


Improving Dynamic Navigation
Algorithms

A dissertation submitted to the
Graduate School

of the University of Cincinnati
in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Department of Computer Science

of the College of Engineering and Applied Science
by

Weiya Yue

M.S. SUN YAT-SEN University

June 2006

Committee Chair: John Franco, Ph.D.



Abstract

Navigation algorithms for advanced autonomous vehicles, such as
an unmanned automobile or airplane, require improved response times
to complete numerous tasks that are still only imagined. Existing nav-
igation algorithms tend to be incremental, do not take full advantage
of accumulated information to compute a next move, and tend to be
too eager in recomputing much information when a new optimal path
must be found. The result is unnecessary per-round state recalcula-
tions that slow the algorithms considerably. The formalization of a
general framework for dynamic planning algorithms, aimed at elimi-
nating such recalculations by considering the relationship between op-
timal solutions between rounds, is proposed. The framework is based
on our successful work which improved the speed of the well-known
D*lite algorithm by up to eight times. The expected direct result of
this research is to improve the performance of navigation algorithms
in various terrains. As an example, the framework is applied to the
Anytime D* algorithm, a variant of D*Lite, to get a new algorithm,
called IAD*, which is an order of magnitude faster than Anytime D*.
Moreover, the IAD* algorithm and the AWA* algorithm are combined
to form another Anytime variant, and another new dynamic anytime
algorithm, called DAWA*, the first dynamic anytime algorithm able
to utilize time resource continuously. These improvements show the
extensibility and robustness of the proposed framework.
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1 Introduction

Advances in agent replanning have made possible the development of serious
autonomous vehicles that may be used to explore other planets, gather data
in areas considered too dangerous for humans, and even park themselves
without human involvement. Notable among these advances is the marriage
of incremental search algorithms with sophisticated search heuristics that
exploit learned terrain information to narrow the search space and thereby
speed up the replanning process. The D* Lite algorithm [14, 15] represents
the state-of-the-art in such replanning algorithm development. A descendant
of the A* and D* [31, 32] algorithms, D* Lite is easily implemented and its
“experimental properties show that D* Lite is at least as efficient as D*.” It
has been used successfully in a variety of roles [1, 37].

The terrain information that is used by D* Lite is represented abstractly
as a directed graph G(V,E) with distinguished start or source vertex vs,
goal vertex vg, and positive integer costs c : V × V �→ Z+ on edges. An
“agent” initially occupies vs and moves along edges to vg. On every movement
through a single edge, called a transition, edge costs can change. The cost of
a agent’s path from vs to vg is the sum of the costs of the edges traversed when
they are traversed. D* Lite attempts to determine the lowest cost sequence of
transitions that will take an agent from vs to vg. The problem is complicated
by the fact that edge cost changes are not predictable.

It is unlikely that D* Lite will find the lowest cost sequence of transitions
that advances the agent from vs to vg because it never has complete infor-
mation about edge cost changes until the last transition. Moreover, current
edge costs are known to D* Lite only within the agent’s view which consists
of the edges out to vertices that are within a fixed distance, called the sensor-
radius, from the current position of the agent, which we will designate below
as vc. But D* Lite can always find the lowest cost sequence from vc to vg
based on the known edge costs within the view and assuming that current
estimates of other edge costs are their actual costs.

Several other planning algorithms have been proposed specifically to deal
with an environment where graph changes are expected during agent transit
and the view of the agent is limited. The Anytime A* (ARA*) [21,22] returns
a suboptimal solution quickly with control over a sub-optimality bound which
can be improved during search until time runs out. This algorithm may be
useful when the time available for recomputation is limited. A BBD based
approach proposed in [39] memoizes and reuses learned information to save
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space and recomputation.
Despite orders of magnitude improvements in speed over the years, plan-

ning algorithms still have trouble meeting the demands of the time-critical
and ever-changing nature of navigation. In prior work we have observed that
the relationship between optimal solutions across rounds can be exploited in
new ways to further improve the performance of D* Lite, which is generally
considered to be an important navigation algorithm [40,41,43]. Recently, we
have observed that the technique we used to get this improvement can be
generalized to improve various dynamic planning algorithms. We propose to
formalize this technique as a general framework and use this framework to
improve the performance of various navigation algorithms. This framework
will be the main contribution of the thesis. An important by-product of
this result will be the immediate improvement of several known navigation
algorithms.

To help motivate and understand this framework several navigation al-
gorithms are described in this proposal. Algorithms D* Lite, Anytime A*,
and other algorithms that they depend on are described in Section 3. In
Section 4, our Improved D* Lite algorithm (ID* Lite) is described. ID* Lite
applies new, efficient methods to avoid unnecessary recomputations when
graph changes are detected. According to results of our experiments on sev-
eral kinds of changing graph topologies ID* Lite can be as much as eight
times faster than D* Lite. Ideas that ID* Lite is built around naturally lead
to a better skeleton for incremental planning algorithms in general because
little domain knowledge is used during recomputations. We show that this
skeleton can be used to also improve Anytime D*.
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2 Background

The mathematical structure that will be the foundation for our framework
is the finite weighted directed graph which will be denoted in the usual way
for vertex set V and edge set E as G(V,E) with cost function c : E �→ Z+

that defines positive edge costs. For a pair of vertices {a, b} ⊂ V , an edge
that is directed from a to b is denoted 〈a, b〉 and that edge, if it exists, will
be said to be an out-edge of a and an in-edge of b and a will be said to be
the source of that edge and b will be said to be the target of that edge. In
the graphs that are used in modeling navigation problems V remains fixed
but E may change with time and the mapping c may change with time. In
addition, two of the vertices of V are designated as the starting and goal
vertex, denoted vs, vg respectively. A particular collection of values of V , E,
vs, vg and mapping c define a state of the model.

The problem considered here is to find a trajectory of an agent from
a given starting vertex to the goal vertex. A trajectory is a set of legal
moves of the agent. Agent moves and state changes are assumed to occur at
discrete points called epochs. The result of an agent’s move is instantaneous
and a state change may not happen at every epoch. At an initial state
S = 〈V,E, vg, vc, c〉 an agent is placed on some (starting) vertex vc = vs ∈ V

and a trajectory cost c is assigned the value 0. At any state S, an agent located
at vertex vc ∈ V may move legally to any vertex w such that 〈vc, w〉 ∈ E

or the agent may stay put. The agent must stay put at an epoch if there is
no out-directed edge from vc. If the agent moves to w �= vc then w becomes
vc and c(〈vc, w〉) is added to the trajectory cost as the outcome of the move.
When and if vc = vg (the agent reaches the goal vertex, wherever it happens
to be), the movement of the agent stops and the trajectory cost is the cost of
moving the agent from the starting vertex in the initial state to the goal. The
problem is to plan a trajectory that will have least cost among all possible
trajectories.

The navigation algorithms considered here account for state changes and
the movement of an agent through vertices while those changes take place
by making updates during a round of computation. A current (best) path to
the vg is maintained from round to round and may change as state changes
and the agent is made to move one edge along that path. If the current path
is no longer feasible or not optimal, the current best path is replaced by a
new feasible best path before moving the agent. Doing so may require an
amount of computation that ranges from negligible to extreme. To clarify,
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especially for following sections, given a state S, a path from vertex vc to
vertex vg is a sequence {e1, . . . , ek} of edges in E where the source of e1 is
vc, the target of ek is vg, and for all 1 ≤ i < k the target of ei is the source of
ei+1. A path from vc to vg in current state S will often be denoted P S

vc,vg
or

Pvc,vg for brevity. Alternatively, for given S, a path between vertices vc and
vg may be represented as a sequence {vc, v1, . . . , vk, vg} of vertices where, for
1 ≤ i < k, vi is the target of one edge and the source of another edge in E,
and edges 〈vc, v1〉 and 〈vk, vg〉 exist in E.

For any vertex v, function c doubles as defining the cost of a path ac-
cording to c(Pv,vg) =

∑
e∈Pv,vg

c(e). If Pv,vg is a set of paths from v to vertex

vg, and if P ∗ ∈ Pv,vg and c(P ∗) ≤ c(P ) for all P ∈ Pv,vg , then P ∗ is said to
be an optimal or best path between vertices v and vg. The cost of the opti-
mal path between a vertex v and the goal will be denoted g∗(v). Navigation
algorithms presented here will maintain a current collection of paths to the
goal from round to round. The cost of a best path, as currently determined
by the algorithm, from any vertex v (not just vc) will be denoted g(v). An
estimate of the cost between two vertices u, w is denoted by h(u, w), and for
convenience an estimate of the cost of the best current path from v to vg will
be denoted h(v). Although g∗,g, and h are not shown to be functions that
depend on time, it should be emphasized that the vertex vc and path costs
may change over time.

Two functions are defined to express possibilities for agent movement on
a round. In state S, denote by succ(v) the subset of all vertices of V of S
that are targets in edges whose source vertex is v and by pred(v) the subset
of all vertices that are a source in some edge whose target is v.

6



Algorithm A*
01. Priority Queue: OPEN = ∅; CLOSED = ∅;
02. OPEN.insert(vs, f(vs));
03. while OPEN �= ∅:
04. [v, f(v)] = OPEN.top();

05. OPEN.remove(v); CLOSED.insert(v);

06. if (v == vg) PrintPath();

07. for every vertex u ∈ succ(v):

08. if (u ∈ CLOSED and g(u) > g(v) + c(〈v, u〉))
09. g(u) = g(v) + c(〈v, u〉);
10. CLOSED.remove(u); OPEN.insert(u, f(u));
11. else if (u ∈ OPEN)

12. g(u) =min(g(u), g(v) + c(〈v, u〉));
13. OPEN.update(u, f(u));
14. else

15. g(u) = g(v) + c(〈v, u〉); OPEN.insert(u, f(u));

Figure 1: Pseudo code for the A* algorithm

2.1 The A* algorithm

This section presents the classic A* search algorithm [12] [7] which has been
used for decades on graph traversal and pathfinding problems of fixed state
due to its performance characteristics and accuracy. This algorithm is the
basis for all the other algorithms presented here. Its key property of interest
is the use of a distance-plus-cost heuristic function, denoted f(v), which is
used to choose the best vertex through which to extend the search for a best
path to the goal. The function f(v) = g(v) + h(v) where g(v) is cost of
reaching v from the start vertex vs over the current best path and h(v) is an
estimate, but not over-estimate, of the cost of reaching the goal vertex from
v.

A priority queue, which will be called OPEN here, is maintained to sup-
port the search which progresses in a best-first manner. Every node of OPEN
contains a vertex v with associated priority f(v). The nodes in OPEN are
in non-decreasing order of f(v). For convenience of computation, a tempo-
rary list of vertices, called CLOSED here, holds all vertices that have been
considered for expansion in the search: that is, vertices that have been re-
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moved from OPEN. A next vertex v for consideration is taken from the top
of OPEN: that is, the next vertex is the lowest priority node of OPEN. Each
potential successor u of v is tested to see whether g(u) > g(v) + c(〈v, u〉).
If so, g(u) is reduced to that amount and u is placed in OPEN with newly
reduced, associated f(u), if it was not there already. Pseudo code for the
A* algorithm is shown in Figure 1, in which every vertex v is initialized
with g(v) = ∞ except g(vs) = 0. Function PrintPath() can generate one
path when the algorithm is finished. To generate one path P = {vs =
v1, v2, ..., vd = vg}, we only need to traverse back from vg by setting vd = vg,
then vi = argminv∈pred(vi+1)(g(v) + c(〈v, vi+1〉), 1 ≤ i < d.

The heuristic function h has a major impact on the performance charac-
teristics and optimality of the A* algorithm. The A* algorithm is guaranteed
to find a least-cost path from start vertex to goal if h(v) ≤ g∗(v) for all v.
In that case, h is said to be admissible. If for any vertex v �= vg, and every
u ∈ succ(v), h(v) ≤ h(u) + c(〈v, u〉), and if h(vg) = 0, then A* is opti-
mally efficient: that is, it expands the minimal number of nodes which are
necessary to guarantee optimality and completeness. A heuristic function
with this property is said to be consistent. Most commonly used heuristics
are consistent. However, a heuristic that is not consistent can sometimes
be employed to reduce search further. For example, the inflated heuristics
used in [25, 28] expand fewer vertices than well-known consistent heuristics
in some application. The use of inconsistent heuristics has been explored at
length in [3, 4]. If h is admissible and f(v) = g(v) + ε · h(v), then the path
returned by the A* algorithm is guaranteed to be ε-sub-optimal [5]: that is,
g(vs) ≤ ε · g∗(vs). The Anytime A* algorithm [21, 22] has this property, and
Anytime Dynamic A* [20], which can be treated as one descendent of D*
Lite and Anytime A*, also has this property. Observe that if h(v) = 0 for
all vertices then the A* algorithm is Dijkstras algorithm.
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2.2 D* Lite Algorithm

The D* algorithm [31,32], introduced in 1995, is the first dynamic incremental
algorithm to be applied to autonomous navigation with an improvement in
performance of two orders of magnitude over previously used algorithms.
This was followed in 2002 by the D* lite algorithm [14, 15], a descendant of
D*, which is considered to be the most successful variant currently [1]. D*
lite improves upon D* by cleverly avoiding full round re-calculations under
certain conditions. D* lite is easily implemented, expanded to be combined
with various domain knowledge and its “experimental properties show that
D* lite is at least as efficient as D*” [15]. It has been used successfully in a
variety of roles. For example, a prototype system tested on the Mars rovers
Opportunity and Spirit and the navigation system of the winning entry in
the DARPA Urban Challenge [37] use the D* lite algorithm.

Whereas the A* algorithm is intended to be used on fixed state models,
D* and D* lite have been designed for models where arbitrary state changes
can occur. There is no algorithm for solving the general problem of finding
the lowest cost path in the presence of state changes and where the agent
has a limited view so D* and D* lite can, at best, return an agent trajectory
whose cost approximates that of a lowest cost trajectory. To do this some
assumptions must be made about the vertices and edges that are outside
the view of (and not accessible to) the agent and some next-move-judgment
algorithm for applying those assumptions must be designed and implemented.
Typically, these assumptions include a fixed agent view whose maximum
distance from the agent, in pathlength, is call the sensor radius. In D*
lite a path that is optimal based on current knowledge and assumptions is
computed and that path is followed until an assumption is violated at which
time a new optimal path is computed, and so on, until vg is reached. Every
transition from one vertex to a neighboring vertex corresponds to a round
of D*lite in which the current path is checked and a new optimal path is
computed, if necessary.

The next-move-judgment algorithm that is used by D* lite combines el-
ements of the A* algorithm with elements of the D* algorithm. It uses the
functions g and h as described earlier for A*, except with some small differ-
ences, plus a function rhs that returns a one-level lookahead cost for a vertex.
Function g is now used to estimate the cost of a path from the agent’s current
position (vc) to vg and not from vs to vc as is done in A* and function h is
used as a heuristic for path cost from vs to vc and not from vc to vg as is done
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in A*. Hence, D* lite searches backward from vg to vs. This is likely the
critical point to the success of D* and its descendants because the g value of
every node is exactly the path cost from that node to the goal vg and can be
used after the agent moves to its next position. The function rhs is defined
by

rhs(v) =

{
minv′∈succ(v) g(v

′) + c(〈v, v′〉) v �= vg
0 otherwise,

The “more informed” rhs function assists in making better vertex updates
during expansion. Call vertex v locally consistent if rhs(v) = g(v), locally
overconsistent if rhs(v) < g(v), and locally underconsistent if rhs(v) > g(v).
In the latter two cases v is said to be inconsistent. A “best” path can be
found if and only if, after expansion of vs, all vertices on the path are locally
consistent and can be computed by following the maximum-g-decrease-value
vertices one by one. If some changes that have been made since the last round
cause a vertex v to become inconsistent then D* Lite will update g(v) to make
v locally consistent by setting g(v) = rhs(v). During the update changes in
g(v) will be propagated through all neighbors of v. Propagation continues
until a new “best” path has been found. During propagation vertices that
are found to be consistent are not updated; this is partly why D* Lite is
faster than D*.

The pseudo code of D* Lite listed in Figure 2 is exactly the same as in [14]
with only minor changes to representations.

Procedure CalculateKey(v) returns the priority queue key value of ver-
tex v which is a function of g(v), rhs(v), h(v), and km, where km is one value
used to reduce the number of resorting priority queue introduced in [31]. Pro-
cedure Initialize() initializes g, rhs values explicitly. ProcedureUpdateVertex(v)
is used to update v’s g and rhs values and to keep v in the right position of
priority queue OPEN .

Procedure ComputeShortestPath() is the most important function.
As discussed above, the critical point of D* Lite is to make sure all the
changes are propagated until one optimal path has been generated with all
vertices on it are consistent. If vertex v has been affected by changes of
edges, then v can be overconsistent or underconsistent. If v is overconsistent
this change can be guaranteed to be propagated out. If v is underconsistent,
the procedure must set g(v) = ∞ in order to propagate this change out.
This corresponds to lines 14-26 in Figure 2. It is important to observe that
the keys in OPEN are updated lazily so by the time line 11 is executed, the
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priority queue key value of the top of OPEN may be smaller than its actual
value as computed by CalculateKey(v) [31]. In that case, the vertex at
the top of OPEN cannot be the actual lowest priority vertex in OPEN so we
avoid searching on this vertex (Lines 14-26) and just do an update on the
priorities of vertices in OPEN (Line 13).

Procedure Main() gets the agent to move to the next vertex after the
“best” path has been calculated, then scans the graph for changes and re-
computes vertex values when changes are found. In Figure 2, km is used to
reduce the time needed to reorder the priority queue. This addition was first
introduced in [31].

In some variations of the D* family of algorithms, for example delayed
D* [9], updating underconsistent vertices is delayed since, intuitively, it is
more likely that the “best” path contains overconsistent vertices. Delayed
D* performs well under some conditions, but if there are many overconsis-
tent vertices, its performance suffers. Also, because delayed D* needs to
determine whether a path is correct by checking whether there is any under-
consistent vertex on it, a recomputation may have to be repeated, possibly
resulting in worse performance than D* Lite which explores all inconsistent
vertices together. For more details refer to [9].

Despite the clever design of D* Lite we envision a significant improve-
ment in performance is possible for two reasons. First, it can be shown that
some calculations that are performed when recomputing a “best” path are
unnecessary, and these calculations can be avoided safely. Second, it has been
observed that in many problems there is typically more than one “best” so-
lution and, if one of the alternative “best” paths is not affected by changes,
it can be found efficiently. If the new alternative “best” path so found is no
better than the old one, the alternative can be used in place of the old one
without a recomputation and with a guarantee of optimality. Moreover, if
the new alternative path is better than the old one, only a partial recompu-
tation is needed. These two reasons are the basis of the research we propose
both to improve D* Lite and its other variants.
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Procedure CalculateKey(v):
01. return [min(g(v), rhs(v)) + h(v) + km, min(g(v), rhs(v))]

Procedure Initialize():
02. OPEN= ∅; km = 0;
03. for all v ∈ V , rhs(v) = g(v) =∞;
04. rhs(vg) = 0;
05. OPEN.insert([vg, [h(vg), 0]]);

Procedure UpdateVertex(v):
06. if (g(v) �= rhs(v) and v ∈ OPEN) OPEN.update([v, CalculateKey(v)]);
07. else if (g(v) �= rhs(v) and v /∈ OPEN) OPEN.insert([v, CalculateKey(v)]);
08. else if (g(v) == rhs(v) and v ∈ OPEN) OPEN.remove(v);

Procedure ComputeShortestPath():
09. while (OPEN.TopKey() < CalculateKey(vs) or rhs(vs) > g(vs))
10. u = OPEN.top();
11. kold = OPEN.TopKey(), knew = CalculateKey(u);
12. if (kold < knew)
13. OPEN.update([u, knew ]);
14. else if (g(u) > rhs(u))
15. g(u) = rhs(u);
16. OPEN.remove(u);
17. for all v ∈ pred(u)
18. if (v �= vg)rhs(v) = min(rhs(v), c(〈v, u〉) + g(u));
19. UpdateVertex(v);
20. else
21. gold = g(u);
22. g(u) =∞;
23. for all v ∈ pred(u) ∪ {u}
24. if (rhs(v) == c(〈v, u〉) + gold)
25. if (v �= vg)rhs(v) = mins∈succ(v)(c(〈v, s〉) + g(s));
26. UpdateVertex(v);

Procedure Main():
27. vlast = vs;
28. Initialize();
29. ComputerShortestPath();
30. while (vs �= vg)
31. vs = argminv∈succ(vs)(g(v) + c(〈vs, v〉);
32. Move to vs;
33. Scan graph for changes;
34. if changes are found
35. km = km + h(vlast, vs);
36. vlast = vs;
37. for every edge 〈u, v〉 with changed edge cost
38. cold = c(〈u, v〉);
39. Update edge cost of 〈u, v〉;
41. if (cold > c(〈u, v〉))
42. if (u �= vg)rhs(u) = min(rhs(u), c(〈u, v〉) + g(v));
43. else if (rhs(u) == cold + g(v))
44. if (u �= vg)rhs(u) = mins∈succ(u)(g(s) + c(〈u, s〉);
45. UpdateVertex(u);
46. ComputeShortestPath();

Figure 2: Pseudo code for D* Lite
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2.3 Anytime Planning Algorithm

The goal of the algorithms discussed in previous sections is to determine
the “best” path for the agent given current, incomplete knowledge of the
environment in which the agent must move. In some applications these
algorithms are too slow and are unable to return any path at all when path
recomputation is necessary. Time-limited search algorithms, called anytime
planning algorithms, have been developed to be used in such cases. The basic
idea is to progressively replace a stored path with a better path when one
is discovered during search until the time available for search expires [10,
11, 45, 46]. Then the stored, probably sub-optimal path is the one that is
used. In [6,47], it is shown that this strategy can be made very efficient and
in [3, 4, 10, 19, 25, 28, 29], it has been demonstrated that a so-called weighted
A* algorithm variant which uses “inflated” heuristics (described below) can
expand fewer vertices than the normal A* algorithm.

