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ABSTRACT 

Mounting evidence suggests that subjective value is encoded neurologically using a 

neural common scale.  We address the question of how encoded part-values are integrated to 

form overall value.  Our results are based on three broad biological considerations that impact 

this process – positivity, detectability, and boundedness; mechanisms that are strongly supported 

in the literatures of neuroscience, psychology, and anthropology.  We show that these three 

conditions lead to a specific functional form to represent the value integration process; a form we 

refer to as neuroaddition. We show deductively that the neuroadditive theory validates many 

published results from experimental programs in behavioral decision theory, including loss 

aversion, the endowment effect, and non-compensatory information processing. The dissertation 

capitalizes on these deductive results to develop statistical estimation routines – maximum 

likelihood and MCMC hBayes – for a multinomial logit model that uses the new operator in 

place of standard addition.  The dissertation offers experimental tests of predicted consequences 

and draws strategic implications from the new theory.  Positive outcomes in these tests support 

the integration of known behavioral effects into the new product design process.  
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CHAPTER 1 INTRODUCTION 

1.1 Overview  

Theories of multiattribute utility inform our understanding of consumer preferences and 

choices. Extant theories in the traditions of conjoint analysis and choice-based conjoint analysis 

presume that the composition of holistic value judgments from parts is additive, hence 

unbounded. We develop a new theory of bounded utility, based on a new binary operator to 

define “additive”. We show deductively that the theory validates many published results from 

experimental programs in behavioral decision theory, including loss aversion, the endowment 

effect, and non-compensatory information processing. The dissertation proposes to capitalize on 

the deductive results to develop statistical estimation routines – maximum likelihood and MCMC 

hBayes – for a multinomial logit model that uses the new operator in place of standard addition.  

The proposed operator explains loss aversion as an emergent property of brain biology and 

shows how a fundamental asymmetry in neural processing creates the endowment effect. The 

dissertation offers experimental tests of predicted consequences and draws strategic implications 

from the new theory.  Positive outcomes in these tests will support the integration of known 

behavioral effects into the new product design process.  

1.2 Past Research 

The question of how individuals form holistic preferences from parts – preferences for 

various levels of attributes comprising a whole – is fundamental to the study of consumer 

behavior. In marketing this question is most often addressed by theories of multiattribute utility 

as operationalized by conjoint analysis and discrete-choice modeling. Since its introduction in 

marketing, conjoint analysis (Green and Rao 1971) has become the most frequently used 
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commercial tool to assess how consumers trade off attribute levels among competing products. 

Conjoint analysis – especially choice-based methods – has helped many firms make decisions in 

new product design, pricing, segmentation, positioning, and advertising (Cattin and Wittink 

1982, Wittink and Cattin 1989). Bryan Orme, CEO of Sawtooth Software, estimates that 

upwards of 18,000 conjoint studies are conducted annually (Orme 2009, p.143).  Many of these 

applications use estimated partworth utilities in strategic follow-up analyses, called “choice 

simulators”, to identify the combination of attribute levels that will appeal to the most 

individuals in a target market. An internal survey at Sawtooth found that 65-80% of choice-based 

conjoint studies use the firm’s product optimization simulators. Thus with Sawtooth alone, 

roughly 6,500 new product optimizations are conducted each year, and about 4,500 of these are 

done by U.S.-based firms (B. Orme, personal communication with thesis committee chair, May 

2013).  

This dissertation has its origins in preference measurement, an interdisciplinary field with 

foundations in mathematical psychology (Luce and Tukey 1964) and economics (e.g., Arrow 

1959, McFadden 1974). Incorporating psychological effects into preference measurement has 

become of increasing interest to quantitative marketing scholars. Few conjoint studies have 

attempted to integrate well-known behavioral phenomena, such as loss-aversion, into the design 

and analysis of discrete-choice data. Some notable exceptions include Bradlow et al (2004), who 

modeled behavioral context effects caused by omitted product attributes in partial profile designs 

and Kivetz et al (2004), who captured compromise effects using alternative preference 

measurement tasks. Adamowicz et al (2008) provide a detailed overview of behavioral effects in 

choice modeling. From an academic perspective, I suggest that incorporating cognitive and 
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behavioral effects should improve prediction accuracy in preference measurement and in choice 

models and as a consequence should increase the success rate of new products.   

An area ripe for improvement in most conjoint-style preference measurements is to relax 

the standard assumption that overall utility is linear and additive in partworth utilities. Linear-

additive theory presumes that the composition of holistic value is unbounded. However, evidence 

from neuro-cognitive research suggests that value may be bounded from above and below. 

Because standard addition is unbounded, the dissertation uses a new binary operator, called 

neuroaddition, to impose these properties. Deductive analyses using the new operator show that 

it mimics psychological mechanisms that support established findings from behavioral decision 

theory. My dissertation capitalizes on these deductive results to develop a statistical estimation 

routine for the conditional multinomial logit model that uses the new operator in place of 

standard addition. In the process, I collect experimental data to test consequences of the theory, 

and to elaborate its strategic implications. For example, I explore the impact of the new 

“algebra” on choice optimization routines. Using the new algebra, a multinomial logit model will 

naturally exhibit loss aversion and mimic both compensatory and non-compensatory decision 

rules (Gilbride and Allenby 2004). The shift between rules will be moderated by the total utility 

of the choice options under consideration, a property sought by Allenby and Rossi (1991) and 

Hardie et al (1993). 

1.3 Abstracts of Essays  

1.3.1 Essay 1 (Chapter 2) 

Mounting evidence suggests that subjective value is encoded neurologically using a 

neural common scale. We address the question of how encoded part-values are integrated to 
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form holistic values. Results are based on three broad biological considerations that impact this 

process – positivity, detectability, and boundedness; mechanisms that are strongly supported in 

the literatures of neuroscience, psychology, and anthropology. We show that these three 

conditions lead to a specific functional form to represent the value integration process; a form we 

refer to as neuroaddition. We offer three main results; first, diminishing sensitivity is a natural 

by-product in a neuroadditive system; second, neuroadditivity is a sufficient condition for loss 

aversion, hence implies referent dependent behaviors associated with this mechanism; and third, 

neuroadditivity is sufficient to generate non-compensatory behaviors with the degree of non-

compensation moderated by total value. 

1.3.2 Essay 2 (Chapter 3) 

Because the neuroadditive model generates a variety of experimentally testable 

hypotheses, it would be useful to have a routine that can estimate the model’s parameters from 

data. This essay develops such routines for discrete-choice data. Both pooled and individual 

models are developed. The maximum likelihood approach is applied for pooled estimation, 

supplemented by a grid search routine.  The grid search permits the multinomial logit model 

(MNL) to compensate for heterogeneity in the variance of parameter estimates.  To include 

consumer heterogeneity in the model and achieve estimates at the individual level, I propose a 

modified MCMC algorithm.  Results from this algorithm are compared to results from the 

standard model on both simulated and real data. 

1.3.3 Essay 3 (Chapter 4) 

The endowment effect is typically interpreted as a direct manifestation of loss aversion.  

In this research, we suggest that loss aversion itself is a consequence of more fundamental 

conditions of human cognitive processing by linking it to neural primitives. We use these 
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primitives to derive a new representation of how holistic subjective value judgments emerge as 

the integration of neural signatures of partworth values.  A specific feature of the resulting 

integration model – a processing asymmetry – suggests a direct causal link to the endowment 

effect. We test this link in a large-scale empirical study. 
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CHAPTER 2 THEORETICAL FOUNDATION OF 

NEUROADDITIVE MODEL
1
 

2.1 Introduction 

“The assignment of subjective values during decision making constitutes one of the 

fundamental computations supporting human behavior.” (Yoon et al 2012, p 478). Mounting 

evidence now suggests a clear neurological basis for value computations.  In their meta-analysis 

of thirteen recent fMRI studies, Levy and Glimcher (2012 p 1027) conclude that the evidence 

suggests “…the existence of a small group of specific brain sites that appear to encode the 

subjective values of different types of rewards on a neural common scale, almost exactly as 

predicted by theory.” (See also Glimcher and Fehr 2014, ch 20.)  Today’s standard theory – as 

referenced in this quote and illustrated in Table 1 – is an amalgam of two fundamental 

components, subjective value and decision weights, that are intended to predict choices 

(Kahneman and Tversky 1979; see Stott 2006).  For example, a dm might choose between 

receiving option x with probability p or nothing (with probability 1-p).  This choice, denoted

     ,V p w p vx x  in prospect theory, involves option x; with holistic value  v x  and option 

“nothing” with holistic value  0 0v  .  More generally modern choice theory concerns the 

(subjective view of) realizations of a random process where each outcome is holistically valued.  

Recent theory development has emphasized the probability weighting function (Prelec 1998, Wu 

and Gonzalez 1996).  As Glimcher stresses; “... models of the valuation circuit are much less 

well developed than models of the choice circuit.” (Glimcher  p 380) 

 

                                                 
1
 This chapter is largely based on co-authored; Curry and Wang (2014) 
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Table 1: What we mean by “the standard model” of value integration 
a
 

Description Algebraic Form  Definitions 

Option  1 2
, , ,

m
z z zz  : Levels of a multi-attribute choice option z.   

Value Phase: holistic value from parts   

Variant 1:  

unweighted    
1

m

i i

i

V v z


z  
:  i i

v z value of level zi on attribute i 

Variant 2:  

non-parameterized 

weights 

   
1

m

i i

i

iV w v z


 z  
: 1,;i mw i  is a constant, usually constrained to 

be positive and normalized to add to 1. 

Variant 3:  

parameterized weights 

   

3.1: Prospect theory  1 1
w p  

   1

1 1

i i

i j jj j
w p p 



 
    

: where  0 1p  is monotonically 

increasing in p, the subjective probability of an 

outcome. 

3.2: Other variations 

(See Stott 2006, table 

3.) 

Example:  

Prelec-I :    ln p
p e




 

  

: 0 1   

(See Prelec 1998, p 503.) 

Choice Phase: Linking holistic values to choice probabilities 

Three prominent examples where overall value serves as an argument in the choice phase.  

Luce Choice 
       

 

   
| ,

V
P V V V

V V




x
x x y

x y
 

  

Logit Choice 
       

 

   
| ,

V

V V
P V V V

e

e e




x

x y
x x y  

  

Probit Choice             | ,P V V V V V  x x y x y

 

  , ,x   : cumulative Normal density, 

mean  , standard deviation at point x. 

a 
Fox and Poldrack (2014) provide an excellent historical overview of the evolution of choice modeling leading to 

today’s current iterations.  They distinguish three major periods involving: (1) the classic models of Von Neumann 

and Morgenstern (1947) and Savage (1954), (2) the neo-classical models inspired by Allais’ paradox (Allais 1953) 

and Ellsberg (1961). Finally (3) is today’s era initiated by prospect theory (Kahneman and Tversky 1979) and 

cumulative prospect theory (Tversky and Kahneman 1992). McFadden’s econometric implementation of random 

utility theory as the conditional multinomial logit model preceded Kahneman and Tversky’s work (McFadden 1974) 

and seeded extensive further developments in the arena of estimation of RUMs.  
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This section focuses on the valuation circuit; the integration process that gives rise to a 

choice option’s holistic subjective value.  This process – whatever form it may take 

neurologically – must occur prior to the application of decision weights to generate choice 

probabilities among options.  Options as wholes comprise aspects instantiated at levels. The 

overall value of a single option must consider the option’s many different attributes (e.g., color, 

size, etc) and assess the value of these; then combine these part-values into one coherent overall 

value representation (Levy and Glimcher 2012, p 1027).  Methodologies such as conjoint 

analysis and more generally random utility models (RUMs) such as the multinomial logit and 

probit models do this, but as suggested in Table 1 their value integration rule is invariably an 

additive in parameters rule.  In this research we question whether this is correct; or more 

specifically, whether such a rule follows from neuro-biological considerations. 

Historically, decision scientists have rarely invoked explicit considerations of human 

biology when developing today’s standard model.  Key assumptions have primarily concerned 

either mental operations as behavior (e.g., transitive preferences, Luce 1992) or mental states 

(e.g., perceived risk, Slovic et al 2005).  These assumptions address the abstract world of the 

mind, not the analogue world of the brain where processing is largely beyond conscious control.  

Indeed, there is little to suggest that the loss averse nature of human decision-making results 

from premeditated considerations.  Rather, the asymmetry emerges unconsciously much like 

cardiac function or pupil dilation.  The same can be said for a large class of associated referent 

dependent behaviors, such as extremeness aversion (Simonson and Tversky 1992), the 

compromise effect (Thaler 1980), the attraction effect (Huber et al 1982; Wedell and Pettibone 

1996), and others.  These effects counter standard logic yet emerge instinctively in human 

decision-making (Tversky and Simonson 1993; Tsetso et al 2010; Tversky et al 1990).  Other 
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mechanisms such as construal (Trope and Lieberman 2010) and the broader elements of 

preference construction (Payne et al 1992, Warren et al 2011) clearly influence choice criteria, 

information salience, and overall evaluation principally via automatic rather than conscious 

processes (Dijksterhuis et al 2006).  Finally, neither prospect theory, cumulative prospect theory, 

nor neoclassical theories (RUMs) adequately address the important question of value integration 

rules that yield non-compensatory behaviors.  

In this section we seek to understand relevant automatic processes of value integration in 

the brain by developing a new model.  We develop the model analytically using 

biological/neurological considerations that serve as constraints on a proposed numerical 

representation of the value integration process. Two of these constraints are regular features of 

connectionist models; i.e., the leaky competing accumulator model (LCA) of Usher et al (2001) 

and decision field theory (DFT) (Roe et al 2001), used to study perceptual choice (see Gold and 

Heekeren 2014 for a review).  We argue that these constraints also play a role in the emerging 

class of valuative choice models with neurological foundations (Soltani, De Martino, Camerer 

2012; see Glimcher 2014).  The third constraint is unique to our theory but has strong 

underpinnings from psychophysics.  

Our primary (technical) result shows that the integration process has a unique functional 

form regardless of contextual reference.  We propose this form as a new binary operator that we 

label neuroaddition (n
+
) as a way to algebraically represent the integration of neural part-values.  

