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Abstract 

An experimental investigation of response characteristics of a liquid jet in oscillating crossflow 

is undertaken to understand the behavior of a liquid fuel spray in the presence of combustion 

instabilities. The effect of crossflow oscillations on the liquid jet is studied in the near-field 

(within x/d≈8) and the far-field (x/d≈50) spray region. Experiments are conducted in bag 

breakup, multimode and shear breakup regimes by varying crossflow Weber number from 18 to 

250, while momentum flux ratio is varied between 10 and 30. The crossflow is modulated in the 

frequency range of 90 Hz to 450 Hz, with modulation level varying between 5% and 20%, using 

a mechanical modulating device. High speed shadowgraph is employed to study the near-field 

and far-field spray movement while intensified high-speed camera images of laser Mie-scattering 

intensity are utilized in studying the spray cross-section in the far-field. A technique to extract 

time-varying momentum flux ratio from the windward trajectory of liquid jet in the near-field is 

developed. The response of near-field spray is quantified in terms of a ratio of the observed 

momentum flux ratio extracted from a correlation of upper penetration to the expected 

momentum flux ratio corresponding to the instantaneous crossflow velocity. The liquid jet 

penetration is found to respond to oscillations in the crossflow at all oscillation frequencies in the 

near-field. The strength of the response is found to be mainly dependent on the crossflow 

oscillation frequency, with the strength of response decreasing with increase in frequency. The 

momentum flux ratio and the modulation level are found to have relatively negligible effects on 

the level of normalized spray response. The spray response in the far-field is studied by 

observing the high-speed shadowgraphs and Mie-scattering intensity images at an axial distance 

of x/d=50. The spray field in the axial location is divided into ten bins and the intensity change in 

each bin is analyzed to quantify spray response. The spray is found to respond to crossflow 
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oscillations by exhibiting a “flapping” behavior in the far-field. The binning method and Mie-

scattering intensity image analysis suggest that the spray oscillation decreases with increasing 

crossflow frequency. The spray width and height fluctuate in the spray cross-section in the 

presence of crossflow oscillation. The amplitude of spray height fluctuation is higher in low 

frequency crossflow, and decreases with an increase in frequency. The total Mie-scattering 

intensity in the cross-section also exhibits a periodic response to crossflow oscillation, 

suggesting that the droplet characteristics are affected by crossflow fluctuation. The liquid spray 

near-field and far-field study indicates that the crossflow oscillation frequency plays a large role 

in determining spray response.      
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Nomenclature 

A  Nozzle orifice exit area 

AMD, D10 Arithmetic Mean Diameter 

Cd  Coefficient of discharge 

d  Nozzle orifice diameter (also referred to as “jet diameter”)  

f  Frequency of crossflow modulation 

FFT  Fast Fourier Transform 

H  Spray height or vertical extent 

MFR, ṁ Mass flow rate 

MDL Modulation Level, (Ratio of RMS of crossflow velocity fluctuation to mean 

crossflow velocity) 

NAR  Normalized Amplitude Ratio  

P  Crossflow static pressure 

q  Momentum flux ratio, (q=ρjvj
2/ρava

2) 

RMS  Root Mean Square 

SMD, D32 Sauter Mean Diameter 

T  Temperature 
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va  Crossflow velocity 

vj  Liquid jet velocity 

W  Spray width or lateral extent 

We  Weber number, (We=ρava
2d/σ) 

x  Distance along crossflow direction from the nozzle orifice 

y Distance along the transverse direction (direction of liquid jet injection) from the 

nozzle orifice 

z Distance along the direction orthogonal to crossflow and liquid injection, 

measured from the left edge of test-section when looking upstream in the 

crossflow direction 

ρ Density of the medium 

μ Viscosity of the medium 

ϕ Equivalence ratio 

σ Surface tension    

 

Subscripts 

a  Air crossflow property 

Br  Breakup point 
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CI  Center of Intensities 

j  Liquid jet property 

l  Liquid property 

Inj  Injection property 
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1 Introduction 

Jet in crossflow (JIC) is a paradigm in fluid mechanics which is ubiquitous in the natural world 

and in the field of engineering. A jet in crossflow can be described as a stream of matter 

interacting with another crossflowing stream at a right angle. The phenomenon can be readily 

observed in volcanic plumes interacting with the wind, water sprinklers, agricultural sprays, fuel 

injection systems, smoke stacks, aerosol sprays, and so on. It is a concept easier in its physical 

conceptualization but more complex in its formulation due to the interplay between various 

facets of classical mechanics. 

In the field of aerospace engineering, liquid jet in crossflow (LJIC) is well suited for fuel-

injection applications. From gas turbine combustors, afterburners, ramjets, scramjets to rocket 

engines, liquid fuel placement is a critical component in the design of engines. The liquid fuel 

has to be fed reliably to the combustor, atomized into small droplets, distributed spatially and 

burn within a specific time in order for the engine to perform optimally. With its relative 

simplicity in design and efficiency in fuel placement, LJIC is widely used in aerospace fuel 

injection systems.  

Modern standards in emission control and considerations of fuel combustion efficiency have 

driven gas turbine technology towards lean-premixed-prevaporized (LPP) combustion. The 

combustion process, in general, encounters fluctuations in heat release due to perturbations in the 

fuel flow, air mass flow, or their mixing characteristics. Particularly in lean operation, the heat 

release process is very sensitive to perturbations [1].  
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Consider the case where a perturbation in heat release rate due to combustion instability 

produces an acoustic disturbance, illustrated in Figure 1. The acoustic pressure fluctuations travel 

upstream and downstream from the combustor, and interact with the incoming air and fuel in the 

combustor. The interaction causes perturbations in the air and fuel flow. Since the equivalence 

ratio depends upon the mixing of the air and the fuel, fluctuations arising from either the air or 

the fuel flow cause perturbations in the equivalence ratio as well. These fluctuations then feed 

back into the fluctuations in the heat release. The damping or the amplification of the combustion 

instability is thus dependent on the interaction and phase difference between the pressure and 

heat release fluctuations. The Rayleigh criterion, which is widely used in acoustics-heat 

interactions, specifies that for an acoustic oscillation to persist, the phase of the oscillation should 

closely match the phase of the heat release oscillation [2].  

 

Figure 1.  Combustion instability model 

The phase difference between the heat release and acoustic pressure fluctuations would then 

depend upon the time scale of liquid atomization and combustion. The knowledge of response 

characteristics of the liquid fuel jet to the fluctuations in the crossflow pressure and velocity is 



 
 

3 
 

therefore of paramount importance in the study of combustion instabilities. Since the combustion 

instabilities can lead to mechanical degradation of the combustor and adversely affect 

combustion performance, the relationship between acoustic oscillations and liquid jet spray 

formation is of critical interest. 

1.1 Literature Review 

The study of response of a liquid jet to oscillating crossflow requires an understanding of the 

various physical phenomena that govern liquid jet breakup in general. The physics behind liquid 

jet breakup has been the focus of numerous studies for many decades and the aspects relevant to 

the current study are summarized in this section. 

1.1.1 Liquid Jet Structure  

The liquid jet and the associated flow structures that develop after the impingement of a 

crossflow have been extensively studied by various researchers [3-7]. Upon injection from the 

nozzle exit, the liquid jet in a crossflow develops surface wave patterns due to aerodynamic 

acceleration along the liquid column. The liquid column is bent in the crossflow direction and 

gets flattened to a “kidney-shaped jet”. This flattening is the result of the establishment of a high 

pressure windward region and a low pressure leeward region, with the difference proportional to 

the crossflow dynamic pressure. The flattening further increases aerodynamic drag on the 

column and the column is bent further. Coherent masses of liquid, called “ligaments”, break 

away from the jet column and are generated from the troughs of some of the surface waves. The 

amplitude of the surface waves grows until fracture of the liquid column. 

The ligaments get broken down further into smaller droplets due to the action of shear forces 

from the crossflow. Droplets are also stripped off the sides of the jet column when the column 
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itself is intact. This occurs when the air flow strips off droplets from the crests of waves at the 

periphery of the jet. Thus, the breakup produces three stages/phases of liquid: 1. column, 2. 

ligament, and 3. droplets. These structures are characteristic of column breakup, as illustrated in 

Figure 2. 

 

Figure 2.  Typical liquid jet breakup process [3] 

The crossflow induces the formation of a leading vortex near the jet injection point and a trailing 

vortex in the jet wake. The liquid jet and vortex interactions cause the jet to flutter, which causes 

the vortices to change in position, strength and orientation.  

The non-dimensional parameters Weber number, We, and the momentum flux ratio, q, are key 

concepts in studying jet breakup and are given in Eqs. ( 1 ) and ( 2 ). The gas Weber number, 

which is the ratio of the gaseous crossflow’s inertial force to the surface tension force of the 

liquid, is a measure of the interaction between the aerodynamic force exerted by the crossflow 

and the cohesive surface tension force on the liquid jet surface. The momentum flux ratio is a 

measure of the liquid jet’s momentum flux compared to that of the crossflow and thus an 

important factor in determining the jet penetration. 
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1.1.2 Breakup Mechanisms and Regime Map 

Two major breakup mechanisms are observed in liquid jet breakup: 1. Column breakup, and 2. 

Shear breakup. In column breakup, surface waves on the windward side grow in amplitude until 

the column fractures in one of the wave troughs. The surface breakup mechanism, on the other 

hand, involves the shearing off of ligaments and droplets from the sides of the jet. While both 

mechanisms are active, either one dominates at any point in time. Since the surface breakup 

generates droplets from shear forces, the droplets are of smaller sizes and result in better 

atomization of the jet [3,4,8,9]. 

Sallam et al. [6] describe four breakup mechanisms based on the crossflow Weber number - 

column, bag, multimode (bag/shear) and shear breakup regimes - in non-turbulent jets.  

Table 1.  Breakup modes [6] 

Column breakup Bag breakup Multimode breakup Shear breakup 

We < 4 We = 4 – 30 We = 30 – 110 We > 110 
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In bag breakup (We = 4 – 30), the jet breaks up into bag-like structures which grow in size and 

are further deformed downstream in the crossflow. Between We = 30 – 110, both bags and 

ligaments are capable of forming, and this mode is called multimode breakup (Figure 3).  

 

Figure 3.  Breakup modes : a)Jet in still crossflow, b)Column Breakup, c)Bag breakup, 

d)Multimode breakup, and e)Shear breakup [6] 

Breakup regime maps have been proposed by a number of researchers to identify the flow 

conditions that govern the different breakup mechanisms [3,4,10]. The summary of their findings 

is that the shear and column breakup regimes depend upon the Weber number and momentum 

flux ratio, with flows associated with higher values of both these parameters tending to have 

shear breakup. The transition between predominantly column breakup to predominantly shear 

breakup has been observed and demarcated in the literature, with one such breakup regime map 

shown in Figure 4. 
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Figure 4.  Breakup Regime Map from Amighi et al. [10] 

1.1.3 Column Breakup Location 

The column breakup point (CBP) is an important flow feature in the near-field determining the 

location up to which the injected liquid column preserves its coherent structure. The location of 

the column fracture point in the crossflow direction for atmospheric pressure crossflows has been 

found to be independent of momentum flux ratio and postulated to be around x/d≈8 [3-6]. 

Ragucci et al. [11] observed that the breakup location is dependent on air dynamic-to-capillary 

pressure ratio (and thus on Weber number) but only weakly dependent on momentum flux ratio. 

Lubarsky et al. [12] noted that the constant stream wise breakup location of x/d≈8 is an over 

prediction of the actual breakup point. As the momentum flux ratio is increased, two opposing 

effects are found to govern the CBP: 1. liquid velocity increases with momentum flux ratio, 

possibly increasing breakup point distance, and 2. the increased liquid velocity enhances the 

turbulence level, which enhances the size of the liquid surface structures, hastening jet breakup. 

On increasing the Weber number, similar effects were observed if the momentum flux ratio was 

kept a constant.  
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1.1.4 Droplet Characteristics 

The droplet sizes and speeds determine the spatial and temporal distribution of the liquid in the 

crossflow. 

At higher crossflow velocities, with the generation of small droplets in the spray periphery, the 

larger droplets cluster near the spray core whereas at lower crossflow velocities, the droplets 

generated tend to be larger, penetrate more in to the crossflow and cause the drop sizes to peak 

near the spray upper periphery [4,13]. The droplet velocities are dependent on the droplet sizes. 

Smaller droplets usually attain higher velocities on interaction with the crossflow while the 

larger ones have comparatively lower velocities [8]. 

1.1.5 Liquid Jet Penetration 

The liquid jet penetration can be defined as the “maximum transverse distance attained by the 

droplets” [14], noting that other analogous definitions are used by different researchers. The 

spray penetration is an important parameter that dictates liquid placement in the crossflow. 