In A*, the vertices in OPEN are sorted by their values f = g+ h. After
that, many works [5] [18] [19] [23] [26] [27] [28] [29] [30] etc. have been done on
researching the effect of weighting g and h, i.e. relating separated parameters
with g and h. By assuming h is admissive, in A* algorithm if we use f =
g + ε · h, then the returned path can be guaranteed to be ε sub-optimality,
i.e. g(vg) ≤ ε · g∗(vg) [5]. This strategy is called inflated heuristics, and the
benefit is the control of ε sub-optimality. The A* algorithm using inflated
heuristics is named weighted A* algorithm. Next we will mainly introduce
two anytime algorithms introduced in [10] and [21]. The two algorithms both
use a similar idea from Weighted A* as [5].

2.3.1 Anytime Weighted A*

In [10], one general method to transform heuristic search algorithms to any-
time algorithms is proposed, in which it is shown how to transform Weighted
A* [5] to be Anytime Weighted A*, and also the transformation of Recur-
sive Best-First Search algorithm [19] to an anytime version. Here we will
only introduce Anytime Weighted A* algorithm. Anytime Weighted A* is a
anytime planning algorithm which returns one sub-optimal solution as soon
as possible then whenever allowed continues to improve current solution un-
til one optimal solution returned. In Figure 3 the pseudo code of Anytime
Weighted A* is listed.

Anytime Weighted A* does initialization on most variants as A* algo-
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Algorithm Anytime Weighted A*
01. Priority Queue: OPEN = ∅, CLOSED = ∅; PATH p = NULL; ERROR=∞; Constant ε;
02. OPEN.insert(< vs, f

′(vs) >);
03. while OPEN �= ∅ and not interrupted by outside:
04. < v, f ′(v) >= OPEN.top(); OPEN.remove(v);
05. if ( (p == NULL) or (f(v) < c(p)) )
06. CLOSED.insert(v);
07. for every vertex u ∈ succ(v) and g(v) + c(v, u) + h(u) < c(p):
08. if(v == vg)
09. f(u) = g(u) = g(v) + c(v, u);
10. Update p to be the path passing through v; PrintPath();
11. else if u ∈ CLOSED and g(u) > g(v) + c(e(v, u))
12. g(u) = g(v) + c(e(v, u)); f ′(u) = g(u) + ε · h(u); f(u) = g(u) + h(u);
13. CLOSED.remove(u), OPEN.insert(< u, f ′(u) >);
14. else if(u ∈ OPEN)
15. g(u) = min(g(u), g(v) + c(e(v, u))); f ′(u) = g(u) + ε · h(u); f(u) = g(u) + h(u);
16. OPEN.update(< u, f ′(u) >);
17. else
18. g(u) = g(v) + c(e(v, u)); f ′(u) = g(u) + ε · h(u); f(u) = g(u) + h(u);
19. OPEN.insert(< u, f(u) >);
20. if (OPEN == ∅) ERROR = 0;
21. else ERROR = c(P )−minv∈OPEN(f(v));
22. PrintPath();

Figure 3: Pseudo Code of Anytime Weighted A* Algorithm

rithm, and as Weighted A*, the heuristic function h used is admissive. Dif-
ferent from normal A* algorithm, in Anytime Weighted A* p is used to
record current returned path which may be improved later; ERROR is used
to estimate how far away current solution is from optimal path; ε is the pa-
rameter used to inflate h; in one vertex v ∈ OPEN , the stored values are
〈g(v), f ′(v)〉 instead of 〈g(v), f(v)〉, in which f ′(v) = g(v) + ε · h(v). I.e.,
in Anytime Weighted A* in priority queue OPEN , the vertices are sorted
by f ′ value instead of f value in normal A* algorithm. Although Anytime
Weighted A* uses inflated heuristic value f ′ to sort vertices, normal f val-
ues are also recorded, which is used to prune searching space [11] [13]. In
Figure 3, at line 05, there is one judgement about whether to expand one
OPEN vertex which does not exist in A*. If p! = NULL, c(p) is equal with
f(vg). If current there is one path p, and f(v) < c(p), i.e. v can not reduce
value f(vg) to improve current path, then p will not expanded; at line 07,
with the same reason, for one u ∈ succ(v), if its f value is updated by v and
can not be smaller than c(p), it is not inserted into OPEN .

Here notice that, because Anytime Weighted A* does not have the prop-
erties of A* by using consistent heuristic function, it is not guaranteed that
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vertices in OPEN have their f values no bigger than the top vertex v’s f

value. Hence, when vg is expanded, the returned path can not be guaranteed
to be optimal, and some vertices in OPEN can be deleted whose f values
are ≥ f(vg). The reason not to remove them after p improved or to remove
those vertices at line 14 − 16 is that we do not need to do extra resorting
actions on OPEN until such vertices rise to the top of OPEN . This enables
us to improve current path as soon as possible. For the same reason, at
line 08 − 10, when a vertex is generated instead of it is expanded in A*, it
is tested whether is vg, and if yes, current path is reported to be improved
immediately.

Anytime Weighted A* has been proved its terminability and optimality.
In Figure 3, at line 20, if OPEN == ∅, ERROR is set to be 0, which
means current solution is optimal; otherwise at line 21, ERROR is set to be
c(P )−minv∈OPEN(f(v)), which gives one upper bound of variance between
current path and optimal path, i.e. ERROR ≥ c(p) − g∗(vg) where g∗(vg)
is the weight of optimal path. If the heuristic h is admissive, then Anytime
Weighted A* can guarantee ε sub-optimality of every returned path. For
more details, please refer to [10].

2.3.2 Anytime A* with Control of Sub-optimality

Essential to anytime planning algorithms is a measure of the closeness of
the cost of the stored path to the cost of an optimal path. An effective
cost measure contributes to making a more precise decision about when to
recompute for a better path and choosing a better path. In other words, it
provides a quantitative understanding of the error/available-time tradeoff. A
simple cost measure exists for the A* algorithm if f is modified slightly: if
h is admissive and f = g + ε · h, then the recomputed path is guaranteed
to be ε sub-optimality, that is, g(vg) ≤ ε · g∗(vg) [5, 10]. This is the basis
for one of the weighted A* algorithm variants mentioned above. Obviously, ε
can initially be relatively large and then incrementally reduced during search.
However, doing so can result in significantly many duplicated recomputations
that prevent ε from reaching a satisfactory value before time expires. The
incremental anytime algorithm Anytime Repairing A* (ARA*) algorithm [21,
22] was developed to mitigate this problem.

The pseudo code of ARA* that is shown in Figure 4 is replicated from [21]
with slight representation differences. The heuristic function h used in ARA*
is assumed to be consistent. The algorithm runs the weighted A* algorithm
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many times, starting with a large value for the so-called inflated parameter ε
and then reducing ε on each succeeding round until either ε = 1 or available
time expires. Since f depends on ε, the heuristic function is said to be an
inflated heuristic. Most important to the performance of ARA* is that it
reuses previously calculated information to avoid duplicating computation.
This is done in accordance with ideas taken from [16,17]. In A*, all vertices
in OPEN are treated as inconsistent vertices. Since such inconsistency must
be overconsistency, ε · h, ε > 1, is not guaranteed to be consistent even if h
is consistent. So, a vertex that is expanded from OPEN, and that would be
made consistent if ε = 1, may have to be re-inserted into OPEN and expanded
again, possibly several times, before becoming consistent, if ε > 1. This re-
expansion may be avoided by forcing a maximum of one expansion per vertex
per round and leaving expanded vertices that remain inconsistent for the next
round. In ARA*, all inconsistent vertices are also only overconsistent. In
Figure 4, function Fvalue(v) does the same job as f(v) in the A* algorithm.
Function ImprovePath() is the key function of ARA*. Because ε ·h cannot
guarantee consistency, CLOSED is used in ARA* to keep all expanded and
consistent vertices. The priority queue INCONS is used in ARA* to keep
all expanded but inconsistent vertices. As in A*, OPEN is used to keep all
unexpanded and inconsistent vertices. Thus, after a round of computation,
OPEN∪ INCONS is the set of all the inconsistent vertices and CLOSED is
the set of all expanded and consistent vertices. As a result of reusing previous
information, when it is not the first round computation, vg may be consistent
already before computation. Line 02 of ARA*, which is missing from A*,
checks this possibility. Function Main() executes ImprovePath() multiple
times until available time expires or ε = 1. Before calling ImprovePath()
on a round, INCONS is dumped into OPEN. It is worth noting the variable
ε′ in function Main(), which was first introduced in [10]. The purpose of
introducing ε′ is to estimate a better current bound of sub-optimality.

As the D* Lite algorithm can be treated as a dynamic version of the
Lifelong A* algorithm, the Anytime D* algorithm can be thought of as a
dynamic version of the Anytime A* algorithm. The Anytime D* algorithm
is discussed in detail in the next section.
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Procedure Fvalue(v):
01. return g(v) + ε · h(v);

Procedure ImprovePath():
02. while (Fvalue(vg) > OPEN.TopValue())
03. v = OPEN.top(), OPEN.remove(v);
04. CLOSED.insert(v);
05. for each vertex s ∈ succ(v)
06. if s was not visited before then
07. g(s) =∞;
08. if g(s) > g(v) + c(〈v, s〉)
09. g(s) = g(v) + c(〈v, s〉);
10. if s /∈ CLOSED
11. OPEN.insert([s,Fvalue(s)]);
12. else
13. INCONS.insert(s);

Procedure Main():
14. g(vg) =∞, g(vs) = 0;
15. OPEN = CLOSED = INCONS = ∅;
16. OPEN.insert([vs,Fvalue(vs)]);
17. ImprovePath();
18. ε′ = min(ε, g(vg)/minv∈OPEN∪ INCONS(g(v) + h(v)));
19. Print current ε′-suboptimal solution;
20. while (ε′ > 1)
21. decrease ε;
22. Move vertices from INCONS into OPEN;
23. Update the priorities for all v ∈ OPEN according to Fvalue(v);
24. CLOSED = ∅;
25. ImprovePath();
26. ε′ = min(ε, g(vg)/minv∈OPEN∪ INCONS(g(v) + h(v)));
27. Print current ε′-suboptimal solution;

Figure 4: Pseudo code for Anytime A*
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2.4 Anytime D*

The preceding sections have discussed several planning algorithms and the
motivation for their development. Incremental A* [16, 17] is intended for
applications where replanning is done between the same pair of source and
destination vertices but under changing circumstances. Anytime A* [21] [22]
has been developed for applications where optimality is not as critical as
response time, incremental changes in the environment are expected, and
replanning due to those changes is done between a fixed pair of vertices.
D* [31, 32], and D* Lite [14, 15] are appropriate for dynamic navigation by
autonomous vehicles, intelligent robots, etc.

In this section yet another planning algorithm, called Anytime D*, is dis-
cussed. This algorithm, introduced in [20], is intended for dynamic navigation
applications where optimality is not as critical as response time. It may be
thought of as a descendant of both the Anytime A* and D* Lite algorithms.
It may re-calculate a best path more than once in a round with decreasing
ε-suboptimality until ε = 1 or time has run out. Thus, Anytime D* will try
to give a relatively good, available path quickly and, if time allows, will try to
improve the path incrementally as is the case for Anytime A*. The difference
is that in Anytime A* inconsistent vertices are only over-consistent, but in
Anytime D*, due to edge cost changes, there may be under-consistent ver-
tices and different rules are employed when propagating information about
such vertices. These are stated in the following description of the algorithm.

The Anytime D* algorithm is listed in Figure 5. In function Main(), lines
23-24 define and initialize ε, and the priority queues OPEN, CLOSED, and
INCONS, and initialize values for g and rhs of the source and destination
vertices. The initial value of ε0 is relatively large in order to make sure some
path is returned quickly by lines 27-28. Lines 28-42 incrementally improve
on the initial or current path until an optimal path is computed (ε = 1).
A new path is computed and state updated when any edge cost changes
are observed. If the changes are small then ε is decreased (line 35) but
when significant changes are observed ε is increased or replanning is restarted
(line 33). When epsilon reaches 1, an optimal solution is obtained and the
algorithm suspends itself until additional changes in edge costs are observed.

If edge cost changes are substantial, instead of updating current states,
it may be less expensive to increase ε or replan from scratch as described
in Line 33. Thus, there needs to be some way to determine when changes
are substantial and some way to determine whether a restart should be per-
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formed.
Consider the measure for determining what a substantial change is first.

This measure is application-dependent [20]. If many re-calculations have
been made there are many inconsistent vertices (in OPEN) that will not be
part of a best path and should be eliminated from OPEN to save unnecessary
computation and memory.

Returning to Figure 5, function ComputeorImprovePath() is similar
to the function of the same name in D* Lite. Function UpdateVertex(s)
updates one vertex in the same way as Anytime A* by using INCONS to
store some of the inconsistent vertices and making sure that one vertex is
expanded at most once in one execution of ComputeOrImprovePath().
This guarantees the solution generated satisfies ε-suboptimality. Function
key(s) is different from function Fvalue(v) in Figure 4 because in Anytime
D* there are under-consistent vertices to consider and in order to propagate
information about under-consistent vertices g(s)+h(s), which is guaranteed
to be smaller than key(vs), is used instead of g(s) + ε · h(s) in Line 04.
Otherwise, not only the path returned is not ε-suboptimal, but also some
vertices on the path may be inconsistent.

In order to give an agent the ability to navigate, Line 28 in Figure 5 is re-
placed with fork(MoveAgent()); while(vs �= vg); in [20] whereMoveAgent()
is shown in Lines 43-46. Running in parallel with lines 28-42, MoveAgent()
allows the agent to move along the current best path while the current solu-
tion is being improved. However, the case where the vertex that the agent is
about to move to is v but the improved best path no longer contains v may
present a problem. A solution is to allow the agent to land on v, set vs = v,
and recalculate a new best path.
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Procedure key(s):
01. if (g(s) > rhs(s))
02. return [rhs(s) + ε · h(s), rhs(s)];
03. else
04. return [g(s) + h(s), g(s)];

Procedure UpdateVertex(s):
05. if s has not been visited
06. g(s) =∞;
07. if (s �= vg)rhs(s) = mins′∈succ(s)(c(〈s, s

′〉) + g(s′));
08. if (s ∈ OPEN) OPEN.remove(s);
09. if (g(s) �= rhs(s))
10. if (s ∈ CLOSED)
11. OPEN.insert([s,key(s)]);
12. else
13. insert s into INCONS;

Procedure ComputeOrImprovePath():
14. while (OPEN.TopKey() < key(vs) OR rhs(vs) �= g(vs))
15. s = OPEN.Top(), OPEN.remove(s);
16. if (g(s) > rhs(s))
17. g(s) = rhs(s);
18. CLOSED.insert(s);
19. for all s′ ∈ pred(s) UpdateVertex(s′);
20. else
21. g(s) =∞;
22. for all s′ ∈ pred(s) ∪ {s} UpdateVertex(s′);

Procedure Main():
23. g(vs) = rhs(vs) =∞, g(vg) = 0, rhs(vg) = 0, ε = ε0;
24. OPEN = CLOSED = INCONS = ∅;
25. OPEN.insert(vg);
26. ComputeOrImprovePath();
27. publish current ε-suboptimal solution;
28. repeat the following:
29. for all directed edges 〈u, v〉 with changed edge costs
30. Update the edge cost c(〈u, v〉);
31. UpdateVertex(u);
32. if significant edge cost changes were observed
33. increase ε or replan from scratch;
34. else if (ε > 1)
35. decrease ε;
36. Move states from INCONS into OPEN;
37. Update the priorities for all s ∈ OPEN according to key(s);
38. CLOSED = ∅;
39. ComputeOrImprovePath();
40. publish current ε-suboptimal solution;
41. if (ε == 1)
42. wait for changes in edge costs;

Procedure MoveAgent():
43. while (vs �= vg)
44. wait until a plan is available;
45. vs = argminss∈succ(vss)(c(〈vs, s〉) + g(s));
46. move agent to vs;

Figure 5: Pseudo code for Anytime D*
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In this paper, we will give a framework to speed up dynamic navigation
algorithms including both optimal and sub-optimal searching algorithms. In
order to show this, several new algorithms are composed as below:

1. ID* Lite algorithm: [40,41] This algorithm improves D* Lite algorithm
with guaranteed no more heap operations used than D* Lite algorithm
during searching. Every time when changes observed by the agent,
ID* Lite will try to find an alternative instead of applying a full re-
calculation. In Section 3.1, ID* Lite algorithm is fully introduced and
discussed. Also, via experiments, we will see ID* Lite performs better
than D* Lite on random benchmarks.

2. IID* Lite algorithm: [43] IID* Lite algorithm is introduced in Sec-
tion 3.2. This algorithm achieves up to 8 times experimentally speeding
up than D* Lite algorithm. As in ID* Lite algorithm, when changes
observed, alternative will be searched. But if no alternative available,
IID* Lite will try to propagate changes part by part instead of propa-
gating all changes.

3. IAD* algorithm: [42] In Section 4.1, we will introduce IAD* algorithm
and doing experiments to compare it with Anytime D* algorithm. The
same strategy as in IID* Lite is used. And by experiments, IAD* can
achieve up to one order times of speeding up compared with Anytime
D* algorithm.

4. DAWA* algorithm: In Section 4.2, DAWA* algorithm, a descendent
of IAD* and AWA* algorithm, is introduced and compared with AD*
and IAD* on sub-optimality and fail-ratios under given limited time.
Results show DAWA* achieves up to one order of lower fail-ratios, and
gains better sub-optimality than other algorithms.

By above results we claim that our framework can be combined with
various techniques in dynamic navigation algorithm to speed up present nav-
igation algorithms.
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3 Improved D* Lite Algorithm

In this section two improvements to the D* Lite algorithm are proposed and
analyzed. One improved algorithm is shown analytically and experimentally
to produce optimal solutions at least as efficiently as D* Lite. The other
performs more efficiently than D* Lite on average but is not guaranteed
to be always at least as fast as D* Lite. Both algorithms can find one
optimal solution in every round if one exists [40, 41, 43]. Both algorithms
intelligently analyze observed environmental changes and use the results to
avoid unnecessary re-calculations. These algorithms are especially effective
when more than one “best” solution can be computed: this is usually the
case for dynamic navigation algorithms [10].
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3.1 Finding an alternative “best” path

This section presents the first improvement to D* Lite which we call ID*
Lite for Improved D* Lite. A description of ID* Lite has been published [40]
and the content of this section is based on that paper. ID* Lite is similar
to D* and D* Lite in that it searches backwards from the goal vertex vg to
the start vertex vc and in the way it selects the next edge to traverse. As
in the case of D* Lite, ID* Lite traverses a current shortest path from vc to
vg until changes in edge costs are detected. When that happens, instead of
re-calculating vertex values immediately, as is done in D* Lite, ID* Lite tries
to find a single optimal alternative path which is still consistent. To see how,
suppose w is a vertex on the current path and suppose w becomes inconsistent
after changes are detected. ID* Lite looks for consistent paths from vc to
vg which contain a vertex u which is also on the current path from vc to w.
There may be several possibilities and each is given a priority proportional
to the distance from u to w. The cost of some of those paths may not have
been affected by the changes that cause w to become inconsistent. ID* Lite
finds those paths quickly, if at least one exists, and, if at least one is found
to have cost no greater than the current path, the one with highest priority
is used to replace the current path.

