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Abstract

The Korteweg-de Vries equation is one of the most studied partial differential equations in

past decades. This equation models unidirectional propagation of small finite amplitude long

waves in a non-dispersive medium and has become the source of important breakthroughs in

mechanics and nonlinear analysis and of many developments in algebra, analysis, geometry

and physics.

This research focuses on an initial boundary value problem for the Korteweg-de Vries

equation posed on a bounded interval with a nonlinear boundary condition. This

nonlinearity is due to the presence of a moving wall at the left end point of the interval.

By using the Kato smoothing property, sharp Kato smoothing property and the contraction

mapping principle this initial boundary value problem is shown to be locally well posed in

the L2-based Sobolev space Hs(0, L) for any s ≥ 0; moreover it will be proved that an initial

boundary value problem associated with the Korteweg-de Vries equation is local exactly

controllable via the contraction mapping principle.
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CHAPTER 1
Introduction

The Korteweg-de Vries equation (KdV-equation henceforth)

(1.1) ut + ux + uux + uxxx = 0

was derived by Boussinesq [9] and Korteweg and de Vries [40] as a model for long-crested

small amplitude long waves propagating on the surface water. As is usual u = u(x, t) is a

real-valued function of the variables x and t which often correspond in applications to space

and time, respectively and subscripts denote partial differentiation. In this document we will

study the KdV-equation from two different approaches. One of these is well-posedness, which

is existence, uniqueness and continuous dependence of the solutions of the KdV equation

for (x, t) ∈ (0, L)× R+, subject to the initial condition

u(x, 0) = φ(x)

and the non-homogeneous boundary conditions

uxx(0, t) + u(0, t)− 1

6
u2(0, t) = 0,

u(L, t) = 0,

ux(L, t) = 0,
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in the L2-based Sobolev space Hs(0, L). In order to prove well-posedness for this initial

boundary value problem, we are going to use the approach developed by Bona, Sun and

Zhang in [4]. This approach is strongly based on the smoothing properties of some linear

problems associated with our initial boundary value problem; more precisely Kato and Sharp

Kato smoothing properties, with these properties, some results for the KdV equation posed

on the whole line and the contraction mapping principle, we will be able to prove well-

posedness for this initial boundary value problem.

The second initial boundary problem considered in this research is the following:
ut + ux + uux + uxxx = 0, x ∈ (0, L), t ≥ 0,

u(x, 0) = u0(x),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t),

this problem will be studied from the control point of view. Basically, we are going to study

whether the solution of the problem can be driven from a given initial state (u(x, 0) = u0(x))

to a given final state (u(x, T ) = uT (x)) by using appropriated control inputs. For this

problem the control inputs are the functions h1, h2 and h3. Once we have proven well-

posedness in the space L2(0, L), we consider a linearized system around the origin and the

linear system will be proven to be exactly boundary controllable using one, two or three

boundary inputs; moreover, the nonlinear system is shown to be locally exactly boundary

controllable via the contraction mapping principle if the associated linearized system is

exactly controllable. In addition to these mathematical results and according to the relevance

of the KdV equation, we are going to provide a briefly, but not less important, historical

review about this equation in the following section.
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1.1 The Korteweg-de Vries Equation “A Historical

review”

The history of the KdV equation begins with the Scottish engineer and naval architect

John Scott Russell (1808 - 1882). During the 19th century, the study of water waves was

of great interest due to the applications for naval architecture and engineering. In 1834

while observing a canal boat at the Edinburgh-Glasgow canal, Russell made a remarkable

discovery that gave birth to the modern study of solitons, a wave moving in front of the

canal boat, a particular one that kept his attention, in his own words:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by

a pair of horses, when the boat suddenly stopped—not so the mass of water in the channel

which it had put in motion; it accumulated round the prow of a vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the

form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or diminution of

speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or

nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot

and a half in height. Its height gradually diminished, and after a chase of one or two miles

I lost it in the windings of the channel. Such, in the month of August 1834, was my first

chance interview with that singular and beautiful phenomenon which I have called the Wave

of Translation.”

After this observation, Russell built water tanks in his home to study this phenomenon,

trying to simulate this “Wave of Translation” in two different ways, either by using a weight

in the left side of the tank, or by releasing some cumulation of water with the help of a

floodgate located in the left side of the tank (see Figure 1.1).
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Figure 1.1: Russell’s experimentation.

After his experimentation, Russell concluded:

• The waves are stable and can travel over very large distances.

• The speed depends on the size of the wave and its width on the depth of water.

• Unlike normal waves they will never merge.

• If a wave is too big for the depth of water, it splits into two, one big and one small.

• When two moved in the same direction, and the large one overtook the slower, smaller

wave ahead of it, a nonlinear iteration occurred, after which both waves returned to

their original shape.

The conclusions obtained by Russell were basically in conflict with the wave theory

established at the time, and it challenged the theories of Newton and Bernoulli in

hydrodynamics. Mathematician and astronomer Sir George Biddell Airy argued that long

waves in a canal with rectangular cross section must necessarily change their form as time

passes. George Gabriel Stokes believed that the only permanent wave should be basically

sinusoidal and in 1849 published a “proof” that such a wave could not exist (he later
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retracted). Even with all these objections some researchers kept working with this

challenge, Joseph Boussinesq was the first one that developed a mathematical theory to

support Russell’s observation, in 1871 he found a partial differential equation admitting a

solitary wave solution. In 1876, Lord Rayleigh an English physicist obtained a

different equation allowing the existence of solitary waves and finally in 1895 the Dutch

mathematicians D. J. Korteweg and G. de Vries derived and published [40] a model

equation for the motion of waves on the surface of a layer of fluid above a flat bottom,

the Korteweg-de Vries equation (KdV equation):

(1.2)
∂η

∂t
=

3

2

√
g

h

∂

∂x

(
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂x2

)
,

here η is the surface elevation above the equilibrium level h, α a constant related to the

uniform motion of the liquid, g is the gravitational acceleration, and σ = h3/3 − Th/ρg,

with surface capillary tension T and density ρ. By using the transformations

t′ =
1

2

√
g

hσ
t, x′ = − x√

σ
, u = −1

2
η − 1

3
α

we obtain the standard KdV equation

ut + 6uux + uxxx = 0.

The importance of the KdV equation was relegated for several decades and was just an

insignificant part of the nonlinear wave theory during this time. In 1965, N. Zabuski and

M. Kruskal at the Plasma Physics Laboratory in Princeton University demonstrated that

certain solutions of the Fermi-Pasta-Ulam Lattice equations could be described in terms

of the solutions of the KdV equation and they used the term soliton for the first time to

describe these particle-like solitary waves. After this discovery, the nonlinear wave equations

that had soliton solutions became an important field of research in both pure and applied

mathematics. Several methods have been discovered while investigating the KdV equation.
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In 1967, Gardner, Greene, Kruskal and Miura [49] developed a method for exactly solving

the initial value problem of the KdV equation, the Inverse Scattering Transform, which is

known as the nonlinear Fourier transform. Peter Lax [47] in 1968, developed a mathematical

framework to apply the inverse-scattering transform to solve initial-value problems for partial

differential equations. The KdV-equation has become the source of important breakthroughs

in mechanics and nonlinear analysis and of many developments in algebra, analysis, geometry

and physics. Among other applications this equation can be used as a model to study surface

water waves, acoustic-gravity waves in a compressible heavy fluid, axisymmetric waves in

rubber cords, hydromagnetic waves in cold plasma and recently as a model to study blood

pressure waves in large arteries [24]-[25], [43], [62].

1.2 The KdV equation

1.2.1 The KdV equation in Eulerian Coordinates.

The KdV equation is a hyperbolic partial differential equation that can be used to model

long water waves in a shallow canal with a rectangular cross section and air above it. In order

to derive this equation we will use the basic equations of fluid mechanics (these equations

are derived from the conservation of laws of mass, momentum and energy, see [18]) given by

(1.3) ∂tρ+∇ · (ρ~u) = 0,

(1.4) ρ(∂t + ~u · ∇)~u = −∇p+ ~f

and the following assumptions:

• The length of the canal is far greater than the width.

• The friction for the fluid along the boundaries of the canal is neglected.

• The flow has no viscosity (inviscid flow).
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• The fluid is incompressible, homogeneous and irrotational.

For the equations of fluid mechanics, ρ is density, ~u the velocity of the fluid, p is the internal

pressure and ~f is the external force density. The last three assumptions in mathematical

terms are equivalent to

∂tρ = 0, ∇ρ = 0 and ∇× ~u = 0.

The last equation allows us to consider the velocity in terms of some potential φ, that is,

~u = ∇φ, by using the conditions given by incompressibility, irrotationality and (1.3), we

have

∇ · ~u = ∇2φ = ∆φ = 0.

Since we are considering an inviscid incompressible fluid (water) in a constant gravitational

field, (x, y, z) as the space coordinates and the components of the velocity vector ~u by

(u, v, w), we have ~f = −ρg~k, where g is the gravitational acceleration and ~k is the unit

vector in the z direction, then we have the set of equations

(1.5) ∇ · ~u = 0

(1.6) ∂t~u+ (~u · ∇)~u =
1

ρ
∇p− g~k,

using the identity

~u× (∇× ~u) =
1

2
∇
(
‖~u‖2

)
− (~u · ∇)~u

we have

∂t~u+
1

2
∇
(
‖~u‖2

)
=

1

ρ
∇p− g~k.

Since ~u = ∇φ, we can take the integral to the previous equation and obtain

p− p0

ρ0

= b(t)− φt −
1

2
‖∇φ‖2 − gz.
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Here b(t) is the constant of integration and p0 is an arbitrary constant taken from b(t). In

order to apply some surface conditions, notice that we can eliminate b(t) by choosing a new

potential φ′ = φ−
∫
b(t)dt, therefore

p− p0

ρ
= −φt −

1

2
‖∇φ‖2 − gz.

Now, if the interface between air and water is described by f(x, y, z, t) = 0 and since the

interface is defined by the property that fluid does not cross it, then we have that the normal

velocity of the the surface must be equal to the normal velocity of the fluid, thus

−ft√
f 2
x + f 2

y + f 2
z

=
ufx + vfy + wfz√
f 2
x + f 2

y + f 2
z

which implies

ft + ufx + vfy + wfz = 0.

If the surface is given by z = η(x, y, t), then we can choose f as, f(x, y, z, t) = η(x, y, t)− z

and so we obtain the boundary condition

(1.7) ηt + uηx + vηy = w.

Now, neglecting the motion of the air, we can assume, p = p0, where p is the pressure in the

water and p0 corresponds to the pressure in the undisturbed air. Under this frame, we have

the following two boundary conditions at the free surface

ηt + φxηx + φyηy = φz,

φt +
1

2

(
‖∇φ‖2

)
+ gη = 0,

on z = η(x, y, t). On a solid fixed boundary, the normal velocity of the fluid must vanish,

therefore, ~n · ∇φ = 0, in particular, if the bottom is given by z = −h0(x, y), we have

(1.8) φz + φxh0x + φyh0y = 0.

8



Linearizing the free boundary conditions, we have

ηt = φz, φt + gη = 0.

Taking this linearization on z = 0, we have the following linear problem for φ
∆φ = 0, −h0 < z < 0,

φtt + gφz = 0, y = 0,

φz + h0xφx + h0yφy = 0, y = −h0,

and once we have the solution φ of the previous system, the surface will be given by

(1.9) η(x, y, t) = −1

g
φt(x, y, 0, t).

For water waves propagating horizontally, the elementary sinusoidal solutions are given by

η = Aek·x−iωt, φ = Z(z)ek·x−iωt.

From Laplace’s equation, we have

Z ′′ − k2Z = 0, where k2 = |k|2 = k2
1 + k2

2.

Now if the depth is constant (z = −h0), then Z ′(z) = 0, thus, Z is proportional to

cosh k(h0 + z). From (1.9), we obtain

A =
iω

g
Z(0)

and we can take

Z(z) = −ig
ω
A

cosh k(h0 + z)

cosh kh0

.

Then

η = Aek·x−iωt,

φ = −ig
ω
A

cosh k(h0 + z)

cosh kh0

ek·x−iωt,

9



the condition φtt + gφz = 0 on z = 0 gives the dispersion relation

(1.10) ω2 = gk tanh kh0.

Now, approximating the vertical component of the momentum equation (1.6) by
∂p

∂z
+ρg = 0

and integrating, we have

p− p0 = ρg(η − z),

with the above, the first two components of (1.6) become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −g ∂η

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −g∂η

∂y
.

Notice that the right hand side of these equations is independent of z, so the rate of change

of u and v are independent of z, which implies

(1.11)


∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= 0.

Integrating the conservation of mass equation (1.5), we have∫ η

−h0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0.

Since

∫ η

−h0

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz =

∂

∂x

∫ η

−h0
udz − u

∣∣∣
z=η

∂η

∂x
− u
∣∣∣
z=h0

∂h0

∂x
+

∂

∂y

∫ η

−h0
vdz − v

∣∣∣
z=η

∂η

∂y
− v
∣∣∣
z=h0

∂h0

∂y
+ w

∣∣∣z=η
z=−h0

and using (1.7) and (1.8), we have

∂

∂x

∫ η

−h0
udz +

∂

∂y

∫ η

−h0
vdz +

∂η

∂t
= 0
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taking h = h0 + η and using the fact that u and v are independent of z, we have the

conservation equation

(1.12)
∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0.

Equations (1.11) and (1.12) are the shallow water equations for η(x, t) and ~u(x, t), more

precisely

(1.13)

 ~ut + ~u~ux + ghx = 0,

ht + (~uh)x = 0.

Let us consider the case of one dimensional waves with h0 constant. Taking the derivative

with respect to t of the second equation in (1.13) and using the first equation of this system,

we can obtain the following equation

htt − (uuxh− ghhx − uht)x = 0,

which is equivalent to

htt − (uux)xh− uuxh− g(hhx)x + (uht)x = 0.

Linearizing, we have

htt − c2
0hxx = 0,

and since h = h0 + η,

ηtt − c2
0ηxx = 0.

In this approximation the dispersive effects do not appear, then we need to add a dispersive

term aηxxx to the second equation in (1.13), to get the linearized system ηt + h0ux = 0,

ut + gηx + aηxxx = 0.

11



Eliminating u, we have

ηtt − c2
0ηxx − ah0ηxxxx = 0.

Now, in order to obtain the dispersion relation (1.10), we can use the approximation

ω2 = c2
0k

2 − 1

3
c2

0h
2
0k

4.

Taking the corresponding derivatives and using the last equation, we can prove that

a =
1

3
c2

0h0, therefore a more general system can be given by
ht + (uh)x = 0,

ut + uux + ghx +
1

3
c2

0h0hxxx = 0.

Taking the derivative with respect to t in the first equation and with respect to x in the

second equation and combining the resulting equation, we obtain

htt − (ux)
2h− uuxxh− ghhxx −

1

3
c2

0h0hhxxxx + uthx + uxht + uhtx = 0.

Since htt = c2
0hxx, then

htt − (ux)
2h− uuxxh− ghhxx −

1

3
h0hhxxtt + uthx + uxht + uhtx = 0,

and approximating

htt − ghhxx −
1

3
h0hhxxtt = 0,

assuming h ≈ h0, we have

htt − c2
0hxx −

1

3
h2

0hxxtt = 0.

Finally using ηtt− c2
0ηxx = 0 and h = h0 + η, we obtain the well-known Boussinesq equation

ηtt − c2
0ηxx −

1

3
c2

0h
2
0ηxxxx = 0,

the dispersion relation for this equation is given by

ω2 =
c2

0k
2

1 + (1/3)k2h2
0

.
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This equation in particular includes waves moving to both left and right, for waves moving

to the right the first two terms in the dispersion relation are

ω = cok −
1

6
c0h

2
0k

3.

Following a similar argument to the one used before, we can prove that this dispersion

relation corresponds to the equation

(1.14) ηt + c0ηx + γηxxx = 0,

where γ =
1

6
c0h

2
0. Now, waves moving to the right into undisturbed water of depth h0 satisfy

the Riemann invariant

u = 2
√
g(h0 + η)− 2

√
gh0,

and using (1.13), we obtain

ηt +
(

3
√
g(h0 + η)− 2

√
gh0

)
ηx = 0.

Combining (1.14) and the last equation, we have

ηt +
(

3
√
g(h0 + η)− 2

√
gh0

)
ηx + γηxxx = 0.

Approximating the nonlinear terms to the first order, we will have one version of the KdV

equation

ηt + c0ηx +
3c0

2h0

ηηx +
1

6
c0h

2
0ηxxx = 0.

Setting

t̄ =

√
6c0

h0

t, x̄ =

√
6

h0

x, η̄ =
3

2h0

η,

we can get the KdV equation

ηt + ηx + ηηx + ηxxx = 0.

13



1.2.2 The KdV equation in Lagrangian coordinates.

In this subsection we are going to derive the KdV equation in Lagrangian coordinates.

To achieve this goal we have to start by considering a Boussinesq system, which can be

formulated as follows

(1.15) ηt + [(1 + αη)u]x = 0,

(1.16) ut + αuux + ηx −
1

3
βuxxt = 0.

In this set up:

• x is the Eulerian coordinate,

• t is the elapsed time,

• η is the deflection from rest position,

• u is the value averaged over the depth or the horizontal velocity,

• α = a/h0, β = h2
0/l

2, where h0 is the height of the surface fluid at rest, a is amplitude

and l is wavelength.

Introducing the normalized height h = 1 + αη and using (1.15), we have

(1.17) ht + α(hu)x = 0.

Taking the integral over the interval (a, b), we obtain the relation

d

dt

∫ b

a

h(t, x)dx = αu(a)h(a)− αu(b)h(b).

Notice that αu(a) is the fluid velocity at x = a and αu(b) the fluid velocity at x = b.

Following the work of L. Rosier in [52], we are going to express the Boussinesq system

in mass Lagrangian coordinates. Let us denote by ξ the Lagrangian coordinate, therefore

14



ξ ∈ [0, L] and x = x(τ, ξ), is the position at time t = τ of the fluid particle taken from ξ at

t = 0. This coordinate is obtained by solving the system
dx

dt
= αu(t, x),

x|t=0 = ξ.

Now, let us write the Boussinesq system in terms of the variables τ and ξ. In order to do

this, let us consider the transformation, ψ : (τ, ξ) → (t, x) = (τ, x(τ, ξ)). The Jacobian

matrix of ψ is given by

(1.18) J = J(τ, ξ) =

 1 0

αu(t, x)
∂x

∂ξ

 =

 1 0

αu(t, x) j

 .

Assuming enough regularity, we have

(1.19)
∂j

∂τ
=

∂

∂τ

(
∂x

∂ξ

)
=

∂

∂ξ

(
∂x

∂τ

)
=

∂

∂ξ
[αu(τ, x(τ, ξ))] = αux(τ, x(τ, ξ))j

and

∂

∂τ
[h(τ, x(τ, ξ))] = ht(τ, x) + hx(τ, x)αu(τ, ξ).

Using the two previous relations and (1.17), we can obtain

∂

∂τ
(ln |h|) = −αux(τ, x) =

∂

∂τ
(ln |j|).

If h0 is given by h0 = h|t=0 and since j(0, ξ) = 1, we obtain

j(τ, ξ) = j(0, ξ)
h(0, ξ)

h(τ, x(τ, ξ))
=

h0(ξ)

h(t, x)
.

With this, we can write the Jacobian J and its inverse in the following way

J =

 1 0

αu(t, x)
h0(ξ)

h(t, x)

 and J−1 =

 1 0

−h(t, x)

h0(ξ)
αu(t, x)

h(t, x)

h0(ξ)

 .

The mass Lagrangian coordinate ζ is defined by

ζ =

∫ ξ

0

h0(η)dη.
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Taking the partial derivative with respect to τ and with respect to x, we get respectively

∂ζ

∂t
= h0(ξ)

∂ξ

∂t
= −αu(t, x)h(t, x)

and

∂ζ

∂x
= h0(ξ)

∂ξ

∂x
= h(t, x),

which implies

∂t = ∂τ +
∂ζ

∂t
∂ζ = ∂τ − αuh∂ζ ,

∂x =
∂ζ

∂x
∂ζ = h∂ζ .

By using the above operators (1.17) becomes

hτ − αuhhζ + αhhζu+ αh2uζ = 0.

Since h = 1 + αη, after some calculations we have

(1.20) ητ + (1 + 2αη)uζ +O(α2) = 0.

