield the combined optimal

design and control solution of an integrated dynamic system [4].

2.1.1 Simultaneous Problem Formulation

The simultaneous formulation ,also known as All-at-Once (AAO) [26], solves a single optimization problem for a

comprehensive dynamic system objective and associated constraints2.1.

min
d,x(t),u(t)

φ(d, x(t), u(t), t) (2.1)

subject to:

g(d, x(t), u(t)) ≤ 0

h(d, x(t), u(t)) = 0

ẋ(t)− f(d, x(t), u(t), t) = 0

where φ(.) is the dynamic system objective function, g(.) is the the vector of system inequality constraints,h(.) is the

vector of equality constraints, f(.) is the dynamic system constraint, d is the vector of design variables, x(t) is the

vector of state decision variables, u(t) is the vector of input decision variables, and t is time.

For a practical rendering of a simultaneous co-design problem, the infinite-dimensional decision variables x(t) and
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u(t) must be parameterized directly or indirectly. Traditionally, parameterization is performed indirectly by assuming

a feedback control structure and using control gains as decision variables. Some of the advantages of simultaneous

co-design problem formulations are the simplicity of the problem formulation as well as its computational efficiency.

Moreover, the accuracy of the original control related decision variables is preserved. On the other hand, the explo-

ration of alternative optimal control solutions is limited due to the assumption of a feedback control system topology.

2.1.2 Nested Problem Formulation

The nested problem formulation solves two optimization problems, an embedded optimal control problem within an

optimal design problem, for a comprehensive dynamic system objective and associated constraints (2.2).

min
d
φ∗(d) =



min
x(t),u(t)

φ(d, x(t), u(t), t)

s.t g(d, x(t), u(t)) ≤ 0

h(d, x(t), u(t)) = 0

ẋ(t)− f(d, x(t), u(t), t) = 0

(2.2)

s.t gd(d) ≤ 0

hd(d) = 0

where φ∗(.) is the optimal dynamic system objective value function, gd(.) is the vector of design inequality constraints,

and hd(.) is the vector of design equality constraints.

In the nested formulation, the infinite dimensional decision variables are decoupled from the design variables,

which enables the nested co-design problem to be solved [4]. The embedded optimal control problem is usually

solved using indirect methods, closed form solutions, or dynamic programming [38]. The nested co-design problem

formulation has the following advantages:

• Any well-known optimal control method can be used to determine the optimal controls-related decision vari-

ables.

• The accuracy of the controls-related decision variables may be preserved.

Apart from the mentioned advantages of this method, it can be complex and computationally expensive.

In the traditional co-design problems, the system objective is considered as a sum of design-oriented and control-

oriented objective functions, thus limiting the scope of the optimization model. Moreover, there is a strong control-

oriented focus in the existing co-design methods which consequently reduces the design optimization problem to a

design requirements optimization problem. As a result, the scope of the problems that can be solved using this method
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are limited to those that require knowledge of the control system topology and/or are completely efficient [5].

2.2 MDSDO

Multidisciplinary dynamic system design optimization (MDSDO) [3] is a relatively new branch of multidisciplinary

design optimization (MDO) which can improve the traditional co-design approach. MDSDO theory is based on

both optimal control and MDO theory and thus it can take advantage of many of their associated practical solution

techniques [3]. The focus in MDSDO is on the systems where the evolution of the state over time is largely dependent

on the value or functionality of the system [4].

MDSDO models can be used in analyzing the existing systems and predicting the system behavior given the current

input specifications, as well as identifying the system specifications for designing a system that produces the desired

output behaviors. Physical and control system design affects the overall behavior of an active controlled dynamic

system. Even though the physical-system and control-system behaviors significantly affect each other and are coupled

to each other, they are often inspected separately. MDSDO addresses the physical and control system design and

optimization simultaneously. The MDSDO framework and using the simultaneous problem formulation motivates the

use of direct transcription (DT) methods from optimal control theory for the parameterization of x(t) and u(t) and

their associated constraints [3,4,6]. DT is a discretize then optimize method. The most popular MDSDO simultaneous

formulation using direct transcription (DT) [4]2.3:



min
d,x(t),u(t)

φ(d, x(t), u(t), t)

s.t g(d, x(t), u(t)) ≤ 0

h(d, x(t), u(t)) = 0

ẋ(t)− f(d, x(t), u(t), t) = 0

→



min
d,X,U

φ(d,X,U)

s.t g(d,X,U) ≤ 0

h(d,X,U) = 0

ζ(d,X,U) = 0

(2.3)

where ζ(.) is the vector of defect (discretized dynamic system) constraints,X is the matrix of discretized state decision

variables, and U is the matrix of discretized input decision variables.

DT-based simultaneous problem has the following advantageous:

• The exploration of alternative optimal control solutions is enabled since there are no assumptions imposed

regarding the control system topology.

• The problem formulation is simple and efficient relative to most nested formulations.

On the other hand, DT-based simultaneous problem has the following limitations:

• Because of the problem discretization some degree of accuracy is lost in the optimal control solutuion.
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• The generation of explicit dynamic constraints for DT can be cumbersome.

DT-based simultaneous problem formulations have been successfully applied to many moderate scale problems [3,6],

however, due to the aforementioned limitations, there have been very few attempts to apply this method on large scale

problems. As a result, we have been motivated to apply this method on a large scale system (PHEV powertrain) in this

work.

2.3 Co-Design of HEVs

Many studies have been focused on the co-design of hybrid electric vehicles (HEV). Patil [37, 38] has performed a

co-design study on a PHEV architecture. The main focus of his work is on the optimal control of the PHEV using

dynamic programming. He has also used a nested formulation to optimize only the design of the high voltage battery

and find the optimal control strategy for the PHEV. Assanis et al. [7]used a nested approach to size the engine of a HEV

based on empirical data and scaling the design variables. In this work, the design variables were limited to a single

component of the powertrain, and the design changes were based on some scaling factors of the design variables.

A more involved study was done by Egardt et al. [15]. In this study, the authors performed a co-design study for

the complete powertrain of a PHEV using convex optimization. The authors used a simultaneous formulation in

their study, and also took advantage of scaling factors for changing their design variables. In this study, the models

were approximated by convex functions and then optimized. This approach guarantees a global optimal solution,

however it loses the accuracy due to the convex approximation. Murgovski et al. [33]also used a convex approach

for simultaneous optimization of battery sizing and power management of a PHEV. Perez et al. [40] used DT-based

problem formulations in optimal control for optimal power management of a HEV. In all of the studies mentioned, the

authors used scaling factors to change their designs using the known performance curves from commercially available

software. This approach only gives us an idea on how much the design variables should change, however it does not

provide us with any specific information on how much each design variable should change. As a result, a detailed

analytical model is needed for each component such that the performance of the component is a function of its design

variables. Having such a model, we can find a more detailed description for changes in design. As a result, in this

thesis we first developed an analytical model for important components of the powertrain and then used the MDSDO

approach using direct transcription (DT) to solve the co-design of a PHEV powertrain. The uniqueness of this work

is due to the use of the MDSDO approach, which balances the importance of design and control in a more equitable

way, and also the use of the simultaneous problem formulation.
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Chapter 3: PHEV MODELING

Hybrid electric vehicles (HEV) are becoming increasingly common as automakers make use of alternative energy

storage systems to improve vehicle performance and efficiency, and to reduce their environmental impact [16]. Plug-

in hybrid electric vehicles (PHEVs) are HEVs with a battery that can be charged using an external source of electric

power, thus improving fuel economy and reducing emissions significantly compared to other HEVs and conventional

internal combustion engine (ICE) vehicles [47]. The main components in a PHEV are the engine, motor/generator

unit(s), high-voltage battery, and transmission.. PHEVs also have three different architectures: series, parallel, and

power split. The configurations of these architectures is shown in Figure 3.1 [25].