ID* Lite can find alternative shortest paths more quickly than D* Lite
can re-calculate and that is the reason ID* Lite has been shown empirically to
have superior performance. ID* Lite inspects all edges in the view and records
all those for which the cost has changed. There may be several such changes
in a round and all will be taken into account when looking for a shortest path
to vg. Then ID* Lite makes use of a system of vertex typing to efficiently
compute alternative paths by traversing chains of vertices according to type,
possibly changing the type of some vertices during the traversal. Details
of how this is done are saved for later. This is different than for D* Lite
and its variants: they will always eagerly recompute g and rhs values to
remove inconsistencies and then compute a new shortest path based on the
new values. If ID* Lite is not forced to recompute g and rhs values (because
no alternative path can be found) it will not do so.

3.1.1 Terminology

When edge cost changes are detected, D* Lite re-calculates all vertex values
to make them consistent. This action starts a round of the algorithm. A
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type(v) Meaning

≥ 1

Vertex v has been visited, is in the current “best” path,
and type(v) =

∑
w:w∈succ(v) T (w) where T (w) = 1 if w

is available (type(w)> −2) and is 0 otherwise. That is,
T (w) the number of w’s children that are available (they
are not of type -2 and not of type -3).

0
Vertex v has been visited but is not in the current “best”
path.

-1
Vertex v has not been visited. That is, v has not appeared
previously in any priority queue.

-2
Vertex v is temporarily unavailable because any “best”
path between v and vg includes a vertex w that is locally
inconsistent (type(w) = -3).

-3
Vertex v is temporarily unavailable because it is not lo-
cally consistent due to changes detected on the current
round.

Table 1: A table

round of the ID* Lite algorithm starts at the same point, even if no re-
calculations are made. If v is a vertex on the current path and v′ ∈ succ(v)
with g(v′)+c(〈v, v′〉) = rhs(v) then v′ is said to be a child of v and v is said to
be a parent of v′. The set of all vertices with parent is v is referred to as the
children of v and two or more children of v are said to be siblings. We say a
vertex is visited at some point in time if it exists on some path that has been
considered in the current round or some previous round. We say a vertex is
available at some point if it is consistent, has been visited, and is not affected
by any of the edge cost changes that have been detected currently. When
a vertex becomes unavailable due to detection of edge cost changes we say
it has been abandoned. Abandoned vertices are recovered when they become
available again after detecting and while dealing with edge cost changes.
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3.1.2 Typing of vertices

Associated with every vertex is a type. The type of a vertex changes as ID*
Lite progresses through a round. Types are indicated by numbers and have
the meaning shown in Table 1. Vertex types are used to support actions that
are unique to ID* Lite. These are described in the rest of this section.

When ID* Lite determines that re-calculation of vertex values can be
skipped it must put aside, or abandon, some vertices that may otherwise be
inconsistent, so that it may continue searching along paths that are known
to be consistent. This is different from the action of D* Lite where, when
the cost of edge 〈u, v〉 has been changed for the first time, u’s rhs value
is updated, and if u becomes inconsistent, it is inserted into OPEN to be
propagated. In ID* Lite, if the update of u is skipped then type(u) is set
to -3 to denote it is unavailable. Being unavailable, u must also force some
other vertices to be unavailable as described in the next to last row of Table 1
and for each such vertex x, type(x) is set to -2.

3.1.3 ID* Lite details

Refer to the pseudo code for ID* Lite that is shown in Figures 6. That
code uses h(u, w) to denote an estimate of the distance between vertices
u and w. Functions CalculateKey(v) and ComputeShortestPath() are
taken without modification from the D* Lite algorithm. Function Initial-
ize() defines and initializes all variables and structures common to the D*
Lite algorithm and also sets the type of all vertices to 1, and the array catch

to be empty. Function UpdateVertex(v) sets type(v) = 0 when vertex
v is inserted into OPEN. Function GetAlternativePath(vc) attempts to
replace the current “best” path (from vc to vg) with a new, consistent path
of cost no greater than the current path and returns TRUE if successful or
FALSE if it is not successful. This is done using a (linear time) depth-first
search from vc, skipping unavailable vertices. In the process of doing this,
it may discover that some vertices need to be forced to become unavailable
due to the presence of a type -3 vertex on the path being searched and sets
their types to -2. Function GetBackVertex(u) is used to recover all the
type -2 vertices which are made unavailable on a previous round because u

was discovered to be inconsistent and became unavailable.
Function ProcessChanges() determines what happens on a round. The

following happens for every edge 〈u, v〉 whose cost is observed to change:
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rhs(u) is updated; in Line 46, if u had been discovered to be inconsistent
previously, function GetBackVertex(u) is called to recover vertices that
had also been made unavailable as a consequence; in Line 49-52, if the
change may result in a shorter path, better is set to TRUE, otherwise u

is temporarily stored in catch and made unavailable. If no better path has
been discovered in the above process, GetAlternativePath(vc) is called. If
GetAlternativePath(vc) fails to produce an alternative path, a full D* Lite
style re-calculation is performed in Lines 55-57: all inconsistent vertex val-
ues are updated, including vertices in catch that were put there in previous
rounds, and ComputeShortestPath() is called.

Function ProcessChanges() acts like a distributor to drive other func-
tions and this enables ID* Lite to distinguish different kinds of edge cost
changes and apply different actions naturally as will be shown in Section 3.2
when the incremental version of ID* Lite is described.

Function Main() is similar to that of D* Lite except that on every round
it calls ProcessChanges() to try to avoid re-calculation of g and rhs values.
Note that in Line 31, when a child of r is chosen, one with type ¿ 0 is preferred.
Then, if the old shortest path can be still used, it will have highest priority
and be searched first. Intuitively, this will lead to a stabler path to vg.

3.1.4 An example

This section presents a small example which illustrates how ID* Lite can
avoid re-calculations that D* Lite would make. Refer to the bi-directional
graph of Figure 8(a). Vertex v3 is shaded because it is blocked. Assume
that the sensor radius is 2, the cost of every edge is 1, and that for all edges
〈u, w, 〉, h(u, w) = 1 and h(u, u) = 0. Observe that this heuristic function is
consistent. Vertex vs is the start vertex and vertex vg is the goal vertex. All
other vertices are given arbitrary labels. The goal to find a least cost path
between vs and vg.

At initialization ID* Lite sets, for all v except vg, g(v) = rhs(v) = ∞
and type(v) = -1. It also sets h(vg) = rhs(vg) = g(vg) = type(vg) = 0,
puts vg in the OPEN priority queue, and sets km = 0. Then vc is set to vs
and ComputeShortestPath() is called. Since OPEN.TopKey() = [0, 0] <
CalculateKey(vc) = [∞,∞] and rhs(vc) = g(vc), vg is taken from OPEN.
Since kold = knew (see Page 11 for the reason kold might be different from knew
in general) and g(vg) = ∞ > 0 = rhs(vg), vg is popped from OPEN, rhs
values of v3, v5, and v8 become 1, the type values of those vertices become
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Procedure CalculateKey(v)
01. return [min(g(v), rhs(v)) + h(v) + km, min(g(v), rhs(v))];

Procedure Initialize()
02. OPEN = ∅; km = 0; Array catch = ∅;
03. for all v ∈ V , rhs(v) = g(v) =∞; type(v) = -1;
04. rhs(vg) = type(vg) = 0;
05. OPEN.insert([vg, [h(vg), 0]]);

Procedure UpdateVertex(v)
06. if (g(v) �= rhs(v) and v ∈ OPEN) OPEN.update([v, CalculateKey(v)]);
07. else if (g(v) �= rhs(v) and v /∈ OPEN) OPEN.insert([v, CalculateKey(v)]); type(v) = 0;
08. else if (g(v) == rhs(v) and v ∈ OPEN) OPEN.remove(v);

Procedure ComputeShortestPath()
09. while (OPEN.TopKey() < CalculateKey(vc) or rhs(vc) > g(vc))
10. u = OPEN.top();
11. kold = OPEN.TopKey(), knew = CalculateKey(u);
12. if (kold < knew)
13. OPEN.update([u, knew]);
14. else if (g(u) > rhs(u))
15. g(u) = rhs(u);
16. OPEN.remove(u);
17. for all v ∈ pred(u)
18. if (v �= vg) rhs(v) = min(rhs(v), c(〈v, u〉)) + g(u));
19. UpdateVertex(v);
20. else
21. gold = g(u);
22. g(u) =∞;
23. for all v ∈ pred(u) ∪ {u}
24. if (rhs(v) == c(〈v, u〉) + gold)
25. if (v �= vg) rhs(v) = mins∈succ(v)(c(〈v, s〉) + g(s));
26. UpdateVertex(v);

Procedure GetAlternativePath(vc)
27. vertex r = vc;
28. while (r �= vg)
29. update r’s type value;
30. if (type(r) > 0)
31. r = one child v of r with type(v) �= −3 and type(v) �= −2;
32. else if (type(r) == 0)
33. type(r) = -2;
34. if (r == vc) return FALSE;
35. r = parent(r);
36. return TRUE;

Figure 6: The ID* Lite algorithm
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Procedure GetBackVertex(v)
37. if (v �= NULL and type(v) < 0)
38. if (rhs(p) �= g(p))
39. return;
40. set type(v) = 0;
41. v = parent(v);
42. GetBackVertex(v);

Procedure ProcessChanges()
43. boolean better = FALSE, recompute = FALSE;
44. for every edge 〈u, v〉 where c(〈u, v〉) has changed since the previous round
45. Update u’s rhs value;
46. if (type(u) == -3) GetBackVertex(u);
47. if (rhs(u) == g(u)) set type(u) = 0;
48. else
49. if (g(u) > rhs(u) and h(vc, u+ rhs(u)) < Ω)
50. better = TRUE, UpdateVertex(u);
51. else
52. catch.add(u), set type(u) = -3;
53. if (better == FALSE) recompute = !GetAlternativePath(vc);
54. if (recompute == TRUE)
55. Update v such that type(v) �= 0 in catch;
56. for all v such that type(v) �= 0 set type(v) = 0;
57. ComputeShortestPath();

Procedure Main()
58. Initialize(); vlast = vc = vs;
59. ComputeShortestPath(); GetAlternativePath(vc);
60. while (vc �= vg)
61. set type(vc) = 0;
62. for some child v of vc such that type(v) > 0 set vc = v;
63. Move the agent to vc;
64. Scan the graph for changes;
65. if any changes are found
66. km = km + h(vlast, vc);
67. vlast = vc;
68. ProcessChanges();

Figure 7: The ID* Lite algorithm continued
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0, and those vertices are placed in OPEN with equal priority [2, 1] (Lines
14-19, 07). Now suppose v3 is at the top of OPEN. Then u is v3 in Line 10,
kold = knew in Line 12, and g(v3) = ∞ > 1 = rhs(v3) so v3 is removed from
OPEN, g(v3) is set to 1, and v2 is added to OPEN with priority [3, 2] with
rhs(v2) set to 2 (the key of v5 is not updated in Line 06). Now say v5 is at
the top of OPEN. Then, as before, kold = knew and g(v5) =∞ > 1 = rhs(v5)
so v5 is removed from OPEN, g(v5) is set to 1, and v4 is added to OPEN
with priority [3, 2] with rhs(v4) set to 2 (v3 and v8 are not updated in Line
06 because they have unchanged key values). Now v8 is at the top of OPEN
and Lines 15-19 are executed. This results in g(v8) set to 1, v8 is removed
from OPEN, v7 is added to OPEN with priority [3, 2] and rhs(v7) = 2.
Now say v2 is at the top of OPEN and Lines 15-19 are executed resulting
in g(v2) = 2, v2 removed from OPEN, v1 is added to OPEN with priority
[4, 3] and rhs(v1) = 3. Now say v4 is at the top of OPEN and lines 15-19
are executed resulting in g(v4) = 2, v4 removed from OPEN, v6 is added to
OPEN with priority [4, 3] and rhs(v6) = 3. Now v7 is at the top of OPEN
and lines 15-19 are executed resulting in g(v7) = 2, v7 removed from OPEN
and nothing is added to OPEN. Now say v1 is at the top of OPEN and Lines
15-19 are executed resulting in g(v1) = 3, v1 removed from OPEN and vs is
added to OPEN with priority [4, 4] and rhs(vs) = 4. Now v6 is at the top
of OPEN and Lines 15-19 are executed but nothing happens. Finally vs is
at the top of OPEN and execution returns from ComputeShortestPath()
because vs is vc. At this point the g and rhs values for all vertices have been
updated and the type values have been set to 0. This information is next
going to be used by GetAlternativePath(vc) to find the highest priority
shortest path from vs to vg.

When GetAlternativePath(vs) is called a cursor vertex r is set to vs,
type(r) is set to 2 in Line 29 because vs has successors v1 and v6 and
rhs(vs) = 4 = g(v1) + c(〈vs, v1〉) and rhs(vs) = 4 = g(v6) + c(〈vs, v6〉) (see
Page 24). Since type(vs) > 0, r is set to, say, v1 in Line 31. Then type(v1)
is set to 2 in Line 29 because it has two children and r is set to, say, v2. Then
type(v2) is set to 1 in Line 29 because v3 is v2’s only child. Next r is set
to v3 and type(v3) is set to 1 with vg as the only child. Finally, r is set to
vg and execution stops. In Figure 8(a) the numbers above the vertices are
the type numbers of those vertices after GetAlternativePath(vs) is called.
Implicitly, the current “best” path follows the vertices of non-negative type
numbers starting at vs and is shown as the dashed line in the figure.

At this point movement of the agent along the current path starting at
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vs = vc commenses in Line 61 of function Main(). First type(vs) is set to
0. In Line 62 the agent is moved to v1 = vc. At Line 64, since the sensor
radius is 2, v3 is discovered to be blocked, and all edges incident with it have
new costs equal to ∞. In D* Lite, because all changes are propagated, v2
and v3 will be expanded. But in ID* Lite, function ProcessChanges() is
called with km = 1 (set in Line 66) to test possible changes to costs of edges
〈v2, v3〉, 〈v3, v2〉, 〈v5, v3〉, 〈v3, v5〉, 〈vg, v3〉, and 〈v3, vg〉.

In ProcessChanges() suppose edge 〈v2, v3〉 is processed first. At line
45, rhs(v2) is updated, as in D* Lite, by setting rhs(v2) = min(rhs(v) +
c(〈v2, v〉), v ∈ succ(v2) and since rhs(vg) = 0, rhs(v2) = rhs(v1)+c(〈v2, v1〉) =
3+1 = 4. Because type(v2)=1, Line 46 is not executed and since rhs(v2) =
4 �= 2 = g(v2) the assignment of Line 47 is not executed either. In Line 49,
since g(v2) < rhs(v2), line 52 is executed, v2 is temporarily stored in catch,
and type(v2) is set to -3. Then say edge 〈v3, v2〉 is processed. At Line 45,
rhs(v3) is set to ∞. Because type(v3)=1, Line 46 is not executed and since
rhs(v3) = ∞ �= 1 = g(v3), Line 47 is not executed. In line 49, because
g(v3) < rhs(v3), line 52 is executed and v2 is temporarily stored in catch and
type(v3) is set to -3. Next say edge 〈v5, v3〉 is processed. At Line 45 rhs(v5)
is set to rhs(vg) + c(〈v5, vg〉) = 0 + 1 = 1. Next, since rhs(v5) = 1 = g(v5),
Line 47 is executed and type(v5) is set to 0. When edge 〈v3, v5〉 is processed,
nothing happens. Now say edge 〈vg, v3〉 is processed. At Line 45 rhs(vg) is
set to 0 and hence nothing happens. When edge 〈v3, vg〉 is processed, noth-
ing happens. Having finished considering edge costs, execution procceds to
Line 53 where, since better = FALSE, function GetAlternativePath(vc)
is called.

In GetAlternativePath(vc) cursor vertex r is set to v1, type(r) is set to
1 and in Line 29 because v1 has successor v4 and rhs(v1) = g(v4)+ c(〈v1, v4〉)
(observe since type(v2)=–3, v2 can not contribute to the type value of v1).
Since type(v1)= 1, r is set to v4 in Line 31. Then type(v4) is set to 1 in Line
29 because it has one child, v5. Then r is set to v5 and type(v5) is set to 1
in Line 29 because vg is v5’s only child. Then r is set to vg and execution in
GetAlternativePath(vc) stops. At this point, the “best” path from vc = v1
to vg is indicated by the dashed line in Figure 8(b).

Returning toProcessChanges(), because functionGetAlternativePath
returns TRUE, recompute is set to 0 ProcessChanges() returns control
to Main() and the agent is made to move along the dashed line in Fig-
ure 8(b) starting at v1. Thus, compared to D* Lite, ID* Lite saves updat-
ing vertices v2 and v4 in OPEN. If the sensor radius had been 1 the agent
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would not have observed that v3 is blocked and would have moved to v2;
at that time a new best path would have to be computed by one complete
re-calculation. If v3 becomes unblocked as the agent begins to move out of
v1 then GetBackVertex(v3) is executed in Line 46. This causes v2 and v3
to become available and the old optimal path to be recovered.
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Figure 8: The action of ID* Lite on a small example

3.1.5 Analysis and theoretical results

In this section it is shown that on every round, ID* Lite computes a shortest
path, if one exists: that is, a path from the current agent location to the
goal vertex whose edge cost sum is minimum over all such paths given the
observable environment of the round. It is assumed that the vertex heuristic
function h(w, u) is consistent and is therefore always a lower bound on the
minimum cost path from w to u using edge costs given by function c and is
such that the triangle inequality holds. Ω is used to represent the cost of the
old found “best” path, and Ω′ represents the cost of the current “best” path
after re-calculation.

Observation 1 If the edge cost of edge e increases in value then any path
passing through e with edge costs that have not decreased in value has a cost
that is greater than Ω, the cost of previous round shortest path.

Proof: Assume there is a path p′ of cost less than or equal to Ω and passing
through e without a decreased edge. It is straightforward to see that the cost
of p′ in the previous round is less than Ω. This contradicts the hypothesis
that Ω is the shortest path of the previous round.
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Sponsored by Observation 1, we can divide changes by how they can affect
solutions.

Intuitively, in case edge costs are only increased, it is expected that the
cost of a “best” path will go up and if edge costs are only decreased, the cost
of a “best” path will not increase. Since it is possible that a path includes
both increased and decreased changes one might suppose that superposing
results that consider increased and decreased changes separately might be a
reasonable way to find a “best” path. The following observation shows that
this is not always the case.

Observation 2 If c(〈w, u〉) decreases and if after updating rhs(w), rhs(v),
h(vc, w) + rhs(w) is no less than Ω of the previous round, then any path
passing through 〈w, u〉 without other decreased edges after 〈w, u〉 has a cost
that is not less than Ω.

Proof: Suppose a path p passes through e = 〈w, u〉. Then the cost η of
p has the property: η ≥ h(vc, w) + c(e) + g(u). By definition of rhs, we
have η ≥ h(vc, w) + rhs(w). Surely, the later is greater than Ω. That is,
η ≥ h(vc, w) + rhs(w) ≥ Ω.

Observation 2 shows that in some cases where edge costs are decreased,
the cost of the “best” path may not decrease. Moreover, such cases can be
identified prior to re-calculating g and rhs values. The results below show
the requirement that no edges after 〈w, u〉 have decreased edge costs can be
relaxed.

Observation 3 Assume h is consistent. If in e = 〈w, u〉, w’s type value is
-1, and g(u) is correct, then any path from vc to vg passing through e has a
cost that is not less than Ω.

Proof: If w’s type value is -1, i.e., if w has not been inserted into the priority
queue OPEN, then key(u)≥ Ω. Therefore, any path p passing through e will
have cost η ≥ h(vc, w) + c(e) + g(u) ≥ h(vc, u) + g(u) ≥ Ω.

This Observation provides an efficient way to compute a lower bound on
the cost of a path such that at least one edge has a decreased cost.

Lemma 4 In the current round, after propagating changes (i.e. re-calculating),
if there are two edges e′ = 〈w, u〉 and z′ = 〈v, r〉 on some path p′ which is
the shortest path passing through e′ and z′, and z′ is after e′ along p′, then
h(vc, w) + rhs(w) ≥ h(vc, v) + rhs(v).
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Proof: If p′ is the shortest path passing through e′ and z′ and z′ is after e′

along p′, then h(vc, w) + rhs(w) ≥ h(vc, w) + h(w, v) + rhs(v) ≥ h(vc, v) +
rhs(v) by the fact that h is consistent.

Lemma 5 In the current round, before propagating changes, suppose there is
a “best” path containing at least one edge cost change over the previous round
and e′ = 〈w, u〉 is the last one that has changed. Then h(vc, w) + rhs(w) is
correct: that is, the sum does not change after propagating changes.

