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Abstract 

With the increase in number of social networks and technological advancements in the 

last two decades, there is vast amount of digital communication happening between people. 

Most of these communication networks evolve with time and can be represented in the form of 

graphs. Link Prediction is finding edges that may appear in the future in the network using the 

current data in the network. Link prediction finds many applications such as “Recommender 

systems” in social networks like Facebook, Twitter, LinkedIn etc. 

Link prediction is a vast area and many link prediction algorithms exist today each 

catering to its specific purpose. Some of these algorithms deal with the problem of link 

prediction in Time-evolving graphs and they have comparatively better performance than a 

random predictor. However, their raw performance, when considered by itself, can still be 

improved. In our work, we aim to develop an algorithm that not only has comparatively better 

performance than the random predictor, but also to have very good raw performance. 

In this work, the main idea for link prediction is to take into account the past data along 

with the current data to predict the edges to be formed in the future. To do this, we calculate 

the conditional probability of two nodes having an edge between them in the future given they 

have certain feature value. Proximity measures are taken as features between the nodes, and 

they are calculated for every possible edge.  Bayesian inference is used to calculate the 

posterior probability of an edge to occur in the future, given we have current and past data. 

Past data is used to calculate Prior probability of edges. We also experimented with the way 
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Prior probability of an edge is computed by changing the way in which it is computed currently, 

and observed the algorithm’s behavior with this version of Prior probability. 

Using this methodology, our algorithm is tested against different types of datasets and 

the relevancy measures such as precision, recall, and specificity are calculated to evaluate the 

performance of link prediction algorithm. A detailed analysis of the results confirms that the 

proposed link prediction algorithm performs better than the existing algorithms with 

significantly improved  precision and recall values.  Our algorithm is also tested by using an 

alternative second method to calculate the Prior probability of an edge and interestingly, it 

showed that even though the performance of our first proposed method is better than this, the 

second version has better precision and recall values than some of the existing algorithms. 
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Chapter 1 

Introduction  

A communication network among any groups of people can be represented in the form of 

graphs, and the communication networks are ubiquitous in our society. This network data is 

often represented in the form of graphs, which are then used to study further about the 

domain from which the data is derived. With the growing popularity of social network data, we 

are now able to get large graph datasets which can be used to discover valuable social 

characteristics by “Graph Mining”. While graph mining covers wide variety of topics, link 

prediction is one of the important areas of graph mining.  

Link prediction aims to use the current graph data to predict edges that may be formed in the 

future. Applications of link prediction can be seen everywhere on a daily basis. For example, 

Facebook graphs of people can be used to predict if there is a chance of that any two people 

will become friends in the future. Similarly, ‘People you may know’ on LinkedIn is an application 

of link prediction. However, link prediction is not just limited to social networks. It can be 

applied to any graph which evolves with time. For example, email communication network of 

Enron is used to test our algorithm. 

1.1 Motivation 

The motivation comes from the need to extract meaningful knowledge from the  large 

amount of graph data that is available in digital form for a large number of domains.  Also, 

link prediction is a vast area with so much room to experiment the way the link prediction 
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problem is handled. Both of the aforementioned things inspired me to pursue this problem 

of link prediction in time evolving graphs, and research on if we can try to solve the 

problem differently from the existing approaches and improve the performance of 

predictions. 

There are quite a few existing works that dealt with the problem of link prediction, and 

most of them use proximity measures between the nodes in a graphs for solving the 

problem of link prediction. John Kleinberg’s work [1] for solving the link prediction problem 

is amazing because it was able to prove that using the values of proximity measures alone 

for predicting the edges outperforms the random predictor as well as several other simple 

approaches. 

We have put some thought into what if the past structure of the graph is used along with 

the current data, and also to find out if we can use the probabilistic knowledge from the 

past behavior of the graph  in the problem of link prediction. Bayesian inference is one of 

the key ideas on which our algorithm is based. The  reason is that we believe that using the 

past data in addition to the current data to predict the future edges is an effective way to 

solve this problem.  Bayesian inference has numerous applications in various fields, 

including science, engineering, philosophy, medicine, law, and medicine.  

1.2 Datasets 

 

Enron email dataset: 

This is the first dataset that we have tested for our link prediction algorithm. It consists of 

over 500,000 email communications among 151 employees of Enron Corporation over a 

period of three years. Firstly, we define the time periods for what we consider as the past, 
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the current evidence, and test data for prediction before running our algorithm against a 

dataset. In this case, we have decided to take the two months current data as evidence 

data, and the six months before the current period as the past data, which is used to 

predict the edges for the next two months. 

Facebook WallPosts dataset: 

Once we tested  our algorithm with the first dataset, we validated our algorithm against 

this real-world Facebook dataset collected from about 40,000 users over the period from 

September 2004 to January 2009 [13]. We used only that data period for which we have 

consistent amount of data, i.e., we ignored the initial periods during which there isn’t much 

data, and also the last few months of data for which there is too much data. In total we 

omitted around 23 months’ data out of 51 months and considered the remaining 28 

months’ data for running our algorithm. This dataset contains information of when a 

person posted something on another person’s wall. Having timestamp information, the 

dataset is very crucial  since our algorithm is mainly dependent on defining a past data 

period to compute the prior probability values of edges getting connected. It should be 

noted that this dataset is slightly different from the first dataset in one major aspect. There 

are edges from one node to itself, which indicates that a person has posted a Facebook 

status at that particular timestamp value. So, apart from predicting if a person posts on 

someone else’s wall during test period, we are also interested in whether a person posts on 

his own wall, i.e., keeping a status message.  

In total, there are 46,952 unique nodes in this dataset which has 876,993 records over the 

period of September 2004 to January 2009. However, since the data is sparsely populated 
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in the first few months and very densely populated in the last few months, we decided to 

use the data present in the middle 20 months which have almost equally distributed data. 

From this data, we extracted three different datasets by randomly selecting 400, 600, and 

800 nodes and then extracting all the edges which contain the respective randomly picked 

nodes. The algorithm was executed on these three subsets of the dataset. Also, a second 

version of algorithm which uses a different version of prior probability computation was 

also executed with these datasets.  

 

1.3 Overview of other chapters 

 

Using our approach for solving the problem of link prediction we obtain good link 

prediction results for both the Enron and the Facebook WallPosts datasets. Since we also 

take the past structure and edge labels of the graph along with the current structure and 

edge labels of the graph into account, we obtain better precision and recall value when 

compared with the other existing approaches. In the following chapters, we discuss related 

work in chapter two, our algorithm in detail in chapter three, experiments and results in 

chapter four, and will conclude with future work and conclusion in the fifth chapter. 

