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ABSTRACT 

The process of VLSI placement has been under constant evolution since its early days when 

the number of cells was ~100 to modern designs containing ~50 million cells with the process 

technology approaching ~7nm. We have presented a new optimization technique that increases 

the efficiency of existing clustering methods in placement and can place extremely large 

designs within a reasonable amount of time without sacrificing on the quality of solution. We 

have evaluated our technique based on the total wirelength (HPWL) and the timing values such 

as total negative slack (TNS) and worst negative slack (WNS) produced after completion of 

placement and routing. We have used real designs for the purpose of evaluation after 

converting them into the bookshelf format which is the standard format used by most academic 

placers today. The main concept behind our research was to extend the creation of large 

clusters in such a way that they could have multiple variations in shape instead of just squares. 

This was done to allow more flexibility in the placement of cells inside the clusters. After 

generation of multiple shapes an efficient selection procedure was implemented to get the best 

shape for a cluster from the several variations. This selection procedure consisted of assigning 

a shape to all the clusters and placing them in their optimal locations. Following this the cost of 

the placement solution was evaluated by taking into account the external and internal half 

perimeter wire length (HPWL) values along with the overlapping area in the design. We have 

used state-of-art placement tools to place the cells inside a cluster for all its variations. 

Synopsys DA tools were used for the purpose of evaluating our final performance. We have 

found from our experimental results that our shaping technique has improved the total 

wirelength by 8% on an average when compared to LCPlace [2] across all the benchmarks at 

the cost of a slight increase in runtime. 
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Chapter 1 INTRODUCTION 

The VLSI design process is an aggregation of various steps that begin from a concept or idea of 

an electrical device to perform a range of functions and end with the fabrication of an integrated 

circuit to do the same. This design cycle includes but is not limited to creation of the RTL for the 

design, logic synthesis, floorplanning, placement, clock tree synthesis, routing, static timing 

analysis and finally fabrication of the chip on silicon die. Each of the steps mentioned above is 

really complex in modern IC design cycles and consists of many sub-steps that aid in 

optimization and testing of the performance of the integrated circuit at each step. An overview of 

the entire design cycle is given below in fig 1.1. Detailed descriptions of each step of this design 

flow can be found in [38]. 

1.1 Motivation 

Since the initial days of VLSI design automation, there has been a lot of effort invested on 

finding new methods to optimize the various steps in the design cycle. Most of these efforts 

were rewarded with success and an enormous amount of optimization in the design of 

integrated circuits was witnessed in the last few decades. Along with the increase in 

optimization of traditional design flows, problems related to larger designs also increased 

significantly. Moore’s law had predicted the reduction in size of the transistors. With smaller 

sizes, the number of transistors that could be fabricated on a single chip increased 

exponentially. This increased the complexity of various stages like placement, routing and so on 

in the IC design flow.  
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1.1.1 Placement optimization 

Placement of circuit devices or cells has always been one of the most critical steps in the entire 

design cycle. In modern designs the total number of cells or gate-count is ~50 million. With such 

an extremely large number of cells, traditional placement techniques fail to perform optimally 

and result in issues such as routing congestions, thermal hotspot creation and so on. As a result 

various problem size reduction techniques were implemented to reduce the large problems into 

smaller chunks and then solving them with existing placement techniques.  
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Figure 1.1: Integrated Circuit design flow 
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Clustering is one such problem reduction technique to handle large designs. Details about 

reduction techniques and clustering are given in chapter 2 of this thesis. These clustering 

techniques have some inherent drawbacks which cause degradation in placement quality while 

decreasing runtime for such techniques.  

1.1.2 Major focus areas of our research 

In our research we focus mainly on improving the clustering technique that results in the 

formation of large clusters as mentioned in [2]. We have seen from the experimental results of 

LCPlace [2] that the improvements in wirelength after global placement are lost to a large extent 

after the process of unclustering and legalization is executed. In our work we have proposed a 

novel optimization technique to prevent this degradation in quality of placement by changing the 

shapes of the clusters and performing mixed size cluster placement. The key contributions to 

our research are the following: 

1. Creation of ‘shape-bank’ for all clusters: Instead of fixing the shape of the large 

clusters formed using [2] to squares, we created multiple variations of the square shape 

for each cluster and stored them in the ‘shape-bank’ for the cluster. 

2. Perform ‘in-cluster’ placement: After creation of multiple shapes, the cells belonging to 

a cluster had to be placed efficiently inside each of the clusters since the number of cells 

in each cluster was quite large. A flow was created to fix some cells on the boundary of 

the cluster for all the shape variations and using these cells as anchor points, an 

external academic placer was used to place the remaining cells inside all the shapes for 

the clusters. 

3. Selecting the best shape for a cluster: The best shape had to be selected for a cluster 

from its ‘shape-bank’ based on certain objective functions. We first tested our shaping 

technique using a greedy approach to observe the impact on the internal wirelength of 
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the clusters and found improvements. Then a simulated annealing based approach was 

used to decide the best shape for a cluster after physically assigning the shape and 

moving the clusters to their optimal locations.  

4. Model clusters as movable macros and use mixed sized placer: In each round of 

shape selection a set of shapes were assigned to each of the clusters and then they 

were modelled as movable macros and written out in the bookshelf format. Then a 

mixed size academic placer was used to place them in their optimal locations. 

 

1.2 Thesis Organization 

The rest of this thesis is comprised of five chapters. In chapter 2 we provide some background 

on VLSI placement in general and clustering techniques that exist in the literature to handle the 

problems of placement for large designs. In chapter 3 we propose our novel shape generation 

technique for creating variations from square clusters. Chapter 4 deals with the process of 

selecting the best shape for the cluster and placement of mixed size clusters. In chapter 5 we 

present a description of all the experiments performed along with the corresponding results and 

analysis. Chapter 6 we summarize our work on this thesis and draw conclusions. We also 

provide insights for future research along these lines. 
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Chapter 2 VLSI PLACEMENT AND CLUSTERING 

In this chapter we define the placement problem and discuss the various approaches to perform 

VLSI placement. We also provide some background on clustering techniques used to solve the 

placement problem. Finally this chapter concludes with a review of the clustering technique we 

have used in this thesis as a precursor to our shaping technique mentioned later.  

2.1 The VLSI placement problem 

2.1.1 What is placement? 

The process of finding the optimal locations of circuit elements, also known as cells, on a die 

surface is known as VLSI placement in the integrated circuit (IC) design cycle [11]. As we have 

seen in chapter 1, placement is the step in the design cycle which generally comes after logic 

synthesis has been performed on the Verilog/VHDL source i.e. the RTL models and before the 

routing phase. Placement is a very crucial step because the quality of outputs produced in the 

following steps (i.e. clock tree synthesis, routing, etc.) depends on the quality of the placement 

solution provided as an input. Placement is one of the key factors that affect interconnect length, 

routing congestion, thermal hot-spot creation, overall performance of the circuit, and so on.  

2.1.2 Formulation of the placement problem 

The placement problem can be defined as follows: Given a chip layout or floorplan and a set of 

circuit elements (cells) containing terminals or pins that are used to establish a connection 

between two or more cells, determine the positions of those cells in such a way that no two cells 

overlap with each other and a specific objective function is optimized. The inputs provided are, 

(1) a set of cells, ‘C’ along with their physical dimensions and positions of pins on the cells, (2)  

a netlist containing information about how the cells are interconnected among each other, and 
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(3) the floorplan information specifying the dimensions, spacing and orientation of the feasible 

locations where cells could be placed on the chip. [12] In this thesis we deal with only two-

dimensional placement problems, the output of which are the x and y co-ordinates representing 

the optimal locations for all cells.  

2.1.3 Performance metrics to evaluate placement 

Generally the objective function(s) that need to be optimized are the total wirelength and the 

timing values like TNS, and WNS, which are calculated after performing a static timing analysis 

(STA) on completion of routing. These two metrics are the most significant parameters that are 

used to evaluate the quality of our placement solution. Other cost functions such as routing 

congestion, heat and power distribution, total area, etc. may also be included in the cost 

function to evaluate the final placed netlist.  

2.2 Types of VLSI placement 

VLSI placement can be broadly divided into two categories based on the specifications of the 

circuit devices that need to be placed. The following sections explain the two categories of 

placement 

2.2.1 Standard cell placement 

Initial research on placement assumed the height of the cells to be fixed. The only variation 

allowed was in the width of these cells which are also known as standard cells. This assumption 

simplified the placement problem to a certain extent and this initiated the practice of creating 

rows with equal heights in the floorplan. Now the standard cells could only be placed in such a 

way that they align with these rows. This simplification of the placement problem helped in 

improving the runtime of placers to a large extent. The method of placing standard cells only on 

the rows defined in the floorplan is known as row-based placement. Due to the popularity of this 
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technique, most of the modern placers still use row definitions as a guide to optimizing the 

placement along with other methods. 

 2.2.2 Mixed size placement 

Due to the increasing complexity of modern designs it not always possible to have all the circuit 

devices in the form of standard cells. Special components like analog circuits are designed 

using flows dedicated to the purpose and are used as fixed blocks in the design. These blocks 

are pre-synthesized before integrating them in the traditional IC design cycle. The increasing 

number of SoC (System on Chip) in modern designs have spiked up the need to use such pre-

designed blocks or macro blocks. These blocks are reused in a lot of designs and are 

instantiated wherever required. Macro blocks can be movable or fixed. Fixed macros have to be 

treated as blockages in this category of placement problems whereas movable macros can be 

moved around freely without changing their shape or orientation. [11] 

          macro blocks 

  

     Standard cells 

 

 

 

(a)          (b) 

  

 

 

Figure 2.1 (a) Standard cell placement, (b) mixed size placement 
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2.3 Generic placement flow 

 

             

  

 

 

The generic placement flow as shown in fig 2.2 is used by most academic and industrial placers 

today for both categories of placement mentioned above in section 2.2. Each of the blocks in 

the flow is elaborately explained in the following sections. 

2.3.1 Global placement 

In the process of global placement all the cells are placed approximately in their optimal 

locations without considering any overlap that may have occurred. Global placement includes 

processing of all the cells together and allocating a location for each of them on the die. This is 

done by optimizing some objective function which takes into account, a global view of the 

placement. Standard cells are distributed equally across the entire die to an extent possible 

during global placement. The execution time for this stage is quite large compared to the other 

stages in the placement flow. So, any further optimization during this step would help to reduce 

the total execution time of a placer by a large extent. 