Proof: If the value of h(vc, w) + rhs(w) is not correct, then rhs(w) will be
affected by some cost change, say in edge z′. The shortest path through the
“best” path must include z′ too and z′ will be after e′ along the path. This
is a contradiction.

Corollary 6 In the current round, after re-calculation if needed, if e′ =
〈w, u〉 is the last edge along a “best” path p′ from vc to vg whose cost has
changed, and the cost of p′ is less than Ω, then before re-calculation h(vc, w)+
rhs(w) < Ω.

Proof: If the cost of p′ is less than Ω, then after re-calculation, by the fact
that h is admissible, h(vc, w) + rhs(w) < Ω. The conclusion follows from
Lemmas 4 and 5.

Lemma 7 In the current round, after re-calculation if needed, if e′ = 〈w, u〉
is the edge along a “best” path p′ from vc to vg whose cost has changed, then,
before re-calculation, only w needs to be reinserted into the priority queue
OPEN in order to get p′.

Proof: Without loss of generality assume z′ = 〈v, r〉 is an edge along p′

whose cost has changed and suppose z′ appears before e′ = 〈w, u〉 on p′.
By an argument taken from [14], if w is reinserted into priority queue, then
it will be updated and hence rhs(r) must be affected. Thus v will also be
reinserted into OPEN and updated. Iteratively, vertices before w on p′ will
be subsequently updated until vc is chose to be updated from OPEN. In other
words, path p′ has been found.

Corollary 8 In the current round, after re-calculation if needed, if there
exists a new “best” path p′ from vc to vg with cost less than Ω, then it can
be obtained by updating the last changed edge e′ = 〈w, u〉 along p′ satisfying
h(vc, w) + rhs(w) < Ω.
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Proof: Follows from Corollary 6 and Lemma 7.
The conclusion of Corollary 8 looks good but cannot be implemented

conveniently because it is hard to say whether one edge cost change is the
last one along a path. So the conditions of the corollary are broadened in
the following.

Proposition 9 If there are paths which are better than the old “best” path
they can be computed by propagating only the changes on edges 〈w, u〉 where
h(vc, w) + rhs(w) < Ω.

Proof: Follows from Corollary 2.
Proposition 9 differs from Corollary 8 in two ways: 1) the “last change” is

not required anymore; 2) the equation in Lemma 5 will be guaranteed correct
only when the change is on the last edge with changed cost. That means the
change in edge z′ = 〈v, r〉 whose correct value h(vc, w) + rhs(w) ≥ Ω may
be reinserted and propagated by a wrong h(vc, w) + rhs(w) value. In other
words, the vertices considered are a super-set of the vertices in Corollary 6.
We expect eventually to find a more strict condition that will prevent this.

Proposition 9 answers the question concerning “without other decreased
edges...” because it does not use any assumption about it at all. One might
suppose that if the cost of a new “best” path is equal to the cost of the old
one the round might be terminated successfully at that point. This is not
the case. The conclusions above are correct and have been proved, but there
may be some “fake” paths which cannot be used anymore. All these “fake”
paths are caused by the fact that many changes have not been propagated.
For example, path p′ including one un-propagated change e′ = 〈w, u〉 can be
considered to be one optimal solution. In that case the cost of the changed e′

must have increased or it will satisfy the formula in Proposition 9 and then
ComputeShortestPath() will be called. Then, if the cost information of
e′ is propagated, the cost of p′ must increase. In other words, p′ is not a real
optimal solution. This requires a way to find one correct optimal solution
quickly.

The above results will now be used to prove the correctness and com-
pleteness of the pseudo code of ID* Lite (shown in Figures 6 and 7).

Lemma 10 Assume g and rhs values are correct. GetAlternativePath(vc)
returns TRUE if and only if, after it executes, it is possible to traverse a path
from vc to vg by always visiting a least positive type neighboring vertex next
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and that path is a consistent least-cost path from vc to vg. The cost of that
path is rhs(vc).

Proof: Since GetAlternativePath(vc) does a depth-first search from vc,
visiting each vertex at most once because any vertex that is not available
is marked by -2 or -3 and will not be visited again during the search. If
there is a path from vc to vg then the depth first search will visit all vertices
from vc to vg along some such path. But all such vertices will have positive
type because types are never changed from 0 or negative to positive during
the search. Prior to execution of GetAlternativePath(vc) the cost of the
optimal path is rhs(vc). This follows from D* Lite []. Traversing vertices
from vc to vg by moving to the next adjacent vertex of lowest positive type
is the least cost path from vc to vg. By definition of child, the total cost of
this path is also rhs(vc) and must be of least cost. By definition of type, a
vertex with a positive type is consistent. Hence the path is consistent.

Since GetAlternativePath(vc) executes a depth first search on the
graph its worst-case complexity is linear in the number of vertices. How-
ever, the efficiency of this function is due to the fact that simple checks are
made when a vertex is visited: that is, arithmetic operations are avoided.

Lemma 11 The changes which have been skipped in a round when the short-
est path’s cost is Ω may continue to be skipped on future rounds until a new
“best” path has cost that is greater than Ω.

Proof: Suppose the cost of edge e = 〈w, u〉 is skipped. Then, using the
analysis of A* in [7,12] which applies here as well, the lower bound η on the
cost of any path passing through e has η ≥ Ω and this edge cannot be on any
“best” path to vg. Hence the propagation of values due to a change in cost
of e can be skipped safely. If the new shortest path has its cost not greater
than Ω, edge e cannot be on it too. So the change on e can be skipped until
a new ”best” path has cost greater than Ω.

Theorem 12 Function ProcessChanges() will find the shortest path in every
round if and only if there exists one.

Proof: By Proposition 9, Lemma 10, and Lemma 11 if, in Line 54, recompute

is FALSE, a correct shortest path must have been found. If recompute is
TRUE, however, Lines 55-57 will execute just like D* Lite would. Therefore,
the correctness and completeness of finding a new shortest path follows from
the correctness and completeness of D* Lite.
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Theorem 13 In every round, ID* Lite returns a shortest path from vc to vg
if and only if at least one shortest path exists.

Proof: Follows directly from Theorem 12 and Lemma 11.
The following theorem explains, in part, the relative efficiency of searching

for alternative shortest paths.

Proposition 14 After a full re-calculation of g and rhs values in Lines 55-
57, all vertices which can be part of some shortest path are updated.

Proof: Since ID* Lite uses the same data structures as D* Lite, if one child
of a vertex has been updated to be consistent, then all its children will be
updated to be consistent. So, suppose one least-cost path between vc and vg
has been found, and suppose p is any path from vc to vg which is optimal,
then the child of vc on p must be updated and consistent too. Iteratively, all
the vertices on p are updated and consistent.

Proposition 15 ID* Lite expands no more vertices than D* Lite if the same
tie breaking method is used.

Proof: Because GetAlternativePath(vc) is executed before re-calculating
g and rhs values and no vertices are expanded in GetAlternativePath(vc),
by Lemma 10, if TRUE is returned, then one round of re-calculation that D*
Lite has to make can be avoided.

So we need to show that if several rounds of re-calculations are combined
to be one will not expand more vertices than recomputing in every round.
Assume in ID* Lite {r1, r2, ..., rs} are combined to be one recomputation.
Because we have the hypothesis that the same tie breaking method used,
when full recomputation executed in ID* Lite, we have that the weight of
current optimal path Ω is the same as D* Lite. If in ID* Lite one vertex v is
expanded because of the propagation of one change of edge e = 〈w, u〉, then
key(v) < Ω. If the change is propagated in D* Lite in the round rs, then
v will be expanded; if e is propagated in D* Lite in round rl, l < s, and by
Lemma 11, the cost Ω′ of an optimal path in rl is greater than Ω. Hence, v
is expanded in the re-calculation of round rl in D* Lite.

Proposition 15 shows that, by supposing the agent chooses the same next
vertex to move to in Lines 62-63, ID* Lite expands no more vertices than D*
Lite. Also, according to the proof of Proposition 15, one vertex v expanded
during re-calculation of round rl, l < s in D* Lite will not be expanded in ID*
Lite if Ω ≤ key(v) < Ω′. This partially explains why ID* Lite can improve
on D* Lite.
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3.1.6 Experiments and Results

In this section, the performance of ID* Lite is compared experimentally to
that of the D* Lite algorithm on random grid world terrains. In each ex-
periment the initial terrain is a blank, square, 8-direction grid world of size2

vertices. Special vertices vs and vg are chosen randomly from the terrain.
Initially percent%∗size2 of the vertices are selected randomly and blocked,
percent being a controlled parameter. The parameter sensor-radius is used
to set the maximum distance to a vertex that is observable from the current
agent position.

The first set of results are on random rock-and-garden benchmarks. That
is, a blockage is set initially and will remain for the entire experiment. The
second set of results are on a collection of benchmarks that model agent
navigation through changing terrain.

The results on rock-and-garden benchmarks are shown in Figures 9 to 13.
In Figures 9 and 10 size is 300, and percent is 10 and 30 respectively. The
left graph of each figure shows the number of heap operations as a func-
tion of sensor-radius. Heap operations make the most significant contribu-
tion to time complexity in dynamic navigation algorithms and that is why
those results are presented. The plots show only the heap operations in re-
calculations: the number of operations used when initializing a shortest path
from vs to vg are not counted because all of algorithms of the D* family
operate the same way that the A* algorithm does in this phase. The right
graph of each figure shows the ratio of the number of re-calculations to the
number of edge cost changes observed within the sensor-radius. The D* Lite
curve is flat at 1 because every time an inconsistency is observed, exactly
one re-calculation must be performed.
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Figure 9: size=300 and percent=10
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Figure 10: size=300 and percent=30

To some extent, the graphs explain why ID* Lite can outperform D* Lite.
The right graphs of Figures 9 and 10 show that ID* Lite can save almost 90%
of the re-calculations that would be done by D* Lite. However, this does not
mean that a corresponding savings applies for heap operations since edge cost
changes are transferred from catch to OPEN every time a full re-calculation
occurs. Since there are fewer re-calculations in ID* Lite, more changes are
processed when re-calculating and many changes with big key values are not
propagated. The more vertices that are affected by such changes, the more
heap operations can be saved in ID* Lite. Informally speaking, decreasing
changes can be propagated more easily than increasing changes. Hence,
decreasing changes can affect more vertices than increasing changes. In the
rock-and-garden benchmarks there are only increasing changes but in the
dynamic agent navigation benchmarks there are many decreasing changes.
From Figures 9 and 10 ID* Lite heap percolation is seen to increase more
slowly than that of D* Lite as the sensor-radius increases. Hence, in rock-
and-garden benchmarks, as sensor-radius is increased, the time consumed by
ID* Lite increases more slowly than the time consumed by D* Lite. This is
significant because, as advancing technology admits finer grain terrain models
where size is increased, sensor-radius will correspondingly increase as well.
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Figure 11: size=300 and sensor-radius=10
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Figure 12: size=300 and sensor-radius=30

Figure 11 and 12 present the data with sensor-radius fixed and percent chang-
ing from 5 to 40 percent.

Figure 13 shows the relationship between heap operations and size where
sensor-radius= 0.1 ∗ size and percent = 30. No matter what the size, ID*
Lite performs better than D* Lite on the rock-and-garden benchmarks.
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Figure 13: sensor-radius=0.1*size and percent=30

The second set of benchmarks, parking-lot benchmarks, is intended to
model agent navigating in the presence of terrain changes. Terrain changes
are commonly encountered by autonomous vehicles of all kinds and may
represent the movement of other vehicles and structures in the agent’s envi-
ronment. A number of tokens equal to a given fixed percentage of vertices
are initially created and distributed over vertices in the grid, at most one
token covering any vertex. As an agent moves from vertex to vertex through
the grid tokens move vertex to vertex as well. Tokens are never destroyed or
removed from the grid and the rules for moving tokens do not change: on
each round a token on vertex v moves to a vertex adjacent to v with proba-
bility 0.5 and the particular vertex it moves to is determined randomly and
uniformly from the set of all adjacent vertices that do not contain a token
when the token is moved. Tokens are moved sequentially so there is never
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more than one token on a vertex. Any vertex covered by a token at any point
in the simulation is considered blocked at that point which means all edge
costs into the vertex equal∞. A vertex with no token is unblocked and edge
costs into it are not ∞.

The experiments are done in the same way as the rock-and-garden ex-
periments. In Figures 14 and 15, and percent = 10 and percent = 30, re-
spectively. The left graph of each figure shows the relationship between heap
operations and sensor-radius. Observe that heap percolation in ID* Lite in-
creases more slowly than for D* Lite as the sensor-radius increases. So, also
for the dynamic navigation benchmarks, as sensor-radius is increased, the
time consumed by ID* Lite increases more slowly than the time consumed
by D* Lite.
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Figure 14: size=300 and percent=10
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Figure 15: size=300 and percent=30

In Figures 14 and 15, the size is fixed at 300, and sensor-radius= 10
and sensor-radius= 30, respectively. The left graph of each figure shows the
relationship between heap operations and percent while the right graph of
each figure shows the ratio of the number of re-calculations to the number
of edge cost changes observed in the view. Observe that heap percolation
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in ID* Lite increases more slowly than in D* Lite as percent increases. In
other words, for dynamic navigation benchmarks ID* Lite is less sensitive to
edge cost changes than is D* Lite. This infers ID* Lite can perform better
than D* Lite in environments where edge cost changes are frequent. When
percent goes to 40, it seems that the conclusion above does not hold: when
percent is high, there is often no path at all from the agent to the goal and
this causes every vertex to be expanded, canceling the feature of ID* Lite
that is capable of making it outperform D* Lite and making it perform as
D* Lite does.
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Figure 16: size=300 and sensor-radius=10
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Figure 17: size=300 and sensor-radius=30

Figure 18 shows the relationship between heap operations and size when
sensor-radius= 0.1 ∗ size and percent = 30. ID* Lite performs better than
D* Lite from size = 100 to size = 500. In Figures 14 to 18 the ratio of
re-calculations to the number of edge cost changes observed for ID* Lite
increases with increasing sensor-radius and percent as one would expect, but
the ratio is always below 1.
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Figure 18: sensor-radius=0.1*size and percent=30

3.1.7 Future Work

In Line 49 of ID* Lite (Figure 7) the expression h(vc, u) + rhs(u) is a lower
bound on path costs through u. If this can be replaced by an expression that
produces a better bound then more edge cost changes can be skipped and
ID* Lite should run faster. Looking for such an expression is part of our plan
for improving on the results presented here. We also expect to find a way to
determine whether an increased edge cost change can affect the path or not
efficiently. If an observed increase in edge cost does not affect one some path
of least cost, this change can be skipped safely. If an observed decrease in
edge cost causes the equation of Line 49 not to satisfied, then that change can
be skipped as well. If ID* Lite is modified to make these checks we expect its
performance will be significantly improved and, if handled deterministically,
will still be no worse that the performance of D* Lite.
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3.2 Finding an alternative “best” path incrementally

This section presents the second improvement to D* Lite which we call IID*
Lite for Incremental Improved D* Lite. IID* Lite can have better average
case time performance than D* Lite without a guarantee to produce at least
as good a path as D* Lite. The algorithm introduced in [40, 41] updates
and expands all overconsistent vertices which may cause a better optimal
path than the original one, then uses function GetAlternativePath(vc) to
find an alternative best path whenever possible. But if the new “best” path
has higher cost than the original, a full re-calculation is executed by calling
ComputeShortestPath().

IID* Lite aims to reduce the cost of re-calculation by dynamically ordering
edge cost changes and propagating changes, in order, until a path to vg is
found or until it is discovered that no such path exists. If a path is found,
it is optimal. Since edge cost changes need not be considered after finding
the path, this algorithm can potentially run faster than D* Lite. The idea of
ordering edge cost changes is compatible with ID* Lite and is added to ID*
Lite which is why we call this IID* Lite. IID* Lite can potentially run faster
than ID* Lite as well.

The dynamic ordering of edge cost changes uses an increasing estimate t

of the cost of an optimal path given the current environment. The ordering
is initiated when it is discovered that the current “best” path, of cost ω,
is inconsistent and no alternative path of cost Ω is available to replace it.
Initially, t is set to be close to Ω and a search is made for a path of cost
no greater than t. Only values of any vertex u such that g(u) > rhs(u),
h(vc, u) + rhs(u) < t, and u is an end point of an edge whose cost has
changed are propagated. No other vertex values are propagated because no
other vertices on an edge whose cost has changed can be on a path of cost
less than t. In case there is still no consistent path to vg, t is increased and
the values of additional vertices that now satisfy the above conditions are
propagated. This continues until either a consistent path is found or until
values of all vertices associated with edge cost changes have been propagated
in which case no consistent path is possible and the algorithm terminates.

It remains to explain how t is incremented. This is quite an important
part of IID* Lite. If t is initially too small or the change in t is too small,
then too few vertices are updated. If t is initially too large or the change
in t is too large, then too many vertices are updated. If too few vertices
are updated, the overhead due to partially re-calculating many times will
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cancel the savings due to propagating fewer values. If too many vertices are
updated, the savings potential of IID* Lite will be diminished because it will
begin to behave more like D* Lite. Given the current position of the agent is
vc, the value of t is set to rhs(vc), which is an estimate of the cost of a path
from vc to vg that includes the cost of edges incident to vc. Then, if there
is one path whose cost is less than t, GetAlternativePath(vc) will find it
and its cost will be optimal. Otherwise, rhs(vc) will have increased due to
the changes and t can again be set to rhs(vc) and the process repeated.

3.2.1 Propagating information about overconsistent vertices

From Section 3.1, when a change in edge cost or consistency is discovered in
the current “best” path, if there is an alternative “best” path of equal cost,
then ID* Lite will try to find it without re-calculating g and rhs values, and
if it is unable to do so, a re-calculation is executed, as is done in D* Lite
algorithm. Since re-calculations are expensive and to be avoided, if possible,
the question whether something more can be done to find an alternative path
is raised and discussed in this section. This leads to a proposed algorithm
which we call IID* Lite algorithm.

The proposed IID* Lite algorithm is based on the observation that if, after
a current optimal path of cost Ω becomes inconsistent after edge cost changes,
there exists a path from vc to vg with cost t > Ω, it is sometimes possible to
propagate values due to only some of the edge cost changes and still determine
a new, optimal, consistent path from vc to vg. Specifically, if the cost of an
edge e = 〈u, w〉 has changed, but f(〈u, w〉)

.
= h(vc, u) + rhs(u) ≥ t then any

path to vg from vc that contains e has cost greater than t so changes to the
values of u and w need not be propagated. So, when edge cost changes are
observed, t is set to Ω and values associated with any edge e of changed cost
such that f(e) < t are propagated and a search for a path having cost no
greater than t is made. If successful, the path becomes the current “best”
path. If not successful, t is increased, more values are propagated because
more edges satisfy f(e) < t, and another search for a path of cost less than
or equal to t is made. This process continues until either a path is found
to exist or all edge cost changes have been propagated. The algorithm will
always find the “best” path to vg if a path exists but its efficiency depends
on how t is incremented.

The motivation of how to set the threshold number is explained below.
Given a threshold number T , if after propagation of changes, there is a path
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whose cost is < T , that means one better optimal path has been found;
otherwise if there is a path whose cost = T then the path is the optimal
path. Hence we want to set T where it is not that easy to be improved and
also there are paths whose cost values equal T .

Procedure MiniCompute( )
01. while (OPEN.TopKey() < key(vc))
02. u =OPEN.Top(), kold =OPEN.TopKey(), knew =CalculateKey(u);
03. if (kold < knew)
04. OPEN.Update(u, knew);
05. else if (g(u) > rhs(u))
06. g(u) = rhs(u);
07. OPEN.Remove(u);
08. for every s ∈ pred(u)
09. if (s �= vg)
10. rhs(s) = min(rhs(s), c(〈s, u〉) + g(u));
11. if (s ∈ catch) catch.Remove(s).
12. UpdateVertex(s);
13. else
14. OPEN.Remove(u);

Figure 19: Propagation of values due to overconsistent vertices

3.2.2 Description of the pseudo code for IID* Lite

Pseudo code for IID* Lite is shown in Figures 19and 20. The following
explains the difference between ID* Lite and IID* Lite emphasizing how the
threshold t is increased and how changes are propagated.