We offer three main substantive results: first, in an algebra where n
+
 defines “addition”, value 

representations will naturally exhibit diminishing sensitivity; second, loss aversion is an 

emergent property of n
+
, and finally that n

+
 supports both compensatory and non-compensatory 

behaviors with the degree of non-compensatory activity moderated by an option’s overall value.  
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Following our deductive results, we outline several hypotheses generated by the theory that 

extend published work. 

2.2 General Development 

Classical theories of utility have three aspects: a model of choice, a set of assumptions 

(=axioms) that characterize preference relations in the choice domain, and a representation 

theorem into the real numbers (Luce 1992).  Our approach differs from this pattern.  First, our 

assumptions, positivity, detectability, and boundedness, address automatic activities of the brain 

rather than thoughtful activities, such as stated preferences, hence we do not invoke axioms such 

as transitivity. Second, the term utility sometimes means numerical representation but it is also 

used as a label for an internal state of felt sensations; valuation, worth, joy, or satisfaction, as in 

the notions of experienced utility and decision utility. (See Berridge and O’Doherty 2014, Fox 

and Poldrack 2014, and Warren et al 2011.)  To avoid confusion, we use the term subjective 

value to describe the hypothetical construct of central interest to our development and reserve the 

word utility exclusively for numerical representations.  As Table 1 suggests, our interest lies in 

the integration of value, or more precisely, the integration of neural signatures of value, not in 

the use of the result (holistic value) in a choice model.  Finally, we avoid the term information 

integration, using instead the phrase neural integration to emphasize the subconscious, analog 

nature of the signals being integrated.  Because our assumptions are somewhat novel, we clarify 

their meaning in an intuitive way before delving into formal results.
2
 

                                                 
2
 Readers familiar with the neuroscience literature on perceptual choice will recognize our positivity and 

boundedness axioms.  To our knowledge only one evaluative (vs. perceptual) choice model evokes these constraints, 

Soltani et al (2012). These authors offer a novel explanation for context effects. In the process, they critique 

connectionist models as involving neuronal operations that are unrealistically demanding (e.g., comparing all 

options on all attributes then integrating these differences).  They also note that LCA must presume loss aversion 

and CDA cannot explain experimental results when decoys dominate original choice options or are symmetrically 

dominated by them (i.e., similarity effects) (Soltani et al 2012 p 5).  The theory developed here offers simpler 

explanations for these effects. 
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2.2.1 Positivity 

Positivity is best explained by analogy.  Consider the physical interaction among particles 

(atoms/molecules) in an object.  These kinetic interactions manifest macroscopically as – or, 

more accurately, are labeled by humans as – the temperature of the object.  Although we 

represent outcomes numerically using temperature scales, thermodynamic physical reality is in 

no way a function of (humanly contrived) numerical representation.  Today we realize there is a 

theoretical limit at which thermodynamic activity ceases.  Clearly, there is no physical state 

“beyond” that limit; i.e., a state corresponding to the idea of “molecules negatively bumping into 

one another”.  Using the negative registers of the Celsius and Fahrenheit scales may be 

convenient numerically, but doing so is misleading scientifically.  This realization led Lord 

Kelvin to use kinetic principles in his study of thermometry, which bounds numerical 

representations of temperature from below by zero (Chang and Yi 2005).  This limit imposes real 

constraints on the overall structure of an algebra designed to represent behaviors of the system 

and on meaningful transformations of scale values.  And because this algebra informs scientific 

conclusions, an accurate representation of this lower bound is important. 

In the same way, the brain as a physical system cannot register a negative state. The 

registered signatures of stored information must exist physically, electrically, or chemically.
 3

 

This claim is far different from stating that the mind cannot process negative numbers; clearly it 

can.  However, to do so, the mind must work within the brain’s capabilities.  The mental 

encoding of what we interpret as a negative quantity is a derivative signal that combines 

information at least one level of abstraction beyond the purely analog capabilities of the brain. 

                                                 
3
 The brain (selected neural clusters) can register a decrease in average activity (neural firing rate), but this is not 

equivalent to registering a negative state. 



12 

 

On this point, it is important to distinguish the use of mental rules for numerical 

processing – an activity that comprises both conscious and memorized activity – from the brain’s 

analog activities.   Evidence suggests that conscious numerical processing– which we are not 

modeling – is performed in the region of the inferior parietal lobule (IPL) known as the angular 

gyrus (AG) (Gullick et al  2012).  In contrast, the areas associated with internal signatures of 

subjective value are the ventral striatum (vSTR) and the ventromedial prefrontal cortex (vmPFC) 

(Ernst and Paulus 2005; Plassmann et al 2007, 2010; Kringleback 2005; Kable and Glimcher 

2009; Yoon et al 2012, Levy and Glimcher 2012).  (Table 2 is included to help sort out the 

names of brain regions.) The physical constraints imposed by non-negative signatures emerge in 

decision-making behaviors and require practiced dedication and conscious reflection on the part 

of humans to overcome.
4
  Modern fMRI studies show that mathematically proficient adults 

invoke a variety of conscious strategies to deal with negatives (Gullick 2012, p 553), indicating 

the role of conscious reflection to overcome analog constraints. (See Tom et al 2007; Knutson et 

al 2008; and Fischer 2003, among others.)  Assuredly as solutions to equations, negatives, like 

imaginary numbers, have great power to aid human understanding via symbol manipulation.  But 

this is a far cry from claiming that these constructs are present in our neural circuitry. In 

summary, we assume that the internal signatures of magnitudes – including those of subjective 

value – are non-negative.  These signatures exist physically and are subject to the laws of 

physics.  This assumption leads to axiom one. 

A1: Positivity: Numerical representations of subjective value must map into the positive real 

numbers. 

                                                 
4
 For example, consider the processing of negative numbers. Negative numbers were not even invented until the 

12th century (Gullick 2012, p 2) and as recently as the 17th century, iconic mathematicians did not believe in 

negative quantities.  Descartes labeled negative square roots as “false roots” and his contemporary Pascal declared “I 

know people who cannot understand that when you subtract four from zero what is left is zero” (Hefendel-Hebeker 

1991).   
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Table 2: Brain Regions Mentioned in This Paper 

Central Front Region 
a
   As used in this paper  

Name Abbreviation  Name Abbreviation 

Medial prefrontal cortex mPFC  ventromedial prefrontal cortex vmPFC 

Orbitofrontal cortex mOFC    

Ventromedial frontal cortex vmPFC    

Anterior border of the anterior 

cingulate cortex 

ACC    

     

Striatum     

Name Abbreviation  Name Abbreviation 

Caudate CN  ventral striatum vSTR 

Putamen Pu    

Ventral Striatum vSTR    

     

Other Areas      

Inferior parietal lobe IPL  Inferior parietal lobe IPL 

Gyrus (anterior Gyrus) AG  Gyrus (anterior Gyrus) AG 

     

a
  The central frontal area of the brain goes by a number of different names in the existing literature.  The many-one 

mapping used in this table is suggested by Glimcher (2014, p 386). 

 

2.2.2 Detectability 

Detectability means that the brain as a human organ can only process signals it can 

detect.  More importantly, the brain cannot exhibit any differential reaction to neural signatures it 

cannot distinguish from one another.  The idea rests on traditions from psychophysics (Fechner 

1966, Weber (see Ross and Murray 1996), Stevens 1936, 1970).  For example, in the human ear 

the cochlea converts sound pressure patterns from the outer ear into electrochemical impulses 
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that are passed to the brain via the auditory nerve (Standring, 2004; Figures 922-28).  The 

mechanical systems involved in this conversion, the malleus (hammer), incus (anvil) and stapes 

(stirrup), among others, are subject to the laws of physics, hence can only detect pressures over a 

limited range of sounds (Ehret 2010, Luce and Galenter 1963, Stevens 1936).  

There is no reason to believe that the brain is an exception to this rule; that it somehow 

can detect signals over an unlimited range.  Decades of work in psychophysics have established 

algebraic representations (“laws”); such as Steven’s Law (Stevens 1961), Fechner’s Law 

(Fechner 1966), and the psychophysical law (Norwich 1993) to model the relationship between a 

physical stimulus and a corresponding psychological sensation.  Norwich (1987, 1993) 

synthesizes this work to derive the Weber fraction law from information theory. (See also 

Falmagne 1974.)  For a physical stimulus, such as an aural tone, this law states that the ratio of a 

detectable difference in two stimuli to their total physical magnitude is the Weber fraction for 

that category of stimuli (e.g., tones).  Different categories – visual, tactile, etc. – are 

characterized by parameters that are experimentally calibrated.   

In the context of the neuro signature(s) of subjective value, this idea establishes a 

necessary condition for behaviors, such as option x is preferred to option y. Let u(x) and u(y) be 

the unknown (but to be determined) numerical representations of the subjective value of options 

x and y, respectively.  Detectability requires that any numerical representation of separate 

signatures,      ,sig u sig ux y , relative to a combined signature,   ,sig u x y  satisfy expression 

(1), where  is an appropriate threshold for the neural signatures involved.  There are two 

important aspects of (1); first it does not commit to any empirical parameters and second as a 

binary relation it establishes an implicit reference frame for valuation; i.e., the two options 
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involved and, by extension, the aspects of each option that are stored neurologically, hence have 

associated neurological value signatures.
5
 

A2: Detectability:  Any numerical representation of separate neural signatures – relative to a 

combined signature – must satisfy the Weber fraction law:   

  
   

   
,

u u
u

u u



 



x y
x y

x y
     (1) 

2.2.3 Boundedness 

Lastly, we assert that there is an upper bound to the internal representation of magnitude.  

This bound must hold for any numerical representation of subjective value.  We arrive at this 

principle using both behavioral and neurological evidence from an extensive series of 

anthropological and associated fMRI studies.  The behavioral studies are conducted with 

neurologically normal adults not exposed to formal arithmetic (see Pica et al 2004, Dehaene 

2006, Iszard et al 2011, among others) and with pre-school children (see Booth and Siegler 2008, 

Dehaene 2003, among others).  These studies overwhelmingly support what is termed the 

numerical magnitude effect.  The effect has two major components.  First, although the brain 

naturally recognizes ordinality; i.e., individuals can identify which side of a computer screen 

shows more randomly displayed “dots”, judgments of magnitude are increasingly compressed as 

magnitude increases.  Thus a one unit change among the small counting numbers, say from 2 to 

3, is processed as a larger magnitude than a one unit change at a higher absolute level, e.g., 22 

vs. 23.  Second, the neuronal signatures of discrete quantities, “two-ness, three-ness” etc., exhibit 

                                                 
5
 Glimcher (2014, p 386) notes that literally dozens of studies now make it clear that neurons responsible for 

encoding subjective value encode the difference between expected and obtained reward; called the reward 

prediction error.  Therefore (1) may also be interpreted as an algebraic summary of the differential levels of 

dopamine when one option is noticeably better than the other option; divisively normalized by total expected 

reward. 
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spread in the topography of brain scans, such that adjacent small magnitudes have distinct fMRI 

footprints with little overlap, while adjacent larger magnitudes have indistinct footprints with 

large overlap (Merton and Nieder 2009).  In these studies “large” refers to magnitudes typically 

no greater than thirty. 

Thus, as magnitudes grow they have increasingly indistinguishable internal 

representations.  This means that however subjective value is stored and represented in the 

brain’s neural circuitry, at some point large values become undifferentiated, hence form an – 

albeit vague – upper limit.  This is not surprising.  The phenomenon manifests itself in known 

ways in economics and psychology.  The most basic example is decreasing marginal utility.  A 

second example is construal theory, which asserts diminishing sensitivity as we move further 

from a natural boundary, such as “none” (Trope & Lieberman 2010).  A third, related area is the 

notion of subadditivity in subjective value (see Fox and See 2003), which Read (2001) and 

Scholten and Read (2006) use to explain time-discounted utility.  This leads to axiom three.  

A3: Boundedness: Numerical representations of subjective value are bounded from above; 

therefore, if  u z with   max
u uz is mapped to a new scale by the 

positive transformation f, then   max
f u u   z . 

2.2.4 Summary of Assumptions 

We have presented three very general assumptions about value signatures in the human 

brain.  In the next few sections, we use these assumptions to draw a series of conclusions about 

an appropriate numerical representation of signal integration. Subsequently we explore the 

implications of this composition rule for human decision behavior.  We emphasize that our 

axioms concern the brain not the mind.  Positivity is about neuro signatures, not human invented 
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numerical systems or conscious reasoning with numbers.  Detectability simply requires that two 

internal representations be electrically, chemically, and topographically distinct enough to 

register as different in the brain.  And boundedness questions the face validity of any 

representation that would permit signatures leading to infinite sensations of value, joy, or 

satisfaction, or any other manifestation of subjective value.  We believe an infinitely high 

subjective value to be impossible or at the very least, other worldly.
6
 

2.3 Notation 

Our notation qualitatively differentiates the following general classes of “objects”.  

Options, denoted by lower case boldface letters such as x, y, and z, are things such as insurance 

policies and automobiles that exist in the real world and are available for human decision-makers 

(dm’s) to choose, buy, or consume.  We distinguish an option, z, from its neural signature, 

denoted sig(z).  By sig(z) we mean the neural circuitry that permits a dm to recognize the object, 

for example as a member of the class “car”. (See Deppe et al 2005 and Ernst and Paulus 2005 for 

extensive reviews relevant to this idea.)  We use u(z) to mean an analyst’s numerical 

representation of an individual’s subjective value, denoted v(z) for an object z, while sig[v(z)] 

means the neural signature of the object’s encoded subjective value.  We presume the latter is 

close to what Louie and Glimcher (2012) mean by action-independent value and what Yoon et al 

(2012) refer to when they use phrases such as a brain encoded “common currency” (p 478) and 

“subjective value signals” (p 479).  Any proposed numerical representation of the brain’s version 

                                                 
6
 Our logic for boundedness invokes macro considerations as opposed to the micro constraints on firing rates of 

single neurons; the source of bounds in connectionist models.  But these viewpoints converge.  As Soltani et al note 

(2012 p 2): “The guiding presumption in our range-normalization (RN) model is that subjective values of option 

attributes are encoded in the firing rate of neural populations, rather than other aspects of neural firing.  If so, mental 

representations of subjective value will be bound by the same biophysical limits that govern neural representations. 

