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Abstract:  
 
Background and Objectives 
 
Parent-child reading is widely advocated to promote cognitive development, including in 
recommendations from the American Academy of Pediatrics to begin this practice at birth. While 
parent-child reading has been shown in behavioral studies to improve oral language and print 
concepts, quantifiable effects on the brain have not been previously studied.  Our study utilized 
blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) to examine 
the relationship between home reading environment and brain activation during a narrative 
comprehension task in a sample of preschool-age children.  We hypothesized that while listening 
to stories, children with greater home reading exposure would exhibit higher activation of left-
sided brain regions involved with semantic processing (extraction of meaning from language). 
 
Methods 
 
A total of twenty-three, 3-5 year-old children enrolled in a longitudinal study of normal brain 
development (C-MIND) were eligible for this study.  All had completed BOLD fMRI using an 
age-appropriate story listening task, where narrative alternated with tones.  Nineteen families 
were able to be contacted for survey administration and agreed to participate, with four excluded 
despite multiple attempts.  We performed a series of whole-brain regression analyses applying 
composite, subscale, and individual reading-related items from the validated STIMQ-P measure 
of home cognitive environment as explanatory variables for BOLD activation, controlling for 
household income (low or not low, according to 2015 federal poverty guidelines). 
 
Results 
 
Higher reading exposure (STIMQ-P Reading subscale score) was positively correlated (p<0.05, 
corrected) with BOLD activation in the left-sided parietal-temporal-occipital association cortex 
supporting mental imagery and semantic processing, adjusting for household income category.  
These brain areas are critical for oral language, and later integrated into the mature reading 
network. 
 
Conclusions 
 
Our study findings suggest that children from more stimulating home reading environments 
show more robust activity in brain regions supporting mental imagery and narrative processing, 
key emergent literacy skills.  These neural biomarkers may help inform eco-bio-developmental 
models of emergent literacy and its promotion, and guide further research into the foundations of 
reading readiness. 
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Introduction 

 

Emergent literacy is defined as the skills, knowledge, and attitudes supporting reading 

and writing, which accrue from infancy.1 Whereas organic reading disability (dyslexia) affects an 

estimated 5-12% of US children,2 the majority of illiteracy is preventable, attributable to 

inadequate resources, motivation, and/or stimulation required to learn to read.3 As parents are “a 

child’s first and most important teachers,”4 the quality of cognitive stimulation in the home, 

especially prior to school entry, strongly influences achievement and health outcomes.5-8 

Children’s books are catalysts for parent-child engagement during sensitive developmental 

stages when brain growth and plasticity are maximal.9,10 They provide broader, more 

grammatically correct vocabulary and range of subject matter than everyday conversation, 

especially in low-socioeconomic status (SES) households.11,12 Given these factors, the American 

Academy of Pediatrics (AAP) recommends shared reading beginning at birth, citing direct, 

lasting benefits for the developing brain,13 a claim echoed by many advocacy groups.14 

While behavioral evidence affirms moderate to large benefits of shared reading on a 

subset of emergent literacy skills (oral language and print concepts) through kindergarten,5,15 

quantifiable effects on the brain have not been previously studied.  Similarly, interventions 

improving home literacy environment – a variably defined measure of reading behaviors and 

access to books – have been shown to improve oral language and school readiness,16-20 though 

neurobiological mechanisms have yet to be described.  Neuroimaging offers a means to address 

these knowledge gaps, informing an eco-bio-developmental model of emergent literacy 

incorporating genetic, environmental, and neurobiological factors.21-25 Such models have been 

advocated by the AAP and National Institutes of Health,25 and are especially valuable for young 
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children, where behavioral measures can be difficult to interpret and underestimate the effects of 

learning and experience on brain networks.10,26 Neuroimaging has been extensively applied in 

dyslexia research (albeit in older children and adults), identifying activation patterns associated 

with disability and response to intervention,2,27-29 as well as helping define the mature reading 

network.30,31 Only recently has high-resolution neuroimaging been applied in younger, preliterate 

children,32 most often in the context of normal language development.33,34 How language 

networks become “ready” for reading, and to what extent they are influenced by home literacy 

environment or interventions during the critical pre-kindergarten period, however, are unclear.  