 

 

 

 

 



5 
 

Chapter 2 

Related Work 

 

This section discusses the related research work done in the area of link prediction and how our 

work relates to it. Link prediction is an important field where significant amount of research has 

already been done. However, there are some sub-areas like link prediction in evolving graphs 

that still needs to be explored further. One reason for limited research activity in the field of 

link prediction in evolving graphs is that there is not much evolving social network graph data 

along with timestamps available in the public domains for research.  

We use the term “proximity measure” in this document to represent a measure of how similar 

two nodes are in a given graph. The symbol ‘Γ’ used below represents the number of neighbors 

of a particular node in the network. Proximity measures used in this thesis are explained below: 

Common Neighbors: “Common Neighbors” of two nodes ‘x’ and ‘y’ in a network is the number 

of neighbors that are common to both ‘x’ and ‘y’. 

 

Jaccard’s coefficient: This similarity metric compares the similarity of two nodes based on their 

shared neighbors in the following way. 
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Preferential Attachment: It is based on the idea that the probability that a new edge to be 

formed in the future has node x as an endpoint. The value is proportional to number of 

neighbors the node currently  has.  

 

Adamic Adar Measure: This measure weighs rarer features more heavily when determining 

whether two nodes are similar. Adamic Adar measure for two nodes x and y is defined as: 
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2.1 The Link Prediction Problem for Social Networks by David Liben-Nowell and 
Jon Kleinberg 
 
David Liben-Nowell and Jon Kleinberg analyzes the problem of link prediction in social networks 

in this work [1]. This work  is aimed at predicting future edges given the present state of 

network using the proximity measures directly. It is of utmost importance to us since we refer 

this algorithm to benchmark our results. Their experiments on large co-authorship networks 

suggest that information about future interactions can be extracted from network topology 

alone. These proximity measures when used for link prediction can outperform the direct 

measures. 

A summary of the work presented in this paper is as follows: 

 The proximity measures used here are graph distance, common neighbors, Jaccard’s 

coefficient, Adamic/Adar, preferential attachment, Katz, hitting time, rooted PageRank, 

and SimRank. 

 Suppose that the given social network is represented in the form of a graph G=<V,E> in 

which each edge represents an interaction between nodes at a particular time t(e). 
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Multiple interactions between two nodes at different timestamps are represented as 

parallel edges.   

 From the graph G, get the subgraph G(t,t’) and define a training interval G(t0,t0’) and 

test interval G(t1,t1’) such that t0<t0’< t1<t1’.  

 The aim is to get the proximity measures for all possible future edges that can be 

formed between the nodes present in a training interval and use those values to predict 

the new edges that will be formed in the test interval. 

 To make better predictions, the test set of nodes is restricted to nodes which are active 

throughout both the periods, i.e., in the co-authorship network it refers to the authors 

who are active throughout the training and also in the test period. The set ‘Core’ is 

defined as the set that  contains the set of nodes that meet the ‘threshold’ in both the 

training and test intervals. 

 For example, if the threshold is defined as ‘3’, the set Core will consist of all the authors 

who have coauthored at least 3 papers in both the training and the test periods. And this 

algorithm aims at predicting the future edges likely to be formed between the authors 

present in ‘Core’ in the test period. 

 

The process by which the performance of a link predictor is calculated is explained below: 
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a) Each measure outputs a ranked list of pairs in (AxA)-(Eold), which are the predicted 

new collaborations in decreasing order of confidence, where, 

A – Vertices present in training interval, 

AxA – all possible vertex combinations, and 

(AxA)-(Eold) – all possible future vertex combinations. 

b) All possible vertex combinations from the set ‘core’ can be obtained from 

[CoreXCore]. 

c) Link predictor outputs the new possible predictions in decreasing order of 

confidence (from AxA-Eold) 

d) Since this algorithm is more interested in knowing the possible future edges 

between the elements of set ‘Core’, the intersection of (AxA- Eold) and CoreXCore is 

computed, which gives all the new possible edges that can be predicted between 

the nodes present in set ‘core’ in decreasing order of confidence 

e) Enew denotes the set of all <u,v> combinations that are present in training data that 

don’t have an edge in the training interval but have it in the test interval 

f) Since we are interested more in the new predictions among the elements of set 

‘core’, Enew* = Enew (intersect) (CoreXCore) is computed which are new edges that 

are formed between elements of Core in the test interval.  

g) Finally, to measure the accuracy of a proximity measure for link prediction, ((AxA-

Eold) intersect CoreXCore) (intersect) (Enew*) is computed, which gives the number of 

correct link predictions 
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h) To represent this link predictor quality, the random predictor is used as a baseline, 

which predicts the randomly selected pairs of vertices which doesn’t have an edge in 

the training interval as the likely new edges to be formed in the test interval. 

i) The experimental results have proved that most of the proximity measures when 

used directly in the link prediction, have significantly outperformed the random 

predictor. 

To summarize, the authors of this work [1] David Liben-Nowell and Jon Kleinberg have proved 

that directly using the proximity measures for the future link prediction outperforms more 

direct measures like random prediction and lays foundation for the future work that can aim at 

increasing the link predictor accuracy.  

Although this research has proved that using the direct measures by themselves can 

give a good accuracy for link prediction, it did not explore the idea of analyzing the structure of 

past data, which we have done  in our algorithm, and have obtained improved results. 

2.2 Using Bayesian Net Graphs to understand networks 

In the work by Alden Goldenberg and Andrew W. Moore [2], Bayes Nets were obtained using 

the SBNS (Screen based Bayes Net structures search) algorithm, which were then used to 

analyze the structure of the graphs. This research also suggested that there is scope for 

exploring the usage of Bayesian Networks to analyze social circles. 

The SBNS algorithm is a two stage process. In the first stage, which is called the Local 

Screening, SBNS performs a Bayes Net structural search on each of the small subsets of 
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variables defined by Frequent Sets. The resulting local structures comprise the restrictive pool 

of edges from which the global Bayes Net will be constructed at the second stage. Experimental 

results have proved that analyzing the Bayes Net graphs of simple network example has 

provided a deeper understanding of the data and stated that these Bayes Nets can further be 

explored.  

