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Abstract

Nonparametric smoothing, a method of estimating smooth functions, has gained increas-

ing popularity in statistics and application literature during the last few decades. This

dissertation has focused primarily on the nonparametric estimation in quantile regression

(Chapter 1) and an application of nonparametric estimation to financial asset pricing

(Chapter 2).

In the first essay (Chapter 1), we consider the estimation problem of conditional quan-

tile when multi-dimensional covariates are involved. To overcome the “curse of dimension-

ality” yet retain model flexibility, we propose two partially linear models for conditional

quantiles: partially linear single-index models (QPLSIM) and partially linear additive

models (QPLAM). The unknown univariate functions are estimated by penalized splines.

An approximate iteratively reweighted penalized least square algorithm is developed. To

facilitate model comparisons, we develop effective model degrees of freedom for penalized

spline conditional quantiles. Two smoothing parameter selection criteria, Generalized

Approximate Cross-validation (GACV) and Schwartz-type Information Criterion (SIC)

are studied. Some asymptotic properties are established. Finite sample properties are

investigated through simulation studies. Application to the Boston Housing data demon-

strates the success of proposed approach. Both simulations and real applications show

encouraging results of the proposed estimators.
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In the second essay (Chapter 2), we investigate whether the conditional CAPM helps

explain the value premium using the single-index varying-coefficient model. Our empirical

specification has two novel advantages relative to those commonly used in the previous

studies. First, it not only allows for a flexible dependence of conditional beta on state

variables but also modeling heteroskedasticity. Second, from a large set of candidate state

variables, we identify the most influential ones through an exhaustive variable selection

method. We have also developed statistics to test the functional form of conditional beta

and alpha, which provides justifications for or against the practices of letting conditional

beta depend linearly on state variables and assuming constant alpha. Consistent with

the notion that the value premium tends to be riskier during business recessions than

during business expansions, we find that its conditional beta co-moves with unemployment

and inflation, the two most closely watched gauges of aggregate economy by the Federal

Reserve, and the price-earnings ratio. Realized beta does not subsume all the other

explanatory variables when we include the realized beta as a state variable. The alpha

is smaller for the conditional CAPM than for the unconditional CAPM; nevertheless,

neither model fully explains the value premium.

Key Words: Additive Model; Conditional CAPM; Partially Linear Model; Penal-

ized Splines; Single-Index Models; Semiparametric Model; Smoothing Parameter; Value

Premium; Variable Selection.
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Chapter 1

Dimension Reduction For Quantile

Regression
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1.1 Introduction

This study is motivated by analyzing the well-known Boston Housing data. The dataset

contains 506 observations of the median price of owner-occupied homes of suburban

Boston together with 13 variables from the 1970 census. Among the 13 covariates, most

variables are continuous in nature while some are categorical. For example, variable Chas

is a Charles River dummy variable of value 1 if tract bounds river and 0 otherwise. Vari-

ables such as rm: average number of rooms per dwelling; tax: full-value property-tax;

ptratio: pupil-teacher ratio by town; lstat: percentage of lower status of the population;

dis: weighted distances to five Boston employment centers; however, are continuous in

nature. The dataset and detailed description are available through the Stat library at

Carnegie Mellon University and are ready to use in R.

The dependent variable of interest the median housing price medv and many covariates

are left-skewed. Hence, quantile regression or conditional quantile (see the seminal work

Koenker and Bassett 1978) can be naturally used to examine this data. Let Y be the

response variable of the median housing price medv, and Z be the covariate vector includ-

ing the variables such as the dummy variable Chas. Let covariate vector X denote the

remaining variables, consisting of X1 = rm, X2 = log(tax), X3 = ptratio, X4 = log(lstat)

etc. for example. To model the τ -th conditional quantile of the response Y , a linear

quantile regression model takes the form

qτ (Y |X,Z) = a+Xα+ Zβ.

Linear quantile regression is simple in computation and easy-to-interpret. However, im-

portant features of nonlinearity that have been clearly observed (e.g. Figure 5) can not

be captured. On the other hand, one may model the conditional quantile fully non-

parametrically (Chaudhuri 1991a, 1991b). Nevertheless, for practical problems, the fully
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nonparametric model suffers from the well-known curse of dimensionality.

To overcome the “curse of dimensionality” yet retain model flexibility, we propose

two partially linear models for conditional quantiles: partially linear single-index models

(QPLSIM) and partially linear additive models (QPLAM). The partially linear single-

index models for conditional quantiles takes the form

qτ (Y |X,Z) = g(Xα) + Zβ. (1.1)

QPLSIM has two components: the linear combination Xα which is often termed as

single-index enters the model via a univariate nonparametric link function g(·) and Zβ

enters the model as a partially linear term. By reducing the dimensionality from that

of a general covariate vector X to a univariate single-index Xα, QPLSIM avoids the so-

called “curse of dimensionality”. Partially linear term also enjoys easier interpretation

of the effect of each variable. It is worth noting that when the univariate link function

g(·) is monotonic, the single-index coefficient α of model (1.1) retains similar ease-of-

interpretation as that in the linear quantile regression while allowing for curvature through

the univariate nonparametric link function.

Model (1.1) is quite flexible to include single-index models and partially linear models

as special cases. When there are no partially linear term Zβ, model (1.1) reduces to the

single-index quantile models (Wu, Yu and Yu 2010). Based on their estimation, Kong

and Xia (2012) investigated the Bahadur representation of single-index parameter esti-

mators. Both papers adopt local linear methods to estimate the univariate link function

g(·). Chaudhuri, Doksum and Samarov (1997) proposed average derivative approach,

where the single-index coefficient is estimated by taking an expectation of the vector of

partial derivatives of the conditional quantile with respect to the covariates. Since this

approach requires multivariate kernel regression, it is less appealing in practice with high-

dimensional covariates. Adding partially linear terms is more desirable when categorical
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variables such as chas are present. In fact, when the single-index coefficient is known

or the covariate X is univariate, model (1.1) reduces to partially linear models. For ex-

ample, He and Liang (2000) studied partially linear errors-in-variables quantile models.

Chen and Khan (2001) studied partially linear censored quantile regression. Lee (2003)

studied efficient estimator for partially linear terms. Most recently, Härdle, Ritov and

Song (2012) studied bootstrap approximation for uniform confidence band.

The second approach we propose is partially linear additive models for quantile re-

gression (QPLAM)

qτ (Y |X,Z) = a+ g1(X1) + · · ·+ gd(Xd) + Zβ, (1.2)

which include additive models and partially linear models as special cases. Additive

models are popular for dimension regression which replace the linear component by a

sum of univariate nonparametric functions over the components of X; see e.g. De Gooijer

and Zerom (2003) on kernel based marginal integration, Yu and Lu (2004) on local linear

smoothing, Horowitz and Lee (2005) on two-stage estimator for quantile regression.

Note that QPLAM model (1.2) reduces dimensionality nicely but does not incorporate

interactions of X in the current structure. QPLSIM model (1.1) applies a nonlinear link

function to the indexXα, hence some interactions between the covariates can be modeled.

Computationally QPLSIM are more complex partly due to this nonlinear structure on

index parameters where nonlinear optimization has to be involved. In this study, we find

that both approaches are appealing alternatives for dimension reduction on conditional

quantile regression.

We estimate the nonparametric functions in models (1.1) and (1.2) using penalized

splines (P-splines). Penalized splines have gained increasing popularity, especially due to

the computational expediency and easy-adaptability to more complex models (see Rup-

pert, Wand and Carroll 2003 for a review). Yu and Ruppert (2002) show that penalized
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spline estimation for partially linear single-index models in mean regression are computa-

tionally stable and expedient, while local method estimation may become computationally

unstable (Carroll, Fan, Gijbels and Wand 1997). To the best of our knowledge, this is the

first work to adopt penalized spline estimation for single-index quantile regression.

Furthermore, we study the effective degrees of freedom in P-splines quantile regres-

sion models and investigate smoothing parameter selection in detail. First, we develop the

measure for effective model degrees of freedom for the proposed partially linear single-

index models (QPLSIM) and partially linear additive models (QPLAM). The effective

degrees of freedom help to facilitate model comparisons. For QPLAM, the P-spline ap-

proach also easily allows different smoothness for different additive functions by assigning

different smoothing parameters accordingly. Second, we study in simulations two smooth-

ing parameter selection criteria, Generalized Approximate Cross-validation (GACV) and

Schwarz-type information criterion (SIC). Incorporating model degrees of freedom, we

compare model goodness-of-fit for a variety of conditional quantile models with Boston

Housing data. The findings are interesting. Among the single-index models, QPLSIM

models outperform single-index models without partially linear terms. Similar results

are observed in the additive models. Both observations suggest that incorporating model

degrees of freedom, partially linear terms are useful to include in modeling conditional

quantiles. Among the two partially linear models, QPLSIM and QPLAM are compara-

ble in terms of model goodness-of-fit (see Table 1.5 and Table 1.6). Finally, simulation

studies with various error distributions show P-splines estimator for QPLSIM performs

well. Simulations with identical design as De Gooijer, Zerom (2003) and Horowitz and

Lee (2005) show the superiority of P-splines estimator to the existing additive quantile

estimators (see Table 1.3).

While it is natural to consider QPLSIM (1.1) for dimension reduction, its estimation
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is by no means trivial. Note that the single-index parameter α is obtained through a

d-dimensional nonlinear optimization which is subject to possibly local optimum. From

our personal communication, Carroll et al. (1997), using local linear approach, observe

unstable convergence even with a moderate three dimensional single-index covariates in

the mean regression context. Quantile regression adds more challenge in the estimation.

Due to the non-differentiablity nature of the objective function, the so-called “check”

function in quantile regression, typically linear programming is involved even in a simple

linear quantile regression. Recently, Wu, Yu, Yu (2010) propose iterative backfitting

algorithm through linear programming using local linear approach without considering

partially linear terms. Only comparison of model average absolute residuals is considered

due to lack of appropriate model complexity measure.

In this paper, we develop an approximate iteratively reweighted least square algorithm

that is not only computationally expedient but also allows for the measure of model

degrees of freedom and smoothing parameter selection. The main idea of our algorithm

is centered on minimizing a check function along with a roughness penalty for models

(1) and (2), where the check function is approximated by a differentiable function near

a small neighborhood of the origin. This idea can be traced back to Nychka, Gray,

Haaland, Martin and O’Connell (1995) and have also been adopted in Yuan (2006) and

Li, Liu and Zhu (2007) in different modeling contexts. Based on this approximation, we

develop effective model degrees of freedom which facilitate model comparisons using mean

absolute deviations.

The rest of the paper is organized as follows. Section 1.2 introduces the partially

linear single-index models (QPLSIM) for the conditional quantile, describes the P-splines

estimation together with algorithms, establishes some asymptotic properties of the pro-

posed estimators and presents the simulation results. Section 1.3 provides the study of
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the partially linear additive conditional quantile models (QPLAM). Section 1.4 presents

an application to the Boston Housing data. Section 1.5 concludes the paper. Technical

proofs are relegated to Section 1.6.

1.2 Partially Linear Single-Index Conditional Quan-

tiles

We first formally introduce the QPLSIM model and outline P-splines estimation, then dis-

cuss smoothing parameter selection and algorithm, and finish this section with asymptotic

properties and finite sample simulation studies.

1.2.1 The Model

Suppose we have n observations
{
(xi, zi, yi)

}n

i=1
of (X = x,Z = z, Y = y). Given τ ∈

(0, 1) and covariates xi and zi, the partially linear single-index model we propose for the

τ -th conditional quantile of the i-th observation yi is

qτ (yi|xi, zi) = gτ (xiατ ) + ziβτ , (1.3)

where

• covariates xi and zi are d and dz-dimensional row vectors respectively; column

vectors of the single index parameter ατ in Rd, the partially linear parameter βτ in

Rdz , and the univariate function gτ : R → R are subject to different τ ;

• for identifiability, the single index parameter ‖ατ‖ = 1 and its first non-zero element

of ατ is positive.

The identifiability constraint of the single-index parameter ατ can be handled by reparam-

eterization to a (d−1)-dimensional unconstrained parameter by setting its first non-trivial
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component as a positive normalized constant. Details of the reparameterization are given

in Section 1.6. To further simplify our notation, we omit the subscript τ hereafter when

no confusion would occur.

1.2.2 P-splines For QPLSIM

Under model (1.3), the primary interest is to estimate the univariate function g(·), the
single-index parameter α and the partially linear parameter β. We estimate the unknown

univariate link function g(·) by penalized splines or P-splines. P-spline approach has

become an increasingly popular method (Ruppert, Wand and Carroll 2003), largely due

to its computational efficiency, its flexibility to capture nonlinearity, and its capability of

easily adapting to more complex problems.

Specifically, given the single-index parameter α or single-index u = Xα, the un-

known univariate link function can be modeled by g(u) = B(u)γ, where B(u) =

(B1(u), · · · , Bdγ (u)) is a dγ-dimensional row vector of spline basis evaluated at the single-

index u and γ is the spline coefficient column vector. Popular choices of the spline basis

are the computational stable B-spline basis and easy-to-understand truncated power basis.

For example, the p-degree truncated power basis can be represented by

B(u) = (1, u, · · · , up, (u− κ1)
pmax(u− κ1, 0), · · · , (u− κK)

pmax(u− κK , 0)) ,

where (κ1, · · · , κK) are the spline knots that are often placed at the equally spaced quan-

tiles of u and here dγ = 1 + p + K. Define θ =
(
α1, . . . , αd, γ1, . . . , γdγ , β1, . . . , βdz

)T
as

our column vector of parameters. Combine the partially linear term, our spline model for

the τ -th conditional quantile is

qτ (xi, zi;θ) = B(xiα)γ + ziβ. (1.4)
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The parameter vector θ is estimated by minimizing

Qn,λ,τ (θ) =
1

n

n∑
i=1

ρτ (yi − qτ (xi, zi;θ)) + λγTDγ

=
1

n

n∑
i=1

ρτ (yi −B(xiα)γ − ziβ) + λγTDγ, (1.5)

where ρτ (u) = |u| + (2τ − 1)u, 0 < τ < 1 is a check function. The second term is a

roughness penalty term that alleviates possible overfitting. λ ≥ 0 is a penalty parameter

that controls the smoothness of the fitting curve, which will be further discussed in Section

1.2.4. D is some symmetric positive semi-definite matrix that can be properly chosen to

yield the usual quadratic integral penalty. Alternatively, a simple choice of D is a diagonal

matrix with the first p + 1 elements being 0 and remaining diagonal elements as 1 (Yu

and Ruppert 2002; Ruppert, Carroll Wand 2003). That is, γTDγ =
∑K

l=1 γ
2
p+l when

truncated power basis is used.

1.2.3 A Check Function Approximation and Degrees of Freedom

The check function ρτ (·) in the above objective function (1.5) is non-differentiable at the

origin. The combination of non-differentiable check functions and the quadratic roughness

penalty pose serious computational challenges. One natural idea is to approximate the

check function with a differentiable square loss function near a small neighborhood of the

origin. The approximated check function takes the form of

ρτ,ε(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2τu, u > ε

2τu2/ε, 0 ≤ u < ε

2(1− τ)u2/ε, −ε ≤ u < 0

−2(1− τ)u, u < −ε

,

which only differs ρτ within the region (−ε, ε). By setting ε small enough, a good smooth

approximation for ρτ can be obtained. This idea is originated in Nychka et al. (1995),
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and adopted in Yuan (2006) and Li, Liu and Zhu (2007) in different contexts. The

central idea of such approximation is that as in the least square mean regression an

iterative reweighted penalized least square (IRPLS) algorithm can be easily developed

to estimate the conditional quantile. The model “degrees of freedom” can be naturally

obtained using the trace of “hat matrix” (e.g. Hastie and Tibshirani 1990; Yu and Ruppert

2002). With the degrees of freedom measure, smoothing parameter selection naturally

follows using some information criterion or cross validation. It is worth noting that the

“degrees of freedom” can be used as a measure of model complexity to facilitate further

model comparison. To the best of our knowledge, it is not clear how to obtain model

degrees of freedom measure for quantile regression using local methods (e.g. Wu et al.

2010). Alternatively, L1 type check function along with L1 type roughness penalty can

be minimized using linear programming optimization (see e.g. Koenker, Ng and Portnoy

1994). Using such approach, however, the model degrees of freedom cannot be easily

obtained.

In our implementation, when the check function ρτ (·) is approximated with the dif-

ferentiable function ρτ,ε(·), we can then take the first derivative of the objective function

(1.5) with respect to θ.

