

A Novel Simulation Based Approach for Trace Signal

Selection in Silicon Debug

A Thesis submitted to the

Graduate School

of University of Cincinnati

in partial fulfillments of the

requirements for the degree of

Master of Science

In the Department of Electrical Engineering and Computing Systems

in the College of Engineering and Applied Sciences

By

Prabanjan Komari

BE, Visvesvaraya Technological University, Belgaum, India.

July 2013

Thesis Advisor and Committee Chair: Ranga Vemuri, PhD

 ii

Abstract

With the fabrication technology fast approaching 7nm, Post-silicon validation has become

an integral part of integrated circuit design to capture and eliminate functional bugs that

escape pre-silicon validation. The major roadblock in post-silicon functional verification is

limited observability of internal signals in a design. A possible solution to address this

roadblock is to make use of embedded memories on chip called trace buffers. The amount

of debug data that can be acquired from the trace buffer depends on its width and depth.

The width of the trace buffer limits the number of signals that can be traced and the depth

of the trace buffer limits the number of samples that can be acquired. Using the acquired

data from the trace buffer, the values of other nodes in the circuit can be reconstructed.

These trace buffers have limited area, hence only a few critical signals can be recorded

by it. In this work we used the simulated annealing heuristic to select trace signals. We

developed this idea from the fact that trace signal selection can basically be viewed as a

bi-partitioning problem, the set of flip-flops being tapped onto the trace buffer is one

partition and the other partition is the set of all other flip-flops in the design. Another key

contribution of this thesis is that we found and fixed a hole in the established state

restoration algorithm. Experimental results demonstrate that our approach can provide

significantly better restoration ratio compared to the state-of-the-art techniques.

 iii

 iv

To my loving parents who never stopped believing in me

 v

Acknowledgement

Firstly, I would like to thank my parents for encouraging and supporting me in each and

every endeavor. Their unwavering belief in me, inspired me to work relentlessly towards

my goals. Next I would like to thank my thesis advisor Dr. Ranga Vemuri, He is an

excellent teacher and an even better research advisor. It was an absolute privilege to

work with him and be a part of DDEL. I will always be proud of the fact that I got a chance

to work with him.

I would like to thank Dr. Wen Ben Jone and Dr. Carla Purdy for being a part of my

committee. I would also like to thank Rob Montjoy for his help with various tools and

infrastructure required for completing this thesis. I also thank Xiaobang for reviewing my

thesis and providing me valuable suggestions.

I would like to thank my friend Ananthakrishnan for giving me valuable advice on various

issues that popped up during my work. His help enabled me to complete my work

efficiently, especially with the documentation and thesis defense presentation.

I would like to thank my friends Meera, Ujwal and Sriram for helping me with various

issues that cropped up during the work done on this thesis. I would also like to thank Rao

Lakamsani from Intel for his help on this thesis, which enabled me to clear a particularly

difficult roadblock.

I would also like to thank my uncle M.S Suresh for his invaluable support throughout my

student life. Special thanks to my cousin Kiran for helping me with the lengthy process of

admission into U.S universities.

Finally, I would like to thank all my friends for always supporting me.

 vi

Table of Contents
Chapter 1 Introduction .. 1

1.1 Pre Silicon Verification .. 1

1.2 Manufacturing Test .. 2

1.3 Post Silicon Validation .. 3

1.4 Trace Buffer Technique .. 6

1.5 Related Work .. 9

1.6 Thesis Statement ... 10

1.7 Thesis Overview .. 11

Chapter 2 Algorithmic Solution for State Restoration ... 12

2.1 Principal Operations for State Restoration .. 13

2.2 Exploiting Bitwise Parallelization for State Restoration ... 15

2.3 Algorithm for State Restoration ... 18

2.4 Significance of the Order of Signal Selection .. 19

2.5 Improved Algorithm for State Restoration ... 22

2.6 Summary of Chapter 2 .. 23

Chapter 3 Automated Approach to Select Trace Signals ... 25

3.1 Simulation Based Approach with Short Trace Buffer Depth 26

3.2 Simulated Annealing Based Signal Selection ... 27

3.2.1 Initialization Step: Random Initial Partition ... 29

3.2.2 Move Function .. 29

3.2.3 Cost Function .. 29

3.2.4 Stop Criteria .. 30

3.3 Summary of Chapter 3 .. 31

Chapter 4 Experimentation and Results .. 32

4.1 Experimental Setup ... 32

4.1.1 Benchmarks .. 32

4.1.2 Netlist Translation Script (PERL) ... 34

4.1.3 Simulation Data from Modelsim® .. 34

4.1.4 Trace Signal Selection Tool, Logic Simulation Tool (C++) 35

4.1.5 Verification Script (PERL) ... 35

4.2 Comparison Between Original and Improved Restoration Algorithm.................. 35

4.3 Tuning for Simulated Annealing and Convergence Plots 42

 vii

4.4 Evaluating Dependence on Input Vector ... 53

4.5 Comparison with Conventional Methods ... 61

4.6 Summary of Chapter 4 .. 65

Chapter 5 Conclusion and Future Work .. 67

5.1 Conclusion .. 67

5.2 Future Work .. 68

5.2.1 Integration of ILP Filtering ... 68

5.2.2 Incremental Restoration Method .. 68

5.2.3 Identifying Critical Unreachable Flip-flops .. 68

6. References .. 70

 viii

List of Figures

Figure 1.1: Debug flow for trace buffer based technique.………………………………...7

Figure 1.2: Example circuit to illustrate the trace buffer technique………………….......8

Figure 2.1: Example circuit for state restoration..…………………………………….......12

Figure 2.2: Principal operations for state restoration…..…………………………………14

Figure 2.3: Derivation of forward and backward equations for AND gate..………….…16

Figure 2.4: Significance of the order of signal selection (Case 1)……………..........….20

Figure 2.5: Significance of the order of signal selection (Case 2)……………………....21

Figure 2.6: Eliminating dependence on order of selection of flip-flops………………......23

Figure 3.1: Impact of trace buffer size on state restoration ratio..……………………….26

Figure 3.2: Correlation of metric state restoration ratio with observed value…………..27

Figure 3.3: Flowchart to show steps in simulated annealing…………………………….28

Figure 4.1: Flow diagram for our entire experimental setup……………………………..33

Figure 4.2: 3 input OR gate translated into 2 input OR gates……………………………34

Figure 4.3: Convergence plots for s5378 comparing the restoration algorithms………39

Figure 4.4: Convergence plots for s9234 comparing the restoration algorithms………40

Figure 4.5: Convergence plots for s15850 comparing the restoration algorithms……..40

Figure 4.6: Convergence plots for s38417 comparing the restoration algorithms……..41

Figure 4.7: Convergence plots for s38584 comparing the restoration algorithms……..41

Figure 4.8: Convergence plots for s35932 comparing the restoration algorithms……..42

Figure 4.9: Convergence plot for s5378 trace buffer width 8…………………….………44

Figure 4.10: Convergence plot for s9234 trace buffer width 8………………….…………44

Figure 4.11: Convergence plot for s15850 trace buffer width 8………………….………..45

Figure 4.12: Convergence plot for s38417 trace buffer width 8………………….……….45

Figure 4.13: Convergence plot for s38584 trace buffer width 8………………….……….46

Figure 4.14: Convergence plot for s35932 trace buffer width 8………………….……….46

Figure 4.15: Convergence plot for s5378 trace buffer width 16………………….……….47

Figure 4.16: Convergence plot for s9234 trace buffer width 16……………….………….47

Figure 4.17: Convergence plot for s15850 trace buffer width 16………………….……….48

Figure 4.18: Convergence plot for s38417 trace buffer width 16………………….……….48

 ix

Figure 4.19: Convergence plot for s38584 trace buffer width 16………………….……….49

Figure 4.20: Convergence plot for s35932 trace buffer width 16………………….……….49

Figure 4.21: Convergence plot for s5378 trace buffer width 32………………….……….50

Figure 4.22: Convergence plot for s9234 trace buffer width 32……………….………….50

Figure 4.23: Convergence plot for s15850 trace buffer width 32………………….……….51

Figure 4.24: Convergence plot for s38417 trace buffer width 32………………….……….51

Figure 4.25: Convergence plot for s38584 trace buffer width 32………………….……….52

Figure 4.26: Convergence plot for s35932 trace buffer width 32………………….……….52

 x

List of Tables

Table 1.1: Qualitative comparison of Verification techniques……………………………...5

Table 4.1: Evaluating difference in restoration algorithms for S5378……………………36

Table 4.2: Evaluating difference in restoration algorithms for S9234…………………....36

Table 4.3: Evaluating difference in restoration algorithms for S15850…………………..37

Table 4.4: Evaluating difference in restoration algorithms for S38417………………….37

Table 4.5: Evaluating difference in restoration algorithms for S38584………………….38

Table 4.6: Evaluating difference in restoration algorithms for S35932………………….38

Table 4.7: Evaluating the best set of trace signals for S5378 trace buffer width 8…….53

Table 4.8: Evaluating the best set of trace signals for S9234 trace buffer width 8…….54

Table 4.9: Evaluating the best set of trace signals for S15850 trace buffer width 8…..54

Table 4.10: Evaluating the best set of trace signals for S38417 trace buffer width 8…..54

Table 4.11: Evaluating the best set of trace signals for S38584 trace buffer width 8…..55

Table 4.12: Evaluating the best set of trace signals for S35932 trace buffer width 8…..55

Table 4.13: Evaluating the best set of trace signals for S5378 trace buffer width 16…..55

Table 4.14: Evaluating the best set of trace signals for S9234 trace buffer width 16…..56

Table 4.15: Evaluating the best set of trace signals for S15850 trace buffer width 16…56

Table 4.16: Evaluating the best set of trace signals for S38417 trace buffer width 16…..56

Table 4.17: Evaluating the best set of trace signals for S38584 trace buffer width 16…57

Table 4.18: Evaluating the best set of trace signals for S35932 trace buffer width 16…..57

Table 4.19: Evaluating the best set of trace signals for S5378 trace buffer width 32…..57

Table 4.20: Evaluating the best set of trace signals for S9234 trace buffer width 32…..58

Table 4.21: Evaluating the best set of trace signals for S15850 trace buffer width 32…..58

Table 4.22: Evaluating the best set of trace signals for S38417 trace buffer width 32…..58

Table 4.23: Evaluating the best set of trace signals for S38584 trace buffer width 32…..59

Table 4.24: Evaluating the best set of trace signals for S35932 trace buffer width 32…..59

Table 4.25: Evaluating poor set of trace signals for S5378 trace buffer width 8…….…..59

Table 4.26: Evaluating poor set of trace signals for S9234 trace buffer width 8…….…..60

Table 4.27: Evaluating poor set of trace signals for S15850 trace buffer width 8…….…..60

Table 4.28: Restoration quality of existing trace signal approaches………………….…..61

 xi

Table 4.29: Comparison of Simulation based approach with our method……..…….…..62

Table 4.30: Comparison of Hybrid based approach with our method…………..…….…..63

Table 4.31: Comparison of ILP based approach with our method……………..…….…..64

 1

Chapter 1

Introduction

The trend of scaling in the VLSI field has led to designs with multi million transistors. Due

to this trend, functional verification of designs in the pre silicon stage is no longer foolproof

and there is a possibility of some bugs escaping into the post silicon stage. The aim of

our work is to provide a novel approach to help designers with functional verification in

the post silicon stage. To understand our approach, it is first essential to understand the

conventional methods of verification. Sections 1.1, 1.2 and 1.3 will describe the

verification techniques; pre silicon verification, manufacturing test and post silicon

validation.

