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Abstract 

The discovery of Carbon Nanotubes (CNTs)[1] has sparked tremendous interest among 

the scientific community due to its extraordinary mechanical properties like high strength and 

elastic modulus[2] and semiconductor like properties[3].  Though spinning the CNTs into 

continuous yarns [4, 5] enabled the use of CNTs at macroscale, current spinning techniques are 

not able to reproduce the properties comparable to those observed at nanoscale. Motivated by 

this gap, a modeling approach is established to address the subject of transferability of the high 

strength properties from individual CNT to carbon nanotube (CNT) yarns.  

More specifically, a number of key factors that contribute to the reduced strength of the 

twisted CNT yarns are investigated. First of all, the effects of Stone-Wales defects on the 

strength of individual nanotubes are studied. It is found that the tensile strength of the individual 

CNT is not highly sensitive to the Stone-Wales defects even with relatively high ratio of defects 

percentage. Subsequently, molecular dynamics and mechanics simulation are performed to 

evaluate the load transfer mechanism and tensile strength in a bundle of CNTs. The goal is to 

find the most favorable twist angle for maximum tensile strength and maximum load transfer 

ability in between the CNTs in CNT bundles. Both small and large bundles have been studied to 

examine whether the results are scalable.  This thesis concludes with a comparison of the 

simulation results with the analytical studies based on the mechanics of ropes. 
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Chapter 1 Introduction 

 

The discovery of carbon nanotubes [1] has sparked tremendous interest among the 

scientific community due to its extraordinary mechanical properties such as high strength and 

elastic modulus[2] and semiconductor like properties[3].  Elastic modulus as high as 1.11TPa [2] 

and tensile strength in the range of 11 to 63 GPa[6] have reported for CNTs establishing its 

importance as high strength material. While most of these notable mechanical properties are 

identified at the nanoscale, a direct extension to the macroscopic scale was found to be 

challenging. One possible approach that has been explored is to spin the CNTs into continuous 

yarns [4, 5] . Well-aligned CNTs can be pulled out and spinned along with twisting (like 

spinning cotton) to form continuous yarns similar to a textile mechanics approach. This method 

came to be known as dry spinning as the CNTs are just spun directly from the forest (CNT 

bundles grown on substrates).  Non-conventional methods like wet spinning [7, 8] produced 

much superior strength fibers. “Super-tough carbon-nanotube fibers” of strength up to 1.8GPa 

were reported [9] by utilizing a wet spinning approach. The major disadvantage of wet spinning 

process is the difficulty of transferring into a mass production approach. Till now, dry spinning is 

the most promising approach to be considered for mass production methods. The downside is, 

however, the strengths are typically lower than that of threads obtained from wet spinning. In 

this work we carry out a systematic study on the load transfer mechanism and tensile strength 

measurements in a bundle of CNTs using molecular mechanics and dynamics. 
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1.1 Carbon nanotubes  

 

Carbon nanotube is an allotrope of carbon. Since its discovery by Iijima [1] CNTs have 

been subjected to much research and both theoretical and experimental understandings have been 

established. CNTs were described as “Helical microtubules” by Iijima, true to the description; 

they are of cylindrical form whose dimensions are in the order of nanometers, hence the name. 

Carbon is the first element of Group IV of the Periodic Table. A carbon atom has an electronic 

configuration 1s22s22p2, composed of two electrons in K shell and four in L shell. Carbon forms 

covalent bonds with the four electrons in L shell. Depending on the bonding various allotropes 

of carbon are formed. The outer shell electrons combine to form three hybridized orbitals namely 

sp formed due to mixing of 2s orbital and one 2p orbital, sp2 formed due to mixing of 2s orbital 

and two 2p orbitals and sp3 formed when two 2s orbitals mix with two 2p orbitals. The sp3 

hybridized orbitals form four sigma bonds with other carbon atoms creating diamond. In case of 

CNTs each carbon is attached to 3 other atoms via sp2 hybridization similar to graphite. Each 

atom is on the vertex of a triangle formed by these orbitals. The sp2 orbitals form σ bonds while 

the remaining p orbital form a π bond. The p orbital is perpendicular to the plane of sp2 hybrid 

orbitals and hence exhibits weak interactions with adjacent layers in graphite and such 

phenomenon is also possible in CNTs. 

A CNT can be considered as a rolled up graphene sheet such that the ends join. The 

nomenclature of CNTs has been established on this assumption of rolling up of graphene sheets. 

First let us consider a graphene sheet as shown in Figure 1-1. 
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Figure 1-1 Graphene sheet showing the vectors used to define CNTs. 
 

The vectors a1 and a2 are the basis vectors which define the positions of the atoms. OA is 

the direction in which the graphene sheet is rolled to create the CNT with point O and A joining. 

Hence, OA is the circumference of the CNT. OB is the length of the CNT and OA and OB form 

a unit cell of CNT. Ch is called the chiral vector given by, 

 𝐶ℎ = 𝑛𝑎1 + 𝑚𝑎2, (1-1) 

 𝐿 = |𝐶ℎ| = 𝑎�𝑛2 + 𝑚2 + 𝑛𝑚. (1-2) 
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Here (n,m) define the nomenclature of the CNTs. θ is the angle OA makes with the 

zigzag direction and is called the chiral angle. The vector Ch represents the circumference of the 

CNT and the perpendicular vector T represents the length of the CNT in a unit cell. Rolling the 

sheet shown in Fig. 1 so that the points O and A of vector Ch coincide gives us a (n,m) nanotube 

whose circumference is given by L/π . The angle θ made by vector Ch with the zigzag direction is 

given by, 

 𝑐𝑜𝑠θ =
2𝑛 + 𝑚

2√𝑛2 + 𝑚2 + 𝑛𝑚
 (1-3) 

The angle θ varies from 0 to 30 degrees. A 0 degree angle corresponds to zigzag direction 

and 30 degrees corresponds to armchair, all other configurations of nanotubes fall in 0 to 30 

degrees range. An armchair (10, 10), zigzag (10, 0) and an intermediate (10, 7) configurations 

are shown in Figure 1-2. 

 

Figure 1-2 An armchair (10, 10), zigzag (10, 0) and an intermediate SWCNT. 
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We can see that each set of chiral numbers (n,m) define an individual configuration of 

CNTs. The configurations of CNTs considered till now correspond to single wall carbon 

nanotubes (SWCNT). There also exists another structure called multiwall carbon nanotubes 

(MWCNT). Historically, MWCNT were the first to be produced. These structures exist in the 

form of nested SWCNTs or the Russian-doll-type geometry. The interlayer spacing in MWCNT 

is estimated to be 3.4 Å[10]. 

1.2 Properties of carbon nanotubes 

Much literature is available on the properties of CNTs.  Young’s modulus of 1.25TPa is 

reported [11] for SWCNT and CNTs in general are expected to have Young’s moduli at least as 

high as that of graphite[12]. Strain measurements indicating yield strength exceeding 45GPa 

(higher than high-strength steels) were reported[13]. Under tensile loads SWCNTs sustained a 

strain of 5.3% before breaking and a mean breaking strength of about 30GPa and a mean 

Young’s modulus of 1002GPa were reported[14]. High thermal conductivity of CNTs were 

reported using molecular dynamics simulations[15]. 

Though strengths of 37GPa were reported[16] for individual CNTs, yarns of 460 MPa 

strength were produced[16] employing conventional methods used in textile industries such as 

introducing twist while spinning, producing two ply and four ply yarns. The parameters in 

conventional spinning like helix angle, coefficient of friction, fiber length etc. affect the strength 

of the yarn. The increase in helix angle usually decreases the strength in continuous fibers. 

However in short fibers the twist itself holds the fiber together. Also the decrease in fiber 

migration length and fiber diameter helps increase the strength. It is observed that they retained 

their strength when heated to 450 o C in air or when immersed in liquid nitrogen[16]. High creep 
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resistance and electrical conductivity were observed and retained after polymer infiltration[16] 

suggesting their use in polymers. A brief overview of the strength of the yarns produced by 

various groups is given below, 

S No. Reporting group Maximum yarn strength in GPa 

1 Zhang, Atkinson et al. 2004[16] 0.46 

2 Li, Zhang et al. 2006[17] 3.3 

3 Atkinson, Hawkins et al. 2007[18] 0.7 

4 Zhang, Li et al. 2007[19] 3.3 

5 Tran, Humphries et al. 2009[20] 1.4 

6 Liu, Sun et al. 2010[21] 1.1 

7 Lepró, Lima et al. 2010[22] 0.3 

8 Jia, Zhao et al. 2011[23] 1.17 

Table 1-1 Yarn strength values reported by various groups. 
 