For the second equation in Boussinesq system, we have the following

uxxt = (hxuζ)t + (h2uζζ)t = hxtuζ + hx(uζ)t + 2hhtuζζ + h2(uζζ)t

= hxtuζ + hx(uζτ − αuhuζζ) + 2h(hτ − αuhhζ)uζζ + h2(uζζτ − αuhuζζζ).

Since

hxt = (hhζ)t = [hτ − αuhhζ ]hζ + h[hζτ − αuhhζζ ],

we have

uxxt = h2(uζζτ − αuhuζζζ) + 2h(hτ − αuhhζ)uζζ+

hhζ(uζτ − αuhuζζ) + [(hτ − αuhhζ)hζ + h(hζτ − αuhhζζ)]uζ .
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Now, by using (1.16) and the previous calculations, we obtain

uτ − αuhuζ + αuhuζ + hηζ −
1

3
β{h2(uζζτ − αuhuζζζ) + 2h(αητ − α2uhηζ)uζζ

+ hαηζ(uζτ − αuhuζζ) + [αηζ(αητ − α2uhηζ) + (αηζτ − α2uhηζζ)h]uζ} = 0.

After some straightforward calculations and some simplifications, we have

(1.21) uτ + (1 + αη)ηζ −
1

3
βuζζτ +O(αβ, α2) = 0.

According to (1.20) and (1.21), the Boussinesq system in mass Lagrangian coordinates to

the first order is given by

(1.22)


ητ + (1 + 2αη)uζ = 0,

uτ + (1 + αη)ηζ −
1

3
βuζζτ = 0.

Boussinesq’s system includes waves moving to both left and right. However, to derive the

KdV equation in mass Lagrangian coordinates we have to restrict to a wave moving to the

right. Following the approach given in [61], we have to consider a solution u in the form

(1.23) u = η + αA+ βB +O(α2 + β2),

where A and B are functions of η and its ζ derivatives. With the previous assumption,

the first and second equation in the Boussinesq system in Lagrangian coordinates become

respectively

ητ + (1 + 2αη)(ηζ + αAζ + βBζ +O(α2 + β2)) = 0

and

ητ + αAτ + βBτ + (1 + αη)ηζ −
1

3
β(ηζζτ + αAζζτ + βBζζτ +O(α2 + β2)) = 0,

therefore the system (1.22) becomes
ητ + ηζ + α(2ηηζ + Aζ) + βBζ +O(α2 + β2) = 0,

ητ + ηζ + α(ηηζ + Aτ ) + β
(
Bτ −

1

3
ηζζτ

)
+O(α2 + β2) = 0.
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The equations in this system are consistent if

2ηηζ + Aζ = ηηζ + Aτ +O(α, β), Bζ = Bτ −
1

3
ηζζτ +O(α, β),

hence, Aτ = −Aζ + O(α, β) and Bτ = −Bζ + O(α, β). Since ητ = −ηζ + O(α, β), we can

write

Aζ = −1

2
ηηζ +O(α, β) and Bζ =

1

6
ηζζζ +O(α, β),

which implies

A = −1

4
η2 and B =

1

6
ηζζ .

With the previous analysis, we have that the KdV system in mass Lagrangian coordinates

is given by 
ητ + ηζ +

3

2
αηηζ +

1

6
βηζζζ = 0,

u = η − 1

4
αη2 +

1

6
βηζζ .

By considering the variables

ζ̄ = lζ, η̄ = aη, τ̄ =
l

c0

τ, and ū =
ga

c0

u,

where c0 =
√
gh0 is the sound speed in the fluid, we have

ητ =
l

ac0

η̄τ̄ , ηζ =
l

a
η̄ζ̄ , ηηζ =

l

ah0

η̄η̄ζ̄ and
1

6
βηζζζ =

h2
0l

6a
η̄ζ̄ζ̄ζ̄

and the KdV system in mass Lagrangian coordinates becomes

η̄τ̄ + c0η̄ζ̄ +
3c0

2h0

η̄η̄ζ̄ +
1

6
c0h

2
0η̄ζ̄ζ̄ζ̄ = 0,

ū =
g

c0

(
η̄ − η̄2

4h0

+
1

6
h2

0η̄ζ̄ζ̄

)
.

Finally, setting

t =

√
6c0

h0

τ̄ , x =

√
6

h0

ζ̄ , y =
3

2h0

η̄ and v =
3c0

2gh0

ū,
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we obtain the system 
yt + yx + yyx + yxxx = 0,

v = y − 1

6
y2 + yxx.

1.3 Statement of Results

This research focuses on two initial boundary value problems on a bounded domain

related with the Korteweg-de Vries (KdV) equation. The approach here is from two

different perspectives: well-posedness and controllability. We are going to study a class

of initial-boundary-value problem (IBVP) of the KdV equation posed on a finite domain

(0, L)

(1.24) ut + ux + uux + uxxx = 0, for x ∈ (0, L) and t > 0,

subject to the initial condition

(1.25) u(x, 0) = φ(x), for x ∈ (0, L)

and the nonhomogeneous nonlinear boundary conditions

(1.26) uxx(0, t) + u(0, t)− 1

6
u2(0, t) = h(t), u(L, t) = 0, ux(L, t) = 0, for t ≥ 0,

where the initial value φ and the boundary data h are given functions. The IBVP (1.24)–

(1.26) was derived by Rosier [52] as a model to investigate the motion of water waves in

a long canal with a moving boundary at the left of the canal (wavemaker) and a fixed

boundary at the right by using Lagrangian coordinates. It has been studied by Rosier

[52] exclusively from the control point of view. In particular, viewing (1.24)-(1.26) as a

distributed parameter control system with boundary value function h(t) as a control input,

Rosier investigated its controllability:

What waves can be generated by the wavemaker?
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He provided the following answer:

Theorem 1.3.1. (Rosier [52]) Let T > 0 be given and let

ȳ ∈ C0([0, T ], H3(0, L)) ∩ C1([0, T ], L2(0, L)) ∩H1(0, T,H1(0, L))

be a function satisfying ȳt + ȳx + ȳȳx + ȳxxx = 0, for 0 < x < L, 0 < t < T,

ȳ|x=L = ȳx|x=L = 0.

Then there exists a number r0 > 0 such that for any initial state y0 ∈ H3(0, L) satisfying

y0(L) = y′0(L) = 0, ‖y0 − ȳ(0)‖H3(0,L) < r0,

there exists a control input h ∈ C0([0, T ]) such that the following IBVP

(1.27)



yt + yx + yyx + yxxx = 0, 0 < x < L, 0 < t < T,

(y − 1
6
y2 + yxx)|x=0 = h,

y|x=L = 0, yx|x=L = 0,

y(0) = y0,

possesses a solution y ∈ L2(0, T,H3(0, L)) ∩H1(0, T,H1(0, L)) satisfying

y(·, T ) = ȳ(·, T ).

In other words, any smooth trajectory of the KdV equation is locally reachable in finite

time by choosing an appropriate boundary control input h(t). To prove his result, Rosier

considered the system

(1.28)


wt + wx + wwx + wxxx = 0, 0 < x < L, 0 < t < T,

w|x=L = 0, wx|x=L = 0,

w|t=0 = y0.

20



He showed that under the assumptions of his theorem, the system (1.28) admits a solution

w ∈ L2(0, T,H3(0, L)) ∩H1(0, T,H1(0, L)), satisfying

w(·, T ) = ȳ(·, T ).

Choosing

h(t) = wxx(0, t)−
1

6
w2(0, t) + w(0, t),

then y(x, t) ≡ w(x, t) is a desired solution of (1.27). However, while the system (1.27)

has been shown to be locally controllable in certain sense, there is still an elementary but

important issue yet to be addressed:

Is the IBVP (1.27) well-posed in the sense of Hadamard?

More precisely, given an initial data φ in the space Hs(0, L) and a boundary data h in

certain appropriate space Hs′(0, T ), does the IBVP (1.27) admit a unique solution in the

space C([0, T ];Hs(0, L))? How does the solution depend on its initial value φ and boundary

data h if it exists? In this paper, we will fill this gap by showing that the IBVP (1.27) is

locally well-posed in the space Hs(0, L) for any s ≥ 0. The following theorem is our main

result:

Theorem 1.3.2. Let T > 0, 0 ≤ s ≤ 3 and γ > 0 be given. There exists a T ∗ ∈ (0, T ] such

that for any φ ∈ Hs(0, L) and h ∈ H s−1
3 (0, T ) satisfying

(1.29)


φ(L) = 0, if 1

2
< s ≤ 3,

φ′(L) = 0, if 3
2
< s ≤ 3,

φ′′(0)− 1
6
φ2(0) + φ(0) = h(0), if 5

2
< s ≤ 3,

and

(1.30) ‖φ‖Hs(0,L) + ‖h‖
H
s−1
3 (0,T )

≤ γ,
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the IBVP (1.24)-(1.26) admits a unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2(0, T ∗;Hs+1(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous and the solution possesses

the hidden regularities (the sharp Kato smoothing properties)

∂kxu ∈ L∞x (0, L;H
s+1−k

3 (0, T ∗)) for k = 0, 1, 2.

The results in our theorem can be easily extended to any s > 3.

Beginning with the work of Bubnov [12, 13] in the late 1970s, the two-point boundary value

problem of the KdV equation has been intensively studied ( cf. [4, 6, 19, 20, 21, 27, 26,

28, 44, 45, 46] and the references therein) following the rapid advances of the study of the

pure initial value problems of the equation posed either on R or on a bounded domain with

periodic boundary conditions [8, 7, 35, 36, 37, 38, 39]. In particular, the following IBVP of

the KdV equation posed on a bounded interval (0, L),

(1.31)


ut + ux + uux + uxxx = 0, x ∈ (0, L), t ≥ 0,

u(x, 0) = φ(x),

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t),

has been shown by Bona, Sun and Zhang [4] to be locally well-posed in the space Hs(0, L)

for any s ≥ 0.

Theorem 1.3.3. (Bona, Sun and Zhang) Let T > 0 and s ≥ 0 be given. There exists a

r > 0 such that for any given s−compatible

φ ∈ Hs(0, L), h1, h2 ∈ H(s+1)/3(0, T ), h3 ∈ Hs/3(0, T )

satisfying

‖φ‖Hs(0,L) + ‖h1‖
H
s+1
3 (0,T )

+ ‖h2‖
H
s+1
3 (0,T )

+ ‖h3‖H s
3 (0,T )

≤ r,
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the IBVP (1.31) admits a unique solution u ∈ C([0, T ];Hs(0, L))∩L2(0, T ;Hs+1(0, L)) and,

moreover, the corresponding solution map is analytically continuous.

Later on this well-posedness result in the space Hs(0, L) was extended to the case of

s > −3/4 by Holmer [33], and then by Bona, Sun and Zhang [6], for s > −1. The proof of

Theorem 1.3.3 was based on:

i. The Kato smoothing property of the associated linear IBVP

(1.32)

 ut + ux + uxxx = f, u(x, 0) = φ(x), x ∈ (0, L), t ∈ (0, T ),

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0.

For any φ ∈ L2(0, L) and f ∈ L2(0, T ;L2(0, L)), the corresponding solution u of (1.32) not

only belongs to the space C([0, T ];L2(0, L)), but also belongs to the space L2(0, T ;H1(0, L)).

It is this Kato smoothing property that make it possible to establish the well-posedness of

the nonlinear IBVP (1.31) in the space Hs(0, L) via the contraction mapping principle.

ii. The explicit integral representation of the solution of the IBVP

(1.33)

 ut + ux + uxxx = 0, u(x, 0) = 0, x ∈ (0, L), t ∈ (0, T ),

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t),

in terms of the boundary data ~h := (h1, h2, h3):

u(x, t) = Wbdr(t)~h,

where Wbdr(t) is now called the boundary integral operator associated to the IBVP (1.33).

It is this explicit integral representation of the boundary integral operator responsible for

obtaining the well-posedness of the IBVP (1.31) in the space Hs(0, L) with the boundary

data ~h assuming the optimal regularities

h1, h2 ∈ H
s+1
3 (0, T ), h3 ∈ H

s
3 (0, T ).
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We will prove Theorem 1.3.2 using the same approach as that developed by Bona, Sun

and Zhang in [4] in proving Theorem 1.3.3. However, due to the presence of the nonlinear

boundary condition, the Kato smoothing property is not strong enough to enable us to

establish the well-posedness of the IBVP (1.24)-(1.26) via the contraction mapping principle.

Instead, a so-called hidden regularity (also known as the sharp Kato smoothing property)

of the following linear IBVP associated to the nonlinear IBVP (1.24)-(1.26)

(1.34)

 ut + uxxx = f, u(x, 0) = φ(x), x ∈ (0, L), t ∈ (0, T ),

uxx(0, t) = 0, u(L, t) = 0, ux(L, t) = 0,

is needed. More precisely, we need to show that for any φ ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)),

the solution u ∈ C([0, T ];L2(0, L)) of (1.34) possesses the hidden regularities,

(1.35) ∂kxu ∈ L∞x (0, L;H
1−k
3 (0, T )) for k = 0, 1, 2.

But it seems very difficult, if it not impossible, to show that (1.35) holds for solutions of

(1.34) directly using energy estimates method. Instead of using this, we will invoke some

harmonic analysis tools developed in the study of the pure initial value problems of the KdV

equation. Consideration will be first given to the pure initial value problem of the linear

KdV equation on the whole line R,

(1.36) ut + uxxx = g, u(x, 0) = ψ(x), x, t ∈ R.

Its solution u can be written as

u = WR(t)ψ +

∫ t

0

WR(t− τ)g(τ)dτ,

where WR(t) is the C0-semigroup in the space L2(R) associated to (1.36), and is well-known

to possess the sharp Kato smoothing property,

∂kxu ∈ L∞x (R;H
1−k
3 (R)) for k = 0, 1, 2,
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whenever ψ ∈ L2(R) and g ∈ L1(R, L2(R)). Then we will turn to consider the IBVP

(1.37)

 ut + uxxx = 0, u(x, 0) = 0, x ∈ (0, L), t ≥ 0,

uxx(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t).

An explicit integral representation of its solution in terms of boundary data h1, h2, h3 will

be derived and be denoted by

u(x, t) = Wbdr(t)~h, ~h = (h1, h2, h3).

In terms of the operators Wbdr(t) and WR(t), the solution u of (1.34) can be written as

u(x, t) = WR(t)φ̃+

∫ t

0

WR(t− τ)f̃(τ)dτ −Wbdr(t)(~q + ~p)

where φ̃ and f̃ are extension of φ and f from (0, L) to R, respectively, and ~q = (q1, q2, q3),

~p = (p1, p2, p3) with

q1(t) = ∂2
xWR(t)φ̃

∣∣∣
x=0

, q2(t) = WR(t)φ̃
∣∣∣
x=L

, q3(t) = ∂xWR(t)φ̃
∣∣∣
x=L

,

p1(t) = ∂2
x

∫ t

0

WR(t− τ)f̃(τ)dτ

∣∣∣∣
x=0

, p2(t) =

∫ t

0

WR(t− τ)f̃(τ)dτ

∣∣∣∣
x=L

and

p3 = ∂x

∫ t

0

WR(t− τ)f̃(τ)dτ

∣∣∣∣
x=L

.

Thus as long as we can show that the solution u = Wbdr(t)~h of the IBVP (1.34) possesses

the hidden regularity (1.35) whenever

h1 ∈ H−
1
3 (0, T ), h2 ∈ H

1
3 (0, T ), h3 ∈ L2(0, T ),

then the solution of the IBVP

(1.38)

 ut + uxxx = f, u(x, 0) = φ, x ∈ (0, L), t ≥ 0,

uxx(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t),
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will possess the hidden regularities (1.35) as long as φ ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and

h1 ∈ H−
1
3 (0, T ), h2 ∈ H

1
3 (0, T ), h3 ∈ L2(0, T ).

With the help of the hidden regularities of the associated linear problem, the well-posedness

of the nonlinear IBVP will be established via the contraction mapping principle.

The second part of this research is dedicated to the class of distributed parameter control

systems described by the KdV equation posed on a bounded domain with nonhomogeneous

Neumann boundary conditions

(1.39)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L).

We will prove well-posedness for the IBVP (1.39) in the space L2(0, L) by using the

aforementioned procedure. The main theorem related to well-posedness for system (1.39) is

the following:

Theorem 1.3.4. Let T > 0 be given. For any u0 ∈ L2(0, L) and

~h := (h1, h2, h3) ∈ HT := H−
1
3 (0, T )× L2(0, T )×H−

1
3 (0, T ),

the IBVP (1.39) admits a unique solution

u ∈ ZT := C([0, T ];L2(0, L)) ∩ L2(0, T,H1(0, L)).

Moreover, there exists a positive constant C, such that

||u||ZT ≤ C
(
||u0||L2(0,L) + ||~h||HT

)
.

In addition, the solution u possesses the following sharp trace estimates

(1.40) sup
x∈(0,L)

||∂rxu(x, ·)||
H

1−r
3 (0,T )

≤ Cr

(
||u0||L2(0,L) + ||~h||HT

)
,

for r = 0, 1, 2.
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In addition to well-posedness, we are going to study system (1.39) from the control point of

view.

Exact control problem: Given T > 0 and u0, uT ∈ L2(0, L). Is it possible to find

appropriate control inputs hj, j = 1, 2, 3, such that the corresponding solution u of (1.39)

satisfies

u(x, 0) = u0(x), u(x, T ) = uT (x)?

The study of the controllability and stabilization of the KdV equation started with the work

of Russell and Zhang in [57], for a system with periodic boundary conditions and an internal

control. Since then, both controllability and stabilization have been intensively studied (we

refer the reader to [54] for a survey of results and [15] to a detailed presentation about

control). In particular, the exact boundary controllability of the KdV equation on a finite

domain was investigated in [14, 16, 23, 30, 31, 51, 52, 67]. The majority of these articles are

concerned with the system

(1.41)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

u(0, t) = g1(t), u(L, t) = g2(t), ux(L, t) = g3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

here, the boundary data g1, g2, g3 can be chosen as control inputs. System (1.41) was first

studied by Rosier [51] considering only the control input g3 (i.e. g1 = g2 = 0). It was shown

in [51] that the exact controllability of the linearized system holds in L2(0, L) if and only if

L does not belong to the following countable set of critical lengths

(1.42) N :=

{
2π√

3

√
k2 + kl + l2 : k, l ∈ N∗

}
.

The analysis developed in [51] shows that if the linearized system is controllable, then the

nonlinearized system is controllable as well. Notice that the converse is false, as it was

proven in [14, 16, 23], that is, the (nonlinear) KdV equation is controllable even when L is
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a critical length, but the linearized system is not controllable.

Recently, Cerpa et al. in [17] proved similar results to those obtained by Rosier [51] for the

system

(1.43)


yt + yx + yyx + yxxx = 0, in (0, T )× (0, L),

y(0, t) = k1(t), yx(L, t) = k2(t), yxx(L, t) = k3(t), in (0, T ),

y(x, 0) = y0(x), in (0, L).

The authors considered the system with one, two or three control inputs, and using the

well-posedness results provided by Kramer et al. in [41] (see also [50]), they proved that the

linear system associated with (1.43) is locally exactly controllable if and only if L does not

belong to the following countable set of critical lengths

(1.44)

F :=

{
L ∈ R+ : L2 = −(a2 + ab+ b2) with a, b ∈ C satisfying

ea

a2
=
eb

b2
=

e−(a+b)

(a+ b)2

}
.

Moreover, by using the contraction mapping principle, they showed that the nonlinear system

(1.43) is locally exactly controllable.

The second aim here is to determine if system (1.39) possesses controllability results similar

to those established for systems (1.41) and (1.43). It is natural to think of using the same

approaches that have been effective for systems (1.41) and (1.43). However, these approaches

will be difficult in our case and other tools will be required, specifically, we will apply the

tools used in [17]. When we use only h2 as a control input, the linear system associated to

(1.39) is given by

(1.45)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = h2(t), uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L),
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and its adjoint system by

(1.46)
ψt + ψx + ψxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ψ(0, t) + ψxx(0, t) = 0, ψx(0, t) = 0, ψ(L, t) + ψxx(L, t) = 0, t ∈ (0, T ),

ψ(x, T ) = ψT (x), x ∈ (0, L).

It is well known that the exact controllability of system (1.45) is equivalent to the following

observability inequality for the adjoint system (1.46):

(1.47) ||ψT ||L2(0,L) ≤ C||ψx(L, ·)||L2(0,T ).

However, the usual multiplier method and compactness argument, as used to deal with the

control of system (1.45) only lead to the inequality

(1.48) ||ψT ||2L2(0,L) ≤ C1||ψx(L, ·)||2L2(0,T ) + C2||ψ(0, ·)||2L2(0,T ).

