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Abstract 

 

The smoothed finite element method (S-FEM) was recently proposed to bring softening 

effects into and improve the accuracy of the standard FEM. In the S-FEM, the system stiffness 

matrix is obtained using strain smoothing technique over the smoothing domains associated with 

cells, nodes, edges or faces to establish models of desired properties. In this dissertation, it will 

introduce several aspects of advanced development and applications of S-FEM in solid 

mechanics. The idea, main work and contribution are included in four aspects as following: 

(1) A Generalized Stochastic Cell-based S-FEM (GS_CS-FEM): The cell-based S-FEM 

is extended for stochastic analysis based on the generalized stochastic perturbation technique. 

Numerical examples are presented and the obtained results are compared with the solution of 

Monte Carlo simulations. It is found that the present GS_CS-FEM method can improve the 

solution accuracy with high-efficiency for stochastic problems with large uncertainties. 

(2) An effective fracture analysis method based on the VCCT implemented in CS-FEM: 

The VCCT is formulated in the framework of CS-FEM for evaluating SIF’s and for modeling the 

crack propagation in solids. The one-step-analysis approach of the VCCT is utilized based on the 

assumption of stress field equivalence under infinitesimal perturbations. The significant feature 

of the present approach is that it requires no domain integration but attains same level of 

accuracy compared to the standard FEM using the interaction integral method. Numerical 

examples are provided to validate the effectiveness of fracture parameter evaluation as well as to 

predict the crack growth trajectories. 
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(3) Smoothing techniques based crystal plasticity finite element modeling of crystalline 

materials: A framework and numerical implementation for modeling anisotropic crystalline 

plasticity using strain smoothing techniques is presented to model anisotropic crystalline 

plasticity with rate-independence. The edge-based strain smoothing technique is extended to deal 

with finite strains in a nonlinear incremental integration procedure based on the Newton-

Raphson scheme. Several representative examples are studied to demonstrate the capability of 

proposed method as well as the integration algorithm for capturing the strain localization and 

dealing with plastic incompressibility. The proposed method is also implemented to explore the 

mesoscopic and macroscopic elaso-plastic behavior of polycrystalline aggregates. 

(4) A novel beta finite element method (βFEM) of coupled edge/face and node based 

smoothing techniques: Smoothing domains generated upon both edges (faces for 3D) and nodes 

are employed to construct a smoothed model. In this work, a novel S-FEM is proposed, in which 

an adjustable parameter β is introduced to control the ratio of the area of edge-based/face-based 

and node-based smoothing domains. It is found that the nearly exact solution in strain energy can 

be obtained by tuning the parameter, making use of the important property that the exact solution 

is bonded by the solutions of ES/FS-FEM and NS-FEM. A number of examples have shown that 

the developed βFEM method is found to be ultra-accurate, insensitive to mesh quality, temporal 

stable and capable for modeling complex geometry and offers alleviation of volumetric locking. 

The βFEM is also applied in modeling crystal plasticity with monocrystalline, bi-crystalline and 

polycrystalline materials.  
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Chapter 1. Introduction 

 

In essence, the finite element method (FEM) or also termed as the finite element analysis 

(FEA), is a numerical technique for solving field problems. A field problem could be the 

displacement field or the stress field in stress analysis, or be temperature field or the heat flux in 

thermal analysis, or even be the stream function or the velocity potential function in fluid flow 

analysis, and so on. Usually an actual physical problem with certain boundary conditions 

specified over arbitrary two- and three-dimensional domain would be very difficult or unable to 

find the exact/analytical solution or sometimes even an approximate solution. The basic idea of 

FEM is to find the approximate solution of a complicated problem through a simpler numerical 

approach.  

Before an analysis is carried out, the problem domain has to be discretized into a set of 

discrete, non-overlapping subdomains, usually called finite elements. In each element a 

continuous function of an unknown field variable/quantity is approximated by simple local 

functions, generally described by polynomials. Elements are connected at points called nodes, at 

which the unknowns are then the discrete values of the field variable [1]. The elements are 

arranged and collected to one another according to some proper principles, which construct the 

FEM mesh, or named grid interchangeably. This process can be represented numerically by a 

system of simultaneous algebraic equations to be solved for unknowns at nodes. In a 

mathematical view, firstly, FEM is a numerical means for solving general boundary and/or initial 

value problems characterized by partial differential equations, which can be applied to various 
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physical phenomena. Secondly, these general boundary and/or initial value problems are 

formulated in a so-called weak, or integral form, so as to assemble the contributions of each 

subdomain to the global integrals and then generate an integral characterizing the problem over 

the entire problem domain [2]. Moreover, based on the FEM fashion, the approximate solutions 

can be improved or refined by spending more computational effort, such as using more elements 

to represent the domain, or increasing the order of the interpolation polynomial, etc. 

The stress analysis of elastic solid and structures in civil and aeronautical engineering 

was the first application area of the finite element method [3]. Indeed, the subdivision of a whole 

domain into “elements” in FEM can be traced back to the earlier work on matrix analysis of 

beams and frames. In the early 1960s, FEM was viewed as sound and versatile, and since then 

both the theoretical explorations and engineering applications of FEM have been developed and 

extended explosively. Its various areas of application contain structural engineering, mechanical 

and aeronautical engineering, material engineering, fluid mechanics, biomechanics, soil 

mechanics, thermodynamics, electromagnetism, and so on. 

Though FEM has been widely used as a reliable numerical tool, standard FEM still exists 

several inherent issues. The first issue is the well-known overly stiff behavior of a fully 

compatible FEM model of displacement based on the Galerkin weak form, which may cause the 

shear and volumetric locking problems in some cases. The second is the instability, inaccuracy 

and locking phenomenon for large deformation problems involving severe mesh distortion. 

Large deformation problems and other varying configuration problems (e.g., crack propagations) 

are often solved with some adaptive mesh regeneration/rezoning method. But it is impossible to 

remesh arbitrary deformed 2D or 3D domains with quadrilateral (Q4) or hexahedral (H8) 

elements automatically. Only T-mesh, i.e., triangular (T3) elements for 2D or tetrahedral (T4) 
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elements for 3D, can be generated and refined quickly and easily without much manual 

operations, even for complicated or arbitrary deformed shapes of geometry. Then another issue 

arises: T-mesh models often suffer from poor accuracy: excessive stiffness in shearing/bending, 

sensitivity of mesh distortion and the entire mesh behaves rigidly (or “locked”) especially in 

incompressible materials, etc. This is the reason for analysts to be warned when opting for T-

mesh or adopting high percentage of T-mesh elements in some commercial software packages. 

 

1.1 Background and Motivation 

The main reason of the accuracy issues such as overly stiff behavior are attributed to the 

nature of the fully compatible displacement approach based on the standard variational principle 

[4]. Many numerical strategies have been sought to resolving these issues, for example, hybrid 

FEM techniques [5] and mesh-free methods [6]. These remedial methods are able to treat 

different kinds of problems with remarkable accuracy. However, for hybrid FEM, there is no 

sufficient formulation for triangular/tetrahedral presented so far; for mesh-free methods, the 

programming efforts and costs of computing are much more expensive than FEM and it still has 

a long way to be commercialized and solve large-scale practical problems.  

By examining FEM and mesh-free methods, a smoothed FEM (or S-FEM) was 

formulated through combining the FEM procedures and a generalized gradient smoothing (GGS) 

technique for discontinuous functions by Liu et al [7,8] recently. S-FEM was proposed as a 

special linear version of smoothed point interpolation methods, theoretically founded by the 

generalized smoothed Galerkin weak form (it can be named as “weakened weak form”, or W2 

form) on G space theory [4]. The essential idea in the S-FEM is to utilize a standard finite 
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element mesh (in particular T-mesh) to build numerical models with good performance [9]. This 

is performed by modifying/constructing the compatible strain field in a Galerkin weak form 

model to deliver some good properties. Other than element based implementation in standard 

FEM, the S-FEM techniques evaluate the weak form based on smoothing domains, which can be 

located within the elements: CS-FEM [7,10], but more often beyond elements: acquiring the 

information from the adjacent elements, such as NS-FEM, ES-FEM and FS-FEM [11–13]. And 

the strain field has naturally to satisfy certain conditions such as linear independence to 

guarantee the stability and convergence for the W2 scheme.  

Compared to the standard linear displacement finite element method (LFEM), S-FEM 

can overcome some inherited drawbacks exhibited in LFEM, such as stress inaccuracies [4], 

sensitivity to element distortion [14], unstable/volumetric locking phenomena [15–16], etc. 

Detailed theoretical aspects including properties of stability and convergence about S-FEM can 

be found in [9,17]. Various kinds of S-FEM models have been applied to a wide class of 

practical mechanics problems such as  vibration [11], acoustic [18], plates and shells [19–21], 

fracture mechanics [22–24], piezoelectricity [25], viso-elasto [26], limit and shakedown analysis 

[27], contact problems [28,29], fluid–structure interaction [30,31], etc.  

Different kinds of S-FEM models may possess different properties and it has been proved 

that they can solve different specific problems. Generally, numerical investigations have shown 

that S-FEM models have some features/merits compared to the standard FEM using linear 

elements. For example, (1) S-FEM models are created using the linear PIM for assuming the 

displacement field without isoparametric mapping; (2) field gradients are computed directly 

using shape functions themselves, other than the shape function derivatives; (3) As long as a 

minimum number of linearly independent smoothing domains are adopted, the S-FEM models 
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are proved to be stable and convergent [32]; (4) S-FEM models generate desiredly more accurate 

outcomes and higher convergence rates than those of FEM in displacement solution or stress 

solution or both, as the stiffness of S-FEM is softer than that of FEM; (5) S-FEM models are 

displacement-like models using the same background mesh or DoF’s of corresponding FEM, and 

many existing algorithms of FEM are compatible or easily extended and applied to S-FEM [33].  

Since these good features already have been discussed for S-FEM models in the past few 

years, it deserves to explore new S-FEM models or extend the possible application areas of some 

available S-FEM approaches, especially in computational solid mechanics. In this work, it will 

develop and extend S-FEM in stochastic analysis, fracture mechanics, and modeling crystal 

plasticity. And most importantly, an ultra-accurate and most versatile S-FEM approach so far 

will be proposed and developed for solid mechanics. A large number of examples will be 

provided to illustrate the numerical implementations, verify or confirm the numerical models, 

and show the applications in various areas, including stochastic problems, frature parameter 

evaluations, prediction of crack growth trajectories, simulation of crystalline behavior, static, 

dynamic, linear and nonlinear problems, etc. Due to the limit of the length of the thesis, it will 

focus several aspects in mechanics based on the crucial properties already obtained in S-FEM, 

such as accuracy, insensitive to mesh quality, temporal stability and capabilty for modeling 

objects with complex geometry and alleviation of volumetric locking, and so on. 

 

1.2 Study Outline 

The work is organized in eight chapters. A brief introduction, research background and 

motivation are given in chapter 1. A brief introduction of historical background, governing 
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equations and general steps of FEM are presented in chapter 2. The general formulations of 

strain smoothing operations, numerical procedure and general properties of S-FEM are 

introduced in Chapter 3. Chapter 4 presents a generalized stochastic cell-based smoothed finite 

element method (GS_CS-FEM) for stochastic analysis. The solution accuracy and efficiency will 

be compared with those obtained from Monte Carlo simulation. Chapter 5 introduces an effective 

fracture analysis method for evaluating SIF's and modeling the crack propagation, which is based 

on the virtual crack closure-integral technique (VCCT) implemented in CS-FEM scheme. 

Chapter 6 proposes the framework of smoothed technique based crystal plasticity finite element 

method for modeling of rate-independent crystalline materials. The method will be demonstrated 

by the capability of modeling strain localization and dealing with plastic incompressibility of 

single crystals. It would be also implemented to explore the mechanical behavior of 

polycrystalline aggregates. Chapter 7 develops a novel class of smoothing techniques based beta 

finite element method (βFEM) for both 2D and 3D mechanics problems. Some attractive features 

are expected to be found numerically, such as high accuracy, insensitivity to mesh quality, 

immunity of volumetric locking, temporal stability and capability for modeling complex 

geometry. Then the proposed βFEM is performed to simulate crystal plasticity for 

monocrystalline, bi-crystalline and polycrystalline materials. Finally, a brief summary is 

included in the last chapter.  
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Chapter 2. Brief Introduction of the Finite Element Method 

 

Mathematically, the governing equations in FEM are integrated over each finite element 

and the contributions of each element to the global integrals will be summed or assembled over 

the whole problem domain. As the FEM has a long history of development, it has various ways 

of formulating the properties of individual elements. Basically it has three different approaches: 

direct approach, variational approach and weighted residuals approach. The direct approach 

establishes the element properties in terms of relevant variables. It was originated from the direct 

stiffness method of structural analysis and is only applicable to some simple problems [1]. The 

variational approach involves calculus of variations and extremizing a functional, including the 

potential energy, complementary enegry, or some variant forms formulated from physical or 

engineering problems. This is the most popular and widely used method and the displacement-

based standard FEM introduced in this thesis for solid mechanics is also regarded to rely on the 

minimum potential energy principle. The weighted residual approach derives the governing 

equations of the problem directly and proceeds without any need of a variational statement. This 

method is versatile and widely used for nonstructural areas such as fluid mechanics and heat 

transfer. This is mainly because it offers the most general procedure to derive the FE equations 

and extends the FEM to the problems in which the functional(s) is/are not available [2]. It 

contains four main categories of weight or test functions applied in this method: subdomain 

method, collocation method, least squares method and Galerkin method. In this chapter, a brief 

history, governing equations, variational formulations and general procedures of the FEM will be 

introduced. 
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2.1 Historical Background 

The idea and concept of FEM is traceable to several centuries ago, e.g., ancient 

mathematicians used a polygon to approximate the circumference of a circle. The exact date of 

the origination of modern FEM is difficult to know, and its development can be traced back to 

several independent research groups in the fields of applied mathematics, physics or engineering: 

Courant [3], Synge [4], Argyris and Kelsey [5,6] and Feng [7,8]. The applied mathematicians 

wanted to find numerical methods for partial differential equations (PDE’s), and the 

corresponding convergence, error estimation, etc. The physicists were motivated by how to find 

piecewise approximate functions to represent their continuous functions for boundary value 

problems (BVP’s) in continuum mechanics. While in engineering, people were interested in the 

structural analysis of rods, beams and frames [5,9].  

The phrase “finite element” was first coined and introduced by Clough [10] in 1960 for 

plane stress analysis using both triangle and rectangular elements. Later, Melosh [11] developed 

rectangular-plate bending-element stiffness matrix for thin plates in bending in 1961. Grafton 

and Strome [12] then proposed the curved-shell bending element stiffness matrix for analysis of 

axisymmetric shells in 1963. In 1960s, the FEM was extended to three-dimensional (3D) 

problems by Martin [13], Gallagher et al. [14], Melosh [15], Argyris [16], Clough and Rashid 

[17], Wilson [18], etc. It was also widely developed to treat large deflection and thermal analysis 

by Turner et al. [19], material nonlinearities by Gallagher et al. [14], buckling problems by 

Gallagher and Padlog [20], dynamic analysis [21] and visco-elasticity problems by Zienkiewicz 

et al. [22].  
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On the applications of general field problems, including fluid flow, heat transfer and 

other areas, we can refer to the work presented by Zienkiewicz and Cheung [23], Martin [24], 

and Wilson and Nickel [25]. Researchers then found the FE equations can be derived by utilizing 

a weighted residual approach such as the Galerkin method [26] or the least squares method 

[27,28]. Many practitioners of the FEM are now apt to adopt Galerkin’s method to establish the 

approximations for the governing equations. And this approach is widely extended to 

nonstructural applications, especially to the problems where the functional(s) is/are not available.  

Belytschko [29,30] explored the efficient large-scale nonlinear dynamic analysis by FE 

programs. Besides, much of the early work on nonlinear problems can be found in Oden [31], 

and Hughes [32,33] and Simo [34] presented a few models for inelastic and finite deformation 

problems. A brief history of the early development of the FEM can be found in Gupta and Meek 

[35]. In the past half century, enormous advances for various types of FEMs have been made in 

most engineering disciplines and lots of applied sciences. Today, we can find hundreds of books 

and numerous papers that deal with the basic theory, applied mathematics, product design, and 

applications to structure and solid, fluid mechanics, heat transfer, electromagnetics, 

bioengineering, and so on [24, 36–47]. 

 

2.2 General Procedures of the FEM 

This section presents the procedures of FEM for the continuum problem. For simplicity’s 

sake, only the general steps for solid mechanics problems will be summarized as follows.  

Step 1 Establish the Weak Form 
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The strong form, i.e., governing partial differential equations (PDEs) for solid mechanics 

problems, requires strong continuity on the displacement field variables. The trial approximation 

functions defined the field variables (e.g., displacement in solid mechanics) in strong form have 

to be differentiable up to the highest order of the PDEs. This is not always efficient and there 

may not be smooth (classical) solutions to a particular problem because of the requirement for 

the strong continuity, especially for complex domains/boundary conditions and/or different 

material interfaces, etc. In order to overcome these difficulties the weak forms are preferred in 

FEM. Weak forms reduce the continuity requirements (the order of differentiation) on the trial 

functions thereby allowing the use of easy-to-construct and implement polynomials including the 

widely used Lagrange polynomials. In solid mechanics, such a weak form can be derived from 

the well-known principle of minimum potential energy and the Neumann boundary conditions 

would be naturally satisfied. 

Step 2 Discretize the Continuum and Select the Element Types 

Once the weak form has been established, the problem domain/region will be divided into 

elements according to a certain discretization or called meshing guidelines. The total amount, 

type, size and arrangement of the elements are decided by specific engineering or physical 

purposes. By and large, a fine mesh with more elements may match the geometry more 

accurately and give more accurate or usable results but may consume more computational 

resources. Designers/analysts can create an appropriate mesh for a particular problem with mesh-

generation programs or some pre-processor software according to their experience and 

engineering judgement.  

Step 3 Select Shape Functions 
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Since the displacement solution of a complex problem is not easy to obtain exactly, we assume 

some proper functions expressed in terms of the nodal unknowns within an element to 

approximate the solution. They are named as “shape functions” as they define the “shape” of the 

variation of the displacements within the element if the nodal displacements are given. Linear, 

quadratic, and cubic polynomials are often selected as displacement functions because they can 

be integrated and differentiated easily. The shape functions should satisfy certain requirements 

such as continuity requirement at the nodes and along the element boundaries, partitions of unity 

and linear reproducibility [48]. 

Step 4 Define the Constitutive Relations 

To derive the equations for each finite element, it is necessary to define the stress/strain 

relationship, or generally called the constitutive relations. For linear materials, the constitutive 

relation is the commonly known Hooke's law. And it would be involved to define the 

constitutive models to describe the response behavior of other materials such as viscoelastic, 

plastic, hyperelastic materials, etc. 

Step 5 Find the Characteristic Element Properties 

Once the weak form, shape functions and constitutive relations are formulated/defined, we are 

ready to determine the characteristic matrices (stiffness, mass) and vectors (force, etc.) 

expressing the properties of the individual elements. They can be derived by three different 

approaches as mentioned: direct approach, variational approach and weighted residuals 

approach. 

Step 6 Assemble the System/Global Equations from Element Equations 
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This step involves the assemblage of element equations to generate the overall equilibrium 

equations. The individual element properties, such as stiffness and mass matrices and force 

vectors, obtained from step 5 now can be assembled together as the properties of the overall 

system using a method of superposition based on nodes. The basis for the assembly procedure 

stems from the fact that the continuity or compatibility condition ensures the field variable at a 

node is identical for each element sharing that node and no gaps occurring anywhere in the 

problem domain. 

Step 7 Impose Boundary Conditions (BC’s) 

Before the system of equations is ready to be solved, proper boundary conditions (or called 

constraints or supports) have to be imposed into them, which involves modification of the system 

or the global stiffness matrix and force vectors. This is due to the system stiffness matrix 

obtained from step 6 is a singular matrix and certain force or displacement BC’s should be 

incorporated so as to ensure the problem is well-posed. 

Step 8 Solve the System Equations 

The modified system equations determined from step 7 can now be solved to find the nodal 

displacements, and the function of the displacement field for the overall problem domain will be 

obtained. For linear problems, the displacement field can be determined easily. For nonlinear or 

unsteady problems, the solution is time-dependent and may involve the modification of the 

(tangent) stiffness matrix and/or the force vectors.  

Step 9 Solve for Additional Quantities 
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From the previous computed nodal displacements, if required, the important secondary quantities 

of element strains and stresses can be calculated as they can be expressed in terms of nodal 

displacements. 

 

2.3 Brief Description on Governing Equations and Variational Formulations 

To illustrate the idea and formulations in a simple way, we consider a 2D static elasticity 

problem, the governing equation in the problem domain   bounded by   (

,  D t D t       ) can be expressed in terms of stresses as  

0   T b

s σ f     or    0b

j ij if    in   (2.1) 

subjects to the boundary conditions ˆu u  on u  and 
t σ n f  on t . Here, boundary   is 

consisted of two parts: t  where external tractions t are applied (Neumann conditions), and D  

where the displacements u are prescribed (Dirichlet conditions). b
f  and t

f  denotes the body 

force and the prescribed traction vector,  and n  stands for the outward unit normal vector on the 

boundary  , ij  denotes the component of stress tensor and 
b

if  denotes the component of body 

force; jn  is the unit vector normal to the boundary  . The s  represents a matrix of differential 

operators given by 

0

0

    
   

    

T

s

x y

y x
 (2.2) 

The relation between strain and displacement or the compatibility equation can be 

expressed by 
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sε u  (2.3) 

           The stress tensor σ  in Eq. (2.3) is defined in terms of the strain tensor ε  from the 

constitutive relations: 

σ Dε  (2.4) 

where D  is the Hooke’s matrix of elastic constants for a solid which is related to modulus E  and 

Poisson’s ratio  . 

Now let us multiply the equilibrium equation (Eq. (2.1)) by an arbitrary test function 

defined in Hilbert space 
1

0v and integrate it over the entire problem domain  , which leads 

to 

=0
 

   
T T bT

s d dv σ v f  (2.5) 

Application of classical differentiation rules together with the divergence theorem and 

boundary conditions may result in the variational statement 

     
( , ) ( )

=0  
  

       
t

T T T

s s

a f

b t
d d d

u v v

v D u v f v f  
(2.6) 

The above equation is referred to as the principle of the virtual potentials, which would 

be the basis of the FEM standard discretization procedure for a 2D solid mechanics problem. The 

discrete solution of the problem described in Eq. (2.1) is then to find 
1

0u   such that the 

following Galerkin weak form is satisfied 

   , a fu v v ,  
1

0 v  (2.7) 
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where  ,a u v  is a bilinear form of derivatives of functions with the following form 

     , 


   
T

s sa dv D uu v  (2.8) 

and  f v  is the linear functional 

   
 

   
t

T Tb t
f d dv f v fv  (2.9) 
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Chapter 3. Fundamental Theories of the Smoothed Finite 

Element Method (S-FEM) 

 

In some meshfree methods, sometimes the derivatives of the shape functions vanish at the 

nodes, which result in spurious modes [1,2]. To eliminate such spatial instability in nodal 

integration, the strain smoothing technique (SST) was introduced by Chen et al [3] and later 

extended by Yoo and Moran [4] to the natural element method (NEM). The SST applied in 

Galerkin mesh-free methods in [1] involves the moving least-squares (MLS) and reproducing 

kernel approximations. Subsequently, the so-called weakened weak (W2) formulation based on 

the G space theory [5] was developed by extending the gradient smoothing technique to a class 

of discontinuous shape functions. The strain is expressed as the divergence of a spatial average 

of the standard (compatible) strain field, i.e. symmetric gradient of the displacement field [2]. 

This chapter will introduce the general formulations, procedures, theoretical aspects and 

properties of strain smoothing techniques [6]. The discussions here are mainly performed for 2D 

problems. The extension to three-dimensional (3D) domains, if necessary, will be presented in 

next few chapters. 

 

3.1 General Formulations 

3.1.1 Local Gradient Smoothing Operation 
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The smoothing techniques were widely applied in computational mechanics, such as the 

nonlocal continuum mechanics to consider the size effects [7], and smoothed particle 

hydrodynamics (SPH) [8,9] to approximate field functions. The strain smoothing technique (SST) 

is the most frequently utilized technique to modify the compatible strain field, i.e., the strain is 

expressed as the divergence of a spatial average of the standard (compatible) strain field. In a 

compatible model, the standard (compatible) strain can be evaluated by the assumed 

displacement field ( )hu x , 

( ) ( ) h

s

h
ε x u x  (3.1) 

The strain smoothing operation is carried out over the so-called local smoothing domain 

which can be created within elements but more often beyond the elements. The smoothed strain 

field k , for computation of stiffness matrix, will be in generally computed by a weighted 

average of the standard strain field ( )h
x . For example, the smoothed strain field at a point in a 

smoothed domain 
s

k  as shown in Figure 3.1 can be defined by the following operation 

( ) ( ) ( )d ( ) ( )d 
 

       s s
k k

h s h

k C C Cx x x x u x x x   (3.2) 

where ( )  Cx x  is an assumed smoothing function which satisfies the properties of Heaviside-

type function such as 

( ) ( ) 0  k

Cx x  and 
( ) ( )d 1


   s

k

k

Cx x  (3.3) 

( ) 1 ,
( )

0,


 
  



s s

k k k

C s

k

A x
x x

x
 (3.4) 
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where d


  s
k

s

kA  is the area of the smoothing domain 
s

k . The smoothed strain field will 

become constant in the smoothing domain 
s

k  and defined by 

1 1
( ) ( )d ( )d

 
     s s

k k

h h

k s s

k k

s
A A

x x u x   (3.5) 

 

 

Figure 3.1. Division of problem domain into sN  “non-overlap” and “no-gap” smoothing domains: 
1


s
, 

2


s
, …, 

s

k
, …, 

s

s

N
. 

 

3.1.2 Types of Smoothing Domains 

In this thesis, the strain smoothing operation represented in Eq. (3.4) will be employed 

for modifying the compatible strain field in finite element settings, viz. S-FEM schemes. To do 

so, a background mesh is required, which could be generated in the same fashion as standard 

FEM. However, other than element-based implementations in FEM, S-FEM models evaluate the 

weak form based on the smoothing domain, which can be constructed within the elements: CS-

FEM [10,11], but more often beyond the elements: bringing the information from the adjacent 

1s
2s

s

k
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elements, such as NS-FEM, ES-FEM and FS-FEM [12–14]. Upon the element mesh, the entire 

problem domain   will be divided into a set of sN  “non-overlap” and “no-gap” smoothing 

domains (Figure 3.1) such that 
1

  
sN

s

k

k

and 
s s

i j    for i j . To guarantee the stability 

and convergence for W2 scheme [5], the number of the smoothing domain created has to satisfy 

certain conditions such as linearly independence [15]. 

Table 3.1  Some representative smoothing domains (SD’s) 

Name Method for creation and number of SD’s ( sN ) 
S-FEM 

models 

Dimension 

of problem 

Cell-based SD 

(CSD) 

SD’s or smoothing cells (SC’s) are divided from and 

located within the elements (
1


eN

i

s sc

i

N n , 

1,2,3,4,...s

in ) 

CS-FEM 

[10–11] 
1D, 2D, 3D 

Node-based SD 

(NSD) 

SD’s are created based on nodes by connecting 

portions of the surrounding elements sharing the 

associated node ( s nodeN N ) 

NS-FEM 

[12] 
1D, 2D, 3D 

Edge-based SD 

(ESD) 

SD’s are created based on edges by connecting 

portions of the surrounding elements sharing the 

associated edge ( s edgeN N ) 

ES-FEM 

[13] 
2D, 3D 

Face-based SD 

(FSD) 

SD’s are created based on faces by connecting 

portions of the surrounding elements sharing the 

associated face ( s faceN N ) 

FS-FEM 

[14] 
3D 

 

In Table 3.1, several typical smoothing domains for S-FEM models are collected. Take 

for example, in the CS-FEM using quadrilateral elements, the basic elements (e.g., element i ) in 

Figure 3.2 can be further subdivided into several numbers ( 1,2,3,4,...i

scn ) of smoothing 

domains or specially termed as the “smoothing cells” (SC’s), where 
i

scn  depends on the stability 

condition [16] and accuracy requirements. For the 2D ES-FEM using triangular elements, the 
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smoothing domain 
s

k  associated with the edge k  is created by connecting two endpoints of the 

edge to centroids of corresponding adjacent elements as sketched in Figure 3.3. It is noted that 

for inner edges there are two elements involved for the creation of smoothing domains as an 

inner edge is shared by two connected elements. More details of construction of smoothing 

domains for different S-FEM models will be introduced in following chapters. 

