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Abstract

Particulate matter (PM) has long been known to have a negative effect on public health.

Epidemiological studies associating air pollution and other sources of PM often rely on land

use modeling for exposure assessment. This approach relies on the association of character-

istics of the surrounding land with PM concentrations. Land use regression (LUR) is the

most commonly implemented land use model and has several drawbacks, including model

instability due to correlated predictors and an inability to capture non-linear relationships

and complex interactions. Here, I utilize the machine learning random forest model within a

land use framework to generate a novel land use random forest (LURF) model. Using ambi-

ent air sampling data from the Cincinnati Childhood Allergy and Air Pollution (CCAAPS)

study, I developed LURF and LUR models for eleven elemental components of particulate

matter, including Al, Cu, Fe, K, Mn, Ni, Pb, S, Si, V, Zn. We show that LURF models

utilized a higher number and more diverse selection of land use predictors than the LUR

models. Furthermore, the LURF models were more accurate and precise predictors of all

elemental PM concentrations, except for Fe, Mn, and Ni.

To extend the usability of the LURF models, I utilized the recent application of the

infinitesimal jackknife (IJ) to the random forest model in order to estimate the prediction

variance. The IJ theorems were originally verified under the assumptions of traditional

random forest framework, namely using CART trees and bootstrap resampling. Alternatives

to the traditional random forest, such as subsampling instead of bootstrap resampling and

conditional inference trees instead of CART trees have been shown to increase the accuracy
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of the random forest algorithm and eliminate its variable selection bias. Here, I conduct

simulation experiments to show that the IJ performs well when using these random forest

variations. Specifically, using the conditional inference tree instead of the CART tree and

subsampling instead of bootstrap resampling results in increasing the accuracy and precision

of the IJ estimator of random forest prediction variance.

To associate the exposure of elemental components of PM with respiratory health, I

applied the novel LURF model to the CCAAPS cohort. The exposures of children in this

ongoing, prospective birth cohort located in Cincinnati, Ohio were calculated using their

residential address history. Comparison of estimated elemental exposures with total PM2.5

estimated exposure showed that they were not correlated. Lung function and asthma testing

was conducted on all children at age seven. We found that Al, Fe, Pb, Si, Zn, and total

PM2.5 were associated with decreased lung function on their own, but after unconfounding

the effect of exposure to PM with neighborhood level effects, the associations generally

disappeared.

Finally, I discuss the current limitation of two-stage models that associate spatial pol-

lutants with health effects, namely omitting the uncertainty from the exposure assessment

stage. When incorporating this uncertainty in the future, the increased accuracy and preci-

sion of LURF models compared to LUR models should allow for more precise estimation of

the health effects of these pollutants.
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Introduction
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Exposure assessment for air pollution is a complex problem due to the high spatial

and temporal variation of airborne pollutants. The current regression-based approaches

have several drawbacks, including model instability due to correlated predictors and the

inability to capture non-linear relationships and complex interactions. The random forest

is a regression alternative whose strengths address the disadvantages of regression in a land

use model setting. Here, we develop novel land use random forest models and show that

they are more accurate and precise than land use regression models.

Although random forests have been proven to be more accurate than common parametric

techniques like regression, they still remain underused because most researchers utilize them

only for prediction and not for interpretation. A recent application of the infinitesimal

jackknife to the resampling distribution has allowed for estimation of prediction variances

of traditional random forests. Variations to the traditional random forest algorithm such

as different resampling methods and different base learner types have become more widely

used because they increase prediction accuracy and reduce variable selection bias. However,

because the infinitesimal jackknife formulas are proven under the assumption of traditional

random forests, they are hard to verify when using these common variations. Here, we

conduct simulation experiments to test the application of the infinitesimal jackknife estimator

on the common random forest variations.

Although particulate matter has long been known to have a negative effect on public

health, recently the individual elemental components of air pollution have been shown to be

important as well. Here, we use our novel land use models to estimate the exposure of a cohort

of children from the Cincinnati Childhood Allergy and Air Pollution Study to elemental

components of particulate matter. We show that total particulate matter exposure does

not fully represent the individual elemental exposure signature. Furthermore, we associate

exposure to individual elemental particulate matter components with respiratory health.
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Chapter 2

Land Use Models for Elemental

Components of Particulate Matter
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Abstract

Background: Exposure assessment for elemental components of particulate matter (PM)

using land use modeling is a complex problem due to the high spatial and temporal variations

in pollutant concentrations at the local scale. Land use regression (LUR) models often fail

to capture complex interactions and non-linear relationships. The increasing availability of

big spatial data and machine learning methods present an opportunity for improvement in

PM exposure assessment models.

Objectives: Our objective was to develop a novel land use random forest (LURF) model

and compare its accuracy and precision to a LUR model for elemental components of PM

in the urban city of Cincinnati, Ohio.

Methods: PM2.5 and eleven elemental components were measured at 24 sampling stations

from the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Over 50 differ-

ent predictors associated with transportation, physical features, community socioeconomic

characteristics, greenspace, land cover, and emission point sources were used to construct

LUR and LURF models. Cross validation was used to quantify and compare model perfor-

mance.

Results: LURF and LUR models were created for Al, Cu, Fe, K, Mn, Ni, Pb, S, Si,

V, Zn, and total PM2.5 in the CCAAPS study area. LURF utilized a more diverse and

greater number of predictors than LUR in its final models. Cross validation revealed that

LURF models had a lower predictive error than LUR models for all elements except Fe,

Mn, and Ni. Furthermore, LUR models showed a differential exposure assessment bias and

had a higher prediction error variance. LURF models predictions were approximately ten

fold more precise compared to LUR model predictions. Random forest and other machine

learning methods should be incorporated into future land use models for more accurate and

precise exposure assessment.
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2.1 Introduction

2.1.1 Land Use Regression Models

Land use modeling assumes that the spatial distribution of air pollutant concentrations are

directly related to the use of the surrounding land. Physical features like elevation as well

as the location and intensity of known pollutant sources including industrial emitters and

traffic have been found to correlate well with pollutant concentrations [1, 2]. Specifically, land

use regression (LUR) uses predictors within a regression framework and has been the main

focus of almost all land use models, becoming a popular tool for exposure assessment in air

pollution research [3, 4, 5, 6]. However, it is well known that land use modeling is a complex

problem due to the high spatial and temporal variations in pollutant concentrations on the

local scale [7, 8]. Although LUR models are valuable tools for air pollution exposure studies,

the methodology has not included current predictive modeling techniques. Therefore, there

is an opportunity to improve the accuracy and precision of land use models, resulting in

better exposure assessment for air pollution related epidemiological studies.

2.1.2 Using Random Forest in Land Use Models

Land use models inherently use a high number of features that are highly correlated, for

example, the length of highways within 100, 200, 300, and 400 meters. Selection of which

features to use in the final model is the outstanding challenge in land use model building and

several approaches have been implemented (see [9] for a review), all of which revolve around

stepwise variable selection in a regression framework. Inclusion of correlated predictors

generate problems for regression, often leading to unstable model estimates and variance

inflation [10]. Another challenge rising from regression-based land use models is the difficulty

in capturing non-linear relationships and complex interactions. Because of the usually small

sample size (n = 20 to 40) and very large number of possible predictors (p = 50 to over 500),

it is often not feasible to evaluate all possible regression models.
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Random forests are resistant to all of these problems. A key advantage of random forest

is its ability to capture complex and non-linear relationships between predictors and the

outcome with small sizes of training data. Random forests may be more accurate predictors

of pollutant concentrations if they can indeed capture more patterns based on land use data.

Indeed, a random forest has been empirically shown to estimate concentrations of nitrogen

dioxide based on land use data in the urban area of Geneva with a lower error when compared

to regression [11]. This was a non-peer reviewed preliminary analysis included in a book and

the authors did not compare the model’s cross validated performance with a traditional land

use regression model. We hypothesize that implementing land use random forest (LURF)

models as an alternative to LUR models could result in more accurate and precise estimates

of PM2.5 elemental component concentrations. Furthermore, since most land use models

are concerned with accurate predictions rather than interpretability, these type of learners

seem ideal for land use based predictions of elemental concentrations.

2.1.3 Random Forests

Random Forests (covered in more detail in Chapter 3) are often implemented in prediction

analyses because of their increased accuracy and resistance to multi-collinearity and complex

interaction problems as compared to linear regression [10]. In a recent study, random forest

was found to be the most accurate classification algorithm among 179 classifiers, based on

121 different data sets [12]. Often times, such as in the case of land use models, accurate

prediction is desired over interpretability and so random forests are an ideal candidate to

improve the current implementation of land use models which all rely on regression ap-

proaches. The technique itself is an ensemble learning method that builds on bagging –

specifically the bootstrapped aggregation of several regression trees – to predict an outcome.

Bagging is most often used to reduce the variance of an estimated prediction function and is

most useful for models which are unbiased but have a high variance, like regression trees [10].

Random Forests, first proposed by Breiman [13], modify the bagging technique by ensuring
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that the individual trees are de-correlated by using a bootstrap sample for each tree and

also randomly selecting a subset of predictors for testing at each split point in each tree.

The random forest comes with the advantages of tree-based methods, namely the ability

to capture complex interactions and maintain low bias, while at the same time alleviating

the problem of high variance of predictions usually associated with tree-based methods by

growing the individual trees to a very deep level (usually one observation per terminal node)

and averaging their predictions.

2.1.4 Land Use Models for Elemental PM2.5 Components

Particulate matter (PM) is a complex mixture of chemical and elemental constituents and

epidemiological studies have shown that these components and their sources are associated

with adverse cardiovascular and respiratory health outcomes in adults [14, 15, 16]. Further

studies suggest that certain components of PM2.5 are responsible for adverse health effects

and characterizing these health effects of PM components has been identified as a research

priority by the National Research Council for the National Academies [17]. Recently, suc-

cessful LUR models have been developed for PM components in twenty areas in Europe as

a part of the ESCAPE study [18] and for an urban area in Canada [19]. These land use

models have allowed for assessment of exposure to individual components of PM and the

study of their association with health outcomes [20, 21, 22]. Although some models have

been developed, limited information on PM components has impeded progress in identifying

their health effects [23]. A land use model for elemental components of PM in the United

States has not been created.

2.1.5 Innovation and Relevance to Environmental Health

All previously used elemental exposure assessment models have been based on LUR. This

chapter specifically lays out a framework for a novel LURF used to predict elemental concen-

trations of air pollution and compares the model accuracy and precision of LUR to LURF.
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The air sampling data was originally collected as a part of the Cincinnati Childhood Allergy

and Air Pollution Study (CCAAPS), which aims to assess the health impact of air pollution

on an ongoing prospective birth cohort of high-risk atopic children in the Cincinnati, Ohio

area [24, 25]. The models were built in order to assess exposure of the CCAAPS cohort to

components of air pollution to determine their effect on respiratory health.

2.2 Methods

2.2.1 Elemental PM2.5 Measurements

Measurements were collected at 24 sites across Cincinnati, Ohio as a part of CCAAPS, with

full details available elsewhere [3]. Briefly, sites were selected based on the location of the

CCAAPS cohort as well as wind direction, and proximity to pollution sources. Figure 2.1

shows the location of the CCAAPS sampling sites and the birth addresses for the CCAAPS

cohort. Between 2001 and 2004, PM2.5 samples were collected on 37-mm Teflon membrane

filters and 37-mm quartz filters with Harvard-type Impactors. The increase in weight of the

Teflon filters after sampling was used to determine the total PM2.5 mass [26] and X-ray

fluorescence was used with the quartz filters to determine elemental concentrations for a

total of 38 elements. Traffic related air pollution (TRAP) was calculated as the fraction

of elemental carbon that was attributable to traffic by using a multivariate receptor model

[27, 28], UNMIX, to identify source signatures. One of the signatures was identified as

TRAP because it was similar to comparison measurements conducted for cluster sources

of trucks and buses [26] in Cincinnati, Ohio. Mean elemental concentrations for each site

were considered missing if at least 75% of their measurements were classified as below the

threshold of measurement certainty. For implementation of the land use models, in addition

to total PM2.5 and TRAP, we restricted our building of models to the following eleven

elements, which were selected for their previous association with health effects and a high

percentage (≥ 75%) of detected samples: Al, Cu, Fe, K, Mn, Ni, Pb, S, Si, V, and Zn. All
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elements had complete information for all sites (n = 24) except for V, which had one site

with missing concentration information. All concentrations were log transformed prior to

building models and back transformed to their natural scale after predictions.

2.2.2 Land Use Predictors

The predictors made available for inclusion in the final models for each element were based

on previously validated LUR models for elements in PM2.5 [18, 19] and on a previously

validated LUR model for TRAP built using the same ambient sampling data in Cincinnati,

Ohio [3]. Where applicable, geographic predictors were extracted based on the area within

circles centered on the sampling site locations with varying buffer radii. In brief, land

use predictors included measurements related to road location, traffic intensity, elevation,

community-level socioeconomic status, greenspace, land cover, and emission point sources.

See Table 2.2 for a full list of predictors, their units of measurement, and buffer radii. Section

2.4.4 contains figures that illustrate some of the land use predictors for the Cincinnati area

and the location of the CCAAPS cohort (Section 2.3.5).

Transportation. Roadway data (both distance and total length) were extracted from 2002

TIGER/Line shapefiles [29] for each of the 5 classes of roads and railroads. Class 1 roads are

primary highways with limited access; class 2 roads are primary roads without limited access;

class 3 roads are secondary and connecting roads; class 4 roads are local, neighborhood, and

rural roads; and class 5 roads are vehicular trails [30]. Annual average daily truck count on

both interstates and highways were obtained from the Ohio Department of Transportation

based on data from 2002 - 2005. Bus routes were obtained from local transit authorities and

intersections were identified as locations where class 3 or 4 roads intersected one another.

Figure 2.10 shows the Class 1 and 2 roads and Figure 2.11 shows the average daily truck

count on interstates and highways.
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Physical Features. An elevation raster supplied by the US Geological Survey was used to

identify the elevation and the mean elevation within a buffer radius. The standard deviation

of elevation as well as the fraction of elevation points more than 20 meters uphill (or downhill)

were separately calculated as a measure of the elevation gradient.