The issue now is how to remove the extra term in (1.48). To address this, the new approach

used in [17] will play a crucial role in proving the observability inequality (1.47). This new

approach turns out to be the hidden regularity (or the sharp Kato smoothing property) for

solutions of the KdV equation. Specifically, we will prove the following result:

Theorem 1.3.5. [Hidden regularities] For any ψT ∈ L2(0, L), the solution ψ of the IBVP

(1.46) belongs to the space ZT and possess the following sharp trace properties

(1.49) sup
x∈(0,L)

||∂rxψ(x, ·)||
H

1−r
3 (0,T )

≤ Cr||ψ0||L2(0,L),

for r = 0, 1, 2.

Using h2 as a control input, we will prove that system (1.39) is locally exactly controllable

as long as L /∈M, where M is defined as

M :=

{
2π√

3

√
k2 + kl + l2 : k, l ∈ N∗

}
∪ {kπ : k ∈ N∗} = N ∪ {kπ : k ∈ N∗} .
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Theorem 1.3.6. Let T > 0 and L /∈ M be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h2 ∈ L2(0, T ) such that the system (1.39) admits a unique solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

If we consider h3 as a control input, system (1.39) is locally exactly controllable as well, but

with a new set of critical lengths

(1.50)

R =
{
L ∈ R+ : L2 = −(a2 + ab+ b2) with a, b ∈ C : X = ea, Y = ebare solutions of

AX2 +BX + C = 0 and Y = − b3+b1X
b2

}
.

Here A = a1b1, B = a1b3 − a2b2 + a3b1 and C = a3b3, where

a1 := (b2 − a2)(a+ b), a2 := b2ec(2a+ b), a3 := −a2ec(a+ 2b),

b1 := −a3(a+ 2b), b2 := ab2(2a+ b) and b3 := −aec(b2 − a2)(a+ b).

The theorem in this case is the following:

Theorem 1.3.7. Let T > 0 and L /∈ R be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h3 ∈ H−
1
3 (0, T ) such that the system

(1.51)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = 0, uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),
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admits a unique solution u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)), satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

Now, if h1 = 0 and h2, h3 are the control inputs, system (1.39) is locally exactly controllable

Theorem 1.3.8. Let T > 0 and L > 0 be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h2 ∈ L2(0, T ) and h3 ∈ H−
1
3 (0, T ) such that the system (1.39) admits a unique

solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

A similar result will be established if we consider h1 and h3 as control inputs. Finally, if

we consider the three control inputs (h1, h2 and h3), then system (1.39) is locally exactly

controllable around any smooth solution of the KdV equation. More precisely

Theorem 1.3.9. Let T > 0 and L > 0 be given. Assume that y ∈ C∞(R, H∞(R)) satisfies

yt + yx + yyx + yxxx = 0 (x, t) ∈ R× R.

Then, there exists δ > 0 such that for any y0, yT ∈ L2(0, L) with

||u0 − y(·, 0)||L2(0,L) + ||uT − y(·, T )||L2(0,L) ≤ δ,

one can find

h1 ∈ H−
1
3 (0, T ), h2 ∈ L2(0, T ), h3 ∈ H−

1
3 (0, T )
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such that the system (1.39) admits a unique solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

The previous results are going to be established initially for the systems linearized around

the origin by using the classical duality approach, more precisely, the Hilbert Uniqueness

Method (H.U.M) introduced by J. L. Lions in [48]. This method reduces the proof of

the exact controllability for (1.39) to proving an observability inequality for the solution

of the adjoint system. To prove the observability inequality, we will use the compactness

uniqueness argument developed by E. Zuazua in [48]. The exact controllability is extended

to the nonlinear system by using the contraction mapping principle.
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CHAPTER 2
Well-posedness of a non-linear boundary value
problem for the Korteweg-de Vries equation
posed on a finite domain

Considered in this article is an initial-boundary-value problem (IBVP) for the Korteweg-de

Vries equation

ut + ux + uux + uxxx = 0,

posed on a finite interval I = (0, L) subject to the initial condition

u(x, 0) = φ(x), for x ∈ (0, L),

and the nonhomogeneous nonlinear boundary conditions

uxx(0, t) + u(0, t)− 1

6
u2(0, t) = h(t), u(L, t) = 0, ux(L, t) = 0, for t ≥ 0,

which was derived by Rosier [52] as a model to investigate the motion of water waves in a

long canal with a moving boundary at the left of the canal (wavemaker) and a fixed boundary

at the right by using Lagrangian coordinates. It is shown here, using the hidden regularities

(or sharp Kato smoothing properties) of the associated linear problem, that the IBVP is

well-posed in the space Hs(0, L) for any s ≥ 0 via the contraction mapping principle and

thus addresses a question left open by Rosier in [52].
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2.1 Introduction

In this paper, we study a class of initial-boundary-value problem (IBVP) of the Korteweg-de

Vries (KdV) equation posed on a finite domain (0, L)

(2.1) ut + ux + uux + uxxx = 0, for x ∈ (0, L) and t > 0,

subject to the initial condition

(2.2) u(x, 0) = φ(x), for x ∈ (0, L),

and the nonhomogeneous nonlinear boundary conditions

(2.3) uxx(0, t) + u(0, t)− 1

6
u2(0, t) = h(t), u(L, t) = 0, ux(L, t) = 0, for t ≥ 0,

where the initial value φ and the boundary data h are given functions.

The IBVP (2.1)–(2.3) was derived by Rosier [52] as a model to investigate the motion of

water waves in a long canal with a moving boundary at the left of the canal (wavemaker)

and a fixed boundary at the right by using Lagrangian coordinates. It has been studied by

Rosier [52] exclusively from the control point of view, the readers are referred to [66, 55, 56,

57, 67, 51, 23, 14, 30, 16, 31, 50, 53, 54, 68, 15] and the references therein for more studies

of the KdV equation from the control point of view. In particular, viewed (2.1)-(2.3) as a

distributed parameter control system with boundary value function h(t) as a control input,

Rosier investigated its controllability:

What waves can be generated by the wavemaker?

He provided the following answer [52]:

Theorem 2.1.1. Let T > 0 be given and let

ȳ ∈ C0([0, T ], H3(0, L)) ∩ C1([0, T ], L2(0, L)) ∩H1(0, T,H1(0, L))
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be a function satisfying ȳt + ȳx + ȳȳx + ȳxxx = 0, for 0 < x < L, 0 < t < T,

ȳ|x=L = ȳx|x=L = 0.

Then there exists a number r0 > 0 such that for any initial state y0 ∈ H3(0, L) satisfying

y0(L) = y′0(L) = 0, ‖y0 − ȳ(0)‖H3(0,L) < r0,

there exists a control input h ∈ C0([0, T ]) such that the following IBVP

(2.4)



yt + yx + yyx + yxxx = 0, 0 < x < L, 0 < t < T,

(y − 1
6
y2 + yxx)|x=0 = h,

y|x=L = 0, yx|x=L = 0,

y(0) = y0,

possesses a solution y ∈ L2(0, T,H3(0, L)) ∩H1(0, T,H1(0, L)) satisfying

y(·, T ) = ȳ(·, T ).

In other words, any smooth trajectory of the KdV equation is locally reachable in finite time

by choosing an appropriate boundary control input h(t).

To prove his result, Rosier considered the system

(2.5)


wt + wx + wwx + wxxx = 0, 0 < x < L, 0 < t < T,

w|x=L = 0, wx|x=L = 0,

w|t=0 = y0,

instead of studying the system (2.4) directly. He showed that under the assumptions of

Theorem 2.1.1, the system (2.5) admits a solution

w ∈ L2(0, T,H3(0, L)) ∩H1(0, T,H1(0, L))

satisfying

w(·, T ) = ȳ(·, T ).
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Choosing

h(t) = wxx(0, t)−
1

6
w2(0, t) + w(0, t),

then y(x, t) ≡ w(x, t) is a desired solution of (2.4) in Theorem 2.1.1. What Rosier has

established in [52] implies, in fact, the null controllability of the boundary control system yt + yx + yyx + yxxx = 0, y(x, 0) = y0(x), 0 < x < L, 0 < t < T,

y|x=0 = h, y|x=L = 0, yx|x=L = 0,

which has been studied further by Glass and Guerrero in [31]. However, while the system

(2.4) has been shown to be locally controllable in a certain sense, there is still an elementary

but important issue yet to be addressed:

Is the IBVP (2.4) well-posed in the sense of Hadamard?

More precisely, given an initial data φ in the space Hs(0, L) and a boundary data h in a

certain appropriate space, Hs′(0, T ), does the IBVP (2.4) admit a unique solution in the

space C([0, T ];Hs(0, L))? How does the solution depend on its initial value φ and boundary

data h if it exists?

In this paper, we will fill this gap to show the IBVP (2.4) is locally well-posed in the space

Hs(0, L) for any 0 ≤ s ≤ 3.1 The following theorem is our main result.

Theorem 2.1.2. Let T > 0, 0 ≤ s ≤ 3 and γ > 0 be given. There exists a T ∗ ∈ (0, T ] such

that for any φ ∈ Hs(0, L) and h ∈ H s−1
3 (0, T ) satisfying

(2.6)


φ(L) = 0, if 1

2
< s ≤ 3,

φ′(L) = 0, if 3
2
< s ≤ 3,

φ′′(0)− 1
6
φ2(0) + φ(0) = h(0), if 5

2
< s ≤ 3,

and

(2.7) ‖φ‖Hs(0,L) + ‖h‖
H
s−1
3 (0,T )

≤ γ,

1Our results can be easily extended to the case for any s > 3.
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the IBVP (2.1) - (2.3) admits a unique solution

u ∈ C([0, T ∗];Hs(0, L)) ∩ L2(0, T ∗;Hs+1(0, L)).

Moreover, the corresponding solution map is Lipschitz continuous and the solution possesses

the hidden regularities (the sharp Kato smoothing properties)

∂kxu ∈ L∞x (0, L;H
s+1−k

3 (0, T ∗)) for k = 0, 1, 2.

Beginning with the work of Bubnov [12, 13] in the late 1970s, the two-point boundary value

problems of the KdV equation has been intensively studied ( cf. [4, 6, 19, 20, 21, 27, 26, 28,

44, 45, 46] and the references therein) following the rapid advances of the study of the pure

initial value problems for the Kdv equation posed either on R or on a bounded domain with

periodic boundary conditions [8, 7, 35, 36, 37, 38, 39]. In particular, the following IBVP of

the KdV equation posed on a bounded interval (0, L),

(2.8)


ut + ux + uux + uxxx = 0, x ∈ (0, L), t ≥ 0,

u(x, 0) = φ(x),

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t),

has been shown by Bona, Sun and Zhang [4] to be locally well-posed in the space Hs(0, L)

for any s ≥ 0.

Theorem 2.1.3. (Bona, Sun and Zhang) Let T > 0 and s ≥ 0 be given. There exists a

r > 0 such that for any given s−compatible

φ ∈ Hs(0, L), h1, h2 ∈ H(s+1)/3(0, T ), h3 ∈ Hs/3(0, T )

satisfying

‖φ‖Hs(0,L) + ‖h1‖
H
s+1
3 (0,T )

+ ‖h2‖
H
s+1
3 (0,T )

+ ‖h3‖H s
3 (0,T )

≤ r,

the IBVP (2.8) admits a unique solution u ∈ C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)) and,

moreover, the corresponding solution map is analytically continuous.
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Later on, this well-posedness result in the space Hs(0, L) was extended to the case of

s > −3/4 by Holmer [33], and then by Bona, Sun and Zhang [6], for s > −1. The proof of

Theorem 2.1.3 was based on:

i. The Kato smoothing property of the associated linear IBVP

(2.9)

 ut + ux + uxxx = f, u(x, 0) = φ(x), x ∈ (0, L), t ∈ (0, T ),

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0.

For any φ ∈ L2(0, L) and f ∈ L2(0, T ;L2(0, L)), the corresponding solution u of (2.9) not

only belongs to the space C([0, T ];L2(0, L)), but also belongs to the space L2(0, T ;H1(0, L)).

It is this Kato smoothing property that makes it possible to establish the well-posedness of

the nonlinear IBVP (2.8) in the space Hs(0, L) via the contraction mapping principle.

ii. The explicit integral representation of the solution of the IBVP

(2.10)

 ut + ux + uxxx = 0, u(x, 0) = 0, x ∈ (0, L), t ∈ (0, T ),

u(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t)

in terms of the boundary data ~h := (h1, h2, h3):

u(x, t) = Wbdr(t)~h,

where Wbdr(t) is now called the boundary integral operator associated to the IBVP (2.10).

It is this explicit integral representation of the boundary integral operator responsible for

obtaining the well-posedness of the IBVP (2.8) in the space Hs(0, L) with the boundary

data ~h assuming the optimal regularities

h1, h2 ∈ H
s+1
3 (0, T ), h3 ∈ H

s
3 (0, T ).

We will prove Theorem 2.1.2 using the same approach as that developed by Bona, Sun

and Zhang in [4] in proving Theorem 2.1.3. However, due to the presence of the nonlinear

boundary condition, the Kato smoothing property is not strong enough to enable us to
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establish the well-posedness of the IBVP (2.1)-(2.3) via the contraction mapping principle.

Instead, a so-called hidden regularity (also known as the sharp Kato smoothing property)

of the following linear IBVP associated to the nonlinear IBVP (2.1)-(2.3)

(2.11)

 ut + uxxx = f, u(x, 0) = φ(x), x ∈ (0, L), t ∈ (0, T ),

uxx(0, t) = 0, u(L, t) = 0, ux(L, t) = 0,

is needed. More precisely, we need to show that for any φ ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)),

the solution u ∈ C([0, T ];L2(0, L)) of (2.11) possesses the hidden regularities,

(2.12) ∂kxu ∈ L∞x (0, L;H
1−k
3 (0, T )) for k = 0, 1, 2.

But it seems very difficult, if it not impossible, to show that (2.12) holds for solutions of

(2.11) directly using energy estimates methods. To get around this, we will invoke some

harmonic analysis tools developed in the study of the pure initial value problems of the

KdV equation. Consideration will be first given to the pure initial value problem of the

linear KdV equation on the whole line R,

(2.13) ut + uxxx = g, u(x, 0) = ψ(x), x, t ∈ R.

Its solution u can be written as

u = WR(t)ψ +

∫ t

0

WR(t− τ)g(τ)dτ,

where WR(t) is the C0-semigroup in the space L2(R) associated to (2.13), and is well-known

to possess the sharp Kato smoothing property

∂kxu ∈ L∞x (R;H
1−k
3 (R)) for k = 0, 1, 2,

whenever ψ ∈ L2(R) and g ∈ L1(R, L2(R)). Then we will turn to consider the IBVP

(2.14)

 ut + uxxx = 0, u(x, 0) = 0, x ∈ (0, L), t ≥ 0,

uxx(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t).
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An explicit integral representation of its solution in terms of boundary data h1, h2, h3 will

be derived and be denoted by

u(x, t) = Wbdr(t)~h, ~h = (h1, h2, h3).

In terms of the operators Wbdr(t) and WR(t), the solution u of (2.11) can be written as

u(x, t) = WR(t)φ̃+

∫ t

0

WR(t− τ)f̃(τ)dτ −Wbdr(t)(~q + ~p)

where φ̃ and f̃ are extension of φ and f from (0, L) to R, respectively, and ~q = (q1, q2, q3),

~p = (p1, p2, p3) with

q1(t) = ∂2
xWR(t)φ̃

∣∣∣
x=0

, q2(t) = WR(t)φ̃
∣∣∣
x=L

, q3(t) = ∂xWR(t)φ̃
∣∣∣
x=L

,

p1(t) = ∂2
x

∫ t

0

WR(t− τ)f̃(τ)dτ

∣∣∣∣
x=0

, p2(t) =

∫ t

0

WR(t− τ)f̃(τ)dτ

∣∣∣∣
x=L

and

p3 = ∂x

∫ t

0

WR(t− τ)f̃(τ)dτ

∣∣∣∣
x=L

.

Thus as long as we can show that the solution u = Wbdr(t)~h of the IBVP (2.11) possesses

the hidden regularity (2.12) whenever

h1 ∈ H−
1
3 (0, T ), h2 ∈ H

1
3 (0, T ), h3 ∈ L2(0, T ),

then the solution of the IBVP

(2.15)

 ut + uxxx = f, u(x, 0) = φ, x ∈ (0, L), t ≥ 0,

uxx(0, t) = h1(t), u(L, t) = h2(t), ux(L, t) = h3(t),

will possess the hidden regularities (2.12) as long as φ ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and

h1 ∈ H−
1
3 (0, T ), h2 ∈ H

1
3 (0, T ), h3 ∈ L2(0, T ).

With the help of the hidden regularities of the associated linear problem, the well-posedness

of the nonlinear IBVP will be established via the contraction mapping principle.
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The paper is organized as follows: In Section 2, we will first derive an explicit integral

representation of the boundary integral operator Wbdr(t) associated to the IBVP (2.14).

Then various estimates will be established for solutions of the IBVP (2.15) including the

hidden regularities (2.12). The proof of our main result in this paper, Theorem 2.1.2, will

be presented in section 3.

2.2 Linear problems

Consideration is first given to the following IBVP of the linear KdV equation with

homogenous initial value and nonhomogenoeus boundary data

(2.16)


wt(x, t) + wxxx(x, t) = 0, x ∈ (0, L), t ≥ 0,

w(x, 0) = 0,

wxx(0, t) = h1(t), w(L, t) = h2(t), wx(L, t) = h3(t).

Following the approach developed in [3, 4], we derive an explicit formula for its solution in

terms of the boundary values h1, h2 and h3. Without loss of generality, we assume here that

L = 1.

Applying the Laplace transform with respect to t, the IBVP (2.16) becomes
sŵ(x, s) + ŵxxx(x, s) = 0,

ŵxx(0, s) = ĥ1(s), ŵ(1, s) = ĥ2(s), ŵx(1, s) = ĥ3(s),

where

ŵ(x, s) =

∫ ∞
0

e−stw(x, t)dt

and

ĥj(s) =

∫ ∞
0

e−sthj(t)dt, j = 1, 2, 3.

The solution ŵ(x, s) can be written in the form

ŵ(x, s) =
3∑
j=1

cj(s)e
λj(s)x,
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where λj(s), j = 1, 2, 3, are the three solutions of the characteristic equation

s+ λ3 = 0

and the constants cj = cj(s), j = 1, 2, 3, solve the linear system

c1λ
2
1(s) + c2λ

2
2(s) + c3λ

2
3(s) = ĥ1(s),

c1e
λ1(s) + c2e

λ2(s) + c3e
λ3(s) = ĥ2(s),

c1λ1(s)eλ1(s) + c2λ2(s)eλ2(s) + c3λ3(s)eλ3(s) = ĥ3(s).

Let ∆(s) be the determinant of the coefficient matrix and ∆j(s) be the determinants of

the matrices that are obtained by replacing the jth-column of ∆(s) by the column vector

(ĥ1(s), ĥ2(s), ĥ3(s))T , j = 1, 2, 3. By Cramer’s rule

cj =
∆j(s)

∆(s)
, j = 1, 2, 3,

if ∆(s) 6= 0. Taking the inverse Laplace transform of ŵ we have

w(x, t) =
1

2πi

∫ r+i∞

r−i∞
estŵ(x, s)ds =

3∑
j=1

1

2πi

∫ r+i∞

r−i∞
est

∆j(s)

∆(s)
eλj(s)xds

for any r > 0. Using the same arguments as those in [4] the solution w(x, t) can be written

as

(2.17) w(x, t) =
3∑

m=1

wm(x, t)

with

(2.18) wm(x, t) =
3∑
j=1

wj,m(x, t) and wj,m(x, t) = w+
j,m(x, t) + w−j,m(x, t)

where for m, j = 1, 2, 3,

(2.19) w+
j,m(x, t) =

1

2π

∫ ∞
0

eiρ
3teλ

+
j (ρ)x

∆+
j,m(ρ)

∆+(ρ)
ĥ+
m(ρ)3ρ2dρ, w−j,m(x, t) = w+

j,m(x, t)
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and

(2.20) ĥ+
m(ρ) = ĥm(iρ3), ∆+(ρ) = ∆(iρ3), ∆+

j,m(ρ) = ∆j,m(iρ3), λ+
j (ρ) = λj(iρ

3).