∂Qn,λ,τ,ε(θ)

∂θ
= 0 ⇒ 1

n

n∑
i=1

ρ′τ,ε(yi − qi(xi, zi;θ))(−q′
i) + 2λPθ = 0

⇒ 1

n

n∑
i=1

2(yi − qi(xi, zi;θ))
ρ′τ,ε(yi − qi(xi, zi;θ))

2(yi − qi(xi, zi;θ))
(−q′

i) + 2λPθ = 0,

where q′
i is a column vector of the first derivative of qi(xi, zi;θ) with respect to θ, and P

is a diagonal matrix whose first dγ diagonal elements are the diagonal elements of D and

the rest are 0’s. While in the weighted least square regression with penalty, to minimize

1

n

n∑
i=1

(yi − qi(xi, zi;θ))
2Wi + λθTPθ,
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its first order condition is

1

n

n∑
i=1

2(yi − qi(xi, zi;θ))Wi(−q′
i) + 2λPθ = 0.

By comparing the two first order conditions, we can optimize (1.5) by iteratively solving

a weighted least square problem with penalty, where the weights are given by

Wi =
ρ′τ,ε(yi − qi(xi, zi;θ))

2(yi − qi(xi, zi;θ))
. (1.6)

The “hat matrix” Hλ can be obtained in the last iteration through

Hλ = V(VTWV + nλP)−1VTW, (1.7)

where V with its i-th row Vi = (B(xiα), zi) is similar as the “design matrix” in the mean

regression; and W = diag(Wi) is the weight matrix with each diagonal element Wi given

by (1.6). The conditional quantile can be estimated by

q̂λ = Hλy,

where y is the response vector.

When X is univariate or the single-index parameter is known, the model degrees of

freedom can be obtained by tr(Hλ). Note that a computationally expedient formula is

tr(Hλ) = tr(V(VTWV + nλP)−1VTW) = tr((VTWV + nλP)−1VTWV), (1.8)

where only the trace of matrices of dim(dγ + dz)× dim(dγ + dz) need to be calculated.

1.2.4 Smoothing Parameter Selection

Selecting a suitable value of smoothing parameter is crucial to any good curve fitting.

Koenker, Ng and Portnoy (1994) and He, Ng and Portnoy (1998) use Schwarz Informa-

tion Criterion (SIC) in the smoothing spline quantile regression. In both papers, the
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number of points interpolated was used as a heuristic estimate of the effective model

degree of freedom. It is worth noting that in the implementation of He, Ng and Port-

noy (1998), penalized B-splines with smaller number of knots were used for practical

computing reasons, which is in the same spirit of P-splines. Another popular smoothing

parameter selection criterion in spline context is Generalized Cross Validation (GCV).

Yuan (2006) studied Generalized Approximate Cross-validation (GACV) in the univari-

ate smoothing spline quantile context. For our QPLSIM framework, with the effective

degrees of freedom obtained in Section 1.2.2, smoothing or penalty parameter λ can be

selected by minimizing:

SIC(λ) = ln
[ 1
n

n∑
i=1

ρτ{yi − q̂λ(xi, zi;θ)}
]
+
ln(n)

2n
df, or (1.9)

GACV(λ) =

∑n
i=1 ρτ{yi − q̂λ(xi, zi;θ)}

n− df
, (1.10)

where the df is the effective model degrees of freedom, a measure of complexity of the

model. Note that both smoothing parameter selection criteria depend on the degrees of

freedom, which in turn depend on which smoothing parameter is selected. We implement

and study in detail the degrees of freedom and compare model performances using the

two different information criteria, as shown later in the simulation studies.

1.2.5 Algorithm

We develop an iteratively reweighted penalized least squares (IRPLS) algorithm for the

proposed QPLSIM. We minimize Qn,λ,τ (θ) for a given λ and the optimum λ is chosen

over a grid search by minimizing SIC or GACV. We summarize our estimation algorithm

as follows.

Step 0: For a given τ and fixed λ, set an approximation threshold ε. In our implemen-
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tation, ε is set to be effectively zero (e.g. ε = 10−4) relative to the data values.

Initialize θ̂ = (α̂T, γ̂T, β̂
T

)T.

(A) Initiate α̂. For example, linear quantile regression estimates for the model

qτ (y) = xα + zβ may be used. Normalize α̂ such that ‖α̂‖ = 1 and its first

element is positive for identifiability.

(B) Given α̂, initialize (γ̂, β̂). Given preliminary estimates of the index values

{ui = xiα̂ : i = 1, · · · , n}, minimize the penalized sum of squared errors

Q(γ,β) = n−1
∑n

i=1{yi −B(ui)γ − ziβ}2 + λγTDγ. This is equivalent to the

ridge regression estimates (γ̂T, β̂
T

)T = (VTWV + nλP)−1VTWy, where W

is taken as the identity matrix. The spline basis B(u) may use equally spaced

knots at sample quantiles of the index u1, · · · , un. Obtain initial quantile esti-

mates q̂ = (q̂1, . . . , q̂n)
T by (1.4).

Step 1: Iteratively reweighted solve for γ̂ and β̂. Given α̂ and the current estimates q̂

and (γ̂, β̂), find the iteratively reweighted least square estimates by

(γ̂
T(k+1), β̂

T(k+1)
)T = (VTW(k)V + nλP)−1VTW(k)y,

where W(k) is the weight matrix as in (1.6). Update q̂(k+1) by (1.4) and W(k+1) by

(1.6). Iterate this step until sequence (γ̂(k), β̂
(k)
) converges under some criterion.

Step 2: Given (γ̂, β̂), minimize Q(α;γ,β) =
∑n

i=1 ρτ,ε{yi − q(α;xi, zi,β,γ)} over α.

Step 3: Iterate Step 1 and 2 until α̂ and (γ̂, β̂) both converge under some criterion.

Remark:

1. In the initiation Step 0, we recommend trying various initial starting points. For

example, an initial estimate can be generated randomly on the unit half sphere with

13



positive first coefficient. Without partially linear terms, Wu, Yu and Yu (2010)

suggest using average derivative estimate (ADE) as the starting point. Alternatively,

linear quantile coefficients may be used as starting value. Zhu, Huang and Li (2012)

point out that under some linearity conditions, linear quantile estimator is consistent

with the single-index quantile estimator.

2. In Step 2, the problem is a d-variate nonlinear minimization problem; we use fmin-

search() from MATLAB’s optimization toolbox. One could use other optimization

software, for example, nls in S-PLUS or PROC NLIN in SAS.

3. Note that the knot locations and V change when the single-index estimates change

between iterations.

4. In the implementation, unless indicated otherwise, we use 51 equally-spaced log-

scaled grid points on log10(λ) ∈ [−5, 5] for the smoothing parameter grid search.

Quadratic spline with 20 equally spaced quantile knots are used.

1.2.6 Some Asymptotic Properties

As discussed in Yu and Ruppert (2002), we provide fixed-knot asymptotics for practical

reasons. The following large sample properties for QPLSIM are established to facilitate

further inferences.

Theorem 1. If θ̂ =
(
α̂

T, γ̂
T, β̂

T
)T

is the minimizer of (1.5), under the assumptions

(A1) − −(A4) in Section 1.6, if the smoothing parameter λn = o(n− 1

2 ), θ̂ is a consistent

estimator of θ0 and converges to a normal distribution,

√
n(θ̂ − θ0)

D→ N(0, τ(1− τ)JΩ−1
1 Ω0Ω

−1
1 JT), (1.11)
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where J is the Jacobian matrix for reparameterization of the single-index parameters. J,

Ω0 and Ω1 are defined in detail in Section 1.6.

1.2.7 Simulation Studies for QPLSIM

We show three simulation examples with various error distributions to study the finite

sample properties of the proposed QPLSIM estimators.

Example 1 – homoscedastic normal error

Example 1 is a sine-bump model with symmetric homoscedastic errors. The true quantile

function here is sum of a linear term and a nonlinear sine function on an index.

y = sin
(π(u− A)

C − A

)
+ zβ + E, (1.12)

where u = xα; A =
√
3/2 − 1.645/

√
12, C =

√
3/2 + 1.645/

√
12; x i.i.d. ∼ trivariate

Uniform(0,1), z ∼ N(0,1), x’s and z are mutually independent; E ∼ N(0, 0.12); α =

(1, 1, 1)T/
√
3, β = 0.3.

For a series of quantiles 10%, 30%, 50%, 70% and 90% respectively, we simulate 100

samples with each sample size n = 200. We use 20-knot quadratic splines. One can see

from the estimation results in Table 1.1 that the algorithm described in Section 1.2.5

works well. The biases are negligible and the average estimates of α and β are very close

to the true values. This is confirmed in the boxplots of the 100 coefficient estimates for

median quantile in Figure 1.1, where most estimates are centered around the true values

with small deviations. From Table 1.1, one can also see that the Monte Carlo simulation

variances are at similar scale as the estimated asymptotic variances calculated by (1.11).

We also study the performance of SIC and GACV in choosing smoothing parameter

λ. We consider the representative lower 10%, 30% and 50% quantiles for this symmetric
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Table 1.1: Monte Carlo simulation study for partially linear single-index quantile regres-
sion

n=200 Estimate α̂1 α̂2 α̂3 β̂

τ = 0.1 Average 0.5788 0.5775 0.5751 0.2984
Asym. s.e. 0.0197 0.0228 0.0208 0.0146

MC s.e. 0.0140 0.0179 0.0143 0.0144
Bias 0.0014 0.0002 -0.0023 -0.0016
MSE 0.0002 0.0003 0.0002 0.0002

τ = 0.3 Average 0.5792 0.5749 0.5775 0.3018
Asym. s.e. 0.0124 0.0129 0.0129 0.0105

MC s.e. 0.0126 0.0136 0.0124 0.0078
Bias 0.0018 -0.0024 0.0002 0.0018
MSE 0.0002 0.0002 0.0002 0.0001

τ = 0.5 Average 0.5764 0.5769 0.5783 0.2986
Asym. s.e. 0.0142 0.0163 0.0149 0.0104

MC s.e. 0.0112 0.0137 0.0137 0.0090
Bias -0.0009 -0.0005 0.0010 -0.0014
MSE 0.0001 0.0002 0.0002 0.0001

τ = 0.7 Average 0.5752 0.5769 0.5795 0.3011
Asym. s.e. 0.0162 0.0160 0.0159 0.0105

MC s.e. 0.0128 0.0123 0.0141 0.0090
Bias -0.0021 -0.0005 0.0022 0.0011
MSE 0.0002 0.0002 0.0002 0.0001

τ = 0.9 Average 0.5775 0.5750 0.5788 0.2988
Asym. s.e. 0.0159 0.0170 0.0155 0.0117

MC s.e. 0.0187 0.0138 0.0157 0.0118
Bias 0.0002 -0.0023 0.0015 -0.0012
MSE 0.0004 0.0002 0.0002 0.0001

The table reports Monte Carlo simulation estimates, true parameters, estimation bias,
asymptotic standard errors, Monte Carlo standard errors and mean square errors (MSE).
True parameter are: α0 ≈ (0.5774, 0.5774, 0.5774)T and β0 = 0.3.
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Figure 1.1: Boxplots of single-index and partially linear coefficient estimates of QPLSIM

for Simulation Example 1
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The plots report the boxplots of the estimates of single-index parameters (α) and

partially linear coefficient parameters (β). True parameters are:

α0 ≈ (0.5774, 0.5774, 0.5774)T and β0 = 0.3 (horizontal lines).
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distribution. To study the smoothing parameter at a finer scale, for each simulated

sample, we find the λ’s that minimize each criterion over the 80 equally spaced grids of

log10(−5, 5). Define

MAD =

∑n
i=1 ρτ{yi − q̂λ(xi, zi;θ)}

n− df
and MSE =

∑n
i=1{yi − q̂λ(xi, zi;θ)}2

n− df
,

where df is the effective model degrees of freedom. Based on 100 simulations, we calculate

the mean and standard deviations of MAD, MSE, and model degrees of freedom. The

results are summarized in Table 2. Based on either MAD or MSE, one can see that GACV

performs similar to SIC when sample size is small (n=200) and slightly better than SIC

in the larger sample (n=1000) in this simulation example. The model degrees of freedom

using GACV are larger than those of using SIC, which is also observed in Li, Liu and

Zhu (2007). In another words, GACV tends to select more complex models than SIC

does, which agrees with the general notion that SIC tends to select simpler models for its

heavier penalty. For illustration purpose, we report results using SIC in the the following

simulation studies and the Boston Housing data application.

Example 2 – heteroscedastic normal error

We consider a partially linear single-index model with heteroscedastic normal error. That

is,

y = 10sin(0.75u) + zβ +
√
sin(u) + 1E, (1.13)

where u = (x1 + 2x2)/
√
5; x1 and x2 are i.i.d. ∼ N(0, 0.252); zβ = 0.3z1 + 0.5z2; z1 is

i.i.d. N(0, 12) and z2 is binary variable with 0.4 probability of being 0 and 0.6 probability

of being 1; E ∼ N(0, 12), independent of x and z. We simulate 100 samples with sample

size n = 400 each. Figure 1.2 shows boxplots of the single-index coefficient estimates

for median quantile with 20-knot quadratic P-splines. One can see that the estimates
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Table 1.2: GACV and SIC performance comparison

τ n = 200 n = 1000
GACV SIC GACV SIC

0.10 MAD 0.1388 0.1391 0.1349 0.1363
s.e.(MAD) (0.0090) (0.0091) (0.0044) (0.0044)

MSE 0.0257 0.0260 0.0260 0.0263
s.e.(MSE) (0.0016) (0.0016) (0.0016) (0.0016)

d.f. 7.6894 7.0735 20.7290 12.6958
s.e.(d.f.) (0.5229) (0.2442) (3.8888) (1.0599)

0.30 MAD 0.0948 0.0954 0.0893 0.0898
s.e.(MAD) (0.0059) (0.0059) (0.0025) (0.0026)

MSE 0.0125 0.0126 0.0126 0.0127
s.e.(MSE) (0.0007) (0.0007) (0.0007) (0.0007)

d.f. 8.6347 7.9978 17.3686 12.5895
s.e.(d.f.) (0.3261) (0.7476) (4.0641) (0.6516)

0.50 MAD 0.0840 0.0848 0.0788 0.0795
s.e.(MAD) (0.0046) (0.0046) (0.0024) (0.0023)

MSE 0.0098 0.0099 0.0099 0.0101
s.e.(MSE) (0.0005) (0.0005) (0.0005) (0.0005)

d.f. 8.6311 7.6548 17.6300 12.8069
s.e.(d.f.) (0.4880) (0.8083) (4.0719) (0.7601)

The table reports the comparison results on the performance measures of using GACV
and SIC as the smoothing parameter selection criterion. MAD is the mean absolute error;
MSE is the mean squared error; d.f. are the model degrees of freedom.
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are close to and centered around the true values of (1, 2)T/
√
5 ≈ (0.4472, 0.8944)T with

small deviations. The partially linear coefficients estimates are close to the true value of

(0.3, 0.5)T with somewhat larger variations.

Figure 1.2: Boxplots of single-index and linear coefficient estimates for Simulation Exam-

ple 2
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Boxplot of coefficient estimates (100 replications)

The plot reports the boxplots of the estimates of single-index parameters (α) and

partially linear coefficient parameters (β). True parameters are: α0 ≈ (0.4472, 0.8944)T

and β0 = (0.3, 0.5)T.
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Example 3 – skew distribution

To show quantile regression is robust to skew distributions, we consider an example with

asymmetric exponential error. That is,

y = 5 cos(u) + exp(−u2) + zβ + E, (1.14)

where u = (x1 + 2x2)/
√
5; x1 and x2 are i.i.d. ∼ N(0, 12); zβ = 0.3z1 + 0.5z2; z1 is

i.i.d. N(0, 12) and z2 is binary variable with 0.4 probability of being 0 and 0.6 probability

of being 1; E ∼ Exp(1), and independent of x and z. Again we simulate 100 samples

with each sample size n = 400. Figure 1.3 shows the boxplots of the 100 single-index

coefficient estimates for the median quantile. Again one can see that the estimates are

close to and centered around the true values of (1, 2)T/
√
5 ≈ (0.4472, 0.8944)T with very

small deviations. Again, the partially linear coefficients estimates are close to the true

value of (0.3, 0.5)T with somewhat larger variations.