Figure 3.1: Hybrid vehicle configurations: (A) parallel; (B) series; and (C) power-split (parallel/series). Diagram
adapted from [25].

In a series PHEV, the engine does not drive the vehicle directly. In these types of vehicles, the output power of the

engine goes to the generator and the generated electricity goes into the motor as well as the battery. Hence, the motor

power is supplied from either the generator or the battery. The motor is connected to the wheels through the transmis-

sion and thus drives the vehicle. In a series configuration, since the engine operation is independent of the vehicle’s

speed , it can work efficiently near its optimal working conditions. The parallel configuration, however, includes both

an electrical and a mechanical power path. Note that the vehicle can be driven independently or collaboratively by

each of these paths. The downside of this configuration is that often an individual unit acts as both motor and gen-

erator which complicates the control strategy [25] . The power-split configuration, which is the most sophisticated

architecture, is a combination of both the series and parallel configurations. It uses a power split device, typically in
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the form of a planetary gear system, to couple the engine, generator, and electric motor within the powertrain system.

A schematic of the power-split configuration is shown in Figure3.2 where M/G1 is the generator and M/G2 is the

motor.

Figure 3.2: The single mode power-split hybrid architecture. Diagram adapted from [34] (M/G1 is generator and
MG/2 is motor)

3.1 Powertrain Model

The powertrain model used in this thesis is based on a single-mode, power-split PHEV architecture that is similar to

that of the MY2004 Toyota Prius. It consists of three control input variables and three state variables. The control

input variables include the engine torque (τe), the electric motor torque (τm), and the electric generator torque (τg).

The state variables include the engine rotational speed (ωe), the electric motor rotational speed (ωm), and the battery

state of charge (SOC). Note that due to the nature of these variables, the powertrain model is governed by both

mechanical and electrical dynamic equations. To derive the mechanical dynamic equations that govern the PHEV

powertrain model, the vehicle road load (Froad) must first be defined:

Froad = Froll + Fdrag (3.1)

In the above, Froll is the rolling resistance and is given by:

Froll = µmvehg (3.2)

mveh = meng +mgen +mmotor +mbatt +mchassis (3.3)

where µ is the rolling friction coefficient, mvehis the vehicle mass, meng is the engine mass, mgen is the generator

mass, mmotor is the motor mass, mbatt is the battery mass, mchassis is the chassis mass, and g is the acceleration due
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to gravity. The drag force is defined as:

Fdrag = 0.5ρAfrCdv
2 = 0.5ρAfrCd(

ωmrtire
K

2
) (3.4)

where ρ is the air density, Afr is the vehicle frontal area , Cd is the vehicle air drag coefficient, v is the speed of the

vehicle , rtire is the tire radius s, and K is the final drive ratio.

Recall that the engine, generator, and motor are all connected together via the planetary gear set (Figure 3.2). For

this specific architecture, Liu and Peng [25]have shown that the road load and rotational speeds can be related to each

other using the following :



Je 0 0 R+ S

0 Jg 0 −S

0 0 J ′m −R

−(R+ S) S R 0





ω̇e

ω̇g

˙ωm

F


=



τe

τg

τ ′m

0


(3.5)

J ′m = Jm + (Jw +mvehr
2
tire)/K

2 (3.6)

τ ′m = τm − Froadrtire/K (3.7)

In the above, Je is the rotational inertia of the engine, Jg is the rotational inertia of the generator, Jm is the rotational

inertia of the motor, Jw is the rotational inertia of the wheel, R is the number of teeth on the ring gear, S is the number

of teeth on the sun gear, F is the internal reaction force between the sun and planet gears, K is the final drive ratio,

ωgis the generator rotational speed, and rtire is the tire radius. Note that the dependencies between the component

speeds in the planetary gear set are governed by Eqn. 3.8:

ωg = (1 +
R

S
)ωe −

R

S
ωm (3.8)

Finally, the state-space equations used for this study can be obtained by using the final matrix equation in Eqn. 3.5

to eliminate F and Eqn. 3.8 to eliminate ω̇g as:

ω̇m =
τm − rtire

K (µmvehg + 0.5ρAfrCd(
ωmrtire

2 )2) +Aτe + A(R+S)−R
S τg

J ′m + Jg(
R
S )2 −AJg R(R+S)

S2

(3.9)

A =
JgR(R+ S)

S2(Je + Jg(
R+S
S )2)

(3.10)

ω̇e =
τe + R+S

S τg + Jg
R
S2 (R+ S)ω̇m

Je + Jg(
R+S
S )2

(3.11)
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The electrical dynamics governing the PHEV powertrain model are directly related to the battery dynamics. There-

fore, a widely-used battery dynamic model developed by Mierlo et al. [52] is implemented. This model assumes that

the battery dynamics can be captured through its open circuit voltage, internal resistance, and capacity. Although a

full model derivation will be discussed in Section 3.4, the resultant state-space equation is defined as:

˙SOC =
Voc(SOC)−

√
V 2
oc(SOC)− 4PbattRi(SOC)

2QRi(SOC)
(3.12)

In this equation, Pbatt is the battery power, Q is the battery capacity, and Voc(SOC) and Ri(SOC) are the battery

open circuit voltage and battery internal resistance, respectively, both of which are functions of SOC. Finally, note

that Pbatt is related to the motor and generator power through the following equation:

Pbatt = PMG1 + PMG2 (3.13)

where PMG1and PMG2 are the power demand of generator and motor respectively.

The values of the fixed parameters described in this section are listed in Table. 3.1.

Table 3.1: Fixed parameters of the road-load model
Parameter Value

rolling friction coefficient (µ) 0.007
acceleration due to gravity (g) 9.8 (m/s2)

air density (ρ) 1.225 (kgm−3)
vehicle frontal area (Afr) 1.746 (m2)

rotational inertia of the wheel (Jw) 0.74 (kg/m2)
tire radius (rtire) 0.282 (m)

number of teeth on the ring gear (R) 78
number of teeth on the sun gear (S) 30

chassis mass(mchassis) 900 (kg)

3.2 Engine Model

Several empirical [20] , thermodynamic, and fluid dynamic models have been developed to understand the operation

of the internal combustion engine. The empirical models are dependent on engine characteristics and cannot be

extended to a general engine. Attempts have been made to scale the empirical models for a general engine, but such

activities have required a great amount of engine test data [44]. The thermodynamics models consist of zero- or quasi-

dimensional models. Zero-dimensional models are not accurately sensitive to the cylinder dimensions and the sizing

parameters are considered as mean values. Fluid flow patterns cannot be evaluated using this model, but due to the

speed and computational efficiency of this model, it is often used [46]. Quasi-dimensional models are rigorously based

on thermodynamic models. They are used to find the effects of the flow rate, fuel chemical composition and chamber
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dimensions on the overall performance of the engine [1, 46]. Developing quasi-dimensional models requires knowing

a great deal of knowledge regarding sophisticated thermodynamical theories which is beyond the scope of this thesis.

Fluid dynamic models use CFD models and are derived from the Navier-Stokes equations.. These type of models can

predict the flow characteristics as well as the combustion chamber dimensions in detail [46]. CFD models are based

on rigorous finite element models and are not computationally efficient to use in this study. Blumberg [10] provides

a detailed survey of the phenomenological models developed based on empirical relationships. These methods are

based heavily on combustion and consider the geometry of the combustion chamber in detail, which complicates the

model beyond the requirements of this study. Methods proposed by Syed et. al [50] consider the engine as a first or

second order system with coefficients that are experimentally determined. Although this predicts the response of the

system accurately, it can’t be implemented as the coefficients are dependent on the engine design variables. Therefore,

the zeroth order method prescribed by Matthews et. al [27] combined with a model suggested by Nam et. al [35] has

been implemented to calculate the maximum torque curve and the fuel consumption rate of a naturally-aspirated Otto

cycle engine based on an appropriate selection of physically meaningful design variables.