Community Characteristics. Population totals for each census block were retrieved

from the 2000 US Census [31]. For varying buffer radii, the population count was defined as

the sum of the total population of all census blocks for which the census block centroid was

contained within the buffer radius. The population density was the population count divided

by the total area of the census blocks which were included in the population count. Eight

census tract level variables (fraction that graduated high school, fraction of households in

poverty, median household income, fraction of population receiving public assisted income,

fraction of houses that are vacant, median home value, white fraction of population, and

black fraction of population) from the Census 2010 5-year American Community Survey

for all census tracts in the counties where CCAAPS subjects resided were used to create

a deprivation index [32]. Because of the high correlation among the individual variables,

principal components analysis was used to extract representative measures of socioeconomic

status for each census tract. The first principal component explained 60.6% of the total

variance and was called the “deprivation index” because of its high loadings on the fraction

that graduated high school, fraction of households in poverty, median household income,

fraction of population receiving public assisted income, fraction of houses that are vacant,

and median home value, with a higher value representing a census tract with increased

deprivation. The index was normalized to a range of [0,1] by subtracting the minimum and

dividing by difference of the resulting range. Figure 2.15 shows the deprivation index of each

census tract for the study area.

Greenspace. Greenspace was estimated using satellite-derived normalized difference veg-

etation index (NDVI) images. A raster image of the Cincinnati area was obtained from
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the United States Forest Service and the average NDVI within varying buffer radii of each

sampling site was extracted. NDVI ranges from -1 to 1 and a higher value represents more

surrounding greenspace. Figure 2.13 shows the greenspace of the study area. Briefly, a cloud-

free composite image with a resolution of roughly 100 by 100 feet for all of the Cincinnati

area was created based on individual images collected in June of 2000 that differed by no

more than 15 calendar days. Imagery digital numbers were converted to top of atmosphere

reflectance (ToAR) using the standard Landsat calibration process. ToAR was then con-

verted to surface reflectance by using the 6S atmospheric correction procedure as described

previously [33].

Land Cover. The 2001 National Landcover Database from the United States Geological

Survey was used to extract the percentage of each land class within varying buffer radii from

each location. The raster file classifies 30 by 30 meters grids of land into 15 different land

use classes (see Table 2.2 for the full list of land classes). The classes and an overview of

their distribution in the study area are shown in Figure 2.12.

NEI Point Sources. The 2011 National Emissions Inventory (NEI) is a national com-

pilation of emissions sources collected from state and local agencies as well as information

from the Environmental Protection Agency (EPA) emissions programs including the Toxics

Release Inventory (TRI). Point source sites and total emissions were obtained from the NEI

for PM2.5, PM10, and the available modeled elements (Ni, Pb, and Mn). Land use models

extracted from the NEI data included the distance to the nearest point source, total num-

ber of point sources, total point source emissions, average point source emissions, and point

source emissions weighted by inverse distance to the source. The location of the PM10 point

sources from the NEI are shown in Figure 2.14.
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2.2.3 Land Use Regression (LUR) Models

The approach for building the LUR models were based on other successful implementations

of land use regression models for elemental components of PM2.5 in urban areas of Europe

[18] and the urban city of Calgary, Alberta [19] as well as for TRAP in Cincinnati [3]. In

general, the approach is a forward selection based algorithm which begins by ranking every

variable based on their association with the elemental concentration. Each predictor in

Table 2.2 was initially ranked based on their model R2 value from a univariate regression

with the elemental concentrations at all 24 sites. Because of the inherent correlation between

variables of the same category (i.e. length of class 1 roads within 100 m and length of class 1

roads within 200 m), only one variable from each category was considered for inclusion into

the model. The initial regression model was fit using only the highest associated predictor

and the remaining predictors were tried for addition to the model in order of decreasing

association with the elemental concentration. At each step, the predictor was retained only

if it increased the adjusted model R2 by at least 1% and the p value for the predictor and

all other predictors already retained in the model were less than 0.1.

2.2.4 Land Use Random Forest (LURF) Models

The approach for building the LURF models were based on implementations taken previously

in the literature for microarray data [34, 35, 36, 37, 38, 39, 40]. Like land use modeling of

elemental concentrations, these type of studies utilize predictors (genes) that outnumber the

sample size, are littered with noise, and are often highly correlated with one another. Because

these types of problems play to the strengths of random forests, these models outperformed

other gene mining techniques like regression and linear discriminant analysis. As in the

LUR models, the best buffer radii for each variable category was determined based on the

model R2 value from a univariate regression with the elemental concentrations. In order to

rank the importance of all the land use predictors, an initial random forest was trained using

the best predictor from each category. The random forest variable importance measure (see
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Section 3.1.1) was used to rank the land use predictors in order of decreasing importance and

several random forests were built, each one by removing the least important predictor one at

a time. The variable importance was used from the initial random forest and not recalculated

at each step, as it has been shown that this can lead to severe overfitting [41]. The random

forest picked as the final model was the random forest with the largest pseudo R2, which

was then optimized on mtry based on the pseudo R2. See Section 3.1.1 for details on the

random forest algorithm, mtry, and pseudo R2.

2.2.5 Model Predictions

The final models were used to predict concentrations at the sampling sites using the land use

predictor data. Since models were built using training data on the log scale, predictions were

back transformed to their natural scale. Furthermore, some of the LUR models predicted

concentrations much higher than the observed range, so the predictions for each LUR model

were censored at a maximum limit of three times the highest observed concentration. For

the 762 predictions in the CCAAPS cohort, this resulted in censoring for two predictions for

Al and K; three predictions for Si, Zn, and PM2.5; four predictions for Mn and S; and 13

predictions for Ni. For the cross validation predictions, only one prediction from the LUR

model for TRAP was censored. None of the CCAAPS or cross validation predictions for any

of the elements from the LURF models exceeded three times the maximum observed value

so these were not censored.

2.2.6 Cross Validated Model Accuracy

Cross validation of the accuracy of land use models is an important step because it quantifies

the accuracy of the model when it is used to make predictions based on new observations. In

the specific case of land use models, this will estimate the accuracy for when the model is used

to predict elemental concentrations at new locations not included in the original sampling

sites. Leave one out cross validation (LOOCV) was used with the predictor selection step
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included as a part of the cross validation, so each fold of the LOOCV resulted in a different

final model. Heatmaps were used to show the selection frequency of each land use variable

for each element. The root mean squared error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.1)

of all cross validation folds were calculated for each element, where yi and ŷi are the

actual and predicted concentrations at each of the n = 24 total sites. Furthermore, the

mean absolute prediction error (MAPE):

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (2.2)

was calculated for each cross validation fold as the absolute difference between the pre-

dicted and actual value divided by the actual value. The MAPE along with its 95% confidence

interval was plotted for each element and model type.

2.2.7 Study Cohort

The Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) is an ongoing prospec-

tive birth cohort of high-risk atopic children [24, 25]. Children born between October 2001

and July 2003 in the Greater Cincinnati and Northern Kentucky region were screened by

birth record and enrolled if they lived less than 400 meters or more than 1,500 meters from

the nearest major road [25]. Furthermore, each study participant must have had at least one

parent with symptoms of rhinitis, asthma, or eczema and allergic sensitization by a positive

skin prick test result to one of 17 aeroallergens. Informed consent was obtained and the

study was approved by the University of Cincinnati Institutional Review Board. Both types

of land use models, LUR and LURF, were used to generate average exposure estimates for

all elemental components of PM, TRAP, and total PM2.5 using each child’s annual residen-

tial address history. CCAAPS exposure predictions for TRAP were also compared to the
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original LUR model [3].

2.2.8 Computing

All statistical and geospatial computing was done in R, version 3.1.2 [42], using the rgdal

[43], rgeos [44], and sp [45] packages. The code used to calculate the land use predictors

and generate exposure estimates for each location has been made into an R package and is

available online at https://github.com/cole-brokamp/aiRpollution. The code used to

build and crossvalidate the LUR and LURF models is available on request.

2.3 Results

2.3.1 PM2.5 Elemental Measurements

Measurements from the 24 sites were collected and described as annual daily averages in

ng/m3. Figure 2.2 shows the concentrations as a boxplot on the log scale. In general,

measurements had similar ranges to elemental PM2.5 components from previous studies

[18, 20, 21, 22, 19]. More specific descriptive numbers along with the variance are listed

in Table 2.1. Figure 2.3 illustrates the Spearman correlation matrix of all of the measured

concentrations. All elements, including TRAP and PM2.5, were highly correlated with one

another. However, K, Ni and S were less correlated compared to the rest of the elements.

2.3.2 Land Use Models

Both LUR and LURF models were built for total PM2.5 mass, TRAP, and eleven elemental

components of PM2.5: Al, Cu, Fe, K, Mn, Ni, Pb, S, Si, V, and Zn. Land use variables as

well as the varying buffer radii made available for selection by each model are listed in full

in Table 2.2.
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LUR The final LUR models for most pollutants (Table 2.3) resulted in a high fraction of

explained variance, with Al, Cu, Fe, Mn, Pb, Si, Zn, and TRAP all having a model R2 of at

least 0.9. All other pollutants had a model R2 of at least 0.75, except for Ni (model R2 =

0.49). The most commonly selected land use predictor was the fraction of highly developed

land from the National Landcover Database, utilized in the models for all pollutants except

for S, Ni, and PM2.5. Transportation related variables also dominated the models, with

truck traffic volume and length of roads or bus routes being the most common. Other than

the use of the deprivation index for the Pb model, the use of elevation in the V model, and

the use of PM2.5 point sources in the models for Cu, Mn, and PM2.5, only transportation

and land use variables were selected. Of note, intersections, railroads, population, greenspace

variables, and element specific point sources were not selected for any of the LUR pollutant

models.

LURF The final LURF models (Table 2.4) also showed a generally high fraction of ex-

plained variance with Cu, Fe, Mn, Pb, Zn, and TRAP having a model pseudo R2 of at least

0.8. All other models had a model pseudo R2 of at least 0.5 except for K, Ni, and V. Al-

though the model R2 from the LUR model is not directly comparable to the model pseudo R2

from the LURF model, it is interesting to note that Ni and K were two of the three worst

performing pollutant models in both model types. In general, the LURF models utilized

a higher number and more diverse selection of land use predictors for each pollutant than

the LUR models. The fraction of highly developed land was still common, appearing in all

models except for K, Ni, and V. However, other variables not included in the LUR models

were commonly utilized in the LURF models. Examples include greenspace (used in all

models except S, V, K, and TRAP), the deprivation index (used in models for Fe, Zn, Ni,

Si, Pb, Al, and PM2.5), intersections (used in models for Zn and Pb), and railroads (used in

models for Cu and V). Furthermore, the PM2.5 point sources were utilized more often (in

models for Cu, Fe, Ni, K, and Mn) and the elemental specific point source variables were
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utilized for Mn and Ni, but not for Pb or PM2.5. The optimization of mtry resulted in low

values relative to the total number of variables in each final model, suggesting that this use

of auxiliary noise in the random forest was useful in increasing the model accuracies.

2.3.3 Land Use Predictor Selection

Although Tables 2.3 and 2.4 describe the land use predictors selected for the final models,

variable selection was a part of the model building process and thus was included in the

cross validation assessment of accuracy. For each fold of the cross validation, different land

use predictors were selected as the models were created and Figures 2.4 and 2.5 describe

the frequency of selection of the land use variables across these folds for the LUR and

LURF models, respectively. In the figures, a darker cell corresponds to a higher frequency of

selection for a land use predictor in a model. Overall, it is clear that final group of land use

predictors selected for each model varied depending on which fraction of training data was

used, which means land use predictor selection is dependent on the sampling sites chosen to

train the models.

With a few exceptions, the final LUR models (described in detail in Section 2.3.2) de-

pended exclusively on land use and transportation related predictors. This is the case in

the cross validation also, with highly developed landcover, length of bus routes, and length

of roadways being selected very frequently (Figure 2.4). However, some of the models built

during cross validation included predictors related to greenspace, deprivation, population,

and elevation. Although these appeared less frequently, it is still important to note that they

could have appeared in the final models if the elemental sampling stations were only slightly

different. More specifically, the elements with the most variability with respect to the group

of selected land use predictors were Al, S, Si, V, TRAP, and PM2.5. These were also the

worst performing models, as assessed by cross validation (Table 2.5 and Figure 2.6).

The final LURF models (described in detail in Section 2.3.2) utilized a higher number

and more diverse selection of land use predictors. Although more predictors were selected
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compared to the LUR models, highly developed landcover, length of bus routes, and length

of roadways again dominated the LURF models. However, in contrast to the LUR models

greenspace was utilized heavily in the LURF models. Here, the models with the highest

variability in the final selection of land use predictors (Cu, K, Ni, S, Si, PM2.5) were again

associated with the highest MAPE.

2.3.4 Cross Validated Model Accuracy

Leave one out cross validation (LOOCV) was used to quantitatively compare the accuracy

between the LUR and LURF models. Each site was left out once and the remaining 23

sites were used to create both a LUR and LURF model to predict the elemental PM2.5

concentrations. This was repeated for all 24 sites. The cross validated RMSE (Equation

2.1) and MAPE (Equation 2.2) for each element and model type are presented in Table

2.5. MAPE is equivalent to the difference between the actual and predicted concentration

as a fraction of the actual concentration. This allows for comparison between models using

different elements and also for a better sense of the magnitude of the error in terms of the

inaccuracy rather than in terms of (ng/m3)2. The MAPE along with its 95% confidence

interval is also plotted in Figure 2.6 for each model.

The LURF models for all elements except Cu, Fe, Ni, and Pb had a RMSE lower than that

for the corresponding LUR models. When using MAPE rather than RMSE to evaluate the

model accuracies, using the LURF model instead of the LUR model decreased the MAPE

for all elements except for Fe, Mn, Ni. The difference in the MAPE of the model types

for both the Fe and Mn models were less than 0.01 and the Ni model increased from 1.00

to 1.17. The biggest reduction in the MAPE when using the LURF model instead of the

LUR model was seen for K, Si, V, Zn, TRAP, and PM2.5; all of which decreased by at

least 0.1. The APE for these elements were also much more variable when using the LUR

models as compared to the LURF models, seen in the confidence intervals in Figure 2.6.