For our study, a sample of 3-5 year-old children underwent blood oxygen level dependent 

functional magnetic resonance imaging (BOLD fMRI) using a narrative comprehension (story 

listening) task,35,36 with a validated measure of home cognitive environment applied as a 

predictor of neural activation. This task requires the application of early emergent literacy skills, 

including vocabulary and listening comprehension.37-40 Given behavioral evidence,1,5 we 

hypothesized that children with more stimulating home environments, particularly shared 

reading exposure, would show more robust activation in brain areas supporting semantic 

processing (extraction of meaning). The semantic network includes left-sided inferior frontal, 

middle temporal, inferior parietal, and lateral occipital lobes,35,39,41 which we selected as regions 

of interest for our analysis.  We predicted that differential activation would remain significant 

after controlling for household income, a common confounder in studies of cognitive ability.42-44  

Methods 

Participants 
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All participants in this analysis were enrolled in a longitudinal study of normal brain 

development at our institution (C-MIND).45 Inclusion criteria for C-MIND are: full-term 

gestation, healthy, right-handed, native English speakers, and no standard contraindications to 

MRI. By design, the C-MIND cohort is demographically diverse (38% non-white, 55% female, 

median household income $42,500), intended to reflect the US population. At the time of our 

study, 23 children between 3-5 years of age had completed BOLD fMRI while performing a 

narrative comprehension task, in accordance with the C-MIND protocol. Of these, we were able 

to contact 19 (82.6%) for enrollment and survey administration. Despite multiple attempts, we 

were unable to contact the other 4 families, who were excluded. Informed consent was obtained 

from each child’s custodial parent, families were compensated for time and travel, and our study 

was approved by the Cincinnati Children’s Hospital Medical Center Institutional Review Board. 

Behavioral Measures 

Cognitive stimulation in the home was assessed using the preschool version of the 

STIMQ (STIMQ-P),46 which was administered to a custodial parent via telephone or during C-

MIND follow-up visits by a trained clinical research coordinator.  Time elapsed between fMRI 

scan and STIMQ administration ranged from 0 to 20 months (10±8.8).  The STIMQ-P is 

validated for ages 36 to 72 months, and involves mostly “yes/no” questions.  Three subscales 

were utilized: 1) Reading, reflecting access to books, frequency of shared reading, and variety of 

books read, 2) Parental Involvement in Developmental Advance (PIDA) reflecting the teaching 

of specific concepts such as letters, and 3) Parental Verbal Responsivity (PVR), reflecting verbal 

interaction. Parents were also asked to report the age of initiation of reading to their child, which 

is not included in the STIMQ-P. 
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Functional MRI Acquisition Specifications and Preliminary Analyses   

Details of techniques used to acclimatize children to the MRI acquisition process are 

described by Vannest, et al.32 Details of BOLD MRI acquisition specifications utilized in the C-

MIND study are described in Schmithorst, et al.35,47 Details of individual- and group-level 

analyses for the C-MIND study preceding our analysis are described in Sroka, et al.48 All 

children were awake and non-sedated during MRI scans. Voxel size utilized for acquisition and 

analysis was 3x3x4 mm. 

Narrative Comprehension Task 

The narrative comprehension (story listening) task consists of 10 alternating blocks of 

active and control conditions (5 each), of 64 seconds duration.  During the “active” condition, a 

series of 5 recorded stories of 9-10 sentences each read in a female voice was presented via 

headphones.  The stories were designed by a speech pathologist with vocabulary and syntax 

appropriate for young children (download: https://www.irc.cchmc.org/software/pedaudio.php).  

The control condition consisted of non-speech tones in a range of frequencies simulating human 

speech, to control for baseline acoustic processing. Subjects closed their eyes or saw a blank 

screen during acquisition. 

