

Genetic Fuzzy Trees for Intelligent Control
of Unmanned Combat Aerial Vehicles

Nicholas D. Ernest

College of Engineering and Applied Science

University of Cincinnati

A dissertation submitted for the
partial fulfillment of the degree of

Doctor of Philosophy in Aerospace Engineering & Engineering Mechanics

2015 March

Committee Chair: Dr. Kelly Cohen

mailto:ernestnd@mail.uc.edu
http://ceas.uc.edu/
http://uc.edu

Abstract

Fuzzy Logic Control is a powerful tool that has found great success in a variety of

applications. This technique relies less on complex mathematics and more on ”expert

knowledge” of a system to bring about high-performance, resilient, and efficient control

through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy

Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic

Algorithm (GA) and have similarly found great success. However, the combination of

these methods suffer severely from scalability; the number of rules required to control the

system increases exponentially with the number of states the inputs and outputs can take.

Therefor GFSs have thus far not been applicable to complex, artificial intelligence type

problems.

The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierar-

chically, makes sub-decisions when possible, and thus greatly reduces the burden on the

GA. This development significantly changes the field of possible applications for GFSs.

Within this study, this is demonstrated through applying this technique to a difficult air

combat problem.

Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the

2030 time-frame, it becomes apparent that the mission, flight, and ground controls will

utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn,

adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-

time and extrapolate when faced with scenarios significantly different from those used

in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to

develop intelligent controllers for these advanced unmanned craft as the first GFT. A

simulation space referred to as HADES (Hoplological Autonomous Defend and Engage

Simulation) was created in which LETHA can train the UCAVs.

Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and

a recharging Laser Weapon System (LWS), these UCAVs can navigate a mission space,

counter enemy threats, cope with losses in communications, and destroy mission-critical

targets. Monte Carlo simulations of the resulting controllers were tested in mission sce-

narios that are distinct from the training scenarios to determine the training effectiveness

in new environments and the presence of deep learning. Despite an incredibly large so-

lution space, LETHA has demonstrated remarkable effectiveness in training intelligent

controllers for the UCAV squadron and shown robustness to drastically changing states,

uncertainty, and limited information while maintaining extreme levels of computational

efficiency.

I dedicate this work first to my parents, Don and Jennifer, who have provided

support for me in countless ways; without them this work would have never

taken place. Also, to my wife, Liz, who took care of, assisted, and believed in

me throughout my graduate career. Lastly, to my son, Glenn, who gave me

the inspiration to continue working when I felt too exhausted to code or write

a single line more.

Acknowledgements

I would like to thank first and foremost my advisor Dr. Kelly Cohen, who

sold me on the world of controls and in particular, fuzzy logic and genetic

algorithms. His guidance throughout my academic career was critical to my

success and his constant faith in my abilities inspired me to push onwards.

Dr. Corey Schumacher was instrumental for both being my sponsor for my

fellowship, and for presenting me the problem covered within. Both he and his

colleague Dr. David Casbeer provided extremely helpful support throughout.

I am also very appreciative of the excellent support from Dr. Elad Kivelevitch

with work in Chapter 7, and both Dr. Anca Ralescu and Ms. Nikita Phadke

for their assistance with work in Chapter 8. I am most thankful for all of

my professors, co-workers, and peers who assisted me throughout this process,

and am incredibly grateful to the Dayton Area Graduate Studies Institute who

funded me throughout this entire PhD process.

Contents

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Motivation . 3

1.1.1 UCAV Control . 3
1.1.2 Genetic Fuzzy Systems . 6

1.2 Objective . 8

2 Literature Review 10
2.1 UCAV Operations . 10
2.2 Route Optimization . 11
2.3 Cooperation Without Communications . 13
2.4 Alternative Soft Computing Methods . 15
2.5 Training . 18
2.6 Contributions of the Work . 20

3 Problem Formulation 22
3.1 Blue Systems . 22
3.2 Threats . 23

3.2.1 Lethal Threats . 23
3.2.2 Non-Lethal Threats . 24

3.3 Variants . 25
3.4 HADES . 26

3.4.1 Assumptions . 26
3.4.2 Models . 28
3.4.3 Implementation . 31
3.4.4 Objective Function . 31

4 Methodology 33
4.1 Genetic Fuzzy Systems . 33
4.2 Fuzzy Trees . 36
4.3 Genetic Fuzzy Trees . 39

iv

CONTENTS

5 Weapon Control Problem 42

5.1 Introduction . 42

5.2 Initial Weapon Control FISs . 43

5.2.1 Fuzzy Controllers . 44

5.2.2 Confidence Level FIS . 44

5.2.3 Individual Weapon Systems FIS . 44

5.2.4 Whole Squadron Weapons FIS . 46

5.2.5 String Structure . 47

5.2.6 Evolutionary Processes . 48

5.3 Iterative Fire Control Process . 49

5.4 Missions . 51

5.5 Training Results . 56

5.6 Weapon Control Improvements . 58

5.6.1 Weapon Control Branch Modifications 58

5.6.1.1 Weapon Selection FIS . 58

5.6.1.2 LWS Control FIS . 59

5.6.2 Cooperative Task Assignment Algorithm 61

5.6.2.1 Results . 64

5.7 Conclusions . 69

6 Constrained Communications Problem 70

6.1 Introduction . 70

6.2 EWAR Implementation . 70

6.3 Communication Constraints Branch . 71

6.3.1 Role Assignment FIS . 71

6.3.2 Role Weapon Control FISs . 72

6.3.3 String Structure . 73

6.3.4 Evolutionary Processes . 74

6.3.5 Training . 75

6.4 Results . 76

6.4.1 Training Missions . 76

6.4.1.1 Training Mission #1 . 76

6.4.1.2 Training Mission #2 . 77

6.4.1.3 Training Mission #3 . 77

6.4.1.4 Training Mission #4 . 78

6.4.1.5 Training Mission #5 . 79

6.4.1.6 Training Mission #6 . 80

6.4.1.7 Training Mission Setup . 80

6.4.1.8 Training Results . 81

6.4.2 Live Missions . 83

6.4.3 Post-Training Performance . 88

6.5 Conclusions . 89

v

CONTENTS

7 Vehicle Routing Problem 91
7.1 Introduction . 91
7.2 Fuzzy Clustering Routing Method . 91

7.2.1 Problem Background . 92
7.2.2 Methodology . 94
7.2.3 VRP Results . 96
7.2.4 VRP Conclusions . 97

7.3 LETHA Routing . 98
7.3.1 Implementation . 98
7.3.2 Routing Branch . 98
7.3.3 Routing Results . 100
7.3.4 Genetic Algorithm Optimization . 110

7.4 Conclusions . 111

8 Coping With Varied Ordinances 112
8.1 Introduction . 112
8.2 Missile Models . 112
8.3 Results . 119
8.4 Conclusions . 126

9 Conclusions and Future Work 127
9.1 Introduction . 127
9.2 Publications . 128
9.3 Conclusions . 129
9.4 Future Work . 131
9.5 Closing Thoughts . 132

References 133

vi

List of Figures

1.1 Mission Vignette . 6

1.2 GFT Method Evolution . 8

2.1 Receding Horizon Mission . 12

2.2 Cooperation Without Communication Example 14

2.3 Example Fuzzy Network . 16

2.4 Example Fuzzy Network . 16

2.5 Example Fuzzy Decision Tree . 17

2.6 Example Fuzzy Tree . 18

2.7 Example Cascading Fuzzy System . 19

3.1 Mission Types . 25

3.2 SAM Model . 29

3.3 Missile Attribute Distributions . 30

4.1 Example Membership Functions . 35

4.2 Cascading Fuzzy Structure . 37

4.3 Comparison of Single FIS and Cascaded Fuzzy System 37

4.4 LETHA’s Fuzzy Tree . 38

4.5 GFT Process . 39

5.1 Confidence FIS Input . 45

5.2 Confidence FIS Output . 45

5.3 Individual Weapons Systems FIS Input . 46

5.4 Individual Weapons Systems FIS Output 47

5.5 LETHA Learning Process . 50

5.6 Mission 1 . 53

5.7 Mission 2 . 53

5.8 Mission 3 . 54

5.9 Mission 4 . 54

5.10 Mission 5 . 55

5.11 Mission 6 . 55

5.12 Mission 7 . 56

5.13 Training Results . 57

vii

LIST OF FIGURES

5.14 Weapon Control FIS . 61

5.15 Weapon Control Cascade . 62

5.16 CTAA Comparison Missions . 65

5.17 Iterative Method Mission #1 . 66

5.18 CTAA Method Mission #1 . 67

6.1 Training Mission #1 . 77

6.2 Training Mission #2 . 78

6.3 Training Mission #3 . 79

6.4 Training Mission #4 . 79

6.5 Training Mission #5 . 80

6.6 Training Mission #6 . 81

6.7 Live Mission #1 . 84

6.8 Live Mission #2 . 84

6.9 Live Mission #3 . 84

6.10 Live Mission #4 . 85

6.11 Live Mission #5 . 85

6.12 Live Mission #6 . 85

6.13 Live Mission #7 . 86

6.14 Live Mission #8 . 86

6.15 Live Mission #9 . 86

6.16 Live Mission #10 . 87

6.17 Live Mission #11 . 87

6.18 Live Mission #12 . 87

7.1 Visibility Polygon Example . 93

7.2 Example Min-Max Multiple TSP . 93

7.3 Composite VRP . 94

7.4 VRP Solution . 97

7.5 Route Creation in LETHA . 98

7.6 Single Squad Routing Mission . 101

7.7 8 Depot, 8 Squad Mission . 101

7.8 4 Depot, 8 Squad Mission . 102

7.9 2 Depot, 4 Squad Mission . 103

7.10 1 Depot, 50 Squad Mission . 104

7.11 Dynamic Squad Mission #1 . 106

7.12 Dynamic Squad Mission #2 . 106

7.13 Dynamic Squad Process #1 . 107

7.14 Dynamic Squad Process #2 . 107

7.15 Dynamic Squad Process #3 . 108

7.16 Dynamic Squad Process #4 . 109

7.17 Dynamic Squad Process #5 . 109

8.1 Weapon Control Cascade . 114

viii

LIST OF FIGURES

8.2 Nominal Training Data . 116
8.3 Insufficient Training Data . 117
8.4 Poor Quality Training Data . 118
8.5 Nominal Case Classifier Comparison . 120
8.6 Insufficient Case Classifier Comparison . 120
8.7 Poor Quality Case Classifier Comparison . 121
8.8 ROC Plot for RBF SVM . 123
8.9 ROC Plot for LDA . 124
8.10 LETHA Mission with Classifier Implemented 125
8.11 Highlighted Portion of Mission . 125

ix

List of Tables

2.1 Method Attributes . 20

4.1 Example rule base table . 34

5.1 Individual Weapons FIS Output . 47
5.2 Squadron Weapons FIS Output . 48
5.3 Confidenve Level FIS Output . 48
5.4 Membership Tuning String Section . 48
5.5 Weapon Type FIS . 58
5.6 LWS Control FIS . 60
5.7 Weapon Control Results Over 100 Runs . 68

6.1 Role Assignment FIS . 71
6.2 Role Weapon Control FIS . 72
6.3 Learning Sections of String . 73
6.4 Tuning Sections of String . 74
6.5 Training Mission Statistics . 81
6.6 String Bank Iterations Results . 83
6.7 Best String Performance in Training Missions 88
6.8 Live Mission Statistics . 88
6.9 Performance in Live Missions . 89

7.1 VRP Results of 25 Runs . 96
7.2 VRP Code Average Run-Times . 96
7.3 Loitering Needs FIS . 99
7.4 Loitering Ability FIS . 99
7.5 Loiter Creation FIS . 100
7.6 Final Fuzzy Tree Performance . 110

8.1 Classification Method Comparison . 122
8.2 Run-Times for each Classifier . 123

x

1

Introduction

“Fuzzy theory is wrong, wrong, and pernicious. What we need is more logical thinking,

not less. ... The danger of fuzzy logic is that it will encourage the sort of imprecise

thinking that has brought us so much trouble.” stated Professor Emeritus William Kahan

at University of California Berkely (1) to his colleague Professor Emeritus Lofti Zadeh,

who is hailed as the father of fuzzy logic (2). Kahan further declared fuzzy logic to be

the “cocaine of science”, and he is not alone in his harsh critiques; Dana Scott, Emeritus

Hillman University Professor at Carnegie Mellon University described fuzzy logic as “

pornography” (3).

Despite these criticisms, fuzzy logic is associated with over 100,000 patents and 310,000

academic publications (4). This raises the question, despite all this success starting in the

late 20th century, why is fuzzy logic widely considered taboo to this day? Professor Bart

Kosko of University of Southern California provides an explanation for these critiques:

“Fuzzy logic is Spock’s worst nightmare - a way of doing science without math.” (5) Of

course math is a part of fuzzy logic, compared to alternative control methods however,

it’s presence is indeed relatively non-existent.

Fuzzy control is instead reliant on expert knowledge to categorize the values of the

inputs and outputs into groups and then apply if-then rules to the combinations of these

1

1. INTRODUCTION

input and output groups. So we can effectively remove the math from the problem and

replace it with expert knowledge. This practice discretizes the control solution space into

a range of possible linguistic terms and their combinations. If we implement a search

heuristic such as a Genetic Algorithm (GA) over this fuzzy solution space, we can even

forgo the expert knowledge. This methodology is referred to as a Genetic Fuzzy System

(GFS), and has similarly found immense success over the years since its development in

the 1990’s (6).

The ability to bring high-performance and efficient control to difficult problems with a

far less intimate study of the physics behind the system, and thus fewer, if any, unrealistic

mathematical assumptions and constraints is the highlight of the GFS. This all paints a

picture of GFSs that seems too good to be true; as long as the inputs and desired out-

puts are known, any problem could be solved by a GFS with no other knowledge. The

devil is in the details however, as GFSs suffer heavily from the “curse of dimensionality”.

That is, these two methodologies that combine to form a GFS both suffer from scalability

issues. The GFS must create an if-then rule combining every classification of every in-

put with every classification of every output, causing the computational cost to increase

exponentially.

Seeking to push the capabilities of GFSs forward, this Dayton Area Graduate Studies

Institute (DAGSI)-funded study presents a complex aerial combat problem, with many in-

puts and outputs. Intelligent control of the Unmanned Combat Aerial Vehicles (UCAVs) in

this problem is accomplished through the development of a new type of GFS, the Genetic

Fuzzy Tree (GFT), and its first embodiment, the Learning Enhanced Tactical Handling

Algorithm (LETHA). Results obtained from LETHA will demonstrate how GFTs bring

all of the base strengths of standard GFSs to complex, artificial intelligence type prob-

lems. For training and testing, LETHA runs aerial operations from a two-dimensional

perspective within a continuous-time simulation environment referred to as the Hoplo-

logical Autonomous Defend and Engage Simulation (HADES). This difficult environment

2

1.1 Motivation

ensures that a successful system must show deep learning, be computationally efficient,

resilient to changes and unknown environments, and ultimately be highly effective.

Following, the motivation and objective of this work are presented. In the proceed-

ing chapters the problem is developed and discussed, the methodology and approach are

detailed, initial results are shown, and a schedule of future work is proposed.

1.1 Motivation

This work has two major motivations; a need for advancing intelligent control of UCAVs

with algorithms that show deep learning and a need to increase the scalability of genetic

fuzzy systems. These are discussed in the following subsections.

1.1.1 UCAV Control

There is a multitude of complexities to consider and assumptions to decide upon whilst

creating an intelligent system for mission training and control of UCAVs. The problem

space is enormous and cumbersome, even for the most approximate of methods. The US

Air Force has created a call for small business innovative research grants on the Intelligent

Course of Action (ICOA) Generation for Air Vehicle Self-Defense Program (7). While the

specifics of this program are behind security constraints, through discussion with AFRL,

LETHA seeks to solve a similar problem. There is a good deal of past work in command

and control (C2) of aerial missions, in particular as part of the DARPA Joint Force Air

Component Commander (JFACC) Program (8). Resulting work (9, 10, 11, 12) investigated

the problem from many different angles; some utilize a game theoretic approach, while

others are more abstract and examine the scenario as a response problem. Unlike the

JFACC Program, this study deals strictly with autonomous unmanned systems, rather

than C2 of manned and remote-operated operations.

Relating to a similar application topic of this study, the National Research Coun-

3

1. INTRODUCTION

cil’s 2014 report on Autonomy Research for Civil Aviation discusses the advances of au-

tonomous technologies, as well as the related opportunities and research struggles (13).

Unmanned aerial vehicles (UAVs) currently in use are capable of being remotely-operated

and performing a variety of tasks in environments not safe for pilots. However, maintaining

the safety of our personnel is not the only benefit these technologies provide. Small-scale

UAVs can perform certain tasks significantly cheaper and quicker than manned craft (14).

Surveillance UAVs are capable of completing missions of incredibly long duration. The

modern UCAV can complete simple air to ground strike missions (15). Desired capabilities

for next-gen UCAVs are much greater, and to fulfill many of these potential capacities an

increased level of autonomy is necessary.

Similar to the motivation of unmanned systems removing the pilot from the aircraft,

autonomous systems would not necessarily be implemented in order to ease the need for

trained remote pilots. Remote-operation is limited by communication constraints; for

slow flying UCAV’s utilized in air to ground missile strike operations these constraints

can be mitigated by lowering resolution of sensors and focusing on ground targets. Longer

maneuvers can be completed while in the presence of even significant signal latency. These

needs bring about weaknesses; focusing on a target to meet bandwidth constraints of video

feeds can cause unintentional collateral damage depending on the surrounding environs,

and these aircraft are extremely vulnerable to enemy air defenses. Higher-velocity flight,

extremely precise future sensors and weapon systems, and a dynamic plan to counter

enemy threats would require enormous amounts of bandwidth and near-zero latency, an

impossibility if SATCOM is required based on the limitation of the speed of light.

By allowing an on-board intelligent controller to operate a UCAV, or squadron of

UCAVs, communications to command centers can be solely reduced to high-level orders.

If desired, this same technology could operate certain functions of aircraft, give advice to

pilots, or control slave UCAV’s that fly alongside manned aircraft. Additionally, this same

scenario can easily be adapted to other crafts, in particular unmanned surface vehicles (16).

4

1.1 Motivation

As a complexity compared to would-be similar studies (10) the next-gen UCAVs trained

and controlled by LETHA are equipped with a Laser Weapon System (LWS), the details

of which will be explained later. This device allows the UCAVs to counter enemy surface

and air to air missiles and has a capacitor that recharges over time potentially from the

aircraft’s engine. A limited supply of Self-Defense Missiles (SDMs) are also in the inventory

of each UCAV, which can also be utilized against all enemy missile types as well as enemy

air interceptors.

An example mission can be seen in figure 1.1. In this particular mission a pre-defined

route through the battle space is given to the UCAV squadron. Only some intelligence

with regards to locations of enemy threats is known, but awareness of the exact coordi-

nates of the two critical mission targets is assumed. Enemy surface to air missile (SAM)

sites fire rapidly at the squadron when within range, and enemy air interceptors (AIs)

approach and fire upon the squadron once their patrol area is invaded. Enemy electronic

warfare (EWAR) stations are present throughout areas of the map, blocking communi-

cation between members of the squad for a certain amount of time. Critical targets are

considered to have no defenses of their own. Simplistic models are utilized for all vehicles

and munitions for ease of computation and to stay outside of security constraints.

Through intelligent control of these technologies, a squadron, or multiple squadrons, of

UCAVs could perform incredibly dangerous and lengthy missions with very high success

rates. Once realized, such systems could likely change the entirety of the air combat

environment. Determining the number of resources necessary for a mission and their

optimal routes and tactics will be challenging and will go against current doctrines.

While LETHA and HADES will assume autonomous UCAVs, this is in no way a

requirement of LETHA. LETHA’s main goals are intelligent mission planning, routing,

tactics, and direct control of SDMs and the LWS. If there is a desire to have manned or

remote-operated unmanned aircraft, the controllers developed within can operate certain

subsystems such as the LWS autonomously and simply give advice to the pilot rather than

5

1. INTRODUCTION

Figure 1.1: Mission Vignette - Example battle space in HADES

control each aircraft directly. Lastly, this technology is by no means tied to aerial vehicles,

and could easily be applied to autonomous land and naval forces.