The penetration of the liquid is the result of two successive processes: 1. the liquid coherent jet 

penetration, and 2. the penetration by the atomized spray. The momentum flux ratio determines 

the transverse distance up to which the liquid retains its momentum before getting entrained in 

the crossflow due to momentum exchange. Especially in the near-field, therefore, the liquid jet 

penetration is mainly a function of the momentum flux ratio, while only weakly dependent on the 

crossflow Weber number [3,12,13]. Amighi et al. [10] experimentally determined the penetration 

trajectory to depend more on the liquid jet velocity than the crossflow air speed. A few other 

studies note that the spray penetration is dependent upon the size of the droplets generated 

[4,14]. While the liquid column penetration has been found to be a function of momentum flux 
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ratio, the spray penetration has been found to be influenced by both the liquid column trajectory 

and the convection of droplets. 

Numerous correlations exist in the literature for predicting the upper surface penetration 

[3,4,7,10,12-15]. From a sampling of the various correlations and mechanisms describing liquid 

jet penetration, it becomes clear that no single correlation can accurately predict the penetration. 

This is due to the fact that different experimental conditions and different post-processing 

techniques (for example, threshold value, location of maximum intensity) lend themselves to 

varying results. However, there is a degree of commonality between the correlations, as 

discussed below. 

Wu et al. [3] use a force balance between the liquid jet’s acceleration in the crossflow direction 

and the aerodynamic drag force to predict a simple correlation. Since they consider a liquid 

column with a constant diameter equal to the nozzle orifice and neglect the effects of mass 

stripping, the correlation they propose can be expected to be more suitable for near-field 

penetration. They propose the correlation given in Eq. ( 3 ): 

 


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( 3 ) 

Unsurprisingly, many of the correlations from literature provide correlations for y/d as parabolic 

functions (or close to parabolic functions, with powers between 0.3 and 0.6) of q and 

downstream distance, x/d, with the inclusion of correction terms for various parameters like 

liquid viscosity and crossflow air density. For example, Stenzler et al. [14] provide a correlation 

with corrections for the crossflow Weber number and liquid viscosity for unheated crossflow 

conditions, given in Eq. ( 4 ). 
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( 4 ) 

1.1.6 Effect of crossflow modulation 

Bunce et al. [16] studied the effects of crossflow modulation on a vaporizing liquid spray at an 

air temperature of 650 °C using Jet-A as the liquid. They studied the spray response at a 

modulation frequency of around 416 Hz. On comparing averaged Mie-scattering images, they 

found that the crossflow modulation did not cause a large change in upper penetration of the 

spray compared to non-modulated conditions.  However, instantaneous images showed a 

distinctive change in the spray visible area at different phases of oscillation. They observed from 

Laser Line Mie scattering signals that the spray responded at twice the modulation frequency and 

found that the amplitude of response varies depending on distance from the injector. The 

imperceptible change in penetration with input air modulation was attributed to the location of 

the injector near a pressure anti-node, causing the velocity fluctuations to be minimal. The 

study’s results, therefore, could have been influenced by the presence of velocity node. 

McQuay and Dubey [17] experimentally investigated droplet behavior in the case of an 

evaporating ethanol spray in an oscillating air crossflow at three modes, 54, 106 and 162 Hz, all 

maintained at a constant sound pressure level in a long tube. They observed that the droplet 

velocities responded to the forcing frequency by analyzing frequency spectra. They were mainly 

focusing on the droplet behavior in oscillating flows. 

Anderson et al. [18] studied the coherence (measure of linearity of response) between modulated 

crossflow and fuel mass flow at various axial locations. They found variations in the coherence 

values over a range of frequencies and different injector designs. The coherence was expected to 
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change with axial distance since the droplets are atomized to different levels at different axial 

locations. Since smaller droplets could follow the crossflow more readily and thus respond easily 

to fluctuations, the atomization process was expected to affect the spray response to modulation. 

The study throws light on the effect of frequency on the response, but is focused on seeing the 

response of planar mass flow to modulation of crossflow.  

Song et al. [19] studied the response of liquid spray penetration and the atomization process to 

air modulation. In a crossflow with We=326.19 (shear breakup regime), modulation frequency of 

150 Hz and a crossflow velocity fluctuation amplitude of 18% of mean velocity, they observed 

from Mie-scattering images that the maximum intensity trajectory of the spray did not deviate 

substantially from the non-oscillating crossflow cases. However, they found that the trajectory 

was slightly lower than the steady crossflow case, attributing the reduction in penetration to the 

generation of a higher number of smaller droplets in the presence of oscillating crossflow, 

independently confirmed by Phase Doppler Particle Analyzer data. It was also observed that the 

different local regions within the spray responded differently to modulation, by studying Mie-

scattered intensity. The upper and central portions of the spray were observed to respond to the 

fundamental frequency and higher harmonics of modulation while the lower portion responded 

primarily to only the fundamental frequency. The upper and lower regions of the spray 

intensities were also found to be out-of-phase with each other and this was attributed to different 

droplet velocities in the two regions. 

In another study focusing on spray response to crossflow modulation at 800 Hz, Song et al. [20] 

confirmed the previous observation that the spray penetration does not fluctuate substantially. An 

interesting finding was that the spray responded to modulation in the form of convective 

oscillations along the crossflow direction. PDPA measurements indicated that the number of 
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both larger and smaller droplets increase in number in the presence of oscillating crossflows, and 

the effect of droplet sizes and velocities were noted to be important in quantifying spray 

response. Thus research work in [19] and [20] showed that the penetration is not affected much 

by modulation but the experiments were primarily conducted in the shear flow regime.  

Anderson et al. [21], on the other hand, observed that the spray penetration showed significant 

response to crossflow modulation at 200 Hz. However, their experiments were conducted at 

modulation levels close to 50% and were limited to crossflow frequency of 200 Hz. They also 

observed that there was finite phase lag between the spray density and the crossflow at an 

arbitrary measurement plane downstream of injector. The phase lag was found to be uniform in 

the direction of the jet injection but varied significantly at the top of the spray, indicating that 

different sized droplets respond differently to the crossflow modulation. 

While the available literature offers good starting points and offer physical explanations 

piecemeal, a comprehensive picture of the response of liquid spray penetration and distribution 

to crossflow modulation does not emerge.  

1.2 Motivation and Objectives 

Liquid jet in crossflow is extensively used to inject fuel in gas-turbine and other aero-engine 

combustors. The liquid fuel jet, upon injection, penetrates into the crossflow and begins to break 

down into droplets. While the penetration is a major factor governing the spatial distribution of 

the liquid spray in the combustor, the breakup mechanism, which influences the droplet sizes and 

velocities, is an equally important factor affecting the spatio-temporal distribution.  

When encountering combustion instabilities, which results in crossflow oscillation, the response 

of the fuel jet becomes crucial. The near-field of fuel injection determines to a large extent the 
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spray penetration in the far-field. The response of fuel penetration in the near-field could also 

lead to changes in the droplet sizes, and thus velocities, causing variations in the fuel distribution 

downstream. 

The character of response in the far-field region is also critical in the combustion process. For 

instance, the far-field fuel spray could respond to crossflow oscillation by fluctuating up and 

down in the direction of fuel injection. There might also be oscillations in the mass flow due to 

the crossflow oscillation producing different sized droplets in the near-field. Moreover, the spray 

cross-section could also be influenced by the combustion instability induced pressure 

oscillations. These factors ultimately decide the spatial and temporal fluctuations in heat release. 

Therefore, the study of the response of a fuel jet to crossflow fluctuations is a precursor to the 

study of combustion dynamics in the presence of instabilities. 

The knowledge of fuel jet response characteristics could provide useful information for the 

design of combustors and fuel injection systems to either avoid or control combustion 

instabilities. From the review of literature, it is apparent that the research in this topic has been 

scarce and has tended to focus on few flow conditions, frequencies or specific aspects such as 

droplet convection and spray penetration. Especially in the near-field where the momentum flux 

ratio plays a large role in determining jet penetration, there is a need for quantitative evaluation 

of jet response to crossflow oscillations. Since the jet in crossflow involves complex interactions 

between fluid properties such as air density, liquid surface tension, viscosity, the velocities of 

both phases, and so on, any comprehensive study of liquid jet in oscillating crossflow should 

encompass the different breakup regimes and flow conditions.  
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Combustion instabilities evidently are influenced by the spatial and temporal distribution of the 

fuel and the frequency of acoustic oscillations in the crossflow [1].  A study of liquid jet response 

to oscillating crossflow in different breakup regimes, a range of oscillation frequencies at which 

combustion instabilities occur and different oscillation strengths will therefore throw light on the 

thermo-acoustic interactions in combustors. 

The objectives of the current study, therefore, stem from the need to identify and quantify the 

response of liquid jet to oscillating crossflow. The initial step would be to observe a liquid jet in 

a modulated crossflow to detect the manner in which near-field penetration responds. Then, a 

method to quantify the response in the near-field would have to be devised. Since the far-field 

spray penetration is influenced by the near-field penetration, the near-field study leads to far-

field spray fluctuation studies. The far-field spray region is to be investigated to ascertain the 

effect of crossflow oscillations on the spray spread, location and composition.   
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2 Experimental Setup, Procedures and Calibrations 

2.1 Experimental Setup 

The experimental setup consists of a horizontal test rig which includes the following major 

subcomponents: compressed air supply, an air modulating device (nicknamed “siren”), test-

section with a liquid injection port, a back-pressure regulator and a liquid injection system.  

The siren is a device that consists of an enclosed rotor and stator assembly through which air is 

passed to obtain a flow with oscillations. The cross-sectional view of the siren is shown in Figure 

5. The rotor has four equally spaced holes that can each align with the single hole in the stator 

during one rotation of the rotor. Inlet air enters through a port and when one of the holes in the 

rotor aligns with the stator, the air passes through the siren to the outlet port. In this way, a 

periodicity is induced in the air mass-flow through the siren. The siren rotor shaft is driven by a 

DC motor with speed control.  

 

Figure 5.  Siren: Cross-section view 
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 The air from the compressor is metered through a Micro Motion mass flow sensor (F200 series) 

and then supplied to the siren and a bypass line. To obtain crossflows with variable modulation 

levels, the modulated air is mixed with the bypass air, and the mass flow rates of modulated air 

and the bypassed air are adjusted to produce crossflows with desired modulation levels. 

A schematic of the test rig showing the test-section is given in Figure 6. The test-section made of 

stainless steel has a rectangular cross-section with a height of 31.8 mm and a width of 25.4 mm. 

In order to provide optical access, windows made of fused silica are used on the sides and top 

sections. The windows allow for optical access up to a downstream distance of 200 jet diameters 

(200 d) from the injector. The static pressure is measured at a point 47.6 mm upstream of the 

liquid injection plane using a digital pressure gauge (SSI Technologies Inc.). The experiments 

are conducted at room temperature (293 K). The dynamic pressure is measured using piezo-

electric pressure transducers (PCB Piezotronics Model 112A22) at the ports indicated in the 

schematic as A, B, C, and D. The static pressure in the test-section can be adjusted by controlling 

the back-pressure regulator downstream of the test-section. The dynamic pressure signals are 

acquired using an NI-DAQ system as explained in Section 2.2.1. 

 

Figure 6.  Schematic of test rig containing test-section 
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The liquid injection system consists of a stainless steel storage tank, a mass-flow meter (Brooks 

MT 3809) for measuring the liquid mass flow rate, and an injection nozzle. The storage tank can 

be pressurized with air to drive the liquid with injection pressure. A simple orifice injector with 

an orifice diameter of 0.5 mm (0.02 inch) and a length to diameter ratio of 5.5 is used for liquid 

injection. The injector uses a chamfer with angle 45° for transitioning from the larger tube 

diameter to the nozzle orifice diameter, as shown in Figure 7. The nozzle is flush mounted with 

the test-section lower surface for liquid injection. Water is the test liquid used throughout this 

study. 