We have also conducted simulation studies with different sample size and different

noise level, the general observation is similar as above. Overall, we observe that the

iteratively reweighted penalized least squares algorithm for the proposed partially linear

single-index quantile regression model using P-splines is effective.
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Figure 1.3: Boxplots of single-index and linear coefficient estimates for Simulation Exam-

ple 3
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The plot reports the boxplots of the estimates of single-index parameters (α) and

partially linear coefficient parameters (β). True parameters are: α0 ≈ (0.4472, 0.8944)T

and β0 = (0.3, 0.5)T.
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1.3 Partially Linear Additive Conditional Quantile

Naturally, an alternative dimension reduction model to partially linear single-index con-

ditional quantile model (QPLSIM) is partially linear additive conditional quantile models

(QPLAM). Both proposed models avoid the “curse-of-dimensionality” by restricting the

functional form to some extent, where only univariate unknown function(s) need to be

estimated. We use similar notation for simplicity with hope that no confusion would

occur.

1.3.1 Model and Estimation for QPLAM

Given τ ∈ (0, 1) and n observations
{
(xi, zi, yi)

}n

i=1
of (X = x,Z = z, Y = y), the partially

linear additive model we propose for the τ -th conditional quantile of yi is

qτ (yi|xi, zi) = aτ + g1,τ (x1,i) + · · ·+ gd,τ (xd,i) + ziβτ , (1.15)

where aτ is the intercept term; gj,τ (·) is univariate unknown function of xj, j = 1, · · · , d;
βτ is unknown partially linear parameters. We need the conditions E{gj,τ (xj)} = 0 (j =

1, · · · , d) to make each additive component identifiable (Hastie and Tibshirani 1990; De

Gooijer and Zerom 2003; Yu and Lu 2004). Again we omit the subscript τ hereafter for

clean notation.

Each function gj(·) is estimated by P-splines, gj(xj) = Bj(xj)γj, where Bj(xj) is

the spline basis for the j-th additive component. The flexibility of P-splines allows for

different degrees and different numbers of knots of splines for each additive component.

For example, the spline model for each additive component can be pj degree with Kj

knots, which will specify spline coefficients of dj = pj+Kj+1 dimensions when truncated

power basis is used. To further simplify our notation, define the “design matrix” V =
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(VT

1 , . . . ,V
T

n)
T, with its i-th row

Vi =
(
1 B1(x1,i) · · · Bj(xj,i) · · · Bd(xd,i) zi

)
. (1.16)

and parameter column vector θ =
(
a,γT

1 , · · · ,γT

d ,β
T

)T

. The τ -th conditional quantile

can then be represented as

q(x, z;θ) = Vθ. (1.17)

In QPLAM models, we can use separate smoothing parameters to allow different

smoothness for different coefficient functions. Let λj ≥ 0 be the penalty parameter for

gj(·). We minimize the penalized average check functions

Qn,λ,τ (θ) =
1

n

n∑
i=1

ρτ (yi −Viθ) +
d∑

j=1

λjγ
T

j Djγj, (1.18)

where ρτ (u) is the check function and Dj is similarly defined such that γT

j Djγj =∑Kj

l=1 γ
2
pj+l. To handle the multiple smoothing parameters, denote

λ = diag(0, λ1, · · · , λ1, · · · , λd, · · · , λd, 0, · · · , 0)

and the corresponding penalty matrix P = diag(0,D1, · · · ,Dd, 0, · · · , 0) in such a way

that matches the dimensions of the parameter θ. Note that λj may differ if we use

separate smoothness for different additive components. For computational expediency,

instead of conducting a full d-dimensional grid search of smoothing parameters, we select

λj, j = 1, 2, . . . , d one at a time. That is, we first choose one common λ that minimizes

the smoothing criterion (SIC or GACV), then λj is chosen with the rest of λ’s are fixed.

Approximation to the above objective function and effective degrees of freedom calcu-

lations are carried out using the iteratively reweighted penalized least squares algorithm in

the same manner as in QPLSIM. We propose the following simple algorithm for QPLAM.

Step 0: For given τ and λ, set an approximation threshold ε. Start with an initial

estimator θ̂
(0)

= (â, γ̂T

1 , · · · , γ̂T

d , β̂
T

)T and obtain initial quantile estimates of q̂(0)
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by (1.17). For example, estimates from mean partially linear additive model or

linear quantile model can be used.

Step 1: Given the current estimate q̂(k) and (â(k), γ̂
(k)
1 , · · · , γ̂(k)

d , β̂
(k)
), find the iteratively

reweighted penalized least square estimates (â(k+1), γ̂
T(k+1)
1 , · · · , γ̂T(k+1)

d , β̂
T(k+1)

)T =

(VTW(k)V + nλP)−1VTW(k)y, where the weight matrix W(k) is given by (1.6).

Update q̂(k+1) by (1.17).

Step 2: Iterate Step 1 until sequence (â(k), γ̂
(k)
1 , · · · , γ̂(k)

d , β̂
(k)
) converges under some cri-

terion.

Effective degrees of freedom for P-spline QPLAM models are defined as df = tr(Hλ),

where Hλ = V(VTWV + nλP)−1VTW is from the last iteration of Step 1, and λ is

chosen to minimize GACV or SIC. Again we use the computationally expedient formula

for the trace calculation tr(Hλ) = tr((VTWV + nλP)−1VTWV).

For QPLAM, we also establish the following fixed-knot asymptotic results for infer-

ences.

Theorem 2. If θ̂ =
(
α̂, γ̂T

1 , · · · , γ̂T

d , β̂
T
)T

is the minimizer of (1.18), under the assump-

tions (A2) and (A4) in Section 1.6, if the smoothing parameter λn = max{λ1, · · · , λd} =

o(n− 1

2 ), θ̂ is a consistent estimator of the true θ0 and converges to a normal distribution,

√
n(θ̂ − θ0)

D→ N(0, τ(1− τ)Ω−1
1 Ω0Ω

−1
1 ), (1.19)

where Ω0 and Ω1 are defined in Section 1.6.

Note that computationally QPLAM is easier to implement in the sense that QPLAM

is linear in its parameters of spline coefficients and partially linear terms. On the other

hand, QPLSIM is nonlinear on the single-index parameters α. However, QPLAM assumes

no interactions between covariates while in QPLSIM some interactions may be modeled.
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1.3.2 A Simulation Study for QPLAM

We consider the model

y = 0.75x1 + 1.5sin(0.5πx2) + E, (1.20)

where covariates (x1, x2) are bivariate normal with mean 0, variance 1 and covariance ρ;

E ∼ N(0, 0.52) and independent of (x1, x2). We conduct the simulation at two correlation

levels between the covariates, low correlation of ρ = 0.2 and high correlation of ρ = 0.8.

For comparison purpose, this example is intentionally designed to be identical to the

simulation example originally conducted in De Gooijer and Zerom (2003) using marginal

integration and backfitting and benchmarked in following studies, e.g. Horowitz and Lee

(2005) with two-stage estimation. Note that additive models without partially linear

terms were considered in De Gooijer and Zerom (2003) and Horowitz and Lee (2005),

where the first linear term was treated as an additive component, even though it is in

fact linear. We conduct Monte Carlo simulation experiments 41 times as the same in

aforementioned studies for median quantile with sample sizes n=100, 200, 400, 800, and

1600 for comparison.

For comparison, we first fit our proposed P-spline additive quantile model treating

both terms as additive components. The estimated median quantile curves are presented

in Figure 1.4. One can see that the estimated curves are around the true median curves

except for boundary points of g2, where the bias is caused by fewer observations available.

When sample size increases, the estimated curves center around the true median curves

with less variations.

Naturally, we then fit our proposed P-spline partially linear additive quantile model

(QPLAM) treating the first component as a partially linear term. The estimating perfor-

mances of average absolute deviation errors (AADE) measure, defined as the average of
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Figure 1.4: Estimated median quantiles
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(b) n = 100, ρ = .8
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(e) n = 400, ρ = .2
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(f) n = 400, ρ = .8
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(g) n = 400, ρ = .2
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(h) n = 400, ρ = .8
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(i) n = 1600, ρ = .2
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(j) n = 1600, ρ = .8
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(k) n = 1600, ρ = .2
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(l) n = 1600, ρ = .8

The plots report the estimated median quantiles for additive component g1(x1) (first

two columns), g2(x2) (last two columns). The first and third columns are for ρ = 0.2 and

second and fourth columns for ρ = 0.8. Solid lines are the true quantile curves and

dotted lines are estimates.
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absolute deviation errors (ADE, De Gooijer and Zerom 2003):

ADEr(k) =
1

|N ′|
∑
i∈N ′

∣∣∣ĝrj (xrj,i)− gj(X
r
j,i)

∣∣∣, j = 1, 2; r = 1, 2, . . . , 41,

where N ′ is set of observations such that xj,r ∈ [−2, 2] to control for boundary effect.

The results shown in Table 1.3 indicate that our proposed P-spline estimating method

has the most favorable performance in terms of AADE. P-spline QPLAM with the first

component as a partially linear term yields the best AADE. Among the additive estima-

tors, our P-splines estimators have slightly smaller AADE than the two-stage estimator

(Horowitz and Lee 2005) for g1 and significantly smaller AADE for g2. Another important

feature is that the P-splines estimator performs equally well for high correlation covari-

ates. This feature is not observed in the marginal integration estimator. We have also

noticed fast computation and rapid convergence of P-spline in this experiment.
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Table 1.3: Monte Carlo simulation study for additive quantile regression

ρ n g1 (s.e.) PS g2 (s.e.) PS g1 MI g2 MI g1 BF g2 BF g1 2S g2 2S g1 PS(lin) g2 PS

0.2 100 0.0613(0.0277) 0.0728(0.0227) 0.1374 0.1818 0.0597 0.1425 0.0783 0.1497 0.0214(0.0145) 0.0706(0.0242)
200 0.0465(0.015) 0.0507(0.0149) 0.1066 0.1272 0.0511 0.1120 0.0519 0.1125 0.0155(0.0082) 0.0503(0.0147)
400 0.0362(0.0131) 0.0387(0.0124) 0.0734 0.0936 0.0430 0.0889 – – 0.0090(0.0081) 0.0350(0.0096)
800 0.0270(0.0075) 0.0336(0.0078) 0.0625 0.0703 0.0264 0.0704 – – 0.0057(0.0043) 0.0325(0.0072)
1600 0.0188(0.0044) 0.0309(0.0061) 0.0523 0.0546 0.0196 0.0572 – – 0.0040(0.0035) 0.0305(0.0050)

0.8 100 0.0696(0.0292) 0.0733(0.0301) 0.1365 0.4865 0.1124 0.1783 0.0920 0.1620 0.0206(0.0217) 0.0692(0.0281)
200 0.0580(0.0202) 0.0576(0.0166) 0.1093 0.4350 0.1263 0.1767 0.0621 0.1146 0.0207(0.0151) 0.0555(0.0205)
400 0.0444(0.0103) 0.0424(0.0093) 0.0985 0.4009 0.1099 0.1467 – – 0.0184(0.0126) 0.0423(0.0113)
800 0.0277(0.0075) 0.0418(0.0087) 0.0882 0.3690 0.0780 0.1124 – – 0.0097(0.0066) 0.0398(0.0076)
1600 0.0222(0.0045) 0.0313(0.0048) 0.0870 0.3330 0.0630 0.0908 – – 0.0084(0.0062) 0.0307(0.0054)

The values shown in the table are the average absolute deviation errors (AADE’s) for penalized spline (PS), kernel based
marginal integration (MI) and backfitting (BF) of De Gooijer and Zerom (2003), Two-stage estimators (2S) of Horowitz and
Lee (2005). The last two columns are from penalized spline (PS), but with the first component g1 specified as linear.

29



1.4 Boston Housing Data Application

We apply the partially linear single-index models (QPLSIM) and partially linear additive

models (QPLAM) for conditional quantiles to the Boston housing data using P-splines.

The dataset can be found on the site: http://lib.stat.cmu.edu/datasets/boston. The 506

observations measure the dependent variablemedv, median value of owner occupied homes

in $1,000s in Boston suburb area in 1970’s, and the other 13 independent variables.

Figure 1.5 displays the P-spline estimates of conditional quantile curves along with

the 90% pointwise confidence bands for each component of the additive model with four

covariates: rm, log(tax), ptratio, log(lstat) at τ = 10%, 25%, 50%, 75%, and 90%. To

calculate standard errors for the estimates, we recommend using a simple bootstrap in-

stead of the asymptotic results in real data applications because the asymptotic estimates

are hard to calculate (De Gooijer and Zerom 2003; Wu, Yu and Yu 2010). Figure 1.5

indicates that there are clear nonlinearity in covariates across quantiles. The trend for

each component is similar for all quantiles. For example, increasing pupil-teacher ratio

(ptratio) or population of lower economical status (lstat) tends to have negative effect on

housing price (medv) for all quantiles.
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Figure 1.5: Conditional quantile curve fits using additive models for Boston Housing Data
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The plots report the estimated quantile curves of the additive components. rm average number of rooms per dwelling;
log(tax) is the log of full-value property-tax rate per USD 10,000; ptratio is pupil-teacher ratio by town; log(lstat) is the

log of percentage of lower status of the population. Estimated τ -th (left to right: τ = .1, .25, .5, .75, .9) quantile for additive
component gj(xj) versus xj. Solid lines are the estimated quantile curves and dotted lines are the 90% confidence bands.
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This Boston Housing data have been extensively studied in the quantile regression lit-

erature. For example, Chaudhuri et al. (1997) use average derivative estimates with three

covariates: rm, lstat, dis. Wu, Yu and Yu (2010) consider single-index quantile regression

using local linear method with four covariates: rm, log(tax), ptratio, log(lstat). Yu and Lu

(2004) consider additive model with local linear method using the same four covariates.

The aforementioned approaches exclude the remaining covariates in the models, which we

refer as 3QSIM ADV, 4QSIM LL, and 4QAM respectively in the comparison Tables 1.5

and 1.6.

Following previous literature, we study various model fitting and conduct model com-

parisons using the same variables in nonlinear part. For example, adding partially linear

terms to 4QSIM and 4QAM models results in 4QPLSIM and 4QPLAM respectively:

qτ

(
medv

)
= g

(
α1rm+ α2log(tax)+ α3ptratio+ α4log(lstat)

)
+ β1crim+ β2zn+

β3indus+ β4chas+ β5nox+ β6age+ β7dis+ β8rad+ β9black, (1.21)

qτ

(
medv

)
= g1(rm) + g2(log(tax)) + g3(ptratio) + g4(log(lstat)) + β1crim+ β2zn+

β3indus+ β4chas+ β5nox+ β6age+ β7dis+ β8rad+ β9black. (1.22)

The single-index coefficient estimates and bootstrap standard errors for model (1.21)

are presented in Table 1.4. For the P-spline QPLSIM implementation, 20-knot quadratic

P-splines are used. To save space, partially linear coefficients are not reported here. The

signs of single-index coefficients are similar to Wu, Yu and Yu (2010), rm coefficients

being positive while the other three coefficients being mostly negative. log(tax) is not

significant at τ = 0.1 and 0.9, but is significant in middle quantiles.

Finally, we conduct comparisons among various models with different estimation meth-

ods studied in the literature. Due to lack of model complexity measure from the previous
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Table 1.4: Single-index coefficient estimates of QPLSIM for the Boston Housing data

τ 0.10(s.e.) 0.25(s.e.) 0.50(s.e.) 0.75(s.e.) 0.90(s.e.)

rm 0.8680(0.0207) 0.7318(0.0101) 0.6717(0.0122) 0.8962(0.0649) 0.6509(0.0116)
log(tax) 0.0431(0.0372) −0.4608(0.0317) −0.4830(0.0152) −0.0290(0.0557) 0.0153(0.0097)
ptratio −0.0438(0.0096) −0.1041(0.0044) −0.1029(0.0030) −0.0703(0.0134) −0.0464(0.0078)

log(lstat) −0.4928(0.0449) −0.4913(0.0290) −0.5523(0.0217) −0.4370(0.0936) −0.7576(0.0297)

The table reports single-index coefficient estimates of QPLSIM and their standard errors
for the Boston Housing data. rm average number of rooms per dwelling; log(tax) is the
log of full-value property-tax rate per USD 10,000; ptratio is pupil-teacher ratio by town;
log(lstat) is the log of percentage of lower status of the population.

research, the average sum of check-function-based absolute residuals

Rτ =

∑n
i=1 ρτ{yi − q̂(xi; zi;θ)}

n

is used for model comparison (Table 1.5). Our proposed P-spline approach with iteratively

reweighted penalized least square algorithm naturally provides the effective model degrees

of freedom. Hence, we can use the mean absolute deviations (MAD)

MAD =

∑n
i=1 ρτ{yi − q̂(xi; zi;θ)}

n− df

to incorporate model complexity measure in Table 1.6.