 

 

Figure 3.2. Division of a quadrilateral element into smoothing cells (SCs) in CS-FEM by connecting the 

mid-segment-points of opposite segments of smoothing domains: (a) 1
SC

n ; (b) 2
SC

n ; (c) 3
SC

n ; (d) 

4
SC

n ; (e) 8
SC

n ; and (f) 16
SC

n . 

 

(a) (b) (c)

(d) (e) (f)

:field nodes :Additional nodes for contructing smoothing cells



27 
 

 

 

Figure 3.3. Division of a problem domain into triangular elements and edge-based smoothing domains. 

For example, the smoothing domain 
s

m
 for boundary edge m  is a triangle AOC , and the smoothing 

domain 
s

l
 for interior edge l  is four-sided convex polygon DPFQ . 

 

3.1.3 Smoothed Strain Field 

For an S-FEM model as listed in Table 3.1, the weak form is evaluated based on 

smoothing domains ( 
s

k ), which can be regarded as 1sn  sub-smoothing cells ,s

k t . The 

displacement field, i.e., primary variables of the problem ( )hu x , is always continuous over the 

entire problem domain. However, the compatible strain field, i.e., differentials of displacements 

( ) ( ) h

s

h
ε x u x ,  is continuous inside each of the sub-smoothing cells ,s

k t , but can be 

discontinuous on the inner boundaries for different sub-smoothing cells in domains 
s

k . Take 2D 

ES-FEM as shown in Figure 3.3 for example, the smoothing domain for inner edge k  contains 

two sub-smoothing cells ,1s

k  and ,2s

k . The compatible strain field ( )hε x  would be piecewise 

G

A

B

C

O

D
E

F

P

Q

smoothing domain 
for boundary edges

smoothing domain 
for interior edges

interior edge  ( )l DF

(segments: , , , )Γ
s

l
DP PF FQ QD

(4-node domain )
s

l
DPFQ

boundary edge  (CA)m

(segments: , , )Γ
s

m
AO OC CA

(triangle domain )
s

m
AOC

:centroid of triangles:field node
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constants and discontinuous along this edge. Applying the Divergence theorem of Gauss, the 

smoothed strain ( )k x  for smoothing domain 
s

k  in Eq. (3.5) can be evaluated along the 

boundary of the sub-smoothing cells ,s

k t , which gives 

, ,
,

1 1

1 1 1
( ) ( )d ( )d ( ) ( )d

  
 

          
s s

s s s
k k t k t

n n
h h s h

k k ts s s
t tk k

s

k

s
A A A

x u x u x n x u x  (3.6) 

where 
s

k  is the boundary of the smoothing domain 
s

k , and , ( )s

k tn x  denotes the outward normal 

matrix on the boundary ,s

k t . 

Since the displacement field is continuous along the shared boundary for the sub-

smoothing cells ,1s

k  and ,2s

k  (i.e., the edge k  or the boundary inside the smoothing domain), 

we have 

,1 ,2( ) ( ) s s

k kn x n x   or  ,1 ,2( ) ( ) ( ) ( ) 0 s h s h

k kn x u x n x u x   on ,1 2s

k  (3.7) 

where ,1( )s

kn x  and ,2 ( )s

kn x  represent the outward normal matrix on the boundary ,1 2s

k  for sub-

smoothing cells ,1s

k  and ,2s

k . Obviously the Eq. (3.7) may let the integration of , ( ) ( )s h

k tn x u x  for 

the neighboring sub-smoothing cells to be eliminated along the shared boundary k  inside the 

smoothing domain in Eq. (3.6). Then the integrations in Eq. (3.6) will only comprise the outer 

boundaries of the smoothing domain, which implies 

,
,

1

1 1
( ) ( ) ( )d ( ) ( )d

 


    
s

s s
k t k

n
s h s h

k k t ks s
tk kA A

x n x u x n x u x  (3.8) 
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in which , (outer)

1

  
sn

s s

k k t

t

 is the outer boundary of smoothing domain 
s

k , and ( )s

kn x  is the 

outward normal matrix on the boundary 
s

k  defined by 

0
( )

0

 
  
  

T
s s

kx kys

k s s

ky kx

n n

n n
n x  (3.9) 

where 
s

xn  and 
s

yn  denote the unit outward normal components in  x and y directions, respectively. 

If the matrix of shape function ( )IN x , which is similar as in a finite element scheme 

obtained from the background triangular mesh, is introduced, the trial displacement ( )hu x  will 

have the following form 

1

( )



nN

h

I I

I

u N x d  (3.10) 

where [ ] Tx yx , nodal displacement vector at node I  is ( ) h

I Id u x , and the shape function 

has the form 

( ) 0
( )

0 ( )

 
  
 

I

I

I

N

N

x
N x

x
 (3.11) 

Now the trial function ( )hu x  expressed in Eq. (3.10) can be substituted into Eq. (3.8), 

with respect to nodal displacement giving 

( )



s
k

k I I

I S

x B d  
(3.12) 



30 
 

where Id  is the vector of the associated nodal displacements, s

kS  is the set of “supporting” nodes 

for the smoothing domain s

k , i.e., the set of all nodes of the elements that share the common 

edge k . For ES-FEM using triangle elements with sample smoothing domains as shown in Fig. 

1, s

kS  is the set of nodes { , , }A B C  for boundary edge AC , and { , , , }D E F G  for the interior edge 

DF . 
IB  is the smoothed strain-displacement matrix evaluated by 

01
( ) ( )d

0
s
k

T

Ix Iys

I k Is

k Iy Ix

b b

A b b

 
    

  
B n x N x  (3.13) 

with components 

1
( ) ( )d


  s

k

s

Ih I khs

k

b N n
A

x x , ,h x y  (3.14) 

  From the above equation, it is noted that only the values of ( )IN x  (not the derivatives) 

are involved on the boundary of the smoothing domain 
s

k . If a linearly compatible displacement 

field is utilized along 
s

k , then a single Gaussian point is sufficient for numerical integration 

along each segment ,s

k t  of the boundary s
k . It is now possible to obtain the form by Gauss 

quadrature 

, ,

1

1
( )



 
s
egn

GP s s

Ih I t kh t k ts
tk

b N n l
A

x , ,h x y  (3.15) 

where 

sn  is the total number of the boundary segments ,  s s

k t k , For example, in Figure 3.3 the 

smoothing domain for boundary edge ( )m AC  has three boundary segments ( , ,AO OC CA ), i.e., 
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3 
sn ; and for interior edge ( )l DF  it has four segments ( , , ,DP PF FQ QD ), i.e., 4 

sn . 
GP

tx  is 

the midpoint (Gaussian point) of the piecewise boundary segment 
,s

k t
, 

,

s

kh tn  and 
,

s

k tl  are the 

outward unit normal and length of 
,s

k t
, respectively. In the above equations, s

kA  is the area of 

smoothing domain computed by 

1

1

3 

   

e
k

s
k

n
s e

k j

j

A d A  (3.16) 

where e

kn  is the number of elements attached to the edge ( 1e

kn  for the boundary edges and 

2e

kn  for interior edges as shown in Figure 3.3). 

Consider the assumed displacement field is continuous/smooth and the definition of the 

smoothed strain field expressed in Eq. (3.6) and Eq. (3.8), we can rewrite the smoothed strain-

displacement matrix IB  in Eq. (3.13) by the average of strain-displacement matrix ( )IB x  

yielded from the involved element(s) by linear FEM, which gives 

1 1 1
( ) ( )d ( )d ( )d

  
        s s s

k k k

s

I k I I Is s s

k

s

k kA A A
B n x N x N x B x  (3.17) 

where the line integral along s
k  is converted to region integration in 

s

k . It is worthwhile to note 

that the expression in Eq. (3.17) reveals the relationship between smoothed strain-displacement 

matrix IB  and the standard strain-displacement matrix ( )IB x  calculated from linear FEM.  

In FEM, the global/total stiffness matrix is an assembly of the element stiffness matrix 

that relates the displacements of the nodes on the mesh to applied external forces. Similar to 
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FEM, the global smoothed stiffness matrix K  is assembled from the individual smoothing 

domain’s stiffness contributions, and its entries can be computed by  

1 1

d d
 

 

      
s s

s
k

N N
T T T s

IJ I J I J I J k

k k

AK B DB B DB B DB  (3.18) 

where sN  is the total number of smoothing domains. K  is a symmetric positive definite (SPD) 

matrix and IJK involves only these nodes which have contributions to the smoothed domain. 

Note that a smoothing domain in S-FEM usually includes parts of adjacent elements, which 

means it may have more supporting nodes for a smoothing domain than those in an element. This 

leads to increasing the bandwidth of the global stiffness matrix and higher computational cost for 

S-FEM models, compared to the corresponding standard FEM with the same sets of nodes.   

 

3.2 Numerical Procedure for the S-FEM Models 

Analogous to the general procedures of the FEM, the steps in S-FEM procedure can be 

summarized as follows. 

1. Domain discretization: define the problem and discretize the problem domain with proper 

background mesh; 

2. Creation of smoothing domains: select an S-FEM model type and generate the corresponding 

smoothing domains; 

3. Computation of stiffness matrix and load vector for smoothing domains: 

1) Evaluate the smoothed strain-displacement matrix IB ; 
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2) Calculate the smoothed stiffness matrix IJK  and load vector of the smoothing domain. 

4. Assemblage for overall equilibrium equations: Assemble the stiffness matrix and the load 

vector of the smoothing domains into the global stiffness matrix and load vector; 

5. Incorporation of the external loads and boundary conditions; 

6. Solution for the unknown nodal displacements; 

7. Retrieval of reaction force, stress/strain, internal forces, strain energy. 

 

3.3 General Properties of S-FEM models 

In the past few years, several different S-FEM models using different types of smoothing 

domains have been proposed and further investigated for a wide range of mechanics problems. 

These numerical studies have demonstrated that S-FEM shows some attractive properties in 

comparison with conventional FEM, including softened behavior, upper bounds and ultra-

accuracy, etc. In this section, we will only list some basic properties of S-FEM, which were laid 

out in Reference [15]. Some other promising properties such as handling complex geometry and 

immunity from volumetric locking issues will be discussed in application problems in the next 

few chapters. 

3.3.1 Smoothed Strain Field: Incompatible 

As mentioned previously, the modification/construction of compatible strain field for S-

FEM can be performed within elements (CS-FEM) but more often beyond the elements (NS-

FEM, ES-FEM, or FS-FEM). For the operation within elements (i.e., smoothing domain locates 
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within the element), the assumed smoothed strains defined in Eq. (3.8) will not be compatible in 

terms of strain–displacement relations unless the linear displacement field is assumed. When 

bringing in the information from the neighboring elements, for any assumed continuous 

displacement field the smoothed strains would not be compatible in terms of the strain–

displacement relation. Generally, an S-FEM model can be regarded as partially compatible 

compared to the fully compatible FEM models. Due to the violations of compatibility in terms of 

strain–displacement relations, S-FEM models process the very important softening effects and 

hence some other special properties. 

3.3.2 Stress Equilibrium State within Smoothing Domains: Softening Effect and Bound 

Property 

Consider the definition of smoothed strains in Eq. (3.8), the assumed smoothing strains 

become constants for any point in a smoothing domain [17]. According to the constitutive 

relations for elastic solid, the stresses obtained in the smoothing domain will also be constants. 

The equilibrium equation, i.e., Eq. (2.1) for finite element scheme, will be naturally satisfied 

when these constant stresses are substituted with free external loadings, i.e., 0bf . Therefore, 

an important property can be revealed: the stress equilibrium status can be reached in a 

smoothing domain when the strain smoothing technique is applied to the smoothing domain for a 

specific problem. The smoothing operation hereby is referred to as a local stress equilibrator in 

S-FEM models. 

Moreover, based on minimum complementary principle [18], if the stress field satisfies 

exactly the equilibrium equations and boundary conditions, an exact upper bound solution would 

be rendered. Since the S-FEM models satisfy the equilibrium equation for every point in the 
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problem domain and the smoothed domains as a whole in some given boundary conditions, 

proper S-FEM models with sufficient softening effects can offer the possibility to obtain both 

lower and upper bound solutions, ultra-accurate solutions, and even ‘exact’ solutions [5]. 

3.3.3 Energy Conservation 

When a constant smoothing function is adopted, area integrations over a smoothed 

domain in the weak form become line integrations along the domain boundaries. S-FEM models 

are energy consistent if the assumed displacement field (or the nodal shape functions according 

to Eq. (3.10)) is continuous and linear compatible along the boundary segments of the smoothing 

domains. 

The property of energy conservation can be verified by considering a unique 

“complementary” situation for S-FEM models. As discussed already, in a smoothing domain the 

equilibrium is ensured as described but compatibility is violated. And on the boundary segments 

of the smoothing domain, equilibrium and stress continuity are not guaranteed, but displacement 

continuity is satisfied owing to the utilization of continuous nodal shape functions. Thus, this 

unique complementary satisfaction of equilibrium or compatibility conditions guarantees energy 

consistency without energy loss even if there exist violations of equilibrium or compatibility 

conditions [15]. This is the reason that the S-FEM models are variationally consistent: energy 

conservation when they adopt the linear compatible shape functions along the boundaries of 

smoothing domains. 

3.3.4 Elements Selection: Preference for Simplicity and Robustness 
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It is easiser to mesh and re-mesh an arbitrary geometry domain with simplex T-mesh 

elements (triangular for 2D and tetrahedral for 3D), than other meshes (e.g., quadrilateral 

elements in 2D or hexahedron elements in 3D). Moreover, S-FEM models will not induce 

inaccuracy issues (compared to standard FEM) when using the standard (constant strain) T-mesh. 

Therefore, generally a simplex T-mesh with T3 or T4 elements for S-FEM models is preferred as 

it takes advantages of the following: (1) low cost in grid/mesh generation; (2) robustness for 

arbitrary geometries; (3) possibility of remeshing for deformed/changed configurations; (4) 

simplicity in formulation and implementation as when using constant strain triangles and no 

derivatives of shape function involved in S-FEM; and (5) S-FEM works effectively with T-

elements. The philosophy of S-FEM is obvious: being a powerful and versatile numerical 

technique which is simple, effective and robust. 

Regarding the theoretical proof of features such as the softening effect, upper bound to 

the FEM solution, monotonic convergence, we can refer to the references [6] and [15].   
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Chapter 4. Generalized Stochastic Cell-based Smoothed Finite 

Element Method (GS_CS-FEM) for Solid Mechanics 

 

4.1 Introduction 

Randomness of parameters is a natural characteristic in many engineering systems, and 

should be properly dealt with in computational modeling and simulations. Such randomness 

could lead to uncertainty in the outputs of the numerical models. Deterministic FEM fails to 

consider the uncertainty, which limits its application [1]. From early 1980s, the concept of the 

stochastic FEM has been established, by combining the approaches of reliability evaluation into 

FEM technology. During the last several decades, the stochastic FEM has become a powerful 

tool in computational stochastic mechanics, in dealing with large-scale realistic engineering 

problems. Regarding the state-of-the-art review of the past and recent developments in stochastic 

FEM area, we can refer to Ref [2]. The stochastic perturbation FEM, which is based on 

stochastic moment techniques, is an efficient and accurate approach for approximation of the 

response and reliability in some practical enginnering problems. However, the commonly used 

second order perturbation expansion was found ineffective when the uncertainties are too large. 

M. Kamiński [3] proposed an nth order generalized stochastic finite element (GS-FEM) based on 

perturbation technique. In Ref. [3], a 1D linear elastostatics problem with a single random 

variable showed that the accuracy of the expected values and variances can be improved using 

GS-FEM. In addition, the approach using higher order makes it possible to compute the 

probabilistic moments of the solution with a priori given accuracy [4]. 
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In this chapter, we establish a generalized stochastic CS-FEM (GS_CS-FEM), which 

develops the generalized n
th

 order stochastic perturbation technique under the framework of the 

cell-based smoothed finite element method (CS-FEM) for 2D solid mechanics problems. To 

demonstrate the effectiveness of the present method, two numerical examples are presented and 

verified by Monte Carlo simulations. 

The chapter is organized as follows.  In sections 4.2 and 4.3, the probability theory and 

the CS-FEM are briefly presented, respectively. The formulation of GS_CS-FEM using the 

generalized nth order perturbation stochastic approach is derived in section 4.4. Section 4.5 

shows two numerical examples. Finally, some concluding remarks are made in section 4.6.  

 

4.2 Briefing of Probability Theory 

For a given set of random fields ( )b x  and its probability density function (PDF) ( )i rp b , 

1,2, ,r R , 1,2i  , the first two probabilistic moments for the random fields ( )r kb x are 

defined as [5-6] 

0

1[ ] ( )r r r r rE b b b p b db



    (4.1) 

0 0

2, ) )Co ( )v( ) ((r s r r s s r ss r srb b b b b b p b b db dbS
 

 
     ，  (4.2) 

where 0

rb  represents the first probabilistic moment of the random variable, ,ov( )C r sb b or rsS  

represents the covariance, 1( )rp b  and 2 ( )r sp b b， denote the PDF and the joint PDF, respectively. 
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For a real, single-valued continuous function of a random variable b , the expectation 

becomes the expected value, or mean of the variable b  

0[ ] ( )E b b bp b db



    (4.3) 

The variance of b , expressed as Var( )b , or 2

b  is defined as the mean square value of b  

about the mean 

0 2 0 2) [( ) ] ( )V )r (a ( E bb p b db b bb
 

 
      (4.4) 

Then the standard deviation (denoted by b ) and the coefficient of variation (denoted by 

 or COV) of a random variable b  can be defined as 

Va= ( )rb b   and  

1

2

2

Var( )
=

( [ ])E b

b


 
 
 

 
(4.5) 

Based on stochastic perturbation technique, if a small perturbation parameter   related to 

spatial expectations is adopted, the n  th
 order truncated Taylor series expansion of the limit state 

function of a structural reliability analysis [3] can be expressed as 

  0 ( ) 0 , ( )

1

(
1 1

( )( ) ( ) ( ) ( )(
! !

) )n n n b n n n

n

f b f f b b f b f b b f b b
n

b
n
  





         (4.6) 

where ( ) ( )
( )

n
n

n

f b
f b

b





, 

0( )b b b    and 
2 2 2 0 2( ) ( )b b b     are the first and second 

variations of b  concerning the corresponding expected value 
0b , respectively. The n  th

 order 

variation can be similarly written as 
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0( ) ( )n n n nb b b     (4.7) 

where 
0( )  denotes the mean value of the function value ( )  taken at the expected value 

0b , and 

,( ) b , 
,( ) bb  represents the first and second order partial derivative with respect to b  at the point 

0b . Replacing rb  in Eq. (4.1) using  f b  with the expression in Eq. (4.6), we will obtain the 

expected value of a limit state function  f b  with a specified small perturbation parameter   

by expansion of Taylor series [3]: 

       

 

0 ( )

1

0 2 (2 ) 2

1

0 ( )

1
; ( ) ( )( )

!

1
( ) ( )( )

(2 )!

     

1

            
                    

( )
( )!

n n n

n

M
n n n

n

n n

E f b b f b p b db f b f b b p b db
n

f b f b b p b db
n

for symmetric distribution functions

f b f
n







 

 







 
       

 

 
  

 





 



 
1

            

( )( )

     

N
n

n

b b p b db

or asymmetric distribution functionsf












   
 






 (4.8) 

It is noted that the approximation of expected values or variances satisfies a given priori 

precision with an admissible error via a proper selection of number of terms, M  or N . 

For a small variation of the random variable with the symmetric PDF around its mean 

value, the expected value for the input random variable with symmetric probability density 

function in the second order perturbation approach can be expressed as [4] 

             

     

0 , , 2 2

0 , , 2

1
; ( )

2

1
0

2
                    

b bb

b bb

bb

E f b b f b p b db f b f b b f b b p b db

f b f b f b S

 

 

 

 

 
         

 

   

 
 (4.9) 
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where bbS  stands for the second-order central moments, which is unique for a given random 

variable b . When the input random variable with the symmetric PDF is considered in a large 

variation, the following extension with a perturbation parameter   can be preferably adopted [4–

8]:   

               

       

0 , 2 , 2 , 6

2 4 6

2 4 6
0 2 2 6

2 4 62 4 6
                   

1 1 1
;

2 4! 6!

1
 

1 1

2 4! 6!

bb bbbb bbbbbbE f b b f b f b b f b b f b b

f f f
f b b b b

b b b

     

     

      

  
    

  

 (4.10) 

where ( )n b  denotes the n th
 order central probabilistic moment of b  and the odd order terms 

vanish for a symmetry PDF (such as Gaussian random distribution), and where higher than sixth-

order terms are neglected. The sixth-order truncated expansion for a variance can be analogously 

employed [3]: 

       

     

            
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2
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b bbb

Var f b f f b f b f b f b

f b E f p b db

f b p f b db f b p b db

f f b p f b db
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

 
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 

 


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
           
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
   



   

  



 
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     

2
2 6,

6 6, , , ,

2
, 2 , 2 , , 4

2 4

                

         

1

3!

1 1
2

4! 5!

1 2
( )

4

            

           

           

3!

1

3
 

!
  

bbb

bb bbbb b bbbbb
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f b f f f b
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 

   

 



 

 

 
 

 

  

 
   

 

 
 
 

 



 

 

 
2

, 2 , , , , 6
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1 2
( )
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bbb bb bbbb b bbbbbf f f f f b 
 

  
 
 

 (4.11) 

when the state function does not possess a symmetric feature, the odd orders of probabilistic 

moments should be nonzero. Even so, the procedure would be implemented in a similar fashion. 
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4.3 Briefing of the Cell-based Smoothed Finite Element Method (CS-FEM) 

4.3.1 Governing Equations 

Consider a two-dimensional (2D) linear isotropic elastic solid 2R bounded by a 

boundary   such that ,  D t D t       . Here, boundary   is consisted of two parts: 

t  where external tractions t are applied (Neumann conditions), and D  where the 

displacements u  are prescribed (Dirichlet conditions). The governing equation in the problem 

domain   bounded by   can be expressed in terms of stresses as 

0  
b

σ f     or    0  
b

j ij i
f  in   

 
t

σ n f    or     
t

ij j i
n f  on t  

ˆu u    or    ˆ
i i

u u  on D  

(4.12) 

where b
f  and t

f  denotes the body force and the prescribed traction vector,  and n  is the 

outward unit normal vector on the boundary  . /i ix     represents the first partial 

derivatives corresponding to  , ,ix x y z  and   denotes a matrix of differential operators: 

0

0

    
   

    

T
x y

y x
 (4.13) 

The stress tensor σ  in Eq. (4.12) is defined in terms of the strain tensor ε  from the 

constitutive relations for solid: 

σ Dε   in    or  ij ijkl klD    in   (4.14) 

where D is the Hooke’s matrix of elastic constants which is related to modulus E  and Poisson’s 

ratio  . 
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In Eq. (4.14), ε  is the strain tensor which can be expressed by displacement u using 

compatibility relation: 

( ) 
s

ε u x     or    
1

( )
2

    
ij j i i j

u u in , , 1,2 i j  (4.15) 

( ) ( )


u x u x     or    i iu u  on  D  (4.16) 

where s  is the symmetric gradient of the displacement field. 

4.3.2 Local Gradient Smoothing Operation of CS-FEM 

Consider an element e  selected from the discretized domain h . In order to manipulate 

the strain smoothing operation, the element e  is partitioned into several number ( SCn ) of 

smoothing cells noted as C , as depicted in Figure 3.2, Here the value of SCn  depends on the 

stability condition and accuracy requirements [9–11] and Ref. [11] proved that the solution of 

CS-FEM using one single-strain smoothing cell ( 1SCn ) has equivalent properties as those of 

FEM using reduced integration (one Gauss point).  

Now consider a point Cx  in an element e , and assume C Cx  (  C e h ). The 

gradient of displacement for the smoothing cell C  in the element e , which reads the form 

( ) ( ) ( )d


     
h h

C Cu ux x x x  (4.17) 

By employing the divergence theorem to the right-hand side, the equation can be 

rewritten as 
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( ) ( ) ( ) ( )d ( ) ( )d
 

        
C C

h h h

C C C Cu u ux x n x x x x x x  (4.18) 

where C  is the boundary of the smoothing cell C , and ( )Cn x  denotes the outward 

normal matrix on the boundary C . The matrix for boundary segment p  ( 1,2,3,4p  and 

,  C p C ) is defined as 

0
( )

0

 
  
  

T
p p

x yp

C p p

y x

n n

n n
n x  (4.19) 

    In Eq. (4.18), ( )  Cx x  is a distribution function or a smoothing function that 

satisfies at least unity property such as 

( ) 0  Cx x  and ( )d 1

   

C
Cx x  (4.20) 

The most frequently adopted smoothing function is the Heaviside-type piecewise 

constant function defined in the following form 

1 ,
( )

0,


   



C C

C

C

A x
x x

x
 (4.21) 

where d


 
C

CA  is the area of the smoothing cell C . 

Introducing Eq. (4.21) into Eq. (4.18) gives the smoothed gradient of displacement 

1
( ) ( ) ( ) ( )d ( ) ( )d

 
       

C C

h h h

C C C C

C

u u u
A

x x n x x x x n x  (4.22) 



47 
 

where the second term in the right-hand side of Eq. (4.18) vanishes due to the selection of 

function   and the area integration becomes boundary integration around the smoothing cell 

C . The smoothed strain can then be easily obtained as 

1 1
d ( ) ( )d

 
     

C C

h h h

S C

C CA A
d n x d x  (4.23) 

4.3.3 Calculation of Stiffness Matrix 

If the FEM procedure [9] is followed, the discretized displacement of system can be 

approximated upon field discretization, which is expressed as 

1

( ) ( )



n

h

I I

I

u Nx x d  (4.24) 

where n  denotes the number of nodes in an element ( 4n  for a quadrilateral element) and Id  is 

the nodal displacement vector. Substituting Eq. (4.24) into Eq. (4.22), it yields the form as 

following 

1

1
( ) ( ) ( )d




  
C

n
h

C I C I

IC

u N
A

x x n x d  (4.25) 

Similarly the smoothed strain in Eq. (4.23) can be obtained as 

1

( )



n

I C I

I

B x d  (4.26) 

where IB  is the smoothed strain-displacement matrix which can be evaluated by 
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( ) 0 ( )
( )

0 ( ) ( )

 
  
  

T

Ix C Iy C

I C

Iy C Ix C

b b

b b

x x
B x

x x
 (4.27) 

with 

1
( ) ( ) ( )d


 

C
Ih C I Ch

C

b N n
A

x x x , ,h x y  (4.28) 

From the above equation, we know that only the values of shape functions ( )IN x  (not 

the derivatives) are involved on the boundary of the smoothing cell C . If a linearly compatible 

displacement field is utilized along C , then a single Gaussian point is sufficient for numerical 

integration along each segment 
,C p

 of the boundary C . It is now possible to obtain the form 

by Gauss quadrature 

, ,

1

1
( ) ( )





 
n

GP

Ih C I t Ch t C t

tC

b N n l
A

x x , ,h x y  (4.29) 

where n  is the total number of the boundary segments ,  C p C , For 2D CS-FEM shown in 

Figure 3.2(d), the smoothing cells has four segments, i.e., 4 n .
GP

tx  is the midpoint (Gaussian 

point) of the piecewise boundary segment 
,C p

, and 
,Ch tn  and 

,C tl  are the outward unit normal 

and length of 
,C p

, respectively.  

Once the smoothed strain-displacement matrices over each smoothing cell have been 

evaluated, the smoothed element stiffness matrix can be obtained by assembly from those of all 

the smoothing cells in the element, which reads the form as 
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1


SCn

T

e q q Cq

q

AK B DB  (4.30) 

The smoothed global stiffness matrix K is assembled from each of element stiffness 

matrix 
eK . Then the discrete global CS-FEM equilibrium equations in displacement format can 

be written as 

Kd f  (4.31) 

where f  is the general nodal force vector. 

 

4.4 The Formulation of the Generalized Stochastic CS-FEM 

The general perturbation approach can be now applied based on smoothed FEM settings. 

For simplicity, we will name the present method as generalized stochastic cell-based smoothed 

finite element method (GS_CS-FEM), an analogous of the GS-FEM [12].  