The above list is by no means exhaustive. Experimentalists are always trying new 

methods to improve the properties of CNT yarns. The above given strengths are achieved by 

various techniques. Keep in mind various groups are working towards various requirements like 

manufacturability, ease of production, reproducibility, strength etc.  Improving the strengths with 

various methods experimentally is another way to improve the yarn strength but an 

understanding of mechanical behavior at atomic level will help us in understanding and guiding 

the experimental effort towards an improved product. 
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1.3 Thesis structure 

Our aim is to simulate an array of Carbon Nanotubes (CNT) and relate their properties to 

macroscale CNT threads. Much of the literature suggests that molecular level simulations are the 

most accurate representations of the CNTs. The main methods generally used for atomistic 

simulations are Monte Carlo method, ab initio and molecular dynamics. Ab initio methods are 

based on first principles; here we solve the quantum mechanical equations based on Schrodinger 

equation governing the system. This method is computationally expensive and is limited to use 

with a few thousand atoms. Monte Carlo method is non-deterministic and hence can’t be used to 

model time dependent properties. Molecular dynamics is suitable for our simulations as it can 

model large systems but with limited accuracy compared to others. Discussions on the three 

methods can be found in [24-26]. A detailed review of atomistic simulation is given in the next 

chapter, along with a discussion on basic interaction models followed by the potential models 

used in our simulation. A brief introduction to the simulation package LAMMPS is also given. In 

chapter 3 we discuss about the tensile test carried out on a 10nm SWCNT with varying number 

of defects and report the results. In chapter 4 we examine the effect of twist on load transfer in-

between SWCNTs in a bundle. In Chapter 5 effect of twist on tensile pull in SWCNT bundles is 

studied and we make an attempt to derive an analytical model based on Costello’s theory of wire 

ropes[27]. In Chapter 6 we studied sliding in large bundles and calculate the strength of the 

bundles. Finally in Chapter 7 we discuss about the various results obtained and conclude.  
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Chapter 2 Atomistic simulations 

2.1 Molecular dynamics 

Molecular dynamics is a methodology in which we track the time evolution of finite 

number of atoms based on relevant interatomic potentials, initial and boundary conditions by 

numerically integrating the Newton’s equation of motions. In this thesis, MD is regarded as 

‘computer experiment’. In molecular dynamics (MD) we solve the N-body problem of classical 

mechanics. In MD we first model the atoms (or molecules) as spheres in a space domain by 

giving coordinate to the atomic center of mass. For N atoms the configuration of the atoms in 

space domain is given by Nr  where   

{ }1 2 3, , ........N Nr r r r r=                                                     (2-1)                                                                                                              

Nr  represents the set of vectors that locate the atomic centers of mass. When a set of values for 

Nr  is established we define the configuration of system. We then define that all the atoms obey 

second law of Newton, 

m=F a                                                                   (2-2) 

The entities defining the atomic behavior, i.e., the model for molecular interactions is 

contained in an intermolecular force law (or) an intermolecular potential energy function given 

by, 

( )NU V r=                                                                (2-3) 
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As shown the potential is a function of atom coordinates and other parameters which vary 

according to the potential model used. There are many potential models in the literature each 

tailored for specific needs. The force can be defined as a gradient of potential energy,  

  i i
i i

U UF mr
r r

−∂ −∂
= ⇒ =

∂ ∂
                                                    (2-4) 

where ‘i’ is for each atom ‘i’ considered. Our basic aim is to solve the second order differential 

equation(2-4).  By solving the second order ODE we integrate the equation in time, obtaining 

new positions for each time step. Hence we obtain the movement of particles interacting in the 

given system for the considered time.  

Many different algorithms are used to numerically solve the second order ODE. We can 

use the finite difference methods such as the Verlet algorithm, Gear’s predictor corrector 

algorithm etc. In this project, we use third order Gear’s predictor corrector algorithm in the in-

house FORTRAN code and Verlet algorithm in the molecular simulation package 

LAMMPS[28]. 

For the sake of completeness we mention Hamiltonian dynamics here. The molecular 

dynamics is derived from Hamiltonian dynamics. The Newtonian dynamics can be considered as 

a subcase of Hamiltonian dynamics. In Hamiltonian dynamics we consider the Hamiltonian of 

the system to be constant. The Hamiltonian is a function of the state of the system which is 

defined by the momentum and positions of all the atoms in the system.  

                         ( ),N NH r p const=                                                                     (2-5)
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Considering an isolated system, we can derive the equations (2-1) to (2-4) using 

Hamiltonian. Any changes required in the atomic system are usually introduced into the 

Hamiltonian which is then manipulated to get the modified Newton’s equation. Examples of 

changes include temperature control, non-equilibrium molecular dynamics to name a few. A 

more detailed review about the role Hamiltonian dynamics in connection to molecular dynamics 

can be found here [24, 25]. 

2.1.1 Temperature control in molecular dynamics 

It is important to simulate the required system of atoms with conditions that match the 

experiment. Here this is implemented by maintaining a statistical ensemble. An ensemble can be 

considered as copies of different microscopic states of the atomic system with all the states 

having a common observable macroscopic property associated with them, and this property 

should be constant for all the systems. Integrating the Newton equation gives us a 

microcanonical ensemble or the NVE ensemble. NVE ensemble systems are isolated and have 

constant energy for all microscopic states. In experiments temperature is the main factor that is 

controlled. Hence, we try to carry out our simulations in a constant temperature environment. 

This is achieved by maintaining a canonical ensemble or the NVT ensemble. For this we assume 

that the microscopic systems can continuously exchange energy with a large heat bath, 

facilitating the system to maintain a constant temperature at macroscale. The heat bath is 

assumed to be large enough to maintain a constant temperature.  

To control the temperature in a molecular dynamic simulation we have many techniques 

reported in the literature. Examples include the Berendsen method [29], Langevin dynamics[30], 

Nose-Hoover thermostat [31-33]. We use the Nose-Hoover thermostat also known as the 

extended system thermostat in this thesis for controlling the temperature. 
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2.1.2 Nose-Hoover method for thermostating 

To generate a canonical ensemble, the NVT parameters should be kept fixed to the 

prescribed values. Temperature is an intensive parameter whose extensive counterpart is kinetic 

energy related to T through,                             

 1
2 B dfK k k N T= =  (2-6) 

where Bk  is Boltzmann’s constant and dfN  is the number of internal degrees of freedom. The 

instantaneous relationship is given by, 

 1
2 B dfk k N T=  (2-7) 

It is to be ensured that the average temperature T is identical to the macroscopic temperatureT  

i.e. T T= .   The average temperature can also state by, 

 
2

1

12
N

i

idf B df B

pKT
N k N k m=

= = ∑  (2-8) 

Among the different methods to control thermostat we consider the extended system 

thermostat or the Nose-Hoover thermostat[31]. It introduces additional degrees of freedom into 

the system’s Hamiltonian, for which equations of motion can be derived. These equations for the 

additional degrees of freedom are integrated together with the Newton equations of motions (the 

EOM obtained from the conventional Hamiltonian). Nose proposed a way to reduce the effect of 

an external system, acting as heat sink, to an additional degree of freedom[32, 33]. This degree 

of freedom/heat sink controls the temperature of given system through exchange of kinetic 

energy between the system and heat sink.  
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Nose introduced two sets of variables real: {𝑝𝑖, 𝑞𝑖} and virtual: {𝜋𝑖, 𝜌𝑖} . The virtual 

variables are derived from Sundman’s transformation, 

 ds
dt
τ

=  (2-9) 

where 𝜏 is the virtual time, 𝑡 is the real time and 𝑠 is the resulting scaling factor, also treated as 

dynamic variable. The transformation from virtual variables to real is performed according to, 

     i i i ip qπ ρ= =  (2-10) 

An effective mass sM connects a momentum to the additional degree of freedom 𝜋𝑠. The 

resulting Hamiltonian, expressed in terms of virtual coordinates can be written as, 

 
2 2

*
2

1

( , , .., ) ( )
2 2

N
i s

i N B
i s

H U gk Tln s
ms M
π πρ ρ ρ

=

= + … + +∑  (2-11) 

where 1dfg N= + is the number of degrees of freedom of the extended system. It was shown that 

this Hamiltonian 𝐻∗ lead to a probability in phase space, corresponding to the canonical 

ensemble[32]. EOM from 𝐻∗ are, 

 
*

2

 i i

i

d H
d ms
ρ π
τ π

∂
= =
∂

 



 (2-12) 

 
*

i

i i

d H U
d
π
τ ρ ρ

∂ ∂
= − = −

∂ ∂



 

 (2-13) 

 

 
*

s

s
s

ds H
d M

π
τ π

∂
= =
∂



 (2-14) 
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2*

1 2

N
s iB

i

d gk TH
d s s ms
π π
τ =

∂
= − = +

∂ ∑  (2-15) 

 If we transform the above equations back to real variables {𝑝𝑖,𝑞𝑖}  and introduce a new variable 𝜍 

 
*

2 s

s
s

ds ds d H ds s s s
dt d dt dt M

πτ τς
τ π

∂
= = = =

∂


 (2-16) 

Then according to Hoover one obtains[31], 

 i i

i

d q p
dt m

=

 

 (2-17) 

 i
i

i

d p U p
d q

ς
τ

∂
= − −

∂







 (2-18) 

 ln( )  s
t

ς∂
=

∂
 (2-19) 

 
2

1

1 ,   
2

N
i

B i i
is i

pd gk T p p
dt M m
ς

=

 
= − ≡ 

 
∑



 (2-20) 

 

  These equations describe the Nose-Hoover thermostat. The parameter is a thermal inertia 

parameter, which determines rate of heat transfer. For use in molecular dynamics simulation we 

rewrite the Lagrange equations of motion as, 

 1( ) ( ) ( )i i i ir t m F t r tς−= −    (2-21) 

  

where 𝜍 is given by equation (2-16) The Nose-Hoover thermostat [31] changes the Newton’s law 

as given in equation (2-21) , which is then integrated to get a constant temperature molecular 

dynamics. 
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2.2 Molecular mechanics 

Molecular mechanics is a simulation method different from molecular dynamics. Here we 

solve for the equilibrium position of a system with respect to the positions of the atoms. The 

equilibrium obtained is the state of minimum energy with respect to the potential model we use; 

the potential model can also include two or more models to describe various phenomena. These 

potential models describe the force field of the system. Minimized state obtained from molecular 

mechanics is dependent on the force field used. Unlike molecular dynamics no integration of 

‘motion law’ is carried out. Here we equate the variation of potential energy with respect to the 

position of the atoms to zero and find the minimum energy case.  