1.1.2 Genetic Fuzzy Systems

Fuzzy control is reliant on expert knowledge to categorize the values of the inputs and

outputs into groups; for example rather than 82.38 degrees Fahrenheit, a temperature

measurement would be “fairly hot”. Again based on expert knowledge, an if-then fuzzy

rule such as “if temperature is fairly hot, increase cooling fan speed slightly”. If a fuzzy

logistician were to be hired to automate some industrial process currently performed by

uneducated expert operator and designed by a PhD engineer, the operator would likely

be the source of more useful information.

To utilize an intelligent system to determine this expert knowledge is obviously a

necessity when this information is not available, however it is also often used even if this

is not the case due to difficulty in fine-tuning and accurately transcribing the knowledge

6

1.1 Motivation

into fuzzy rules (17). The complexity of this problem is quite high though, and is a barrier

of application for many approaches. Resilience to uncertainties, adaptability to many

dynamic states, and the ability to extrapolate deep learning and apply it to different and

new scenarios are all requirements. Additionally, computational cost both for training and

the resulting controllers are important considerations. Genetic fuzzy systems have shown

great capabilities in training of Fuzzy Inference Systems (FISs), but a single FIS would

need an incapacitating amount of inputs and outputs for this problem resulting in extreme

size and complexity (18).

The fuzzy tree, with many FISs, all without the requirement of a strict structure,

each controlling smaller portions of the problem is a much better approach, allowing

specialized rule-sets to be created for the many different states that will be considered.

This technique allows a wide variety of systems all with varying degrees of connectivity

and multiple possible crisp outputs. This method can create a system with an extremely

efficient number of rules, which are trained and their corresponding Membership Functions

(MFs) tuned in order to bring deterministic control to incredibly complex problems.

The optimization algorithm to create the single FIS that would solve the problem

presented in this study would have a solution space with a size of 2.6 ∗ 107022. With

top of the line modern equipment, this would take roughly 2.2 ∗ 107017 processor years to

perform brute search on. We can cut this time down immensely by implementing a GA;

if we assume this GA would have to cover the same percentage of the solution space as

completed in this study to reach an acceptable level of performance, this would reduce the

time to 1.1 ∗ 106704 processor years, or about 7.9 ∗ 106693 times longer than the current

most agreed upon scientific age of the universe (19).

Obviously this is far beyond the realistic complexity ceiling for a standard genetic fuzzy

system. By hierarchically breaking down the problem in an intelligent manner, LETHA

can bring high levels of performance to this problem. There is a price to pay for this

however, as the ultimate performance of a GFT is bounded above by the performance of

7

1. INTRODUCTION

the single FIS approach. That is, a single FIS will always perform as good as or better

than a GFT. This study seeks to ensure that these costs can be minimized. Figure 1.2

depicts the evolution of the GFT method, which will be discussed further in Chapter 4.

Figure 1.2: GFT Method Evolution - GCFS and GFT novel systems developed through
this research

1.2 Objective

This dissertation’s objective is to demonstrate the effectiveness of the novel Ge-

netic Fuzzy Tree approach through application to a simulated two-dimensional

aerial combat mission. The first GFT, LETHA, was created to train and con-

trol a squadron or squadrons of UCAVs throughout these vignettes as they

counter hostile forces and destroy critical targets. Furthermore the fuzzy tree

of controllers resulting from training for various types of missions will be tested

via Monte Carlo simulations of missions that were not trained for. The ability

8

1.2 Objective

for the GFT to cope with additional complexities will be investigated.

Given a battlefield of interest, the position and inventory of blue air bases on this

battlefield, the mission objectives, an acceptable mission completion time, and any com-

bination of:

• Critical targets estimated position

• Critical targets estimated route

• Threat estimated positions

• Estimated threat equipped weapon systems

• Estimated threat possible weapon system characteristics

• Estimated enemy sensor capabilities

LETHA seeks to:

• Develop the optimal blue squadrons’ makeup

• Determine the optimal route for each UCAV

• Assign appropriate tasks to each UCAV, based on the mission objectives

• Appropriately counter threats throughout the mission, resilient to losses in commu-
nication

• Complete the mission and maintain a variable balance of time and risk optimality

Little work has been done in this area, research has provided no published material that

presents an intelligent system for UCAV control to this complexity. However, less complex

variants of sub-problems have been investigated and their relevance and applicability will

be referenced in the next chapter.

9

2

Literature Review

The problem LETHA examines inside HADES has four main components: weapon sys-

tems control, route planning, cooperation without communications, and most importantly,

intelligent system training. In this chapter, relevant work in these areas will be analyzed.

Lastly, the contributions of this work to the field will be discussed.

2.1 UCAV Operations

There is a good deal of past work in command and control (C2) of aerial missions, in partic-

ular as part of the DARPA Joint Force Air Component Commander (JFACC) Program.(8)

Resulting work investigated the problem from many different angles; some utilize a game

theoretic approach, while others are more abstract and examine the scenario as a response

problem.(9, 10, 11, 12) Unlike the JFACC Program, this study deals strictly with au-

tonomous unmanned systems, rather than C2 of manned and remote-operated operations.

No published method is easily adapted as a suitable comparison to this study due to the

presence of the SDMs and LWS, rather than simply a bank of air to ground munitions.

Understandably as it has yet to be fully realized, there is no available work with

regards to optimal control of the LWS, either with a lone vehicle or in a group setting.

10

2.2 Route Optimization

Problems associated with queuing theory, such as the work by Kalyanam et al. (20),

seem as potential grounds for comparison as the set of LWSs can be examined from the

viewpoint of a queue. However, this method requires a statistical distribution of events,

and the LWS is not quite a queue in the fact that multiple control options are available

that alter its performance.

2.2 Route Optimization

A great deal of work has been done on the routing of UAVs. For UCAVs, many route

optimization studies include missiles (10) but these are simply fire and forget, such as the

SDMs in this study, and thus require no intelligent control if used independently and not

alongside alternative systems. As such, when a UCAV reaches a target it fires a missile,

and the actual control lies more in the route planning of the aircraft and what it did before

this point.

Faied et al. (9) presents a game theoretic approach utilizing a receding time horizon

to model UCAV operations. This work enforces movement to a grid, and applies a variety

of rules as constraints, but appropriately models a combat environment with a team of

UCAVs against a group of enemy ground forces and critical targets. The implementation

of the time horizon allows stochastic dynamic programming to optimize their objective

function directly at each discrete time step. Heterogeneous unit capabilities increase the

complexity of problem space from other studies. A probability of kill is implemented as

well, though the controller knows this percentage. Here a non-continuous environment

and restrictive rule constraints prevent this method from applying to the same problem

as LETHA, even if the LWS is ignored.

More closely related to LETHA, Cassandras et al. (10) present a continuous time en-

vironment through maintaining a receding time horizon. A group of homogeneous UCAVs

must visit each target on a map and then return to base. A probability of kill is given for

11

2. LITERATURE REVIEW

each event, and a follow-up UCAV must re-visit the target to determine effectiveness of

the original strike. Here a time decomposition of the problem enables an optimal objective

function score to be determined over this time interval. Additionally, control is reduced to

only one variable, heading, which can bring about an increase in computational efficiency.

Again though, a time-horizon approach does not allow for much uncertainty in enemy

locations or capabilities, and the instant a more complex problem is analyzed, constantly

optimizing an objective function over each time horizon may not be computationally fea-

sible. An example mission from this work is displayed in Figure 2.1.

Figure 2.1: Receding Horizon Mission - Route optimization method (10)

As a basis of comparison for the LETHA’s routing algorithm research, Obermeyer

(21) presented a polygon visiting Dubins Traveling Salesman Problem (TSP). While not

directly tied to UCAVs, in this work polygons are created around each target that represent

some visibility range. This could easily be translated into a Launch Acceptability Region

(LAR) for the UCAVs around each target however. Utilizing a resolute-complete method,

this problem was broken down into more simplistic versions, at which point a TSP solver

was employed.

12

2.3 Cooperation Without Communications

2.3 Cooperation Without Communications

At least some temporary loss of communications is a fact of war, whether through envi-

ronmental effects, enemy disruption, or simply hardware or software malfunction. Losing

contact with a manned aircraft for some time period certainly can be a cause of an alarm,

but with a UCAV perhaps even more so. While the autonomous UCAVs trained by

LETHA require no communication from a command center, they do communicate with

each other in order to determine optimal task allocation.

Jackson et al. present an oft-studied problem of cooperation while under a limited,

distributed network.(22) A bidding process takes place for task assignment, where syn-

chronization of the group’s actions is delayed due to the ability for each member to com-

municate with only a limited subset of the group. This type of algorithm would be useful

inside LETHA for the case where communications are lost between only certain members

of the squadron, though this currently is considered outside the scope of this study.

While not tied with vehicles, work done by Leith et al. on wireless LAN channel se-

lection without communication presents an interesting method.(23) Here multiple wireless

routers within range of each other must correctly pick differing channels to set up their

networks; an example setup is shown in Figure 2.2.

The algorithm presented by Leith et al. is quite effective and wastes little time in

probing channels already being utilized. However, rather than time, these wastes for

LETHA would be LWS capacity and SDMs. While in theory a very short set of lases

on an incoming missile by different UCAVs in order to designate desired actions could

be utilized to synchronize the actions of the team under no communications, this would

require sensors to perfectly monitor every incoming missile simultaneously and the LWS

to have zero lock-on delay to each incoming missile.

The fact that both the LWS and SDMs do not produce immediate results disallows

many methods. Bosse et al. presented the distributed weighing problem.(24) Here agents

13

2. LITERATURE REVIEW

Figure 2.2: Cooperation Without Communication Example - Router channel selection
problem (23)

are given positions, or roles, a priori. Each role has different parameters that define their

behavior. Utilizing this approach, the UCAVs synchronize and modify their roles when

communications are present, and once cut, follow their pre-defined roles in an effort to

reduce wasted resources.

Gurfil and Kivelevitch investigate a similar combat scenario with a group of UAVs

in an air to ground search and destroy mission.(25) This study on flock property effects

considered varying communication constraints, including no communications. During this

case, the UAVs can communicate indirectly through stigmergy, or stimulating the envi-

ronment in a certain manner in order to determine the following actions. Utilizing role

assignments and stigmergy, the UCAVs LETHA controls will have an understanding and

at least an estimation of the next actions taken by each squad member.(16)

Sabo et al. analyze a UAV task allocation and routing problem while considering

limited communication capabilities.(26) Here fuzzy logic is utilized to allocate UAVs to

requests, collect data, and return this data to a main depot. Data transmission rates

14

2.4 Alternative Soft Computing Methods

and ranges are considered, making this problem a balance between covering requests and

sending all of the received information back to the depot. The communication constraints

LETHA faces take a significantly different form however, and instead block communi-

cations between the UCAVs. Ranges and rates when communications are up are not

constrained.

2.4 Alternative Soft Computing Methods

This section will clarify both the GFT’s relationship to other soft computing techniques, as

well as the terminology as this can be a source of confusion. The specifics of the GFT will

be reserved for Chapter 4. Soft computing is a topic in computer science which contains of

methods that can provide approximate solutions for complex problems and typically these

methods are resilient to imperfect information, uncertainties, and randomness.(27) Since

their development various soft computing methods, such as genetic algorithms, fuzzy logic,

and neural networks to name a few, have been combined in almost every way possible.

We start with analyzing the term ”Fuzzy Network”. This was first introduce by

Hanebeck and Schmidt in 1996 in their publication ”Genetic Optimization of Fuzzy

Networks”.(28) This Fuzzy Network is essentially a different way of modeling a FIS which

embodies it more similar to a radial neural network. While the GFT is technically speaking

the genetic optimization of a ”network” of fuzzy controllers, the GFT is clearly different

than this Fuzzy Network as shown below. Figure 2.3 displays their model of a 2 input 1

output FIS.

The term Fuzzy Network takes another form in 2010 as Gegov re-introduces the term

Fuzzy Network in his book ”Fuzzy Networks for Complex Systems - A Modular Rule Base

Approach” and related papers.(29, 30) This Fuzzy Network has a significantly different

structure, where each node can represent a rule-base. Again, this is not a system of FISs

directly and indirectly tied to each other as in the GFT, but is significantly different than

15

2. LITERATURE REVIEW

Figure 2.3: Example Fuzzy Network - 2 input 1 output Hanebeck and Schmidt Fuzzy
Network (28)

the Fuzzy network of Hanebeck and Schmidt. This structure follows a formal model,

allowing certain operations to be performed on the system. Shown below in Figure 2.4 is

a single node Fuzzy Network with a feedback loop.

Figure 2.4: Example Fuzzy Network - Single node Gegov Fuzzy Network with feedback
(29)

Lastly, there are publications which refer to Fuzzy Neural Networks, a method in which

a fuzzy system optimizes a neural network, as simply Fuzzy Networks. Once such case is

Juang’s ”Temporal problems solved by dynamic fuzzy network based on genetic algorithm

16

2.4 Alternative Soft Computing Methods

with variable-length chromosomes”.(31)

Because of the alternative meanings of Fuzzy Network, Genetic Fuzzy Tree was deter-

mined to be the appropriate name. However, there is still a potential source of confusion,

as Fuzzy Decision Trees are a different approach. As explained by Liu et al., numerous

authors have described this method of Fuzzy Decision Trees, which follows a top-down ap-

proach with a singular input at the top of the decision tree.(32) This methodology follows

a similar structure to standard decision trees, except each node is a set of membership

functions, and the rule-base can be extracted from the combinations of these nodes. This

structure is shown below in Figure 2.5.

Figure 2.5: Example Fuzzy Decision Tree - 2 input 1 output decision tree (32)

Explained in more detail in Chapter 4, the Fuzzy Tree of the GFT is instead a collection

of individual FISs, connected to each-other in not necessarily a top-down approach, and

can be indirectly coupled rather than having outputs feeding directly to every FIS in the

layer below it. Rather than modelling a FIS in a different manner, the main point of the

GFT is to apply fuzzy control to incredibly complex problems with a multitude of inputs

and potentially outputs as well. Thus training over all FISs simultaneously is desired to

encapsulate any coupling effects between the inputs. Additionally, each FIS contains its

own rule-base. An outline of this structure is depicted in Figure 2.6.

While LETHA is the first application of the GFT, she started as a different novel

method, the Genetic Cascading Fuzzy System (GCFS). This is an evolution of the tech-

17

2. LITERATURE REVIEW

Figure 2.6: Example Fuzzy Tree - System has multiple FISs in top layer 1, with perfor-
mance of the A, B, and C branches assumed to be coupled

nique published by Shitong and Chung.(33) Here rather than representing membership

functions, or a certain rule, each node is an entire FIS. At each level, the fuzzy output

from the prior level, and potentially additional crisp inputs, are fed to a new FIS. The

final level gives the crisp output, depicted in Figure 2.7.

After extensive research efforts, LETHA was the first genetic learning method applied

to a cascading fuzzy system, and thus the first GCFS. Multiple cascaded structures were

eventually necessary inside LETHA, and thus this method evolved to form the GFT.

2.5 Training

The general case for intelligent system training is to have an algorithm that develops in-

ferences or rules that are utilized by a controller. Some notable methods in the realm

of intelligent control are genetic algorithms, fuzzy logic, and neural networks, which can

18

2.5 Training

Figure 2.7: Example Cascading Fuzzy System - Each node is its own complete FIS (33)

be utilized in any different combination as mentioned by Cordon et al.(17) Fuzzy logic

is a particularly effective source of training, as it can provide high-performance control

even when enough information is present to utilize traditional control methods, is effi-

cient computationally, and the rule base and membership functions are easily defined and

encoded.(34, 35)

While LETHA is a type of genetic fuzzy systems, neural fuzzy logic is another method

to develop fuzzy logic systems autonomously. Jagielska et al. performed a comparison

between these two methods over a variety of data sets, examining resultant rule base

comprehensibility and accuracy.(36) The study showed that the genetic fuzzy system was

found to produce excellent results that outperformed the neural fuzzy system.

As mentioned by Cordon et al. as well, genetic fuzzy methods are not limited to

the learning of rule bases.(17) Simultaneous rule base learning and membership function

tuning is possible and in fact done by LETHA.(16)

19

2. LITERATURE REVIEW

2.6 Contributions of the Work

The major contributions of this work include:

• Made and applied a fuzzy logic system to form the decision making process of a

squadron of UCAVs that is intelligent, adaptive to various enemy forces and missions,

and resilient to uncertainties.

• Developed the Genetic Fuzzy Tree method and applied it to an incredibly complex

problem, demonstrating an advancement in the capabilities of genetic fuzzy systems.

• Furthered past research (37) to and implemented inside the Genetic Fuzzy Tree of

LETHA, allowing the UCAV squadron to autonomously create and modify its route.

• Created a simulation environment for combat missions from a high-level view. Train-

ing inside this simulation is incredibly computationally efficient, but the resulting

controllers will operate in a higher fidelity simulation.

Table 2.1: Method Attributes

Description of
Problem

Solution Method Reference

Fuzzy development
manually infeasible

Genetic Fuzzy System Cordon et al. (17)

Scaling issues with
fuzzy rule base of
FIS

Cascading Fuzzy System Shitong and Chung (33)

Fuzzy development
of cascade manually
infeasible

??? ???

Complexity beyond
single fuzzy cascade
(e.g. decision
making for
collaborative UCAV
control)

??? ???

20

2.6 Contributions of the Work

Table 2.1 displays the main attributes and issues that inspired this research. A stan-

dard GFS can learn the fuzzy rule base and membership functions of a FIS. Many problems

would have be computationally intractable with one FIS due to the size of the rule base,

however this is mitigated with a Cascading Fuzzy System. This research answers the

questions remaining in Table 2.1.

The unique contribution of the GCFS is that a single GA can be utilized to train

the entirety of the fuzzy cascade. As mentioned, for complex, artificial intelligence type

problems, such as the UCAV control problem analyzed in this study, a single cascade may

not be sufficient. The Fuzzy Tree contributed this capability to fuzzy logic, allowing a

multitude of FISs to be employed for a problem, all of which can be directly or indirectly

connected in some varying manner. The GFT finalizes the contributions of the work,

allowing the a high performance Fuzzy Tree controller to be obtained through evolutionary

methods, just as in the GFS.

The specifics of these methodologies will be discussed in the following chapter.

21

3

Problem Formulation

The aerial combat missions analyzed within this study consist of predefined battlespaces

in which reside a number of stationary critical ground targets. These can represent radar

installations, bridges, or other such logistic and support structures. Multiple types of

red threats are also present, often within guarding range of these critical targets. LETHA

must train for these types of scenarios and apply the skills learned to successfully complete

any given mission by destroying all enemy forces within a given mission time constraint.

3.1 Blue Systems

Each blue UCAV is equipped with a variety of ordinances. A limited supply of Self-

Defense Missiles (SDMs) is given which can both destroy enemy AIs, and enemy air-to-air

and ground-to-air missiles. In order to destroy ground targets, the UCAVs are also given

a supply of air-to-ground missiles.

A Laser Weapon System (LWS) is on-board each aircraft as well and can also destroy

enemy ordinances, though not AIs. This LWS has a set maximum capacity before needing

recharged as well as a set recharge rate. The position on the missile struck by the laser,

the type of missile, and the distance from the laser to the missile determines the necessary

22

3.2 Threats

duration of the lase to destroy the ordinance.

Proper employment of these systems is paramount to mission success. The renewable

LWS needs to be utilized as efficiently as possible, while still maintaining appropriate

levels of safety, in order to conserve the limited SDMs for when they are most needed.

3.2 Threats

As mentioned previously, there are three types of red entities that present a danger to the

blue team, SAM sites, AIs, and EWAR stations. Each of these present different challenges

that LETHA must overcome while controlling the blue UCAVs.

3.2.1 Lethal Threats

SAM sites are stationary units that fire groups of surface to air missiles at the blue UCAVs.

These missiles are fired consecutively with some small delay, typically a few milliseconds

apart, and can be directed at the same or different blue UCAVs within range.

Air to air combat is not a focus of LETHA, and thus a simplistic implementation is

utilized. Complex dogfighting maneuvers and gun tactics are not considered, rather AIs

are given a patrol zone from within which they do not depart until the blue UCAVs come

within range. Once a blue UCAV enters this area, the AIs engage the squad head on and

will do so until defeated. Some missions presented within this study have AI zones; others

do not.