 

Figure 7.  Cross-sectional view of injector [19] 

2.2 Data Acquisition Systems 

The experiments required the acquisition of pressure and image signals as detailed in the 

succeeding sections. 
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2.2.1 Two-Microphone Method to measure Crossflow Velocity Fluctuation 

To measure instantaneous velocity in the crossflow, the dynamic pressure signal data is analyzed 

using the two-microphone method. The two microphone method has been used for many years in 

finding the instantaneous velocity using two pressure signals acquired within a small distance of 

each other [22,23]. The siren introduces oscillations in the crossflow air’s mass flow and thus 

small pressure fluctuations are created. The two microphones measure the pressure fluctuations 

and convert them into velocity information. The two microphone method can be understood by 

considering Euler’s momentum equation in Eq. ( 5 ) with acoustic pressure P and velocity V: 
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Along one dimension (say x), with the assumption of small perturbations (P=P̅+P’ and V=V̅+u’) 

and zero mean velocity, the equation can be simplified to Eq. ( 6 ): 
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Discretizing Eq. ( 6 ) for very small time and spatial steps, the equation transforms to Eq. ( 7 ): 
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where the pressure perturbations refer to the pressure at points 1 and 2 separated by a small 

distance of ∆x, and the velocity perturbations are the changes in velocity in a small time step of 

∆t. Rearranging the terms, an expression for velocity fluctuation, u’, after the time step is 

obtained in Eq. ( 8 ): 
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Thus by acquiring pressure signals at two locations at a small spatial distance of ∆x and by time 

stepping with a guess for the initial velocity perturbation u’(0), the instantaneous velocity 

perturbation at the mid-point between the two pressure ports can be calculated by this method. 

One of the main sources of error, as detailed in the literature, is the finite difference 

approximation used to calculate the spatial derivative of pressure perturbation. Therefore, it is 

desirable to have a microphone separation distance orders of magnitude lower than the 

wavelength of the velocity oscillation. 

Each acquisition of the pressure signals recorded 16384 samples acquired at a sampling rate of 

8000 Hz.  

2.2.2 High-speed Camera Imaging for Near-Field and Far-Field Visualization 

Phantom Vision Research MIRO LC310 camera is used to acquire images for visualization of 

the flow in both near-field and far-field region. The images are acquired at a rate of 10000 Hz for 

a total of 1722 images per acquisition. The exposure time is set at 1 μs in order to observe the 

transitory liquid structures. A solid state light source (Thorlabs High Power Light Source) is used 

for illuminating the spray with visible light from one side of the test-section. The shadow formed 

by the spray in the test-section is captured by the camera on the other-side of the test-section as 

shown in Figure 8. An Infinity Long-Distance Microscope (Model K2-SC) is used to focus the 

near-field of the liquid jet while a Micro-Nikkor 105 mm lens is used to focus the far-field of the 

spray. 
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Figure 8.  Image acquisition using high-speed camera 

2.2.3 Intensified Camera Imaging for Spray Cross-Section Visualization using 

Laser Mie-Scattering 

The spray cross-section is imaged by inducing laser Mie-scattering and capturing the scattered 

light using a Phantom v411 high speed camera with a Lambert Instruments’ High-speed 

Intensified Camera Attachment (HiCATT). The schematic of the imaging setup is shown in 

Figure 9. A Helium-Neon laser of wavelength 632.8 nm is used for optical illumination. The 

beam from the He-Ne laser is transformed into a thin laser sheet using cylindrical lenses and 

provided into the test-section through one of the side windows. The intensifier-camera assembly 

is positioned at an angle of 45 degrees to the plane of laser illumination. The Mie-scattering 

signal pertaining to the image cross-section is then filtered using a bandpass filter with a center 

wavelength of 632.8 nm to filter out the optical noise. The intensifier is digitally gated with an 

open time of 1 μs and its trigger is synchronized with the high-speed camera’s image acquisition 

(sampling rate 10000 Hz). 
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Figure 9.  Image acquisition using intensifier-camera assembly 

2.3 Calibrations 

2.3.1 Nozzle flow calibrations 

The orifice diameter of the liquid injection nozzle is checked to see if the diameter is within 

tolerance. The first method employed to check the diameter is to use plug gauges. Since the 

gauges used are in inches, this section utilizes the same unit and gives the equivalent length in 

millimeters within brackets. The nozzle orifice could accommodate the pin gauge of size 0.02 

inch (0.508 mm) but would not allow the pin of size 0.021 inch (0.533 mm), indicating that the 

orifice diameter is indeed 0.02 inch (0.508 mm) within the pin guage tolerance (+0.0000/-0.0002 

inch). The next method to verify the orifice diameter is to obtain a magnified image of the 

injector orifice plane, measure the outer diameter of the injector, then compare the pixel 

distances in the image to obtain the orifice diameter. This method is shown in Figure 10 and the 

diameter obtained using this method, 0.0195 inch (0.495 mm) suggests that the orifice diameter 

is closer to the negative limit of 0.02 inch (0.508 mm).  
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Figure 10.  Nozzle orifice diameter calibration 

The nozzle discharge coefficient (Cd) is the ratio of actual mass flow rate (ṁl) to the theoretical 

mass flow rate. It is calculated for different injection pressures by measuring the mass flow rate 

of the nozzle discharge using a weighing scale and a stop watch. The mass flow rate is calculated 

by measuring the mass of the liquid acquired over a given time. The weighing scale is calibrated 

with a known calibration mass. Cd is then calculated using Eq. ( 9 ): 
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It is observed from Figure 11 that the coefficient of discharge is close to 0.9 for a range of 

injection pressures up to around 4.08 atm (60 psi). After that point, the discharge coefficient 

starts to drop to values around 0.75. The instantaneous nozzle discharge images (1μs exposure) 

pertaining to three different injection pressures are shown in Figure 12. In order to avoid the 
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sudden drop in discharge coefficient which could be attributed to cavitation effects, the injection 

pressure range is maintained within 4.08 atm (60 psi) in the subsequent experiments. 

 

Figure 11.  Nozzle discharge coefficient 

 

Figure 12.  Comparison of nozzle discharge at different injection pressures 
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The measured liquid mass flow rate is then calibrated against the injection pressure as plotted in 

Figure 13. 

 

Figure 13.  Liquid mass flow rate calibrated against injection pressure 

2.3.2  Liquid Mass flow meter calibration 

The liquid mass flow rate, which is calculated for measuring the discharge coefficient, is 

simultaneously used to calibrate the mass flow meter. The relationship between the digital read-

out and the actual mass flow rate is found to be linear in the mass flow rate range of interest, as 

shown in Figure 14.  
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Figure 14.  Liquid mass flow meter calibration 

2.3.3 Calibration of crossflow air modulation level 

The crossflow modulation level (MDL), defined as the ratio of Root Mean Square (RMS) of the 

crossflow velocity fluctuation to the mean crossflow velocity, is measured during the 

experiments at the dynamic pressure sensor locations immediately upstream of the nozzle. It was 

found during calibration that the modulation level in the test-section can vary from the upstream 

location due to the presence of standing waves. The presence of nodes and antinodes of pressure 

(and velocity) could affect the response of the liquid spray to the crossflow. For example, 

consider Figure 15 and Figure 16 which show the velocity fluctuation from mean and its Fast 

Fourier Transform (FFT) spectrum for a typical case (We=175) with crossflow modulation at 90 

Hz at two different locations in the test rig. The difference in the velocity levels is apparent and 

the actual level at the injector location needs to be calculated. The method to obtain velocity 

fluctuation level measurements at various locations in the test-section is detailed next.  
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Figure 15.  Velocity fluctuations at nozzle 

and upstream location 

 

Figure 16.  FFT of velocity fluctuation at 

nozzle and upstream location 

A stainless steel window with a dynamic pressure port ‘E’ was designed such that the port would 

be at a distance of 57.15 mm (2.25 inches) from the closest upstream dynamic pressure sensor 

‘C’, and the midpoint of the two pressure sensors would be at the nozzle plane. This window was 

used in place of one of the fused silica side windows during the calibration tests. The schematic 

of the modified setup for calibrating the modulation level is shown in Figure 17. Thus a total of 

five pressure sensors (A-E) were used to find the modulation level at various points in the test-

section. With this setup, the modulation level desired at the nozzle plane can be set and the 

corresponding modulation level at the various other pressure sensing locations are calculated. 

These conditions are then used during the experiments when the modulation level would be set 

by monitoring the upstream pressure signals.  
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Figure 17.  Schematic of the test rig showing the pressure sensor ports used in calibration 

2.4 Experimental procedure 

The experimental conditions are set by controlling a number of parameters. To set a desired 

crossflow Weber number at a particular static pressure, the air from the compressor is regulated 

to more than twice the desired static pressure in the test-section. Then the mass flow rate is set by 

monitoring the mass flow sensor reading. The pressure in the test-section is controlled by 

operating the back-pressure valve. 

The momentum flux ratio is then controlled by setting a suitable value of the liquid mass flow 

rate and injection pressure, arrived at from the calibration. The desired modulation frequency is 

achieved by varying the rotations per minute of the DC motor which drives the siren. The 

modulation level is controlled by adjusting the amount of air flow through the siren and its 

bypass. Both the modulation frequency and modulation level are monitored in real-time using 

LabVIEW interface. 
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3 Liquid Jet Near-Field Analysis 

The spray field of a liquid jet in crossflow consists of the liquid jet column penetrating into the 

crossflow, which is broken down and atomized by various processes. The liquid in the jet 

column preserves its momentum upon injection until it is bent by the crossflow, and momentum 

exchange commences. The penetration of both the liquid column and the resulting spray are thus 

dependent upon the initial liquid column trajectory. The analysis of the response of the liquid 

column to the oscillations in the crossflow would thus be the logical first step in characterizing 

the liquid jet penetration in oscillating crossflows. 

From the literature, it can be deduced that the momentum flux ratio (q) is the major parameter in 

defining the column trajectory. Especially in the immediate vicinity of jet injection, the 

momentum flux ratio can be used to satisfactorily define the column trajectory before the surface 

phenomena on the column, due to the interaction with the crossflow, become dominant. 

Therefore, a method is developed to study the response of the jet using momentum flux ratio 

extracted from the high speed camera images in the near-field, which is defined to be within 8 jet 

diameters downstream of the injection location (x/d<8). 

3.1 Liquid Column Trajectory Correlation 

The jet column breakup location in the crossflow direction, xBr/d, has been calculated in a 

number of previous studies by various researchers, as discussed in Section 1.1.3. While the exact 

breakup location might be dependent on the flow conditions, the liquid column remains largely 

intact within x/d=6 as was observed from instantaneous images at low Weber numbers. To study 

this near-field region of the liquid column, correlations similar to the form shown in Eq. ( 10 ), 
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where c1, c2 and c3 are unknown coefficients, were fitted to the windward column trajectories 

extracted from high-speed camera images. 
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It was observed that the correlations from the literature over-predict the actual column trajectory 

in a majority of the cases. Therefore, shadowgraph images were acquired over a wide range of 

flow conditions listed in Table 2, in order to develop a correlation that fits the observed data 

rigorously. 

Table 2.  Test Conditions to obtain near-field trajectory correlation 

Air crossflow pressure, Pa (atm) 2.04, 3.06 

Air crossflow density, ρa (kg/m3) 2.46, 3.67 

Weber number, We 8 – 175 

Air crossflow velocity, va (m/s) 21.77 – 101.81 

Air crossflow temperature, T (K) 293 

Liquid Water 

Liquid density, ρj (kg/m3) 998 

Liquid surface tension, σ (N/m) 7.28 x 10-2 

Liquid jet velocity, vj (m/s) 3.62 – 21.44 

Momentum flux ratio, q 5 - 37 
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The column trajectory points were extracted from averaged images obtained from a series of 

instantaneous high-speed images using an algorithm described in Appendix B. The points within 

x/d of 6 were used for developing the correlation in the near-field. A non-linear regression 

analysis was performed on the data to obtain the correlation given in Eq. ( 11 ). 
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( 11 ) 

A comparison of the correlation developed in this study with two other correlations from the 

literature is presented for two different cases in Figure 18 and Figure 19. It is evident from the 

figures that the proposed correlation fits the liquid column very closely within x/d=6 while the 

correlations proposed by Wu et al. [3] and Stenzler et al. [14] over-predict the penetration. The 

non-linear regression model had an associated R-Squared value of 0.941.  