Namely, neural responses are bound from below by zero and from above by a few hundred spikes per second, and 

therefore, neurons can represent a set of stimuli using a limited range of firing rates.” 
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of subjective value is a mapping from the physical domain where sig[v(z)] resides to the real 

numbers where u(z) resides.  We seek a high fidelity mapping to paramorphically mimic 

important properties of these values held in the brain and moderated by the mind.   

Real-world options comprise multiple aspects which are abstracted and idealized by 

analysts and referenced using labels such as attributes and levels (among many others).   We 

assume m attributes with m  2 and let  1, ,M m . Attribute Q(i), i M  has q(i) levels.  A profile 

is an m-component vector with the i
th

 component taking on one of the q(i) levels for that 

component.  For a given level, i
z z , we make the same distinctions as made for the whole; 

 i
sig z is a valence neutral neural encoding of the “level”; e.g., z’s color is blue, its price is 

$6.95;  i i
u z  is a numerical representation of the subjective value of this level (or “part” of the 

object); i.e.,  i
sig v z   the neural encoding of subjective (part) value. 

We use the option pair (vs. three or more options) as the atomic unit to establish 

referential context for a value-driven choice. “Context-dependence means people compare 

choices with a set rather than assigning separate numerical utilities” (Camerer et al 2004, p 569).  

The idea has robust support in the literature and will not be reviewed here (see Warren et al 

2011). The neuroscience evidence suggests that pairwise comparisons (vs. the ranking of 3+ 

options) establish reference in automatic processes.  As Deppe et al (2005, p 180) state: 

“Ranking orders can be established only by multiple time and neuronal resource-consuming 

brand-to-brand comparisons.  From a neuroeconomical and evolutionary point of view, 

reasoning-based rating scales are ineffective in the sense of periculum in mora (danger in 

delay).”  (The authors refer to the need for automatic processing to be as fast and effortless as 

possible. See also Levy and Glimcher 2012 and Glimcher 2014.)  To indicate context, we 
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subscript reference frames established by an option pair; for example detectability in the 

reference frame defined by options x and y is denoted  ,
,u

 
x y .  These subscripts implicitly 

refer to key aspects one may associate with reference dependency; e.g., status-quo points, 

attributes triggered when considering a choice between x and y, salient levels, and so on.  

Although leaving these aspects implicit would seem to indicate less than thorough modeling, this 

apparent weakness ultimately becomes a strength of our model.  We are able to show that our 

main result – the algebraic form of n
+
 – holds independent of referential context.  In other words, 

integrated neural signatures of values will exhibit all the important effects of reference 

dependency despite this global property of signal integration.  When explaining our propositions, 

theorems and corollaries, we emphasize substance, not mathematical formalism.  However, each 

result is proved rigorously for the general m-dimensional case in the appendix. 

2.4 Definitions 

2.4.1 Reference Frames and the Integration of Subjective Values 

Our formal development proceeds in two parts, technical foundations and substantive 

implications.  The present section – technical foundations – uses functional equations to show 

that if positivity, detectability, and boundedness obtain, then so too does a particular algebraic 

form n
+
.  Subsequently, we explore the implications of n

+
 as a binary operator to replace standard 

addition in utility representations of subjective value.  We establish three main results; n
+
 utility 

representations will naturally exhibit diminishing sensitivity, loss aversion, and moderated 

compensatory behavior. 
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2.4.2 Referentially-Based Value 

Proposition 1 explores relationships among utility representations as the reference frame 

shifts.  Specifically, detectability is a statement about the numerical representations of value for 

two options.  But what happens when a third option enters the picture?  There are now three 

pairwise reference frames; how do the utilities involved in each frame relate to one another?  

Proposition 1 uses positivity, detectability, and the notion of meaningfulness to answer this 

question; i.e., that the truth or falsity of any scientific statement about subjective value – based 

on a given numerical representation (utility scale) – should remain invariant if that scale 

undergoes a permissible transformation (Krantz et al 1971).  

Consider options x and y which have detectably distinct value signatures represented on 

the utility scale u.  By positivity, we know that   0u  for all arguments.  Consider a positive 

transformation of u; i.e., the function  f u    .  Since the difference  ,u


x y  is detectable in 

u, then for f to be permissible  ,u


x y   must be detectable in the transformed utility scale or: 

 
   

   
,

f u f u
u

f u f u

 



 

      


      

x y
x y

x y
      (2)    

The appendix shows that relation (2) implies relation (3), which we state as Proposition 1. 

Proposition 1: Detectability and positivity together imply a law of relative value 

 
   

   

, ,
,

1 , ,

u u
u

u u

 



 






y x z x
y z

y x z x
       (3) 

Thus, if options y and z are each detectably different from a common referent option, x, then a 

detectable difference in their subjective values must assume the functional form on the RHS of 

(3).  The assertion is simultaneously referent free and referent dependent.  It postulates that the 
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values of options y and z must be calibrated relative to some baseline, which is referent x in (3).  

However, it also asserts that even though any specific numerical representation will depend on 

the baseline referent x, the functional form of the law does not.  As shown in the substantive 

implications section, this property leads to indifference curves that travel with the choice set as 

suggested by Drolet et al (2000) and used by Orhun (2009) and others (Masatlioglu and Uler 

2013).
7
 

Corollary P1.1: A coherent positive algebra in which relative values obey (3) will have a 

summative law for subjective value of the form: 

 
   

   

, ,
,

1 , ,

u u
u

u u

 



 






y x z x
y z

y x z x
     (4) 

Corollary P1.1 asserts two key points.  First, if y and z are both detectably different in 

subjective value from a referent x, then the sum of these subjective values must take the 

functional form on the RHS of (4). More subtly, in a positive system, relative differences behave 

as the distance or gap between objects, not as a signed quantity.  Therefore, expressions (3) and 

(4) are notationally consistent despite the inclination to think of (3) as a “difference” and (4) as a 

“sum”.  Understanding the relationship between (3) and (4) requires the abstract idea of 

“betweenness” (see Suppes et al 1989, Ch. 13, Tarski 1959).  If we envision options x and z on a 

continuum with y “between x and z in subjective value”, then the endpoints of the continuum 

must be the “sum” of the unsigned distances of the intermediate segments x to y and y to z. 

                                                 
7
 The idea implicit in (3) is not inconsistent with cumulative prospect theory (CPT).  As Wu and Markle (2008, p. 

1322) aptly summarize, the key argument of CPT is that change in wealth (not absolute wealth) is the relevant 

carrier of utility. Although this change is typically modelled using deviations from a specific reference point; i.e., 

[u(new)-u(ref)], the construct of a reference option (or status-quo option) is not the kernel of the idea.  There are an 

infinite number of “start points” and “end points” that can yield the same wealth (i.e., utility) difference; it is not 

these points that matter but the fact that a utility differential arises; i.e., reward prediction error. This idea is 

implicitly captured by making the option pair the atomic unit so that any option can serve as the reference for any 

other.  The real question then becomes, can we make any reasonable statements about the properties of such a 

system? 
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Although the simplest picture places x, y and z on a straight line, this notion of simple order – as 

a binary relation that is transitive, connected, and anti-symmetric – is misleading.  The 

generalization embodied in a positive system eliminates the sense of direction inherent on the 

real line.  There is no preferred direction and no meaningful way to fix direction (Suppes et al, 

1989, ch. 13).  This last point bears emphasizing because researchers often visualize referential 

context effects, such as the attraction effect, using 2d geometrical figures.  Such representations 

can be highly misleading when modelling neuronal activity.  Neuronal activity is “directionless” 

by nature.  Using a 2d Euclidean representation of, say, the attraction effect is a useful way to 

visually communicate ideas but the analogue neuronal representation has no such geometric 

basis. 

Corollary P1.2: If a positive system obeys the law of summative value (4) and has 

supremum c, then subjective value obeys the divisively normalized law of summation (5). 

 
   
   

2

, ,
,

, ,
1

u u
r

u u

c

 



 







y x z x
y z

y x z x
      (5) 

2.4.3 Neuroadditivity 

Because the functional form of the summation of (relative) values does not depend on the 

baseline option, the form (5), defines a referent-free abstract binary operator.  We formally 

define this operator in (6) and refer to it as neuroaddition.  The relative utilities  ,u


y x and 

 ,u


z x , which sum as shown in (5) are represented in referent-free format as the (dummy) 

addends s and t in (6).   Thus, using positivity, detectability, and boundedness, we assert that (6) 

describes the summative operation that should be used to integrate (numerical representations of) 

subjective value rather than standard addition as exemplified in Table 1. 
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Neuroaddition:  Let  0c

    with elements ,
c

s t have supremum 0 c  and define 

the binary operation:  , :
c c c

n s t   +
as: 

 
2

,

1
s t

c

s t
n s t s t




  



+       (6) 

The appendix shows that  is commutative, associative, distributive with respect to induced 

multiplication, and is closed.  The operator also has a natural identity, and is summand-wise 

compressive with respect to standard addition; a property similar to sub-additivity (Fox and See 

2003). 

Importantly, (6) does not assert a unique zero even though for all , 0s t  we have

0 s t c   .  Therefore, our model differs from those of Bodner and Prelec (1994), Kivetz et al 

(2004a,b), Hardie (1993), Orhun (2009), where the referent is associated with either a specific 

option or a generic option constructed as a combination of options in a choice set.  Paradoxically, 

the algebra (6) is referent dependent, but sums in the system always have the same (referent 

independent) functional form.  Mapping this idea to the brain and subjective value, the model 

asserts that a dm must always baseline subjective values of options somehow.  However, 

conditional on the (subconsciously) selected baseline, subjective values must sum as per (6). 

2.5 Substantive Implications 

2.5.1 Diminishing Sensitivity 

Diminishing sensitivity is “a cornerstone of economic theory” (Baucells and Sarin 2010, 

p 288) and “a robust empirical generalization about human perception and decision making…. ” 

Kivetz et al (2004a, p 240).  It is important to bear in mind that our modeling approach does not 
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depend on a specific functional form for utility, a form rendered in standard arithmetic.  Our 

assertion is more general.  We assert that any value integration model using n
+
 as its “addition 

operator” will naturally exhibit diminishing sensitivity.  This is so because n
+
 itself exhibits this 

property; hence the property emerges throughout the abstract algebra of the value space. To 

verify this property, it suffices to show that n
+
 increases in each argument at a decreasing rate.  

This result is Theorem 1. 

Theorem 1:  (monotonicity and diminishing sensitivity): Neuroaddition is monotone increasing 

in each argument 
 ,

0
n s t

s






+

 at a decreasing rate
 2

2

,
0

n s t

s






+

 . 

Theorem 1is not the idea that “the next piece of cake won’t generate as much utility as 

the one you are eating now”; i.e., diminishing sensitivity that refers to satiation at the 

consumption level for a single good.  Rather it is the idea that however value is signalized by the 

brain, the relationship between increases in any underlying attribute (or generalized option 

schema) and the subjective value of that increase is sub-proportional (Fox and See 2003). 

2.5.2 Loss Aversion 

Kahneman and Tversky (1991) found that individuals should be loss averse; changes 

equal in face value from an initial state, but in opposite directions will engender different 

cognitive values, i.e., a smaller absolute utility for the gain.  Accumulated empirical evidence 

strongly supports the loss aversion hypothesis, both behaviorally (Tversky and Fox 1995; 

Tversky and Wakker 1995; Wu and Gonzalez 1996) as well as neurally (Dickhaut et al 2003, 

Tom et al 2007). (See also Novemsky and Kahneman 2005, Bateman et al 2005, Brenner et al 

2007, and Tversky and Kahneman 1991, among many others).  We show next that a numerical 
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representation that integrates subjective values according to (6) will exhibit loss aversion.  Thus 

loss aversion will hold for any particular – referent bound – instance of the operator (5).  

The loss aversion property is most easily seen graphically in two dimensions. Figure 1 

shows the iso-value contours for overall subjective value comprising two addends using n
+
. 

(Without loss of generality, we set the upper bound c to 1 in all figures.) A few of these are 

rendered in thicker lines to emphasize how the shape shifts as value increases.  With two 

attributes, each curve is the locus of points satisfying    1 2u z u z   , which from (6) yields the 

relationship between subjective value on attributes one and two as (7). 

 
 

 

2
1

2 2
1

c u z
u z

u z c





  



       (7) 

Movement along any ray outbound from the origin – a common referent on the RHS of 

(5) – represents constant face value of options because the marginal rate of substitution among 

part values is constant in this direction.  However, on any such ray the distance required to 

increase subjective value by a fixed amount moving “outbound” is always more than that 

required moving “inbound” to decrease subjective value by the same amount.  This is so because 

the iso-value contours are concave; all points on an iso-value contour lie “outside” any line 

segment connecting two points on that contour.  Furthermore, this asymmetry increases as total 

utility increases.  Theorem 2 formalizes this property using the following definitions. For any 

option cx on a ray from the origin in Figure 1, we define a loss relative to an option y as an 

option that lies on an iso-value contour with   yu x .  In other words, x simply has less 

subjective value than y.  Similarly a gain is any cx ; such that   yu x ; with equivalent 

subjective value occurring when   yu x . 
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Figure 1: ISO-Utility Contours for the Neuroadditive Model 

Utility integration takes the standard additive form when overall 

utility is low but takes a convex form when overall utility is high. 

 

Theorem 2:  Loss Aversion: Let , ,
L R G

z z z be three points with      L R G
u u u z z z  that lie on 

any ray from the origin of the two-dimensional utility space such that the 

(Euclidean) distances satisfy    , ,L R G Rd dz z z z ; i.e., point 
R

z lies mid-distance 

between the other two points on the ray.  Then     , ,G R R LG d d L  z z z z  , 

but    L R G Ru u   z z  where  R R
u  z . 