1.1 Pre Silicon Verification

 The objective of pre silicon verification is to verify the correctness and sufficiency of the

design. There are two main techniques of pre silicon verification these are simulation and

formal verification. The main difference between simulation and formal verification is that

the former requires the use of input vectors while the latter does not. In simulation-based

verification, the idea is to first generate input vectors and then to obtain reference outputs.

However, in the case of formal verification the user specifies the output behavior and then

lets the formal checker prove or disprove it. The main advantage of the formal based

approach is completeness, as it does not miss any point in the input space, which is a

major drawback in the case of simulation-based approach.

 2

Thus, simulation techniques are now using testbenches that drive the design-under-test

with constrained-random or coverage-driven input stimuli. These testbenches target to

verify a design only up to an acceptable simulation coverage.

Formal verification is the act of proving the correctness of intended algorithms underlying

a system with respect to a certain formal specification or property, using formal methods

of mathematics [1].

There are two different types of formal verification, formal equivalence checking and

formal property checking [2].

In formal equivalence checking, a design is compared to a golden reference and the

formal checker concludes if both the designs are functionally equivalent. Here are some

examples where formal equivalence checking is used,

1) RTL versus pre routed netlist

2) Pre routed netlist versus post routed netlist

3) Netlist versus ECO (Engineering change order) netlist

Formal property checking is a method by which the correctness of design or the root

cause of an error is identified by rigorous mathematical proofs.

Properties are primarily used to validate the behavior of a design and can be checked

statically by property checker tool, and proves whether a design meets its specifications.

1.2 Manufacturing Test

The purpose of manufacturing tests is to ensure that the product hardware has no defects

caused due to manufacturing that could adversely affect its performance. Usually

manufacturing faults are shorts between two conductors or opens in a conductor. This

type of behavior is very difficult to model, a simple model has been proposed in literature

 3

called single stuck at fault model, which assumes that all nodes are stuck at 0 or 1

(shorted to GND or VDD). This assumption is not quite true but works well in practice.

Ideally, in manufacturing tests it has to be proved that each node in the circuit is not stuck.

Ideally, smallest sequence of test vectors has to be applied in order to prove that a node

is not stuck. Two factors called controllability and observability are needed to determine

the number of test vectors required for manufacturing test. Controllability is the relative

difficulty of setting a line to a value. While observability is the relative difficulty of

propagating an error from a line to a primary output. Good controllability and observability

reduces number of test vectors required for manufacturing test. To increase controllability

and observability of circuits scan chains are used. Scan chains provide a simple way to

set and observe every flip-flop in an integrated circuit. The flops in the circuit have to

modified in order to use scan chains, the D input has to be multiplexed with the scan input

and a signal called scan enable is the select line for the multiplexer.

1.3 Post Silicon Validation

Post silicon validation is the process of operating the manufactured chips in their actual

environment to find out if they are operating according to their specification.

Post silicon validation has four major steps [3]

 Identifying a problem: By running a sequence of random instructions or by

executing the end user application. A bug may appear while doing so.

 Localizing the problem: The problem has to be localized to a small region from the

system failure.

 4

 Finding the root cause of the problem: The reason for the occurrence of the

problem has to be found out at this stage.

 Finding a solution to the problem: A solution, which would fix the problem, has to

be implemented.

The following are reasons as to why post silicon validation is essential even though pre

silicon verification and manufacturing test techniques are present

 The actual silicon is several orders of magnitude faster than simulation. Hence,

there is a strong possibility of bugs being detected at this stage, which were not

detected at the pre silicon stage.

 Accurate modeling of electrical bugs like cross talk and power supply noise is very

difficult in the pre silicon stage.

 Unlike manufacturing faults, post silicon bugs may be caused due to subtle

interactions between the design and electrical faults. It is very difficult to create an

accurate model for such bugs.

The table given in the next page qualitatively compares pre silicon verification,

manufacturing testing and post silicon validation [3].

 5

Table. 1.1. Qualitative comparison of Pre silicon verification, Manufacturing testing, Post
Silicon Validation [3].

Pre Silicon Verification Manufacturing testing Post silicon validation

Full controllability and
observability. As any signal

can be accessed.

Controllability and
observability are primarily

due to scan DFT.

Insufficient controllability
and observability due to
limited access to internal

signals.

Complex physical effects are
difficult to model.

There are several defect
models.

Accounts for signal
integrity and process

variation.

Simulation for full chip
designs extremely slow.
Formal verification is not
applicable for all cases.

Generally very fast (In the
order of few seconds to

minutes per chip).

Silicon is several orders
of magnitude faster than

simulation.

Some established metrics
exist (Code coverage,

assertion coverage, mutation
coverage).

Test metrics like Stuck-at-
transition widely used.

Some metrics exist but it
is still an open research

problem.

Bug fixing inexpensive. Bug fixing is not the primary
objective.

Bug fixing is expensive.

Limited observability of internal signals is a major obstacle in the post silicon validation

stage. A number of solutions have been proposed in this area to tackle the problem. The

type of error, which one is trying to locate, dictates what information has to be acquired

from the design. The following are the different type of errors encountered during the post

silicon stage [4],

 6

 Circuit bugs: These are bugs that arise due to circuit mismatch between different

levels of abstraction and also effects from the use of deep sub-micron technologies

on process variation and signal integrity.

 Logic bugs: The data acquired by the DFD (Design for Debug) hardware can be

used to identify logic bugs, which are functional errors that have escaped the pre

silicon verification stage. One method for acquiring functional data in silicon is the

scan chain based technique. The problem here is that the normal circuit operation

is halted and the circuit has to be operated in the scan mode, hence preventing

data to be acquired in real time. As functional bugs can span thousands of clock

cycles [5] it is essential to keep the circuit working in the normal operation during

scan dumps. Hence, to effectively acquire debug data the trace based technique

is used which employs on chip memories for at speed data sampling. Details of

the trace based technique will be explained later in this thesis.

 System bugs: These type of bugs exist among multiple cores in an SOC. The bugs

that occur when a software is running on the system and the different cores are

interacting with each other require acquisition of data from the interrelated cores.

Hence the Design for Debug hardware has to be different when compared to the

hardware required for logic bugs in one core.

1.4 Trace Buffer Technique

As discussed, the scan-based technique is not suited to acquire data for debug in real

time as the normal operation of the circuit has to be halted and the circuit has to be

operated in the scan mode. To acquire data in real time the trace buffer based technique

[6] is used. The debug flow for using this approach is given below [7]

 7

Fig. 1.1. Debug flow for trace buffer based technique [7].

The first step is to design the embedded logic analyzer during the chip realization process.

It includes trigger units which determine when data has to be acquired and also the

sampling units which records a small set of signals (called trace signals) using trace

buffers such as embedded memories on chip. After which the debug engineer controls

the trigger events, which determines when the real time debug data is gathered by the

embedded logic analyzer. After this, the data is transferred off chip to the post processing

stage [8] via a low bandwidth interface. In the next stage, the data is fed to the simulator,

where the debug engineer can analyze the data to identify functional bugs. It has been

shown in [9] that large designs contain tens to hundreds of bugs. As a result, the debug

engineer has to iterate steps 2 through 7 shown in Figure 1.1 to gather all the required

data for resolving bugs. The amount of debug data acquired depends on the trace buffer

width and depth. The trace buffer width limits the number of signals that can be traced

and the trace buffer depth limits the number of samples that can be stored. To reduce the

debug time, the number of iterations of steps 2 through 7 has to reduce. In order to

achieve this goal, there is a need for better ELA’S, a number of such solutions have been

proposed in the literature [10 - 12]. However, as the cost of increased area has to be

incurred when the size of the trace buffer is increased, designers are reluctant to increase

 8

the size of trace buffer just for the purpose of silicon debug. Hence a few solutions have

been proposed in the literature [13, 14, 15] to compress the debug data present on the

chip before it is stored on the trace buffer. Although compression can be used to increase

the number of samples stored per trace signal, the number of signals being traced cannot

be increased. Hence, there is a need for an automated way to determine the signals being

traced, such that maximum data [combinational and sequential nodes] is reconstructed

based of the data acquired by the trace buffer. This has to be done in a way that any post-

processing algorithm can easily use the enlarged data to identify design bugs in step 7.

Fig 1.2 Example circuit to illustrate the trace buffer technique, (a) Circuit under debug
(b) Traced and restored data in sequential elements [7].

In the above Figure we see an example circuit utilizing the trace buffer concept. The trace

buffer width is set to 1, implying that only one flip-flop will be connected to the trace buffer.

In this example flip-flop C is being traced, we observe that just by recording the values of

 9

flip-flop C at different clock cycles we are able to restore the values of other flip-flops in

the circuit. The explanation as to how these values are restored is given in Chapter 2.

Another point to be noted here is that the number of signals being restored depends on

which flip-flop is being traced, notice that if flip-flop E were to be traced no other signal

would be restored. Hence in order to maximize observability at the post silicon stage a

clever and automated methodology has to be used to select the trace signals.

1.5 Related Work

Currently the trace signal selection process in the industry is primarily manual. The

decision to select signals is guided by the designer’s experience and intuition (For

example trace signals are selected from hardware blocks that have encountered more

bugs during the pre-silicon stage). Due to the lack of techniques for qualifying

observability value, the inadequacy of the selected trace signals shows up during silicon

debug, usually in the form of observability holes that make it difficult to identify, diagnose

and root-cause an observed failure. However, at this stage new trace signals cannot be

selected. Inability to observe, validate and debug at the post-silicon stage results in costly

escapes or silicon re-spins.

Research in post silicon validation has attempted to address this problem of automating

the process of selecting trace signals. The key idea here is to select a set of signals S

that maximizes state restorability (the set of states that can be reconstructed by observing

S). Most of the work done in this domain [16, 17, 7, and 18] involves defining a metric

based of the circuit structure that estimates the state restoration capability of a set of

signals and then this estimate is used to converge to a candidate set of trace signals.