Threats to the blue squad are not equipped with any means to counter blue missiles,

however their own weapon systems travel at higher velocity and have a further range. This

equates to the blue squad never being able to destroy a threat before it is fired upon. Red

missiles are given a 100% probability of kill, whereas the blue LWS’ and SDMs operate

with a 90% probability of kill.

Both SAM sites and AIs have four different missile types they may be equipped with:

23

3. PROBLEM FORMULATION

both small and large variants of InfraRed (IR) homing and Semi-Active Radar (SAR)

homing missiles. IR missiles are much more vulnerable to directed energy attacks to their

nose-cones due to the fact that the LWS only needs to destroy the sensors located there

to disable the missile.

SAR homing utilizes the missile as a passive sensor and the launch vehicle guides the

missile. These SAR missiles have no weakness on their nose-cone, and due to the expected

error of tracking and the width of the LWS’s beam, will be easier to destroy with the LWS

while aiming directly at their side.

Additionally, larger missiles take more energy from the LWS in order to be destroyed,

except for IR nose-cone directed attacks. Knowledge of the incoming missile type is not

given to LETHA a priori, and instead must be estimated post-launch. This process is

described in detail in Chapter 4. Misclassification of missiles will cause either ineffective

lases, or lases that consume more energy than was required.

3.2.2 Non-Lethal Threats

EWAR stations inhibit the blue force’s ability to communicate within some range of the

station, in effect removing the data link between the UCAVs until the EWAR station

is either destroyed, or the blue squad moves far enough away. This data link transmits

information of the states of each UCAV’s weapon systems and each UCAV’s planned future

actions to the rest of the blue forces.

When determining actions for countering red missiles, this information is vital. During

times when an EWAR station is active, LETHA must employ systems to enable coopera-

tion without communication. Regardless of the level of performance obtained from these

systems, events that cause a decrease in weapon efficiency will be present. These can

include multiple UCAVs unintentionally targeting the same inbound threat, delayed lases

being interrupted by UCAVs fearing missiles are not being countered, and other such

negative events.

24

3.3 Variants

While these stations are unarmed, they are significant force multipliers for the oppo-

sition. Temporary communication losses are expected problems, and the ability to cope

with these EWAR stations is necessary.

3.3 Variants

This work began by analyzing missions with a pre-defined route, no EWAR stations, and

only one type of IR missile being utilized by the red forces (38). Fig. 3.1 below shows a

sample of the mission types LETHA has come to be able to solve. The next evolution

Figure 3.1: Mission Types - Sample of mission types analyzed

25

3. PROBLEM FORMULATION

came through the inclusion of EWAR stations (16). Missions in which the pre-defined

route constraint is removed though the UCAVs are in one constant formation squadron

have been developed (39). The most complex missions are those containing multiple red

missile types, with multiple starting points available for different UCAVs, and the UCAVs

are able to join together and split apart throughout the mission.

The sections of LETHA that solve each of these variants, as well as the results obtained,

are shown in later chapters.

3.4 HADES

While the preceding sections describe the problem statement, the hoplological (dealing

with the study of the methods, behavior, and technology involved in combat, particularly

weapons and armor) simulation environment is the problem LETHA trains and is currently

evaluated within. HADES was created to serve as both an efficient cost function for

LETHA’s GA and an appropriately accurate depiction of the problem while staying within

security constraints. Therefore, simplistic, normalized, unitless models created based on

conversation with AFRL are utilized. Key assumptions have been made to bring the scope

of the problem down to an acceptable level, and to focus on the aspect of the aerial combat

mission pertaining to the intelligent control of the UCAVs.

3.4.1 Assumptions

The proceeding assumptions are all within HADES. The simulation is two-dimensional;

the UCAVs maintain constant altitude. The blue forces also travel at constant velocity and

turning constraints are not considered. Instead of lowering velocity, if the route planner

decides to implement a delay to recharge the laser, a new series of way-points forming a

loop are included in the route.

For the type of route planning LETHA does, the battlespace is so large with respect to

26

3.4 HADES

the vehicles’ minimum turn radii that, for example, the inclusion of Dubin’s paths would

bring negligible gains to the problem with regards to meaningful challenge. The UCAVs

never need to alter their heading to fire the LWS or an SDM as well as fields of regard for

weapon systems are not considered.

Red entities fire all missiles as soon as possible, and all red missile types have the

same effective range though LETHA has no inherit knowledge of this range. This as-

sumption ensures that the determining the type of missile being launched at the UCAVs

is challenging rather than being easily determined by the range at which the missile was

launched.

Assuming proper classification of the incoming missile type, the amount of time to

lase a missile is known, and the UCAVs will not initiate a lase unless their LWS has

enough capacity to complete the process. When under the effect of an EWAR station,

each UCAV is able to detect if another UCAV initiates a lase and on what missile the

lase takes place. However, the planned target of a SDM is not known until the ordinance

reaches its destination.

Even if an enemy unit is not known of a priori, the instant it shoots at a friendly

unit, all blue UCAVs within range detect the unit and all missiles fired. For missions in

which LETHA is not aware of any enemy units, these threats will be placed within close

enough proximity of known threats such that no enemies will be simply ignored and not

approached. Scanning maneuvers are not presently within LETHA’s routing objectives.

As a final set of assumptions, when a red missile or entity is destroyed, or a blue

counter to a red missile fails the 90% probability of kill, the squadron knows immediately.

LETHA does not know this probability of kill. If a SDM fails this check it simply misses

and the SDM is expended. A failed lase wastes the entire duration and the UCAVs must

begin lasing the missile as if the laser missed the target entirely.

27

3. PROBLEM FORMULATION

3.4.2 Models

The LWS is given 10 seconds of maximum capacity, and recharges at a rate of 0.15 laser

seconds per second in all missions. The LWS is considered to be at full effectiveness within

a small range around the UCAV. This decreases linearly until the LWS is half effective at

maximum range. Combined with the penalties associated with the profile and type of the

missile, lase times can vary between 2 to 8 seconds.

This wide range in LWS cost is the source of much difficulty. Again, LETHA is given

imperfect information with regards to the enemy forces, so is never able to, with certainty,

determine that lasing a set of LWS-resistant missiles is acceptable due to a guaranteed long

delay before the LWS is required again. Additionally, allowing the missiles to come closer

to the UCAVs before initiating a lase reduces the overall lase cost. However, this leaves

little or no additional time after the lase to begin another if the lase fails the probability

of kill check.

When a red missile is fired, after some delay, depending on the type of threat, the

blue forces know the anticipated time of impact and target. Additionally, LETHA can

determine the profile of the missile available for the LWS to strike. As seen in Fig. 3.2,

SAM sites determine at what point the missile must be shot towards in order to strike the

aircraft as it flies through its missiles’ possible range.

Once fired missiles are considered to be on rails, all of the four following values are

constant throughout the entire flight:

• Radar Emission of Launcher (moderate variance, normally distributed)

• Radar Signature of Missile (moderate-high variance, normally distributed)

• Acceleration of Missile (low variance, normally distributed)

• Missile Tail Infrared Signature (high variance, exponentially distributed)

Each of these features has different amounts of variance and noise associated with them

28

3.4 HADES

Figure 3.2: SAM Model - Example ranges and missile control

relative to the capabilities of the sensors on-board the UCAVs. While the distribution of

these attributes is approximated and normalized, their complete accuracy to real systems

is not of concern here. Rather, the goal for these models is to create a difficult scenario

for LETHA to solve, both in terms of the quick flight time in which LETHA must counter

the missiles and the uncertainty in what type of missile has been launched.

The variance of these sensor readings is reduced with range, to the point where close

to impact there is no question what type of missile is incoming. However, the goal is to

determine this within an acceptable confidence level as soon as possible. Fig. 3.3 shows

this distribution of sensor readings at time of launch.

29

3. PROBLEM FORMULATION

Figure 3.3: Missile Attribute Distributions - Example distribution of sensor readings of
attributes at time of launch

30

3.4 HADES

3.4.3 Implementation

As computational efficiency is vital, HADES is written fully in Cython.(40) While low

fidelity models are utilized, the simulation environment is still quite complex. For the

pre-processing of the simulation, the routes are determined as well as the exact time all

events will occur. Such events are when every red entity will fire at the UCAVs, when

communications will go down and back up, and when LETHA will be in firing range of

all known targets. Whenever the route changes, these times are updated. HADES then

handles each of these events in turn and updates the blue and red state matrices.

bi =

[
SDMi Lcap,i Ldel,i xi yi θi Com

]
(3.1)

ri =

[
MiAi TtTi Reloadi xi yi θi

]
(3.2)

For the blue and red state matrices, B and R respectively, the statistics of the weapon

systems as well as their current positions are monitored. Note that the state vectors have

a heading state, θ, which tells the direction the blue UCAVS or red AIs are facing. This

value is constant at 0 for all other red entities, as it is assumed that they can affect the

environment in any direction around them. The same is true for the weapon states of red

targets and EWAR stations. In the blue vector, ”Com” is either 0 or 1, corresponding to

whether communications are active or not. Ldel is the LWS delay for a UCAV, which is

the time before it is finished with its current task; this includes the time it takes to burn

through the target as well as any delay it is following before beginning the lase.

3.4.4 Objective Function

The objective function of a GFT must fully encapsulate the difficulty of the problem. Due

to the complexity of the problems, this objective function can often be quite complex. The

objective function of LETHA is HADES. Output from each mission run is a point-based

31

3. PROBLEM FORMULATION

system that rewards or punishes LETHA for each possible event that can occur inside

HADES. This function is only evaluated at the end of a mission. The resultant of this

function is the fitness that HADES reports to LETHA as the score of a particular fuzzy

tree. In general, it is of the form seen in Eq. 3.3, where the training occurs over N missions

with:

• L - Number of red missiles lased

• A - Number of red air interceptors destroyed

• C - Number of critical targets destroyed

• G - Number of ground threats (SAM and EWAR) destroyed

• M - Number of SDMs fired

• U - Number of blue UCAVs lost

• T - Amount of time spent after the allowable mission time limit

• S - Corresponding point values for each of the above

J =

N∑
i=1

((Li ∗ SL,i +Ai ∗ SA,i + Ci ∗ SC,i +Gi ∗ SG,i)−

(Mi ∗ SM,i + Ui ∗ SU,i + Ti ∗ ST,i))

(3.3)

Point values are defined in HADES prior to training and should be set appropriately

for the learning objectives. Differing these weights can have a significant effect on the

training performance LETHA is able to obtain. LETHA seeks to maximize this function,

and as can be seen, utilizing the absolute minimum number of SDMs, destroying all red

units, staying with mission time constraints, and of course having no blue UCAVs lost will

give an optimal score.

32

4

Methodology

The following sections will cover Genetic Fuzzy Systems, Fuzzy Trees, and Genetic Fuzzy

Trees. Familiarity with the base methods of genetic algorithms and fuzzy logic will be

assumed.

4.1 Genetic Fuzzy Systems

In this technique, a GA seeks to learn the rule base of a FIS, tune its membership functions,

or as in LETHA, perform both simultaneously. Just as in traditional GAs, an initial

population of solutions, or strings, is created. The encoding of the rule base or membership

function alterations can take a variety of forms (17). Presented below as an example for

learning a rule base is a type of encoding referred to as the Pittsburgh method.

Assuming some arbitrary rule base for a two input (X0, X1), one output (Y) FIS as

follows:

• If X0 is 1 and X1 is 1, Y is 0

• If X0 is 1 and X1 is 2, Y is 1

• If X0 is 1 and X1 is 3, Y is 2

33

4. METHODOLOGY

• If X0 is 2 and X1 is 1, Y is 1

• If X0 is 2 and X1 is 2, Y is 2

• If X0 is 2 and X1 is 3, Y is 3

• If X0 is 3 and X1 is 1, Y is 1

• If X0 is 3 and X1 is 2, Y is 3

• If X0 is 3 and X1 is 3, Y is 3

We can create a table where the rows and columns are the values of the inputs X0 and

X1, and the cell values are the value of the output, Y as seen in Table 4.1.

Table 4.1: Example rule base table

Inputs X1 is 1 X1 is 2 X1 is 3

X0 is 1 Y is 0 Y is 1 Y is 2
X0 is 2 Y is 1 Y is 2 Y is 3
X0 is 3 Y is 1 Y is 3 Y is 3

Now taking the value of the cells row by row the string 012123133 is obtained. This

approach can represent an if-then rule in a single digit; as string length has a direct

correlation with computational time this is very important.

Tuning membership functions occurs quite similarly, each digit in the string corre-

sponds to some endpoint of a membership function. Examining Figure 4.1 below, we see

an input with three fuzzy membership functions (A, B, and C). The GA must be able

to control only five points; the three points making up triangle B, and the one point

for triangles A and C. If two decimal precision is desired, binary encoding of values 0-

100 could be utilized to define these five points. An example of this encoding would be

0110111010100011001010100000101101.

Not all combinations of 0 and 1 will present a valid number within the range 0-100,

and not all strings will entirely cover the input range from 0 to 1. Therefore, LETHA’s

34

4.1 Genetic Fuzzy Systems

Figure 4.1: Example Membership Functions - Triangular membership functions allow
for simpler GA implementation

GA utilizes a simpler approach where digits in the string correspond to some change in

the endpoints of each function. Inside LETHA, a value of 5 represents no shift in an

endpoint. Smaller values, with a minimum value of 0, designate a negative shift and

positive values, capping at 9, a positive one. This requires an initial guess at initial

membership function endpoints. However, now any string of length 5 with values 1-9 will

give all valid membership functions and will always cover the entire input range of 0 to 1.

Breeding occurs on these strings just as in traditional GAs, however string sections for

rule bases and membership function optimization do not mix. Some apply the term chro-

mosome to this concept of a multi-part string.(41) As can be seen, one string represents the

entire rule base and membership function parameters. Therefore, multiple controllers are

created and evaluated each generation; this is the hallmark of the Pittsburgh method.(17)

Once the string encoding has been decided, the strings must be evaluated. This is

particularly more difficult in a genetic fuzzy system compared to regular GA where typi-

cally fitness is evaluated by some simple function. Here, the controllers must be evaluated

somehow. Inside the scope of this problem, the only method is to employ a simulation.

The string creates a controller, which runs through a simulation, and is given a score corre-

sponding to how well it performed. This process continues until some level of performance

35

4. METHODOLOGY

is obtained, or for some set number of generations.

4.2 Fuzzy Trees

A generic FIS takes crisp data as inputs via placement in membership functions, fuzzifies

this data, utilizes a set of if-then rules to determine a fuzzy output, and then translates

the fuzzy output to a crisp control action. For a complex problem with many inputs and

outputs, a single FIS could properly provide control. However, every possible combination

of input states and output states requires an if-then rule.

This exponentially sized rule base is tolerable for small cases, and maybe even for

large ones if it had to be made just once. Tuning such a controller’s membership functions

would prove difficult though, and if the rule base had to be refined over many iterations,

such a setup would greatly increase computational cost.

If instead this large controller is broken down and only the inputs pertaining to a certain

output assigned to each other, a collection of FISs can obtain the same performance, but

at a much lower computational cost. Top layer FISs take solely crisp inputs, and lower

level FISs may take both crisp inputs and fuzzy outputs from the layer above. The final

outcome of a crisp control action is similarly obtained.

LETHA originally began with this cascading fuzzy structure (42). Figure 4.2 models

this process. Of course, this assumes that there is no coupling between the outputs of one

system and the inputs of another. As coupling increases, so too may loss in performance.

Thus the performance of a cascaded fuzzy system is bounded above by a single FIS. In the

case of a genetic cascading fuzzy system, any slight loss in performance may still be worth

the computational time depending on the complexity of the problem. This decrease in

solution space is modeled in Figure 4.3. Depicted is a four input, one output system, with

the number of membership functions assigned to each input and output as the subtext.

However, this technique is utilized to increase the efficiency over the use of one con-

36

4.2 Fuzzy Trees

Figure 4.2: Cascading Fuzzy Structure - Example layout

Figure 4.3: Comparison of Single FIS and Cascaded Fuzzy System - Cascaded system
has severely reduced solution space

37

4. METHODOLOGY

troller. Even more complex problems can be further simplified through the use of a fuzzy

tree (43). In this technique, a multitude of FISs handle particular sets of states, and are

related to each other in a similar fashion to a cascading fuzzy system. This can be modeled

as a group of different cascading fuzzy structures as there are still high level FISs that

only take crisp data and those that take some combination of crisp and fuzzy inputs. The

connections between the FISs are more complex and do not always follow the top-down

approach.

As can be seen in Figure 4.4, the fuzzy tree layout of LETHA is broken down into

sections. These sections themselves resemble a cascading fuzzy system but have additional

connections between them. This architecture is necessary for such an incredibly large

problem with many different states, sets of data, and objectives.

Figure 4.4: LETHA’s Fuzzy Tree - Final variant FIS layout

38

4.3 Genetic Fuzzy Trees

4.3 Genetic Fuzzy Trees

Just as a genetic fuzzy system may have a chromosome string structure, with different

portions that only breed with similar portions from other strings, a genetic fuzzy tree

combines these methods by further complicating the string structure. The process of the

GFT is shown below in Figure 4.5.

Figure 4.5: GFT Process - Generic flow, though specifics of problem may require modifi-
cations

39

4. METHODOLOGY

The main difference between the overall process of the GFT and an ordinary GFS

is that here a string represents multiple fuzzy logic controllers in various sections. That

is, for every FIS in the GFT, there could be two string sections. The number of output

membership functions is the highest value that a string in the rule section can have, and

the tuning sections all have values between one and nine. For a cascade of smaller FISs, it

is often best to have rule sections for each FIS, and combine the tuning sections into one

for the whole cascade. Because of these different possible values, breeding occurs on each

section of the string between strings independently. This prevents any strings that could

fail to be translated to fuzzy trees from being created through breeding.

If an initial guess on membership function shape is not possible or undesired, these can

be generated as part of the string rather than being simply tuned. However, this lengthens

the string greatly when compared to tuning, bringing about an increase in sample space

and thus computational time needed. In the case of LETHA, a simplistic membership

function shape is utilized, so the initial guess is satisfactory.

Additionally, if any rules are known a priori, these can be made static and not optimized

in the GA, thus reducing total string length. A few example cases inside LETHA where this

technique is applicable are when SDMs remaining is ”none”, the control output should

never be ”Fire an SDM” and similarly for the LWS. While LETHA’s string length is

significant, with the most complex variant being 542 digits long, results show that this is

well within a reasonable length for GFT training.

LETHA and HADES are written in a combination of Python (44) and Cython (40),

which is a superset of the Python language that allows calling C functions and declaring

C types. Shorter files are written in Python for ease of use, larger functions are all Cython

which brings speeds very close to C. While the Global Interpreter Lock inside Python

limits the code to run only one thread at a time, Cython allows this work to be run in

parallel. Though slightly less so than base Python, Cython has a very rapid development

time especially compared to languages similar to it in speed. As a side benefit of the GFT,

40

4.3 Genetic Fuzzy Trees

the outputted controller from any length of training run is quite small, equal to an amount

of bytes as the number of digits in the string.

GFTs are excellent candidates for parallelization. The fitness function is normally

by far the most computational part of the process shown in Figure 4.5, and the entire

population of strings can be evaluated simultaneously. LETHA is currently parallelized

to work on multiple cores, and multiple processors over network, however if even more

performance was desired, GPU parallelization is possible while even staying within the

same languages by utilizing PyCUDA (45). Evaluations of strings’ fitnesses within a single

generation of the genetic algorithm are entirely independent of each other. This would

theoretically enable any generation of size less than the number of cores in the GPU to be

evaluated in the time it takes to determine one string’s fitness. This was not necessary for

this study, but for even more complex problems, would bring drastic decreases in run-time.

The genetic fuzzy tree approach allows a GA to train multiple FISs to solve complex

problems and can accomplish the task much easier and quicker than a lone genetic fuzzy

system. A trade-off exists in that large amounts of unaccounted coupling can bring about

a loss in accuracy. Through application of this method, all of the strengths of fuzzy logic

(efficiency, robustness, and performance) can be obtained even for complex, large-scale

problems.

The following chapters will cover the different problems LETHA has solved. We begin

with the base problem first investigated in Chapter 5, introduce communication constraints

in Chapter 6, enable LETHA to autonomously determine optimal routes in Chapter 7, and

finally examine allowing the enemy forces to be equipped with multiple types of ordinances

in Chapter 8.