Most of the functions of IID* Lite are the same as those of ID* Lite.
The main differences are in the functions are GetAlternativePath(vc) and
ProcessChanges(). GetAlternativePath(vc) returns TRUE if and only if
there is a consistent path from vc to vg and, if it returns TRUE, it has changed
type values on vertices so that a least cost path from vc to vg can be traversed
by visiting neighboring vertices of lowest positive type until vg is reached. If
at Line 32 type(r) is 0, then by definition of type, r is not on the current least
cost path and its type is set to -2 but in Lines 37, children of r such that whose
type values are -3 are merged into C. If no path can be returned by function
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Procedure CalculateKey(v)
01. return [min(g(v), rhs(v)) + h(v) + km, min(g(v), rhs(v))];

Procedure Initialize()
02. OPEN= ∅; km = 0; Array catch = ∅;
03. for all v ∈ V , rhs(v) = g(v) =∞; type(v) = −1;
04. rhs(vg) = g(vg) = type(vg) = 0;
05. OPEN.insert([vg, [h(vg), 0]]);

Procedure UpdateVertex(v)
06. if (g(v) �= rhs(v) and v ∈ OPEN) OPEN.update([v, CalculateKey(v)]);
07. else if (g(v) �= rhs(v) and v /∈ OPEN) OPEN.insert([v, CalculateKey(v)]); type(v) = 0;
08. else if (g(v) == rhs(v) and v ∈ OPEN) OPEN.remove(v);

Procedure ComputeShortestPath()
09. while (OPEN.TopKey() < CalculateKey(vs) or rhs(vs) > g(vs))
10. u = OPEN.top();
11. kold = OPEN.TopKey(), knew = CalculateKey(u);
12. if (kold < knew)
13. OPEN.update([u, knew]);
14. else if (g(u) > rhs(u))
15. g(u) = rhs(u);
16. OPEN.remove(u);
17. for all v ∈ pred(u)
18. if (v �= vg) rhs(v) = min(rhs(v), c(〈v, u〉) + g(u));
19. UpdateVertex(v);
20. else
21. gold = g(u);
22. g(u) =∞;
23. for all v ∈ pred(u) ∪ {u}
24. if (rhs(v) == c(〈v, u〉) + gold)
25. if (v �= vg) rhs(v) = mins∈succ(v)(c(〈v, s〉) + g(s));
26. UpdateVertex(v);

Procedure GetAlternativePath(vc)
27. Vertex r = vc;C = ∅
28. while (r �= vg)
29. update r’s type value;
30. if (type(r) > 0)
31. r = one child y of r with type(y) �= −3 and type(y) �= −2;
32. else if (type(r) == 0)
33. type(r) = -2;
34. if (r == vc)
35. for every vertex c ∈ C UpdateVertex(c);
36. return FALSE;
37. C = C ∪ r′s type value −3 children; r = parent(r);
38. return TRUE.
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Procedure GetBackVertex(v)
39. if (v �= NULL and type(v) < 0)
40. if (rhs(p) �= g(p))
41. return;
42. type(v) = 0;
43. v = parent(v);
44. GetBackVertex(v);

Procedure ProcessChanges()
45. Boolean better=FALSE, recompute = FALSE, t = rhs(vc).
46. for every edge e = 〈u, v〉 where c(e) has changed since the previous round:
47. Update rhs(u);
48. if (type(u) = −3) GetBackVertex(u);
49. if (rhs(u) == g(u)) type(u) = 0;
50. else
51. if (g(u) > rhs(u)) and h(vc, u) + rhs(u) < t)
52. better = TRUE, UpdateVertex(u);
53. else
54. catch.add(u), type(u) = −3;
55. if (better == TRUE) MiniCompute();
56. while (!GetAlternativePath(vc))
57. told = t, ComputeShortestPath(), t = rhs(vc);
58. if t > told
59. better=FALSE;
60. for every u ∈ catch such that type(u) �= 0
61. if (h(vc, u) + rhs(u) < t and g(u) > rhs(u))
62. better = TRUE, UpdateVertex(u);
63. catch.remove(u).
64. if (better == TRUE) MiniCompute().

Procedure Main()
65. Initialize(); vlast = vc = vs;
66. ComputeShortestPath(); GetAlternativePath(vc);
67. while (vc �= vg)
68. Set type(vc) = 0;
69. vc = u where u is a child of vc and type(u) > 0;
70. Move the agent to vc;
71. Scan the graph for changes;
72. if changes are found
73. km = km + h(vlast, vc);
74. vlast = vc;
75. ProcessChanges();

Figure 20: Main functions of IID* Lite
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GetAlternativePath(vc), at Line 35, every vertex c ∈ C is updated by
function UpdateVertex. Observe that c is underconsistent and that this
is the only place in the code where underconsistent vertices are placed in
OPEN. This is because only increased changes will cause underconsistent
vertices, and increased changes are only inserted here. Decreased changes
have been inserted before GetAlternativePath(vc) was called.

As mentioned earlier, function ProcessChanges() works as a “job dis-
tributor” by determining which function will be called depending on what
kind of changes occur. Different from ID* Lite, at line 55, if better equals
TRUE, MiniCompute() is called to propagate such changes. This may
result in a better least cost path. Because in Main() at Line 66 Com-
puteShortestPath() is called regardless of whether MiniCompute() is
called in ProcessChanges(), GetAlternativePath(vc) is invoked at Line
56 to search for a path of cost no greater than Ω. IfGetAlternativePath(vc)
succeeds, then the resulting vertex types infer a new optimal path in the
current round. Otherwise, ComputeShortestPath() is called to propagate
the underconsistent vertices that were inserted by GetAlternativePath(vc)
into OPEN.

ProcessChanges uses a threshold number t to impose an order on the
propagation of values due to edge cost changes. At line 45, t is set to rhs(vc)
which is the cost of original optimal path Ω. At Line 57, told records the
value of t, ComputeShortestPath() is called to propagate changes, and t

becomes vc’s new rhs value. If t ≤ told, there must be a path of cost less
than the original threshold and GetAlternativePath(vc) is called to find
it. Otherwise, t has increased and Lines 59-64 select the edge cost changes
that are propagated. Some overconsistent vertices that are stored in catch

may be placed in OPEN depending on the comparison results at line 61.
These vertices were placed in catch to delay consideration until they could
have a chance to affect discovery of a new “best” path, in this case of cost
no greater than t. If there are any such vertices, MiniCompute() is called
to propagate their changes. This is an iterative process that is executed in
the while loop of Lines 56-64 as long as t is not decreasing, an optimal path
has not been found, and catch is not empty.

It is technical about how to efficiently maintain the catch. As we dis-
cussed, only overconsistent vertices are needed to be inserted into catch. An
obvious way is to keep such overconsistent vertices in a min-heap according
to their h + rhs values. Of course, km can be used to avoid reordering. But
we find that as the agent is moving toward to vg, normally the distance from
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vc to vg is getting smaller. So if a overconsistent vertex is not reinserted
into priority queue OPEN in current round, then probably it is not needed
to be reinserted into OPEN in the following rounds. And hence the stored
overconsistent vertices is seldom reinserted into priority queue OPEN again.
Our experiments show that from vs to vg for average less than 10 percent
of stored overconsistent vertices are reinserted into OPEN and recalculated;
and operations on this min-heap cost about 1 percent of total used time. By
the experiment, we can conclude that there is no need to maintain a min-
heap for all overconsistent vertices. So a more efficient way is only to keep
track of a small part of overconsistent vertices with smallest h+ rhs values.

Other algorithms have addressed the question of how to deal with un-
derconsistent vertices. One of these is a variant of D* Lite called Delayed
D* [9]. In every round, Delayed D* propagates only values of overconsistent
vertices and postpones the propagation of values of underconsistent vertices.
In some environments Delayed D* may perform worse than D* Lite since
only decreased changes are propagated. Whenever a path is returned, it is
checked for underconsistent vertices and, if it has none, the path is consid-
ered available and can be chosen as the “best” path between vc and vg; or
if contains some underconsistent vertices, the path is considered unavailable
and all underconsistent vertices on the path are inserted into OPEN. In the
latter case, as for D* Lite, such underconsistent vertices are then propagated.
This processing is repeated until one available “best” path is found. The rea-
sons the propagation of values of underconsistent vertices are postponed by
Delayed D* are that some of these may be able to be ignored later and many
underconsistent vertices may be updated at the same time to avoid duplicate
expansions of vertices.

IID* Lite propagates decreased changes in a manner similar to that of
Delayed D* but with several differences. These are:

1. IID* Lite does not propagate all overconsistent vertices but only those
that may result in a path whose cost is less than Ω′

2. IID* Lite propagates more inconsistent vertices in every partial recom-
putation.

3. All paths whose costs equal threshold number T are tested for avail-
ability simultaneously by function GetAlternativePath(vc)

4. Once T is found to be greater than Ω, the more efficient MiniCom-
pute() is called to see whether this new path can be improved using
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unconsidered decreased changes.

5. IID* Lite considers more vertices for propagation per partial recom-
putation. It has been shown that under some conditions, for example
when a agent is blocked, Delayed D* needs many times of partial recom-
putation until it finds out there is no path, hence performs worse than
propagating all changes in one full recomputation. The performance
of IID* Lite can be better under such circumstances. Because IID*
Lite propagates more inconsistent vertices by comparing with thresh-
old number T , not too many times of recomputation are needed. Also
in IID* Lite, one parameter can be used to measure the possibility that
the agent is blocked. As soon as the possibility is great enough, for ex-
ample, if T > 2 ∗ Ω, all vertices are forced to be updated immediately,
and catch is cleaned.

The value of these strategies is confirmed by the results of Section 3.2.5.

3.2.3 An example

Figure 21(a) shows a bi-directed graph which will be used to illustrate the
operation of IID* Lite, particularly in comparison with the operation of ID*
Lite. It is assumed that the cost of every available edge is 1 (that is, h(u, w) =
1 if u �= w), there are no self-edges (h(u, u) = ∞) and the cost of a blocked
edge (indicated by X) is ∞. The heuristic function h is then consistent. It
is assumed that the sensor-radius is 4, that v2 is initially blocked and that
edge 〈v4, v5〉 is initially blocked as shown in Figure 21(a). The start vertex
is vs and the goal vertex is vg.

Initialization of the graph proceeds as in ID* Lite: for all v except vg,
g(v) = rhs(v) =∞ and type(v) = −1; h(vg) = rhs(vg) =type(vg) = 0; vg is
placed in OPEN; km is set to 0; vc is set to vs; andComputeShortestPath()
and GetAlternativePath(vc) are called. Details showing how an initial
“best” path is obtained are skipped and instead the reader is referred to
Section 3.1.4 and Figure 8 to see how this would be accomplished. After
initialization the “best” path is shown as the dashed line in Figure 21(a).
The cost of this path is Ω = 6.

The agent now moves along the dashed line from vs to v0, and vc is set to
v0 and Ω becomes 5. Suppose at this point edge 〈v4, v5〉 becomes unblocked
and edges 〈v7, v4〉 and 〈v7, v8〉 become blocked as shown in Figure 21(b).
This is discovered at Line 71 and causes ProcessChanges() to be called at
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Line 75. Then at line 45, t is set to be 5. Since the cost of edge 〈v4, v5〉
is now 1, g(v5) = 1, rhs(v5) = 1, g(v4) = ∞. At Line 47 rhs(v4) is set
to 2. At Lines 51-52, since h(vc, v4) + rhs(v4) = 1 + 2 < T = 5, better
is set to TRUE and v4 is inserted into OPEN with priority [3, 2]. Also,
g(v7) = 3 and rhs(v7) = 5 because g(v6) + c(〈v6, v7〉) = 4 + 1 = 5. Since
h(vc, v7) + rhs(v7) = 1 + 5 > T = 5, v7 is inserted into catch temporarily
for later use and type(v7) is set to -3 in Line 54. The g and rhs values of
vertices v5 and v8 remain unchanged.

Since better is TRUE, MiniCompute() is called at Line 55. Since v4 is
at the top of OPEN, Lines 05-12 of MiniCompute() are executed resulting
in the removal of v4 from OPEN with g(v4) = 2 and rhs(v4) = 2. Vertex v1
is a predecessor of v4 and since g(v1) = 4 from Line 06, rhs(v1) is set to 3
in Line 10. Then UpdateVertex(v1) is called and v1 is inserted into OPEN
with priority [4, 3]. Now v1 is at the top of OPEN and Lines 05-12 of Mini-
Compute() are executed. Thus v1 is removed from OPEN with g(v1) = 3
and rhs(v1) = 3. Since v0 is a predecessor of v1, g(v0) is set to∞ and rhs(v0)
is set to 4. UpdateVertex(v0) is called and v0 is inserted into OPEN with
priority [4, 4]. Another iteration of the while loop at Line 01 of MiniCom-
pute() results in skipping Lines 10-12 and removing v0 from OPEN. Since
OPEN is now empty, execution returns to Line 55 of ProcessChanges().
Then function GetAlternativePath(vc) is called to reset vertex types so
that the highest priority shortest path from vc to vg may be found.

When GetAlternativePath(vc) is called a cursor vertex r is set to v0,
type(r) is set to 1 in Line 29 because v0 has successor v1 and rhs(v0) = 4 =
g(v1) + c(〈vs, v1〉). Since type(v0) = 1 > 0, r is set to v1 in Line 31. Then
type(v1) is set to 1 in Line 29 because it has only one child, v4, and r is
set to v4. Then type(v4) is set to 1 in Line 29 because v5 is v4’s only child.
Next r is set to v5 and type(v5) is set to 1 with vg as the only child, and
execution stops. In Figure 21(b) the numbers above the vertices show the
vertex type numbers after GetAlternativePath(v0) is called. Implicitly,
the current “best” path follows the vertices of non-negative type numbers
starting at v0 and this path is shown as the dashed line in the figure. Since
GetAlternativePath(v0) has returned TRUE, t is not incremented and no
further edge cost changes are considered.

The agent begins to move along the current path starting from v0 = vc.
Line 68 of Main() sets type(v0) to 0. In Line 69, vc is set to v1, and in Line
70 the agent is moved to v1 = vc. Suppose edge 〈v4, v4〉 becomes blocked and
edge 〈v7, v8〉 becomes unblocked. This new situation is shown in Figure 21(c)
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and is detected in Line 71 of Main(). Ω is now 3. As above, Process-
Changes() is called. Then at line 45, t is set to 5. At Line 47, g(v7) = 3 and
rhs(v7) is set to 3. At Line 51, because h(vc, v7) + rhs(v5) = 1 + 3 > t = 3,
v7 is not inserted into OPEN and type(v7) is set to -3. Iterating the for
loop at Line 46, since type(v7) = −3, GetBackVertex(v7) is executed
at Line 48, and type(v7) is set to 0 at Line 49. Iterating the for loop,
values of vertex v4 are updated to g(v4) = 2 and rhs(v4) = 4 because
g(v1) + c(〈v1, v4〉) = 3 + 1 = 4. Since h(vc, v4) + rhs(v4) = 1 + 4 > T = 3, v4
is stored in catch with type(v4) = −3. Values of vertices v5 and v8 remain
unchanged. Since no vertices have been inserted into OPEN, MiniCom-
pute() is not called, but GetAlternativePath(vc) is called directly in Line
56. In GetAlternativePath(vc) a cursor vertex r is set to vc = v1, type(r)
is set to 0 in Line 29, hence v4 (with type value -3) is inserted into OPEN.
GetAlternativePath(vc) returns FALSE. Hence t will increase and more
edge cost changes will be considered. At line 57, told is set to 3, and after
execution of ComputeShortestPath, rhs(vc) is updated to 4, so t becomes
4. In line 58, since t > told, Lines 59-64 are executed. But there is no edge
cost change that satisfies the condition of Line 61, so Line 56 is executed
again.
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Figure 21: The action of ID* Lite on a small example
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When GetAlternativePath(vc) is called the second time a cursor vertex
r is set to vc = v1, type(r) is set to 1 in Line 29 because vc = v1 has successor
v7 and rhs(v1) = 4 = g(v7) + c(〈v1, v7〉). Since type(v1) = 1 > 0, r is set
to v7 in Line 31. Then type(v7) is set to 1 in Line 29 because it has only
one child v8 and r is set to v8. Then type(v8) is set to 1 in Line 29 because
v9 is v8’s only child. Next r is set to v9, type(v9) is set to 1 with vg as the
only child, and GetAlternativePath(vc) returns TRUE. In Figure 21(c)
the numbers above the vertices are the type numbers of those vertices at this
point. Implicitly, the current “best” path follows the vertices of non-negative
type numbers starting at v1 and is shown as the dashed line in the figure.

3.2.4 Analysis of IID* Lite

In this section we show that IID* Lite returns a least cost path between vc
and vg on every round. As with D* Lite, the heuristic function h(w, u) is
assumed to be consistent.

Lemma 16 In IID* Lite, function MiniCompute() can only update value
rhs(vc) to be less than or equal to its formal value and, after execution of
MiniCompute(), rhs(vc) ≤ t.

Proof: In MiniCompute(), if a vertex v becomes underconsistent, that is,
g(v) < rhs(v), it will be deleted and hence not cause further propagative
updating. This implies that all vertices that are further processed in Mini-
Compute() are overconsistent. Moreover, values that are propagated from
v cannot increase the rhs value of their neighboring vertices including vc if
it is a neighbor. That means rhs(vc) cannot increase. This proves the first
part of the lemma.

To prove the second part, observe that in D* Lite, no inconsistent vertex is
deleted and all inconsistent vertices will be further processed and rhs(vc) will
take the value t. So we only need to show that rhs(vc) in IID* Lite is less than
or equal to rhs(vc) in D* Lite. ProcessChanges() in IID* Lite combined
with Proposition 9 means that all overconsistent vertices causing rhs(vc) to
decrease will be further processed. So in comparison to D* Lite, IID* Lite
only process vertices that in D* Lite will cause rhs(vc) to decrease but does
nothing to vertices causing rhs(vc) to increase in D* Lite. So, rhs(vc) in
IID* Lite is less than or equal to what it would be in D* Lite. It follows from
the correctness of D* Lite that rhs(vc) returned by MiniCompute() is no
greater than t.
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Lemma 16 shows that MiniCompute() can find paths of cost no greater
than those found by D* Lite. The intuitive explanation for this is as fol-
lows. Assume in D* Lite there is a shortest path p′ passing through only
one decreased cost change e = 〈w, u〉 and only one increased cost change
z′ = 〈v, r〉. In IID* Lite, if v has g(v) < rhs(v), v’s values will not be
propagated immediately, so w’s values will not be affected by v and rhs(w)
can only become less. Then the cost of p′ in IID* Lite will be less than
that in D* Lite. Furthermore, since the cost of the least cost path re-
turned by MiniCompute() is less than that of p′, p′ cannot be “found”
by GetAlternativePath(vc) even though it is the least cost path. Actu-
ally, p′ could be “found” by GetAlternativePath(vc) but considered un-
available until v is checked. In that case, the strategy that inserting v into
the priority queue and re-calculating in ComputeShortestPath() can be
applied to find it. The reason for doing this is efficiency. Since not all ver-
tices satisfying the equation in Proposition 9 are propagated immediately in
ProcessChanges(), it is possible that some shortest path found by Mini-
Compute() will be unavailable when checked by GetAlternativePath(vc)
due to inconsistency. To summarize, a vertex v satisfying the equation in
Proposition 9 but with g(v) < rhs(v) will not be propagated. To deal with
this situation we have the following lemma.

Lemma 17 ProcessChanges() exits from Line 56 if and only if a least
cost path traversing consistent vertices has been found.

Proof: When function ProcessChanges() exits the loop at line 56, sup-
pose the cost of the new least cost path is t. By Lemma 10, when line 56
is executed for the first time, if function GetAlternativePath(vc) returns
TRUE, one path p′ passing through consistent vertices has been found. Sup-
pose its cost value is c. Since, by assumption, t is the value of current least
cost path, c ≥ t. By Lemma 16 c ≤ t. Hence c = t. Therefore, that if
GetAlternativePath(vc) returns TRUE, a least cost path is found.

If GetAlternativePath(vc) returns FALSE then any vertex v that is
underconsistent (g(v) < rhs(v)) must be inserted into OPEN. From Lines
56-64 in ProcessChanges(), following the operation of ComputeShort-
estPath() in D* Lite, the underconsistent vertex values will be updated
to make those vertices consistent. From the operation of D* Lite and by
Proposition 9, it can be proved that rhs(vc) ≤ t, as was done in the proof
of Lemma 16, even though some underconsistent vertices are processed in
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IID* Lite. That is because the underconsistent vertices propagated by IID*
Lite are a subset of underconsistent vertices processed by D* Lite and the
overconsistent vertices whose propagation is postponed by IID* Lite cannot
be part of any path whose cost is no greater then t. So, for an arbitrary
consistent vertex v with rhs(v) ≤ t, rhs(v) will also be less than the cost
of the path returned by D* Lite. When the loop in Lines 56-64 is repeated,
if GetAlternativePath(vc) can return TRUE, using the same argument as
above, the path found is of least cost.