Chatterjee et al. [19] have designed a simulation based approach that performs better

 10

than the structural based approach, however their approach has drawbacks in restoration

quality and also they incur a lot of computational overhead. Li et al. [20] has designed a

hybrid approach combining the metric based and the simulation based approaches,

however they only make use of simulation for a small set of signals and consequently

sacrificing restoration quality. Rahmani et al. [21] has designed an approach based of two

components: (1) an iterative approach to signal selection based on mock simulations and

(2) a filtering scheme based on Integer-Linear Programming (ILP) to refine the selected

set. However, their signal selection algorithm is a greedy algorithm and consequently this

affects their restoration quality.

1.6 Thesis Statement

In this work we have developed a novel simulation based approach for selecting trace

signals. The popular metric for measuring the quality of a set of trace signals is restoration

ratio.

Restoration Ratio = (No. of traced and restored values)/(No. of traced values)

The objective of the work done in this thesis is to maximize the metric restoration ratio.

To do this we used the simulated annealing heuristic to select trace signals. We

developed this idea from the fact that trace signal selection can basically be viewed as a

bi-partitioning problem, the set of flip-flops being tapped onto the trace buffer is one

partition and the other partition is the set of all other flip-flops in the design. Another key

contribution of this thesis is that we found a hole in the state restoration algorithm

developed by the authors of [7]. Their state restoration algorithm is incomplete, the

amount of restoration depends on the order of selection of flip-flops in the trace signal list.

This will lead to lower estimation of state restoration ratio in some cases.

 11

We have developed an improved state restoration algorithm that solves this problem and

using this combined with our novel simulated annealing based trace signal selection

method has led to higher quality of restoration. We have also conducted experiments to

show how variation in input vector affects the quality of restoration for a fixed set of trace

signals.

1.7 Thesis Overview

Following this Chapter, there are four more Chapters. In Chapter 2 we explain the design

of the logic simulator used for state restoration which exploits bitwise parallelization [7].

We also show how the algorithm for state restoration is incomplete and then we propose

an improved version of the state restoration algorithm to solve the issue. In Chapter 3 we

propose our novel simulated annealing based technique for selecting trace signals. In

Chapter 4 we provide a description of our entire experimental setup. We also provide the

description of all experiments performed and the corresponding results and analysis in

this chapter. Chapter 6 summarizes our work in this thesis and also provide an insight

into potential future research work in this area.

 12

Chapter 2
Algorithmic Solution for State
Restoration

In Chapter 1 the concept of trace buffer was explained. The amount of debug data that

can be acquired from the trace buffer depends on its width and depth. The width of the

trace buffer limits the number of signals that can be traced and the depth limits the number

of samples that can be acquired. Using the acquired data from the trace buffer, the values

of other nodes in the circuit can be reconstructed.

In this Chapter, we discuss an algorithm for state restoration developed by the authors of

[7]. The following figure also used in chapter 1 is also used to explain the restoration

process

Fig 2.1 Example circuit for state restoration, (a) Circuit under debug (b) Traced and
restored data in sequential elements [7].

 13

Ideally, to debug the circuit, the values of all 5 flip-flops are to be recorded, this would

imply using a trace buffer of size 5*5, but recording all values of all flip-flops is not a

feasible solution. So for debug, the value of one flip-flop is traced and based of this data,

the values of other flip-flops are reconstructed as much as possible.

In the above circuit, the trace buffer width is 1 and the trace buffer depth is 5. Which

implies that one flip-flop can be traced and its value over 5 clock cycles can be recorded.

In this example flip-flop C is traced. The basic idea of state restoration is to forward

propagate and backward justify the traced values. This is basically done with Boolean

equations. This concept may seem similar to ATPG (Automatic test pattern generation)

used in manufacturing tests, however state restoration is different as it does not require

any decisions to be made. The algorithm only needs to check if data can be reconstructed

at a particular node, if not no backtracking is done and the node is left undefined. In their

approach [7], they make an assumption that a gate level netlist is available and also all

the trace signals are flip-flops. The methodology defined by [7] cannot be used to debug

hard IP’s as they require a gate level netlist to be available for state restoration. This

approach can only be used to debug circuits that have passed all the manufacturing tests.

2.1 Principal Operations for State Restoration

Any combinational logic can be decomposed into the primitive two input gates (and, or,

exor, nand, nor, exnor). The algorithm proposed by [7] involves applying two basic

operations to logic gates in the translated circuit (i.e. after decomposing the combinational

logic into two input gates).

These are forward propagation and backward propagation. Forward propagation is

applied to a gate when the input values are known and the output is computed with the

 14

help of Boolean algebra. This is comparable to what is done in functional simulators. The

following figure shows examples of forward propagation and backward propagation

Fig 2.2: Principal operations for state restoration (a) Forward (b) Backward (c)
Combined and (d) Undefined [7].

Examples of forward propagation are shown in Fig. 2.2 (a), In the AND gate as one of the

inputs is 0, the output can be concluded to be 0 without looking at the other input.

Similarly, in the OR gate as one of the inputs is 1, the output can be concluded to be 1

without looking at the other input.

If the output value of a gate is known, the backward operation can be used to find the

input values of that gate. For example, in Fig 2.2(b) as the output of the AND gate is 1

both the inputs can be concluded to be 1. Similarly, in the OR gate as the output value is

0, the input values can be concluded to be 0. In the case when forward and backward

operations are not sufficient, a combined operation in which the output value and one

input value can be used to reconstruct the missing value as shown in Fig. 2.2(c). It is not

always possible to reconstruct values as shown in Fig. 3(d), In the case of AND gate as

the output is 0 and one input value is 0, the other input value cannot be reconstructed.

 15

Similarly, in the case of OR gate as the output value is 1 and one of the input value is 1,

the other input value cannot be reconstructed.

2.2 Exploiting Bitwise Parallelization for State Restoration

The authors of [7] designed an approach such that principal operations can be applied

concurrently at a node across multiple clock cycles. They exploited the integer data type

in ANSI C on a 32-bit platform to enhance the performance of their algorithm by storing

data for 32 consecutive clock cycles in two integers for each node. For the work done in

this thesis we have used an unsigned long long data type in C++ on a 64 bit platform to

better exploit bitwise parallelization. The following table shows the two-bit code for data

representation proposed by the authors of [7]

Logic value Two bit code

0 00

1 11

undefined 01, 10

Consider for example a flip-flop having the values [1, 1, 0, 0, 1, X] for 6 clock cycles then

this data is represented as follows

FFC_bit0 = 1, 1, 0, 0, 1, 0

FFC_bit1 = 1, 1, 0, 0, 1, 1

By working with two unsigned long long variables, the algorithm will be able to restore

data for 64 consecutive clock cycles at a time, this is done by using a sequence of logic

equations based on bitwise operations for all of the primitive gates. For each principal

operation, (Forward propagation and backward propagation) two different equations (For

 16

each unsigned long long variable) will be derived in such a manner so as to reduce the

number of bitwise operations. These equations are derived with the help of K-maps. The

derivation of forward and backward equations for AND gate is given below

 B0B1
A0A1 00 01 11 10

 00 0 0 0 0

 01 0 0 0 0

 11 0 0 1 0

 10 0 0 0 0

 (a) (b)

 B0B1
Z0Z1 00 01 11 10

 00 0 0 0 0

 01 0 0 0 0

 11 1 1 1 1

 10 0 0 0 0

 (c) (d)

Fig 2.3: Derivation of forward and backward equations for AND gate (a) K-map for Z0

(b) K-map for Z1 (c) K-map for A0 (d) K-map for A1

Here Z0 and Z1 are the two unsigned long long variables corresponding to the output

node of the AND gate. A0, A1 and B0,B1 are the variables corresponding to the two inputs

of the AND gate.

In the derivation of forward equations, the output of the AND gate Z is computed based

of the values of inputs A and B. In the derivation of backward equations, the input of the

AND gate A is computed based of the values of the output of the AND gate Z and the

other input B, similarly the backward equation for input B can be derived. These are the

equations obtained by simplifying the K-maps:

Z0 = A0A1B0B1

Z1= A1B1 + A1B0 +A0B1 + A0B0

 B0B1
A0A1 00 01 11 10

 00 0 0 0 0

 01 0 1 1 1

 11 0 1 1 1

 10 0 1 1 1

 B0B1
Z0Z1 00 01 11 10

 00 1 1 0 1

 01 1 1 1 1

 11 1 1 1 1

 10 1 1 1 1

 17

A0 = Z0Z1

A1 = 𝐁𝟎̅̅ ̅̅ + 𝐁𝟏̅̅ ̅̅ + Z1 + Z0

Similarly, equations for B0 and B1 are obtained,

B0 = Z0Z1

B1 = 𝐀𝟎̅̅ ̅̅ + 𝐀𝟏̅̅ ̅̅ + Z1 +Z0

Using these derived equations if the input ports of an AND gate have the following values

for 64 clock cycles,

A = [1,1,X,0,0,X,1,1,1,1,1,1 … 1]

B = [1,1,X,0,0,X,1,1,1,1,1,1 … 1]

From the two-bit representation we have,

A0 = [1,1,0,0,0,0,1,1,1,1,1,1 … 1]

A1 = [1,1,1,0,0,1,1,1,1,1,1,1 … 1]

Similarly, for B,

B0 = [1,1,0,0,0,0,1,1,1,1,1,1 … 1]

B1 = [1,1,1,0,0,1,1,1,1,1,1,1 … 1]

Now by applying the forward equations we get,

Z0 = [1,1,0,0,0,0,1,1,1,1,1,1 … 1]

Z1 = [1,1,1,0,0,1,1,1,1,1,1,1 … 1]

From this, we get the value of output Z for 64 clock cycles,

Z = [1,1,X,0,0,X,1,1,1,1,1,1 … 1]

If output is known for specific clock cycles in which the inputs are unknown then applying

forward equations would rewrite the values of the output variables. Hence, to preserve

 18

the known values, additional operations are added to the forward and backward

equations. The modified equations are,

Z0 = (𝐙𝟎⊕ 𝐙𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) Z0 + (Z0⊕Z1) (A0A1B0B1)

Z1= (𝐙𝟎⊕ 𝐙𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) Z1 + (Z0⊕Z1) (A1B1 + A1B0 +A0B1 + A0B0)

A0 = (𝐀𝟎⊕ 𝐀𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) A0 + (A0⊕A1) Z0Z1

A1 =(𝐀𝟎⊕ 𝐀𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) A1 + (A0⊕A1) (𝐁𝟎̅̅ ̅̅ + 𝐁𝟏̅̅ ̅̅ + Z1 + Z0)

B0 = (𝐁𝟎⊕ 𝐁𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) B0 + (A0⊕A1) Z0Z1

B1 =(𝐁𝟎⊕ 𝐁𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) B1 + (A0⊕A1) (𝐁𝟎̅̅ ̅̅ + 𝐁𝟏̅̅ ̅̅ + Z1 + Z0)

In a similar way forward and backward equations are derived for other basic logic gates.