2.3.2 Legalization 

On completion of the global placement step in the flow, overlaps may exist among the cells. 

Such overlaps are not desired and would pose a lot of difficulties for the steps that follow 

placement. So, all overlaps are removed during this step called legalization. A legalizer removes 

cell-cell, cell-macro, and macro-macro overlap by shifting the movable blocks/cells by the least 

GATE-LEVEL 

NETLIST 

GLOBAL 

PLACEMENT 
LEGALIZATION DETAILED 

PLACEMENT 

Figure 2.2 Generic placement flow 



 

9 
 

amount necessary. Cells should not be moved around a lot as it may result in the degradation of 

objective function. A lot of research has been done on various legalization techniques. Some of 

them are found in [13], [14] and [15] 

2.3.3 Detailed placement 

Detailed placement tries to optimize the placement solution by using local refinement 

techniques. All detailed placement techniques work with a small group of cells at a time and try 

to improve the objective function by performing local changes among those cells like cell 

swapping, flipping of cells about an axis, and so on. The main objective of detailed placement is 

to regain some placement quality which may have been lost during the legalization step while 

cells were being moved around. The execution time for each detailed placement step is much 

less when compared to those of global placement. The reason for this being that detailed 

placement always work with only a small window of cells. 

2.4 Existing global placement techniques 

Global placement techniques existing in the literature include partitioning-based [16, 17, 18], 

simulated annealing based [19, 20], and analytical approach based on finding the minimum 

force location of cells [3, 6, 21, 22]. A brief description of all these placement techniques is given 

below. 

2.4.1 Simulated annealing based placement 

Simulated annealing (SA) is the process of finding a close estimate of the globally optimum 

solution for any combinatorial optimization problem. SA is used in all situations where a good 

enough solution is acceptable instead of the best solution possible by decreasing the time taken 

to solve it. This algorithm was developed by Kirkpatrick, Gelatt and Vecchi [23] and is widely 

used in a lot of areas of electronic design automation. This algorithm was inspired from the 
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process of annealing in metallurgy. In VLSI placement the solution space for this process 

consists of various placement configurations of the cells. Iterating between different placement 

configurations consist a move in Metropolis procedure. Cost function required to evaluate the 

solution can be any of those mentioned above in section 2.1.3. In the initial stages of annealing 

solutions that degrade the cost are also accepted to allow hill climbing. This is required to 

reduce the probability of getting stuck at local minima/maxima. The probability of accepting 

inferior solutions decreases as the temperature cools down and eventually a good enough 

solution is reached. 

2.4.2 Partitioning based min-cut placement 

In partitioning based approaches the entire process first divides all the cells into two regions [24] 

or into four regions [25]. Then each of these regions is further divided into two or four regions. 

This process continues recursively until each of the partitions created contains the minimum 

number of cells that can be assigned to the smallest partition. Another step that is executed 

while using a partitioning based min-cut placer is terminal propagation. [18] This affects the 

quality of the final placement solution. Partitioning based placement techniques have a lot of 

limitations while modelling the various types of objective functions mentioned earlier. Although 

the placement solution produced using this method is better routable and can also be scaled up 

for larger designs. [2] 

2.4.3 Analytical placement techniques 

In any analytical placement technique, the objective functions for placement and the constraints 

are modelled in the form of analytical functions of the coordinates of cells [26]. The entire VLSI 

placement problem is modelled as a set of mathematical equations which when solved using 

any existing solver will yield the optimal locations for all the cells on the die. One of the 

necessary conditions for the analytical approach to work efficiently is that the objective function 
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that has to be optimized should be continuous, convex and smooth. A brief description of some 

of the most popular analytical placement techniques is given in the following sections.  

2.4.3.1 Quadratic placement 

Quadratic placement techniques are so named because the objective function that has to be 

optimized here has a degree of 2. The quadratic wirelength model is the summation of the 

squares of the net lengths [2]. Equation 2.1 below shows the model of quadratic wirelength used 

in these placement techniques. 

   ∑( ∑ (      )
 

       

  ∑ (      )
 

       

)

   

 Equation 2.1 

   

In quadratic placement technique, all the multi terminal nets in the design have to be modelled 

as two terminal nets. This is achieved by using the clique, star or the hybrid model [6]. More 

details about the net models can be found in [26]. It has been shown that nets which have large 

fan-outs should be modelled as a star instead of a clique. A quadratic placer is really fast in 

terms of runtime required because what it essentially has to do is solve a system of linear 

equations to minimize the objective function (wirelength). Constraints like blockages, chip 

boundaries and so on increase the execution time. The most significant disadvantage of using a 

quadratic placer is the large amount of overlapping area that is produced in the final placement. 

This has to be removed using a legalizer. An example of an academic placer that uses 

quadratic optimization techniques to perform VLSI placement is FastPlace [6], [28].  

2.4.3.2 Non-linear placement 

As the name suggests a non-linear placement technique is one in which the method to model 

the wirelength of nets is non-linear. It is easier to model the various types of constraints into one 

objective function using a non-linear solver unlike that of a quadratic solver. One existing 
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academic placer using non-linear solving procedures is NTUPlace 3.0 [3]. The major drawback 

of this solving technique is the execution time. It is also quite complex from the implementation 

perspective of the solver. Further details on non-linear solving techniques can be found in [29] 

 

2.5 Clustering in VLSI placement 

2.5.1 Reducing problem size 

The increasing size of combinatorial optimization problems led to the development of various 

problem size reduction techniques in the field of VLSI design automation (DA). A problem size 

reduction technique is defined as the process by which large problems are reduced into 

relatively smaller problems that can be easily solved by using the solvers existing in the 

literature.  In VLSI DA, these reduction techniques are mainly used in the two major areas of 

partitioning and placement. In the following sections we present a survey of all the major 

reduction techniques used for placement of cells for ASIC designs.  

2.5.2 Application in VLSI design automation 

We can observe from the various placement techniques discussed above that the complexity of 

these techniques are dependent on either the total number of cells in the design (for e.g. O(n2) 

for force directed placement, where n is the total number of cells in the design) [6], or the 

number of nets or connections present in the design. So reducing either of the two or both can 

help in effectively placing large designs easily with the existing placement techniques. Almost all 

modern placers implement some sort of problem size reduction technique to handle the large 

designs of latest ASICs. Some initial work in literature on problem size reduction for partitioning 

can be found in [30]. Reduction techniques are used mostly with analytical placement methods 
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where reducing the number of nets or the number of cells will exponentially decrease the 

runtime of the solver. 

2.5.3 Clustering to reduce problem size 

Clustering in VLSI placement is the process of grouping a number of cells together in such way 

that it minimizes some objective function like the ones mentioned in section 2.5.2 above. Once 

all the cells have been grouped together into clusters, each of these clusters can be 

represented like a ‘virtual cell’ and treated similar to regular cells. The process of clustering can 

be explained in a simpler way using the graph data structures. A graph G consists of a set of 

nodes V and a set of edges E which connect nodes among themselves. Nodes represent cells 

in the placement problem and the edges represent the interconnections between cells. Since a 

net may connect to more than two cells so in the graph world these nets are represented using 

hyperedges and the resulting graph is known as a hypergraph. On clustering, this hypergraph 

gets modified to another hypergraph containing a set of clusters ‘C’ as its nodes and a new set 

of hyperedges that represent the residual nets after some of them got hidden due to clustering, 

More details on how clustering is applied to hypergraph data structures can be found in [31]. 

 

2.6 Clustering techniques 

In this section we discuss the existing clustering techniques in a chronological order that are 

used for VLSI placement. 

2.6.1 Edge-coarsening based clustering 

In this technique a group of nodes are joined together to form a single node or vertex. There are 

a few modifications to the edge coarsening technique like hyperedge coarsening, modified 

hyperedge coarsening, etc. This technique is reviewed in further details in [31] 
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2.6.2 First choice clustering 

This technique is a modification to the edge coarsening technique mentioned in 2.6.1 above. In 

first choice clustering technique the order in which the nodes are visited is random. All the 

vertices that are connected to a single vertex ‘v’ are considered and then the vertex connected 

to a hyperedge with the largest weight is selected to be clustered with the v. There is a 

possibility of formation of large clusters using this technique which has to be restricted using 

some control technique. K-hmetis uses this technique of clustering [1].  

2.6.3 Edge-separability based clustering 

Global connectivity information is used by the edge-separability based clustering algorithm to 

guide its process of generating clusters. In this technique the clique net model is used to convert 

the hyperedges into regular edges connecting two nodes. This is required to compute the flow 

or separability λ(e) of an edge to determine how the nodes on two ends of the edge will be 

clustered. Details on this algorithm can be found in [32, 31]. 

 2.6.4 Fine granularity based clustering 

Fine granularity based clustering uses the local connectivity information instead of global 

connectivity unlike the edge-separability based clustering technique mentioned above. In this 

technique small clusters containing approximately 2 to 3 cells per cluster is formed. This 

technique also requires the conversion of a hypergraph to a graph by modelling the edges using 

a clique model. The major disadvantage of these kinds of the clustering techniques which 

convert a hypergraph into a graph is scalability. The clustering ratio is very low in this technique 

of clustering based on fine granularity. [31, 33] 
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2.6.5 Best choice clustering 

This method of clustering is different from the previous clustering techniques in the fact that this 

technique operates directly on the hypergraph without converting it to a graph. Hyperedges are 

preserved in this technique. The key contributions of best choice clustering are computing a 

cluster score, usage of a priority queue data structure and lazy update technique [34, 31]. The 

disadvantages of this technique are that the execution time is large and maintaining a priority 

queue becomes difficult when designs are really large in size. 

2.6.6 Net-cluster  

The net-cluster technique aims to capture the natural clusters in a circuit. It focuses more on 

hiding as many nets as possible instead of hiding cells [35,31]. The execution time of a net-

cluster based approach is dependent on the number of pins in the design rather than number of 

nets or cells. A modified version of the Fiduccia-Mattheyses heuristic is used in this type of 

clustering [36]. One of the main disadvantages of this technique is that the clustering ratio 

cannot be controlled. 

2.6.7 Safe-choice clustering 

In safe-choice clustering, the algorithm proceeds in such a way that the wirelength is never 

degraded during cluster formation. Physical clustering based on the physical locations of the 

cells is performed in this clustering technique. More about this algorithm can be found in [37, 

31]. 