 

Figure 18.  Comparison of correlations: Case1 
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Figure 19.  Comparison of correlations: Case 2 

Since Wu et al.’s correlation is closer to the proposed correlation, a comparison of the two 

models is presented in Figure 20 where the observed y/d of points extracted from the images 

covering a wide range of test conditions is plotted against the expected y/d from the two 

correlations. The linear trend line fits the data well for both the models but the model proposed in 

this study has a better fit and a slope very close to unity, signifying the goodness of fit. 
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Figure 20.  Comparison between fit of proposed correlation and Wu et al.'s correlation 

3.2 Analysis of Liquid Jet Column Response to Crossflow 

Modulation 

The next logical step is to use the correlation to study the variation in jet penetration in the 

presence of crossflow oscillations. Table 3 lists the test-conditions under which high-speed 

camera images and pressure signals were obtained for studying the jet column response. The 

Weber numbers are chosen in order to represent the different breakup regimes (bag, multimode 

and shear) and the modulation frequencies are selected to study the effect of timescale of 

crossflow oscillation. 
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Table 3.  Test Conditions for Near-field Analysis 

Parameters Range 

Air crossflow static pressure, Pa (atm) 2.04, 3.06 

Air crossflow density, ρa (kg/m3) 2.46, 3.67 

Weber number, We 18 – 250 

Air mean crossflow velocity, va (m/s) 26.66 – 121.69 

Air crossflow temperature, T (K) 293 

Liquid (water) density, ρj (kg/m3) 998 

Jet nozzle diameter, d (m) 0.5 x 10-3 

Liquid surface tension, σ (N/m) 7.28 x 10-2 

Liquid jet velocity, vj (m/s) 5.12 – 25.62 

Momentum flux ratio, q 10 – 30  

Air crossflow modulation level, 

(MDL=RMS(va’)/va) 
5 – 20 

Crossflow modulation frequency, f 90 - 450 

 

For each test case, 1722 images are recorded at a frame rate of 10,000/second with an exposure 

time of 1 μs. The main consideration in choosing the frame rate is to make sure that the images 

contain data from an adequate number of phases of the modulating frequency. The exposure time 

has to be short enough to record transient details about the flow field in each image. 

Figures 21-23 illustrate the liquid column movement in response to oscillating crossflow for 

three different cases. All three cases pertain to momentum flux ratio of 18 and a modulation level 
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of 10%. Figure 21 shows the jet response in a crossflow with a Weber number of 18 and 

modulation frequency of 90 Hz. Figure 22 and Figure 23 both show the behavior of a jet in a 

crossflow of Weber number 175, with the former in a crossflow modulated at 90 Hz and the 

latter in a modulated crossflow at 450 Hz. 

 

Figure 21.  Montage of instantaneous images at different phases – Case 1: P=2.04 atm  We=18  

q=18  f=90 Hz  MDL=10% 

 

Figure 22.  Montage of instantaneous images at different phases – Case 2: P=2.04 atm  We=175  

q=18  f=90 Hz  MDL=10% 
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Figure 23.  Montage of instantaneous images at different phases – Case 3: P=2.04 atm  We=175  

q=18  f=450 Hz  MDL=10% 

Qualitatively, it can be observed that the response of the jet to the crossflow modulation exists in 

all the above cases to different degrees. There are changes in the spray structures too, such as the 

location of column breakup point, during the course of one period of oscillation. Restricting the 

focus to the windward column trajectory, it becomes apparent that a suitable method to compare 

the different responses needs to be developed. It is also worth noting that in the lower Weber 

number case (Figure 21), the liquid column appears to break between x/d of 5 and 10 with the 

formation of bag-like structures. In the higher Weber number cases (Figure 22 and Figure 23), 

the dominant mode is clearly shear breakup.  

To quantitatively analyze the liquid column behavior in the various flow conditions, the 

following procedure was conceived. 

3.2.1 Analysis Procedure 

The procedure is explained by illustrating the three cases corresponding to Figure 21, Figure 22 

and Figure 23. The image processing is performed using MATLAB. 
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• The high speed camera images are first converted from RGB to grayscale images. Then, a 

threshold of 10% is used to convert the individual images to binary images with the 

pixels having grayscale intensities less than the threshold being assigned a value 0 and 

the rest of the pixels being assigned a value 1. The boundaries are then extracted from the 

thresholded images and the windward column trajectory points are isolated. 

• Using the correlation developed in Eq. ( 11 ), a least squares fit is used to find the value 

of momentum flux ratio (q) corresponding to the curve that had the best fit to the column 

trajectory in each image. Figure 24 and Figure 25 show sample frames from two different 

test cases with the boundary of the thresholded images in blue, the boundary within x/d=2 

in green and the curve fit using the correlation in white. Video 1 shows the process of 

curve fitting and extraction of corresponding momentum flux ratio data from each frame 

for the first case.  

 

Figure 24.  Illustration of curve fitting to the windward trajectory: Case - P=2.04 atm  We=18  q=18  

f=90 Hz  MDL=10% 
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Figure 25.  Illustration of curve fitting to the windward trajectory: Case - P=2.04 atm  We=175  q=18  

f=450 Hz  MDL=10% 

 

Video 1.  Illustration of curve fitting and momentum flux ratio trace: Case 1 - P=2.04 atm  We=18 

q=18 f=90 Hz MDL=10% [Legend: Blue – Boundary from thresholded imaged; Green – Boundary 

within x/d=2; White – Curve fit] 
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Video 2.  Illustration of curve fitting: Case 2 - 

P=2.04 atm  We=175 q=18 f=90 Hz MDL=10% 

[Legend: Blue – Boundary from thresholded 

imaged; Green – Boundary within x/d=2; 

White – Curve fit] 

 

Video 3.  Illustration of curve fitting: Case 3 - 

P=2.04 atm  We=175 q=18 f=450 Hz MDL=10% 

[Legend: Blue – Boundary from thresholded 

imaged; Green – Boundary within x/d=2; 

White – Curve fit] 

• The time trace of momentum flux ratio is then extracted from the images. FFT is 

performed on the data to identify the fundamental frequency. Figure 26 and Figure 27 

show the time trace of momentum flux ratio and the amplitude spectrum respectively. It 

can be observed from the spectrum that there is clearly a peak at the modulating 

frequency of 90 Hz and its higher harmonics, giving an indication of the response of the 

liquid jet column.  
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Figure 26.  Momentum flux ratio time trace: Case 1 - P=2.04 atm  We=18 q=18 f=90 Hz MDL=10% 

 

 

Figure 27.  Amplitude spectrum of momentum flux ratio: Case 1 - P=2.04 atm  We=18 q=18 f=90 Hz 
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• The 2-microphone method is simultaneously used to acquire the instantaneous pressure 

signals, and thus calculate instantaneous velocity fluctuation. Adding the instantaneous 

velocity fluctuation to the mean crossflow velocity, the expected instantaneous 

momentum flux ratio is calculated. Figure 28 shows the instantaneous velocity 

fluctuation from the mean crossflow velocity measured by the 2-microphone method. 

Figure 29 shows the corresponding momentum flux ratio that would be expected based 

upon the instantaneous net crossflow velocity. 

 

Figure 28.  Fluctuation from mean crossflow velocity: Case 1 - P=2.04 atm  We=18 q=18 f=90 Hz 
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Figure 29.  Expected momentum flux ratio time trace: Case 1 - P=2.04 atm  We=18 q=18 f=90 Hz 

MDL=10% 

• FFT is again performed on the expected momentum flux ratio calculated in the previous 

step. Then, a comparison of the spectra from the momentum flux ratio obtained through 

observation from the images and the momentum flux ratio expected from the 

instantaneous velocity is performed, as shown in Figure 30. 
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Figure 30.  Comparison of observed and expected momentum flux ratio spectra: Case 1 - P=2.04 

atm  We=18 q=18 f=90 Hz MDL=10% 

 

Figure 31.  Comparison of observed and 

expected momentum flux ratio spectra: Case 

2 - P=2.04 atm  We=175 q=18 f=90 Hz 

MDL=10% 

 

Figure 32.  Comparison of observed and 

expected momentum flux ratio spectra: Case 

3 - P=2.04 atm  We=175 q=18 f=450 Hz 

MDL=10% 

0
1
2
3
4
5
6
7
8
9

10

0 100 200 300 400 500

q 
(A

m
pl

itu
de

) 

Frequency (Hz) 

q- Frequency Spectrum 

q (Observed)

q (Expected)

0
1
2
3
4
5
6
7
8
9

10

0 90 180 270 360 450

q 
(A

m
pl

itu
de

) 

Frequency (Hz) 

q- Frequency Spectrum 

q (Observed)

q (Expected)

0
1
2
3
4
5
6
7
8
9

10

0 90 180 270 360 450 540 630 720 810 900 990

q 
(A

m
pl

itu
de

) 

Frequency (Hz) 

q- Frequency Spectrum 

q (Observed)

q (Expected)



43 
 

• It can be observed from the spectra of the three cases in Figures 30-32 that the amplitude 

of the jet column response, as measured by the parameter momentum flux ratio, shows 

significant difference with a change in modulating frequency. It should be noted that the 

frequency resolution of the observed and the expected momentum flux ratio spectra are 

different, with their values being 5.81 Hz and 0.49 Hz respectively. This is due to the 

differences in sampling rate and the number of samples obtained in the imaging and 

pressure signal acquisition systems. Also, the expected momentum flux ratio is calculated 

based on the signals from the pressure sensors upstream of the nozzle. A correction is 

required to reflect the velocity level at the nozzle based on calibrations. Therefore, in 

spite of the amplitude spectra displaying a marked qualitative trend, basing conclusions 

solely on the amplitude spectrum readouts might be prone to errors. 

• To overcome the problem of comparing spectra with different frequency resolutions, the 

power spectrum is utilized. The utility of comparing power instead of amplitudes in the 

current study is explained in Appendix C. For each case, the fraction of power in a 

frequency band of 15 Hz around the interested peak frequency is calculated by dividing 

the power in the band by the total power in the observed momentum flux ratio signal. 

Similarly, the power fraction in the expected momentum flux ratio spectrum is also 

calculated after correcting for the velocity level differences between the upstream 

measurement location and the nozzle location.   

• Since the power equals square of the RMS amplitude in the time domain, the square root 

of the power fraction is equal to the RMS amplitude in the frequency band of interest 

normalized by the RMS amplitude of the entire signal. The ratio of the normalized RMS 

amplitudes of the observed momentum flux ratio to the expected momentum flux ratio is 
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then analogous to the respective normalized amplitude ratio. This quantity is therefore 

very useful in comparing the amplitude gains accurately and will be hereafter referred to 

as Normalized Amplitude Ratio (NAR). NAR can be expressed as Eq. ( 12 ). 

 

Normalized Amplitude Ratio

= �

Power at the modulation frequency in the response signal
Total power in the response signal

Power at the modulation frequency in the input signal
Total power in the input signal

 

 

( 12 ) 

For an input signal g(t) and response signal h(t), where t is discrete time from 0 to n, G 

and H represent the amplitudes of g and h in the frequency domain respectively, f 

represents frequencies in a narrow band around the modulation frequency (15 Hz band 

used in this study), and f1 and f2 represent the bounds of the frequency band of interest, 

NAR can be expressed as Eq. ( 13 ). 
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The procedure is summarized in the form of a flowchart in Figure 33. While calculating power at 

the interested frequency, the power is calculated in a 15 Hz band around the interested frequency 

to account for the differences in the frequency bin location from FFT spectrum and the actual 

interested frequency. 

 

Figure 33.  Flowchart summarizing the steps involved in near-field analysis 
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3.2.2 Results 

FFT was performed on the observed and expected momentum flux ratios and normalized 

amplitude gains were calculated for a wide range of test conditions to study the effect of 

oscillation frequency, modulation level and other factors.  

3.2.2.1 Effect of oscillating crossflow on the liquid column trajectory 

The primary question of whether the liquid column responds to the crossflow oscillations is 

answered by taking a look at the momentum flux ratio amplitude spectra. Figure 34 is a 

reproduction of the observed and expected momentum flux ratio spectra for Case 3 showing a 

wider frequency range. It is clear from the spectrum that the liquid column has a strong response 

at the modulating frequency. It is interesting to note that the column also responds in varying 

degrees to the higher harmonics in the modulated crossflow and that this response, though 

weaker, is evident even at frequencies over 1000 Hz. The higher harmonics are thought to be 

present as a result of the interaction of the crossflow with the standing waves in the test rig. The 

response of the jet at higher harmonics with velocity fluctuation amplitudes greater than or equal 

to the fundamental is also included for quantitative analysis in the succeeding sections.  
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Figure 34.  Observed and expected momentum flux ratio spectra: Case 3 - P=2.04 atm  We=175 

q=18 f=450 Hz MDL=10% 

3.2.2.2 Effect of modulating frequency and crossflow Weber number 

The normalized amplitude ratio for various Weber numbers with momentum flux ratio of 18 and 

modulation level of 10% is plotted against oscillation frequency in Figure 35. It can be observed 

that the amplitude ratio, which is analogous to the amplitude gain, is higher at the lower 

frequency of f=90 Hz with values closer to unity. This indicates that the liquid jet column 

fluctuates at an amplitude close to that expected from the input modulation. 
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Figure 35.  Variation of Normalized Amplitude Ratio with modulating frequency: q=18 and 

MDL=10% for all cases  

As the frequency increases to f=260 Hz, the amplitude ratio begins to reduce to values around 

0.75 indicating that the jet column fluctuates at a lower amplitude than expected with an increase 

in frequency. This trend continues to the higher frequencies too, as shown by the cluster of data 

points at f=450 Hz, which have amplitude gains between 0.35 and 0.50. It is notable that the 

trend remains the same irrespective of the crossflow static pressure and Weber number, hinting 

at the explanation that the liquid jet response is a function of primarily the input crossflow 

modulation frequency. 
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In order to provide a physical explanation for the observed phenomenon, consider the model of a 

liquid jet in Video 4. The video shows a typical liquid jet in a crossflow of Weber number 18 and 

static pressure of 2.04 atm, with a momentum flux ratio of 18. The two polar plots show the 

phase of oscillation for f=90 Hz and f=450 Hz as the liquid jet emanates from the nozzle. A 

constant injection velocity is assumed for the liquid jet in this illustration since the region of 

interest is within x/d=6. 