41

5

Weapon Control Problem

5.1 Introduction

The first half of this Chapter focuses on the initial problem that LETHA was designed

to solve. Enemy SAM sites, AIs, and critical targets are still present, but the route is

pre-defined, there is one squadron of UCAVs, and EWAR effects. Effectively this work

focused on creating and training the weapon control branch of the GFT. This work was

published at the 2014 SAE Aerospace Systems Technology Conference.(38) From Section

42

5.2 Initial Weapon Control FISs

5.18 on introduces improvements made to this part reported in other publications.(16, 39)

As this project indeed strives to, as closely as possible, simulate an aerial warfare

theater, it is wise to follow lessons learned throughout history while developing the systems.

The main objective of this work is to develop an intelligent system that can be utilized

on board such that it acts as though a master tactician were piloting the UCAVs. With

that in mind, the main strengths aimed for since the creation of LETHA found motivation

from The Art of War (46).

• Be light on memory and extremely computationally efficient.

– “If quick, I survive. If not quick, I am lost. This is death.”

• Allow LETHA to stay general enough to handle missions she did not specifically
train for, while maintaining high levels of performance for those she has.

– “He will win who knows how to handle both superior and inferior forces.”

• Allow for many control options (route changing, tactical retreating, inventory opti-
mization, time critical response, opposing force adaptation, etc.).

– “Move not unless you see an advantage; use not your troops unless there is
something to be gained; fight not unless the position is critical.”

• Utilize one, all-encompassing, adaptive skillset for all scenarios by simultaneous
training.

– “Water shapes its course according to the nature of the ground over which it
flows; the soldier works out his victory in relation to the foe whom he is facing.
Therefore, just as water retains no constant shape, so in warfare there are no
constant conditions.”

• Control and train a squad of UCAV’s.

– “Fighting with a large army under your command is nowise different from
fighting with a small one: it is merely a question of instituting signs and signals.”

5.2 Initial Weapon Control FISs

In this first case study, LETHA is given a pre-defined route through a mission space, some

knowledge of the location of enemy threats (default of 50%), and must fly through the

43

5. WEAPON CONTROL PROBLEM

battlefield destroying enemy threats and critical targets. A set of FISs were created for

this first system, forming the initial Genetic Cascading Fuzzy System.(38)

5.2.1 Fuzzy Controllers

There are three FISs to LETHA’s control of the blue weapon systems; a confidence level

FIS, an individual weapon FIS, and whole squadron weapons FIS.

5.2.2 Confidence Level FIS

The confidence level FIS has two inputs; the mission time remaining, and the known

threats remaining. Each of these are broken down into three membership functions, as

can be seen in Figure 5.1. A set of if-then rules is created for every combination of these

inputs to the three possible outputs as shown in Fig 4. The resulting controller controls

whether LETHA decides to act bravely and conserve resources as much as possible, act

normally, or be cowardly.

If cowardly, LETHA will send two counters to every incoming missile. Inside the logic,

theoretical extra threats are created. For example, when a SAM site shoots a group of six

missiles, if cowardly LETHA will desire to send twelve counters, if normally, nine counters,

and if bravely, just six counters. Note that LETHA ensures all incoming missiles are at

least covered by one counter before doubling up on another missile.

This controller was found necessary after it was noticed that the squadron was foolishly

dying by attempting to conserve resources even when conservation was uncalled for. As

mentioned previously, the actual probability of kill is not factored here.

5.2.3 Individual Weapon Systems FIS

After the confidence FIS determines how many additional theoretical missiles need to be

countered, the individual weapon systems FIS runs for every UCAV in the squadron. This

system determines how each UCAV would handle every threat if it were to.

44

5.2 Initial Weapon Control FISs

Figure 5.1: Confidence FIS Input - Example mission time left input

Figure 5.2: Confidence FIS Output - Example behavior output

45

5. WEAPON CONTROL PROBLEM

Inputs here are the states shown in Eq. 3.1, namely SDMs remaining, LWS capacity,

and LWS delay, as well as the profile of the missile being struck. Additionally, the distance

to the missile is factored into the decisions of what membership functions the LWS capacity

and delay fall in. Figure 5.3 shows the structure of the input for LWS capacity, and the

others follow suit. There is no membership function for values of none, but rules are in

place for this status.

The result of this FIS is whether that UCAV would choose to fire a SDM, use an

immediate lase, wait slightly and then lase, wait moderately before lasing, or delay the

lase as late as possible, as seen in Figure 5.4.

Figure 5.3: Individual Weapons Systems FIS Input - Example LWS capacity input

5.2.4 Whole Squadron Weapons FIS

The final FIS takes the fuzzy output of the individual weapons systems FIS, as well as the

entire b matrix from iterating Eq. 3.1 for every UCAV. The output is, quite simply, which

UCAVs opt to act and which UCAVs choose to delay acting. This iterative process for

determining actions is run for every UCAV in the squadron each iteration. This process

continues until every missile is covered with as many counters as desired, or at least as

46

5.2 Initial Weapon Control FISs

Figure 5.4: Individual Weapons Systems FIS Output - Example action output

many as possible. This process will be described in more detail later.

5.2.5 String Structure

The string is already quite long, 75 digits, despite the simplistic structure as shown in the

previous section. The rule bases for each of the FISs are in the first portion of the string,

and this is followed by the membership function alteration parameters for each FIS.

An example string is as follows:

013123000110320322200010111032300111101000000101001000120012010455139423968

Specifically, the first 36 characters correspond to the individual weapons systems FIS

and have possible values as seen in Table 5.1.

Fuzzy Output Control Action

0 Use SDM
1 Use immediate lase
2 Use moderate delay lase
3 Use max delay lase

Table 5.1: Individual Weapons FIS Output

The next 18 characters correspond to the whole squadron with values as seen in Table

5.2.

47

5. WEAPON CONTROL PROBLEM

Fuzzy Output Control Action

0 Bid to act
1 Bid to delay

Table 5.2: Squadron Weapons FIS Output

Following this, 9 digits make the rule base for the confidence level FIS with values as

seen in Table 5.3.

Fuzzy Output Control Action

0 Be cowardly
1 Be normal
2 Be brave

Table 5.3: Confidence Level FIS Output

And the last 12 values effect the endpoints for membership functions as mentioned

above with values as seen in Table 5.4.

Tuning Factor Control Action

5 No shift
<5 Negative shift
>5 Positive shift

Table 5.4: Membership Tuning String Section

5.2.6 Evolutionary Processes

Tournament polling style with a set tournament size was utilized. Here, a number of strings

are randomly selected from the population. The most fit of the strings from this pool is

then chosen for breeding. No elitism is present; at the end of every generation all members

die and only their offspring are present in future generations. Traditional crossover, as well

as flip and random replacement mutation mechanisms, occur via breeding. As mentioned

prior, these mechanisms take place on separate sections of the string independently, since

each section has different possible values.

Since an imperfect probability of kill is included, there is a chance that certain strings

48

5.3 Iterative Fire Control Process

will get very lucky with their weapons, and others will become quite unlucky despite

optimal usage. In order to combat this, a string bank has been factored into the GA.

After every generation, if a string received a fitness value within a certain score of the

current global optimal, that string is recorded in a separate bank. Note that it is still

removed from the population come the next generation.

After training is complete, Monte Carlo simulations run for every string in the string

bank. Currently defaulting to 25 additional runs per string, the string with the highest

score or average mission success rate is then determined the optimal controller.

5.3 Iterative Fire Control Process

The process of sending countermeasures when a set of red ordinances is launched is de-

picted in Figure 5.5 and is as follows:

1. Related parameters imported

2. Red entity fires upon squad

3. UCAVs determine time of impact

4. Confidence FIS determined how many counters

5. Individual weapons systems FIS assigns actions to each UCAV to each threat

6. Squad weapons systems FIS takes info and determines who should act or delay

7. Maximum missiles countered per iteration = number of UCAVs in squad

8. All theoretical red missiles covered?

(a) If no, go back to 5

9. Output control, update state and time matrices, continue simulation until next event

49

5. WEAPON CONTROL PROBLEM

Figure 5.5: LETHA Learning Process - Block Diagram for LETHA Training Example

50

5.4 Missions

Since the 90% probability of kill can cause a blue counter to fail against a target, the

results of the counters need to be verified. Often this is the next event following a red

entity firing, however when threats are clustered together multiple red entities can be firing

at the squadron simultaneously. When the effectiveness of blue counters are checked, the

process is:

1. Blue lase or SDM effective?

(a) If yes, cancel other lases against the same missile,and remove any SDMs en

route from simulation

(b) If no, continue

2. Determine remaining time until impact

(a) If below minimum lase threshold, fire number of SDMs corresponding to confi-

dence

(b) If not below threshold, continue

3. Rerun individual weapons systems FIS and squad weapons systems FIS for one

iteration

4. Output control, update state and time matrices, continue simulation until next event

5.4 Missions

A total of seven missions were created. LETHA trained over a combination of the first

five, and the last two were solely utilized to test trained controllers. The missions vary

drastically in an attempt to provide deep learning and optimize the entirety of the cas-

cading fuzzy system. All of the missions except for Mission 2 is of high difficulty, and

typically one improper action can cause mission failure at some point. In each mission red

51

5. WEAPON CONTROL PROBLEM

SAMs fire six-missile groups and red air interceptors fire two missiles. In all but Missions

4 and 5, the blue UCAVs have 7 SDMs.

Mission 1 (Figure 5.6) is a distributed enemy map, where red forces are not too grouped

together. Mission 2 (Figure 5.7) is similar to Mission 1, but has one less enemy, meant to

test if LETHA can perform in easy missions utilizing the same controller as hard missions.

Mission 3 (Figure 5.8) is a clustered enemy mission; now there are two groups of red forces

and many red missiles in the air simultaneously, though a long break between encounters

is present.

Mission 4 (Figure 5.9) is quite different. Here, the UCAVs are equipped with no SDMs,

and there are only four SAMs. These SAMs are each offset differently from the UCAVs

route; meant to train the controller over all missile profiles, and only utilizing the laser.

Mission 5 (Figure 5.10) is also a change from the first three. Here, the UCAVs are

given 80 SDMs, but the mission is incredibly long and contains 76 enemies. This mission

was included to determine if LETHA needed special training in order to deal with states

that vary drastically between the start of the mission and the end.

Mission 6 (Figure 5.11) and Mission 7 (Figure 5.12) are similar to Missions 1 and

3 respectively in terms of enemy distribution and high difficulty. However, as mentioned

before, these missions were never trained for, and were purely implemented for verification

purposes.

52

5.4 Missions

Figure 5.6: Mission 1 - Route and enemy layout

Figure 5.7: Mission 2 - Route and enemy layout

53

5. WEAPON CONTROL PROBLEM

Figure 5.8: Mission 3 - Route and enemy layout

Figure 5.9: Mission 4 - Route and enemy layout

54

5.4 Missions

Figure 5.10: Mission 5 - Route and enemy layout

Figure 5.11: Mission 6 - Route and enemy layout

55

5. WEAPON CONTROL PROBLEM

Figure 5.12: Mission 7 - Route and enemy layout

5.5 Training Results

Multiple training runs over varying missions were completed, and the resulting controllers

were run 25 times over every mission. With the existence of the 90% probability of kill,

a mission success rate of 92% or higher was considered optimal given the difficulty of the

missions and the ability for a streak of bad luck to easily cause a failure. The results are

shown in Figure 14.

Timings are taken from of a laptop with an Intel 2.4 GHz i7 quad-core processor, 16

GB RAM, and a solid state drive. Utilizing parallel processing, a training session over one

mission took 7.09 minutes. To run a controller through a mission takes approximately 1.0

seconds, to handle an SAM shooting at the squad takes 62 ms on average, and the size of

a stored controller is roughly 580 bytes.

As can be seen from Figure 5.13, training over all missions was not a necessity, though

it did not cause any harm. As long as Missions 1, 3, and 5 were trained over, LETHA was

56

5.5 Training Results

Figure 5.13: Training Results - Mission completion % over 25 runs

able to successfully complete all missions. Training over easier missions, or unrealistically

long missions is unnecessary.

Aside from the outlier of training for Mission 2, which most likely was just a lucky

random string over that portion of the FIS, the only training sessions to complete Mission

4 were those that directly trained for it. As this is the mission with no SDMs, it is easily

explainable as other strings would simply fail before receiving the opportunity to train

when they have run out of SDMs in the other missions. Thus, including a mission in

which one of the resources is removed was indeed needed.

Despite being quite similar to Mission 3, Mission 7 was not completed by a controller

trained over any single mission, except for one lucky run by the controller from Mission 1.

It can be taken away from this that spacing between red entities and the angles at which

they fire can be slightly different but have drastic effects on mission difficulty.

Training for Mission 5 was unnecessary, showing LETHA’s ability to inherently be re-

silient to drastically changing states from start to finish. Despite being a non-deterministic

57

5. WEAPON CONTROL PROBLEM

method, the consistency found from this study show the strength of applying fuzzy logic

to this problem. While this is only a segment of the overall problem, these results showed

great promise in the GFT approach.

Utilizing parallel processing and fast computing languages, computational efficiency

has been kept high and the storage of the resulting controllers is negligible. The entire

process runs quickly on a modern laptop. The methods described within have yet to reach

their limit in terms of scale and the results found here were very promising for increasing

the capabilities of the system.

5.6 Weapon Control Improvements

5.6.1 Weapon Control Branch Modifications

This first branch of the GFT went under heavy modifications, which were a portion of the

focus in a publication submitted to the Journal of Unmanned Systems.(16) The weapon

confidence FIS remained the same, however changes were made to the weapon selection

and LWS control FISs to bring performance improvements.

5.6.1.1 Weapon Selection FIS

After the confidence FIS determines how conservative LETHA should be with its resources

for the current event, the weapon selection FIS runs. This system determines what weapon

each UCAV would employ against a threat if it were to. The iterative fire control system

takes this output and the output from the LWS Control FIS and determines the final

control action for each UCAV in the squadron.

Fuzzy Input # Input MFs Output MFs

LWS Capabilities 4 Fire SDM
SDMs Remaining 4 Use LWS
LWS Effectiveness 3

Table 5.5: Weapon Type FIS

58

5.6 Weapon Control Improvements

The inputs here, seen in Table 5.5, correspond to an individual UCAV’s resources,

ignoring the current state of the squadron. LWS effectiveness is determined for each

missile, but only considers the profile of the missile. While distance to the missile has an

impact on LWS lase time, this difference is dynamic and dependent on LWS lase delay,

whereas the penalty caused by the missile profile is considered constant. LWS capabilities

are a combination of LWS capacity and delay. This delay could either be due to the fact

that the LWS is currently firing, or it is planning to fire in the near future and is unable to

switch targets. The result of this process is a judgment on whether the LWS can destroy

the missile, and if so, how many different methods of firing could be employed successfully

The output is simply whether the UCAV would utilize a SDM or the LWS. Since

the SDMs are considered fire-and-forget, thus requiring no intelligent control, the process

would end here for a UCAV and an SDM would be fired if selected. The LWS will only

ever be selected by this FIS if the UCAV is capable of destroying the missile with the LWS

in any manner. If the UCAV cannot, regardless of the method in which the LWS is fired,

and the UCAV has no SDMs remaining, it is skipped and the next UCAV is considered.

The only non-trained rule in this section is present within this FIS. When the LWS

capabilities or SDMs remaining fall under the ”none” MF, the opposite weapon type is

automatically selected. When no weapon system is currently usable the proceeding FIS is

skipped for that UAV and the next UAV in the squadron is considered.

5.6.1.2 LWS Control FIS

The final FIS in the weapon systems branch of the GFT determines how to utilize the

LWS against a threat, if the LWS is chosen. Table 5.6 describes the system. Note that

no measure of the individual UCAV’s defensive systems state is considered as an input.

Because this system is absolutely under the weapon selection FIS, if the decision making

process gets to this point, firing the LWS is a possibility and the desired course of action

over an SDM. Thus, the individual UCAV’s systems’ states are considered weakly inde-

59

5. WEAPON CONTROL PROBLEM

pendent, and whatever minor relevance may be had by including them as inputs is vastly

outweighed by the corresponding increase in computational cost that would result.

Fuzzy Input # Input MFs Output MFs

Time to Next Target 4 No Delay
Red Missiles in Air 3 Low Delay
Squad SDMs Remaining 4 Mid Delay
Squad LWS Capabilities 4 High Delay

Max Delay

Table 5.6: LWS Control FIS

The possible control outputs from this system range from a no delay, or immediate,

LWS firing to a max delay LWS firing. The minimum and maximum delays possible are

calculated in the pre-processing scripts to this FIS. The minimum delay relates to the

current capacity and usage of the LWS, and max delay signifies how long the LWS can

allow the missile to approach before being able to successfully lase the missile in time to

survive. Low, mid, and high delay values are then intermediate stages between these two

values.

The inputs listed here are less of concern when determining to utilize the LWS or a

SDM, but significantly impact optimal LWS usage if such an action is desired. Both the

time to next target and currently un-countered red missiles in air describe the workload

on the defensive systems of the squadron. This allows LETHA to determine when to

be conservative, allowing missiles to approach before firing at them and attempting to

conserve LWS capacity.

States of the defensive systems of the squad as a whole are very relevant for this portion

of the process. While an individual UCAVs SDMs remaining was included in the prior

FIS, it is considered weakly independent here since the SDMs are fire-and-forget. Thus

which UCAV the remaining SDMs are on is irrelevant, and simply the amount left within

the entirety of the squad is important. This input imparts upon LETHA the knowledge

of whether or not enough SDMs are present to allow efficient laser firings given the known

60

5.6 Weapon Control Improvements

present and estimated near future missiles in the air.

For example, if no SDMs are remaining in the squad, and multiple red missiles are in

the air or expected to be shortly then no or little delay can be given to LWS firings since the

LWS onboard each aircraft will have to lase multiple missiles. However, if enough SDMs

are present, it may be a wise opportunity to utilize some and allow a more conservative

usage of the LWS.

This FIS and the weapon type FIS iterate over every red missile in the air when

communications are present, and allow LETHA the flexibility to employ differing strategies

and consider relevant information. Figures 5.14 and 5.15 depict how these two FISs work

together.

Figure 5.14: Weapon Control FIS - Weapon Control section as one FIS

5.6.2 Cooperative Task Assignment Algorithm

The iterative fire control process, hereinafter referred to as the Iterative method, presented

another area for improvement. In a publication from the 2015 AIAA SciTech conference,

this Iterative method was compared to utilizing a version of Garcia’s Cooperative Task As-

61

5. WEAPON CONTROL PROBLEM

Figure 5.15: Weapon Control Cascade - Weapon Control section as cascade FISs

signment Algorithm (CTAA) adapted for LETHA.(39) This section will cover specifically

what LETHA outputs for every event, and how this is fed to the CTAA. Each mission

analyzed in this study utilizes the default values of four UCAVs in a squadron, and six

enemy missiles, each with a slight delay, from a single SAM site firing.

LETHA seeks to optimize its score throughout the mission, where every action has an

arbitrarily user-defined score (or penalty) assigned to it. In the Iterative method, simple

post-processing takes the results from the GFT and determines which method each UCAV

should utilize on each incoming missile. While LETHA is assumed to be aware of which

UCAV every enemy missile is heading toward, this information is not utilized to its fullest

in this method. The combined conservation of resources is then the main deciding factor

in the squadron’s actions.

Just as in the Iterative method, LETHA determines what type of action to carry out

on every incoming missile first. The possible outputs at this stage are:

62

5.6 Weapon Control Improvements

• 0 : Unable to take any action

• 1 : Fire SDM at red missile

• 2 : Utilize LWS (delay calculated later) to lase red missile

Label this value as αi if > 0, where I ≤ Nu is the total number of UCAVs which are

able to take an action on any of the incoming J enemy missiles. Note that the confidence

output from LETHA artificially inflates J by some factor, C, with C ≥ 1. However,

LETHA ensures that every incoming missile has at least one counter assigned to it before

doubling up on any particular missile.