In the simulation presented we use molecular mechanics to solve for the relaxed state of 

the system. In molecular mechanics no temperature control is done. 

Note that we use the L-BFGS algorithm[34] for the in-house FORTRAN code and a 

Hessian-free truncated Newton algorithm for LAMMPS  to obtain the minimized state with 

respect to the position vectors. 

2.3 Interaction models 

As described earlier atomic/molecular interaction models are the heart of molecular 

dynamics and molecular mechanics. They describe the potential energy of the system; they can 

be broadly classified into two  

1) Inter-atomic or Non-bonded molecular interactions 

2) Intra-molecular or bonded 

2.3.1  Non-bonded interactions 

a) Pair Potentials 
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These potentials are used to model van der Waals interactions. These contain an attraction 

and repulsion term. Commonly used pair potential includes the Lennard-Jones potential. This 

model is described in detail later. 

b) Coulombic interaction 

This interaction follows Coulomb’s law and is called upon if the electrostatics between atoms 

is significant. If 𝑞𝑖 and  𝑞𝑗 are atomic charges then 

0

1
4

i j
coulomb

ij

q q
U

rπε
=                                                  (2-22) 

 

           ijr  

                                 

                                                                  𝑞𝑖                                          𝑞𝑗 

 

where 0ε  is the electric constant. Coulombic force decays slower than 3 r− . There are other 

methods to calculate long-range contributions like Ewald summation[35] , Fast multipole 

methods[36] etc. 

c) Embedded atom model 

This model is mainly developed for metals. Metals have ionized atom cores with delocalized 

valence electrons. The model is formulated as follows, 

Figure 2-1 Columbic interaction. 
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 ( )
, ( )

1 ( )
2total i ij

i i j i j

E F rρ
≠

= + ∅∑ ∑  (2-23) 

where ( )i ij
j

f rρ =∑ . 

Here iρ  is the electron density at atom i, ( )iF ρ  is the embedding function, ( )ijr∅  is the 

pair potential between atoms i and j and ( )ijf r  is the electron density function at atom i due to 

atom j . There are more potential models for the non-bonded atoms in the literature depending on 

the application for which it is used. 

2.3.2  Bonded interactions 

These potentials are usually defined for molecules with 2 or more atoms. These models are 

primarily used to describe the behavior of covalent bonds. Note that the general formulation 

described below for each model is an example and many other formulations exist in the 

literature. 

a) Bond stretching models 

To describe a bond in a covalent system we assume the bond to act like spring. This led to 

the formulation of harmonic bond model where k is the “spring constant” 

( )2
02bond

kU r r= −                                                          (2-24) 

 

 

 

𝑟𝑟0 

Figure 2-2 Bond stretching in atoms. 
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where 0r  is the reference bond length or the equilibrium bond length. 

Another potential used to describe the covalent bond is the Morse Potential [37].It is 

given by, 

0
2( )1 r r

bondU D e α− − = −                                          (2-25)
                                                  

 

here D is the potential well depth, α is stiffness constant and 0r is the equilibrium bond distance. 

Compared to previous formulation Morse potential can better handle large displacements.  

b) Bond angle models 

The effect of adjacent bonds on each other in a 3 atom system is modeled as a factor of the 

angle between the bonds also known as valence angle. A harmonic angle model describes it as 

follows, 

( )2
0angle hU k θ θ= −                                                        (2-26) 

 

 

 

 

 

 

A cosine angle model is also used to describe this, 

 

Figure 2-3 Bond angle between three atoms. 
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[ ]2
0cos( ) cos( )angle aU k θ θ= −                                                   (2-27)                                                 

Here hk and ak are the energy constants, 0θ is the equilibrium angle and the angle θ  is the 

function of position vectors of the bonds between the angles.  

c) Torsion models 

 

 

 

 

Torsion or the dihedral angle is defined for a four atom system. This angle is defined as the 

angle made by the planes formed by two consecutive bonds or three adjacent atoms as shown in 

figure. This model accounts for the interaction arising from torsional forces in molecules. The 

Harmonic torsion angle model is given by, 

[ ]1  cos( )torsionU k d n= + ∅                                                      (2-28) 

k , d and n are constants and ∅ is the dihedral angle. 

d) Out of plane model 

This is one of the least common models used in intramolecular potential. This model 

describes the energy associated with the displacement of atoms out of their equilibrium plane. 

This is given by, 

 

Figure 2-4 Torsion angle formed by two planes in four atoms. 
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2 oopU k h=                                                           (2-29) 

Here k is the out of plane bending constant, h is the height of central atom above the plane of 

other atoms to which it is bonded and oopU  is called the out of plane bending energy.  This model 

is relevant to parts of molecules where the atoms are known to lie in the same plane. 

e) Many body potentials 

 

 

 

 

 

The potential models described above are defined (mostly pair potentials) without 

considering the surrounding environment. In many body potential models, three or more type of 

interactions are considered depending on the model proposed. For the covalently bonded system 

considered here, bond order potential has been introduced to account for the many body effects. 

In bond order potentials no three body or four body terms are considered explicitly in analytical 

form, all of it is captured in the bond order term. Examples of bond order potentials are 

Tersoff[38], Brenner first generation[39], Brenner second generation[40] etc. Many bond order 

potentials for covalent system are based on Tersoff’s bond order formalism[38]. The second 

generation Bond Order potential proposed by Brenner is also based on Tersoff’s potential model 

[38]. It has the capability for bond breaking and forming too.  

Figure 2-5 Many body dependence in graphene. 
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The potentials used in this simulation are given below. 

2.4 Lennard-Jones potential 

This pair potential represents the van der Waals (vdW) forces (both attractive and 

repulsive) acting in between two neutral and non-bonded atoms. The Lennard-Jones (LJ) model 

formulation is as follows 

12 6

4 ij ij
ij ij

ij ij

U
r r
σ σ

ε
    
 = −           

                                                (2-30) 

where σ  is the collision diameter i.e. the distance at which inter-particle potential is zero and ε  

is the well depth of the interaction potential. ‘ ij ’ represents the potential energy of atom ‘ i ’ due 

to atom ‘ j ’. ijr  is the distance between the two atoms. The first term inside the bracket is the 

repulsion term which describes the Pauli exclusion at short ranges due to overlapping of electron 

orbitals and the second term describe the attraction at long range. The distance at which these 

forces cancel out is called the van der Waals radius. We use the parameters reported by 

Girifalco[41] for carbon-carbon system to model our carbon nanotubes.  

2.5 Reactive empirical bond order potential (REBO) 

The REBO potential is a second-generation Brenner potential proposed by Brenner et 

al[40]. This is a many body potential and embodies the many body term in the Bond Order 

function. REBO potential is based on first generation Brenner potential which in turn is based on 

the Tersoff bond order formalism for carbon-carbon systems. This potential is fitted for solid 

carbon and hydrocarbon molecules with the ability to reasonably transfer to new systems with 

proper database fitting. REBO potential allows “for covalent bond breaking and forming with 
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appropriate changes in atomic hybridization”[40] and over the first generation model “contains 

improved analytic functions and an extended database relative to an earlier version”[40]  leading 

to a better description of the force field, bond energies etc.  The binding energy as per REBO 

potential is given by,  

( ) ( ) ( )1( ) ( )
2

r a c R A
b ij ij ij ij ij ij ij

i j i i j

E V r b V r f r V r b V r
>

   = − = −   ∑∑ ∑∑          (2-31) 

where ( )R
ijV r is the repulsive component given by, 

( ) ( ) 1 ijrR c
ij ij

ij

QV r f r Ae
r

α− 
= +  

 
                                        (2-32) 

 

and  ( )A
ijV r is the attractive component given by, 

( ) ( )
1,3

n ijrA c
ij ij n

n

V r f r B e β−

=

= ∑                                          (2-33) 

ijr  is the distance between the atoms ‘i’ and ‘j’. A , Q , α , B  and β  are constants obtained 

through fitting to a known database as given in [40] . 

( )c
ijf r  represents a smooth cutoff function given by, 

( )

1                                                                         

1 1                         
2

0                      

min
ij ij

min
ij ijc min max

ij ij ij ijmax min
ij ij

r D

r D
f r cos D r D

D D

<

  −
= + < <   −   

                                                    max
ij ijr D








>

                (2-34) 
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where max
ijD and min

ijD  are the cutoff parameters for the Brenner potential. 

The empirical bond order function used here is, 

1
2ij ij ji ijb b b bσ π σ π π− − = + +                                                  (2-35) 

where ijbσ π−  and jibσ π−  depend on the local coordination and bond angles given by, 

( ) ( )( ) ( )ijkλ

( , )

1 cos e ,c C H
ij ij ijk ij i i

k i j

b f r G P N Nσ π θ −−

≠

 
= + + 
 

∑                    (2-36) 

jibσ π−  is given by interchanging the indices in equation (2-36). Function P represents a bicubic 

spline. The quantities C
iN  and H

iN represent the number of carbon and hydrogen atoms that are 

neighbors of atom ‘i’. For solid carbons as is the case here the functions P and λ  are zero. The 

quantities C
iN  and H

iN  are given by, 

( )
( ),

hydrogen atoms
c

il il
l i j

H
i f rN

−

≠

= ∑                                             (2-37) 

( )
( ),

carbon atoms
C c

ik ik
k i j

i rN f
−

≠

= ∑                                                (2-38) 

The angular function ( )( )cos ijkG θ  describes the contribution of each nearest neighbor to 

the empirical bond order through the cosine of the angle that corresponds to the bonds of ‘ik’ and 

‘ij’. Its analytic form is a sixth-order polynomial spline in ( )cos θ  and the data used to describe 

the spline are given in Table 2-1. 
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θ  ( )( )G cos θ  ( )( )dG / d cos θ  ( )( )22d G / d cos θ  ( )γ θ  

0  8 - - 1 

/ 3π  2.0014 - - 0.416335 

/ 2π  0.375454 - - 0.271856 

0.6082π  0.09733 0.400 1.980 - 

2 / 3π  0.05280 0.170 0.370 - 

π  -0.001 0.104 0.000 - 

Table 2-1 Values used in determining ( )( )G cos θ .
     