 

Video 4.  Video showing a comparison of the phase of the crossflow fluctuation encountered by 

the liquid jet in (left) f=90Hz modulated crossflow and (right) f=450 Hz crossflow 

When a liquid jet is injected into a crossflow, the liquid column gets deformed by the crossflow 

and breaks up at the column breakup point. The instantaneous momentum flux ratio depends 

upon the ratio of dynamic pressure of the liquid jet to the dynamic pressure of the crossflow, and 
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is thus indicative of the “degree of bend” in the trajectory of the liquid column. In a modulated 

crossflow such as the one under study, the liquid dynamic pressure is maintained constant while 

the crossflow dynamic pressure fluctuates with the velocity, thereby providing scope for a 

fluctuation in the momentum flux ratio, causing a flapping action of the liquid column.  

Comparing the two frequencies f=90 Hz and f=450 Hz in Video 4, it is apparent that the relative 

angular velocity of crossflow oscillation encountered by the liquid jet upon injection is going to 

be different at the two frequencies. The liquid jet in the same flow conditions sees a phase 

difference of ϕ=137.31° between the injection location and x/d=6 in f=450 Hz crossflow, 

whereas the jet would see a phase difference of only ϕ=27.46° in f=90 Hz crossflow. The relative 

phase for different downstream points with respect to the nozzle is given in Table 4. 

Table 4.  Comparison of the phase difference between injection location and downstream 

locations for f=90 Hz and f=450 Hz 

Axial location in x/d Relative phase for f=90 Hz 

(in degrees) 

Relative phase for f=450 Hz 

(in degrees) 

0 0 0 

1 4.63 23.13 

2 9.18 45.89 

3 13.73 68.66 

4 18.36 91.79 

5 22.91 114.55 

6 27.46 137.31 
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The surface tension of the jet liquid tends to preserve the shape of the liquid in order to have the 

least surface energy. At low crossflow modulation frequencies, since the angular frequency is 

small, the liquid jet can exit the injector, interact with the crossflow and reach the column 

breakup point within a small phase difference. Since the difference in phase is smaller, the 

conservative action of the surface tension has more time to maintain uniformity of the jet 

column, and thus respond steadily to the crossflow oscillation. If the liquid column can be 

considered to be a series of cylindrical packets before injection, each liquid packet would then 

emanate from the nozzle at a small phase difference from the previous liquid packet. In other 

words, a liquid packet has sufficient residence time within a small phase difference in the 

crossflow for the surface tension forces to ensure a steady response to the changes in momentum 

flux ratio, causing a “flapping” up and down action of the liquid column. 

On the other hand, in the case of the higher modulation frequency of f=450 Hz, the liquid jet 

encounters a phase difference of about 137 degrees within six diameters downstream of the 

nozzle. Hence, each successive liquid packet is subjected to a larger phase difference, thus 

encountering a larger momentum flux ratio difference. In other words, the different points in the 

liquid column experience different momentum flux ratio within a shorter axial distance. This 

rapid change in momentum flux ratio would then attempt to have different penetration of the 

liquid jet at different points but will be counteracted by the conservative action of surface tension 

force. Therefore, since the rate of change of phase is high enough that the liquid column cannot 

align itself to one particular phase, the amount of up and down “flapping” is expected to be 

dampened while the slope of the windward trajectory is expected to vary with downstream 

distance in the near-field. 
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Evidence for this effect can be observed in Figure 36 and Figure 37, which show the 

instantaneous spray images at f=90 Hz and f=450 Hz crossflow respectively for the same test 

condition of P=2.04 atm, Weber number=18 and momentum flux ratio=18. The images are 

acquired at a time lag of 0.1 ms and the first image in the sequence is arbitrarily given a phase of 

zero degrees. It is seen in the images in Figure 36 that within 0.8 ms and a phase difference of 

25.92 degrees, the liquid jet, and the spray after column breakup, display a predominantly 

uniform trajectory. The white lines in the images indicate that the liquid column and the large 

bag like structures follow the same trajectory in the near-field region. Thus, any flapping motion 

observed in the liquid column is also observed in the resulting spray in the near-field. 



 
 

53 
 

 

Figure 36.  Instantaneous spray images in f=90Hz crossflow within 0.8 ms : Test condition - P=2.04 

atm  We=18  q=18  MDL=10% 

The instantaneous images in Figure 37, corresponding to the 450 Hz modulation, show a 

different phenomenon. As hypothesized in the jet response model, it is seen that while the jet 

upon injection is bent in a certain trajectory, there are variations in the trajectory due to 

variations in the momentum flux within the small downstream distance. These variations in 

momentum flux are experienced at such a high rate that the jet is unable to respond uniformly to 

the changes in momentum flux. For instance, the image at phase difference of 16.20 degrees 

shows that while the liquid column begins to bend more in the crossflow direction, the bag 



 
 

54 
 

structures after column breakup preserve their earlier higher momentum flux and penetrate 

higher. While the smaller droplets can be expected to respond to the higher rate of change of 

momentum flux, the liquid column itself contends with surface tension and inertial effects. 

Therefore, the frequency of modulation of crossflow, and by extension, the associated angular 

rate of change, is a major factor that determines the up and down “flapping” response of the 

liquid jet. 

 

Figure 37.  Instantaneous spray images in f=450Hz crossflow within 0.8 ms : Test condition - 

P=2.04 atm  We=18  q=18  MDL=10% 
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Figure 38 shows that the trend is applicable across a range of Weber number, momentum flux 

ratio and modulation levels. 

 

Figure 38.  Normalized Amplitude Ratio plotted against modulation frequency for a range of Weber 

number, momentum flux ratio, static pressure, and modulation level 

With an increase in Weber number, the composition of the liquid jet structure in the near-field 

changes. While the existence of the liquid column, with bag-like structures breaking away near 

the column breakup point, is observed in lower Weber number case of We=18, the column 

intensely gets stripped off droplets in the higher Weber number case of We=175. The larger 
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droplets and the liquid column preserve the injection momentum for a longer time compared to 

the smaller droplets generated in the shear breakup. This is because the smaller droplets owing to 

their lower inertia get entrained by the crossflow due to enhanced momentum transfer. It can 

therefore be expected that the lower Weber number cases will have higher response to the 

modulating crossflow compared to higher Weber number cases with respect to near-field 

penetration. The results in this study however do not provide conclusive evidence for this effect 

although the trend is observed in f=90 Hz cases and further study may be necessary to better 

characterize the effect of Weber number. 

3.2.2.3 Effect of momentum flux ratio 

A liquid jet emanating from the nozzle inherently tries to follow a straight path. In the presence 

of a crossflow, the aerodynamic drag force bends the jet in the crossflow direction and the bend 

is characterized by the momentum flux ratio. During the course of a period of oscillation of the 

crossflow velocity, the liquid jet momentarily attains a point with maximum momentum flux 

ratio in that period. In the near-field region, the jet retains most of its injection momentum and 

thus has a more stable phase at the time when the crossflow velocity reaches a minimum, and 

momentum flux ratio reaches a maximum, in the period. This expected behavior is evidenced by 

comparing the observed momentum flux ratio from the images and the expected momentum flux 

ratio computed from velocity measurement as shown in Figure 39. The green circles represent 

the points where the liquid jet remains in the high momentum flux ratio region rather than 

respond immediately to the change in phase of the velocity. These spikes could explain the 

increased amplitude of the response signal, and thus the amplitude gains higher than unity for the 

test cases at low frequency of f=90 Hz. It is to be noted, however, that the degree of 

synchronization between the pressure signal acquisition and image acquisition is uncertain in 
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these cases and knowledge of time lag between the two signals could be used in the future to 

accurately observe the phase difference in response of the jet. 

 

Figure 39.  Comparison of momentum flux ratio observed from images and calculated from 

pressure data: Case - P=2.04 atm  We=60  q=18  f=90 Hz  MDL=10% 

A comparison is then made by studying the jet response in cases with the same crossflow 

conditions but different momentum flux ratio. Figure 40 shows the case of We=60 and crossflow 

static pressure of 2.04 atm modulated at 90 Hz and 450 Hz, both at the same modulation level of 

10% at different momentum flux ratio. It is seen that the normalized amplitude ratio of the 

observed to expected momentum flux ratio fluctuation remain around the same level in each 

case. Noting that the range of momentum flux is small, the behavior suggests that the amount of 

fluctuation in the liquid jet changes proportionally with the expected change. Consequently, it 

would mean that the response of the liquid jet is affected by other crossflow conditions more 

than the momentum flux ratio for the same jet breakup mechanism. 
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Figure 40.  Effect of change in momentum flux ratio on liquid jet response to crossflow 

modulation 

3.2.2.4 Effect of modulation level 

The effect of the crossflow modulation level is then analyzed by considering test cases with the 

same crossflow conditions and momentum flux ratio but with different modulation levels at the 

modulation frequencies. Figure 41 shows the variation in the power fraction obtained at the 

modulating frequency from the spectrum of momentum flux ratio extracted from the images. It 

can be seen that as the modulation level is increased, the spectral power fraction displays a 

positive correspondence. Since the spectral power fraction is proportional to the square of the 

normalized amplitude, it can be surmised that the amplitude of momentum flux ratio fluctuation 

increases with an increase in modulation level. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 15 20 25 30 35

N
or

m
al

iz
ed

 A
m

pl
itu

de
 R

at
io

 

Momentum flux ratio, q 

Effect of momentum flux ratio 

P=2.04 atm We=60 f=90 Hz
MDL=10%

P=2.04 atm We=60 f=450 Hz
MDL=10%



 
 

59 
 

 

Figure 41.  Plot of spectral power fraction from the observed momentum flux ratio spectrum 

against modulation level 

Figure 42 shows the trend of normalized amplitude ratio for the same conditions plotted in 

Figure 41. Although it is seen that the amplitude of the momentum flux ratio increases 

monotonously with modulation level, the normalized amplitude ratio does not reflect the same 

trend. There is a weak increase in the normalized amplitude ratio at 20% modulation level in 

some of the cases but a dominant trend cannot be discerned. The values predominantly fall in a 

narrow band of each other for different modulation levels with the same crossflow conditions 

and momentum flux ratio. This phenomenon is related to the fact that even as the amplitude of 

momentum flux ratio fluctuation increases in the observed images, the increase is in proportion 

to the increase in expected momentum flux ratio amplitude. This strengthens the suggestion that 

in the range of momentum flux ratio and modulation levels under study, the liquid jet response in 

the near-field is primarily a function of the crossflow modulation frequency. 
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Figure 42.  Effect of modulation level - Plot of Normalized Amplitude Ratio against modulation 

level 
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4 Liquid Spray Far-Field Analysis 

The far-field of the liquid jet in crossflow is the region where the large droplets and ligaments 

from the column breakup region are further broken down into smaller droplets. In this study, the 

far-field region is defined to be the region at 50 jet diameters downstream from the liquid 

injection location (x/d=50). The liquid jet upon breakup consists of a mix of larger droplets near 

the top of the spray and smaller droplets near the bottom of the spray in the column and bag 

breakup regimes. The composition of the spray varies in the shear breakup regime where the 

droplets are smaller after primary breakup. Thus the penetration of the liquid spray in the far-

field is different from the near-field penetration, being dependent upon various factors, and by 

extension, the response to modulation would also depend on multiple variables. 

4.1 Far-field Analysis using High-Speed Camera Images 

The far-field region is first studied using high-speed camera images to identify the mode of spray 

response in oscillating crossflows. The test conditions correspond to the conditions mentioned in 

Table 3.  