Note that wm(x, t) solves the IBVP (2.16) with hj ≡ 0 when j 6= m, j,m = 1, 2, 3.

Next we turn to estimate the solution w(x, t) of the IBVP (2.16). The following technical

lemma due to Bona, Sun and Zhang [3, 4] is needed, this lemma plays a similar role as the

Plancherel theorem in estimating w(x, t).

Lemma 2.2.1. For any f ∈ L2(R+), let Kf be the function defined by

Kf(x) =

∫ ∞
0

eγ(µ)xf(µ)dµ

where γ(µ) is a continuous complex-valued function defined on (0,∞) satisfying the following

two conditions:

1. There exists δ > 0 and b > 0 such that

sup
0<µ<δ

|Reγ(µ)|
µ

≥ b;

2. There exists a complex number α + iβ such that

lim
µ→∞

γ(µ)

µ
= α + iβ.

Then there exists a constant C such that for all f ∈ L2(0,∞),

‖Kf‖L2(0,1) ≤ C(‖eReγ(·)f(·)‖L2(R+) + ‖f(·)‖L2(R+)).

The following proposition presents some estimates for w1, w2 and w3.
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Proposition 2.2.2. Let T > 0 and 0 ≤ s ≤ 3 be given. For any given

h1 ∈ H
s−1
3

0 (R+), h2 ∈ H
s+1
3

0 (R+), h3 ∈ H
s
3
0 (R+),

we have

wj ∈ C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L))

and

∂kxwj ∈ Cx([0, L];H
s+1−k

3 (0, T ))

for j = 1, 2, 3,. Moreover, there exists a constant C such that, for k = 0, 1, 2,

(2.21) ‖w1‖C([0,T ];Hs(0,L))+‖w1‖L2(0,T ;Hs+1(0,L))+‖∂kxw1‖
L∞x (0,L;H

s+1−k
3 (0,T ))

≤ C‖h1‖
H
s−1
3 (R+)

,

(2.22) ‖w2‖C([0,T ];Hs(0,L)) +‖w2‖L2(0,T ;Hs+1(0,L)) +‖∂kxw2‖
L∞x (0,L;H

s+1−k
3 (0,T ))

≤ C‖h2‖
H
s+1
3 (R+)

and

(2.23) ‖w3‖C([0,T ];Hs(0,L)) +‖w3‖L2(0,T ;Hs+1(0,L)) +‖∂kxw3‖
L∞x ([0,L];H

s+1−k
3 (0,T ))

≤ C‖h3‖H s
3 (R+)

.

Proof. We only prove the Proposition for w1; the proofs for w2 and w3 are similar. Note

that

λ+
1 (ρ) = iρ, λ+

2 (ρ) =
1

2
ρ(
√

3− i), λ+
3 (ρ) =

1

2
ρ(−
√

3− i),

∆+(ρ) =
√

3ρ3e−iρ +
√

3ρ3e−
1
2
ρ(
√

3−i) +
√

3ρ3e−
1
2
ρ(−
√

3−i),

∆+
1,1(ρ) = −

√
3ρe−iρ, ∆+

2,1(ρ) =
1

2
ρ(
√

3 + 3i)e−
1
2
ρ(
√

3−i)

and

∆+
3,1(ρ) =

1

2
ρ(
√

3− 3i)e
1
2
ρ(
√

3+i).

Thus, as ρ→∞,

∆+
1,1(ρ)

∆+(ρ)
∼ ρ−2e−

1
2
ρ
√

3,
∆+

2,1(ρ)

∆+(ρ)
∼ ρ−2e−

1
2
ρ
√

3,
∆+

3,1(ρ)

∆+(ρ)
∼ ρ−2,
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By (3.27) and (2.18),

w1(x, t) = w+
1 (x, t) + w+

1 (x, t)

with

w+
1 (x, t) =

3∑
j=1

1

2π

∫ ∞
0

eiρ
3teλ

+
j (ρ)x

∆+
j,1(ρ)

∆+(ρ)
3ρ2ĥ+

1 (ρ)dρ.

It suffices to only estimate w+
1 (x, t). Note that

∂3
xw

+
1 (x, t) =

3∑
j=1

1

2π

∫ ∞
0

eiρ
3teλ

+
j (ρ)x(λ+

j (ρ))3
∆+
j,1(ρ)

∆+(ρ)
3ρ2ĥ+

1 (ρ)dρ.

Applying Lemma 2.2.1 yields that there exists a constant C > 0 such that for any t > 0,

‖w+
1 (·, t)‖2

L2(0,L) ≤ C
3∑
j=1

∫ ∞
0

∣∣∣∣∣∆+
j,1(ρ)

∆+(ρ)

∣∣∣∣∣
2(
eReλ+j (ρ) + 1

)2|3ρ2ĥ+
1 (ρ)|2dρ

≤ C

∫ ∞
0

|ĥ+
1 (ρ)|2dρ ≤ C

∫ ∞
0

∣∣∣∣∣
∫ ∞

0

e−iρ
3τh1(τ)dτ

∣∣∣∣∣
2

dρ

(by letting µ = ρ3)

≤ C

∫ ∞
0

µ−2/3

∣∣∣∣∣
∫ ∞

0

e−iµτh1(τ)dτ

∣∣∣∣∣
2

dµ ≤ C‖h1‖2
H−1/3(R+)

and

‖∂3
xw

+
1 (·, t)‖2

L2(0,L) ≤ C
3∑
j=1

∫ ∞
0

∣∣∣∣∣∆+
j,1(ρ)

∆+(ρ)

∣∣∣∣∣
2(
eReλ+j (ρ) + 1

)2|λ+
j (ρ)|6|ρ2ĥ+

1 (ρ)|2dρ

≤ C

∫ ∞
0

|λ+
j (ρ)|6|ĥ+

1 (ρ)|2dρ

≤ C

∫ ∞
0

µ4/3

∣∣∣∣∣
∫ ∞

0

e−iµτh1(τ)dτ

∣∣∣∣∣
2

dµ ≤ C‖h1‖2
H2/3(R+).

We thus have

sup
0≤t≤T

‖w+
1 (·, t)‖L2(0,L) ≤ C‖h1‖H−1/3(R+)

and

sup
0≤t≤T

‖w+
1 (·, t)‖H3(0,L) ≤ C‖h1‖H2/3(R+).
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By interpolation, for 0 ≤ s ≤ 3,

sup
0≤t≤T

‖w+
1 (·, t)‖Hs(0,L) ≤ C‖h1‖H(s−1)/3(R+).

In addition, for k = 0, 1, 2,

∂kxw
+
1 (x, t) =

3∑
j=1

1

2π

∫ ∞
0

eiρ
3t(λ+

j (ρ))keλ
+
j (ρ)x

∆+
j,1(ρ)

∆+(ρ)
3ρ2ĥ+

1 (ρ)dρ

=
3∑
j=1

1

2π

∫ ∞
0

eiµt(λ+
j (θ(µ)))keλ

+
j (θ(µ))x

∆+
j,1(θ(µ))

∆+(θ(µ))
ĥ1(iµ)dµ,

where θ(µ) is the real solution of µ = ρ3 for ρ ≥ 0. Applying Plancherel’s Theorem (with

respect to t), yields that for any x ∈ (0, L), 0 ≤ s ≤ 3, and k = 0, 1, 2,

‖∂kxw+
1 (x, ·)‖2

H
s+1−k

3 (0,T )
≤

3∑
j=1

1

2π

∫ ∞
0

|µ|
2(s+1−k)

3

∣∣∣∣∣(λ+
j (θ(µ)))keλ

+
j (θ(µ))x

∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2∣∣ĥ1(iµ)

∣∣2dµ
≤ C

3∑
j=1

∫ ∞
0

∣∣∣∣∣(λ+
j (ρ))k

∆+
j,1(ρ)

∆+(ρ)

∣∣∣∣∣
2∣∣ĥ+

1 (ρ)
∣∣2ρ2s+4−2kdρ

≤ C

∫ ∞
0

ρ2s|ĥ+
1 (ρ)|2dρ

≤ C‖h1‖2
H(s−1)/3(R+).

Consequently, for 0 ≤ s ≤ 3 and k = 0, 1, 2,

sup
0<x<L

‖∂kxw+
1 (x, ·)‖

H
s+1−k

3 (0,T )
≤ C‖h1‖H(s−1)/3(R+).

To prove the continuity of ∂kxw
+
1 , from (0, L) to the space H

s+1−k
3 (0, T ), choose any

x0 ∈ (0, L), x ∈ (0, L) and note that

∂kxw
+
1 (x, t)−∂kxw1(x0, t) =

3∑
j=1

1

2π

∫ ∞
0

eiµt(λ+
j (θ(µ)))k

(
eλ

+
j (θ(µ))x−eλ

+
j (θ(µ))x0

)∆+
j,1(θ(µ))

∆+(θ(µ))
ĥ1(iµ)dµ.

Applying Plancherel’s Theorem with respect to t

‖∂kxw+
1 (x, t)− ∂kxw+

1 (x0, t)‖2

H
s+1−k

3 (0,T )
≤

3∑
j=1

1

2π

∫ ∞
0

|µ|
2(s+1−k)

3

∣∣∣∣∣λ+
j (θ(µ))

(
eλ

+
j (θ(µ))x − eλ

+
j (θ(µ))x0

)∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2∣∣ĥ1(iµ)

∣∣2dµ,
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Arguing as before,

‖∂kxw+
1 (x, t)− ∂kxw+

1 (x0, t)‖2

H
s+1−k

3 (0,T )
≤ C

∫ ∞
0

µ(2s−2)/3
∣∣ĥ1(iµ)

∣∣2dµ,
and then by Fatou’s lemma, we can conclude

lim
x→x0

‖∂kxw+
1 (x, t)− ∂kxw+

1 (x0, t)‖2

H
s+1−k

3 (0,T )
≤

3∑
j=1

1

2π

∫ ∞
0

|µ|
2(s+1−k)

3

∣∣∣∣∣λ+
j (θ(µ)) lim

x→x0

(
eλ

+
j (θ(µ))x − eλ

+
j (θ(µ))x0

)∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2∣∣ĥ1(iµ)

∣∣2dµ = 0.

Let T > 0 and 0 ≤ s ≤ 3 be given. Let

S(0, T ) = {g ∈ C∞[0, T ] : g′(0) = 0}, S(0, T ) := S(0, T )× S(0, T )× S(0, T ).

Note that S(0, T ) is a subspace of the space H(s−1)/3(0, T )×H(s+1)/3(0, T )×Hs/3(0, T ). Let

Hs
0(0, T ) be the closure of S(0, T ) under the norm of the space

H(s−1)/3(0, T )×H(s+1)/3(0, T )×Hs/3(0, T ).

In addition, let

Zs,T := C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)).

Then Proposition 2.2.2 can be rewritten as the following proposition

Proposition 2.2.3. Let T > 0 and 0 ≤ s ≤ 3 be given. For any ~h ∈ Hs
0(0, T ), the IBVP

(2.16) admits a unique solution

w(x, t) := [Wbdr
~h](x, t)

belonging to the space Zs,T with

∂kxw ∈ Cb([0, L];H
s+1−k

3 (0, T )) for k = 0, 1, 2.
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Moreover there exists a constant C such that

‖w‖Zs,T +
2∑

k=0

‖∂kxw‖Cb([0,L];H
s+1−k

3 (0,T ))
≤ C‖~h‖Hs0(0,T ),

for all ~h ∈ Hs
0(0, T ).

Next we consider the linear IBVP of the linear KdV equation with nonhomogeneous initial

value

(2.24)


vt(x, t) + vxxx(x, t) = f, x ∈ (0, L), t ≥ 0,

v(x, 0) = φ(x),

vxx(0, t) = h1(t), v(L, t) = h2(t), vx(L, t) = h3(t).

By the standard semigroup theory, its solution when h1 = h2 = h3 ≡ 0 can be written as

v(x, t) = W0(t)φ(x) +

∫ t

0

W0(t− τ)f(τ)dτ,

where {W0(t)}t≥0 is the C0-semigroup in the space L2(0, L) generated by the operator A

defined by

Aq = −q′′′

with the domain

D(A) = {ν ∈ H3(0, L) : ν ′′(0) = ν(L) = ν ′(L) = 0}.

For any φ ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)), the solution v of (2.24), which is given by

v(x, t) = W0(t)φ(x) +

∫ t

0

W0(t− τ)f(τ)dτ,

belongs to the space C([0, T ];L2(0, L)). We need to show that the solution v of (2.24) also

possess the sharp Kato smoothing properties, which however, seems hard to establish by

using the classical energy estimate method directly due to the presence of the boundary
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conditions even in the homogenous case ( h1 = h2 = h3 ≡ 0). Following [4], we first consider

the pure initial value problem (IVP) of the KdV equation posed on the whole line R:

(2.25)

 pt + pxxx = g, x ∈ R, t ≥ 0,

p(x, 0) = ψ(x).

Its solution can be written as

p(x, t) = WR(t)ψ(x) +

∫ t

0

WR(t− τ)g(τ)dτ

where WR(t) is the C0-semigroup associated with the IVP (2.25). The solution of (2.25) is

well-known to possess the following properties

Proposition 2.2.4. Let s ≥ 0, T > 0 and L > 0 be given. For any

ψ ∈ Hs(R) and g ∈ L1(0, T ;Hs(R)),

the IVP (2.25) admits a unique solution

p ∈ C([0, T ];Hs(R)) ∩ L2(0, T ;Hs+1(0, L))

with

∂jxp ∈ L∞x (R;H(s+1−j)/3(0, T )).

Moreover, there exists a constant C > 0 depending only on s, T and L such that

‖p‖C([0,T ];Hs(R))∩L2(0,T ;Hs+1(0,L)) +
2∑
j=0

‖∂jxp‖L∞x (R;H(s+1−j)/3(0,T )) ≤ C‖ψ‖Hs(R).

For any φ ∈ Hs(0, L), let φ̃ = Eφ ∈ Hs(R) and f̃ = Ef ∈ L1(0, T ;Hs(R)) be their

standard extensions from Hs(0, L) to Hs(R) and from L1(0, T ;Hs(0, L)) to L1(0, T ;Hs(R)),

respectively. Let

p = p(x, t) := [WR(t)φ̃](x) +

∫ t

0

WR(t− τ)f̃(τ)dτ.
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Set

pxx(0, t) = g1(t), p(L, t) = g2(t), px(L, t) = g3(t),

and

~g = (g1, g2, g3).

Note that for 0 ≤ s ≤ 3, if φ ∈ Hs(0, L) and

~h = (h1, h2, h3) ∈ H
s−1
3 (0, T )×H

s+1
3 (0, T )×H

s
3 (0, T )

satisfy

(2.26)


φ(L) = h2(0), if 1

2
< s ≤ 3,

φ′(L) = h3(0), if 3
2
< s ≤ 3,

φ′′(0) = h1(0), if 5
2
< s ≤ 3,

then ~h − ~g ∈ Hs
0(0, T ), w = Wbdr(t)(~h − ~g) is thus well defined and solves the IBVP(2.16)

with boundary data ~h replaced by ~h−~g. As a result, the solution v of the IBVP (2.24) can

be expressed

v(x, t) = WR(t)φ̃(x) +

∫ T

0

WR(t− τ)f̃(τ)dτ + [Wbdr(~h− ~g)](x, t).

The following proposition follows from Propositions 2.2.3 and 2.2.4 directly.

Proposition 2.2.5. Let T > 0 and 0 ≤ s ≤ 3 be given. For any φ ∈ Hs(0, L),

f ∈ L1(0, T ;Hs(0, L)) and

~h = (h1, h2, h3) ∈ H
s−1
3 (0, T )×H

s+1
3 (0, T )×H

s
3 (0, T )

satisfying (2.26), the IBVP (2.24) admits a unique solution v ∈ Zs,T with

∂kxv ∈ Cb([0, L];H
s+1−k

3 (0, T )) for k = 0, 1, 2.

Moreover there exists a constant C such that

‖v‖Zs,T +
2∑

k=0

‖∂kxv‖Cb([0,L];H
s+1−k

3 (0,T ))
≤ C‖φ‖Hs(0,L).
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2.3 Non-linear Problems.

In this section, we consider the nonlinear IBVP

(2.27)


ut + ux + uux + uxxx = 0, u(x, 0) = φ(x), x ∈ (0, L), t ∈ R+,

uxx(0, t) + u(0, t)− 1

6
u2(0, t) = h(t),

u(L, t) = 0, ux(L, t) = 0

and present the proof of Theorem 2.1.2.

For any T > 0 and s ≥ 0, let

Xs,T = Hs(0, L)×H
s−1
3 (0, T )×H

s+1
3 (0, T )×H

s
3 (0, T )

and Ys,T be the space consisting of all functions v in the space

C(0, T ;Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L))

with ∂jxv ∈ L∞x (0, L;H(s+1−j)/3(0, T )), j = 0, 1, 2. It is easy to verify that Ys,T is a Banach

space with its norm defined as

‖v‖Ys,T := ‖v‖C(0,T ;Hs(0,L))∩L2(0,T ;Hs+1(0,L)) +
2∑
j=0

‖∂jxv‖L∞x (0,L;Hs+1−j/3(0,T )).

In order to established the well-posedness of the IBVP (2.27), the following lemmas will be

helpful, their proofs can be found in [4] and [34] respectively.

Lemma 2.3.1. Let 0 ≤ s ≤ 3 and T > 0 be given. There exists a constant C such that for

any T > 0 and u, v ∈ Ys,T ,∫ T

0

‖(u(·, t)v(·, t))x‖Hs(0,L)dt ≤ C(T 1/2 + T 1/3)‖u‖Ys,T ‖v‖Ys,T .

Lemma 2.3.2. Let 0 ≤ s ≤ 3 and T > 0 be given. There exist constants C, α > 0 such that

if g, h ∈ H s+1
3 (0, T ), then gh ∈ H(s−1)/3(0, T ) and

(2.28) ‖gh‖H(s−1)/3(0,T ) ≤ CTα‖g‖H(s+1)/3(0,T )‖h‖H(s+1)/3(0,T ).
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Proof. For given (φ, h, 0, 0) ∈ Xs,T , let r > 0 and θ > 0 be two constants to be determined.

Define the set

Ssθ,r := {v ∈ Ys,θ, ‖v‖Ys,θ ≤ r}.

Note that for any r and θ, the set Ssθ,r is a closed, convex and bounded subset of the space

Ys,θ and therefore is a complete metric space in the topology induced from Ys,θ. Define a

map Γ on Ssθ,r by

Γ(v) = u(x, t)

for v ∈ Sθ,r where u(x, t) is the unique solution of
ut + ux + uxxx = −vvx, u(x, 0) = φ(x), x ∈ (0, L), t ∈ R+,

uxx(0, t) = h(t)− (v(0, t) +
1

6
v2(0, t)),

u(L, t) = 0, ux(L, t) = 0.

Applying Proposition 2.2.5, Lemmas 2.3.1 and 2.3.2, for any v ∈ Ssθ,r, we have

‖Γ(v)‖Ys,θ ≤ C0‖(φ, h, 0, 0)‖Xs,T + C1‖v(0, t)− 1

6
v2(0, t)‖H(s−1)/3(0,T )

+ C2

∫ θ

0

‖(vvx + vx)(·, τ)‖Hs(0,L)dτ

≤ C0‖(φ, h, 0, 0)‖Xs,T + C1‖v(0, t)− 1

6
v2(0, t)‖H(s−1)/3(0,T ) + C2

∫ θ

0

‖vvx(·, τ)‖Hs(0,L)dτ

+ C2

∫ θ

0

‖vx(·, τ)‖Hs(0,L)dτ

≤ C0‖(φ, h, 0, 0)‖Xs,T + C1θ
2/3(‖v‖Ys,θ + ‖v‖2

Ys,θ
) + C2(θ1/2 + θ1/3)‖v‖2

Ys,θ

+ C2θ
1/2‖v‖Ys,θ ,

where C0, C1 and C2 are constants. Choosing r > 0 and θ > 0 such that

r = 4C0‖(φ, h, 0, 0)‖Xs,T ,

C1θ
2/3 + C2θ

1/2 ≤ 1/4,

C2(θ1/2 + θ1/3)r ≤ 1/4,

C1θ
2/3r ≤ 1/4,
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then for any v ∈ Ssθ,r

‖Γ(v)‖Ys,θ ≤ r.