If FALSE is continually returned byGetAlternativePath(vc), more and
more inconsistent vertices will be reinserted into OPEN and updated. Since
the number of inconsistent vertices is finite, in the worst case all inconsistent
vertices are updated as is done in D* Lite. According to the correctness of
D* Lite, all vertices on least cost paths from vc to vg will be consistent and
rhs(vc) = t. In that case GetAlternativePath(vc) returns TRUE.

Lemma 17 shows that IID* Lite runs an incremental like search within
every round. The rough idea is to search the shortest path incrementally
from low value to high value.

Lemma 18 ProcessChanges() finds the least cost path in every round if
and only if there exists one.

Proof: This follows from Lemma 17.

Theorem 19 In every round, IID* Lite returns a least cost path from vc to
vg if and only if a path exists.

Proof: This follows directly from Lemma 18.
The above analysis shows that the improvements proposed to ID* Lite

do not require any special property of the terrain information that an agent
may encounter. Yet, the proposed improvements potentially speed up D*
Lite by avoiding vertex updates until they are shown to be necessary. The
improvements can be embedded into any algorithm which uses D* Lite as a
foundation.

3.2.5 Experiments and Results

In this section, the performance of IID* Lite is compared experimentally to
the performance of D* Lite and delayed D* algorithms on random grid-world
terrains. The experiments are the same as the ones described in Section 3.1.6.
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In each experiment the initial terrain is a blank, square 8-direction grid world
of size2 vertices, where vs and vg are chosen randomly. Recall that parameter
percent is the fraction of vertices that are initially blocked and sensor-radius
is the maximum cost of a path from vc to an observable vertex.

Results on random rock-and-garden benchmarks are given first. The re-
sults are averaged over at least 100 independent runs of each algorithm.
Because we found that Delayed D* can perform quite differently depending
on different instances, the results of Delayed D* are averaged over at least
1000 independent runs.

In Figures 22 and 23 size = 300, and percent = 10 and percent =
30, respectively. The left graph of each figure shows the number of heap
operations as a function of sensor-radius. As before, the plots show only the
heap operations in re-calculations. The right graph of each figure shows the
ratio of the number of re-calculations to the number of edge cost changes
observed within the sensor-radius.
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Figure 22: size=300 and percent=10
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Figure 23: size=300 and percent=30

In [9], a D* Lite variant Delayed D* has been introduced and it is stated
that Delayed D* can outperform D* Lite by roughly a factor of 2. In that
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paper three kinds of experiments are introduced. In the first one, relatively
a small number of changes are observed in the grid world, and delayed D*
performs well because there are just a few decreasing changes that cause
overconsistent vertices. This partially explains why, in Figure 22, Delayed
D* performs better than IID* Lite when the sensor-radius is small.

In the second kind of experiment, Delayed D* is compared with D* Lite
in completely unknown environments and Delayed D* showed a slight perfor-
mance improvement. In this proposal, due to the way sensor-radius is used
and the assumption that all initialized maps are blank, all our experiments
simulate completely unknown environments. In the rock-and-garden bench-
marks, there are no decreasing changes so the performance of delayed D* is
not as good as the other algorithms. This is why Delayed D* suffers a lot in
our experiments.

Experiments of the third kind are run in partially known environments,
where there are many vertices whose priorities are higher than rhs(vc). In
this kind of experiment, the possibility is high that the propagation of over-
consistent vertices can generate a new least cost path. Delayed D* performs
much better than D* Lite in this kind of environment.

By observing Figures 22 and 23 we can observe that IID* Lite not only
performs better but also its heap percolation increases more slowly than other
the other algorithms as sensor-radius increases. Hence we can conclude that
in random rock-and-garden benchmarks, IID* Lite is best when sensor-radius
is large, which is probably a realistic assumption given advancing technology.
Figures 22 and 23 also hint at the kind of environment for which Delayed D*
can outperform D* Lite.

The right side graphs of Figures 22 and 23 show a flat curve at 1 for
D* Lite because every time an inconsistency is observed, exactly one re-
calculation must be performed. Delayed D*’s curve is always above 1 be-
cause at least one re-calculation must be performed to propagate overcon-
sistent vertices for every round, and in order to guarantee availability of the
found least cost path some extra re-calculations to propagate underconsis-
tent vertices may be needed [9]. The curve for IID* Lite stays much below
1 since re-calculations may be skipped when alternative paths are found. It
should be pointed out that the numbers plotted in the figure include calls to
MiniCompute() which runs much faster than ComputeShortsetPath().
It should also be pointed out that IID* Lite may have a ratio greater than 1
in some environments as will be illustrated below.

Results shown in Figures 24 and 25 come from experiments where size =
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300, and sensor-radius is 10 and 30 respectively. The left graph of both
figures shows the number of heap operations as a function of percent given
the other parameters are fixed. The right graph of both figures shows the
ratio of the number of re-calculations to the number of changes observed.
From these figures it can be concluded that ID* Lite typically performs better
than D* Lite, and in rock-and-garden benchmarks IID* Lite is least sensitive
algorithm to the number of edge cost changes.
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Figure 24: size=300 and sensor-radius=10
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Figure 25: size=300 and sensor-radius=30

Results shown in Figure 24 show that Delayed D* performs best when
sensor-radius=10. Considering the above discussion, it is easy to understand
that when sensor-radius increases, there are more underconsistent changes,
causing ID* Lite’s performance to degrade. But why does the performance
of Delayed D* suffer when sensor-radius=5. The reason has been discussed
in [9] where it is introduced as one possible source of inefficiency. In Delayed
D*, after propagating overconsistent vertices, underconsistent vertices may
be needed to be inserted into OPEN to re-calculate to establish the avail-
ability of found least cost paths: if underconsistent vertices exist on the path
found the path is unavailable, and hence such underconsistent vertices are
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inserted into OPEN and their updated and propagated. If the undercon-
sistent vertices are recomputed in several times, then this the performance
of Delayed D* Lite suffers. When the sensor-radius is 5, the underconsis-
tent vertices locate close to each other and there is an increased chance that
the aforementioned bad scenario for Delayed D* will happen. But because
sensor-radius is small, there are relatively few changes to observe and the dif-
ference in performance between Delayed D* and D* Lite may not be great.
If the number of changes is certain, Delayed D* will perform better than D*
Lite when sensor-radius is large.

Results presented in Figure 26 show the number of heap operations as a
function of size when sensor-radius= 0.1 ∗ size and percent = 30. IID* Lite
performs the best among the three algorithms
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Figure 26: sensor-radius=0.1*size and percent=30

Next the performance of D* Lite, Delayed D* and IID* Lite on parking-lot
benchmarks is discussed. In these benchmarks a fixed percentage of vertices
are initially blocked and on succeeding rounds each of the blocked vertices
moves to some adjacent vertex with probability 0.5, the particular target
vertex being chosen randomly from all available adjacent vertices. Because
parking-lot-benchmark can be classified as having partially known environ-
ments, and there are many changes in every round, as discussed above, De-
layed D* will be handicapped in these benchmarks. Since showing the per-
formance results of delay D* would force a change of scale of the plots, they
are not presented in the figures referred to below.

For experiments whose result are shown in Figures 27 and 28 size =
300, and percent = 10 and percent = 30, respectively. The left graph of
both figures shows the number of heap operations as a function of sensor-
radius given the other parameters are fixed. The results show that IID*
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Lite outperforms D* Lite by nearly an order of magnitude. The results of
Figures 27 and 28 show that in IID* Lite heap percolation increases more
slowly that for D* Lite as sensor-radius increases. This result is similar to
that for the rock-and-garden benchmarks. The right graphs of Figure 28
show that IID* Lite’s ratio is greater than 1 when sensor-radius≥ 20. That
means, on the average, IID* Lite re-calculates more than once when changes
are observed. The re-calculations tabulated in those figures include calls to
MiniCompute().
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Figure 27: size=300 and percent=10
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Figure 28: size=300 and percent=30

In Figures 29 and 30 size = 300 and sensor-radius is 10 and 30, respec-
tively. The left graph of both figures shows the number of heap operations
as a function of percent given the other parameters are fixed. The right
graph of both figures shows the ratio of the number of re-calculations to
the number of changes observed. The results show that IID* Lite performs
better than D* Lite on the average. From Figures 29 and 30 we conclude
that in IID* Lite heap Percolation increases more slowly than in D* Lite as
percent increases. That is, in the parking-lot benchmarks, IID* Lite is less
sensitive to edge cost changes than is D* Lite. We also conclude that IID*
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Lite has a better ability to handle intensely changing environments than D*
Lite. When percent ≥ 40, because the agent is blocked so often, there is no
big performance difference that is observed among all the algorithms. Ac-
tually, under such environments, D* Lite may perform better than Delayed
D* and IID* Lite. In that case, one can apply ID* Lite instead of the other
algorithms.
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Figure 29: size=300 and sensor-radius=10
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Figure 30: size=300 and sensor-radius=30

Figure 31 shows the number of heap operations as a function of size

where sensor-radius= 0.1∗ size and percent = 30. IID* Lite performs better
than D* Lite from size = 100 to size = 500.

Since IID* Lite needs to calculate an alternative which D* Lite does not,
therefore although IID* uses less heap operations than D* and its alternative
calculation cost is little, it is more assuring to do experiments and see if
heap operation cost analysis coincide with operation time they spend. In
Figure 32 and Figure 33 we show operation time comparison of IID* and
D* respectively under the same setting used for experiments of Figure 26
and Figure 31 both of which respectively show comparison of heap operation
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Figure 31: sensor-radius=0.1*size and percent=30
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Figure 32: rock-and-garden
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Figure 33: parking-lot

cost of IID* and D* Lite. Compare the graph in Figure 32 with the one in
Figure 26 we can see the IID*’s curve of operation time has the same trend as
its curve of heap operation cost, which shows heap operation cost contribute
the main complexity(also time) as we predicted. Comparison between graphs
in Figure 33 and Figure 31 say the same thing. By statistics the percentage of
calculating alternatives is less than 1% of the total time needed. The results
prove correctness of our analysis. There is an interesting phenomenon: when
the priority queue is relatively small, the heap operation can be executed
more efficiently. As IID* Lite delays propagation of unnecessary changes,
its priority queue is smaller than that D* Lite’s. So having the above time
comparison, sometimes IID* Lite speeds up greater and saves more time than
heap operations.

By experiments and analysis we conclude that although IID* Lite can
not theoretically guarantee always performing better than D* Lite, IID* Lite
practically performs better than D* Lite under various random benchmarks.
Specifically IID* Lite gets up to 8 times speeding up compared with D* Lite.
Allying with results analyzed for ID* Lite in Section 3.1, IID* Lite also works
much better than ID* Lite.
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3.3 Summary

Two improvements to the D* family of algorithms have been proposed.
One improvement attempts to find an alternative least cost path before re-
calculating values when the current least cost path becomes inconsistent.
The second improvement is a systematic way to consider edge cost changes
in order when re-calculation is necessary so that a least cost path may be
found before all changes are propagated. In particular, values of overconsis-
tent vertices are propagated with a priority based on g and rhs values and
underconsistent vertices are only inserted into OPEN when looking for a con-
sistent alternative to the current least cost path. Both improvements have
been implemented under the name IID* Lite. The potential for performance
improvement over other algorithms in the D* family is made apparent from
the results of experiments on a variety of benchmarks including rock-and-
garden and dynamic navigation families of terrain. Experiments show IID*
Lite can get up to 8 times speedup over D* Lite. Experiments also show that
IID* Lite is less sensitive than D* Lite to the number of changes observed
in a round. The importance of this is expected to increase with advancing
technology that will support finer grain simulations and allow robots to “see”
further. Finally, experiments show that in terrains where the agent can be
blocked often it is better to use only the first improvement since all vertices
reachable from vg have to be expanded anyway.
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4 Anytime Dynamic Navigation Algorithms

Dynamic navigation algorithms play a crucial role in the reliability and func-
tionality of autonomous vehicles. These algorithms help an agent find a near
optimal path to a goal in changing environments. An optimal path can be
found when resources are sufficient and some algorithms are able to do this
well [14, 15, 31, 32, 40, 41, 43]. But, in environments where there are insuffi-
cient resources an agent cannot efficiently compute an optimal path and a
sub-optimal path must be accepted. Chapters 1 to 3 were concerned with
finding optimal and sub-optimal paths given as much time as needed for the
computations. This chapter is concerned with environments where time is
more critical than optimality and where a sub-optimal solution is the best
that one can hope to obtain.

Time-limited search algorithms, called anytime planning algorithms, have
been developed for time-critical environments. The basic idea is, first, find
and store some path as soon as possible, then progressively replace the stored
path with a better one, if found during search, until the time available for
search expires [10,11,45]. At that point, the stored path becomes the agent’s
path. As examples [10, 19, 29] define and demonstrate an algorithm named
Weighted A* which uses ”inflated” heuristics (described below) to expand
fewer vertices than the normal A* algorithm does.

In A*, the vertices in OPEN are sorted by their values f = g + h. In
A*, if h is assumed to be admissive and if f = g + ε · h, then the returned
path can be guaranteed to be ε sub-optimal, i.e. g(vg) ≤ ε · g∗(vg) [5]. This
strategy is called inflated heuristics and it is used to control ε sub-optimality.
The Weighted A* algorithm is the A* algorithm using inflated heuristics.
In [10] the Anytime Weighted A* algorithm is presented and shown to pro-
vide a general method for transforming heuristic search algorithms to anytime
algorithms. The Anytime Weighted A* algorithm is an anytime planning al-
gorithm continuously improves the current path, starting from a sub-optimal
path that is quickly calculated, until an optimal path is obtained.

The Anytime Weighted A* algorithm does the same initialization as the
A* algorithm and the Weighted A* and the heuristic function h used is
admissive. Its difference from the A* algorithm is that p is used to record
the current returned path which may be improved later; ERROR is used to
estimate how far away the cost of the current solution is from that of the
optimal path; ε is the parameter used to inflate h; in a vertex v ∈ OPEN ,
the stored values related to it are 〈g(v), f ′(v)〉 instead of 〈g(v), f(v)〉, where
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f ′(v) = g(v)+ ε ·h(v): that is, the vertices of the priority queue OPEN in the
Anytime Weighted A* algorithm are sorted by f ′ values which are different
from the f values used in the A* algorithm. The Anytime Weighted A*
algorithm uses inflated heuristic value f ′ to sort vertices, and the normal f
values are recorded to prune the search space [11].

In a changing environment, searching for a path between a fixed pair of
vertices with limited available time is mitigated by the Anytime Repairing
A* algorithm (ARA*) [21], a member of the family of incremental anytime
algorithms. ARA* runs the Weighted A* every time a change in path op-
timality is observed to find a new (sub-optimal) path. The performance
of ARA* mainly depends on how much previously calculated information it
uses to avoid replicating computation. This is in accordance with ideas taken
from [16,17]. In Weighted A* when h is admissive, if every vertex is allowed
to be expanded only once, then the returned path is still ε sub-optimal. Due
to this property, every time ARA* needs to recalculate, it updates a vertex
at most one time. ARA* starts with a large value for the so-called inflated
parameter ε and then reduces ε on each succeeding round until either ε = 1
or the time available expires. ARA* performs in a manner similar to that
of Anytime Weighted A* and has the ability to control the sub-optimality
parameter ε.

The D* Lite algorithm can be regarded as a dynamic version of the Life-
long A* algorithm [16, 17]. As is the case for the D* algorithm [31, 32], D*
lite searches backward from vg to vs. This is likely the critical point for the
success of D* and its variants because the g value of every node is exactly
the path cost from that node to the goal vg and can be used after the agent
moves to its next position. The function rhs is defined by

rhs(v) =

{
minv′∈succ(v) g(v

′) + c(〈v, v′〉) v �= vg
0 otherwise,

The ”more informed” rhs function assists in making better vertex updates
during expansion. Call a vertex v locally consistent if rhs(v) = g(v), locally
overconsistent if rhs(v) < g(v), and locally underconsistent if rhs(v) > g(v).
A vertex that satisfies either of the latter two cases is said to be inconsistent.
A ”best” path can be found if and only if, after expansion of vs, all vertices
on the current path are locally consistent and can be computed by following
the maximum-g-decrease-value vertices one by one from the goal vg. If some
change that is made in the previous round causes a vertex v to become
inconsistent, then D* Lite updates g(v) to make v locally consistent by setting
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g(v) = rhs(v) (Because D* Lite only propagates inconsistent vertices to
update some vertices (g, rhs) values instead of updating all vertices values,
D* Lite can perform much better than other navigation algorithms).

The Anytime D* algorithm [20] is intended for dynamic navigation ap-
plications where optimality is not as critical as response time. It may be
thought of as a descendant of both the Anytime Repairing A* (ARA*) and
D* Lite algorithms. It may re-calculate a best path more than once in a
round with decreasing ε-sub-optimality until ε = 1 or time runs out. Thus,
Anytime D* will try to give a relatively good and available path quickly.
Moreover, if time allows, it tries to improve the returned path incrementally
as is the case for Anytime A*.

The work in [40, 41] improves the efficiency of the D* Lite algorithm by
avoiding unnecessary calculations even further. Note that if the original op-
timal path is still available and cannot be improved from observed changes,
the path will be chosen without re-calculating. A new algorithm named IID*
Lite, proposed in 3.2, maintains a threshold number to control the propa-
gation of inconsistent vertices. Only when the weight of a path is less than
or equal to the threshold number are changes associated with inconsistent
vertices on the path propagated. The threshold number is increased until an
optimal path is found or all inconsistent vertices have been updated.

Two criteria are used to judge the performance of dynamic anytime al-
gorithms. One is the time an algorithm uses to compute the first qualified
sub-optimal path in the course of recalculation, and the second is the sub-
optimality of the final path an algorithm outputs after recalculation. Similar
criteria are mentioned in [33]. An anytime algorithm is designed to find the
first sub-optimal path as soon as possible, and then to iteratively improve
this path until time runs out. In Section 4.1, a new anytime dynamic nav-
igation algorithm IAD* [42] is proposed and compared with AD* using the
first criterion. It is shown that IAD* gains up to an order of magnitude
speed up over AD* in experiments. In Section 4.2 another dynamic anytime
DAWA* is proposed and compared with IAD* and AD*. Since, as will be
shown, DAWA* has the same performance as IAD* with respect to the first
criterion, the algorithms are compared using only the second criterion.
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4.1 Improved Anytime D* Algorithm(IAD*)

In this section a description of the Improved Anytime D* (IAD*) algorithm
is given. When changes are observed, IAD* will tries to update inconsistent
vertices to get a new sub-optimal path in a manner similar to that of Anytime
D* (AD*). For every update it is required to return a new sub-optimal
path whose weight is no greater than ε′ · g∗ where ε′ is a preset value that
controls sub-optimality and g∗ is the weight of current optimal path. The
sub-optimality parameter, denoted here as ε, is different from ε′ as described
below.

Every time an update is needed ε is reset to be a relatively large value
denoted ε′. Doing so results in the discovery of a path, although sub-optimal,
as soon as possible [10,19,29]. In [35], it is recommended that in Weighted A*
ε can be set to any value greater than ε′. Experiments show that this results
in the first path being returned fastest for that algorithm. This technique
can be easily combined with any Weighted A* variant. In order to speed up
returning the first path, AD* allows a vertex to be expanded at most once.
The reason for why this condition would work is given in [20]. However,
in some benchmarks this condition may delay propagation of some critical
vertices and slow down the speed [10]. Experimental results are presented
and analyzed in Section 4.1.2.

All anytime variants try to improve the current path until time runs out
or an optimal path is found. In AD* each update decreases the value of ε,
starting from ε′, until it equals 1, which means the returned path is optimal,
or time runs out. When ε is decreased, all inconsistent vertices are inserted
into a priority queue to be updated. Compared with AD*, IAD* does no
update the first time changes are observed: this is just the same strategy
that is used in IID* Lite 3.2. Instead, IAD* tries to find a consistent and ε

sub-optimal path which is not affected by the changes. If such a path exists,
IAD* simply returns the path; if such a path does not exist, IAD* will update
inconsistent vertices part by part until an ε sub-optimal found. The method
used to choose inconsistent vertices to be updated is similar with IID* Lite,
and is discussed in Section 4.1.1.

4.1.1 Pseudo Code of IAD*

The pseudo code of IAD* is listed in Figure 34. Initialize() initializes ε, the
priority queues OPEN, CLOSED, and INCONS, values for g, rhs, and type
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values of vertices. The initial value of ε′ is relatively large in order to make
sure a path can be returned quickly. Vertex vg and its key are inserted into
priority queue OPEN.