 

To account for both overcoordinated and undercoordinated atoms a modified spline 

function Cg  is used instead of  for ( )( )cos ijkG θ  θ  ranging between 109.470 and 00 given by, 

( )( ) ( ) ( )( ) ( )( )cos cos cost
C C i C Cg G Q N Gθ γ θ θ = + −                     (2-39) 

where Q  is defined by, 

( )
( )( )

1                                                       3.2

1 cos 2 3.2
        3.2 < 3.7

2
0                                                       3.7.

t
i

t
it t

i i

t
i

N

N
Q N N

N

π

 <

  + − = <


 >


                       (2-40) 

t
jN  is the coordination number of atom j given by, 
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t C H
j i iN N N= +                                                       (2-41) 

 

The function ijbπ  used in equation (2-35) is given by, 

RCΠi
DH
ijij jb bπ = +                                                    (2-42) 

The value of RCΠij depends on whether the bond considered has radical character and is 

part of a conjugated system or not. It is given by, 

( )RC conjΠ , ,t t
ij ij i j ijF N N N=                                            (2-43) 

F is a tricubic spline which depends on the total number of neighbors of bonded atoms i 

and j  as defined in  equation (2-41) . F  also depends on the function conj
ijN  that depends on local 

conjugation given by, 

( ) ( )
( )

( ) ( )
( )

con

2

, ,

j

2

1N
carbon carbon

c c
ij ik ik ik jl jl jl

k i j l i j
f r F X f r F X

≠ ≠

   
= + +   

      
∑ ∑            (2-44) 

where 

( ) ( )( )
1                                                     2

1 cos 2 2 2         2 3

0                                                    3

ik

ik ik ik

ik

x

F x x x

x

π

<

 = + − < < 


>

                     (2-45) 

and 

( )t c
ik k ik ikx N f r= −                                                 (2-46) 
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The formulation of conj
ijN  can distinguish between different configurations that can lead to 

conjugation which is not included in the analytic form in the first-generation Brenner model[39]. 

conj
ijN  incorporates the conjugation effects into the REBO potential and smoothly accounts for the 

changes in conjugation as bonds break and form. The values for the function in equation (2-44)  

are described in detail in [40]. 

The second term in equation (2-42) DH
ijb  depends on the dihedral angle of the carbon-

carbon bond.  It is given by, 

( ) ( )( )
( )( )

( ) ( )2

, ,
, , 1 cost t conj c c

ij i j ij ijkl ik ik jl jl
k i

DH
ij

j l i j
T N N N f r fb r

≠ ≠

 
= − Θ 

  
∑ ∑            (2-47) 

where 

ijkl jik ijle eΘ =                                                          (2-48) 

Here ( ), ,t t conj
ij i j ijT N N N  is a tricubic spline function which is zero for carbon-carbon 

bonds that are not double bonds. jike  and  ijle  are unit vectors in the direction of the cross 

products ji ikR R×  and ij jlR R× , respectively, where R is the vector connecting the subscripted 

atoms. The data used to fit ijT  is given in [40]. 

To obtain the minimum potential state in molecular mechanics we equate the variation of 

the potential energy to zero. 
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( ) ( )

1 ( ) ( ) ( )
2
1 ( ) ( ) ( )
2
1 ( )
2

R A c
ij ij ij ij ij ij

c R A
ij ij ij ij ij

c A
ij ij ij ij

E V r b b V r f r

f r V r b b V r

f r b b V r

σ π π

σ π π

σ π π

δ δ

δ δ

δ δ

−

−

−

 = + + 

 + + + 

 + + 

                                (2-49) 

REBO potential model is used in the in-house FORTRAN code. In LAMMPS a modified REBO 

potential called AIREBO [42]is used. 

2.6 Adaptive reactive empirical bond order potential (AIREBO) 

This potential model is proposed by Stuart et. al.[42] This model is essentially similar to 

the REBO [40] model except it also includes an adaptive treatment for non-bonded LJ 

interactions and dihedral bonding along with an addition of torsional potential.  As expressed by 

Stuart in his paper [42] the entire system energy given by AIREBO is defined as, 

REBO LJ torsE E E E= + +                                            (2-50) 

The REBOE  part of the potential model is essentially same as the REBO model. Here in 

our case we usually consider LJE and torsE  part of the potential to be zero and use the 

formulation specified in (2-30) separately to model the LJ interactions in the CNTs. The main 

reason to do this is because in LAMMPS extraction of LJ related energy and forces is not 

possible while using AIREBO model. Hence a potential model of REBO in addition to LJ 

potential is used. For a detail description of AIREBO model please refer to [42]. 

2.7 LAMMPS 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)[28] is an open 

source scalable molecular dynamics program from Sandia National Laboratories. LAMMPS is 

written in C++ mainly and the methods to build an executable are explained in detail on their 
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website http://lammps.sandia.gov. LAMMPS has its own input script language. The LJ potential 

model and REBO potential model already exist in the LAMMPS potential library. Proper input 

scripts are written for carrying out the necessary simulation in this thesis. The main reason for 

using LAMMPS over the in-house serial FORTRAN code is for the sake of carrying simulations 

with large number of atoms. Due to the parallel nature of the LAMMPS code the simulation time 

for such large systems is largely decreased when compared to a serial code. In LAMMPS we can 

utilize the shared memory parallelization using OpenMP and distributed memory parallelization 

using Open MPI simultaneously. For carrying out our simulations we made a Beowulf style 

cluster using 4 Linux systems with dual quad core Intel processors hence, creating a 4 node 

cluster. The utilization of the processors on these nodes can vary from 32 MPI processes with 1 

OpenMP per processor to 8 OpenMP per processor along 4 MPI processes and any combination 

in between. The most efficient combination is rather dependent on the simulation being carried 

out and varies with respect to the total number of atoms in the system, potential mode used, 

minimization style etc. With trial and error study for a sample simulation we were able to carry 

out our simulation in the most efficient way. When processing power our cluster provided was 

not enough we used the computing facilities at Ohio Supercomputer Center. 

2.8 In-house FORTRAN code 

Initially we used an in-house FORTRAN code developed specifically for analyzing the 

mechanics of CNTs, though, with the increase in our problem size and simulation requirements 

we had to switch to LAMMPS. Initial results were extracted from the in-house code but for the 

sake of consistency we recalculated those results in LAMMPS. All the results presented in this 

thesis are from the LAMMPS software.   
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Chapter 3 Tensile test of CNT 

 

As described earlier, for utilization of CNTs at macroscale, spinning CNTs into yarns and 

ribbons is one of the most plausible methods available. Different strategies like wet spinning[7, 

43] and dry spinning[4, 16] are available for converting CNT arrays into threads and yarns. Dry 

spinning which uses conventional spinning techniques looks like the most promising method due 

to its simplicity and ability to transfer the current technology.  The possibility of drawing CNTs 

into yarns was first reported in 2002 [4]. This method was further exploited by introducing twist 

while spinning MWCNTs [16]. Strengths greater than 460MPa were reported using this 

method[16]. The load transfer mechanism in a SWCNT bundle consisting of seven (10,10) 

SWCNTs was studied by Qian [44] . Surface tension and inter-tube corrugation were cited as the 

two main factors contributing to load transfer[44]. Based on this study, we first modeled a 

similar bundle of SWCNTs to examine the load transfer with respect to twist angle and increased 

contact length.  The simulations were carried out using molecular dynamics and molecular 

mechanics. Later a large scale problem of sliding of tubes is considered and simulated to obtain 

the maximum strength the array of CNTs can withstand before sliding occurs. The simulations 

carried out to study the effect of twist and contact length on the ‘thread’ properties are explained 

in detail in the following sections. 

3.1 Tensile test setup 

Investigation into the failure of CNT yarns has concluded that slip between the tubes rather 

than breakage of individual tubes is the main mode of failure [16, 45]. A simple consideration of 

the strength of an individual CNT and that of strength due to van der Waals forces in between the 

two tubes suggests that a thread is more likely to slip by sliding motion in-between the tubes 
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rather than the fracture of an individual tube. A detailed study on the effect of defects on CNT 

strength was carried out [46, 47]. Both studies showed that the strength does decrease with 

increase in defects but not to an extent that affects the applications. Of the many defects the 

Stone-Wales defects [48] are the most common. A Stone-Wales defect is a condition where 

instead of the hexagonal pattern an energetically stable heptagons and pentagons are formed. 

Hence it is also called ‘5775’ defects. An example of such a defect is shown in Figure 3-1. For 

the sake of completeness we initially carried out a tension test on a 10nm CNT with chirality (10, 

10). To model the interactions of carbon atoms in the CNT we use the second generation Brenner 

potential. The tensile test is carried out using molecular mechanics in the following way, 

1. A 10nm CNT with chirality (10, 10) is constructed, its bottom held rigid and the structure 

is allowed to relax. The CNT contains 1640 carbon atoms. 