2.5.3 Moderated Compensatory Behavior 
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The literature on decision-making is replete with debates about whether and when 

decisions will be compensatory.  (See Hastie and Dawes 2001, Montgomery 1976, Tversky 

1972.)  The n
+
 representation offers new insights on this issue and makes precise predictions 

about what conditions should yield which types of behaviors.  The conventional understanding of 

compensatory information processing is the capacity to experience more value on one attribute 

and less on another while still experiencing the same overall value.  In the standard additive 

model, this tradeoff is zero-sum.  In contrast, the n
+
 representation supports the idea of trade-offs 

that are soft-edged and variable.  The marginal rate of substitution required to maintain constant 

overall subjective value changes as a function of both the relative contributions of each attribute 

and the magnitude of total value as illustrated in figure 2.
8
  When overall value is low, iso-value 

contours are nearly linear, corresponding to the assumption of the standard model.  However, as 

overall value increases, iso-value contours become increasingly convex to the origin.  We call 

this moderated compensatory behavior; a phenomenon modeled exogenously by Allenby and 

Rossi (1991) and Gilbride and Allenby (2004).  A decision-maker considering just two attributes 

will increasingly favor one or the other depending on the overall value of options under 

consideration. In other words, if you like something (certain levels of attribute A vs. those of 

attribute B), then the more you experience it, the more you like it. The moderator effect accords 

naturally with models of heuristic behaviors.  When faced with options with many attributes, a 

decision-maker’s “mental search” for higher value will naturally lead him or her to focus on 

                                                 
8
 Note the distinction between iso-value contours and the classic economic theory of indifference curves for bundles 

of goods. Goods – outdoor grills, pearl necklaces – are traded via explicit transactions in the marketplace.  Thus, 

prices are set exogenously to any given individual’s neural processes and serve as a natural common denominator 

across goods, which encourages the use of standard arithmetical cognitive processing (Merton and Nieder 2009, p 

345).  Baucells and Sarin (2010, section 4) provide a prototypical example when extending the HS model to multiple 

goods. 
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fewer attributes, thus decisions tend to become less compensatory.  (See Gigerenzer and 

Gaissmaier 2011.) 

Figure 2: Neuroadditive Utility Generates Moderated Compensatory Behavior 

As overall utility increases, a decision-maker will increasingly 

resist “giving up” value on a subset of attributes. 

 

Theorem 3  (moderated compensatory behavior): As subjective value increases, that is as

c  , a decision-maker’s marginal rate of substitution between attributes – his or her 

willingness to make trade-offs – diminishes.  

Theorem 3 can be restated as follows: the n
+
 representation of subjective value is both 

non-Fechnerian and non-homothetic.  These properties link neuroadditivity to several practical 

applications in the marketing and psychology literatures.  Fechnerian iso-value contours are 
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“parallel”.  They can be parallel straight lines – as per RUMs – and for deterministic utility in 

additive conjoint measurement.  Or they can be parallel curves.  For example, the Luce (1959) 

function has radial iso-utility contours consistent with its dependence on the ratio (vs. the 

difference) of prospect values (Stott 2006 p 124).  Fechnerian iso-value contours preclude 

phenomena such as asymmetric price switching, which occurs when a higher quality brand steals 

share from a lower quality brand as the price gap between the brands shrinks.  In other words, 

when considering options with higher overall utility, an individual may trade off attribute 

combinations differently than when considering options with lower levels of overall utility 

(Kamakura and Du 2012).  Such behavior supports a non-Fechnerian utility representation as per 

n
+
.  

Homotheticity is parallelism at the margin.  It obtains for iso-value contours with constant 

first derivatives. To combat homotheticity in the standard MNL, Allenby and Rossi (1991 p 187) 

developed a special MNL model that made : “… marginal utility a function of the overall level 

of utility.” Their non-homothetic model significantly outperformed the standard model; it fit 

better in-sample and yielded a log-likelihood over 200 points better.  The n
+
 representation does 

precisely this; the marginal rate of substitution changes as a function of total utility.  In Figure 2, 

attribute 1 is increasingly dominating substitution at the margin.  If  were less than 45
o
 then 

attribute 2 would increasingly dominate the marginal rate of substitution as overall utility 

increases.  Orhun (2009) also invoked non-homotheticity in her analytic deductions. 

2.6 Conclusion  

We employ three very general ideas about the brain to deduce relational laws for a 

numerical representation of multiattribute utility.  Our assumptions – positivity, detectability, and 

boundedness – converge with those in the neuroscience literature despite the fact that our 
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arguments are only partially based on direct neurological considerations.  These ideas are widely 

accepted among neuroscientists, e.g., “… neural activity is physically constrained to minimal and 

maximal levels and has very limited precision” (Louie and De Martino 2014, p 455); “… neural 

responses are bound from below and above, therefore can represent information using a limited 

range of firing rates” (p 473).   

The most important of our relational laws is the neuroadditive law, which yields a binary 

operator to represent value integration to wholes from parts.  The representation naturally 

embodies diminishing sensitivity, loss aversion, and moderated compensatory behavior.  These 

properties are empirically supported by decades of laboratory experiments and large-scale field 

studies.  Beyond existing support, the neuroadditive representation generates novel hypotheses in 

areas connected to loss aversion and context dependent decision-making.  We outline three of 

these hypotheses selected from a longer list of possibilities. 

The neuroadditive representation adds just one parameter to standard additivity, hence is 

a logical candidate for a RUM that unifies previous efforts to imbue the MNL with reference 

dependency (Hardie et al 1993, Orhun 2009, Kivetz et al 2004a), loss aversion (Kivetz et al 

2004a,b; Orhun 2009), non-homotheticity (Allenby and Rossi 1991), and non-compensatory 

behavior (Swait 2001; Gilbride and Allenby 2004).  The representation takes a divisive 

normalized form, making it a candidate for the role envisioned by Louie and De Martino (2014 p 

390): “A growing body of evidence, summarized in Chapter 24, now suggests that the 

representation of decision variables in the choice areas is neither a ratio of choice-variables nor a 

difference-of-choice-variables as originally proposed for perceptually-based models.  Instead it 

appears that these networks employ a divisively normalized representation that can 

accommodate both ratio-like and difference-like behavior.  While the details of that 
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representation are beyond the scope of this chapter, what is important is that these two classes of 

models (perceptual choice models and value-based choice models) are now beginning to fit 

together in our understanding of human decision-making.” 
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CHAPTER 3 ECONOMETRIC MODELING AND STATISTICAL 

ESTIMATION 

Because the neuroadditive model generates a variety of experimentally testable 

hypotheses, it would be useful to have a routine that can estimate the model’s parameters from 

data. This section proposes to develop such routines for discrete-choice data. Both pooled and 

individual models will be developed. The section is organized as follows. We first generate 

simulation data (section 3.1) for which the true parameter values are pre-specified.  In section 

3.2, the maximum likelihood approach is applied for pooled estimation – treating individual 

differences in partworth utilities as random variation.  Reasons for using a grid search procedure 

for certain parameters of the models compared here are explained in section 3.3.  The chapter 

concludes with section 3.4, which compares results from the standard and neuroadditive MNL 

choice models fitted to data from a discrete-choice experiment concerning services in the airline 

industry.  

3.1 Data generation: simulators  

In this section, we describe the simulation methods used to create choice data for certain 

model comparisons.  The goal is to simulate data from a discrete choice experiment involving 

(hypothetical) individuals who choose options from choice sets and do so according to different 

modelling assumptions; e.g., standard vs. neuroadditive processes.  The simulator for the 

standard model assumes that partworth utilities are drawn from a normal distribution.  We refer 

generically to the resulting dataset as the “normal distribution set.” In cases where positivity is 

imposed on partworth utilities, we draw these partworth utility vectors (“betas”) from a log-

normal distribution and refer generically to the resulting data as the “log-normal distribution set”. 

Table 3 summarizes the scenarios used in the simulation studies.  
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Table 3: Simulators 

 
Model  Attribute Attribute 

Levels  

No Choice 

Option 

Prior 

Distribution 

Pooled Standard (SP) A, B A=3, B=4 Not included  Lognormal 

Pooled Neuroadditive (NP) A, B A=3, B=4 Not included  Lognormal 

Individual Standard 1 (SI1) A, B A=3, B=4 Included Normal 

Individual Neuroadditive 1(NI1) A, B A=3, B=4 Included Normal 

Individual Standard 2 (SI2) A, B A=3, B=4 Included Lognormal 

Individual Neuroadditive 2  (NI2) A, B A=3, B=4 Included  Lognormal 

 

When a single set of partworth utilities is presumed to govern the behavior of an entire 

population of respondents; i.e. a pooled model, the true partworths of each respondent are 

nevertheless generated separately from a multivariate log-normal distribution, s.t.,  

   7 1 7 1 7 7log ~ ,LN LN LNMVN  β μ Σ  

In this case the model’s single parameter
LN
β  includes seven entries, which are partworth utilities 

corresponding to three levels of attribute A and four levels of attribute B. We do not include a 

“No Choice” option in this simulation routine.  We set the true value of the parameter to: 

 8 11 16 1 2 3 4
N μ . When the model is neuroadditive, the maximum utility parameter is set to

 log
20

c
  .  

For models that explicitly include respondent heterogeneity; i.e., where the partworth 

utility vector is unique for each person and drives that person’s choices (vs. as random variation 

in a pooled model), we generate both normal and log-normal versions.  For the normal model, 

the true partworths of each respondent are generated as a single random draw from a multivariate 

normal distribution, s.t.,  

 8 1 8 1 8 8~ ,N N NMVN  β μ Σ . 
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The first seven entries of 
N

β  are parameters corresponding to three levels of attribute A and four 

levels of attribute B. The last entry corresponds to the “No Choice” option, which is included to 

mimic the typical setup in a discrete-choice experiment. The mean vector (true partworth values) 

is set to:  2 3 5 1 3 4 10 5
N μ , and the variance-covariance matrix N

Σ  is generated using the 

approach suggested by Train (2001), which generates a diagonal iid vcv matrix where the 

expected variance is calculated from    0,1
r a b a x    ; i.e.,   0E r  , therefore, 

     
2

2V r a b a V x b       . Once the true partworths have been generated, the neuroadditive 

coefficient for respondent r , rc  , is generated from a uniform distribution, i.e. 

 ~ Uniform ,r rc LC UC  , where  maxr rLC  β  and    
1, ,

max max 0.5r
r R

UC


 β . Each 

respondent has his/her own lower bound but respondents share the same upper bound.  This 

procedure guarantees that the neuroadditive condition  maxr rc  β  is satisfied. 

The lognormal model is created by simply taking the log of the normal model so that the 

data generation process follows a multivariate log-normal distribution, s.t,   

   8 1 8 1 8 8log ~ ,LN LN LNMVN  β μ Σ , 

Because lognormal densities are notoriously finicky, we set the mean vector to  

 0.4 0.6 1.0 0.2 0.6 0.8 2.0 1.0
LN μ .  The covariance matrix LN

Σ  is generated using Train’s 

approach described above. Once the true partworths have been generated, the neuroadditive 

coefficient of the r
th

 respondent’s rc  is a generated as a random draw from a univariate log-

normal distribution, i.e.,    2

, ,log ~ ,c r c rc N    , where  , max 0.5c r r  β  and  
, 0.5c r   for 

all r. A valid rc  must satisfy the condition that  maxr rc  β .  
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Once the true partworths and neuroadditive coefficients have been generated, the choice 

probabilities for each option in any given choice set can be calculated using both standard 

additivity and neuroadditivity in the MNL rule for value integration. The option selected in a 

given choice set is determined by a single draw from a multinomial distribution with these 

choice probabilities as its parameter vector.  

3.2 Estimation of the Pooled Neuroadditive Model (maxLK) 

To achieve maximum likelihood estimates for the pooled neuroadditive model, we jointly 

estimate β  and c  using Aczél’s (1966) functional equation (8) which yields a monotone 

transformation that renders the neuroadditive model linear and closed form.  

         1 1 1

i i i i

i i

u f f u x or f u f u x     
      

   
 x x    (8) 

The symbol ix  indexes levels of attribute i in profile x  and  i iu x are the partworth values for 

profile x . Note that when f is the identity function, (1) is the standard additive model.  I provide 

another solution below to yield the neuroadditive model. 

The log likelihood of the conditional MNL is shown in equation (9).   

   *

1 1 1

log log
Q K J

na na na

jk jk

q k j

L L y P
  

                            (9) 

*L  denotes the overall log-likelihood function for the standard MNL; q  indexes respondents; k  

indexes choice sets; j  indexes options within each choice set; and jky  is the binary indicator 

variable indicating whether option j  is chosen in set k . 
j

x is the dummy vector representation of 
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option j ; i.e., with a 1 in each entry where the option possesses the attribute level signaled by 

that entry. 

In the standard MNL, the conditional choice probabilities
jkP  are computed from the 

closed form for the MNL; i.e., in the k
th

 choice set, we have 

   
 

 
set 

exp
Pr  is selected | Pr 1

exp

j

jk k jk

kl k

V
P j j Set y

V


    


.        (10) 

To use this logic for the neuroadditive MNL, we transform the neuroadditive binary 

operator to its linear additive form using the functional equation method of Aczél (1966).  In this 

form, the overall value of option j is a functional composite of “partworths”. In the standard 

additive case, it is the inner product 
j j

V  x β .  In the neuroadditive case, it is the non-linear 

function  j j
V f V  , where  1 ,

j j j
V f c     x β x β  with  1 ,f c β β . The function 

 f   that solves Aczél’s equation (8) for neuroaddition is:  
2

2

1

1

z

z

e
f z c

e





 
  

 
 with inverse

 1 1

2
log

c z
f z

c z

  
  

 
. The joint likelihood of β  and c  is, therefore, the composite function;

  5 4 3 2 1log jkP g g g g g , where    1
1 ,g f c  β θ β ,  2j jV g    β x β , 

   
2

3 2

e 1

e 1

j

j

V

j j j V
V g V f V c









 
 
   
  

,  
 

 
4

set 

exp

exp

j

jk j

kl k

V
P g V

V


 


 , and     5 logjk jkz g P P  . 