While the authors used Bayes Net to analyze the Bayes Net graphs of network sample, 

we are taking this research further by using it for link prediction in our algorithm. 

2.3 Human Mobility, Social Ties, and Link Prediction 

Research has also been done to improve our understanding of how individual mobility patterns 

shape and impact social networks by Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca 

Giannoti, and Barabasi. This research [3] has concluded that the mobility patterns in a social 

network greatly affect the formation of new edges in the graph. For this purpose, a dataset 

which contains trajectories and communication records of these 6 Million mobile phone users 

has been used. 

Although the proximity measures when used directly are a good indicator of how close 

the nodes in a graph are, the question of whether analyzing their mobility patterns has superior 

predictive power has been explored in this research. It has been found out that the mobility 

measures alone yielded a superior predictive power compared to using the proximity measures 

directly.  
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Even though the research was able to prove that analyzing the mobility measures is very 

helpful in the link prediction, it did not explore the area of analyzing the graph structure which 

we did in our algorithm.  

2.4 Link Prediction Approach to Collaborative Filtering 

Research has been done by Zan Huang, Xin Li, and Hsinchun Chen to see whether link 

prediction approach can be used in some of the recommender systems. This research [4] talks 

about how a specific link prediction approach greatly outperforms the standard collaborative 

filtering approaches that are used in the recommender systems. 

 The user-item interactions are represented as unweighted edges in a bipartite user-item 

graph G. For each unconnected user-item in the graph, the six proximity measures given below 

are calculated and used as scores, which in turn are used to predict the new user-item links. 

 Common Neighbors 

 Jaccard’s 

 Preferential Attachment 

 Adamic/Adar 

 Graph Distance 

 Katzp 

The results of this research indicated that the link prediction approaches and network analysis 

in general are  important directions that need to be explored to improve the existing 

collaborative filtering algorithms.  
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2.5 Using Markov Chains for Link Prediction in Adaptive Web Sites 
 
Markov chain is a stochastic model describing a sequence of possible events in which the 

probability of each event depends only on the state attained in the previous event. In this 

research by Jianhan Zhu, Jun Hong, and John G. Hughes [5], Markov chains are used to 

determine which website link the user is likely interested in clicking next. This basically sums up 

to the problem of link prediction with the web pages as nodes and transitions as edges. And the 

user’s navigational history is used to build a transition matrix from which the probability that 

the user will go a specific web page is calculated. 

 Initially, a transition probability matrix is calculated from the given set of nodes, where 

probability of transiting from node i to another node j is the fraction of traversals from i to j 

over total number of traversals from i to all the nodes in the graph. Once the transition 

probability matrix is computed, it is compressed by using the spears algorithm. A transition 

matrix compression algorithm is used to cluster pages with similar transition behaviors together 

for efficient link prediction. Experiments were performed using a weblog file recorded on a 

university website and this link prediction is attached to a prototype called ‘ONE’ (Online 

Navigation Explorer) which lets the users navigate the university website. 

 The feedback from the test subjects is very positive and they have spent less time to 

find the information that interests them using ONE prototype, thereby proving that link 

prediction using this approach is giving better results. Even though this research was able to 

prove that Markov chains can be used for predicting the next web link the user is likely to click 
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from the current page, the link prediction problem for social networks using a similar model still 

isn’t explored. And we aim to use the past data in our algorithm to predict the future edges. 
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Chapter 3 

Our Proposed Approach 

This chapter gives a detailed explanation of our methodology for approaching the problem of 

link prediction. The aim of the link prediction algorithm is to predict the future edges in an 

evolving graph based on the given past data.  

3.1 Terminology  

This section covers the basic terminology used in the algorithm and presents a formal 

description of the problem we are trying to solve. 

3.1.1 Bayesian inference 

Bayesian inference is a method of statistical inference in which Bayes' theorem is used to 

update the probability for a hypothesis as more evidence or information becomes available.  

3.1.2 Conditional Probability 

Conditional probability is a measure of the probability of an event given that (by assumption, 

presumption, assertion or evidence) another event has occurred. If the event of interest 

is A and the event B is known or assumed to have occurred, "the conditional probability 

of A given B", or "the probability of A under the condition B", is usually written as P(A|B), or 

sometimes PB(A).  

https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Evidence
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)
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For example, the probability that any given person has a cough on any given day may be only 

5%. But if we know or assume that the person has a cold, then they are much more likely to be 

coughing. The conditional probability of coughing given that you have a cold might be a much 

higher 75%. 

3.1.3 Graph 

A graph consists of a finite set of vertices and edges and can be represented in the form of 

G=<V,E> where V is a set of vertices and E is a set of edges between vertices. An example graph 

is given below: 

 

3.1.4 Directed and undirected graph 

The graphs whose edges are directed are called directed graphs, and the graphs whose edges 

aren’t are directed are called undirected graphs. In case of directed graphs, please note that the 

edge from node 1 to node2 is treated differently from the edge from node 2 to node 1. 

https://en.wikipedia.org/wiki/Common_cold
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3.1.5 Evolving graph 

Evolving graph is a graph in which new nodes get added over the time. Many networks in the 

real life can be considered as an evolving graph since new nodes get added to the network as 

the time progresses. For example, a network graph of a person’s Facebook friends can be 

considered as an example since number of friends that person will connect in Facebook 

increases as the time progresses. 

3.1.6 Weighted graph 

A graph whose edges are given some weight value are called weighted graphs. 

3.1.7 Proximity measures 

Proximity measures are used to measure the proximity or how close two nodes are in a graph. 

The four proximity measures used in this work are Common Neighbors, Jaccards, Preferential 

attachment, and Adamic Adar. Please find the detailed explanation below: 

Common Neighbors: The number of neighbors which are common to both x and y [7] 

𝐶𝑁(𝑥, 𝑦) = |𝛤(𝑥) ∪ 𝛤(𝑦)| 

Jaccards: It measures the probability that both the nodes x and y have a feature f, for randomly 

selected feature x and y has [8] 

Features here are taken as neighbors of node 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠(𝑥, 𝑦) = |𝛤(𝑥) ∩ 𝛤(𝑦)|/|𝛤(𝑥) ∪ 𝛤(𝑦) 
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Preferential Attachment: It is based on the idea that the probability that a new edge to be 

formed with one of the nodes as ‘x’ is directly proportional to number of neighbors of ‘x’ [7] [9] 

[10] [7] [11] 

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐴𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡(𝑥, 𝑦) = |𝛤(𝑥). 𝛤(𝑦)| 

Adamic Adar measure: It refines the simple counting of common features by weighing rarer 

features more heavily [6] 

𝐴𝑑𝑎𝑚𝑖𝑐 𝐴𝑑𝑎𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑥, 𝑦) = ∑ 1/log|𝛤(𝑦)|

𝑧∈𝛤(𝑥)∩𝛤(𝑦)

 

3.1.8 Relevancy Measures 

Relevancy measures are used to assess how good the results of an algorithm are. F-1 Measure, 

Precision, Recall, and Specificity can be considered as relevancy measures.  