Table 1.5 shows that the proposed penalized spline approach for partially linear single-

index models (QPLSIM) and partially linear additive models (QPLAM) is effective for

modeling conditional quantiles of median housing price. Naturally, two partially linear

models 4QPLSIM and 3QPLSIM with P-splines estimates seem to yield better results

than models without partially linear terms (4QSIM and 3QSIM), regardless of estimation

methods. This indicates that partially linear terms are useful to include in predicting

median housing prices. Another observation is that QPLSIM and QPLAM models are

comparable in terms of Rτ . Here Rτ provides a straightforward measure of goodness-of-fit

across different models but it fails to consider the model complexity. Table 1.6 shows that
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Table 1.5: Average sum of absolute residuals Rτ from various model fitting for Boston
Housing data

τ 0.10 0.25 0.50 0.75 0.90

3QPLSIM PS 0.99 2.05 2.66 2.45 1.49
4QPLSIM PS 1.04 1.92 2.64 2.47 1.64

3QSIM PS 1.38 2.63 3.37 2.79 1.68
4QSIM PS 1.27 2.17 3.04 2.73 1.72
3QSIM LL 1.23 2.23 2.87 2.49 3.32
4QSIM LL 1.10 2.10 2.84 2.58 1.75

3QSIM ADV 1.56 2.70 3.04 2.43 3.13

The table reports the average sum of absolute residuals for various models with various
estimation methods: PS=P-Splines, LL=Local Linear, ADV=Average Derivative.

incorporating the model degrees of freedom, models with partially linear terms (QPLSIM

and QPLAM) have smaller mean absolute deviations than models without partially linear

terms (QSIM and QAM). While adding partially linear terms results in more predictors

and hence more complex models, the smaller mean absolute deviation indicates partially

linear models have better fit even after model complexity is considered. QPLSIM and

QPLAM models are comparable in terms of mean absolute deviations. Again, partially

linear terms are shown to be useful to include in predicting median housing prices.

Table 1.6: Mean absolute deviations (MAD) for model goodness-of-fit comparison for
Boston Housing data using P-Splines.

τ 0.10 0.25 0.50 0.75 0.90

3QPLSIM 1.04 2.12 2.76 2.45 1.56
4QPLSIM 1.07 1.97 2.70 2.54 1.69

3QSIM 1.40 2.65 3.44 2.86 1.72
4QSIM 1.28 2.20 3.08 2.76 1.75

3QPLAM 1.12 2.07 2.84 2.53 1.23
4QPLAM 0.99 2.03 2.69 2.38 1.52

3QAM 1.27 2.43 3.33 2.82 1.36
4QAM 1.11 2.25 3.03 2.72 1.65

The table reports mean absolute deviations for each penalized spline estimator.

34



1.5 Conclusion

This paper proposes partially linear single-index and partially linear additive modeling

for conditional quantiles, both of which are flexible and effectively avoid the “curse of

dimensionality”. The unknown function is estimated using P-splines. We develop an

iteratively reweighted penalized least squares algorithm for estimation. Model degrees

of freedom and the performance of two smoothing parameter selection methods, namely

GACV and SIC, are studied via a simulation. Some asymptotic properties are established.

Simulation studies and application to Boston Housing data have shown the success of the

two proposed models. Furthermore, it has been shown that partially linear terms are

useful to include in modeling conditional quantiles.

1.6 Proofs

We present the proofs for QPLSIM in this section; proofs for the theorem for QPLAM

are a combination of linear quantile and this proof.

We reparameterize the constrained α to unconstrained ψ, defined as ψ =

(ψ1, · · · , ψd−1)
T such that α(ψ) =

(
1,ψ

T

)T

/
√

1 + ‖ψ‖2. Let θψ =
(
ψT, γT, βT

)T
,

which is one dimension lower than θα =
(
αT, γT, βT

)T
. Then the τ -th quantile func-

tion becomes q(xi, zi;θψ) = B
(
xiα(ψ)

)
γ + ziβ. The Jacobian matrix of αψ is

α′(ψ) = −(1+‖ψ‖2)− 3

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1 ψ2 . . . ψd−1

−(1 + ‖ψ‖2) + ψ2
1 ψ2ψ1 . . . ψd−1ψ1

ψ1ψ2 −(1 + ‖ψ‖2) + ψ2
2 . . . ψd−1ψ2

...
...

. . .
...

ψ1ψd−1 ψ2ψd−1 . . . −(1 + ‖ψ‖2) + ψ2
d−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and the first derivative of qi(xi, zi;θ) with respect to θ is a column vector

q′
i := q′(xi, zi;θψ) =

[
B′

(
xiα(ψ)

)
γ · xiα

′(ψ), B(xiα), zi

]T
. (1.23)

Note that for QPLAM, q′
i is defined by (1.16). The Jacobian matrix of θα is

J = θ′
α(θψ) =

⎡⎢⎢⎢⎢⎣
α′(ψ) 0 0

0 Idγ 0

0 0 Idz

⎤⎥⎥⎥⎥⎦ ,
which is a matrix of dimension dim(θα) × (dim(θα) − 1). After reparameterization,

the estimation procedure can be done in the space of θψ without the identifiability

constraints.

We need the following assumptions to prove the theorems.

(A1) The parameter space Θ is compact, and the function g(x, z;θ) is continuous on Θ

for each fixed (x, z).

(A2) yi are independently distributed with cumulative distribution function Fi. Fi is

absolutely continuous with continuous density fi(ξi) uniformly bounded away from

0 and ∞ at the points q(xi, zi;θ0), i = 1, . . . , n.

(A3) There exist constants k0 and k1 such that when n is sufficiently large, for any

θ1,θ2 ∈ Θ which is a compact subset in Rdim(θ),

k0‖θ1 − θ2‖ ≤
(
1

n

n∑
i=1

(q(xi, zi;θ1)− q(xi, zi;θ2))
2

)1/2

≤ k1‖θ1 − θ2‖.

(A4) There exist positive definite matrices Ω0 and Ω1 such that

(a) Ω0 = limn→∞
1
n

∑
q′
iq

′T
i .

(b) Ω1 = limn→∞
1
n

∑
fyi(q(xi, zi;θ0))q

′
iq

′T
i , where fyi(q(xi, zi;θ0)) is the density

function for the i-th observation, evaluated at the τ -th conditional quantile.
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(c) maxi=1,··· ,n ‖q′
i‖/

√
n→ 0.

Proof of Consistency: If λ → 0, the bias tends to be 0 as n → 0. The consistency

follows from the combination of similar proof of Yu and Ruppert (2002) and results in

§4.1 (117) of Koenker (2005).

Proof of Asymptotic Normality: If λn = o(n−1/2), both theorems similarly follow

from the combination of similar proof of Yu and Ruppert (2002) and the result in §4.4
(page 123) of Koenker (2005). The proof of Theorem 1 relies on Bahadur representation

for the nonlinear parameter estimator and quadratic approximation to the minimization

of objective function,
√
n(θ̂n − θ0) = Ω−1

1 n−1/2
∑n

i=1 q
′
iφτ (ri) + oP (1), where ri = yi −

q(xi, zi;θ0) and φτ (r) = τ − I(r < 0). Variations of Bahadur representations by different

authors are summarized in Koenker (2005).
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Chapter 2

Time-Varying Beta and the Value

Premium: Evidence from the

Single-Index Varying-Coefficient

Model
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2.1 Introduction

Value stocks have substantially higher average returns than do growth stocks, although

their loadings on the market risk are similar to, or smaller than, those of growth stocks.

The value premium (e.g., Fama and French 1992; 1993 and 2006), the return difference

between value and growth stocks, is one of the most prominent and challenging CAPM-

related anomalies documented in the empirical asset pricing literature. An important

risk-based explanation, as first advanced by Lettau and Ludvigson (2001), is that value

stocks are riskier during business recessions when conditional risk premium is higher than

during business expansions when conditional risk premium is low. Zhang (2005) elaborates

on the conditional CAPM explanation of the value premium using a dynamic rational

expectations model, in which the value premium has a countercyclical market beta because

investment adjustment costs affect value and growth stocks differently across business

cycles. In general, because there is no compelling reason for assuming constant betas,

conditional factor models are arguably more appropriate than are their unconditional

counterparts.

Extant studies commonly assume conditional beta as a linear function of some state

variable(s).1 Let {Ri}n+1
i=1 and {Rm,i}n+1

i=1 denote respectively the series of value premium

and excess market return observed at n + 1 time points, 0 < t1 < t2 < · · · < tn+1. The

value premium is modeled (e.g. Petkova and Zhang 2005) as

Ri+1 = α + βi+1Rm,i+1 + εi+1, i = 1, . . . , n (2.1)

1There are a few notable exceptions, such as Wang (2003), Li and Yang (2011) and
Ang and Kristensen (2011). Wang (2003) assumes fully nonparametric conditional beta
on four state variables; Li and Yang (2011) and Ang and Kristensen (2011) both assume
time varying beta, where conditional beta varies on time but not on conditional variables.
The latter two studies can be viewed as a parallel approach to ours where the conditional
beta is a function of state variable.

39



where βi+1 = ziγ = z1,iγ1 + · · · + zd,iγd is a linear combination of d-dimensional state

variables z = (z1, . . . , zd) at time i. In some other instances, αmay be a linear combination

of state variables (e.g. Lettau and Ludvigson 2001) as well.

In this paper, we set up a general framework in investigating whether the conditional

CAPM helps explain the value premium using the single-index varying-coefficient model

(Xia and Li 1999; Fan, Yao and Cai 2003; Wu, Lin and Yu 2011). Our empirical specifi-

cation has two novel advantages relative to those commonly used in the previous studies,

e.g., Shanken (1990), Ferson and Harvey (1991, 1999), Jagannathan and Wang (1996),

Lettau and Ludvigson (2001), and Petkova and Zhang (2005). First, earlier authors as-

sume that conditional beta is a linear function of some predetermined state variables,

although such a relation could be rather complex (e.g., Ghysel (1998)). To avoid such a

problem, we allow for a flexible dependence of conditional beta on an index that is a linear

combination of state variables, i.e., βi+1 = β(ziγ), where the functional form of β(·) is

not specified a priori but estimated from data. We further allow our single-index varying-

coefficient model to account for heteroskedasticity, where the varying error volatility is

modeled by a flexible function of single-index of state variables through log P-splines. To

the best of our knowledge, this is novel in terms statistical methodology in this applica-

tion content. Take into consideration of heteroskedasticity is often necessary because the

financial returns are well known to have such features. Single-index varying-coefficient

modeling nests previous studies as special cases. This general setup allows us to test the

validity of linear specification, and more importantly, to avoid misspecifications when the

function is not linear. This single-index varying-coefficient setup also enjoys great inter-

pretability. The index also has a straightforward economic interpretation; for example, it

can be thought of as a composite measure of business conditions. The index coefficients

share similar explanations as that in linear regressions when the nonparametric function
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is monotonic.

Second, we try to address the issue of variables selection in empirical CAPM research,

by including a more comprehensive variables pool and conducting variable selection pro-

cedure in identifying the most significant variables. Earlier authors use standard stock

market predictors as the state variables. Such a choice is arguably ad hoc because many

of these variables have rather weak predictive power, especially in the out of sample con-

text (Welch and Goyal (2008)). Specifically, many authors, Ghysels (1998) and Harvey

(2001), caution that the estimation of conditional factor models is quite sensitive to the

choice of state variables. Because economic theories emphasize a strong correlation of

conditional beta with business cycles, we include closely watched gauges of aggregate

economy as potential conditioning variables, in addition to commonly used stock market

return predictors. Our comprehensive selection of state variables contains nine variables

(economic variables and stock market return predictors, see Section 2.2 for details). With

such moderate number of variables, our fast algorithm allows us to use a preferred ex-

haustive search for identifying the state variables that have most significant influence on

conditional beta. Similar exhaustive variable selection approach can be found in Cremer

(2002) where 14 predictor variables are included in trying to characterize stock return

predictability.

Recent studies, e.g., Lewellen and Nagel (2006), Ang and Kristensen (2011), and Li and

Yang (2011), have advocated using realized beta estimated from high-frequency return

data as a measure of conditional beta. Because the estimation of realized beta does not

depend on the choice of state variables, robustness is the main advantage of the realized

beta model. The realized beta model, however, is not as efficient as an appropriately

specified single-index varying-coefficient model because we can always include realized

beta as a potential conditioning variable. Moreover, we find that some theoretically
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motivated state variables remain significant predictors of conditional beta when we include

realized beta as a conditioning variable. This result is analogous to the stylized fact that

realized volatility is not an efficient estimate of conditional volatility (e.g., Christensen

and Prabhala (1998) and Guo and Whitelaw (2006)). Therefore, our specification allows

for an improvement for the realized beta model because it provides a flexible way to

incorporate information of both realized beta and state variables. Moreover, because

realized beta is estimated using high-frequency, e.g., daily data, it is practically infeasible

when factors are available at a lower frequency. For example, we cannot use realized

beta to estimate the conditional consumption-based CAPM because consumption data

are available at the quarterly frequency. In contrast, as we explore in this paper, it is

straightforward to estimate the conditional consumption-based CAPM using the single-

index varying-coefficient model.

We estimate the single-index varying-coefficient model using the monthly data span-

ning the July 1963 to December 2012 period. Following existing studies, we consider

commonly used market return predictors, i.e., the default premium, the term premium,

the stochastically de-trended risk-free rate, the dividend-price ratio, the realized market

volatility and the price-earnings ratio, as potential conditioning variables. We include the

industry production, the inflation rate, and the unemployment rate in the instrumental

variable set as well to capture the dependence of conditional beta on business cycles.

Consistent with the risk-based explanation, we document strong countercyclical varia-

tion in the conditional beta for the value premium. Interestingly, the unemployment rate

and inflation rate, the two macroeconomic variables watched most closely by the Federal

Reserve, are identified as the significant conditioning variables for the conditional beta.

More importantly, the conditional beta correlates negatively with the pro-cyclical inflation
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rate but positively with the countercyclical unemployment rate2. The pro-cyclical price-

earnings ratio, which is also identified as a significant conditioning variable, correlates

negatively with the conditioning beta. Other financial and macroeconomic variables,

however, provide no additional information about conditional beta beyond these three

variables. Overall, we reject the null hypothesis that the value premium has a constant

conditional beta at the 1% level, and find that the fitted conditional beta increases sharply

during economic recessions. The conditional CAPM does help explain the value premium.

In our sample period, the value premium has an unconditional CAPM alpha of 5.6% per

annum; however, when we take into account time-varying beta, the alpha decreases to

4.4% per annum. Nevertheless, the conditional CAPM does not fully explain the value

premium because the alpha is economically large and statistically significant.

The conditional CAPM fails to fully explain the value premium possibly because some

important conditioning variables are omitted from the instrumental variable set. As a ro-

bustness check, we include the monthly realized beta as a potential state variable because,

as we discussed above, it is a robust measure of conditional beta. While realized beta is

identified to be a significant conditioning variable, it does not subsume the information

content of all financial and macroeconomic state variables that we consider. In particular,

the inflation rate and price earning ratios remain significant conditioning variables and

correlate negatively with conditional beta. Nevertheless, we find again that the condi-

tional CAPM does not fully explain the value premium. As another robustness check, we

also consider a smoothed realized beta, the average of realized monthly betas in the pre-

vious twelve months, and the results are found to be qualitatively robust. Similar findings

are observed using quarterly data. Moreover, the value premium seems to vanish in the

pre-1963 sample (January 1927 – June 1963). As a result, when we use the full monthly

2To the best of our knowledge, the finding of a close relation between the value pre-
mium’s conditional beta and the key gauges of macroeconomic activity is novel.
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sample from January 1927 to December 2012, the value premium is still significantly

positive but reduces to 3.7% per annum, versus 4.4% in the post-1963 sample.

Recent studies, e.g., Petkova and Zhang (2005), Lewellen and Nagel (2006), Ang

and Kristensen (2011), and Li and Yang (2011), find that the conditional CAPM does

not fully explain the value premium. Interestingly, we confirm their findings using a

more flexible empirical specification. Moreover, our results also shed some new light

on the countercyclical variation in the conditional beta for the value premium. Overall,

existing studies provide compelling evidence that alternative hypotheses are needed for the

value premium, and our empirical findings also shed some light on potential explanations.