Consider the smoothed strain matrix C( )IB x  that is stochastically independent from 

random variables. In general, the partial derivative of the smoothed strain 
C )ε (h

x  with respect to 

a random variable b  can then be derived from Eq. (4.26): 

 
 C

C

ε 


 


n h n

I
In n

Ib b

x d
B x  (4.32) 

In the discrete global CS-FEM equilibrium in Eq. (4.31), if some random quantities are 

integrated into the smoothed stiffness matrix K  and the force vector f , the following 
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hierarchical GS_CS-FEM equations for elastostatics are obtained by employing the standard 

procedure: 

- Zeroth-order (
0ε terms) 

0 0 0K d f  (4.33) 

- First-order (
1ε  terms) 

0 , , 0 ,b b b K d K d f  (4.34) 

- Second-order (
2ε  terms) 

0 , , , , 0 ,2bb b b bb bb  K d K d K d f  (4.35) 

- Third-order (
3ε  terms) 

0 , , , , , , 0 ,3 3bbb b bb bb b bbb bbb   K d K d K d K d f  (4.36) 

                                                                        …… 

- N th
-order ( ε

N
terms, notation using Pascal's rule) 

( ) ( ) ( )

0

N
k N k N

k

N

k





 
 

 
 K d f  (4.37) 

where the symbol  
( )k

  denotes  
, ...

k

bb b
 , what means k th

 order partial derivative with respect to 

b  evaluated at  
0

 . 
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Recall now that the smoothed global stiffness matrix K  is assembled from element 

stiffness matrix 
eK  from Eq. (4.30), i.e. 

SC

T

C C C

1 C

en n

e

A


K B DB  (4.38) 

where en  is the total number of elements in domain  . If Young’s modulus E is considered as 

the random variable, the k th
 order derivatives of smoothed global stiffness matrix with respect to 

E  are then written as 

SC

T

C C C

1 C 1

en n

e

A
 

 


 


K D
B B

E E
 (4.39) 

when 2k  , the result 0
k

k






K

E
 can be derived for elastic problems apparently. Note that 

0
k

k






f

E
 for any 1k   as the Young’s modulus E  has no effect on the force vector f . Then the 

corresponding GS_CS-FEM equilibrium equations can be simplified into 

- Zeroth-order (
0ε terms) 

0 0 0K d f  (4.40) 

- First-order (
1ε terms) 

0 , , 0 K d K d
E E

 (4.41) 

- Second-order (
2ε  terms) 
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0 , , ,2 K d K d
EE E E

 (4.42) 

- Third-order (
3ε  terms) 

0 , , ,3 K d K d
EEE E EE

 (4.43) 

…… 

- N th
-order ( ε

N
 terms) 

1
0 ,

1

N N

N N
N





 
 

 

d d
K K

E

E E
 (4.44) 

A recursive procedure can be implemented to acquire the N th
-order solution from the 

above equation series.  

 

4.5 Numerical Illustrations 

In order to analysis the properties of the GS_CS-FEM, two numerical examples will be 

presented to study the probabilistic output moments. The first example is a simple rectangular 

cantilever subjected to a parabolic traction at the free end and a plane stress condition is 

assumed. For the second problem, the infinite plate with a circular hole subjected to 

unidirectional tension is under a plane strain condition. 

4.5.1 Cantilever Beam Subjected to a Tip Load 

In this example, a rectangular cantilever linear elastic beam with length L  and height H  

is studied here. The beam is fixed along the left side edge and subjected to a parabolic traction P  
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at free end as shown in Figure 4.1. The beam is assumed to be a plane stress problem with unit 

thickness. The analytical solution of displacements can be found in Ref. [13], which reads as 

follows:  

   
2

26 3 2
6 4

x

P H
u L x xy y y

I


  
      

  E
 

     
2

2 24 5 3 3
6 4

y

P H x
u L x x y L x

I
 

 
       

 E
 

(4.45) 

 

 

 

 

 

Figure 4.1.  A cantilever subjected to a parabolic traction at the free end. 

 

 

Figure 4.2.  Domain discretization using 4-node quadrilateral elements of the cantilever (mesh 32×8). 
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y
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The corresponding stresses can be expressed as 

)
)

( ,
(




xx x
L

y
P x y

I
; ( , ) 0 yy x y ; 

2
2

2
( , )

4


 
  

 
xy

P D
y

I
x y  (4.46) 

where the moment of inertia I  of the beam is given by 
3

/12I H  for this problem. The related 

geometry/loading parameters and material properties are given as: 2.4L m, 0.6H m, 

5000P N, Young’s modulus 73.0 10 E Pa (here the script letter “ E ” is adopted to 

distinguish it from the notation of the expectation “ E ”), and the Poisson’s ratio 0.3v . The 

perturbation parameter   is chosen as an interval [0.8,1.2]  , and the input coefficient of 

variation of the randomized modulus is set as ( ) [0.0,0.3] E .  

In Figure 4.2, the domain is discretized by 4-noded quadrilateral elements and these 

elements can be further divided into different SCs, 1,  2,  3,  4,  8 1= ,  6SCn , as shown in Figure 3.2. 

The relative errors of deflection along centerline obtained from FEM, CS-FEM (mesh: 32×8) and 

the analytical solution are demonstrated in Figure 4.3. It is seen the deflection v  computed by 

CS-FEM with 4, 8, and 16 smoothing cells can be more accurate than the result of FEM using 4 

Gauss points for full integration. It is noted that the model with elements using 4SCn  will 

produce the most accurate results. To study the convergence rate of the present method, the two 

norms called displacement norm and energy norm can be provided as following: 

  h

d i i i

ndof ndof

Error u u u  

1/ 2
T1

( ) ( )
2

h h

eError
LD

   


   
  D  

(4.47) 
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In Figure 4.4, the depicted convergence rate shows CS-FEM can give almost comparable 

convergence rates compared to FEM in both displacement and energy norms, i.e., CS-FEM 

preserves the full super-convergence feature similar to FEM. Furthermore, the error in energy 

norm for the CS-FEM is always smaller than that of FEM, as plotted in Figure 4.4(b). 

 

 

Figure 4.3. Comparison of the relative error in displacement v  between FEM and CS-FEM using 

different number of smoothing cells. 
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(a) 

 

 

(b) 

Figure 4.4. Comparison of convergence rate between S-FEM and FEM: (a) displacement norm; (b) 

energy norm. 
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If the input quantity E  consists of Gaussian random distribution, then all the central 

probabilistic moments can be obtained from the formulae [3] 

 2 1 0m  E ,   2

2 1 3 5...(2 1) ( ) (2 1)!(Var( ))m m

m m m      E E E  (4.48) 

Obviously, the maximum vertical deflection v  in the centerline is at the center point of 

the free end. Applying Eqs (4.10) and (4.11), the expectation and variance for this maximum 

vertical deflection vm
 should be 

          
2 4 6

2 4 60 2 4 6

2 4 6

v v v1 1 1
v , v 3 3 5 ...

2 4! 6!
       

  
           

m m m
m mE E E E E E

E E E
 (4.49) 
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 (4.50) 

The expected values of the maximum vertical deflection in centerline for 2nd , 4th , 6th , 

8th , 10th  order stochastic smoothed finite element approximation are provided in Figure 4.5. 

The corresponding standard deviations are collected in Figure 4.6, and the output variances are 

presented in Figure 4.7. The expected values, standard deviations and the output variances are 

shown with respect to (w.r.t.) only perturbation parameter   (while the input coefficient of 

variation   is set as 0.10  and 0.25 , separately) in Figure 4.8–Figure 4.13.  

From Figure 4.5–Figure 4.7, it is observed that the expected values and standard 

deviations increase nonlinearly along with the increasing of the perturbation parameter   or the 

input coefficient of variation  . Besides, it is apparent that the convergence of the GS_CS-FEM 
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depends on the input  . The 2 nd
 order Taylor expansion perturbation is suitable for the situation 

when the input ( ) E  is no more than 0.10 . Otherwise, it requires an approximation with a 

higher perturbation order. In addition, the input coefficient of variation will play more crucial 

impact on these probabilistic characteristics than the perturbation parameter, especially as

0.10  . 

The comparison of the expected values, standard deviations and the output variances are 

plotted in Figure 4.8–Figure 4.13, for 0.10   and 0.25  . It is obviously that for a smaller 

value of input coefficient of variation, such as 0.10 , the 4
th

 order perturbation approximation can 

satisfy the accuracy/convergence requirement. However, even 10 th
 order perturbation is not 

enough for the case using =0.25 , especially for standard deviations and the variances. In 

conclusion, the 2
nd

 order expansion perturbation technique works well in precision when the 

input   is less than 0.10  and may be effective for 0.10 0.15  , but may lead to low accuracy 

for larger . 

In Figure 4.14 and Figure 4.15, the expected values for th2,  4,  6,  8,  10  order GS_CS-

FEM approximation are compared to the results of Monte Carlo simulation (MCs). It is evident 

that the GS_CS-FEM using higher order perturbations provides higher accuracy of solution 

compared to the results obtained from the MCs. Referring to computational efficiency, the CPU 

time for the GS_CS-FEM is only 15.5  seconds, while it requires more than thousands times of 

computation time for MCs calculation in a reasonable accuracy as a reference solution (even 

only 2000 times picked as the number of analysis for MCs, more than 7760  seconds required). If 

other randomized variables are considered, one can also apply similar implementations using the 

GS_CS-FEM approach.  
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Figure 4.5. Expected values for 2, 4, 6, 8, 10th orders. 

 

 

Figure 4.6. Standard deviations for 2, 4, 6th orders. 
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Figure 4.7. Variances for 2, 4, 6th orders. 

 

 

Figure 4.8. Expected values: 2, 4, 6, 8, 10th orders; : 0.10 . 
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Figure 4.9. Expected values: 2, 4, 6, 8, 10th orders; : 0.25 . 

 

 

Figure 4.10. Standard deviations: 2, 4, 6th orders; : 0.10 . 
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Figure 4.11. Standard deviations: 2, 4, 6th orders; : 0.25 . 

 

 

Figure 4.12. Variances: 2, 4, 6th orders; : 0.10 . 
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Figure 4.13. Variances: 2, 4, 6th orders; : 0.25 . 

 

 

Figure 4.14. Expected values; GS_CS-FEM vs. MCs. 
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Figure 4.15. Standard deviations; GS_CS-FEM vs. MCs. 

 

4.5.2 Infinite Plate with Circular Hole 

 

 

 

 

Figure 4.16. Infinite plate with a circular hole subjected to x-directional tension and a symmetric 

geometry. 

 

x

y
r

a



pp

L

L

y

x



65 
 

 

Figure 4.17. Domain discretization using 4-node quadrilateral elements of the infinite plate with a circular 

hole. 

Figure 4.16 represents a plate with a central circular hole subjected to a unidirectional 

tensile load of 61.16 10 p N/m at infinity in the x direction. Since the stress concentration 

around the hole is highly localized and decays very rapidly, essentially disappearing when the 

distance to the center is greater than 5a , only a finite plate with 5l a  needs to be modeled. 

Due to its symmetry, only the upper right quadrant of the plate is selected and discretized by 144 

elements. The case is considered as a plane strain problem and Young’s modulus 
690 10 E  

N/m
2
, Poisson’s ratio 0.3  . The inner edge of the hole is traction free and symmetric 

conditions are set along the left and bottomed edges. On the right ( 0.5x m) and top ( 0.5y m) 

edges, traction boundary conditions are imposed according to the exact solution [13]. The 

analytical solution for displacement components is [14,15] 
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 (4.51) 

where the shear modulus 
 2 1




 


E
 and bulk modulus 3 4    for plane strain cases, ( ),r   

are the polar coordinates and   is measured counterclockwise from the positive x -axis. The 

exact solution for the stress is given as [14,15] 
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 (4.52) 

In order to avoid the redundancy, it’s unnecessary to repeat the plots for convergence rate of 

displacement and energy, as these performances are quite similar to the cantilever example. Figure 

4.17 describes 4-noded quadrilateral elements mesh used to discretize the problem domain. Similar to 

plane stress example, the modulus E  is adopted as the input random variable, the perturbation 

parameter   is chosen as the interval of [0.8,1.2] , and the input coefficient of variation of the 

randomized  modulus is set as ( ) [0.0,0.3] E . The horizontal displacement at point (0.1,0)  is 

adopted as the output probabilistic variable. The expected values, standard deviations and output 

coefficients of variation are collected respectively in Figure 4.18, Figure 4.19 and Figure 4.20. The 

expected values, standard deviations and output coefficients of variation are plotted w.r.t. only 

perturbation parameter   (while the input   is set as 0.10 and 0.25, separately) in Figure 4.21–
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Figure 4.26. In Figure 4.27 and Figure 4.28, the expected values and standard deviations obtained 

from GS_CS-FEM are compared to the corresponding results from MCs. It is shown again that the 

GS_CS-FEM using higher order perturbations yields higher accuracy approximation. Several other 

properties of GS_CS-FEM in this problem are quite similar to those in the previous example. 

 

Figure 4.18. Expected values for 2, 4, 6, 8, 10th orders 

 



68 
 

 

Figure 4.19. Standard deviations for 2, 4, 6th orders 

 

 

Figure 4.20. Variances for 2, 4, 6th orders 
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Figure 4.21. Expected values: 2, 4, 6, 8, 10th orders; : 0.10  

 

 

Figure 4.22. Expected values: 2, 4, 6, 8, 10th orders; : 0.25  
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Figure 4.23. Standard deviations: 2, 4, 6th orders; : 0.10  

 

 

Figure 4.24. Standard deviations: 2, 4, 6th orders; : 0.25  
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Figure 4.25. Variances: 2, 4, 6th orders; : 0.10  

 

 

Figure 4.26. Variances: 2, 4, 6th orders; : 0.25  
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Figure 4.27. Expected values; GS_CS-FEM vs. MCs 

 

 

Figure 4.28. Standard deviations; GS_CS-FEM vs. MCs 
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4.6 Conclusions 

In this chapter, a generalized stochastic cell-based smoothed finite element method 

(GS_CS-FEM) is proposed. The method is applied to both plane stress and plane strain 

examples. The efficiency and accuracy of the proposed GS_CS-FEM are verified by comparison 

with results of MCs. The effects of input coefficients of variation and perturbation parameters 

are investigated, and some conclusions can be drawn as follows: 

 The 2
nd

 order approximation may be sufficient for a small input coefficient of variation   such 

as less than 0.1 , but higher   needs an approximation with higher order perturbation. For 

instance, at least 10 th
 order perturbation are required for 0.3  .  

 In deterministic computation, it has already proved that the cell-based smoothed finite element 

method (CS-FEM) can significantly improve accuracy and convergence compared to the FEM 

[14-15]. As expected, the same level of improvement can be achieved for the probabilistic 

solutions. This is because the improvement by CS-FEM is achieved by spatial approximation of 

the strain field.  Since the stochastic modeling utilized the same fashion of approximation, the 

benefit of CS-FEM will be delivered.   

 It is expected that there is no technical difficulty in further extending the application of GS_CS-

FEM for other input random variables or the applications to other probability distributions. 
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Chapter 5. An Effective Fracture Analysis Method Based on the 

Virtual Crack Closure-integral Technique Implemented in 

CS-FEM 

 

5.1 Introduction  

In modern fracture mechanics, the well-known Irwin’s work [1] uses the Westergaard 

approach and showed that, for elastic materials, the stresses and displacements near the crack-tip 

could be described by a single constant, which is related to the strain energy release rate [2]. 

Likewise, the Eshelby–Cherapanov–Rice J-integral [3–6] has then provided a way to calculate 

the strain energy release rate, or work/energy per unit fracture surface area. In general, almost all 

the fracture properties of a solid with elastic material can be characterized using a couple of 

parameters extracted from the near-tip stress and displacement fields. For example, the stress 

intensity factors (SIF’s) K  defines the amplitude of the crack tip singularity. Since closed-form 

analytical solutions for these parameters are only available for some simple problems, numerical 

modeling techniques such as finite element methods (FEM) and boundary element methods 

(BEM) are utilized almost exclusively. 

To predict facture parameters such as the stress intensity factors, a few classical 

approaches have been developed including the displacement correlation method (DCM, i.e., 

displacement extrapolation method [7–10]), domain integral (DI) methods (e.g., interaction 

integral (I-integral) method [11,12]), stiffness derivative method or virtual crack extension 

approach (VCE) [13,14], virtual crack closure technique (VCCT) [15,16], etc. In general, most 
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of these methods could be classified into two categories: the point matching approaches (or 

direct approaches) and the energy based approaches. The inferring of SIF’s by the first category 

of approaches uses stress or displacement fields near the crack-tip directly and the accuracy 

depends on the nodal displacement or stress directly, which is hence sensitive to associated mesh 

in FE computation. On the other hand, the energy based approaches evaluate the energy release 

rates in the body and relate G  to SIF’s. The energy based approaches, in general, are applicable 

to elastic as well as elastic-plastic materials and they perform insensitive to mesh quality at the 

vicinity of the crack tip/front. Nonetheless, the point matching approach would be usually more 

simple and easy to implement in FE programming. 

Before evaluation of the stress intensity factors, the energy based approaches need firstly 

to compute the strain energy release rate based on results obtained from finite element analysis 

(FEA). There are a variety of methods to compute the energy release rates, among which three 

popular ways are usually used: J-integral method (or I-integral), virtual crack extension method 

(VCEM) and virtual crack closure integral method (VCCM or VCCT). The VCEM computes the 

energy difference during two finite element analyses when a crack extends for a small amount of 

increment. While the energy in VCCT, which is required to close the crack for one finite element 

length, is calculated via multiplying the nodal reactions and the opening displacements. This 

approach was first proposed by Rybicki and Kanninen [15] for 2D crack problems and was later 

improved by Raju et al. [17,18]. It was also extended for 3D analysis of crack problems by 

Shivakumar et al. [16]. When inferring the energy release rate from FEA results, the VCCT has 

several advantages, such as simplicities in computation which involves only the nodal reaction 

forces at the crack tip/front and opening displacements just behind the tip/front, and convenience 
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of mode separation when appropriate vector components are utilized in computation of 

components of the energy release rates.  

Over the past two decades, the VCCT has been developed and extended to various 

aspects. For example, Refs [19,20] used VCCT to treat delamination between the face sheet and 

the core material of sandwich structures. Xie et al. [21–23] proposed the VCCT formulations for 

kinking cracks and for a moving delamination front of arbitrary shape. Based on FEA results, 

Sun and Qian [24] computed the strain energy release rates for interfacial cracks between two 

isotropic materials. Leski [25] provided the implementation of VCCT in engineering FE 

calculations and introduced the general conditions of applying VCCT in conjunction with 

commercial programs (MSC.Patran). In order to extend to 3D problems, Okada et al. [26,27] 

developed VCCT schemes to compute the energy release rates and stress intensity factors for 

both linear and quadratic tetrahedral finite elements. Whitcomb [28] computed the strain release 

rate distributions along a post-buckled embedded delamination including the contact effects. 

Fawaz [29] performed the sensitivity study of mesh pattern on the accuracy of the calculation of 

strain energy release rates. In Ref. [30], Krueger presented an overview of historical 

development of VCCT and a discussion of its applications in engineering. For more details of 

recent development and applications related to VCCT, we can refer to this review and the 

references cited therein.  

Though the FEM has become the most popular and powerful numerical tool for practical 

problems in engineering and science including fracture mechanics, it does not mean that it is 

perfect and no room for improvement. For example, FEM exists the overestimation of stiffness 

of solid and structures, which may result in locking behavior and inaccuracy in stress solutions 

[31]. By incorporating the strain smoothing technique [32] into finite element method (FEM), 
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Liu et al. have formulated a series of smoothed finite element methods (S-FEMs) containing cell-

based S-FEM (CS-FEM) [33–35], node-based S-FEM [36,37], edge-based S-FEM [38–40], face-

based S-FEM [41,42] and combinations of these techniques [43–45]. Several theoretical aspects 

of the S-FEM models have been provided in Refs [46–49]. Owing to the strain smoothing 

operations, the “over-stiff” feature of the standard FEM can be reduced or alleviated and hence 

the accuracy of both primal and dual quantities can be improved significantly [50]. Moreover, S-

FEM does not require the shape function derivatives and S-FEM models developed in elasticity 

are insensitive to mesh distortion because of the absence of isoparametric mapping [40]. Each of 

these smoothed FEM has different properties and has been applied to various types of practical 

mechanics problems. Due to its versatility, the class of S-FEMs has been becoming a simple and 

effective numerical tool for solving numerous physical problems.  

In this work, the VCCT will be formulated and implemented based on the CS-FEM 

framework. The elements in an FE base mesh will be further subdivided into several smoothing 

cells (SCs) (e.g., 4 SCs). The Galerkin weak form is used as in FEM, but the strain field at any 

point in an element is defined as a weighted spatial average over the element. Through such 

smoothing operation, the obtained smoothed strains will be then used for computing the stiffness 

matrix. If piecewise-constant weight functions are adopted, area integrations over the domain of 

cell in the weak form become contour integration along the boundaries of the smoothing cells. 

As a result, only shape functions themselves (not the derivatives) will be involved in computing 

the field gradients to obtain the stiffness matrix. Numerical studies [33,51–56] have 

demonstrated that CS-FEM shows some interesting properties compared to the standard FEM 

using 4-node isoparametric elements. For examples, (1) CS-FEM can obtain better results than 

those of FEM in both displacement and energy because of the softening effect; (2) less strict 
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mesh quality requirements as no coordinate transformation or mapping is involved in CS-FEM 

(e.g., Abaqus will not run a job with a Jacobian below 0 , and requires the Jacobian be great than 

0.2  for a solid element and 0.3  for a shell element); (3) construction of shape functions would 

be easier and flexible than that in the FEM, which practically allows explicit interpolations of 

field variables; (4) many existing algorithms of FEM can be easily modified and applied to CS-

FEM [57,58]. Most importantly, these good features are obtained still within the general frame of 

FEM, without special procedure except the process of strain smoothing and stiffness assembling.  

For numerical evaluation of strain energy release rate or SIF’s based on FEA, the domain 

integral methods usually offer even better accuracy than VCCT. However, the implementation of 

VCCT is much simpler and the computation cost is always lower, since the associated 

calculation only involves the nodal reaction forces and opening displacements which are the 

general outputs of FEA. The work in this chapter will employ the simplicity and convenience of 

VCCT under the framework of CS-FEM. It will utilize the merits of both VCCT and CS-FEM to 

formulate a better numerical approach for evaluation of fracture mechanics parameters and then 

modeling the process of crack propagation. The idea and formulation of CS-FEM for elastic 

problems has already been introduced in the previous chapter. In Section 2 of this chapter, we 

will present the techniques for evaluating fracture parameters using VCCT based on outputs of 

CS-FEM. Some numerical examples will be studied in Section 3 to illustrate the proposed 

approach. Conclusions are offered in Section 4. 

 

5.2 VCCT for Crack Problems Using CS-FEM Results 

5.2.1 Crack Closure Integrals 
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Irwin [1] introduced the crack closure integral concept in 1950s, which is an energy 

conservation argument on crack extension [59]. If a crack in a homogenous material is under the 

loading condition of Mode I (opening mode), the strain energy (per unit area) released during a 

small crack increment of extension is equivalent to the energy required to close the crack, i.e., 

the strain energy release rate illustrated in Figure 5.1 can be generally expressed as 

0
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 (5.1) 

where  y
 is the normal stress along the closed crack surface (line), l  is the small extension of 

crack and l  stands for the opening displacements of y  direction for  the location along the 

closed crack surface when the crack is extended. 

For Mode II (shearing mode), the similar expression of strain energy release rate using 

the crack closure integral concept becomes [15]: 
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 (5.2) 

where u  is the corresponding displacements at x  direction.  

The above two crack closure integrals relate the energy release rates to the crack-tip 

stress and displacement fields for a small crack extension. Though the integrals are proposed 

initially for cracks in homogeneous materials, it is worth emphasizing that they are proven to be 

applicable to interface cracks under mechanical load [60–62], thermal load [63] and extended to 

variable forms [64]. 
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Figure 5.1. Sketch of crack-tip stress and displacement fields used in Irwin’s crack closure integral. 

 

 

 

 

 

 

(a) (b) 

Figure 5.2. Local mesh configuration used for VCCM. 

 

 

The implementation of Eq. (5.1) and (5.2) can be performed by two steps: one analysis is 

to compute the stresses for closing the crack and the other one is to calculate the corresponding 
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displacements, as depicted in Figure 5.2. If the size of crack-tip elements is small enough, then 

the expressions can be approximated as 

(1)
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When a CS-FEM (or FEM) technique is adopted for computations, the accuracy of stress 

values would be low for those nodes near the crack-tip. For the sake of obtaining an accurate 

solution and easy implementation, the crack closure integrals can be expressed directly in terms 

of displacements and the internal finite element nodal forces, which are primary variables of the 

CS-FEM techniques. Also the fracture modes can be easily separated. If the integrals of stress 

are replaced by the nodal forces, the above equations for a cracked body with thickness B  can be 

then rewritten as 
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5.2.2  VCCT Formulations and Energy Release Rate Extracting 

The idea of one-step-analysis virtual crack closure method is assumed that the 

displacements CC  behind the virtual crack (which is just the original tip for real crack as in 

Figure 5.2(a)) can be closely approximated by the displacements AA  behind the real crack. In 

this case the expressions for energy release rates are 
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Here we will introduce another way to mathematically explain the above formulations, 

which stands on the assumption that the stress fields around the virtual crack-tip could be 

approximated closely to those around the real crack-tip [21] (or named as assumption of stress 

field equivalence). This assumption is actually based on the general common sense: when the 

geometry dimension, boundary conditions and external loading of a specimen are fixed, an 

infinitesimal perturbation of crack-tip location would not significantly affect the 

stress/displacement field. If we consider a linear elastic isotropic material under Mode I loading 

condition, which has a real crack with its tip at C  (or C , in Figure 5.2(a)) and an infinitesimal 

virtual crack CB   before it, the displacement and stress fields can be expressed according to 

linear elastic fracture mechanics (LEFM, the complete stress and displacement fields for Mode I 

and Mode II are listed in the Appendix of this chapter): 
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where IK  is the SIF for real crack (the SIF for the virtual crack will be denoted as 
IK̂  later), 

(2 2 )E    is the shear modulus, and   is the bulk modulus. It is noted that the above 

equations are valid for both real crack and virtual crack due to the assumption of stress field 

equivalence.  
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Now the opening displacement in Eq. (5.5), which involves two-steps computation, needs 

to be calculated. For the real crack (as shown in Figure 5.2(a)), the vertical nodal displacements 

on upper surface ( ,   r a ) and lower surface ( ,    r a ) can be inferred from Eq. 

(5.9), giving 
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The corresponding opening displacement for the nodes after the crack-tip can be easily 

evaluated and shown as below 
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The opening displacement for infinitesimal virtual crack (Figure 5.2(b)) can be obtained 

analogously as 
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If we set 0    in Eq. (5.10), the stress ahead of the crack-tip C  for the real crack yields 

the form as 
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According to the assumption of stress field equivalence, the corresponding stress for 

virtual crack-tip shall have the same form as the stress expression in Eq. (5.13). It means the SIF 
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value for virtual crack-tip would be identical to that for real crack-tip, as the following 

expression demonstrates: 
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Recalling the SIF’s expressed in Eq. (5.13) and (5.14) gives 
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Combining this equation with the strain energy release rate of Mode I from Eq. (5.5), it 

can be rewritten as 
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If a uniform mesh size is adopted for the elements before and after the crack-tip C , i.e., 

  a l , it may finally obtain the following relation as 
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This is exactly the expression for energy release rates of Mode I in Eq. (5.7), which 

mathematically reveals the mechanism of one-step-analysis for virtual crack closure method. For 

Mode II problems, analogous procedure of derivation can be followed. 

5.2.3 Inclined Crack 

In practical problems, cracks are usually not parallel to horizontal or vertical axis as 

shown in Figure 5.2. Without loss of generality, Figure 5.3 depicts a crack inclined with respect 

to the axes in global coordinate system and a local coordinate system based on crack-tip. The 
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corresponding formulations should be then updated according to the local coordinates. The edge 

length of crack-tip element BC  can be written as the following manner: 

2 2( ) ( )    B C B Ca x x y y  (5.20) 

 

 

 

 

Figure 5.3. Inclined crack in a plane with local coordinates. 

 

 

The crack inclination angle   is found as 
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If we project the associated nodal forces and crack opening displacement into local 

coordinates, it gives 
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Correspondingly, the strain energy release rates can now evaluated as follows: 
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5.3 Numerical Examples 

In this section, several examples are presented to numerically illustrate the applications of 

proposed technique for elastic fracture mechanics problems. In the first example, a rectangular 

plate with an edge-crack under uniaxial tension is examined for the method applied under the 

loading condition of Mode I. The second example is about the edge-crack under mixed-mode 

loading. The crack propagation of a panel with rivet holes (PMMA beam) is studied in the third 

example. 