With this choice of θ and r, we have Γ maps Ssθ,r into Ssθ,r. Moreover, for any v1, v2 ∈ Ssθ,r

w(x, t) = Γ(v1)− Γ(v2)

solves
wt + wx + wxxx = −1

2
((v1 + v2)(v1 − v2))x, u(x, 0) = 0, x ∈ (0, L), t ∈ (0, T ),

wxx(0, t) = −(v1(0, t)− v2(0, t) +
1

6
(v1(0, t) + v2(0, t))(v1(0, t)− v2(, t)),

w(L, t) = 0, wx(L, t) = 0.

Applying Proposition 2.2.5 again leads to

‖Γ(v1)− Γ(v2)‖Ys,θ ≤ C1θ
2/3‖v2 − v1‖Ys,θ +

1

6
C1θ

2/3‖v2 − v1‖Ys,θ‖v2 + v1‖Ys,θ

+
1

2
C2(θ1/2 + θ1/3)‖v2 − v1‖Y0,θ‖v2 + v1‖Ys,θ + C2θ

1/2‖v2 − v1‖Ys,θ

≤ C1θ
2/3‖v2 − v1‖Ys,θ +

1

6
C1θ

2/3‖v2 − v1‖Ys,θ2r

+
1

2
C2(θ1/2 + θ1/3)‖v2 − v1‖Ys,θ2r + C2θ

1/2‖v2 − v1‖Ys,θ

≤ 1

4
‖v2 − v1‖Ys,θ +

1

12
‖v2 − v1‖Ys,θ +

1

4
‖v2 − v1‖Ys,θ +

1

4
‖v2 − v1‖Ys,θ

≤ 5

6
‖v2 − v1‖Ys,θ

for any v1, v2 ∈ Ssθ,r. This shows, that the map Γ is a contraction mapping of Ssθ,r, and

its fixed point u = Γ(u) is the unique solution of the IBVP 2.27 in Ssθ,r. The proof is

complete.
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CHAPTER 3
Neumann boundary control of the Korteweg-de
Vries equation on a bounded domain

This paper focused on the well-posedness and boundary controllability of the Korteweg-de

Vries equation posed on a bounded domain with Neumann boundary conditions. We will

consider the cases where one, two, or three of these boundary data are used as boundary

control inputs. The approach used to prove well-posedness in the space L2(0, L), is the

same approach developed in [4] for the Korteweg-de Vries system with Neumann boundary

conditions. Once we have proven well-posedness, we consider the system linearized around

the origin and the corresponding linear system will be proven to be exactly boundary

controllable using one, two, or three boundary control inputs. Moreover, the nonlinear

system is shown to be locally exactly boundary controllable via the contraction mapping

principle if the associated linearized system is exactly controllable.

3.1 Introduction

In this paper we study a class of distributed parameter control system described by the KdV

equation posed on a bounded domain with nonhomogeneous Neumann boundary conditions:
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(3.1)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L).

One of the objectives of this article is to address the following problem:

Well-posedness:

Is it possible to prove local existence of solutions for (3.1) in the space Hs(0, L) for s ≥ 0 ?

The study of well-posedness for the system (3.1) was motivated by the well-posedness of the

KdV equation posed on a bounded domain with Dirichlet–Neumann boundary conditions,

namely

(3.2)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

u(0, t) = g1(t), u(L, t) = g2(t), ux(L, t) = g3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L).

The case of the whole line was initiated by Gardner et al. [29] and Lax [47] in the mid-

1960’s via the inverse scattering theory, and by Sjöberg [59] and Temam [60] in the late 1960’s

using the then new methods for the analysis of nonlinear partial differential equations, and

continued by many others since. The KdV equation posed on a finite interval, was initially

studied by Bubnov in [10, 11], the authors studied a general two-point boundary-value

problem posed on the interval (0, 1). More recently, Bona et al. [4], Rivas et al. [50] and

Kramer et al. [41] worked on the KdV equation with different Dirichlet–Neumann boundary

conditions. (See the cited references for a more extensive review of the literature.)

In this article, the nonhomogeneous boundary-value problem (3.1) is considered. Initially,

the aim is to establish the well-posedness of (3.1) in the space Hs(0, L) when the initial

data is drawn from Hs(0, L), for s = 0 and the boundary data (h1, h2, h3) in the space

Hs1(0, T )×Hs2(0, T )×Hs3(0, T ) for some appropriate indices s1, s2 and s3. As we will see
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later, the natural choices of s1, s2 and s3 are

s1 = s3 = −1

3
and s3 = 0.

The main theorem related with the well-posedness is the following:

Theorem 3.1.1. Let T > 0 be given. For any u0 ∈ L2(0, L) and

~h := (h1, h2, h3) ∈ HT := H−
1
3 (0, T )× L2(0, T )×H−

1
3 (0, T ),

the IBVP (3.1) admits a unique solution

u ∈ ZT := C([0, T ];L2(0, L)) ∩ L2(0, T,H1(0, L)).

Moreover, there exists a positive constant C > 0, such that

||u||ZT ≤ C
(
||u0||L2(0,L) + ||~h||HT

)
and the solution u possesses the following sharp trace estimates

(3.3) sup
x∈(0,L)

||∂rxu(x, ·)||
H

1−r
3 (0,T )

≤ Cr

(
||u0||L2(0,L) + ||~h||HT

)
,

for r = 0, 1, 2.

The second result addresses the control theory:

Exact control problem:

Given T > 0 and u0, uT ∈ L2(0, L), is it possible to find appropriate control inputs hj,

j = 1, 2, 3 such that the corresponding solution u of (3.1) satisfies

u(x, 0) = u0(x), u(x, T ) = uT (x)?

The study of the controllability and stabilization of the KdV equation started with the work

of Russell and Zhang in [57] who considered a system with periodic boundary conditions
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and an internal control. Since then, both the controllability and stabilization have been

intensively studied (we refer the reader to [54] for a survey of results and [15] for a complete

review of control). In particular, the exact boundary controllability of the KdV equation

on a finite domain was investigated in [14, 16, 23, 30, 31, 51, 53, 67]. The majority of these

articles are concerned with the system (3.2) in which the boundary data g1, g2, g3 can be

chosen as control inputs. System (3.2) was first studied by Rosier [51] considering only the

control input g3 (i.e. g1 = g2 = 0). It was shown in [51] that the exact controllability of

the linearized system holds in L2(0, L) if and only if L does not belong to the following

countable set of critical lengths:

(3.4) N :=

{
2π√

3

√
k2 + kl + l2 : k, l ∈ N∗

}
.

The analysis developed in [51] shows that if the linearized system is controllable, then the

nonlinearized system is controllable as well. Notice that the converse is false, as proven in

[14, 16, 23], that is, the (nonlinear) KdV equation is controllable even when L is a critical

length, but the linearized system is not controllable.

The existence of a discrete set of critical lengths for which the exact controllability of the

linearized equation fails was also noticed by Glass and Guerrero in [31] when g2 is taken as

a control input (i.e. g1 = g3 = 0). Finally, it is worth mentioning the result by Rosier [53]

and Glass and Guerrero [30] for which g1 is taken as a control input (i.e. g2 = g3 = 0). They

proved that system (3.2) is then null controllable, but not exactly controllable, because of

the strong smoothing effect.

Recently, Cerpa et al. in [17] proved similar results to those obtained by Rosier [51] for the
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system

(3.5)


yt + yx + yyx + yxxx = 0, in (0, T )× (0, L),

y(0, t) = k1(t), yx(L, t) = k2(t), yxx(L, t) = k3(t), in (0, T ),

y(x, 0) = y0(x), in (0, L).

More precisely, the authors consider the above system with one, two, or three controls. In

addition, using the well-posedness properties proved by Kramer et al. in [41] (see also [50]),

they also proved that the controls ki, i = 1, 2, 3 belong to the space Hs(0, T ), for s ∈ R and

the locally exactly controllability of the linear system associated to (3.5) holds if and only

if, L does not belong to the following countable set of critical lengths

(3.6)

F :=

{
L ∈ R+ : L2 = −(a2 + ab+ b2) with a, b ∈ C satisfying

ea

a2
=
eb

b2
=

e−(a+b)

(a+ b)2

}
.

Moreover, they showed that the nonlinear system (3.5) is locally exactly controllable via

the contraction mapping principle. In addition, Guilleron in [32], using Carleman estimates,

showed that the linear system associated to (3.5) is null controllable only if k1(t) is used as

a control input, that is, k2(t) = k3(t) = 0.

The second goal of this paper is to determine if the system (3.1) possesses similar

controllability results to those established for systems (3.2) and (3.5). It is natural to think

of using the same approaches that have been effective for systems (3.2) and (3.5). However,

these approaches will be difficult in our case and other tools will be required, specifically, we

will apply the tools used in [17]. When we use only h2 as a control input, the linear system

associated to (3.1) is given by

(3.7)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = h2(t), uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L),
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with adjoint system

(3.8)
ψt + ψx + ψxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ψ(0, t) + ψxx(0, t) = 0, ψx(0, t) = 0, ψ(L, t) + ψxx(L, t) = 0, t ∈ (0, T ),

ψ(x, T ) = ψT (x), x ∈ (0, L).

It is well known that the exact controllability of system (3.7) is equivalent to the following

observability inequality for the adjoint system (3.8):

(3.9) ||ψT ||L2(0,L) ≤ C||ψx(L, ·)||L2(0,T ).

However, the usual multiplier method and compactness arguments, as those used in dealing

with the control of system, (3.7) only lead to

(3.10) ||ψT ||2L2(0,L) ≤ C1||ψx(L, ·)||2L2(0,T ) + C2||ψ(0, ·)||2L2(0,T )

The issue now is how to remove the extra term in (3.10). To address this, the new approach

used in [17] will play a crucial role in proving the observability inequality (3.9). This new

approach turns out to be the hidden regularity (or the sharp Kato smoothing property) for

solutions of the KdV equation. Specifically, we will prove the following result:

Theorem 3.1.2. [Hidden regularities] For any ψT ∈ L2(0, L), the solution ψ ∈ ZT of IBVP

(3.8) possesses the following sharp trace properties:

(3.11) sup
x∈(0,L)

||∂rxψ(x, ·)||
H

1−r
3 (0,T )

≤ Cr||ψ0||L2(0,L),

for r = 0, 1, 2.

Initially, we consider the case when only the control input h2 is used and we will prove that

system (3.1) is locally exactly controllable as long as L /∈M, where M is defined as

(3.12) M :=

{
2π√

3

√
k2 + kl + l2 : k, l ∈ N∗

}
∪ {kπ : k ∈ N∗} = N ∪ {kπ : k ∈ N∗} .
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Theorem 3.1.3. Let T > 0 and L /∈ M be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h2 ∈ L2(0, T ) such that the system (3.1) admits a unique solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

Remark 1. The following systems

(3.13)


ut + ux + uxxx = f, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = 0, uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L),

and

(3.14)


yt + yx + yxxx = f, in (0, T )× (0, L),

y(0, t) = k1(t), yx(L, t) = 0, yxx(L, t) = 0, in (0, T ),

y(x, 0) = y0(x), in (0, L).

are equivalent in the following sense: For given {u0, f, h1} one can find {y0, f, k1} such that

the corresponding solution u of (3.13) is exactly the same as the

corresponding solution y for the system (3.14) and vice versa. Indeed, for given

u0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and h1(t) ∈ H− 1
3 (0, T ), system (3.13) admits a unique

solution u ∈ C([0, T ];L2(0, L))∩L2(0, T ;H1(0, L)). Let y0 = u0 and set k1(t) = h1(t). Then,

according to Proposition 3.2.8, we have k1(t) ∈ H 1
3 (0, T ). Due to the uniqueness of IBVP

(3.14), with the selection {y0, f, k1}, the corresponding solution y ∈ C([0, T ];L2(0, L)) ∩
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L2(0, T ;H1(0, L)) of (3.14) must be equal to u, since u also solves (3.14) with the given

auxiliary data {y0, f, k1}. On the other hand, for any given y0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L))

and k1(t) ∈ H
1
3 (0, T ), let y ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) be the corresponding

solution of the system (3.14). From Proposition 3.2.9, we have yxx(0, ·) ∈ H−
1
3 (0, T ). Thus,

if we set u0 = y0 and h1(t) = k1(t), then h1(t) ∈ H− 1
3 (0, T ) and the corresponding solution

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) of (3.13) must be equal to y, which also solves

(3.13) with the auxiliary data {u0, f, h1}.

With the techniques developed in [30, 32] and the previous remark, we are able to prove the

null controllability for system (3.1), when h2(t) = h3(t) = 0.

Theorem 3.1.4 (Null Controllability). Let T > 0 be fixed. For u0 ∈ L2(0, L), we consider

u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)),

the solution of

(3.15)


ut + ux + uxxx + uux = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = 0, uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L).

Then, there exists δ > 0 such that for any u0 ∈ L2(0, L) satisfying

||u0 − u0||L2(0,L) < δ,

there exists h1(t) ∈ H− 1
3 (0, T ) such that the solution u(x, t) of the system

(3.16)


ut + ux + uxxx + uux = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = 0, uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L),

belongs to the space ZT and satisfies

u(x, T ) = u(x, T ) in (0, L).
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Using h3 as a control input, the system

(3.17)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = 0, uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

is locally exactly controllable if L does not belong to the following countable set of critical

lengths:

(3.18)

R =
{
L ∈ R+ : L2 = −(a2 + ab+ b2) with a, b ∈ C : X = ea, Y = eb are solutions of

AX2 +BX + C = 0 and Y = − b3+b1X
b2

}
.

Here A = a1b1, B = a1b3 − a2b2 + a3b1 and C = a3b3, where

(3.19) a1 := (b2 − a2)(a+ b), a2 := b2ec(2a+ b), a3 := −a2ec(a+ 2b),

(3.20) b1 := −a3(a+ 2b), b2 := ab2(2a+ b) and b3 := −aec(b2 − a2)(a+ b).

Theorem 3.1.5. Let T > 0 and L /∈ R be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h3 ∈ H−
1
3 (0, T ) such that the system (3.17) admits a unique solution u in the

space ZT , that satisfies

u(x, 0) = u0(x), u(x, T ) = uT (x).

Something interesting to mention is the following: If h3 is not considered, then the critical

length phenomenon will not occur for the system

(3.21)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L).
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The result is given in the following theorem:

Theorem 3.1.6. Let T > 0 and L > 0 be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h1 ∈ H−
1
3 (0, T ) and h2 ∈ L2(0, T ) such that the system (3.21) admits a unique

solution u ∈ ZT , satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

Using h2 and h3 as control inputs,

(3.22)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

we have the following local exact controllability result:

Theorem 3.1.7. Let T > 0 and L > 0 be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h2 ∈ L2(0, T ) and h3 ∈ H−
1
3 (0, T ) such that the system (3.22) admits a unique

solution u ∈ ZT , satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).
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In addition, considering h1 and h3 as control inputs, we have the system

(3.23)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = 0, uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

and the following result:

Theorem 3.1.8. Let T > 0 and L > 0 be given. There exists δ > 0 such that for any

u0, uT ∈ L2(0, L) with

||u0||L2(0,L) + ||uT ||L2(0,L) ≤ δ,

one can find h1, h3 ∈ H−
1
3 (0, T ) such that the system (3.23) admits a unique solution u ∈ ZT ,

satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

Remark 2. If all three boundary control inputs are used, we can show that system (3.1) is

locally exactly controllable around any smooth solution of the KdV equation. The following

theorem holds using the same ideas of [17] and [64]:

Theorem 3.1.9. Let T > 0 and L > 0 be given. Assume that y ∈ C∞(R, H∞(R)) satisfies

yt + yx + yyx + yxxx = 0 (x, t) ∈ R× R.

Then, there exists δ > 0 such that for any y0, yT ∈ L2(0, L) with

||u0 − y(·, 0)||L2(0,L) + ||uT − y(·, T )||L2(0,L) ≤ δ,

one can find

h1 ∈ H−
1
3 (0, T ), h2 ∈ L2(0, T ), h3 ∈ H−

1
3 (0, T )
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such that system (3.1) admits a unique solution u ∈ ZT , satisfying

u(x, 0) = u0(x), u(x, T ) = uT (x).

Theorems 3.1.3-3.1.9 are going to be established initially for linearized systems around

the origin by using the classical duality approach, that is, the Hilbert Uniqueness Method

(H.U.M) introduced by J. L. Lions in [48]. This method reduces the proof of exact

controllability for (3.1) to prove an observability inequality for the solution of the

adjoint system. To prove the observability inequality, we will use the compactness uniqueness

argument developed by E. Zuazua in [48]. The exact controllability is extended to the

nonlinear system by using the contraction mapping principle.

This paper is organized as follows: In section 3.2, we present various linear estimates

including hidden regularities for solutions of the linear systems associated to (3.1) and

(3.2). The well-posedness of the nonlinear system (3.1), that is, Theorem 3.1.1 also will be

presented in this section. The control theory is studied in section 3.3 and in this section

some hidden regularities for solutions of the system (3.8) will be included. These regularities

will play an important role in establishing our exact controllability results. Furthermore,

we will prove that the associated linear systems are exactly controllable and the nonlinear

systems are shown to be locally exactly controllable via the contraction mapping principle.

Finally, in section 3.4 we will provide some remarks together with some open problems for

further studies.
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3.2 Well-posedness: Linear and Nonlinear problems

In this section, we study the well-posedness in L2(0, L) for the following IBVP:

(3.24)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L).

In order to prove well-posedness for the IBVP (3.24), we need to established some smoothing

properties for linear problems related with this IBVP.

3.2.1 The boundary integral operators

Consideration is first given to the following IBVP of the linear KdV equation with

homogenous initial value and nonhomogenoeus boundary data:

(3.25)


wt + wxxx = 0, x ∈ (0, L), t ≥ 0,

wxx(0, t) = h1(t), wx(L, t) = h2(t), wxx(L, t) = h3(t), t > 0,

w(x, 0) = 0, x ∈ (0, L).

Following the approach developed in [3, 4], we derive an explicit formula for its solution in

terms of the boundary values h1, h2 and h3.

Applying the Laplace transform with respect to t, the IBVP (3.25) becomes sŵ + ŵxxx = 0,

ŵxx(0, s) = ĥ1(s), ŵx(L, s) = ĥ2(s), ŵxx(L, s) = ĥ3(s),

where

ŵ(x, s) =

∫ +∞

0

e−stw(x, t)dt

and

ĥj(s) =

∫ +∞

0

e−sth(t)dt, j = 1, 2, 3.
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The solution ŵ(x, s) can be written in the form

ŵ(x, s) =
3∑
j=1

cj(s)e
λj(s)x,

where λj(s), j = 1, 2, 3, are the three solutions of the characteristic equation

s+ λ3 = 0

and the constants cj = cj(s), j = 1, 2, 3, solve the linear system

(3.26)


λ2

1 λ2
2 λ2

3

λ1e
λ1L λ2e

λ2L λ3e
λ3L

λ2
1e
λ1L λ2

2e
λ2L λ2

3e
λ3L




c1

c2

c3

 =


ĥ1

ĥ2

ĥ3

 .

Let ∆(s) be the determinant of the coefficient matrix and ∆j(s) be the determinants of

the matrices that are obtained by replacing the jth-column of ∆(s) by the column vector

(ĥ1(s), ĥ2(s), ĥ3(s))T , j = 1, 2, 3. By Cramer’s rule

cj =
∆j(s)

∆(s)
, j = 1, 2, 3,

if ∆(s) 6= 0. Taking the inverse Laplace transform of ŵ we have

w(x, t) =
1

2πi

∫ r+i∞

r−i∞
estŵ(x, s)ds =

3∑
j=1

1

2πi

∫ r+i∞

r−i∞
est

∆j(s)

∆(s)
eλj(s)xds

for any r > 0. Using the same arguments as those in [4] the solution w(x, t) can be written

as

(3.27) w(x, t) =
3∑

m=1

wm(x, t)

where wm(x, t) solves (3.25) with hj ≡ 0 when j 6= m, j,m = 1, 2, 3. With the above, we

can write wm, for m = 1, 2, 3, in the following way:

wm(x, t) =
3∑
j=1

1

2πi

∫ r+i∞

r−i∞

∆j,m(s)

∆(s)
eλj(s)xĥm(s)ds ≡ [Wm,j(t)hm](x).
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Notice that in the last two formulas, the right-hand sides are continuous with respect to r

for r ≥ 0 and they do not depend on r, thus we can take r = 0 in these formulas. Moreover,

wj,m(x, t) = w+
j,m(x, t) + w−j.m(x, t)

where

w+
j,m(x, t) =

1

2πi

∫ +i∞

0

est
∆j,m(s)

∆(s)
ĥm(s)eλj(s)xds

and

w−j,m(x, t) =
1

2πi

∫ 0

−i∞
est

∆j,m(s)

∆(s)
ĥm(s)eλj(s)xds,

for j,m = 1, 2, 3. Here ∆j,m(s) is obtained from ∆j(s) by letting ĥm(s) = 1 and ĥk(s) = 0

for k 6= m, k,m = 1, 2, 3.