Rather than proceeding with the final LWS FIS as in the iterative method, the CTAA

intervenes here. The risk scores R utilized by the CTAA are calculated for the combination

of active UCAVs, I, and desired number of counters, J ≥ Nt.

ri,j = (αi) ∗ (1 + w1 ∗ fLWStj
) ∗ (1 + w2 ∗ fSDMtj

) ∗ (βj) + (w3 ∗ btj) − (w4 ∗mtj)

Where:

• W : Array of positive weights w1, w2, w3, w4 which correspond to user-defined scores

• fLWStj
: Fuzzified capabilities of the LWS of the UCAV targeted by missile j, (0:1)

• fSDMtj
: Fuzzified capabilities of the remaining SDMs of the UCAV targeted by

missile j, (0:1)

• βj : 1 if missile j has not been countered by any UCAV yet, 0.2 otherwise

• btj : Air to ground weapons remaining onboard UCAV targeted by missile j

• mtj : Number of enemy missiles sharing the same target as missile j

63

5. WEAPON CONTROL PROBLEM

The goal of this function is to assign greater mission failure risk to the loss of UCAVs

with higher quantities of resources remaining. This evaluation of the missile’s target is

present in the first two terms in the equation above. The first term is a positive factor

increasing with the number of defensive resources remaining on the missile’s target. The

second term, (w3 ∗ btj) is a non-negative value corresponding to the number of offensive

weapons remaining on the same UCAV.

At the same time, this function ensures that any UCAV doomed to death in the event

that many missiles are targetting it and the squadron as a whole can only counter a few

missiles currently, will not cause the squadron to squander resources in a futile attempt to

save it. On the contrary, the doomed aircraft will instead sacrifice itself and help defend

any of its squad mates who are in danger, even if those missiles have already received one

counter from another UCAV. This is caused by the third and final term, (w4 ∗mtj).

The output of the CTAA with this risk score function intelligently targets each friendly

counter sent by a UCAV and delays actions by UCAVs that should wait for squadmates.

The LWS result then follows the normal post-processing to calculate the exact amount

of delay before the LWS fires, if any. This method is still somewhat iterative, as the

maximum number of actions taken by one calculation is I. However, the output control is

significantly different. This is especially true in cases where the states of each UCAV are

different from each other, which typically occurs immediately after the first encounter of

an enemy as the UCAVs all start off with maximum LWS charge and the same number of

SDMs.

5.6.2.1 Results

Four missions were utilized that LETHA had previously been tested on and achieved

near-perfect performance with an appropriate amount of SDMs supplied, depicted below

in Figure 5.16.

Again, due to the randomness and uncertainties in the problem, no controller can boast

64

5.6 Weapon Control Improvements

Figure 5.16: CTAA Comparison Missions - Top Left: Mission #1, Top Right: Mission
#2, Lower Left: Mission #3, Lower Right: Mission #4

65

5. WEAPON CONTROL PROBLEM

a 100% success rate in any mission, with success being classified as all targets and SAM

sites destroyed. However, in this study these four missions were run with extremely low

SDMs supplied at first, and then SDMs were increased to measure both average score and

completion percentage over 100 runs at each SDM point.

Figure 5.17 and 5.18 show LETHA running through Mission #1 with two SDMs sup-

plied to each UCAV using the Iterative and CTAA methods respectively. In these figures,

the blue stars in formation represent the UCAVs, black dashes are SDMs fired by a UCAV,

green lines are LWS firings by a UCAV, teal lines are air-to-ground weapons launched by

a UCAV, and red lines are SAMs fired by SAM sites.

Figure 5.17: Iterative Method Mission #1 - 2 SDMs per UCAV

As can be seen, the Iterative method is able to destroy two of the three critical targets

before the squadron is entirely destroyed in this attempt. While the CTAA method does

not complete the mission in this attempt, it does allow LETHA to destroy all three critical

targets and all but one SAM site before the squadron is eliminated. Towards the end of

66

5.6 Weapon Control Improvements

Figure 5.18: CTAA Method Mission #1 - Top Left: 2 SDMs per UCAV

this attempt, UCAV #’s 1 and 4 were destroyed, but #’s 2 and 3 were still remaining.

In the final encounter, UCAV # 3 was out of air-to-ground munitions and thus, despite

having more defensive capabilities remaining to survive, sacrificed its remaining resources

to defend UCAV # 2 such that the final critical target and one last SAM site could be

destroyed.

Both methods had their first death occur from the same SAM site in the third en-

counter. This reinforces the notion that during nominal conditions, when resources are

sufficient for mission completion, the CTAA adds little value to the overall system. How-

ever, the benefits during near-worst-case scenarios is visibly noticable. Additionally, on

average the CTAA adds 0.0062 seconds of computation time to the running of the GFT.

This time is when implemented in Cython, running on a desktop with ample RAM and a

3.6 GHz processor.

Graphics for the remainder of the runs will not be presented for the sake of brevity,

67

5. WEAPON CONTROL PROBLEM

but Table 5.7 below shows the average score and mission completion percentage over 100

runs of each mission at each quantity of SDMs provided per UCAV. The mission score

again is a unitless summation of user-defined points assigned to each positive and negative

action inside the simulation. Thus the exact numbers have little true value, but the trends

and differences between scenarios show more detail as to how well LETHA was able to

perform in each case.

Mission SDMs
Iter. Avg.

Score
Iter.

Completion
CTAA Avg.

Score
CTAA

Completion

1 2 -17.78 2% -6.28 8%
3 -7.60 7% 54.56 25%
4 146.00 63% 169.08 71%
5 246.50 98% 247.46 97%

2 2 -32.94 0% -36.60 0%
3 -9.84 1% -6.84 5%
4 58.06 23% 73.34 33%
5 252.04 84% 256.00 98%

3 3 -13.58 0% -14.88 0%
4 -3.60 0% 3.56 4%
5 40.4 12% 85.48 39%
6 255.44 94% 258.46 97%

4 2 -28.07 0% -19.33 5%
3 56.12 40% 64.4 46%
4 267.96 98% 274.96 100%
5 290.01 100% 290.92 100%

Table 5.7: Weapon Control Results Over 100 Runs

Table 5.7 further reinforces the usefulness of applying the CTAA inside LETHA’s

GFT. Both completion percentage and average score were all significantly higher for the

CTAA method when near-worst-case scenarios and losses were present. Any differences

between the two methods at nominal conditions was negligible, which combined with

the low computational cost, presents no strong argument as to a weakness inherited by

including the CTAA.

68

5.7 Conclusions

5.7 Conclusions

This Chapter discussed the creation of and modifications to the first branch in LETHA,

the weapon control branch. Through the cascading structure, many inputs were able to

be considered when determining the type of counter to send against an incoming ordi-

nance, while keeping computational cost low.(16, 38) Additionally, the ability of the GFT

to work in a symbiotic manner with other techniques was shown through the beneficial

implementation of the CTAA.(39).

The proceeding Chapter will introduce the second branch of LETHA’s GFT, the com-

munications constraints branch.

69

6

Constrained Communications

Problem

6.1 Introduction

Both the Iterative Fire Control Process and the Cooperative Task Assignment Algorithm

from the previous chapter rely on a perfect data link between the UCAVs in a squadron to

determine the course of action when an enemy entity fires missiles at the squadron. This

will certainly not always be the case however, and thus EWAR stations were added to the

missions for the publication sent to the Journal of Unmanned Systems.(16).

6.2 EWAR Implementation

The EWAR stations in these missions are stationary ground units. Each has a radius

of effectiveness around it, determined in the mission parameters, that blocks all commu-

nications for any UCAVs within. Whenever the UCAVs leave this zone, or the EWAR

station is destroyed, communications go back up. While this is a somewhat unrealistic

representation of actual EWAR methods, the point of this implementation is to intro-

70

6.3 Communication Constraints Branch

duce communication constraints. In fact, this could be viewed simply as an artificial

embodiment of random losses in communications at times throughout missions due to

environmental effects or equipment errors.

6.3 Communication Constraints Branch

The second branch in LETHA’s GFT consists of five FISs. As mentioned in Chapter 2, the

approach utilized here relies of stigmergy, a mechanism of indirect coordination between

agents. This is accomplished by developing ”roles”, each with their own behaviors, and

assigning these roles to each UCAV in the squadron when communications are up. When

communications go down, the UCAVs act based on their defined behaviors, and since the

behaviors are known to every member in the squad, future actions can be estimated for

every UCAV without direct communications.

6.3.1 Role Assignment FIS

When communications are blocked, the squadron resorts to pre-defined behavior deter-

mined by their role assignment. This assignment happens at some regular frequency,

default of ten seconds, when communications are available and is governed by the FIS

seen in Table 6.1.

Fuzzy Input # Input MFs Output MFs

Relative LWS Capabilities 5 Role #1
Relative SDMs remaining 6 Role #2

Role #3
Role #4

Table 6.1: Role Assignment FIS

Since this FIS is not necessarily triggered during an active combat situation, the only

possible inputs are those relating to the UCAVs themselves. Different than prior FISs,

we are now analyzing the states of each individual UCAV with respect to the squadron’s,

71

6. CONSTRAINED COMMUNICATIONS PROBLEM

rather than just the squadron’s or UCAV’s individually. These values range from “none”

to “max”, but only one UCAV is given the “max” label in any situation; others with the

same state will be pushed down to “high”. The SDMs remaining input has an additional

MF of “all out” designating that the UCAV of interest is out of SDMs, but so is the rest

of the squadron. This MF was necessary since ”none” and ”max”, while both would be

true here, would not specifically describe the scenario at hand.

The number of roles is not necessarily set to the number of UCAVs in the squadron,

even though all missions in this study have four UCAVs. No restrictions are placed on the

number of roles given; duplicates are allowed.

6.3.2 Role Weapon Control FISs

Four of these role weapon control FISs exist, one for each role possible from the role

assignment FIS. As noted in Table 6.2, these are simplified combinations of the previous

weapon FISs that no longer rely on information synchronization from the squad.

Fuzzy Input # Input MFs Output MFs

LWS Capacity 4 Fire SDM
LWS Delay 3 Use LWS & Fire SDM
SDMs Remaining 4 Use Delayed LWS

Use LWS

Table 6.2: Role Weapon Control FIS

LWS capacity and delay are not combined into a measure of capabilities here due

mainly to the new possible action of marking the target with the LWS and then firing a

SDM. Since the goal of this action is to quickly communicate to the squad which missile

is the target of a SDM, any delay in the ability to utilize the LWS gravely affects the

worthiness of this tactic but the capacity requirements are minimal. Alternatively, a

moderate delay is perfectly acceptable if the LWS will be utilized to destroy a missile

since other squad members are assumed to see the intent of this action.

If the LWS is selected for use, it either fires immediately or with a set delay. Again, in

72

6.3 Communication Constraints Branch

this environment immediate LWS actions are desired as they impart information to squad

members. However, a delayed LWS usage is still useful. This delay is set to the maximum

allowable time to have the LWS cancel its lase, acquire a new target, and lase that missile

safely. Thus as each UCAV takes its own independent actions based upon its role, other

UCAVs can form a safety net, preparing to counter additional missiles if no action is taken

upon them prior to a certain point.

As a result of the role synchronization from the previous FIS, each UCAV understands

how the other UCAVs will act depending on their state. Since their state is unknown, but

their actions are visible, approximate measures of the status of the squad as a whole can

be imparted upon the system.

6.3.3 String Structure

The string contains a digit for every combination of input and output MFs from the

described FISs. Mentioned prior, the string, or chromosome, is broken into many sections.

Table 6.3 shows the number of digits in each learning section of the string that results

from each FIS.

FIS # Of Rules

Weapons Confidence 9
Weapon Selection 36
LWS Control 192
Role Assignment 30
Role Weapon Control (x4) 36

Table 6.3: Learning Sections of String

Tuning the MFs occurs via the implementation of similar string sections. Just as

before, digits in the string correspond to some change in the endpoints of each MF. MFs

that are next to each other remain tied together during tuning, ensuring the entire range of

each input is covered by at least one MF. Shown in Table 6.4, the EWAR mitigation branch

of the tree has considerably less tuning than the weapon systems branch. This is due to

73

6. CONSTRAINED COMMUNICATIONS PROBLEM

the fact that the post-processing of each role weapon control FIS is much more complex

than other FISs, and relies on a constant MF distribution. Thus, the role assignment FIS

is the only one tuned in that section.

Network Section # of Digits

Weapon Systems Tuning 30
Comms. and EWAR Tuning 7

Table 6.4: Tuning Sections of String

Based on this architecture, the string or chromosome is broken down into ten sections

and is 448 digits long in total. While certainly a non-trivial value, this effectively alleviates

the curse of dimensionality that a fuzzy control method for this complex problem would

suffer from.(47)

6.3.4 Evolutionary Processes

As the string length is significantly larger here, LETHA utilizes a thoroughly optimized

GA in order to maximize the effectiveness of each training generation. For each training

and live mission, there are significant numbers of strings that provide optimal performance

since not every mission tests every portion of the GFT. A much smaller subset of local

optima exist in the combined solution space of every mission, however these local optima

are still significant concerns that must be mitigated during the training process.

Tournament polling style with a set tournament size is utilized. Here, a number of

strings are randomly selected from the population. The most fit of the strings from this

pool is then chosen for breeding. No elitism is present; at the end of every generation all

members die and only their offspring are present in future generations.

Traditional crossover, as well as flip and random replacement mutation mechanisms,

occur via breeding. Mentioned prior, these mechanisms take place on separate sections

of the string independently, since each section has different possible values. This both

prevents the need of any special restrictions on breeding mechanisms as well as inhibits

74

6.3 Communication Constraints Branch

crossover from being too damaging to the structure of the strings.

As learned from prior work tournament size, crossover rate, and mutation rate vary

with time into the training run.(48) The values of these parameters were determined

via optimization of an external GA. Their dynamic weights allow the GA to focus on

quick optimization initially and switch to escaping local optima later, while maintaining

appropriate levels of population diversity throughout.

The string bank is even more important in this study, as there is increased randomness

in the missions. After the set number of generations finish and training is complete, Monte

Carlo simulations run for every string in the string bank. Currently defaulting to 40

additional runs per string, the string with the highest score or average mission success

rate is then determined the optimal controller and the evolutionary training process ends.

6.3.5 Training

The prior work from the preceeding Chapter provided valuable insight into developing a

proper training portfolio.(38) Each MF in every FIS should to be tested, but extremely

long missions that test the same scenarios multiple times are unnecessary.

Additionally, an amalgamation of all of the training missions into one long mission

would be suboptimal since a string would first have to successfully complete each part

of the mission prior to even being trained in the next. Keeping missions separate allows

different sections of the string to develop simultaneously and has the side benefit of being

more efficient computationally due to parallel applications.

In terms of performance effectiveness, the most important factor in creating the train-

ing setups is to ensure that every relevant set of branches of the decision tree is covered at

least once. For LETHA’s case, it is not enough to test LETHA in an encounter in which

the states in matrix B fall under a certain set of MFs. Other factors, such as distance to

next encounter and mission time remaining also play an important role. Since the GFT

evolves both the RB and MF shape, and thus the definition of these factors is constantly

75

6. CONSTRAINED COMMUNICATIONS PROBLEM

changing, creating enough training missions to guarantee that the entirety of the FT is

throughly developed for every possible string is computationally intractable. However,

creating a reasonably large training set that has the potential to allow LETHA to fully

utilize the maximum granularity given to it in the form of number of MFs for each input

and output, can be satisfactory. The performance of each training portfolio of course

should be verified through testing results.

6.4 Results

6.4.1 Training Missions

The following six training missions were created, each focusing on teaching a certain

portion of the knowledge LETHA needs. These six missions likely do not resemble realistic

combat missions.

6.4.1.1 Training Mission #1

Seen in Figure 6.1, the first training mission is one of the most crucial and a prime example

as to why training certain lessons separately is vital. While no large clusters of red defenses

are present here, the UCAV squadron is stripped of all SDMs. Having to complete the

entire mission solely relying on the LWS, the squadron learns how to defend itself in an

actual mission after its resources have been used up. To compensate for this difficulty,

SAMs only fire two missiles before reloading.

As in the other missions as well, note that some SAMs are directly on the squadron’s

route, and others are offset by some amount. This affects the profile of the red missiles

and teaches LETHA to properly react to these different scenarios.

76

6.4 Results

Figure 6.1: Training Mission #1 - LWS Only

6.4.1.2 Training Mission #2

This mission is quite similar to training mission #1, however the battle-space in Figure

6.2 is an order of magnitude larger. This gives the squadron much more time between

encounters with the red forces, effectively ensuring maximum laser capacity at the be-

ginning of each engagement. However this mission is significantly more difficult then the

preceding; as with all other missions to follow, the SAMs fire six missiles per volley. When

six red missiles are incoming, especially if the profile of the missile causes the LWS to be

sub-optimally effective, the squadron of four UCAVs have a very high probability of defeat

if no SDMs are available. Because of this, scores are quite low on average for this training

mission, but mission is possible and the squadron obtains valuable lessons through both

defeats and victories.

6.4.1.3 Training Mission #3

The remaining missions focus on more standard combat scenarios. The UCAVs start out

with a predetermined amount of SDMs, explained later, and must defeat varying sets of

enemy forces. Depicted in Figure 6.3, this mission contains five clusters of enemies. Two

of the large groups contain EWAR stations, and the group at the top of the map also is

77

6. CONSTRAINED COMMUNICATIONS PROBLEM

Figure 6.2: Training Mission #2 - LWS Only

covered by an AI patrol zone. Hence this mission has varying degrees of stress for the

UCAV squadron, imparting knowledge of when to be conservative or generous in terms of

SDM firings.

As this mission somewhat resembles typical combat missions, it also serves as a good

proving ground for the lessons learned from other training missions. As will be seen,

the following missions contain more methodically placed enemies in order to train certain

portions of the GFT. While not a random distribution of forces, this mission has a more

realistic enemy layout. Mentioned previously, the encounters at the beginning and end of

this mission are quite similar, however the rest of the LETHA’s GFT will be triggering

different rules due to the position in the mission and number of known threats remaining

for each.

6.4.1.4 Training Mission #4

Mission #4 focuses on clustered enemies with medium length gaps between each group.

In the bottom and middle large groups the SAMs at each angle off the path are repeated

since they will have different current weapon statuses, missiles in air, and times to next

target. The groups on the upper left and upper paths are encountered in the presence of

EWAR. This is tied for the most number of red missiles fired in a training mission and

78

6.4 Results

Figure 6.3: Training Mission #3 - LWS and SDMs

has the shortest average time between red missile firings.

Figure 6.4: Training Mission #4 - LWS and SDMs

6.4.1.5 Training Mission #5

This mission is quite similar to training mission #4 except here the red forces inside each

group are more spread out. Since there are no threats on the vertical portions of the route,

the known threats remaining decreases in a different manner throughout the mission as

compared to training mission #4. Larger spaces between these groups ensures higher

LWS capacity at the onset of each encounter. The lowest path is the least stressful on the

79

6. CONSTRAINED COMMUNICATIONS PROBLEM

system, the middle contains an AI zone, and the upper path is entirely handled without

communications. Due to the inclusion of time until next target as an input in the GFT,

this mission is necessary to properly train the entire rule base.

Figure 6.5: Training Mission #5 - LWS and SDMs

6.4.1.6 Training Mission #6

The final training mission is also the most difficult one with SDMs equipped; while it

is tied for most red missiles fired, it has the most missiles countered while under the

effects of EWAR, and the shortest maximum time between enemy encounters. Here the

three horizontal passes are all under the effects of EWAR stations as seen in Figure 6.6.

The bottom path is the only where full LWS capacity is present for the squadron due

to the forces on the vertical paths. This mission focuses greatly on optimizing the no

communications branch of the GFT.

6.4.1.7 Training Mission Setup

For each training mission containing SDMs the starting amount has to be given. In

order to determine this quantity, LETHA was run for each mission independently for 60

generations. This amount of training was larger than if multiple missions were trained

for simultaneously, but is the best possible way to determine the true minimal number

80

6.4 Results

Figure 6.6: Training Mission #6 - LWS and SDMs

Mission SDMs
Red

Missiles

Red
Missiles

per SDM

Red
Missiles
Under
EWAR

Avg. Time
Between

Encounters
(secs)

Max Time
Between

Encounters
(secs)

Mission #1 0 16 N/A 4 77.70 124.1
Mission #2 0 44 N/A 12 810.4 1108
Mission #3 12 92 7.667 50 30.44 137.4
Mission #4 18 122 6.778 36 23.14 109.9
Mission #5 10 92 9.200 30 32.49 122.1
Mission #6 18 122 6.778 96 24.66 57.04

Table 6.5: Training Mission Statistics

of SDMs required for an individual mission. An 80% success rate in 20 trials of each

mission was deemed acceptable for an amount of SDMs. This success rate was deemed

acceptable here as, unlike prior work, the addition of EWAR stations brings much more

uncertainty, especially in these unrealistically long training missions.(38) A higher success

rate is required for non-training missions. The results of these training runs, along with

other difficulty metrics, are shown in Table 6.5.