In Function key(s), underconsistent vertices have their key-values up-
dated to g(s) + h(s). This guarantees that increased changes can be prop-
agated. Function UpdateVertex(s) updates a vertex in the same way as
Anytime D* which uses INCONS to store some of the inconsistent vertices
and makes sure that each vertex is expanded at most once in an execution
of ComputeOrImprovePath(). After doing this, a solution satisfying ε

sub-optimality is returned [20].
FunctionsComputeorImprovePath(),MiniCompute() andGetBack-

Vertex(v) are the same as in IID* Lite. FunctionGetAlternativePath(vc)
returns TRUE if and only if there is a path from vc to vg. If it returns
TRUE, it means that type values on vertices have been changed so that
an ε sub-optimal path from vc to vg can be traversed by visiting neigh-
boring vertices with positive type values until vg is reached. At line 05 of
GetAlternativePath(vc) a successor y of r with rhs(y) + c(r, y) ≤ rhs(r)
is chosen instead of a child of r: this action is different from IID* Lite. The
reason for the change is that in this algorithm only a sub-optimal path is
required and this results in getting a path faster.

Different from IID* Lite, IAD* may not return an optimal path but can
guarantee an ε sub-optimal path. Moreover, it is worth noting that if the
returned path contains overconsistent vertices, then it is better than an ε sub-
optimal path. If no path is returned by function GetAlternativePath(vc),
every vertex c ∈ C will be updated by function UpdateVertex. Note
that c is underconsistent and that this is the only place in the code where
underconsistent vertices are placed into OPEN. This is because only increased
changes will cause underconsistent vertices and increased changes are only
processed here. Decreased changes will always be inserted before function
GetAlternativePath(vc) is called.

ProcessChanges acts in a way that is similar to the way it does in IID*
Lite. The difference only lies at lines 07 and 17 where ε∗h(vc, u)+rhs(u) < t

instead of h(vc, u) + rhs(u) < t is used to test whether an overconsistent
vertex should be put into OPEN for propagation. Functions Main() and
MoveAgent() are the same as AD*.

This subsection concludes with a statement of correctness of IAD*. In the
next subsection experimental results of IAD* will be presented and compared
with results for AD*.
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Procedure Initialize()
01. OPEN = CLOSED = INCONS = catch=∅;
02. for all v ∈ V , rhs(v) = g(v) =∞; type(v) = −1;
03. rhs(vg) = g(vg) = type(vg) = 0; ε = ε′

04. OPEN.insert([vg, [h(vg), 0]]);

Procedure key(s):
01. if (g(s) > rhs(s))
02. return [rhs(s) + ε · h(s), rhs(s)];
03. else
04. return [g(s) + h(s), g(s)];

Procedure UpdateVertex(s):
01. if s has not been visited
02. g(s) =∞;
03. if (s �= vg)rhs(s) = mins′∈succ(s)(c(〈s, s

′〉) + g(s′));
04. if (s ∈ OPEN) OPEN.remove(s);
05. if (g(s) �= rhs(s))
06. if (s ∈ CLOSED)
07. OPEN.insert([s,key(s)]);type(v) = 0;
08. else
09. insert s into INCONS;

Procedure ComputeOrImprovePath():
01. while (OPEN.TopKey() < key(vs) OR rhs(vs) �= g(vs))
02. s = OPEN.Top(), OPEN.remove(s);
03. if (g(s) > rhs(s))
04. g(s) = rhs(s);
05. CLOSED.insert(s);
06. for all s′ ∈ pred(s) UpdateVertex(s′);
07. else
08. g(s) =∞;
09. for all s′ ∈ pred(s) ∪ {s} UpdateVertex(s′);

Procedure MiniCompute( )
01. while (OPEN.TopKey() < key(vc))
02. u = OPEN.Top(), OPEN.remove(u);
03. if (g(u) > rhs(u))
04. g(u) = rhs(u);
05. CLOSED.insert(s);
06. for all s′ ∈ pred(s) UpdateVertex(s′);
07. else
08. OPEN.Remove(u);
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Procedure GetAlternativePath(vc)
01. Vertex r = vc;C = ∅
02. while (r �= vg)
03. update r’s type value;
04. if (type(r) > 0)
05. r = one successor y of r with rhs(y) + c(r, y) ≤ rhs(r)

and type(y) �= −3 and type(y) �= −2;
06. else if (type(r) == 0)
07. type(r) = -2;
08. if (r == vc)
09. for every vertex c ∈ C UpdateVertex(c);
10. return FALSE;
11. C = C ∪ r′s type value −3 children; r = parent(r);
12. return TRUE.

Procedure GetBackVertex(v)
01. if (v �= NULL and type(v) < 0)
02. if (rhs(p) �= g(p))
03. return;
04. type(v) = 0;
05. v = parent(v);
06. GetBackVertex(v);

Procedure ProcessChanges()
01. Boolean better=FALSE, recompute = FALSE, t = rhs(vc).
02. for every edge e = 〈u, v〉 where c(e) has changed since the previous round:
03. Update rhs(u);
04. if (type(u) = −3) GetBackVertex(u);
05. if (rhs(u) == g(u)) type(u) = 0;
06. else
07. if (g(u) > rhs(u) and ε ∗ h(vc, u) + rhs(u) < t)
08. better = TRUE, UpdateVertex(u);
09. else
10. catch.add(u), type(u) = −3;
11. if (better == TRUE) MiniCompute();
12. while (!GetAlternativePath(vc))
13. told = t, ComputeShortestPath(), t = rhs(vc);
14. if t > told
15. better=FALSE;
16. for every u ∈ catch such that type(u) �= 0
17. if (ε ∗ h(vc, u) + rhs(u) < t and g(u) > rhs(u))
18. better = TRUE, UpdateVertex(u);
19. catch.remove(u).
20. if (better == TRUE) MiniCompute().
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Procedure Main():
01. Initialize();
02. ComputeOrImprovePath();GetAlternativePath(vc);
03. publish current ε sub-optimal solution;
04. repeat the following:
05. for all directed edges 〈u, v〉 with changed edge costs
06. Update the edge cost c(〈u, v〉);
07. if significant edge cost changes were observed
08. increase ε or replan from scratch;
09. else if (ε > 1)
10. decrease ε;
11. CLOSED = ∅;
12. ProcessChanges();
13. publish current ε sub-optimal solution;
14. if (ε == 1)
15. wait for changes in edge costs;

Procedure MoveAgent():
01. while (vs �= vg)
02. wait until a plan is available;
03. Set type(vc) = 0;
04. vc = u where u is a successor of vc and type(u) > 0;
05. Move the agent to vc;

Figure 34: Main functions of IAD*
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Theorem 4.1 The path between vc and vg that is returned by the Improved
Anytime D* algorithm has a cost no greater than ε′ ∗ g′(vc) where g′(vc) is
the cost of optimal path between vc and vg.

Proof: It follows from the correctness of IID* Lite algorithm and Anytime
D* algorithm.

4.1.2 Experiments and Analysis

In this section, the performance of IAD* is compared experimentally with
that of AD* on random grid-world terrains. In each experiment the terrain
is a square, 8-direction grid world of size2 vertices. Vertices vs and vg are
chosen randomly from the terrain. Initially percent%∗size2 of the vertices
are randomly selected as blocked points where percent is a controlled param-
eter. The parameter sensor − radius is used to set the maximum distance
to a vertex that is observable from the current agent position. Consistent
heuristic function similar with Manhattan distance is used. Before naviga-
tion, the traveling agent has a initial map, in which an obstacle may be
wrongly considered to be blank with fifty percent possibility.

To compare anytime dynamic navigation algorithms, the sub-optimality
parameter ε is controlled so that solutions returned by the algorithms are
ε sub-optimal. How many operations are needed to compute the first sub-
optimal path in the course of recalculation is considered as a criterion of
anytime algorithms. The less time that is used, the better the algorithm is.
Experiments are run on IAD* with AD* for the same value of ε using two
kinds of random benchmarks. The first set of results are on random rock-
and-garden benchmarks where an initially set blockage remains for the entire
experiment. The second set of results are on a collection of benchmarks,
called parking-lot benchmarks, that model navigation through changing ter-
rains. In that case a blockage may move to its neighborhoods randomly in
the course of navigation.

Form Figure 35 to 41, IAD* and AD* are compared on rock-and-garden
benchmarks. Figures 35 and 36, respectively, display the results of size = 300
and size = 500 with percent = 10 and sensor− radius = 0.1 ∗ size. In each
figure only heap operations in recalculations are compared and the number
of heap operations is a function of sub-optimality Epsilon(ε). Also the times
consumed by recalculations are compared. Compared with AD*, the time
consumed by IAD* includes the extra time that is needed to calculate the
alternative path.
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Figures 35 and 36 show IAD* gains an order of magnitude speed up
over AD*. Thus, the time it takes IAD* to calculate alternative paths is so
short that the time it takes to recalculate is barely affected. Correlating the
number of heap operations with the actual time consumed shows that heap
operations dominate the complexity of navigation algorithms as expected.
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Figure 35: size=300, percent=10, sensor-radius=30(rock-and-garden)
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Figure 36: size=500, percent=10, sensor-radius=50(rock-and-garden)

The speedup of IAD* over AD* is even greater than that of IID* Lite
over D* Lite 3.2. There are two main reasons for this. The first is, because it
is sufficient to seek sub-optimal paths, there are more alternatives to choose
from. In order to find an alternative path for P , IID* Lite can only choose a
path whose cost is the same as |P | = Ω: but this is not required by IAD* and
IAD* can choose any path of less than or equal to ε∗Ω. The second reason is
that, when changes are observed, IAD* can avoid recalculation by choosing
a particular alternative path and therefore can skip reordering the priority
queue OPEN, whereas AD* must do the reordering when recalculation is
needed. In [20] it is claimed that the method of [31] to avoid reordering of
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the priority queue can be used in AD*. Unfortunately, since the heuristic
used in AD* is not consistent, the proposed modification causes additional
reinsertions of key values of vertices into the priority queue resulting in more
heap operations. This added cost is verified by experiments so in this thesis
the reordering is not avoided.

Figures 37 and 38 show the performance of AD* to IAD* with percent =
20 to demonstrate extent to which IAD* can perform well in dramatically
changing environments. From the figures, it can be seen that IAD* still
achieves up to an order of magnitude speed up over AD*. In addition, IAD*
shows a lower number of heap operations than IAD* which largely accounts
for the speeding up. Notice also that the smaller the sub-optimality is, the
better IAD* performs relative to AD*.
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Figure 37: size=300, percent=20, sensor-radius=30(rock-and-garden)
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Figure 38: size=500, percent=20, sensor-radius=50(rock-and-garden)

Figure 39 shows performance comparisons for various values of sensor-
radius with size = 300, percent = 3 and ε = 3. Both AD* and IAD*
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are shown to be affected negligibly by the change of sensor-radius. This is
different from what has been observed for D* Lite and IID* Lite and is due
to the relaxation to sub-optimality.
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Figure 39: size=300, percent=10, ε=3(rock-and-garden)

Figure 40 shows performance comparisons for various values of percent
with size = 300, sensor − radius = 30 and ε = 3. Observe that increasing
percent causes the number of heap operations and time of both algorithms
to increase but slowly due to relaxation to sub-optimality.
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Figure 40: size=300, sensor-radius=30, ε=30(rock-and-garden)

Figure 41 shows performance comparisons for various values of size with
percent = 10, sensor − radius = 30 and ε = 3. Observe that IAD* appears
to be more scalable than AD*.
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Figure 41: percent=10, sensor-radius=30, ε=3(rock-and-garden)

The set of parking-lot benchmarks is intended to model agent navigation
in the presence of terrain changes. A number of tokens equal to a given fixed
percentage of vertices are initially created and distributed in the grid with
at most one token covering any vertex. As an agent moves from one vertex
to another through the grid, tokens may move to adjacent vertices as well.
Tokens are never removed from the grid and rules for moving tokens are fixed
for every round: a token to some adjacent vertex with probability 0.5 and
the particular vertex it moves to is determined randomly and uniformly from
the set of all adjacent vertices that do not contain a token when the token is
moved, an order in which tokens are considered for being moved guarantees
that no two tokens will move to the same vertex. Whenever a vertex is
covered by a token in the simulation it is considered blocked and any edge
cost to this vertex equals ∞. A vertex with no token on it is considered
unblocked and an incident edge cost to such a vertex is a finite, positive
number.

Figures 42 to 45 compare the performance of IAD* and AD* with pa-
rameter values that match the performance experiments of Figures 35 to 38.
Observe that IAD* also is up to an order of magnitude faster than AD*
although the performance difference between the two is smaller than for the
rock-and-garden benchmarks. The reason is that for parking-lot benchmarks,
IAD* needs to call MiniCompute() to update overconsistent vertices, and
hence needs to reorder priority queue more times. This mirrors the compar-
ison between IID* Lite with D* Lite in 3.2. Since time plots are similar to
heap percolation plots, only heap percolation plots are shown below.
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Figure 42: size=300, percent=10, sensor-radius=30(Parking-lot)
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Figure 43: size=500, percent=10, sensor-radius=50(Parking-lot)
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Figure 44: size=300, percent=20, sensor-radius=30(Parking-lot)
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Figure 45: size=500, percent=20, sensor-radius=50(Parking-lot)
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Figure 46 compares performance for various values of sensor-radius with
size = 300, percent = 3 and ε = 3. Observe that heap operations and time
increase faster than they do with the rock-and-garden benchmarks. The
reason is that with the parking-lot benchmarks the blockages are kept moving
and therefore more changes are observed from a larger sensor-radius. This
results in more updates.
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Figure 46: size=300, percent=10, ε=3(Parking-lot)

Figure 47 compares performance for various values of percent with percent

with size = 300, sensor − radius = 30 and ε = 3. Observe that the number
of heap operations and time of IAD* increases faster than AD* as percent

is increased. The reason is that as percent is increased, more updates are
needed in IAD*, which affects its performance. Hence, in parking-lot envi-
ronments, IAD* performs best relAtive to AD* when the changes in terrain
over time are relatively slight.
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Figure 47: size=300, sensor-radius=30, ε=3(Parking-lot)
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From the figure, it can also be observed that, even with percent = 30, IAD* is
still about twice as fast as AD*. The difference between rock-and-garden and
parking-lot benchmarks in this comparison, also comes from the difference of
whether moving of observed blockages is allowed.

Finally, Figure 41 compares performance for various values of size with
percent = 10, sensor − radius = 30 and ε = 3. The results show that
IAD* is scalable in parking-lot benchmarks as it was for rock-and-garden
benchmarks.
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Figure 48: percent=10, sensor-radius=30, ε=3(Parking-lot)

4.1.3 Conclusion and Next Step of Work

In this section, a new dynamic anytime algorithm IAD* was introduced and
analyzed experimentally. IAD* improves upon AD* by using a strategy
similar to that used in IID* Lite. That is, whenever possible, IAD* tries to
find an alternative path instead of recalculating immediately to find one as is
done in AD*. Moreover, when an alternative path is not available, in order to
avoid a full recalculation, IAD* will try to propagate changes incrementally
with the help of a changing threshold until a new sub-optimal path is found.
Experimental results show that under various random benchmarks IAD* can
typically achieve an order of magnitude speed up over AD* when time is
measured by the first criterion of comparing anytime algorithms, namely
time to find the first qualified sub-optimal path. The comparison is based
both on heap operations and time consumed on different terrains with the
same preset sub-optimality ε.

As introduced in the beginning of Section 4, the other criterion for com-
paring dynamic anytime algorithms is the sub-optimality of the final path
returned in every round of recalculation. Figure 35 to 38 and Figure 42 to 45
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show that IAD* also does well on this metric relative to AD*. From these
figures it can be seen that when ε is greater than 1.5 with other param-
eters unchanged, IAD* has roughly the same performance advantage over
AD* and when ε is less than 1.5 IAD*’s advantage is much greater. So,
when ε is set to a small number, IAD* can still be guaranteed to return a
high-cost sub-optimal path with a high probability within acceptable time
bounds. Furthermore, when changes are observed, IAD* can find the first
sub-optimal path in less time; after that, IAD* can continue to improve the
current path until time runs out. In other words, with ε less than 1.5 IAD*
can guarantee a desired sub-optimal path in a shorter time with a higher
possibility, which means more time can be used to improve the path that is
returned first. Hence, it can be expected that IAD* can return the first sub-
optimal path faster than AD* for various random benchmarks, and IAD*
has greater potential to return high-cost sub-optimal paths within specified
time constraints.

The next section considers how IAD* and AD* behave in each round with
respect to the sub-optimality of their final returned paths when resources are
limited: for example, when an upper bound on allowed heap operations is
enforced. In addition, failure-ratios, representing the percentage of times an
algorithm can find a sub-optimal solution within resource limits, are studied.
Since Anytime Weighted A* (AWA*) [10] is claimed to have better perfor-
mance than other algorithms in achieving higher-cost sub-optimal paths on
some benchmarks, a new dynamic variant of AWA*, called DAWA*, is intro-
duced as a combination of algorithms IAD* with AWA*. The new algorithm
is compared against IAD* and AD*.
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4.2 Dynamic Anytime Weight A* Algorithm

As stated, there are two criteria for comparing anytime algorithms: the time
used to compute the first qualified sub-optimal path when updating, and
the sub-optimality of the final path that is output after recalculation. A
good anytime algorithm tries to find the first sub-optimal path as soon as
possible, and then iteratively improves this path until time runs out. In Sec-
tion 4.1.1, IAD* was proposed and compared with AD* on the first criterion.
Experimental results show that IAD* is an order of magnitude faster than
AD*. In this section, the same comparison is considered but when resources
are limited: the limited resource in this case is heap operations since time
complexity in navigation algorithms is directly related to heap operations.

As discussed in Section 4.1, IAD* has greater potential for returning high-
cost sub-optimal paths. But it should be mentioned that in each round of
recalculation, with the sub-optimality parameter ε decreased, both IAD* and
AD* need to reorder the priority queue OPEN and perform extra calcula-
tions. Doing so hinders finding higher-cost sub-optimality paths when there
is a bound on the number of heap operations. So, if the above extra calcu-
lations can be avoided, the chance of achieving a better sub-optimal path is
increased.

In this section, IAD* with AWA* are combined to get a new algorithm
called Dynamic Anytime Weight A* (DAWA*). DAWA* uses IAD*’s dy-
namic skeleton and is merged with AWA* in each round of recalculation.
In [10] it is claimed that for some benchmarks Anytime Weighted A* (AWA*)
achieves a higher-cost sub-optimal path than other algorithms including
ARA* [21] the dynamic version of which is AD*. ARA* limits the updating
times associated with expanding each vertex and therefore has the ability
to control provable bounds of sub-optimality that may be used to speed up
search. However, this strategy may defer propagations of some ”good” ver-
tices which would lead to a qualified path. Indeed, the discussion in [10]
argues that the strategy used in ARA* may increase or decrease search ef-
ficiency and the result is totally depended on the benchmarks. Since IAD*
has inherited ARA*’s strategy of recalculation in a round from AD*, it can
be expected that both DAWA* and IAD* perform differently relative to each
other on different benchmark environments.

When changes are observed, dynamic anytime algorithms (DAA) need
to recalculate a new path from vc to vg. Because time available to do so
is limited, the requirement of finding an optimal path is relaxed in favor of
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finding a reasonable sub-optimal path. Since some path must be returned,
these algorithms use a two step strategy: first, they quickly find some feasible,
although generally not optimal, path and then for the second step they use
the remaining available time to improve upon the path of the first step and
return a path that is no further from optimal than that of the first step.

A real-numbered parameter ε, which is used in the calculation of f , fa-
cilitates both steps. As the value of the parameter decreases, a feasible
computed path has a cost that is closer to the optimal but the time needed
to compute it increases. Hence, one natural approach to finding a better
path is to decrease the ε by some predetermined amount, then recalculate
for a new path. If a replacement path is found, it is guaranteed to be ε

sub-optimal. However, the price to pay for this is the reordering overhead.
Because vertices that are in the priority queue are sorted by f = g + ε ∗ h,
if the ε is changed the priority queue must be reordered. Since reordering
the priority queue is work done before calculating a new path, it is possible
that time will run out while calculating the new path and the work done to
reorder the priority queue will be wasted.

Suppose a change in ε necessitates x priority queue operations to reorder it
and suppose y priority queue operations are needed to compute an improved
path. For convenience, ε is decreased to be ε′ < ε. State available time in
terms of an allowed number of priority queue operations and denote that
number by operation-limit. Then, the following outcomes are possible on an
iteration:

1. operation-limit <= x : last computed path is returned, the operation-
limit heap operations are wasted.

2. x < operation-limit < x + y : last computed ε sub-optimal path is
returned, work done is operation-limit − x;

3. operation-limit >= x+y : a new ε′ sub-optimal path is returned, work
done y heap operations. operation-limit − x − y heap operations are
still available which can be used to further improve current solution.