Figure 2.7 shows the individual predictions according the observed concentrations for each
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fold of the cross validation according to model type. Here, it can be seen that the LUR

models often make predictions that are extremely high compared to the actual value and the

LURF predictions. It is these extreme errors that are likely driving the large variation in the

mean of the APE. Although when averaging the APEs together, the decrease when using

LURF compared to LUR is not as noticeable, the main advantage of the LURF is its lack

of extremely high and erroneous predictions. Using RMSE to evaluate the model accuracy

further masks this trend because the errors are in squared concentration units, whereas the

MAPE gives a better description of the relative magnitude of the error.

2.3.5 CCAAPS Exposures

The final land use models (both LUR and LURF) were used to estimate elemental exposures

for the CCAAPS cohort by using their primary residential birth record address. Figure 2.8

plots the exposure estimate for each model with the LUR predictions on the x-axis and the

LURF predictions on the y-axis. For lower concentration predictions the LUR and LURF

models generally agree. However, when predicting higher concentrations the LUR models

are likely to predict much higher exposures than the LURF models. In this case, when the

LUR predictions are much higher than the LURF over predictions, the LUR predictions are

likely overestimating exposure, as seen in the model cross validation (Section 2.3.4).

Predictions from the older LUR model originally used to assess TRAP exposure [3] were

also compared to the TRAP exposure predictions for CCAAPS using the newer LUR and

LURF models (Figure 2.9). Here, it can be seen that the older LUR model predictions are

more similar to the newer LURF model predictions than the newer LUR model predictions.

Specifically, high exposures predicted by the older LUR model were not predicted as high

using either of the new land use models; however, this disagreement seems to be much more

severe with the newer LUR model. If the CCAAPS exposure assessments follow the same

pattern as seen in the cross validation predictions, this suggests that the older LUR model

did not suffer from same differential misclassification bias that the newer LUR model showed.
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This is likely due to overfitting of the linear regression model because of the high number of

available land use predictors.

2.4 Discussion

Here, we have successfully created LUR and LURF models for elemental components of

PM. To our knowledge, this is the first study to do so for an American location. We have

also shown that our novel land use models based on random forests are more accurate than

LUR models for most of the elements. Furthermore, we identified a differential bias in

exposure assessment using the LUR models which was not present using the LURF models.

As assessed by LOOCV, the best performing models (MAPE < 0.3) were for Cu, Fe, K,

Mn, Pb, Si, Zn, TRAP, and total PM2.5. Models for Al, S, and V performed moderately

well (MAPE < 0.5), but the model for Ni performed the worst by far (MAPE = 1.0).

2.4.1 Previous Work

Two other LUR models have been developed for elemental components of PM [18, 19],

both of which used regression based approaches. Specifically, the model created for Cal-

gary, Alberta [19] used models specific to summer and winter seasons to predict elemental

components of PM10. Their measured elemental concentrations were similar to ours and

followed the same correlation patterns, with all elements except for S being highly correlated

with one another. They found that industrial point sources explained the most variance in

their models, followed by developed land use. Although our elemental LUR models did not

incorporate any pollutant point source information, highly developed land use did explain

the largest amount of variation in almost all of the models. They did include other potential

predictors, like traffic volume, road density, housing, and population density, but, unlike our

LUR models, these did not explain much variance in their final models. The authors found

that 11 out of their 30 elemental models had a model R2 of at least 0.7 for both seasons,
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whereas ten of our eleven elemental models had a model R2 greater than 0.7. The ESCAPE

study [18] developed LUR models for elemental components of both PM10 and PM2.5 for

twenty different areas of Europe. Again, the correlation patterns and concentrations of mea-

sured elements were similar to our results. The model R2 for each element varied greatly

across the locations, but on average, they found a model R2 greater than 0.7 for two of eight

total modeled elements. Similar to our results, they found the elements with the highest

model R2 to be Cu and Fe, and the element with the lowest model R2 to be Ni. Neither of

these two studies utilized a method other than regression, and neither studies reported the

precision of their estimates, leaving uncertainty in the validity of the exposure assessment

that might be used for epidemiological studies.

2.4.2 Model Accuracy

Overall, we found that models with the most variation in the set of final selected land use

predictors had the worst performance. This is expected because a higher dependence of

the final model structure on the training data means that the model is doing a poor job of

capturing the variability and will perform with poor accuracy during cross validation.

The identification of relatively lower accuracy when predicting relatively high concentra-

tions in the LUR models means that this misclassification is differential and could result in

biased associations with health outcomes. This problem was not found in the LURF models

and highlights the advantage in our novel model, which is not only an increased accuracy,

but a decreased variance of the amount of prediction error. This problem was specifically

seen in the TRAP model, where some sites were over predicted by at least ten fold by the

LUR model, whereas the LURF models never over predicted concentrations by even one

fold.
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2.4.3 Model Precision

Another advantage of the LURF model over the LUR model is its increased precision; this

is expanded upon by example in Section 3.1 but warrants further study because it will likely

have large implications in the use of exposure assessment predictions for epidemiological

studies. Indeed, most studies that utilize land use models ignore precision in exposure

assessment [21, 46, 22] which likely leads to biased estimates when it comes to association

with health effects. Incorporating uncertainty in exposure assessment during association

with health effects would help to mitigate this problem and is a promising avenue for future

research (see Chapter 5 for more details).

2.4.4 Conclusion

LURF will be a useful exposure assessment tool for epidemiological studies associating el-

emental components of PM with health effects. More generally, random forest and other

machine learning methods should be incorporated into future land use models for more

accurate and precise exposure assessment.
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Tables

Table 2.1: Summary of measured elemental concentrations, TRAP, and total PM2.5 used to train the land
use models. All elements contained complete measurements for all 24 sites, except for V, which had one site
with a missing measurement. Concentration units are ng/m3.

Element Minimum 25th Percentile Median Mean 75th Percentile Maximum SD
Al 16.7 28.3 35.6 42.1 46.9 157.6 28.2
Cu 1.0 1.6 2.1 3.0 3.9 8.0 1.9
Fe 50.9 62.5 83.0 112.0 139.7 342.3 73.7
K 48.6 56.8 65.9 67.1 75.4 111.8 14.8

Mn 1.4 1.9 2.4 3.3 4.4 8.9 2.1
Ni 0.2 0.4 0.6 1.0 1.0 6.2 1.3
Pb 2.0 2.6 2.9 4.7 3.9 19.7 4.6
S 819 1,267 1,653 1,648 1,861 3,151 557
Si 55 83 102 122 124 484 86
V 0.2 0.3 0.4 0.4 0.5 1.4 0.3
Zn 8.5 11.4 14.6 28.7 21.5 156.9 38.6

TRAP 200 335 370 485 608 1,020 248
Total PM2.5 12,595 13,558 17,396 17,582 19,665 28,623 4,110
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Table 2.2: Land use predictors considered for inclusion in final models.

Predictor Units Buffer radius in meters (intervals)
Transportation
Distance to nearest Class 1 road meters n/a
Distance to nearest Class 2 road meters n/a
Distance to nearest Class 3 road meters n/a
Distance to nearest Class 4 road meters n/a
Distance to nearest Class 5 road meters n/a
Length of roads: Class 1 meters 100-1000 (50)
Length of roads: Class 2 meters 100-1000 (50)
Length of roads: Class 3 meters 100-1000 (50)
Length of roads: Class 4 meters 100-1000 (50)
Length of roads: Class 5 meters 100-1000 (50)
Average daily truck count on interstates count 100-1000 (50)
Average daily truck count on highways count 100-1000 (50)
Number of major intersections count 50-1000 (50)
Distance to nearest railroad line meters n/a
Length of railroads meters 100-1000 (50)
Length of bus routes meters 100-1000 (50)

Physical Features
Elevation meters above sea level n/a
Average elevation meters above sea level 100-1000 (50)
Standard deviation of elevation meters 100-1000 (50)
Fraction of elevation points > 20 m uphill count 100-1000 (50)
Fraction of elevation points < 20 m downhill count 100-1000 (50)

Community Characteristics
Population count count n/a
Population density count/meters2 500-2500 (250)
Deprivation index n/a 100-1000 (100)

Greenspace
Average NDVI value n/a 100-1000 (100)

Land Cover
Open water % 100-1500 (100)
Developed open % 100-1500 (100)
Developed low % 100-1500 (100)
Developed medium % 100-1500 (100)
Developed high % 100-1500 (100)
Barren % 100-1500 (100)
Deciduous forest % 100-1500 (100)
Evergreen forest % 100-1500 (100)
Mixed forest % 100-1500 (100)
Shrub % 100-1500 (100)
Grassland % 100-1500 (100)
Pasture % 100-1500 (100)
Crops % 100-1500 (100)
Woody wetlands % 100-1500 (100)
Herbaceous wetlands % 100-1500 (100)

NEI Point Sources∗

Distance to nearest point source meters n/a
Point source count meters 1000-10000 (1000)
Point source total emissions tons 1000-10000 (1000)
Point source average emissions tons 1000-10000 (1000)
Point source emissions weighted by distance tons/meters 1000-10000 (1000)
∗PM2.5, PM10 (all models) and Ni, Pb, Mn (element specific models)
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Table 2.3: Summaries of final LUR models for each element. Each model R2 is from the final regression
model and the model predictors are from the final models and denoted as in Table 2.2 with a buffer radius
in meters, if applicable.

Element Model R2 Model Predictors

Al 0.90
Developed high (1200), Length of bus routes (100), Length of roads: Class 4 (1000),
Pasture (1500), Distance to nearest Class 4 road, Length of roads: Class 2 (1000)

Cu 0.99
Developed high (1000), Shrub (1500), Distance to nearest PM2.5 point source, Average
daily truck count on interstates (800), Length of roads: Class 3 (500), Developed medium
(400), Distance to nearest Class 4 road, Evergreen forest (1100)

Fe 0.96
Developed high (1000), Average daily truck count on interstates (800), Length of roads:
Class 2 (1000), Developed medium (400)

K 0.76
Developed high (1300), Shrub (700), Length of bus routes (150), Distance to nearest Class
2 road

Mn 0.92 Developed high (1000), PM2.5 point source count (2000)
Ni 0.49 Barren (1100), Mixed forest (1100)
Pb 0.98 Developed high (1500), Length of railroads (1000), Pasture (800), Deprivation index (700)

S 0.75
Average daily truck count on highways (350), Length of bus routes (350), Open water
(900), Distance to nearest Class 2 road

Si 0.91 Developed high (1100), Length of bus routes (100), Crops (1500), Open water (1500)

V 0.80
Developed high (1500), Shrub (1300), Fraction of elevation points more than 20 meters
uphill (150), Deciduous forest (1400)

Zn 0.94 Developed high (1500), Length of roads: class 3 (1000), Length of bus routes (850)

TRAP 0.91
Developed high (1000), Average daily truck count on interstates (800), Open water (1500),
Length of class roads: Class 3 (900), Average daily truck count on highways (850)

PM25 0.81
Length of bus routes (350), Length of roads: Class 2 (950), Barren (1500), Pasture (500),
Woody wetlands (1300), PM2.5 point source average emissions (1000)
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Table 2.4: Summaries of final LURF models for each element. Each model pseudo R2 is from the final
random forest model and the model predictors are from the final models and denoted as in Table 2.2 with a
buffer radius in meters, if applicable.

Element Model Pseudo R2 mtry Model Predictors

Al 0.54 3
Developed high (1200), Deciduous forest (1000), Deprivation index (700), Pop-
ulation count, Developed low (800), Developed open (1100), Average NDVI
value (1000), Developed medium (400), Length of bus routes (100)

Cu 0.83 2
Average NDVI value (1000), Developed high (1000), Distance to nearest PM10
point source, Distance to nearest railroad line

Fe 0.88 3

Average NDVI value (1000), Developed high (1000), Deprivation index (800),
Developed medium (400), Developed open (1100), Distance to nearest PM10
point source, Average elevation (400), Average daily truck count on interstates
(800)

K 0.40 6

Shrub (700), PM10 point source count (7000), PM25 point source average
emissions (7000), PM25 point source count (7000), PM10 point source average
emissions (7000), Length of roads: Class 3 (350), Pasture (500), Distance to
nearest PM25 point source, Length of bus routes (150), Evergreen forest (600),
Distance to nearest Class 2 roads

Mn 0.88 2

PM10 point source count (2000), Mn point source count (2000), PM25 point
source count (2000), Distance to nearest PM2.5 point source, Distance to near-
est PM10 point source, Average NDVI value (1000), Developed high (1000),
Developed medium (1400), Population count

Ni 0.27 2

Distance to nearest Ni point source, Developed medium (1400), Deprivation
index (1000), Distance to nearest PM10 point source (2000), Ni point source
average emissions (2000), PM25 point source count (2000), Ni point source
count (2000), Average NDVI value (700), Average elevation (600), Distance to
nearest PM25 point source (2000), PM25 point source total emissions (2000),
Ni point source total emissions (2000), Length of railroads (100), PM10 point
source count (2000), Deciduous forest (1000), PM10 point source total emis-
sions (2000), Fraction of elevation points more than 20 meters downhill (100),
Distance to nearest Class 1 road, Distance to nearest Ni point source (2000),
Average daily truck count on interstates (800), Length of roads: Class 3 (900),
Mixed forest (1100), PM10 point source average emissions (2000), Grassland
(1200)

Pb 0.89 5

Average NDVI value (1000), Pasture (800), Developed open (1100), Developed
medium (400), Length of bus routes (900), Deprivation index (700), Developed
low (900), Population density (500), Number of major intersections (1000),
Developed high (1500), Length of roads: Class 4 (1000), Average daily truck
count on interstates (300)

S 0.51 2 Developed high (1500), Average daily truck count on highways (350)

Si 0.59 2
Developed high (1100), Average NDVI value (1000), Deciduous forest (900),
Deprivation index (800), Developed low (800), Developed open (1100), Devel-
oped medium (400), Length of bus routes (100), Elevation

V 0.47 1
Deciduous forest (1400), Distance to nearest railroad line, PM10 point source
count (6000)

Zn 0.83 3

Developed medium (400), Deprivation index (1000), Developed high (1500),
Number of major intersections (1000), Length of bus routes (850), Average
NDVI value (1000), Length of roads: Class 4 (1000), Developed low (900), Av-
erage daily truck count on interstates (300), Population density (500), Length
of roads: Class 1 (1000), Developed open (1500), Deciduous forest (1500)

TRAP 0.80 1
Average elevation (100), Developed high (1000), Average daily truck count on
interstates (800)

PM25 0.53 1

Average daily truck count on interstates (300), Deprivation index (500), Length
of bus routes (350), Developed high (1500), Average daily truck count on
highways (350), Herbaceous wetlands (1500), Length of roads: Class 1 (1000),
Barren (1500), Standard deviation of elevation (1000), Average NDVI value
(1000), Shrub (600), Length of roads: Class 2 (950), Length of railroads (150)
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Table 2.5: Cross validated root mean squared error (RMSE) and mean absolute predictive error (MAPE)
of LUR and LURF elemental PM models. RMSE units are ng/m3 and MAPE is expressed as a ratio.