3.2.1 Maximum Torque Curve model

The engine model is developed as a zeroth order model for the Otto-Cycle with compression ratio CR,stroke length

lst, and piston bore diameter Db as the design variables. The first step in developing the engine model is calculating

the maximum allowable torque as a function of ωe. For this purpose we use a scalable model suggested by [35].

Before showing the equations we need to calculate the engine displacement (Vdis) as follow:

Vdis = ncyl
π

4
D2
b lst (3.14)

where ncyl is the number of cylinders in the engine. In [35] the author suggests a simple 7th order polynomial to

estimate the maximum bmep as:

bmepmax = 2π(a0 + a1ωe + a2ω
2
e + a3ω

3
e + a4ω

4
e + a5ω

5
e + a6ω

6
e + a7ω

7
e) (3.15)

In this equation. ωe is the engine speed in rad/s and the coefficients are:

a0 = −1200.51

a1 = 298.934

a2 = −17.5860

11



a3 = 0.563420

a4 = −.0104629

a5 = 0.000113228

a6 = −6.64513 ∗ 10−7

a7 = 1.63097 ∗ 10−9

It follows that the max torque can be calculated as:

τe(max) =
bmepmaxVdis

4π
(3.16)

The maximum torque and power curves calculated for Toyota Prius engine based on the equation 3.15 is shown in

Fig. 3.3b.

(a) Toyota Prius BSFC map [38] (b) Maximum torque curve for Toyota Prius engine based on the model

Figure 3.3: Comparison between the actual Toyota Prius max torque curve and the generated values by the model

3.2.2 Fuel Rate Consumption Model

The brake mean effective pressure in an internal combustion engine can be calculated as:

bmep =
4πτe
Vdis

(3.17)
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Heywood [23] suggested the empirical equation 3.18 for engines with a displacement between 845 and 2000 cc to

calculate the friction mean effective pressure (fmep) :

fmep(kpa) = 97 + 15(
ωe

1000
) + 5(

ωe
1000

)2 (3.18)

The indicated mep (imep) is given by:

imep = bmep+ fmep (3.19)

Assuming the ideal Otto Cycle, the indicated thermal efficiency ηIT is given by:

ηIT = 1− 1

CRκ−1
(3.20)

where κ is the heat capacity ratio. The mean effective pressure associated with the fuel is given by:

mepfuel =
imep

ηIT
(3.21)

The fuel power PF can be calculated by:

PF =
2πmepfuelVdisωe

2000
(3.22)

Finally, the fuel rate FR [g/s] can be calculated by knowing the fuel power PF and the lower heating value LHV of

fuel:

FR =
PF
LHV

(3.23)

In Fig. 3.4a an output plot of the model is shown. In Fig. 3.4b engine fuel map of the Toyota Prius based on the

experimental data is shown [55]. Comparing the map generated by the developed model and the experimental data, it

is observed that even though we have a simplistic model, it has acceptable accuracy.

3.2.3 Engine Inertia Model

Due to the complexity of models for calculating the engine mass and moment of inertia, we used a simple approach

to calculate these values. The engine mass is calculated by assuming a constant ratio between the maximum torque at

5000 rpm (maximum power of engine) and the engine mass as follow:

τe(@5000rpm)

meng(nominal)
= 0.6869 (3.24)

13



(a) Fuel consumption map generated by the Matlab code (b) Toyota Prius engine map (experimental)

Figure 3.4: Comparison of engine fuel consumption map. a) Map generated by the Matlba code b) Toyota Prius
engine map (experimental) [55]

Hence the engine mass (meng) is given by:

meng =
τe(@5000rpm)

0.6869
(3.25)

Engine rotational inertia (Je) is also calculated by assuming a constant ratio between engine mass and its rotational

inertia as follow:
meng(nominal)

Je(nominal)
= 839 (3.26)

Je =
meng

839
(3.27)

The engine parameters used in the Matlab code are shown in table 3.2

Table 3.2: Engine specifications used in Matlab code
Parameter Value

Lower Heating Value of Fuel (LHV ) 43.448 kJ/g
Specific Heat Ratio (κ) 1.5

3.3 Electric Machines

Electric machines are critical components within a PHEV powertrain that transform electrical power into mechanical

power and vice versa. Note that when these machines are solely designed to convert electrical power into mechanical

power, they are referred to as motors; conversely, when these machines are solely designed to convert mechanical

power into electrical power, they are referred to as generators. Although permanent magnet (PM) machines, induction

machines (IM), and switched reluctance (SR) machines are all reasonable options for vehicle propulsion applications,
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PM machines are the most preferred due to their superior torque density [42].

There are two main types of PM machines: interior permanent magnet synchronous machines (IPMSMs) and sur-

face permanent magnet synchronous machines (SPMSMs). Most automakers are interested in IPMSMs for electrified

propulsion due to their relatively low price, reliable operation, and mature control techniques [51]. Therefore, in this

study, the electric machine models that are used for the motor and generator are based on the IPMSM architecture.

Electric machines have limiting torque-speed characteristic as shown in Fig. 3.5. Traction motors usually have

a constant torque range from the starting speed to the base speed. They also have a large constant power speed

range (CPSR). The base speed ωb is defined as “the speed at which the machine develops its continuous rated torque

and power with rated inverter output voltage, the available DC link supply voltage and rated magnetic field in the

air gap [42]. Base speed is approximately the speed at which the acceleration is completed and the torque starts to

decrease as higher speed is achieved.

Figure 3.5: Limiting torque-speed characteristics of electric machines (assuming no mechanical losses)

Acceleration demand decreases as the electric machine reaches the desired speed. Maintaining the steady speed

above the base speed, demands much lower torque than the maximum torque. Fast acceleration above the base speed

requires higher power than the product of the rated torque and the base speed so we should compromise between

the required maximum acceleration at high speed and motor power rating. Aerodynamic force is proportional to the

speed squared and it becomes very large at high speeds. Consequently, a max speed, ωmax, is defined at which the

motor cannot meet the torque demand above that value. The speed range at which the traction motor can deliver

the acceleration limited to the power rating is specified by the ωmax/ωbratio. Note that the maximum power of the

machine remains constant between the speed range of ωband ωmaxdue to the current and voltage limitations of the

inverter and motor. This speed range is called the constant power speed range (CPSR=ωmax/ωb). For clutchless
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operations it has been found that the CSPR ≈ 5 [42].

3.3.1 Maximum Torque and Electrical Power model:

The equivalent cicuit and phasor diagram of an IPMSM are shown in Fig. 3.6 and Fig. 3.7 respectively. The conven-

tional per phase D-Q steady state equations for torque and voltage of an IPM machine, considering the stator resistance

Rs, can be obtained from the Fig. 3.7 base on the work done by [49] as follows:

Figure 3.6: Circuit representation of an IPMSM in rotor d- and q-axes [42]

Figure 3.7: IPM phasor diagram [49]

Vd = RsId − ωLdIq (3.28)

Vq = RsIq + ωLdId + ωψm (3.29)

τmg−elec = ψmIq − (Lq − Ld)IdIq (3.30)

where τmg−elec is the electrical torque of motor/generator and ψm = IcLd.