2.7 Clustering using k-way partitioning 

LCPlace in [31] implements a technique of forming large clusters by using a k-way partitioning 

algorithm. When the size of the clusters formed is large, it is evident that the number of clusters 
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formed will be less compared to other clustering techniques. This implies that the runtime of 

placing the clusters on the die is very less but at the same time since each cluster now contains 

a large number of standard cells, an efficient placement technique has to be used to place cells 

inside the cluster for all clusters. [31] The shapes of all the clusters in this technique are 

approximately squares. So, this restricts any standard cell placer to operate at its optimum 

conditions inside the cluster and introduces a limitation to this clustering technique. Another 

major drawback of this technique is the overlapping area that is created after global placement 

due to the rigid square shapes of the cluster. A legalizer has to be used to remove the overlap 

and this in turn degrades the quality of the global placement solution in most cases.  

In the above clustering technique mentioned in section 2.7, if we remove the restriction on 

clusters shapes and allow the shapes to change freely, then it would be really interesting to see 

how the performance of the standard cell placers used for ‘in-cluster’ placement get affected. 

Another question that arises in this regard is how these clusters with various shapes would 

affect the overlaps created after global placement. The focus of our research in this thesis is to 

study the quality of global placement on changing the shapes of clusters and also coming up 

with an efficient technique to form the best shape for a cluster.  
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Chapter 3  ALTERNATIVE SHAPE GENERATION 
 

In this chapter we address some of the existing problems of clustering and describe the 

solutions to the questions that led to research along these lines. 

3.1 Problem Statement 

The major problem that this thesis aims to provide a solution for is that arising from degradation 

of placement quality which occurs during clustering at the cost of run time improvement.  Our 

work in this thesis provides an optimization technique which when combined with a partitioning 

based clustering technique yields solutions which are much superior in quality compared to only 

fixed shape clustering during placement. The specific questions answered in this thesis are the 

following: 

1. What role does the shape of clusters, generated by dividing a large design play in 

deciding the quality of the placement solution? 

2. What are the possible techniques by which the shape of a cluster can be varied 

without degrading the quality of standard cell placement inside the cluster? 

3. How to select the best shape of a cluster in order to achieve the best performance in 

the final placement? 

4.  How is such a flow with varied cluster shapes different from existing flows that use 

fixed shape clusters during global placement? 

5. What difference does this flow portray in terms of timing values for a specific design? 

3.2 Our contributions 

Through our research we aim to provide an incremental optimization technique which will 

improve the quality of solutions provided by the existing clustering methods. This optimization 
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technique will help to eliminate some of the inherent drawbacks of partition based clustering 

during VLSI placement. Clustering is used to reduce the problem size of large placement 

problems into comparatively smaller problems and then solving them independently. Then the 

smaller solutions are combined to get the final result. This leads to a significant reduction in 

runtime by trading off quality. Our cluster shaping technique aims to restrict the degradation in 

quality at the cost of a slight increase in runtime of the placer. Our major contributions in this 

research are summarized below. 

1. Creation of multiple shape variants for a cluster 

2. Developing the floorplans for all the various shapes generated 

3. Placing cells inside all the shape variants for the cluster 

4. Selection of the best shape for a cluster 

5. Placement of mixed size clusters 

6. Legalization of residual overlaps 

We discuss the points 1, 2 and 3 in this chapter. The rest of our contributions are discussed in 

the next chapter on shape selection and cluster placement 

3.3 What is alternative shape generation? 

Alternative shape generation or cluster shaping is the process by which the shape i.e. the 

physical dimensions of a cluster is modified to vary the placement solutions of the standard cells 

inside a cluster. Also the optimal location of the cluster on the chip may get modified when its 

shape is changed. Changing the dimensions of a die (i.e. a cluster in this case) causes the 

same standard placer to produce different solutions for the same group of cells. Amongst all 

these solutions only one of them will be the optimal one. So in this process, even though the 

size of solution space increases by a large extent, there is still improvement in the quality of the 

best placement solution. 
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3.4 Limitations of fixed shape clusters 

Existing clustering techniques that results in the formation of large clusters tend to fix the shape 

of cluster in terms of aspect ratio. This causes the following limitations in the flow: 

1. Aspect ratios of standard cells are not fixed, so trying to place all these cells 

belonging to a cluster legally in a square shaped die(cluster) may cause the placer to 

fail. 

2. Whitespace inside a cluster is very limited and equally distributed in all clusters. This 

creates problems during placement as the requirement of white space varies in each 

cluster. 

3. Restricting the aspect ratio of the cluster also restricts the freedom to move cells 

around inside a cluster. As a result the overall solution quality of any academic 

placer used for this purpose is adversely affected. 

As a result of the limitations mentioned above, the resulting solution contains a lot of overlaps 

after global placement which has to be removed later using a legalizer. A tradeoff has to be 

made between the percentage of overlap inside a cluster and the quality of placement in terms 

of HPWL inside the cluster. 

3.5 Expected changes using multiple shapes 

A square shaped cluster is optimal when all the standard cells present in the cluster are square 

in shape. Such a situation is very rare when clustering is done based on partitioning techniques. 

So, if the cluster is made wider or narrower keeping the cluster area fixed, chances of getting an 

optimal placement increases when compared to that of fixed shape clusters. Changing the 

shape of a cluster may also lead to a reduction in overlap between standard cells without 

sacrificing on quality of placement inside a cluster. When the aspect ratio of a cluster is 
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changed, the global placement quality (cluster placement in the top level) is also affected along 

with the local quality of placement (standard cell placement) inside the cluster. 

  

      whitespace 

 

 

 

 overlap 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 and 3.2 above show the limitations of fixing the shape of a cluster to be a square and 

the increase in flexibility of placement when the aspect ratio of a cluster is varied based on the 

requirement of the placer. White space utilization does not happen efficiently if the clusters are 

Figure 3.1 Placement of standard cells in square shape versus wide variant 

Figure 3.2 Placement of standard cells in square shape versus narrow variant 
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square in shape which leads to the increase in unnecessary white space requirements in the 

entire design and increasing the overall area requirements of the integrated circuit. 

3.6 Proposed placement optimization methodology 

In this section we present the entire placement optimization flow that we wish to follow to 

complete the placement of large designs.  
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In fig 3.3 above the blocks in green represent our major contributions in this research. All the 

various stages of the placement flow are explained in detail in the following sections. In this 

CLUSTERING 

CLUSTER SHAPE SELECTION 

CLUSTER PLACEMENT 

UNCLUSTERING 

INCREMENTAL LEGALIZATION                 

CLUSTER SHAPING 

Figure 3.3 Overview of the complete placement flow with shaping 
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chapter we discuss the flow till the cluster shaping step. The steps following shape generation 

are discussed in the next chapter.  

3.7 Clustering 

Clustering is the technique of reducing a very large placement problem into smaller chunks and 

solving them independently. Next these independent solutions are recombined together to 

provide the final placement solution. After performing clustering on a flat netlist, a group of cells 

together in one cluster represent one “virtual” cell. If the number of standard cells in each cluster 

is large enough then the number of such “virtual” cells formed is a very low quantity. As a result 

even for very large designs the placement problem gets reduced to the placement of a few 

hundreds of “virtual” cells instead of ~1 million standard cells. For the purpose of creating large 

clusters i.e. clusters containing a large number of cells, we chose to use a k-way partitioning 

based clustering technique. More details about this partitioning technique can be found in [2]. 

This clustering technique not only helps to reduce the number of cells at the top level but also 

helps to hide a large number of nets, thus reducing the complexity of processing. 

3.8 Cluster shaping 

Cluster shaping is the process by which various shapes are generated for each of the clusters 

and all the standard cells that are identified to be a part of this cluster are placed using an 

academic placer in all of these configurations. Each of the steps involved in achieving this is 

elaborated below. Fig 3.4 shows the components of the flow involved in generating alternate 

shape variants for a single cluster. 
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3.8.1 Methods of changing cluster shapes 

In this section we present the various methods that can be used to change the shape of a 

cluster and also discuss the optimal method in our context of VLSI placement. The metric that 

has to remain constant while the shape of a cluster is changed, is its area. The area of the 

cluster is expected to be the sum of the total cell area belonging to a cluster and the white 

space allocated to the cluster during the process of clustering. There are countless geometric 

shapes that can be formed with a fixed value for area of that shape. The major factors that 

decide how to change the shape of a cluster are the following: 

1. Ease of floorplanning  

We are using a standard academic placer to perform placement inside the clusters. 

Almost all such placers use a row based placement methodology to optimize cell 

locations. So, consistent row definitions which are either all horizontal or all vertical are 

required to perform ‘in-cluster’ placement.  

2. White space utilization 

During the process of clustering mentioned in earlier sections the total white space 

available in the entire chip is divided equally among all the clusters. So, the amount of 

whitespace allocated to each cluster is very less. Shapes should be created in such a 

way that there is no further requirement of white space in the cluster. 

GET SQUARE 

SHAPE 

DMENSIONS 

VARY THE 

ASPECT RATIO 

TO GET SHAPES 

PLACE 

BOUNDARY 

CELLS 

PLACE 

INTERNAL 

CELLS 

Figure 3.4 Overview of the complete shape generation flow 
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3. Shapes of standard cells 

The shapes of standard cells that will be placed inside the clusters play a significant role 

in deciding the shaping strategy of a cluster. To the best of our knowledge, generally all 

standard cells are rectangular in shape with a constant height and variable widths. So, 

cluster shapes which are not rectangular may create problems during placement inside a 

cluster. 

4. Probability of having overlap-free global placement 

In our cluster placement technique mentioned below, we do not allow clusters to be 

rotated on any axis. Due to this condition in our flow, we should generate those shapes 

for a cluster which are more likely to be placed without overlaps from the perspective of 

geometry. They should not require any rotation to remove overlapping areas. 