Element RMSE (LUR) RMSE (LURF) MAPE (LUR) MAPE (LURF)
Al 27.11 25.08 0.35 0.32
Cu 0.85 1.11 0.24 0.23
Fe 40.80 46.36 0.19 0.21
K 26.97 15.48 0.29 0.17

Mn 1.17 1.11 0.19 0.20
Ni 1.18 1.29 1.00 1.17
Pb 1.85 2.63 0.17 0.17
S 744.70 647.42 0.38 0.37
Si 102.74 80.67 0.41 0.22
V 0.53 0.24 0.67 0.45
Zn 44.48 27.74 0.32 0.24

TRAP 563.93 150.04 0.52 0.21
PM25 9160.99 3863.34 0.34 0.20
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Figures

Figure 2.1: The location of the CCAAPS sampling sites in red and the birth addresses of the CCAAPS
cohort in black.
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Figure 2.2: Box plot of measured elemental concentrations, TRAP, and total PM2.5 used to train the land
use models.
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Figure 2.3: Spearman correlation matrix of measured elemental concentrations, TRAP, and total PM2.5.
A darker blue and larger circle in the upper triangle of the grid corresponds to a larger Spearman’s rho
statistic shown in the lower triangle of the grid.
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Figure 2.4: Selection frequency of land use predictors for all LUR models. A darker cell means that the
land use predictor was selected more often for use in the final model across all folds of the cross validation.
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Figure 2.5: Selection frequency of land use predictors for all LURF models. A darker cell means that the
land use predictor was selected more often for use in the final model across all folds of the cross validation.
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Figure 2.6: Cross validated absolute predictive error and 95% confidence interval for each elemental model,
each built both using a LUR model and a LURF model.
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Figure 2.7: LOOCV predictions from the LURF and LUR land use models according to the true observed
values. The dotted line represents the perfect agreement between observed and predicted concentrations.
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Figure 2.8: Agreement of the LURF and LUR exposure predictions for the 762 children in the CCAAPS
cohort. The dotted line represents the perfect agreement between RF and LM predictions.
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Figure 2.9: Agreement of the old land use model [3] TRAP concentration predictions and the new land use
model TRAP concentration predictions, both LURF and LUR models, for the 762 children in the CCAAPS
cohort. The dotted line represents the perfect agreement between predictions.
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Example Land Use Predictor Figures

Figure 2.10: Location of CCAAPS birth record addresses, interstates, highways, and bus routes. The inset
shows a magnified view of several locations with accompanying 200 meter fixed buffers.
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Figure 2.11: Location of CCAAPS birth record addresses and the intensity of traffic on interstates and
highways as average daily truck (ADT) count. The inset shows a magnified view of several locations with
accompanying 200 meter fixed buffers.
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Figure 2.12: Location of CCAAPS birth record addresses and the land use classification for the study area.
The inset shows a magnified view of several locations with accompanying 200 meter fixed buffers.
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Figure 2.13: Location of CCAAPS birth record and NDVI values. The inset shows a magnified view of
several locations with accompanying 200 meter fixed buffers.
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Figure 2.14: Location of CCAAPS birth record addresses and PM10 point source from the National
Emission Inventory. The inset shows a magnified view of several locations with accompanying 200 meter
fixed buffers.
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Figure 2.15: Location of CCAAPS birth record addresses and the deprivation index for each census tract.
The inset shows that the deprivation value was extracted based on the census tract of each location.
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Chapter 3

Estimating the Variance of Random

Forest Predictions
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Abstract

Background: The infinitesimal jackknife (IJ) has recently been applied to the random

forest to estimate the variance of their predictions. Additionally, the predictions have been

shown to be asymptotically normal under a few conditions. These theorems were verified

under a traditional random forest framework which uses CART trees and bootstrap resam-

pling. However, random forests using conditional inference (CI) trees and subsampling have

been found to be more accurate and not prone to variable selection bias. Whether or not the

IJ will hold under these random forest variations is unknown. Here, we conduct simulation

experiments to explore the applicability of the IJ to random forests using variations on the

resampling method and base learner.

Methods: Data were simulated using eleven different functions and three different sample

sizes. One hundred test points were generated and each trained on one hundred data sets

using random forests with combinations of CART trees or CI trees, bootstrap sampling or

subsampling, and three different values of mtry. The mean absolute bias for all variations

were calculated as the absolute difference between the empirical variance of predictions and

the IJ variance prediction with a suggested bootstrap correction.

Results: Using CI trees instead of traditional CART trees and using subsampling instead

of bootstrap sampling resulted in a much more accurate estimation of prediction variance

when using the IJ. The effect of mtry and sample size differed with respect to the empir-

ical variance and individual data simulation distributions. The random forest variations

here have been incorporated into an open source software package for the R programming

language. We present an applied example of the IJ using the package on a data set of

environmental ozone measurements. Our results suggest that random forests should be con-

structed using conditional inference trees instead of CART trees and subsampling instead

of bootstrap sampling for both increased accuracy in predictions and increased accuracy in
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variance predictions with the IJ.
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3.1 Introduction

Although random forests have been proven to be more accurate than common parametric

techniques like regression [10], they still remain underused because most researchers use them

only for prediction and not for interpretation. Utilizing the infinitesimal jackknife (IJ) to

estimate the variance of random forest’s predictions will help to generate insight into random

forests. The characterization of the statistical distribution of bagged tree ensemble predic-

tions brings these type of learners out of the “black box” and into the realm of statistical

inference. This will allow researchers to answer questions like “How much would predictions

change if a different data set was used to train it?” and “Which predictions are the random

forest more confident about?”.

As an example, Figure 3.1 shows what this would look like for usage with the land use

models (Chapter 2). In the figure, predictions for total PM2.5 from the land use random

forest (LURF) models along with 95% confidence intervals, calculated using the IJ, are

plotted against the actual total PM2.5 concentrations at all 24 CCAAPS sampling sites. For

comparison, the same predictions and accompanying 95% confidence intervals from the land

use regression (LUR) models are also plotted. Here, it can be seen that the random forest is

less confident about its inaccurate predictions and that the LURF confidence intervals overall

are much smaller than those produced by the LUR models. Although this is only a brief

demonstration of plotting predictions, the plotting of random forest predictions confidence

intervals with respect to variation in predictor variables could allow for elucidation of the

complex interactions and relationships that the current implementation of random forests

are so good at detecting but not so good at explaining.

Although Wager et al. have proven that the IJ can be used to estimate the prediction

variances of traditional random forests [47, 48], their methods have not been tested using

alternative individual tree types used in random forest, such as conditional inference trees.

This variation is widely used and is important for eliminating variable selection bias and

increasing the predictive accuracy of traditional random forests. Because their formulas are
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proven under the assumption of traditional random forests, they are hard to verify under

other random forest variations and whether or not their proof will hold is unknown. Here, we

explore the applicability of the IJ to random forest variations, including resampling method

and individual tree type, and compare the accuracy of their estimates of prediction variances.

Furthermore, we implement them as an open-source software tool that can be an invaluable

statistical tool used in almost any supervised statistical learning situation.

3.1.1 Random Forests

Random Forests are often implemented in prediction analyses because of their increased

accuracy and resistance to multi-collinearity and complex interaction problems as compared

to linear regression [10]. In a recent study, random forest was found to be the most accurate

classification algorithm among 179 classifiers, based on 121 different data sets [12]. The

technique itself is an ensemble learning method that builds on bagging – specifically the

bootstrapped aggregation of several regression trees – to predict an outcome. Bagging is

most often used to reduce the variance of an estimated prediction function and is most

useful for models which are unbiased but have a high variance, like regression trees [10].

Random forests, first proposed by Breiman [13], modify the bagging technique by ensuring

that the individual trees are de-correlated by using a bootstrap sample for each tree and

also randomly selecting a subset of predictors for testing at each split point in each tree.

The random forest comes with the advantages of tree-based methods, namely the ability

to capture complex interactions and maintain low bias, while at the same time alleviating

the problem of high variance of predictions usually associated with tree-based methods by

growing the individual trees to a very deep level (usually one observation per terminal node)

and averaging their predictions.

Algorithm

The specific algorithm for random forest as used for regression is as follows:
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1. For b = 1 to B total trees:

• Draw a bootstrap sample from the training data

• Grow tree Tb by repeating the following steps for each terminal node of the tree

until the desired node size is reached:

– Randomly select mtry of the total p variables

– Pick the best variable and split-point from the mtry variables based on the

best reduction in the sum of the squared errors of the predictions

– Split the node into two daughter nodes

2. Output the total ensemble of all trees.

3. To predict at a new point x, average the prediction of all trees: f̂(x) = 1
B

B∑
b=1

Tb(x)

Tuning Parameters

The performance of random forests can be tuned using two parameters, mtry and B. B is the

total number of trees and is set to 500 by default in the randomForest package within R. The

number of trees should be large enough so that the error rate is stabilized. Since the random

forest is grown one tree at a time, the error rate can be plotted as a function of the number

of trees to visually ensure that enough trees are being used. mtry usually has more effect on

the ensemble accuracy and is set to max{floor(1
3
p), 1} as the default in the randomForest

package within R. Variations in mtry can be auditioned and the value producing the lowest

error can be used in the final random forest model.

Accuracy Metric

The most commonly used metric to measure the accuracy of random forests in regression

settings is pseudo R2. It is calculated as 1 − MSE
var(Y )

where Y is a vector of the outcomes

and MSE is the mean of the squared errors for all prediction points. The error for each

prediction point is calculated based on predictions using trees where the sample point was

47



not used to train the tree. This generally represents the amount of variance explained by

the random forest model and is analogous to the coefficient of determination, here denoted

as model R2, in ordinary least squares regression. However, since this accuracy metric is

based only on data not used to train the model, it is a conservative estimate and tends to

not overestimate the true cross validated model accuracy, such as often occurs when using

the model R2 in regression settings. Note also that the pseudo R2 can be negative because

it is possible for MSE to be greater than var(Y ).

Variable Importance

A metric used to determine the influence of each predictor on the accuracy of the random

forest is called “variable importance”. In a regression setting, this is calculated separately for

each variable. After fitting each tree in the random forest, the prediction MSE for samples

not included in the training set of that tree, called “out of bag” (OOB) samples, is calculated.

This is called the OOB error rate. The values of the predictor variable under focus are

randomly permuted and the tree is fit again and the OOB error rate is calculated again.

The difference in OOB error rates are averaged over all trees which utilize that predictor in

the ensemble and then normalized by the standard deviation of the differences. This allows

for comparison of the variable importance measure between variables with different ranges.

3.1.2 Estimating the Variance of Bagged Tree Predictions

Bootstrap sampling, subsampling, and the jackknife all rely on estimating the variance of a

statistic by using the variability between resamples rather than using statistical distributions.

This section will cover the jackknife and how it is applied to the resampling distribution to

generate variance estimates for random forest predictions.
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Ordinary Jackknife

The ordinary jackknife is a resampling method useful for estimating the variance or bias of a

statistic. The jackknife estimate of a statistic can be found be by repeatedly calculating the

statistic, each time leaving one observation from the sample out and averaging all estimates.

The variance of the estimate can be found by calculating the variance of the jackknifed

estimates:

V̂J =
n− 1

n

n∑
i=1

(
θ̂(−i) − θ̂(·)

)2
(3.1)

where n is the total sample size, θ̂(−i) is the statistic estimated without using the ith

observation, and θ̂(·) is the average of all jackknife estimates.

Jackknife After Bootstrap

The ordinary jackknife is extended for use with bagging by applying it to the bootstrap

distribution [49]. Instead of leaving out one observation at a time, the existing bootstrap

samples are used and the statistic is calculated based on all resamples which do not use the

ith observation:

V̂JB =
n− 1

n

n∑
i=1

(
t̄∗(−i)(x)− t̄∗(·)(x)

)2
(3.2)

where t̄∗(−i)(x) is the average of t∗(x) over all bootstrap samples not containing the ith

example and t̄∗(·)(x) is the mean of all t̄∗(i)(x).

Infinitesimal Jackknife and Resampling

As opposed to V̂J and V̂JB, where the behavior of a statistic is studied after removing one or

more observations at a time, the IJ looks at the behavior of a statistic after down-weighting

each observation by an infinitesimal amount. [50]. Adapted from Efron [49], the following is

a gentle introduction to the idea.
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Define

t∗i = t(y∗i ) y∗i = (y∗i1, y
∗
i2, ..., y

∗
ik, ..., y

∗
in) (3.3)

as the ith calculation of a statistic based on the ith bootstrap sample, and

Y ∗ij = #{y∗ik = yj} (3.4)

as the number of times that the original data point yj appears in the ith bootstrap sample

y∗i . Then, the count vector Y∗i = (Y ∗i1, Y
∗
i2, ..., Y

∗
ik, ..., Y

∗
in) forms a multinomial distribution

with n draws on n categories, each having a probability of 1/n. Using the mean and variance

of the multinomial distribution, we can say that

Y∗i ∼ (1n, I− 1n1
T
n/n). (3.5)

By fixing the original data and writing the bootstrap replication statistic as function of the

count vector, we can define the ideal smoothed bootstrap estimate S0 as the multinomial

expectation of T (Y∗).