With the help of these equations, existing values will not be overwritten. Digital circuits

often involve complex gates with a higher fan-in. These gates have to be decomposed

into two input gates in order to use these equations or new equations have to be derived

for gates that have a higher fan-in.

2.3 Algorithm for State Restoration

The state restoration algorithm proposed by the authors of [7] is given below.

Input: Circuit Graph, Trace_Signal_List
Output: Circuit Graph with restored data
1 search_list = Trace_Signal_List;
2 while search_list is not empty do
3 cur_node = first node in search_list;
4 for each (parent_node of cur_node)
5 BackwardOperation (cur_node, parent_node);
6 if(new data are restored for parent_node) then
7 Put parent_node at end of search_list
8 for each (child_node of cur_node) do
9 ForwardOperation (cur_node, child_node);
10 if (new data are restored for child_node) then
11 Put child_node at end of search_list
12 Delete cur_node from search_list

 19

Before applying this algorithm, the circuit netlist is translated into a graph where the nodes

represent logic gates, state elements, primary inputs, and outputs, and the directed edges

represent signal dependencies.

After the netlist is translated into a graph, principal operations are applied to each node

repeatedly until no more data can be reconstructed for all signals from the given subset

of signals. The application of principal operations is done as shown in the above

algorithm. In Fig 2.1, when comparing the amount of data available before and after state

restoration, 14 state values are available after applying the restoration process on only 4

initial state values from FFC. This gives a state restoration ratio of 14/4 = 3.5. It has to be

noted here that the amount of data that can be restored depends on the initial data that

is sampled. For example, if in Fig 2.1 only FFE was sampled, then no new data would

have been reconstructed.

The computation time for the algorithm is directly proportional to the number of nodes in

the circuit.

2.4 Significance of the Order of Signal Selection

While doing some experiments for the work done in this thesis, we found that the original

algorithm for state restoration is incomplete. The amount of restoration depends on the

order of selection of flip-flops in the trace signal list. This can be better explained with the

help of the example shown below. In the example, restoration is carried out for a specific

window of 64 clock cycles.

 20

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A

B

Combinational
Logic

Z 64'0Q

K 64'0

(a) (b)

(c) (d)

P 64'1

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A

B

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0 P 64'1

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A 64'0

B

Combinational
Logic

Q 63'0 1'X

K 64'0 P 64'1

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A 64'0

B 63'1 1'X

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0 P 64'1

Fig 2.4: Significance of the order of signal selection (Case 1)

In Figure 2.4, both the flip-flops are selected to be part of the trace signal list. The order

of selection of these flip-flops in the trace signal list determines the amount of restoration.

In Case 1, the flip-flop with output port K is chosen first and the flip-flop with output port Z

is chosen next. In Fig 2.4 (a), the restoration process begins and node P is restored by

forward propagation. After which the next node in the search_list is Z and it restores node

Q by backward propagation as shown in Fig 2.4 (b). The next node in the searchlist is P,

it applies the forward propagation operation and restores node A as shown in Fig 2.4 (c)

. After which node Q is in the front of the searchlist and it restores node B by backward

propagation as shown in Fig 2.4 (d). Next we interchange the order of selection of flip-

flops and observe the restoration process.

 21

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A

B

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0

(a) (b)

(c) (d)

P

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A

B

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0 P 64'1

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A 64'0

B

Combinational
Logic

Q 63'0 1'X

K 64'0 P 64'1

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A 64'0

B

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0 P 64'1

Fig 2.5: Significance of the order of signal selection (Case 2)

In Case 2, the flip-flop with output port Z is chosen first and the flip-flop with output port K

is chosen next. In Fig 2.5 (a), the restoration process begins and node Q is restored by

backward propagation. After which the next node in the search_list is K and it restores

node P by forward propagation as shown in Fig 2.5 (b). The next node in the searchlist is

Q, it applies the backward propagation operation and fails to restore anything. After which

node P is in the front of the searchlist and it restores node A by forward propagation as

shown in Fig 2.5 (c). Finally, node A applies forward propagation and is unable to restore

anything and the final state of the circuit is as shown in Fig 2.5 (d). Here Node B is not

restored, it should have been restored with the knowledge of nodes A and Q (As seen in

case 1). Hence we conclude that the original restoration algorithm is incomplete as the

amount of restoration depends on the order of selection of flip-flops. To tackle this

problem, we propose a modified algorithm for state restoration in the next section.

 22

2.5 Improved Algorithm for State Restoration

As discussed in the previous sub section the original state restoration algorithm is

incomplete. There is a difference in the amount of restoration obtained depending on the

order in which flip-flops are pushed into the trace signal list. The algorithm below solves

this problem

Input: Circuit Graph, Trace_Signal_List
Output: Circuit Graph with restored data
1 search_list = Trace_Signal_List;
2 while search_list is not empty do
3 cur_node = first node in search_list;
4 for each (parent_node of cur_node)
5 BackwardOperation (cur_node, parent_node);
6 if (new data are restored for parent_node) then
7 Put parent_node at end of search_list
8 for each (child_node of cur_node) do
9 ForwardOperation (cur_node, child_node);
10 if (new data are restored for child_node) then
11 Put child_node at end of search_list
12 else if(child_node is not unknown) then
13 Backward operation (child node, sister_node of cur_node)
14 if(new data are restored for sister_node)
15 put sister_node of cur_node at end of search_list
16 Delete cur_node from search_list

In the modified version of the algorithm during forward propagation if the output node is

defined, then a backward operation is carried out, where there is an attempt to restore

sister node of the current node. Note that this only has to be done for two input gates, as

there is no need for this in a NOT gate. We now present the example discussed in the

previous section and show how we have removed the dependence on the order of

selection of flip-flops.

 23

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A

B

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0

(a) (b)

(c) (d)

P

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A

B

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0 P 64'1

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A 64'0

B

Combinational
Logic

Q 63'0 1'X

K 64'0 P 64'1

Q

Q
SET

CLR

D

Q

Q
S ET

C LR

D

A 64'0

B 63'1 1'X

Combinational
Logic

Z 64'0Q 63'0 1'X

K 64'0 P 64'1

Fig 2.6: Eliminating dependence on order of selection of flip-flops

As discussed previously if the flip-flop with output port Z is chosen first, then node B would

never be restored in the original restoration algorithm. Using the modified restoration

when node A is in the front of the search_list it would detect that the output node of the

gate (Node Q) is not unknown, after which a backward propagation operation is applied

to restore the sister node of the current node (Node B). This operation would successfully

restore the value of Node B for 63 clock cycles. In this way the dependence on order of

selection of flip-flops is eliminated.

2.6 Summary of Chapter 2

In Chapter 2 we discussed the design of the logic simulation tool used for state

restoration. We explained the principal operations for state restoration and also how the

equations for these operations are implemented with the help of bitwise logic operations.

We also presented an example to show how the original restoration algorithm is

incomplete, as the amount of restoration depends on the order of selection of flip-flops in

 24

the trace signal list. We also proposed an improved restoration algorithm which would

tackle this problem. In the next chapter we present our novel simulated annealing based

technique to select trace signals.

 25

Chapter 3
Automated Approach to Select
Trace Signals

The popular metric for measuring the quality of a set of trace signals is restoration ratio.

Restoration Ratio = (No. of traced and restored values)/(No. of traced values)

The objective of the work done in this thesis is to maximize the metric restoration ratio.

Existing trace signal selection approaches can be classified into two categories, structural

and simulation based. The structural based approach involves using a greedy heuristic

to select trace signals optimizing a metric which is dependent on the structure of the circuit

[16 7 17 18]. These set of approaches are computationally efficient but suffer from the

drawback of poor restoration quality. The other set of approaches is the simulation based

approach which are computationally inefficient but offer a higher quality of restoration.

Simulation based approaches work on the intuition that if a set of signals work well for a

particular input vector they should work well for other input vectors as well. Chatterjee et

al [19] were the first to provide a simulation based approach to select trace signals. They

designed a greedy elimination approach with a time complexity of the order of n2. They

start of by selecting all flip-flops in the design. In each step, they remove one flip-flop

which is least important (based on the results of simulation). This continues until the

number of flip-flops in the list becomes equal to the width of trace buffer. The main

problem with this approach is removing any flip-flop initially may still lead to 100%

restoration, hence there is a possibility of eliminating beneficial signals. Another

simulation based approach was designed by Rahmani et al. [21] Their approach is based

 26

of two components: (1) an iterative approach to signal selection based on mock

simulations and (2) a filtering scheme based on Integer-Linear Programming (ILP) to

refine the selected set. However, their signal selection algorithm is a greedy algorithm

and consequently this affects their restoration quality.

3.1 Simulation Based Approach with Short Trace Buffer Depth

A common way to reduce effort in simulation-based estimations is to perform several

short simulations and average their outcomes. Chatterjee et al [19] proposed the use of

a shorter trace buffer depth. They showed that the state restoration ratio variation is

negligible beyond a trace buffer size of 64.

Fig. 3.1. Impact of trace buffer size on SRR. Analysis on ISCAS 89 benchmark s35932
over 3 random starting points of tracing and 3 random sets of input values per starting

point indicates that SRR for a fixed set of signals is fairly insensitive to trace buffer sizes
beyond 64 [19].

To further validate their hypothesis that short trace buffer sizes are accurate enough for

State Restoration Ratio estimation, they performed a correlation study of their simulation

based restoration capacity metric with observed SRR (Trace buffer depth of 4096 clock

cycles). Their SRR estimate is computed for 1000 random sets of 8 flip-flops each using

a fast mock simulation with a trace buffer size of 64 and only one random set of inputs

and starting time for tracing.

 27

Fig. 3.2. Correlation of simulation-based restoration capacity metric of [19] with
observed SRR using a mock simulation trace buffer depth of 64 clock cycles for ISCAS

89 benchmarks s38417 and s35932 [19].

The plots shown above clearly indicate a very high correlation between the estimation

metric proposed by [19] and the observed state restoration ratio.

For these reasons, this metric is used to select trace signals for the work done in this

thesis.

3.2 Simulated Annealing Based Signal Selection

Basically the trace signal selection problem can be viewed as a Bi-partitioning problem.

The first partition here is the set of flip-flops which will be recorded by the trace buffer and

the other partition is the set of all other flip-flops in the design. This insight gave us the

idea to use the simulated annealing heuristic for this problem.

 28

Start

Step 1: Initialize: Start with a
random initial partition

Step 2: Move – Perturb the partition through a
defined move (Swap one flip flop in the trace buffer

set with another in the non trace buffer set)

Step 3: Calculate cost – calculate the change in the
score (Restoration ratio) due to the move made.

Depending on the
change in score, accept

or reject the move

Reject : Restore
the original

partition before
the move

Accept: Keep
the new

partition.