The gradient of this composite function with respect to both β  and c , denoted as the single 

vector-partitioned parameter 
c

 
   
 

β
θ is the partitioned matrix form shown in (11).  
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 

β
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x f
θ

x f

          (11)  

where
'

2 2 2 2 2 2

1 2

1 2 2 2
diag , , ,

2 N

c c c

c c c   


 
  

   
β

f , n is the n
th

 entry of β .  

A preliminary simulation study was conducted to test the ability of maximum likelihood 

estimation to recover the known (vector composite) parameter θ . Data were generated for 100 

hypothetical respondents in a simulated discrete-choice experiment (20 choice sets of size 3) 

with two attributes at 3 and 4 levels, respectively. Each individual followed the neuroadditive 

multinomial logit model with unique parameters; i.e., 
q
β  was drawn from a multivariate log-

normal distribution (MVN); so that  log q MVNβ ; c  was drawn from log-normal distribution 

truncated by the maximum β ; i.e.,      log ~  max logc Truncated N β . The true (pooled) 

partworth vectorβ  was set to [8 11 16 1 2 3 4] and the true (pooled) maximum utility parameter 

was set to  log
20

c
  .  

The pooled maximum likelihood estimates for this problem are shown in Table 4 for both 

the (true) neuroadditive model and the standard additive model using maximum.    

Table 4: Parameter estimates (Maximum Likelihood) 

 β1 β2 β3 β4 β5 β6 β7 c log(L) 

True value  8.00 11.00 16.00 1.00 2.00 3.00 4.00 20.00 -744.00 

neuroadditive estimate 8.12 11.26 15.75 1.02 1.99 3.04 3.85 19.92 -743.60 

Standard additive estimate 0.97 3.84 7.68 0.57 1.15 1.59 1.96 -na- -752.00 



38 

 

The partworth estimates for the neuroadditive (vs. additive) model are more accurate and 

the estimate of c is close to its true value. (Formal tests are forthcoming.)  Estimates based on the 

standard additive model roughly preserve the pairwise distance between parameters, but are 

generally inaccurate even though the log-likelihood values are similar. Deeper arguments made 

elsewhere suggest that the maximum likelihood estimator has relatively low power to distinguish 

between these models.  The additive model is known to be robust.  The neuroadditive model 

produces overall utilities that tend to agree in rank order with those of a standard additive model.  

This is an interesting case where a theory driven model (neuroadditivity) and a relatively ad hoc 

model (additive) can yield similar in-sample fits even though one model is known to be wrong. 

(For other examples, see Cui and Curry 2005.)  We believe these models can be empirically 

more accurately distinguished using MCMC estimation since this method can capitalize on 

theoretical arguments from the functional equation approach regarding the distribution of 

parameters. If MCMC estimates can be achieved, the neuroadditive MNL model will be 

compared to the standard additive MNL model using more extensive simulation tests 

underpinned by detailed statistical analyses. Finally, neuroadditive estimation will be applied to a 

real dataset to reveal strategic implications as outlined next. 

3.3 Individual model (MCMC Estimation plus Grid search) 

To achieve individual estimates for the neuroadditive model, we propose a three step 

process.  As we shall see, this process is a reasonable starting point, but has one main deficiency; 

it treats the estimation of the partworth utilities and the neuroadditive upper limit (maximum 

utility) as independent problems.  These parameters should be estimated jointly, but to date, 

efforts to achieve a jointly optimized solution have fallen short.  These efforts will be continued 

in future research. 
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 The proposed estimation process consists of three main steps as follows: 

Step One:  Estimate the partworth vector rβ for each respondent  r  

As noted earlier, partworths from the neuroadditive and standard additive models are 

typically very similar, sharing rank order and leading to choice probabilities of nearly the same 

magnitude.  Hence, a reasonable first step in estimating neuroadditive partworths is to 

approximate them by partworths from the standard additive model.  However, partworths 

generated using the normal distribution set are neither constrained to be positive nor do they 

have an upper bound.  The positivity constraint is naturally satisfied using the log-normal 

distribution set. Thus, step one uses MCMC estimation code published by Kenneth Train (2001) 

adjusted to assume that the prior density is lognormal (vs. normal). To track improvements in 

model fit as n
+
 is imposed on these partworths, we use this estimate of ˆ

rβ for each respondent to 

calculate a baseline value of the log-likelihood.  We denote this value as ˆ S

rp . When summed 

over respondents, this is the baselined total likelihood of overall model fit.  We wish to compare 

the fit of the neuroadditive model to this baseline.  To approximate the neuroadditive parameters 

we next search for a reasonable estimate of the maximum utility parameter, by respondent, using 

a grid search procedure. 

Step Two: Estimate the neuroadditive coefficients, rc , for each respondent  r  

We set the lower and upper bound for grid search of rc  as  ,LC UC  , where 

  ˆmin max r
r

LC  β , 

and  

  ˆmax max 10r
r

UC  β . 
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A grid search is performed in the range of  ,LC UC  using a step-size of 0.1 for each respondent. 

The estimate of rc  is given as 

 
 

,

ˆˆ ˆarg max ,N

r r r
c LC UC

c p c


 β , r   

where   ˆˆ ,N

r r rp cβ  is the likelihood calculating under neuroadditive condition with coefficient rc  

given that finite c improves fit for a given respondent; i.e.,    ˆ ˆˆ ˆ,N S

r r r r rp c pβ β .  

We emphasize that the foregoing two-step procedure treats the estimation of each 

respondent’s partworth vector and his or her maximum utility parameter independently.  Thus, 

we expect less than optimal performance of the overall procedure.  Optimally, these parameters 

should be estimated jointly.  An intermediate procedure is to use an alternating technique that 

permits separate updating of each parameter ( ˆ
r
β and cr).  These approaches are beyond the scope 

of this dissertation. 

Step Three: Estimate variance adjuster (optional) 

The neuroadditive model is a non-homothetic utility model.  Unlike the additive model in 

which the marginal rate of substitution between attributes is everywhere constant, in the 

neuroadditive model, the marginal rate of substitution among attributes changes as a function of 

overall utility level.  Allenby and Rossi (1991) showed that in a non-homothetic model, one must 

control for the variance of the MNL probabilities in order for the standard MNL derivation to be 

correct. We adopt this idea in our neuroadditive addition setting. Choice probabilities in the 

standard (homoscedastic) MNL are given by:  

  
 
 

exp
|

exp

n

choice n

Set

V
P Set

V










x

z

z

x      (12) 
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For this rule to hold in a non-homothetic model, an additional parameter is required to relax the 

standard MNL’s restriction on (unit) variance; i.e., the choice probability rule becomes: 

  
 
 

exp
|

exp

n

choice n

Set

V
P Set

V















x

z

z

x      (13) 

where the inner product value rule is neuroadditive; i.e. nV 


 

x
X β . The likelihood of each 

respondent is then given by: 

    
 
 

,

,

ˆˆexp
ˆ ˆˆ ˆ ˆ, , |

ˆˆexp

n

rN

r r r choice n
Set Set r

Set

V
p c P Set

V













  


x

z

z

β x ,  (14) 

A grid search procedure is employed to find the ̂  that maximizes the likelihood of the 

observed choice data for this respondent: 

  ˆˆ ˆ ˆarg max , ,N

r r r rp c


  β ,  

and satisfying      ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , 1N N N

r r r r r r r r rp c p c p c   β β β . The range of search is [0.1, 6] with 

step size 0.1. Results with and without this step are compared in the next section. In practice, 

steps 1-3 or 1-2 are repeated 100 times. The average values 
100

,

1

1 ˆ
100

r i r

i

 β β ,
100

,

1

1
ˆ

100
r i r

i

c c


  ,

100

,

1

1
ˆ

100
r i r

i

 


  are the final estimates of partworths, neuroadditive coefficients, and variance 

adjusters. Table 5 summarizes all the results which will be discussed in details in the next 

sections. 
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Table 5: Estimation Results 

 

Distribution Model  Var. 

adj. 

A1 
a
 A2 A3 B1 B2 B3 B4 NC C LogLK 

b
 -2*ΔLogLK 

c
 AIC 

d
 

Normal True 

value 

 
6.9455 8.0212 9.8797 5.9922 8.0160 8.9715 14.9354 5.1082 16.7837 -1736.9 N/A 5237.8 

 SI1 No 6.3862 6.5871 7.1166 5.8996 6.6190 7.1794 9.5285 0.4562 N/A -1866.6 N/A 5333.2 

 NI1 No 
6.3862 6.5871 7.1166 5.8996 6.6190 7.1794 9.5285 0.4562 50.8662 -1607.1 

519 

(p<0.0001) 
5014.2 

 NI1 Yes 
6.3862 6.5871 7.1166 5.8996 6.6190 7.1794 9.5285 0.4562 50.8662 -1579.9 

54.4 

(p>0.99) 
5159.9 

Log-normal True 

value 

 
0.3982 0.6072 1.0023 0.2039 0.5986 0.7832 2.0258 1.0057 3.3285 -2708.5 N/A 7217.0 

 SI2 No 0.0033 0.0781 0.3119 0.0027 0.1410 0.2240 1.2893 0.0282 N/A -2736.9 N/A 7073.9 

 NI2 No 
0.0033 0.0781 0.3119 0.0027 0.1410 0.2240 1.2893 0.0282 8.2844 -2620.1 

233.6 

(p<0.0001) 
7040.2 

 NI2 Yes 
0.0033 0.0781 0.3119 0.0027 0.1410 0.2240 1.2893 0.0282 8.2844 -2597.1 

50 

(p>0.99) 
7194.2 

a. Average over all 100 responders (A1-A3, B1-B4, NC, C) 

b. Average across 100 iterations of overall log-likelihood of all 100 responders 

c. Data is presented as -2*ΔLogLK(p-value). ΔLogLK= LogLK in the above line minus LogLK in the present line. P-values are obtained by comparing 

with a chi-square distribution with 100 degrees of freedom, i.e. 100 responders each with one parameter difference. 

d. Average across 100 iterations of AIC using overall log-likelihood of all 100 responders (each with 8-10 parameters)
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3.3.1 Normal without   

In this section, the partworths and neuroadditive coefficients are generated using the 

normal distribution set. Steps one and two are applied to get the estimates, but variance is not 

adjusted to relax the assumption of homotheticity. Therefore, no estimate of  is given. The 

results are shown in table 5. All   estimates are biased toward zero, while estimates of c are 

generally inflated with very large standard errors. In fact, about 58 of the 100 respondents have 

c equal to the upper bound, UC; i.e. their likelihood functions are monotonically increasing in 

the range of  ,LC UC . Under the standard-additive model, the average of overall log-likelihood 

across 100 iterations is -1866.6. And the average responder-wise log-likelihood range from -

31.0157 to -8.8788. While under neuro-additive model, the mean overall log-likelihood 

increased to -1607.1. The range of average responder-wise log-likelihood moves to [-26.2218, -

5.9868]. 

3.3.2 Normal with   

In this comparison, we relax homotheticity; i.e., perform step three after reporting results 

for steps one and two. Since we do not update estimates of partworths and neuroadditive 

coefficients, these estimates are the same as in section 3.3.1. The mean estimate of  is 

1.2308±0.4578, with median at 1.0930 and range from 0.9910 to 3.6730. The average overall 

log-likelihood further increases to -1579.9, and the range moves again to [-26.2151, -2.5354]. 

3.3.3 LogN without   

To satisfy positivity, the partworths and neuroadditive coefficients are generated using 

the log-normal distribution set. Steps one and two are applied to get the estimates, but variance is 

not adjusted. Therefore, no estimate of  is given. All   estimates are biased toward zero, but c 
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estimates are generally inflated with very large standard deviation. In fact, about half of the 

respondents always have c equal to the upper bound, UC; i.e., their likelihood functions are 

monotonically increasing in the range of  ,LC UC . And about 25% of the respondents always 

have c equal to the lower bound, LC; i.e., their likelihood functions are monotonically decreasing 

in the range of  ,LC UC . Only the remaining approximately 25% of respondents have a 

unimodal likelihood function in the range of  ,LC UC . Compared with standard-additive results, 

using the neuro-additive model increases the average overall log-likelihood from -2736.9 to -

2620.1. While the range of average responder-wise log-likelihood over 100 iterations moves 

from [-31.9965, -18.3932] to [-30.7251, -16.0515]. 

3.3.4 LogN with     

Step three is performed after steps one and two. Since we do not update estimates of 

partworths and neuroadditive coefficients, the results in this section are the same as in section 

3.3.3. The mean estimate of  is 1.1845±0.3003, with median at 1.2170 and range from 0.1 to 

2.1290.  However, permitting flexibility in the MNL variance increases the average overall log-

likelihood further to -2597.1, and the responder-wise range moves again to [-29.9839, -15.6034]. 

3.4 Applying the Neuroadditive Model to Real Data (Empirical example)   

The data come from a survey about airline services. The discrete-choice experiment 

manipulated levels of four attributes: 1) Base fare, 2) Baggage policy, 3) Ticket change fee, and 

4) Airline reputation; each at three levels. The survey used a fractional design with nine choice 

sets.  Each set contained three options from which a respondent selected his or her most 

preferred flight. A total of one hundred and seventy-one respondents participated in the online 

survey, one hundred and forty-two successfully submitted the survey. Out of these 142, n=105 
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respondents completed all choice sets. Since our estimation code requires complete data by 

person, only the 105 completed surveys are used. Results are summarized in table 6 below. 
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Table 6: Estimation Results 

 

Model  Var. 

adj. 