2. We apply a displacement of 0.05 Å to the top layer atoms, holding the bottom fixed, we 

allow the structure to be relaxed. This displacement is applied incrementally and the 

structure relaxed at each step till the CNT fails. 

3. At each step of displacement the required quantities are measured. 

While conducting the tensile test using molecular mechanics, the force evaluated from REBO 

is quite oscillatory. Hence, we use the work-displacement principle to evaluate the forces in the 

CNT from the potential energy variation. The work-displacement principle in our case can be 

explained as follows, the work done by displacing the CNT under tensile load is equal to the 

reaction force multiplied by the displacement undergone by the CNT. The potential energy 

obtained from the potential model is equal to the work required to displace the CNT. This 
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principle is used to obtain the forces from the tensile test.  A figure showing the ‘planted’ defects 

in a 10nm CNT is shown below. 

 

Figure 3-1 Representation of randomly placed Stone-Wales defects in a 10nm SWCNT 
along with representation of a Stone-Wales defect. 

             

The defects are placed randomly in the CNT. The placement of the defects does not show 

much deviation in the strength of the results except that when three or more defects are ‘planted’ 

in a straight line, the CNT starts to fail at the place of defects. 

3.2 Results from the test 

A plot of the potential energy with respect to the pull is shown below, 
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Figure 3-2 Potential energy of the 10nm SWCNT under tension. 
 

 Potential energy variation is calculated from the potential energy and force acting in the CNT 

evaluated from the potential energy variation. 
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Figure 3-3 Potential energy variation calculated based on values from Figure 3-2. 
 

 

 

Figure 3-4 Force calculated from potential energy variation. 
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  Assuming the CNT to act like a thin cylinder we evaluate the stress in the CNT by 

dividing the obtained forces by the area of the shell. Here the area is considered to be 2 rdrπ   

where r  is the radius of the tube (6.78 A) and dr  is the thickness of the CNT, which was 

assumed to be 3.4 A. During the loading process, strain rate is constant. From the stress, strain 

values, a stress vs. strain graph is plotted and Young’s modulus is evaluated. All the evaluated 

quantities are shown below. 

 

Figure 3-5 Stress vs. strain graph for the 10nm SWCNT under tension. 
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Figure 3-6 Young’s modulus values for number of defects in a 10nm SWCNT. 
 

 
The young’s modulus of a 105A SWCNT was reported to be around 929.8 GPa  by 

Bao[49], while our model predicted the young’s modulus of 100A SWCNT to be around 870.1 

GPa (average value). The young’s modulus in each case is obtained by averaging over 8 values 

obtained from the initial slope of the stress vs. strain graph where the graph is linear.  

A table of the ultimate failure strengths of the CNTs simulated with respect to the number of 

defects is shown below, 

No. of defects 0 8 14 20 

Ultimate strength 

in GPa 
101.15 92.36 87.44 82.08 

 
Table 3-1 Ultimate strength values for various number of defects in a 10nm 

SWCNT. 
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We can see from the graphs that the decrease in young’s modulus of the individual CNT 

is quite high even for 20 defects per 1640 atoms. The strengths observed are high, around 82 

GPa for 20 defects case. Here the ultimate strength is the tensile strength observed at ‘failure’ of 

CNTs. Failure is defined as the point where the first bond breakage is observed in the tensile test. 

Note that there are no LJ interactions defined between the broken bonds. We can see from the 

Table 3-1 that the ultimate strength is still high for a case with 20 defects. This value is very high 

when compared to those reported in the experiments. Creating CNT threads with highest possible 

strength is our goal, From this analysis we can conclude that the CNT strength is not very 

sensitive to the effect of Stone-Wales type of defects. The effect of point defects and other 

defects on individual CNT strength [46, 47] have been carried out in the literature and they 

suggest that the strength is also very high for most cases. This strength still exceeds the strength 

of many conventional high strength materials like steel, tungsten carbide etc. It is with this point 

in mind we move ahead to study the interactions in between the nanotubes without considering 

the consequence of Stone-Wales defects.  
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Chapter 4 Load transfer in SWCNTs 

 

The major goal of twist in fibers is to enhance the load transfer between the individual 

fibers (strands) in the thread (yarn). This subject of load transfer and tensile strength of yarns 

with respect to twist has been given much thought throughout the textile mechanics[50] text and 

also in wire rope texts[27]. The effect of twist on CNT threads have been studied [44] and the 

results have suggested that twist might help in increasing the load transfer capabilities in threads 

made of CNTs.  

4.1 Load transfer setup 

One of main objectives of this thesis is to study the effects of twist on the load transfer 

capability and tensile strength of CNT bundles. Here by examining the simulation carried out on 

bundles we try to relate the results to CNT threads at macroscale. To understand the effects of 

twist angle on the strength of thread in SWCNTs we model an array of CNTs in which six 

SWCNTs are surrounding a SWCNT as shown below, 
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Figure 4-1 A perspective view of untwisted 60nm long SWCNT bundle. 
 

To model the twist observed in the fiber threads we introduce twist into our simulation model 

in two ways, 

1. Moment twist: Here we select the top layer of atoms of outer tubes (the six surrounding 

tubes excluding the center one) and introduce twist by rotating them at a rate of 

0.5deg/femtosecond or 0.5deg/minimization step. The bottom layer of atoms are held 

rigid while the rotating. The rotation is carried out using either molecular dynamics or 

molecular mechanics. 

2. Prescribed twist: Here we introduce twist in outer tubes by directly prescribing new 

coordinates which correspond to a certain twist angle where the twist of each atom is 

defined with respect to its distance from the bottom layer of atoms. The angle of twist is 

given as 
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h
H

θ α=                                                              (4-1) 

 where θ  is the twist angle of the atom, h is the height of the atom considered from the bottom,

H is the total height of the array and α  is the desired twist in the tubes. The new coordinates of 

atoms with respect to old coordinates i.e., the straight tubes are as follows, 

_ _cos sinx x old y oldr r rθ θ= −                                                (4-2) 

_ _sin cosy x old y oldr r rθ θ= +                                               (4-3) 

 

where ( _x oldr , _y oldr ) are the initial x and y coordinate. The height of the atoms remains same 

hence we do not change the z coordinate. The height of each atom determines the angle θ . Note 

that in all the simulations carried out in this work the center tube is not twisted unless otherwise 

specified 

Figure 4-2 and Figure 4-3 show the variations in moment twist and prescribed twist. In 

Figure 4-2 a 90 degree twist is applied using moment twist and in Figure 4-3 a 90 degree twist is 

applied using prescribed twist. The prescribed twist has more uniform twist compared to moment 

twist. 
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Figure 4-2 A CNT bundle with the surrounding nanotubes twisted to 90 degrees using 
moment twist from top. 

 

Figure 4-3 A CNT bundle with the surrounding nanotubes twisted to 90 degrees using 
prescribed twist. 
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First we consider an array of CNTs in which a SWCNT of (10, 10) chirality is surrounded by 

six similar CNTs. The CNTs are arranged such that the distance between the CNTs from the wall 

of the central CNT is 3.4A and also the least distance between each of the CNT walls is 3.4A. In 

the following simulations the base model is a 60nm long carbon nanotubes bundle. The bundle is 

in the form of a rope where a central tube is surrounded by six nanotubes of (10, 10) 

configuration with separation distance of 3.4Å.  Each CNT is 60nm long, each tube contains 

9760 atoms. We consider that the bottom is fixed and relax the structure under molecular 

mechanics, then fix both top and bottom layer of atoms and pull the center tube by pulling the 

top layer of atoms of center tube at a given rate. This is done for various twist angles where twist 

angle is the amount of twist applied to the top layers of atoms (except the center one) in moment 

twist case and predefined coordinates in prescribed twist case. A brief description of the steps 

carried out are given below, 

1) A CNT bundle consisting of seven CNTs is constructed and all have same length and 

same chirality. 

2) For prescribed twist the atoms are moved to new positions and then the bottom and top 

are held and the remaining structure relaxed using molecular mechanics. For moment 

twist case the twist is applied incrementally to the top layer of atoms (except the center 

nanotube) using molecular dynamics and the structure is relaxed for each required twist 

case. 

3) The top layer of atoms of the center tube is selected and displacement is applied in the 

positive z direction i.e. away from the CNT bundle. Many cases with varied displacement 

rates are carried out to study the effect of load transfer rates. 

4) While pulling the required quantities (forces) are measured at each step. 
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The important point to note is we have used molecular dynamics and molecular mechanics to 

carry out the above simulations. The specific method used is explicitly stated for each case. 

Initially simulations were carried out by holding only the bottom layer of atoms rigid while the 

top is free. This resulted in untwisting of the outer CNTs which do not mimic the behavior of 

twisted nanotubes we intend to study. 

We carried out the pulling simulation on a 60nm tube bundle. An example structure with the 

center tube being pulled for 120 degrees prescribed twist structure is shown below. 

 

Figure 4-4 A perspective view of the center tube being pulled in a 60nm long SWCNT 
bundle. 

 

While pulling the center tube by applying constant displacement to the top layer of center 

tube, we calculate the total force acting on the center tube due to LJ interactions in the Z 

direction. We then calculate the maximum force in negative Z direction as a measure of 

resistance to the pulling. Here negative sign indicates the action against the applied pulling 
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direction. Hence, a negative force is considered a pulling force against the applied pull and a 

positive force implies a pushing force.  

4.2 Results 

NVT ensemble is used during these simulations and the temperature is maintained at 

300~320K during the pulling process. Time step is 0.5 femtosecond for 250m/s pull and 1 

femtosecond for 25m/s pull rate case. The maximum pulling force experienced by the center tube 

due to non-bonded interactions with respect to twist angle is shown below for both prescribed 

and moment twist cases. Stresses for each case are also given. Stresses in the tube are calculated 

by dividing the force obtained by cross-sectional area given by A=πr2 where r=6.78Å. 