Initially only square shapes are produced for all the clusters similar to that in [2]. On changing 

the number of edges of a square shaped cluster while keeping its area constant, polygonal 

shapes like those shown below in fig 3.6 are produced. For such polygonal shapes with more 

than four edges, it is extremely difficult to define rows those are either all horizontal or all 

vertical. Even if it is possible to define a few rows, a lot of whitespace gets wasted which has to 

be carved out from the global whitespace, thus reducing ‘placeable’ area of the chip. This is 

shown in fig 3.5 and 3.6 below. Hence, we chose to create variations in the shape of a cluster 

by keeping its rectangular property and changing only its height and width. The area of a cluster 

needs to remain constant for all possible variations, so, only one of the parameters i.e. height or 

width could be varied to get rectangles with varied aspect ratios. It was arbitrarily decided that 

the height of the cluster would be varied and the width would automatically be calculated from 

the area of the cluster.  
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A different method was tested out as well to create shapes from a square. This involved 

combining two rectangles and creating a cluster with an “L-shape” or inverted “L-shape” as 

shown below in fig 3.7. Definition of rows during floorplanning was not a problem for these 

shapes but in the later stages of global placement these shapes were very difficult to place 

without causing any overlaps. Also these shapes tend to create a lot of problems during routing 

of global nets like power rails, clock, etc. As a result this approach to changing cluster shapes 

was abandoned in our work.  
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Figure 3.5 Rectangular shapes with horizontal rows showing maximum area utilization 

Figure 3.6 Non-rectangular shapes with horizontal rows 
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3.8.2 Get square shape dimensions of clusters 

Once it was decided that the shapes of cluster will be created only by varying the aspect ratios 

of its square counterpart, the next step was to actually create the square shapes for each of the 

clusters. The discrete width and height of a cluster is deduced for the square shape of the 

cluster. These metrics are calculated from the allocated total area of cluster which in turn is 

derived from two things, the total cell area inside the cluster and the white space allocated to the 

cluster. The following algorithm 3.1 describes the steps to deduce the height and width of this 

square shaped cluster. In this technique the total height of the cluster is made to be an integral 

multiple of a single row height and the width of the cluster is calculated accordingly. This 

technique is based on the assumption that the height of all the standard cells is same and they 

only vary in width. This method of calculating height and width is done in a way similar to that 

mentioned in [2]. 

  

Figure 3.7 ‘L’ and inverted ‘L’ shapes with horizontal rows 
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Algorithm 3.1 CalculateHeightAndWidth 

Inputs:  

LC: Collection of all standard cells 

ws: The minimum amount of white space required to be present in 

the cluster, represented as a percentage of total area 

heightVar: Maximum percentage to which the height can be varied 

over the square shape height, represented as a percentage 

rowHeight: Height of a single row 

siteWidth: Width of a single site present in rows 

Outputs: 

w: final cluster width 

h: final cluster height 

area: calculated cluster area 

 

totalArea  0; 

For each std cell sc in LC 

 totalArea  totalArea + area(sc); 

EndFor 

clusterArea  totalArea + (ws%) * totalArea; 

sideOfSquare  sqrt(totalArea); 

integralMult  ceil(sideOfSquare / rowHeight); 

integralHeight  integralMult * rowHeight; 

integralMult  ceil(sideOfSquare / siteWidth); 

integralWidth  integralMult * siteWidth; 

If heightVar != 0 then 

  integralHeight  integralHeight + (heightVar%) * integralHeight; 

  integralMult  ceil(sideOfSquare / rowHeight); 

  integralHeight  integralMult * rowHeight; 

  integralMult  ceil(sideOfSquare / siteWidth); 

  integralWidth  integralMult * siteWidth; 

EndIf  

h  integralHeight; 

w  integralWidth; 

area  h * w; 

End 

 

  Algorithm 3.1 Calculate height and width of square shape 
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3.8.3 Vary the dimensions to form ‘shape-banks’ 

For each cluster, both wider and narrower variants of the square shape are formed. The number 

of shapes to be generated for a cluster is decided based on two parameters that are taken as 

inputs from the user. These parameters are height variation percentage and the number of 

steps in which these variations need to happen. All these variations are done with respect to a 

square shape (aspect ratio: 1). If the height of a cluster for its square shape is ‘h’ units and the 

width of the cluster is ‘w’ units, the area of the cluster which is a constant is h * w = A square 

units. If the height variation percentage provided is ‘v’ percent, then the maximum height hmax 

and minimum height hmin are calculated from equations 3.1 and 3.2 below. 

Maximum allowed height of the cluster,        (   )    Equation 3.1 

Minimum allowed height of the cluster,        (   )    Equation 3.2 

 

This maximum and minimum height of the cluster represents the height of the narrowest shape 

variant and of the widest shape variant of each cluster respectively. The corresponding 

minimum and maximum width (wmin and wmax) of the cluster are calculated from algorithm 3.1 

mentioned above. Once the minimum and maximum dimensions of a cluster are found out then 

the number of shapes for each cluster is controlled using the value of number of variation steps 

provided by the user. The number of narrow variants formed from the square shape will always 

be equal to the number of wider variants formed. If the number of variation steps is denoted by 

‘x’ then the height h of the cluster will be increased to hmax and decreased to hmin in x steps each. 

The step size ‘s’ is the percentage by which the height is varied at each step of shape 

generation till both the high and low extremes are reached. Step size is calculated from eqn 3.3 

shown below. The total number of shapes that will be generated for a cluster including its 

Step size percentage,       Equation 3.3 
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square shape is 2x +1. Algorithm 3.2 describes the steps of getting the height variations and 

creating wider and narrow shapes from the square variant.  

 

Algorithm 3.2 PopulateShapeVariations 

Inputs: 

     H: Maximum allowed variation in the height (0% to 100%) 

     S: Number of steps required to get maximum variation 

Outputs: 

     L: Computed list of percentage variations in height at each step 

 

stepPercent  H / S 

index  S 

For index > 0 do  

   percentageChange  stepPercent * index 

   H  H.push_back(-percentageChange) 

   index-- 

End For 

index    S 

For index > 0 do  

   percentageChange   stepPercent * index 

   H  H.push_back(+percentageChange) 

   index-- 

End For 

 

 

 

The above algorithm when preceded by algorithm 3.1 gives a list of heights and widths for each 

cluster. Fig 3.7 depicts an example of how this algorithm works and how shape variants are 

generated for each cluster. For example, if the height variation percentage ‘v’ is provided to be 

50. This means that the maximum and minimum height possible for this cluster is 1.5 * H and 

0.5 * H respectively, where H is the height calculated using algorithm 3.1 assuming the shape of 

Algorithm 3.2 Get steps of percentage variation 
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the cluster to be a square. Now, we know the height of the narrowest and widest variant of the 

cluster. If the number of variation steps ‘x’ is provided to be 2, this signifies that both the 

maximum and minimum height variant should be reached in two steps each. Step size, s = 50 / 

2 = 25. So, at each stage of shape generation for the cluster, the height increases or decreases 

by 25% depending on which variant of shape is generated. 
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0.75H 

0.5H 

 

(c) 

 

 

So, to summarize a total of four shapes i.e. two wider and two narrower variants are generated 

apart from the square shape, when the number of variation steps is given as 2. The shapes 

generated will have their heights to be 1.5H, 1.25H, H, 0.75H and 0.5H. The widths of these 

shapes are calculated using the algorithm 3.1 mentioned above. From fig 3.7 above we notice a 

very interesting aspect of shape generation. It can be seen that instead of four shape variants 

for a square shape, if only two of them were generated and then rotated clockwise or counter-

clockwise by 90 degrees then the other two shape configurations would have been created 

automatically. But the problem with this approach is that once the rows are created for a cluster 

in the floorplan, the rows are already defined as horizontal or vertical. Changing the alignment of 

rows will require the standard cells present in the cluster to be rotated. Rotation of standard 

cells can cause some serious issues during the routing phase of the ASIC design cycle which is 

why it not a preferred step during placement. This is also a reason why we chose to perform 

cluster shaping instead of rotating clusters as a placement optimization technique for clustering 

based placers. 

3.8.4 Floorplanning for the multiple shapes 

During the process of floorplanning, horizontal rows are defined and stored in the .scl file which 

is the bookshelf format for storing floorplan specifications. These row definitions contain the row 

index, height of the row, number of sites in the row, width of each site in the row, sub-site 

Figure 3.8 (a) depicts the square variant. (b) and (c) show the narrow and wider variants for the same cluster 
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boundaries if present, orientation of the row (N, S, FN, FS), etc. These floorplan files are written 

out for each shape of the cluster. This step is essential in the flow for generation of various 

shapes because generally any academic placer that is used to place the standard cells inside a 

cluster takes only the files in bookshelf format as an input to run the placer. One important 

aspect of floorplanning here is the number of rows and the number of sites in each row defined 

for all the shapes should be an integer. This is necessary to ensure maximum area utilization 

and legality in the final solution after global placement.  

3.8.5 Placement of cells inside the clusters 

After floorplanning is completed for all the shapes generated for each cluster, the clusters have 

to be ‘filled’. In other words the cells that were allocated to each cluster during clustering now 

have to be actually placed within each cluster in their optimal locations. This step is required in 

our case unlike [2] because the placement of cells inside a cluster plays a significant role in 

deciding the shape of the cluster as well as the optimal location of the cluster after global 

placement. The placement of standard cells inside a cluster can be divided in two steps: 

1. Standard cells with external connections are placed along the boundary of the cluster 

using a deterministic technique 

2. Remaining internal cells are placed inside the cluster boundary by using an external 

academic placer that treats the cells placed in the previous step as pivot or anchor 

points 

 

The block diagram of the flow for placing cells inside a cluster is shown below in Fig 3.8. The 

blocks in green represent our contribution in the flow for placing cells inside a cluster 
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3.8.5.1 Place boundary cells inside all the shapes for a cluster 

Cells which were allocated to the cluster can be divided into two categories such as boundary 

cells and internal cells. To understand this difference, let us first define internal nets and 

external nets of a cluster. This is done in the manner similar to [2]. 

1. Internal Nets: Nets which are connected only to cells inside a cluster and have no 

external connections with cells in other clusters. These nets get hidden during 

clustering. 

2. External Nets: These nets are connected to cells that are associated with at least 

two different clusters 

PLACE BOUNDARY CELLS 

WRITE NETLIST IN BOOKSHELF 

FORMAT 

PLACE REMAINING CELLS 

USING AN ACADEMIC PLACER 

READ IN OUTPUT OF PLACER 

TO MEMORY 

Figure 3.9 Steps showing placement of cells inside all shapes 
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From the definition of internal and external nets we can categorize cells inside a cluster into 

internal and boundary cells: 

1. Internal Cells: Internal cells are those that are only connected to internal nets and 

do not have any external connections 

2. Boundary Cells: Boundary cells are the cells that are connected to at least one 

external net and they may or may not be connected to internal nets 

The major reason for dividing all the cells inside a cluster into internal cells and boundary cells 

was to place the cells connected to external nets close to the edge of the cluster. This helped in 

reduction of overall cost in terms of wirelength and finally a better placement solution. These 

boundary cells are placed according to the deterministic method described in LCPlace. [2] 

3.8.5.2 Place the remaining internal cells in the cluster 

We decided to use an analytical placer to place the internal cells inside the cluster. For any 

analytical placer to perform efficient placement, some pivot or anchor cells are required to 

optimize the placement of all the movable cells with respect to these anchor cells. So, the other 

reason for categorizing the cells in a cluster as internal and boundary cells was to allow the 

boundary cells to behave as fixed points for reference to the analytical placer. The placer would 

optimize the placement of the remaining movable/internal cells with respect to the fixed cells 

which were placed using a deterministic technique in the previous step. The academic placer 

used for this purpose was NTUPlace 3.0 [3]. The cells of the cluster, their connections, and the 

floorplan of the cluster that included its row definitions were written out in the bookshelf format. 