A1 
a
 A2 A3 P1 P2 P3 C1 

*
 C2 C3 D1 D2 D3 C LogLK 

b
 -2*ΔLogLK 

c
 AIC 

d
 

SI1 No 7.18 2.86 0.029 0.50 3.39 0.03 1.81 0.20 0.03 0.03 1.41 1.92 N/A -570.0 N/A 3660.0 

NI1 No 
7.18 2.86 0.029 0.50 3.39 0.03 1.81 0.20 0.03 0.03 1.41 1.92 43.53 -203.3 

727.4 

(p<0.0001) 
3136.5 

NI1 Yes 
7.18 2.86 0.029 0.50 3.39 0.03 1.81 0.20 0.03 0.03 1.41 1.92 43.53 -159.0 

88.6 

(p=0.13) 
3258.0 

* C1-C3 are attribute levels, not neuroadditive coefficients, c is neuroadditive coefficient 

a. Average over all 105 responders (A1-A3, P1-P3, C1-C3, D1-D3, C) 

b. Average across 100 iterations of overall log-likelihood of all 105 responders 

c. Data is presented as -2*ΔLogLK(p-value). ΔLogLK= LogLK in the above line minus LogLK in the present line. P-values are obtained by comparing 

with a chi-square distribution with 105 degrees of freedom, i.e. 105 responders each with one parameter difference. 

d. Average across 100 iterations of AIC using overall log-likelihood of all 105 responders (each with 12-14 parameters)
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3.4.1 LogN without   

We fit the log-normal model and estimated  – the vector valued parameter of twelve 

partworths and the neuroadditive coefficient – for each respondent.  We report results for both a 

standard model and a homothetic model to baseline the log-likelihood values for these data. 

Under standard-additive conditions, the average overall log-likelihood of all 105 responders is -

570.0 with range of responder-wise log-likelihood at [-12.53, -1.64].  For the homothetic 

neuroadditive model, the overall log-likelihood increased to -203.27 and responder-wise these 

are in the range [-8.81, -0.01].   The results are compared to those for the full (non-homothetic) 

neuroadditive model in the next section. 

3.4.2 LogN with   

Because we estimate partworths and the maximum utility parameter separately, these 

coefficients are the same as in the previous section.  However, in this section we account for 

non-homotheticity by estimating  for each respondent. The mean estimate of   is 

4.2346±2.0939, with median at 5.7410 and range from 0.8 to 6.  For the non-homothetic 

neuroadditive model, the estimated overall log-likelihood further increased to -159.0, and the 

responder-wise range moved again to [-8.78, -0.00].  Thus, the heterogeneous neuroadditive 

model shows considerable improvement over the standard additive (comparing likelihoods as 

nested models) and the homothetic neuroadditive model (comparing likelihoods as nested 

models). However, the minimum AIC is again obtained without variance adjustment. In addition, 

the two overall log-likelihoods for the neuro-additive models are not significantly different. 

For the individual models; i.e., those that support consumer heterogeneity in preference, 

results with simulated data and with real data show significant improvement when fitting the 
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neuroadditive vs. standard-additive model.  In the cases with simulated data, this statistical 

improvement is evidence that the estimation procedure is recovering appropriate parameters for 

each of the models used in the simulations.  In the case with data from the airlines discrete-

choice experiment, the dramatically improved fit of the neuroadditive models – both with and 

without variance adjustment parameters – is strong support for a neuroadditive representation of 

the partworth integration process.  Modeling this process as bounded from above and below, 

hence as non-homothetic, pays significant dividends in modeling accuracy.   

However, because our estimation procedures are not yet statistically optimal, we believe the 

foregoing results will improve as estimation techniques are refined.  Furthermore, because the 

group of permissible transformations for the neuroadditive model has not yet been clearly 

worked out, raw estimates cannot be adequately judged by examining deviations from true 

values.  Probability estimates from the standard model are invariant with respect to difference 

transformations of the partworth values.  Hence, calculating transformations of raw estimates to 

match true values is a matter of linear model fitting.  This is not so with the neuroadditive model.  

Future research will further investigate the problem of permissible transformations of 

neuroadditive scales and develop additional metrics for verifying that estimates match true 

values up to “scaling” indeterminacies.  The constraints evoked by these transformations may 

also play a role in the estimation process itself, improving the in-sample fit of the neuroadditive 

representation. 

 In spite of these drawbacks, the large improvements in log-likelihoods in the simulation 

studies and with the airlines data strongly suggest the superiority of the neuro-additive model.  

The n
+
 model uses just one additional degree of freedom per respondent (vs. the standard 

additive model) yet the fitted log-likelihoods improve by 5% to 50%.  
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Incorporating variance adjustment into the estimation process further increases the log-

likelihoods of the n
+
 models in both the simulated and real-data cases.  These improvements do 

not compensate for the added degrees of freedom in either case, thus the AIC criterion selects the 

(simpler) neuroadditive model without variance adjustment.  There are two (possibly 

interconnected) explanations for this result.  First, variance adjustment is needed primarily in 

cases when there is considerable variation  between respondents regarding the degree of non-

homotheticity in their utility functions and within respondent when selecting from different 

choice sets.  Neither the simulated nor real data necessarily infuse choices with sufficient 

variation to push the envelope between the linear-additive and non-homothetic regions of utility 

space. Secondly, because the current estimation routines are less than optimal, parameter 

estimates are not fully accurate and efficient.  These inefficiencies lessen the model’s fitted and 

predictive power; hence lower its ability to distinguish between various degrees of non-

homotheticity. 

Results underscore the need for improved estimation techniques for the neuroadditive model.  

Results for a pooled neuroadditive model (Table 3) are excellent, so the potential for accurate 

estimation is present.  However, the pooled model brings several orders of magnitude more 

statistical power to the problem than a model that supports heterogeneity. In a pooled model, 

only a single partworth parameter vector is estimated and this estimate uses – in the case of 

Table 1 – 100 times more data than is available at the individual level.  
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CHAPTER 4 BEHAVIORAL EXPERIMENT: RECONSIDERING 

THE ENDOWMENT EFFECT
9
 

4.1 Introduction 

Since the time that loss aversion was formalized as a component of prospect theory 

(Kahneman and Tversky 1979; Tversky and Kahneman 1991), it has been widely used as an 

explanatory construct in behavioral decision research. Loss aversion predicts that a loss 

decreases an individual's utility more than an equally sized gain increases it. Moreover, loss 

aversion produces an endowment effect; defined as the gap between the price buyers are willing 

to pay in order to acquire an object and the price sellers demand to part with the object (Carmon 

& Ariely, 2000; Kahneman et al., 1990; Thaler, 1980).  As Novemsky and Kahneman note 

(2005, p. 120): “Most researchers accept loss aversion as both a description and an explanation 

of (the endowment effect) …” This view is suggested by the lightly boxed part of Figure 3.  

Figure 3: Causal Links between Constructs  

 

 

                                                 
9
 This chapter is largely based on co-authored; Wang and Curry (2014) 

Loss 
Aversion

Endowment 
Effect

Neural
Primatives

Traditional Explanation of the Endowment Effect
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The findings supporting the endowment effect are robust (Kahneman, Knetsch, & Thaler, 

1990; Knetsch & Sinden, 1984; Wu & Gonzalez 1996; Tversky & Wakker 1995), neural 

correlates of the effect have been found (Tom et al 2007, Camerer et al 1993), and replications 

and extensions suggest a wide range of constructs that moderate the effect (Nayakankuppam & 

Mishra, 2005; Brenner, Rottenstreich, Sood & Bilgin, 2007; Carmon & Ariely, 2000).  By 

definition, both loss aversion and the endowment effect require an initial utility state, referred to 

as the status-quo or reference point.  Somewhat surprisingly, this construct has been used 

without deep formalization. For example, in their original Econometrica article, Kahneman and 

Tversky (1979) simply say: 

Gains and losses, of course, are defined relative to some neutral reference point. The 

reference point usually corresponds to the current asset position, in which case gains 

and losses coincide with the actual amounts that are received or paid. 

This definition has a quasi-accounting flavor that emphasizes financial interpretations of losses 

and gains.  Subsequent research on the topic has broadened the idea of reference point beyond 

the notion of “current asset position.” 

In this chapter, we suggest that loss aversion is a consequence of a more fundamental 

condition of human information processing linked to neural primitives; hence it emerges from 

biological properties of the brain.  We draw this conclusion from the fundamental theory 

presented in Chapter 2. The neuroadditive operator turns out to be directionally asymmetric, 

which in turn induces the asymmetry analysts observe in value judgments and label loss aversion 

(hence it induces the endowment effect as a special case).  The asymmetry suggests a direct 

causal link to the endowment effect – shown as the bold arrow in Figure 3 – that “returning to a 
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reference” (an inversion process as in , where “zero” is a status quo or initial state) is 

one-sided; losses can be inverted but gains cannot be. 

 

Figure 4: Cognitive “Inversions” and the Endowment Effect 

 

The contributions of this chapter are to carefully explain loss aversion as an emergent 

property of brain biology, to show how a fundamental asymmetry in neural processing creates 

the endowment effect, and to test these ideas experimentally. To these ends, we first review the 

subset of the literature on the endowment effect that is most relevant for our work. We then 

present our assumptions, explain them, and outline the argument that leads to our main 
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conclusions. We then report findings from an experiment to test the idea of an asymmetry 

leading to the endowment effect.  We conclude with a general discussion. 

4.2 Relevant Literature 

The endowment effect is the tendency to place a larger value on an item once it is in one’s 

possession (Thaler 1980).  The effect is signaled by individuals, who when randomly endowed 

with one of two items, demand more to sell their item than buyers are willing to pay, regardless 

of the item possessed. Previous research has replicated the endowment effect using a variety of 

manipulations. Researchers have also identified important moderators of the effect. For example, 

Zhang and Fishbach (2005) examine the possibility that evaluation of loss is not only a matter of 

subjective value, but also a matter of experience, thus depends on situational determinants such 

as mood state. Nayakankuppam and Mishra (2005) suggest that the mental processes a buyer 

invokes when exchanging money for an item are fundamentally different than those of a seller.  

They hypothesize an overrepresentation of the positive features of the item being traded and an 

underrepresentation of the negative features, by sellers, relative to buyers. Aggarwal and Zhang 

(2006) demonstrate that sellers have higher selling prices when norms of communal relationships 

(vs. exchange relationships) are salient. Saqib, Frohlich and Bruning (2010) show that the level 

of consumer involvement in a decision moderates the endowment effect. Shu and Peck (2011) 

propose that the concept of emotional attachment can help explain many of the endowment effect 

findings. Brenner et al (2007) explore the endowment effect by considering two distinct 

interpretations of the terms “loss” and “gain”.  One interpretation is that loss aversion is loss of 

(market) value per se, not the loss of the material possession and its detailed properties.  The 

other view emphasizes real attachment to the object and its properties, not just its market value.  

The first interpretation builds on Bateman et al’s (2005) distinction between the “currently 
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endowed hypothesis” (CEH) and the “no loss in buying hypothesis” (NLIB), which proposes that 

money spent in buying goods is not “coded” as a loss, whereas loss of the material possession 

and its properties is.  

 Dommer and Swaminathan (2013) examine three moderators derived from theory that 

suggest a link between possession and the “self”. They argue that the endowment effect results 

from identity associations on the possession-self link and, therefore, should vary by gender. 

Weaver and Frederick (2012) propose that the endowment effect is often better understood as 

reluctance to trade on unfavorable terms. Burson, Faro, and Rottenstreich (2013) show that 

multiple-unit holdings will yield attenuated endowment effects. Following the concern pointed 

out by Rick (2011) about whether loss aversion is the best explanation for the endowment effect, 

we show how the effect may result from a direct causal link in which value inversions are one-

sided. In the next section, we explain the main assumptions of our model and develop the 

hypotheses tested in the present research. 

4.3 Theoretical foundation  

4.3.1 Loss Aversion as an Emergent Property 

As shown in Chapter 2, neuroaddition follows from broad biological assumptions, 

resembles standard addition, and has many of its properties, such as commutativity, 

monotonicity, and associativity.  However, neuroaddition generates iso-value contours wherein 

total value moderates marginal substitution rates between the “part-values” of choice options.  

Figure 5 (panel a) shows the operator’s iso-value contours when choice options are characterized 

along two dimensions.  Because the contours are concave – all points on a contour lie outside 

any line segment connecting two points on that contour – the distance required to increase value 
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by a fixed amount moving “outbound” (the gain direction) is always more than that required 

moving “inbound” (the loss direction) to decrease value by the same amount.  

 

Figure 5: Iso-Utility Contours for the r-Additive Model and Loss Aversion 

(a) Rays from Origin (b) Equi-Distant Rays (enlarged) 

 

 

This property induces loss aversion as shown in (panel b). The two rays in panel (a) are 

enlarged in panel (b).  They emanate from the origin, one at 45
o
 where the effect is most 

prominent, the other at an arbitrary angle.  In panel (b), the upper and lower iso-value contours 

represent equal gain (G) and loss (L) from any referent located on the mid iso-value contour.  

But note that the distance in subjective value one must travel outbound to equate G L  always 

exceeds the distance traveling inward.  This is shown by duplicating the line segment 

representing the loss in each case and physically setting it beside the gain segment.  The distance 

to lose a given amount of value is always less than the distance to gain an equivalent amount of 
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value.  Put another way, a decision-maker must have disproportionately “more” of the 

underlying attributes if a value gain is to match a value loss.   

This view suggests that loss aversion should not be interpreted as a conscious thought 

process; i.e., “I could gain such and such utility by choosing ‘action 1’, but lose this much utility 

by choosing ‘action 2’ and in weighing these two, although they equate in nominal value, I am 

averse to {the loss of utility associated with action 1}”.  Rather, asymmetry in the subconscious 

valuation of options emerges as a natural by-product of biology and is subsequently (mis-) 

interpreted by analysts as loss aversion.  Put another way, autonomic signal integration in the 

brain – via the intuitive, rapid processing known as system 1 (Dhar and Gorlin 2013) – follows a 

specific non-linear “summative process” that, when translated to analysts’ standard arithmetic, 

appears as loss aversion. 

4.3.2 Asymmetry in Inversions 

Besides offering a new explanation for and interpretation of loss aversion, the algebra of 

neuro-additivity (the positivity axiom) leads to asymmetry of inversion.  This is not unusual in 

mathematical representations.  For example, there are left and right inverses of non-square 

matrices in matrix algebra.  In the present context, we find that a loss can be inverted, but a gain 

cannot be.  A formal proof of this assertion is given in Appendix A (proposition 2).  It depends 

on the concavity property stated above and the fact that the iso-value contours do not cross in the 

positive orthant, which is the monotonicity property.  The behavioral counterpart of the proof 

leads to the core scientific hypothesis to be tested in this chapter. 