 

Figure 4-5 Maximum pushing values encountered while pulling of center tube for each 
twist. 
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now on we will only list the pulling/resisting forces and stresses. These results are for 250m/s 

pull rate case. 

 

Figure 4-6 Maximum pulling force encountered while pulling of center tube for prescribed 
twist. 
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Figure 4-7 Maximum pulling stress encountered while pulling of center tube for prescribed 
twist. 

 

Figure 4-8 Maximum pulling force encountered while pulling of center tube for moment 
twist. 
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Figure 4-9 Maximum pulling stress encountered while pulling of center tube for moment 
twist. 

 

We can see from Figure 4-6 to Figure 4-9 that twist in the structures initially helps in 

increasing the load transfer capability of the bundles but after twist of 30 degrees there is 
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simulations at a lower pull rate of 25m/s (represented by black dots) to study the effect of pull 

rate and obtained the following results, 
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Figure 4-10 Maximum pulling force encountered while pulling of center tube for 
prescribed twist for 250m/s and 25m/s pull rate. 

 

Figure 4-11 Maximum pulling force encountered while pulling of center tube for moment 
twist for 250m/s and 25m/s pull rate. 
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We can see from the figures that the twist in bundles offers no significant increase in the 

load transfer capabilities in the bundle at all. This is rather contradictory with the results obtained 

from the faster pull rate simulation. To eliminate any edge effects due to the open end nature of 

the CNTs we also consider a ring of atoms (40 atoms) on the center CNT at height of 45 Å from 

the bottom. The maximum pulling forces evaluated on these atoms for 250m/s pulling case in 

both moment twist and prescribed twist case are shown below, 

 

Figure 4-12 Maximum pulling force encountered in selected number of atoms while pulling 
of center tube for moment twist. 
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Figure 4-13 Maximum pulling force encountered in selected number of atoms while pulling 
of center tube for prescribed twist. 

 

We can see from Figure 4-12 and Figure 4-13 that the edge does affect the trend of the 

forces with respect to the twist. 
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Figure 4-14 Maximum pulling force encountered in selected number of atoms while pulling 
of center tube for moment twist using molecular mechanics. 

 
 

Figure 4-15 Maximum pulling force encountered in selected number of atoms while pulling 
of center tube for moment twist using molecular mechanics. 
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To examine the effect of ensembles we carried out test simulations on a 15nm bundle 

similar to above configuration with 6 CNTs surrounding a centre CNT. These simulations were 

done for NVT and NVE ensembles and at different pull rates. All the CNTs are of (5, 5) 

chirality.  The pulling forces are evaluated for a moment twist case as shown below, 

 

Figure 4-16 Maximum pulling force encountered while pulling of center tube for moment 
twist for 250m/s and 25m/s pull rates in NVT ensemble. 
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Figure 4-17 Maximum pulling force encountered while pulling of center tube for moment 
twist for 250m/s and 25m/s pull rates in NVE ensemble. 

 

Figure 4-18 Maximum pulling force encountered while pulling of center tube for moment 
twist for 250m/s pull rate in NVT and NVE ensembles. 
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Figure 4-19 Maximum pulling force encountered while pulling of center tube for moment 
twist for 25m/s pull rates in NVT and NVE ensembles. 
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Chapter 5 Tensile loading in SWCNT bundles 

5.1 Tensile loading with molecular dynamics 

We have discussed the effect of twist in load transfer so far. We have established in 

Chapter 3 that the nanotube bundles are more likely to fail by slipping rather than tensile 

breakage. In this section we make an attempt to see what happens if we apply uniform tensile 

pull to all the nanotubes in a bundle shown in Figure 4-1. Similar to previous chapter we apply 

moment twist to the 60nm nanotube bundle and apply tensile loading to all the nanotubes in the 

bundle and measure its force vs. displacement response. The tensile loading is achieved by 

displacement boundary conditions i.e. displacement is applied at a constant rate to selected atoms 

at the top of the bundle (left most atoms in Figure 4-1) while the bottom of the bundle (right 

most atoms in Figure 4-1) is held rigid. While applying displacement boundary conditions the 

force generated in the bundles is measured. This simulation was carried out using molecular 

dynamics. Similar to previous simulations NVT ensemble was used at a constant temperature of 

300K and the simulation was carried out in LAMMPS. The pull rate applied to the top layer of 

atoms is 0.25Å/ps.  

The force in the nanotubes is evaluated from the total energy of the bundle using work-

energy principle. Here the total work done i.e. force times displacement is equated to the change 

in potential energy of the bundle. The variation in potential energy with respect to strain is 

shown in Figure 5-1. The total potential energy is the sum of bonded (Brenner potential energy) 

and non-bonded (Lennard Jones potential energy) energies. The variation of the potential energy 

is fitted to a quadratic equation and is shown in Figure 5-1. We use the values from this fit to 

evaluate the force in the bundle. This is done by dividing the variation of potential energy by the 

displacement in the tensile direction. We do this for every twist case and evaluate the forces. 
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Figure 5-1 Total potential energy in the bundle for 300 twist. 
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Figure 5-2 Tensile force in the 60nm bundle with respect to strain in the bundle. 
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Figure 5-3 Tensile force in 60nm bundle for 0.002 strain. 
 

 

Figure 5-4 Tensile force in 60nm bundle for 0.006 strain. 
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Figure 5-5 Tensile force in 60nm bundle for 0.01 strain. 
 

 

Figure 5-6 Tensile force in 60nm bundle for 0.014 strain. 
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Figure 5-7 Tensile force in 60nm bundle for 0.018 strain. 
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threads at macroscale such loading conditions will not occur as none of the bundles span the 
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analysis was done to see the effects of tensile loading on twist angles.  
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development and results are discussed below. 
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5.2 Analytical model 

5.2.1 Introduction 

As the idea of spinning to form CNT ropes is derived from the conventional practice of 

forming ropes, cables, yarn and strand, the objective of this chapter is to relate the mechanical 

properties of those to the CNT ropes. At the continuum scale, a wire rope consists of strands and 

a core. The core can be anything. Core mainly provides proper support for the strands under 

normal bending and loading conditions. Strands are the major carrier of loads. Each strand has 

helically twisted wires wrapped around a core wire. 

There are two major categories of constructing the CNT rope. In the first approach, the 

wires are laid to form strand (e.g., whether the wires are axial to the wire rope, or are at an angle 

etc.). In the second approach, the strands are wrapped around the core, e.g., the standard 6X7 or 

other types. 

Our goal in this chapter is to derive an analytical equation for force in a wire rope as a 

function of axial strain in the wire. This analytical equation is derived based on the text by 

Costello [27]. We use this equation to obtain total force in wire ropes as a function of strain. 

Subsequently the simulation results for tensile loading of nanotube bundle are compared with the 

analytical model.  

5.2.2 Thin wire kinematics 

Consider a thin wire which is defined as a wire whose diameter is considered to be small 

when compared to the length of the wire and the radius of curvature of the centerline of the wire. 
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Figure 5-8 Undeformed helical wire with rectangular cross section. 
 

Here consider a point P on the center line of the thin wire, it is the origin of a frame A, B and C 

where C is the tangent to the centerline and A, B and C form a right handed coordinate system. If 

 is the angular velocity of the point P  then the components of  on A, B and C are the 

components of curvature 0κ and '
0 κ  and twist per unit length 0τ . 

If the origin of A, B and C-axes moves along the centroidal axis with a unit velocity, the angular 

velocity  of the origin is given by, 
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                                                             (5-1) 

where  is the unit vector in 3X direction. Hence the curvature components are given by, 

 
2

' 0 0 0
0 0 0

0 0

cos sin cos0;    ;    τ
r r
α α ακ κ= = =                                  (5-2) 

1X

2X

3X

0ω


A

B
C

0r

0α

60 
 



Consider a thin wire loaded with the forces as shown in Figure 5-9 

 

 

Figure 5-9 Loads in a thin wire. 
 

Here N  and 'N  are 𝑥 component and 𝑦 component of shearing force on wire cross 

section. 𝑇 is the axial tension in wire, 𝐻 is the twisting moment. 𝐺 and 𝐺′are 𝑥 component and 𝑦 

component  of bending moment on a wire cross section. 𝑋,𝑌 and 𝑍 are 𝑥 component, 𝑦 

component and 𝑧 component  of the external line load per unit length of the center line 

respectively. 𝐾, 𝐾′and Θ are the components of the external moment per unit length of the 

centerline.  

Summing forces in 𝑥, 𝑦, and 𝑧 direction we get, 
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'

0dN T N Y
ds

κ τ− + + =                                                 (5-4) 

 ' ' 0dT N N Z
ds

κ κ− + + =                                               (5-5) 

Similarly a summation of moments about 𝑥, 𝑦, and 𝑧 axis yields, 

 ' ' ' 0dG G H N K
ds

τ κ− + − + =                                           (5-6) 

 
'

' 0dG H G N K
ds

κ τ− + + + =                                             (5-7) 

 ' ' Θ 0dH G G
ds

κ κ− + + =                                                    (5-8) 

 

Assuming the thin wire to be elastic with cross-sectional moments of inertia 𝐼𝑥 and 𝐼𝑦 

about x and y axis and 𝐶 to denote torsional rigidity the expressions relating the changes in 

curvature and twist per unit length to the internal loads (to solve for 9 variables these 3 extra 

equations are needed)  are, 

 ( ) ( ) ( )' ' '
0 0 0;   ;   x yG EI G EI H Cκ κ κ κ τ τ= − = − = −                            (5-9) 

where 𝐸 is the modulus of elasticity of the wire material. Considering the wire cross section as 

circular we get 

 ( ) ( ) ( ) ( )
4 4 4

' ' '
0 0 0;   ;   

4 4 4 1
R R R EG E G E Hπ π πκ κ κ κ τ τ

ν
= − = − = −

+
                      (5-10) 

Here 𝜈 is the Poisson’s ratio of the material. The tension 𝑇 in the wire can be written as, 

 2T AE R Eξ π ξ= =                                                            (5-11) 

where 𝜉 is the axial wire strain. 
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5.2.3 Static response of a strand 

Now let us consider a strand as shown in Figure 5-10 and Figure 5-11 and evaluate the 

static response of the strand with respect to axial load. The strand is assumed to be continuous. 