The boundary cells were marked as fixed cells.  After the execution of the analytical placer, it 

writes the output of placement in the bookshelf format for each of the shape variant in a cluster. 

This step is executed for all the clusters in the design. Output of placement is not read back into 

the memory at this step. But the HPWL (Half Perimeter Wire length) values for each of the 
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shapes are stored in the memory and are referred to as the internal HPWL. The reason for not 

reading back the placement solution is the fact that we would not know at this point in the 

placement process which shape would be selected for a cluster and which placement solution 

needs to be read back in. The solution in bookshelf format is only read back in the next step of 

execution known as cluster shape selection. 
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Chapter 4  SHAPE SELECTION AND CLUSTER 

PLACEMENT 
 

In this chapter we discuss the shape selection techniques that we have developed to assign 

optimal shapes to all the clusters. We also provide details about how this mixed size clusters 

are placed using a macro placer. Finally this chapter concludes with the execution of 

unclustering and legalization steps. 

4.1 Cluster shape selection 

Once all the shape variants for all the clusters are generated and cells are placed inside each of 

these clusters, the step that remains in this optimization technique is selection of the best shape 

for a cluster. This process of selecting the best shape of the cluster can be executed in various 

ways. A few of these techniques were implemented and based on the observations from these 

experiments the most efficient technique was chosen from the list. Explanation of these 

techniques and the respective observations are given below. 

4.1.1 Global wirelength based shape selection 

Initially we decided to use the global placement solution generated using the methods 

mentioned in LCPlace [2]. In this case the global placement solution contained all square 

shapes for the clusters and this was the starting point for our shaping algorithm. We had 

modified the algorithm to include the creation of the ‘shape-banks’ for all the clusters before 

using the modified FD placement technique[2] to place clusters at the top level. The cost 

function used in this flow consisted of only the global or external HPWL values. Global HPWL is 

the wirelength that is calculated by taking into account only the external nets in the current 

design. Algorithm 4.1 describes the shape selection procedure. The process consisted of the 

following steps of execution: 
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1. Square shape placement: Initially for all the clusters in the design, the default square 

shape was selected as the initial shape variant and the clusters were placed using a 

modified force directed placement algorithm [2]. 

2. Select, evaluate and accept: Once all the square clusters were placed using the top 

level placer, a cluster was selected and a modified shape (except the square shape) 

was assigned to it. Then the global HPWL was re-calculated based on this new shape 

for the cluster. If there was any improvement in the cost function, then this change was 

accepted, else it was rejected for changes causing degradation or no improvement in 

HPWL. This process was executed for each shape variant for a cluster and when the 

execution completed for a cluster, the best shape in terms of global HPWL was 

assigned to the cluster. This step was carried out for all the clusters in the design and 

the shapes that produced the minimum global HPWL remained in the final design. 

 

Algorithm 4.1 AssignBestShapeToCluster 

Inputs:  

 L  List of Clusters 

 I  Initial HPWL with all square shapes 

 N  Number of shapes for each cluster 

 

Outputs: 

 Clusters with changed shapes 

 F  Final HPWL with modified cluster shapes 

currentHPWL  I 

previousHPWL  I   

shapeIndex  0 

For each cluster cl in L 

 While (shapeIndex < N)  

  Assign shape to cl 

  currentHPWL  CalculateHPWL() 

  if (currentHPWL < previousHPWL) then  

   Accept shape for cl 
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   previousHPWL  currentHPWL 

  End if 

 End While 

End For 

F  previousHPWL 

End 

 

 

The only significant advantage of this process was this ensured that the final global HPWL 

never degraded beyond that of the placement with square shapes only. In other words the final 

global HPWL using this process can only improve and can never degrade due to changing of 

cluster shapes. This technique had a lot more limitations and drawbacks shown below, as a 

result of which it was not chosen as the shape selection technique in our flow.  

a. Greedy nature of the algorithm increased the probability of getting stuck in a local 

minimum instead of the global minimum for HPWL 

b. Changing the shape of a cluster without moving it from its original location after square 

cluster placement created large overlaps. These overlaps were removed during the 

unclustering stage of execution when a standard cell legalizer was used to remove the 

overlaps. During this process the cells had to be moved around a lot resulting in 

degradation of HPWL.  

c. Fixing the cluster positions even after changing their shapes did not guarantee the best 

placement solution because changing the shape of a cluster might have changed its 

ideal location in the entire chip. 

The cost function that was used to evaluate if a shape is to be accepted or rejected comprised 

only of the global wirelength. This was not the most efficient evaluation system as a result of 

which the final wirelength values after unclustering did not improve beyond that of the reference 

wirelength calculated using only square shapes. 

Algorithm 4.1 Assign best shape to a cluster: Greedy approach 
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4.2 Cluster shape selection including cluster placement 

4.2.1 Simulated Annealing based shape selection and force-directed cluster placement 

The greedy approach to shape selection was abandoned due to its evident drawbacks and we 

decided to proceed with a simulated annealing (SA) based shape selection technique. Methods 

to predict the optimal shape of a cluster before actually assigning the shape and placing it at an 

optimal position, is extremely complicated to model and is also not present in the existing 

literature to the best of our knowledge. So, to determine the best shape of a cluster, a shape 

has to be actually assigned to a cluster by modifying its physical dimensions in memory and 

then a modified force directed placer had to be used to place all the clusters in the design. The 

next step is to evaluate the cost for this particular placement solution and validate if the shape 

variation has actually improved the cost function or not. 

 

 

 

 

 

 

 

 

 

 

 

 

Assign a shape to each 

cluster  

Perform top level FD 

placement 

Evaluate cost of solution 

Final optimized solution 

Figure 4.1 Flow for SA based shape selection and FD cluster placement 
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After taking all these observations into consideration, a non-deterministic algorithm such as SA 

was chosen for the purpose of deciding the best shape for a cluster. Fig 4.1 shown above 

describes the flow using the SA selection procedure and FD placer. Detailed explanation of all 

the steps involved in the flow is given below. 

4.2.1.1 Assign a shape to each cluster 

Firstly an array of size equal to the numbers of clusters is created in memory. Also a shape 

index, which is a number between 0 to n - 1 where n, is the number of shapes for a cluster, is 

associated with each shape variant for a cluster. Then the following steps are executed for all 

clusters in order to assign a shape to each cluster: 

1. A random shape is selected from the ‘shape-bank’ for each cluster and the shape 

index corresponding to that shape is stored in the array defined above.  

2. The dimensions of the shape are retrieved using its index and these values for 

the cluster are updated in the memory 

3. The standard cell placement solution corresponding to the selected shape for a 

cluster is read back in memory 

Algorithm 4.1 shown below describes the steps of changing the shapes for all the clusters and 

updating the locations of all the standard cells inside a cluster from the ‘shape-bank’. 

4.2.1.2 Top level placement of the clusters 

Once shapes have been assigned to all the clusters, then these clusters have to be moved into 

their optimal locations in the chip. A modified force directed solver was used for this purpose. 

The entire chip area was divided into bins and a bin was allocated to a cluster based on its 

vacant, occupied or locked state after locating the position of the optimal bin for the cluster. This 

method of force directed top level cluster placement was done in a manner similar to that 

mentioned in [2]. In our force directed placement technique a cluster (cell) could belong to two 
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bins at the same time and depending on the utilization of a bin, it was assigned vacant, 

occupied or locked status. The assignment of shapes to all the clusters and then placing them 

using the above mentioned technique together comprised the move function for the annealer. 

4.2.1.3 Evaluation of the cost function 

Once again the cost function used in this annealing procedure comprised of only the change in 

global HPWL for all the clusters. The global HPWL for one cycle of execution is compared 

against the previous value of global HPWL and the difference gives the cost of executing the 

current cycle of annealing procedure. Based on this annealing procedure the placement solution 

with the modified shapes are either accepted or rejected. If the solution is accepted then the 

current cost is retained to be compared against the new cost after the next round in annealing. 

 

Algorithm 4.2 ChangeClusterShape 

Inputs:  

 LC: List of clusters 

 X: Number of shape variants generated for each cluster 

 N: Total number of clusters generated 

 

Outputs: 

 Updated dimensions of the clusters LC, positions of cells inside 

clusters 

 

 For each cell Ci in LC 

  Assign a shape index (except square) to Ci 

shapeIndices[i]  shapeIndex(Ci) 

 End For 

 For each cell Ci in LC 

  CHeight   GetHeight (Ci) 

Cwidth    GetWidth (Ci) 

Std_cells   Get all standard cells inside Ci 
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Cell_postions  Get the coordinates of all the cells in 

Std_cells 

For each cell sc in Std_cells 

cx    X-coordinate (sc) 

cy    Y-coordinate (sc) 

 End For 

 Reset the pin offsets of the cluster Ci based on the locations of 

the boundary cells in the clusters 

End For 

End 

 

 

We have used a general simulated annealing package to perform the annealing procedure for 

shape selection. More details about this package can be found in [4]. 

The limitations and drawbacks of this technique comprises mainly of the difficulty in placing 

clusters which were not square shaped, using a FD placement technique. A force directed 

placement technique requires a grid to be defined for assigning clusters to their optimal 

locations on the grid. The basic problem here was to come up with an efficient technique of 

creating the grid by dividing the entire chip area into equal sized bins. It was not possible to 

define a grid where each location in the grid would have varying aspect ratios. As a result, 

clusters that were not square in shape were not able to fit completely in one location on the grid 

and had to be assigned to multiple grid locations. This increased the complexity of processing to 

a large extent and also created very large amounts of overlapping area in the design. Also, the 

process of modelling the conditions that decide the optimal site for a cluster becomes more 

complicated with increasing number of shapes, so these processes failed to complete 

placement if the number of clusters formed was quite large. As a result the main benefit of 

creating shape variants for a cluster was not prominent enough and did not reflect in the results 

of the quality of placement. So we had to approach this problem of mixed size placement from a 

Algorithm 4.2 Change the shape of a cluster physically 
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different direction. We decided not to use deterministic algorithms to place mixed size clusters 

as it extremely difficult and complicated to model the constraints correctly in the design. Instead 

we looked for non-deterministic placers like SA based. 