Figure 43 and Figure 44 show the liquid jet in a crossflow with Weber number 18 and static 

pressure 2.04 atm, and at momentum flux ratio of 18 in two different modulation frequencies of 

f=90 Hz and f=450 Hz. The blue line represents the x/d=50 location. Noting that the phase in all 

the figures is relative to the first frame, it can be seen that the spray displays noticeable up and 

down flapping motion in the f=90 Hz case. The flapping motion is hard to discern in the f=450 

Hz case. 
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 Figure 45 and Figure 46 show the liquid jet behavior in a crossflow with higher static pressure 

of 3.06 atm and Weber number 60 at two different modulation frequencies of  f=90 Hz and f=260 

Hz. The same observation is made in the lower frequency case of f=90 Hz, with the liquid spray 

showing evident up and down motion at x/d=50. In the f=260 Hz case, there is still a noticeable 

movement of the spray but it appears dampened compared to the lower frequency case. Having 

made this qualitative observation, the next step describes the attempt to quantitatively compare 

the spray response in various conditions. 

 

Figure 43.  Far-field images at different phases: Case - P=2.04 atm  We=18  q=18  f=90 Hz  

MDL=10% 
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Figure 44.  Far-field images at different phases: Case - P=2.04 atm  We=18  q=18  f=450 Hz  

MDL=10% 

 

Figure 45.  Far-field images at different phases: Case - P=3.06 atm  We=60  q=18  f=90 Hz  

MDL=10% 
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Figure 46.  Far-field images at different phases: Case - P=3.06 atm  We=60  q=18  f=260 Hz  

MDL=10% 

4.1.1 Analysis Procedure and Results 

The analysis is performed by measuring the change in intensity produced by the movement of 

droplets in each frame. In order to do this, the first step is to prepare a background from which 

the change in intensity can be measured. The average of all the frames acquired for the test 

condition can be used as the background, which means that any change in intensity from the 

background is a measure of deviation from the mean. Figure 47 shows an example of averaged 

image created for the condition corresponding to the images in Figure 45 [P=3.06 atm  We=60  

q=18  f=90 Hz  MDL=10%]. 
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Figure 47.  Sample averaged image: Case - P=3.06 atm  We=60  q=18  f=90 Hz  MDL=10% 

The next step is to divide the image height into ten equal sized bins. Since the image height is 

480 pixels, each bin has a height of 48 pixels. The width of the bin is chosen such that the bin 

would encompass five pixels upstream and five pixels downstream of the x/d=50 location. Thus 

each bin is 11 pixels wide. Figure 48 is a sample instantaneous frame showing the bin locations. 
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Figure 48.  Bin locations 

In each instantaneous image, the intensities of the pixels deviating from the averaged image 

lying within each bin are added to the respective “BinSum”. The threshold for considering a 

pixel intensity to have deviated from the averaged image is calculated by first subtracting 

intensities of each column from the corresponding column in averaged image, then calculating 

the mode near zero of the difference, and then adding one standard deviation of the difference to 

the mode. This process ensures the robustness of the code in identifying droplets. Figure 49 

shows a sample time trace of the sum of intensities in a bin. The sum of intensities will hereafter 

be referred to as Bin Sum. Thus, the Bin Sum can be approximated as the “area flow of droplets” 

in the bins in the 2-D plane. 
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Figure 49.  Sample of time trace of sum of intensities obtained from a bin: Case - P=3.06 atm  

We=60  q=18  f=90 Hz  MDL=10% 

The Bin Sums in all the bins normalized by the respective mean of Bin Sums is shown in Figure 

50. It can be seen that the signal is periodic; therefore an FFT is performed on the Bin Sums to 

identify the frequency components. Figure 51 shows the amplitude spectrum of the ten bins and 

it is observed that, in this case, all the bins show a response at the forcing frequency of the 

crossflow of 90 Hz. However, this response has different amplitudes in the different bins due to 

the variance in the number and size of droplets passing through each bin. 
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Figure 50.  Time trace of Bin Sums normalized by respective mean of Bin Sum: Case - P=3.06 atm  

We=60  q=18  f=90 Hz  MDL=10% 
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Figure 51.  FFT of Bin Sums: Case - P=3.06 atm  We=60  q=18  f=90 Hz  MDL=10% 

Even though the frequency spectrum provides the response at specific frequencies, information 

about the difference in phase between the various bin signals will be vital in understanding the 

jet behavior. Therefore, the Bin Sums were normalized to zero mean and unit variance and then 

filtered at the peak modulation frequency (in a 60 Hz bandwidth) using a second-order 

Butterworth filter as shown in Figure 52. It is clear from observation that while some Bins are in 
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phase with each other, others are out of phase. Also, some Bins have a very weak value which 

signifies that the spray droplets pass through those bins minimally. 

 

Figure 52.  Normalized Bin Sums filtered at the peak modulation frequency: Case - P=3.06 atm  

We=60  q=18  f=90 Hz  MDL=10% 

In order to filter out the bins which receive the lowest fraction of the spray and might throw 

errors while calculating phase differences, the Bin Sums, which are vectors of temporal 

information, were summed up to obtain the sum of Bin Sums in the ten bins. These ten values 

were again summed up to obtain the total sum of intensities in all the pixels covered by the bins, 

which was then used to calculate the fraction of the sum of intensities in each bin. Since the sum 
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of intensities is considered to be proportional to the area of the droplets passing through the 

pixels, the fractions correspond to the fraction of droplets passing through the bins.  

Figure 53 shows a bar diagram of the fraction of sum of Bin Sums in each bin. It is seen that the 

fractions are highest in the middle bins and taper off towards the top and bottom bins. 

Comparing the f=90 Hz cases, and f=450 Hz and f=260 Hz cases, the lower frequency cases have 

well distributed fractions while the higher frequency cases tend to have high fractions 

concentrated in the middle bins. The bins with fractions less than 1% were then removed from 

the calculations to get the phase difference between the bins. 
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Figure 53.  Comparison of normalized Bin Sum fractions: (Top, Left) P=2.03 atm  We=18  q=18  

f=90 Hz  MDL=10%; (Top, Right) P=2.03 atm  We=18  q=18  f=450 Hz;  MDL=10% (Bottom, Left) 

P=3.06 atm  We=60  q=18  f=90 Hz  MDL=10%; (Bottom, Right) P=3.06 atm  We=60  q=18  f=260 Hz  

MDL=10% 

Figure 54 shows a comparison of phase plot for four different test conditions. The angle between 

the bins is calculated by the cross-correlation method from the filtered normalized Bin Sums. For 

example, the phase lag between two signals A and B can be found by cross-correlating the two 

signals, and finding the time when the cross-correlation attains its maximum. This gives the time 
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lag between the two signals, which can then be converted to phase lag since the frequency is 

known. The phase plot radius vector is proportional to the amplitude from the filtered normalized 

Bin Sums signals. It is observed that in the lower frequency cases of f=90 Hz, the phase 

difference between the bins is almost 180 degrees. Also, the amplitudes are comparable in 

magnitude except for the end bins. This signifies that when the spray is concentrated at one of 

the end bins, the BinSum value reaches a local maximum while the opposite end bin has a 

reduction in BinSum, and therefore is out of phase. However, in the higher frequency cases of 

f=450 Hz and f=260 Hz, the amplitudes have a sharp drop from the bins where most of the spray 

is concentrated. Further, the bins are closer to each other in phase compared to the lower 

frequency cases.  
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Figure 54.  Comparison of phase plots of four test conditions: (Top, Left) P=2.03 atm  We=18  q=18  

f=90 Hz  MDL=10%; (Top, Right) P=2.03 atm  We=18  q=18  f=450 Hz;  MDL=10% (Bottom, Left) 

P=3.06 atm  We=60  q=18  f=90 Hz  MDL=10%; (Bottom, Right) P=3.06 atm  We=60  q=18  f=260 Hz  

MDL=10% 

In order to quantify the degree of spread of the phase angles, the circular variance of the phase 

angles was calculated with the amplitudes acting as the weights using Circular Statistics Toolbox 

in MATLAB [24]. The circular variance is indicative of how much the data is spread out in an 
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angular sense, with higher spread tending towards circular variance of 1 and lower spread 

towards circular variance of 0.  

If the i=1,2,…,n phase angles, each represented by θi,  are converted to vectors ri, as shown in 

Eq. ( 14 ), 
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then the magnitude of the mean resultant of the vectors, R, is given by Eq. ( 15 ), 
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( 15 ) 

and the circular variance, S, is given by Eq. ( 16 ). 

 RS −= 1  

 

( 16 ) 

For example, if two vectors point in the same direction, they will have circular variance of 0 

while vectors pointing in opposite directions will have circular variance of 1. 

To get a measure of the shape of the spray spread, the data in bar plots such as in Figure 53 were 

converted into distributions. This is possible since the data is a set of fractions totaling one and 

can be converted to an equivalent frequency of samples in each bin. Then, the standard deviation 

of the distribution was calculated to quantify the spread of the spray among the bins. 

The far-field analysis is summarized in the form of a flowchart in Figure 55. 
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Figure 55.  Flowchart summarizing far-field analysis 

Figure 56 and Figure 57 are plots showing the effect of frequency on the standard deviation of 

the normalized Bin Sum fractions and the circular variance of the phase differences between 

Bins respectively. Both the plots show a general trend of a decrease in their respective values 

with increasing frequency. A decrease in the standard deviation suggests that the distribution 

from which it was calculated gets more concentrated around the mean value. In this case, it 

translates to mean that the spray is restricted to fewer bins around the mean position. Also, it is 

seen that with an increase in modulation level, the standard deviation increases substantially at 
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the lower frequency of 90 Hz. The circular variance plot has to be viewed in conjunction with the 

plot on standard deviation of normalized Bin Sum fractions. The reduction in circular variance 

suggests that the phase difference between the bins is reduced, which is possible when the up and 

down flapping motion of the spray is curtailed. When the circular variance is closer to unity, it 

signifies that the bins tend to have a phase difference of 180 degrees, which is possible when the 

spray flaps between a larger number of bins with the corresponding bins from each end being out 

of phase with each other. Juxtaposing the two results, it is observed that with an increase in 

frequency, the standard deviation of the bins is reduced, signifying that the spray gets 

concentrated around the mean position. At the same time, the circular variance also decreases, 

lending credence to the argument that the up and down flapping motion of the liquid spray is 

dampened with increasing frequency.  

 

Figure 56.  Variation of standard deviation of Bins with modulation frequency 
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Figure 57.  Variation of circular variance of the phase difference between Bins with modulation 

frequency 

Video 5 illustrates the change in Bin Sum values as the liquid spray flaps between the bins. 

However, it is unfiltered and contains background noise. The Bin Sums are then filtered around 

the modulating frequency and the animated time series of bar plots is shown in Video 6 and 

Video 7 for modulating frequencies 90 Hz and 450 Hz respectively. 
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Video 5.  Video showing the flapping of the liquid column and the corresponding variations in Bin 

Sum: Case - P=3.06 atm  We=60  q=18  f=90 Hz  MDL=10% 

 

Video 6.  Video showing the variation of Bin Sum filtered at modulating frequency: Case - P=3.06 

atm  We=60  q=18  f=90 Hz  MDL=10% 
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Video 7.  Video showing the variation of Bin Sum filtered at modulating frequency: Case - P=3.06 

atm  We=60  q=18  f=450 Hz  MDL=10% 

Figure 58 and Figure 59 are snapshots from Video 6 and Video 7 respectively at different phases 

within a period of modulation of crossflow. It can be observed from the videos and the figures 

that in the 90 Hz case, the spray flapping is observed in the bar plots between bins 2 and 10. At 

phase of 0 degrees, the spray passes through bins 4 through 10 and at a phase of 176 degrees 

(~180 degrees), the opposite end bins from 2 through 5 receive the spray. This behavior is 

restricted in the higher frequency case of 260 Hz, where most of the spray fluctuates between the 

central bins 3 through 7. 
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Figure 58.  Bar plots of Bin Sums filtered at modulating frequency at different phases for 2 

different frequencies: Case - P=2.04 atm  We=18  q=18  MDL=10%  [x axis: Filtered Bin Sum  yaxis: 

Bin #] 
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Figure 59.  Bar plots of Bin Sums filtered at modulating frequency at different phases for 2 

different frequencies: Case - P=3.06 atm  We=60  q=18  MDL=10% [x axis: Filtered Bin Sum  yaxis: 

Bin #] 
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5 Far-Field Analysis using Spray Cross-Section Images 

In the discussion in the preceding section, the behavior of the liquid spray at x/d=50 was 

quantified with the help of “bins”. While this was useful in analyzing and describing the 

response, a more quantifiable description of the liquid spray characteristics in the far-field is 

desirable. The spray cross-section images are acquired to supplement the side-view image 

analysis. Since the spray is illuminated in this case by a laser, the acquired images are that of 

Mie-scattering intensity from the spray at x/d=50. The Mie scattering intensity in a plane is 

proportional to the total surface area of the droplets in the plane, and therefore, is dependent on 

the droplet size distribution [19].  