3.1.9 A Test Iteration 

For our terminology, we considered one run of our algorithm for an input dataset as one test 

iteration. For example, we use the 6 months past data and 2 months evidence data to predict 

the links in the next 2 months test data. We executed a total of 20 iterations when testing our 

algorithm with input as Enron email dataset and of 11 iterations for the Facebook Wallposts 

dataset. 

3.2 Link Prediction Algorithm using Bayesian inference 



19 
 

Please find the step by step approach of how this link prediction algorithm using Bayesian 

inference is implemented below. Detailed explanation about each step is given further below. 

For each iteration in the dataset 

1) Read the past data, evidence data and the test data(the data for which we are trying to 

predict edges) 

2) Build the adjacency matrix for past data 

3) Get the probability matrix by adding 1 to each element of adjacency matrix (so that every 

pair of nodes will have some prior probability) and then column normalize the adjacency 

matrix 

4) Get the nodes present in evidence data and calculate all the possible edges that can be 

formed between those nodes 

5) Get the feature values for all the nodes present in past and evidence data. After 

eliminating the outliers, divide the range of the features into fixed number of bins 

6) Calculate the feature values for all possible edges from step 4 and assign the feature 

values to respective bins 

7) Using the feature values from step 6, calculate the Bayesian probability for all the possible 

edges from step 4 

8) Get the number of possible correct predictions that can be made by analyzing the test 

data (i.e., the edges present in test data whose nodes are present in evidence data) 

9) Using the Bayesian probabilities of all possible edges from step 7, take the edges with top 

X% of the probability as the possible edges that are predicted by this algorithm 
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10) Calculate True Positives, True Negatives, False Positives and False Negatives. 

11) Using the values from step 10, calculate Sensitivity(recall/True Positive rate), 

Specificity(True negative rate) and Precision 

End 

Using the metrics calculated from all the iterations, plot the graphs.  

Each step given above is explained in detail with an example below: 

Step 1: Getting the past, evidence, and test data  

From the dataset, based on how we define the time intervals of these past, evidence, and test 

data, we will extract the respective data to use it as inputs for our algorithm. Each record in the 

data will be in the form of: 

Node1-Node2-edgeWeight 

Which implies that there’s an edge from Node1 to Node2 with weight ‘edgeWeight’. 
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For our experiments, we defined the past data interval as 6 months, evidence data as next 2 

months, and we try to predict next 2 months of test data. 

 

Step 2:  Build Adjacency Matrix for Past Data 

Using the past data, create an adjacency matrix such that each edge of the past data is mapped 

to an element in the matrix with its edge weight. 
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Input 

Ep= edges in the Past data in the form of 

(node1,node2)Ee= edges in the Evidence data 

Output 

Adjacency Matrix-Adj 

For each edge e present in Ep   

If nodes of the edge are present in Ee 

  Adj(node1,node2) = weight of the edge 

 End 

End 

  

Step 3: Get the Prior Probability Matrix from the Adjacency Matrix 

To calculate prior probability of the edges, add 1 to the all of the elements of adjacency matrix 

from the step two that correspond to possible edges, and then column normalize the matrix. 

Now the resultant matrix will have prior probabilities corresponding to the respective edges. 

The reason for adding 1 to all the elements is to make sure that each and every possible edge 

will have some prior probability, because if it doesn’t, the posterior probability will be equal to 

zero. 

Please look at the calculation given below that first adds 1 to the elements of adjacency matrix 

and column normalizes after that. 
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Input 

Adj= Adjacency matrix 

Pe= Possible edges  

Output 

Prior probability matrix 

For each edge present in Pe 

 Add 1 to respective element in Adj; 

End 

For each column present in Adj 

 Calculate the sum of the elements; 

 Divide each element in that column by the sum; 

End 

Store the resultant matrix as prior probability matrix; 
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Step 4: Calculate all possible edges that can be formed between the nodes present in 

evidence data 

Using the evidence data, get the unique nodes present in evidence data. From the unique 

evidence nodes, calculate the possible edges that can be predicted.  

• If n nodes are present in the evidence data, there will be nc2 possible edges that can be 

predicted.  

• For example, if the nodes present in evidence data are [2,3,4,6], the possible edges are:   
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Input 

Evidence data 

Output 

possibleEdges= All possible edges 

uniqueEvidence= Unique evidence nodes 

Get the unique evidence nodes from the evidence data; 

Store them in uniqueEvidence; 

For each node ‘node1’ from 1st element to last element in uniqueEvidence 

 For each node ‘node2’ from 2nd element to last element in uniqueEvidence 

              Add the (node1,node2) as a possible edge; 

  And store them in possibleEdges matrix; 

            End 

End 

 

 

Step 5: Calculate the binning criteria by calculating feature values for the evidence and past 

data 

Calculate the feature values for all the data present in the evidence and past data combined. 

Treat the top 1% of the elements as outliers and divide the feature values range into specific 

bins. The main purpose of dividing feature values into bins is to convert the continuous variable 
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range of the feature values to discrete range, which is later used when calculating the 

probability using Bayesian inference. For example, binning criteria for one of the iterations 

looks like: 

Bin number Lower bound Upper bound 

1 0 0.166666667 

2 0.166666667 0.333333333 

3 0.333333333 0.5 

4 0.5 0.666666667 

5 0.666666667 0.833333333 

6 0.833333333 1 
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Input 

Past data 

Evidence data 

Number of bins 

Output 

Bin range matrix 

Get the feature values for past data and evidence data; 

For each feature 

   Eliminate the outliers in the feature values obtained above; 

 Calculate the minimum and maximum of the remaining values; 

 Create a linearly spaced vector between the minimum and maximum values; 

End 

For each feature 

 For each element in the linearly spaced vector  

  Treat the current element as the minimum boundary; 

  And the next element as the maximum boundary; 

End 

End 
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Step 6: Calculate the feature values for all possible edges and assign them respective bin 

values 

In this step, we will calculate the feature values for all possible edges, and then change the 

feature value into respective bin number using the Bin range matrix obtained from the step 

above. For example, 

 

Input 

All possible edges with feature values 

Bin range matrix 

Output 

Feature values classified with bin numbers 

For each row present in the possible edges 

 Using the bin range matrix, find out which bin does the feature value fall into;

 Replace the feature value with the bin number; 

End 
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Step 7: Calculate the probability of a possible edge to be present in the test period using 

Bayesian inference 

This step forms the crux of our algorithm. Instead of using the feature value directly for 

predicting edges, we also take the past data into account. The data from the past accounts for 

the prior probability, and with the knowledge of evidence data, we calculate the posterior 

probability of a link to be present between two nodes given they have some feature value as ‘f’. 