4.2.2 Simulated annealing based shape selection and simulated annealing based macro 

placement 

In this flow we have used the same technique of selecting shapes using a SA based algorithm 

as mentioned above in section 4.2.1, but the placement of the clusters with various shapes is 

now done using a SA based macro placer, MetaPlacer-Capo [5, 39] instead of a deterministic 

approach. Another major change we have incorporated in this flow is that of changing the cost 

function to include the percentage of overlap as well. Also the HPWL now contains the sum of 

the global and the internal HPWL. This helps in taking into account the internal wirelength which 

changes when the shape of a cluster is changed. Details of this change in the cost function are 

given below. The entire flow for SA based shape selection and macro placement of clusters is 

shown in fig 4.2 below. The following sections describe the details about each step of this flow. 

4.2.2.1 Assignment of shapes to all the clusters 

This step of assigning shapes to all the clusters is executed in the same manner as section 

4.2.1 above. A random shape is selected from the list of available shapes for the cluster and its 

dimensions are updated in the memory. Following this, the standard cell locations for the cluster 

are updated as well considering the bottom left corner of the cluster to be the origin. Algorithm 

4.2 above describes the steps for assigning shapes to all clusters 
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4.2.2.2 Non-deterministic approach to cluster placement 

In the previous section 4.1.2 we found that using a force-directed solver for placing the clusters 

at the top level was not the most efficient technique for cluster placement. So, we decided to 

use a non-deterministic algorithm such as SA to solve the problem of modelling constraints in 

top level placement. MetaPlacer-Capo [5, 39] was used for this purpose. The steps involved in 

top level placement are the following: 

1. All the clusters are initially placed at the origin of the final chip at [0, 0]. The 

terminals/ports of the cluster are placed at various positions on the chip boundary. 

These ports will be used as fixed anchor/pivot points with respect to which the rest of 

the clusters will be placed in the entire design. 

Assign a shape to each 

cluster  

Perform SA based Macro 

Placement 

Evaluate cost of solution 

including percentage 

overlap 

Final optimized solution 

Figure 4.2 Flow for SA based shape selection and non-deterministic cluster placement 
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2. The variedly shaped clusters are modelled as movable macros in the design and 

written out in the bookshelf format. So basically what is provided as an input to 

MetaPlacer-Capo[5, 39] is a netlist containing only macro blocks which represent all 

the clusters in the design. The other files like .scl, .nodes, .nets, etc files are written 

out as well based on which the macro placer will determine the optimal placement of 

the clusters.   

3. The macro placer is executed with its most optimal switches so that it reduces the 

percentage overlap among all the clusters to almost null. The result of the macro 

placer is written out in a bookshelf format. This is read back in memory and cluster 

locations are updated. Another important aspect to note here is we do not have to 

update the locations of cells inside the clusters after macro placement. The reason 

for this being at this point in the flow the locations of the cells inside a cluster 

represent only relative positions with respect to the cluster left bottom corner as the 

origin. So, standard cell locations have to be updated only when the shape of a 

cluster is changed and not when the clusters are moved around.  

4.2.2.3 Evaluation of the cost function 

The cost function used for evaluation of the solution generated above is a weighted combination 

of both the total HPWL (internal and global) and the percentage of overlap. We have included 

the internal HPWL along with the global HPWL instead of only the global HPWL because when 

the shape of a cluster is changed, its internal HPWL i.e. the wirelength of the internal nets do 

not remain fixed throughout the placement. In fact the internal HPWL plays a major role in 

selecting the optimal shape of a cluster. Also the percentage overlap plays the deciding factor to 

either accept or reject a solution i.e. a move in the simulated annealing procedure. The 

overlapping area between two clusters is calculated using algorithm 4.3 shown below. 
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Algorithm 4.3 FindOverlap 

 

Inputs: 

 LC: List of all the cluster objects 

 totalArea: Total area of cells in the design 

  

Outputs: 

 percentOverlap: Percentage of overlap in the placement solution 

  

i  0 

j  0 

n  GetNumberOfClusters(LC) 

totalOverlap  0.0 

overlap  0.0 

visitedNodes  NULL 

For each cluster Ci in LC 

 R1  RightX (Ci) 

 L1  LeftX (Ci) 

 For each cluster Cj in LC 

  if (exists(Cj) in visited nodes || i == j) 

   continue 

  End if 

  R2  RightX (Cj) 

  L2  LeftX (Cj) 

  right  R2 

if (R1 < R2) 

right  R1 

  End if 

left  L2 

if (L1 > L2) 

left  L1 

  End if 

overlap  right – left 

if (overlap < 0)  

overlap  0.0 

  End if 

  totalOverlap  totalOverlap + overlap 

 End For 
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 visitedNodes  visitedNodes + Ci 

End For 

percentOverlap  totalOverlap / totalArea * 100 

End  

   

 

 

A decrease in percentage of overlap is desired because that will eliminate the need for using a 

standard cell legalizer after the unclustering process. This in turn will preserve the quality of 

placement which is generally lost in clustering based techniques. Equation 4.1 and 4.2 given 

below describes the modified cost function used along with the macro placer. 

                                       Equation 4.1 

   

 

4.3 Unclustering 

All this while the positions of the standard cells saved in memory were the relative positions 

considering the left bottom corner of the cluster they belong to, as the origin of the chip. So 

these cells need to be given absolute positions before finalizing the placement solution. Once 

the above SA based shaping and macro placement technique converges, then this process of 

unclustering is executed. During this process all the standard cells are assigned their absolute 

positions in the chip and the cluster boundaries are resolved. The assignment of absolute 

positions proceeds using the equations 4.3 and 4.4 below 

  

     (    )  (    )   

α and β are constants set according to the design size. T is total HPWL 

and P is the percentage overlap 

Equation 4.2 

Algorithm 4.3 Find percentage of overlap 
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                              Equation 4.3 

 

Here cellx and celly are the absolute ‘x’ and ‘y’ positions of the standard cells in the final chip. 

clustx and clusty are the absolute positions of the clusters on the chip. cellrelativex and cellrelativey are 

the relative positions of the clusters assigned to by the external academic placer. After the 

process of unclustering is completed the global placement for the design has been finalized. 

4.4 Legalization 

The major purpose of changing the cluster shapes for placement optimization is to eliminate the 

need for post processing of the global placement by performing steps such as legalization, 

detailed placement, etc. In standard global placement techniques using clustering, legalization 

is a necessary step which is required to eliminate the overlaps caused by restricting the shape 

boundaries of clusters. By using our shaping technique we have tried to eliminate overlap as 

much as possible from the design even before unclustering. The macro placer used here takes 

into account overlap reduction while performing placement with varied shapes. Also since the 

percentage overlap is included in the cost function for selecting the best shape for a cluster, not 

only the placement for such shapes but also the selection of the shape itself is based on the 

reduction in the percentage of overlap. In all the cases using our technique and the macro 

placer we have been able to successfully reduce the overlapping area after global placement to 

negligible quantities, if not null. For all such cases the incremental legalization is required. In our 

flow, we use the FastPlace legalizer [6]. It works incrementally by first aligning all the cells to 

rows and then legalizing them within each row. The objective function for the legalizer is to 

                             Equation 4.4 
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minimize a combination of HPWL and cell movement. This step is optional and may be 

executed if the percentage of overlap after global placement is non-zero. 
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Chapter 5  EXPERIMENTAL RESULTS AND 

ANALYSIS 

This chapter begins with a description of our experimental setup used to evaluate our 

methodology. Observations from all our experiments and detailed analysis of the results are 

also articulated in this chapter. 

5.1 Experimental flow setup 

The evaluation of our proposed flow was done by setting up a complete ASIC design cycle that 

began with synthesizing the RTL to create benchmarks in the bookshelf format. This step was 

followed by placement, routing, etc. Synthesis was done from RTL of real designs found in 

OpenCores[7]. The three major metrics for evaluating our results are 1) total HPWL (Half 

Perimeter Wire Length), 2) TNS (Total negative slack) and 3) WNS (Worst negative slack). Our 

results of these experiments are compared with a placement technique that uses fixed square 

shapes for clustering as mentioned in [2]. Fig 5.1 below gives an overview of the entire 

experimentation flow. Brief description of each step of experimentation is given below. 

5.1.1 Benchmark generation 

The process of benchmark generation consists of reading in the verilog/VHDL files of any real 

design and using Synopsys Design Compiler to perform logic synthesis resulting in the 

generation of a gate-level netlist. Following this step, the gate-level netlist along with other input 

parameters is written out in the bookshelf format using a combination of perl scripts. Throughout 

this thesis we have been using the bookshelf format for various stages in the flow because all 

existing academic placers and utility tools associated with them are developed using the 

bookshelf format as a standard input format.  
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All the RTL used for the purpose of experimentation was collected from OpenCores[7]. The 

designs were arbitrarily chosen from a range of processor cores, video Encoder/Decoders, etc. 

Designs containing memory blocks were avoided due to the fact that the timing values for these 

blocks were not of primary importance compared to the memory access times. The other reason 

for not including memory blocks in our design was after running synthesis on these designs the 

memory blocks were reduced to very few blocks decreasing the cell count in the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BENCHMARK GENERATION 

PLACER WITHOUT SHAPING PLACER WITH SHAPING 

COMPUTE HPWL FROM 

PLACED NETLIST 
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Figure 5.1 Overview of complete experimental setup 
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Library cell data is required to perform the steps of extraction, routing, static timing analysis,etc. 

This was the reason why designs containing macros were not included as a part of our 

experiments. Also none of the benchmarks from ISPD’05[8], ISPD’06[9] or the IBM benchmark 

suite [10] were used in our experiments due to the absence of library cell data and presence of 

macros in them. Descriptions of the benchmarks used in our experiments are given below in 

Table 5.1. 