5.3.1 Rectangular Plate with an Edge-crack Under Tension 

This example analyzes a rectangular plate with a finite single crack under the uniform 

far-field tension ( 21.0 N cm  ). The basic geometry with the description of symmetric loading 

is illustrated in Figure 5.4 (a). The width and length of the plate are denoted by W and H , which 

are set as 5.0W cm and 10.0H cm. The initial crack length is defined as 1a cm. Plane 

strain conditions are assumed. A linear elastic simulation is implemented with the material 

constants: Young’s modulus 23 N cm1 10 E  and Poisson’s ratio 0.3  . The empirical 

expression of SIF for this problem is 
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IK Y a   (5.25) 

where a  is the crack length, Y  is a dimensionless parameter that depends on the geometry with 

the expression as [65] 

2 3 41.12 0.231( ) 10.55( ) 21.72( ) 30.39( )
a a a a

Y
W W W W
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(a) (b) 

Figure 5.4. Rectangular plate with an edge-crack under tension and a uniform structured mesh: (a) a 

sketch of geometry and boundary conditions; and (b) a representative structured mesh. 

 

 

In Figure 5.4 (b), the domain is discretized by a structured mesh with 4-node quadrilateral 

(Q4) elements.  Figure 5.5(a) shows the comparison of strain energy. It is seen that all the energy 

curves are closer to reference solution when the mesh becomes finer. For a given set of nodes, 

the CS-FEM result behaves closer to reference solution than FEM-T3 and FEM-Q4. In Figure 

5.5(b), the SIF results of presented method (CS-FEM with VCCT) are compared with those of 


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conventional method: FEM-T3 with I-integral, FEM-Q4 with I-integral and FEM-Q4 with 

VCCT. All solutions of FEM-Q4 with I-integral are closer to the reference values than FEM-Q4 

with VCCT. While the presented method becomes a good competitor as FEM-Q4 with I-integral 

and performs (slightly) more accurate than it when model adopts more than 1987 nodes.  

 

(a) 
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(b) 

Figure 5.5. Comparison of different methods for rectangular plate with an edge-crack under tension: (a) 

strain energy; and (b) stress intensity factor 
I

K . 

 

5.3.2 Plate with an Edge-crack Under Mixed-mode Loading 

The second example deals with the crack in a 2D rectangular plate with an edge crack 

under a shear loading 
21.0 N cm  , as shown in Figure 5.6(a). The geometry parameters are: 

width 7.0W cm, half of length 8.0H cm, and crack length 3.5a  cm. The material 

properties are set as Young’s modulus 300E GPa and Poisson’s ratio 0.25  . The exact 

stress intensity factors are given as: 34IK Pa mm  and 4.55IIK Pa mm . 
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(a) (b) 

Figure 5.6. Plate with an edge-crack under shear loading and a representative structured mesh: (a) a 

sketch of geometry and boundary conditions; and (b) a uniform structured mesh. 

 

Figure 5.7(a) shows the comparison of strain energy. It is seen that all the energy curves 

are closer to reference solution when the mesh becomes finer. For a given set of nodes, the CS-

FEM result behaves closer to reference solution than FEM-T3 and FEM-Q4. The strain energy 

comparisons between CS-FEM, FEM-T3 and FEM-Q4 are plotted in Figure 5.7(a). Again CS-

FEM gains the closest results to reference value. In Figure 5.7(b) and (c), the results from 

presented method (CS-FEM with VCCT) are compared with those from the other three methods: 

FEM-T3 with I-integral, standard FEM-Q4 with I-integral and FEM-Q4 with VCCT. The 

convergence study of stress intensity factors shows that the proposed method is the most accurate 

approach among these methods for computation of IK , and it is between FEM-Q4 with I-integral 
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and FEM-Q4 with VCCT for computation of IIK . It is again seen the presented method is a good 

competitor as FEM-Q4 with I-integral. 

  

 

(a) 
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(b) 

 

(c) 

Figure 5.7. Comparison of different methods for a plate with an edge-crack under shear loading: (a) strain 

energy; (b) stress intensity factor 
I

K ; and (c) stress intensity factor 
II

K . 

 

5.3.3 Crack Propagation of a Panel with Rivet Holes (PMMA beam) 

The problem here aims to simulate the crack propagation trajectory under mixed-mode 

loading. For a crack propagation problem at each time step, one needs to determine whether the 

crack will growth or not (crack propagation criteria), and then in which direction the crack will 

propagate (crack kinking criteria). The SIF’s, which was introduced in previous subsection, are 

often utilized for crack propagation criteria. Other available crack propagation criteria are based 

on energetic parameters and they may use the strain energy release rates [66], the strain energy 

density [67], etc. The crack growth direction is determined by kinking criteria, which can be 

categorized into three types [68]:  



94 
 

    1) Local approach: based on the local fields around the crack-tip, for instance, the maximum 

circumferential stress criterion (MCSC) introduced by Erdogan and Sih [69], or the maximum 

strain criterion (MSC) [70];  

    2) Global approach: based on the energy distribution throughout the cracked part, such as the 

maximal strain energy release rate criterion (MSERRC) [71];  

    3) Micro-void continuum damage model based method: according to the assumption that the 

void initialization and the void growth control the crack growth direction [72]. 

In this work, we utilize the MCSC to determine a crack growth direction c  such that the 

circumferential stress   reaches maximum. If a problem under general mixed-mode loadings 

is considered, the asymptotic near-tip circumferential and shear stresses can be expressed in the 

tip polar co-ordinate system, giving 
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After a few manipulations of inferring the maximum circumferential stress [72], the 

following equation can be established to give 

    I IIsin 3cos 1 0   c cK K  (5.28) 

where c  represents the angle of crack propagation in the tip local co-ordinate system, which is 

easily obtained by re-expressing Eq.(5.28) as 
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Using this criterion, the equivalent mode I SIF will be then defined as [73] 

    I I II

1
cos 1 cos 3 sin

2 2


 

 
      

 
eqK K K  (5.30) 

This equivalent stress intensity factor can provide an input for the fatigue crack growth 

when applying the classical Paris model to mixed-mode loading. 

 

Figure 5.8. The sketch of PMMA beam with three holes subjected to a concentrated loading (dimensions 

in inches). 

 

Consider a polymethy methacrylate (PMMA) beam with three rivet holes as sketched in 

Figure 5.8, which has also been studied experimentally or numerically in some references [74–

76]. The width of the beam specimen is denoted by W , the height by H , and the radius of each 

hole by 0r . The length of the initial crack is denoted by 0a  and its distance from the left side of 

the beam by 0b . The geometric dimensions are set as 0.5t , =20W , =8H , 0 0.25r , 

0 4.0a , 0 1.0b and 0 1.25c . The material properties are set as modulus 53.0 10 E PSI 
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and Poisson’s ratio 0.3  .The beam is under the action of vertical concentrated load applied at 

the center line of the top, which is 1P lbf . 

Figure 5.9 plots the initial mesh of the specimen which is discretized with 15853  

elements. Figure 5.9(b) and (c) show the contours of von Mises stress distribution on the zoomed 

deformed configurations at different steps with the crack increment size selected as 0.20 . In 

each step of modeling the crack propagation, the mesh here is updated to capture the location of 

crack-tip and crack line. Figure 5.10 compares the actual crack path and predicted path when the 

crack grows to a total length of 4.2 . The predicted crack path shows excellent agreement with 

some available numerical and experimental results [74,75] 

 

(a) 

 

(b) 
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(c) 

Figure 5.9. PMMA beam: (a) initial mesh at step 0; and the contours of stress distribution (von Mises 

stress) and an illustration of zoomed deformation at different steps with the crack increment at 0.20: (b) 

step 6; and (c) step 17. 

 

 

 

 

(a) (b) 

Figure 5.10. Comparison of trajectories between presented simulation and experiment: (a) prediction; and 

(b) experiment [76]. 
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5.4 Conclusions 

In this study, the VCCT has been developed for evaluation of fracture mechanics 

parameters and simulation of crack propagation within the framework of CS-FEM. In the 

implementation, the elements in an FE background mesh are subdivided into four smoothing 

cells. The cell-wise strain smoothing operations are then applied based on these smoothing cells 

to obtain the smoothed strains. When piecewise-constant weight functions are adopted, area 

integrations over the domain of cell become contour integration along the boundaries of the 

smoothing cells. As a result, only shape functions themselves (not the derivatives) will be 

involved in computation of the field gradients to form the stiffness matrix. It also has less strict 

mesh quality requirements since no mapping or coordinate transformation is involved in the CS-

FEM. Based on the assumption that an infinitesimal perturbation of crack-tip location shall not 

affect the stress/displacement field obviously, the mechanism of one-step-analysis feature of 

VCCT has been presented via an explanation mathematically. The treatment of inclined cracks is 

also introduced for VCCT by establishing a local coordinate system based on crack-tip. 

Several numerical examples have been carried out to validate the proposed method, 

including evaluation of the fracture parameters and prediction of crack propagation. Although all 

examples are tested for a single crack, the method has in general suitable for multi-cracked 

problems. In the first two examples, the strain energy and stress intensity factors have been 

calculated by proposed method. The comparisons between presented method and conventional 

FEM using T3 or Q4 elements proved that the presented method is a good competitor as FEM-

Q4 with interaction integral method. However, the present formation only used the nodal 

reaction forces at the crack-tip and the opening displacements just behind the tip, which are the 

primary variables of the CS-FEM results. It attains same level accuracy as FEM-Q4 with 
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interaction integral method but does not require much extra effort of post-processing to extract 

fracture parameters. Also, simulation of crack propagation in an elastic body showed that it is 

well capable of capturing the actual path of crack propagation and it has good agreement with the 

experimental results.  
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Appendix 5.1. Stress and Displacement Fields for Mode I and Mode II in a Linear Elastic, 

Isotropic Material 

The Williams’ (1957) [77] solution for stress and displacement fields near the crack-tip 

can be expressed as 

I II
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where   is the bulk modulus,   and   are Poisson’s ratio and the shear modulus, respectively.  
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Chapter 6. Edge-Based Smoothing Technique for Modeling 

Crystal Plasticity 

 

6.1 Introduction 

In crystals, the mechanical behaves are essentially anisotropic, i.e., mechanical properties 

such as plastic deformation are directionally dependent. Microscopically, the properties of 

anisotropy are related to the forming a crystalline structure (lattices) with certain specific, 

characteristic orientations during the crystallization, and in reality a variety of crystallographic 

defects such as twins, dislocations or stacking faults, etc. The continuum crystal plasticity 

includes considerable models to cope with the anisotropic deformation of crystals, developed 

since the contributions of pioneers such as Sachs [1] (1928) and Taylor [2] (1938).  

Over the past three decades, a large class of research has been conducted to describe the 

constitutive and numerical aspects for both single crystals (monocrystals) and polycrystals. The 

numerically tractable constitutive models, incorporating existing knowledge of the physics of 

crystal deformation and continuum, were invented to tackle crystal mechanical problems 

subjected to complicated internal and/or external boundary conditions. For single crystal, one of 

the most used numerical tools is the crystal plasticity finite element method (CPFEM). This 

method is used with various models and was proposed to study the anisotropic plastic behavior 

by many investigators [3–13]. Some critical analysis of the behaviors predicted from these 

models and new explorations can be found in literature [14–21]. Generally, CPFEM evolves the 

equilibrium of the forces and the compatibility of the displacements employing a weak form of 
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the principle of virtual work based on certain crystal plasticity constitutive models. CPFEM 

models possess many advantages, in which one of them is their capability to describe the 

inelastic deformation and localization processes through encompassing various constitutive 

formulations for plastic flow and hardening at microscopic crystallographic sliding level, even 

for complicated geometry or boundary conditions. 

Crystal plasticity can be exploited also to study material behaviors of polycrystals from 

the behavior of individual grains. The reason is that polycrystals are assemblies of large numbers 

of single crystals (grains), each of which can deform by crystallographic slip with varying 

orientations. As such, the actual solution of a problem of the macroscopic behaviors of a 

polycrystal may be a highly complex elastic-plastic boundary value problem for a crowd of 

anisotropic, continuous and fully contiguous crystallites [22]. To deal with the polycrystal 

plasticity, a classical approach is exploring some appropriate fashion to average the crystal 

interactions to describe macroscopic behavior. An early attempt is to assume all grains 

experience the same state of stress so that it satisfies the equilibrium condition across the grain 

boundaries but violates the compatibility conditions [1], i.e., finite strains may induce gaps and 

overlaps between grains. While the Taylor model [2] assumes grains within the aggregate 

experience the same state of deformation so as to ensure the compatibility conditions; however, 

the equilibrium condition is neglected. To satisfy both compatibility and equilibrium conditions 

across the grain boundaries, a self-consistent model was first constructed by Kröner [23] and 

then further extended [24–28]. In a self-consistent model, each grain is modelled as an inclusion 

embedded in a homogeneous matrix of surrounding material maintaining mechanical properties 

of the polycrystal. A number of investigations with new models have been conducted to link the 

grain level mechanical response to the response of a polycrystalline aggregate, including 
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developing constrained hybrid model [29], generalized Taylor models [2,30–32] and Green’s 

function fast Fourier transform (FFT) models [33,34], constructing dislocation density-based 

crystal constitutive equations [35], application of statistical continuum mechanics to study 

polycrystals [36,37], and so on. Due to the development of computing power over the last few 

decades, many crystal plasticity models have been integrated into FE simulation tools and 

successfully applied to numerous practical problems [38,39]. To reduce the CPU time involved 

in crystal plasticity simulations (especially for large grain assemblies), some computationally 

efficient strategies have been proposed recently [40–43]. So far, crystal plasticity models based 

on FE simulations are able to effectively model polycrystals at both microscopic and 

macroscopic scales. On topics related to kinematics, homogenization and multiscale methods of 

crystal plasticity modeling, one can refer to the latest review paper [44]. 

In CPFEM simulation, especially in modeling of polycrystal deformation, the mesh 

discretization for a domain with a great quantity of grains needs to consider the facility or 

feasibility. To discretize a domain with internal grain boundaries, the T-mesh (using triangular 

elements for 2D and tetrahedral elements for 3D) is always easy to generate compared to other 

mesh types (e.g., quadrilateral mesh for 2D or hexahedral mesh for 3D). However, the 

conventional FEM models using T-mesh often suffer from poor accuracy, excessive stiffness in 

shearing/bending, sensitivity of mesh distortion and sometimes rigid behavior of entire mesh, etc. 

In addition, because of the plastic incompressibility of (single) crystals, an appropriate numerical 

technique, which can deal with volumetric locking phenomena, is very necessary. Fortunately, 

the recently proposed smoothed finite element methods (S-FEM) can achieve higher accuracy 

than the commonly used low order FEM [45]. Based on those good features (e.g., high accuracy 

and convergence rates, mesh distortion immunity as absence of isoparametric mapping and 
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volumetric locking free) already obtained for ES-FEM so far, in this chapter we attempt to 

extend it into crystal plasticity modeling. In this work, we present the formulations and 

numerical implementation of a hyperelastic-based multiplicative plasticity constitutive model 

based on the ES-FEM scheme to describe the anisotropic finite strain for rate independent crystal 

plasticity using a triangular mesh. The implementation is carried out in the general framework of 

a smoothed Galerkin weak form to avoid volumetric locking and to capture localized failure 

modes and it involves strain smoothing manipulations over the whole displacement field. The 

kinematical basis of elastoplastic deformation for the model is the multiplicative decomposition 

of the deformation gradient by introducing the isoclinic intermediate configuration. The stress 

update adopts the exponential map-based integration algorithm, which possesses some 

advantages such as computation of the exponential function through a recursion framework with 

a straightward manner from the Cayley-Hamilton theorem, avoiding the spectral decomposition 

of the argument tensors.  

The chapter is organized as follows. Section 2 presents the global solution strategy and 

the idea of the smoothing technique: general framework of the incremental boundary value 

problem based on Newton-Raphson scheme at finite strains and edge-based gradient smoothing 

operation. The kinematics of crystal deformation and constitutive laws are laid out in Section 3. 

Section 4 discusses a planar double slip model and implementation of the stress state update 

algorithm with return-mapping. In Section 5, the proposed smoothed technique based crystal 

plasticity finite element modeling procedure is used to study the strain localization in ductile 

single crystals with two representative numerical examples. Furthermore, the mesoscopic 

deformation and macro-mechanical behavior of polycrystals are studied in Section 6 by 

presented procedure with the geometry approximated by the Voronoi tessellation. 
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6.2 Problem Description and Edge-Based Strain Smoothing Technique 

6.2.1 General Framework 

Consider a solid referred to an initial configuration 0 ( )X , which is open and bounded 

by smooth boundary 0  and closure 
00 :  . Let  1,n nt t 

 be the time interval of interest, 

and now we assume a process of incremental loading whereby the displacement field of particles 

mapping over 0  changes from n  at time nt  to 1  n n u   at time 1nt . With these notations 

in hand, the weak form of equilibrium for conventional FEM at time 1nt  according to the virtual 

principle then reads as 

0 0 0
1 0 1 1: d d d 0b t

n n n


          P f f    (6.1) 

where 1

b

nf  and 1

t

nf  denotes the body force and the prescribed traction vector, respectively,   

defines an admissible virtual displacement field satisfying the homogeneous form of essential 

boundary conditions, 0  denotes the material gradient, and 1nP  stands for the first Piola-

Kirchhoff stress field at the end of the time interval, which can be determined by a general form 

using some algorithm of stress updating method [46], that is 

1 1
ˆ ( , )n n n P P F  (6.2) 

where n  represents the set of internal variables and the deformation gradient at state 1nt  is 

given as 

0 11 n nF   (6.3) 

Substitute Eq.(6.2) and (6.3) into (6.1), we have 

0 0
1 0 1 1

ˆ ( ) : d d 0b t

n n n n


  
       
  P f f,   F  (6.4) 
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which defines a set of non-linear equations that can be solved to obtain the updated deformation 

mapping 1n . If the Newton-Raphson iteration method is employed, one may arrive at the 

expression for this finite strain incremental boundary value problem [46], which gives 

0
0 1 0

ˆ d 0    nK u r   (6.5) 

where r  is the residual force term, and 
1

ˆ
nK  denotes the consistent tangents， which can be 

computed trivially for small strains, but would be more cumbersome to derive for finite strain 

models. 

6.2.2 Briefing of Edge-Based Strain Smoothing Technique 

The strain smoothing technique was applied in Galerkin mesh-free methods [47], which 

use the moving least-squares (MLS) and reproducing kernel approximations. The so-called 

weakened weak (W2) formulation based on the G space theory [48] was subsequently developed 

by extending the gradient smoothing technique to a class of discontinuous shape functions. 

The strain smoothing operation is carried out over the so-called local smoothing domain 

which can be constructed within elements (e.g., CS-FEM) but more often beyond the elements 

(e.g., ES-FEM, NS-FEM and FS-FEM). The smoothed strain field k , for computation of 

stiffness matrix, will be in generally computed by a weighted average of the standard strain field 

( )h
x . For example, the smoothed strain field at a point in a smoothed domain s

k  can be 

defined by the following operation 

( ) ( ) ( )d


   h

h

k C k Cx x x x   (6.6) 
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where ( ) k Cx x  is a distribution function or a smoothing function that satisfies at least unity 

property such as 

( ) 0  k Cx x  and ( )d 1


   s
k

k Cx x  (6.7) 

For simplicity, the smoothing function is assumed to be a Heaviside-type piecewise 

constant function defined in the following form 

1 ,
( )

0,


 
  



s s

k k

k C s

k

A x
x x

x
 (6.8) 

where d


  s
k

s

kA  is the area of the smoothing domain s

k
. Substituting Eq. (6.8) into Eq. (6.6)  

and applying the divergence theorem, the smoothed strains would be 

1 1
d ( ) ( )d

 
     s s

k k

h s h

k S ks s

k kA A
u n x u x  (6.9) 

where 
s

k  is the boundary of the smoothing domain s

k
, and ( )s

kn x  is the outward normal matrix 

on the boundary 
s

k  defined by 

0
( )

0

 
  
  

T
s s

kx kys

k s s

ky kx

n n

n n
n x  (6.10) 

in which s

kxn  and s

kyn  are the unit outward normal components in x-axis and y-axis, respectively. 

The idea of ES-FEM is applying the smoothing operation on the smoothing domain s

k  

associated with the edge which is created by connecting two endpoints of the edge to centroids of 

corresponding adjacent element(s) as sketched in Figure 3.3. Based on the formulations already 

introduced in Eq. (3.12)–(3.17), the smoothed strain-displacement matrix for ES-FEM using 

triangle elements can be assembled by 
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1

1 1

3

 
e
kn

e e

I j js
jk

A
A

B B  (6.11) 

where 



e
j

e

j I

I S

B B  is the compatible strain-displacement matrix for j th element attached to 

edge k . The expression of matrix ( )IB x  for the node I  in triangle elements is defined as 

( ) ( )
0

( ) ( )
( ) ( )

0

T

S

I I

I I

I I

N N

x y

N N

y x

  
  
   

  
   

x

x x
B

x

xNx  (6.12) 

Due to the use of the triangular elements with the linear shape functions, the entries of 

matrix ( )IB x  are constants, and so are the entries of matrix e

jB  and 
IB . In a similar fashion, the 

smoothed element discrete spatial gradient operator (strain-displacement matrix) involving finite 

deformation and strains for computing of smoothed consistent spatial tangent modulus later will 

be of the form 

1

1 1

3

 
e
kn

e e

I j js
jk

A
A

G G  (6.13) 

where e

jG  is the element discrete spatial gradient operator of element j  and its associated form 

for plane problems is given as 

1

1

31

1

32

32

2

32

( )( ) ( )
0 0 0

( )( ) ( )
0 0 0

( )( ) ( )
0 0 0

( )( ) ( )
0 0 0

e

j

NN N

x x x

NN N

x x x

NN N

y y y

NN N

y y y

  
   
 

  
   

  
  

   
 

  
    

xx x

xx x

G
xx x

xx x

 (6.14) 
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The smoothed consistent spatial tangent modulus 
TK  for an associated smoothing 

domain is computed as 



  
s
k

T T s

T kd AK G G G G  
(6.15) 

where  is the smoothed elastoplastic consistent tangent, and the expression of the associated 

elastoplastic consistent tangent for planar double slip single crystal model will be introduced in 

Section 4. The corresponding smoothed internal force will be obtained using a comparable 

fashion of smoothing as follows 

int



  
s
k

T T s

kd Af B B   
(6.16) 

where the smoothed Cauchy stress   here can be computed through a completely analogous 

operation of gradient smoothing as mentioned. Once the smoothed consistent spatial tangent 

modulus matrix and the smoothed internal force vector for each smoothing cells are obtained, the 

discrete global stiffness matrix and internal force vector for the system will be assembled 

similarly to the procedure of standard FEM. 

 

6.3 Kinematics of Crystal Deformation and Constitutive Model 

The pioneering work of kinematics of crystal plasticity theory had been outlined by 

[6,49–53]. The basic constitutive description of crystal plasticity here follows the framework laid 

out by [6,54,55], with the variation of the integration algorithm and numerical implementation in 

the next section outlined by [46,56]. The mechanical response of inelastic deformation of 

crystalline is dominated by crystallographic slip, in which the other mechanisms such as the 

sliding effect of grain boundaries, twinning or diffusion are not considered.  
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6.3.1 Kinematics of Crystal Plastic Deformation 

The material is presumed to flow through the crystal lattice owing to dislocation motions. 

During the process, the crystal lattice undergoes rigid rotation and stretching, which can be 

recovered via complete unloading of the material. Although these two deformation modes arise 

simultaneously, they can be multiplicatively decomposed [50] locally in mathematical models by 

introducing the intermediate configuration as shown in Figure 6.1, i.e., considering the 

multiplicative decomposition [57–58], the deformation gradient is specified as 

 e p
F F F  (6.17) 

where elastic deformation and rigid body motions are typically considered to be included in e
F , 

and p
F  describes locally a plastic intermediate (or unrotated) configuration which is supposed 

to be obtained by the evolution constitutive equation ( )  
pp

tF F  with the initial condition 

0( ) 1 p

t t tF  at the reference configuration [59]. 

In Figure 6.1, a pair of orthonormal slip system vectors (initial slip direction vector 0


s  

and initial slip plane normal vector 
0


n ) defined the  th slip system in initial (or undeformed) 

configuration; the unit slip system vectors s  and n  remain orthonormal since 

0 0 0      s n s n . 

Through the polar decomposition of e
F , we can define the rotation tensor e

R  and the 

right stretch tensor  
eU  as follows 


e e e

F R U  (6.18) 

Then the unit vectors s  and n  will take the form 
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0

  e
s R s  and 0

  e
n R n  (6.19) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Illustration of kinematics of elastoplastic deformation of crystalline solid deformation by 

crystallographic slip: multiplicative decomposition of deformation gradient, 
e p

F F F (involving the 

initial configuration 0 ( )X , intermediate configuration ( )X , and deformed configuration ( )X ). 

 

 

The plastic velocity gradient in the intermediate configuration can be represented as the 

sum of plastic shearing rates (
 ) for all active crystallographic slip systems by [6, 51] 

 
1

=1

asN
p p p   






  L F F s n  (6.20) 

where asN  is the number of active slip systems, 
  is the plastic increment within the slip 

system. 

6.3.2 Constitutive Laws 

= e p
F F F

0 ( )X

( )X

( )X

p
F e

F

0


n

0


s


n


s

n

s
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In this subsection, we present the constitutive relations of a general finite strain, rate-

independent, multisurface elastoplastic model of crystals. The model is formulated based on the 

framework of hyperelastic-based multiplicative plasticity integrating the ES-FEM scheme to 

describe the anisotropic finite strain continuum crystal plasticity.  

The mechanisms of inelastic deformation of crystals resulting from shear deformations 

occurring on one or more slip systems have been mentioned previously, but no description was 

given yet to reckon the stresses required to initiate and sustain the deformation. A crystal 

deforms plastically only when the stress component on a slip plane and in the slip direction 

reaches the critical resolved shear stress. The resolved shear stress on a system is evaluated as 

follows 

:    S s n  (6.21) 

where S  denotes the second Piola-Kirchhoff stress (PK2), which is symmetric and is defined via 

the relation as 

1 T:e e eJ   S C E F F  (6.22) 

where 
eC  is the fourth order elastic constant matrix, 

T1
( )

2
  e e

E F F I  is the Lagrangian 

finite strain tensor,   is the Cauchy stress tensor which has a relation with the Kirchhoff stress 

tensor   or PK2 stress via 

1 1    e eTJ J F S F   (6.23) 

It is noted that both the PK2 stress and Cauchy stress (and hence the Kirchhoff stress) are 

symmetric. Using above equations and the rotation tensor defined in Eq. (6.18), the resolved 

shear stress can be rewritten as 

:    eT e
R R s n  (6.24) 
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To model the reversibility of crystalline material behavior subjected to large strains, 

accounting both for nonlinear behavior and large shape changes, a hyperelastic law is adopted in 

constitutive relation. Assume the strain energy density function arisen by elastic contribution is 

denoted by 
eW , the Kirchhoff stress   in Eq. (6.24) can be obtained in terms of e

F  as 

T
 


e
e

e

W
 F

F
 (6.25) 

The evaluation of yield functions for rate-independent elastoplastic model of FCC 

crystals here is determined by the relationship in terms of the resolved shear stress and the 

critical resolved shear stress. For the  th
 slip system, it would be 

tr tr( ( ), ) ( )y crf           ,  1,2,...,  asN  (6.26) 

where  cr
 is the critical resolved shear stress for the  th

 slip system, 
tr( )   is the resolved 

shear stress related to the trial state of stress 
tr  in the general return-mapping procedure. Note 

that 
f  would be anisotropic functions of 

 . The plastic slip for an associated slip system may 

commence when 0f   , that is, the state of resolved shear stress exceeds the corresponding 

anisotropic yield surface [60]. The set of systems for which    cr  is called as the set of 

potentially active or critical systems [6]. 

It is worthwhile to note that the critical resolved shear stress 
tr( )   depends on both the 

strain and the history of strain if hardening behavior is involved. After first introduced in 

Taylor’s dislocation model [61], a number of flow rules have been developed to describe the 

hardening behavior of crystals for both rate-independent (e.g., References [26,52,62–68]) and 

rate-dependent (e.g., References [5,7,46,69–73]). The general form of the constitutive laws for 
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slip (shear) on  th
 slip system (the current strain hardening state) can be expressed as the 

following evolution equation [4] 

1

asN

cr h 





 


 ,  1,2,...,  asN  (6.27) 

where h  are slip-plane plastic hardening moduli that characterize the work hardening rate of 

the crystal, the sum ranges over all activated slip systems. The diagonal components h  ( 

) represent self-hardening on a slip system and off diagonal terms h  (   ) denote latent 

hardening, viz., hardening of one slip system due to slip on another [74]. In this study, the 

classical, commonly used Taylor isotropic hardening rule is employed where the self and latent 

hardening are considered equal. Besides, the resolved critical stress is assumed to be a function 

of a single internal variable  , or so-called the Taylor cumulative shear strain on all slip system, 

i.e. 