Stop

Criteria

STOP

YES

NO

Fig. 3.3.: Flowchart to show the steps involved in the simulated annealing heuristic to
select trace signals.

.

 29

3.2.1 Initialization Step: Random Initial Partition

There are basically two partitions, the first partition has all the flip-flops which will be

tapped onto the trace buffer. The second partition has all other flip-flops in the design.

The size of the first partition, depends on the trace buffer width (Usually in the industry

width = 8 or 16 or 32). The size of the second partition depends on the number of flip-

flops in the design. In the initialization step a certain number of flip-flops (Number = trace

buffer width) will be randomly selected to be a part of the first partition, all other flip-flops

will be in the second partition. Evaluate the state restoration ratio metric for the set of flip-

flops in the first partition. This metric serves as the cost function for the simulated

annealing heuristic.

3.2.2 Move Function

In the move function the partition is perturbed through a defined move. One flip-flop in the

trace buffer set is moved to the non-trace buffer set. Some other flip-flop in the non-trace

buffer set is moved to the trace buffer set. The selection of these flip-flops is done

randomly.

3.2.3 Cost Function

The new trace buffer set may have a different score (State Restoration Ratio). The

difference in the score between the new trace buffer set and the old trace buffer set, will

dictate if the move is accepted or not. If there is an improvement in the score the move

will be accepted. If there is a degradation in the score, the move may or may not be

accepted. Initially a lot of inferior moves are accepted, but as the number of iterations

 30

keeps increasing the probability of an inferior move being accepted decreases. In the

end, no degrading moves are accepted.

3.2.4 Stop Criteria

For the work done in this thesis, Will Naylor’s simulated annealing package [22] has been

used. There are 3 user inputs that have to be given to the package which control the stop

criteria. They are

 Problem size

 Stop run length

 Epochs to run

Epochs are “problem size acceptances”. At each acceptance, the temperature is

decreased by a fixed amount, the amount is chosen to make the temperature 0 after

“Epochs to run” epochs. Temperature is not decreased at rejections.

Problem size is a parameter which specifies the number of variables in the problem to be

optimized.

Stop run length specifies the unaccepted mutations to terminate the anneal.

All mutations which give improvement are immediately accepted. To avoid the algorithm

getting stuck in local minima too soon, degradations are sometimes accepted with

probability equal to

Prob = exp (-delta/temp)

 31

Where delta is the change in objective function produced by the mutation. The

temperature decreases by a fixed amount each time a mutation is accepted. Temperature

starts at some medium to large value and falls throughout the run toward 0. At the end

the temperature is equal to 0. At temp=0, no degrading mutations are accepted.

3.3 Summary of Chapter 3

In this Chapter we discussed about conventional simulation based approaches for

selecting trace signals. Then we presented a flowchart that illustrated our simulated

annealing based approach for selecting trace signals. We explained the various steps

and functions involved in simulated annealing. We also explained how the stop criteria is

controlled by a few parameters. The tuning of these parameters is discussed in Chapter

4. In the next chapter we present our entire experimental setup, list of experiments and

the corresponding analysis for it.

 32

Chapter 4

Experimentation and Results

In this Chapter we discuss the experimental setup that is used to evaluate the proposed

technique discussed in Chapter 3.

4.1 Experimental Setup

The benchmarks that we have used to evaluate our proposed technique are the ISCAS

89 benchmarks [24]. The reasoning behind using these benchmarks is that they are

publically available and most papers in this line of research have used these benchmarks.

4.1.1 Benchmarks

The ISCAS 89 benchmarks are publically available gate level netlists. The required

information of the benchmarks we have used is provided in the table below.

Circuit Number of flip-flops
Number of primary

inputs
Number of primary

outputs

S5378 179 35 49

S9234 211 36 39

S15850 534 77 150

S38584 1426 38 304

S38417 1636 28 106

S35932 1728 35 320

 33

Get gate level net list of ISCAS

89 Benchmarks

Modified netlist in which 4 and

3 Input gates have been

translated into 2 Input gates

Get verilog file of

ISCAS 89

benchmarks

Apply deterministic values to

control signals and random

values to all other signals

PERL

Simulation data is

obtained

MODELSIM®

Extracted simulation data for a

specific window of 64 clock cycles

PERL

Simulated annealing

based trace signal

selection

Logic simulator

utilizing bitwise

parallelization

O/ P file with restored

data
Verification script

Restored data

which has been

verified

PERL

C++

C++

Fig. 4.1. Flow diagram for our entire experimental setup

 34

4.1.2 Netlist Translation Script (PERL)

As discussed in section 2 of this thesis, the logic simulator we have used requires all the

combinational logic to be translated into 2 input gates. In the benchmarks that we have

used, initially the netlist is made up of 3 input and 4 input gates. We have developed a

PERL script that automates the combinational logic translation into 2 input gates.

A

B

C

A+B+C

A

B

C

A+B

A+B+C

Fig. 4.2. 3 input OR gate translated into 2 input OR gates

4.1.3 Simulation Data from Modelsim®

To replicate data stored in trace buffer at the post silicon stage, we obtain the simulation

data from the Mentor Graphics logic simulation tool Modelsim ® [23]. To get this data we

apply deterministic values to control signals and random values to all other signals. To

find the control signals in a design we use the same Design compiler and Tetramax®

(Synopsys tools) flow proposed by [4]. After which we have a script in PERL which parses

the log files [From Modelsim®] and gives an output file which has the simulation data for

a specific window of 64 clock cycles. For example, the output file has data as shown

below,

G0 10

The node G0 has the values shown above for a specific window of 64 clock cycles. This

file is fed to the trace signal selection tool.

 35

4.1.4 Trace Signal Selection Tool, Logic Simulation Tool (C++)

The design of these two tools have been discussed in detail in Chapters 3 and 2

respectively. Basically the simulated annealing tool selects a set of flip-flops (Number of

flip-flops being equal to trace buffer width) in every iteration and the logic simulation tool

evaluates the restoration ratio for this set of flip-flops. The inputs to these tools are the

outputs of the netlist translation script and the Modelsim® parser script.

4.1.5 Verification Script (PERL)

The trace signal selection tool generates a log file, which has the restored data for the set

of flip-flops which achieves the best restoration ratio. We use this log file and the output

of the Modelsim® parser script to verify if the restored data is completely correct.

4.2 Comparison Between Original and Improved Restoration Algorithm

As discussed in Chapter 2, the original restoration algorithm is incomplete. When the

output and one input of a gate are known, the other input of the gate can only be restored

by backward propagation (this is because of the way the forward and backward equations

are derived, the forward equations can only restore the output and not the other side

input). To fix this problem we proposed an improved restoration algorithm in Chapter 2.

We observed that the problem has been solved and we achieve better final restoration

ratio for the same circuit, same input vector and same flip-flops being traced. To evaluate

the improvement obtained, we selected 10 random sets of flip-flops (Trace buffer width =

8) for all the benchmarks and calculated the restoration ratio with the original restoration

algorithm and the improved restoration algorithm. The idea behind selecting just 10

random sets was to check if the improvement is obtained on a regular basis (that is the

 36

order of selection of flip-flops matters on a regular basis). The comparison tables are

given below.

Table. 4.1. Evaluating difference in restoration algorithms for S5378

Original
Restoration

Improved
Restoration

Percentage of
Improvement

10.24 10.24 0%

9.41 9.41 0%

3.28 11.08 238%

4.67 8.78 88%

11.51 11.51 0%

10.01 10.01 0%

9.11 9.11 0%

1.48 1.48 0%

4.47 4.47 0%

3.27 3.27 0%

Table. 4.2. Evaluating difference in restoration algorithms for S9234

Original
Restoration

Improved
Restoration

Percentage of
Improvement

2.6 2.63 1%

2.51 2.51 0%

4.22 4.22 0%

1.61 1.61 0%

5.15 5.25 2%

3.92 3.92 0%

2.36 2.36 0%

3.63 3.63 0%

5.24 5.23 0%

2.05 2.16 5%

 37

Table. 4.3. Evaluating difference in restoration algorithms for S15850

Original
Restoration

Improved
Restoration

Percentage of
Improvement

2.53 2.53 0%

4.43 4.43 0%

1.57 5.68 262%

1.56 1.56 0%

3.93 3.93 0%

9.79 14.125 44%

4.66 4.7 1%

1.03 1.03 0%

3.21 3.33 4%

4.47 5.39 21%

 Table. 4.4. Evaluating difference in restoration algorithms for S38417

Original
Restoration

Improved
Restoration

Percentage of
Improvement

11.52 12 4%

10.44 10.93 5%

2.98 2.99 0%

3.95 4 1%

3.25 3.32 2%

8.6 10.29 20%

1.73 1.73 0%

2.05 4.62 125%

1.24 1.24 0%

12.46 13.05 5%

 38

Table. 4.5. Evaluating difference in restoration algorithms for S38584

Original
Restoration

Improved
Restoration

Percentage of
Improvement

2.28 2.28 0%

1.29 1.29 0%

1.29 1.29 0%

1.36 1.36 0%

1 1 0%

2.56 2.56 0%

2.24 2.24 0%

1.49 1.49 0%

1 1 0%

3.06 3.26 7%

 Table. 4.6. Evaluating difference in restoration algorithms for S35932

Original
Restoration

Improved
Restoration

Percentage of
Improvement

13.62 14.45 6%

3.77 3.93 4%

7.02 7.07 1%

9.82 10.21 4%

12.83 13.71 7%

5.73 6.34 11%

6.07 6.34 4%

10.01 10.58 6%

6.78 6.95 3%

6.58 6.71 2%

Conclusion from these tables: Clearly the improved restoration algorithm is able to

restore more or equal values for the same input vector and same flip-flops being traced

when compared to the original restoration algorithm. We can also see clearly that the

order of selection of flip-flops matters on a regular basis. In some cases, the improvement

obtained is extremely large. For this particular experiment we observed an improvement

in Restoration Ratio up to 262%.

 39

 Next we performed short simulated annealing trace signal selection runs with the same

random seed to show the difference between the two restoration algorithms. For this

particular experiment we have set the trace buffer width equal to 8. Given next are

convergence plots for each benchmark with both the original and improved restoration

algorithms.

Fig. 4.3. Convergence plots for s5378 comparing the restoration algorithms

The difference is not clearly visible in this benchmark, the restoration ratio (cost function)

ends up being 12.89 in the original approach and 13.24 with the improved approach.

 40

Fig. 4.4. Convergence plots for s9234 comparing the restoration algorithm

The difference is more clearly visible in this benchmark with the restoration ratio reaching

7.42 with the original approach and 8.54 with our approach.

Fig. 4.5. Convergence plots for s15850 comparing the restoration algorithms

There is a huge difference between the two plots for this benchmark with the restoration

ratio reached being double in our approach.

 41

Fig. 4.6. Convergence plots for s38417 comparing the restoration algorithms

The restoration ratio ends up being 25.67 in the original restoration algorithm and 28.57

with the improved algorithm.