𝑃 (
𝐿

𝐹
) = 𝑃 (

𝐹

𝐿
) .

𝑃(𝐿)

𝑃(𝐹)
 

P(F=f)/L – Probability of feature value equal to ‘f’ among the edges present in evidence 

P(L) – Prior probability of the edge, which is obtained from the prior probability matrix(mat) 

obtained in step 3 

For example, P(1,2)=mat(1,2)+mat(2,1)/2; 

P(F=f) – Probability of feature value equal to ‘f’ among feature values of all possible edges 

For example, let’s try to calculate the probability of edge (2,4) to be present in the future. 

 P(Link (2,4)/feature=1) = 

 P(feature=1/Link) * Prior probability of (2,4) / P(feature=1); 

P(feature=1/Link) = 2/4 = 0.5 

 

Prior Probability is obtained from the prior probability matrix obtained in step 3 
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P(2,4) = P(2,4)+P(4,2)/2 

           = (1/6+1/4)/2 

           = 0.2083 

P(F) = P(F/L)*P(L)+P(F/~L)*P(~L) 

P(F=1)= 0.5*0.2083+1/6*(1-0.2083) = 0.1418 

P(F/~L) is the probability that the feature value to ‘f’ among the possible edges that are actually 

not present in the evidence data. 

P(~L)=1-P(L) 
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Input 

Feature values for all possible edges- fPossibleEdges 

Evidence data- evidenceData 

Prior probability matrix 

Number of features 

Output 

Bayesian probability for all edges Matrix 

For each edge present in the fPossibleEdges 

 For each feature 

  P(F=f/L)= number(F=f)/actual number of links present; 

  P(L)= prior probability from the prior probability matrix; 

  P(~L)=1-P(L); 

  P(F=f)= P(F=f/L)*P(L)+P(F=f/~L)P(~L);  

  P(L/F=f)=P(F=f/L)*P(L)/P(F=f); (Bayesian inference) 

  Store the value of the posterior probability calculated above; 

End 

End 

 

 

 



32 
 

Step 8: Calculate the number of possible predictions that can be made 

Using the evidence data and test data, get all the edges present in test data whose both nodes 

appear in the evidence data. Main aim of this step is to find out what all links in test data can be 

predicted with the knowledge of the evidence data, and how many of such edges are 

presented. 
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Input 

eData= Evidence data 

tData= Test data 

Output 

numPossiblePredictions= Number of possible predictions 

possiblePredictions= Possible predictions that can be made 

Get unique nodes from eData; 

Initialize numPossiblePredictions to 0; 

For each edge present in tData 

 If both the nodes of the edge are present in the unique evidence data 

  Add the edge to the possiblePredictions; 

  Increment the numPossiblePredictions by 1; 

 End 

End 

 

 

Step 9: Predict edges 

After the posterior probabilities for all possible edges are calculated, predict edges with certain 

top % of posterior probabilities as the edges to appear in the future and calculate the true 
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positives, false positives, false negatives, and true negatives, which can be used to identify how 

good algorithm is able to classify the edges. 

 Top 5%, 10%, 15%, 20%, and 25% of the edges are generally considered to be predicted 

edges which can later be used to evaluate the algorithm performance. 
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Input 

All possible edges with Bayesian probability 

Test data 

Number of possible predictions 

Possible predictions 

topThresholdMatrix= [5 10 15 20 25] 

Output 

Link predictor matrix containing: 

True positives, True negatives, False positives, and False negatives for each feature 

For each element of topThresholdMatrix 

 Get the edges with the top topThresholdMatrix(i)% of Bayesian probability values ; 

 Consider these edges as the predicted edges; 

  True positives= (predicted edges) intersect (possible predictions) 

              True negatives= edges that’re not predicted and are also not present in possible          

predictions; 

               False positives= edges that are predicted but are not present in possible predictions 

               False negatives= edges that are present in test data but are not predicted 

               Store all these values; 

End 
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Step 10&11: Calculate relevancy measures 

Detailed explanation about relevancy measures is given in the results chapter. 

    Input 

Link predictor matrix from step 9 

Output 

Relevancy measures such as: 

Precision, Recall, F-1 measure, and specificity 

For each feature 

 precisionValue= truePositives/(truePositives+falsePositives); 

         recallValue= truePositives/(truePositives+falseNegatives); 

         specificityValue= trueNegatives/(trueNegatives+falsePositives); 

         f1Measure= 2*precisionValue*recallValue/(precisionValue+recallValue); 

End 
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3.3  Our Algorithm Version-2: different method of calculating Prior Probability  

• We experimented with the way the prior probability is calculated from the past data to 

see if it produces any interesting behavior. 

• For each month in the past data period, we keep track whether one particular edge is 

present or not with the Boolean values 0 and 1. 

• Then the prior probability will be calculated as: 

𝑃𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= (𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ𝑠 𝑖𝑛 𝑝𝑎𝑠𝑡 𝑑𝑎𝑡𝑎

+ 1)/(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑠𝑡 𝑑𝑎𝑡𝑎 + 1) 

The reason for adding 1 to both the numerator and denominator is to make sure that 

each and every possible edge has a non-zero prior probability value, which in turn 

implies that it will have a non-zero posterior probability value. 
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Chapter 4 

Experimental Setup and Results 

4.1 Datasets 

Enron email database: 

For the purpose of evaluating our technique we selected two datasets, one of them is Enron 

email dataset. This dataset was originally made public, and posted to the web, by the Federal 

Energy Regulatory Commission during its investigation. A lot of preprocessing was done on the 

dataset later by outside sources to remove the integrity problems and also some emails were 

deleted upon request of the employees.    