Using the substitution s = iρ3, 0 < ρ < +∞, the three roots of the characteristic equation

are given by

(3.28) λ1(ρ) = iρ, λ2(ρ) = −iρ

(
1 + i

√
3

2

)
, λ3(ρ) = −iρ

(
1− i

√
3

2

)
.

Therefore w+
j,m has the following form

w+
j,m(x, t) =

1

2πi

∫ +∞

0

eiρ
3t

∆+
j,m(ρ)

∆+(ρ)
ĥ+
m(ρ)eλ

+
j (ρ)x3iρ2dρ

and

w−j,m(x, t) = w+
j,m(x, t),

where ĥ+
m(ρ) = ĥm(iρ3), ∆+(ρ) = ∆(iρ3), ∆+

j,m(ρ) = ∆j,m(iρ3) and λ+
j (ρ) = λj(iρ

3).

The following lemma give us a representation formula for the solution of the IBVP (3.25).

Lemma 3.2.1. Given ~h = (h1, h2, h3), the solution w of the IBVP (3.25) can be written in

the form

w(x, t) = [Wbdr
~h](x, t) :=

3∑
j,m=1

[Wj,mhm](x, t).
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Let ~h := (h1, h2, h3) ∈ HT with

HT = H−
1
3 (0, T )× L2(0, T )×H−

1
3 (0, T ),

and ZT as before. The following lemma holds for the solution of the system (3.25).

Lemma 3.2.2. Let T > 0 be given. There exists a constant C > 0 such that for any ~h ∈ HT

the system (3.25) admits a unique solution w ∈ ZT . Moreover

||w||ZT +
2∑
j=0

||∂jxw||L∞(0,L;H
1−j
3 )
≤ C||~h||HT .

Proof. As we stated above, the solution w can be written as

w(x, t) = w1(x, t) + w2(x, t) + w3(x, t).

Let us prove Lemma 3.2.2 for w1. Some straightforward calculations show that the

asymptotic behavior of the ratios
∆+
j,m(ρ)

∆+(ρ)
as ρ→ +∞ are:

∆+
1,1(ρ)

∆+(ρ)
∼ ρ−2e−

√
3

2
ρL ∆+

2,1(ρ)

∆+(ρ)
∼ ρ−2e−

√
3

2
ρL ∆+

3,1(ρ)

∆+(ρ)
∼ ρ−2e−

√
3

2
ρL

∆+
1,2(ρ)

∆+(ρ)
∼ ρ−1 ∆+

2,2(ρ)

∆+(ρ)
∼ ρ−1 ∆+

3,2(ρ)

∆+(ρ)
∼ ρ−1

∆+
1,3(ρ)

∆+(ρ)
∼ ρ−2 ∆+

2,3(ρ)

∆+(ρ)
∼ ρ−2e−

√
3

2
ρL ∆+

3,3(ρ)

∆+(ρ)
∼ ρ−2

Since

w1(x, t) =
3

π

3∑
j=1

∫ +∞

0

eiρ
3teλ

+
j (ρ)x

∆+
j,1(ρ)

∆+(ρ)
ĥ+

1 (ρ)ρ2dρ,

we have

sup
t∈(0,T )

||w1(·, t)||2L2(0,L) ≤ C

∫ ∞
0

µ−2/3|ĥ+
1 (iµ)|2dµ

≤ C||h1||2
H−

1
3 (R+)

≤ C||~h||HT .
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Furthermore, for l = −1, 0, 1 let us consider θ(µ) the real solution of µ = ρ3, ρ > 0, thus

∂lxw1(x, t) =
3

π

3∑
j=1

∫ +∞

0

(
λ+
j (ρ)ρ+1

)
eiρ

3teλ
+
j (ρ)x

∆+
j,1(ρ)

∆+(ρ)
ĥ+

1 (ρ)ρ2dρ

=
3

π

3∑
j=1

∫ +∞

0

(
λ+
j (θ(µ))ρ+1

)
eiρ

3teλ
+
j (θ(µ))x

∆+
j,1(θ(µ))

∆+(θ(µ))
ĥ+

1 (iµ)dµ.

Applying Plancherel’s Theorem (with respect to t), yields that, for all x ∈ (0, L)

||∂l+1
x w1(x, ·)||2

H−
1
3 (0,T )

≤ C
3∑
j=1

∫ +∞

0

µ−
2l
3

∣∣∣∣∣(λ+
j (θ(µ))ρ+1)eλ

+
j (θ(µ))x

∆+
j,1(θ(µ))

∆+(θ(µ))
ĥ+

1 (iµ)

∣∣∣∣∣
2

dµ

≤ C

∫ +∞

0

µ−
2l
3 |h1(iµ)|2 dµ

≤ C||h1||2
H−

l
3 (0,T )

≤ C||~h||2HT ,

for l = −1, 0, 1. Therefore

sup
x∈(0,L)

||∂l+1
x w1(x, ·)||

H−
l
3 (0,T )

≤ C||~h||2HT , l = −1, 0, 1,

which ends the proof of Lemma 3.2.2 for w1. The proofs for wi, i = 2, 3 are similar.

3.2.2 Linear estimates

In this subsection we consider the following initial boundary-value problem:

(3.29)


vt + vxxx = f, x ∈ (0, L), t > 0,

vxx(0, t) = 0, vx(L, t) = 0, vxx(L, t) = 0, t > 0,

v(x, 0) = φ(x), x ∈ (0, L).

The solution of the IBVP (3.29) can be expressed in terms of the solution of the following

IVP:

(3.30)


vt + vxxx = 0, x ∈ R, t ∈ R+,

v(x, 0) = φ.

70



The solution of this IVP is given by

(3.31) v(x, t) = [WR(t)]φ(x) = c

∫
R
eiξ

3teixξφ̂(ξ)dξ,

where φ̂ denotes the Fourier transform of φ.

Using this representation formula, we can write W0(t) in terms of WR(t) and Wbdr(t), where

W0 is the C0-semigroup in the space L2(0, L) generated by the operator

Au = −u′′′

with domain

D(A) =
{
u ∈ H3(0, L) : u′′(0) = u′(L) = u′′(L) = 0

}
.

For any φ ∈ Hs(0, L), let φ∗ ∈ Hs(R) be its standard extension from (0, L) to R. Let

v = v(x, t) be the solution of
vt + vxxx = 0, x ∈ R, t ≥ 0,

v(x, 0) = φ∗,

and set g1(t) = vxx(0, t), g2(t) = vx(L, t) and g3(t) = vxx(L, t), ~g = (g1, g2, g3) and

v~g = v~g(x, t) = [Wbdr(t)~g](x),

which is the corresponding solution of the non homogeneous boundary-value problem (3.25)

with boundary data hj(t) = gj(t) for j = 1, 2, 3 and t ≥ 0. Then v(x, t)−v~g solves the IBVP

(3.29). Thus this leads us to a particular representation of W0(t) in terms of Wbdr(t) and

WR(t).

If B : Hs(0, L)→ Hs(R) is the standard extension operator from, Hs(0, L) to Hs(R), then

we have the following lemma:

Lemma 3.2.3. Given s ≥ 0 and φ ∈ Hs(0, L), let φ∗ = Bφ. Then

(3.32) W0(t)φ = WR(t)φ∗ −Wbdr(t)~g,
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for any t > 0 and x ∈ (0, L), where ~g is obtained from the trace of WR(t)φ∗ at x = 0, L.

We can use WR(t) and Wbdr(t) to express the solution v(x, t) of the non-homogeneous initial

boundary-value problem

(3.33)



vt + vxxx = f(x, t), x ∈ (0, L), t ≥ 0,

v(x, 0) = 0,

vxx(0, t) = 0, vx(L, t) = 0, vxx(L, t) = 0.

More precisely,

Lemma 3.2.4. If f ∗(·, t) = Bf(·, t), with B as was defined before, then the solution v of

the problem (3.33) is given by

v(x, t) =

∫ t

0

W0(t− τ)f(τ)dτ =

∫ t

0

WR(t− τ)f ∗(·, τ)dτ −Wbdr(t)~v,

for any x ∈ (0, L) and t ≥ 0. Here ~v ≡ ~v(t) = (v1(t), v2(t), v3(t)), with

v1(t) = ∂2
x

∫ t

0

WR(t− τ)f ∗(τ)dτ
∣∣∣
x=0

, v2(t) = ∂x

∫ t

0

WR(t− τ)f ∗(τ)dτ
∣∣∣
x=L

and

v3(t) = ∂2
x

∫ t

0

WR(t− τ)f ∗(τ)dτ
∣∣∣
x=L

.

Lemma 3.2.3 and Lemma 3.2.4 are valid for x ∈ (0, L) and t ≥ 0 since some of the operators

that we have constructed are defined only in this interval, moreover the only operator that

is defined in the whole line is WR(t) for any values of x and t.

Recall that

Wbdr(t)~h =
3∑

j,m=1

Wj,mhj

and each Wj,mhj is of the form (see Lemma 3.2.1). Therefore by the extension method

introduced in [5], the operator Wbdr(t) can be extended as Wbdr(t) with

[Wbdr(t)~h](x, t)
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defined for any t, x ∈ R and

[Wbdr
~h](x, t) = [Wbdr(t)~h](x, t) for any (x, t) ∈ (0, L)× (0, T ).

Next we present the spatial trace estimates for WR(t)φ and

∫ t

0

WR(t− t′)f(·, t′)dt′

Proposition 3.2.5. Let s = 0, there exists a constant C depending only on s such that

(3.34) sup
x∈R
‖WR(t)φ‖

H
1
3
t (R)
≤ ‖φ‖L2(R),

(3.35) sup
x∈R
‖∂xWR(t)φ‖L2

t (R) ≤ ‖φ‖L2(R)

and

(3.36) sup
x∈R
‖∂xxWR(t)φ‖

H
− 1

3
t (R)

≤ ‖φ‖L2(R).

Proposition 3.2.6. Letting s = 0, ψ ∈ C∞0 (R) and

w(x, t) =

∫ t

0

WR(t− t′)f(·, t′)dt′,

there exists C depending only on s and ψ such that

sup
x∈R
‖ψ(·)w(x, ·)‖

H
1
3
t (R)
≤ C‖f‖L2(R),

sup
x∈R
‖ψ(·)wx(x, ·)‖L2

t (R) ≤ C‖f‖L2(R)

and

sup
x∈R
‖ψ(·)wxx(x, ·)‖

H
− 1

3
t (R)

≤ C‖f‖L2(R).

The proofs of these propositions can be found in [3, 4].
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3.2.3 Well-Posedness: Linear problems

With the results provided in the previous subsections, we are ready to prove some of the

main results related to well-posedness. The first IBVP considered is

(3.37)


vt + vxxx = f, in (0, T )× (0, L),

vxx(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t), in (0, T ),

v(x, 0) = v0(x), in (0, L).

Proposition 3.2.7. Let T > 0 be given. For any v0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and

~h := (h1, h2, h3) ∈ HT , the IBVP (3.37) admits a unique solution v ∈ ZT . Moreover, there

exists C > 0 such that

||v||ZT ≤ C
(
||v0||L2(0,L) + ||~h||HT + ||f ||L1(0,T ;L2(0,L))

)
.

Proof. The proof of this proposition is a direct application of Lemma 3.2.2, Propositions

3.2.5 and 3.2.6.

In addition, the solution v of (3.37) possesses the following hidden (or sharp trace)

regularities:

Proposition 3.2.8. Let T > 0 be given. For any v0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and

~h ∈ HT , the solution v of the system (3.37) satisfies

(3.38) sup
x∈(0,L)

||∂rxv(x, ·)||
H

1−r
3 (0,T )

≤ Cr

(
||v0||L2(0,L) + ||~h||HT + ||f ||L1(0,T ;L2(0,L))

)
,

for r = 0, 1, 2.

Proof. Note that the system

(3.39)


vt + vxxx = f, x ∈ (0, L), t > 0,

vxx(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t), t > 0,

v(x, 0) = v0(x), x ∈ (0, L),
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has solution v(x, t) given by

v(t) = V0(t)v0 +Wbdr(t)~h(t) +

∫ t

0

V0(t− τ)f(τ)dτ,

where ~h = (h1, h2, h3) and V0(t) is the C0-semigroup in L2(0, L) generated by the operator

Bf = −f ′′′

with domain

D(B) =
{
f ∈ H3(0, L) : f ′′(0) = f ′(L) = f(L)′′ = 0

}
.

Therefore, u(t) = V0(t)v0 solves

(3.40)


ut + uxxx = 0, x ∈ (0, L), t > 0,

uxx(0, t) = 0, ux(L, t) = 0, uxx(L, t) = 0, t > 0,

u(x, 0) = v0(x), x ∈ (0, L),

w(t) = Wbdr(t)~h solves

(3.41)


wt + wxxx = 0, x ∈ (0, L), t > 0,

wxx(0, t) = h1(t), wx(L, t) = h2(t), wxx(L, t) = h3(t), t > 0,

w(x, 0) = 0, x ∈ (0, L),

and z(t) =

∫ t

0

V0(t− τ)f(τ)dτ solves

(3.42)


zt + zxxx = f, x ∈ (0, L), t > 0,

zxx(0, t) = 0, zx(L, t) = 0, zxx(L, t) = 0, t > 0,

z(x, 0) = 0, x ∈ (0, L).

In order to complete the proof, we have to prove

(3.43) ||∂rxu||L∞x (0,L;H
1−r
3 (0,T ))

+ ||∂rxz||L∞x (0,L;H
1−r
3 (0,T ))

≤ C
(
||v0||L2(0,L) + ||f ||L1(0,T ;L2(0,L))

)
,
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for r = 0, 1, 2. To prove this, note that the solutions u and z of (3.40) and (3.42) respectively

can be written as

u(t) = VR(t)ṽ0 − Vbdr(t)~p

and

z(t) =

∫ t

0

VR(t− τ)f̃(τ)dτ − Vbdr(t)~q.

Here

(i) ṽ0 and f̃ are the standard extensions of v0 and f respectively:

ṽ0(x) =


v0(x), if x ∈ (0, L),

0, if x /∈ (0, L),

f̃(x, t) =


f(x, t), if (x, t) ∈ (0, L)× (0, T ),

0, if x /∈ (0, L).

(ii) VR(t) is the C0-semigroup associated to the initial value problem

µt + µxxx = 0, µ(x, 0) = ṽ0(x), x ∈ R, t ∈ (0, T ).

(iii) ~p = (p1, p2, p3) with

p1(t) = µxx(0, t), p2(t) = µx(L, t) and p3(t) = µxx(L, t),

where µ(t) = VR(t)ṽ0.

(iv) ~q = (q1, q2, q3) with

q1(t) = z̃xx(0, t), q2(t) = z̃x(L, t) and q3(t) = z̃xx(L, t),

where z̃ =

∫ t

0

VR(t− τ)f̃(τ)dτ . Using the same argument as in [41], we have

||∂rxµ||L∞x (R;H
1−r
3 (0,T ))

≤ C||ṽ0||L2(R) ≤ C||v0||L2(0,L)

and

||∂rxz̃||L∞x (R;H
1−r
3 (0,T ))

≤ C||f̃ ||L1(0,T ;L2(R)) ≤ C||f ||L1(0,T ;L2(0,L)),
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for r = 0, 1, 2. Furthermore, by Lemma 3.2.2,

||∂rxVbdr(t)~p||L∞x (R;H
1−r
3 (0,T ))

≤ C||~p||HT ≤ C||v0||L2(0,L)

and

||∂rxVbdr(t)~q||L∞x (R;H
1−r
3 (0,T ))

≤ C||~q||HT ≤ C||f ||L1(0,T ;L2(0,L)),

thus, the proof of the Proposition 3.2.8 is complete.

The next proposition states similar hidden (or sharp trace) regularities for the linear system

(3.44)


yt + yx + yxxx = f, x ∈ (0, L), t > 0,

y(0, t) = g1(t), y(L, t) = g2(t), yx(L, t) = g3(t), t > 0,

y(x, 0) = y0(x), x ∈ (0, L),

associated to (3.2).

Proposition 3.2.9. Let T > 0 be given. For any y0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and

~g := (g1, g2, g3) ∈ GT := H
1
3 (0, T )×H

1
3 (0, T )× L2(0, T ),

the IBVP (3.44) admits a unique solution y ∈ ZT . Moreover, there exists C > 0 such that

||y||ZT ≤ C
(
||y0||L2(0,L) + ||~g||GT + ||f ||L1(0,T ;L2(0,L))

)
.

In addition, the solution y possesses the sharp trace estimates

(3.45) sup
x∈(0,L)

||∂rxy(x, ·)||
H

1−r
3 (0,T )

≤ Cr
(
||y0||L2(0,L) + ||~g||GT + ||f ||L1(0,T ;L2(0,L))

)
,

for r = 0, 1, 2.

The proof of Proposition 3.2.9 can be found in [64] (cf. also [4, 41]).

Remark 3. Systems (3.37) and (3.44) are equivalent in the following sense: For given

{u0, f, h1, h2, h3} one can find {y0, f, g1, g2, g3} such that the corresponding solution u of
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(3.37) is exactly the same as the corresponding solution y of the system (3.44) and vice

versa. In fact, for given u0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and ~h ∈ HT , system (3.37)

admits a unique solution u ∈ ZT . Let y0 = u0 and set

g1(t) = h1(t), g3(t) = h2(t), g2(t) = h3(t).

Then, according to (3.38), we have ~g ∈ Gt. Due to the uniqueness of IBVP (3.44), with

the selection {y0, f, g1, g2, g3}, the corresponding solution y ∈ ZT of (3.44) must be equal

to u since u also solves (3.44) with the given auxiliary data {y0, f, g1, g2, g3}. On the

other hand, for any given y0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and ~g ∈ GT , let y ∈ ZT

be the corresponding solution of the system (3.44). From (3.45), we have yxx(0, ·) and

yxx(L, ·) ∈ H−
1
3 (0, T ). Thus, if we set u0 = y0 and

h1(t) = uxx(0, t), h2(t) = g3(t), h3(t) = uxx(L, T ),

then ~h ∈ HT and the corresponding solution u ∈ ZT of (3.37) must be equal to y which also

solves (3.37) with the auxiliary data (u0, f,~h).

3.2.4 Well-posedness: Nonlinear problem

Finally, we consider the well-posedness of the following nonlinear system:

(3.46)



vt + vx + vvx + vxxx = 0, x ∈ (0, L), t > 0,

v(x, 0) = φ(x),

vxx(0, t) = h1(t), vx(L, t) = h2(t), vxx(L, t) = h3(t), t ≥ 0.

For given T > 0 and s ≥ 0, let us define

Xs,T := Hs(0, L)×H
s−1
3 (0, T )×H

s
3 (0, T )×H

s−1
3 (0, T ),

Zs,T := C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+1(0, L)) ∩ L∞(0, L;H
s+1
3 (0, T ))
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and

Zs,T := Zs,T ∩H
s
3 (0, T ;H1(0, L)).

The following lemma is necessary to prove the main theorem of this section

Lemma 3.2.10. (i) For s ≥ 0 there exists a C ≥ 0 such that for any T > 0 and

u, v ∈ Zs,T ,

(3.47)

∫ T

0

‖uvx‖Hs(0,L) dτ ≤ C
(
T

1
2 + T

1
3

)
‖u‖Zs,T ‖v‖Zs,T

(ii) For 0 ≤ s ≤ 3 there exists a C ≥ 0 such that for any T > 0 and u, v ∈ Zs,T ,

(3.48) ‖uvx‖W s
3 ,1(0,T ;L2(0,1)

≤ C
(
T

1
2 + T

1
3

)
‖u‖Zs,T ‖v‖Zs,T .

The proof of this lemma can be found in [4, 42]. The following result guarantees the local

well-posedness of the system (3.46):

Theorem 3.2.11. Let T > 0 and r > 0. For s = 0, there exists a T ∗ ∈ (0, T ] such that

for any (φ,~h) ∈ Xs,T , the IBVP (3.46) admits a unique solution v ∈ Zs,T ∗. Moreover, the

corresponding solution map is Lipschitz continuous.

Proof. The proof of this lemma is based on the proof presented in [4, 42].