Defining ξ =
Lq

Ld
and having Id = −Isinγ and Iq = Icosγ from the above diagram we have:

Vd = RsId − ωLdIcosγ (3.31)
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Vq = RsIq + ωLdIsinγ + ωψm (3.32)

τmg−elec = ψmIcosγ + 0.5(ξ − 1)LdI
2sin2γ (3.33)

where:

I ≤ Ic (3.34)

V =
√
V 2
d + V 2

q ≤ Vc (3.35)

The electrical speed corresponding to a given phase voltage V , phase current I , and current-angle γ can be found

as:

ωele−mg =
−B ±

√
B2 − 4AC

2A
(3.36)

where:

A = K2
d +K2

q (3.37)

B = 2Rs(−KdId +KqIq) (3.38)

C = R2
s(I

2
d + I2

q )− V 2
c (3.39)

where Rs is the stator resistance, Vc is the rated voltage and:

Kd = LqIq (3.40)

Kq = LdId + ψm (3.41)

In [49], two operation modes have been defined for an IPMSM. Mode I is in the speed range from zero to base

speed ωb, and Mode II is in the range from base speed ωb−mg−elec to maximum speed ωmax−mg−elec for both motor

and generator. In other words, Mode I is the constant torque range and Mode II is the constant power range. The

maximum torque and corresponding rotational speeds for these two modes are given in the following sections.

Mode I Operation-Maximum Torque Curve

The general torque equation for electric machine is mentioned in Eqn. 3.33 as:

τmg−elec = ψmIcosγ + 0.5(ξ − 1)LdI
2sin2γ (3.42)
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In Mode I operation, electric machine works at a constant torque corresponding to maximum torque per ampere

current angle γm. The maximum torque per ampere current angle γmis calculated by differentiating equation 3.33

with respect to γ with I = Ic. If ξ > 1:

sinγm =
−ψm +

√
ψ2
m + 8(ξ − 1)2L2

dI
2
c

4(ξ − 1)LdIc
(3.43)

and if ξ = 1, then sinγm = 0.

The rated torque τkis obtained by substituting γ = γmand I = Icinto equation 3.33 to give:

τmg−elec = ψmIccosγm + 0.5(ξ − 1)LdI
2
c sin2γm (3.44)

The base speed ωb can be found by substituting γ = γm, V = Vc, I = Icinto equation 3.36.

Mode II Operation-Maximum Torque Curve

The rated current maintains in the motor as the speed increases, however the current angle increases from γmto larger

values so as to maintain the rated voltage. For a given γ in mode II, maximum torque is given by substituting V = Vc,

I = Icinto equations 3.33 as:

τmax−mg−ele = ψmIccosγ + 0.5(ξ − 1)LdI
2
c sin2γ (3.45)

where γ changes from γm calculated (Eqn. 3.43) to 90 degrees.

Note that the torque equations shown in section 3.3.1 had per phase values. The total torque τm of the electric

machine can be obtained by:

τm = pmpTm (3.46)

where mpis the number of phases of the electric machine and p is the number of pole pairs.

Electrical Power Model

In order to find the power at each given torque and speed, we need to calculate the corresponding current and current

angle γm. We first find γby solving Eqn. 3.36 for γ. Now that the current angle is found we can plug in its value along

with the given torque to Eqn.3.33 and solve it for I . At this point both the current and current angle are calculated.

The next step is to find the electrical power Pe by using:

Pe = mp(VdId + VqIq) (3.47)
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which is equal to:

Pe = mp(−VdIsinγ + VqIcosγ) (3.48)

wherempis the number of phases of the electric machine and Vd and Vq can be calculated using Eqn.3.31 and Eqn.3.32

respectively.

The maximum output power generated by the model is shown in Fig. 3.9. The maximum torque curve and the

efficiency plot can also be found on Fig. 3.8

(a) Efficiency map generated by the toolkit (b) Efficiency map generated from the experimental data of Toyota Prius
2004 [13]

Figure 3.8: Comparing the output results of the simulation toolkit with the experimental data of Toyota Prius 2004

Figure 3.9: Power vs Rotational Speed (generated by the simulation toolkit)

3.3.2 IPMSM Inductance and Resistasnce Model

Designing a PM motor is a challenging and complicated process. This complexity rises from the large number of

design variables, sensitivity of the model’s performance to the topology, the involved and complicated equations, and

nonlinearities. In this section an analytical model for an IPM synchronous motor is proposed based on the work done

by Soong [49], which would be used later to optimize the design of the electric motor. First analytical methods of

calculating the q-axis and d-axis inductance is reviewed. Then the method for calculating the Ld and Lq is discussed.
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Winding Factors

The equations in this section are based on the work done by Miller [30].

The first step to calculate the inductances is to calculate the number of sine-distributed series turns per phase

Nsinewhich can be found by:

Nsine =
4

π
kω1Nph (3.49)

Nph =
NcoilTco
mp

(3.50)

where Nphis the number of series turns per phase, Ncoilis the number of coils, Tcois the number of turns per coil and

kω1is the fundamental winding factor which is given by:

kω1 = kd1kp1ks1 (3.51)

where kd1, kp1, and ks1are the fundamental distribution factor, chord factor and skew factor of the winding respec-

tively. Distribution factor is defined to take into account that the winding is not concentrated in a single slot, but is

distributed over a number of slots. The fundamental distribution factor kd1is defined by:

kd1 =
sin(qγp/2)

qsin(γp/2)
(3.52)

where γ is the electrical slot pitch angle and q is number of slots per pole per phase. For a winding which is short-

pitched by ε electrical degrees, the fundamental pitch factor is kp1is:

kp1 = cos
ε

2
(3.53)

For reducing the torque ripple, skew is often used. In this model, it is assumed that there is no skew and as a result:

ks1 = 1.

Effective Airgap

There are two effective airgaps defined in the literature: mechanical airgap (gmech) and effective radial airgap (g′).

The effective radial airgap is given by:

g′ = gmechkcrkcs (3.54)
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where kcr and are rotor and stator Carter’s coefficients respectively. The Carter’s coefficient kcr can be calculated by:

kcr =
wt + ws

wt+(1−σ)ws

(3.55)

where wt and wsare tooth width and slot opening width respectively. σ is a function of airgap and tooth width. For

open slots Carter’s coefficient is [49]:

σo =
2

π
[arctan

ws
2gmech

− g

ws
ln(1 + (

ws
2gmech

)2)] (3.56)

If the slot is a semi-closed then the Carter’s coefficient will be:

σsc = σo + 0.364(
ws
gmech

)2/3 (3.57)

Q and D Axis Magnetizing Inductance

The leakage inductance L1is much smaller than the q-axis magnetizing inductance Lqm, hence the q-axis inductance

is:

Lq = Lqm + L1 (3.58)

The magnetizing inductance Lm is given by [28]:

Lm =
3πµoN

2
sinelr1

8p2g′
(3.59)

where Nsineand g′ can be calculated by 3.49 and 3.54, l, r1,and p are the stack length, airgap radius and number of

pole pairs respectively. Here, we have a radially laminated motor. As a result, Lmand Lqmare equal to each other.