 

Figure 5-10 Load in a simple straight strand. 
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Figure 5-11 Section A-B of Figure 5-10. 
 

Consider there are 𝑚2 helical wires with radius 𝑅2 surrounding a straight center wire of 

radius 𝑅1. The material of the core and surrounding wires is assumed to be same. The initial 

radius of helix of the outside wires is given by, 

 2 1 2r R R= +                                                           (5-12) 

To minimize the effect of friction in the bending of a strand we assume the center wire is 

large enough to prevent the outer wires from touching each other. For this to be valid the 

following relation between 𝑅1 and 𝑅1should be true, 
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 + < +                                            (5-13) 

where 𝛼 is the helix angle of the outer wires. 

Now let us consider the strand to be loaded axially by total axial force 𝐹 and total axial 

twisting moment 𝑀𝑡.  Let us assume that the outer wire is not subjected to any external bending 

( )1 11R υξ−

2r

( )2 21R υξ−
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moments per unit length (𝐾2 = 𝐾2′ = 0) and let the tension 𝑇2 be constant along the length of the 

wire. The forces acting on the outer wire are shown in Figure 5-12. 

 

Figure 5-12 Loads acting on a helical wire. 
 

Let us assume that the initial helix angle of an outer wire before loading is 𝛼2 and after 

the axial loading the outer wire deforms to a new helix angle 𝛼�2. Equations (1.2) for these helix 

angles are, 
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Applying the equations of equilibrium (5-3) to (5-8) to the forces and moments shown in 

figure we get, 

 ' '
2 2 2 2 2τ 0N T Xκ− + + =                                            (5-16) 
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 2 0Y =                                                       (5-17) 

 2 0Z =                                                       (5-18) 

 ' ' '
2 2 2 2 2τ 0G H Nκ− + + =                                           (5-19) 

 2 0N =                                                       (5-20) 

 2Θ 0=                                                       (5-21) 

The equations of equilibrium combined with equation (5-9) are valid for large 

deflections. In case of wire rope however, the value of 𝛂𝟐 is generally large and change in 𝛂𝟐, 

∆𝛂𝟐 given by 

 2 2 2α α α∆ = −                                                  (5-22) 

is small. The axial strain in a straight strand is defined as, 

 ( ) /h h hε = −                                                   (5-23) 

where ℎ is the original length of the strand and  ℎ� is the final length of the strand. Rotational 

strain 𝛽2 of an outer wire is given by, 

 
( )2 2

2 2r h
θ θ

β
−

=                                                (5-24) 

where 𝜃2 and �̅�2 are the initial and final angle, respectively, that an outer wire sweeps out in a 

plane perpendicular to the axis of the strand. The angle of twist per unit length is defined by, 

 
( )2 2

s h
θ θ

τ
−

=                                                     (5-25) 

The strain in the center wire 𝜀 can be related as, 
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 ( )12
2 2

2 2 2

1 1
tan tans
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ξ
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α α
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Here  𝜉1 and 𝜉2 are the axial strains in center and outer wire respectively. If we assume that 

 2 2 2α α α 1∆ = −                                                   (5-28) 

which is valid for most metallic strands we can write sin𝛼�2 as, 

 ( )2 2 2 2 2 2sin α sin α sin α cosα α α= + ∆ = + ∆                                (5-29) 

Here higher ordered terms are neglected. Equation (5-26) can be rewritten as, 

 2
1 2

2

α
tan

ξ ξ ε
α

∆
= + =                                                       (5-30) 

where 𝝃𝟏, 𝝃𝟐 are assumed to be small. 

Similarly, 

( )22
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ξ
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+ 

= − ∆ − 
 

                                       (5-31) 

The final helical radius �̅�𝑟2 becomes, 

( ) ( )2 1 1 2 21 1r R Rνξ νξ= − + −                                        (5-32) 

Here ν   is Poisson’s ratio. The contact deformation in the center and outer wire is neglected. 
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                              (5-33) 

Since 𝝃𝟏, 𝝃𝟐 are small. Similarly, 
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In a similar fashion the change in curvature ∆𝜅2′  and change in twist per unit length ∆𝜏2 

can also be linearized and the results are, 

 ( )2 2 2
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and  
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− +
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From equations (5-10), (5-16) and (5-19) we get the following, 
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A projection of the forces, acting on the outside wires, in the axial direction of strand 

yields, 
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where 𝐹2 is the total axial force in the strand acting on 𝑚2 outer wires. The total axial twisting 

moment 𝑀2 acting on the outside wires is 
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                   (5-43) 

The axial force 𝐹1 and the axial twisting moment 𝑀1 acting on the center wire are given 

by the expressions, 

                                                                (5-44) 

                                                    (5-45) 

The total axial force F and the total twisting moment 𝑀𝑡 acting on the strand can be written as, 

 1 2F F F= +                                                                 (5-46) 

                                                             (5-47) 

The loads acting on an axially loaded simple strand are determined.  

The main goal of this derivation is to obtain an equation of total force in the wire rope as 

a function of axial strain. Equation (5-46)  gives us such a relationship and this is as the 

analytical model for CNTs. It is shown that this study can be extended to an extra layer of 

strands as needed. Here only axial loads were considered and no bending is considered, a pure 

bending case can be considered to evaluate the stresses.  
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Equating the effective axial stiffness of a 10nm SWCNT with no defect to a solid 

cylinder of equal outer diameter as in the CNT we can derive the equivalent young’s modulus of 

the solid cylinder with same external radius. Using the young’s modulus values and the 

dimensions comparable to CNTs we can derive the forces and stresses with respect to twist for a 

given axial and rotational strains. 

For a (10, 10) chirality SWCNT the inner radius is 6.78 Å and the outer radius can be 

assumed as 10.18 Å as the thickness of a SWCNT is assumed to be 3.4 Å. Multiplying the 

effective area formed by the thin cylinder with Young’s modulus we get effective axial stiffness 

as 26.207 x 10-9 N/nm. Equating the obtained axial stiffness to a solid cylinder with radius    

10.18 Å we get the young’s modulus as 482.97 GPa. Poisson’s ratio of 0.19 is considered. 

We introduce a strain of 1% in the wire and use equation (5-46) to obtain the total force. 

For various twist cases the force in the center tube will be constant as the strain is constant. We 

measure the total axial force in the wire rope which in turn is proportional to the axial forces in 

the surrounding strands. The change in force in the surrounding strands is dictated by the strain 

of those outer strands which in turn depend on the twist angle.  

A graph depicting the measured axial forces in the whole wire rope for various strains 

similar to the values of strains in section 5.1 is shown below, 
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Figure 5-13 Axial force in wire rope of 60nm for 0.002 strain. 
 

       

Figure 5-14 Axial force in wire rope of 60nm for 0.006 strain. 
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Figure 5-15 Axial force in wire rope of 60nm for 0.01 strain. 
 

 

Figure 5-16 Axial force in wire rope of 60nm for 0.014 strain. 
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Figure 5-17 Axial force in wire rope of 60nm for 0.018 strain. 
 

We can see from Figure 5-13 to Figure 5-17 that our analytical model shows that the 

force in the bundle increases initially and decreases for higher twist angles. Similar trend is 

shown by simulation results in molecular dynamics results, except this was observed in higher 

strain cases only. This may be due to the fact that the orientation of surrounding nanotubes 

change as the strain increases, resulting a change in the trend of total force in nanotube bundle. 

Hence, from analytical model results it is advisable to use a twist angle of 900 (which is applied 

over a length of 60 nanometers) in pure tensile cases. Though this might be the loading condition 

a CNT thread will undergo under macroscale.  
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Chapter 6 Slide in arrays 

 

From the results observed in tensile test on individual CNT carried out in chapter 3 and 

the weak interactions in between the CNTs observed in chapter 4, we conclude that in a thread 

made of CNTs it is more likely that the tubes will start sliding first rather than breakage of 

individual tubes while the thread is under tension. The load transfer study carried out in the 

previous chapter gives us an understanding of how twist will affect the load transfer capability in 

between the tubes of the thread. In this chapter we simulate a large bundle of CNTs with the 

intention to find how the twist angle affects the strength of the CNT thread. In general the 

individual strands (CNTs in our case) are not continuous and do not span the whole length of the 

thread. Keeping this in mind we model a thread using CNT bundles in which none of the tubes 

span the whole length of the thread. We achieve this by adding another layer of CNTs to the 

model used in previous chapter. In fact we developed a code where we can generate a thread 

with any number of tubes of any length. The addition of tubes works in layers where a ‘layer’ is 

a bunch of tubes which surround the previous ‘layer’ starting from one in either hexagonal 

pattern or in circular pattern. We can specify the nearest distance between any two adjacent 

CNTs, which in our case is 3.4 Å. An example of 169 tubes forming a bundle in hexagonal and 

circular pattern derived from our code are shown below, 

74 
 



 

Figure 6-1 Perspective and top view of a large bundle of 60nm long SWCNTs arranged in 
hexagonal pattern. 
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Figure 6-2 Perspective and top view of a large bundle of 60nm long SWCNTs arranged in 
circular pattern. 