We document a strongly countercyclical variation in the conditional beta for the value

premium; specifically, it moves closely with the key gauges of aggregate economic activity.

The finding, which casts doubt that behavioral explanations provide a whole explanation

for the value premium, suggests risk-based explanations remain a viable alternative. The

failure of the conditional CAPM reflects the fact that excess market returns are not an

adequate measure of risk. For example, Campbell and Vuolteenaho (2004) show that

discount-rate risk and cash-flow risk are priced differently. Similarly, investors might

want to hedge against human capital risk, illiquidity risk, distress risk, and volatility risk,

in addition to market risk. To the extent that these risks tend to move more closely

to market risk during business downturns than during business upturns, a multi-factor

model might provide a better explanation for the value premium than the CAPM.

The remainder of the paper proceeds as follows. We first discuss data in Section 2.2.

We then explain the single-index varying-coefficient model in Section 2.3. We present

empirical findings in Section 2.4. We offer some concluding remarks in Section 2.5.
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2.2 Data

We obtain the monthly risk-free rate, excess market return (Rm), and value premium (R)

data from Ken French at Dartmouth College. Following earlier studies, e.g., Ferson and

Harvey (1999) and Petkova and Zhang (2005), we use standard stock market predictors as

conditioning variables. The default premium (DEF) is the yield spread between Baa- and

Aaa-rated corporate bonds. The term premium (TERM) is the yield spread between 10-

year Treasury bonds and 3-month Treasury bills. The stochastically de-trended risk-free

rate (RREL) is the difference between the risk-free rate and its average in the previous 12

months. The dividend-price ratio (DP) is the dividend paid in the most recent 12 months

divided by the end-of-month stock market price. The price-earnings ratio (PE) is the

end-of-month stock market priced divided by the earnings in the most recent 12 months.

The realized market volatility (VOL) is the sum of squared daily excess market returns

in a month. We obtain these data up to 2008 from Amit Goyal at Emory University and

update them to 2012 using the data obtained from Ken French at Dartmouth College,

Robert Shiller at Yale University, and the Federal Reserve Bank at St. Louis.

Because theoretical models suggest a close relation between the conditional beta of the

value premium and business cycles, we also consider several major economic indicators

as potential conditioning variables. The unemployment (UE) and inflation (INF) are

arguably the most important gauges of aggregate economic activity. Specifically, because

by legal mandates, the Federal Reserve is required to maintain full employment and price

stability, it monitors closely and reacts promptly to the development in the job market

and aggregate price indices. We obtain the civilian unemployment rate and the consumer

price index for all urban consumers (all items) from the St. Louis Fed. Because the

unemployment rate and the consumer price index are quite persistent, we use their year-

over-year log changes as conditioning variables. Chen, Roll, and Ross (1986) and others
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find that industrial production (IP) is a priced state variable. For comparison, we include

its year-over-year log change obtained from the St. Louis Fed as a conditioning variable.

Lewellen and Nagel (2006) advocate the use of realized beta (BETAT) estimated from

daily data as a proxy for conditional beta. Ang and Kristensen (2011) and Li and Yang

(2011) offer some more elaborate estimators of the realized beta. For comparison, we

follow Lewellen and Nagel (2006) and estimate realized beta of a month by regressing

daily value premium on a constant and the excess market return in that month using the

ordinary least squares (OLS) regression.

Table 2.1 provides summary statistics of the state variables. Interestingly, consistent

with the notion that conditional beta of the value premium is countercyclical, we find

that the realized beta, BETAT, a proxy for the conditional beta, correlates positively

with the IP and UE and correlates negatively with INF. On the other hand, except for

PE and TERM, the correlation of BETAT with stock market return predictors is rather

weak. Similarly, while the macroeconomic variables correlate with the stock market return

predictors, the correlation is not very strong. These results highlight the importance of

including macroeconomic variables as the conditioning variables because they may provide

additional information about conditional beta beyond financial variables.
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Table 2.1: Summary Statistics and Correlations of Conditioning Variables

Panel A: Descriptive statistics of conditioning variables.
Variable BETAT DEF TERM RREL DP IP INF VOL PE UE CYCLE
Mean -0.19 0.01 0.02 0.00 0.03 0.03 0.04 0.00 0.20 0.01 0.15
Standard Error 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
Median -0.21 0.01 0.02 0.00 0.03 0.03 0.03 0.00 0.20 -0.04 0.00
Standard Deviation 0.26 0.00 0.02 0.00 0.01 0.05 0.03 0.00 0.08 0.17 0.36
Sample Variance 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.13
Kurtosis 1.27 3.63 -0.38 2.52 -0.61 2.18 1.93 144.29 0.61 1.31 1.80
Skewness 0.50 1.60 -0.29 -0.11 0.37 -1.19 1.39 10.59 0.77 1.24 1.95
Range 1.98 0.03 0.08 0.01 0.05 0.28 0.16 0.07 0.38 0.93 1.00
Minimum -1.10 0.00 -0.04 0.00 0.01 -0.16 -0.02 0.00 0.07 -0.34 0.00
Maximum 0.88 0.03 0.05 0.00 0.06 0.12 0.14 0.08 0.44 0.59 1.00

Panel B: Correlation matrix
BETAT DEF TERM RREL DP IP INF VOL PE UE CYCLE

BETAT 1.00
DEF 0.07 1.00
TERM 0.23 0.23 1.00
RREL -0.05 -0.37 -0.53 1.00
DP -0.08 0.43 -0.22 0.05 1.00
IP -0.11 -0.63 -0.19 0.48 -0.15 1.00
INF -0.24 0.28 -0.42 0.19 0.71 -0.17 1.00
VOL 0.02 0.25 0.07 -0.09 0.02 -0.19 0.03 1.00
PE -0.10 -0.51 -0.02 0.00 -0.90 0.18 -0.58 0.00 1.00
UE 0.14 0.57 0.17 -0.51 0.16 -0.88 0.19 0.19 -0.19 1.00
CYCLE -0.05 0.43 -0.08 -0.33 0.30 -0.52 0.37 0.24 -0.23 0.54 1.00

The table reports descriptive statistics of conditioning variables (Panel A) and their correlation matrix (Panel B). The data
sample is at a monthly frequency and spans July 1963 to December 2012. The NBER business recession indication (CYCLE)
is also included.
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2.3 The Single-Index Varying-Coefficient Model

In this paper, we propose an alternative model to (2.1), namely the single-index varying-

coefficient model, where conditional beta can flexibly depend on state variables:3

Ri+1 = α(ziγ) + β(ziγ)Rm,i+1 + σ(ziγ)εi+1, i = 1, . . . , n (2.2)

where α(·) and β(·) are both varying functions of the previous period single-index ziγ; γ

is the single-index parameters; εi+1 is standard normal and σ(ziγ) is the volatility, which

is a smooth function of single-index and allows for heteroskedasticity; εi+1 is independent

of zs+1 and Rm,s+1 where s < i and εi+1 is independent of εi′+1, i = i′. We need to

estimate unknown functions α(·), β(·) and σ(·), as well as single-index parameter γ. To

our best knowledge, the volatility specification in model (2.2) is novel. Because of the

nonlinear dependence of the volatility on single-index parameters, the estimation can be

quite challenging. We use a two step estimation algorithm where log-spline is utilized in

estimating the volatility function. The estimation details are described later. In statistical

literature on single-index and related models, to ensure the identifiability of single-index

coefficients, the constraints of unit norm and positive first component are commonly

imposed, i.e., ‖γ‖ = 1 and γ1 > 0 (see e.g. Carroll, Fan, Gijbels and Wand 1997; Xia and

Li 1999; Yu and Ruppert 2002).

3Another alternative model specification to (2.1) is a fully nonparametric one. To allow
maximum amount of flexibility, conditional beta can be modeled as a fully nonparametric
function of a number of state variables:

Ri+1 = α(zi) + β(zi)Rm,i+1 + εi+1, i = 1, . . . , n,

where α(·) and β(·) are fully nonparametric functions of d-dimensional state variable
vector zi. This fully nonparametric specification allows for maximum flexibility. However
the estimation of the above model suffers from the “curse of dimensionality” when the
dimension of zi is moderately high (four or higher). Even though estimation of fully
nonparametric function might be feasible, the interpretation suffers from such multi-
dimensional dimensional specification.
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Model (2.2) is called single-index varying-coefficient model because single-index func-

tions α(·) and β(·) are acting like varying coefficients. Modeling conditional beta as a

single-index function of state variables has certain desirable properties, both in statistics

and finance. First of all, single-index models overcome the “curse of dimensionality” and

have easy interpretability. Estimation of single-index models is considerably easier than

fully nonparametric models because one-dimension nonparametric functions need to be

estimated. The single-index varying-coefficient model also enjoys straightforward inter-

pretation: single-index may be thought of a composite measure of business conditions;

in the presence of a monotonic function (e.g. β(·)), as pointed out by Li (1991) and

summarized by Carroll, Fan, Gijbels and Wand (1997), the single-index coefficients share

similar interpretations as that of the coefficients in ordinary linear regressions. Moreover,

single-index varying-coefficient modeling of conditional beta follows the same rationale

of previous studies (Lettau and Ludvigson 2001; Petkova and Zhang 2005), where con-

ditional beta is directly conditioned on state variables. Last but not least, this model

is quite general in the sense that some previous models on conditional CAPM can be

viewed as the special case. For example, when α(·) is constant and β(·) is identity func-

tions, model (2.2) reduces to previous models such as Lettau and Ludvigson (2001) and

Petkova and Zhang (2005).4

We estimate the univariate varying coefficients α(·) and β(·) in model (2.2) using pe-

4Ang and Kristensen (2011) also uses nonparametric approach to model conditional
beta where beta is modeled as time varying. Our approach of modeling beta as functions
of state variables at the previous time period is consistent with previous literature. Our
estimation method can be used to estimate the conditional beta in Ang and Kristensen
(2011), but not vice versa. Although time can be treated as a state variable, thus our
model reduces to Ang and Kristensen (2011), there is a fundamental difference in the
approaches of modeling conditional beta. Our approach assumes there are economic
or financial or any other measurable variables driving the conditional beta, while the
approach of Ang and Kristensen (2011) does not explicitly take driving variables into
consideration.
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nalized splines (P-splines). Because the volatility function σ(·) is always positive, we use

penalized splines to estimate the logarithmic transformation of the volatility, or equiva-

lently use log-spline to estimate the volatility function. P-splines have gained popularity

recently because of its expedient and stable computations, natural link to ridge regression,

mixed models and Bayesian models, and the ability to widely extend to more complicated

studies; see Yu and Ruppert (2002), Crainiceanu, Ruppert, Claeskens and Wand (2003),

Ruppert, Wand and Carroll (2003), and Jarrow, Ruppert and Yu (2004) for examples.

In the nonparametric literature, local methods for single-index models (e.g., Carroll, Fan,

Gijbels and Wand, 1997) have been extensively studied but the computation may become

unstable while Penalized splines are computationally stable and expedient (Yu and Rup-

pert 2002). Another reason why P-spline is the preferred estimation method for α(·) and
β(·) is because the computational expedience of P-splines allows for exhaustive variable

selection, which is another major issue (Ghysels 1998; Harvey 2001) we are trying to ad-

dress. Fast estimation is desirable because the number of combinations of state variables

will grow exponentially with the number of state variables (2d combinations for d-variate

state variables, to be exact). In our experience, the computational expediency of penal-

ized spline estimation allows us to find the optimal model in a relatively short time, even

if the dimension of potential state variables is relatively large.

Once the best subset of state variables is identified by exhaustive variable selection pro-

cedure, the model with the best set of state variables is fitted and tested. The test statistic

is established based on the asymptotic properties of the estimates, which is discussed in

section 2.3.3. There are a few hypotheses worth testing. Is β constant or varying? Con-

stant beta indicates static CAPM while varying beta suggest conditional beta model. If β

is varying, then is β linear in single-index? Linear functional form provides justifications

in modeling approach in Lettau and Ludvigson (2001) and Petkova and Zhang (2005),
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while nonlinear functional form of beta warns that linear specification should be used in

caution. We have found mixed results in the functional form of conditional beta, depen-

dent on the choice of state variables, which will be discussed later. Another interesting

test is the functional form and positivity of α. We find the functional form of α is often

constant, which justifies the practice in Petkova and Zhang (2005). However, conditional

alpha together with long-run alpha, which is the average conditional alpha are both sig-

nificantly positive, which suggests conditional CAPM model cannot fully explain value

premium. Although earlier sample (before 1963 period) results in conditional alpha or

long-run alpha not significant different from zero, consistent with existing findings (e.g.

Ang and Chen 2005), full sample from 1927 to 2012 leads qualitatively robust results.

Our approach is most related to Wang (2003), Ang and Kristensen (2011) and Li and

Yang (2011), where nonparametric methods are also used. There are major differences in

our approach. Wang (2003) assumes conditional beta as a fully nonparametric function

of four-dimensional state variables while our single-index approach reduces the nonpara-

metric dimensions to just one. The advantage of dimension reduction is the gain in easier

interpretation and estimation robustness. The higher dimension state variables in our

study also requires us to practically reduce the dimensionality rather than to assume fully

nonparametric form. Ang and Kristensen (2011) and Li and Yang (2011) assumes condi-

tional beta as a time varying function, hence no state variables are involved. Moreover,

our estimation method differs from the aforementioned methods, where local polynomials

(or kernel methods) are used. The penalized spline approach in this paper is computation-

ally expedient and robust, suitable for the exhaustive variable selection procedure. We

first introduce our estimation method with smoothing parameter selection, then proceed

with variable selection and statistical tests in the following.
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2.3.1 Estimation

There are three types of parameters to be estimated: varying coefficient functions α(·)
and β(·), volatility function σ(·), and the single-index parameters γ. We introduce a an

iterative algorithm in finding all these estimators. We first introduce the estimation of

flexible functions α(·), β(·) and σ(·), assuming known single-index parameter γ. We then

introduce a fixed point algorithm in updating the single-index parameters.

P-splines Estimation of Flexible Functions

Assuming known single-index parameter γ or equivalently single-index u = zγ, both

varying coefficient α(u) and β(u) are univariate flexible function, which can be estimated

using penalized splines (P-splines). To handle the positivity constraint, the volatility func-

tion σ(u) is estimated using log penalized splines–the logarithmic transformation of the

volatility function is modeled using P-splines. P-splines are employed for their fast com-

putation and robustness. We use truncated power functions for its easy interpretation and

straightforward testing. The truncated power basis of degree p, with knots at v1, . . . , vk,

is B(u) = (1, u, u2, . . . , up, (u− v1)
p
+, . . . , (u− vk)

p
+), where (u− v)p+ = (u− v)pI(u− v) is

the truncated polynomial function with a break (also known as a knot in P-splines) at v.

Any function f(u) with p− 1 continuous derivatives can be approximated by

f(u) = δ0 + δ1u+ δ2u
2 + . . .+ δpu

p + δp+1(u− v1)
p
+ + . . .+ δp+k(u− vk)

p
+ = Bδf ,

where δf = (δ0, δ1, . . . , δp+k)
T is the spline coefficient vector. The shape of f(u) is de-

termined by degree p, number and locations of knots. Higher degrees P-splines result in

smoother curves but more computational requirements. In practice, degree of two or three

are used for estimating functions. Various studies (e.g. Ruppert 1998; Ruppert, Wand

and Carroll 2003) have also shown that as long as enough number of knots are used, the
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number and location of knots are no long crucial. For example, knots are selected at the

equidistant quantiles of the predictor variable. The possible overfitting will be avoided

by adding some proper roughness penalty, where one single smoothing parameter can

control the smoothness of the curve. In particular, adding a square roughness penalty to

the usual least square loss function result in a penalized least squares objective function,∑n
i=1

(
f(u)−Bδf

)2
+ λn(δ2p+1 + . . . + δ2p+k+1), where λ controls the tradeoff of goodness

of fit and the roughness penalty.

To estimate α(u) and β(u) in (2.2), denote the basis Ba and Bb and the parameter

vectors δa and δb for conditional alpha and beta respectively, then i-th conditional alpha is

α(u) = Ba,iδa and conditional beta β(u) = Bb,iδb. Combine the scalar 1 and Rm,i+1 with

spline bases, we can write the i-th row of “design” matrix X as Xi = (Ba,i,Bb,iRm,i+1).