Fig. 4.7. Convergence plots for s38584 comparing the restoration algorithms

There is a considerable difference between the two plots for this benchmark with the

restoration ratio reaching 6.2 with the original approach and 11.43 with our approach.

 42

Fig. 4.8. Convergence plots for s35932 comparing the restoration algorithms

The restoration ratio ends up being 19.31 in the original approach and 21.10 with our

approach.

Conclusion from these plots: Clearly our restoration algorithm is able to restore more

values for the same input vector and same flip-flops when compared to the original

restoration algorithm. Due to the difference in the cost function (Restoration ratio)

between the two runs, there is a difference in moves being accepted or rejected,

consequently the convergence plot differs for the two runs. Hence even though we

applied the same cooling schedule and stop criteria for both approaches they need not

run for the same number of epochs and there is also a difference in the final cost reached.

4.3 Tuning for Simulated Annealing and Convergence Plots

The trace buffer widths used in our experiments are 8,16 and 32, we have selected these

widths as these are the widths selected by all of the papers in this research area. As

explained in Chapter 3, there are three user given inputs to the simulated annealing

package

 Problem size

 43

 Stop run length

 Epochs to run

Since we are optimizing one particular variable, “Restoration Ratio”, we are setting the

problem size to be equal to 1.

We set the stop run length to be equal to 500, this is a large number as it means that the

anneal will only be terminated if there are 500 consecutive rejected moves and it was

chosen as our goal was maximizing the restoration ratio regardless of the run time.

We wanted the epochs to run to be a function of the number of flip-flops in a design and

the trace buffer width chosen for that design. Also since our goal was maximizing the

restoration ratio, we set this variable to be equal to

(number_of_flip_flops*trace_buffer_width)*100.

We used the simulated annealing heuristic to select trace signals for 6 different ISCAS

89 benchmarks and 3 different trace buffer widths. For a specific ISCAS 89 benchmark

and trace buffer width, we launched six different runs. These six runs correspond to 3

different random seeds for obtaining simulation data from Modelsim® and 2 different

windows of 64 cycles.

 We present the convergence plots for each benchmark and trace buffer width for one

particular window of 64 clock cycles. These plots show how the cost function (Restoration

ratio) moves towards the global optimum value.

 44

Fig. 4.9. Convergence plot for s5378 and trace buffer width 8 for the actual trace signal
selection run

Fig. 4.10. Convergence plot for s9234 and trace buffer width 8 for the actual trace signal
selection run

 45

Fig. 4.11. Convergence plot for s15850 and trace buffer width 8 for the actual trace
signal selection run

Fig. 4.12. Convergence plot for s38417 and trace buffer width 8 for the actual trace
signal selection run

 46

Fig. 4.13. Convergence plot for s38584 and trace buffer width 8 for the actual trace
signal selection run

Fig. 4.14. Convergence plot for s35932 and trace buffer width 8 for the actual trace
signal selection run

 47

Fig. 4.15. Convergence plot for s5378 and trace buffer width 16 for the actual trace
signal selection run

Fig. 4.16. Convergence plot for s9234 and trace buffer width 16 for the actual trace
signal selection run

 48

Fig. 4.17. Convergence plot for s15850 and trace buffer width 16 for the actual trace
signal selection run

Fig. 4.18. Convergence plot for s38417 and trace buffer width 16 for the actual trace
signal selection run

 49

Fig. 4.19. Convergence plot for s38584 and trace buffer width 16 for the actual trace
signal selection run

Fig. 4.20. Convergence plot for s35932 and trace buffer width 16 for the actual trace
signal selection run

 50

Fig. 4.21. Convergence plot for s5378 and trace buffer width 32 for the actual trace
signal selection run

Fig. 4.22. Convergence plot for s9234 and trace buffer width 32 for the actual trace
signal selection run

 51

Fig. 4.23. Convergence plot for s15850 and trace buffer width 32 for the actual trace
signal selection run

Fig. 4.24. Convergence plot for s38417 and trace buffer width 32 for the actual trace
signal selection run

 52

Fig. 4.25. Convergence plot for s38584 and trace buffer width 32 for the actual trace
signal selection run

Fig. 4.26. Convergence plot for s35932 and trace buffer width 32 for the actual trace
signal selection run

 53

4.4 Evaluating Dependence on Input Vector

As stated earlier for a specific ISCAS 89 benchmark and trace buffer width, we launched

6 different runs. These 6 runs correspond to three different random seeds for obtaining

simulation data from Modelsim® and two different windows of 64 cycles. From these 6

runs we obtain 6 different sets of flip-flops and we choose the set which has the highest

score which corresponds to the average restoration ratio for 6 sets of input vectors (Each

corresponding to 64 clock cycles). The future work of this thesis would be to feed these

6 sets of flip-flops into an ILP optimizer [21] which would then select the best signal set

such that the total number of lost states in all runs is minimized. For now, we use the best

average to select the trace signals. Next we present the table for each benchmark and a

particular trace buffer width, showing how the restoration ratio for each set varies with the

input vector.

Table. 4.7. Table to evaluate the best set of trace signals for S5378 trace buffer width 8

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 14.34 14.19 14.23 14.07 14.18 14.03 14.17 0.10

Set 2 14.33 14.33 14.33 14.16 14.34 14.14 14.27 0.09

Set 3 14.33 14.30 14.37 14.14 14.33 14.15 14.27 0.09

Set 4 14.32 14.33 14.35 14.17 14.35 14.14 14.28 0.09

Set 5 14.33 14.33 14.35 14.16 14.35 14.15 14.28 0.09

Set 6 13.70 14.02 14.00 13.74 13.92 14.23 13.93 0.18

 54

Table. 4.8. Table to evaluate the best set of trace signals for S9234 trace buffer width 8

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 11.65 12.00 12.46 11.78 12.22 11.53 11.94 0.33

Set 2 11.28 12.51 11.28 12.43 11.47 11.98 11.82 0.51

Set 3 11.65 12.00 12.46 11.78 12.22 11.53 11.94 0.33

Set 4 10.97 11.71 10.60 12.63 10.23 11.43 11.26 0.78

Set 5 11.20 12.04 11.90 11.84 11.59 11.54 11.68 0.28

Set 6 10.12 12.25 10.05 11.59 10.38 12.20 11.10 0.94

Table. 4.9. Table to evaluate the best set of trace signals for S15850 trace buffer width

8

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 43.98 42.72 41.12 38.49 37.24 41.16 40.78 2.31

Set 2 32.87 43.98 34.04 36.08 33.92 34.83 35.95 3.72

Set 3 39.88 38.33 42.14 40.16 36.54 40.57 39.60 1.77

Set 4 31.86 39.14 33.25 44.58 34.79 39.65 37.21 4.36

Set 5 41.93 41.58 40.21 38.69 42.04 40.75 40.87 1.17

Set 6 36.96 41.56 35.55 39.70 35.17 44.05 38.83 3.24

Table. 4.10. Table to evaluate the best set of trace signals for S38417 trace buffer width
8

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 40.46 36.14 36.20 40.36 39.23 29.11 36.92 3.91

Set 2 39.51 39.59 39.17 39.35 39.01 32.34 38.16 2.61

Set 3 31.49 30.88 39.71 39.63 36.97 31.12 34.97 3.91

Set 4 36.04 35.76 40.08 40.31 40.03 32.00 37.37 3.06

Set 5 28.06 27.45 39.63 39.60 40.55 32.17 34.58 5.56

Set 6 32.39 35.29 27.96 31.45 40.23 40.38 34.62 4.55

 55

Table. 4.11. Table to evaluate the best set of trace signals for S38584 trace buffer width
8

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 22.79 14.87 17.38 15.52 18.67 14.43 17.27 2.87

Set 2 20.77 22.39 18.62 19.35 22.53 22.36 21.00 1.56

Set 3 12.10 9.12 23.10 13.35 14.87 8.65 13.53 4.81

Set 4 9.67 10.96 8.62 22.54 13.50 13.49 13.13 4.58

Set 5 21.67 22.39 18.63 19.36 22.53 22.36 21.16 1.57

Set 6 3.02 9.00 11.95 3.50 4.99 22.93 9.23 6.89

Table. 4.12. Table to evaluate the best set of trace signals for S35932 trace buffer width

8

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 28.56 32.00 28.56 32.00 28.56 32.00 30.28 1.72

Set 2 28.56 32.00 28.56 32.00 28.56 32.00 30.28 1.72

Set 3 28.56 32.00 28.56 32.00 28.56 32.00 30.28 1.72

Set 4 28.56 32.00 28.56 32.00 28.56 32.00 30.28 1.72

Set 5 28.56 32.00 28.56 32.00 28.56 32.00 30.28 1.72

Set 6 28.56 32.00 28.56 32.00 28.56 32.00 30.28 1.72

Table. 4.13. Table to evaluate the best set of trace signals for S5378 trace buffer width

16

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 9.16 8.55 8.43 8.59 8.67 8.55 8.66 0.24

Set 2 8.58 8.72 8.50 8.51 8.52 8.48 8.55 0.08

Set 3 8.61 8.55 8.61 8.46 8.61 8.51 8.56 0.06

Set 4 8.42 8.45 8.08 8.75 8.73 8.38 8.47 0.23

Set 5 8.14 8.48 8.11 8.59 8.78 8.25 8.39 0.24

Set 6 7.84 8.26 7.81 8.36 8.56 8.68 8.25 0.33

 56

Table. 4.14. Table to evaluate the best set of trace signals for S9234 trace buffer width
16

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 8.91 7.84 8.30 8.36 8.20 8.17 8.30 0.32

Set 2 8.10 8.47 7.80 8.29 8.09 8.15 8.15 0.20

Set 3 8.13 6.79 8.90 8.14 7.35 7.19 7.75 0.71

Set 4 7.95 7.58 8.74 8.67 8.27 7.74 8.16 0.44

Set 5 7.60 7.75 7.91 7.51 8.64 8.43 7.97 0.42

Set 6 7.67 7.93 8.04 7.72 8.63 8.50 8.08 0.36

Table. 4.15. Table to evaluate the best set of trace signals for S15850 trace buffer width

16

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 25.85 23.88 24.45 23.05 21.88 24.45 23.92 1.24

Set 2 20.11 26.29 21.93 20.39 21.96 21.94 22.10 2.02

Set 3 21.27 24.41 26.30 22.96 23.56 24.52 23.84 1.54

Set 4 22.11 23.14 23.26 26.17 23.27 25.61 23.93 1.45

Set 5 21.51 23.70 23.31 24.93 25.57 24.99 24.00 1.36

Set 6 21.30 20.29 21.34 23.56 21.42 25.84 22.29 1.86

Table. 4.16. Table to evaluate the best set of trace signals for S38417 trace buffer width