3.3 Control theory

As we shall see, whenever a system is controllable, the control can be built by minimizing

a suitable quadratic functional defined on the class of solutions of the adjoint system. The

main difficulty when minimizing these functionals is to show that they are coercive. This

turns out to be equivalent to the so-called observability property of the adjoint system, a

property which is equivalent to the original control property of the state system. The next

section is concerned with the adjoint system associated to (3.7).
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3.3.1 The adjoint linear system

This subsection is devoted to study the properties of the backward adjoint system

(3.49)
ψt + ψx + ψxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ψ(0, t) + ψxx(0, t) = 0, ψx(0, t) = 0, ψ(L, t) + ψxx(L, t) = 0, t ∈ (0, T ),

ψ(x, T ) = ψT (x), x ∈ (0, L).

Using the transformations x′ = L − x and t′ = T − t, system (3.49) is equivalent to the

following forward system:

(3.50)
ϕt + ϕx + ϕxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ϕ(0, t) + ϕxx(0, t) = 0, ϕx(L, t) = 0, ϕ(L, t) + ϕxx(L, t) = 0, t ∈ (0, T ),

ϕ(x, 0) = ϕ0(x), x ∈ (0, L).

We will prove that system (3.50) is well-posed in ZT for ϕ(x, 0) = ϕ0(x) ∈ L2(0, L). However,

before that we prove the next theorem which reveals that ϕ has a stronger trace regularity,

more precisely,

ϕ(0, ·) ∈ H
1
3 (0, T ) (or ϕ(L, ·) ∈ H

1
3 (0, T )).

It will play an important role in establishing exact controllability of the system (3.1) as

shown in the next section.

Theorem 3.3.1. [Hidden regularities] For any ϕ0 ∈ L2(0, L), the solution ϕ ∈ ZT of IBVP

(3.50) possesses the sharp trace properties

(3.51) sup
x∈(0,L)

||∂rxϕ(x, ·)||
H

1−r
3 (0,T )

≤ Cr||ϕ0||L2(0,L),

for r = 0, 1, 2.

Remark 4. Equivalently, the solution of the system (3.49) has the sharp trace estimates

(3.52) sup
x∈(0,L)

||∂rxψ(x, ·)||
H

1−r
3 (0,T )

≤ Cr||ψT ||L2(0,L),
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for r = 0, 1, 2.

In order to prove Theorem 3.3.1, let us to consider the system

(3.53)


wt + wxxx = f, x ∈ (0, L)× (0, T ),

wxx(0, t) = k1(t), wx(L, t) = k2(t), wxx(L, t) = k3(t), t ∈ (0, T ),

w(x, 0) = w0(x), x ∈ (0, L).

Proposition 3.3.2. If w0 ∈ L2(0, L), f ∈ L1(0, T ;L2(0, L)) and ~k := (k1, k2, k3) ∈ KT with

KT := H−
1
3 (0, T )× L2(0, T )×H−

1
3 (0, T ),

then system (3.53) admits a unique solution w ∈ ZT which, in addition, has the hidden (or

sharp trace) regularities

∂rxw ∈ L∞(0, L;H
1−r
3 (0, T )), for r = 0, 1, 2.

Moreover, there exist constants C,Cr > 0, such that

||w||ZT ≤ C
(
||w0||L2(0,L) + ||~k||KT + ||f ||L1(0,T ;L2(0,L))

)
and

sup
x∈(0,L)

||∂rxw(x, ·)||
H

1−r
3 (0,T )

≤ Cr

(
||w0||L2(0,L) + ||~k||KT + ||f ||L1(0,T ;L2(0,L))

)
where,

||~k||2KT :=
(
||k1||2

H−
1
3 (0,T )

+ ||k2||2L2(0,T ) + ||k3||2
H−

1
3 (0,T )

)
,

for r = 0, 1, 2.

Proof. The proof follows the same ideas developed in Section 3.2, more precisely,

Propositions 3.2.7 and 3.2.8, therefore, it will be omitted.

Now we turn to prove Theorem 3.3.1.
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Proof of Theorem 3.3.1. Let us consider the set

XT :=
{
u ∈ ZT : ∂rxu ∈ L∞x (0, L;H

1−r
3 (0, T )), r = 0, 1, 2

}
which is a Banach space equipped with the norm

||u||XT := ||u||ZT +
2∑
r=0

||∂rxu||L∞x (0,L;H
1−r
3 (0,T ))

.

According to Proposition 3.3.2, for any v ∈ Xβ where 0 < β ≤ T and any ϕ0 ∈ L2(0, L), the

system

(3.54)


wt + wxxx = −vx, x ∈ (0, L)× (0, T ),

wxx(0, t) = −v(0, t), wx(L, t) = 0, wxx(L, t) = −v(L, t), t ∈ (0, T ),

w(x, 0) = ψ0(x), x ∈ (0, L),

admits a unique solution w ∈ Xβ and, moreover,

||w||Xβ ≤ C
(
||ψ0||L2(0,L) + ||v(0, ·)||

H−
1
3 (0,T )

+ ||v(L, ·)||
H−

1
3 (0,T )

+ ||vx||L1(0,β;L2(0,L))

)
,

where the constant C > 0 depends only on T . Since

||vx||L1(0,β;L2(0,L)) ≤ Cβ1/2||v||Xβ ,

||v(0, ·)||
H−

1
3 (0,β)

≤ ||v(0, ·)||L2(0,β) ≤ β2/3||v(0, ·)||L6(0,β) ≤ Cβ2/3||v(0, ·)||
H

1
3 (0,β)

≤ Cβ2/3||v||Xβ

and

||v(L, ·)||
H−

1
3 (0,β)

≤ ||v(L, ·)||L2(0,β) ≤ β2/3||v(L, ·)||L6(0,β) ≤ Cβ2/3||v(L, ·)||
H

1
3 (0,β)

≤ Cβ2/3||v||Xβ ,

then, we can define the map

Γ : Xβ −→ Xβ

v 7→ Γ(v) = w,
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for any v ∈ XT and β ∈ (0,max{1, T}]. Here w ∈ Xβ is the corresponding solution of (3.54)

and

||Γ(v)||Xβ ≤ C1||ψ0||L2(0,L) + C2β
1/2||v||Xβ ,

where C1 and C2 are positive constants depending only on T . Choosing r > 0 and

β ∈ (0,max{1, T}] such that

r = 2C1||ψ0||L2(0,L) and 2C2β
1/2 ≤ 1

2
,

then, for any

v ∈ Bβ,r = {v ∈ Xβ : ||v||Xβ ≤ r},

we have

||Γ(v)||Xβ ≤ r.

Moreover, for any v1, v2 ∈ Bβ,r, we get

||Γ(v1)− Γ(v2)||Xβ ≤ 2C2β
1/2||v1 − v2||Xβ ≤

1

2
||v1 − v2||Xβ .

Therefore, the map Γ is a contraction mapping on Bβ,r. Its fixed point w = Γ(v) ∈ Xβ

is the desired solution for t ∈ (0, β). As the chosen β is independent of ψ0, the standard

continuation extension argument yields that the solution w belongs to Xβ. The proof is

complete.

Finally, we conclude this section with an elementary estimate for the solution of (3.50).

Proposition 3.3.3. Any solution ϕ of the adjoint system (3.50) with initial data

ϕ0 ∈ L2(0, L) satisfies

(3.55) ||ϕ0||2L2(0,L) ≤
1

T
||ϕ||2L2((0,L)×(0,T )) + ||ϕx(0, ·)||2L2(0,T ) + ||ϕ(0, ·)||2L2(0,T ).
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Proof. Multiplying the equation (3.50) by (T − t)ϕ and integrating by parts over

(0, L)× (0, T ), we get

T

2

∫ L

0

ϕ2
0dx =

1

2

∫ T

0

∫ L

0

ϕ2dxdt+

∫ T

0

(
T − t

2

)(
−ϕ2(L) + ϕ2(0) + ϕ2

x(0)
)
dt,

thus (3.55) holds.

Equivalently, the following estimate holds for solutions ψ of the system (3.49):

(3.56) ||ψT ||2L2(0,L) ≤
1

T
||ψ||2L2((0,L)×(0,T )) + ||ψx(L, ·)||2L2(0,T ) + ||ψ(0, ·)||2L2(0,T ).

Remark 5. As a comparison, it is worth pointing out that for the adjoint system of (3.44),

which is given by

(3.57)


ξt + ξx + ξxxx = 0, (x, t) ∈ (0, L)× (0, T ),

ξ(0, t) = 0, ξ(L, t) = 0, ξx(0, t) = 0, t ∈ (0, T ),

ξ(x, T ) = ξT (x), x ∈ (0, L),

the following inequality holds:

(3.58) ||ξT ||L2(0,L) ≤
1

T
||ξ||L2((0,L)×(0,T )) + ||ξx(L, ·)||2L2(0,T ).

The extra term ||ψ(0, ·)||2L2(0,T ) in (3.56) brings new challenges in establishing the

observability inequality of the adjoint system (3.49).

3.3.2 Exact boundary controllability results: The linear system

This part of the paper focuses on the analysis of the exact controllability property for the

linear system corresponding to (3.1). More precisely, given T > 0 and u0 ∈ L2(0, L), we

study the existence of controls (h1, h2, h3) ∈ HT such that the solution u of the system

(3.59)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),
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satisfies

(3.60) u(T, ·) = uT in L2(0, L).

Definition 1. Let T > 0. System (3.59) is exactly controllable in time T if for any

initial and final data u0 ∈ L2(0, L), uT ∈ L2(0, L), respectively, there exist control

functions (h1, h2, h3) ∈ HT such that the solution of (3.59) satisfies (3.60).

Remark 6. Without loss of generality, we may study only the exact controllability property

for the case u0 = 0. Indeed, let u0, uT be arbitrarily in L2(0, L) and let (h1, h2, h3) ∈ HT

be controls which lead the solution u of (3.59) from the zero initial data to the final state

uT − W (T )u0 (recall that W (t) is the mild solution corresponding to (3.59)). It follows

immediately that these controls also lead to the solution u+W (·)u0 of (3.59) from u0 to the

final state uT .

Now, we analyze the following cases for the system (3.59):

(3.61)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = h2(t), uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L),

(3.62)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = 0, uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

(3.63)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = 0, in (0, T ),

u(x, 0) = u0(x), in (0, L),
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(3.64)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = 0, ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

and

(3.65)


ut + ux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = 0, uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L).

As we mentioned in the introduction the proofs for the other cases can be obtained by

following the ideas we will apply in the next section.

3.3.2.1 Exact boundary controllability for system (3.61)

In this section we study the exact controllability in time T , for the system (3.61). We first

give an equivalent condition for the exact controllability property:

Lemma 3.3.4. Let uT ∈ L2(0, L). Then, there exists a control h2(t) ∈ L2(0, T ), such that

the solution u of (3.61) satisfies (3.60) if and only if

(3.66)

∫ L

0

u(x, T )ψTdx =

∫ T

0

h2(t)ψx(t, L)dt,

for any ψT ∈ L2(0, L) and ψ being the solution of the backward system (3.49).

Proof. (3.66) is obtained multiplying the partial differential equation in (3.61) by the solution

ψ of (3.49) and integrating by parts.

Proposition 3.3.5. Set

M =

{
2π√

3

√
k2 + kl + l2 : k, l ∈ N∗

}
∪ {kπ : k ∈ N∗} = N ∪ {kπ : k ∈ N∗} .

Let T > 0 and L /∈M be given. There exists a bounded linear operator

Ψ : L2(0, L)× L2(0, L) −→ L2(0, T )
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such that for any u0, uT ∈ L2(0, L), if one chooses h2 = Ψ(u0, uT ), then system (3.61) admits

a solution u ∈ ZT satisfying (3.60).

To study the controllability property, as it is well known, the following observability

inequality will play a fundamental role.

Lemma 3.3.6. Let L ∈ (0,+∞)\M and T > 0 be given. There exists C(T, L) > 0 such

that

(3.67) ||ψT ||L2(0,L) ≤ C||ψx(L, t)||L2(0,T )

holds for any ψT ∈ L2(0, L), where ψ is the solution of (3.49) with initial data ψT .

Proof. We proceed by contradiction as in [51, Proposition 3.3]. If (3.67) does not hold, then

there exists a sequence {ψnT}n∈N ∈ L2(0, L) with

(3.68) ||ψnT ||L2(0,L) = 1,∀n ∈ N

such that the corresponding solutions of (3.49) satisfy

(3.69) 1 = ||ψnT ||L2(0,L) > n||ψnx(L, t)||L2(0,T ),

which implies ||ψnx(L, t)||L2(0,T ) → 0, as n→∞. Theorem 3.3.1 and Proposition 3.3.2 imply

that the sequences {ψn}n∈N and {ψn(0, t)}n∈N are bounded in the spaces L2(0, T ;H1(0, L))

and H
1
3 (0, T ) respectively. According to Proposition 3.3.3, we have

(3.70) ||ψnT ||L2(0,L) ≤
1

T
||ψn||2L2((0,L)×(0,T )) + ||ψnx(L, ·)||2L2(0,T ) + ||ψn(0, ·)||2L2(0,T ).

Since ψnt = −ψnx − ψnxxx is bounded in L2(0, T ;H−2(0, L)) and the embedding

H1(0, L) ↪→ L2(0, L) ↪→ H−2(0, L),

then we can prove that the sequence {ψn}n∈N is relatively compact in L2(0, T ;L2(0, L)) (see

[58]). Furthermore, the second term on the right in (3.70) converges to zero in L2(0, T ), and
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by the compact embedding

H
1
3 (0, T ) ↪→ L2(0, T )

the sequence {ψn(0, t)}n∈N has a convergent subsequence in L2(0, T ). Therefore by (3.70),

{ψnT}n∈N is an L2(0, L)–Cauchy sequence, thus, at least for a subsequence, we have

(3.71) ψnT −→ ψT in L2(0, L).

By Theorem 3.3.1 it holds that

(3.72) ψnx(L, t) −→ ψx(L, t) in L2(0, T ).

From (3.68), (3.71) and (3.72), we have ψ is a solution of

(3.73) ψt + ψx + ψxxx = 0, in (0, T )× (0, L),

ψ(0, t) + ψxx(0, t) = 0, ψx(0, t) = 0, ψ(L, t) + ψxx(L, t) = 0, in (0, T ),

satisfying the additional boundary condition

(3.74) ψx(L, t) = 0,

and

(3.75) ||ψT ||L2(0,L) = 1.

Notice that (3.75) implies that the solutions of (3.73)-(3.74) cannot be identically zero.

Therefore, by the following Lemma 3.3.7, one can conclude that ψ ≡ 0, therefore, ψT (x) ≡ 0,

which contradicts (3.75).

Lemma 3.3.7. For any T > 0, let NT denote the space of the initial states ψT ∈ L2(0, L)

such that the mild solution ψ of (3.73) satisfies (3.74). Then, for L ∈ (0,+∞)\M,

NT = {0},∀T > 0.
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Proof. The proof uses the same arguments as those given in [51]. Therefore, if NT 6= {0},

the map ψT ∈ CNT −→ A(ψT ) ∈ CNT (where CNT denote the complexification of NT ) has

(at least) one eigenvalue, hence, there exists λ ∈ C and ψ0 ∈ H3(0, L)\{0} such that

(3.76)

 λψ0 = −ψ′0 − ψ′′′0 ,

ψ0(0) + ψ′′0(0) = 0, ψ0(L) + ψ′′0(L) = 0, ψ′0(0) = 0, ψ′0(L) = 0.

To conclude the proof of Lemma 3.3.7, we prove that this does not hold if L /∈ M. To

simplify the notation, henceforth we denote ψ := ψ0.

Lemma 3.3.8. Let L > 0. Consider the assertion

(F) ∃λ ∈ C, ∃ψ ∈ H3(0, L)\{0} such that


λψ = −ψ′ − ψ′′′,

ψ(0) + ψ′′(0) = 0, ψ(L) + ψ′′(L) = 0,

ψ′(0) = 0, ψ′(L) = 0.

Then, (F) holds if and only if L ∈M.

Proof. We will use the argument developed in [51, Lemma 3.5]. Assume that ψ satisfies

F . Let us introduce the notation ψ̂(ξ) =

∫ L

0

ψ(ξ)e−ixξdx. Then, multiplying the equation

(3.76) by e−ixξ, integrating by parts in (0, L) and using the boundary condition we obtain

(3.77) (λ+ (iξ) + (iξ)3)ψ̂(ξ) = (iξ)2ψ(0)− (iξ)2ψ(L)e−iLξ.

Setting λ = −ip, α = ψ(0) and ψ(L), we have

(3.78) ψ̂(ξ) = −iξ2α− βe−iLξ

ξ3 − ξ + p
.

Using the Paley-Wiener theorem (see [63, Section 4, page 161]) and the usual characterization

of H2(R) by means of the Fourier transform we see that F is equivalent to the existence of

p ∈ C and

(α, β) ∈ C2\{(0, 0)},
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such that

f(ξ) := ξ2α− βe−iLξ

ξ3 − ξ + p

satisfies

a) f is an entire function in C;

b)

∫
R
|f(ξ)|2(1 + |ξ|2)2dξ <∞ ;

c) ∀ξ ∈ C, we have that |f(ξ)| ≤ c(1 + |ξ|)keL| Im ξ| for some positive constants c and k.

Recall that f is an entire function if only if the roots ξ0, ξ1, ξ2 of Q(ξ) := ξ3− ξ+ p are roots

of

(3.79) s(ξ) := ξ2(α− βe−iLξ).

Notice that all the roots of α− βe−iLξ are simple roots, otherwise α = β = 0, which implies

ψ(0) = ψ(L) = 0. Using system (3.76) we conclude by the unique continuation property

(ψ(0) = ψx(0) = ψxx(0) = 0 for any t ∈ (0, T ), see e.g. [65]) that ψ ≡ 0.

If we assume that Q(ξ) and α− βe−iLξ share the same roots, then we can write the roots of

Q(ξ) in the following way

(3.80) ξ1 := ξ0 + k
2π

L
and ξ2 := ξ1 + l

2π

L

here k and l are positive integers, thus

(3.81) Q(ξ) = (ξ − ξ0)(ξ − ξ1)(ξ − ξ2),

which implies

(3.82)


ξ0 + ξ1 + ξ2 = 0,

ξ0ξ1 + ξ0ξ2 + ξ1ξ2 = −1,

ξ0ξ1ξ2 = −p.
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Thus, as in [51], we have

(3.83)



L = 2π

√
k2 + kl + l2

3
,

ξ0 = −1

3
(2k + l)

2π

L
,

p = −ξ0

(
ξ0 + k

2π

L

)(
ξ0 + (k + l)

2π

L

)
.

Now assume that ξ = 0 is a root of Q(ξ), but not a root of α − βe−iLξ . Then the roots of

Q(ξ) can be written as 0, ξ1, ξ1 + k 2π
L

with k being a positive integer. We have

(3.84)


ξ1 + ξ2 = 0,

ξ1ξ2 = −1,

0 = −p,

and, consequently, follows that

(3.85)


L = kπ,

ξ1 = −k π
L
,

p = 0.

Hence, F holds if and only if L ∈ M. This completes the proof of Lemma 3.3.8 and,

consequently, the proof of Lemma 3.3.7.

Remark 7. When k = l, (3.83) is reduced to L = 2kπ, ξ0 = −1 (ξ1 = 0, ξ2 = 1) and p = 0,

hence, λ = 0. This yields to the unobservable steady solution of (3.49): ψ(x) = acos(x), for

a ∈ R. Note that the solution ψ(x) = acos(x) is not the solution of (3.61). However,

when we multiply the system (3.61) by the solution ψ of (3.49) and integrating by parts, we

have ∫ L

0

uT (x)acos(x)dx =

∫ L

0

acos(x)u0(x)dx.
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Now, if we consider u0 = 0, we can conclude that uT (x) 6= acos(x), which means that the

unobservable solutions of (3.61) are the projections of the solutions of the adjoint system

(3.49).

Now, we turn to proving Proposition 3.3.5.

Proof of Proposition 3.3.5. Without loss of generality, we assume that u0 = 0 (see Remark

6). Let us define the bounded linear map

Ξ : L2(0, L) −→ L2(0, L)

ψT (·) 7→ Ξ(ψT (·)) = u(·, T ),

where u is the solution of (3.61) with h2(t) = ψx(L, t) and ψ the solution of the system

(3.49). According to Lemmas 3.3.4 and 3.3.6, we obtain

(3.86) (Ξ(ψT ), ψT )L2(0,L) = ||ψx(L, ·)||2L2(0,T ) ≥ C−1||ψT ||2L2(0,L).

and by the Lax-Milgran Theorem, we can conclude that Ξ is invertible. Now, for a given

uT ∈ L2(0, L), let us define ψT := Ξ−1uT thus system (3.49) is solved with ψ ∈ ZT . If we

set h2(t) = ψx(L, t) in system (3.49) the corresponding solution u ∈ ZT satisfies (3.60) and

this complete the proof of Proposition 3.3.5.