Regression with STIMQ-P 

We performed a series of regression analyses using the FEAT (fMRI Expert Analysis 

Tool) modality of FSL (fMRI-Brain Software Library, Oxford, United Kingdom).49 Utilizing 

BOLD fMRI datasets for our 19 subjects, a whole-brain, group mean activation map was first 

obtained, representing mean neural activation across subjects while listening to stories, minus 

activation listening to tones (i.e. activation attributable to the story task, excluding general 
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acoustic processing).  Mean neural activation (stories > tones) was then used as the dependent 

variable in a series of regression analyses, individually applying STIMQ-P scores (Reading, 

PIDA, PVR, Composite) and age of initiation of reading as the explanatory variable.  Income 

category (low/not low) was applied as a binary covariate when significant neural activation was 

found. Household income under 200% of the 2015 Federal Poverty Guidelines,50 adjusted for 

household size, was defined as low-income (see Table 1).51 Subject age and gender were 

considered as covariates but excluded, as no significant correlation was found between neural 

activation and either variable. To control for multiple comparisons across the brain, a False 

Discovery Rate (FDR) correction was applied in all analyses. Regression maps of neural 

activation, along with summary statistics for size, intensity, and location of activation clusters are 

reported for all significant results. The FSLView49 package was used to identify brain areas 

corresponding to active clusters in normalized, 3-dimensional, Montreal Neurological Institute 

(MNI) coordinate space,52 utilizing the Harvard-Oxford Cortical Structural Atlas (2mm scale). 

Results 
 

Demographic characteristics for our sample are described in Table 1. 
 

---Insert Table 1 about here--- 

STIMQ-P and Other Behavioral Predictors 

A summary of STIMQ-P subscale and composite scores, and reported age of initiation of 

shared reading are described in Table 2. 

---Insert Table 2 about here--- 

Group Mean Activation for the Narrative Comprehension Task 
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Group mean activation for the narrative condition compared to baseline tones (all voxels 

p<0.05, FDR correction) involved bilateral, left-lateralized cortical and subcortical regions 

involved with acoustic, phonological, and semantic language processing (see Figure 1), as 

described by Karunanayaka, et al.53  

---Insert Figure 1 about here--- 

 
Regression of Neural Activation with STIMQ-P Scores and Other Predictors 
 

Applying linear regression, STIMQ-P Reading subscale scores were positively associated 

with higher activation in a confluent region of left-sided, posterior cortex involving the occipital 

fusiform, lateral occipital, posterior inferior temporal, posterior middle temporal, posterior 

cingulate, and angular gyri, and left precuneus, as illustrated in Figure 2 (all voxels p<0.05, FDR 

correction).  Collectively, these areas reside within the parietal-temporal-occipital (PTO) 

association cortex, which supports multi-modal semantic processing, especially for language.41,54 

An exception is the posterior cingulate gyrus, which plays a role in semantic processing and 

other functions, including memory encoding41 and visual attention.55 

---Insert Figure 2 about here--- 

The association of neural activation within the left PTO cortex remained consistent and 

highly significant even expanding the statistical model to control for household income as a 

binary covariate (low/not low).  Activation clusters were of similar intensity, with slight to 

moderate decreases in size, as shown in Figure 3 (all voxels p<0.05, FDR correction). The 

largest decreases were in posterior cingulate, inferior temporal, occipital fusiform, and the most 

superior lateral occipital areas. Figure 4 displays a single axial slice (z=12) of the image series 

from Figure 3 to better illustrate the anatomical regions encompassed in the cluster.  
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No significant correlation was found between brain activation during the narrative 

comprehension task and other STIMQ-P subscales, STIMQ-P composite, age of initiation of 

reading, or months of reading exposure (initiation to scan).    