HS:  It is possible to return a decision-maker to his or her status-quo after a loss, 

but not after a gain. 
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We translate HS to specific statistical hypotheses in the context of our empirical study 

reported below. 

Recent neural explanations of loss aversion lend support to our assumptions and to HS as 

a conclusion.  For example, Knutson et al (2008, p. 819) find that: 1) the aversion is to the loss of 

the object and its properties (a holistic, subconscious construct), not the loss of market value (a 

conscious weighing of exchange potential); 2) that gain computations exhibit a cognitive 

character distinct from loss computations; i.e., they activate different brain regions; and 3) that 

the endowment effect is strongest for more preferred products; i.e., the effect is moderated by an 

option’s total utility, which is precisely so with neuro-additivity.  (See also Knutson & Wimmer 

2007 and Tom et al 2007.)  The formal lack of a gain inverse in our proposed algebra was 

unanticipated.  It complements published research on the endowment effect. Specific empirical 

tests to verify or refute the novel prediction are warranted.  We present one such test next. 

4.4 Study  

4.4.1 Method 

Participants.  Participants (n = 179) completed the experiment online via Amazon’s 

MTurk.  Each participant received $0.15 in Amazon.com credit. Only participants who had an 

Amazon MTurk approval rating of 95% or higher and lived in the United States were permitted 

to participate.  

Procedure. Participants were placed in a scenario in which they were a VIP member of 

an internet provider, GigaZoom. VIP members are eligible to participate in an annual rewards 

program offering free application programs (apps) for tablet computers.  VIP members can select 

these apps from a wide variety of (paid) apps offered through an online menu.   In this scenario, 
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participants (Stage 0) were familiarized with the annual rewards program and knew that 

historically the program applied to all apps costing between $0.99 and $4.99. Participants were 

then randomly assigned to two conditions both of which contained two stages.  In Condition-A, 

participants were first informed (mistakenly) by GigaZoom that the annual rewards program 

applied to apps costing between $0.99 and $9.99 (rather than the historical cut-off of $4.99) 

(Stage 1). (Please refer to Figure B-1.)  After a time lapse, these individuals then received a 

notification that the firm had mistakenly set the upper price limit at $9.99 and that they were 

correcting this back to the historical precedent $0.99 to $4.99 (Stage 2).  In Condition-B, 

participants were first notified that the program had been cancelled altogether this year due to 

budget cuts at the firm (Stage 1).   Subsequently, participants were notified that the program 

would be reinstated due to an unexpected upturn in revenue (Stage 2). At each stage, participants 

were asked to rate the program on a scale from 1= Terrible to 9= Excellent.   

4.4.2 Expectations and Corresponding Statistical Hypotheses 

Let ,
sj sj

 A B  be Ss j’s judged value of the program at stage s in treatments A and B, 

respectively.  If superscripts are not present, then a statistic has been pooled over both treatments 

at a given stage.  For example,
0 j

 A is Ss j’s judged value of a rewards program with a higher end 

limit of $9.99 (vs. $4.99) after learning of the program change but before the Ss is told that a 

mistake has been made. The symbol
0

 signifies a mean pooled over both populations of 

respondents at stage zero. 

H1.  (Main test) We expect an interaction between condition and stage.  
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a. Ss experiencing an initial gain cannot be returned to their referent value; i.e., their 

judged value at stage 2 will be lower than at stage 0.  We state the null hypothesis at 

equality and examine the direction of difference if the null is rejected. 

0 2 0 2 0
: :

A
H H    A A A A  

b. Ss experiencing an initial loss can be returned to their referent value; i.e., their judged 

value at stage 2 will not differ significantly from their judged value at stage 0. 

0 2 0 2
: :

A
H H    B B B B

0
 

H2.  By random assignment to treatments, we expect the judged (overall) values of the 

rewards program at Stage 0 to be the same among those receiving treatments A and B; i.e.,  

0 0 0 0 0
: :

A
H H    A B A B  

H3.  We expect that – pooled across Ss – the judged value of the program at stage 2 will be 

lower than at stage 1 because both treatments cognitively disrupt respondents and suggest 

that GigaZoom is tainted by some managerial incompetence.  We use a two-tailed test in 

which the null hypothesis is equality of (pooled) means. 

0 2 0 2 0
: :

A
H H      

H4.  From basic loss aversion, we expect the absolute magnitude of the value losses (Stage 0 

to 1: B) to be larger than the absolute magnitude of the gains (Stage 0 to 1: A) because 

the absolute dollar losses (gains) are essentially equal in magnitude; i.e., |$4.99 to $0.00|= 

|$4.99-$9.99|.  

0 0 1 0 1 0 1 0 1
: :

A
H H            A A B B A A B B
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4.4.3 Results  

Participants had differing evaluations of the rewards program depending on their 

assigned condition (gain-to-loss vs. loss-to-gain) and stage (0 vs. 2).  As expected, participants in 

both treatments evaluated the rewards program equivalently at stage 0, before knowing whether 

they would experience a gain or loss; H2:  (M0_gain=6.22 vs. M0_loss=5.91, t(177)=1.11, 

p<0.269.)  Participants evaluated the rewards program less positively at stage 2 than at stage 0 as 

per H3:  (M2 = 5.47 vs. M0 = 6.07; t(178) = 3.551, p<.001).   And participants exhibited loss 

aversion (H4); experiencing much higher subjective absolute loss than gain (M_loss=2.16 vs. 

M_gain=0.92, t(177)=5.54, p<0.001).  (H1): Most importantly, the interaction between 

condition and stage (H1) is significant (F(1, 177) = 62.92, p < .001), such that  participants in the 

gain-to-loss condition evaluated the rewards program less positively at stage 2 than at stage 0 

(M2 = 4.51 vs. M0 = 6.22; t(92) = 7.914, p <.001), while participants in the loss-to-gain condition 

evaluated the rewards program more positively at stage 2 than at stage 0 (M2 = 6.51 vs. M0 = 

5.91; t(85) = -3.116, p = .003). 
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Figure 6: Mean Subjective Values (by Stage)  

 

4.5 General Discussion 

Extant research on the endowment effect adopts traditional assumptions about mental 

operations and mental states.  These assumptions are consistent with a standard additive 

information integration rule. We argue that analog activities of the brain provide an alternative 

foundation that leads to a “neural” integration rule that looks like addition – and shares most of 

its abstract properties – but is bounded above and below.  We show that loss aversion is an 

emergent property of this rule.  Empirical tests affirm this along with affirming several auxiliary 

hypotheses.  More importantly, results support our main scientific hypothesis that people 

psychologically resist “returning to less after having more”, but are much less resistant to 

“returning to more, after having less”. The evidence suggests that the endowment effect is 

causally linked to a predicted asymmetry in cognitive states.  This link becomes apparent in 

contexts in which a decision-maker is pushed to return to a status-quo subjective value.  Relevant 

neuroscience research is gradually accumulating evidence in concert with our theoretical 
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expectations and empirical findings.  For example, Rick (2011) confirms the important role of 

distress in generating the endowment effect, and suggests that losses are experienced more 

intensely than comparable gains, which is precisely the expectation under neuro-additivity. 

Moving from mathematical theory as a representation of human behavior to the behavior 

itself is rarely a cut-and-dry process.  We agree that “Essentially, all models are wrong, but some 

are useful” (Box and Draper 1987, p. 424).  In the present case, our primitives – positivity, 

detectability, and boundedness – seem reasonable as well as useful.  But their implication of an 

irreversible cognitive state, which is a mathematical absolute, presents interesting interpretive 

problems behaviorally.  If a cognitive state cannot obtain, then what takes its place?  Thus, we 

wholeheartedly endorse additional interpretations and further empirical testing of our 

conclusions.  Although within Ss designs are appropriate for testing individual-level theory, time 

must elapse for an individual to migrate from one stage to another of the gain (loss) process.  

Hence, there may be plausible alternative explanations for our results, unforeseen interventions 

as the process unfolds. However, if these “interventions” are emotional states (regret, fear, joy), 

then one could argue that rather than moderate the effect, they are in fact additional outputs of 

the process.  For example, is mood state a la Zhang and Fishbach (2005) triggered by the 

asymmetry we identify? 

4.6 Future Research 

We encourage others to offer alternative explanations of our findings. Fortunately, the 

theory generates other testable hypotheses, many of which are unrelated to the endowment 

effect.  Hence, we hope to triangulate results from endowment effect experiments with those 

from experiments in other areas to put the overall theory on sound footing.  An unexpected, but 
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highly confirmatory aspect of our work is that loss aversion emerges from our assumptions; 

hence, the theory offers a plausible new explanation for this well-documented phenomenon. 

The asymmetry we isolate to create the endowment effect also offers intriguing insights 

about anecdotal phenomena.  For example, it suggests that an individual will differentially value 

the same (baseline) level of wealth as a function of the path s/he took to reach baseline.  The 

theory predicts disproportionately stressful consequences from the path baseline-to-gain, then 

back to the status-quo.  Loss aversion only assesses one-way trips; it has little to say about 

different types of round trips to status-quo.  And standard economic theory would suggest no 

difference in satisfaction. 
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CHAPTER 5 CONCLUSION 

We employ three very general ideas about the brain to deduce relational laws for a 

numerical representation of multiattribute utility.  Our assumptions – positivity, detectability, and 

boundedness – converge with those in the neuroscience literature despite the fact that our 

arguments are only partially based on direct neurological considerations.  These ideas are widely 

accepted among neuroscientists, e.g., “… neural activity is physically constrained to minimal and 

maximal levels and has very limited precision” (Louie and De Martino 2014, p 455); “… neural 

responses are bound from below and above, therefore can represent information using a limited 

range of firing rates” (p 473).   

The most important of our relational laws is the neuroadditive law, which yields a binary 

operator to represent value integration to wholes from parts.  The representation naturally 

embodies diminishing sensitivity, loss aversion, and moderated compensatory behavior.  These 

properties are empirically supported by decades of laboratory experiments and large-scale field 

studies.  Beyond existing support, the neuroadditive representation generates novel hypotheses in 

areas connected to loss aversion and context dependent decision-making.   

The neuroadditive representation adds just one parameter to standard additivity, hence is 

a logical candidate for a RUM that unifies previous efforts to imbue the MNL with reference 

dependency (Hardie et al 1993, Orhun 2009, Kivetz et al 2004a), loss aversion (Kivetz et al 

2004a,b; Orhun 2009), non-homotheticity (Allenby and Rossi 1991), and non-compensatory 

behavior (Swait 2001; Gilbride and Allenby 2004).  The representation takes a divisive 

normalized form, making it a candidate for the role envisioned by Louie and De Martino (2014 p 

390): “A growing body of evidence, summarized in Chapter 24, now suggests that the 
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representation of decision variables in the choice areas is neither a ratio of choice-variables nor a 

difference-of-choice-variables as originally proposed for perceptually-based models.  Instead it 

appears that these networks employ a divisively normalized representation that can 

accommodate both ratio-like and difference-like behavior.  While the details of that 

representation are beyond the scope of this chapter, what is important is that these two classes of 

models (perceptual choice models and value-based choice models) are now beginning to fit 

together in our understanding of human decision-making.” 

We propose an econometric form suitable for statistical estimation and apply developed 

routines to suggest strategic marketing implications. Because neuroadditivity works specifically 

with the deterministic part of utility, it attacks the problem using an approach that is atypical of 

the econometric literature, which emphasizes model generalizations via relaxing constraints on 

error structures. Thus, the neuro-additive hypothesis may help distinguish misspecification error 

from random error in RUM models. 

We encourage others to offer alternative explanations of our findings. Fortunately, the 

theory generates other testable hypotheses, many of which are unrelated to the endowment effect 

tested in this dissertation, i.e., the dominance effect and the similarity effect among others. 

Hence, we hope to triangulate results from endowment effect experiments with those from 

experiments in other areas to put the overall theory on sound footing.  An unexpected, but highly 

confirmatory aspect of our work is that loss aversion emerges from our assumptions; hence, the 

theory offers a plausible new explanation for this well-documented phenomenon. In the 

behavioral experiment from chapter 4, the asymmetry we isolate to create the endowment effect 

also offers intriguing insights about anecdotal phenomena.  For example, it suggests that an 

individual will differentially value the same (baseline) level of wealth as a function of the path 
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s/he took to reach baseline.  The theory predicts disproportionately stressful consequences from 

the path baseline-to-gain, then back to the status-quo.  Loss aversion only assesses one-way 

trips; it has little to say about different types of round trips to status-quo.  And standard economic 

theory would suggest no difference in satisfaction. 

The hope is that the dissertation will lead to a more productive blending of research in 

consumer behavior and in quantitative marketing and econometrics. Incorporating behavioral 

effects from consumer psychology may improve the accuracy of predictions in choice-based 

conjoint studies (Netzer et al 2008). From the practitioner’s perspective, because choice 

simulators are sensitive to the predicted rank of new product profiles, integrating loss aversion 

and moderated compensatory behavior into the conjoint framework will help to advance 

innovation in new product design.  
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APPENDIX A: PROOFS OF PROPOSITIONS AND THEOREMS 

Proposition 1: If the difference  ,u


x y  is detectable in the -frame, then for u to be 

meaningful, it must be detectable under any permissible (positive) transformation of the 

representative utilities.  Let f be a positive function; i.e.,  f x , yielding 

 
   

   
,

f u f u
u

f u f u

 



 

      
      

x y
x y

x y
.        (a1)   

Substituting (a1) into the LHS below and using the symmetry of detectability; i.e., 

   , ,u u
 

x y y x  yields (a2). 