Benchmark Name Number of Cells Number of Nets Description 

cordic 20,577 25,767 Cordic core 

reedsoldec 31,179 32,964 Reed-solomon decoder 

seq_align 44,098 46,143 Seqential alignment of DNA strands 

Pairing 288,622 290,430 No description available 

jpegenc 384,646 417,794 JPEG encoder 
 

 

Table 5.1 List of all benchmarks used during experimentation 

5.1.2 Placer without shaping 

The reference placer used here is LCPlace [2] which is a clustering based placement technique 

that generates large clusters using a k-way partitioning flow. All the clusters formed during 

placement with LCPlace are square in shape and the sizes of all the clusters are approximately 

equal. This makes it an ideal placer to be used as reference to evaluate our shaping based 

optimization technique.  

5.1.3 Placer with shaping 

In our shaping based flow, we have incorporated the same clustering technique as used in 

LCPlace mentioned above [2]. Formation of large clusters with square shapes is an integral part 

of our flow which helps in generating the initial shapes that are varied to optimize the placement 
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of the final solution. We have also used MetaPlacer-Capo [5] to place all the variably sized 

clusters optimally in the chip after specific shapes have been selected for all the clusters. A flow 

diagram giving an overview of the global placement flow with shaping is shown in Fig 5.2 below. 

 

 

 

 

 

   

 

5.1.3.1 Form large clusters 

Large clusters are formed using a k-way partitioner similar to the technique used to generate 

clusters in LCPlace [2]. The partitioner used here divides the design into large clusters in such a 

way that the number of hyperedges cut by each partition is minimized. This method of clustering 

is preferred because using this method the total number of clusters can be restricted to a 

relatively less quantity, thus simplifying the problem of mixed size placement of clusters at the 

top level. It is evident that for a given design the larger the size of each cluster, the lesser the 

number of clusters generated by partitioning. Once all the cells in the design are allocated to 

some cluster then the process of multiple shape creation is started. During this process, the 

square shape height of all the clusters are varied to generate various aspect ratios which 

represent the shape variants for a cluster. The cells belonging to a cluster are placed for all its 

shape variants using a standard cell placer NTUPlace 3.0 [3]. 
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SHAPES AND RUN 

MACRO PLACER 

UNCLUSTERING 

Figure 5.2 Flow diagram of global placement with shaping 
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5.1.3.2 Change cluster shapes and run macro placer 

The process of selecting the best shape for a cluster begins once all shapes are generated and 

‘filled’ with standard cells. During this stage, according to our proposed approach a SA based 

shape selection technique is used to assign a shape from the ‘shape bank’ of each cluster and 

an attempt is made to place them without overlaps using a macro placer such as MetaPlacer-

Capo [4]. The placement quality of this solution is evaluated using a weighted combination of 

HPWL and overlap and based on the annealing procedure this solution is either accepted or 

rejected.  

5.1.3.3 Unclustering 

In this step all the cluster boundaries are resolved and standard cells are assigned their 

absolute locations on the chip. After execution of this step is complete, clusters will no longer be 

present in memory.  

5.1.3.4 Legalization 

In some cases the macro placer is not able to completely remove all overlaps from the design 

after the variably shaped clusters are placed. For such situations we need to execute a standard 

cell legalizer after unclustering. This will ensure complete legality in the design. This step is 

optional and is required only in a very few cases. 

5.1.4 Routing 

Routing of the final placed netlist is completed using Synopsys IC compiler. This step is required 

in order to get the timing values (TNS, WNS) from the parasitics after the extraction step. 

5.1.5 Extraction 

Extraction is done at two stages in our experimental flow. Once before routing and then once 

again after routing is completed. StarRC in Synopsys IC Compiler is used to perform extraction 

of the parasitics.  
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5.1.6 Static timing analysis (STA) 

Once the parasitics are extracted, Synopsys PrimeTime uses the netlist and the extracted 

values to accurately estimate the net delays for all the paths. From this information, it gives the 

WNS and the TNS values required to evaluate the quality of placement. 

5.2 Experimental Results 

The platform used to execute all the experiments for evaluating our shaping optimization 

technique was a personal computer with an Intel® Core™ i3 2.5 GHz processing unit and 4GB 

of RAM. The operating system used was a Linux Mint with a 64-bit kernel. 

The majority of the experiments were performed to compare the results of large clustering 

based placement with and without including the shaping technique. Another set of experiments 

were performed to vary the parameters involved in shaping and observe the optimization trends 

with those variations. 

5.2.1 Results with and without shaping 

5.2.1.1 Comparison of performance metric values  

Table 5.2 below shows the final results of the entire experimental flow which includes 

placement, routing, extraction, etc. The TNS and WNS values present in the table above are 

calculated from the post-routed netlist. 
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Benchmark 

Name 

Number 

of shapes 
LCPlace Placer with shaping 

  
HPWL (x 

108 nm) 

WNSpostroute 

(ns) 

TNSpostroute 

(ns) 

HPWL (x 

108 nm) 

WNSpostroute 

(ns) 

TNSpostroute 

(ns) 

reedsoldec 5 6.03 -1.28 -3348.91 5.83 -1.25 -3184.6 

seq_align 5 7.89 -1.50 -1593.03 7.15 -1.55 -1928.63 

cordic 5 5.05 -1.03 -1130.05 4.79 -1.06 -711.23 

pairing 5 98.41 -3.15 -22905.61 87.23 -3.13 -23005.12 

jpegenc 5 133.69 -7.84 -39345.80 122.34 -3.71 -39283.15 

 

Table 5.2 Compares the results of placement with and without shaping 

 

5.2.1.2 Percentage of improvement/degradation between LCPlace and our placer with 

shaping 

 

Benchmark Name 
Improvement in HPWL 

(%) 

Improvement in WNS 

(%) 

Improvement in TNS 

(%) 

reedsoldec 3.31 2.30 4.9 

seq_align 9.30 -3.34 -21.06 

cordic 5.10 -2.90 37.06 

pairing 11.36 0.60 -0.43 

jpegenc 8.49 52.6 0.15 

 

 

Table 5.3 List of percentage improvement or degradation of the performance metrics 
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Table 5.3 above shows the percentage of improvement or degradation in the performance 

metrics such as HPWL, TNS and WNS that we chose to evaluate the quality impact of our 

optimization technique. The improvement or degradation shown above depicts the difference in 

the values of total HPWL, TNS, WNS when compared with placement using only square shaped 

clusters versus placement using variably shaped clusters. Negative values in the table 

represent the degradation when compared to the execution of placer without shaping. 

 

 

Figure 5.3 Comparison of HPWL values in LCPlace with ClusterShaping 
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Figure 5.4 Comparison of WNS values for LCPlace with ClusterShaping 

 

5.2.2 Analysis of the results  

From table 5.2 and 5.3 above, we can clearly identify some major changes in the quality of 

placement when the cluster shaping technique is used as compared to that of fixed shape 

based placement. We notice from the results above that the HPWL values have improved (i.e. 

decreased) for all the benchmarks using our approach. The major reason for this is changing 

the shape of the clusters and reducing the overlapping area of the clusters have ensured that 

the standard cells inside all the clusters are placed in their optimal locations during global 

placement itself. Therefore no further post processing is required unlike fixed shape clustering 

based placers like LCPlace. [2] It is during such stages as legalization, the quality of placement 

degrades when the cluster boundaries are resolved and all overlaps have to be removed. The 
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helps to improve the quality of global placement. As far as timing values are concerned, we do 

see improvements in WNS values especially for the larger designs. 

5.2.3 Impact of number of clusters on placement quality 

Benchmark 
Name 

Number of 
clusters generated 

Total HPWL (x108 

nm) 
Total overlap (%) 

Normalized 
score 

reedsoldec 

100 8.97 0.99 99.6 

70 7.09 0.43 75.2 

50 5.83 0 58.3 

seq_align 

100 10.80 0.91 117.1 

70 9.11 0.83 99.4 

50 7.15 0 71.5 

cordic 

100 5.77 0.10 58.7 

70 5.31 0 53.1 

50 4.79 0 47.9 

pairing 

100 107.45 0 1074.5 

70 96.23 0.26 988.3 

50 89.10 0.34 925.0 

jpegenc 

100 143.19 0.42 1473.9 

70 126.58 0 1265.8 

50 122.34 0 1223.4 

 

 

Table 5.4 Results showing the impact of number of clusters on placement quality 

 

We have varied the number of clusters to be formed by the partitioning tool to observe its impact 

on the final placement quality. Table 5.4 above shows the results of these variations on the 

weighted score function. These scores were normalized to make them easier to comprehend. 

More details about this score function can be found in chapter 4 above. We have limited 

parameter variations only to the number of clusters keeping the other parameters such as 

number of shapes formed, maximum allowed percentage for variation in height, etc. constant for 
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this round of experimentation. Here we have fixed the number of shapes to be formed for each 

cluster to be ‘5’. The maximum height variation percentage is fixed at ‘50’. All the values 

reported in the table above are recorded after unclustering step but without running any 

standard cell legalizer on it. This was done to understand the significance of the normalized 

scores which are essentially a combination of both HPWL and overlap. 

 

 

Figure 5.5 Effect of number of clusters on quality of placement 

 

5.2.4 Analysis of the results with variation in number of clusters 

The experimental results present in table 5.4 above show how the HPWL values vary when the 

numbers of clusters are varied from 100 to 50. Our findings from this experiment are that when 
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in terms of optimizing a placement when compared to a situation where the number of clusters 

to be placed is more. We also notice in the results above that the percentage of overlap 

decreases when the number of clusters formed are relatively less. This stems from the fact that 

the probability of finding a placement solution with absolutely no overlaps or a negligible overlap 

is much more for a problem with less number of clusters. 

5.2.5 Effect of number of shape variants on the placement solution 

We have seen in the previous chapter that the number of shapes generated for a cluster can be 

varied by providing specific values to the number of variation steps which is taken as an input. 