---Insert Figures 3 and 4 about here--- 

 

Discussion  

“Biological embedding,” describes the long-term impact on brain development resulting 

from the quality of cognitive stimulation and nurturing during early childhood.6,56 Learning to 

read involves the integration of a formidable array of skills sequentially and efficiently,5 

supported by language, visual, and association brain networks whose growth and plasticity peak 

in the first few years of life.57,58 During this critical pre-kindergarten period, children are highly 

vulnerable to disparities in cognitive stimulation, especially spoken language, as well as toys and 

books promoting constructive parent-child engagement.12,57,59 Many children arrive at school at a 

significant disadvantage in reading readiness, and it is clear that those who are poor readers in 

first grade60 are unlikely to catch up with peers, at great societal cost.61 This underscores the need 

for effective interventions applied as early as possible, when brain networks are most amenable 

to change.10,57,61   

Our findings support our hypothesis that while listening to stories, young children from 

more stimulating home reading environments more robustly engage neural circuitry supporting 

narrative comprehension, a foundational component of emergent literacy.62 Specifically, children 

in our study with higher STIMQ-P Reading scores showed greater activation in the left parietal-

temporal-occipital (PTO) association cortex, a “hub” region facilitating semantic processing.41,63 
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Outbound PTO connections include limbic areas involved with long-term memory (e.g. 

hippocampus) and assigning emotional value to experiences, and prefrontal executive function 

areas, each integral for learning.64 “Recycling” their role in oral language, areas within the PTO 

are recruited for reading, facilitating efficient assignment of meaning to letters and words.41,65,66 

The angular gyrus (located in the inferior parietal lobe) at the core of the PTO is particularly 

noteworthy, and plays an integral role in this process.23,41,67 Though not observed in our subjects, 

hypo-activation of the angular gyrus during reading tasks has been cited as a biomarker for 

dyslexia, with potential application for early identification and remediation.27,68  

Importantly, PTO activation in our subjects associated with home reading environment 

reflects recruitment of oral language skills supporting context and comprehension (semantics), 

not word-level decoding. This is consistent with behavioral evidence for the influence of parent-

child reading exclusively on “outside-in” oral language skills (understanding outside of the word 

itself) described by Whitehurst, et al.1,5 Vocabulary is among the most important of these skills,69 

shown to be influenced by home reading environment,17 and recently found to be positively 

associated with left angular gyrus activation during our story listening task in young children.48 

Thus, PTO activation may offer potential as a biomarker of oral language ability (the outside-in 

domain of emergent literacy), though further studies are needed to clarify how the PTO is 

integrated into the reading network. That home reading environment was not associated with 

activation of brain areas supporting phonological processing (“inside-out” decoding skills) in our 

study reinforces behavioral evidence5 that these skills seem largely dependent on explicit 

instruction.15 Additional research in this area is also needed.    

Higher Reading scores were associated with particularly robust activation in occipital 

areas within the PTO cortex, notably lateral occipital gyrus and precuneus.  Schmithorst, et al., 
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attributed activation in these areas during the narrative comprehension task (when no visual 

stimulus is presented) to mental imagery.35 The ability to “see” what is being heard is a potent, 

durable comprehension tool, as evidenced by Horowitz-Kraus, et al., who found that 5-7 year-old 

children showing greater activation of lateral occipital cortex during the narrative comprehension 

task manifest higher reading scores at age 11.40 Recruitment of left-sided PTO areas during high-

imagery tasks has also been described in adults.70 Thus, our results provide a neurobiological 

correlate to the enchantment often seen at preschool story time, especially in children with 

greater practice at home: activation of PTO circuits to visualize and understand what is 

happening.  It is intriguing to infer that children better able to recruit these circuits and apply 

mental imagery may better manage the transition from picture- to text-based books as they 

advance in school.  Conversely, those with less practice seeing and understanding, with 

consequently under-developed visual-semantic neural infrastructure, may be more likely to 

struggle.  

Surprisingly, we did not find significant association between neural activation and PIDA, 

PVR, or Composite STIMQ-P scores.  We view this as likely a byproduct of subscale themes.  

The STIMQ-P Reading subscale measures reading-specific practices, assessing frequency, 

access to books, and variety of subject matter.  As these opportunities and experiences are 

directly related to story listening, small variations, even with scores skewed towards the 

maximum, may be adequate to differentiate subjects performing this task. By contrast, PIDA 

measures the teaching of specific cognitive skills and PVR assesses parent-child conversation, 

each possibly more applicable to abilities other than narrative comprehension. Any composite 

effect was likely diluted by PIDA and PVR scores. 