The camera is positioned at an angle of 45 degrees to the cross-section while acquiring the 

images. In order to convert the images into cross-sectional views, a projective transform is 

performed on each image by correlating the pixel lengths with actual test-section dimensions. 

Figure 60 shows an example of the projective transform with an averaged cross-section image. 

From the transformed images, the center of the intensities (zCI,yCI) in the spray region was 

calculated using Eqs. ( 17 ) and ( 18 ) (Ii is the intensity of the point (zi,yi) where i∈n, the pixels 

in the spray region): 

 ∑
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After applying a thresholding procedure to filter out the noise as described in Appendix D, the 

spray’s lateral extent is measured to obtain the width and the vertical extent to obtain the height. 

A sample instantaneous image frame showing the center of intensity, spray’s lateral and vertical 

extents is shown in Figure 61. 

 

Figure 60.  Projective transform: Before (Top) and After (Bottom) 

Original image 

Transformed image 
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Figure 61.  Instantaneous image showing Center of Intensity, Spray Width and Spray Height 

5.1 Observations and Discussion 

Time-varying signals of the spray’s center of intensity, spray height, spray width and the total 

Mie-scattered intensity from the spray are generated from the instantaneous camera images. 

Figure 62 through Figure 69 show the time traces and their respective frequency domain spectra 

of the center of intensity, spray lateral spread, vertical spread and the total sum of intensities in 

the spray. A periodic variation can be discerned in the center of intensity time trace, but the other 

time-domain signals have a much lower signal-to-noise ratio. From the frequency spectra, it is 

observed that all the quantities under consideration have a periodic response at the modulation 

frequency.  
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Figure 62.  Time trace of Center of Intensity: 

Case - P=2.04 atm  We=60  q=18  f=90 Hz  

MDL=10% 

 

Figure 63.  Frequency sprectrum of Center of 

Intensity: Case - P=2.04 atm  We=60  q=18  

f=90 Hz  MDL=10% 

 

Figure 64.  Time trace of lateral spread of 

spray: Case - P=2.04 atm  We=60  q=18  f=90 

Hz  MDL=10% 

 

Figure 65.  Frequency spectrum of lateral 

spread of spray: Case - P=2.04 atm  We=60  

q=18  f=90 Hz  MDL=10% 
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Figure 66.  Time trace of vertical spread of 

spray: Case - P=2.04 atm  We=60  q=18  f=90 

Hz  MDL=10% 

 

Figure 67.  Frequency spectrum of vertical 

spread of spray: Case - P=2.04 atm  We=60  

q=18  f=90 Hz  MDL=10% 

 

Figure 68.  Time trace of total sum of spray 

pixel intensities: Case - P=2.04 atm  We=60  

q=18  f=90 Hz  MDL=10% 

 

Figure 69.  Frequency spectrum of total sum 

of spray pixel intensities: Case - P=2.04 atm  

We=60  q=18  f=90 Hz  MDL=10% 

27

32

37

42

47

52

57

0.05 0.06 0.07 0.08 0.09 0.1

Sp
ra

y 
ve

rt
ic

al
 s

pr
ea

d 
in

 je
t d

ia
m

et
er

s 

Time (s) 

Spray vertical spread  

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800

H
/d

 

Frequency (Hz) 

Spray vertical spread 

395000

445000

495000

545000

595000

645000

695000

745000

795000

845000

0.05 0.06 0.07 0.08 0.09 0.1

To
ta

l s
um

 o
f i

nt
en

si
ty

 in
 th

e 
sp

ra
y 

Time (s) 

Total sum of intensities 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 500

To
ta

l I
nt

en
si

ty
 

Frequency (Hz) 

Total sum of intensities 



88 
 

The center of intensity is a parameter representative of the position and penetration of the liquid 

spray which is less subjective to errors which are associated with thresholding the image to 

obtain the upper penetration boundary. Similar to the procedure used in analyzing the near-field 

spectra, the power fractions were calculated from the center of intensity spectra at the 

modulating frequency and their square roots computed. These quantities are analogous to the 

RMS amplitude at the modulation frequency normalized by the RMS amplitude of the signal, as 

given in Eq. ( 19 ). For a signal h(t) where t is discrete time from 0 to n, H(f) is the amplitude in 

frequency domain at frequency f, and f1 and f2 are the bounds of the frequency band of interest 

around the modulation frequency (15 Hz band used in this study), normalized RMS amplitude 

can be expressed as Eq. ( 20 ). This quantity is then compared between the various test 

conditions to notice spray behavior. 
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It is observed in Figure 70 that the center of intensity, whose response can be expected to be 

similar to that of momentum flux ratio in the near-field, responds about 4 times (or greater) at 
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lower frequency of f=90 Hz compared to the higher frequency of f=450 Hz. The trend of the 

response weakening as frequency of modulation increases suggests that the up-and-down 

flapping action of the spray in the far-field is related to the penetration in the near-field.  

 

Figure 70.  Response of center of intensity at different frequencies 

A corresponding plot is created with the information obtained from the spectra of response of the 

vertical extent (spray height) of the spray and is shown in Figure 71. The trend in this plot is 

quite similar to the one observed from the corresponding center of intensity information. It 

signifies that the vertical height of the spray varies about 4 times more in the lower frequency 
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cases compared to higher frequencies. It suggests a possible coupling between the center of 

intensity’s movement and the change in vertical spread of the spray, which will be explored later 

in this chapter. 

 

Figure 71.  Response of vertical extent of the spray at different frequencies 

Figure 72 shows the effect of modulation level at two different frequencies. As expected, the 

movement of the center of intensity increases with modulation level. The increase is moderate 

for the higher frequency of 450 Hz while the normalized amplitude of the response jumps to 

about twice its value on increasing modulation level from 5% to 10% at f=90 Hz.  
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Figure 72.  Effect of modulation level on the response of Center of Intensity: Case - P=2.04 atm  

We=60  q=18  f=90 Hz  MDL=10% 

From the response of the center of intensities and the vertical spray extent, it is apparent that the 

phase difference between the signals would offer significant insight into spray behavior. Figure 

73, Figure 74 and Figure 75 show the juxtaposed signals of center of intensity with vertical 

extent, lateral extent and total sum of intensity respectively, after normalizing all the signals to 

zero mean and unit variance. It is observed that the signals, despite the noise, appear to be in 

phase with each other. This would indicate that as the spray flaps to its higher point, the spray 

expands both vertically and laterally to its maximum extent. Also, the total Mie-scattering 

intensity which is proportional to the surface area of the droplets in the spray, reaches its 

maximum value in the period. In order to see if the observation holds for all the test cases, the 

signals were then filtered around the peak modulation frequency and then plotted together for 

different flow conditions. The phase difference between them was calculated using cross-

correlation.  
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Figure 73.  Center of intensity and vertical spread of spray: Case - P=2.04 atm  We=60  q=18  f=90 

Hz  MDL=10% 

 

Figure 74.  Center of intensity and lateral spread of spray: Case - P=2.04 atm  We=60  q=18  f=90 

Hz  MDL=10% 
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Figure 75.  Center of intensity and total sum of intensity in the spray: Case - P=2.04 atm  We=60  

q=18  f=90 Hz  MDL=10% 

Figure 76 to Figure 79 show the signals filtered using a second-order Butterworth filter (with a 

bandwidth of 60 Hz around the fundamental frequency), in the same time interval. The Weber 

number=18 cases contain only center of intensity and total sum of intensity signals while the 

Weber number=60 cases show the lateral spread and vertical spread of the spray additionally. It 

can be observed that the total sum and the center of intensity are phase shifted for both the 

frequencies 90 Hz and 260 Hz in the We=18 cases shown in Figure 76 and Figure 77. However, 

it is interesting to note that in the lower frequency case of f=90 Hz in We=60, all the signals are 

in phase with each other but they are phase shifted with an increase in frequency to f=450 Hz 

(Figure 78 and Figure 79). 
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Figure 76.  Center of intensity and Total sum of intensities: Case - P=3.06 atm  We=18  q=18  f=90 

Hz  MDL=10% 

 

Figure 77.  Center of intensity and Total sum of intensities: Case - P=3.06 atm  We=18  q=18  f=260 

Hz  MDL=10% 
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Figure 78.  Center of intensity and Total sum of intensities: Case - P=2.04 atm  We=60  q=18  f=90 

Hz  MDL=10% 

 

Figure 79.  Center of intensity and Total sum of intensities: Case - P=2.04 atm  We=60  q=18  f=450 

Hz  MDL=10% 
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The observation that the signals corresponding to movement of center of intensities and the total 

sum of intensities possess variable phase differences between themselves is of significance. It 

implies that there might be a difference in the time when the spray attains its maximum 

penetration point and its maximum volume flux point. To explain the phase differences in the 

two Weber number conditions, consider the corresponding frames where the spray is seen to 

attain its maximum penetration. 

Consider the far-field (x/d=50) penetration in the Weber number=18 case at a modulation 

frequency of 90 Hz (Figure 80). It was observed from the instantaneous images that due to the 

lower crossflow velocity, the droplets generated after column breakup point in this breakup 

regime were noticeably larger compared to higher Weber number cases. The larger droplets are 

generated when the momentum flux ratio reaches a local maximum within one period of 

modulation of crossflow in the near-field. These larger droplets, owing to their greater inertia, 

penetrate the farthest in the crossflow and convect downstream slower compared to the smaller 

droplets. By the time the droplets arrive at the far-field, the near-field momentum flux ratio 

would have decreased and due to the higher crossflow velocity, smaller droplets are formed from 

the column breakup point. The smaller droplets attain the crossflow velocity much faster due to 

their smaller mass. Therefore by the time the larger droplets arrive at the far-field, the smaller 

droplets follow close behind. This is noticed in the time traces in Figure 76 where the maximum 

height is reached by the center of intensities and after a phase lag, the total sum of intensities 

reaches its maximum.  
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Figure 80.  Frame corresponding to spray attaining maximum penetration in the far-field: Case - 

P=2.04 atm  We=18  q=18  f=90 Hz  MDL=10% 

In case of higher Weber numbers (multimode and shear breakup), the behavior is explained with 

the case of We=60 at modulation frequency f=90 Hz. Figure 81 is a frame of the time when the 

spray attains maximum penetration in the far-field. Similar to the case of We=18, the momentum 

flux ratio reaches a local maximum in the modulation period in the near-field. At that point, in 

addition to being the moment when more mass of liquid is injected, the droplets generated by the 

column are larger within the period of oscillation. They begin to penetrate higher into the 

crossflow after column breakup. However, because of the higher mean crossflow velocity, the 

larger droplets undergo additional breakup and generate small droplets. At the same time, it is 

noticed that the column undergoes shear stripping at a short transverse distance after injection 

P=2.04 atm  We=18  q=18  f=90 Hz  MDL=10% 



 
 

98 
 

and generates small droplets. Thus, the spray front generated has a larger vertical extent and is 

composed of a large number of small droplets. Owing to the relatively uniform size distribution 

in comparison to the lower Weber number cases, the droplets’ arrival time is also close to each 

other. The same behavior is also noticed in the shear breakup regime at We=140. The reason for 

the phase-synchronized response at f=90 Hz of center of intensity, vertical extent and the total 

sum of intensities of the spray is therefore expected to be dependent on the droplet size and 

velocity. 

 

Figure 81.  Frame corresponding to spray attaining maximum penetration in the far-field: Case - 

P=3.06 atm  We=60  q=18  f=90 Hz  MDL=10% 

At higher modulation frequencies, the angular frequency of modulation is an additional factor 

that interacts with the droplet size and velocity. Since the droplets are subjected to variable 

P=3.06 atm  We=60  q=18  f=90 Hz  MDL=10% 
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crossflow velocity, information about the instantaneous velocity in the flow-field would be 

necessary to characterize the phase differences between total sum of intensity fluctuation and 

center of intensity fluctuation at higher frequencies. 

5.2 Comparison of Near-Field and Far-Field Response 

It can be recalled that the near-field response was quantified by the parameter momentum flux 

ratio. The momentum flux ratio was related to the liquid column upper trajectory by Eq. ( 11 ), 

which is given by: 
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Since y/d is proportional to q0.4131, the amplitude of upper trajectory y/d in the presence of 

crossflow modulation normalized by the mean is calculated using Eq. ( 21 ): 
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The movement of the center of intensity is used to analyze the movement of the spray in the far-

field. Therefore, the amplitude of center of intensity (in jet diameters) normalized by the mean 

position of center of intensity is used here for the comparison. However, it must be noted that the 

center of intensity’s movement need not always reflect the movement of the spray upper 

boundary, but it is representative of the spray position and is useful in comparing the order of the 

flapping behavior in the far-field. 