If a number of lamination layers inserted inside of the satator in a way that the flux lines are always perpendicular

to the layers, the field distribution wouldn’t change [29]. However, it would increase the inductance which is termed

as intrinsic magnetizing d-axis inductance Ldm:

Ldm =
3πµ0N

2
sinel

8pa
(3.60)

where a is the rotor insulation ratio.
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Slot-Leakage Inductance

The slot leakage per phase Lslt is:

Lslt =
4N2

phmpµ0l

Nslot
Ps (3.61)

where mp and Nslot are number of stator phases and number of stator slots respectively and Psis the total slot perme-

ance ratio which is the sum of the slot permeances for each of the three sections shown in figure3.10

Figure 3.10: Trapezoidal slot dimensions [8]

The permeance of the slot section closest to the airgap neglecting fringing is:

Ps1 =
l1

w1
(3.62)

If l1 � w1then we should take into account the fringing into airgap and Ps1can be found by:

Ps1 =
l1

w1
+

1

π
ln
rb
ra

(3.63)

where raand rbare half the slot opening and slot pitch minus ra. The permeance ratio Ps2 and of the tange’s inside are

given by:

Ps2 =
l2

w2 − w1
ln
w2

w1
(3.64)

The permeance ratio Ps3 of the main body for trapezoidal slots is given by:

Ps3 =
l3
w3

4β2 − β4 − 4lnβ − 3

4(1− β)(1− β2)2
(3.65)
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where:

β =
w2

w3
(3.66)

Moreover, the slot geometry parameters mentioned above can be calculated as:

l1 = ra (3.67)

l2 = (R1 + r1)tan(
π

Nslot
)− r1 − wtb (3.68)

l3 = SlotD − l1 − l2 (3.69)

w1 = 2ra (3.70)

w2 = 2(R1 + l1 + l2)tan(
π

Nslot
)− wtb (3.71)

w3 = 2(R1 + SlotD)tan(
π

Nslot
)− wtb (3.72)

where wtb is the tooth width at base,R1and r1 are stator inner radius and rotor radius respectively.

End-Winding Leakage Inductance

Calculating the end-winding inductance is a complicated process and usually done by finite element analysis. Here

a very simple method developed by [2] for calculating of the inductance is given, which is not based on the FEM

analysis :

LOneTurn = µ0
Dend

2
((1 +

R2
wD

2
end

2
)ln(

4Dend

Rw
) + (

Rw
Dend

)2 1

6
− 1.75) (3.73)

LEnd = LOneTurnpN
2
endXend (3.74)

where Xend is the end-turn leakage adjustment factor.

Total d and q Inductances

Finally the d-axis inductance Ld and Lq are given by:

Ld = Ldm + LEnd + Lslt (3.75)

Lq = Lqm + LEnd + Lslt (3.76)
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Stator Resistance and copper loss

For finding the copper loss, stator resistance is needed. The first step is finding the mean length per turn. The mean

length per turn (MLTstack) is composed of the straight (useful) section in the stator and the useless section in the

end-winding (MLTend).

MLT = MLTend +MLTstack (3.77)

MLTstack = 2l (3.78)

MLTend = πDend (3.79)

where Dend is the mean diameter of the end-winding and is given by:

Dend =
mpq

Nslot
(2R1 + SlotD) (3.80)

where Nslot is the number of slots, R1 is the stator inner radius, and SlotD is the slot depth measured from the airgap.

The phase resistance is given by:

Rph =
ρcuLcon
Acu

(3.81)

where ρcu is the copper resistivity, Lcon is the total length of the conductors, and Acu is the cross sectional area of the

copper. Lconand Acuare given by:

lcon =
NcoilTcoMLT

mp
(3.82)

Acu = πNSH
W 2
d

4

where Ncoilis the number of coils, Tcois the number of turns per coil,NSH is the number of strands per phase, and

Wd is the bare copper wire diameter.

3.3.3 Electric Machine Inertia Model

The electric machine mass is comprised of the mass of stator core Msc , stator teeth Mst, rotor core Mrc, permanent

magnet Mpm, and stator winding Msw. Analytical equations to find each of these quantities are based on work by

Duan [14] and modified as appropriate for IPMSM architecture using data from Oak Ridge National Laboratory [13].

First, the stator core mass is given by

Msc =
π

4
ρs(D

2
so − (Dsi + 2SlotD)2)l (3.83)
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Stator tooth mass is given by:

Mst = Nslot∗ρs ∗ SlotD ∗ wtb ∗ l (3.84)

Rotor core mass can be calculated as:

Mrc = ρsl(
π

4
((2ro)

2 −D2
ri)−NPMwmhm) (3.85)

where rois rotor outer diameter radius and considered as:

ro =
Dsi

2
− gmech (3.86)

Mass of the permanent magnet is given by:

Mpm = NPMρpmlmhmwm (3.87)

Finally, the stator winding mass can be calculated by:

Msw = 3ρcuAculcon (3.88)

where Dsois the stator outer diameter, Dri is the rotor inner diameter, Dsi is the stator inner diameter, l is the stack

length, hmis the magnet thickness, lm is the magnet length, wm is the magnet width, Npm is the number of magnets,

ρs, ρcu, and ρpmare the mass densities of steel, copper, and the permanent magnets respectively. In the end the total

mass Mmotor of the electric motor is:

Mmotor = Msc +Mst +Mrc +Mpm +Msw (3.89)

The moment of inertia of the rotor Jrotor assuming it to be a uniform cylinder of density equal to that of iron is

given by

Jrotor = 0.5(mrc +mpm)0.25(D2
ri + (2ro)

2 + 0.5ρs(
π

4
D2
ril)

D2
ri

4
(3.90)

The design parameters which are used in the models are listed in Table 3.3 and 3.4. The values in Table 3.3 and

3.4are adopted from Toyota Prius 2004 [8, 12, 13]. The geometry related parameters are scaled with respect to the

design vatiables of the models as the design variables change in the process of design optimization.
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Table 3.3: Design parameters used in the motor model based on the values of Toyota Prius 2004
Design Parameter Value Design Parameter Value

Number of pole pairs (p) 8 Rated Voltage (Vc) 500 (V)
Number of phases (mp) 3 # of slots per pole per phase (q) 2
Stator tooth depth (l1) 0.762 (mm) Winding chording angle(ε) 0

Stator slot opening (2ra) 1.93 (mm) fundamental skew factor (ks1) 1
Stator outer diameter (Dso) 346 (mm) mechanical airgap (gmech) 0.73 (mm)

Number of coils (Ncoil) 24 rotor insulation ratio 0.1
Number of turns per coil (Tco) 9 # of strands per phase (NSH ) 2

airgap size (g′) 1.38 (mm) slot depth (SlotD) 33.5 (mm)
Slot opening width (ws) 3.9 (mm) tooth width at base (wtb) 8.185 (mm)

Mass density of steel (ρs) 7800 ( kgm3 ) magnet thickness (hm) 6.5 (mm)
Copper resistivity (ρcu) 1724 ∗ 10−11(Ωm ) magnet length (lm) 83.1 (mm)

Bare copper, wire diameter 0.91 (mm) magnet width (wm) 18.9 (mm)
End leakage adjustment factor (Xend) 0.5 Mass density of the magnet (ρpm) 7550 ( kgm3 )

Table 3.4: Design parameters used in the generator model based on the values of Toyota Prius 2004
Design Parameter Value Design Parameter Value

Number of pole pairs (p) 4 Rated Voltage (Vc) 500 (V)
Number of phases (mp) 3 # of slots per pole per phase (q) 2
Stator tooth depth (l1) 0.762 (mm) Winding chording angle(ε) 0

Stator slot opening (2ra) 1.70 (mm) fundamental skew factor (ks1) 1
Stator outer diameter (Dso) 236.2 (mm) mechanical airgap (gmech) 0.64 (mm)

Number of coils (Ncoil) 24 rotor insulation ratio 0.1
Number of turns per coil (Tco) 9 # of strands per phase (NSH ) 2

airgap size (g′) 0.695(mm) slot depth (SlotD) 29.51 (mm)
Slot opening width (ws) 3.9 (mm) tooth width at base (wtb) 7.209 (mm)

Mass density of steel (ρs) 7800 ( kgm3 ) magnet thickness (hm) 5.72 (mm)
Copper resistivity (ρcu) 1724 ∗ 10−11(Ωm ) magnet length (lm) 29.85 (mm)

Bare copper, wire diameter 0.91 (mm) magnet width (wm) 16.64(mm)
End leakage adjustment factor (Xend) 0.5 Mass density of the magnet (ρpm) 7550 ( kgm3 )

3.4 Battery

The battery is one of the most critical components in PHEV powertrain design. Many electrochemical models have

been developed to represent the battery performance [36, 52, 54], including those by Mierlo et al. [52]. In this thesis,

we use the model by Mierlo et al. to represent a lithium-ion battery pack for a PHEV.