S0 = E[T (Y∗)], Y∗ ∼ Multn(n,p0), (3.6)

with p0 = (1/n, 1/n, ..., 1/n). Extending this to a probability vector of p = (p1, p2, ..., pn)

leads to

S(p) = E[T (Y∗)], Y∗ ∼ Multn(n,p), (3.7)

Using the delta method, we can define the directional derivative as

Ṡj = lim
ε→0

S(p0 + ε(δδδj − p0))− S(p0)

ε
(3.8)

where δδδj is the jth coordinate vector with all zeros except for a one in the jth place. We can
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then use the delta method to estimate the standard deviation of s0

(∑n
j=1 Ṡ

2
j

)1/2
n

(3.9)

In order to reduce this back into terms of Y∗, we define wi(p) as the probabilities of Y∗ in

Equation 3.7 divided by the probabilities of Y∗ in Equation 3.6,

wi(p) =
n∏
k=1

(npk)
Y ∗ik , (3.10)

such that

S(p) =
B∑
i=1

wi(p)t∗i /B (3.11)

For p(ε) = p0 + ε(δj − p0) as in Equation 3.8,

wi(p) = (1 + (n− 1)ε)Y
∗
ij(1− ε)

∑
k 6=j Y

∗
ik (3.12)

Letting ε→ 0 results in

wi(p)
.
= 1 + nε(Y ∗ij − 1) (3.13)

Substituting this back into Equation 3.11 gives

S(p(ε))
.
=

B∑
i=1

[1 + nε(Y ∗ij − 1)]t∗i /B = s0 + nε covj (3.14)

Using Equation 3.8 defines Ṡj = n covj. Thus, the IJ estimated variance of a bagged

predictor is

V̂IJ =
n∑
j=1

covj (3.15)

or the covariance between the predictions and the number of times each sample was used in

the resamples.
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Random Forest Prediction Variance

Wager et al. [47] have recently extended this idea by applying the IJ to random forest

predictions. Based on using subsamples rather than bootstrap samples, they have shown

that the variance of random forest predictions can be consistently estimated. Here the IJ

variance estimator is applied to the resampling distribution for a new prediction point:

V̂IJ =
n∑
i=1

Cov∗ [T (x;Z∗1 , ..., Z
∗
n), N∗i ] (3.16)

where T (x;Z∗1 , ..., Z
∗
n) is the prediction of the tree T for the test point x based on the sub-

sample Z∗1 , ..., Z
∗
n and N∗i is the number of times Zi appears in the subsample. Furthermore,

random forest predictions are asymptotically normal given that the underlying trees are

based on subsampling and that the subsample size s scales as s(n)/n = o(log(n)−p), where

n the is number of training examples and p is the number of features [48].

Because V̂IJ is calculated in practice with a finite number of trees B, it is inherently

associated with Monte Carlo error. Although this error can be decreased by using a large

B, a correction has been suggested [47]:

V̂ B
IJ =

n∑
i=1

C2
i −

s(n− s)
n

v̂

B
(3.17)

where Ci = 1
B

B∑
b=1

(N∗bi−s/n)(T ∗b −T̄ ∗) and v̂ = 1
B

B∑
b=1

(T ∗b −T̄ ∗)2. This is essentially a Monte

Carlo estimate of Equation 3.16 with a bias correction subtracted off. These estimates are

asymptotically normal given a few key conditions, one of which is that the underlying trees

are honest (see Section 3.1.3). Simulation experiments using sub bagged random forests have

shown that these variance estimates are biased [48] and this is likely due to the fact that the

underlying trees are not honest. The implementation of honest trees within a sub bagged

tree ensemble and its resulting prediction variance has not been studied.

Here, we conduct simulation experiments to characterize the differences in the estimates
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of the variances of bagged tree ensemble predictions when using variations of the random

forest algorithm based around the type of sampling and regression tree.

3.1.3 Variations on Random Forests

Traditional random forests have a bias which favors splitting on variables with more levels or

a larger continuous range [51]. The bias has been shown to come from two distinct sources

[51]: (1) bootstrap resampling and (2) CART trees. We hypothesize that these two bias

sources may also cause biased estimation of V̂ B
IJ and explore variations on random forests

which eliminate the variable selection bias to see if they perform well with the IJ variance

estimator.

Resampling

Each tree in the random forest algorithm is built on a resample of the original sample.

By convention, the random forest uses a bootstrap sample (sampling with replacement),

with size equal to the original sample size, n. It has been shown that a bootstrap sample

distribution is different from the null hypothesis distribution, even if the original data set is

distributed according to the null hypothesis [51]. Thus, statistical tests on the resamples used

for choosing split points will be biased. This bias has been shown to be eliminated when

using a subsample without replacement (“sub bagging”) instead of bootstrapped samples

[51]. Here, we implement subsampling of size n0.7 as recommended by Wager [48] (Section

3.1.2) and compare the performance of V̂ B
IJ to using bootstrap resampling.

Tree Type

Wager defines an honest tree as one in which the distribution of the predicted outcome, con-

ditional on the explanatory variables, does not depend on the training labels [48]. The most

popular recursive partitioning algorithm and the one used in the random forest algorithm

(Section 3.1.1) is CART [13]. In the case of regression, this algorithm performs a search for
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the best possible split over all split points of all variables by minimizing the sum of squared

errors between the predicted and actual values. These type of trees tend to select variables

that have many possible split points, like continuous instead of categorical variables [51]

due to the multiple testing problem. Conditional inference (CI) trees [52] are trees that

are honest because they use outcomes to make predictions but use another method to find

split points. CI trees implement a test statistic, like the Spearman correlation coefficient,

student’s t test, or F statistic from ANOVA to pick the predictor that is most associated

with the outcome based on the smallest p-value. P-values are generated using a permutation

test framework first laid out by Strasser [53] in which the distribution of the test statistic

under the null hypothesis is obtained by calculating all possible values of the test statistic

under rearrangements of the labels on the observed data points. To find the best split point,

the standardized test statistic is then maximized. Implementing CI trees has been shown

to alleviate the variable selection bias [51]. Here, we compare the performance of V̂ B
IJ when

using CI trees in random forests compared to using CART trees.

3.2 Methods

3.2.1 Data Simulation

Ten different predictor variables (X1, ..., X10) were generated by sampling from the normal

distribution, with X1, ..., X5 having mean zero and unit variance and X6, ..., X10 having a

mean of ten and variance of five. Eleven different simulation functions were then used to

generate eleven different synthetic outcomes. Table 3.1 shows the name and corresponding

simulation function used to generate each simulated dataset. Here, AND and OR are

used to denote the unique characteristics of these simulated datasets derived from using the

indicator function, I(·) (1 if the argument is true; 0 otherwise). Similarly, SUM and SQ are

based on the summing and summing of the squares of the predictor variables, respectively.

The number in each data simulation name corresponds to the number of predictor variables
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included in the simulation functions. Note that less than the ten total predictor variables are

used in each data simulation although all ten predictor variables are used in the construction

of the random forests. To simulate the data, 100 random test points were generated from each

distribution and then 100 random training sets of varying size (n = 200, 1000, 5000) were

generated from each distribution. Eleven different distributions, each with three different

sample sizes, resulted in 33 total types of simulated data sets.

3.2.2 Random Forest Variations

All possible combinations of the proposed variations on random forests were implemented

on the simulated data (both CI and CART trees, as well as bootstrap and subsampling).

For each variation, mtry was set to three different default values: (1) max{floor(1
3
p), 1},

(2) max{floor(2
3
p), 1}, and (3) max{p, 1} (where p is the total number of variables). For

the current case of the simulations where p = 10, this resulted in mtry sizes of 3, 6, and 10.

Because p = mtry = 10 is the trivial case of bagged trees, we instead opted for an mtry of 9.

For subsampling random forest implementations, a subsample size of n0.7 was used and all

forests used B = 5n total trees, as recommended by Wager [48]. Table 3.2 shows the specific

numbers for subsample and resample size for each corresponding total sample size.

3.2.3 Simulation Experiments

Figure 3.2 contains a diagram depicting an overview of the simulation experiments. Specif-

ically, the four combinations of CI or CART trees with bootstrap or subsampling were

implemented on all simulated data sets (Table 3.1), each with sample sizes of 200, 1000, and

5000. V̂ B
IJ (Equation 3.17) was calculated for all 100 test points, each using all 100 training

samples. The empirical prediction variance for each test point was calculated as the variance

of all 100 predictions of each test point on the training samples. The absolute bias in V̂ B
IJ

was calculated as the absolute difference of each variance estimate and the empirical pre-

diction variance. The average absolute bias for each test point was calculated by averaging
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the absolute bias across all 100 data sets. The average absolute bias was normalized by the

empirical variance and termed the “absolute predictive bias” in order to help interpretation

and compare biases across different distributions and prediction ranges. Averaging the ab-

solute predictive bias across all 100 test points resulted in the mean absolute predictive bias

(MAPB) for each combination of tree type, resampling type, distribution, and sample size:

MAPB =
1

100

100∑
k=1

1
100

100∑
r=1

|V̂IJ
(
x(k);Z(r)

)
− Varr

[
RFs

(
x(k);Z(r)

)]
|

Varr [RFs (x(k);Z(r))]
(3.18)

where k represents the index of each test point x(k), r is the index of each training sample

Z(r), and RFs
(
x(k);Z(r)

)
is the ensemble prediction of the kth test point using the rth training

set.

3.2.4 Statistical Computing

All statistical computing was done in R, version 3.1.2 [42], using the randomForest [54]

and Party packages [55] wrapped into the custom package, RFinfer (available online at

https://github.com/cole-brokamp/RFinfer). Section 3.5 describes the custom R package,

including installation and usage examples.

3.3 Results

3.3.1 Data Simulation

Ten predictor variables were generated from the normal distribution in order to simulate

the data. X1, ..., X5 were drawn from the standard normal distribution but X6, ..., X10 were

drawn from a normal distribution with a mean of ten and a variance of five. The last five

predictor variables were created to have a larger range in order to observe the effects of the

random forest variations compared to data with only small ranging predictors. 100 data sets
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were simulated for each of the eleven different simulation functions (Table 3.1) and different

sample sizes (n = 200, 1000, 5000). Furthermore, 100 test points used for prediction were

generated for each simulation function.

3.3.2 Empirical Variance

For each of the 100 test points, the variance of their predictions over all 100 test sets was

calculated and termed the empirical variance. Table 3.3 contains the median of these em-

pirical variances for each distribution and sample size. As expected, the empirical variance

increased within each type of distribution as more variables were used to generate the syn-

thetic outcome and also decreased with increasing sample size. The OR and AND empirical

variances were relatively small, all with a median less than 0.005. This is likely because the

distributions utilized the indicator function, reducing the synthetic outcome to only a few

possible levels and defeating the effect of using predictors X6, ..., X10, which had a larger

range than X1, ..., X5. In contrast, the SUM and SQ distributions had a relatively larger

empirical variance, especially SUM5 and SQ5, which utilized the predictors with a larger

range and variation.

3.3.3 Bias in Variance Predictions

The mean absolute predictive bias (MAPB) was calculated for each combination of resample

type, tree type, mtry, sample size, and distribution by calculating the absolute difference

in the variance estimate and the empirical variance, normalizing this bias by the empirical

variance, and averaging over all 100 data sets and all 100 prediction points (Equation 3.18).

See Figure 3.2 for a diagram depicting the simulation experiments. Table 3.4 and Figure

3.3 show the MAPB for all variations and Figures 3.4, 3.5, and 3.6 show the MAPB for

sample sizes of n = 200, n = 1000, and n = 5000, respectively. CI trees were not created for

n = 5000 due to computational limitations. Each of the simulation factors are explored in

detail below.
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3.3.4 Distribution

Overall, the SUM and SQ distributions performed well, with MAPB of mostly less than one.

The AND and OR distributions, however, performed much worse, especially with increasing

sample size and using bootstrap resampling and high mtry values.

mtry

Increasing mtry caused a large increase in MAPB for the OR and AND distributions, but

caused a smaller effect with varied directions on the SUM and SQ distributions. Using

subsampling with the OR and AND datasets generally exhibited a small increase in MAPB

with increasing mtry, whereas using bootstrap resampling with the OR and AND datasets

exhibited a very large increase in MAPB with increasing mtry. Within the SUM and SQ

distributions, mtry had a much larger impact when bootstrap was used as the resampling

method rather than subsampling. Here, mtry had a varied effect when using bootstrap

resampling that depended on the number of variables used in each distribution and the total

sample size.

Sample Size

For the SUM and SQ distributions, increasing sample size decreased the MAPB for all

combinations of mtry, tree type and resample type. However, the OR and AND distributions

showed the opposite effect of increasing sample size, with a higher MAPB. This effect was

especially large with the bootstrap resampling method; for example, the MAPB of the

random forests with an mtry of 9 trained on the OR1 distribution increased by an average

of 3 fold when using n = 1000 instead of n = 200.

Tree Type

The effect of tree type was consistent no matter the sample size, resampling method, or mtry

used; CI trees always had a lower MAPB than CART trees in every case. The decrease in

58



MAPB when using CI trees instead of CART trees did not seem to differ with respect to

sample distribution.

Resampling Method

The best improvement in MAPB resulted from utilizing subsampling rather than bootstrap

sampling. In fact, the worst performing simulation type using subsampling always performed

better than the best simulation type using bootstrap sampling for every distribution. This

was again the case for all combinations of sample size, mtry, and tree type. The difference

was inflated when using a higher mtry in the bootstrapped OR and AND distributions.

3.4 Discussion

Here we have shown that using the IJ to estimate the variance of random forest predictions is

much more accurate when using conditional inference trees instead of traditional CART trees

and when using subsampling instead of bootstrap sampling. These simulation experiments

show that Wager’s proof [48] holds when using CI trees instead of traditional CART trees

under various simulated data sets of different distributions and sizes.

3.4.1 Resample Method

The factor with the largest impact on MAPB was by far the resample method. Implementing

sub bagging resulted in a more accurate estimation of the prediction variance, and this

eclipsed the change in MAPB caused by any other variations in mtry, sample size or tree

type. Although using CI trees was better than using CART trees, the difference between

these two was highlighted the most when using bootstrap resampling with the nonlinear OR

and AND functions. However, the magnitude of improvement in MAPB was not increased

for distributions utilizing the predictors with a wider range. This was not expected given

the known bias of CART trees utilizing wider ranging predictors [51].
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3.4.2 Sources of Increased Bias

The nonlinear distributions, OR and AND had an extremely small empirical variance com-

pared to the SUM and SQ distributions. Furthermore, the empirical variance decreased

more rapidly with increasing sample size compared to the SUM and SQ distributions too.

Thus, the increase in MAPB is likely due more to the decreased empirical variance rather

then an increase in the absolute error of V̂ B
IJ and this is likely why the MAPB increased with

increasing sample size for the OR and AND distributions, but decreased with increasing

sample size for the SUM and SQ distributions.