16

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 29.30 28.75 24.62 24.73 28.94 29.01 27.56 2.04

Set 2 29.05 28.92 24.32 24.34 28.80 26.35 26.96 2.07

Set 3 26.98 26.31 29.20 29.09 29.51 24.29 27.56 1.89

Set 4 24.88 24.67 29.27 29.36 28.92 22.70 26.63 2.65

Set 5 18.83 18.27 26.84 26.71 29.66 28.88 24.86 4.59

Set 6 11.20 10.56 10.92 10.98 18.45 29.89 15.33 7.07

 57

Table. 4.17. Table to evaluate the best set of trace signals for S38584 trace buffer width
16

Set RR 1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 20.71 17.00 20.24 18.82 17.27 19.40 18.91 1.39

Set 2 18.22 20.11 17.88 20.39 19.13 19.63 19.23 0.93

Set 3 20.49 12.21 20.59 17.76 17.43 7.17 15.94 4.81

Set 4 19.83 18.56 20.10 20.40 14.07 5.34 16.38 5.38

Set 5 19.18 16.68 19.99 16.81 20.63 16.47 18.29 1.70

Set 6 2.17 17.24 19.05 3.29 9.49 20.30 11.92 7.36

Table. 4.18. Table to evaluate the best set of trace signals for S35932 trace buffer width

16

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 19.72 19.72 19.72 19.72 19.72 19.72 19.72 0.00

Set 2 19.72 19.72 19.72 19.72 19.72 19.72 19.72 0.00

Set 3 19.72 19.72 19.72 19.72 19.72 19.72 19.72 0.00

Set 4 19.72 19.72 19.72 19.72 19.72 19.72 19.72 0.00

Set 5 19.72 19.72 19.72 19.72 19.72 19.72 19.72 0.00

Set 6 19.72 19.72 19.72 19.72 19.72 19.72 19.72 0.00

Table. 4.19. Table to evaluate the best set of trace signals for S5378 trace buffer width

32

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 5.30 4.85 4.73 4.78 4.98 4.85 4.92 0.19

Set 2 5.19 5.22 5.03 5.16 5.15 5.01 5.13 0.08

Set 3 5.15 5.18 5.21 5.17 5.18 5.16 5.17 0.02

Set 4 5.17 5.14 5.08 5.20 5.17 5.11 5.15 0.04

Set 5 5.00 5.10 4.90 5.15 5.22 5.10 5.08 0.10

Set 6 5.16 5.11 5.12 5.14 5.14 5.19 5.14 0.02

 58

Table. 4.20. Table to evaluate the best set of trace signals for S9234 trace buffer width
32

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 5.17 4.84 5.03 4.98 4.95 4.89 4.98 0.11

Set 2 4.30 5.03 4.16 4.07 4.04 4.03 4.27 0.35

Set 3 4.80 4.67 5.40 5.01 4.98 4.92 4.96 0.23

Set 4 4.99 4.62 5.08 5.14 4.89 4.93 4.94 0.17

Set 5 5.05 4.35 5.35 4.88 5.11 4.95 4.95 0.31

Set 6 4.84 4.80 5.03 4.88 5.00 5.03 4.93 0.09

Table. 4.21. Table to evaluate the best set of trace signals for S15850 trace buffer width

32

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 13.97 13.37 13.62 12.85 13.32 13.53 13.44 0.34

Set 2 13.25 14.11 13.86 13.22 12.75 13.55 13.46 0.45

Set 3 13.50 13.95 14.33 13.23 13.70 13.54 13.71 0.35

Set 4 13.28 12.74 13.11 12.95 14.19 13.06 13.22 0.46

Set 5 12.42 13.79 13.04 14.27 12.58 12.08 13.03 0.77

Set 6 12.46 11.44 11.83 13.52 12.18 13.85 12.55 0.87

Table. 4.22. Table to evaluate the best set of trace signals for S38417 trace buffer width
32

Set RR1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 19.54 19.22 18.23 18.25 19.47 19.29 19.00 0.55

Set 2 19.22 19.42 19.27 19.32 19.06 18.00 19.05 0.48

Set 3 17.96 18.14 19.46 19.08 19.07 14.15 17.98 1.79

Set 4 16.74 16.67 19.19 19.45 19.13 15.47 17.77 1.54

Set 5 19.36 18.63 17.10 17.08 19.80 16.56 18.09 1.24

Set 6 19.41 18.95 16.74 16.69 19.81 19.94 18.59 1.36

 59

Table. 4.23. Table to evaluate the best set of trace signals for S38584 trace buffer width
32

Set RR 1 RR2 RR3 RR4 RR5 RR6 Average
Standard
deviation

Set 1 18.17 17.12 17.77 17.15 16.98 17.68 17.48 0.43

Set 2 17.24 18.19 17.54 16.93 17.42 17.65 17.49 0.39

Set 3 18.11 17.24 18.42 10.34 17.25 17.65 16.50 2.79

Set 4 15.94 17.62 17.39 18.49 17.66 17.87 17.49 0.78

Set 5 11.20 9.88 16.98 15.34 18.03 15.54 14.49 2.96

Set 6 9.57 16.85 17.67 16.79 17.33 18.20 16.07 2.95

Table. 4.24. Table to evaluate the best set of trace signals for S35932 trace buffer width

32

Set RR 1 RR2 RR3 RR4 RR5 RR6 Average
Standard
deviation

Set 1 11.85 11.85 11.85 11.85 11.85 11.85 11.85 0.00

Set 2 12.30 12.30 12.29 12.30 12.29 12.30 12.30 0.00

Set 3 12.29 12.31 12.30 12.30 12.30 12.30 12.30 0.01

Set 4 12.30 12.30 12.30 12.30 12.30 12.30 12.30 0.00

Set 5 12.30 12.30 12.30 12.31 12.30 12.31 12.30 0.00

Set 6 12.32 12.31 12.32 12.32 12.30 12.33 12.32 0.01

We also evaluated the dependence on Input vector for sets of flip-flops which would give

poor restoration quality for a specific input vector. We present tables for a few benchmarks

with trace buffer width set to 8, showing how restoration ratio varies W.R.T input vector

for a set of flip-flops which have poor restoration quality for one input vector.

Table. 4.25. Benchmark: S5378 Trace Buffer Width: 8, Evaluating dependence on input
vector for sets of flip-flops having poor restoration quality

Set RR 1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 1.49 1.49 2.06 1.49 1.79 1.78 1.68 0.21

Set 2 1.44 1.42 1.42 1.42 1.43 1.43 1.43 0.01

Set 3 1.39 1.37 1.37 1.37 1.37 1.37 1.37 0.01

Set 4 1.86 1.86 1.86 1.86 1.86 1.86 1.86 0.00

Set 5 1.74 1.74 1.75 1.74 1.74 1.74 1.74 0.01

Set 6 1.25 1.25 1.25 1.25 1.25 1.25 1.25 0.00

 60

Table. 4.26. Benchmark: S9234 Trace Buffer Width: 8, Evaluating dependence on input
vector for sets of flip-flops having poor restoration quality

Set RR 1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 1.04 1.04 1.03 1.01 1.03 1.04 1.03 0.01

Set 2 1.25 1.25 1.25 1.25 1.25 1.25 1.25 0.00

Set 3 1.37 1.37 1.37 1.37 1.37 1.37 1.37 0.00

Set 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

Set 5 1.49 1.22 1.12 1.48 1.12 1.48 1.32 0.17

Set 6 1.74 1.74 1.74 1.74 1.74 1.74 1.74 0.00

Table. 4.27. Benchmark: S15850 Trace Buffer Width: 8, Evaluating dependence on
input vector for sets of flip-flops having poor restoration quality

Set RR 1 RR2 RR3 RR4 RR5 RR6 Average Standard deviation

Set 1 1.79 1.78 1.88 1.92 1.88 1.77 1.84 0.06

Set 2 1.21 1.25 1.23 1.24 1.22 1.27 1.24 0.02

Set 3 1.62 1.70 1.75 1.68 1.74 1.71 1.70 0.04

Set 4 1.25 1.27 1.26 1.28 1.24 1.30 1.27 0.02

Set 5 1.40 1.43 1.50 1.46 1.38 1.57 1.46 0.06

Set 6 1.87 1.92 1.93 1.95 1.90 1.94 1.92 0.03

Conclusion from these tables: Restoration ratio for both the best case and worst case

sets remain fairly consistent W.R.T the input vector barring a few exceptions. So

averaging over 6 sets of input vectors should provide a good estimate of restoration ratio.

 61

4.5 Comparison with Conventional Methods

Table. 4.28. Restoration quality of existing trace signal selection approaches [21]

Circuit
#Flip-
flops

Buffer Width Simulation based
[19]

Hybrid [20] ILP [21]

S5378 179

8 13.41 13.32 14.63

16 7.35 7.26 9.26

32 4.47 4.27 5.11

S9234 211

8 13.98 14.58 15.97

16 8.3 8.55 9.32

32 4.46 4.46 5.53

S15850 534

8 26.33 27.38 45.89

16 19.89 20.65 25.82

32 13.19 13.19 13.97

S38584 1426

8 19.73 25.87 159.1

16 28.39 29.01 48.39

32 32.45 34.62 44.46

S38417 1636

8 29.23 51.01 53.47

16 17.02 19.22 26.87

32 15.14 13.25 17.22

S35932 1728

8 132 139.52 185.1

16 67.45 71.36 93.2

32 34.63 35.08 47.13

The above table shows the restoration quality of existing trace signal approaches. Our

goal was to get an improvement over the conventional simulation based [19] approach

and also the hybrid approach [20]. The ILP method has merit and can be applied to our

approach as well.

 62

Table. 4.29. Comparison of Simulation based approach with our method

Circuit
#Flip-
flops

Trace
Buffer
Width

Simulation
based [19]

Our
method

Improvement
over [19]

S5378 179

8 13.41 14.28 6.49%

16 7.35 8.66 17.82%

32 4.47 5.17 15.66%

S9234 211

8 13.98 11.94 -14.59%

16 8.3 8.3 0.00%

32 4.46 4.98 11.66%

S15850 534

8 26.33 40.87 55.22%

16 19.89 24 20.66%

32 13.19 13.71 3.94%

S38584 1426

8 19.73 21 6.44%

16 28.39 19.23 -32.26%

32 32.45 17.49 -46.10%

S38417 1636

8 29.23 38.16 30.55%

16 17.02 27.56 61.93%

32 15.14 19.05 25.83%

S35932 1728

8 132 30.28 -77.06%

16 67.45 19.72 -70.76%

32 34.63 12.3 -64.48%

Barring one benchmark (S35932) where there seems to be a mismatch in the simulation

data used by other conventional methods and our method, our approach does quite well

in comparison to [19]. We obtain an improvement in restoration ratio up to 61.93%. We

do note however that in a few cases our approach yields inferior results when compared

to [19].