 
 

 

       

   

       

   

 

 

1 ,

1 ,

f u f u f u f u

f f

f u f u f u f u

f u f u

f uu

u f u

  

 

  

 



 

 

                        

         

                        

         

  



  



   
 

   

x y y x

x y

x y y x

x y

yy x

y x x
.       (a2) 

Multiplying numerator and denominator of the RHS of (a2) by  f u


  z , yields

   

   

 

 

 

 

1 , 1 ,

1 , 1 ,

f u f u u u

u uf u f u

   

  

                
             

y z y z z x

y z z xz x
.  Furthermore, because the expressions at the 

extremes of (a2) are equal, we have (a3): 

 

 

 

 

 

 

1 , 1 , 1 ,

1 , 1 , 1 ,

u u u

u u u

  

  

     
    

        

y x y z z x

y x y z z x
.       (a3) 

Cross-multiplying in (a3) yields the following equivalent expression,  

           1 , 1 , 1 , 1 , 1 , 1 ,u u u u u u
    

                               
y x y z z x y x y z z x  

which, after simplification yields (a4.1 and a4.2):   

           , , , , , ,u u u u u u
     

   y z z x y x y x y z z x   (a4.1) 

           , , , , , ,u u u u u u
     

   y z z x y x y x y z z x        (a4.2)         



 

 

81 

 

Rearranging (a4.2) and factoring out  ,u


y z yields; 

           , , , , , ,u u u u u u
     

  y z y x y z z x y x z x  

         , 1 , , , ,u u u u u
    

     y z y x z x y x z x  

Therefore,  
   

   

, ,
,

1 , ,

u u
u

u u

 



 




 

y x z x
y z

y x z x
   

Corollary P1.1: Equation (a4) can also be derived from the relationship between y and x. 

           

         

, , , , , ,

, 1 , , , ,

u u u u u u

u u u u u

     

    

  

     

y x y x y z z x y z z x

y x y z z x y z z x
 

Therefore,  
   

   

, ,
,

1 , ,

u u
u

u u

 



 






y z z x
y x

y z z x
.  When options x, y, and z share the same reference 

field  , ,   , their roles as possible reference options are interchangeable. Therefore, we have 

the summative law for subjective value of form  
   

   

, ,
,

1 , ,

u u
u

u u

 



 






y x z x
y z

y x z x
  

Corollary P1.2: Assume the system has supremum c.  Expressing each value from P1.1 as a 

fraction of the upper bound and then multiplying both sides by the bound yields the normalized 

law of summative value, 
 

   

   
2

, ,
,

, ,
1

u u
u c c

u uc

c

 



 







y x z x

y z

y x z x
. Multiplying both sides by c yields the 

desired result  
   
   

2

, ,
,

, ,
1

u u
r

u u

c

 



 






y x z x
y z

y x z x
  

Proofs of the properties of neuroaddition:  

1. Commutativity follows from the symmetry of the function  ,n s t+
.   

2. Associativity, we have: 
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 
21 s t

c

s t
s t w w




   



 
 2

2

2

2

2
1

c s t
w

c st

c st

c s t
w

c st

 
 
  




  



     
2 2

2 21
c s t w c st w s t

c st c st

   

 

        

     
2 2 2

2 2

c s t w c st c st w s t

c st c st

     

 

         

   
 

2 2

2

c s t w c st

c st w s t

  


  

2 2 2

2

c s c t c w stw

c st sw tw

  


  

   
 

2 2

2

c s t s c tw

c tw s t w

  


  

     
2 2 2

2 2

c t w s c tw c tw s t w

c tw c tw

     

 

         

     
2 2

2 21
c t w s c tw s t w

c tw c tw

   

 

        

 
 2

2

2

2

2
1

c t w
s

c tw

c tw

c t w
u

c tw

 
 
  




  



   2 2

2 2

c t w c t w
s s

c tw c tw

 
   

 
 s t w   . 

3. The additive identity, zero, follows by direct substitution into the expression defining .   

4. Closure follows because 0 s c   and 0 t c   together imply that 0 1
s t

c c

 
  

 
, thus the 

denominator of the function n
+
 lies in the interval [1, 2].  Therefore,      ,n s t s t s t c    +

. 

5. Distributivity: By definition we have        
s times

s t w t w t w t w


         . Associativity 

yields    
s times s times

t t t w w w
 

       , which by definition is  s w t   and by commutativity 

equals  t w s   

Proof Theorem 1: We have
       

  

 

 

2 2

2

1 1 2 2 2

2 2
21

1,
0

1

c c

c

s t s t t c c tn s t

s c s ts t

       
  

    
 

+

. The 

denominator is strictly positive and since 
c

c Sup  the numerator is also positive. Furthermore

   

 

2 2 22

2 3
2

2,
0

tc t cn s t

s c st


 

 

+

because all terms in the denominator are positive but the numerator 

is negative; i.e., the term 22tc  is positive but 
2 2t c is negative    

Proof Theorem 2: Loss Aversion 
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We prove the assertion for two attributes. The generalization to higher dimensions follows by 

simple induction. We use the following lemma in the proof. 

Lemma 1: -Indifference: With two attributes, the indifference curve    1 2u z u z   is the 

locus of points with coordinates,  1u z  and  
 

 

2
1

2 2
1

c u z
u z

u z c





  



.  

Proof: By definition, L L RU    and G G RU    , where p is the iso-value contour through 

the point  , ,L R Gp z z z .  We capitalize on the fact that iso-utility contours under  increase in 

concavity on a given ray as we move further from the origin along the ray. Let  be the angle of 

the ray with respect to the axis for attribute 1.  With no loss of generality set c=1, then for any  

we have from Lemma 1,  
 

 
1 1

2 2

1 11

u z
u z

u z









 with    2 2 1 1 tanu z u z    , and 

 

   

2
2 2

2
1 1 1 1

1

1

d u z

d u z u z







  

.  Substituting for  and for  2 2u z , yields a function in one variable; 

i.e., substituting for  yields; 
 

   
    

   
      

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

2

2
1

2 2

1 1
1 11

11

1 1

u z u z

u z u z

u z u z

u z u z
u z u z
















     
  

, and substituting 

   2 2 1 1u z u z   , yields  

   

 

   

 

1 1 1 1

2

1 1

2 2

1 1 1 1

2

1 1

2

1

1 1 2

1

1

1

u z u z

u z

u z u z

u z

f u z









 

 

 

 

   
    

       

.  Note that  1 1 0f u z     and that both 

the numerator and denominator tend to 0 as  1 1 1u z  .  The limit will exist only if the speed of 

convergence differs between numerator and denominator. After some algebra, we find that

 
 

 

2 2
1 1

1 1 2

1 1

1

1

u z
f u z

u z

 
   


.  Differentiating the numerator and denominator separately to check 
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the speed of convergence, we find that 
  
 

 

2 2
1 1

2
1 1

1 1

1
2

d u z
u z

du z




 
     and

  
 

 

2

1 1

1 1

1 1

1
2

d u z
u z

d u z


 .  Because  >1 for  > 45

o
, it follows that    2

1 1 1 12 2u z u z   ; i.e., 

the numerator is disappearing faster than the denominator. Thus, the  
 1 1

1 1

1

lim 0
u z

f u z


     as desired. 

Proof Theorem 3: The marginal rate of substitution between two attributes at a fixed point is the 

slope of the indifference curve at that point.  But  
 1 1

1 1

1

lim 0
u z

f u z


    indicates that, except at the 

point of intersection between the 45
o
 ray and an indifference curve (where the slope is always -1) 

this slope is decreasing as total value increases.  

Non-Fechnarian Property 

That neuroadditive utility is non-Fechnerian follows directly from the fact that the iso-utility 

contours are monotone increasing in convexity.   

Non-Homotheticity Property 

Let   1,,
i i

i mF u z       be an iso-utility contour (line, surface, or hyper-surface) for an m-

partworth utility function.  The utility expansion path (or UEP) is the locus of points that have 

identical gradient as total utility () increases. We show first that homogeneity if and only if the 

UEP is linear.  We then show that the UEP for neuroadditivity is a non-linear function of total 

utility. 

Lemma 2: Homogeneity holds if and only if the UEP is linear. 

A ray from the origin is the infinite extension of a unit vector  1 2
, , ,

m
x x x 

x
x

x
, where   

is the norm of x . The directional derivative of F at any collection of partworths; i.e., the point 
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 1 2
, , ,

m
u u u  in the direction of x is the gradient

1

m

F i

i i

F
V x

u





 .  But if F is homogeneous, then 

an increase in overall utility from  to +k adds k utiles in the direction
i i

F F
k i

u u

 
 

 
.  The 

directional derivative of the expansion kF is  
1

m

k F i F

i i

F
V k x k V

u





   


 , which is in the same 

direction as x  (and x ), hence is along the same ray, but is 
k

x
longer.  Conversely, if the UEP is 

linear, then all directional derivatives are the same, which defines homogeneity.  

Lemma 3: Additive F implies F is homothetic with partial gradient constant in the plane formed 

by any two attributes. 

In m-dimensions, additive iso-utility contours take the form  
1

m

i i

i

u z


  and the relevant part of 

the gradient in the ij
th

 plane is    
 

 
1

m
i i

j j i i

j i j j

u z
u z u z

u z





    


 , which is constant as 

required by homotheticity.  

m-Attributes Case 

Non-homotheticity follows if F from Lemmas 2 and 3 is non-homothetic.  In m dimensions, let 

the ratio of any two coordinates of a ray from the origin  1 2
, , ,

m
x x xx  be the constant

ij

j

i

x

x 

. The ratio ij
 is the tangent of the angle  between the ray and the axis for attribute i in the plane 

formed by 
i

u  and j
u . In this plane, the iso-utility contours are described by the equation

   ij i i j j
u z u z   , where  

m

ij k j

k i or j

u z 


    is the part of total utility contributed by

   and
i i j j

u z u z .  Setting c=1 (with no loss of generality), and dropping the functional 
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dependence on levels to simplify notation, we have
1

ij i

j

ij i

u
u

u









.   For F to be homothetic, the 

(partial) gradient 
 

2

1

j ij i

i ij i

u u

u u





 


 
 must be constant; that is

j

j i ij ij

i

u
u u

u
 


   


.  Setting equals 

equal and substituting for ij
 , we have

 
/

2 2

/

1
1

k i

k i jij i

ij

ij i

k i

k i j

u u
u

u
u u













 
     

   
   

  





, but this expression 

shows that ij
 is a function of total utility .  Therefore, F is non-homothetic  

Definition 1: Let an option q have overall value   0
q

u  q .  A G-inverse (or gain inverse) of 

zG is an element 1
c


z  such that: 1

c


 z z  and  1
qu  z z . An L-inverse (or loss 

inverse) of zL is an element 1 c z  such that:  1 qu  z z . 

Proposition 2 is the basis for the empirical tests reported in this research.  It asserts that a loss can 

be inverted, but a gain cannot be. 

Proposition 2 (Gain/Loss Inverses) The set
1   z , but the set  1 c 

z ; i.e., for every zL, 

there exists a 1 c z  such that 1 c  z z  and  1 qu  z z . 

1. We prove the non-existence of G-inverses by contradiction. Suppose x
-1
G and

 1
qu  x x . By monotonicity (property 6), we have    1u u x x x  .  But 

    qu u  x q  for all  q q by definition of xG , which leads to the contradiction 

 1
qu  x x .  

We prove the existence of L-inverses by constructing 
1

x .  Identify a  * q q such that

   *

i i i i
u q u x i  . This is always possible because the set  q lies in a quadrant (orthant) of 

c

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to the “northeast” of x, hence it may be interpreted as the frontier of points dominating x.  At 

least one of these points must dominate x in partworth utility on every attribute.  Next, solve the 

following set of component-wise equations for the elements   :
i i

u z
   

     
2

*. .
1 i i i i

i i i i

i iu x u z

c

u x u z
s t u q







 .  

The solutions are given by  
   

   *

2

*

1
i i i i

i i i i

i i u q u x

c

u q u x
u z







 for all i.  Define    i i ii

u x u z


 ; i.e., 

i i
x z

 .  It follows that        *

1i i i i i i q
u x u x u q u 

 
    x x .  Note that  i i cu z   

because * ,i iq x i , which implies that    * 0,i i i iu q u x i   ; i.e., positivity is a necessary 

condition for  i i cu x    
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APPENDIX B: STIMULI FOR EXPERIMENT  

Initial Condition: Status-quo 

As a VIP member of GigaZoom, you are entitled to a limited-time rewards program that offers 

free downloads of up to 3 apps each year for your tablet computers. The rewards program occurs 

yearly on the firm’s founding anniversary. Apps offered in the program typically retail for 

anywhere from $0.99 to $4.99.             

How would you evaluate the rewards program based on the above information on the scale of 1 

to 9? 

Gain to Loss Scenario (Treatment A) 

Stage 1 - Gain 

You receive an email announcing that this year the annual rewards program includes free 

downloads of apps costing $9.99 or less (higher price than usual).  

Please indicate how you feel about GigaZoom's rewards program after receiving this email on 

the scale of 1 to 9. (Keep in mind your ratings from the previous question.) 

Stage 2 - Loss 

After you have downloaded a few apps for free, you receive another email apologizing for a 

system error that misrepresented the promotion offer: Only apps in the $0.99 - $4.99 price range 

are included for the free downloads. You can either pay full price to keep apps that are not within 

that price range or “return” them online. 

Please indicate how you feel about GigaZoom's rewards program after receiving this email on 

the scale of 1 to 9. (Keep in mind your ratings from the previous question.) 
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Loss to Gain Scenario (Treatment B) 

Stage 1 - Loss 

You receive an email announcing that this year the annual rewards program was suspended due 

to budget cuts.  

Please indicate how you feel about GigaZoom's rewards program after receiving this email on 

the scale of 1 to 9. (Keep in mind your ratings from the previous question.) 

Stage 2 - Gain 

You receive another email announcing the re-launch of the rewards program. You are 

encouraged to download up to 5 apps free of charge. The offer applies to any app costing $4.99 

or less.  

Please indicate how you feel about GigaZoom's rewards program after receiving this email on 

the scale of 1 to 9. (Keep in mind your ratings from the previous question.) 

 

 

Figure B-1 (next page) provides a visual that explains the stimuli.
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Figure B-1: Treatments and Stages 
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