The key to the random forest model is decorrelation of the individual trees using mtry

and resampling. Bootstrap resampling does decorrelate trees, with each resample showing

an average number of distinct observations of 0.632n [10]. However, using subsampling with

a subsample size of n0.7 results in a far lower number of distinct original observations per

resample (see Table 3.2 for example). Thus, subsampling creates more decorrelation in indi-

vidual trees than bootstrap sampling and so mtry makes a large difference in the performance

of bootstrapped random forests because there is room for additional decorrelation, but not

in subsampled random forests. Similarly, the effects of mtry are greater in the AND and

OR distributions when using bootstrap resampling and not subsampling because the vari-

ance of the resamples are already so small that bootstrap resampling does not sufficiently

decorrelation the individual trees, unlike when using subsampling. Overall, this is why the

worst performing subsampled simulation still outperformed the best bootstrapped simula-

tion. Subsampling is likely more resistant to the correlation problems found in data with a

lower variance and forests built with a higher mtry value.

3.4.3 Conclusion

These results suggest that random forests should be constructed using CI trees instead of

CART trees. It has already been shown that CI trees produce more accurate predictions [51]

and we show here that they produce more accurate estimations of the prediction variance
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too. However, it is most important to use subsampling instead of bootstrap sampling as this

has the largest impact on the accuracy of V̂ B
IJ .

3.4.4 Future Directions

These simulations extend those performed previously by Wager [47, 48] by using different

distributions, varying mtry values, and including auxiliary noise variables in the training sets.

However, in the future it would be valuable to evaluate the performance of V̂ B
IJ on correlated

or multivariately distributed data, as well as on data with complex interactions because this

is where the advantage of random forest truly lies.

The RFinfer package makes the code used in the simulations within this manuscript

freely available and makes the experiments reproducible. We hope to extend this package in

the future with functions that take advantage of the prediction confidence intervals, allowing

researchers to take advantage of the novel insights into these “black box” models.

3.5 RFinfer package for R

3.5.1 Introduction

RFinfer is a package for R designed as a useful set of add on tools for the randomForest and

Party packages. Currently, it produces prediction variances based on the IJ from random

forests with the option to use bootstrap or subsampling as well as CART or conditional

inference trees. In the future, we plan to expand this package to include other tools that will

help in drawing statistical inferences from random forests like predictive comparisons and

visualization tools.
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3.5.2 Installation

The package is currently not available on CRAN, but can be installed from GitHub by

running devtools::install github(‘cole-brokamp/RFinfer’) in R.

Dependencies

The IJ algorithm requires the number of times that each data point is included in each

resample, but the randomForest package on CRAN only provides an indicator if each data

point was included or not. To install a modified version of the package that includes the

number of uses for each data point in each resample when specifying the keep.inbag=TRUE,

option run devtools::install github(‘cole-brokamp/randomForest’) in R. Note that

the package will not work without this modified version of the randomForest package.

Computation Time

Currently, the CI methods are much more computationally intensive because there is no C

implementation of the CI random forest method that indicates the number of times that each

sample is included in each resample. In order to carry out our simulations using V̂ B
IJ , we had

to use a pure R implementation of CI random forests. This is different for CART random

forests, where a C implementation already exists in the randomForest package. However,

it should be noted that the difference in computational times is due to the random forest

creation step, not the implementation of V̂ B
IJ . This should not be an issue in the future when

a C implementation of CI random forests is created.

3.5.3 rfPredVar()

The main function of the package is rfPredVar(), which takes a supplied random forest and

returns its predictions and prediction variances. The user can specify if the forest should be

built using conditional inference trees instead of the traditional CART trees, if a progress bar
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should be shown, and if the 95% confidence intervals should also be returned. The specific

arguments are:

rf.data: Original data used to train the random forest

pred.data: Data used to predict with the forest, defaults to rf.data if not given

CI: Should 95% confidence intervals based on the central limit theorem be re-

turned?

tree.type: Either ‘ci’ for conditional inference tree or ‘rf’ for traditional CART tree

prog.bar: Should a progress bar be shown? (only applicable when tree.type=‘ci’)

rf: A random forest trained with keep.inbag = TRUE

This function takes a random forest in order to extract mtry, the number of trees, and

if the forest was trained using subsampling or bootstrap resampling. If subsampling was

specified in the original random forest call, but rfPredVar is called with conditional infer-

ence trees, the algorithm will match the exact subsamples for each tree, allowing for direct

comparison of the effect of tree type without variation in the resampling. Instead of the

default predict method for forests from cforest, the predictions from a conditional infer-

ence tree are the direct averages of all tree predictions, not using the observation weights.

Therefore, predictions from this function will likely differ from predict.cforest when using

subsampling. Finally, this function only works with regression forests and not classification

forests.

3.5.4 Example

First, load the package and some example data.

> library(RFinfer)

> data(airquality)

63



> d <- na.omit(airquality)

Next, train a random forest using subsampling with the keep.inbag option specified.

> rf <- randomForest(Ozone ∼ .,data=d,keep.inbag=T,sampsize=30,replace=FALSE)

Extract the prediction variances along with their 95% confidence intervals.

> rfPredVar(rf,rf.data=d,CI=TRUE,tree.type=‘rf’)

This will result in a data frame with the following structure:

## ‘data.frame’: 111 obs. of 4 variables:

## $ pred : num 42.2 30.7 24.5 26.8 32.3 ...

## $ pred.ij.var: num 6.74 8.93 3.81 3.58 13.98 ...

## $ l.ci : num 28.95 13.19 17.09 19.79 4.92 ...

## $ u.ci : num 55.4 48.2 32 33.8 59.7 ...

If we wanted to compare this to a forest built using conditional inference trees instead of the

traditional CART trees, we could make another call to rfPredVar:

> rfPredVar(rf,rf.data=d,CI=TRUE,tree.type=‘ci’)

However, if we wish to use bootstrap sampling instead of subsampling, we would specify that

in the original call to the random forest:

> rf <- randomForest(Ozone ∼ .,data=d,keep.inbag=T,replace=TRUE)

and proceed as above.
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Tables

Table 3.1: Ten functions used to simulate data. X1, ..., X5 were sampled from the normal distribution with
mean 0 and variance 1. X6, ..., X10 were sampled from the normal distribution with mean 10 and variance
5.

Name Simulation Function
SUM1 X1

SUM3 X1 +X3 +X5

SUM5 X1 +X3 +X5 +X6 +X7

SQ1 X2
1

SQ3 X2
1 +X2

3 +X2
5

SQ5 X2
1 +X2

3 +X2
5 +X2

6

OR1 I(X1 > 0.4)
OR3 I(X1 > 0.4) ∗ I(X3 > 0.6) ∗ I(X5 > 0.4)
OR5 I(X1 > 0.4) ∗ I(X2 > 0.6) ∗ I(X3 > 0.4) ∗ I(X5 > 0.4) ∗ I(X6 > 6)
AND3 1

3
[I(X1 > 0.4) + I(X2 > 0.6) + I(X3 > 0.4)]

AND5 1
5
[I(X1 > 0.4) + I(X3 > 0.6) + I(X5 > 0.4) + I(X6 > 6)]

Table 3.2: Three sample sizes (n) used for the simulated data sets and their corresponding subsample size
(s), subsample fraction (s/n), and total resamples (B).

n s = n0.7 s/n B = 5n
200 41 0.20 1,000

1,000 126 0.13 5,000
5,000 388 0.08 25,000

Table 3.3: Median of the empirical variances (Var) for each distribution and sample size.

Distribution Var (n = 200) Var (n = 1000) Var (n = 5000)
SUM1 0.0055 0.0007 0.0001
SUM3 0.0531 0.0192 0.0061
SUM5 0.8661 0.2588 0.0946
SQ1 0.0501 0.0088 0.0018
SQ3 0.3512 0.1236 0.0404
SQ5 78.8994 17.1922 6.1274
OR1 0.0018 0.0004 0.0000
OR3 0.0036 0.0007 0.0001
OR5 0.0048 0.0009 0.0001

AND3 0.0008 0.0001 0.0000
AND5 0.0009 0.0002 0.0000
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Table 3.4: The mean absolute predictive bias (MAPB) for each simulation, each the combination of a
distribution, mtry, sample size, tree type, and resampling method.

CART CI

Bootstrap Subsample Bootstrap SubsampleDistribution mtry

200 1000 5000 200 1000 5000 200 1000 5000 200 1000 5000

3 0.91 1.05 1.21 0.47 0.37 0.32 0.71 0.79 0.40 0.31
6 1.14 1.56 1.99 0.50 0.46 0.45 0.89 1.17 0.41 0.32SUM1
9 1.04 1.22 1.23 0.48 0.46 0.43 0.81 0.89 0.39 0.34
3 0.59 0.50 0.43 0.39 0.28 0.20 0.51 0.42 0.36 0.26
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Figure 3.1: 95% confidence intervals for predictions from land use regression (LUR) and land use random
forest (LURF) models according to the actual concentrations at all 24 CCAAPS sampling sites for PM2.5.
The dotted line represents a perfect agreement between measured and predicted.
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Figure 3.2: A diagram depicting the simulation experiments. 100 test points and 100 test tests were
generated for each distribution and these were used to calculate the mean absolute predictive bias (MAPB).
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Figure 3.3: An overview of the MAPB for all simulation variations. Figures 3.4, 3.5, and 3.6 each show
the results in more detail for each sample size.
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Figure 3.4: MAPB for each combination of subsample (SS) or bootstrap (BS) resampling, conditional
inference (CI, red bars on left) or traditional CART (CART, green bars on right) trees, and mtry for
n = 200.
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Figure 3.5: MAPB for each combination of subsample (SS) or bootstrap (BS) resampling, conditional
inference (CI, red bars on left) or traditional CART (CART, green bars on right) trees, and mtry for
n = 1000.
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Figure 3.6: MAPB for each combination of subsample (SS) or bootstrap (BS) resampling, traditional
CART (CART, green bars) trees, and mtry for n = 5000.
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Chapter 4
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Matter and Respiratory Health
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Abstract

Background: Particulate matter (PM) has long been known to have a negative health on

many aspects of public health. Although PM has traditionally been defined as all particles

smaller than 2.5 µm or 10 µm, recent epidemiological studies have shown that specific

elemental constituents of PM and their sources are associated with adverse health outcomes.

The effects of individual PM components are important determinants of public health, but

have not yet been evaluated in a largely urban city, nor in an American location.

Objectives: Our objective was to estimate the exposure of a cohort of children to elemental

components of PM and find its effect on their respiratory health.

Methods: The exposure of children from the Cincinnati Childhood Allergy and Air Pol-

lution Study to Al, Cu, Fe, K, Mn, Ni, Pb, S, Si, V, Zn, traffic related air pollution and total

PM2.5 were estimated using a previously validated land use random forest model based on

residential address history. A causal diagram was created and used to determine that models

required adjustment for neighborhood characteristics. These were defined using census tract

level socioeconomic characteristics and a residential traffic proximity metric. Linear models

were used to relate the estimated exposures to diagnosis of asthma at age seven and percent

predicted forced vital capacity (FV C) and forced exhaled volume in the first second (FEV1).

Results: The exposure of the cohort to individual PM components did not necessarily

reflect their estimated exposure to TRAP or total PM2.5. Al, Fe, Pb, Si, Zn, and total

PM2.5 were associated with decreased lung function on their own, but after controlling for

confounding by neighborhood characteristics, only Al and Se were significantly associated

with FV C. Although not statistically significant all other elemental components except

K and S remained negatively associated with lung function and asthma after adjustment.

Future health models should consider elemental components of total PM when associating

them with health effects.
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4.1 Introduction

4.1.1 Health Effects of Particulate Matter Components

Particulate matter (PM) has long been known to have a negative effect on public health [56].

At a cellular level, it causes inflammation in the brain [57] and lungs [58]. At an individual

level, it has been associated with increased risk for lung cancer [59, 60], asthma exacerbation

[61], elevated blood pressure [62], and increased cardiovascular mortality from both short

term [63] and long term [64] exposures. At a population level, it is associated with increased

daily mortality [65, 66, 67, 68, 69, 70] and an overall shortened life expectancy [71, 72]. Al-

though PM has traditionally been defined as the fraction of all particles smaller than 2.5 µm

or 10 µm [73], recent epidemiological studies have shown that specific elemental constituents

of PM and their sources are associated with adverse cardiovascular and respiratory health

outcomes in adults [14, 15, 16]. Specifically, epidemiological studies have identified elemental

carbon, organic carbon, and nitrates as being associated with increased risk for cardiovas-

cular and respiratory hospital admissions [74, 75] and mortality [76]. Elemental components

of PM2.5, including Ni, Zn, Si, Al, V, Cr, As, Br, have also been associated with increased

cardiovascular and respiratory hospital admissions [14, 75], increased mortality [77], and

lower birth weight [78]. Characterizing the health effects of PM components has been iden-

tified as a research priority by the National Research Council for the National Academies

[17]. Recently, LUR models have been developed for particle composition in twenty areas in

Europe as a part of the ESCAPE study [18] and exposure to PM2.5 sulfur was found to be

associated with an increased risk for natural cause mortality in adults [20]. The same LUR

model was also used to relate Ni and S exposure to decreased lung function in five cohorts

of children [21]. Furthermore, the same group has associated long term exposure to PM2.5

copper and PM10 iron with increased levels of inflammatory blood markers [22]. Clearly,

the effects of individual components of PM are important determinants of public health, but

land use exposure models have not yet been created in an American location.
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4.1.2 Causal Structure

Causal diagrams are useful in epidemiological research for identifying variables that have

to be controlled for and measured in order to obtain the total and unconfounded effect

estimates [79]. There exists a suggested framework for using causal diagrams to determine

the unbiased effect estimate for an exposure on an outcome [80] and without an explicit

causal model, “unprincipled covariate adjustment may fail to remove all confounding bias or

even introduce new biases through over control or endogenous selection” [81]. These biases

may include selection bias [82] or confounding and collider bias [83]. Covariates included in

a model may be a confounder, which affects both the exposure and the outcome; a mediator,

which is affected by the exposure and affects the outcome; a proxy confounder, which is

affected by a confounder and affects the exposure or outcome; or a competing exposure,

which affects the outcome but is not related with the exposure. Although these confounder

definitions are not universally accepted, they provide a quantitative framework that links

causal diagrams to statistical modeling. See [84] for a review of the types of confounding

and different definitions.