 63

Table. 4.30. Comparison of Hybrid based approach with our method

Circuit
#Flip-
flops

Buffer
Width

Hybrid [20] Our method
Improvement

over [20]

S5378 179

8 13.32 14.28 7.21%

16 7.26 8.66 19.28%

32 4.27 5.17 21.08%

S9234 211

8 14.58 11.94 -18.11%

16 8.55 8.3 -2.92%

32 4.46 4.98 11.66%

S15850 534

8 27.38 40.87 49.27%

16 20.65 24 16.22%

32 13.19 13.71 3.94%

S38584 1426

8 25.87 21 -18.82%

16 29.01 19.23 -33.71%

32 34.62 17.49 -49.48%

S38417 1636

8 51.01 38.16 -25.19%

16 19.22 27.56 43.39%

32 13.25 19.05 43.77%

S35932 1728

8 139.52 30.28 -78.30%

16 71.36 19.72 -72.37%

32 35.08 12.3 -64.94%

Our method performs up to 49.27% better than the hybrid approach. Barring the

benchmark S35932, for which as stated earlier there seems to be a mismatch in the

simulation data, our approach again yields better results when compared to the hybrid

approach. It is to be noted that there are a few cases in which the hybrid approach

performs better than our approach.

 64

Table. 4.31. Comparison of ILP based approach with our method

Circuit
#Flip-
flops

Buffer Width
ILP [21] Our method

S5378 179

8 14.63 14.28

16 9.26 8.66

32 5.11 5.17

S9234 211

8 15.97 11.94

16 9.32 8.3

32 5.53 4.98

S15850 534

8 45.89 40.87

16 25.82 24

32 13.97 13.71

S38584 1426

8 159.1 21

16 48.39 19.23

32 44.46 17.49

S38417 1636

8 53.47 38.16

16 26.87 27.56

32 17.22 19.05

S35932 1728

8 185.1 30.28

16 93.2 19.72

32 47.13 12.3

In any simulation based approach, trace signals may be different in different runs

depending on the generated random input vector seed and also the window of tracing.

The goal of the ILP refinement is to eliminate the influence of randomness and also to

cover more states of a given circuit through selected signals. To do so, the authors of [21]

used multiple runs of the signal selection algorithm which is then processed by ILP to

select the best signal set among all outcomes. The same methodology can be applied to

our approach, as stated before we launch six different runs for a given benchmark and

trace buffer width. Corresponding to these six runs we get six sets of trace signals. We

take each of these six sets of trace signals and calculate its restoration ratio W.R.T each

 65

of the 6 input vectors. After which we select the set which has the best average restoration

ratio. We could replace this step with the ILP refinement approach, we feed the six sets

of signals into the ILP optimizer which would return a set of signals (equal to trace buffer

width) such that minimum number of states are lost over all the runs. This would greatly

enhance the restoration quality, as the base signal selection algorithm used by the

authors of [21] is a greedy approach which limits the quality of restoration obtained. We

note that even without the ILP optimization step, our approach performs better than the

ILP approach for a few cases.

Conclusion from these comparisons: Between the simulation based approach, the

hybrid approach and our approach there is no method which gives better results for all

the benchmarks. The ILP method has merit and if its initial greedy signal selection

approach is replaced by the simulated annealing method, it would yield great results.

Even without the ILP optimization step in our methodology we have got better results than

the original ILP methodology in a few cases. Hence there is no clear winner among all

the approaches, and it is ideal for designers to launch all methods and pick the one which

gives the best restoration ratio for that circuit.

4.6 Summary of Chapter 4

In this Chapter we first described our entire experimental setup. After which we compared

the original restoration algorithm to the improved restoration algorithm by performing short

simulated annealing trace signal selection runs. This was followed by presenting the

simulated annealing convergence plots for the actual trace signal selection runs. Then

we presented our results for the experiment to find the dependence of restoration ratio on

input vector. Finally, we compared our trace signal selection approach to the existing

 66

trace signal selection approaches. In the next chapter we summarize the entire thesis

and provide insight into potential future work.

 67

Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this work we have developed a novel simulation based approach to select trace signals

which takes a gate level netlist as input and gives a list of flip-flops which should be tapped

onto the trace buffer. The selection of flip-flops is done in a manner so as to maximize the

amount of signals that can be restored by these flip-flops. We viewed this as a partitioning

problem, which led us to using the simulated annealing heuristic for this problem. We also

found and fixed a hole in the original state restoration algorithm. Our methodology works

well for most ISCAS 89 benchmarks, it yields up to 61.93% improvement in restoration

ratio over the simulation based approach [19], up to 49.27% improvement over the hybrid

approach and up to 10.62% over the ILP [21] approach. It has been explained in Chapter

4 how the ILP method can be integrated into our methodology, this would further improve

the restoration ratio. We also conducted experiments to show the correlation between

restoration ratio and input vector. We observed that restoration ratio remains fairly

consistent W.R.T input vector, barring a few exceptions. The runtime for our approach is

fairly high, as our primary goal was to maximize restoration ratio regardless of the run

time. The advantage of using our approach is that runtime can be controlled as per the

user’s requirement, by changing the stop criteria. We have observed that reasonably

good results can be obtained with a much shorter runtime using different stop criteria.

 68

5.2 Future Work

In this section we discuss potential future work of this thesis.

5.2.1 Integration of ILP Filtering

We have discussed this extensively in Chapter 4. Once we get different sets of trace

signals corresponding to different input vectors, we can feed these sets into the ILP

optimizer which would return a set of trace signals such that minimum number of states

are lost over all runs.

5.2.2 Incremental Restoration Method

Whenever our simulated annealing tool makes a call to the logic simulation tool,

restoration is recomputed entirely, even though the only difference between two

consecutive calls to the logic simulation is 1 flip-flop (Because of the move function, which

swaps one flip-flop in the trace buffer list with some other flip-flop not in the trace buffer

list). This work was attempted as a part of this thesis, but could not be executed

successfully because of the way the logic simulation tool is designed (Restoring each

node 64 clock cycles at a time). However, if the design of the logic simulation tool is

changed, incremental restoration must be possible. This would lead to a huge reduction

in the run time and lead to simulated annealing to search for many more possible states.

5.2.3 Identifying Critical Unreachable Flip-flops

It is possible that some flip-flops cannot be restored by the principal operations forward

propagation and backward propagation.

 69

If this knowledge is used to guide the selection of trace signals (The unreachable flip-

flops should be a part of the trace signal list), it should lead to better restoration ratios.

 70

6. References

[1] Wikipedia, the free encyclopedia. Formal verification

https://en.wikipedia.org/wiki/Formal_verification .

[2] Sini Balakrishnan, Formal Verification – An Overview. http://vlsi.pro/formal-verification-

an-overview/ .

[3] S. Mitra ; Dept. of EE and Dept. of CS, Stanford University, Stanford, CA, USA ; S. A.

Seshia ; N. Nicolici. Post-silicon validation opportunities, challenges and recent advances.

[4] HO FAI KO, B.Eng. & Mgt., M.A.Sc. New Algorithms and Architectures for Post-Silicon

Validation.

[5] D. D. Josephson ; Hewlett-Packard Co., Fort Collins, CO, USA. The manic depression

of microprocessor debug.

[6] C. MacNamee and D. Heffernan, "Emerging on-ship debugging techniques for real-

time embedded systems," in Computing & Control Engineering Journal, vol. 11, no. 6, pp.

295-303, Dec. 2000.

doi: 10.1049/cce:20000608.

[7] H. F. Ko and N. Nicolici, "Algorithms for State Restoration and Trace-Signal Selection

for Data Acquisition in Silicon Debug," in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 28, no. 2, pp. 285-297, Feb. 2009.

doi: 10.1109/TCAD.2008.2009158

[8] Morris, K. "On-Chip Debugging—Built-in Logic Analyzers on your FPGA." (2004).

[9] Sarangi, Smruti, et al. "Patching processor design errors with programmable

hardware." Micro, IEEE 27.1 (2007): 12-25.

https://en.wikipedia.org/wiki/Formal_verification
http://vlsi.pro/formal-verification-an-overview/
http://vlsi.pro/formal-verification-an-overview/

 71

[10] Abrmovici, M. A reconfigurable design-for-debug infrastructure for SoCs,(2006)

Proceedings. In Design Automation Conference (pp. 7-12).

[11] Riley, Mack W., and Mike Genden. "Cell broadband engine debugging for unknown

events." IEEE Design & Test of Computers 5 (2007): 486-493.

[12] Mayer, Albrecht, Harry Siebert, and Klaus D. McDonald-Maier. "Boosting debugging

support for complex systems on chip." Computer 4 (2007): 76-81.

[13] Burtscher, Martin, et al. "The VPC trace-compression algorithms." Computers, IEEE

Transactions on 54.11 (2005): 1329-1344.

[14] Anis, Ehab, and Nicola Nicolici. "On using lossless compression of debug data in

embedded logic analysis." Test Conference, 2007. ITC 2007. IEEE International. IEEE,

2007.

[15] Anis, Ehab, and Nicola Nicolici. "Interactive presentation: Low cost debug

architecture using lossy compression for silicon debug." Proceedings of the conference

on Design, automation and test in Europe. EDA Consortium, 2007.

[16] Liu, Xiao, and Qiang Xu. "Trace signal selection for visibility enhancement in post-

silicon validation." Proceedings of the Conference on Design, Automation and Test in

Europe. European Design and Automation Association, 2009.

[17] Basu, Kaustav, and Prabhat Mishra. "RATS: restoration-aware trace signal selection

for post-silicon validation." Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on 21.4 (2013): 605-613.

[18] Shojaei, Hamid, and Azadeh Davoodi. "Trace signal selection to enhance timing and

logic visibility in post-silicon validation." Proceedings of the International Conference on

Computer-Aided Design. IEEE Press, 2010.

 72

[19] Chatterjee, Debapriya, Calvin McCarter, and Valeria Bertacco. "Simulation-based

signal selection for state restoration in silicon debug." Computer-Aided Design (ICCAD),

2011 IEEE/ACM International Conference on. IEEE, 2011.

[20] Li, Min, and Azadeh Davoodi. "A hybrid approach for fast and accurate trace signal

selection for post-silicon debug." Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on 33.7 (2014): 1081-1094.

[21] Rahmani, Kamran, Prabhat Mishra, and Sambaran Ray. "Efficient trace signal

selection using augmentation and ILP techniques." Quality Electronic Design (ISQED),

2014 15th International Symposium on. IEEE, 2014.

[22] http://www.willnaylor.com/mantext/wnanl.txt

[23]https://www.mentor.com/company/higher_ed/modelsim-student-edition

[24] https://filebox.ece.vt.edu/~mhsiao/iscas89.html

http://www.willnaylor.com/mantext/wnanl.txt
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://filebox.ece.vt.edu/~mhsiao/iscas89.html