In this thesis an alternative to the above strategy is used. The new
strategy [10] does not wait for priority queue reordering to complete before
commencing to compute a replacement path.“The approach we adopt uses
weighted heuristic search to find an approximate solution quickly, and then
continues the weighted search to find improved solutions as well as to improve
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a bound on the suboptimality of the current solution” [10]. In this strategy,
ε is not changed, hence no reordering of priority queue is needed. That is,
as long as the parameter operation− limit is non-zero, priority queue values
are updated. when we updating current vertices, and the updated vertices
are reinserted and so reordered. So we can say that, this method is just keep
searching exactly the same before and after finding a sub-optimal solution.

The benefit in this case is to eliminate the waste of point 1. above. How-
ever, unlike the approach described above, ε remains unchanged. Of course,
paths returned by the proposed approach must be ε sub-optimal. But the
paths returned by the approach above are ε′ sub-optimal where ε′ < ε so there
is no guarantee that the proposed approach returns paths that are no worse
than those returned by the above approach. However, empirical results show
that it is often the case that a better solution is returned by the proposed
approach.

DAWA* algorithm works the same as IAD* on finding the first solution.
But after the first solution found, they act differently: IAD* uses the first
strategy introduced above which is inherited from AD*; DAWA* algorithm
uses the second strategy coming from AWA* algorithm. At the conclusion of
this section DAWA* and IAD* will be compared experimentally using several
different navigation benchmarks.

4.2.1 Pseudo Code of DAWA* Algorithm

This section begins with the motivation for and an overview of a new algo-
rithm called Dynamic Anytime Weight A* (DAWA*). Pseudo code for the
main functions of DAWA* is shown in Figure 49. Then the performance
of DAWA* is compared with that of IAD* and again compared with the
performance of AD* on random benchmarks.

IAD* inherits from AD* the control ability of sub-optimality. Both al-
gorithms update an inconsistent vertex which is specially stored in INCONS
at most one time in each round of recalculation and the solution returned
by both is guaranteed to be ε sub-optimal [20]. By contrast, AWA* may
update a vertex many times until time runs out or OPEN is empty which
means an optimal path has been found [10]. Remarkably, despite the dis-
parity between both algorithms, IAD* and AWA* can be combined to create
the new dynamic algorithm DAWA*.

DAWA* works as follows. When changes are observed, DAWA* performs
the same action as IAD* to return the first path. During further iterative
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improvements to this path DAWA* performs the action of AWA*. Time is
saved with this strategy as discussed in the beginning of this Section.

Procedure UpdateVertex(s):
01. if s has not been visited
02. g(s) =∞;
03. if (s �= vg)rhs(s) = mins′∈succ(s)(c(〈s, s

′〉) + g(s′));
04. if (s ∈ OPEN) OPEN.remove(s);
05. if (g(s) �= rhs(s))
06. OPEN.insert([s,key(s)]);type(v) = 0;

Procedure Main():
01. Initialize();
02. ComputeOrImprovePath();GetAlternativePath(vc);
03. publish current ε-suboptimal solution;
04. repeat the following:
05. for all directed edges 〈u, v〉 with changed edge costs
06. Update the edge cost c(〈u, v〉);
07. if significant edge cost changes were observed
08. increase ε or replan from scratch;
09. else if (ε > 1)
10. decrease ε;
11. CLOSED = ∅;
12. repeat until time runs out:
13. ProcessChanges();
14. calculate current ε;
15. if (ε == 1) break;
16. publish current ε-suboptimal solution;
17. wait for changes in edge costs;

Figure 49: Main functions of DAWA* Algorithm

Most of the functions of DAWA* are the same as those of IAD*, hence
only the modified functions are shown in Figure 49. A description of these
function follows referring to Figure 49. In IAD* INCONS is used to indicate
the updated vertices in a round of recalculation. As the updated times of
vertices in any round of recalculation are not needed in AWA*, these are not
needed in DAWA* as well. In Function UpdateVertex at lines 05-06, if
the vertex updated is inconsistent, it is reinserted into OPEN directly. In
Function Main from lines 12 to 16, whenever time allows the current path
is iteratively replaced by a higher-cost path; the sub-optimality parameter ε
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is not manually set but is calculated at line 14 according to [10]. When ε

equals 1 an optimal path is found and the algorithm stops calculating and
waits for new edge cost changes.

Theorem 4.2 In the Dynamic Anytime Weight A*(DAWA*) algorithm, when
there is no time limitation, every round of recalculation always terminates
and the final solution returned is optimal.

Proof: Follows from the correctness of IID* Lite and AWA*.

4.2.2 Experiments and Analysis

In this section, the performance of DAWA* is experimentally compared with
that of AD* and IAD* on random grid world terrains. The same bench-
marks as Section 4.1.2 are used. In each experiment the terrain is a square,
8-direction grid world of size2 vertices. Vertices vs and vg are chosen ran-
domly from the terrain. Initially percent%∗size2 of the vertices are randomly
selected as blocked points, where percent is a controlled parameter. The pa-
rameter sensor− radius is used to set the maximum distance the agent can
“see” from the current position. Consistent heuristic function similar with
Manhattan distance is used. To clearly picture the comparison of the opti-
mizing courses of the above different anytime algorithms, we prefer the first
path in calculation is a low sub-optimal solution. For this goal, we choose
not to use the best heuristic function and multiply the returned Manhattan
distance heuristic value with a parameter 0.5. Before navigation, the agent
has an initial map in which an obstacle may be wrongly judged as blank with
fifty percent probability.

As mentioned above, the resource being limited is the number of heap op-
erations. This is reasonable since heap operations consume most of the time
in navigation algorithms. The second criterion, namely the sub-optimality
of the path that is finally returned, is compared. Whenever changes are ob-
served, ε is set to the parameter epsilon− limit the default value of which is
3. Then, as long as there are still heap operations available, ε is decreased to
max(1, ε−1). The smaller the returned ε, the better the algorithm performs
and when (if) ε equals 1, the path returned is optimal. If no qualified path
is found before the limit of available number of heap operations is reached,
the algorithm fails. Hence a statistical analysis of failure percentage is also
presented below. But, for the sake of obtaining meaningful results, a first
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qualified path will always be returned even if the number of heap operations
is exceeded (but then no further action is taken by the algorithm to improve
upon the path).

The first results compare DAWA* against AD* and IAD* on the rock-and-
garden benchmarks. Figure 50 shows the final value of ε reached, within the
fixed operation-limit bound on the number of heap operations as a function
of terrain size fixed and sensor − radius equal to 30. As size increases,
the average total cost of the returned path is greater, and therefore the
priority queue OPEN gets larger. A larger priority queue requires more heap
operations and that reduces the amount of resource available for iterating
toward optimal paths. Thus, as seen in the figure, ε rises as size increases.
But it rises least for DAWA*.

The table in Figure 50 shows the failure-ratios of these algorithms. Here
a failure is counted when the algorithm cannot return a qualified sub-optimal
solution within the specified limited number of heap operations. Observe that
DAWA* also has the lowest failure ratio of the three algorithms. In addition,
AD*’s failure-ratio increases faster with size than the others. The reason that
DAWA*’s failure rate is consistently low is that whenever heap operations are
allowed, OPEN is updated and thus becomes smaller. Thus, the failure-ratio
is not so much affected by the cost of a returned path as by the size of the
grid. Moreover, whenever there are still heap operations allowed, DAWA* can
utilize them without wasting heap operations on reordering priority queue.
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AD* 0.27025 0.43230 0.63234 0.75925
IAD* 0.01642 0.02153 0.01478 0.01543
DAWA* 0.00817 0.00975 0.01058 0.01415

Figure 50: operation-limit=500, percent=10, sensor-radius=30

Figure 51 shows the results of experiments where sensor−radius is varied
and other parameters remain fixed. When sensor−radius is increased, more
changes are observed in every round which leads to an increase in the number
of recalculations for updating. As shown in the figure, the final ε increases
and so does the failure-ratio.
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IAD* 0.01022 0.01492 0.01764 0.02153 0.01975
DAWA* 0.01129 0.01170 0.01194 0.00975 0.00646

Figure 51: size=300, operation-limit=500, percent=10
Figure 52 shows the results of experiments where percent is varied and other
parameters remain fixed. The results are similar to those in Figure 51. The
results suggests IAD* and DAWA* act similarly, but on both sub-optimality
and failure-ratio, DAWA* is better.
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AD* 0.34118 0.43230 0.50655 0.55216 0.60509
IAD* 0.00903 0.02153 0.03327 0.04574 0.08112
DAWA* 0.00545 0.00975 0.01380 0.01945 0.04184

Figure 52: size=300, operation-limit=500, sensor-radius=30

Figures 53 to 56 show the results of experiments where operation-limits
is varied and all other parameters remain fixed. Of course, all algorithms
perform better when their operation-limits are loosened. Specifically, when
the limit is loosened, IAD* performs as well as DAWA*. But, when the limit
is strict, DAWA* performs better than the other two algorithms.

As said previously, in order to enable comparison of the second criterion
on different anytime algorithms under the imposition of resource limits, a first
qualified path will always be returned even if the number of heap operations
is exceeded (but then no further action is taken by the algorithm to improve
upon the path). This case means failure in finding a solution earns extra
calculations. The relation between failure-ratio and sub-optimality is not
stable. More calculation may help lead to better sub-optimality. However,
it is possible that the sub-optimality of the final solution generated by the
extra calculations is worse than the average sub-optimality.

Figures 53 and Figure 54 compare returned path costs of IAD*, AD*,
and DAWA* when loosening the heap operation limit. The two figures only
differ in the size of terrain under which experiments are run. Both figures
show IAD* outperforming AD* in path cost and failure rate and DAWA*
similarly outperforming the other two.
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Figure 53: size=300, percent=10, sensor-radius=30
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AD* 0.94994 0.92084 0.86744 0.71449 0.38496
IAD* 0.00928 0.00928 0.01030 0.01121 0.02938
DAWA* 0.00945 0.00939 0.00937 0.00937 0.00925

Figure 54: size=500, percent=10, sensor-radius=50

Consider the results for IAD*. In the failure table of Figure 53, when
the heap operation limit is increased from 100 to 300, sub-optimality and
failure ratio of IAD* does not change much. When the heap operation limit
is increased from 300 to 500, sub-optimality improves while failure ratio gets
worse. When the operation limit is increased from 500 to 1000, both sub-
optimality and failure ratio improve which means, in this interval, that IAD*
works better overall. This non-monotonic improvement defies our intuition
that increasing the operation limit should lead to better and smaller sub-
optimality and failure-ratio. The observed phenomenon can be explained as
follows. In the course of IAD*’s execution, each time ε becomes smaller,
some heap operations are required to reorder the priority queue and recalcu-
late to improve ε. Figure 54 shows experimental results when more changes
occur due to an increase in terrain size. In Figures 53 and 54, since AD*
also needs to reorder the priority queue whenever recalculation is needed as
IAD* does, the improvement of AD* is also non-monotonic. However, since
DAWA* improves its path with a more incremental strategy as discussed at
the beginning of this Section, DAWA* has a much better ability to utilize
every allowed heap operation and hence its results improve monotonically
with increasing operation limit.

Figures 55 and 56 display similar phenomenon as in Figures 53 and 54.
In these results percent is increased to 20.
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Figure 55: size=300, percent=20, sensor-radius=30
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Figure 56: size=500, percent=20, sensor-radius=50

Next the performance of AD*, IAD* and DAWA* are compared on parking-
lot benchmarks. Since in parking-lot benchmarks all blocks can move ran-
domly, more changes are typically observed than for rock-and-garden bench-
marks. Therefore all algorithms perform worse on these benchmarks and gen-
erate greater sub-optimality and failure ratios. Compared with Figure 50,
the sub-optimality graph in Figure 57, is more steady. Observe that the
failure ratios of DAWA* and IAD*, but especially of DAWA*, improve with
increasing size. The reason is probably because they call function mini-
compute often and that tends to reduce the size of priority queue OPEN and
therefore saves heap operations.
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Figure 57: operation-limit=500, percent=10, sensor-radius=30

Figure 58 shows the results of experiments of the three algorithms running
on benchmarks with variable sensor-radius and all other parameters fixed. As
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Figure 58: size=300, operation-limit=500, percent=10

a property of parking-lot benchmarks, changes increase quickly with increas-
ing sensor − radius. Hence sub-optimality and failure ratio both get worse
quickly. Since changes that can be observed increase faster with increasing
percentage than with increasing sensor-radius, the results in Figure 59 get
worse faster.
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Figure 59: size=300, operation-limit=500, sensor-radius=30

Figures 60 to 63 show the behavior of the algorithms with variable heap
operation-limit but with other parameters fixed. In contrast to rock-and-
garden benchmarks, all algorithms suffer from many changes in each round.
Again non-monotonic relations are observed among the operation-limit, sub-
optimality and failure ratios, especially for the IAD* algorithm where it may
be said that IAD* appears to be more unpredictable.
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Figure 60: size=300, percent=10, sensor-radius=30(Parking-lot)
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Figure 61: size=500, percent=10, sensor-radius=50(Parking-lot)
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Figure 62: size=300, percent=20, sensor-radius=30(Parking-lot)
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Figure 63: size=500, percent=20, sensor-radius=50(Parking-lot)

4.2.3 Conclusion and Next Step of Work

In this Section, we get a new algorithm DAWA* algorithm by combining
IAD* with AWA* algorithm. When the available heap operations being
limited, DAWA* performs much better than IAD* and AD* algorithms: not
only higher-cost sub-optimal solution found, but also lower failure-ratios.
In this Section, all experiments are done with preset heap operation limit.
But in some environments, the limit of heap operation limit is changed and
unpredicted. So in the future, we will do experiments to compare all the
dynamic anytime algorithms under such experiments. Because DAWA* can
utilize heap operations more incrementally, we expect DAWA* works the best
among those algorithms.
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4.3 Conclusion

A new Dynamic Anytime Algorithm IAD* was introduced. IAD* improves
the well-known AD* by using a path-search strategy that is similar to that
used by IID* Lite. Whenever possible, IAD* tries to find an alternative path
instead of recalculating immediately as is done by AD*. If an alternative is
not available, in order to avoid a full recalculation, IAD* tries to propagate
changes incrementally with the help of an increasing threshold until a new,
but sub-optimal, path is found.

A second Dynamic Anytime Algorithm DAWA* was introduced to han-
dle cases where resource limits, particularly limits on heap operations, are
imposed. DAWA* combines the advantages of AWA* and IAD*. DAWA*
can be regarded to be a descendent of IAD* and AWA* as it uses the same
path-search strategy as IAD* on finding the first sub-optimal solution, and
the same path-search strategy as AWA* otherwise.

To show the performance of these new algorithms, experiments were run
and results compared for different random benchmarks on two criteria that
were introduced at the beginning of this section. For the first criterion, from
the results in Section 4.1, it was observed that IAD* can find the first qualified
sub-optimal path in less time than AD*. As a descendant of IAD*, DAWA*
performs like IAD* on this criterion. Section 4.2 presents the comparison on
the second criterion. As expected, DAWA* performs best and returns the
smallest sub-optimality as well as the lowest failure-ratio. IAD* performs
worse than DAWA* but better than AD* algorithm. The non-monotonic
performance of IAD* was observed and the reason identified as due to that
IAD* needs to use extra heap operations on reordering priority queue when
recalculations needed.

From above it can be concluded that IAD* and DAWA* perform better
than AD* on various random benchmarks. IAD* inherits from AD*, the
ability to control sub-optimality. But DAWA* gains better performance by
utilizing heap operations more incrementally and sacrificing the control of
sub-optimality. Finally, the merging of techniques to arrive at the new al-
gorithms is general and may be applied to other algorithms. Indeed, it is
claimed that techniques introduced in [2, 34, 36] can be combined with our
algorithms. In future work such combinations will be tried.
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5 Conclusion

With the development and growing demand of artificial intelligence tech-
niques, reliable and efficient dynamic navigation algorithms have become an
indispensable tool in many important applications, for instance, robot navi-
gation, GPS system, and AI design in modern computer games. The D* Lite
algorithm is a most commonly used dynamic navigation algorithm and many
variants are derived based on it to fit different environments. The key to the
success of these algorithms is the use of incremental methods. Incremental
algorithms have been researched for decades and applied in numerous areas.
Generally speaking, using information produced by previous rounds to speed
up the current round is an art, not a science. Naturally, research is focused
on how to use such information better.

In Section 3, new methods to utilize previous information to improve D*
Lite was introduced and two improvements to the D* family of algorithms
were proposed. One improvement attempts to find an alternative least cost
path before recalculating values when the current least cost path becomes
inconsistent. The second improvement applies a general and systematic view
on considering edge cost changes to find a least cost path before all changes
are propagated when recalculation is necessary. The first improvement lead
to a new algorithm named ID* Lite. Combination of the above two improve-
ments lead to another new algorithm called IID* Lite. Both algorithms can
guarantee an optimal solution in every round if one exists [40,41,43]. Analyt-
ically, ID* Lite produces optimal solutions at least as efficiently as D* Lite.
Experimental results show both algorithms outperform other algorithms in
the D* family.

Experiments were performed on a variety of benchmarks including rock-
and-garden and dynamic navigation families of terrain. The results show
IID* Lite can get up to 8 times speedup over D* Lite and ID* Lite 2 times
speedup over D* Lite. It was also shown that IID* Lite is less sensitive than
D* Lite to the number of changes observed in a round. The importance
of this is expected to increase with advancing technology that will support
finer grain simulations and allow robots to ”see” further. Since the proposed
improvements put no extra constraints on D* Lite, it is conjectured that they
can be used to improve many variants of D* Lite as well. For example, in
Section 4.1 it was applied to Anytime D* which is the first anytime dynamic
navigation algorithm.

The strategy used in IID* Lite to improve upon Anytime D* inspired
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a new algorithm, called Improved Anytime D* (IAD*) [42], which was pre-
sented in Section 4. Two criteria to compare the performance of dynamic
anytime algorithms were stated. The first is the time an algorithm uses to
compute the first qualified sub-optimal path in the course of recalculation,
and the second is the sub-optimality of the final path that is output after
recalculation. From experimental results, comparing against the well-known
AD* algorithm, around an order of magnitude speed up is achieved by IAD*
for various random benchmarks with respect to the first criterion. IAD*
is designed to support the control of sub-optimality in a manner similar to
AD*. This property allowed IAD* to be combined with AWA* to create a
new algorithm, called DAWA*, which uses time resource incrementally by
sacrificing the control of sub-optimality. As expected, DAWA* has the best
performance of all algorithms tested with respect to the second criterion.
Due to the modular design of IAD* and DAWA* and the properties stated
above, the techniques that are the foundation for IAD* and DAWA* can be
merged with other anytime algorithm variants [2,34,36] to create even more
variants which may show even greater performance gains.

Incremental algorithms have been applied to numerous problems other
than dynamic navigation. A property that makes these algorithms useful is
that they can change strategies for reusing information in the face of chang-
ing domain knowledge. The incremental algorithms presented in this thesis
do not depend on any domain knowledge so they can be merged with any
other incremental algorithm that might be tailored to a specific navigation
application or even other applications which are best solved with incremental
algorithms, for example, when there is more than one optimal solution.

All algorithms introduced in this paper are intended to find a lowest
cost path that an agent can take from a source vertex to a goal vertex in a
dynamically changing terrain that is modeled as a weighted directed graph,
usually a grid. At any vertex in the graph the agent is presented with a view
of a relative small neighborhood of vertices. Information about vertices in
the neighborhood is available to the agent but no information is available
from outside the neighborhood. Exploring the entire graph to get complete
information is out of the question, especially since the state of the vertices
can change with time. This raises the important question of how best to
plan a path from source to goal: the objective is to reach the goal covering
a path of lowest or near lowest cost, using the least or at least acceptable
computational resources (such as heap operations).

This problem is related to other problems that are special forms of dy-

94



namic navigation problems. For example, a variant of the traveling salesman
problem is to find a low cost Hamiltonian cycle where the route map, mod-
eled as an undirected weighted graph, over which a salesman is to travel is
revealed in pieces, as the salesman reaches previously unvisited cities. Then,
vertices become blocked when the corresponding cities are reached. A real-
world embodiment of this problem might be to help an automated lawnmower
navigate optimally through a park.

Another obvious variant is positioning in the temporary absence of GPS
and WiFi signals, such as in a tunnel or other metal frame structure, as
long as a map exists locally. In fact, such a map could be improved as the
person or vehicle moves through points where GPS is available. So-called
indoor positioning has vast market demand. For example, it helps disabled
people to plan and navigate routes conveniently. The incremental technology
presented in this thesis coupled with advances in ad-hoc networks could be
quite useful in developing accurate maps for navigation systems - the data
of many ”agents” with a very limited view can be incrementally combined
to develop a complete or at least fairly complete, accurate map that can be
shared by all.
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