6.4.1.8 Training Results

Training occurred over 80 generations and every string within 5% of the current global

optimal were recorded in the string bank. The code ran for 30.47 hours on one computer

81

6. CONSTRAINED COMMUNICATIONS PROBLEM

and a total of 44 strings were obtained this way. The dynamic parameters of the GA cause

the population to have slightly more drastic changes once any local optima are beginning

to dominate the population. This was the cause of only 44 generations producing a string

that qualified for the bank. This diversity brings computational cost, but can increase

performance.

As the strings are able to be lucky and have their weapons more frequently than normal

succeeed the 90% probability of kill and the EWAR stations cause large uncertainties in

performance, the highest in this bank was not deemed the optimal string. Each of these

44 controllers were put through 40 iterations of the same set of missions and the string

with the highest average fitness was utilized as the best controller.

Table 6.6 depicts the average total fitness or score for all 6 missions for each of these

strings. The best string found was the 32nd in the bank and was produced in generation

53. The drastically different scores show the effects of both the probability of kill and the

EWAR stations; only a few strings were able to achieve very high performance for each

of the 40 iterations. To put the scores into perspective, during training the highest total

score for a string was obtained in generation 67 with a score of 2358.0.

Such a large difference between the largest maximum score of any one iteration, and

the highest average score of any string is an intentional product of the training missions.

Training Mission # 2 alone is along the lines of Star Trek’s Kobayashi Maru scenario in

that a high success rate is not the desired or expected result and that there is learning

to be had in defeat.(49) This mission is a penalty on strings that would otherwise receive

higher scores in the other 5 training missions, but would be absolutely unable to deal with

dire situations if they were to arise.

The best string obtained from training performed as shown in Table 6.7 over 20 iter-

ations of each mission. This string will be the one utilized in every non-training, or live,

mission in the following sections.

As discussed previously, the performance in Training Mission # 2 is quite poor, with

82

6.4 Results

String Avg. Fitness String Avg. Fitness

1 1040.4 21 2013.1
2 1264.6 22 1554.1
3 1063.7 23 1945.5
4 1146.8 24 1758.0
5 1335.9 25 2004.8
6 1822.0 26 1588.4
7 1594.8 27 1965.9
8 1662.8 28 1666.1
9 1638.2 29 1582.4
10 1223.3 30 1373.6
11 1715.6 31 2053.9
12 1588.3 32 2073.1
13 1413.9 33 1562.1
14 1600.2 34 1903.4
15 1616.3 35 1745.2
16 1471.2 36 1785.6
17 1485.8 37 1845.2
18 1773.1 38 1289.9
19 1667.1 39 1721.7
20 1747.6 40 1892.7
21 1452.6 41 1898.9
22 1031.2 42 1623.3
23 1354.6 43 2049.2
24 1384.4 44 1600.1
25 1378.9
26 1811.2 Best 2073.1

Table 6.6: String Bank Iterations Results

the majority of runs resulting in failure. However, all missions with SDMs were completed

with above the requirement of 80%. The effectiveness of this type of difficult training will

be proven in the following live missions.

6.4.2 Live Missions

The 12 Live Missions were designed to fully test the intelligent system post-training. These

scenarios have varied parameters in terms of difficulty and types of enemy layouts, as seen

in Figures 6.7-6.18 below.

83

6. CONSTRAINED COMMUNICATIONS PROBLEM

Figure 6.7: Live Mission #1 - Spread enemy distribution

Figure 6.8: Live Mission #2 - Spread enemy distribution

Figure 6.9: Live Mission #3 - Clustered enemy distribution

84

6.4 Results

Figure 6.10: Live Mission #4 - Spread enemy distribution

Figure 6.11: Live Mission #5 - Clustered enemy distribution

Figure 6.12: Live Mission #6 - Clustered enemy distribution

85

6. CONSTRAINED COMMUNICATIONS PROBLEM

Figure 6.13: Live Mission #7 - Mixed enemy distribution

Figure 6.14: Live Mission #8 - Mixed enemy distribution

Figure 6.15: Live Mission #9 - Mixed enemy distribution

86

6.4 Results

Figure 6.16: Live Mission #10 - Mixed enemy distribution

Figure 6.17: Live Mission #11 - Spread enemy distribution

Figure 6.18: Live Mission #12 - Very clustered enemy distribution

87

6. CONSTRAINED COMMUNICATIONS PROBLEM

Training Mission Avg. Fitness Success %

1 168.4 80%
2 112.5 45%
3 373.3 95%
4 552.6 95%
5 422.6 95%
6 442.0 85%

Table 6.7: Best String Performance in Training Missions

Mission SDMs
Red

Missiles

Red
Missiles

per SDM

Red
Missiles
Under
EWAR

Avg. Time
Between

Encounters
(secs)

Max Time
Between

Encounters
(secs)

Mission #1 7 50 7.143 12 34.04 90.20
Mission #2 7 38 5.429 0 36.13 58.89
Mission #3 6 44 7.333 20 14.65 65.61
Mission #4 5 50 10.00 18 31.17 66.46
Mission #5 9 44 4.889 42 26.27 123.0
Mission #6 6 44 7.333 30 22.56 63.64
Mission #7 5 50 10.00 0 35.52 56.85
Mission #8 5 50 10.00 12 24.75 84.85
Mission #9 10 62 6.200 12 50.41 142.6
Mission #10 8 62 7.750 12 21.46 33.22
Mission #11 6 62 10.33 12 28.27 104.2
Mission #12 10 50 5.000 0 2.748 8.108

Table 6.8: Live Mission Statistics

For the live missions, a similar process was followed to determine the SDMs required

for each mission, except unlike in the training missions, a success rate of 90% was chosen

to be necessary. These statistics can be viewed in Table 6.8.

6.4.3 Post-Training Performance

After selecting the best string from training, its capabilities to adapt to new environments

and apply its learning to different scenarios was determined. Table 6.9 lists the perfor-

mance of the best fuzzy tree found in each of the 12 live missions over 100 iterations.

Training for 6 specific missions imparted deep learning that allowed the GFT to com-

88

6.5 Conclusions

Live Mission Avg. Fitness Success %

1 261.5 93%
2 240.1 98%
3 293.3 96%
4 309.6 99%
5 324.1 100%
6 297.6 91%
7 308.4 100%
8 289.1 92%
9 337.8 94%
10 357.1 100%
11 340.4 97%
12 264.4 94%

Table 6.9: Performance in Live Missions

plete 12 separate missions with very high success rates. It is important to note again that

the resultant fuzzy tree post-training is deterministic and this variance in performance is

due to the uncertainties and randomness inside the missions. While the training time of

30.47 hours on one laptop was lengthy, this time is well within the realm of feasibility. If

lowered training times are necessary, the GFT, as all GAs, is highly parallelizable and can

easily be implemented to be distributed across any number of computers. For a trained FT

controller, running through an average length mission post-training takes 3.273 seconds.

On average, for an individual UCAV to determine its optimal counter for one missile takes

only 6.842 milliseconds. This computational speed allows LETHA to handle each threat

with no restriction due to run-time.

6.5 Conclusions

The GFT obtains very high performance with a string length of only 448 digits. Training

over 6 missions, each focused on a certain portion of the GFT, was all that was required

to complete all of the 12 different live missions. These missions are set to be so difficult

that even a single mistake in decision making likely causes mission failure. The complexity

89

6. CONSTRAINED COMMUNICATIONS PROBLEM

of communication constraints posed no significant difficulty to LETHA. The GFT, which

employs cascading structures whenever possible, is well-designed to handle these complex-

ities and others, and the run-times found in this study show we have yet to reach the

maximum potential of these methods.

The following chapter will cover the finalization of LETHA’s GFT by introducing the

third branch.

90

7

Vehicle Routing Problem

7.1 Introduction

The first research efforts of this DAGSI-funded work were focused on finalizing past re-

search on a genetic fuzzy approach to approximating a Vehicle Routing Problem (VRP).(37,

50, 51) While this VRP is slightly different than the routing needs inside LETHA, it is

similar enough that it was easily adapted. This chapter will cover the development of this

routing method as published at the 2013 AIAA Infotech@Aerospace conference in Section

7.2 and end with its application to LETHA.(37)

7.2 Fuzzy Clustering Routing Method

Initially a study in GAs aimed at approximating small to medium scale Traveling Sales-

man Problems (TSPs), additional complexities have been consistently introduced to this

research in an effort to model a realistic UAV swarm guidance and routing problem.(52)

The problem scenario consists of a randomized distribution of 1,000 targets which 16 dif-

ferent reconnaissance UAVs, originating from 4 different depots, must visit and return to

their appropriate depot in the most time-optimal fashion. Each target need only be moni-

tored so rather than points, visibility polygons are generated for each target. A minimum

91

7. VEHICLE ROUTING PROBLEM

turning radius is enforced on the UAVs, which fly at a specified velocity.

Approximating solutions for this problem is done through a dynamic programming ap-

proach consisting of GAs, FISs, GFSs, and simple heuristic logic systems. The techniques

are utilized in such a way that the problem is examined from a top level view which is

then approximated entirely before moving on to the next level. While iterative methods

are used at almost every level of the problem, each level is only solved once. Assumptions

and generalizations must be made to accommodate this, however the cost of these can be

minimized and the payoff is drastically reduced runtime, even for such a complex problem.

7.2.1 Problem Background

The lowest level variant this problem analyzes is the PVDTSP. In this scenario, the tra-

ditional Euclidian points that make up the cities are instead replaced with polygons.

Representing the collection of positions that allow the UAVs sensors to properly view the

target, the UAV must, at a minimum, touch any point of the polygon. As we are con-

sidering a two dimensional problem, the generation of these visibility polygons is quite

simple and illustrated in Figure 7.1.(21) Given the above-ground hemisphere that dictates

the necessary range from target in order to obtain proper resolution with a sensor, we can

remove the portions of this hemisphere where the view is blocked. Taking a planar slice

from the remaining shape at the altitude of the UAV results in the visibility polygon. If

the UAV flies at constant velocity, a constant minimum turning radius can be given. This

addition makes certain would-be optimal TSP solutions become much less fit, as extremely

sudden turns will now require a combination of maneuvers to accomplish.

The Min-Max Multiple TSP, shown in Figure 7.2, is one level above this. Here we

seek to cluster the targets amongst some set of UAVs in such a way that we minimize the

longest route of any UAV. Solutions in which the routes of all of the UAVs are equal or

very similar in length are more optimal in this case. The number of targets visited by

each UAV is meaningless.

92

7.2 Fuzzy Clustering Routing Method

Figure 7.1: Visibility Polygon Example - Creation of visibility polygons and implemen-
tation in VRP(21, 50)

Figure 7.2: Example Min-Max Multiple TSP - Approximating time-optimal route with
5 UAVs(50)

93

7. VEHICLE ROUTING PROBLEM

Figure 7.3: Composite VRP - 1000 polygonal targets, 16 UAVs, and 4 depots(50)

Combining these two problems and adding multiple depots as shown in Figure 6.3 is

the final problem solved by this technique. Shown is the target and depot layout of the

problem. Polygons are distributed randomly across the 1000x1000 (unit-less) map, and

given random shape with maximum size.

7.2.2 Methodology

Seeking to minimize this computational cost, the systems solves this problem utilizing a

top-down approach. Some of these levels are normally solved in one iteration in most

other methods. However here this takes place at every step; once a solution for a level

of the problem has been obtained, it is not revisited. Other methods may cluster the

multi-depot problem, cluster the multi-UAV problems, solve the TSPs, evaluate the total

cost and then begin iterations to optimize the initial solution. The dynamic programming

approach effectively avoids this. There is a hefty cost for this efficiency, mistakes made

at any level will not be corrected, and a handful of assumptions must be made at certain

94

7.2 Fuzzy Clustering Routing Method

levels in order to effectively approximate them.

The first scenario examined is the depot clustering problem. This is a relatively simple

problem to obtain a decent solution for, however if it is desired that this solution will prove

effective in a time optimal routing problem, it quickly becomes more complex. While a

simple nearest neighborhood algorithm can provide relatively accurate solutions for targets

near each depot, the areas farther away from each depot, especially in regions that are

equally far from multiple depot, are more difficult.

Remembering that the desired time optimal solution is one in which the longest path

of any UAV is minimized, implying that All UAVs should strive to obtain paths of equal

length. It is necessary to develop solutions to this initial clustering problem with this

in mind. Rather than clustering by distance from depot alone, we analyze additional

parameters. These values are derived from the convex hull, or largest polygon surrounding

each cluster. While a nearest neighbor algorithm is utilized to develop this initial clustering

it is refined through a fuzzy logic system that works in partnership with a string of heuristic

logics. Parameters pulled from the convex hulls include the centroid, shortest and longest

radius, area, target amount, and target density. In general, every cluster being small and

dense leads to optimal solutions, however excessive turning can greatly increase a UAVs

path length such. Larger and sparser clusters are generally poorer, but some clusters may

be of this shape in an effective solution depending on the target layout. The FIS seeks

to adjust each solution until all clusters are acceptably balanced in terms of number of

targets, target density, and hull area.

The next level of the problem, developing and optimizing the clusters for the individual

UAVs at each depot, follows a very similar process. Here the values the GA uses to create

its FIS are changed as this clustering algorithm operates in polar coordinates. Additionally,

rather than a nearest neighbor algorithm developing an initial solution, a separate, quick

FIS groups the targets based on their values around the depot.

Since the time optimal solution for a single TSP is the same as the distance optimal,

95

7. VEHICLE ROUTING PROBLEM

the problem now consists of a collection of PVDTSPs. However the price for this is the fact

that these clusters are never adjusted even if some TSP solutions present obvious errors.

These TSPs are initially solved utilizing the Lin-Kernighan TSP solver, and then a GA

alters these routes and selects what boundary points the aircraft contacts on each polygon

to make these solutions Dubins friendly.(53) An alternating algorithm develops the poses

for the Dubins solver. These solutions are compiled and run through the scheduler, with

a final GA that modifies the routes and finds the optimal tour for each UAV to minimize

mission time with a given delay between targets being visited.

7.2.3 VRP Results

All results of this study were obtained with a laptop utilizing Matlab and Python with an

Intel i7 2.40 GHz processor and 16 GB of RAM. Large polygons are utilized, representing

lower altitude flight or strong sensor capabilities. Figure 7.4 below shows the optimal

result and Table 7.1 lists the data for 25 runs of the code.

Best Worst Average

Min-Max Cost 2894.4 2956.5 2929.3
Total Cost 42721.6 44527.9 43876.8

Average Cost 2670.1 2782.9 2742.3

Table 7.1: VRP Results of 25 Runs (50)

Portion Avg. Time (secs)

Clustering for Depots 11.3
Clustering for UAVs 1.3 (per depot)

PVDTSP Solver 0.9 (per UAV)
Optimizing Scheduler 12.8

Total 43.7 (per UAV)

Table 7.2: VRP Code Average Run-Times (50)

As can be seen in Table 7.2, the average run-time for this code is rather quick for such

a large scale problem. Only slight variances occur between runs, with a maximum spread

of 2.1% difference between the best and worst solution found.

96

7.2 Fuzzy Clustering Routing Method

Figure 7.4: VRP Solution - 1000 polygonal targets, 16 UAVs, and 4 depots(50)

7.2.4 VRP Conclusions

This method obtains its extremely competitive run-speed by solving each layer of the

problem once and then moving on. This work was utilized for comparison, along with

other methods, against Kivelevitch’s Market Based Solution in a large scale but similar

routing problem, and while it was roughly 10% less accurate on very large-scale problems,

the Fuzzy Clustering method was more accurate than other methods and was faster than

every method.(54)

The extremely low computational cost to this is vital. While the problem within

LETHA does not contain all of the routing constraints such as minimum turning radii,

the number of times the simulation must be run through the evolutionary process dictates

that a very quick method must be utilized.

97

7. VEHICLE ROUTING PROBLEM

7.3 LETHA Routing

7.3.1 Implementation

Integration of the Fuzzy Clustering VRP method with LETHA was relatively simple. Here

the route for one UAV represents a squadron of UCAVs and no turning restrictions are

given. Additionally, since the ranges of the blue air to ground weapons and SDMs are

known by LETHA, range circles can be determined around all targets. Figure 7.5 below

shows this process.

Figure 7.5: Route Creation in LETHA - Simple transition from polygons to circles

7.3.2 Routing Branch

Now missions have two defining difficulty parameters; SDMs given and mission time limit.

The Fuzzy Clustering route solver provides very quick routes and at times, this efficient

routing could be sub-optimal within the context of this combat problem. Thus the final

branch of LETHA’s GFT was created to optimize these routes by adding loitering maneu-

98

7.3 LETHA Routing

vers where appropriate to allow time for the LWS to recharge. This forms the complete

version of the tree as depicted in Figure 4.4.

To accomplish this, two FISs analyze the output of the Fuzzy Clustering route solver

in an iterative process, and a final third FIS forms the base of the cascade. The first of

theses systems is the Loitering Needs FIS, which based this decision on an iterative process.

This FIS utilizes a difficulty measure assigned to each encounter. Again, an encounter is

simply a group of threats close enough together that their missiles would be in the air

simultaneously. This difficulty measure is simply a normalized value of the number of

missiles that can be launched against the UCAVs versus what the UCAVs, at optimal

strength, can accommodate. The Loitering Needs FIS iterates over every encounter, using

each encounter’s difficulty as well as the difficulty of and time to the following encounter

as inputs. This is shown in Table 7.3.

Fuzzy Input # Input MFs Output MFs

Current Encounter Difficulty 3 Low Need
Next Encounter Difficulty 3 Medium Need
Time to Next Encounter 3 High Need

Table 7.3: Loitering Needs FIS

The Loitering Ability FIS works on the same level as the Loitering Needs FIS. This

FIS, shown in Table 7.4, similarly has three inputs. Here, at the end of each encounter,

the route time left, mission time budget, and threats left are used as inputs.

Fuzzy Input # Input MFs Output MFs

Route Time Left 3 Low Ability
Mission Time Budget 3 Medium Ability
Threats left 4 High Ability

Table 7.4: Loitering Ability FIS

These FISs merge into the Loiter Creation FIS, which takes the outputs of the two

preceeding FISs as inputs as shown in Table 7.5. Outputted is whether, after each en-

counter, there should be a loitering manuever, and if so, how long the loitering maneuver

99

7. VEHICLE ROUTING PROBLEM

should be with respect to LWS % recharge.

Fuzzy Input # Input MFs Output MFs

Loitering Need 3 No Loiter
Loitering Ability 3 33 % LWS Charge Loiter

66 % LWS Charge Loiter
100 % LWS Charge Loiter

Table 7.5: Loiter Creation Ability FIS

7.3.3 Routing Results

The final string length is 542 digits and the number of parameters and structures that

need to be hand-tuned is somewhat minimal. However, optimization of the GFT can be a

tedious process that if done improperly, can lead to suboptimal results. Fortunately GFTs

can be optimized by other systems, such as Psibernetix Inc.’s EVE System.(55) Training

portfolios, crossover and mutation rates, elitism, tournament sizes, and other parameters,

as well as the time at which they morph were now optimized by this system. Final training

of this system took 79.43 hours, or just over three days on a 3.6 GHz i7 processor, 32 GB

RAM system.

With the GFT complete, LETHA can now complete missions with any finite number

of UCAVs spread out at any finite number of depots. Figure 7.6 below shows the example

mission from above complete with loitering maneuvers. Figure 7.7 shows a single depot

mission with both the information given the LETHA and the simulated results.

The follow Figures 7.8 and 7.9 highlight the ability to have multiple depots at any

general angle relevant to the battle space.