We conducted a few experiments to find out the optimal number of shapes that are required to 

be generated when using this cluster shaping technique. The number of shapes created was 

varied from 3 to 7 which seemed to be a reasonable range. Throughout all the experiments the 

number of clusters formed was kept fixed to a value of 50. The maximum percentage of height 

variation for all the shapes is fixed to be 50. We have recorded the results of the experimental 

flow only till the unclustering stage. No legalization is performed on the resultant netlist. Also the 

following steps such as extraction, routing, etc. are not executed for these experiments primarily 

because here we are only trying to observe the variation in any one of the performance metrics 

when the other input parameters are kept constant. Execution of those steps incurs a lot of 

unnecessary runtime overhead during experimentation. 
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Benchmark 
Name 

Number of 
shapes generated 

Total HPWL (x108 

nm) 
Total overlap (%) Normalized score 

reedsoldec 

3 7.25 0 72.5 

5 5.83 0 58.3 

7 5.80 0 58.0 

seq_align 

3 9.23 0.19 92.49 

5 7.15 0 71.5 

7 7.11 0 71.1 

cordic 

3 5.34 0 53.4 

5 4.79 0 47.9 

7 4.98 0 49.8 

pairing 

3 107.9 0.46 1125.1 

5 89.10 0.34 925.0 

7 87.23 0 872.3 

jpegenc 

3 164.37 0.17 1645.4 

5 122.34 0 1223..4 

7 121.46 0 1214.6 

 

Table 5.5 Results showing the impact of number shape variants on placement quality 

 

 

Figure 5.6 Effect of number of shapes on quality of placement 
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5.2.6 Analysis of results produced by varying the number of shapes for a cluster 

Table 5.5 above shows the variation of HPWL when the number of shapes to be generated for a 

cluster are varied. We have used a range of 3 to 7 as the input to the number of steps for 

variation because the minimum number of shape variants that should be generated for a cluster 

is 3 (square, wide variant, narrow variant) and if we try to generate more than 7 shapes for each 

cluster then the runtime overhead is very large. It will affect the runtime significantly, also 

because the academic placer used to place the cells inside a cluster has to be run for more than 

7 times for a single cluster. As a result these values were chosen as a reasonable number of 

shape variants for a cluster. From the results listed in table 5.5 above we find that in most of the 

cases the score improves when the number of shapes is increased from 3 to 5 and then to 7. 

This can be explained from the fact that as we increases the number of shapes for each cluster 

the shape selection procedure now has a much larger solution space to choose from during 

each round of annealing. A larger solution space increases the probability of finding a better 

solution which is the reason behind getting better scores with more shapes for a cluster. But this 

improvement in placement quality comes at the cost of runtime which increases with the 

increase in solution space. So, in other words when the solution space for a problem increases 

we do find much better solutions but the time taken to find those solutions is much more than 

that compared to a smaller solution space. 

5.2.7 Overlap reduction due to cluster shaping 

We wanted to understand the impact of cluster shaping on overlap reduction during global 

placement. So we performed a few experiments by fixing the cluster shapes and measuring the 

overlaps and HPWL values right after global placement. These were compared against our 

regular placement flow with shaping and the results of these experiments are shown in table 5.6 

below. 
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Benchmark 
Name 

HPWL 
with 

square 
shapes 
(x 108 
nm) 

HPWL 
with 

varied 
shapes 
(x 108 
nm) 

Improvement 
in HPWL (%)  

Percentage of 
overlap with 

square shapes 
(%) 

Percentage 
of overlap 

with varied 
shapes (%) 

Improvement 
in overlap (%) 

reedsoldec 5.72 5.83 -3.34 4.81 0 4.81 

seq_align 6.45 7.05 -9.30 4.33 0.35 3.98 

cordic 4.38 4.79 -9.36 5.82 0 5.82 

pairing 84.15 86.19 -2.40 6.97 0.12 6.85 

jpegenc 110.38 121.36 -9.90 9.67 0.16 9.51 

 

Table 5.6 Results showing the impact of shaping on overlap reduction 

 

5.2.8 Analysis of results representing the impact of shaping on overlap 

In table 5.6 shown above we recorded the results of our experiments only till the unclustering 

stage of the execution flow. Legalization is not performed on the output netlist. So, the HPWL 

values for both square as well as varied shapes are the values right after global placement. We 

can clearly identify a tradeoff between percentage of overlap amongst clusters and total HPWL 

after global placement. The percentage overlap values are much less when multiple shapes for 

clusters are used. These came at a cost of degradation in HPWL and these results met our 

expectations. The HPWL values for executions with square shaped clusters only, further 

degrades when the residual overlap is removed using a legalizer whereas the HPWL values for 

execution with variable shapes for clusters degrade by a negligible quantity due the presence of 

almost no overlaps in the design after global placement. 

5.2.9 Reference placer with detailed placement vs placer with shaping 

This experiment was performed to compare the final results of LCPlace [2] along with its 

optimization techniques with our cluster shaping technique. Optimization techniques such as 
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cluster swapping, flipping as mentioned in [2] was enabled in our reference flow and our cluster 

shaping technique was used in the other flow by fixing the number of clusters formed to be 50 in 

both the cases. The results of such experiments is shown below in table 5.7 

Benchmark Name 
Number of 

shapes 

LCPlace with 

flipping and 

swapping 

Our placer with 

shaping  

Improvement 

(%) 

  HPWL (x 108 nm) HPWL (x 108 nm)  

reedsoldec 5 5.26 5.83 -10.83 

seq_align 5 7.29 7.15 1.9 

cordic 5 4.50 4.79 6.4 

pairing 5 89.54 87.23 2.5 

jpegenc 5 114.56 122.34 -6.7 

 

Table 5.7 Comparing LCPlace with flipping, swapping and our optimization technique 

 

5.2.10 Comparison of execution times of LCPlace with our cluster-shaping based 

placement 

Table 5.8 Comparing execution times of LCPlace with our placer 

Benchmark Name LCPlace 
Our placer with 

shaping 

Ratio 

(Ourplacer/LCPlace) 

 Runtime (s) Runtime (s)  

reedsoldec 41.35 98.54 2.38 

seq_align 55.12 135.76 2.46 

cordic 26.43 75.39 2.85 

pairing 738.48 2450.51 3.31 

jpegenc 495.12 1137.72 2.29 
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In table 5.8 above we compare the execution times of LCPlace with our cluster shaping based 

placer. It can be seen that the execution times have increased by 2X to 3X times when shaping 

technique is incorporated in placement. The reason for this is when multiple shapes are 

generated for all the clusters; the standard cell placer has to be executed multiple times (5 per 

cluster in table 5.8 above) in order to fill all the shape variants for a cluster unlike that of 

LCPlace [2]  where the standard cell placer is only executed once per cluster. This increases 

the overhead incurred significantly thus contributing to the increase in overall execution times. 

Also file i/o has to be done multiple times when the required files have to be written out in the 

bookshelf format for all the shape variations and after filling of each shape of a cluster is 

complete it has to be read back into memory. It is possible to improve the execution times by 

some of the techniques mentioned in the future work below.  

 

5.2.12 Plots of variably shaped clusters vs square clusters 

In figures 5.6 – 5.11 given below we can clearly see how variable shapes are preferred during 

placement when compared to only square shapes. Each of the figures shown below represents 

the final placement of all the clusters with their best shape that was selected as a result of 

annealing and after placing them at their optimal positions. Figure 5.6 is given as a reference to 

compare placement of clusters with variable shapes against that of square cluster placement. It 

can also be seen from the plots shown below that the overlapping area has reduced significantly 

when compared to square shaped clusters. All the plots shown below represent the placement 

of clusters before unclustering and final legalization is done.  
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Figure 5.7 Final placement for reedsoldec using only square clusters 

 

Figure 5.8 Final placement for reedsoldec using variably shaped clusters 
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Figure 5.9 Final placement for seq_align using variably shaped clusters 

 

 

Figure 5.10 Final placement for cordic using variably shaped clusters 
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Figure 5.11 Final placement for pairing using variably shaped clusters 

 

 

Figure 5.12 Final placement for jpegenc using variably shaped clusters 
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Chapter 6  CONCLUSIONS AND FUTURE WORK 

In this chapter we summarize our findings so far and discuss the conclusions. We also provide 

an insight on how to pursue further with research along these lines 

6.1 Conclusions 

In our research on placement optimization, we have proposed a new optimization technique to 

improve the quality of solutions when clustering is used to form large clusters. We have used 

the clustering methodology of LCPlace [2] to form large clusters. Once square clusters are 

created we have generated a ‘shape-bank’ containing several variations of the square shape in 

the form of rectangles for each of the clusters. After these shape variants are generated we 

have placed the cells belonging to the cluster inside all these shapes using a standard 

academic placer. After all the possible shapes were generated we have implemented several 

techniques to use these variably sized clusters and found that using a simulated annealing 

based procedure to select the best shape for a cluster yielded superior results. We have also 

found that only changing the shape of clusters is not sufficient to give good results. Moving 

these mixed size clusters to their optimal locations is also a very significant step for improving 

the final placement solution. We also modified our cost function to include the sum of global as 

well as internal HPWL and the total overlapping area to evaluate a placement solution. We tried 

to use a force directed placement technique to move the clusters to their optimal location after 

variable shape assignment but we were not able to include the overlapping area as a part of the 

cost function and the placement of clusters using this technique was also not the most efficient 

one. So, we decided to use a non-deterministic approach to placement of cluster and finally 

used a mixed size placer used for macro placement, MetaPlacerCapo [39].  
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Comparing our results to that of LCPlace we found that our cluster shaping technique was able 

to improve the HPWL values by 8% on an average at the cost of a slight increase in runtime.  

6.2 Future Work 

In this section we provide insights on possible directions of further research along these lines 

6.2.1 Non-linear placement of clusters 

In our work we have used a mixed size placer based on a simulated annealing based technique. 

This technique was able to incorporate multiple parameters (HPWL, overlap) in its objective 

function but the runtime of this technique is comparatively high. So using a non-linear based 

placement technique which is faster compared to an annealing based approach is an area of 

research that promises to yield superior results. 

6.2.2 Single placer to place both in-cluster and top level clusters 

In our approach we have used two different techniques for placement of cells inside a cluster 

and placement of the clusters themselves. Overhead is incurred to prepare the inputs in the 

required format by the external placers and reading them back once again into memory. Instead 

if we could combine both these objectives into one single placer the execution time would be 

improved further 

6.2.3 Integration with static timing analysis 

Integrating a static timing analyzer as a part of our placement is bound to improve the timing 

values of the placement solution and result in timing closure of the design 
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6.2.4 Predicting optimal shapes before placement 

Another promising area for research would be to come up with a technique to predict the 

possible best shape for a cluster without actually placing it. This would improve the runtime of 

this shaping technique a lot by eliminating the need to execute a macro placer for multiple 

iterations 

6.2.5 Parallelizing standard cell placement in all the shapes 

If the placement of standard cells inside all the possible shapes for a cluster was done in 

parallel, then it would also save a lot on runtime overhead. This would decrease the overall 

runtime requirements to a large extent. 
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