The MySQL dump of this database was imported and table structure of all the tables was 

analyzed to extract data to test our algorithm. The tables and the fields present in each of those 

tables are: 

1. Employeelist 

a) Eid 
b) Firstname 
c) Lastname 
d) Email_id 

 
2. Message 

 
a) Mid 
b) Sender 
c) Date 
d) Message_id 
e) Subject 



39 
 

f) Body 
g) Folder 

 
3. Recipientinfo 

 
a) Rid 
b) Mid 
c) Rtype 
d) Rvalue 
e) Dater 

 
4. Referenceinfo 

 
a) Rfid 
b) Mid 
c) Reference 

 

Facebook WallPosts dataset: 

Our algorithm was also tested with another dataset- “Facebook WallPosts dataset”, which 

contains information about wallposts written on Facebook by its users in a city during certain 

timeframe. While doing one of their research works[5], Bimal Viswanath and Alan Misolve 

collected this dataset and did the pre-processing, which was then made available to me upon 

request. This dataset meets our requirement of having the edge timestamp along with graph 

information, and hence was used to evaluate results. 

 

4.2 Data extraction 

Enron Email dataset: 

The tables in the MySQL database were queried to get the data required to test our algorithm,. 

The format of the data that can be used as input data will have the record format like - 

<node1,node2,weight>, meaning there is a directed edge from node1 to node2 with the 
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respective weight as the third argument. In case of Enron dataset, the node1 and node2 in the 

aforementioned record format refers to sender and receiver respectively, and the weight refers 

to the number of messages sent by sender to receiver during a particular period. 

The query given below is used to extract the data from the tables. Please note that the ‘where 

clause’ was changed in accordance with the timeframe we are testing our algorithm with. 

Query to create view: 

Create view view1 as  

Select e.eid as sno,e1.eid as rno,date(m.date) as new_date,count(*) as total 

From message m, recipientinfo r, employeelist e, employeelist e1 

Where m.mid=r.mid and m.sender=e.Email_id and r.rvalue=e1.Email_id 

Group by e.eid,e1.eid,date(m.date); 

Query to extract the data: 

SELECT Sno,Rno,SUM(Total) AS Total     

FROM view1 where year(new_date)="2000" and month(new_date) between 9 and 10  

GROUP BY Sno,Rno; 

The results from these queries will look like: 

Sno Rno Total 

1 73 2 

2 19 7 
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2 70 14 

3 68 2 

9 48 13 

9 50 12 

9 57 4 

9 67 19 

 

Facebook Wallposts dataset: 

The data from Facebook Wallposts dataset is in the form of: person1-person2-number of 

wallposts-time interval, which means person1 has written those many number of wallposts on 

the Facebook wall of person2. And this in the graph form can be represented as node1-node2-

weight. The data looks like:  

person-
1 

person-
2 numberOfWallposts 

24215 18322 1 

14664 11321 13 

21458 5584 7 

13013 4376 4 

19158 15682 3 

5386 5377 10 

7198 491 1 

109 521 6 

 
 
For our testing purposes, we selected some fixed number of unique random nodes from the 

entire dataset, i.e., 400, 600, and 800 specifically. 

 

4.3 Parameters 

Number of iterations: 
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One iteration of running our algorithm represents executing it once to predict the 

edges to be formed in the test period taking both the past data and evidence data as 

inputs. 

Typically, the test period is two months, and the two months before the test period is 

taken as evidence data, and the six months before the evidence data is taken as the 

past data. The algorithm will be executed against several of such consecutive periods in 

the dataset where there is enough data to make meaningful predictions. For example, 

in the Enron dataset, we have executed our algorithm for 20 iterations to test the 

algorithm. 

Number of Bins: 

After calculating feature values for all the possible edges that can be predicted based 

on the nodes present in the evidence data, these feature values are assigned into bins 

to make meaningful predictions. The way the feature values are divided into bins is 

explained clearly in the previous ‘Bayesian Link Prediction Algorithm’ section. We tried 

experimenting by changing the number of bins to 4, 5, and 6 and observed that the 

results look very much similar with all of these values. For our experiments, we kept the 

number of bins as ‘6’.  

Criteria for eliminating outliers when dividing into bins: 

We have eliminated the top 1% of values as outliers when dividing the feature values 

into respective bins. The method by which this is done is explained clearly in the 

previous section about algorithm. 

Criteria for predicting edges from the final results: 
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We have taken the top 5%, 10%, 15%, 20%, and 25% of the edges sorted in the 

descending order of their feature values as the possible predictions, and then to make 

different evaluations of the results of the algorithm. 

4.4 Relevancy Measures 

Calculate True Positives, True Negatives, False Positives, and False Negatives from the results. 

 True Positives(TP): number of edges that are predicted to be present in the test data 

and are actually present 

 True Negatives(TN): number of edges that are predicted to be not present in the test 

data and are actually not present 

 False Positives(FP): number of edges that are predicted to be present in the test data 

but are not actually present in the test data 

 False Negatives(FN): number of edges that are predicted to be not present in the test 

data but are actually present 

Calculate relevancy measures using the above values: 

• Precision: The fraction of extracted items that are relevant [12] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: The fraction of relevant items that are extracted [12] 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• Specificity: It measures how well the negative instances are classified [12] 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

• F-1 Measure: It considers both precision and recall [12] 

𝐹 − 1 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.
𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

4.5 Results 

Our algorithm was run for 21 iterations in the Enron dataset and the results were 

analyzed by benchmarking against the Nowell’s algorithm, which uses the proximity 

measures directly for predicting the future edges. Detailed explanation of the Nowell’s 

algorithm is given the ‘Related Work’ chapter of this thesis. Nowell’s algorithm showed 

very good improvement in link prediction over the random predictor. 

 Main aim of our algorithm is to improve upon the previous algorithm, i.e., to 

make more number of correct predictions. To benchmark the results for both the 

algorithms, the four relevancy measures precision, recall, specificity, and f-1 measure 

are computed for each of the four proximity measures Common Neighbors, Jaccards, 

Preferential Attachment, and Adamic Adar, the graphs were plotted.  

4.5.1 Enron email dataset - Comparing our algorithm results with results of 

Nowell’s algorithm 

     The graphs given below clearly show that our algorithm fares better in 

precision, recall, and f-1 measure than the Nowell’s algorithm. The reason for the 

previous algorithm being better than our algorithm in specificity is that our algorithm 
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predicts more number of false positives since we predict some percentage of edges as 

the future edges whereas the previous algorithm predicts a certain number of edges as 

future predictions. 