0
1

d



 



asN

t

t  (6.28) 

 

6.4 Planar Double Slip Model and Numerical Implementation 

The actual crystal plastic deformation in physics may comprise a number of slip systems, 

e.g., face centered cubic (fcc) crystals have 12 slip systems. In most situations, the slip initiation 

and shear band formation is observed in crystals undergoing multi-slip, often with a double mode 

of primary-conjugate slip [4]. Although the theory in the previous section is applicable for 

general three-dimensional slip geometry, we employ the planar primary-conjugate double slip 

geometry as sketched in Figure 6.2, due to its simplicity of implementation. 
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6.4.1 A Planar Double Slip Model 

To study the plane deformation of fcc crystals under certain crystallographic orientations 

and external loading, only two effective slip systems (other than 12 slip system in general fcc 

structures) with both of their slip directions and slip plane normal vectors lie in the drawing 

plane with loading and deformation. In Figure 6.2, 0  represent the initial orientation of slip 

systems 1 and 0  is the angle between systems 1 and 2. The mirrored slip systems 3 and 4 have 

the relations with systems 1 and 2 as 

3 3 1 1, , s n s n , 
4 4 2 2, , s n s n  (6.29) 

Observing from the mirrored pairs of slip systems, the compatible active slip sets would 

be 

1 , 2 , 3 , 4  (when the set has one system) 

 or: 1,2 , 2,3 , 3,4 , 4,1  (when the set has two systems) 

(6.30) 

According to constitutive theory of a compressible Neo-Hookean type model [12], the 

stored energy function is defined as 

21 1
ln [ ] ( : 3)

2 2
   e e e

iso

e

isoJW F F  (6.31) 

where   and   denote the bulk modulus and shear modulus, respectively. Here, the equation 

introduced the tensor e

isoF , the isochoric component of the elastic left Cauchy–Green strain 

tensor, which gives, 
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1 3( )e e e

iso JF F  with det( )e eJ  F  (6.32) 

 

 

 

 

 

 

 

 

Figure 6.2. Schematic drawing of a planar double-slip crystal model. 

Utilize Eq. (6.25), the Kirchhoff stress then can be evaluated as 

ln[ ] dev[ : ]  e e e

iso isoJ I F F  (6.33) 

Note that the inner products by hydrostatic components of Kirchhoff stress will be 

eliminated as the slip system tensors are deviatoric intrinsically. Then if we substitute Eq. (6.33) 

into Eq. (6.24), it leads to the resolved shear stress 

( [ ( ) ] ::         e e T e

iso iso iso

e T e
F F CR R s n s n  (6.34) 

where ( [ ( ) ] ( ) e e e T e T e

iso iso iso i

e T

so

e

so iC F FRF FR  represents the isochoric right Cauchy-Green 

strain tensor. Then a simple constitutive formulation of the Schmid stresses based on the Neo-

Hookean type model can be inferred as 

3 

n1 
s2 

 

s1 

n2 

1 

2 

4 

0

0
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    s n   with   e

isoFs s  and   e

isoFn n  (6.35) 

here the pairs of Eulerian vectors ( s , n ) of the slip systems are computed through mapping 

the orthonormal slip system vectors ( s , n ) by the unimodular part e

isoF  of the elastic 

deformation gradient. 

6.4.2 State Update Algorithm 

The exponential map algorithm for isotropic elastoplastic response in computational 

multiplicative elasto-plasticity is available in literature (e.g., [75–79]). For the case of anisotropic 

monocrystalline plasticity, the implementation of the exact exponential map algorithm utilizes 

the simple representation of the resolved shear stress   expressed in Eq. (6.34), which is based 

on the corresponding backward-Euler time discretization. 

Applying an incremental procedure, the incremental update of the trial elastic 

deformation gradient in pseudo-time interval  1,n nt t   can be expressed as 

tr

1

e e

n inc n F F F  (6.36) 

where e

nF  is the elastic deformation gradient at the beginning of the time step, and incF  is the 

incremental deformation gradient. The associated trial unimodular part e

isoF  is then to be 

evaluated by the incremental form of Eq. (6.32) and the trial Schmid stresses are easily written as 

tr tr tr

1n

     s n   with tr tre

iso

  Fs s  and tr tre

iso

  Fn n  (6.37) 

Once the trial stresses are obtained, we need to check that the trial state is within the 

elastic domain or lies on the yield surface when the return-mapping algorithm applied, viz., 

check the yielding function 
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tr tr tr tr tr tr

1 1 1( ) ( )               n cr n cr nf s n ,  with 1,2,...,  asN  (6.38) 

If 
tr 0f   , it locates in the elastic state, then the incremental plastic multipliers will be 

set to be zero and stress state will be set to trial state directly; Otherwise, the plastic multipliers 

for active systems should be non-negative, and it can be expressed by accumulative form of the 

corrector 
1n

 
 in the k th

 Newton-Raphson scheme as 

1, 1, 1 1:n k n k n

            with 
1

,

=  

 

 



 n f
A

J  (6.39) 

where A  is an active working set and the coefficients of the Jacobian 
J  can be computed in 

the following manner: 

   tr: D :J
       




      





c
s

re

i o e

d

d
n n s nFs s  (6.40) 

where De  represents the derivative of the exponential map at ( ) 






   s n
A

. 

When the plastic return-mapping is applied for active working set, the corresponding 

yield function involving   yields 

1( ) ( ) ( ) ( ( ))              cr nf s n ,  with A  (6.41) 

To find the pairs of Eulerian vectors ( s , n ) in Eq. (6.41), the Eq. (6.37) can be 

employed, and the corresponding term ( )e

isoF  by the exponential map-based update algorithm 

leads to 

tr( ) e e e

iso iso isoF F P ,  with exp ( ) 






 
   

 
e

isoP s n
A

 (6.42) 

The updated elastic deformation gradient and Kirchhoff stress at the end of the interval 

 1,n nt t   would be obtained via Eq. (6.32) and (6.33), we now arrive at 
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1 3

1 e e

n isoJF F  and 
1 1ln[ ] dev[ ( ) ]e e e T

n n iso isoJ    I F F  (6.43) 

Concerning the elastoplastic consistent tangents for the stress updating algorithm above, 

here the tedious derivation will not be presented and we adopt the similar expression of 

algorithmic moduli employed by Reference [11], that is 

1

(1 ln[ ]) 2 ln[ ]

2 1 2
tr[ ( ) ][ ] [dev[ ] dev[ ]]

3 3 3

G dev[ ] dev[ ]  



    



 



 

 

   

      

      

e e

e e T

iso iso

J J1 1

1 1 1 1F F

s n n s s n n s
A A

   
(6.44) 

The step-by-step algorithm procedure for implementing the stress updating algorithm 

discussed above is summarized in the Appendix of this chapter. 

 

6.5 Applications to Single Crystal Plasticity 

In this section, the numerical procedure proposed will be carried out for single crystal 

plasticity with examples of the planar slip single crystal model in the context of rate-independent 

localization computation. 

6.5.1 Planar Tension with Symmetric Localization 

Strain localization is regarded as a typical instability phenomenon of materials in solid 

mechanics. The studied problem involves different failure modes: the specimen appears to be the 

fashion of homogeneous deformation in the early stage of loading, followed by a localization 

mode of shear bands formation which is superposed by diffuse necking at high strain levels [13]. 

In the numerical example here, the geometry with the description of symmetric displacement-

controlled loading under plane strain conditions is illustrated in Figure 6.3(a). The geometry 
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parameters are set as: width 20W mm, and length 60H mm. The material parameters are 

chosen to be: Young modulus 55.4911E GPa, Poisson’s ratio 0.315  ; and the hardening 

function  0 0, 0( ) 1 exp( / )y y y h         , with the parameters 0 0.0929  , 0.0010h 

GPa, flow stress 0 0.0600y GPa and 0, 0.0480 y GPa.  

  The initial orientation of the first slip system (as indicated in Figure 6.2) is assumed to 

be 0 60.0    w.r.t the horizontal direction and the angle between the second slip system and the 

first one is 0 60.0   , i.e., the crystal lattice is oriented symmetrically with respect to the axis of 

tension. The specimen will be deformed up to a prescribed elongation of 5.0 D mm at both 

ends in the vertical direction. A material imperfection in the center of the specimen as sketched 

by a square in Figure 6.3(a) is assumed to trigger the strain localization and the computations 

presented here are considered as a plane deformation under plane strain condition. Figure 6.3(b) 

shows a similar experiment of the formation of macroscopic bands conducted by [80]. 

  By exploiting the symmetry along the centerlines of the specimen, only one quadrant of 

the specimen subjected to appropriate boundary conditions is necessary to discretize and analyze. 

Because of the plastic incompressibility of single crystals, some special elements such as Q1E4 

enhanced incompatible elements [81] or F-bar elements [82] were utilized to tackle the 

phenomenon of volumetric locking in their previous work for similar problems. In the ES-FEM 

scheme, the domain is discretized with a base mesh of constant strain triangle elements (CST or 

T3), and then followed by the construction of strain smoothing, which is performed within 

elements but more often beyond the elements (meshfree concepts). Without loss of generality, 

the model adopts a free initial unstructured mesh, which is versatile for the generation of meshes 

for complex geometries. In this example, the performance of proposed formulations and 
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algorithms implemented using ES-FEM is compared with FEM by same initial grid plotted in 

Figure 6.5(a). Figure 6.4 plots the reactions along the constrained edge against the associated 

prescribed elongation, for both FEM and ES-FEM. The ES-FEM model has two cases: a coarse 

mesh case with 2432  elements and a fine mesh one with 9704  elements as shown in Figure 

6.5(a). Similar to the typical stress-strain curve of ductile materials, the reaction increases slowly 

after a yield point and it will continue to rise along the deformation until it reaches the peak 

point, i.e., edge displacement about 3.8 mm. After this point, it decreases with unstable 

phenomenon occurs which is due to the rather abrupt rotation of the crystal lattice along the 

shear bands in softer orientation geometrically. At the descending stage of reaction, the FEM 

model with fine mesh behaves stiffer than ES-FEM model, no matter using coarse mesh or fine 

mesh. The mesh sensitivity study of ES-FEM model indicated by comparison of reaction 

displacement curves (coarse mesh and fine mesh) shows the reactions are almost identical before 

the onset of reaction descending stage, and the variance along the drop stage is also smaller than 

references [11–12]. It is also worthwhile to note that the ES-FEM model with fine mesh behaves 

slightly softer than the coarse one after the curves reach the associated peak reactions. Figure 

6.5(b) and (c) depicts the deformed configurations of specimen simulated by FEM at the stage 

4.5D  mm and the final stage with 5.0 D mm, respectively. And Figure 6.5(d) and (e) 

show the deformation/localization simulated by ES-FEM for the specimen stretched up to 

4.5D  mm and 5.0 D mm ( / 16.667% D H ). To gain better visualization, the quarter 

model with initial and deformed mesh is mirrored to other three quadrants. We noted that this 

reflecting mapping generates a horizontal line in the middle of the grid of full model, but actually 

it does not affect the computation. For FEM case, it fails to model the shear bands in localization 

analysis when the specimen stretched up to 4.5D  mm shown in Figure 6.5(b). Two crossed 
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shear bands are observed in final configuration plotted in Figure 6.5(c), but they are not fully 

developed compared to references [11,56]. In the deformed configurations in Figure 6.5(d) and 

(e) obtained by ES-FEM, it is observed that a pair of symmetric crossed shear bands with the 

cross angle of about 77.4 , i.e., the slip direction rotates from the initial angle 60.0  to 51.3 . 

Large deformation/strain occurs within elements along the shear band and this phenomena is also 

consistent with some available references [4,9,11,12,83]. Therefore, the proposed ES-FEM 

scheme here is demonstrated to be capable of modeling the shear bands development during 

single crystal deformation in this numerical test.  

  

 

 

(a) (b) 

Figure 6.3. Planar double-slip crystal specimen: (a) schematic drawing of the geometry and mechanical 

boundary condition used in our example, and (b) experimental observation of a specimen of single crystal 

of Al-2.8%wt Cu (Photo taken from Asaro, 1979 [84]). 
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Figure 6.4. The edge reactions against the elongation of prescribed edge. 

 

 

 

 

(a) (b) (c) 
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(d)  (e) 

Figure 6.5. Initial grid and deformed configuration of numerical model: (a) domain discretization with a 

basic unstructured mesh of 4 2426  CST elements (b) and (c) show the deformed configurations at the 

stage of 4.5 D  mm simulated by FEM and ES-FEM, respectively; and (d) and (e) show the 

deformation /localization of the specimen at the final stage with 5.0 D  mm ( 16.667% D H ) 

simulated by FEM and ES-FEM, respectively. 

 

6.5.2 Planar Tension with Unsymmetric Localization 

This example is included in order to study the strain localization in single crystal when 

the double slip systems are not symmetrically disposed about the loading axis. The basic 

geometry with the description of horizontal displacement-controlled loading is illustrated in 

Figure 6.6. The dimensions of are: 60W mm and 20H mm. The specimen deforms up to a 

prescribed elongation 9.0 D mm at both left and right ends. To exclude the rigid motion of 
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specimen, the middle node at each end is constrained at vertical direction. The material 

parameters are the same as the previous example. The initial orientation of the first slip system is 

assumed to be 0 15.0     w.r.t the horizontal direction and the relative angle between the slip 

systems is 0 60.0   . The specimen has been discretized using a base mesh of 2426 CST 

elements in Figure 6.7(a). The outcome of deformation obtained by the proposed method is 

provided in Figure 6.7(b) and (c). In Figure 6.7(c), a strong localization and associated softening 

along the narrow shear band shows that plastic flow has localized on the one of the slip planes. It 

has been known that distorted mesh in standard FEM cause relatively or even dramatically poor 

results and sometimes is computationally infeasible (e.g., this example). Again, the extended ES-

FEM scheme for finite strain applied in this example has been proved to be successful to model 

the strain localization accompanied with large shear deformation due to insensitivity of large 

mesh distortion. Compared to conventional linear FEM scheme, such advantages to avoid 

volumetric locking without using special elements [56] or increasing the total degrees of freedom 

show S-FEM is a promising technique in numerical simulations for similar problems of strain 

localization [85,86]. 

 

Figure 6.6. A sketch of the geometry with boundary conditions. 
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(a) 

 

(b) 

 

(c) 

Figure 6.7. Initial grid and deformed configuration: (a) domain discretization using CST elements; (b) 

Deformed configuration at the stage of 6.3 D mm; and (c) unsymmetric localization of the specimen at 

a final elongation 9.0 D  mm. 
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6.6 Polycrystalline Plasticity Modeling 

In polycrystalline materials the microstructure consists of continuous aggregates of single 

crystal grains connected by grain boundaries [87], and it then involves prediction of stress-strain 

behavior and texture by associating the grain subdivision with the geometrically necessary 

dislocation. Polycrystal plasticity relates the macromechanical behavior of polycrystalline 

materials to fundamental mechanisms of single crystal deformation. In this work, we focus on 

the stress and deformation behavior through exploring the smoothed technique based crystal 

plasticity finite element computation. Since stress/strain distributions depend on grain size, 

shape, orientation and their distributions, the FE micromechanics modeling of the behavior of 

polycrystalline aggregates should accommodate the realistic mesoscopic features, including the 

morphology of the grains. The Voronoi tessellation (VT) [37,88–92], regarded as an excellent 

candidate to generate polycrystalline grains for geometrical consideration in a stochastic manner, 

will be implemented to model the polycrystalline aggregates with random grain structure. In our 

numerical example here, the Voronoi tessellation [93] is also employed to build a random 

tessellation of the continuous problem domain. It is anticipated to predict the mesoscopic 

stress/strain field distribution involving crystalline slip dominated inelastic behavior under finite 

strain scheme. The representative volume element (RVE) size will be also investigated through 

assessing the macroscopically homogeneous behavior. In schematic description of the problem 

depicted in Figure 6.8(a), a specimen with the dimension 800W  µm and 400H  µm under the 

constraints illustrated is chosen to represent the polycrystalline structure domain. A 

representative microstructure with 150 random grain cells by VT is plotted in Figure 6.8(b). 

Figure 6.8(c) and (d) illustrate the domain discretization using CST elements for two typical 

virtual grain microstructures generated by VT (200 grains and 300 grains), where varied color 
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relate to a number of random grain orientations. It can be viewed as an aggregation of randomly 

orientated monocrystals which may endure plastic deformation of anisotropic finite strain. The 

study will focus on the deformation, elastoplastic behavior and macroscopic responses under 

monotonic tensile loading condition. 

 

 

 

 

 

 

 

(a) 

 

(b) 
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H
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(c) 

 

(d) 

Figure 6.8. A polycrystalline specimen subjected to tension: (a) A sketch of geometry and boundary 

conditions; (b) A representative microstructure with 150 random grain cells by Voronoi Tessellation; (c) 

and (d) show the domain discretization using CST elements for representative synthetic microstructure 

comprised of 200 grains and 300 grains generated by Voronoi tessellation. 

 

The numerical computation for the model is carried out by a displacement controlled 

loading, which is subjected to plane strain monotonic tension up to a final displacement of 10%  

total length of specimen in the horizontal direction. The equivalent von Mises stress of the 

specimen on deformed configurations for microstructures with 200 grain cells and 300 grain 

cells with random initial crystal orientations is shown in Figure 6.9(a) and (b). The local 
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equivalent stresses are up to almost 500%  of macroscopic equivalent stress (Figure 6.10). At 

some grain boundaries, the stress varies considerably, which is mainly due to the incompatible 

deformation of associated contiguous grains. These plots of stress distributions clearly illustrate 

the stress and locations of stress concentration varying from grain to grain and it shows the 

extremely inhomogeneity of polycrystalline aggregates at mesoscale level. 

To study the stress-strain behavior at grain level, the choice of RVE (the sufficient 

amount of grains that effectively includes a sampling of microstructural heterogeneities) is 

necessary to statistically represent the global material behavior. An appropriate RVE size would 

be the smallest volume over which the sample of material is stable and insensitive to the effect of 

the initial grain orientations and macroscopic boundary conditions. A series of numerical 

analysis of stress-strain analysis using ES-FEM are performed to estimate the size of RVE. Six 

different grain structures with 100, 150, 200, 250, 300, 350 grains each are constructed to 

perform the computation. Figure 6.10 compares the macroscopic equivalent stress against the 

strain of these polycrystalline aggregates with different grain amounts. Despite the differences in 

grains structures with different grain amount, morphology and orientations, these simulations 

exhibit similar macroscopic responses under monotonic tensile loading condition. In general, the 

strength of aggregates with more grain cells is a little higher than the one with fewer cells. It is 

mainly because that the overall response of aggregates with more constituents possesses a good 

performance of homogenized properties and has less effect of local heterogeneity. This feature 

indicates that the ensemble averages of mechanical properties of polycrystalline samples reflect 

microstructural heterogeneities to a certain extent, especially when analyzing aggregates with a 

small amount of grains (e.g., 100 grains). However, the convergence study of six different stress-

strain curves in Figure 6.10 shows that with 300 grains or more for our example (with the same 
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level of mesh size, i.e., without considering the effect of element size), the macro-mechanical 

behavior of interest are almost independent of variations in the grain structures, i.e., sufficiently 

large samples behave homogeneously and statistically equivalently regardless of the effect of 

random grain orientations. 

 
(a) 

 
 

(b) 

Figure 6.9. The equivalent stress (MPa) of specimen on the deformed configuration: (a) grain structure 

with 200 cells; and (b) grain structure with 300 cells. 
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Figure 6.10. The equivalent stress-strain curves of various grain structures: 100, 150, 200, 250, 300 and 

350 grain cells. 

 

6.7 Conclusions 

A computational framework for smoothed finite element modeling of crystalline 

plasticity at finite strains has been developed and the applicability of the method for both single 

crystal and polycrystalline simulation has been demonstrated in a 2D ES-FEM setting. In view of 

plastic incompressibility of single crystals and large mesh distortion in shear band localization of 

plastic deformations, the ES-FEM with good performance reported in elastic solid are employed 

successfully to cope with such problems for crystal plasticity at finite strains. The constitutive 

model utilizes the hyperelastic-based multiplicative plasticity framework on the basis of the 

theory of crystallographic slip, which involves a crystal kinematics described based on the local 

multiplicative decomposition of the deformation gradient into elastic and plastic components. 

The return-mapping algorithm with exponential map method is used for stress updates of the 

planar crystal model. 
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  The performance of the proposed formulations has been illustrated firstly in single 

crystal plasticity by strain localization problems. The onset of localization and successive shear 

band development are consistent with literatures, in which special elements such as Q1E4 

elements or F-bar elements are exploited to capture strain localization phenomena and cope with 

geometric nonlinearity at large deformation. We conclude the reason essentially is that smoothed 

models (e.g., ES-FEM model), even with a basic T-mesh of linear elements, can provide a 

softening effect provided by the smoothing operations to the compatible FEM models.  

  Since a smoothing domain in a smoothed model usually involves part of adjacent 

elements, the number of associated supporting nodes is more than that to an element. This leads 

to increasing of bandwidth of the global stiffness matrix (or consistent spatial tangent matrix) 

and higher computational cost for smoothed models, compared to the corresponding standard 

FEM models with the same sets of nodes. Besides, the smoothing operations will also consume 

some computation time. In ES-FEM models, the CPU time is usually 30-40% more than FEM 

models. On the other hand, smoothed models often generate higher accuracy results, thus when 

we evaluate the efficiency of computation (computation time for the same accuracy) in terms of 

the error estimator versus computational cost, the S-FEM models perform more efficient than the 

standard FEM models [94]. Moreover, the low-order displacement-based FEM exhibits an overly 

stiff behavior (locking) which can be improved/resolved by using higher-order elements with a 

sufficiently large number of nodes per element or mesh refinement by increasing sufficiently the 

number of elements. This will definitely increase the number of degrees of freedom and/or Gauss 

integration points, which reduces the computational efficiency and brings computational 

complexity. Furthermore, because of the absence of isoparametric mapping enabled by the strain 
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smoothing operation, smoothed models are less sensitive to the quality of the initial mesh and 

mesh distortion during the large deformation procedure. 

To illustrate the present framework and formulations, several typical numerical problems 

have been studied. In our single crystal plasticity examples, the free unstructured T-mesh is 

adopted to simulate the single crystalline strain localization with a large mesh distortion during 

the shear band(s) development. The results demonstrate the model's capability to capture shear 

localization phenomena and show good agreement through compared with several other 

published references. Furthermore, the proposed algorithmic framework has been also applied to 

polycrystalline modeling. The mesoscopic stress/displacement fields and macroscopic behavior 

of polycrystalline aggregates have been studied through modeling the virtual microstructure 

constructed by the Voronoi tessellation technique. Numerical results demonstrate that the 

framework is well capable of modeling the deformation and elastoplastic behavior of polystalline 

grain structure at mesoscopic level. The analysis is limited to plane models due to the high 

computational efforts, but the proposed framework is however equally extendable to three-

dimensional cases. 
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Appendix 6.1. Stress Update Algorithm for the Rate-Independent Planar Single Crystal 

Model 

(i) Elastic predictor 

 

1. For load increment 1n  

2. For Newton-Raphson iteration k  

3. Find the incremental deformation gradient [ ]  k

inc n dF I , then compute the trial state, ( k  

now implied) 
tr

1

e e

n inc n F F F  

 

4. Compute 1det[ ] nJ F  and evaluate isochoric component of the elastic left Cauchy–Green 

strain tensor 
1 3e e

iso JF F    

5. Obtain the trial values of resolved Schmid stresses on each slip system   
tr tr tr

1n

     s n   with 
tr tre

iso

  Fs s  and 
tr tre

iso

  Fn n   

6. Check for consistency 

If 
tr tr

1 1( ) 0      n cr nf  for all A , set 
1 3

1 e e

n isoJF F , and go to (iii)  

Else first define estimate  tr={ | 0} fA A  for active working set, and go to (ii) 

(ii) Return mapping algorithm 

7. Set initial values for plastic multiplier(s) for all A  

0   

 

8. Compute for active systems ,  A  

1) Compute the Jacobian matrix using Eq. (6.40) 

2) Update multiplier(s) by Newton-Raphson correction 

1 1 1

         n n n  with 
1

,

=  

 

 



 n f
A

J  

 

3) Update 
e

isoF  (Eq. (6.42)) and 1 n  

1





  



  n n

A

 

 

4) Evaluate for yielding according to Eq. (6.41) 

9. Check for convergence 

If 0f   , for all A , converged, then go to 10 

Else go to 8. 

10. Check the Kuhn-Tucker conditions (Simo and Hughes, 1998) 
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If 0 f for any active slip system   ( 1,2,...,  asN ) or 0   for all A , valid 

converged solution, exit and go to next step 

Else go to 7. 

 

(iii) Stress state updating 

11. Update stress state variables 

Use Eq. (6.43) to update the Kirchhoff stress, and then compute the corresponding Cauchy stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

References 

 

 [1] Sachs G. 1928. Zur ableilung einer fleissbedingung. Zeitschrift Des Vereines Deutscher 

Ingenieure; 72: 734–736. 

 [2] Taylor GI. 1938. Plastic strain in metals. Twenty-eighth May Lecture to the Institute of 

Metals 307–325. 

 [3] Mandel J. 1973. Equations constitutives et directeurs dans les milieux plastiques et 

viscoplastiques. International Journal of Solids and Structures; 9: 725–740. 

 [4] Peirce D, Asaro RJ, and Needleman A. 1982. An analysis of nonuniform and localized 

deformation in ductile single crystals. Acta Metallurgica; 30: 1087–1119. 

 [5] Peirce D, Asaro RJ, and Needleman A. 1983. Material rate dependence and localized 

deformation in crystalline solids. Acta Metallurgica; 31: 1951–1976. 

 [6] Asaro RJ. 1983. Micromechanics of Crystals and Polycrystals. Advances in Applied 

Mechanics; 23: 1–115. 

 [7] Asaro RJ and Needleman A. 1985. Overview no. 42 Texture development and strain 

hardening in rate dependent polycrystals. Acta Metallurgica; 33: 923–953. 

 [8] Havner KS. 1992. Finite plastic deformation of crystalline solids. Cambridge University 

Press, Cambridge. 

 [9] Rashid MM and Nemat-Nasser S. 1995. A constitutive algorithm for rate-dependent crystal 

plasticity. Computer Methods in Applied Mechanics and Engineering; 94: 201–228. 

[10] Borja R and Wren JR. 1993. Discrete micromechanics of elastoplastic crystals. International 

Journal for Numerical Methods in Engineering; 36: 3815–3840. 

[11] Miehe C. 1996. Exponential map algorithm for stress updates in anisotropic multiplicative 

elastoplasticity for single crystals. International Journal for Numerical Methods in 

Engineering; 39: 3367–3390. 

[12] Miehe C. 1996. Multisurface thermoplasticity for single crystals at large strains in terms of 

eulerian vector updates. International Journal of Solids and Structures; 33: 3103–3130. 

[13] Steinmann P and Stein E. 1996. On the numerical treatment and analysis of finite 

deformation ductile single crystal plasticity. Computer Methods in Applied Mechanics and 

Engineering; 129: 235–254. 



144 
 

[14] Busso EP, Cailletaud G. 2005. On the selection of active slip systems in crystal plasticity; 

21(11): 2212–2231. 

[15] Ling X, Horstemeyer MF, and Potirniche GP. 2005. On the numerical implementation of 3D 

rate-dependent single crystal plasticity formulations. International Journal for Numerical 

Methods in Engineering; 63: 548–568. 

[16] Kuchnicki SN, Cuitiño AM, and Radovitzky RA. 2006. Efficient and robust constitutive 

integrators for single-crystal plasticity modeling. International Journal of Plasticity; 22: 

1988–2011. 

[17] Li HW, Yang H, and Sun ZC. 2008. A robust integration algorithm for implementing rate 

dependent crystal plasticity into explicit finite element method. International Journal of 

Plasticity; 24: 267–288. 

[18] Kuroda M. 2011. On large-strain finite element solutions of higher-order gradient crystal 

plasticity. International Journal of Solids and Structures; 48: 3382–3394. 

[19] Anand L, Aslan O, and Chester SA. 2012. A large-deformation gradient theory for elastic–

plastic materials: Strain softening and regularization of shear bands. International Journal of 

Plasticity; 30-31: 116–143. 

[20] Niordson CF and Kysar JW. 2014. Computational strain gradient crystal plasticity. Journal 

of the Mechanics and Physics of Solids; 62: 31–47. 

[21] Bargmann S, Reddy BD, and Klusemann B. 2014. A computational study of a model of 

single-crystal strain-gradient viscoplasticity with an interactive hardening relation. 

International Journal of Solids and Structures; 51: 2754–2764. 