10 
	
  

Contrary to our hypothesis, age of initiation of shared reading and months of reading 

exposure were not associated with neural activation, though behavioral studies have associated 

these with home literacy orientation.9,71 This may be attributable to responses skewed by social 

desirability and/or recall bias, or more likely, greater predictive power of the validated STIMQ-P 

measure. The Reading subscale captures three aspects of home reading environment: frequency 

(4 points, including for days/week), access to books (5 points, including for number of books in 

the home), and variety of content (10 points, for different types of books, e.g. concepts, beliefs, 

relationships). The relative influence of each of these factors on neural activation supporting 

narrative processing is complex, likely involving behaviors and proclivities that are more 

difficult to capture, and merits further study. For example, greater variety may reflect differences 

in how books are shared, in addition to how many and how often.  This qualitative aspect of 

reading aloud (notably dialogic reading, where the child actively participates) has been shown to 

provide a disproportionate share of its benefits, behaviorally72,73 and possibly in terms of 

neurobiological effect. 

Our study has several important strengths. Our sample of 3-5 year-old children is 

considerably younger than most neuroimaging-based studies of emergent literacy,27 with ample 

sample size74 drawn from a diverse cohort, applying an established fMRI paradigm and validated 

measure of home cognitive environment.  Our findings are consistent with current models of 

language and reading brain networks,23 complimentary with behavioral models of emergent 

literacy,15 and robust controlling for household income, a common confounder in studies of 

cognitive development.75 Utilizing an innovative approach, our results also inform clinical 

practice during a foundational stage of development, where “preventative medicine” may offer 

maximal benefit.  For example, as there is evidence that the Reach Out and Read (ROR) 
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intervention advocated in AAP recommendations13 improves home reading environment,13,18 and 

we have found that home reading environment is positively associated with activation of brain 

circuits supporting semantic processing, logical inference leads us to speculate that early home 

literacy intervention such as ROR, consistently applied, has the potential to enhance the 

development of these brain circuits.   

Our study also has several limitations.  Though it utilized existing imaging and 

behavioral data, the STIMQ-P was retrospectively administered, with a variable time from fMRI 

acquisition.  Thus, recall and social desirability bias are possible, with parents over-reporting 

reading practices.  That said, household reading behaviors have been shown to be stable during 

the preschool period, tempering such recall effects.76 Families agreeing to participate in our 

study may be more likely to constructively engage in their child’s development (participation 

bias), though C-MIND is not advertised in the context of reading, its demographic mix is diverse 

by design, and all subjects who were able to be contacted agreed to participate, minimizing the 

prospect of self-selection. The exclusion of 4 low-SES families was a consequence of unreliable 

contact information (i.e. phone out of service), shifting our demographic profile towards higher 

SES, though 37% of our sample were low-income. Our high reported STIMQ-P subscale scores 

suggest potential ceiling effects, though the Reading subscale provided sensitivity ideal for our 

task. Finally, whereas our results show robust association between home reading environment 

and neural activation, our cross-sectional design cannot establish causation.  Longitudinal studies 

are needed to discern the influence of parent-child reading and interventions on emergent literacy 

skills beginning in infancy, especially in low-SES populations.  Thus, we might optimize 

resources and anticipatory guidance via improved access to books, dialogic reading training, and 
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early identification and remediation of reading disabilities, to ensure the best possible story for 

all children. 

Conclusions: 

Our study utilized functional MRI to for the first time demonstrate an association 

between home reading environment and activation of specific brain regions supporting emergent 

literacy during the pre-kindergarten period.  Children exposed to higher levels of parent-child 

reading showed significantly greater activation during a story listening task, in brain areas within 

a left-sided, multi-modal association cortex facilitating mental imagery and semantic processing 

(extraction of meaning), controlling for household income.  Critical for language, this region is 

recruited during reading acquisition, with hypo-activation a biomarker of reading disability.  This 

study provides a novel, neurobiological correlate to oral language skills fostered by parent-child 

reading in early childhood, offering insight into how this practice may shape the developing 

brain, and informing an eco-bio-developmental model of emergent literacy and its promotion.  
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Table 1. Demographic characteristics of C-MIND sample subjects. 