Terminology used in Results: 

• Top 5%: Algorithm in which possible edges with top 5% of posterior probabilities 

predicted as edges 

• Similarly, Our algorithm is executed for Top 10%,15%,20%, and 25%  

• Core value 2: Nowell’s algorithm is executed by keeping core threshold as 2 

• Similarly, Nowell’s algorithm is executed with 3 and 4 core thresholds 

• Core threshold: degree of the node in the graph 

For each of the four proximity measures (Common Neighbors, Jaccards, Preferential 

Attachment, and Adamic Adar), respective graph is plotted for 3 relevancy measures (precision, 

recall, and specificity). Please find them below. 

Common Neighbors: 

Precision: 

Inferring from the graph, 

1. The Precision values are better than those of Nowell’s algorithm 
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2. Top 5%>10%>15%>20%>=25%>=Core 2, 3, and 4. The reason for precision of Top 5% 

version to be greater than other versions is that generally as you predict more number 

of edges as possible edges to be formed in the future, the precision value decreases. 

 

Recall: 

Inferring from the graph, 

1. Recall values are better than those of Nowell’s algorithm 
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2. Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4. The reason for recall value of the Top 

25% version to be more than the other versions is that it gets to predict more number of 

edges than the others. 

 

Specificity: 

Inferring from the graph, 

1. Specificity values of our algorithm are not that good when compared to those of 

Nowell’s algorithm 
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2. Core 2, 3, and 4>Top 5%>10%>15%>20%>25%. The reason for the decrease of the 

value of specificity as the number of edges predicted increases is that number of 

false positives increases as we predict more number of edges as possible links. 

 

Experimental results have proved that all the remaining three features follow a similar pattern 

to that of Common Neighbors. 

Jaccards: 

Precision: 

Inferring from the graph, 
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1. The precision values are better than those of Nowell’s algorithm 

 

Recall: 

Inference: Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Specificity: 

Inference: Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Preferential Attachment: 

Precision: 

Inference: Top 5%>10%>15%>20%>=25%>=Core 2, 3, and 4 
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Recall: 

Inference: Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Specificity: 

Inference: Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Adamic Adar: 

Precision: 

Inference: Top 5%>10%>15%>20%>=25%>=Core 2, 3, and 4 
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Recall: 

Inference: Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Specificity: 

Inference: Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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4.5.2 Facebook WallPosts dataset - Comparing our algorithm results with 

the results of Nowell’s algorithm 

Three random subsets are generated from the Facebook WallPosts dataset by 

randomly selecting 400, 600, and 800 nodes from each iteration. All other 

parameters for executing the algorithm were unchanged. 

Results with Sub-dataset-1 - 400 Nodes: 

Common Neighbors: 

Precision: 
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Inferring from the graph, 

1. Results with top 5% as predicted edges has better precision than Nowell’s algorithm for 

most periods 

2. However, as number of edges predicted increases, Nowell’s algorithm performs equally 

good. 

3. Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 

 

Recall:  

Inferring from the graph, 



59 
 

1. Recall values for our algorithm are significantly better than those of Nowell’s algorithm 

2. Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 

 

Specificity:  

Inferring from the graph, 

1. Specificity values of our algorithm are not that good when compared to those of 

Nowell’s algorithm 

2. Follows a similar pattern to that of Enron dataset 

3. Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Experimental results have shown that all the remaining 3 features performed similar to that 

of Common Neighbors in terms of precision, recall, and specificity. The graphs given below 

reveal the same: 

Jaccards: 

Precision: 

Inferring from the graph, 
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1. Similar behavior to that of Common Neighbors, as number of edges predicted increases, 

Nowell’s algorithm performs equally good 

2. For most periods, precision values of Top 5% are better than those of Nowell’s algorithm  

3. Top 5%>10%15%>20%>25% 

 

Recall: 

Inference from the graph: Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Specificity: 

Inference from the graph: Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Preferential Attachment: 

Precision: 

Inferring from the graph, 

1. Results with top 5% as predicted edges has better precision than Nowell’s algorithm for 

most periods 

2. However, as number of edges predicted increases, Nowell’s algorithm performs equally 

good. 

3. Similar to Common Neighbors and Jaccards 
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4. Recall values of Top 5%>10%15%>20%>25% 

 

Recall: 

Inference from the graph: Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Specificity: 

Inference from the graph: Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Adamic Adar: 

Precision: 

Inferring from the graph, 

1. Results with top 5% as predicted edges has better precision than Nowell’s algorithm for 

most periods 

2. However, as number of edges predicted increases, Nowell’s algorithm performs equally 

good. 

3. Similar to Common Neighbors, Jaccards, and Preferential Attachment 
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4. Recall values for Top 5%>10%15%>20%>25% 

 

Recall: 

Inference from the graph: Recall values for Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Specificity: 

Inference from the graph: Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Results with Sub-dataset-2 - 600 Nodes: 

The experiment was repeated for the second subset randomly selected from the Facebook 

WallPosts dataset by selecting random 600 nodes from each iteration. The results looked 

similar to results of 400 nodes. 

Common Neigbors: 
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Top 5%>10%15%>20%>25% Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Jaccards: 

Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Top 5%>10%15%>20%>25% Top 25%>20%>15%>10%>5%>=Core 2, 3, and 4 
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Preferential Attachment: 

Core 2, 3, and 4>Top 5%>10%>15%>20%>25% 
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Top 5%>10%15%>20%>25% 
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Top 25%>20%>15%>10%>5%>=Core 2, 3, 

and 4 
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Adamic Adar: 

Core 2, 3, and 4 
>Top5%>10%>15%>20%>25% 
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Top 5%>10%15%>20%>25% 
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Top 25%>20%>15%>10%>5% 

>=Core 2, 3, and 4 
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Results with Sub-dataset-3 - 800 Nodes: 

The experiment was again repeated for randomly selected 800 nodes, and the results followed 

the similar pattern as that of randomly selected 400 and 600 nodes. 