3.4.1 Battery State of Charge Model

The equivalent circuit of the battery model is shown in Fig. 3.11.

As we have described the battery is an equivalent circuit model, the equations describing its current flow (Ib) and
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Figure 3.11: Equivalent scheme of a simple battery model.

rate of change of SOC are given as:

Ib =
Voc −

√
V 2
oc(SOC)− 4PbattRi(SOC)

2Ri(SOC)
(3.91)

dSOC

dt
= −Ib

Q
(3.92)

where SOC is the state of the charge of the battery, Voc(SOC)is the open circuit voltage as a function of SOC,

Ri(SOC)is the internal resistance as a function of SOC, and Q is the capacity of the battery. If we connect Ns series

cells and Np parallel cells together, then the open circuit voltage, internal resistance, and the capacity of the whole

battery package can be given by:

Voc(SOC) = NsVoc,cell(SOC) (3.93)

Ri(SOC) =
Ns
Np

Ri,cell(SOC) (3.94)

Q = NpQcell (3.95)

Pbattcan be calculated as:

Pbatt = PMG1 + PMG2 (3.96)

where PMG1and PMG2 are the power demand of generator and motor respectively.

Considering the battery dynamics, both the Vocand Riare functions of SOC. For a given battery cell topology the

battery open circuit voltage and internal resistance curves for one cell are shown in figure 3.12.
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(a) Open circuit voltage

(b) internal resistance

Figure 3.12: Equivalent circuit battery model identified from commercial lithium-ion cells with LiFePO4 cathode [31]
(Battery model: A123 Systems ANR26650M1A ) a) Open circuit voltage b) internal resistance.

3.4.2 Battery Inertia Model

The battery pack mass is calculated assuming that the mass of each cell is known. In this respect, the total mass would

be the product of total number of cells and the mass of each individual cell:

mbatt = NsNbmcell (3.97)

where mcell is the mass of each individual battery cell. The parameters used in the battery model are listed in Table.

3.5.

Table 3.5: Battery design parameters (Battery model: A123 Systems ANR26650M1A )
Design Parameter Value

mass of each cell (mcell) 0.0727 (kg)
battery capacity (Q ) 2.3 (Ah )

Based on the model discussed in this section, a Matlab code is written which gets two design variables Ns, Npand

calculates the ˙SOC, battery pack mass, and output current as a function of SOC.
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Chapter 4: MDSDO OF PHEV POWERTRAINS

Two studies have been considered in this thesis:

1. Component sizing of the battery along with the supervisory control of the engine, motor, and generator to

minimize the operating cost of the PHEV (energy cost).

2. Component sizing of the entire propulsion system (engine, motor, generator, battery, and transmission) along

with the supervisory control of the engine, motor, and generator to minimize the operating cost of the PHEV

(energy cost).

The aim of these two studies is comparing the effect of optimizing the control trajectory of the system and only

considering the battery’s design as an unknown, versus optimizing the design and control of the whole propulsion

system of the PHEV on the operating cost. A similar study has been done before by Edgart et al. [15]. The main

differences between this thesis and their research are as follows:

1. They use scaling factors exclusively to represent the component design variables, and these variables are merely

dimensionless power ratings that scale the size of their performance curves for different designs. Although

some of our performance curves (engine and battery) are effectively scaled for different designs, we still use

physically meaningful design variables to represent each of those components. Moreover, the motor/generator

models used in this thesis do not scale their performance curves for different designs but rather compute distinct

performance curves based on different values of physically meaningful design variables.

2. Their formulations require all of their functions (objectives and constraints) to be convex. However, there is no

such restriction in our approach.

3. Their models are less complex in terms of the number of variables and functional representation.

4. By using a commercially available software known as GPOPS-II, we were able to use a more efficient discretiza-

tion approach (hp-adaptive gaussian quadrature collocation, LGR collocation method) than their approach,

which simply uses equally-spaced discretized points.

In the next sections, an overview of the two different optimization approaches is discussed.

The objective function used in this study is:

min
d,x(t),u(t),t

Φ =

ˆ tf

t0

(Cfuelṁfuel(d, x(t), u(t), t) + CelecPbatt(d, x(t), u(t), t))dt (4.1)

where Cfuel and Celecare the cost of fuel and electricity respectively. Moreover, x(t) and u(t) are state decision

variable vector and control input vector respectively. Finally, d is the design variable vector.
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Table 4.1: Energy Costs
Parameter Value

electricity cost (Celec) 0.13 ($/kWh)
fuel cost (Cfuel) 2.76 ($/gallon)

4.1 Battery Design & PHEV Supervisory Control

The first part of the optimization is done based on the assumption that the design variables of the motor, generator,

engine and final drive ratio are fixed and only the battery design variables can change. The objective and constraints

of this problem are as follows:

min
d,x(t),u(t),t

Φbatt = min
d,x(t),u(t),t

ˆ tf

t0

(Cfuelṁfuel(d, x(t), u(t), t) + CelecPbatt(d, x(t), u(t), t))dt (4.2)

subject to path constraints:

ωe,min(d) ≤ ωe ≤ ωe,max(d) (4.3)

ωm,min(d) ≤ ωm ≤ ωm,max(d) (4.4)

ωg,min(d) ≤ ωg ≤ ωg,max(d) (4.5)

SOCmin ≤ SOC ≤ SOCmax (4.6)

τe,min(d, x(t)) ≤ τe ≤ τe,max(d, x(t)) (4.7)

τg,min(d, x(t)) ≤ τg ≤ τg,max(d, x(t)) (4.8)

τm,min(d, x(t)) ≤ τm ≤ τm,max(d, x(t)) (4.9)

− V 2
oc(d)

4Ri(d)
≤ Pbatt(x(t), u(t)) ≤ V 2

oc(d)

4Ri(d)
(4.10)

Vveh,min ≤
ωmrtire
K

≤ Vveh,max (4.11)

τgωg < 0 (4.12)

|τgωg| − |τeωe| ≤ 0 (4.13)

ω̇e,min < ω̇e < ω̇e,max (4.14)
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design variable constraints:

Ns,min ≤ Ns ≤ Ns,max (4.15)

Np,min ≤ Np ≤ Np,max (4.16)

where t is time, and vectors d,x(t), and u(t) are defined as follow:

d = [Ns, Np] (4.17)

x(t) = [ωe(t), ωm(t), SOC(t)] (4.18)

u(t) = [τe(t), τg(t), τm(t)] (4.19)

As discussed in the earlier chapters, the aim of this study is to solve the co-design problem using direct transcription

method. Direct transcription transforms infinite dimensional control design problems into finite dimensional nonlinear

programming problems [3] [22]. In order to solve the problem, GPOPS-II [39],a DT based MATLAB software for

solving multiple-phase optimal control problems was implemented. GPOPS-II uses an hp-adaptive version of the

Legendre-Gauss-Radau (LGR) orthogonal collocation method [17, 39]. After discretizing the problem, GPOPS-II

sends the values of the collocation points to an interior point optimization toolbox called IPOPT [53]. IPOPT uses

a primal-dual interior point algorithm with a filter line search for non-linear programming. The NLP problem then

would be solved using IPOPT, and the final optimal state and control trajectories as well as time independent variables

will be output of the GPOPS-II. The settings used in GPOPS-II are listed in Table. 4.2.