Figure 7.10 attempts to highlight the scalability of the approach by showing a 200

UCAV mission (1 depot, 50 squads). Where these missions show squadrons of four UCAVs,

this is by no means the limit. The graphical capabilities of LETHA do not allow high

enough resolution images of larger scale missions, but the largest single squad mission

completed was with 10,000 UCAVs. Even larger, a 500 squadron, 500 UCAV/squadron

100

7.3 LETHA Routing

Figure 7.6: Single Squad Routing Mission - Example showing loitering maneuvers as
square boxes

Figure 7.7: 8 Depot, 8 Squad Mission - Mission displaying given data and solution

101

7. VEHICLE ROUTING PROBLEM

Figure 7.8: 4 Depot, 8 Squad Mission - Example multi-depot mission

102

7.3 LETHA Routing

Figure 7.9: 2 Depot, 4 Squad Mission - Example multi-depot mission

103

7. VEHICLE ROUTING PROBLEM

Figure 7.10: 1 Depot, 50 Squad Mission - Example displaying scalability

104

7.3 LETHA Routing

mission, totaling to 250,000 UCAVs has been completed.

Completion here does not refer just to the fact that a solution was obtainable. HADES

does not wait while LETHA is processing her solutions. While LETHA is determining

counters for each missile in the air, the missile continues approaching LETHA. So these

missions are able to be completed real-time to LETHA’s perspective.

So far these routing missions have a weakness in that the squadron must remain con-

stant. This is sub-optimal, as splitting up the squadron to handle easier encounters and

joining again when needed for more difficult encounters could reduce total mission times.

This problem is easily remedied for smaller scale, realistic cases without any changes to

the GFT and with only a minor adjustment to the Fuzzy Clustering route solver.

Utilizing the same encounter difficulty measure as the Loitering Needs FIS, we can

determine the encounters which a given squad size would not be able to handle indepen-

dently. These encounters are then forced to be on the route of two squadrons. Rendezvous

points for these two squadrons are then calculated by analyzing the time at which both

squadrons would be within range of the encounter. The squadron with the shorter time

instead finds the time-optimal route to meet up with the squadron that has the longer time

to the encounter. Figures 7.11 and 7.12 depict this process. Note that in the following

missions, a ”squadron” can just be one UCAV.

To explain this process in detail, Figure 7.13 shows another one depot, one UCAV per

depot mission setup. The difficulty measure shows that the two encounters with one SAM

site are easy, and the encounter with three SAM sites is hard. Thus the routes for each

UCAV are as follows in Figure 7.14, which displays the progress of the mission after the

first UCAV has destroyed the first group of red entities.

105

7. VEHICLE ROUTING PROBLEM

Figure 7.11: Dynamic Squad Mission #1 - Example showing dynamic squads

Figure 7.12: Dynamic Squad Mission #2 - Example showing dynamic squads

106

7.3 LETHA Routing

Figure 7.13: Dynamic Squad Process #1 - Initial mission parameters

Figure 7.14: Dynamic Squad Process #2 - Top UCAV destroys first encounter

107

7. VEHICLE ROUTING PROBLEM

The process continues with the second UCAV destroying the other easy encounter,

shown in Figure 7.15. In Figure 7.16 the UCAVs rendezvous and form the larger squadron.

With this configuration, the UCAVs are able to complete this mission as seen in Figure

7.17 while optimizing for safety and mission time. Again, this required no modifications

to the GFT, and thus no additional training. The modular structure of the GFT allows

for this strength.

Figure 7.15: Dynamic Squad Process #3 - Initial mission parameters

108

7.3 LETHA Routing

Figure 7.16: Dynamic Squad Process #4 - Top UCAV destroys first encounter

Figure 7.17: Dynamic Squad Process #5 - Top UCAV destroys first encounter

109

7. VEHICLE ROUTING PROBLEM

Additionally, training of the entire GFT with the routing branch did not weaken the

performance of LETHA in past missions. The string output from EVE was evaluated

against the twelve live missions from Chapter 5, shown below in Table 7.6.(55)

Live Mission Prior Success % Final Success %

1 93% 100%
2 98% 100%
3 96% 100%
4 99% 100%
5 100% 99%
6 91% 98%
7 100% 100%
8 92% 100%
9 94% 100%
10 100% 100%
11 97% 100%
12 94% 99%

Table 7.6: Final Fuzzy Tree Performance

Relying on another intelligent system to optimize the GFT rather than doing so by

hand has its obvious benefits. These near-perfect success rates over 100 runs show LETHAs

strength in solving this problem. Additionally it is important to note that this string,

which contains all three of the main branches of LETHA’s GFT, was able to complete

these missions at such high success rates despite not having any routing section to them

at all. These results show that LETHA had not ”forgotten” the lessons learned when only

training for two branches of the GFT.

7.3.4 Genetic Algorithm Optimization

Throughout this work a significant amount of focus was given to the optimization of

LETHA’s GA. Psibernetix’s EVE system as mentioned above was applied towards this

goal, but prior to this a separate GA was utilized to optimize LETHA’s GA.(50, 55) Some

interesting takeaways were noted.

First the amount of elitism, or number of top-performing strings that were copied

110

7.4 Conclusions

into the next generation, was found to be optimized to zero. This goes against common

knowledge of the technique, though in literature this phenomena has been noted in cases

where global perspective is more important than local search.(41) Due to the extremely

large solution space, likely with many different local-optima that provide strong enough

performance, LETHA performing best with no elitism aligns with this notion.

Another notable result from the GA optimization is that the crossover and mutation

rates are very different than what is commonly utilized. Traditionally, a high crossover

percentage and a low, or often extremely low, mutation percentage are employed. Here

LETHA was found to perform better with a low crossover rate, and a rather high mutation

rate. This is likely due to the fact that the string itself is made up of many sections, with

each section being quite short on average. Again, as these mechanisms are used on each

section independently, the mutation mechanism is relatively strong compared to mutation

in a single, large section. While these observations in no way state that elitism or a high

crossover rate is suboptimal for GAs in general, these imply that the same could be true for

other complex GFSs with similar solution spaces and where many different local optima

may provide satisfactory performance.

7.4 Conclusions

The optimization of LETHA by the EVE system, which also included a longer training

time, brought significant improvements as shown in Table 7.6.(55) This increase in perfor-

mance came in addition with increased capabilities. The inclusion of the Fuzzy Clustering

route solver was successful.(50) LETHA can complete missions with and without EWAR,

with unrealistically large numbers of depots, squadrons, and UCAVs.

In the next chapter, the ability for the GFT to utilize other methods will be fur-

ther reinforced by adding another complexity to the mission in the form of varied enemy

ordinances.

111

8

Coping With Varied Ordinances

8.1 Introduction

The goal of the study presented in this chapter is to reinforce strengths of the GFT already

mentioned, namely the ability to utilize other machine learning methods and the ability

to solve extremely complex problems. This was accomplished by removing an assumption

from the current simulation environment; all SAM sites fire the same type of ordinance.

This greatly increased the difficulty for LETHA and will add another level of realism to

this research. The majority of this work was completed as a project in the UC CEAS class

titled ”Machine Learning”.(56)

8.2 Missile Models

As discussed in Chapter 3, different types of missiles have been selected and their relative,

normalized, unitless data distribution of four different features have been created. These

features again are launcher radar emissions, ordinance radar signature, ordinance acceler-

ation (assumed to be constant shortly after launch) and ordinance smoke tail size. Each

of these features has different amounts of variance and noise associated with them relative

to the capabilities of the sensors on-board the UCAVs. Eight different multi-class classi-

112

8.2 Missile Models

fication methods were put through a Monte Carlo study in the case of nominal training

data, insufficient training data, and poor quality training data.

Previously the only missile utilized by the enemy forces was an InfraRed (IR) homing

missile. This type of missile is much more vulnerable to directed energy attacks to its

nose-cone due to the fact that the LWS only needs to disable the sensors located there to

disable the missile. A slightly larger IR missile has been implemented as well. The other

type of tracking we will implement is Semi-Active Radar (SAR) homing which utilizes the

missile as a passive sensor and the launch vehicle guides the missile rather than a sensor

setup onboard the missile itself. Two classes of these missiles have been implemented,

one larger than the other, with all four missiles having different distributions of their four

respective features.

These SAR missiles have no weakness on their nose-cone, and due to the expected

error of tracking and the width of the LWS’s beam, will be easier to destroy with the

LWS while aiming directly at their side. Additionally, misclassification of a small or large

missile will cause erroneous laser beam widths to be utilized, causing either ineffective

lases, or lases that consume more energy than was required. Thus proper classification is

crucial in order to intelligently utilize the renewable LWS against targets and expending

the limited SDMs in the correct scenarios.

This classifier effectively is one fuzzy input in the weapon control branch of the GFT.

While before the ”LWS Effectiveness” input seen again in Figure 8.1 was based solely on

profile of the missile available to the UCAV and distance to the missile, it is now also the

output of a machine learning classifier.

The attributes to evaluate have been carefully considered. Due to the nature of how

LWS changes air combat doctrine, it is reasonable to assume that the enemy would attempt

to make classification of the incoming missile as difficult as possible. The smaller missiles

have a shorter maximum range, and launching a missile from far outside this range would

allow LETHA to easily determine what kind of missile is being fired. Thus we assume the

113

8. COPING WITH VARIED ORDINANCES

Figure 8.1: Weapon Control Cascade - LWS Effectiveness input now machine learning
classifier

enemy will utilize the same engagement pattern regardless of missile type. Displayed here

again for convenience, the following four attributes remain to classify the missiles by:

• Radar Emission of Launcher (moderate variance, normally distributed)

• Radar Signature of Missile (moderate-high variance, normally distributed)

• Acceleration of Missile, assumed constant after launch, (low variance, normally dis-

tributed)

• Missile Tail Infrared Signature (high variance, exponentially distributed)

Training data was created by taking the standard value for each of the 4 attributes

for each of the 4 missiles and applying random noise within a certain threshold for each

attribute. Training data noise was less severe than test data noise in order to promote

difficulty and add realism. The noise in the test decreased with range, being re-evaluated

at a constant time step. LETHA has been given ability to change any future planned

actions based on updates to the classifiers, though of course any improper actions taken

114

8.2 Missile Models

will be wasted. While confidence and effectiveness of the LWS will both be increasing as

the missiles close in, waiting until the last moment may result in losses.

Eight classifiers, namely Naive Bayes, Decision Tree, Linear Discriminant Analysis

(LDA), Linear Support Vector Machine (SVM), Radial Basis Function (RBF) SVM, Ran-

dom Forest, Extra Randomized Tree, and Nearest Neighbor were selected.(57) Most of

these classifiers are quite simple, however for the Decision Tree we utilized the optimal

splitting method rather than random, and set a minimum of 2 samples to both split and to

form a leaf. LDA is based upon the concept of searching for a linear combination of vari-

ables (predictors) that best separates two classes (targets). RBF SVMs use normal curves

around the data points, and sums these so that the decision boundary can be defined by

a type of topology condition. The Random Forest operates by constructing a multitude

of decision trees at training time and outputting the class that is the mode of the classes

output by individual trees. Lastly, the Extra Randomized Tree classifier randomly splits

and forms leaves rather than through a user-selected strategy.

The distribution of the data has a significant role in determining which classification

method is optimal, and if a different missile model was constructed, different classifiers

may end up performing differently. However, with the missile models selected in this

study, these eight classifiers will have their performance measured in three cases; nominal

training data, insufficient training data, and poor quality training data.

For the nominal case, sensor noise is slightly inaccurate and 400 training points were

obtained. In the insufficient case, the same sensor accuracy is assumed, but only 40

training points exist. Lastly, the poor quality case similarly has 400 training points, but

the sensor noise is increased by a factor of 25%. An example distribution of these three

cases can be seen below in Figures 8.2 - 8.4.

115

8. COPING WITH VARIED ORDINANCES

Figure 8.2: Nominal Training Data

116

8.2 Missile Models

Figure 8.3: Insufficient Training Data

117

8. COPING WITH VARIED ORDINANCES

Figure 8.4: Poor Quality Training Data

118

8.3 Results

8.3 Results

For each of the three cases, 100 different training sets were analyzed over 100 different

testing sets each, at every 0.01 interval of relative distance between missile and UCAV

with 0 being impact and 1 being launch. This removed any bias that a particular drawing

of training points from the distribution could have on the performance of the classifiers,

in particularly important for the insufficient training data case. Figures 8.5 - 8.7 below

show the performance of each classifier graphically.

Each of these plots have been broken down into a few sections for easier analysis.

Three dashed vertical lines have been added; right of the green line represents time that

other functions of LETHA must finish prior to action assignment, such as target lock

and determining where the missile is heading. Left of the green line designates the time

in which LETHA can begin using countermeasures and enough time is remaining before

impact that all possible counters are still available. Left of the yellow line means that some

countermeasure actions are no longer available (namely, immediately lasing this missile

with enough time to lase another missile in the same group). Left of the red line means

that no LWS action is possible and only SDM firings are available (thus, the certainty of

the classifier is meaningless at this point).

119

8. COPING WITH VARIED ORDINANCES

Figure 8.5: Nominal Case Classifier Comparison

Figure 8.6: Insufficient Case Classifier Comparison

120

8.3 Results

Figure 8.7: Poor Quality Case Classifier Comparison

121

8. COPING WITH VARIED ORDINANCES

The data from these plots is depicted numerically in Table 8.1. As can be seen, in

the nominal case the RBF SVM is the first to reach 90% certainty, and ties with LDA to

95% certainty. Note that none of the classifiers are able to reach 95% certainty within the

”green” zone, meaning if the LWS on-board one UCAV is to be utilized against more than

one missile in a group, LETHA must settle for 90% certainty.

Table 8.1: Classification Method Comparison

For the limited case, the LDA pulls ahead of the RBF SVM slightly, but still no

classifier is able to reach 90% certainty in the ”green” zone. LDA’s ability to deal with

smaller training sets is quite clear through this result. Another observation is that the

Naive Bayes classifer actually performed better in this case than the nominal training

data, implying that it was being overfit before.

Finally, in the poor quality case, the trends follow similarly to the nominal case, with

the RBF SVM first to 90%, but the LDA actually surpasses the RBF SVM in terms

of reaching 95% certainty first. Table 8.2 below shows the average run-times of each of

these methods. While LDA and RBF SVM are indeed some of the slowest methods, the

difference in time is quite negligible being a matter of only 1-2 milliseconds.

122

8.3 Results

Classifier Avg. Time (ms)

Naive Bayes 7.400
Decision Tree 8.722
LDA 9.174
Linear SVM 9.156
RBF SVM 9.224
Random Forest 9.052
Extremely Randomized Trees 8.987
Nearest Neighbor 8.849

Table 8.2: Run-Times for each Classifier

Figure 8.8: ROC Plot for RBF SVM - Accuracy of method

Figures 8.8 and 8.9 show the ROC plots for both RBF SVM and LDA classifiers. It is

interesting to note that while their performance in each class varied, the rankings for most

to least accurate classes was the same for both classifiers. The order from least to most

accurate was found to be small IR, small SAR, large SAR, large IR. Again, the model

utilized to create the data has a major role to play in the difficulty of each class, and for

a different model, this ranking would undoubtedly change.

123

8. COPING WITH VARIED ORDINANCES

Figure 8.9: ROC Plot for LDA - Accuracy of method

For the nominal case, with the RBF SVM classifier implemented, LETHA is able to

complete missions with extremely limited SDMs. The presence of multiple types of enemy

ordinances greatly increases the difficulty, and in these limited SDM scenarios, losses are

expected. Performance in an example mission can be seen in Figure 8.10. Figure 8.11

shows a highlighted portion of this mission, displaying the ability of LETHA to make

complex decisions in near worst-case scenarios through intelligent utilization of the CTAA

by the GFT. Here a SAM site equipped with small SAR missiles, the hardest to counter

with the LWS, fires four times at the squadron. Two of the missiles are sent to the squad

leader, and two to two other UCAVs. Knowing an easier SAM site is likely all that remains,

the squad conserves LWS charge, sends the final two SDMs to counter the missiles which

are each going to separate targets, and sacrifices the squad leader UCAV that has two

red missiles inbound. This allows the squadron to survive the next, more easily countered

small IR equipped SAM site, and complete the mission with only one casualty.

124

8.3 Results

Figure 8.10: LETHA Mission with Classifier Implemented - Extremely difficult mis-
sion completed successfully

Figure 8.11: Highlighted Portion of Mission - Shows intelligent course of action in near
worst-case scenario

125

8. COPING WITH VARIED ORDINANCES

8.4 Conclusions

Within this study eight different classification methods were tested for utilization within

LETHA. Robustness to both training data size and quality was determined. In nominal

cases, the RBF SVM was found to be the most accurate, however in both the limited

training data and inaccurate training data cases, the LDA showed its merits.

Adding this complexity presents an additional level of realism to the problem inside

HADES. This work highlights the ability for LETHA to both cope with many complexities

and utilize other machine learning techniques seamlessly. In the following section, final

conclusions and recommendations for future work will be presented.

126

9

Conclusions and Future Work

9.1 Introduction

This study was set out to explore developing a GFS for a complex aerial combat problem.

The control of this problem has an infinite solution space, however if discretized through

employment of fuzzy logic, a standard GFS would have a solution space of 2.6 ∗ 107022.

Again, to train over the same portion of the solution space as LETHA would take 1.1 ∗

106704 processor years. This is not something that will be solved by the next Intel chip,

or even quantum computing. While the strengths of fuzzy logic such as adaptability

and resilience to randomness are extremely desirable for this problem, it was obvious a

standard GFS would be computationally infeasible.

The GFT method was developed to address this scalability problem. This method

allows, for the first time, for GFSs to be applied to UCAV control in the forms of intelligent

mission planning, routing, tactics, and direct control of SDMs and the LWS. Remote-

operation of these safety and speed critical systems are extremely limited by computational

constraints, and the allowable time-frame for decisions is such that even pilots of manned

craft could not properly determine the optimal course of action. Implementation of these

intelligent systems can save friendly aircraft and pilots as well as reduce collateral damage.

127

9. CONCLUSIONS AND FUTURE WORK

If the SDMs and LWS were to be actually implemented, LETHA could bring intelligent

control and redefine aerial combat.

9.2 Publications

From the start of the author’s graduate career until the time of this document’s publication,

this research has been presented in the following publications:

• Ernest, N., Cohen, K., Casbeer, D., Kivelevitch, E., and Schumacher C., “Genetic

Fuzzy Trees and their Application Towards Autonomous Training and Control of a

Squadron of Unmanned Combat Aerial Vehicles”, Journal of Unmanned Systems,

2014, - Accepted for publication

• Kivelevitch, E., Sharma, B., Ernest, N., Kumar, M., and Cohen, K., 2014, “A Hier-

archical Market Solution to the MinMax Multiple Depots Vehicle Routing Problem”,

Journal of Unmanned Systems 01/2014; 02:87-100

• Ernest, N., Cohen, K., Casbeer, D., Garcia, E., and Schumacher C., Multi-agent Co-

operative Decision Making using Genetic Cascading Fuzzy Systems, AIAA SciTech

Conference, Kissimmee FL, 2015

• Sathyan, A., Ernest, N., and Cohen, K., “Genetic Fuzzy Approach for Control and

Task Planning Applications”, AIAA SciTech Conference, Kissimmee, FL, 2015

• Ernest, N., Cohen, K., Casbeer, D., and Schumacher C., “Learning of Intelligent

Controllers for Autonomous Unmanned Combat Aerial Vehicles by Genetic Cascad-

ing Fuzzy Methods”, SAE Aerospace Systems and Technology Conference, Cincin-

nati, OH, 2014

• Ernest, N., Cohen, K., and Schumacher C., “UAV Swarm Routing Through Genetic

Fuzzy Learning Methods”, AIAA Infotech@Aerospace Conference , Boston, MA,

2013

128

9.3 Conclusions

• Mitchell, S., Ernest, N., and Cohen, K., 2013, “Comparison of Fuzzy Optimization

and Genetic Fuzzy Methods in Solving a Modified Traveling Salesman Problem”,

AIAA Infotech@Aerospace Conference , Boston, MA, 2013

• Ernest, N., Cohen, K., and Schumacher C., 2013, “Collaborative Tasking of UAVs

Using a Genetic Fuzzy Approach”, AIAA, 51st Aerospace Sciences Meeting, Grapevine,

TX, 2013

• Ernest, N., and Cohen, K., “Fuzzy Clustering Based Genetic Algorithm for the

Multi-Depot Polygon Visiting Dubins Multiple Traveling Salesman Problem”, AIAA

Infotech@Aerospace Conference, Garden Grove, CA, 2012

• Ernest, N., and Cohen, K., 2012, “Fuzzy Logic Clustering of Multiple Traveling

Salesman Problem for Self-Crossover Based Genetic Algorithm”, AIAA 50th ASM,

Nashville, TN, 2012

• Ernest, N., and Cohen, K., 2011, “Self-Crossover Based Genetic Algorithm for Per-

formance Augmentation of the Traveling Salesman Problem”, AIAA Infotech@Aerospace

Conference, St. Louis, MO, 2011

9.3 Conclusions

The GFT method allows genetic fuzzy techniques to be applied to very complex problems.