 

An initial twisting simulation of the above structure is carried out for both hexagonal and 

circular pattern. We calculated the average interaction energy per atom of both the structures 

using REBO and LJ potentials and it was seen that the circular pattern is energetically more 

stable when compared to hexagonal pattern. Hence we simulate a circular pattern. Due to many 
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parameters like temperature, pull rate etc., involved in molecular dynamics we simulate the large 

array using molecular mechanics. As simulating the slide in the above structure takes very long 

time even on a supercomputer we decrease the size of the problem to a reasonable size. For our 

simulation we consider a set of 19 CNTs. Each tube has an overlap length of (t-5) nm where t is 

the total length of each nanotube. The configuration of all CNTs is (10, 10). The overlap pattern 

is shown below, 

 

Figure 6-3 A schematic depicting how each CNT is constructed with an overlap length of (t-
5) nm. 

 

 A thread of 60nm length with 90 degree applied twist is shown below, 

 

 

 

         t nm 

t nm 

5nm 
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Figure 6-4 Perspective view of a 60nm long SWCNT bundle which is moment twisted to 90 
degrees. 
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Figure 6-5 Cross section view of Figure 6-4 showing the 10 CNTs being pulled. 
 

We consider 4 cases where the length of individual tubes t takes the values 40nm, 60nm, 

80nm and 100nm. We select 10 alternate CNTs as shown in Figure 6-5 and apply displacement 

to the top layer of these 10 nanotubes while the bottom layer of remaining 9 nanotubes is held 

rigid. This is to mimic the sliding observed in CNT threads. We carry out the simulation using 

molecular mechanics. A displacement of 0.05Å is applied for each step to the selected atoms in 

top layer and minimization is carried out for each step after displacement is applied. During the 

simulation we observe the forces acting on the 10 tubes due to LJ interactions and sum up the 

forces acting along z direction to evaluate how much resistance the nanotubes are encountering. 

CNTs being pulled

CNTs being pulled

CNTs being 
pulled
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This force is a direct representation of the strength of the thread as this resistance is the force that 

is helping to avoid the slip. The evaluated forces are shown below, 

 

Figure 6-6 Maximum pulling force encountered in selected SWCNTs while pulling for 
moment twist. 

 
Stress is evaluated by dividing the obtained forces on 10 tubes by the circular area 

formed by the 19 tubes, (19*π*r2) where ‘r’ is the radius of the CNT i.e. 6.78 Å. 
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Figure 6-7 Maximum stress encountered in selected SWCNTs while pulling for moment 
twist.  

 
We can see from Figure 6-6 and Figure 6-7 that the dependence of the strength of the 

CNT bundles varies with the increase in length. First point to be noticed is that the force does not 

scale linearly with the increase in contact/overlap length. Also initially for smaller contact length 

twist does not seem to improve the strength but with increase in contact length the trend changes. 

We need to consider that the twist is moment twist and does not span the entire tubes as in the 

case of prescribed twist. It can be concluded from the graphs that there exists rather a set of 

values i.e., a set of length and angle for which the strength of the bundle will be strongest. 
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Chapter 7 Conclusions and future work 

 

In this thesis we made an attempt to evaluate the load transfer in bundles and also the 

tensile strength of rope like bundles at nanoscale with respect to the twist using molecular 

dynamics and molecular mechanics. Our main goal is to identify the properties at the nanoscale 

in CNT rope-like bundles and identify what to expect from macroscopic CNT ropes. 

7.1 Load transfer in SWCNTs 

A bundle of array of SWCNTs is arranged in circular fashion and the load transfer 

capability of the tubes measured by pulling a CNT in between the nanotubes. The resistive force 

acting on the center tube as shown in Figure 4-4 is considered to be the direct representative of 

the load transfer capability of surrounding tubes to the center nanotube. The center nanotube is 

pulled for various twists in the surrounding nanotubes, and also the twist is introduced in two 

different methods.  

Results from constant temperature simulations (Figure 4-10, Figure 4-11) show that at a 

twist angle of 30 degrees the best load transfer is observed for a higher pull rate. For lower pull 

rates we can see that the case with no twist seems to show the maximum load transfer. Here we 

need to understand that we are not checking for convergence at every step of molecular 

dynamics while pulling, as it would make the simulation unrealistically long. Hence, a slower 

pull might also represent LAMMPS ability to capture the dynamics of the simulation better than 

higher pull rate simulation. Also, the pull rates might have an effect on the nature of force acting 

on the center nanotube. As the ends of the nanotube are not capped there might be large 

fluctuation of forces at the ends, to counter this we measure the force acting on a selected band 

of atoms. From the results (Figure 4-12, Figure 4-13) we can see that the load transfer seems to 
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be maximum for the case of 30 degrees twist. Note that in Figure 4-12 the trend of the resistive 

forces suggests no twist case to be the most favorable. However, it is important to note that the 

twist does not go all the way to the bottom in the moment twist case as compared to that of 

prescribed twist case of same angle. Hence, the band of atoms selected may not be the true 

representative of the twist angle. In this case Figure 4-13 best represents the twist observed in 

CNT ropes. Similarly results from molecular mechanics simulations (Figure 4-14, Figure 4-15) 

which do not account for temperature effects also support the fact that 30 degrees twist may 

provide the best load transfer in a CNT rope. 

Our analytical model in 5.2 and simulation results in section 5.1 both suggest that under 

pure tensile loading conditions the force in the bundle for higher twist cases can be lower than 

the forces for lower twist cases. An optimum value of 900 is suggested for such loading 

conditions. 

7.2 Slide in arrays 

To examine the effect of twist angle on tensile strength we simulated a large bundle of 

nanotubes representing a CNT rope. None of the tubes spanned the whole length, which is 

similar to discontinuous fibers (CNTs) observed in the CNT rope. By sliding selected number of 

tubes and measuring the resistive forces, trends of the data with respect to twist and bundle 

length have been established.  

From the results (Figure 6-6, Figure 6-7) we can see that initially twist did not seem to 

provide any type of advantage over the untwisted bundles. But as length increases we observe an 

increase in strength of the bundle. Increase in strength is observed with increase in twist angles 

till around 60 degrees for higher length cases. The forces do not scale with the increase in bundle 
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length. For lower twist cases the forces do seem to scale initially, but as length of the CNT 

bundle increases this scaling is not significant. From the observations in both load transfer and 

slide simulations, it seems a twist angle of 30 degrees provides the best load transfer and 

maximum strength in a CNT ropes. We can see that the interactions among the CNTs are more 

of a surface effect meaning the interactions among the different CNTs play a major role which in 

turn depends on the individual orientation (chirality). Experimental results [51, 52] suggests a 

twist angle of 20 degrees gives us the best tensile strength. In [53] author points that a roughly 

inverse relation between tensile strength and twisting angle in the range of 13-40 degree. From 

experiments carried out [54] results indicate a twist angle of 30 degrees is most favorable, 

agreeing with our simulation results. The preparation recipe, conditions and spinnability of CNT 

arrays play a role in the rope properties, but overall a lower twist in CNT ropes is suggested [16, 

51-53] for higher tensile strength which is in line with our simulation results. 

Though the strength for 60 degrees case from Figure 6-7 seems to be the highest the 

overall strength might be a function of both length and twist angle, suggesting that the problem 

of load transfer may not be scalable with length alone but rather is a function of length and twist 

angle.   

7.3 Future work  

Most of the CNTs are manufactured in the form of MWCNTs rather than SWCNTs. Thus 

the yarns are usually produced using MWCNTs unless specified. It will be more precise if we 

simulate MWCNTs. The problem of MWCNTs is much more complex involving various 

parameters like chiralities, number of walls etc. The major hurdle here is the problem size; an 

attempt should be made to see if they behave in a fashion similar to the yarns made from 

SWCNTs.  
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In Chapter 6 the slide in a large bundle of CNTs is done for a moment twist case, for 

uniformity and to have a wide range of data we need to consider doing the simulation for a 

prescribed twist case. 

The simulations in this thesis might be considered a good starting step but more 

simulations for various test cases with longer length and larger bundles need to be done. This 

will ensure the transferability of these results to a macroscale and test our hypothesis that load 

transfer may be a function of length and twist angle. Though simulating macroscale simulations 

of CNT yarns using molecular dynamics is impractical if not impossible, simulations for varying 

chiralities, arrangements, lengths should be attempted to get a better overall picture. 

As stated above a full molecular dynamics simulation for macroscale problem may not be 

possible. To overcome this, a multiscale approach to simulate the ropes seems logical. This will 

help us to get results for CNT ropes at macroscale with a comparable accuracy to molecular 

dynamics. Due to the results being more dependent on surface characteristics dictated by the van 

Der Waal’s interactions, a multiscale simulation of large ropes will definitely be helpful.  

 Though the development of a multiscale framework to address the problem of simulation 

of large ropes will give us results comparable to yarns produced in labs, conclusive experimental 

data is needed for comparison purposes. Large variation in data exists due to the differences in 

various manufacturing processes of CNTs and variation in yarn forming techniques. One way to 

overcome this would be to simulate large ropes using multiscale framework which also addresses 

the change in the atomic structure for each yarn composition. Even if this is done, conclusive 

experimental data linking each yarn configuration will be helpful.   
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