3.3.2.2 Exact boundary controllability for system (3.62)

In this subsection we study the exact controllability, in time T , for the system (3.62). We

first give an equivalent condition for the exact controllability property:

Lemma 3.3.9. Let uT ∈ L2(0, L). Then, there exist a control h3(t) ∈ H− 1
3 (0, T ), such that

the solution u of (3.62) satisfies (3.60) if and only if

(3.87)

∫ L

0

u(x, T )ψTdx = −
∫ T

0

h3(t)ψ(t, L)dt,

for any ψT ∈ L2(0, L) and ψ being the solution of the backward system (3.49).
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Proof. The relation (3.87) is obtained multiplying the equation in (3.62) by the solution ψ

of (3.49) and integrating by parts.

Before presenting the main result of this section, we define the set

R :=
{
L ∈ R+ : L2 = −(a2 + ab+ b2) with a, b ∈ C : X = ea, Y = eb are solutions of

AX2 +BX + C = 0 and Y = − b3+b1X
b2

}
.

Here A = a1b1, B = a1b3 − a2b2 + a3b1 and C = a3b3, where

(3.88) a1 := (b2 − a2)(a+ b), a2 := b2ec(2a+ b), a3 := −a2ec(a+ 2b)

(3.89) b1 := −a3(a+ 2b), b2 := ab2(2a+ b) and b3 := aec(b2 − a2)(a+ b).

Thus, the following result holds:

Proposition 3.3.10. Let T > 0 and L /∈ R be given. There exists a bounded linear operator

Ψ : L2(0, L)× L2(0, L) −→ H−
1
3 (0, T )

such that for any u0, uT ∈ L2(0, L), if one chooses h3 = Ψ(u0, uT ), then system (3.62) admits

a solution u ∈ ZT satisfying (3.60).

As before, let us consider the following observability inequality.

Lemma 3.3.11. Let L ∈ (0,+∞)\R and T > 0 be given. There exists C(T, L) > 0 such

that

(3.90) ||ψT ||L2(0,L) ≤ C||∆
1
3
t ψ(L, t)||L2(0,T )

holds for any ψT ∈ L2(0, L), where ψ is the solution of (3.49) with initial data ψT .

Proof. We proceed by contradiction. If (3.90) does not holds, then there exists a sequence

{ψnT}n∈N ∈ L2(0, L) such that

(3.91) ||ψnT ||L2(0,L) = 1,∀n ∈ N
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and

(3.92)

∫ T

0

|∆
1
3
t ψ(L, t)|2dt→ 0 in L2(0, T ),

where ψn is the solution of (3.49) with initial data ψT . Arguing as in the proof of Lemma

3.3.6 we can conclude that {ψnT}n∈N is an L2(0, L)–Cauchy sequence. Then, at least for a

subsequence, we have

(3.93) ψnT −→ ψT in L2(0, L)

and

(3.94) ψn(L, t) −→ ψ(L, t) in L2(0, T ),

thus ψ satisfies

(3.95) ψt + ψx + ψxxx = 0, in (0, T )× (0, L),

ψ(0, t) + ψxx(0, t) = 0, ψx(0, t) = 0, ψ(L, t) + ψxx(L, t) = 0, in (0, T ),

the additional boundary condition

(3.96) ψ(L, t) = 0,

and

(3.97) ||ψT ||L2(0,L) = 1.

Observe that (3.97) implies that the solution of (3.95)-(3.96) cannot be identically zero,

therefore, by the following Lemma 3.3.12, one can conclude that ψ ≡ 0, thus, ψT (x) ≡ 0,

this contradicts (3.97) which achieves the desired result.

Lemma 3.3.12. For any T > 0, let NT denote the space of initial states ψT ∈ L2(0, L) such

that the mild solution ψ of (3.95) satisfies (3.96). Then, for L ∈ (0,+∞)\R,

NT = {0},∀T > 0.
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Proof. The proof uses the arguments given in [51]. Therefore, if NT 6= {0}, the map

ψT ∈ CNT −→ A(ψT ) ∈ CNT (where CNT denotes the complexification of NT ) has (at

least) one eigenvalue. Hence, there exists λ ∈ C and ψ0 ∈ H3(0, L)\{0} such that

(3.98)

 λψ0 = −ψ′0 − ψ′′′0 ,

ψ0(0) + ψ′′0(0) = 0, ψ0(L) = 0, ψ′′0(L) = 0, ψ′0(0) = 0.

For simplicity we will consider ψ = ψ0.

The solution of (3.98) can be written as ψ(x) =
3∑
j=1

Cje
µjx where the µj are the roots of the

polynomial

P (µ) := λ+ µ+ µ3.

More explicitly, they satisfy

(3.99)


µ0 + µ1 + µ2 = 0,

µ0µ1 + µ0µ2 + µ1µ2 = −1,

µ0µ1µ2 = −p,

and the constants Cj, j = 1, 2, 3, solve the system

(3.100)



µ1 µ2 µ3

eµ1L eµ2L eµ3L

µ2
1e
µ1L µ2

2e
µ2L µ2

3e
µ3L

µ2
1 + 1 µ2

2 + 1 µ2
3 + 1




C1

C2

C3

 =


0

0

0

 .

Let us denote a = Lµ1 and b = Lµ2, then by (3.99), c = Lµ3 = −(a+ b) and

L2 = −(a2 + ab+ b2).

Reducing the rows of the matrix, we have

(3.101)



1 b/a −(a+ b)/a

0 1 a
aeb−bea

(
ec + a+b

a
ea
)

0 0 A1

0 0 A2


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with

A1 = c2ec + a(a+ b)ea − (b2eb − abea)
(
ec +

a+ b

a
ea
)

a

aeb − bea

and

A2 = c2 + L2 +
a+ b

a
(a2 + L2)−

[
(b2 + L2)− b

a
(a2 + L2)

] [
ec +

a+ b

a
ea
]

a

aeb − bea
,

therefore the system has nonzero solutions if and only if

A1 = 0, A2 = 0,

or equivalently

(3.102)

 (b2 − a2)(a+ b)eaeb + bec(2a+ b)ea + aec(−a2 − 2ab)eb = 0,

−a3(a+ 2b)ea + ab2(2a+ b)eb + (b2 − a2)(a+ b)aec = 0.

Setting X := ea and Y := eb, we have the system

(3.103)

 a1XY + a2X + a3Y = 0,

b1X + b2Y + b3 = 0,

where ai and bi, for i = 1, 2, 3 were defined in (3.88) and (3.89), respectively. Thus, the set

of nonzero solutions is empty if and only if L does not belong to

R =
{
L ∈ R+ : L2 = −(a2 + ab+ b2) with a, b ∈ C : X = ea, Y = eb are solutions of

AX2 +BX + C = 0 and Y = − b3+b1X
b2

}
,

thus the proof is complete.

Now, we prove Proposition 3.3.10.

Proof of Proposition 3.3.10. Without loss of generality, we assume that u0 = 0 (see Remark

6). Let us define the bounded linear map

Ξ : L2(0, L) −→ L2(0, L)

ψT (·) 7→ Ξ(ψT (·)) = u(·, T ),
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where u is the solution of (3.62) with

h3(t) = ∆
2
3
t ψ(L, t)

and ψ the solution of the system (3.49). According to Lemmas 3.3.9 and 3.3.11, we have

(3.104) (Ξ(ψT ), ψT )L2(0,L) = ||∆
2
3
t ψ(L, ·)||2L2(0,T ) ≥ C−1||ψT ||2L2(0,L),

thus, the proof follows by using the Lax-Milgran Theorem.

Remark 8. When we consider two control inputs the critical length phenomenon will not

occur. More precisely, the following result holds:

Proposition 3.3.13. Let T > 0 and L > 0 be given. There exists a bounded linear operator

Θ : L2(0, L)× L2(0, L) −→ H−
1
3 (0, T )× L2(0, T )

such that for any u0, uT ∈ L2(0, L), if one chooses

(h1, h2) = Ψ(u0, uT ),

then the system (3.63) admits a solution u ∈ ZT satisfying (3.60).

Proposition 3.3.14. Let T > 0 and L > 0 be given. There exists a bounded linear operator

Π : L2(0, L)× L2(0, L) −→ L2(0, T )×H− 1
3 (0, T )

such that for any u0, uT ∈ L2(0, L), if one chooses

(h2, h3) = Ψ(u0, uT ),

then the system (3.64) admits a solution u ∈ ZT satisfying (3.60).

Proposition 3.3.15. Let T > 0 and L > 0 be given. There exists a bounded linear operator

Λ : L2(0, L)× L2(0, L) −→ H−
1
3 (0, T )×H− 1

3 (0, T )
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such that for any u0, uT ∈ L2(0, L), if one chooses

(h1, h3) = Ψ(u0, uT ),

then the system (3.65) admits a solution u ∈ ZT satisfying (3.60).

Note that Propositions 3.3.13-3.3.15 follow as a consequence of the following observability

inequalities for the solution of the backward system (3.49):

(3.105) ||ψT ||L2(0,L) ≤ C
(
||∆

1
3
t ψ(0, t)||L2(0,T ) + ||ψx(L, t)||L2(0,T )

)
,

(3.106) ||ψT ||L2(0,L) ≤ C
(
||ψx(L, t)||L2(0,T ) + ||∆

1
3
t ψ(L, t)||L2(0,T )

)
,

and

(3.107) ||ψT ||L2(0,L) ≤ C
(
||∆

1
3
t ψ(0, t)||L2(0,T ) + ||∆

1
3
t ψ(L, t)||L2(0,T )

)
.

The proofs of (3.105)-(3.107) are similar to the proof of Lemma 3.3.6 (see also Lemma

3.3.11).

3.3.3 Exact boundary controllability results: The nonlinear system

In this section we consider the nonlinear system

(3.108)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L),

with one control input h2, that is, h1 = h3 = 0. The proof of Theorem 3.1.3 will be presented.

Proof of Theorem 3.1.3. Rewrite the system (3.108) in its integral form

(3.109) u(t) = W0(t)u0 +Wbdr(t)h2 −
∫ t

0

W0(t− τ)(uux)(τ, x)dτ.
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For any v ∈ ZT , let us define

ν(T, v) :=

∫ T

0

W0(T − τ)(vvx)dτ.

By Proposition 3.3.5, we can define, for any u0, uT ∈ L2(0, L),

h2 = Ψ(u0, uT + ν(T, v)),

thus,

v(t) = W0(t)u0 +WbdrΨ(u0, ut + ν(T, v))−
∫ t

0

W0(t− τ)(vvx)(τ, x)dτ

satisfies

v(x, 0) = u0(x), v(x, T ) = uT (x) + ν(T, v)− ν(T, v) = uT .

This leads us to consider the map

Γ(v) = W0(t)u0 +WbdrΨ(u0, ut + ν(T, v))−
∫ t

0

W0(t− τ)(vvx)(τ, x)dτ.

If we can show that the map Γ is a contraction in an appropriate metric space, then its fixed

point v is a solution of (3.108) with h2 = Ψ(u0, uT + ν(T, v)) that satisfies

v(x, 0) = u0(x), v(x, T ) = uT .

Next, we show that this is indeed the case. Let

Br = {z ∈ ZT : ||z||ZT ≤ r}.

(i) Γ maps Br into itself. From Proposition 3.2.7, we infer the existence of a constant C1 > 0

such that for any v ∈ ZT , we have

||Γ(v)||ZT ≤ C1

(
||u0||L2(0,L) + ||Ψ(u0, ut + ν(T, v))||L2(0,L) −

∫ T

0

||vvx||L2(0,L)(t)dt

)
.

Since

||Ψ(u0, ut + ν(T, v))||L2(0,L) ≤ C2

(
||u0||L2(0,L) + ||uT ||L2(0,L) + ||ν(T, v)||L2(0,L)

)
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and

||ν(T, v)||L2(0,L) ≤
∫ T

0

||vvx||L2(0,L)(t)dt ≤ C3||v||2ZT

we infer that

||Γ(v)||ZT ≤ C3

(
||u0||L2(0,L) + ||uT ||L2(0,L)

)
+ C4||v||2ZT ,

for any v ∈ ZT where C3 and C4 are constants depending only on T . By choosing r and δ

such that

r = 2C3δ and 4C3C4δ <
1

2
,

we obtain that the operator Γ maps Br into itself.

(ii) Γ is a contraction. Pick any ṽ, v ∈ Br. Thus we deduce that for some constant C,

independent of v, ṽ, and r, we have

||Γ(v)− Γ(ṽ)||ZT ≤ γ||v − ṽ||ZT ,

for γ = 8C3C4δ < 1. Therefore the map Γ has a fixed point in Br by the Banach fixed-point

theorem. The proof of Theorem 3.1.3 is complete.

Theorems 3.1.5, 3.1.6, 3.1.7 and 3.1.8 can be proved using the same arguments as in the

proof of Theorem 3.1.3, therefore their proofs will be omitted.

3.4 Final comments and remarks

Our discussion has been focused on the boundary controllability of a class of boundary

control system described by the KdV equation on a bounded domain (0, L)

(3.110)


ut + ux + uux + uxxx = 0, in (0, T )× (0, L),

uxx(0, t) = h1(t), ux(L, t) = h2(t), uxx(L, t) = h3(t), in (0, T ),

u(x, 0) = u0(x), in (0, L).
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The first study of controllability of a class of KdV equation on finite domain was made by

Lionel Rosier in 1997 ([51]). In this article, the author studied the controllability of the

system

(3.111)


yt + yx + yyx + yxxx = 0, in (0, T )× (0, L),

y(0, t) = f1(t), y(L, t) = f2(t), yx(L, t) = f3(t), in (0, T ),

y(x, 0) = y0(x), in (0, L),

Rosier proved that if f3 is used as a control, then the linear system associated to (3.111) is

locally exactly controllable for L /∈ N , where N is defined as in (3.4).

In 2013, Cerpa et al, [17], considered the KdV equation with a different kind of boundary

conditions

(3.112)


vt + vx + vvx + vxxx = 0, in (0, T )× (0, L),

v(0, t) = g1(t), vx(L, t) = g2(t), vxx(L, t) = g3(t), in (0, T ),

v(x, 0) = v0(x), in (0, L).

Using the techniques developed by Rosier and a new tool, the sharp Kato smoothing property

for solutions of the KdV system (3.112), the authors proved that, if just one control, g2(t),

acts on the boundary condition, the linear system associated to (3.112) is locally exactly

controllable for L /∈ F , where F is defined as in (3.6). Note that in [17] the authors did

not characterize the critical set F . However, when we consider the KdV equation with new

boundary conditions, we prove that system (3.110) with only one control input, h2(t), is

locally exactly controllable if and only if L /∈ M. In this case, M is defined as in (3.12),

that is, we can characterize the critical set. Actually, a more detailed picture of the control

results obtained in these papers are presented in the following tables:
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Controls Properties

h1(t) h2(t) h3(t) Space of Control Critical Length

0 ? 0 h2 ∈ L2(0, T ) M

0 0 ? h3 ∈ H−1/3(0, T ) R

? 0 ? h1, h3 ∈ H−1/3(0, T ) ∅

0 ? ? h2 ∈ L2(0, T ), h3 ∈ H−1/3(0, T ) ∅

? ? 0 h1 ∈ H−1/3(0, T ), h2 ∈ L2(0, T ) ∅

? ? ? h1 ∈ H−1/3(0, T ), h2 ∈ L2(0, T ), h3 ∈ H−1/3(0, T ) ∅

Table 1. Exact controllability results for the linear system associated to (3.110).

Controls Properties

f1(t) f2(t) f3(t) Space of Control Critical Length

0 0 ? f3 ∈ L2(0, T ) N

0 ? 0 f2 ∈ H1/3(0, T ) N ∗

? 0 ? f1 ∈ H1/3(0, T ), f3 ∈ L2(0, T ) ∅

0 ? ? f2 ∈ H1/3(0, T ), f3 ∈ L2(0, T ) ∅

? ? 0 f1, f2 ∈ H1/3(0, T ) ∅

? ? ? f1, f2 ∈ H1/3(0, T ), f3 ∈ L2(0, T ) ∅

Table 2. Exact controllability results for the linear system associated to (3.111).
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Controls Properties

g1(t) g2(t) g3(t) Space of Control Critical Length

0 ? 0 g2 ∈ L2(0, T ) F

0 0 ? g3 ∈ H−1/3(0, T ) N ∗

? 0 ? g1 ∈ H1/3(0, T ), g3 ∈ H−1/3(0, T ) ∅

0 ? ? g2 ∈ L2(0, T ), g3 ∈ H−1/3(0, T ) ∅

? ? 0 g1 ∈ H1/3(0, T ), g2 ∈ L2(0, T ) ∅

? ? ? g1 ∈ H1/3(0, T ), g2 ∈ L2(0, T ), g3 ∈ H−1/3(0, T ) ∅

Table 3. Exact controllability results for the linear system associated to (3.112).

Moreover, systems (3.110), (3.111) and (3.112) possess another property of controllability:

All theses system are null controllable when only one control input is considered, more

precisely, h1(t), f1(t) and g1(t), respectively, as we mentioned in this article (for more

references see [17, 30, 32]).

Observe that most of the results for the systems (3.110)-(3.112) have been established

locally: one can only guide a small amplitude initial state to a small amplitude terminal

state by choosing appropriate boundary control inputs. So, the following question arises

naturally:

Question A:

Are the nonlinear systems (3.110)-(3.112) globally exactly boundary controllable?

In order to complete the study of the exact controllability of system (3.110) is necessary to

investigate the so-called critical length problems. For system (3.111), Coron and Crépeau in

[23], proved that this system is locally controllable around the origin for L = 2kπ, if f3(t) is

considered as a control input. The authors applied the return method which was introduced
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in [22] (see also [1, 2]). However, the minimal time required with this approach is far from

being optimal. In addition, Cerpa in [14] considered the same system with only one control

input (f3(t)) and studied this problem with a critical length for which the linearized control

system is not controllable, moreover, he proved that the time for local controllability of the

system (3.111) is large enough. Due to Remark 7, we believe that with the same approach

used in [14, 22] the controllability of the nonlinear system (3.110), with a control input h2(t),

can be proved when L ∈M. However, this problem is still open.

Question B:

Is the nonlinear system (3.110), with only one control input h2(t) in action, exactly

controllable on the critical set M?

Finally, if we consider the control acting in the boundary condition uxx(L, t),

that is, h1(t) = h2(t) = 0, we have a new critical set for which we do not have a

characterization, therefore, the following question is a still open problem:

Question C:

Is the nonlinear system (3.110) with only one control input h3(t) in action exactly

controllable when the length L of the spatial domain belongs to the critical set R?

104



Bibliography

[1] K. Beauchard. Local controllability of a 1d schrödinger equation. J. Math. Pures Appl.,

84:851–956, 2005.

[2] K. Beauchard and J.-M. Coron. Controllability of a quantum particle in a moving

potential well. J. Funct. Anal., 232:328–389, 2006.

[3] J. L. Bona, S. M. Sun, and B.-Y. Zhang. A nonhomogeneous boundary- value problem

for the korteweg-de vries equation in a quarter plane. Trans. American Math. Soc.,

354:427–490, 2002.

[4] J. L. Bona, S. M. Sun, and B.-Y. Zhang. A nonhomogeneous boundary-value problem

for the korteweg-de vries equation posed on a finite domain. Comm. Partial Differential

Equations., 28:1391–1436, 2003.

[5] J. L. Bona, S. M. Sun, and B.-Y. Zhang. Boundary smoothing properties of the

korteweg-de vries equation in a quarter plane and applications. Dynamics of PDEs.,

3:1–69, 2006.

[6] J. L. Bona, S. M. Sun, and B.-Y. Zhang. A nonhomogeneous boundary-value problem

for the korteweg-de vries equation posed on a finite domain ii. J. Diff. Equations,

247:2558–2596, 2009.

105



[7] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and

applications to nonlinear evolution equations, part ii: the kdv-equation. Geom. Funct.

Anal., 23:1–680, 1877.

[8] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and

applications to nonlinear evolution equations, part i: Shrödinger equations. Geom.

Funct. Anal., 3:209–262, 1993.
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