Because of the difference between exposure covariates and other confounder covariates,

effect estimates from a single model do not all have identical interpretations. Effects can

be primary, which are the causal effects of the primary exposure; secondary, which are the

causal effects of covariates; total, which are the net of all associations of a variable through

all causal pathways; or direct, which are the association of a variable after blocking or

controlling some causal pathways. Presenting effect estimates of exposure and confounders

from the same model will likely lead to incorrect interpretations, such as confusion of direct

effects for total effects, and this has been termed the “Table 2 fallacy” [85, 86]. Here, we

use a causal inference structure to carefully determine the necessary modeling adjustments

to unconfound socioeconomic status from air pollution exposure and respiratory health.
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4.2 Methods

4.2.1 Study Population

The Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) is an ongoing prospec-

tive birth cohort that focuses on high-risk atopic children [24, 25]. Children in the Greater

Cincinnati and Northern Kentucky region were screened by birth record between October

2001 and July 2003 and enrolled in the study if they lived at least 1,500 m or less than 400

m from the nearest major road. Figure 2.1 shows the birth locations of the CCAAPS cohort.

In addition, each child must have had a parent with symptoms of asthma, eczema, or rhinitis

and allergic sensitization by a positive skin prick test result to at least one of a panel of 17

aeroallergens. Informed consent was obtained and the study was approved by the University

of Cincinnati Institutional Review Board.

4.2.2 Asthma Diagnosis and Lung Function

At the age seven study visit, CCAAPS children completed spirometric testing according to

ATS criteria described elsewhere [87]. Percent predicted values of forced expiratory volume

in one second (FEV1) and total forced vital capacity (FV C) were calculated for children

< eight years [88]. Children with either a FEV1 < 90% predicted, a physician diagnosis of

asthma, asthma symptoms in the last 12 months (tight chest or throat, difficulty breathing

or wheezing after exercise, wheezing and/or whistling in the chest), or an eNO level of >

20 ppb received 2.5 mg levalbuterol through a nebulizer followed 15 minutes afterwards by

repeat spirometry [89]. Children with < 12% increase in FEV1 had a methacholine challenge

test (MCCT). Children were defined as having asthma if they reported having symptoms

of asthma and had either bronchial hyper-reactivity (> 12% increase in FEV1 following

bronchodilation) or a positive MCCT (PC20 ≤ of 4 mg/ml methacholine concentration)

[90]. Of the total 762 children initially enrolled in the study, an asthma diagnosis was

available for 598 of them and the remaining 164 were excluded from the analysis.
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4.2.3 Exposure Assessment

The exposure assessment model is explained in full in Chapter 2, but briefly land use random

forest (LURF) models were used to assess exposure to total PM2.5, traffic related air pollu-

tion (TRAP), and the following elemental components of PM2.5: Al, Cu, Fe, K, Mn, Ni, Pb,

S, Si, V, and Zn. The LURF was based on ambient air sampling conducted in the study area

at 24 different sites between 2001 and 2006. Land use predictors such as traffic intensity,

roadway density, community-level socioeconomic variables, elevation gradient, greenspace,

land cover, and emission point sources were used to build a random forest model for each

PM2.5 component. The models were validated and used to assess the exposure of each child

based on their annual residential address history. Their estimated exposures across all seven

years were averaged to generate their total estimated exposure to each component.

4.2.4 Causal Structure

A causal diagram was used to quantitatively document the causal structure of PM exposure

causing asthma diagnosis and lung function at age 7. Based on the currently available liter-

ature, we identified race, parental income, parental education, neighborhood characteristics,

and other unobserved neighborhood stressors as confounders of the effect of PM on respira-

tory health. Secondhand smoke exposure, allergies, and unobserved genetic characteristics

were identified as competing exposures. We chose the neighborhood effect because a lower

socioeconomic status does not necessarily mean that a child will reside closer to sources

of air pollution, but it can mean that they will live in a certain neighborhood in which a

higher fraction of the population resides close to sources of air pollution. Adjustment for

neighborhood level variables has been suggested in order to determine if any exposure re-

lationship with health effects are due to neighborhood level confounding, indirect pathway

biases, or collider bias [91, 92, 93]. To quantify this confounder, we created neighborhood

characteristic indices.
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4.2.5 Neighborhood Characteristics

In order to adjust for the neighborhood characteristics, we used census tract level mea-

surements of socioeconomic status and traffic proximity. These were created for all census

tracts within the counties in which CCAAPS subjects resided as well as the bordering coun-

ties (Ohio: Hamilton, Clermont, Butler, Warren, Preble, Montgomery, Greene, Clinton,

Brown; Kentucky: Boone, Kenton Campbell, Gallatin, Grant, Pendleton, Bracken; Indiana:

Switzerland, Ohio, Dearborn, Franklin, Union).

Socioeconomic Status

Eight census tract level variables (fraction that graduated high school, fraction of households

in poverty, median household income, fraction of population receiving public assisted income,

fraction of houses that are vacant, median home value, white fraction of population, and black

fraction of population) were obtained from the 2010 Census 5-year American Community

Survey for all counties in which CCAAPS children resided.

Residential Traffic Proximity

Residential traffic proximity (RTP) was calculated for each census tract by calculating the

total length of Class 4 roads that were located within 400 meters of a Class 1 road and then

dividing by the total length of Class 4 roads. See Section 2.2.1 for details on the roadway

definitions. RTP essentially provides the fraction of each census tract that lives in close

proximity to primary highways. Figure 4.7 shows the RTP for each census tract alongside

the Class 1 and Class 4 roads.

Neighborhood Characteristic Indices

Neighborhood characteristics were calculated as described previously [32], except with the

addition of RTP. Specifically, RTP and the eight census variables were included in a principal

components analysis (PCA) to extract representative measures for each census tract. The
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first three components explained 0.54, 0.15, and 0.11 of the total variance each and combined

accounted for 0.8 of the total variation in the nine total variables. Each census tract was

assigned a value for each of the three principal components using the individual variables

and the PCA loadings. The collection of the three component measurements on all census

tracts in the study area were then each normalized to a range of [0, 1] by subtracting the

minimum and dividing by the difference of the resulting range. Each child was assigned a

value for each of the three neighborhood characteristic indices based on the census tract of

their birth residential address.

4.2.6 Statistical Modeling

A small number of children had missing information on exposures to PM2.5 components and

neighborhood characteristic principal components because of missing land use variables and

census tract level characteristics, respectively. Similarly, 17 of the children each had missing

lung function measurements. Table 4.1 contains the number of missing measurements for

each variable for the total 598 children. Only children without missing information on

variables used in each model were used.

Logistic regression and linear regression were used to associate the exposure of PM com-

ponents with asthma diagnosis and lung function, respectively. The adjusted models included

the three neighborhood characteristic principal components in order to estimate the total ef-

fect of the PM components on the outcomes. Pollutant concentrations were not transformed

for use in the models and odds ratios and regression coefficients were calculated based on

an increase of exposure equal to one interquartile range of each component. All statistical

computing was done in R, version 3.1.2 [42]. The code used to calculate the land use predic-

tors and generate exposure estimates for the cohort has been made into an R package and is

available online at https://github.com/cole-brokamp/aiRpollution. The code used for

the association with respiratory health effects is available upon request.
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4.3 Results

4.3.1 Cohort Characteristics

Table 4.1 describes the cohort, which had an age 7 asthma prevalence of about 16% and

average percent predicted FV C and FEV1 values of 101.8 and 102.2, respectively. In addition

to the data shown in the table, 22% of the cohort is African American, 55% is male, and

94% have mothers with at least a completed high school level education. All children resided

in the Greater Cincinnati area, which is mostly urban. Figure 2.10 shows the location of the

CCAAPS residential birth addresses alongside the highways, interstates, and bus routes in

the study area of Greater Cincinnati.

4.3.2 PM Exposure

Land use random forest (LURF) models (Chapter 2) were used to estimate the exposure

of each child to PM components as an average daily concentration based on their annual

residential history from birth to age 7 for total PM2.5, traffic related air pollution (TRAP),

and the following elemental components of PM2.5: Al, Cu, Fe, K, Mn, Ni, Pb, S, Si, V, and

Zn. Table 4.2 and Figure 4.1 describe the estimated exposures for the cohort as a whole.

The concentrations were the highest the highest for S, which had a median concentration

of 1, 521 ng/m3 and was an order of magnitude larger than any other component. Other

components with higher concentrations (> 50 ng/m3) were Fe, K, and Si, while Cu, Mn, Ni,

Pb, and V all had lower concentrations (< 3 ng/m3). Of the PM components, S and Fe had

the largest variation, followed by Si, Al, Zn, and K. Components with very small variation

included Cu, Mn, Ni, Pb, and V.

Figure 4.2 illustrates the correlation matrix of the elemental PM exposures for the cohort.

The upper diagonal and lower diagonal represent the Spearman correlation coefficient as

a colored dot and numeric value, respectively. Most of the elemental components were

highly correlated with one another, except for K and S. K had relatively small correlations
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with the other elemental components, while S was slightly negatively correlated with all

of the elemental components (except for K). TRAP was more highly correlated with all of

the elemental components than PM2.5 was, although both were highly correlated with all

components and one another.

In addition to Spearman correlation coefficients, elemental PM components were plotted

according to the estimated exposure to TRAP (Figure 4.3) and total PM2.5 (Figure 4.4).

Each figure is overlaid with a local second degree polynomial regression line fit and 95%

confidence interval spanned over 75% of the closest data points. These plots highlight that

exposure to PM components does not necessarily reflect the total PM2.5 or TRAP for all

of the CCAAPS cohort. Most elements are linearly correlated with TRAP, but K, Mn, Ni,

and S are exceptions. K, Mn, and Ni follow a linear relationship with higher levels of TRAP

(> 0.4 µg/m3), but show a steeper decrease in concentrations for lower concentrations of

TRAP. S behaves differently, with its concentration averaging about 1, 500 ng/m3 for all

TRAP concentrations less than 0.6 µg/m3. The difference between the elemental exposure

estimates and the total PM2.5 exposure estimates are even greater. All of the elements

show a nearly stable mean concentration for lower PM2.5 values (> 17 µg/m3), but then

exponentially increase for higher levels of total PM2.5.

To further highlight the difference between the panel of elemental PM components and

total PM2.5, the exposure estimates for three subjects that each moved three times before age

seven are plotted in Figure 4.5. The child in the top set of panels was exposed to relatively

lower concentrations of PM2.5, with exposure to almost exactly the median amount of PM2.5

in the first three years of life. However, the child moved at age two and although their

estimated exposure to total PM2.5 stayed nearly the same after the move, they experienced

large decreases in Al, Cu, Ni, and TRAP as well as large increases in S and Mn. Similar

trends can be seen for the child in the middle set of panels who was estimated to have the

lowest exposure to total PM2.5 during the first two years of life, but estimated to have

the highest exposure to TRAP during the first two years of life. Similarly, the child in the
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bottom set of panels was estimated to have above median exposure to total PM2.5 for all

ages except two; however, this child was estimated to have above median exposure to Mn,

Ni, and Si for only age two.

Overall, comparison of the longitudinal estimated exposure estimates clearly shows that

total PM2.5 or TRAP exposure estimates do not necessarily correspond with elemental

exposure estimates.

4.3.3 Confounding by Neighborhood Characteristics

A causal diagram (Figure 4.6) was used to determine that accounting for confounding by

neighborhood characteristics would allow for the estimation of the total effect of PM exposure

on asthma development. The neighborhood characteristics were calculated based on eight

census tract level socioeconomic variables and residential traffic proximity (RTP). RTP was

calculated as the fraction of the total length of residential roads that were within 400 meters

of major highways for each census tract (Figure 4.7). Three census tract level indices from

these nine total variables were extracted using principal components analysis to represent

the “neighborhood” confounder in our model. All three indices were included in the adjusted

models based on the census tract of the child’s residential address at birth.

4.3.4 Effect of PM Exposure on Asthma and Lung Function

All odds ratios (OR) and regression coefficients were calculated separately for an increase

of exposure equal to the interquartile range (IQR) for each PM component; see Table 4.1

for the IQR of each PM component. Adjusted models included the addition of all three

neighborhood characteristic indices.

Asthma

The odds ratios for the risk of asthma development by age seven and an IQR increase in

PM component exposure are shown in Table 4.3 and Figure 4.8. Unadjusted models showed
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an increased risk of asthma diagnosis at age 7 for increased exposure to Fe, Mn, V, and

total PM2.5 (ORs of 1.26, 1.19, 1.25, and 1.38, respectively). Most of the other elements,

including Al, Cu, Ni, Pb, Si, Zn, and TRAP had odds ratios much greater than one, but

had confidence intervals that slightly overlapped one. Both K and S were not associated

with asthma at all, with odds ratios of 0.91 and 0.98, respectively. After adjusting for

the neighborhood characteristics, asthma was not statistically associated with exposure to

any PM component. The addition of the neighborhood characteristics did not change the

estimate variances, but rather drove the estimate itself towards a null association.

FEV1 and FVC

The regression coefficients for the change in percent predicted FEV1 and FV C at age seven

due to an IQR increase in PM component exposure are shown in Table 4.4, Table 4.5, and

Figure 4.9. In general, most of the PM components were associated with decreased lung

function; however, as in their relationship with asthma, S and K did not follow the general

trend. The regression coefficients for S were very close to zero and the regression coefficients

for K were positive. In the unadjusted models for FEV1, exposures to Al, Fe, Pb, Si, Zn, and

total PM2.5 were significantly associated with decreased lung function ranging from -0.8% for

Zn to -1.46% for total PM2.5. However, after the addition of the neighborhood characteristic

indices, none of the components were significantly associated with FEV1 as all coefficient

estimates again moved towards the null association. In the unadjusted models for FV C,

exposures to Al, Cu, Fe, Pb, Si, V, Zn, TRAP, and total PM2.5 were significantly associated

with decreased lung function ranging from -0.83% for Zn to -1.51% for total PM2.5. Again,

the addition of the neighborhood characteristic indices shifted most of the estimates toward

the null association, but Al (-1.34%) and Si (-1.19%) remained significantly associated with

decreased lung function. In this case, unlike with asthma, the addition of the neighborhood

characteristics did inflate the variance of the regression coefficient estimates.
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4.4 Discussion

Here, we have shown that in the urban area of Cincinnati, Ohio, exposure to total PM2.5

does not necessarily represent exposure to individual components of PM. We found that the

components were differentially associated with asthma and lung function. Using a causal

diagram, we were able to control for confounding neighborhood characteristics in order to

estimate the total effect of PM exposure on respiratory health. Although Al, Fe, Pb, Si, Zn

and total PM2.5 were associated with decreased lung function on their own, after control-

ling for confounding, only Al and Si were significantly associated with FV C. Although not

statistically significant all other elemental components except K and S remained negatively

associated with lung function and asthma. The statistically insignificant results after ad-

justing for confounding by neighborhood level characteristics were due to increased variance

estimates and not associations shifting towards the null. The increased variance is likely due

to the uneven distribution of exposures and outcomes, with children with poor respiratory

health very much more likely to live in neighborhoods with poorer community characteristics.