[22] Asaro RJ and Lubarda VA. 2006. Mechanics of Solids and Materials. Cambridge University 

Press, New York. 

[23] Kröner E. 1958. Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer-

Verlag, Berlin. 

[24] Budiansky B and Wu TT. 1961.  Theoretical Prediction of Plastic Strains of Polycrystals. 

Technical Report. Division of Engineering and Applied Physics, Harvard University. 

[25] Hill R. 1965. A self-consistent mechanics of composite materials. Journal of the Mechanics 

and Physics of Solids; 13: 213–222. 

[26] Hutchinson JW. 1970. Elastic-plastic behavior of polycrystalline metals and composite. 

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and 

Engineering Sciences; 319: 247–272. 



145 
 

[27] DeBotton G and Castañeda PP. 1995. Variational estimates for the creep behaviour of 

polycrystals. Proceedings of the Royal Society of London. Series A: Mathematical and 

Physical Sciences; 448(1932): 121–142. 

[28] Segurado J, Lebensohn RA, Llorca J, and Tomé CN. 2012. Multiscale modeling of 

plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite 

elements. International Journal of Plasticity; 28: 124–140. 

[29] Parks D. 1990. Polycrystalline plastic deformation and texture evolution for crystals lacking 

five independent slip systems. Journal of the Mechanics and Physics of Solids; 38: 701–724. 

[30] Mathur KK, Dawson PR, and Kocks UF. 1990. On modeling anisotropy in deformation 

processes involving textured polycrystals with distorted grain shape. Mechanics of 

Materials; 10: 183–202. 

[31] Kalidindi SR and Anand L. 1992. An approximate procedure for predicting the evolution of 

crystallographic texture in bulk deformation processing of fcc metals. International Journal 

of Mechanical Sciences; 34: 309–329. 

[32] Habraken AM and Duchêne L. 2004. Anisotropic elasto-plastic finite element analysis using 

a stress-strain interpolation method based on a polycrystalline model. International Journal 

of Plasticity; 20: 1525–1560. 

[33] Lebensohn RA, Kanjarla AK, and Eisenlohr P. 2012. An elasto-viscoplastic formulation 

based on fast Fourier transforms for the prediction of micromechanical fields in 

polycrystalline materials. International Journal of Plasticity; 32-33: 59–69. 

[34] Eisenlohr P, Diehl M, Lebensohn RA, and Roters F. 2013. A spectral method solution to 

crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity; 46: 37–53. 

[35] Lee MG, Lim H, Adams BL, Hirth JP, and Wagoner RH. 2010. A dislocation density-based 

single crystal constitutive equation. International Journal of Plasticity; 26: 925–938. 

[36] Garmestani H, Lin S, Adams BL, and Ahzi S. 2001. Statistical continuum theory for large 

plastic deformation of polycrystalline materials. Journal of the Mechanics and Physics of 

Solids; 49: 589–607. 

[37] Zhang L, Dingreville R, Bartel T, and Lusk MT. 2011. A stochastic approach to capture 

crystal plasticity. International Journal of Plasticity; 27: 1432–1444. 

[38] Watanabe I and Terada K. 2010. A method of predicting macroscopic yield strength of 

polycrystalline metals subjected to plastic forming by micro-macro de-coupling scheme. 

International Journal of Mechanical Sciences; 52: 343–355. 



146 
 

[39] Kim JH, Lee MG, Kim D, and Barlat F. 2013. Numerical procedures for predicting 

localization in sheet metals using crystal plasticity. Computational Materials Science; 72: 

107–115. 

[40] Rousselier G and Leclercq S. 2006. A simplified “polycrystalline” model for viscoplastic 

and damage finite element analyses. International Journal of Plasticity; 22: 685–712. 

[41] Mahesh S. 2010. A binary-tree based model for rate-independent polycrystals. International 

Journal of Plasticity; 26: 42–64. 

[42] Knezevic M and Savage DJ. 2014. A high-performance computational framework for fast 

crystal plasticity simulations. Computational Materials Science; 83: 101–106. 

[43] Knezevic M, Drach B, Ardeljan M, and Beyerlein IJ. 2014. Three dimensional predictions 

of grain scale plasticity and grain boundaries using crystal plasticity finite element models. 

Computer Methods in Applied Mechanics and Engineering; 277: 239–259. 

[44] Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, and Raabe D. 2010. 

Overview of constitutive laws, kinematics, homogenization and multiscale methods in 

crystal plasticity finite-element modeling: Theory, experiments, applications. Acta 

Materialia; 58: 1152–1211. 

[45] Liu GR, Dai KY, and Nguyen TT. 2007. A smoothed finite element method for mechanics 

problems. Computational Mechanics; 39: 859–877. 

[46] Cuitino AM and Ortiz M. 1992. Computational Modelling of Single Crystals. Modelling 

and Simulation in Materials Science and Engineering; 1: 225–263. 

[47] Chen JS, Wu CT, Yoon S, and You Y. 2001. A stabilized conforming nodal integration for 

Galerkin meshfree method. International Journal for Numerical Methods in Engineering; 50: 

435–466. 

[48] Liu GR. 2010. A G space theory and a weakened weak (W2) form for a unified formulation 

of compatible and incompatible methods: Part I theory, Part II applications to solid 

mechanics problems. International Journal for Numerical Methods in Engineering; 81: 

1093–1156. 

[49] Hill R. 1966. Generalized constitutive relations for incremental deformation of metal 

crystals by multislip. Journal of the Mechanics and Physics of Solids; 14: 95–102. 

[50] Lee EH. 1969. Elastic-Plastic Deformation at Finite Strains. Journal of Applied Mechanics, 

Transactions ASME; 36: 1–6. 

[51] Rice JR. 1971. Inelastic constitutive relations for solids: An internal-variable theory and its 

application to metal plasticity. Journal of the Mechanics and Physics of Solids; 19: 433–455. 



147 
 

[52] Hill R and Rice JR. 1972. Constitutive analysis of elastic-plastic crystals at arbitrary strain. 

Journal of the Mechanics and Physics of Solids; 20: 401–413. 

[53] Hill R and Havner KS. 1982. Perspectives in the mechanics of elastoplastic crystals. Journal 

of the Mechanics and Physics of Solids; 30: 5–22. 

[54] Goh CH, Neu RW, and McDowell DL. 2003. Crystallographic plasticity in fretting of Ti-

6AL-4V. International Journal of Plasticity; 19: 1627–1650.  

[55] Marin EB. 2006. On the formulation of a crystal plasticity model. Sandia National 

Laboratories, CA, SAND2006-4170. 

[56] de Souza Neto EA, Perić P, and Owen DRJ. 2008. Computational Methods for Plasticity: 

Theory and Applications. John Wiley & Sons. 

[57] Meissonnier FT, Busso EP, and O’Dowd NP. 2001. Finite element implementation of a 

generalised non-local rate-dependent crystallographic formulation for finite strains. 

International Journal of Plasticity; 17(4): 601–640. 

[58] Rossiter J, Brahme A, Simha MH, Inal K, and Mishra R. 2010. A new crystal plasticity 

scheme for explicit time integration codes to simulate deformation in 3D microstructures: 

Effects of strain path, strain rate and thermal softening on localized deformation in the 

aluminum alloy 5754 during simple shear. International Journal of Plasticity; 26(12): 1702–

1725. 

[59] Mandel J. 1965. Generalisation de la theorie de plasticite de W. T. Koiter. International 

Journal of Solids and Structures; 1(3): 273–295. 

[60] Kocks UF. 1970. The relation between polycrystal deformation and single-crystal 

deformation. Metallurgical and Materials Transactions; 1(5): 1121–1143. 

[61] Taylor GI. 1934. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. 

Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering 

Sciences; 145: 362–387. 

[62] Asaro RJ and Rice JR. 1977. Strain localization in ductile single crystals. Journal of the 

Mechanics and Physics of Solids; 25: 309–338.  

[63] Franciosi P. 1985. The concepts of latent hardening and strain hardening in metallic single 

crystals. Acta Metallurgica; 33: 1601–1612. 

[64] Anand L and Kothari M. 1996. A computational procedure for rate-independent crystal 

plasticity. Journal of the Mechanics and Physics of Solids; 44: 525–558. 

[65] Schröder J and Miehe C. 1997. Aspects of computational rate-independent crystal plasticity. 

Computational Materials Science; 9: 168–176. 



148 
 

[66] McGinty RD and McDowell DL. 2006. A semi-implicit integration scheme for rate 

independent finite crystal plasticity. International Journal of Plasticity; 22(6): 996–1025. 

[67] Zuo QH. 2011. On the uniqueness of a rate-independent plasticity model for single crystals. 

International Journal of Plasticity; 27(8): 1145–1164. 

[68] Gurtin ME and Reddy BD. 2014. Gradient single-crystal plasticity within a miseshill 

framework based on a new formulation of self- and latenthardening. Journal of the 

Mechanics and Physics of Solids; 68(0): 134–160. 

[69] Hutchinson JW. 1976. Bounds and Self-Consistent Estimates for Creep of Polycrystalline 

Materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical 

and Engineering Sciences; 348: 101–127. 

[70] Chang YW and Asaro RJ. 1981. An experimental study of shear localization in aluminum-

copper single crystals. Acta Metallurgica; 29; 241–257. 

[71] Bassani JL and Wu T-Y. 1991. Latent Hardening in Single Crystals II. Analytical 

Characterization and Predictions. Proceedings of the Royal Society, Series A: Mathematical, 

Physical and Engineering Sciences; 435: 21–41. 

[72] Anand L and Kalidindi SR. 1994. The process of shear band formation in plane strain 

compression of FCC metals: Effects of crystallographic texture. Mechanics of Materials; 17: 

223–243. 

[73] McGinty RD and McDowell DL. 1999. Multiscale polycrystal plasticity. Journal of 

Engineering Materials and Technology; 121, 203–209. 

[74] McGinty RD. 2001. Multiscale representation of polycrystalline inelasticity. Ph.D Thesis. 

Georgia Institute of Technology, Atlanta. 

[75] Weber G and Anand L. 1990. Finite deformation constitutive equations and a time 

integration procedure for isotropic, hyperelastic-viscoplastic solids. Computer Methods in 

Applied Mechanics and Engineering; 79: 173–202. 

[76] Eterovic AL and Bathe KJ. 1990. A hyperelastic-based large strain elasto-plastic 

constitutive formulation with combined isotropic-kinematic hardening using the logarithmic 

stress and strain measures. International Journal for Numerical Methods in Engineering; 30: 

1099–1114.  

[77] Simo JC. 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the 

classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied 

Mechanics and Engineering; 99: 61–112. 



149 
 

[78] Perić D, Owen DRJ, and Honnor ME. 1992. A model for finite strain elasto-plasticity based 

on logarithmic strains: Computational issues. Computer Methods in Applied Mechanics and 

Engineering; 94: 35–61. 

[79] Yamakawa Y, Hashiguchi K, and Ikeda K. 2010. Implicit stress-update algorithm for 

isotropic Cam-clay model based on the subloading surface concept at finite strains. 

International Journal of Plasticity; 26: 634–658. 

[80] Chang YW and Asaro RJ. 1980. Lattice rotations and shearing in crystals. Archive of 

Applied Mechanics; 32: 369–388. 

[81] Simo JC and Armero F. 1992. Geometrically non-linear enhanced strain mixed methods and 

the method of incompatible modes. International Journal for Numerical Methods in 

Engineering; 33: 1413–1449. 

[82] De Souza Neto EA, Andrade Pires FM, and Owen DRJ. 2005. F-bar-based linear triangles 

and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: Formulation 

and benchmarking. International Journal for Numerical Methods in Engineering; 62: 353–

383. 

[83] Needleman A, Asaro RJ, Lemonds J, and Peirce D. 1985. Finite element analysis of 

crystalline solids. Computer Methods in Applied Mechanics and Engineering; 52: 689–708. 

[84] Asaro RJ. 1979. Geometrical effects in the inhomogeneous deformation of ductile single 

crystals. Acta Metallurgica; 27: 445–453. 

[85] Li S, Hao W, and Liu WK. 2000. Mesh-free simulations of shear banding in large 

deformation. International Journal of Solids and Structures; 37: 7185–7206. 

[86] Borg U. 2007. Strain gradient crystal plasticity effects on flow localization. International 

Journal of Plasticity; 23: 1400–1416. 

[87] Lim H, Lee MG, Kim JH, Adams BL, and Wagoner RH. 2011. Simulation of polycrystal 

deformation with grain and grain boundary effects. International Journal of Plasticity; 27: 

1328–1354. 

[88] Ghosh S, Lee K, and Moorthy S. 1995. Multiple scale analysis of heterogeneous elastic 

structures using homogenization theory and Voronoi cell finite element method. 

International Journal of Solids and Structures; 32: 27–62. 

[89] Moorthy S and Ghosh S. 1998. Particle cracking in discretely reinforced materials with the 

voronoi cell finite element model. International Journal of Plasticity; 14(4): 805–827. 

[90] Barbe F, Decker L, Jeulin D, and Cailletaud G. 2001. Intergranular and intragranular 

behavior of polycrystalline aggregates. Part 1: F.E. model. International Journal of Plasticity; 

17(4): 513–536. 



150 
 

[91] Kovač M and Cizelj L. 2005. Modeling elasto-plastic behavior of polycrystalline grain 

structure of steels at mesoscopic level. Nuclear Engineering and Design; 235: 1939–1950. 

[92] Ghosh S. 2011. Micromechanical analysis and multi-scale modeling using the Voronoi cell 

finite element method. CRC Press, Taylor & Francis. 

[93] Talischi C, Paulino GH, Pereira A, and Menezes IFM. 2012. PolyMesher: A general-

purpose mesh generator for polygonal elements written in Matlab. Journal of Structural and 

Multidisciplinary Optimization; 45(3): 308–328. 

[94] Nguyen-Xuan H, Liu GR, Bordas S, Natarajan S, and Rabczuk T. 2013. An adaptive 

singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer 

Methods in Applied Mechanics and Engineering; 253: 252–273. 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 
 

 

Chapter 7. A Beta Finite Element Method (βFEM) of Coupled 

Edge/Face and Node Based Smoothing Techniques for Mechanics 

Problems 

 

The edge-based (for 2D) and face-based (for 3D) strain smoothing techniques are found 

to be able to produce more accurate solutions than standard FEM, and offer lower bounds (for 

force driven problems). The node-based smoothing technique, on the other hand has a unique 

property of producing upper bound solutions. In this chapter, a novel smoothed finite element 

method (S-FEM) is proposed, where the smoothing domains are formed based on both edges 

(faces for 3D) and nodes. An adjustable parameter β is introduced to control the ratio of the area 

of edge-based/face-based and node-based smoothing domains. As presented, a nearly exact 

solution in strain energy can be obtained by tuning the parameter, making use of the important 

property that the exact solution is bonded by the solutions of NS-FEM and ES/FS-FEM. 

Standard patch tests are likewise satisfied. For numerical illustration of the features, a number of 

numerical examples (static, dynamic, linear and nonlinear) have shown that the present βFEM 

method is found to be ultra-accurate, insensitive to mesh quality, temporal stability and 

capability for modeling objects with complex geometry, and offers alleviation of volumetric 

locking, etc. In the section of applications in modeling crystal plasticity, several representative 

examples are studied to demonstrate the capability of proposed method for capturing the strain 

localization and dealing with plastic incompressibility. The proposed method and algorithm are 

also performed to simulate the mechanical behavior of polycrystalline aggregates through 

modeling the synthetic microstructure constructed by the Voronoi tessellation technique. 
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7.1 Introduction 

The standard constant finite elements such as 3-node triangular or 4-node tetrahedral 

elements (T-elements) were popular and preferred in practical mechanics problems for many 

years, as they offer many of the advantages such as convenience in FE implementation, high 

mesh quality, adaptive analysis with mesh rezoning, etc. And sometimes triangular/ tetrahedral 

mesh (T-mesh) would be the only option for mesh generation of complex geometries. However, 

compared to quadrilateral/hexahedral meshes, a T-mesh using constant strain T-elements has its 

own numerical drawbacks including the inaccuracy, shear and volumetric locking due to 

excessive stiffness, especially for large deformation problems. As such, it is usually not 

recommended to use T-mesh in commercial FEM software packages. 

Procedures for tackling locking and accuracy of FEM include supplementing the element 

displacement field with additional nodes and utilizing reduced numerical integration rules to 

calculate the element stiffness matrix. However, these procedures are not applicable or 

compatible with constant strain T-elements. T-mesh with second-order or higher-order elements 

is thought to be a good option to avoid the locking issues, but it would be ineffective for 

extremely large deformation problems due to intermediate nodes [1,2]. In order to deal with 

these element defects of T-mesh, a number of researchers made efforts to improve it and some 

advances have occurred in the last 30 years. For example, Allman [3,4] improved the accuracy of 

triangle elements by using vertex connectors which included rotations. However, it exhibited an 

unusual type of zero energy mode, in addition to the rigid body movements. Reference [5] made 

a critical assessment of the Allman’s triangular membrane element with drilling degrees of 

freedom by the way of examining the performance of the element combined with a triangular 

plate bending element. Huang et al. [6] modified Allman’s triangular planar element with drilling 
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degrees of freedom and dealt with spurious energy mode by an introduced constraint which 

ensures that a drilling degree of freedom is a true rotation in elasticity. Piltner and Taylor [7] 

developed enhanced triangle elements to deal with nearly incompressible plane strain problems. 

However, the requirement of more degrees of freedom has limited the practical applications of 

these methods. In References [8,9], elements with rotational freedom were also designed to 

improve the bending performance or stiffness matrices for plane triangular elements. Reference 

[10] proposed a weighted least-squares formulation for deriving constant strain T-elements, 

which claimed to be possible to eliminate volumetric locking. Reference [11] introduced a node-

based uniform strain element for T-mesh and it is capable in avoiding the volumetric locking and 

reduce the effects of shear locking for static linear elastic problems. Reference [12] used bubble 

function displacements in conjunction with the assumed strain formulation to construct triangular 

solid shell elements for precluding the membrane locking effect.  

The S-FEM [13–19] introduces the gradient/strain smoothing techniques to FEM settings 

and uses direct (no mapping) point interpolation for computing shape functions. The 

gradient/strain smoothing techniques using Green’s theorem were also exploited for the quasi-

conforming elements for plates and shells [20], stabilizing nodal integration of meshfree methods 

[21,22] and natural element method [23]. The idea of S-FEM is to utilize a standard first-order 

finite element mesh (in particular T-mesh) to build numerical models with good performance 

[24]. The essential idea of S-FEM is to construct the compatible strain field in a Galerkin weak 

form model to produce some good properties. Compared to the element-based implementation 

for the standard FEM, the S-FEM techniques evaluate the weak form based on smoothing 

domains. The construction of smoothing domains can be located within the elements but more 

often beyond the elements, which would bring in the information from the neighboring elements. 
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According to different fashions in the creation of smoothing domains, a variety of S-FEM 

models were proposed: the cell-based smoothed FEM (CS-FEM) [16,19], node-based smoothed 

FEM (NS-FEM) [18], edge based smoothed FEM (ES-FEM) [15] and face-based smoothed FEM 

(FS-FEM) [25], etc. Compared to the standard FEM, the overestimation behavior of stiffness 

values shall be reduced or alleviated and hence the accuracy of both primal and dual quantities 

can be improved significantly [26]. In addition, the evaluation of shape function derivatives 

involved in FEM would be avoided in S-FEM and S-FEM models applied in elasticity are 

insensitive to mesh distortion when compared to standard FEM due to the absence of 

isoparametric mapping [27,28]. Furthermore, an S-FEM model would utilize the background 

mesh as the corresponding standard FEM model and it does not require the introduction of 

additional degrees of freedom. 

The numerical studies have already demonstrated that S-FEMs show a few superiorities 

over standard FEM [24]. Among these S-FEMs, the ES-FEM (or FS-FEM for 3D) possesses 

some properties such as: i) ES-FEM/FS-FEM can produce a solution with properties of super-

convergence and accuracy compared to a corresponding FEM model; ii) it usually generates a 

lower bound to the exact solution in terms of strain energy, but still has the feature of 

overestimation of stiffness; iii) it can use T-mesh which would be conveniently generated 

especially for complex geometries; iv) the ES-FEM/FS-FEM models would be always stiffer 

than NS-FEM, partially due to the number of edges being always larger than the number of 

nodes with a background T-mesh; v) the vibration models using ES-FEM/FS-FEM are often 

temporally stable and there are no spurious non-zeros energy modes found in free vibration 

analysis [24]. Meanwhile, the NS-FEM has some interesting properties [29–31]: i) it has the 

unique upper bound property in strain energy as it may extremely soften the over-stiffness of the 
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corresponding standard FEM model; ii) it achieves accurate and often super-convergent 

properties of stress solutions; iii) it is effective in overcoming volumetric locking; iv) it works 

effectively with T-mesh; v) it performs spatially stable but possibly would be temporally instable 

with non-zero-energy spurious modes. 

Considering the fact that ES-FEM is capable of producing an the accurate solution from 

the lower bound (better than standard FEM) and the NS-FEM can approximate the solution from 

the upper bound, a mixed smoothed FEM model can be naturally conceived in order to obtain the 

exact or close-to-exact solution measured in a norm. Another fascinating aspect is that the mixed 

smoothed FEM would be versatile and may inherit the merits from both ES-FEM and NS-FEM. 

In this work, a novel ultra-accurate beta finite element method (βFEM) based on T-mesh is 

proposed and then applied in different mechanics problems. In βFEM, the smoothing domains 

will be constructed by a mixed edge-based and node-based smoothing technique, in which the 

parameter [0,1]   tunes the portion of area of the edge-based and node-based smoothing 

domains. The idea of βFEM can be regarded as a utilization of the overestimation property of 

ES-FEM/FS-FEM and the unique under-estimation property of NS-FEM using T-elements, and 

hence can be “tuned” to have good features of both. Since both the NS-FEM and ES-FEM with 

T-elements are spatially stable [24], the presented βFEM would be stable and guarantees the 

convergence. In addition, the scheme ensures the variational consistency and the compatibility of 

the displacement field, by which ensures reproducing linear field exactly [32–35].  

The work aims to propose and formulate the novel βFEM for solid mechanics problems 

with first-order triangular or tetrahedral mesh, using the mixed edge-based/face-based and node-

based strain smoothing techniques. The governing equation and different smoothing techniques 

utilized in this work will be briefly introduced in Section 2. The idea of βFEM for both 2D and 
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3D problems will be presented in Section 3. Section 4 considers the implementation aspects for 

vibration analysis and large deformation problems which will be shown in subsequent numerical 

examples. The standard patch test and numerical examples will be discussed in Section 5 and 6. 

In Section 7, the method is performed to model rate-independent crystal plasticity problems by a 

proper constitutive integration scheme already introduced in Chapter 6. The conclusion will be 

summarized in the last section. 

 

7.2 Brief of Problem and Strain Smoothing Techniques 

The target of our βFEM is to solve the solid mechanics problems using the weakened 

weak (W
2
) Galerkin formulation [33]. For example, consider an elastic deformable body 

occupying domain  , subjected to body force b
f  and traction t

f  on natural boundary t . The 

object undergoes arbitrary virtual displacements with the compatible virtual strains   and 

internal displacement u . The dynamic equilibrium equations, which contain the inertial and 

damping forces, are described in the following form: 

 T T T Td [ ]d d d 0    
   

         
t

b tcD u b u u u f u f   (7.1) 

where D  is the Hooke matrix of elastic constants which is related to modulus E  and Poisson’s 

ratio  . For a static problem, the second term in Eq. (7.1) will vanish. The strain tensor   can be 

expressed by displacement u  using a compatibility relation: 

 T T T Td [ ]d d d 0    
   

         
t

b tcD u b u u u f u f   (7.2) 

where s  is the symmetric gradient of the displacement field. In FEM, the displacement u  and 

u  will be approximated using trial functions by the following expression: 
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h

I I

I

xu x N d  (7.3) 

where IN  represents the a matrix of shape functions, Id  is the vector of the associated nodal 

displacements, and NP  is the total number of the nodal variables of the element. 

The S-FEM techniques evaluate the smoothed strain based on associated smoothing 

domains and the manipulation will be derived from the compatible strains of finite element 

expressed in Eq. (7.3). Hereafter in this section, the fashions of strain smoothing techniques 

involved in βFEM will be presented. Since the edge-based smoothing technique has already been 

introduced in previous chapters, we only present here the 3D face-based smoothing technique 

and node-based smoothing technique. 

7.2.1 Briefing of Face-Based Strain Smoothing 

 

Figure 7.1. A face-based smoothing domain s
k

 constructed from two adjacent tetrahedral elements 

based on their interface k . 
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Analogous to 2D ES-FEM, the FS-FEM creates smoothing domains associated with faces 

of tetrahedral elements such that 
1

  
faceN

s

k

k

and s s

i j    for i j , in which faceN  is the 

number of faces for all elements in the problem domain. For tetrahedral elements sketched in 

Figure 7.1, the smoothing domain associated with the face k can be constructed through 

connecting the triangle vertices ( ,A B  and C ) and the two centroids of the two attached 

elements ( P  and Q ), i.e., the triangular bipyramid. By applying the face-based smoothing 

operation [36], the smoothed strain-displacement matrix may have a similar formulation 

expressed as 

1

1 1

4

 
e
kn

e e

I j js
jk

V
V

B B  (7.4) 

where e

kn  is the number of elements attached to the face ( 1e

kn  for the boundary faces and 

2e

kn  for interior faces), e

jB  is the standard compatible strain-displacement matrix for 
thj  

element attached to face k . The matrix ( )IB x  for the node I  in tetrahedral elements is 

expressed as 

( ) ( ) ( )
0 0 0
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( ) ( ) 0 0 0
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0 0 0
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7.2.2 Briefing of Node-Based Strain Smoothing 

 

Figure 7.2. Division of a problem domain into triangular elements and node-based smoothing domains. 

For example, the smoothing domain s
q  for node q  is a polygon with 2 e

qn  sides (where 
e

qn  is the 

number of elements surrounding node q ). 

 

The node-based strain smoothing technique constructs smoothing domains for the strain 

field associated with the nodes [37], which is different from the edge-based strain smoothing 

technique. In Figure 7.2, the smoothing domain s

q
 is created by connecting the centroid points 

of the surrounding elements and the middle points of associated edges. The set of supporting 

nodes s

qS  for the node-based smoothing domain are all nodes belonging to the surrounding 

elements of node q , e.g., the nodes { , , , , }A B C D E  for the smoothing domain associated to node 

q  in Figure 7.2. For the domain, it can be also viewed as the combination of the sub-domains of 

all the elements involving node q . Through a similar fashion of the edge-based smoothing 
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operation, which was introduced in previous chapters, the smoothed strain-displacement matrix 

of NS-FEM 
IB  can be evaluated as 

1

1 1

3

 
e
qn

e e

I l ls
lq

A
A

B B   with  
1

1

3 

   

e
q

s
q

n

s e

q l

l

A d A  (7.6) 

where e

qn  is the number of elements around node q , e

lA  is the area of 
thl element around node q , 




e
l

e

l I

I S

B B  is the compatible strain-displacement matrix for 
thl  element associated to node q , 

which has the form of Eq. (6.12) for node  s

qI S  if triangle elements are used. 

For 3D NS-FEM, the implementation is quite similar as 2D NS-FEM and the variable of 

area needs to be replaced by the associated volume in formulation in Eq. (7.6). The set of 

supporting nodes s

qS  would be all of the nodes belonging to the elements which contain this 

node q . 

 

7.3 The Idea and Properties of Beta Finite Element Method 

7.3.1 The Idea of βFEM 

In order to implement the βFEM using T-mesh (triangles for 2D and tetrahedrons for 

3D), the background T-elements (shown in Figure 7.3) are further divided into two different 

types of smoothing domains: the node-base smoothing domains (the domain surrounding a node 

shown with red dotted lines) and the edge-based smoothing domains (the domain attached an 

edge/face indicated with green dashed lines). The portion of the area of edge/face-based and 

node-based smoothing domains will be tuned by a parameter  . In Figure 7.3, the length of an 

edge of a triangle/tetrahedral element is assumed to be “ L ”. If we adopt the scale factor   to 
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tune the dividing points ( H  and G ), the length of segments on the edge has relations such as: 

1 3 (1 )
2

  
L

l l  and 2 l L . If we take a 2D problem as our example, the area of three sub-

domains by the node-based smoothing technique in an element (three quadrilaterals at three 

corners of a triangle element k ) would be 
21

(1 )
3

 e

kA . The sub-domains by the edge-based 

smoothing technique in element k , i.e., three pentagons attached to middle segment of 

associated edges depicted with green dashed lines in Figure 7.3, also have an identical area 

21

3
 e

kA . 