Define spline coefficient parameters δ1 = (δT

a , δ
T

b )
T, the mean function of Ri+1 (i =

1, 2, . . . , n) can be written as

mi ≡ E(Ri+1) = Ba,iδa +Bb,iRm,i+1δb = Xiδ1.

Similarly, the varying volatility function can be approximated using logσ(ui) = B2(ui)δ2,

or equivalently σ(ui) = exp{B2(ui)δ2} (Yu, Yu, Wang and Li 2009). The log likelihood

function, excluding constants, can be written as the negative

n∑
i=1

(
exp{−2B2(ui)δ2}{Ri+1 −Ba,iδa −Bb,iRm,i+1δb}2 + 2B2(ui)δ2

)
.

For notation convenience, we reserve subscript 1 for (flexible) mean functions and 2 for

(flexible) volatility function. The above P-spline estimation allows for different knots and

degrees for different flexible functions. Different smoothness could also be reached by

using separate smoothing parameters. One popular way of adding separate penalties (e.g.

Ruppert 2002; Yu and Ruppert 2002; Ruppert, Wand and Carroll 2003) is the so-called
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L2 penalty which will yield penalized log likelihood function

n∑
i=1

(
exp{−2B2(ziγ)δ2}{Ri+1 −Ba,i(ziγ)δa −Bb,i(ziγ)δbRm,i+1}2 + 2B2(ziγ)δ2

)
+
n

2
λaδ

T

aDaδa +
n

2
λbδ

T

b Dbδb +
n

2
λ2δ

T

2D2δ2, (2.3)

where λa > 0, λb > 0 and λ2 > 0 are separate penalty parameters for varying coeffi-

cients functions and volatility function respectively; Dξ is some appropriate 0-1 diagonal

matrices such that δT

ξ Dξδξ =
∑kξ

j=1 δ
2
pξ+j, where kξ and pξ (ξ = a, b, 2) are the number

and degree of knots for different spline coefficients respectively. One could optimize the

penalized log likelihood function (2.3) in one step. However, the number of parameters

could be large and the estimation algorithm may not be efficient. Instead, we propose an

two-step algorithm which reweights the mean function using the estimates of volatility

function, in a fashion similar to weighted least squares. The algorithm first estimates the

mean function then the volatility is estimated after. Parameters in mean function are

thereafter recalculated using weighted least squares where the weights are the inverse of

the estimated volatility. We find two or three iterations are sufficient. Similar treatments

of iteratively estimating mean and volatility can be found in Carroll, Wu and Ruppert

(1988) and Yu et al. (2009). The two-step estimation procedure is described as follows:

Step 1: Mean Estimation.

First to get an initial estimation of the mean function,5 the spline coefficients can

be calculated using a linear shrinkage estimator δ̂1 = (XTX + nλD1)
−1XTR, where

λ1 = blockdiag(λa,λb) = diag(λa, . . . , λa, λb, . . . , λb) is penalty parameter matrix and

D1 = blockdiag{Da,Db} and R = (R2, . . . , Rn+1)
T is the vector of value premiums.

Estimated value premium is R̂ = Xδ̂1 = HR, where H = X(XTX+ nλ1D1)
−1XT is the

smoothing matrix.

5Alternatively, in the presence of homoscedasticity, the weighting procedure is unnec-
essary. The second step and the following reweighting can be omitted altogether.
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Step 2: Volatility Estimation.

After the mean function is estimated, the parameter δ2 can be estimated by minimizing

the negative penalized likelihood

n∑
i=1

(
e2(ziγ)exp{−2B2δ2}+ 2B2(ziγ)δ2

)
+
n

2
λ2δ

T

2D2δ2, (2.4)

where e(ziγ) = Ri+1 −Xiδ̂1 ≈ σ(ziγ)εi+1 is the residual from the estimation of mean

function. The volatility function is approximated using

σ̂(ziγ) = exp{B2(ziγ) ∗ δ̂2}. (2.5)

The new estimator δ̂1 can be obtained through (penalized) weighted least squares where

the weight is the inverse of the estimated volatility. More specifically, the new estimator

δ̂1 is the minimizer of the penalized log likelihood function

n∑
i=1

1

σ̂2(ziγ)

(
Ri+1 −Xiδ1

)2

+
n

2
λ1δ

T

1D1δ1,

which has the analytical solution δ̂1 = (XTWX + nλ1D)−1XTWR, where W =

diag{1/σ̂2(ziγ)} is a diagonal weight matrix with each diagonal element calculated by

(2.5).

Smoothing Parameter Selection

The selection of smoothing parameter is crucial in any smoothing problems, as evidenced

by the dependence of the smoothing matrix on the smoothing parameter λ. In practice,

the optimal smoothing parameter is selected using a criterion of some sort on a grid values

of the smoothing parameter. In the above iterative algorithm, grid search is done itera-

tively as well, i.e., smoothing parameter search accompanies spline coefficients estimation.

In the two-dimensional λ1, to effectively search the optimal amount of smoothing, we rec-

ommend a straightforward grid searching scheme. First we fix both smoothing parameter
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as the same and conduct a one-dimensional grid search to find the optimal smoothing pa-

rameter. Then we fix one smoothing parameter and grid search for the other parameter.

We have studied two-dimensional separate smoothing parameters and found no significant

improvement for the fit using separate smoothing parameters. Also, the statistical test

suggests constant alpha component and a smoothing function is unnecessary. Therefore,

we present our results using a single smoothing parameter λ1 in this paper.

The most common criteria used to select smoothing parameter include Cross Valida-

tion (CV), Generalized Cross Validation (GCV), Mallow’s Cp, and Akaike’s Information

Criterion (AIC) and some other variations. GCV is particularly popular in P-splines ap-

plications. In this paper, we choose the smoothing parameter λ1 which minimizes the

GCV criterion

GCV (λ1) =

∑n
i=1(Ri+1 −Xiδ1)

2

{1− n−1tr(H)}2 ,

where tr(H) is the trace of the smoothing matrix, which is often called the degree of

freedom of the fit (see Hastie and Tibshirani 1990). Similarly, the GCV for smoothing

parameter λ2 minimizes

GCV (λ2) =
Deviance(λ2)

{1− n−1tr(B2(BT

2B2 + nλ2D2)−1BT

2 )}2
,

where the numerator is the deviance of the model for a given value of λ2.

Estimation of Single-index Parameter γ

In this section we first introduce the estimation of single-index parameters γ when

the varying functions α(·) and β(·) are known, and then present the two-phase algo-

rithm. First of all, to handle to constraints of ||γ|| = 1 and the first element γ1 > 0,

we let γ1 =
√
1− (γ22 + . . .+ γ2d), where

∑d
j=2 γ

2
j < 1, thus the parameters become

ϕ = (γ2, γ3, . . . , γd)
T. Denote θ = (γT, δT

a , δ
T

b )
T and θ̃ = (ϕT, δT

a , δ
T

b )
T as the param-

eter vector before and after parameterization, the Jacobian matrix of this transformation
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is

J(θ̃) =

⎡⎢⎢⎢⎢⎣
−(1− ‖ϕ‖2)−1/2ϕT 0

Id−1 0

0 I
dim(δ)

⎤⎥⎥⎥⎥⎦ . (2.6)

After the reparameterization,6 we need only estimate θ̃. From this point on, if not

mentioned explicitly, θ refers to reparametrized θ̃ for notational simplicity. Let ṁi(θ)

denote the first derivative with respect to θ, which is vector of dim(δ)+ d− 1 dimension.

Since there is no explicit solution for θ, we have to rely on numerical method. Some

nonlinear optimization routines exist for this purpose, such as lsqnonlin and fminunc

from Matlab, nls in S-PLUS. However, based on our experience, in high dimension θ, the

convergence of the estimate is slow and resulting estimates are very sensitive to starting

values. Instead we propose an iterative fixed point algorithm which is less sensitive to

starting point and suitable for high dimension γ. Fixed point algorithm was introduced

in Cui, Härdle and Zhu (2011) for local linear estimation for single-index models, where

fixed point algorithm works extremely well for high dimensional single-index models. We

adapt the algorithm to penalized spline estimation for single-index varying-coefficient

models and find similar results.

Before introducing the two-phase algorithm, we need to find an explicit expression

of γ to iterate in the fixed point algorithm. The treatment here is in spirit similar to

Cui, Härdle and Zhu (2011), although the estimation of smoothing components is quite

different and more expedient in our case. To find the explicit expression of γ, use the

6An alternative way of reparameterization is letting γ1 = 1, and the new parameterϕ =

(1, γ2, γ3, . . . , γd)/
√

1 +
∑d

j=2 γ
2
j . Both reparameterizations would satisfy the constraints

of norm equals one and first element positive. However, this reparametrization may not
be suitable for the fixed point algorithm proposed here.
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chain rule ∂Q
∂ϕ

= ∂Q
∂γ

∂γ
∂ϕ

= 0, which result in d− 1 equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ2

∂Q
∂γ

1

= γ1
∂Q
∂γ

2

...

ϕd
∂Q
∂γ

1

= γ1
∂Q
∂γ

d

.

Define Ms =
∑n

i=1(Ri+1 −Ba,iδa −Bb,iδbRm,i+1) · (Ba,iδa +Bb,iδbRm,i+1 · Zs,i) and M =

(M1, . . . ,Md). Then the above equations become⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ2M1 = γ1M2

...

ϕdM1 = γ1Md,

which have the solution⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ1 = ||M1||

||M||

γ2s = ||Ms||2

||M||2
, 2 ≤ s ≤ d

sign(γsM1) = sign(Ms), 2 ≤ s ≤ d.

The above equals γ M1

||M||
= |M1|

||M||
· M

||M||
, which automatically handles the constraints ||γ|| = 1

and γ1 > 0. For fast convergence and robustness of the fixed algorithm, some constant

C is added to ||M|| to avoid dividing by a small value. To achieve this, add Cγ to both

sides and after transformation we obtain

γ =
C

M1/||M||+ C
γ +

M1/||M||2
M1/||M||+ C

M. (2.7)

The constant C is properly chosen to avoid dividing by zero. Further discussions on

choosing the constant C are referred to Cui, Härdle and Zhu (2011).

The two-phase iterative algorithm for iteratively estimating the functions α(·) and β(·)
and single-index coefficient parameters γ are described as the following.

0) Initiate single-index parameter γ. The initial value is crucial in any nonlinear

optimization problem. This is especially true when the nonlinear optimization is
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high dimensional. Our experience together with Cui, Härdle and Zhu (2011) sug-

gest that fixed point algorithm works favorably over standard nonlinear program-

ming routines, especially in high dimensional single-index coefficient models. For

example, the usual ordinary linear squares (OLS) estimates for linear regression

Ri+1 = (zi + ziRm,i+1)γ + εi+1 can be used. Alternatively, random initial points

from unit sphere can be used. Normalize γ such that γ = sign(γ1)γ/||γ||.

1) With fixed γ̂, update δ̂1 and R̂i+1. Obtain spline bases with knots placed on equidis-

tant quantiles of the single-index ziγ̂ and calculate δ̂1 = (XTX + nλ1D1)
−1XTR

and R̂ = Xδ̂1

2) Update γ̂old with γnew = C
M1(old)/||M||(old)+C

γold +
M1(old)/||M(old)||2

M1(old)/||M||(old)+C
M(old). Normal-

ize γnew such that γnew = sign(γ1,new)γ1,new/||γnew||.

3) Repeat 1) & 2) until max1≤s≤d|γs,new − γs,old| ≤ tol, where tol is the prescribed

tolerance level.

4) Given γ̂ and δ̂1, estimate δ2 by minimizing the negative penalized likelihood function

in (2.4). Use the new volatility estimates σ̂2(ziγ̂) to update the mean spline coeffi-

cients estimator by δ̂1 = (XTWX+nλ1D)−1XTWR, where W = diag{1/σ̂2(ziγ̂)}
is the diagonal weight matrix.

5) Repeat 1) - 4) a few times or until convergence.

2.3.2 Variable Selection Procedure

As some authors have pointed out that estimation of conditional factor model is quite

sensitive to the choice of state variables (e.g., Ghysels 1998; Harvey 2001), it is necessary

to investigate what variables should be included in explaining conditional beta. In this
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paper we have conducted variable selection procedure for a more comprehensive choice

of state variables. The variables set not only includes standard stock return predictors

but also macroeconomic indicators. The literature on variable selection for single-index

varying-coefficient models is extremely limited because of the difficulty of the problem

itself. Fan, Yao and Cai (2003) use backward stepwise deletion in combination with

modified t-statistic and Akaike Information Criterion (AIC) type criterion for variable

selection. However, such variable selection procedure is ad hoc and may not guarantee to

select the best predictors. More straightforward way, however, is to evaluate all possible

models, which is an exhaustive approach in variable selection. Exhaustive methods fit all

the combinations of predictor variables and choose the best one based on certain criterion.

The drawback of such exhaustive method is that it is time consuming to evaluate all

possible models.In this study, there are two favorable factors for such exhaustive search:

reasonably large number of state variables and fast computation of the estimation method.

Based on the number of state variables described in Section 2.2, the number of all possible

combinations is manageable. Moreover, due to the computational expediency of P-splines

and fixed point algorithm, the computation is fast and variable selection can be done in

a relatively short time.

Best model is selected by minimizing some criterion such as adjusted R2, Mallow’s Cp,

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), among

others. Each criterion balances goodness of fit and simplicity of the model. We choose

the best model using the BIC, which tends to select more parsimonious and thus more

explainable models among several criteria. BIC in our context is defined as

n∑
i=1

(
exp{−2B2(ziγ)δ2}{Ri+1 −Ba,i(ziγ)δa −Bb,i(ziγ)δbRm,i+1}2 + 2B2(ziγ)δ2

)
+qln(n),

where the first term is the maximum likelihood function for the model, and q is the model

complexity parameter. In P-splines single-index varying-coefficient model, q = tr(H)+ d,
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where tr(H), trace of the smoothing matrix H, is often called the effective number of

parameters in nonparametric estimation.

2.3.3 Tests on Alpha and Beta

We first establish consistency and asymptotic normality, and then construct the Wald

statistic for inferences on the alpha and beta. Two types of asymptotics can be used:

fixed knots and increasing number of knots. Fixed knots asymptotics are most practical

and relevant in applications, where the fixed number of knots are used (Yu and Ruppert

2002; Jarrow, Ruppert and Yu 2004). Also, the bias due to fixed knots approximation

of P-spline of smooth function is negligible compared to the standard deviation of the

function estimates and the bias due to penalty. The asymptotics introduced here are in

spirit similar to the Theorem 2 in Yu and Ruppert (2002) and Theorem 2 in Wu, Lin and

Yu (2011).

Theorem 3. Under mild regularity conditions, if the smoothing parameter λn ∼ o(n−1/2),

then a sequence of estimators θ̂γ = (γ̂T, δ̂a

T

, δ̂b

T

, δ̂
T

2 )
T is root-n consistent and converges

to a normal distribution,

√
n(θ̂ − θ)

D→ N(0, I−1(θ)), (2.8)

where I(θ) is the usual Fisher Information.

The proof of Theorem above is similar to Yu et al. (2009). The penalty parameter

is assumed to vanish fast enough as n goes to infinity to ensure the result given in (2.8)

involves no penalty parameter. For finite sample inference, asymptotic results with fixed

penalty parameter would be preferred to avoid overestimating the variance of θ as in

(2.8). The sandwich formula will be given by

√
n(θ̂(λ)− θ(λ))

D→ N
(
0,Γ−1

n

(
θ(λ)

)
Λn

(
θ(λ)

)
Γ−T

n

(
θ(λ)

))
, (2.9)
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where Γn

(
θ(λ)

)
=

∑n
i=1 (∂/∂θ

T)Φziγ(θ), Λn

(
θ
)
=

∑n
i=1 Φziγ(θ)Φ

T

ziγ(θ), Φziγ(θ) =

−(∂/∂θT)ln(θ; ziγ) + λDθ (see Yu and Ruppert 2002 and Yu et a. 2009).

The sandwich estimator of the covariance matrix is justified by Ωn(θ̂(λ)) =

Γ−1
n

(
θ(λ)

)
Λn

(
θ(λ)

)
Γ−T

n

(
θ(λ)

)
.