This significantly elevates fuzzy logic in the domain of artificial intelligence problems. Note

that in the development of LETHA, no assumptions have been made or constraints placed

that affect at all the applicability of this type of GFS. The main application constraints

are that the target problem requires a fitness function of some form that encapsulates the

problem and that solutions to the problem must be able to be encoded into a string.

This fitness function can take many possible forms, and can be incredibly subjective.

Similarly, strings need not even be numerically encoded. Thus the GFT can be applied

129

9. CONCLUSIONS AND FUTURE WORK

to many different problems. The only cost paid to create a GFT rather than a standard

GFS is, as mentioned in Chapter 4, decreases in performance brought about by a loss of

direct coupling of separated inputs. This cost can be mitigated through careful placement

of directly coupled inputs to the same FIS within the fuzzy tree.

It is worth mentioning that, while the GFT allows fuzzy control to be applied to even

more complex problems than that of LETHA, LETHA could have been three separate

GCFSs. However, creating one cascaded system for each branch, and then optimizing

over each of them separately would require at least an initial guess to first be made to the

other two branches. Such an initial guess would still have to perform very well however,

as otherwise any training done to the lone branch would be relatively meaningless as all

missions would likely end in failure.

Even if such an estimation would be possible, its implementation would take a signif-

icant amount of time. Additionally, after the first branch is finished training, the next

branch, and then the last would need training. Undoubtedly there is indirect coupling

present between how LETHA flies, how LETHA utilizes resources when communications

are up, and how LETHA assigns targets and utilizes resources when communications are

down. Training for one branch at a time could lead to a never converging solution, with

each branch changing significantly each time it is trained without the others.

The GFT allows for the system to be considered in a holistic manner. Not only does

this allow for proper training of the system, but it also aids significantly in the ability for

the GFT to serve as a research tool. LETHA can output a linguistic sentence with every

if-then rule that triggered causing a certain output. This could be incredibly desirable in

certain applications; for example if LETHA were actually not controlling any device, but

simply providing advised courses of action, the explanation behind the suggestion would

be very beneficial and help convince the user that the system is not erroneous.

130

9.4 Future Work

9.4 Future Work

As mentioned, GFTs are broadly applicable. From this study it is observable that problems

with large solution spaces with very little known about them, containing significant noise

or uncertainty, and for which a high-performance local optimal could be satisfactory are

prime candidates for GFT application. Again, GFTs offer no guarantee of optimality;

while the output fuzzy tree is deterministic, this absolutely does not apply to the GA.

Due to this broad applicability, this section will focus on some of the key possible

future work areas for LETHA specifically. Perhaps the most apparent improvement that

could be made is the inclusion of altitude to make the problem three-dimensional. While

altitude control could mandate significant additions to the GFT, it is likely that the labor

here would be more intense for updating HADES. This would allow for more detailed

models to be utilized and could pose as a starting point for a more complex investigation

into aerial dogfighting.

On the other end of the spectrum, requiring little improvements in HADES but more

noticeable changes to LETHA’s GFT, mobile ground threats and AIs that are not given

a patrol boundary could be introduced. This would allow for the enemy to employ simi-

larly complex tactics against LETHA. Another GFT could be created to control the red

forces, and the interplay between them could provide very interesting results. Whereas

LETHA controls an offensive force, this other GFT would have to learn and develop

high-performance defensive strategies. This could serve as a research tool for determining

the minimum number of forces the enemy would require present to be able to counter

the UCAV squad LETHA controls. This knowledge could then further benefit LETHA,

allowing her to more accurately determine the feasibility of a given mission.

Fuzzy control is robust to variations in noise and randomness, however to what extent

LETHA is could be determined. For example, additional studies could analyze perfor-

mance of LETHA training for a certain probability of kill, perhaps 90% as in this study,

131

9. CONCLUSIONS AND FUTURE WORK

and then determining effectiveness of this trained controller at missions in which this

probability of kill is varied. The resilience of fuzzy control to these changes will likely

reach a limit where performance could be improved if a string, trained under a different

probability of kill, were to be employed. This type of string transition could easily be

accomplished mid-mission, and thus a different branch of the fuzzy tree could be created

to analyze the mission performance real-time, and determine if transitioning to any alter-

native strings would bring about improvements to performance due to current parameters

varying drastically from training cases.

Lastly, all the UCAVs LETHA controls are homogeneous; they all travel at the same

velocity, have the same model LWS, and are given the same load-out of SDMs. This

change would likely significantly impact all branches of LETHA’s GFT. In particular the

communication constraints branch would require additional work as now there would need

to be different roles assignable to every type of aircraft load-out. Countless variants of

trade studies could be performed to investigate certain aspects of performance.

9.5 Closing Thoughts

LETHA provides extreme performance to a very difficult control problem rife with uncer-

tainties and randomness while maintaining generality to any mission in HADES. Despite

all the complexities given to HADES, LETHA has not reached the ceiling of the GFT

method; while it is very parellelizable, training for LETHA can still be completed on one

device in a relatively short time-frame. The loose structure of the GFT allows for other

methods to be utilized when appropriate. This research has allowed fuzzy logic to expand

its territory of influence.

Fuzzy logic is right, right, and advantageous. What we need is more fuzzy thinking,

not less. The benefit of fuzzy logic is that it will encourage the sort of imprecise thinking

that has already enabled so many new capabilities. Fuzzy logic is an elixir of science.

132

References

[1] L. Zadeh. Is there a need for fuzzy logic? Information Sciences, Vol. 178, pp.
2751-2779, 2008.

[2] L. Zadeh. Fuzzy Sets. Information and Control, Vol. 8, pp. 338-353, 1965.

[3] S. Haack. Deviant Logic, Fuzzy Logic: Beyond the Formalism. The University of
Chicago Press, Chicago, IL, 1996.

[4] L. Zadeh. Factual Information about the Impact of Fuzzy Logic. http:

//www.cs.berkeley.edu/~zadeh/stimfl.html, 1995. cited 2015.

[5] S. Teitelbaum. Fuzzy Thinker. http://archive.wired.com/wired/archive/

3.02/kosko_pr.html, 1995. cited 2015.

[6] O. Cordon, F. Gomide, F. Herrera, F. Hoffman, and L. Magdalena. Ten
years of genetic fuzzy systems: current framework and new trends. Fuzzy
Sets and Systems, Vol. 141, pp. 5-31, 2004.

[7] United States Air Force. Small Business Innovation Research (SBIR)
Proposal Submission Instructions. http://www.acq.osd.mil/osbp/sbir/

solicitations/sbir20121/af121.htm.

[8] S. Heise and S. Morse. The DARPA JFACC Program: Modeling and
Control of Military Operations. Proceedings of the 39” IEEE Conference on
Decision and Control Sydney, 2000.

[9] M. Faied and Girard A. Modeling and Optimizing Military Air Oper-
ations. Joint 48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, Shanghai, P.R. China, 2009.

[10] C. Cassandras and W. Li. A Receding Horizon Approach for Dynamic
UAV Mission Management. Enabling Technologies for Simulation Science VII,
Proceedings of SPIE, Vol. 5091, 2003.

[11] D. Popken and L. Cox. Simulation-Based Planning for Theatre Air War-
fare. Enabling Technologies for Simulation Science VIII, Proceedings of SPIE, Vol.
5423, 2004.

133

http://www.cs.berkeley.edu/~zadeh/stimfl.html
http://www.cs.berkeley.edu/~zadeh/stimfl.html
http://archive.wired.com/wired/archive/3.02/kosko_pr.html
http://archive.wired.com/wired/archive/3.02/kosko_pr.html
http://www.acq.osd.mil/osbp/sbir/solicitations/sbir20121/af121.htm
http://www.acq.osd.mil/osbp/sbir/solicitations/sbir20121/af121.htm

REFERENCES

[12] D.P. Bertsekas, M.L. Homer, D.A. Logan, S.D. Patek, and N.R. Sandell.
Missile defense and interceptor allocation by neuro-dynamic programming.
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
Vol. 30, 2000.

[13] Committee on Autonomy Research for Civil Aviation; Aeronautics,
Space Engineering Board; Division on Engineering, and Physical Sci-
ences; National Research Counci. Autonomy Research for Civil Aviation: To-
ward a New Era of Flight. National Academic Press, 2014.

[14] M. Kumar, K. Cohen, and B. HomChaudhuri. Genetic Algorithm based
Simulation-Optimization Technique for Fighting Forest Fires. International
Journal of Computational Methods, Vol. 10, No. 6, 2013.

[15] USAF. MQ-1B Predator Fact Sheet. http://www.af.mil/AboutUs/

FactSheets/Display/tabid/224/Article/104469/mq-1b-predator.aspx, 2010.
cited 2014.

[16] N. Ernest, K. Cohen, E. Kivelevitch, C. Schumacher, and D. Casbeer.
Genetic Fuzzy Trees and their Application Towards Autonomous Training
and Control of a Squadron of Unmanned Combat Aerial Vehicles. Un-
manned Systems, 2015 - Accepted for publication.

[17] O. Cordon, F. Herrera, F. Hoffman, and L. Magdalena. Genetic Fuzzy Sys-
tems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific
Publishing Company, Singapore, 2002.

[18] O. Cordon. A historical review of evolutionary learning methods for
Mamdani-type fuzzy rule-based systems: Designing interpretable genetic
fuzzy systems. International Journal of Approximate Reasoning, Vol. 52:6, pp.
894-913, 2011.

[19] Planck Collaboration. Planck 2013 results. I. Overview of products and
scientific results. Astronomy and Astrophysics, Vol. 571, 2014.

[20] K. Kalyanam, P. Chandler, M. Pachter, and S. Darbha. Optimization of
Perimeter Patrol Operations Using Unmanned Aerial Vehicles. Journal of
Guidance, Control, and Dynamics, Vol. 35, No. 2,, 2012.

[21] K. J. Obermeyer. Visibility Problems for Sensor Networks and Unmanned Air
Vehicles. PhD thesis, Mechanical Engineering Department, University of California
at Santa Barbara, June 2010.

[22] J. Jackson, M. Faied, and P. Kabamba. Communication-constrained Dis-
tributed Task Assignment. 50th IEEE Conference, 2011.

134

http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104469/mq-1b-predator.aspx
http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104469/mq-1b-predator.aspx

REFERENCES

[23] D.J. Leith, P. Clifford, V. Badarla, and D. Malone. WLAN Channel
Selection Without Communication. Computer Networks, Vol. 53, Issue 4,
2012.

[24] T. Bosse, M. Hoogendoorn, and C. Jonker. The Distributed Weighing
Problem: A Lesson in Cooperation Without Communication. Multiagent
System Technologies, Third German Conference, MATES, Koblenz, Germany, 2005.

[25] P. Gurfil and E. Kivelevitch. Flock properties effect on task assignment
and formation flying of cooperating unmanned aerial vehicles. Proceedings of
the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
Vol. 221, No. 3, pp. 401-416, 2007.

[26] C. Sabo, D. Kingston, and K. Cohen. A Formulation and Heuristic Ap-
proach to Task Allocation and Routing of UAVs under Limited Commu-
nication. Unmanned Systems, Vol. 2, No. 1, pp. 1-17, 2014.

[27] L. Zadeh. Fuzzy Logic, Neural Networks, and Soft Computing. Communi-
cation of the ACM, Vol. 37, No. 3, 1994.

[28] U. Hanebeck and G. Schmidt. Genetic Optimization of Fuzzy Networks.
Fuzzy Sets and Systems, Vol. 79, pp. 59-68, 1996.

[29] A. Gegov. Fuzzy networks for complex systems: a modular rule base approach.
Springer, Berlin, 2010.

[30] A. Gegov. Fuzzy Rule Based Networks. IEEE Symposium on Foundations of
Computational Intelligence (FOCI), 2011.

[31] C. Juang. Temporal problems solved by dynamic fuzzy network based on
genetic algorithm with variable-length chromosomes. Fuzzy Sets and Systems,
Vol. 142, pp. 199-219, 2004.

[32] X. Liu, X. Feng, and W. Pedrycz. Extraction of fuzzy rules from fuzzy
decision trees: An axiomatic fuzzy sets (AFS) approach. Data and Knowledge
Engineering, Vol. 84, pp. 1-25, 2013.

[33] W. Shitong and K. Chung. Cascaded Fuzzy System and its Robust Analy-
sis Based on Syllogistic Fuzzy Reasoning. Journal of Electronics (China), Vol.
21, No. 2, 2004.

[34] E.H. Mamdani and S. Assilian. An experiment in linguistic synthesis with
a fuzzy logic controller. International Journal of Man-Machine Studies, Vol. 7,
No. 1, 1975.

[35] W.R. Hwang and W. Thompson. Design of intelligent fuzzy logic controllers
using genetic algorithms. IEEE World Congress on Computational Intelligence.,
Proceedings of the Third IEEE Conference, 1994.

135

REFERENCES

[36] I. Jagielska, C. Matthews, and T. Whitfort. An investigation into the
application of neural networks, fuzzy logic, genetic algorithms, and rough
sets to automated knowledge acquisition for classifcation problems. Neuro-
computing, Vol. 24, No. 1-3, 1999.

[37] N. Ernest, K. Cohen, and C. Schumacher. UAV Swarm Routing Through
Genetic Fuzzy Learning Methods. AIAA Infotech@Aerospace Conference,
Boston, MA, 2013.

[38] N. Ernest, K. Cohen, C. Schumacher, and D. Casbeer. Learning of in-
telligent controllers for autonomous unmanned combat aerial vehicles by
genetic cascading fuzzy methods. SAE Aerospace Systems Technology Confer-
ence, Cincinnati, OH, 2014.

[39] N. Ernest, K. Cohen, E. Garcia, C. Schumacher, and D. Casbeer. Multi-
agent Cooperative Decision Making using Genetic Cascading Fuzzy Sys-
tems. AIAA SciTech Conference, Kissimmee, FL., 2015.

[40] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and
K. Smith. Cython: The Best of Both Worlds. Computing in Science Engi-
neering, Vol. 13, No. 2, 2011.

[41] D. Goldberg. Genetic Algorithms in Search Optimization, and Machine Learning.
Addison Wesley Longman, Inc., USA, 1989.

[42] S. Barker, C. Sabo, and K. Cohen. Intelligent Algorithms for MAZE
Exploration and Exploitation. AIAA Infotech@Aerospace Conference, St. Louis,
MO, March 29-31, 2011.

[43] A. Gegov. Fuzzy Networks for Complex Systems; A Modular Rule Base Approach.
Springer-Verlag, Berlin, 2010.

[44] G. van Rossum et al. The Python Programming Language. http://python.
org.

[45] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-
Time Code Generation. Parallel Computing, Vol. 38 No. 3, 2013.

[46] Sunzi 6th century B.C. The Art of War. Military Service Pub. Co., Harrisburg,
PA., 1944.

[47] R. Bellman. Dynamic Programming. Dover Publications; Reprint edition, Mineola,
NY, 2003.

[48] N. Ernest and K. Cohen. Self-Crossover Based Genetic Algorithm for
Performance Augmentation of the Traveling Salesman Problem. AIAA
Infotech@Aerospace Conference, St. Louis, MO, 2011.

136

http://python.org
http://python.org

REFERENCES

[49] G. Conti and J. Caroland. Embracing the Kobayashi Maru: Why You
Should Teach Your Students to Cheat. IEEE Security and Privacy, Vol. 9,
No. 4, 2011.

[50] N. Ernest and K. Cohen. Fuzzy Clustering Based Genetic Algorithm for
the Multi-Depot Polygon Visiting Dubins Multiple Traveling Salesman
Problem. AIAA Infotech@Aerospace Conference, Garden Grove, CA., 2012.

[51] N. Ernest and K. Cohen. Fuzzy Logic Clustering of Multiple Traveling
Salesman Problem for Self-Crossover Based Genetic Algorithm. AIAA,
50th Aerospace Sciences Meeting, Nashville, TN., 2012.

[52] N. Ernest, K. Cohen, and Schumacher C. Collaborative Tasking of UAVs
Using a Genetic Fuzzy Approach. AIAA, 51st Aerospace Sciences Meeting,
Grapevine, TX., 2013.

[53] S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, Vol. 21, No. 2, 1973.

[54] E. Kivelevitch, B. Sharma, N. Ernest, M. Kumar, and K. Cohen. A Hier-
archical Market Solution to the MinMax Multiple Depots Vehicle Routing
Problem. Unmanned Systems, Vol. 2, No. 1, 2014.

[55] Psibernetix Inc. EVE System. http://www.psibernetix.com/services/.

[56] N. Ernest and N. Phikita. Missile Classification in an Unmanned Combat
Aerial Vehicle Control Problem. University of Cincinnati, College of Engineering
and Applied Sciences, Class Final Report, Class: Machine Learning, 2014.

[57] K. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, Cam-
bridge, MA, 2012.

137

http://www.psibernetix.com/services/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 UCAV Control
	1.1.2 Genetic Fuzzy Systems

	1.2 Objective

	2 Literature Review
	2.1 UCAV Operations
	2.2 Route Optimization
	2.3 Cooperation Without Communications
	2.4 Alternative Soft Computing Methods
	2.5 Training
	2.6 Contributions of the Work

	3 Problem Formulation
	3.1 Blue Systems
	3.2 Threats
	3.2.1 Lethal Threats
	3.2.2 Non-Lethal Threats

	3.3 Variants
	3.4 HADES
	3.4.1 Assumptions
	3.4.2 Models
	3.4.3 Implementation
	3.4.4 Objective Function

	4 Methodology
	4.1 Genetic Fuzzy Systems
	4.2 Fuzzy Trees
	4.3 Genetic Fuzzy Trees

	5 Weapon Control Problem
	5.1 Introduction
	5.2 Initial Weapon Control FISs
	5.2.1 Fuzzy Controllers
	5.2.2 Confidence Level FIS
	5.2.3 Individual Weapon Systems FIS
	5.2.4 Whole Squadron Weapons FIS
	5.2.5 String Structure
	5.2.6 Evolutionary Processes

	5.3 Iterative Fire Control Process
	5.4 Missions
	5.5 Training Results
	5.6 Weapon Control Improvements
	5.6.1 Weapon Control Branch Modifications
	5.6.1.1 Weapon Selection FIS
	5.6.1.2 LWS Control FIS

	5.6.2 Cooperative Task Assignment Algorithm
	5.6.2.1 Results

	5.7 Conclusions

	6 Constrained Communications Problem
	6.1 Introduction
	6.2 EWAR Implementation
	6.3 Communication Constraints Branch
	6.3.1 Role Assignment FIS
	6.3.2 Role Weapon Control FISs
	6.3.3 String Structure
	6.3.4 Evolutionary Processes
	6.3.5 Training

	6.4 Results
	6.4.1 Training Missions
	6.4.1.1 Training Mission #1
	6.4.1.2 Training Mission #2
	6.4.1.3 Training Mission #3
	6.4.1.4 Training Mission #4
	6.4.1.5 Training Mission #5
	6.4.1.6 Training Mission #6
	6.4.1.7 Training Mission Setup
	6.4.1.8 Training Results

	6.4.2 Live Missions
	6.4.3 Post-Training Performance

	6.5 Conclusions

	7 Vehicle Routing Problem
	7.1 Introduction
	7.2 Fuzzy Clustering Routing Method
	7.2.1 Problem Background
	7.2.2 Methodology
	7.2.3 VRP Results
	7.2.4 VRP Conclusions

	7.3 LETHA Routing
	7.3.1 Implementation
	7.3.2 Routing Branch
	7.3.3 Routing Results
	7.3.4 Genetic Algorithm Optimization

	7.4 Conclusions

	8 Coping With Varied Ordinances
	8.1 Introduction
	8.2 Missile Models
	8.3 Results
	8.4 Conclusions

	9 Conclusions and Future Work
	9.1 Introduction
	9.2 Publications
	9.3 Conclusions
	9.4 Future Work
	9.5 Closing Thoughts

	References