 

Figure 7.3. Division of representative elements into smoothing domains using βFEM-T3: the node-base 

smoothing domains are shown by red dotted lines and the edge-based smoothing domains indicated with 

green dashed lines. 

It can be noticed that βFEM using T-elements can be regarded as a combination of the 

features from both the NS-FEM and ES-FEM, since the smoothing domains are established 

based on both edge-based and node-based smoothing techniques.  
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If we choose ( ), ( )  and ( )  to represent the physical quantities computed by the 

ES/FS-FEM, NS-FEM and βFEM respectively, the area of smoothing domain of βFEM (
sA ) has 

the following relationship with the area of the edge-based smoothing domain (
sA ) and the node-

based smoothing domain (
sA ): 

 s s sA A A  (7.7) 

with 

2s sA A   and  
2(1 ) s sA A , [0,1]   (7.8) 

For 3-D problems, Eq. (7.7) and (7.8) would be expressed in forms as 

 s s sV V V  (7.9) 

3s sV V   and  
3(1 ) s sV V , [0,1]   (7.10) 

where sV  denotes the volume of the smoothing domain for 3-D problems. 

In a βFEM scheme, the smoothed strain-displacement matrix 
IB  for s

k  is defined by 

2

1

1 1

3




 
e
kn

e e

I j js
jk

A
A

B B  or 3

1

1 1

4




 
e
kn

e e

I j js
jk

V
V

B B  (7.11) 

The smoothed strain-displacement matrix 
IB  for s

q
 will be of the form 

2

1

1 1
(1 )

3




 
e
qn

e e

I l ls
lq

A
A

B B  or 3

1

1 1
(1 )

4




 
e
qn

e e

I l ls
lq

V
V

B B  (7.12) 

We now can obtain the smoothed stiffness matrix ( )k

IJK  for smoothing domain s

k , which 

gives 

( ) 2d 


   s
k

k T T s

IJ I J I J kAK B DB B DB  (7.13) 
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For node-based smoothing domain s

q
, the smoothed stiffness matrix ( )q

IJK  or smoothed 

tangent stiffness matrix 
( )q

T IJK  would be obtained by a similar fashion as follows 

( ) 2d (1 )


    s
q

q T T s

IJ I J I J qAK B DB B DB  (7.14) 

Since the portion of area of edge-based and node-based smoothing domains (or ES/FS-

FEM and NS-FEM) will be tuned by  , the global stiffness matrix will be assembled by 

contributions from both of them. Therefore the global stiffness matrix K  for βFEM can be 

assembled from the ( )k

IJK  and ( )q

IJK  as follows 

( ) ( )

1 1 

 
e nN N

k q

IJ IJ

k q

K K + K  (7.15) 

where eN  and nN  denote the number of total edges and total nodes in the system.  

7.3.2 Properties of βFEM 

The properties of ES-FEM and NS-FEM, including the displacement compatibility, 

variational consistency, solution continuity, etc., have been analyzed or discussed [24,32–34]. 

Since the continuous scalar factor   for βFEM can be regarded as a knob controlling the 

contributions from the NS-FEM and ES-FEM, it indicates that we may obtain a continuous 

solution function from the solution of the NS-FEM to that of ES-FEM if the factor   varies 

from 0  to 1. Therefore, the βFEM possesses some properties of both NS-FEM and ES-FEM due 

to this fact. If we take an elastic static problem as our example and we denote the strain field of 

an elastic problem computed by ES-FEM and NS-FEM as   and   respectively, the potential 

energy functional of βFEM can be determined by the virtual work principle also used for 

standard FEM, given by 
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int ext int int extˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( )     u u u u u u  (7.16) 

For isotropic linear elastic material, the Eq. (7.16) can be written as 

T T1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( )d ( ) ( )d d d

2 2


   
          

t

b t
u u D u u D u f u f u     (7.17) 

where û  defines an admissible virtual displacement field satisfying the given essential boundary 

conditions, the given continuous scalar factor [0,1]  , D  stands for the elasticity tensor. If we 

perform variation to û  using the chain rule, the above equation becomes 

T Tˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( )d ( ) ( )d d d
t

b t     
   

        u u D u u D u uf uf     (7.18) 

From above equations, we can find some important properties as follows: 

Property 1 (variational consitence). The βFEM is variational consistent for both 2D and 3D 

problems. 

For a problem domain  , it can be discretized into edge/face-based smoothing cells s

k  

associated with edN  (or faceN ) edges/faces and node-based smoothing cells s

q
 associated with 

nN  nodes. If we substitute the approximation (7.3) and (3.12) (similar form for node-based 

smoothing cells) into Eq. (7.18) and utilize the arbitrary property of variation, the equation of 

interest for an element would be obtained as following 

two-field K d f  (7.19) 

where f  is the force vector and two-field
K  denotes the smoothed stiffness matrix leading to 

two-field d d
 

   s s
k q

T T

I J I JK B DB B DB  (7.20) 

Noted that the first term follows ES-FEM and second term follows NS-FEM, and both of 

them are variationally consistent [23]. 
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Property 2 (bound property). The βFEM is variational consistent for both 2D and 3D problems. 

If the factor is set as 0  , the βFEM scheme becomes the same as the NS-FEM, which 

processes the underestimation of stiffness values and exact strain energy as reported [28,36]. The 

upper bound property is then ensured, which will be confirmed in numerical examples in Section 

6. 

When we choose 1  , the βFEM is essentially the same as the ES/FS-FEM. The 

stiffness would be overestimated [26,32,38–40], though its accuracy would be better than 

standard FEM. This leads to the low bound property of βFEM. 

The solution of βFEM shall be within the narrow interval which bounds the exact 

solution, owing to the fact that ES-FEM generates the nearly exact solution from the lower 

bound and NS-FEM produces the unique upper bound solution (noted that this interval would be 

narrower than αFEM [37], as the solution of ES-FEM is closer to exact solution from lower 

bound than standard FEM); 

Property 3 (solution continuity property). If the scaling factor   changes from 0.0  to 1.0 , the 

property of underestimation of stiffness will become overestimation, continuously, and the 

solution of βFEM would be a continuous function of   from the solution of the NS-FEM and 

that of ES-FEM. 

Property 4 (exact solution property). It is possible to find the exact (or close-to-exact) solution(s) 

of strain energy during the procedure of tuning the factor due to the solution continuity property 

[24]. 
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Property 5 (temporal stability property). Even with a small portion of ES-FEM (choosing a 

small value of  ), the constructed stiffness matrix exhibits the properties of overestimation, 

which can alleviate the temporal instability brought by the pure NS-FEM. 

 

7.4 Implementation Aspects 

This section will briefly introduce the implementation aspects for numerical examples, 

including the formulations for free vibration analysis and large deformation problems. 

7.4.1 Formulations for Free Vibration Problem 

The general discrete form of Eq. (7.1) for vibration analysis using βFEM gives the form 

as 

  Md Cd Kd f  (7.21) 

where M , C  and K  are the matrices of mass, damping and stiffness. If the terms of damping 

and external forces are not considered, the above equation can be simplified into a free vibration 

problem with a homogenous form: 

 Md Kd 0  (7.22) 

where the mass matrix can adopt lumped mass matrix or consistent mass matrix. The general 

solution of Eq. (7.22) can be assumed as [41] 

exp(i ) td   (7.23) 

in which the eigenvector   and natural frequency   can be determined by the eigenvalue 

equation as following: 
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( ) 0  ΛM K   (7.24) 

and 

2 2 2

1 2 1 2diagonal( , ,..., ) diagonal( , ,..., )      n nΛ  (7.25) 

1 2[ , ,..., ] n     (7.26) 

where r  is the eigenvector associated with the eigenvalue r  ( 1,2...,r n ). 

We can also define modal stiffness rk  and modal mass rm  of the system as 

 T

r r rk K  , 1,2...,r n  (7.27) 

T

r r rm M   , 1,2...,r n  (7.28) 

In this case the natural frequency can now be evaluated using the following relationship: 

/r r rk m , 1,2...,r n  (7.29) 

7.4.2 Nonlinear Problems with Large Deformation 

For nonlinear problems with large deformation, it can be solved by an incremental 

process. If we introduce the tangent stiffness matrix t
K  and internal force vector I

f , the FEM 

equilibrium equation of large deformation according to the total Lagrange formulation [24,38–

40] becomes 

  t R E IKd f f f  (7.30) 

In finite element computations, the tangent stiffness matrix is frequently split into linear 

part t

LK  and nonlinear part t

NLK , then we can rewrite the above equation using βFEM as 

( )  t t E I
L NLK K d f f  (7.31) 

where the linear part 
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2 2

1 1

(1 ) 
 

   
e nN N

t T s T s

L L L k L L q

k q

V VK B DB B DB  (7.32) 

the contribution, t

NLK , is defined as 

2 2

1 1

(1 ) 
 

   
e nN N

t T s T s

NL NL NL k NL NL q

k q

V VK B SB B SB  (7.33) 

and the internal force vector reads 

   2 2

1 1

(1 ) 
 

   
e nN N

I T s T s

L k L q

k q

V Vf B S B S  (7.34) 

where the matrix 
LB , LB , 

NLB , NLB , S , S ,  S  and  S  can be smoothed from LB , NLB , S  

and  S  via a similar fashion presented in Section 2. The expressions of these matrices ( LB , 

NLB , S  and  S ) for 3D problems are given as (2D expressions would be easily obtained [24]) 

11 1,1 21 1,1 31 1,1

12 1,2 22 1,2 32 1,2

13 1,3 23 1,3 33 1,3

11 1,2 12 1,1 21 1,2 22 1,1 31 1,2 32 1,1

12 1,3 13 1,2 22 1,3 23 1,2 32 1,3 33 1,2

13 1,1 11 1,3 23 1,1 21 1,3 33 1,1 31 1,


  

  

  

L

F N F N F N

F N F N F N

F N F N F N

F N F N F N F N F N F N

F N F N F N F N F N F N

F N F N F N F N F N F N

B

3

11 1,1 31 4,1

12 1,2 32 4,2

13 1,3 33 4,3

11 1,2 12 1,1 31 4,2 32 4,1

12 1,3 13 1,2 32 4,3 33 4,2

13 1,1 11 1,3 33 4,1 31 4,3

...

...

...

...

...

...

















  
 


  

F N F N

F N F N

F N F N

F N F N F N F N

F N F N F N F N

F N F N F N F N

 (7.35) 

where the deformation gradient tensor F  is defined by 
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11 12 13

21 22 23

31 32 33

 
   

     
  

T
F F F

F F F

F F F

x
F

X
 (7.36) 

The matrices NLB  and S  are given by 

1,1 2,1

1,2 2,2

1,3 2,3

1,1

1,2

1,3

1,1 4,1

1,2 4,2

1,3 4,3

0 0 ... 0

0 0 ... 0

0 0 ... 0

0 0 0 ... 0

0 0 0 ... 0

0 0 0 ... 0

0 0 0 ...

0 0 0 ...

0 0 0 ...

 
 
 
 
 
 
 
 
 
 
 
 
 
 

NL

N N

N N

N N

N

N

N

N N

N N

N N

B  (7.37) 

and 

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S  (7.38) 

The second Piola-Kirchhoff stress tensor (PK2) holds the form as 

  11 22 33 12 23 31 11 22 33 12 23 312 2 2       
T T

S S S S S S E E E E E ES D  (7.39) 

where the Green–Lagrange strain tensor E  of elements can be defined from the deformation 

gradient tensor, which reads 
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 
11 12 13

21 22 23

31 32 33

1

2

 
 

  
 
  

T

E E E

E E E

E E E

E F F I  (7.40) 

 

7.5 Standard Patch Test 

7.5.1 A Standard Patch Test for 2D Problems 

To assess the convergence of the presented βFEM, the satisfaction of patch tests is an 

essential requirement. In Figure 7.4, a simple domain is discretized using “patch” of irregular 

triangular elements indicated by red color. The left and bottom edges are constrained at the 

horizontal and vertical directions, respectively. The right and top edges are assumed to be 

stretched to 10%  of the original length at the horizontal and vertical directions, respectively. To 

pass the patch test, the computed displacements of all the interior nodes should follow exactly (to 

machine precision) the same linear function of the displacements imposed along the edges, viz., 

0.1u x   and  0.1v y  (7.41) 

In order to examine the numerical convergence rate, the following displacement error 

norm can be defined 

ndof

1

ndof

1

100%





 




h

i i

i
d

i

i

u u

e

u

 (7.42) 

where iu  and h

iu  are the exact and numerical solution of displacements, respectively.  
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Figure 7.4. A 2D patch test for βFEM using triangular mesh. 

The deformed configuration is plotted by blue dash-dot lines in Figure 7.4. In Table 7.1, 

the numerical results show that this simple square model is able to pass the designed patch test 

within machine precision for any value of [0,1]  . Therefore, the displacement compatibility is 

ensured and the convergence of numerical solutions (toward exact results) would be confirmed. 

Table 7.1  Displacement error norm for 2D patch test 

  0.0000 0.2000 0.4853* 0.6324* 0.8000 0.9000 1.0000 

de  
5.2170e-

14 

4.2645e-

14 

2.8359e-

14 

2.6369e-

14 

2.4734e-

14 

2.8786e-

14 

2.7933e-

14 

* Random generated number 

7.5.2 Irons First-order Patch Test for 3D Problems 

Consider a 3D cube with side length 10 mm  and elastic parameters 36.895 10 MPa E  

and 0.25v . On the exterior boundaries, linear displacements are prescribed as following: 

0.0005*(2 )  u x y z  

0.0005*( 2 )  v x y z  

0.0005*( 2 )  w x y z  

(7.43) 
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Figure 7.5. A 3D cubic patch test for βFEM using tetrahedral mesh. 

 

The domain needs to be discretized by irregular elements with at least one interior node, 

e.g., Figure 7.5. To pass this patch test, the displacements of all the interior nodes should follow 

exactly the same function of the imposed displacement on exterior boundaries. The displacement 

error norms calculated by Eq. (7.43) are listed in Table 7.2. Again it passed the conducted patch 

test at machine precision and the displacement compatibility would be ensured. 

Table 7.2  Displacement error norm for 3D patch test  


 0.0000 0.2000 0.4218* 0.6555* 0.7500 0.9000 1.0000 

d
e

 
8.1157e-

16 

4.0579e-

16 

1.1159e-

16 

3.0434e-

16 

6.0868e-

16 

4.0579e-

16 

7.1012e-

16 

* Random generated number 

 

7.6 Numerical Examples and Discussions 

In this section, several representative numerical examples are illustrated. In the first two 

examples, the well-known Cook’s membrane problem and cantilever beam problem under plane 
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stress conditions is studied for comparisons of accuracy and solution bounds. An elastic infinite 

plate with a circular hole considered as a plane strain problem is tested for accuracy and simple 

volumetric locking in the third example. The fourth example tests the property of temporal 

stability of βFEM by analysis of free vibration of an automobile connecting bar. The fifth and 

sixth examples examine the accuracy of proposed 3D βFEM. A human molar tooth example is 

simulated in the seventh example, which shows the application of our method for modeling of an 

object with moderately complex geometry. The last example extends to the analysis of a 

geometrically non-linear problem with large deformation. 

7.6.1 Cook’s Membrane: Study of Accuracy and Solution Bounds 

As a standard test for combined bending and shear response with moderate distortion, 

Cook’s membrane problem [42] is shown in Figure 7.6. The problem consists of a tapered panel 

clamped at the left boundary and subjected to an in-plane shearing traction at the free right edge. 

The volume force would not be considered and the plane stress conditions are assumed. The 

material parameters are chosen as: Young’s modulus 
73 10 E Pa and Poisson’s ratio 1/ 3  . 

Following References [7,43], we set the geometrical dimensions as 1 48l , 2 44l  and 3 16l , 

and the loading 1P , where P  is the resultant of the uniformly distributed shear traction. The 

reference value of the vertical displacement for the middle of the right edge is 23.9642  [44] and 

the reference strain energy of membrane is 12.015  [42].  
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(a) (b) 

Figure 7.6. Cook’s membrane problem: (a) geometry and loads and (b) domain discretization by 16 16  

triangular base mesh. 

  In order to test the accuracy and convergence behavior of the βFEM, the problem has 

been discretized into structured meshes with N N  edge density of the mesh. Figure 7.7 and 

Figure 7.8 compare the results obtained by several different methods with four different spatial 

discretizations. Figure 7.7 shows comparisons of displacements at right tip-center of the 

membrane from different methods. The bound properties of strain energy are investigated and 

compared in Figure 7.8. It is evident that the βFEM (with 0.9  ) generates the most accurate 

solutions (or close-to-reference solutions) among all these methods. The FEM and ES-FEM 

produce stiffer solutions of displacement and behavior of the overestimation property of stiffness, 

which approximate the reference solutions from the lower-bound of displacement or energy. 

While the NS-FEM produces “overly-soft” solutions because of the underestimation behavior, 

which reflects the unique property of upper-bound. Regardless of the value of parameter  , the 

P

3l

2l

1l
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numerical results of βFEM would be within the narrow interval bounded by the solutions of ES-

FEM and NS-FEM. 

 

Figure 7.7. Comparisons of displacements at tip-center from different methods for Cook’s membrane 

problem. 
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Figure 7.8. Solution bounds of energy for Cook’s membrane problem. 

 

7.6.2 Cantilever Beam Under a Tip Load: Study of Accuracy and Solution Bounds 

In this example, a rectangular cantilever linear elastic beam with length L  and height H  

is studied here. The beam is fixed along the left side edge and subjected to a parabolic traction P  

at the free end as shown in Figure 7.9(a). The beam is assumed to be a plane stress problem with 

unit thickness. The analytical solution of displacements can be found in reference [45], which 

reads as follows 

   

     

2
2

2
2 2

6 3 2
6 4

4 5 3 3
6 4



 

  
      

  

 
       

 

x

y

P H
u L x xy y y

EI

P H x
u L x x y L x

EI

 (44) 

The corresponding stresses can be expressed as 
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where I  is the moment of inertia for the beam and can be written as 
3 /12I H  for this 

problem. The related geometry/loading parameters and material properties are given as: 2.4L

m, 0.6H m, 5000P N, Young’s modulus 
73 10 E Pa and Poisson’s ratio 0.3v . 

 

 

 

 

(a) 

 

(b) 

Figure 7.9. Computation model of cantilever beam: (a) sketch of geometry and loading; (b) domain 

discretization using 512 triangular (or 256 quadrilateral) elements. 

In Figure 7.9(b), a sample mesh using 512 triangular elements (or 256 quadrilateral 

elements with the same number of nodes) is illustrated. To check the accuracy of βFEM, the 

displacement values along the neutral axis obtained by different methods are compared in Figure 

7.10. The bound properties of strain energy are investigated and compared in Figure 7.11. From 

these numerical results, it reveals several facts as: (1) compared to analytical solution, the FEM-
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T3, FEM-Q4, ES-FEM produce stiffer solutions of deformation and show the overestimation 

property of stiffness, which can evaluate the exact solution from the lower-bound of deformation 

or energy; (2) the ES-FEM solution is the most accurate one among these methods from the 

lower-bound, and it behaves even (slightly) more accurately than FEM-Q4; (3) the NS-FEM 

generates “overly-soft” solution due to the underestimation behavior, which brings on the unique 

property of the upper-bound; (4) βFEM can achieve the super-accurate or close-to-exact solution 

when it adopts the proper value of adjustable parameter  . For example, [0.8,0.95]   for this 

problem works well compared to the analytical solution; (5) the numerical results of βFEM is 

within the interval bounded by the solutions of ES-FEM and NS-FEM.  

 

Figure 7.10. Vertical displacement at central line ( 0y ) using the mesh with 85 nodes. 
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Figure 7.11. Solution bounds of energy for the problem of cantilever beam. 

 

7.6.3 Infinite Plate with a Circular Hole: Test for Accuracy and Volumetric Locking 

Figure 7.12 illustrates a plate with a central circular hole subjected to a unidirectional 

tensile stress of 60.98 10 p N/m
2
 at infinity in the x direction. Since the stress concentration 

around the hole is highly localized and decays very rapidly, essentially disappearing when the 

distance to the center is greater than 5a , only a finite plate with 5L a  is necessary to be 

modeled. Here one quarter (upper right quadrant) of the plate is chosen and discretized into T3 or 

Q4 elements, owing to the symmetry of problem. The symmetry boundary conditions are 

imposed along the left and bottom edges and the inner edge of the hole is traction free. Plane 

strain condition is considered and the geometrical parameters are assumed as 0.2a m and 

1.0L m. The exact solution for displacement components is given as [45] 
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where the shear modulus / (2(1 ))  E  and bulk modulus 3 4    for plane strain 

conditions, ( , )r  are the polar coordinates with counterclockwise measured  . The exact 

solution for the stress is given as [45] 
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Figure 7.12. An infinite plate with a circular hole and its quarter model. 

In order to investigate the strain energy, the energy curves against the mesh index are 

compared and plotted in Figure 7.12. Here the parameters are set to be: Young’s modulus 

90E MPa, Poisson’s ratio 0.3v , and 0.84  . The figure shows that the values of strain 
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energy obtained using NS-FEM are always larger than the reference exact energy and those 

computed from other methods. On the other side, the curves computed using FEM-T3, FEM-Q4, 

ES-FEM and βFEM are lower than the exact one. Moreover, the presented βFEM provides the 

most accurate results which can be regarded as the close-to-exact solution among these methods. 

These phenomena also indicate the reference/exact solution is always bounded from both sides: 

by NS-FEM from the upper-bound of energy or deformation and by FEM-T3, FEM-Q4 or ES-

FEM from the lower-bound. Tuning the value of the scaling factor   in βFEM, the solutions 

will be shifted from above to below of the exact one and the features of both NS-FEM and ES-

FEM would be inherited when the factor (0,1)   is selected.  

 

Figure 7.13. Solution bounds of energy for the problem of infinite plate with a circular hole. 

For the volumetric locking issue in the nearly incompressible elastic materials under 

plane strain condition, we can test the problem via setting the Poisson’s ratio as values being 

close to 0.5, i.e., 0.4 / 0.49 / 0.499 / 0.4999 / 0.49999 / 0.499999 / 0.4999999  . Table 7.3 and 
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Figure 7.14 shows the displacement error norms at different Poisson’s ratios for FEM-T3, FEM-

Q4, ES-FEM, and βFEM with 0   (i.e., NS-FEM) and 1   . Obviously both the standard 

FEM using T3 and Q4 suffer from the volumetric locking. While the βFEM, which inherits the 

property of NS-FEM, is immune from volumetric locking and suitable for treating near 

incompressible situations. The case 0   for βFEM also verified the property: the NS-FEM is 

effective in overcoming volumetric locking. 

Table 7.3  Displacement error norm for infinite plate with a circular hole 

Mesh Poisson's 

Ratio 
FEM-T3 FEM-Q4 ES-FEM 

βFEM 

( 0  ) 

βFEM 

( 1   ) 

16x16 0.4 1.08677 0.29847 0.14065 0.90085 0.85173 

16x16 0.49 3.96202 1.80973 0.43391 0.85934 0.84933 

16x16 0.499 7.34553 7.67250 1.89630 0.85573 0.85450 

16x16 0.4999 8.35639 15.12191 4.59207 0.85556 0.85543 

16x16 0.49999 8.49039 17.45636 7.37184 0.85554 0.85553 

16x16 0.499999 8.50438 17.75544 8.23398 0.85554 0.85554 

16x16 0.4999999 8.50579 17.78638 8.34642 0.85554 0.85554 
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Figure 7.14. Displacement error norms vs. different Poisson’s ratios. 

 

7.6.4 Free Vibration Analysis of an Automobile Connecting Rod: Test for Temporal 

Stability 

 

Figure 7.15. Geometry and boundary conditions of an automobile connecting rod [15]. 
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As NS-FEM is found to be temporally instable and may have non-zero-energy spurious 

modes [30], this example will test the temporal stability of βFEM by performing a free vibration 

analysis for an automobile connecting rod. The geometrical dimensions, boundary conditions 

and loading are illustrated in Figure 7.15, with 1p MPa. The inside circumference for the left 

side is fixed at both directions. The material parameters are chosen as: Young’s modulus 

73 10 E Pa, Poisson’s ratio 1/ 3  , and mass density 
37.8 10   kg/m

3
 for plane stress 

analysis. The domain is discretized by a triangle mesh using 472  nodes for T-mesh based 

methods (FEM-T3, NS-FEM, ES-FEM and βFEM) and 511 nodes for FEM-Q4 as a comparison.  

Table 7.4  First 12 natural frequencies (Hz) for the automobile connecting rod 

Mesh 472 nodes and 736 T3 elements 

511 nodes and 

404 Q4 elements 

Method FEM-T3 NS-FEM ES-FEM 
βFEM 

( 0.8  ) 

βFEM 

( 0.9  ) 

FEM-Q4 

(Abaqus) 

Frequencies 

(Hz) 

 

470.37 417.68 442.70 434.15 438.23 439.74 

2130.96 1911.17 2023.13 1987.24 2004.50 2017.5 

4907.22 4683.20 4864.00 4839.24 4851.83 4858.8 

5234.04 4746.23 4994.71 4903.62 4947.87 5010.4 

9453.83 7742.60 8967.82 8763.59 8864.36 9022.2 

11889.09 8167.72 11293.10 10963.85 11131.13 11220 

13906.91 9841.74 12748.38 12231.46 12487.51 12747 

16337.07 10800.20 15426.02 15075.44 15251.90 15240 

16728.28 13271.05 15524.57 15095.27 15292.12 15412 

19935.52 14056.13 19319.98 18980.37 19151.17 18628 

20387.98 14358.80 19712.42 19346.70 19531.13 19571 

20706.67 15890.19 19926.97 19533.44 19729.33 19918 

 

Table 7.4 lists the first 12  natural frequencies. It is observed that the FEM-T3 has the 

largest value of frequency and the NS-FEM has the lowest value at each mode, which clearly 
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demonstrates the overly-stiff behavior of FEM-T3 and overly-soft feature of NS-FEM for 

frequency analysis. All the natural frequencies solved by βFEM ( 0.8  and 0.9  ) are 

bounded between the results from ES-FEM (upper) and NS-FEM (lower). The mode shapes 

obtained by NS-FEM and βFEM ( 0.8  ) are presented in Figure 7.16 and Figure 7.17. It is 

apparent that the spurious non-zero modes (e.g., modes 5, 9, 11 and 12) exhibited in NS-FEM 

have vanished in ES-FEM. This example confirms that the βFEM with a proper parameter   can 

approach the exact solutions and effectively eliminate the temporal instability and spurious 

modes, which may have existed in NS-FEM. 
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Figure 7.16. First 12 modes of the connecting rod obtained by NS-FEM. 
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Figure 7.17. First 12 modes of the connecting rod obtained by βFEM. 
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7.6.5 A 3D Cantilever of Cubic Shape: Accuracy Study 

 
 
 

 

 

(a) (b) 

Figure 7.18. A cubic cantilever submitted to a uniform pressure on its upper face: (a) geometry and (b) 

domain discretization by tetrahedral mesh. 

This example considers a 3D cantilever with cubic shape as shown in Figure 7.18(a), 

submitted to a uniform pressure on its top face. The input parameters are set as: 1.0a , 1.0p , 

1.0E  and 0.25v . The exact solution of strain energy is unknown for this problem, but a 

reference solution is available in [46], which applied Richardson’s extrapolation [47] on the 

solutions of hexahedral super-elements. The approximation of strain energy reported in this 

reference is 0.950930 . Another reference solution of strain energy is 0.9486 [25], which was 

obtained from FEM model with very fine mesh using second-order 10-node tetrahedral elements 

(T-10). In βFEM computations, three types of mesh structure (M1: 203  nodes and 611  

elements; M2: 554  nodes and 1936  elements; and M3: 1418  nodes and 5554  elements, shown 

in Figure 7.18(b)) are adopted. The estimated values of energy obtained from different values of 

p

a

a

a
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  are plotted and compared in Figure 7.19. To approximate good results, it is noted that the 

parameter [0.6,0.8]   is suggested to adopt for this problem. For mesh structure M2 and M3, 

the close-to-reference solution can be obtained at 0.7  .  

 

Figure 7.19. Strain energy of cubic cantilever obtained by βFEM. 

 

7.6.6 A 3D L-shaped Block: Accuracy Study 



190 
 

 
 
 
 
 
 
 

 

 

(a) (b) 

Figure 7.20. A 3D L-shaped problem and its quarter model: (a) geometry and (b) a quarter model 

discretized by tetrahedral mesh. 

Now consider a 3D square block with a rectangular parallelepiped hole illustrated in 

Figure 7.20(a), which is submitted to a uniform traction q  on left and right side faces. Since the 

problem is biaxial symmetry, only a quadrant of the block (L-shaped) is modeled as shown in 

Figure 7.20(b). The parameters are assumed to be: 1.0a , 1.0q , 1.0E  and 0.3v . 