The asymptotic properties in (2.9) can be conveniently used for joint inferences con-

cerning the spline coefficients. In general, if we are testing the null hypothesisH0 : Lθ = c,

where L is a r by dim(θ) matrix of full row rank, we construct the Wald statistic

W = (Lθ − c)T
(
LΩn(θ̂L)

)−1
(Lθ − c), (2.10)

whereΩn(θ̂) = Γ−1
n

(
θ
)
Λn

(
θ
)
Γ−T

n

(
θ
)
for sufficiently large n. UnderH0, the Wald statistic

W is a limiting χ2 distribution with r degrees of freedom. In cases of inferences concerning

the single-index parameter γ, the upper left (d− 1)× (d− 1) block matrix of Ωn(θ̂) can

be used to calculate the Wald statistics. The covariance matrix estimator is given by

Ωn(
̂̃
θ) = ĴΩn(θ̂)Ĵ, where J = J(θ̃) is the Jacobian matrix define in (2.6).

In conditional CAPM, we are interested in testing several hypotheses on α and β. In

terms of alpha, we are interested in testing whether alpha component is zero; zero alpha

suggests conditional CAPM can fully explain value premium. If alpha is significantly

nonzero, then we would like to know if alpha is constant; constant alpha suggests time

varying modeling for alpha is unnecessary. In terms of beta, we are interested in testing

the functional form. First, constant beta is tested; failure to reject the null hypothesis

indicates irrelevance of any state variables. Otherwise linear beta (in single-index) is

tested; rejection of null hypothesis suggests nonlinear specification and nonparametric

approach should be preferred. On the contrary, failure of rejecting linear hypothesis

provides justification of using linear specification such as Lettau and Ludvigson (2001),

and Petkova and Zhang (2005).

In each test, with the truncated power basis, we can conveniently formulate the hy-
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pothesis in the form of spline coefficients. For example, testing H0 : α ≡ 0 is equiv-

alent to test all its spline coefficients are simultaneously zeros, i.e., H0 : δa ≡ 0 or

L = blockdiag{0d,1dim(δa)
,0

dim(δb)
} in (2.10). The null hypothesis H0 : β is linear in zγ

is equivalent to test all higher order spline coefficients are simultaneously zeros, i.e.,

H0 : δb,2 = · · · = δb,p = δb,p+k+1 = 0 or L = blockdiag{0d,0dim(δa)
,02,1dim(δb)−2

} in

(2.10).

The other problem of interest is to test the significance of long-run alpha (Ang and

Kristensen 2011), which is defined as the average of conditional alphas. The long-run

alpha is estimated using the average of the conditional alphas in the sample period. The

hypothesis test on the significance of long-run alpha can be expressed as

H0 : αLR ≡ lim
n→∞

1

n

n∑
i=1

α(ziγ) = 0, (2.11)

which is not as a strong hypothesis as the that conditional alpha being zero over any values

of single-index.7 Simple t test is used to test the above hypothesis on long-run alpha. The

standard errors can be obtained from the first d diagonal elements of Ωn(
̂̃
θ) = ĴΩn(θ̂)Ĵ,

or alternatively through bootstrap resamples.

The covariance matrix Ωn(θ̂) in the Wald statistic in (2.10) and the standard error

for the long-run alpha can be difficult to calculate using the delta method in the finite

samples. Instead we use bootstrapping resamples to construct the covariance matrices

in (2.10) and standard errors in testing (2.11). Because of the presence of heteroskedas-

ticity, we use a specialized wild bootstrap procedure for this purpose. Wild bootstrap

procedure, originally proposed by Wu (1986) and extended by Mammen (1993) and oth-

ers, is particularly useful in the presence of heteroskedasticity and small sample sizes.

7The hypothesis of conditional alpha being zero over any values of single-index, or
H0 : α ≡ 0, is a stronger hypothesis. It holds true that if the conditional alpha is zero
over any values, the long-run alpha or the average of conditional alphas is also zero.
However, the opposite is not true.
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Unlike the usual residual bootstrap where random residuals are drawn and added to the

estimates to construct resamples, the wild bootstrap accounts for heteroskedasticity by

creating weighted residuals where the weight is a random variable with zero mean and

unit variance. The wild bootstrap procedure we use in this paper is described as follows:

(1) Fit single-index varying-coefficient model and find R̂i+1 = Ba(ziγ̂)δ̂a +

Bb(ziγ̂)δ̂bRm,i+1, with residual ε̂i+1 = Ri+1 − R̂i=1 (i = 1, . . . , n).

(2) Center the residual ε̂i+1 − ¯̂εi+1 (i = 1, . . . , n), where ¯̂εi+1 is the mean of residuals.

(3) Draw the bootstrap error ε∗i+1 from centered residuals ε2, . . . , εn+1 with replacement.

The bootstrap sample is created using Ri+1 + vi+1ε
∗
i+1 (i = 1, . . . , n), where vi+1 is

a random variable of standard normal distribution.8

Repeat (3) to create N resamples. Sample covariance matrix and standard errors of

long-run alpha can be calculated based on the N estimates.

2.4 Conditional CAPM

2.4.1 Conditional Beta as a Function of Macroeconomic and

Financial Variables

We first estimate the conditional CAPM with macroeconomic variables and financial vari-

ables as the conditioning variables. For the monthly data, we find that INF, PE, and UE

8We have also implemented the wild bootstrap weighting scheme of Mammen (1993)
where the random weight takes the form

vi+1 =

{ −(
√
5− 1)/2 with probability (

√
5 + 1)/(2

√
5)

(
√
5 + 1)/2 with probability (

√
5− 1)/(2

√
5).

The testing results agree with that of using standard normal weight as in Wu (1986).
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are significant conditioning variables. This finding is consistent with the results reported

in Table 2.1, which shows that BETAT, a proxy for conditional beta have relatively strong

correlation with INF, PE, and UE. IP also correlates negatively with BETAT; however,

it is not selected as a significant conditioning variable likely because of its strong negative

correlation with UE. Similarly, Stock and Watson (2003) find that TERM has significant

predictive power for output and inflation; nevertheless, TERM is not selected as a signif-

icant conditioning variable. Because the unemployment and inflation are the two most

closely watched gauges of aggregate economic activity, our results indicate that the value

premium is indeed sensitive to business conditions. Moreover, PE is also a significant con-

ditioning variable, while the other financial variables provide little additional information

about the conditional beta. The latter result is in contrast with the specification adopted

in the previous studies, which assume that conditional beta depends on only commonly

used stock market return predictors.

The estimated conditional beta suggests there is a monotonically negative relation

between conditional beta and the index (untabulated). In Table 2.2, we find that the index

correlates positively with INF and PE, and the relations are all statistically significant

at the 1% level. The relationship between the index and UE is negative and marginally

insignificant at the 5% level. Overall, our results suggest that the conditional beta of

the value premium changes countercyclically across time because it increases with UE

and decreases with INF and PE. To investigate formally this issue, in Figure 2.1, we

plot the estimated conditional beta across time, with shaded areas indicating business

recession periods dated by the National Bureau of Economic Research (NBER). For each

of 7 business recessions in our sample, we observe a sharp spike in the conditional beta.

Moreover, the conditional beta tends to decrease during business expansions. Therefore,

our results reveal a strongly countercyclical variation in the conditional beta of the value

65



premium.

Table 2.2: Tests on Alphas and Betas with INF, PE and UE as conditioning variables

Panel A: Tests on alpha
Hypothesis Wald Statistic P Value
Ho : α = zero 27.93 0.0005
Ho : α = Constant 13.41 0.0627

Panel B: Test on long-run alpha
Hypothesis Estimate s.e. t Value P Value
Ho : αLR = 0 0.0038 0.0010 3.82 0.0001

Panel C: Tests on beta
Hypothesis Wald Statistic P Value
Ho : β = 0 75.32 0.0000
Ho : β = Constant 52.87 0.0000
Ho : β = Linear 6.28 0.3924

Panel D: Tests on beta when alpha is modeled as constant
Hypothesis Wald Statistic P Value
Ho : β = 0 79.29 0.0000
Ho : β = Constant 44.27 0.0000
Ho : β = Linear 0.14 0.9999

Panel E: Tests on single-index coefficients
Estimate s.e. t Value P Value

γ1(INF ) 0.9574 .0412 23.21 0.0000
γ2(PE) 0.2524 .0891 2.83 0.0000
γ3(UE) -0.1402 .0708 -1.98 0.0503

The table reports statistical test results on conditional and long-run alphas and betas in
the single-index long-run model. Tests on single-index coefficients parameters are also
reported. Tests on conditional alphas and betas are based on the Wald statistics in
equation 2.10. Test on long-run alpha is based on equation 2.11. All covariance matrices
and standard errors are calculated from bootstrap samples. The monthly data sample is
from July 1963 to December 2012.

In panel D of Table 2.2, we test the hypotheses about the time variation in the condi-

tional beta. We overwhelmingly reject the null hypothesis that the beta is zero. Moreover,

we find strong evidence against the null hypothesis that the conditional beta is constant.

Nevertheless, we fail to reject the null hypothesis that the conditional beta is a linear func-

tion of INF, PE, and UE. This result shows that the relationship between the conditional
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beta and the index is essentially linear.

Figure 2.1: Conditional beta on INF, PE, and UE

Note: the figure shows monthly estimates of conditional betas of the value premium.

The conditioning variables are INF, PE and UE, the best subset from variable selection

procedure. We plot the conditional betas in blue line along with 95% confidence bands

in red line. We also shade the NBER recession periods in green horizon bars.

We fail to reject the null hypothesis that alpha is constant. Unreported results show

that the value premium has a significantly positive alpha of 0.47% per month when we

use the unconditional CAPM. In panel B of Table 2.2, we find that the alpha becomes

noticeably smaller to 0.37% per month in the conditional CAPM. The 1.2% annual reduc-

tion in the alpha is consistent with the notion that the conditional CAPM helps explain

the value premium because its risk exposure is larger during business recessions when

conditional equity premium is higher than during business explanations when conditional
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equity premium is low. Nevertheless, consistent with the recent studies, e.g., Petkova

and Zhang (2005), Lewellen and Nagel (2006), Ang and Kristensen (2011), and Li and

Yang (2011), we find that the alpha remains significant positive even when we control for

time-varying conditional beta.

For comparison, we estimate the single-index varying-coefficient model using all the

macroeconomic and financial variables as the conditioning variables. We find that TERM,

RREL, INF, VOL and UE are statistically significant at the 5% level. The statistical

significance in these five variables does not give the best state variable set. The long-run

alpha is significantly positive but conditional alpha is not significant from zero. The latter

result is due to large variance in the conditional alpha component. These results highlight

the importance of variable selection, which allow us to precisely estimate the conditional

beta. For brevity, they are not reported in the paper but are available upon request.

2.4.2 Realized Beta as the Conditioning Variable

The conditional CAPM fails to explain the value premium possibly because we omit some

important conditioning variables. If conditional beta does not change quickly across time,

Lewellen and Nagel (2006) argue that the realized beta is a good proxy for the conditional

beta. As a robustness check, in this subsection, we include only the realized beta as the

conditioning variable. Table 2.3 reports the main estimation results of the single-index

varying-coefficient model. Panel A shows that we cannot reject the null hypothesis of

constant alpha. In panel C, we reject the null hypothesis zero or constant conditional beta,

but cannot reject the hypothesis that conditional beta is linear in realized beta, which

is consistent with Lewellen and Nagel (2006), where realized beta is used as a proxy

for conditional beta. The results are qualitatively similar when we assume a constant

alpha, as reported in panel D. Moreover, in Figure 2.2, we plot the fitted conditional
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beta across time, while conditional alpha is modeled as constant. Again, we find that

conditional beta tends to increase during business recessions, indicating that conditional

beta change countercyclically across time, although this relationship is less obvious due

to the highly erratic realized beta. Nevertheless, consistent with findings by Lewellen and

Nagel (2006), Ang and Kristensen (2011), and Li and Yang (2011), we confirm that the

conditional CAPM does not fully explain the value premium. Panel B shows that the

long-run alpha is 0.44% per month and is statistically significant at the 1% level.

Table 2.3: Tests on Alphas and Betas with realized beta (BETAT) as conditioning vari-
ables

Panel A: Tests on alpha
Hypothesis Wald Statistic P Value
Ho : α = zero 30.45 0.0002
Ho : α = Constant 12.73 0.0791

Panel B: Tests on long-run alpha
Hypothesis Estimate s.e. t Value P Value
Ho : αLR = 0 0.0044 0.0010 4.24 0.0000

Panel C: Tests on beta
Hypothesis Wald Statistic P Value
Ho : β = 0 127.40 0.0000
Ho : β = Constant 74.47 0.0000
Ho : β = Linear 5.73 0.1255

Panel D: Tests on beta when alpha is modeled as constant
Hypothesis Wald Statistic P Value
Ho : β = 0 116.16 0.0000
Ho : β = Constant 92.62 0.0000
Ho : β = Linear 7.41 0.2844

The table reports statistical test results on conditional and long-run alphas and betas
in the single-index long-run model. Tests on conditional alphas and betas are based on
the Wald statistics in equation 2.10. Test on long-run alpha is based on equation 2.11.
All covariance matrices and standard errors are calculated from bootstrap samples. The
monthly data sample is from July 1963 to December 2012.
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Figure 2.2: Conditional beta on BETAT

Note: the figure shows monthly estimates of conditional betas of the value premium. The

conditioning variable is realized beta (BETAT) only. We plot the conditional betas in

blue line along with 95% confidence bands in red line. We also shade the NBER recession

periods in green horizon bars.
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2.4.3 Conditional Beta as a Function of Macroeconomic and

Financial Variables and Realized Beta

Because realized beta is not necessarily an efficient estimate of conditional beta, the

macroeconomic and financial variables may provide additional information beyond BE-

TAT about the conditional beta. An improved measure of conditional beta might provide

a better explanation for the value premium. To address this issue, we add BETAT to the

instrument variable set. Consistent with the existing studies, e.g., Lewellen and Nagel

(2006), Ang and Kristensen (2011), and Li and Yang (2011), we find that BETAT is a

significant conditioning variable, even when we control for the macroeconomic and finan-

cial variables. On the other hand, as conjectured, BETAT does not fully subsume the

information in the macroeconomic and financial variables either. In particular, INF and

PE remain significant conditioning variables, although UE becomes insignificant when we

control for BETAT.

In Table 2.4, we report the main estimation results of the single-index varying-

coefficient model. Because conditional beta increases linearly with the index (figure not

shown), Panel E shows that the index correlates positively with BETAT, confirming the

argument by Lewellen and Nagel (2006), Ang and Kristensen (2011), and Li and Yang

(2011) that realized beta provides important information about conditional beta. We also

find that the index correlates negatively with INF and PE, supporting the notion that

conditional beta moves countercyclically across time. To illustrate this point further, in

Figure 2.3, we plot the estimated conditional beta across time. Similar to the results

reported in Figures 2.1 and 2.2, we find that realized beta increases sharply during busi-

ness recessions and decreases during business recessions. Again, this result is less obvious

due to the erratic realized beta. In panel C and D, we overwhelmingly reject the null

hypotheses that conditional beta is zero and the null hypothesis that conditional beta is
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constant. Moreover, we fail to reject the null hypothesis of a linear relation between con-

ditional beta and the conditioning variables, i.e., BETAT, INF and PE. Moreover, adding

realized beta as an additional conditioning variable does not change our main finding in

any qualitative manner. Panel B shows that the long-run alpha is significantly positive

at the 1% level.

Table 2.4: Tests on Alphas and Betas with BETAT, INF and PE as conditioning variables

Panel A: Tests on alpha
Hypothesis Wald Statistic P Value
Ho : α = zero 26.20 0.0010
Ho : α = Constant 14.07 0.0400
Ho : α = Linear 12.11 0.0595

Panel B: Tests on long-run alpha
Hypothesis Estimate s.e. t Value P Value
Ho : αLR = 0 0.0040 0.0011 3.80 0.0001

Panel C: Tests on beta
Hypothesis Wald Statistic P Value
Ho : β = 0 118.12 0.0000
Ho : β = Constant 88.26 0.0000
Ho : β = Linear 3.72 0.7144

Panel D: Tests on beta when alpha is modeled as constant
Hypothesis Wald Statistic P Value
Ho : β = 0 135.49 0.0000
Ho : β = Constant 94.98 0.0000
Ho : β = Linear 5.03 0.5402

Panel E: Tests on single-index coefficients
Estimate s.e. t Value P Value

γ1(BETAT ) 0.2352 .1430 1.65 0.1031
γ2(INF ) -0.8977 .2291 -3.92 0.0002
γ3(PE) -0.3725 .1475 -2.53 0.0131

The table reports statistical test results on conditional and long-run alphas and betas in
the single-index long-run model. Tests on single-index coefficients parameters are also
reported. Tests on conditional alphas and betas are based on the Wald statistics in
equation 2.10. Test on long-run alpha is based on equation 2.11. All covariance matrices
and standard errors are calculated from bootstrap samples. The monthly data sample is
from July 1963 to December 2012.