Common Neigbors: 

Core 2, 3, and 4 
>Top 5%>10%>15%>20%>25% 
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Top 5%>10%15%>20%>25% 
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Top 25%>20%>15%>10%>5% 

>=Core 2, 3, and 4 
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Jaccards: 

Core 2, 3, and 4 
>Top 5%>10%>15%>20%>25% 
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Top 5%>10%15%>20%>25% 
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Top 25%>20%>15%>10%>5% 

>=Core 2, 3, and 4 
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Preferential Attachment: 

Core 2, 3, and 4 
>Top 5%>10%>15%>20%>25% 
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Top 5%>10%15%>20%>25% 
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Top 25%>20%>15%>10%>5% 

>=Core 2, 3, and 4 
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Adamic Adar: 

Core 2, 3, and 4 
>Top 5%>10%>15%>20%>25% 
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Top 5%>10%15%>20%>25% 
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Top 25%>20%>15%>10%>5% 

>=Core 2, 3, and 4 
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4.5.3 Enron dataset – Comparing results of our algorithm with different 

version of Prior Probability with the first version 

•  As mentioned earlier in the ‘approach’ part, we experimented with the way prior 

probability was calculated 

• Detailed analysis of results by running algorithm with this different version of prior 

probability proved that these results are comparable to the first version results in 

precision and F-1 Measure, but it did not have good recall percentage 

• And it performed better than the Nowell’s algorithm in precisiona and recall percentage 

Core 2, 3, and 4 
>Top 5%>10%>15%>20%>25% 
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Common Neighbors: 

F-1 Measure: 

1. Original version performs better than the second version looking at the graphs 

2. However, as the number of edges that are predicted(top %) increases, the F-1 Measure 

values of the original versions come closer to the second version’s values 
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Precision:  

Precision values follow the same pattern as that of F-1 Measure. While the F-1 Measure of 

second version remains constant as more top % of edges are predicted, the measures of 

original version decrease. 
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Recall:  

For all 5 variants of top % of original version, recall value of the original version outperforms the 

second version. 
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Specificity:  

Comparatively, specificity values of the second version are better than the first one. 
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All the remaining 3 proximity measures have shown similar performance when tested against 

second version of our algorithm with this dataset. Please find their graphs below. 

4.5.4. Comparing Results of second version of our algorithm with Nowell’s 

Algorithm 

Common Neighbors: 

Precision: 
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1. Precision values of the second version with different way to computer Prior Probability 

are better than the Nowell’s algorithm, but are less than the values of the first version 

of the algorithm 

2. Remaining 3 features exhibit almost similar behavior 

 

Recall: 

1. Recall values of the second version are better than the previous version algorithm, but 

are less than the values of the original version of the algorithm 

2. Remaining 3 features exhibit almost similar behavior 
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Specificity: 

1. Specificity values of the second version of our algorithm are comparatively less than the 

previous algorithm, but are greater than the values of the original version of the 

algorithm 

2. Remaining 3 features exhibit almost similar behavior 
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Jaccards: 
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Preferential Attachment: 
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Adamic Adar: 



122 
 



123 
 



124 
 

 

4.5.5. Facebook WallPosts dataset - Results of our algorithm with different 

version of Prior Probability 

We also tested the second version of our algorithm which calculates prior 

probability differently with Facebook WallPosts dataset, and a careful analysis of 

results proved that the results are similar to that of the Enron dataset. 

4.5.6. Our Algorithm vs Second variant of Nowell’s 

Second variant of Nowell’s is almost similar to the original variant except that in the 

second variant the number of edges predicted by the Nowell’s was made equal to 

the number of edges predicted by Top 5% variant of our algorithm. 
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Careful analysis of the results revealed that our algorithm also fares better than the 

second variant of Nowell’s and suprisingly, specificity for the Top 5% fares better 

than that of Nowell’s. 

Graphs comparing the results for the feature ‘Common Neighbors’ is given below. All 

the remaining three features showed a similar behavior. 

Precision using Common Neighbors: 
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Recall using Common Neighbors: 
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Specificity using Common Neighbors: 

 

 

 

4.5.7. Our Algorithm vs Third variant of Nowell’s 

Third variant of Nowell’s is almost similar to the original variant except that in the 

second variant the number of edges predicted by the Nowell’s is made equal to the 

number of edges predicted by Top 5% variant of our algorithm, and also it is allowed to 
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predict the edges that are present now and may appear again in future unlike the original and 

the second variant of Nowell’s algorithm. 

Similar to the second variant results given above, analysis of the results proved that our 

algorithm also fares better than the third variant of the Nowell’s and suprisingly, 

specificity for the Top 5% fares better than that of Nowell’s. 

Graphs comparing the results for the feature ‘Common Neighbors’ is given below. All 

the remaining three features showed a similar behavior. 

Precision using Common Neighbors: 
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Recall using Common Neighbors: 

 

 

 

 

 

 



130 
 

 

Specificity using Common Neighbors: 
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Chapter 5 

Conclusion and Future Work 

There are many link predictions algorithms which exist today and each one of them serves a 

specific purpose. For example, one algorithm focuses on predicting what link the user likely to 

click on the current web page in case of web pages whereas the other one focuses on who is 

likely to become friends with whom in the future in a social network. While the main aim of all 

these different approaches remains same, i.e., to predict the future edges with good accuracy, 

each one caters a specific purpose. 

In our work we approached the problem of link prediction differently by making use of the past 

graph structure along with the current graph structure of an evolving graph. This methodology 

mainly caters to the specific area of how communication between people change over time.  

Our algorithm is tested against different types of datasets and the relevancy measures such as 

precision, recall, and specificity values are calculated to evaluate the performance of our link 

prediction algorithm. A detailed analysis of our algorithm and results confirms that: 

1. Taking into account the past structure and message flows in the graph, along with the 

current structure and flows yields performance that is better than that obtained by 

structural features alone. 

2. Bayesian updating of probability for an edge being active works with very good results. 

3. Different way of computing Prior probability also makes good Link Prediction with good 

Precision, Recall, and Specificity 
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4. How many edges to make predictions for: This is still an issue. 

There are some areas of improvement in this work that can be explored in future research. 

Given below is a list of future works that can be done based on our work: 

1. Future research can focus on improving the Specificity/ability to classify the negatives 

more accurately 

2. Different ways in which the prior probability is computed can be further explored 

3. Factors specific to a particular dataset that influences the future edges can be included 

in the link prediction algorithm 

4.  We currently calculate the posterior probability of a link to appear in the future based 

on the current data and prior probability of that edge. For this purpose, we predefined 

the data period as six months past data, two months evidence data, to predict the next 

two months test data. We also experimented slightly by changing the evidence and test 

period to one month. This can be explored further by iteratively learning a Bayesian 

classifier from the data and then use that in calculating the posterior probabilities. 
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