Cugnon [48] provided an approximation of the reference strain energy to be 6.19985060 . The 

results of strain energy computed from βFEM are plotted in Figure 7.21, which indicate that the 

parameter [0.75,0.8]   is recommended to get the close-to-reference solutions.  

q
q

2a a

2a

2a
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Figure 7.21. Strain energy of the 3D L-shaped problem obtained by βFEM. 

 

7.6.7 A Molar Tooth: Analysis for Problem with Complex Geometry 

In this example, a human mandibular molar tooth under vertical pressure shown in Figure 

7.22 will be simulated. The aim of the present study is to show the advantage of βFEM in 

modeling object with moderate complex shape of geometry, since the adopted element type 

(tetrahedron) is the only option to discretize arbitrary irregular complex shapes. Fixed zero-

displacement at the three spatial dimensions are assigned to the nodes below the horizontal plane 

at 0.6z . As the data of true loading of mastication would be a stochastic event and will be 

difficult to decide, here we assume a uniformly vertical downward loading applied at the surface 

above the horizontal plane 10.2z  (above the lowest point of top surface). The value of total 

force using for analysis is set to be 225 N [49]. The material is assumed to be a homogeneous 
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and isotropic material which has the same properties as tooth enamel: 84.1E GPa [50] and 

0.30v [51].  

 

 

 

 

(a) (b) 

Figure 7.22. A human molar tooth and its mesh: (a) geometry and (b) a model discretized by T-mesh using 

33968 tetrahedral elements. 

The stress distribution obtained from presented βFEM is displayed in Figure 7.23 and it is 

compared with the FEM result obtained from Abaqus, which utilizes the same mesh structure 

and loading/boundary conditions. It is noticed that the input data of this problem is simplified 

and some assumptions are made as the related experimental data is unknown. However, the 

potential use of the present method is already demonstrated for investigating the stress 

distribution of dental structures. And it is valuable in the field of creating patient-specific models 
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for clinical operations of tooth restoration and dental implants. The study here also shows the 

capability of our βFEM in modeling complex 3D geometry for medical applications and 

mimicking biological systems with irregular shapes. 

 
 

(a) (b) 

Figure 7.23. Stress distribution of molar tooth models using T-mesh: (a) βFEM model and (b) FEM model 

by Abaqus. 

 

7.6.8 A 3D Cantilever Beam Subjected to a Regular Distributed Load: Analysis for Large 

Deformation Problem 

A large deformation analysis of a 3D cantilever beam is performed using βFEM in this 

example. The geometrical dimensions of the beam are given as: 2cm 2cm 10cm  . The beam is 

constrained at its left end and subjected to a regular distributed loading at its right end. The 

material parameters are set as 30E GPa and 0.30v . The domain is discretized by a mesh 
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using 117  nodes and 298  elements. The geometrically nonlinear analysis is based on total 

Lagrange formulation using 10 increment steps ( nsteps 10 ) with 2 f kN/cm
2
 in each step. 

In Figure 7.24, the initial grid and deformed final configuration for the model are shown. The tip 

deflections / vertical displacements (cm) at each load step obtained by different methods are 

compared in Table 7.5 and Figure 7.25. It is apparent in each step, the problem converges 

quickly as all the iterations at each step are no more than 5 . Compared to linear problem, the 

nonlinear large deformation analysis models will be stiffer and unpliable to bend. The deflections 

obtained by βFEM ( 0.65  ) are softer than those from FEM-T4 and FS-FEM, and they are 

closer to the model using eight node hexahedral elements (FEM-H8) [24] with fine mesh. 

 

 

Figure 7.24. Initial mesh and deformed final configuration of the 3D cantilever beam problem obtained by 

βFEM based on geometrically nonlinear analysis. 
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Table 7.5  Tip deflections (cm) at each load step for 3D cantilever beam. 

Load step (n) 

FEM-T4 

(linear, 1322 

nodes) 

FEM-T4 

(nonlinear, 117 

nodes) 

FS-FEM 

(nonlinear, 117 

nodes) 

FEM-H8 

(nonlinear, 

1323 nodes) 

βFEM 

(nonlinear, 117 

nodes) 

1 0.2364 0.1333 (3)* 0.1486 (3) 0.2421 (3) 0.1969 (3) 

2 0.4728 0.2658 (3) 0.2962 (2) 0.4522 (3) 0.4016 (5) 

3 0.7092 0.3988 (2) 0.4448 (2) 0.6405 (3) 0.6047 (3) 

4 0.9456 0.5320 (2) 0.5940 (2) 0.8205 (3) 0.7985 (2) 

5 1.1819 0.6641 (2) 0.7419 (2) 1.0022 (4) 0.9907 (2) 

6 1.4183 0.7949 (2) 0.8880 (2) 1.1762 (4) 1.1840 (2) 

7 1.6547 0.9242 (2) 1.0321 (2) 1.3495 (4) 1.3735 (2) 

8 1.8911 1.0519 (2) 1.1741 (2) 1.5222 (4) 1.5590 (2) 

9 2.1275 1.1779 (2) 1.3138 (2) 1.6943 (4) 1.7390 (2) 

10 2.3639 

 

1.3022 (2) 

 

1.4510 (2) 

 

1.8656 (4) 1.9131 (2) 

* The number in the bracket is the iterations in each step. 

 

 

Figure 7.25. Tip deflection (cm) at each load step for the 3D cantilever beam problem. 
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7.7 Applications in Crystal Plasticity 

The method is illustrated and verified by the (static, dynamic, linear and nonlinear) 

elastic problems in the previous section. This section will apply the method into nonlinear crystal 

plasticity problems at finite strain. In such cases, the exact solutions are usually difficult to be 

obtained, but the capability of this method will be shown in handling plastic incompressibility of 

single crystals as well as capturing strain localization phenomena. The work is based on βFEM 

scheme and it comprises the framework and formulations of anisotropic finite strain rate-

independent single crystal plasticity model introduced in Chapter 6. The numerical procedure 

proposed for single crystal plasticity is carried out in several examples (1, 2, and 3) with the 

planar slip models for single crystals in the context of rate-independent localization computations. 

The proposed method and algorithms are also applied to model the mechanical behavior of 

bicrystal and polycrystalline aggregate in the last two examples. 

7.7.1 Planar Tension of Single Crystal with Symmetric Localization 

In this example sketched in Figure 7.26, we consider the localization of a rectangular 

single crystal strip under plane strain conditions, which has been studied using ES-FEM in 

previous chapter (Section 6.5.1). The material parameters for calculation are set to be the same as 

the ES-FEM. The initial crystallographic orientation of the first slip plane is assumed to be 

0 30.0    w.r.t the horizontal direction and the angle between the second slip system and the 

first one is 0 120.0   , i.e., the crystal lattice is oriented symmetrically with respect to the axis 

of tension. In Section 6.5.1, the maximum stretching at both ends by ES-FEM is 5.0 D mm. 

In this example studied by βFEM, the specimen is able to be deformed up to a prescribed 

elongation of 5.5 D mm at both ends in the horizontal direction. In order to trigger the 
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localization of the geometrically perfect specimen, a material imperfection is assumed in the 

center of the specimen as shown in Figure 7.26. Again by exploiting the symmetry along the 

centerlines of the specimen, only one quadrant of the specimen subjected to appropriate 

boundary conditions is modeled and analyzed.  

To implement the simulation by βFEM, the domain is discretized with a base mesh of 

constant strain triangle elements (CST or T3), and then followed by the construction of strain 

smoothing domains for βFEM as illustrated in Figure 7.3. Without loss of generality, here the 

specimen utilizes free unstructured mesh with 4 709  triangle elements for coarse mesh model 

(Figure 7.27(a)) and 4 2426 elements for fine mesh model (Figure 7.27(b)). In this example, the 

performance of proposed formulations and algorithms implemented using βFEM is compared 

with standard FEM based on the same initial fine mesh plotted in Figure 7.27(b). Figure 7.27(c), 

(d) and (e) plot the shear stresses on deformed configurations simulated by FEM at the 

elongation length of 4.0, 4.5, 5.0 D mm ( 2 13.333% 15.000% 16.667%  ， ，D W ). Figure 

7.27(f), (g), (h) and (i) plot the corresponding shear stresses on deformed configurations 

simulated by βFEM at the stage 4.0, 4.5, 5.0, 5.5 D mm. Apparently the FEM model is not 

able to reflect the evident phenomena of strain localization when the specimen stretched up to 

4.0 D mm as shown in Figure 7.27(c). Actually it can be regarded as an essentially 

homogeneous deformation mode. Moreover, it fails to model the shear bands for the elongation 

4.5D  mm shown in Figure 7.27(d). Two crossed shear bands are observed in final 

configuration plotted in Figure 7.27(e), but they are not fully developed compared to references 

[52,53]. While the shear stresses and deformation in Figure 7.27(f) simulated by βFEM using a 

same structure of mesh depicts the formation of shear bands starting at least from 4.0 D mm. 

Figure 7.27(g) and (h) shows the ongoing deformation of shear band mode and the final 
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configuration is depicted in Figure 7.27(i), which highlights a pair of symmetric crossed shear 

bands with the cross angle of about 102.6 , i.e., the slip direction rotates from the initial angle 

30.0  to 38.7 . Large deformation/strain occurs within elements along the shear band and this 

evolution of distributions also matches some available references [52,54–57]. Therefore, the 

proposed βFEM has proved to be successful for modeling the shear bands development and 

strain localization in this numerical example. 

Figure 7.28 plots the edge loading of specimen against the associated deflection. The 

βFEM adopts a coarse mesh model shown in Figure 7.27(a) and a fine mesh model shown in 

Figure 7.27(b). The loading increases slowly after a yield point and it continues to rise along the 

increasing deformation until it reaches the maximum point at about 3.83 D mm. After this 

peak point, it decreases with unstable phenomenon occurs, which is caused by the rather abrupt 

rotation of the crystal lattice along the shear bands in softer orientation geometrically. In the 

increasing stage, the differences of three curves are not evident. However, the βFEM models 

using both coarse mesh and fine mesh behave softer than FEM model using fine mesh during the 

load dropping/necking stage. This is consistent with the onset of localized shear band 

development indicated in Figure 7.27(f). The mesh sensitivity study of βFEM shows that the 

loading are almost identical before the beginning of reaction descending stage, and the variance 

along the droping stage is also smaller than references [52,57]. This demonstrates the high 

accuracy of the exponential map-based integration scheme which we exploited. It is also 

necessary to know that the βFEM model with fine mesh behaves slightly softer than the coarse 

one during the necking stage of specimen.  
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Figure 7.26. Geometry and mechanical boundary condition for planar double-slip crystal specimen with 

symmetric initial crystallographic orientations. 
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(c) 

 

(d) 

 

 

(e) 
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(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 7.27. Initial mesh and shear stresses on deformed configuration for numerical models: (a) and (b) 

domain discretization by a basic unstructured mesh with 4 709  elements and 4 2426  elements, 

respectively; (c), (d) and (e) show the shear stresses on deformed configurations simulated by FEM at the 

elongation stage of 4.0 D mm, 4.5 D mm and 5.0 D mm, respectively; (f), (g), (h) and (i) 

show the shear stresses on deformed configurations simulated by βFEM at the elongation stage of 

4.0 D mm, 4.5 D mm, 5.0 D mm and 5.5 D mm, respectively. 

   



202 
 

 

Figure 7.28. The edge reactions against the elongation of prescribed edge. 

 

7.7.2 Tension of a Crystal Strip with Initial Edge Imperfection 

We now consider the localization of a rectangular strip with different arrangements of the 

internal structure, which are characterized by the initial orientations under plane strain conditions. 

The geometrical dimensions of the strip sample are characterized by the relation 

width length 6mm 15.4mm . An initial geometrical imperfection as a square hole with 

size 0.3mm  on the center of left-hand side of the specimen is used to initiate shear bands by 

concentrating the stress in its vicinity, which is depicted in Figure 7.29(a). In a displacement-

controlled numerical test the specimen is deformed by a prescribed vertical elongation 1.54mm  

at both top and bottom ends. The initial crystallographic orientation angles for two slip systems 

in three strip samples are set to be 60 60    , 75 45    , and 45 75    , respectively. In 

Figure 7.29(b), (c) and (d), the orientations of the localized bands of stress depend on the 
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arrangement of the initial internal structure, i.e., the initial crystallographic orientation angles in 

this example. In all samples we have observed the patterns with slip bands development or stress 

concentrations. The first sample in Figure 7.29(b) leads to two slip bands which are emanated 

from the initial geometrical imperfection and approximately orientated under 46.6   w.r.t. the 

horizontal axis ( 1.309mm D ). The second and third samples have bands with stress 

concentration on the final deformed configuration. However, it seems the shear bands are hard to 

be formed and developed for the sample with unsymmetric slip systems (w.r.t. horizontal axis or 

loading direction), compared to the sample with symmetric lattice orientations. In this example, 

the comparison study reveals the fact that the crystal matter is mechanically anisotropic as its 

deformation patterns depend on the direction of mechanical loading. This is associated with the 

internal crystal structure and the orientation dependence of the activation of the crystallographic 

deformation mechanisms.  

 

 

 

(a) (b) 
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(c) (d) 

Figure 7.29. Tension of a crystal strip with initial edge imperfection: (a) initial mesh; and shear stress on 

deformed configuration when: (b) 0 60   ; (c) 0 75   ; and (d) 0 45   . 

 

7.7.3 Necking of a Single Crystal Strip in Tension 

This benchmark of crystal plasticity concerns the necking of an f.c.c. single crystal strip 

when the double slip systems are not symmetrically disposed about the loading axis. The 

geometrical dimensions of the specimen are characterized by the relation 20mm 60mmW H , 

which are depicted in Figure 7.30(a). The top and bottom edges are constrained the contraction 

along the horizontal direction. And we prescribe the vertical displacement on both ends with the 

elongation up to 8.0 D mm ( 2 26.667% D H ). The material parameters are the same as in 

the previous example. The initial lattice orientation angle is assumed to be 0 45.0    w.r.t the 

horizontal direction and the relative angle between the slip systems is 0 60.0   . The crystalline 
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orientations are then asymmetrical w.r.t the vertical axis and the entire specimen should be 

discretized. Herein the material imperfection for triggering the localization is no longer required. 

Similar problem has been studied in [58] using Q1/P0-type finite elements for same geometry 

with free contraction of the ends. In Figure 7.30(b), the deformed configuration remains in an 

essentially homogeneous deformation mode when the ends are stretched up to 4.0 D mm. The 

developments of the shear band are depicted in Figure 7.30(c), (d) and (e). In contrast to the first 

crystal example, which results in the symmetrical shear bands, this example shows the 

development of necking with an asymmetrical shear band due to its priori unsymmetrical slip 

systems. In the final configuration depicted in Figure 7.30(e), a strong localization and associated 

softening along the narrow shear band shows that plastic flow has localized on the one of the slip 

planes. As we know, the standard FEM with distorted mesh during the large deformation 

procedure may lead to relatively or even dramatically poor results and sometimes is 

computationally infeasible (e.g., this example). While the proposed βFEM used in this example 

is successfully modeled the strain localization accompanied with large shear deformation in a 

narrow band, which reflects its feature of insensitivity for large mesh distortion problems. The 

βFEM can then be a promising tool to treat the similar problems of strain localization due to its 

advantages to avoid volumetric locking without using special elements [53,58] or increasing the 

degrees of freedom of a system. 



206 
 

 

 

 

 

 

(a) (b) 

   

(c) (d) (e) 

Figure 7.30. Asymmetrical localization of a crystalline strip in tension: (a) geometrical dimensions initial 

crystal orientation; (b) shear stress distribution on deformed configuration at the stage of 4.0 D mm; 

(c) 5.75 D  mm; (d) 6.5 D  mm; (e) final deformed configuration at 8.0 D  mm. 
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7.7.4 Deformation of a Bi-crystal 

In Figure 7.31(a), a bi-crystal strip, which is made up of two adhered parts with identical 

geometrical dimensions, is discretized by triangular mesh with 2236 elements. The initial 

geometry of the problem is set as: 80 35 . The left end of specimen is clamped at both 

horizontal and vertical directions. The strip is stretched up to 9.6 D  at the right side end, 

which is constrained in vertical direction. The initial crystallographic orientation angle is chosen 

to be 0 45.0  L
 for the left crystal and 0 15.0  R

 for the right crystal w.r.t the horizontal 

direction. The angle between the slip systems remains 60.0 . Here we assume the grain 

boundary between the two crystals is perfect, without any possibility of glide or separation. 

Figure 7.31(b) and (c) show the spatial distribution of shear band and shear stress in the bi-

crystal. Obviously the initiation locations of the shear band are clearly at the constrained left 

corner and the junction at the top edge, i.e., the locations with possible stress concentrations. The 

stress is certainly higher in the shear band areas. For example, a band of concentrated stress in 

the left-side crystal develops with an orientation of approximately 38  in Figure 7.31(b) w.r.t. 

the horizontal axis of the strip. While the requirement of bi-crystal compatibility at the grain 

boundary hardens the right bi-crystal, as long as the slip systems themselves harden with 

continuing deformation.  
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(a) 

 

(b) 

 

(c) 

Figure 7.31. Deformation and distribution of shear stress of a bi-crystal strip in tension: (a) initial mesh; 

(b) shear stress on deformed configuration after an extension of 3% ; (b) shear stress on deformed 

configuration at a final extension of 12% . 
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7.7.5 Simulation of Polycrystalline Plasticity 

The crystal plasticity is also extendable to predict the behavior of the polycrystalline 

aggregate from the behaviors of individual grains. Synthetic polycrystalline plasticity models can 

be generated using stochastic methods such as Voronoi tessellation [59–62], which is able to 

treat the mesoscopic features, including representing the realistic morphology of the grains. In 

this example, we focus on the effective polycrystalline behavior which is derived from inelastic 

material behavior of the basic constituents (e.g., monocrystals). The βFEM using T-elements is 

utilized to obtain numerical solutions of strain and stress fields, which involve crystalline slip 

dominated inelastic behavior under large strain scheme. We anticipate it can predict the 

heterogeneous stress distribution inside individual grains and the overall properties of 

polycrystals. The Voronoi Tessellation (VT) [63] is employed to build a random polycrystalline 

structure for the numerical example. In Figure 7.32(a), a schematic diagram of the specimen with 

the dimension 100W µm and 30H µm under the constraints is illustrated. A representative 

microstructure with 200 random grain cells by VT is plotted in Figure 7.33(a). Figure 7.33(b) 

illustrates the domain discretization using triangle elements for virtual grain microstructures in 

Figure 7.33(a), where varied colors relate to a number of random lattice orientations of grains. 

The specimen can then be viewed as an aggregation of randomly orientated monocrystals which 

accommodate the associated continuous deformation.  

Other than quadrilateral elements, discretization of the Voronoi polygons into triangular 

finite elements is straightforward. Unfortunately, the computational accuracy of triangular finite 

elements is generally poor [64]. However, the proposed βFEM using triangular elements can 

achieve high accuracy compared to FEM using quadrilateral elements, or even other S-FEM 

methods. In this example, the Voronoi polygons plotted in Figure 7.33(a) is discretized into 
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2674  elements. To implement the numerical computation, a displacement controlled loading 

with a final 15%  of nominal strain has been applied in the horizontal direction. Figure 7.33(c) 

shows the equivalent stress of specimen on deformed configuration for polycrystalline 

microstructures with 200 grains shown in Figure 7.33(b). The local equivalent stresses are up to 

about 600%  of macroscopic nominal equivalent stress. The stress varies considerably at some 

grain boundaries, which is mainly resulted from the incompatible deformation of associated 

contiguous grains. The diagram of stress distributions clearly show the stress and locations of 

stress concentration varying from grain to grain. Therefore, the local fields of stress and 

deformation reflect the extreme inhomogeneity of mechanical property of polycrystalline 

aggregates at mesoscale level. Figure 7.34 depicts the macroscopic equivalent stress-strain 

curves associated with the microstructures with 200 grains (Figure 7.33(a)) and 50 grains. 

Compared to the single crystal example, the curves are not so smooth after the maximum loading. 

This is essentially due to the non-uniform grain microstructures and non-concurrent onset of 

localization. The regular localized shear band development in single crystals is also blocked 

under the compatibility conditions between irregular/complex grain boundaries. It is also 

interesting to note that the strength of aggregates with 200 grain cells behaves a little higher than 

the one with 50 cells, though simulations exhibit similar macroscopic responses under monotonic 

tensile loading condition. This phenomenon of macroscopic overall response shows the analyzed 

aggregates with more grains will be effected less from local heterogeneity and then own a good 

performance of homogenized properties. 
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Figure 7.32. Geometry and boundary condition for a polycrystalline specimen. 
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Figure 7.33. Mesoscopic microstructure representation and stress distribution: (a) Voronoi tessellation of 

the polycrystalline structure with random lattice orientations of grains; (b) mesh discretization using 

triangular elements; (c) stress distribution under tension. 

 

 
 

Figure 7.34. The engineering stress-strain curves for two different microstructures with 50 and 200 grain 

cells. 

 

7.8 Conclusion Remarks 

In this work, a novel smoothed technique based beta finite element method (βFEM) has 

been developed and applied for both 2D and 3D solid mechanics problems. For βFEM, 

smoothing domains generated from both edge-based (2D)/face-based (3D) and node-based strain 

smoothing techniques are employed to construct a smoothed model. A key aspect of the method 

is that it inherits the features of both ES-FEM/FS-FEM and NS-FEM. Standard patch tests are 

likewise satisfied. Through the present framework of formulations and numerical discussions by 
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examples, the major characteristics of the proposed method has been demonstrated and verified, 

including high accuracy, insensitivity to mesh quality or distortion, immunity or alleviation of 

volumetric locking, temporal stability and capability for modeling objects with complex 

geometry. After numerical investigation of accuracy and volumetric locking in elastic problem, 

the method is then performed to model rate-independent planar crystal plasticity problems, 

including single crystal, bi-crystal and polycrystalline structures. From these studies, some 

remarks can be concluded as following: 

  (1) An adjustable parameter β controls the portion of area of edge-based/face-based and node-

based smoothing domains. In the context of elasticity, it is promising to find nearly exact 

solution in strain energy due to solution shifting by tuning the adjustable parameter, since 

the exact solution would be within the narrow interval bounded by the solutions of βFEM 

with 0   and 1  . 

  (2) The method can be immune from volumetric locking and no special treatments are required 

for solids of nearly incompressible materials. This feature is inherited from NS-FEM by 

properly choosing the parameter   of βFEM, and the ES-FEM/FS-FEM may not possess 

this property due to its inherent features. 

  (3) Temporal instability and spurious modes existed in NS-FEM can be eliminated by proposed 

βFEM model with a proper parameter  . However, the effective way to find such a 

parameter needs to be further studied. 

  (4) The method is effective in analysis of solid mechanics problems for both linear and 

geometrically nonlinear cases. 
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  (5) Due to the fact that tetrahedral mesh can be efficiently generated for complex geometry 

using fully automatic procedure, the method has a lot of potential and capabilities for 

applications in areas with complex shapes (such as biomedical, automotive, and aerospace 

engineering) as it is essentially the T-mesh based algorithms. 

  (6)  Numerical results of modeling crystal plasticity attest the capabilities of treating plastic 

incompressibility and volumetric locking. The phenomena of strain localization and shear 

band development show good agreement with literatures, in which some special elements 

such as Q1E4 elements, Q1/P0 elements or F-bar elements are utilized to capture strain 

localization phenomena and handle geometric nonlinearity at large deformation. We 

conclude the reason essentially is that our βFEM models, even with a basic T-mesh of 

linear elements, have the important property of softening effects compared with the 

corresponding FEM models. On the other hand, because of the absence of isoparametric 

mapping enabled by the strain smoothing operation, βFEM models are less sensitive to the 

quality of the grid configuration, even for severely distorted mesh during the large 

deformation process.  

  (7) The proposed method and algorithms are also applied to simulate a bi-crystal specimen and 

polycrystalline aggregates. Numerical results demonstrated that the method along with the 

numerical framework is performed successfully for the predictions of the anisotropic 

deformation and elastoplastic behaviors of bi-crystal and polycrystalline grain structure. 
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Chapter 8. Summary 

 

From the discussions in previous chapters, S-FEM can be regarded as a special linear 

version of smoothed point interpolation methods, which is established using the generalized 

smoothed Galerkin weak form theoretically on G space theory. The objective of S-FEM is to 

construct numerical models with good performance under a general framework of the standard 

finite element method. This is achieved by the implementation of some generalized gradient 

smoothing operations on strains, which will alter the assumed strain field in a proper fashion. 

The smoothing operations in S-FEM can be performed over smoothing domains, which would be 

located within the elements: CS-FEM, but more often beyond elements: bringing in the 

information from the adjacent elements, including NS-FEM, ES-FEM and FS-FEM.  

Compared to the standard linear displacement finite element method (LFEM), S-FEM 

can overcome some inherited drawbacks existed in LFEM, such as stress inaccuracy, sensitivity 

to element distortion, unstable/volumetric locking phenomena, etc. It can be seen that the class of 

S-FEMs has become a simple and effective tool for analysis of a few advanced types of solid 

mechanics problems.  

The present study was motivated by the development of novel smoothing techniques 

based methods with better performance for computational solid mechanics. We developed S-

FEM in computational mechanics with several aspects and successfully conducted numerial 

applications of these methods for analysis of different types of problems. These proposed 

methods can solve problems more accurately than conventional methods, provide alternatives to 
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standard FEM with easy implementation, or tackle some problems which standard linear FEM 

would be not able to handle. A summary of the work can be provided as following: 

 The generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) is 

proposed for stochastic analysis based on the generalized stochastic perturbation 

technique. Numerical examples for problems with large uncertainties are presented and 

the efficiency and accuracy of the GS_CS-FEM are verified by the comparison with 

results from Monte Carlo simulations. 

 The virtual crack closure integral technique (VCCT) has been developed for evaluation of 

fracture mechanics parameters and simulation of crack propagation within the framework 

of CS-FEM. The mechanism of one-step-analysis feature of VCCT has been introduced 

mathematically based on the assumption that an infinitesimal perturbation of crack-tip 

location shall not obviously affect the stress/displacement field. In numerical examples, 

the comparisons of strain energy and stress intensity factors between the presented 

technique and conventional methods show that it is a good competitor of accuracy as 

FEM-Q4 with the interaction integral method. While the present scheme only employs 

the information of displacement openings behind the crack-tip and the nodal forces at the 

crack-tip, it also successfully predicts the crack growth trajectory with excellent 

agreement between numerical results and the experimental observations. 

 A computational framework of S-FEM for modeling anisotropic crystalline plasticity has 

been presented to simulate the mechanical behavior of crystal materials with rate-

independence. The ES-FEM technique has been extended to deal with finite strains in a 

nonlinear incremental integration procedure based on the Newton-Raphson scheme. The 

constitutive model utilizes the hyperelastic-based multiplicative plasticity framework on 
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the basis of the theory of crystallographic slip. The performance of the proposed 

formulations has been illustrated firstly in single crystal plasticity by strain localization 

problems. The predictions of onset of localization and successive shear band 

development are verified by literature with special elements such as Q1E4 elements or F-

bar elements. We conclude that the reason essentially is that smoothed models are able to 

provide a softening effect provided by the smoothing operations to the compatible FEM 

models. Moreover, the proposed formulations and algorithms are also implemented to 

explore the mesoscopic and macroscopic elaso-plastic behavior of polycrystalline 

aggregates through modeling the synthetic microstructure constructed by the Voronoi 

tessellation technique. 

 Finally, a novel smoothed techniques based beta finite element method (βFEM) has been 

developed and applied for both 2D and 3D solid mechanics problems. Smoothing 

domains generated from both edge-based/face-based and node-based strain smoothing 

techniques are employed to construct a smoothed model. A key aspect of the method is 

that it inherits the features of both ES-FEM/FS-FEM and NS-FEM, such as ultra-

accuracy, insensitivity to mesh quality or distortion, alleviation of volumetric locking, 

etc.  Numerical results for 2D and 3D problems validated that the present method gives 

super-accurate solutions for both linear and nonlinear problems. The attractive features 

inherited from both ES-FEM/FS-FEM and NS-FEM have been confirmed, including high 

accuracy, immunity from volumetric locking, temporal stability during vibration and 

capability for modeling an object with complex geometry. It is argued that βFEM is a 

viable versatile alternative to standard FEM and possesses some promising advantages. 

The developed βFEM has also performed in modeling rate-independent crystal plasticity 
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problems. Numerical results attest to its capabilities of treating plastic incompressibility 

and volumetric locking. The proposed method is also implemented to mimic the 

mechanical behavior of polycrystalline aggregates successfully. 
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