Characteristic n % 

Sample 19 100 
Age (years)   
   3+ 10 52 
   4+ 6 32 
   5+ 3 16 
Sex    
   Male 8 42 
   Female 11 58 
Annual household income ($) 

 200 

 

 

200% 

  
  Under 5,000 0 0 
   5,000-10,000 1 5 
   10-15,000 1 5 
   15,000-25,000 2 11 
   25,000-35,000 1 5 
   35,000-50,000 2 11 
   50,000-75,000 

 

4 21 
   75,000-100,000 4 21 
   100,000-150,000 2 11 
   Above 150,000 2 11 
Household income level 

 

A 

  
   Below 200% poverty (low) 7 37 
   Above 200% poverty 12 63 
Children in the household   
   1 

   2-3 

3 16 
   2-3 12 63 
   4-5 3 16 
   6 1 5 
 

Table 2. STIMQ-P scores and responses to reading-related items. 

Item possible mean std min max 

STIMQ-P      
   Reading 19 18 2.0 13 19 
   PIDA 15 12 2.2 8 15 
   PVR 7 6 1.2 3 7 
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   Composite 41 35 3.7 27 41 
Specific Items      
   Age (mos) initiation of reading ** 5 5.5 0 24 
   Months of reading exposure ** 43 9.5 30 63 
   Children’s books in the home ** 162 113 10 400 
   Reading nights/week 7 6 1.9 2 7 
Table 2.  Summary of STIMQ-P subscale and composite scores, and reading-related items.  
Minimum, maximum, mean, standard deviation (std) and total possible (where applicable) scores 
are presented.  Individual questions other than age of initiation of reading are part of the STIMQ-
P Reading subscale.    

 

Figure 1. Group mean activation map for the narrative comprehension task. 

 

Figure 1: Group mean BOLD fMRI activation map (stories>tones) in 3-5 year-old children 
(N=19).  All voxels significant at p<0.05 (corrected), slice thickness 5 mm for contiguous slices. 
Slices range from z=-28 to z=74 in the Talairach52 frame. Color scale ranges from t=1.25 (cooler) 
to 4 (hotter). Radiological orientation, left=right, right=left. 
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Figure 2. Regression map (stories>tones activation) with STIMQ-P Reading subscale score 
as explanatory variable. 

 

Figure 2: Regression map for the narrative comprehension task (stories>tones) in 3-5 year-old 
children (N=19), with STIMQ-P Reading score as explanatory variable.  Cluster size 4087 voxels 
all significant at p<0.05 (FDR corrected), z-score local maxima 3.25-3.44. 5mm slices from z=-
28 to z=74 in the Talairach52 frame.  Color scale from t=1.25 (cooler) to 4 (hotter). Radiological 
orientation, left=right, right=left. 

 

Figure 3. Regression map (stories>tones activation) with STIMQ-P Reading subscale score 
as explanatory variable, controlling for household income. 
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Figure 3: Regression map for the narrative comprehension task (stories>tones) in 3-5 year-old 
children (N=19), with STIMQ-P Reading score as explanatory variable, controlling for 
household income.  Cluster size 2467 voxels all significant at p<0.05 (FDR corrected), z-score 
local maxima 3.15-3.38. 5mm slices from z=-28 to z=74 in the Talairach52 frame.  Color scale 
from t=1.25 (cooler) to 4 (hotter). Radiological orientation, left=right, right=left. 

 

Figure 4: Detail slice (z=12) from regression map in Figure 3 (stories>tones activation) with 
STIMQ-P Reading subscale score as explanatory variable, controlling for household 
income.    
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Figure 4: Regression map detail slice (5mm, Talairach coordinate z=12) for the narrative 
comprehension task (narrative>tones), with STIMQ-P Reading score as explanatory variable, 
controlling for household income. Regions involved with semantic processing and mental 
imagery are circled. Color scale ranges from t=1.25 (cooler) to 4 (hotter). Radiological 
orientation, left=right, right=left. 

 