4.4.1 Previous Work

Only one other study has previously associated exposure to elemental PM components with

childhood respiratory health [21]. Exposure assessment for Cu, Fe, K, Ni, S, Si, V, and Zn

were based on LUR models for five different European birth cohorts. Although our study

only included one cohort, it is interesting to note that Eeftens et al. observed widely differing

within-cohort variability of estimated PM concentrations. Their cohorts were estimated to

have levels of exposure to elemental components similar in magnitude as our study found,

expect for S and K. These were the two components that were not correlated with the other

estimated exposures in our study and were not negatively associated with respiratory health

in our cohort. Specifically, our estimates of S were much higher than those from Eeftens

et al and this could be due the high use of S in diesel fuel during our sampling campaign
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(2001 - 2006) compared to lower utilization of S in fuels in Europe during their sampling

campaign (2008 - 2010). Furthermore, K is known to be associated with biomass burning and

could be another exposure that is specific to the geography and community characteristics in

Cincinnati, Ohio compared to the communities in Europe. The association between exposure

and lung function was conducted individually for each site and then pooled using a meta

analysis. Eeftens et al. found that the association between elemental concentrations and both

FV C and FEV1 differed among cohorts, but overall none of the elements were significantly

associated with lung function in their confounder adjusted models. Instead of using a causal

structure for adjustment in their models, they instead adjusted for all individual confounders

that were not on the causal pathway but were univariately associated. As discussed in the

introduction (Section 4.1.2), it is known that this can lead to biased effect estimates. Instead

of using average lifetime exposure, the estimates calculated by Eeftens et al. were based on

the address collected for age 6 or 8 years. Using only the most recent residential address has

been shown to underestimate exposure to air pollution by missing high early life exposures

because children usually move to areas with lower air pollution levels [32].

4.4.2 Elemental Exposure Signature

Differences in the “elemental exposure signature” are likely due to specific elemental sources

that are not captured in total PM2.5 models. See Table 2.4 for a list of the final predictors

used in the LURF models. Although total PM2.5 mass may not differ, its composition may

differ widely and aggregating total PM2.5 mass into one measurement likely disguises the

nuances of differing elemental exposures, which clearly affect health differently.

4.4.3 Conclusion

Here we showed that estimated exposures to total PM2.5 and TRAP do not necessarily cor-

respond with estimated exposures to individual components and this should be considered in

future epidemiological studies association PM with health effect. A disadvantage of our study
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(and almost all studies utilizing exposure estimate models) is that the exposure estimates

are considered fixed and not random. This ignores uncertainty in the exposure estimates and

may bias the estimation of effects with health outcomes. In the future, exposure assessment

and health effects could be combined into one hierarchical model. Furthermore, it will be

important to consider multivariate and mixture effect models using the entire panel of PM

components instead of associating each component individually with health effects because

interactions between elemental concentrations could play important roles in their negative

health effects. Finally, further research on different cohorts and geographical areas should be

conducted on the association of elemental PM components and childrens’ respiratory health.
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Tables

Table 4.1: Summary (mean or number and percentage yes) of elemental PM2.5 exposures, neighborhood
characteristic principal components, and health outcomes for the CCAAPS cohort with a complete asthma
diagnosis at age 7 (n = 598). PM2.5 components are expressed as the average daily concentration in ng/m3

and FV C and FEV1 are expressed as a percent of the predicted value. Also included are the interquartile
ranges (IQR) for the PM2.5 components, used to generate the odds ratios and regression coefficients in the
models.

PM2.5 Component Summary Number Missing IQR
Al 32.30 10 6.05
Cu 2.12 10 0.69
Fe 75.87 11 21.10
K 65.53 10 10.38

Mn 2.37 10 0.77
Ni 0.59 10 0.13
Pb 3.08 10 0.80
S 1478.83 10 415.20
Si 91.82 11 14.29
V 0.34 12 0.06
Zn 15.45 10 5.09

TRAP 384.34 11 79.01
Total PM2.5 16,530.25 10 1,400.69

Neighborhood Characteristic PC
PC1 0.43 2
PC2 0.65 2
PC3 0.74 2

Respiratory Health Outcomes
Asthma 95 (16%) 0
FV C 101.80 17
FEV1 102.21 17

Table 4.2: Summary of elemental concentrations, TRAP, and total PM2.5 estimated for the CCAAPS
cohort (n = 598). All units are ng/m3.

PM2.5 Component Minimum 25th Percentile Median Mean 75th Percentile Maximum SD
Al 21.35 28.45 31.02 32.30 34.50 71.70 6.04
Cu 1.31 1.63 1.97 2.12 2.32 5.73 0.65
Fe 55.01 61.26 69.04 75.87 82.37 190.37 21.20
K 56.06 59.83 64.88 65.53 70.21 80.52 6.15

Mn 1.62 1.79 1.97 2.37 2.55 6.14 0.92
Ni 0.38 0.50 0.57 0.59 0.63 1.32 0.14
Pb 2.27 2.52 2.83 3.08 3.32 11.50 0.99
S 936.19 1,255.47 1,521.42 1,478.83 1,670.67 2,685.12 249.14
Si 72.12 82.47 87.10 91.82 96.75 213.23 15.33
V 0.24 0.30 0.33 0.34 0.36 0.70 0.06
Zn 10.12 11.84 13.78 15.45 16.92 72.48 6.70

TRAP 288.08 331.79 359.35 384.34 410.80 846.27 79.07
Total PM2.5 13,676.18 15,745.89 16,367.55 16,530.25 17,146.58 21,042.41 1147.05
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Table 4.3: Unadjusted and neighborhood adjusted odds ratios (OR) with lower and upper 95% confidence
interval (CI) bounds for an interquartile increase in PM 2.5 component exposure and asthma diagnosis at
age 7. Rows that have a confidence interval excluding one are bolded.

PM Component Unadjusted OR (95% CI) Adjusted OR (95% CI)
Al 1.22 (0.99,1.48) 1.03 (0.78,1.34)
Cu 1.13 (0.9,1.41) 0.94 (0.71,1.23)
Fe 1.26 (1.03,1.53) 1.07 (0.83,1.37)
K 0.91 (0.62,1.32) 0.84 (0.56,1.25)

Mn 1.19 (1.01,1.4) 1.05 (0.85,1.27)
Ni 1.14 (0.93,1.38) 0.98 (0.77,1.22)
Pb 1.16 (0.99,1.34) 1.01 (0.79,1.23)
S 0.98 (0.68,1.42) 1.06 (0.72,1.57)
Si 1.19 (0.99,1.42) 1.03 (0.8,1.3)
V 1.25 (1.01,1.53) 1.02 (0.77,1.34)
Zn 1.12 (0.97,1.29) 0.98 (0.76,1.19)

TRAP 1.19 (0.97,1.45) 0.96 (0.72,1.26)
Total PM2.5 1.38 (1.06,1.78) 1.17 (0.86,1.57)

Table 4.4: Unadjusted and neighborhood adjusted regression coefficients (Coef) with lower and upper 95%
confidence interval (CI) bounds for an interquartile increase in PM 2.5 component exposure and FEV1 at
age 7. Estimates that have a confidence interval excluding zero are bolded.

PM Component Unadjusted Coef (95% CI) Adjusted Coef (95% CI)
Al -1.13 (-2.18,-0.09) -0.87 (-2.22,0.49)
Cu -0.96 (-2.08,0.15) -0.66 (-1.97,0.66)
Fe -1.34 (-2.38,-0.3) -1.14 (-2.44,0.16)
K 1.33 (-0.44,3.1) 1.54 (-0.25,3.33)

Mn -0.58 (-1.45,0.29) -0.24 (-1.26,0.78)
Ni -0.41 (-1.41,0.59) 0.08 (-1.06,1.22)
Pb -0.91 (-1.75,-0.08) -0.64 (-1.76,0.48)
S -0.22 (-1.97,1.54) -0.3 (-2.08,1.49)
Si -1.27 (-2.24,-0.3) -1.15 (-2.4,0.1)
V -0.93 (-1.99,0.12) -0.44 (-1.82,0.93)
Zn -0.8 (-1.58,-0.01) -0.5 (-1.56,0.56)

TRAP -0.92 (-1.97,0.13) -0.54 (-1.95,0.88)
Total PM2.5 -1.46 (-2.73,-0.19) -1.11 (-2.57,0.35)

Table 4.5: Unadjusted and neighborhood adjusted regression coefficients (Coef) with lower and upper 95%
confidence interval (CI) bounds for an interquartile increase in PM 2.5 component exposure and FV C at
age 7. Estimates that have a confidence interval excluding zero are bolded.

PM Component Unadjusted Coef (95% CI) Adjusted Coef (95% CI)
Al -1.37 (-2.36,-0.37) -1.34 (-2.63,-0.05)
Cu -1.12 (-2.18,-0.06) -1.04 (-2.29,0.21)
Fe -1.36 (-2.35,-0.37) -1.2 (-2.44,0.05)
K 0.82 (-0.87,2.51) 0.93 (-0.78,2.64)

Mn -0.78 (-1.61,0.05) -0.58 (-1.55,0.39)
Ni -0.85 (-1.81,0.11) -0.49 (-1.58,0.59)
Pb -0.95 (-1.75,-0.15) -0.7 (-1.77,0.37)
S 0.16 (-1.52,1.84) 0.08 (-1.62,1.79)
Si -1.24 (-2.16,-0.31) -1.19 (-2.38,0)
V -1.02 (-2.03,-0.01) -0.6 (-1.92,0.71)
Zn -0.83 (-1.58,-0.08) -0.56 (-1.57,0.45)

TRAP -1.06 (-2.07,-0.06) -0.94 (-2.29,0.4)
Total PM2.5 -1.51 (-2.73,-0.3) -1.17 (-2.56,0.22)
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Figure 4.1: Boxplot of estimated elemental concentrations, TRAP, and total PM2.5 for the CCAAPS
cohort.
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Figure 4.2: Spearman correlation matrix of estimated elemental concentrations, TRAP, and total PM2.5
for the CCAAPS cohort. A darker blue or red and larger circle in the upper triangle of the grid corresponds
to a larger positive or negative Spearman’s rho statistic shown in the lower triangle of the grid.
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Figure 4.3: The estimated exposure of the CCAAPS cohort to TRAP plotted in relation to each PM
component exposure estimate. The overlay is a local second degree polynomial regression line fit and 95%
confidence interval spanned over 75% of the closest data points.
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Figure 4.4: The estimated exposure of the CCAAPS cohort to total PM2.5 plotted in relation to each PM
component exposure estimate. The overlay is a local second degree polynomial regression line fit and 95%
confidence interval spanned over 75% of the closest data points.
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Figure 4.5: The exposure assessment for PM components from birth through age seven for three subjects
who moved three times. Each concentration is plotted as the fold of the overall median concentration for
the CCAAPS cohort.
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Figure 4.6: A causal diagram for the development of asthma with PM as the primary effect. Here, race,
neighborhood, parental income, parental education are all ancestors of both the exposure and the outcome.
Allergies and secondhand smoke exposure are ancestors of only the outcome. Neighborhood stressors and
genetics are unobserved variables.

Figure 4.7: Residential Traffic Proximity (RTP) measurement for each census tract in the Greater Cincin-
nati area along with the Class 1 and Class 4 roadways. RTP was calculated as the fraction of Class 4 roads
that were located within 400 meters of a Class 1 road.
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Figure 4.8: Odds Ratios for development of Asthma at age 7 and interquartile increase in exposure for
each PM component. Models are unadjusted (−) or adjusted for neighborhood characteristics (N).

Al Cu Fe K Mn Ni Pb S Si V Zn TRAP PM25

●
●

● ●

●
●

● ●

●
●

● ●

●
●

● ●

●
●

●
●

●

●

●
●

●
●

●
●

● ●

● ●

● ●

● ●

●

●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

−2

0

2

−2

0

2

F
E

V
F

V
C

− N − N − N − N − N − N − N − N − N − N − N − N − N
Adjustment

R
eg

re
ss

io
n 

C
oe

ffi
ci

en
t

Figure 4.9: Regression coefficients for percent predicted FEV1 and FV C at age 7 and interquartile increase
in exposure for each PM component. Models are unadjusted (−) or adjusted for neighborhood characteristics
(N).
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Chapter 5

Discussion
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In a two stage model that associates spatial pollutants with health effects, it is often

standard practice to measure exposures at different locations than are needed for health

analysis. Usually, the exposure model is selected based on accuracy, exposures are identified

as known and are plugged into a health model disregarding measurement error. However,

more accurate exposure prediction does not necessarily improve health effect estimates [94]

and ignoring measurement error introduces bias in the estimation of health effects [95, 96].

This measurement error has been broken down into two components [97]: (1) a Berkson-

like component that is due to the smoothing of the exposure surface and (2) a classical-like

component from the variability in estimating exposure model parameters. This classical-

like error differs from classical error in linear regression because it is heteroskedastic and

correlated across study subjects. A methodology that corrects for finite-sample bias and

correctly estimates standard errors has been implemented [97] which involves an asymptotic

bias correction and nonparametric bootstrap. Because this framework is not viable without

uncertainty estimates for exposures, the application of the infinitesimal jackknife to ran-

dom forest to estimate the prediction variance of LURF models is a valuable contribution.

Comparing LURF to LUR models within this framework is a promising avenue for future

research.
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