Table 4.2: GPOPS/IPOPT settings
Field Value

NLP solver IPOPT
Linear solver ma57

ipopt tolerance 10−6

ipopt max iteration number 3000
derivative supplier sparseCD

derivative level second
scale method automatic bounds
mesh method hp-LiuRao-Legendre

mesh tolerance 10−3

mesh maximum iteration 45
minimum collocation points in a mesh 2
maximum collocation points in a mesh 14

In this study, the vehicle should follow a predefined drive schedule trajectory. The chosen road profile in this study
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is US06 which is shown in Fig.4.1. Given the vehicle’s speed (Vveh) and by using Eqn. 4.20 we can find ωm, and then

we set the upper and lower bound on this state (±5km/h).

ωm =
KVveh
rtire

(4.20)

Figure 4.1: US06 drive schedule

The aforementioned problem is solved using GPOPS-II [39]. The optimal value of the objective function, as well

as the optimal value for the design variables in this study are shown in Table.4.3. The run-time of the algorithm was

about 27 hours using a computer with 16 GB of ram and CPU model: Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50

GHZ 3.5 GHZ (2 processors)

Table 4.3: Optimal values for battery design problem
Variable Optimal Value

objective function (fuel and electricity cost) $ 0.1841
number of series cells in the battery pack (Ns) 122.55
number of series cells in the battery pack (Np) 141.2

The optimal trajectories of control inputs and states are shown in Fig. 4.2 and Fig. 4.3 respectively.
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(a) Engine Torque (τe)

(b) Motor Torque (τm)

(c) Generator Torque (τg)

Figure 4.2: Optimal control input trajectories for battery study
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(a) SOC

(b) Engine rotational speed (ωe)

(c) Motor rotational speed (ωm)

Figure 4.3: Optimal trajectories of states for battery sudy
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As a sense check of the results we have calculated the total power demand for satisfying the US06 drive schedule

and then compared it with the total tractive power of engine and motor. The power demand at the wheels can be

calculated as:

Pdemand = τdemandωm (4.21)

Where Pdemand is the power demand at the wheels and τdemand is the demanded torque at the wheels and can

be calculated using equations: 4.20,3.7,3.9 . The total generated power of engine and motor, using the values of the

optimization study, can be calculated study as follow:

Ptractive = τeωe + τmωm (4.22)

This comparison is illustrated in Fig.4.4.

Figure 4.4: Comparison of demanded power and generated tractive power for the battery study

4.2 Powertrain Design and PHEV Supervisory Control

This part of the optimization is performed based on the assumption that the design of the engine, battery, motor,

generator, and final drive ratio are unknown and needed to be found via the optimization. In this thesis, each component

is designed analytically through the corresponding design variables associated with them and the performance of them

are calculated based on those designs. The objective function would be the same as the objective function in section

4.1, but with a different d vector:
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min
d,x(t),u(t),t

ΦPT = min
d,x(t),u(t),t

ˆ tf

t0

(Cfuelṁfuel(d, x(t), u(t), t) + CelecPbatt(d, x(t), u(t), t))dt (4.23)

subject to path constraints:

ωe,min(d) ≤ ωe ≤ ωe,max(d) (4.24)

ωm,min(d) ≤ ωm ≤ ωm,max(d) (4.25)

ωg,min(d) ≤ ωg ≤ ωg,max(d) (4.26)

SOCmin ≤ SOC ≤ SOCmax (4.27)

τe,min(d, x(t)) ≤ τe ≤ τe,max(d, x(t)) (4.28)

τg,min(d, x(t)) ≤ τg ≤ τg,max(d, x(t)) (4.29)

τm,min(d, x(t)) ≤ τm ≤ τm,max(d, x(t)) (4.30)

− V 2
oc(d)

4Ri(d)
≤ Pbatt(x(t), u(t)) ≤ V 2

oc(d)

4Ri(d)
(4.31)

Vveh,min ≤
ωmrtire
K

≤ Vveh,max (4.32)

τgωg < 0 (4.33)

|τgωg| − |τeωe| ≤ 0 (4.34)

ω̇e,min < ω̇e < ω̇e,max (4.35)

The design variable constraints are:

CRmin ≤ CR ≤ CRmax (4.36)

Db,min ≤ Db ≤ Db,max (4.37)

Lst,min ≤ Lst ≤ Lst,max (4.38)

Rm,min ≤ Rm ≤ Rm,max (4.39)
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lm,min ≤ lm ≤ lm,max (4.40)

Imax,lower ≤ Imax,m ≤ Lmax,upper (4.41)

Rg,min ≤ Rg ≤ Rg,max (4.42)

lg,min ≤ lg ≤ lg,max (4.43)

Imax,g,lower ≤ Imax,g ≤ Lmax,g,upper (4.44)

Ns,min ≤ Ns ≤ Ns,max (4.45)

Np,min ≤ Np ≤ Np,max (4.46)

where t is time, and vectors d,x(t), and u(t) are defined as follows:

d = [Ns, Np, CR,Db, Lst, Rm, lm, Imax,m, Rg, lg, Imax,g,K] (4.47)

x(t) = [ωe(t), ωm(t), SOC(t)] (4.48)

u(t) = [τe(t), τg(t), τm(t)] (4.49)

The options used in GPOPS-II are the same as the options mentioned in section 4.1 and are listed in Table.4.2.

Constraints used in this study are the same as the constraint mentioned in section 4.1, however the design vector is

different. The optimal results of this study along with the values from the study of section 4.1 are listed in Table 4.4.

The run-time of the algorithm was about 35 hours using a computer with 16 GB of ram and CPU model: Intel(R)

Xeon(R) CPU E5-2637 v3 @ 3.50 GHZ 3.5 GHZ (2 processors)

Design Parameters and Variables Battery Only Optimization System Level Optimization
Ns: number of seris cells in the battery pack 122.55 117.67
Np: number of parallel cells in the battery pack 14.1 13.43

Rg: MG1 stator inner diameter 142.6 (mm) 140 (mm)
lg: MG1 stack length 30.5 (mm) 30 (mm)

Imax,g: MG1 maximum current 75 (A) 75 (A)
Rm: MG2 stator inner diameter 161.9 (mm) 160 (mm)

lm: MG2 stack length 84 (mm) 84 (mm)
Imax,m: MG2 maximum current 122.5 (A) 121.5 (A)

K: Final drive ratio 4.113 3.041
CR: Engine compression ratio 13 13
Db:Engine piston bore diameter 75.52 (mm) 63 (mm)
Lst: Engine stroke length 84.7 (mm) 68 (mm)

objective function (fuel and electricity cost) $ 0.1841 $ 0.1519

Table 4.4: Comparison between the results of the system level optimization and the battery only optimization
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The optimal trajectories of control inputs and states are shown in Fig 4.5 and 4.6 respectively.

(a) Engine Torque (τe)

(b) Motor Torque (τm)

(c) Generator Torque (τg)

Figure 4.5: Optimal control input trajectories for powertrain study
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(a) SOC

(b) Engine rotational speed (ωe)

(c) Motor rotational speed (ωm)

Figure 4.6: Optimal trajectories of states for powertrain study
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Finally, the comparison between the generated tractive power and demanded power is shown in Fig.

Figure 4.7: Comparison of demanded power and generated tractive power for the powertrain study
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Chapter 5: CONCLUSION AND FUTURE WORK

The DT-based simultaneous problem formulation was extended successfully to a large-scale system design application,

namely the co-design of PHEV powertrain. Two MDSDO studies for a power-split PHEV was performed in this thesis.