Figure 82 (a) and (b) show a comparison of the near-field and far-field response respectively. 

Note that the amplitudes of fluctuations are normalized by respective mean values. After taking 
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this fact, and the fact that the comparison is between upper penetration in near-field and center of 

spray in far-field, into consideration, it can be seen that the near-field response is much stronger 

(~ 33% to 70%) compared to the far-field response (~ 1% to 8%).  

 

(a)

 

(b) 

Figure 82.  Comparison of near-field and far-field response 
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6 Conclusion and Recommendations for Future Work 

6.1 Conclusion 

A study on the response of a liquid jet in the presence of crossflow oscillations has been carried 

out to model liquid fuel placement in a combustor in the presence of combustion instabilities. 

Since the jet penetration in the near-field (within x/d≈8) influences the spray penetration and 

spatial distribution in the far-field (x/d≈50), this study investigates the spray response in both the 

regions. Since the liquid and gas phase properties also affect the fuel spray distribution, the 

Weber number is varied in the experiments from 18 to 250, to encompass the bag, multimode 

and shear breakup regimes, and the momentum flux ratio is varied from 10 to 30. In order to 

observe the effect of frequency of instability, the crossflow oscillation frequency is varied 

between 90 Hz and 450 Hz while the effect of variable oscillation strengths is explored by 

varying the modulation level between 5% and 20%. While high speed shadowgraphy provides 

information about the spray response in the 2-D plane aligned with both the crossflow and liquid 

injection directions, laser Mie-scattering intensity is used to observe the spray response in the 

cross-sectional plane. 

The near-field penetration responds to crossflow oscillations in all flow conditions and in all 

modulation frequencies investigated in this study. The windward jet trajectory fluctuates in the 

presence of crossflow oscillation, but the strength of response is dependent on a number of flow 

parameters. The crossflow oscillation frequency is a major factor governing the strength of near-

field response since the frequency is related to the time scale of jet exposure to the oscillation. At 

lower crossflow frequency (f=90 Hz), the liquid jet encounters a small phase difference between 

the time of injection and breakup point whereas in higher frequencies, there is a larger phase 
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shift due to the higher angular velocity. Evidently, the jet can attain uniform penetration with a 

small phase shift but will try to attain variable penetration with an increase in phase shift, which 

is curtailed by the cohesive forces within the jet. Consequently, the jet response is stronger in the 

lower frequency cases and becomes weaker as the crossflow frequency is increased. The 

response in the various breakup regimes is also found to be of comparable magnitude, and thus, 

the effect of crossflow Weber number is less apparent in this study. The momentum flux ratio 

and the modulation level also influence the jet response. With an increase in modulation level, 

the fluctuation of the liquid jet column increases. However, when normalizing the observed 

response by the expected response, it emerges that the effect of momentum flux ratio and the 

modulation level in changing the level of response is minimal, with the frequency deciding the 

level of response. 

The far-field spray, being influenced by the near-field jet fluctuations, is also found to respond to 

the crossflow fluctuations both spatially and temporally. The spray executes oscillations in the 

transverse direction (in the direction of fuel injection, normal to the crossflow direction), as 

observed from both the high-speed shadowgraph images and the center of intensity’s movement 

in the cross-sectional plane in Mie-scattering intensity images. The spray oscillatory flapping 

motion in the far-field, similar to the near-field response, is stronger in lower crossflow 

oscillation frequency cases and becomes weaker with increase in frequency. Further, there is a 

temporal response in the droplet size distribution and flux, as evidenced by the response in total 

Mie-scattering intensity of the spray in the cross-section and the droplet area calculated in the 

binning method. The spray height and width, both influencing the spatial distribution of droplets 

in the cross-sectional plane, are found to respond to the crossflow oscillations. The response of 

the spray height demonstrates a similar trend to the near-field penetration and far-field spray 
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movement, with a reduction in strength of response with increase in frequency. This suggests 

that not only the windward trajectory, but also the entire spray region is affected by crossflow 

oscillations. 

The frequency of combustion instability is thus expected to be the major factor influencing the 

spatial and temporal distribution of the liquid fuel spray in the combustor.  

6.2 Recommendations for Future Work 

The present study, while addressing a number of questions on spray response to crossflow 

oscillations, also enlarges the scope for future work. The finding from this study that the 

crossflow frequency is a major factor in determining spray response suggests that a study 

involving a larger frequency range, and a number of intermediate frequencies, would augment 

the findings. The effect of Weber number is another possible avenue for research, and a study 

focusing on the flow-field structures and their response to crossflow oscillations in different 

Weber numbers will be valuable. The knowledge of velocity field of the droplets will be useful 

in estimating droplet arrival times. The phase difference between the pressure oscillations and 

near-field and far-field responses can also be explored further, as this information is crucial in 

estimating the coupling between crossflow oscillations and heat release oscillations.  
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Appendix A: Error Analysis 

The sources of errors in this study can be broadly classified into two categories: 1. Experimental, 

and 2. Post-processing. Calibration of various systems has been performed in order to quantify 

and reduce the experimental errors. The processing error is inherently more complex to quantify, 

and therefore, the analysis procedures are rigorously scrutinized to identify possible errors. This 

section presents a brief discussion of the possible errors in the current experimental study. 

Experimental errors 

An error analysis is performed to estimate the errors in the primary flow parameters [25]. For 

example, the error in a quantity X, if X can be expressed in product form by X=AaBbCc, can be 

given in a simple form as Eq. ( 22 ). 
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To estimate the error in the air density, for instance, the error in crossflow static pressure and 

temperature will need to be identified. Noting the error in pressure from the expressed accuracy 

of the digital gauge to be ∆P=0.05 atm, and assuming a generous estimate of the error in 

temperature to be 5 K , since the room temperature is maintained around 293 K, the error 

estimate for crossflow air density at a pressure of 3.06 atm is given by Eqs. ( 23 ) and ( 24 ). 
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Therefore, the percentage error in air density is ∆ρ/ρ=2.4 %. 

Similarly, the error in various parameters are computed for a typical case of P=3.06 atm, We=60 

and q=18, making maximum error estimates wherever possible, and are presented in Table 5. 

Table 5.  Error estimates 

Flow Parameter Estimated error (in %) 

Crossflow air temperature, T 1.7 

Crossflow air pressure, Pa 1.7 

Crossflow air mass flow rate, ṁa 0.5 

Crossflow air density, ρa 2.4 

Orifice diameter, d 1.0 

Orifice exit area, A 2.0 

Liquid mass flow rate, ṁj 3.9 

Liquid density, ρj 0.3 

Liquid injection velocity, vj 4.4 

Crossflow air velocity, va 2.4 

Momentum flux ratio, q 10.4 

Crossflow Weber number, We 5.5 
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 Since the estimates presented in Table 5 utilize liberal error estimates in the calculations, the 

actual experimental errors are expected to be within the bounds of the estimated errors. The 

errors in some of the measured quantities such as the orifice diameter, the liquid fuel mass flow 

rate, modulation level, etc. are quantified and minimized with the help of calibrations, as 

described in Section 2.3. 

Post-processing errors  

The identification of errors arising from the manipulation of acquired raw data is challenging 

because of the number of intermediate processes and their obscurity in propagating errors. 

Therefore, every attempt has been made to keep the processing to a minimum while extracting 

useful data.  

In extracting the windward trajectory points from instantaneous images, a 10% threshold was 

used. Since the contrast between the background and the jet is very high in instantaneous images, 

the high intensity gradient assures that the ambiguity is less than 2 pixels approximately in 

locating the boundary points. In many of the test cases, surface waves on the windward surface 

offer possible distortion in finding the least-square curve fit. In order to reduce the error, only the 

points within x/d=2 were utilized, where the amplitudes of surface waves are small. 

In the far-field analysis, the errors in the binning method are expected to be insignificant in the 

data analysis since the actual sum in the bins is only used as an indicator of spray location. 

Furthermore, the threshold set to locate the droplets is uniform across all the bins, all the images 

and all the conditions, offering consistency in the analysis. 

In the Mie-scattering intensity images, the center of intensity is chosen to study the spray 

movement since it is less sensitive to noise and the process of thresholding is avoided. While 
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quantifying the spray movement in the far-field, therefore, the center of intensity offers less 

subjective and more reliable information.     
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Appendix B: Extraction of Windward Trajectory Points 

from Averaged Images 

The liquid jet trajectory correlations are sensitive to the spray visualization method as well as to 

the post-processing technique. For example, many researchers utilize thresholding technique to 

extract upper trajectory points from shadowgraphs. However, various threshold levels yield 

different trajectories and the method is thus prone to errors when the difference in intensity 

between the shadow and the background is small. 

For example, consider the following illustration in Figure 83 where a 10% threshold is applied. 

While the boundary from thresholding matches the spray boundary close to the injector, the error 

in detection becomes progressively larger with downstream distance from the nozzle. 

 

Figure 83.  Thresholding errors 
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Therefore, a new method was conceptualized to extract the boundary points from the averaged 

images where the hazy portions of the spray are susceptible to be missed by thresholding 

process. The algorithm for this method can roughly be specified in the following steps: 

• The raw RGB averaged image is converted to grayscale image. 

• The columns of the grayscale image are converted to column vectors corresponding to 

their intensities. 

• For each column vector of intensities, a smoothing is performed using a 21-point moving 

average filter in order to make the algorithm insensitive to small peaks in the signal. 

• Identifying the unique signal shape, a selection criterion is set which calculates the 

absolute value of product of slope and height for each point from the point of minimum 

intensity in the center of the spray. The point in the vicinity of the spray with a 

maximum of this criterion is selected as the upper boundary point as shown in Figure 84. 

 

Figure 84.  Location of upper boundary point 
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• An error is also calculated for each condition by using a polynomial estimate of the 

current point based on the previous points. When the error crosses a certain threshold, the 

algorithm stops extracting points. This stop condition is incorporated and monitored so 

that the detection stops when the hazy spray region leads to uncertain boundary points. 

An example of a boundary extracted using this method is shown in Figure 85. 

 

Figure 85.  Spray with upper trajectory points 

 

 

Edge detection: Illustration 
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Appendix C: Using Power Spectrum to Analyze 

Frequency Spectra 

The resolution of FFT spectrum depends upon the sampling frequency (FS) and the number of 

samples, L, by the relation ∆f=FS/L. Therefore the frequency resolution is different for the 

observed q from the images and the expected q from the velocity signal because they are 

sampled at different frequencies and for different numbers of samples. Moreover if the frequency 

of interest does not lay exactly on one of the frequency bins, reading the amplitude from FFT 

becomes error-prone. In order to overcome these shortcomings, the power spectrum is used in 

place of the amplitude spectrum. 

Parseval’s theorem specifies that the power related to a time-series data is the same as the power 

contained in its transform. Therefore, even if different frequency resolutions are used for the 

same data series (for example, by padding zeros), the total power of the two spectra should be 

the same. This effect is illustrated in Figure 86 where the same time series data is transformed 

into two spectra with different frequency resolutions by padding zeros in the second case. 

Clearly, the gain in frequency resolution is offset by the fact that the amplitude suffers some 

leakage. However, the power contained in the spectra is the same [26].  

Also in the case of comparing spectra of response and input signals, since the two spectra are of 

comparable power, the power values in a narrow band around the frequency of interest can be 

used in place of amplitude, thus minimizing errors.  
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Figure 86.  Comparing spectra with different resolutions 
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Appendix D: Filtering noise in Cross-Sectional Mie-

Scattering Images 

The cross-sectional Mie-scattering images are obtained using an intensifier and the instantaneous 

images contain background noise as shown in Figure 87.  

 

Figure 87.  Mie-Scattering image with noise 

Therefore in order to find the lateral and vertical extent of the spray, a procedure is used to filter 

out the noise, which will be explained by describing the process to locate spray lateral extent 

(width) using this method: 

• The intensities of pixels in each column are summed up. The Maximum and Minimum 

values are located. Peak height is defined as difference of Maximum and Minimum. 
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• The column sum values, which are less than 10% of the peak height from the minimum 

value, are isolated. 

• The mean and standard deviation of the isolated values are calculated. The base level is 

defined as the sum of mean and one standard deviation. 

• The column sum having a minimum peak within the base level, and which is closest to 

the Maximum column point, is then selected as the edge. 

This process is illustrated in Figure 88 with the green and magenta circles locating the spray 

extent. Figure 89 shows the original image with the lateral limit locations shown in green and 

magenta lines. 

 

Figure 88.  Location of lateral extent from "Column Sum" plot 
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Figure 89.  Cross-section image with spray lateral extent 

Cross-section image – Spray width estimation 
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