As a robustness check, we estimate the single-index varying-coefficient model using all
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Figure 2.3: Conditional beta on BETAT, INF and PE

Note: the figure shows monthly estimates of conditional betas of the value premium. The

conditioning variables are realized beta (BETAT), inflation (INF) and unemployment

rate (UE). We plot the conditional betas in blue line along with 95% confidence bands

in red line. We also shade the NBER recession periods in green horizon bars.
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instrumental variables. We find that RREL, IP, UE and BETAT are significant condition-

ing variables at the 5% level. The other testing results on conditional alpha and beta, and

long-run alpha are qualitatively in agreement with those using the model selected based

on the best BIC criterion (BETAT, INF and PE). Again, these variables differ from the

best subset state variables. These results again highlight the importance of the variable

selection, which allows us to estimate the conditional beta more precisely. For brevity,

these results are not reported but are available upon request.

2.4.4 Smoothed Realized Beta

Monthly realized beta is quite erratic, which is witnessed in Figure 2.2 and 2.3. As a

robustness check, we use a smoothed realized beta measure, BETAT12–the average of the

monthly realized betas in the most recent twelve months. In this case, we identify IP,

DP and the smoothed realized beta (BETAT12) as the significant conditioning variables.

There is a monotonically decreasing relation between the conditional beta and the index

(figure not shown), and Table 2.5 shows that the index correlates positively with IP and

negatively with DP and BETAT12.

Again, our results suggest that the conditional beta of the value premium is coun-

tercyclical. We further illustrate this point in Figure 2.4, in which the conditional beta

increases sharply during business recessions. The results in Table 2.5 are congruent with

those reported in Table 2.4. Specifically, we find that the conditional CAPM does not fully

explain the value premium. Smoothed realized beta using three months average yields

qualitatively analogous results. For brevity, these results are omitted but are available

upon request.

74



Table 2.5: Tests on Alphas and Betas with IP, DP and BETAT12 as conditioning variables

Panel A: Tests on alpha
Hypothesis Wald Statistic P Value
Ho : α = zero 25.42 0.0013
Ho : α = Constant 10.41 0.1667

Panel B: Tests on long-run alpha
Hypothesis Estimate s.e. t Value P Value
Ho : αLR = 0 0.0040 0.0011 3.68 0.0002

Panel C: Tests on beta
Hypothesis Wald Statistic P Value
Ho : β = 0 135.86 0.0000
Ho : β = Constant 112.33 0.0000
Ho : β = Linear 3.63 0.7260

Panel D: Tests on beta when alpha is modeled as constant
Hypothesis Wald Statistic P Value
Ho : β = 0 165.16 0.0000
Ho : β = Constant 79.15 0.0000
Ho : β = Linear 5.96 0.4282

Panel E: Tests on single-index coefficients
Estimate s.e. t Value P Value

γ1(IP ) 0.6831 .1929 3.54 0.0006
γ2(DP ) -0.6181 .5164 -1.20 0.2342
γ3(BETAT12) -0.3890 .1124 -3.46 0.0008

The table reports statistical test results on conditional and long-run alphas and betas in
the single-index long-run model. Tests on single-index coefficients parameters are also
reported. IP is the industrial production, DP is the dividend-price ratio, and BETA12
is smoothed realized beta constructed by averaging the previous 12 month realized beta.
Tests on conditional alphas and betas are based on the Wald statistics in equation 2.10.
Test on long-run alpha is based on equation 2.11. All covariance matrices and standard
errors are calculated from bootstrap samples. The monthly data sample is from July 1963
to December 2012.
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Figure 2.4: Conditional beta on smoothed BETAT12, DP and IP

Note: the figure shows monthly estimates of conditional betas of the value premium. The

conditioning variables are 12-month average realized beta (BETAT12), dividend-price

ratio (DP) and industrial production (IP). We plot the conditional betas in blue line

along with 95% confidence bands in red line. We also shade the NBER recession periods

in green horizon bars.
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2.4.5 Time-Varying Beta of Ang and Kristensen (2011)

Ang and Kristensen (2011) also use nonparametric approach to model conditional beta

but find weak effect of business cycle on conditional beta, which seems to contradict our

findings. As another robust check, we model conditional beta as time varying–modeling

approach corresponding to Ang and Kristensen (2011) but estimating conditional beta

using method in this paper.9 The plot of conditional beta over time in Figure 2.5 resembles

the conditional beta in Ang and Kristensen (2011). This time varying beta can be always

included in our single-index varying-coefficient framework as a conditioning variable. Thus

we can investigate if this time-varying realized beta is an efficient estimate of conditional

beta, the way similar to the treatment in Section 2.4.2-2.4.4 where the realized beta

in Lewellen and Nagel (2006) is treated as a conditioning variable. The statistical test

results (Panel A-D) on conditional alphas and betas do not qualitatively differ from what

obtained in previous sections. Conditional beta is found to be countercyclical because

conditional beta based on Panel E. To further illustrate conditional beta comoves with

business cycle, following Ang and Kristensen (2011), we regress time-varying realized beta

onto state variables such as the significant variables we have found in Section 2.4.1 (i.e.,

INF, PE and UE). The results are reported in Table 2.6 Panel F. Conditional beta is

negatively related to INF and PE and positively related to UE. All state variables are

statistically highly significant at the 1% level. This result is consistent with the results

from singe-index varying coefficient models in Table 2.2. The differences between our

9It is worth noting that our approach is more general than Ang and Kristensen (2011)
in the way that our model can nest their model as a special case. When conditional beta
is modeled as only time-varying, then our model is conceptually the same as Ang and
Kristensen (2011). The functional form of conditional beta is not linear function but a
complicated function of time t (see Figure 2.5). This highlights the the importance of
modeling conditional beta as some unspecified function rather than linear function in the
first place.
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results in Table 2.6 and those of Ang and Kristensen (2011) may be due to estimation or

data difference. To address this issue, we have implemented a local polynomial smoothing

algorithm, similar to Ang and Kristensen (2011). Smoothing parameter is chosen by

visually checking conditional beta curve to resemble Ang and Kristensen (2011). The

regression results are similar with that of Table 2.6. We conclude that the difference is

not caused by estimation methods such as spline estimation but by the data. Note that

we used monthly data throughout our study while Ang and Kristensen (2011) used daily

return data. Since daily data are high volatile with significant level of noises, even with

smoothing techniques such as kernel smoothing, the estimates of conditional beta may be

sensitive to noise.

Our method can be viewed as a generalization of Ang and Kristensen (2011) because

not only we can estimate their model but also we can always include the conditional beta

estimated from their model in our state variable pool. To illustrate the latter, we treat

the estimated conditional beta from Ang and Kristensen (2011) as realized beta (BETAT)

and conduct variable selection the same way as in Section 2.4.3. We identify the model

with BETAT, DEF, TERM and INF in the state variables as the best model. The testing

results are reported in Table 2.6 Panel A-D. Both functional form of alpha and beta

are linear in single-index while the long-run alpha is significantly positive. The tests on

the single-index coefficients indicate that besides BETAT, the default premium and term

premium remain significant. That is to say, realized beta from Ang and Kristensen (2011)

does not subsume all the other state variables.

2.4.6 Quarterly Data and Consumption-based CAPM

As a robustness check, we also investigate the conditional CAPM using quarterly data. We

convert monthly instrumental variables into quarterly data by using the last month obser-
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Figure 2.5: Estimated time-varying realized beta

Note: the figure shows monthly estimates of time-varying conditional betas of the value

premium. The conditioning beta is modeled as purely time-varying as in Ang and

Kristensen (2011). We plot the conditional betas in blue line along with 95% confidence

bands in red line. We also shade the NBER recession periods in green horizon bars.
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Table 2.6: Tests on Alphas and Betas with time-varying realized beta (BETAT), DEF,
TERM and INF as conditioning variables

Panel A: Tests on alpha
Hypothesis Wald Statistic P Value
Ho : α = zero 44.27 0.0000
Ho : α = Constant 13.62 0.0583

Panel B: Tests on long-run alpha
Hypothesis Estimate s.e. t Value P Value
Ho : αLR = 0 0.0042 0.0010 4.61 0.0001

Panel C: Tests on beta
Hypothesis Wald Statistic P Value
Ho : β = 0 153.71 0.0000
Ho : β = Constant 112.92 0.0000
Ho : β = Linear 0.60 0.9964

Panel D: Tests on beta when alpha is modeled as constant
Hypothesis Wald Statistic P Value
Ho : β = 0 153.49 0.0000
Ho : β = Constant 108.34 0.0000
Ho : β = Linear 0.85 0.9906

Panel E: Tests on single-index coefficients
Estimate s.e. t Value P Value

γ1(BETAT ) 0.0897 .0383 2.34 0.0212
γ2(DEF ) 0.9536 .1022 9.33 0.0000
γ3(TERM) -0.2507 .1412 -1.78 0.0789
γ4(INF ) -0.1402 .1053 -1.33 0.1861

Panel F: OLS regression of BETAT onto INF, PE and UE
Estimate s.e. t Value P Value

Intercept 0.32 .04 7.95 0.0000
INF -4.74 .42 -11.42 0.0000
PE -1.64 .14 -11.89 0.0000
UE 0.27 .06 4.88 0.0000

Panel A-D report statistical test results on conditional and long-run alphas and betas in
the single-index long-run model. Tests on single-index coefficients parameters are also
reported in Panel E. Panel F presents the regression results of time-varying realized beta
specified in Ang and Kristensen (2011) onto the best subset variables that we have found
through variable selection. Time-varying realized beta (BETAT) is estimated from model
(2.2) where single-index is replaced by time, which reduces to the model specification of
Ang and Kristensen (2011). Penalized splines are used to estimate the flexible functions
of conditional alpha and beta, where in Ang and Kristensen (2011) local polynomials
are utilized. Tests on conditional alphas and betas are based on the Wald statistics in
equation 2.10. Test on long-run alpha is based on equation 2.11. All covariance matrices
and standard errors are calculated from bootstrap samples. The monthly data sample is
from July 1963 to December 2012.
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vations in each quarter. We convert monthly returns into quarterly returns through simple

compounding. Following Lettau and Ludvigson (2001), we also include the consumption-

wealth ratio, CAY, as a candidate conditioning variable.10 Note that, because CAY is

available only at the quarterly frequency, we cannot use it in our monthly analysis. When

we exclude the realized beta as a conditioning variable, we identify DP, VOL and UE as

significant conditioning variables. When we allow the realized beta as a candidate con-

ditioning variable, both realized beta (BETAT) and realized market volatility (VOL) are

identified as significant conditioning variables. Again, while we find strong countercyclical

variations in conditional beta with the business cycle, the conditional CAPM does not

fully explain the value premium.

Lettau and Ludvigson (2001) find that the conditional consumption-based CAPM

helps explain the value premium using the Fama and MacBeth (1973) cross-sectional

regression. To address this issue, we investigate whether the consumption risk accounts

for the value premium in the time-series regression. Specifically, we regress the value

premium on the contemporaneous consumption growth and allow the coefficient to be

a nonlinear function of the instrumental variables, including CAY. We identify DEF,

RREL, INF and VOL as the significant conditioning variables. Again, we find that the

conditional beta comoves with the business cycle. More importantly, the long-run alpha is

significantly positive at the 1% level. To summarize, we find that neither the CAPM nor

the consumption-based CAPM explain the value premium using the quarterly data. For

brevity, the results for quarterly and consumption data are not reported but are available

upon request.

10We obtain the CAY variable from Martin Lettau at the University of California at
Berkeley.

81



2.4.7 Different Samples

To check the robustness of our results, we consider different samples in this paper: January

1927 – June 1963, July 1963 – December 2012, and January 1927 – December 2012. Since

unemployment rate is not always available before 1963,11 we exclude UE from our state

variable pool in the pre-1963 sample and the full sample. For comparison, we also exclude

UE in the post-1963 sample as another robust check. We summarize our results in Table

2.7. Recall that the best subset variables are INF, PE and UE in the post-1963 sample

(INF, PE and BETAT when include realized beta). Without the UE in the candidate

variable pool, the variable selection results are somewhat consistent. For example, PE is

consistently identified as significant variable regardless sample periods. Besides PE, other

common variables consistently identified as significant is DEF and IP in full sample and

pre-1963 sample, INF in the full sample and post-1963 sample. Another observation is,

when realized beta is dropped from the pool, TERM becomes significant. In terms of

long-run alpha, the full sample and post-1963 sample has positive alpha while the pre-

1963 sample long-run alpha is not significantly different from zero. This is consistent with

the general consensus that CAPM can explain the value premium before 1963 but not

after (Ang and Chen 2005). However, we do observe strong countercyclical variation in

the conditional beta of the value premium. We plot the estimated conditional beta across

time in Figure 2.6. Once again, we observe conditional beta rises sharply in business

recessions. Although this observation is not as consistent as the sample after 1963 as

observed in Figure 2.1, the deviations are only obvious in 1927 recession and 1945 post

second world war recession.

11Unemployment rate is available after January 1949.
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Figure 2.6: Conditional beta in the full sample (1927–2012)

Note: the figure shows monthly estimates of conditional betas of the value premium in the

full sample, which is from January 1927 to December 2012. The conditioning variables

are default premium (DEF), industrial production (IP), inflation (INF), Price-Earning

ratio (PE) and term premium (TERM). We plot the conditional betas in blue line along

with 95% confidence bands in red line. We also shade the NBER recession periods in

green horizon bars.
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Table 2.7: Conditional CAPM–Different samples

Sample Variable Pool Best Variable Set αLR

Full Sample
No BETAT DEF, INF, IP, PE, TERM 0.0031*
Include BETAT DEF, INF, IP, PE, BETAT 0.0025**

Pre-1963 Sample
No BETAT DEF, IP, PE, TERM 0.0014
Include BETAT DEF, IP, PE, TERM 0.0014

Post-1963 Sample
No BETAT INF, PE, TERM 0.0043**
Include BETAT INF, PE, BETAT 0.0040**

Note: this table presents the variable selection results for different samples and their
long-run alpha estimates. Full sample stands for the monthly sample January 1927 –
December 2012; Pre-1963 stands for the monthly sample January 1927 – June 1963; Post-
1963 stands for the monthly sample July 1963 – December 2012. αLR is the long-run
alpha defined in (2.11). We mark rejection at the 95% level with * and 99% level with
**.

2.5 Conclusion

We revisit whether the conditional CAPM helps explain the value premium using the

single-index varying-coefficient model. Our setup provides a general framework that has

two innovative features, compared with those adopted in the previous studies. First, it

allows for a nonlinear dependence of conditional beta on the state variables and provides

formal tests on the nonlinearity. Second, we can use an exhaustive variable selection

method to choose the significant conditioning variables from a large set of potential state

variables. To take advantage of the second feature, we consider several important measures

of business cycles, in addition to the stock market return predictors commonly used in the

previous studies. For comparison, we also include realized beta as a conditioning variable.

Other robustness checks with smoothed realized beta, quarterly data, or different samples

yield qualitatively robust results.

Consistent with risk-based explanations of the value premium, we find strongly coun-

tercyclical variation in its conditional beta. However, the conditional CAPM does not

fully explain the value premium. Our results suggest that we should not rule out the risk-
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based explanation; rather, they indicate that the market return is not a sufficient statistic

for the risk. Existing studies have found that other risks matter as well. For example,

Fama and French (1996) suggest that value stocks are more vulnerable to distress risk

than are growth stocks. Pastor and Stambaugh (2003) show that the illiquidity risk is sig-

nificantly priced in the cross-section of stock returns. Campbell and Vuolteenaho (2004)

find that cash-flow shocks are riskier than discount-rate shocks. Basal and Yaron (2004)

argue that long-run cash flow risk accounts for a large portion of the observed equity

premium. Kuehn, Petrosky-Nadeau, and Zhang (2012) show that unexpected changes

in labor income are a potentially important risk that investors want to hedge against.

Because these risks tend to move closely with the market risk, a countercyclical market

beta might suggest that the value premium has larger exposures to these risks during

business downturns than during business upturns.
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