The first study investigated the component sizing of the high-voltage battery along with the supervisory control of its

engine, electric motor and generator such that the total system energy cost is minimized while satisfying the system

performance-related constraints. The second study, investigated the component sizing of the complete powertrain,

which includes the engine, electric motor, generator, transmission, and high-voltage battery, along with the supervisory

control of the engine, electric motor, and generator for the same system decision objectives and constraints. In both

these studies, detailed models were used which were capable of capturing the effect of meaningful design variables

on the performance of the components. GPOPS-II [39], a commercially available software, was used to solve the

optimization study using DT. By comparing the results of the two studies, it was shown that the objective function has

decreased about 17.5% when the whole powertrain design was subjected to the optimization. This fact suggests that

although sizing of the high voltage battery is an important factor, the co-design of the whole powertrain, can indeed

reduce the operating cost of the vehicle even more.

An attempt was made to use fairly meaningful models in this thesis. A sophisticated model was developed for

sizing the electric machine. The models that were used for the battery and engine also contained meaningful design

variables; however to some extent, they were effectively scaling the performance curves for different designs. In this

respect as a future work, we can use more detailed analytical models for engine and battery to study the effect of the

co-design of the powertrain on the overall performance of the vehicle. Moreover, it was shown that DT can be used in

large scale MDSDO studies. As a result we can implement the same approach to different large-scale systems.
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Appendix A: DESIGN OPTIMIZATION, OPTIMAL CONTROL AND DIRECT

TRANSCRIPTION

In this appendix a brief introduction to the design optimization, optimal control and direct transcription is given for

better understanding of these concepts.

A.1 Optimal Control

A simple definition of optimal control is a design approach which seeks to identify the control design that optimizes

the system objective. The cost function sought to be minimized in optimal control problems often has the form of:

φ(x(t), u(t), t) = ψ(x(tF ), tF ) +

ˆ tF

0

L(x(t), u(t), t)dt (A.1)

where x(t) is the state variable trajectory, u(t) is the control input trajectory, t is time, tF is the length of the time

horizon,ψ(.) is the Mayer term (terminal cost) and L(.) is the Lagrangian term (running cost). Constraints can also

be posed on the problem, which would be discussed later. Equation A.1 is called Bolza objective if both the Mayer

and Lagrangian terms exist. If u(t) is the control trajectory to be optimized, the problem is called an open-loop

control problem because the control input is independent of state and specified directly, whereas the control input

depends on state in a feedback control system. A traditional approach to solve the optimal control problem is using

the optimality conditions, such as Pontryagin’s maximum principle (PMP), for finding the optimal input trajectory

u∗(t) which minimizes the cost function φ(.) [11, 41]. Numerical calculations are implemented in cases where the

analytical solution to the boundary value problem (BVP) cannot be found or it is difficult to calculate. Methods

that are based on Pontryagin’s maximum principle are called indirect methods. These approaches are considered as

optimize then discretize methods, since the boundary value problem found by optimality conditions is first discretized

and then solved [9]. Another approach to solve the optimal control problems is the direct method. In this method the

optimal control problem is first discretized and then optimized by transcription to a non-linear programming (NLP)

formulation. Direct Transcription (DT) is considered as one of the discretize then optimize approaches which is

also capable to solving the all at once(AAO) co-design problem [21]. We are going to elaborate more on DT in the

following sections, as we will use this method to solve our problem. Before moving to the approaches for solving the

co-design problem, physical system design optimization is discussed briefly.
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A.2 Physical-system Design Optimization

Physical system design optimization is an attempt to achieve the optimal design which satisfies the system objectives.

Design optimization can be considered as decision making process in which the decision variables are time invariant

whereas in the optimal control, decision variables are time variant . In this definition, the time invariant variables are

usually concerned with the physical design of a system. The compact formal statement of the optimization problem in

the negative null form is:

minf(x)

g(x) ≤ 0

h(x) = 0

x ∈ X ⊆ Rn (A.2)

Where x is the vector of design variables, X is the set of all possible design variables, f(x) is the objective function,

g(x) is the inequality constraint and h(x) is the equality constraint of the problem.

Now that we have described the overall definitions of optimal control and design optimization, we are going to

discuss about the general methods for solving the co-design problem in the next section.

A.3 Direct Transcription

In this section we are going to discuss about the trajectory optimization using direct transcription (DT) and the appli-

cation of this method in co-design. Trajectory optimization is an attempt to find the control histories that take a set

of states from specified initial conditions to their desired final conditions. These control histories are to minimize an

objective function that is a function of states and controls. These state are also governed by a system of first-order

ordinary differential equations. In the process of optimization, algebraic path constraints for the control and state

variables as well as boundary conditions should be satisfied. Objective function is:

φ(x(t), u(t), t) = ψ(x(tF ), tF ) +

ˆ tF

t1

L(x(t), u(t), t)dt (A.3)

subject to dynamic constraints:

ẋ = f(x(t), u(t), t) (A.4)

the inequality path constraints:

Cmin ≤ C(x(t), u(t), t) ≤ Cmax (A.5)
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and final conditions:

η(x(tf ), u(tf ), tf ) = 0 (A.6)

where the initial conditions x(t1) = x0 at the fixed initial time t1 are assigned and the final time tf is free. To

solve the optimal control problem, we should reduce the problem to a nonlinear programming problem (NLP) [22].

In other words, direct transcription, transforms infinite dimensional control design problems into finite dimensional

nonlinear programming problems [3]. DT requires the continuous variables be represented (or approximated) by

discrete variables, so that the problem becomes one of constrained parameter optimization problems. As a result, in

DT we should first discretize the time history into N sub-intervals. The endpoints of these sub-intervals are denoted

as {t0, t1, t2, ..., tN}, where t0 is the initial time t1 and tN is the final timetF as defined in equation A.3. Within each

interval [ti, ti+1], the time history of a solution including the numerical integration of the system equations is then

approximated. The solution for dynamic constraints (eq. A.4), may be approximated using numerical integration rules

such as trapezoidal integration rule:

ˆ ti+1

ti

f(t)dt =
∆ti
2

[f(ti) + f(ti+1)], i = 0, ..., N − 1 (A.7)

Within each sub-interval, collocation points are selected in a way to increase the accuracy of the numerical integra-

tion. The resulting integration rules are a family of modified Gaussian integration rules known as the Gauss-Lobatto

rules [17]. Collocation points that maximize the power of ∆ti in the local truncation error are the roots of the cor-

responding Jacobi polynomial. This family of polynomials are orthogonal on the interval [−1, 1] with respect to the

weight function ω(s) = (1 − s)α(1 + s)β In particular, for the Gauss-Lobatto rules, α = β = 1. A sub-interval

with endpoints [ti, ti+1] may be transformed to the interval [−1, 1] using the transformation s = 2(t−ti)
∆ti

− 1. The

interpolating polynomial is formulated by interpolating f(t) at the endpoints of the interval [−1, 1] and at the zeros of

the corresponding Jacobi polynomial.

DT can also be applied to co-design problem. Solving a co-design problem using DT is considered as a simultane-

ous optimization approach in which design variables are considers as time independent variables in DT. We can show

this dependency in the objective function as follow:

min
d,x(t),u(t),t

φ(d, x(t), u(t), t) (A.8)

subject to:

g(d, x(t), u(t), t) ≤ 0 (A.9)

h(d, x(t), u(t), t) = 0 (A.10)
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ẋ(t)− f(d, x(t), u(t), t) = 0 (A.11)

where φ(.) is the dynamic system objective function, g(.)is the vector of system inequality constraints, h(.) is the vec-

tor of system equality constraints, f(.) is the dynamic system constraints, d is the vector of design decision variables,

x(t) is the vector of state decision variables, u(t) is the vector of input decision variables, and t is time.
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