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Abstract 

Corporate bankruptcy prediction has received paramount interest in academic research, 

business practice and government regulation. The recent financial crisis, during which 

unexpected corporate insolvencies had caused severe damage to the aggregate economy, 

highlights the crucial importance of an accurate corporate default prediction. Consequently, 

accurate default probability prediction is extremely important. The purpose of this research is to 

offer a unique contribution to the extant literature. This dissertation consists of three essays. 

In the first essay (Chapter 1), we propose to apply a discrete transformation family of 

survival models to corporate default risk predictions. A class of Box-Cox transformations and 

logarithmic transformations are naturally adopted. The proposed transformation model family is 

shown to include the popular Shumway’s model and grouped relative risk model. We show that a 

transformation parameter different from those two models is needed for default prediction using 

the bankruptcy data. In addition, out-of-sample validation statistics show improved performance. 

The estimated default probability is further used to examine a popular asset pricing question 

whether the default risk has carried a premium. Due to some distinct features of bankruptcy 

application, the proposed class of discrete transformation survival models with time-varying 

covariates is different from the continuous survival models in the literature. Their links and 

differences are also discussed. 

Essay 2 (Chapter 2) introduces a robust variable selection technique, the least absolute 

shrinkage and selection operator (LASSO), to investigate formally the relative importance of 

various bankruptcy predictors commonly used in the existing literature.  Over the 1980 to 2009 

period, LASSO admits the majority of Campbell, Hilscher, and Szilagyi’s (2008) predictive 
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variables into the bankruptcy forecast model.  Interestingly, the total debt to total assets ratio and 

the current liabilities to total assets ratio constructed from only accounting data also contain 

significant incremental information about future default risk.  LASSO-selected variables have 

superior out-of-sample predictive power and outperform (1) those advocated by Campbell, 

Hilscher, and Szilagyi (2008) and (2) the distance to default from Merton’s (1974) structural 

model. Furthermore, study on the international market reveals the uniform significance brought 

by the activity indicator, sales / total assets. 

Essay 3 (Chapter 3) devotes special care to an important aspect of the bankruptcy 

prediction modeling: data sample selection issue. To investigate the effect of the different data 

selection methods, three models are adopted: logistic regression model, Neural Networks 

(NNET) and Support Vector Machines (SVM). A Monte Carlo simulation study and an empirical 

analysis on an updated bankruptcy database are conducted to explore the effect of different data 

sample selection methods. By comparing the out-of-sample predictive performances, we 

conclude that if forecasting the probability of bankruptcy is of interest, complete data sampling 

technique provides more accurate results. However, if a binary bankruptcy decision or 

classification is desired, choice based sampling technique may still be suitable.  

 

Keywords: Corporate Bankruptcy Prediction, Logistic Regression, Proportional Hazard, 

Survival Analysis, LASSO 
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1 Chapter One

A Class of Discrete Transformation Survival Models with

Application to Default Probability Prediction



1.1 Introduction

Corporate bankruptcy has long been one of the most significant threats for many businesses.

It not only increases the financial loss to its creditors but also has a negative impact on the

society and the aggregate economy. More alarmingly, data released by the Administrative

Office of the U.S. courts show that in the recent decades business failures have occurred at

higher rates than at any time since the early 1930’s. The default loss has also maintained at

a startling level of trillions of dollars.

Accurate default probability prediction is of great interest to all academics, practitioners

and regulators. Corporate default forecasting models are used by regulators to monitor the

financial health of banks, funds, and other institutions. Practitioners use default proba-

bility forecasts in conjunction with models to price corporate debt and for internal rating

based approach (Schönbucher 2003; Lando 2004). Academics use bankruptcy forecasts to

test various conjectures such as the hypothesis that default risk is priced in stock return

(Campbell, Hilscher and Szilagyi 2008). Given recent economic condition, the importance

of accurate default predictive model validation is even more substantially promoted by the

Basel Committee on Banking Supervision under the current framework of Basel II 1.

Despite vast literature on bankruptcy prediction (see Altman 1993 for a survey), most

research prior to past decade is concentrated on static modeling using cross-sectional data

(e.g. Altman 1968; Ohlson 1980; Zmijewski 1984). Though multi-period firm characteristics

are observed, prior researchers only choose to use one period observation with a single-period

logistic regression or discriminant analysis.

On the other hand, the event of default can be considered a terminal event for the

company. This is mathematically equivalent to the death event in the survival analysis which

has generated a huge body of literature. From the viewpoint of survival analysis, predicting

the time to default based on the various measurable financial and market variables at current

time naturally corresponds to analyze covariate effects on the survival time. In continuous

time survival analysis, the proportional hazards model (Cox 1972), which can also be referred

as continuous relative risk model, is the most popular covariate effect model. The partial

1Basel II is an international business standard that requires financial institutions to maintain enough
cash reserves to cover risks incurred by operations.
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likelihood estimator for the proportional hazards model is studied in Breslow (1974), Cox

(1975) and Efron (1977). Alternatively, covariate effects can be modeled as proportional

odds whose biological motivation is discussed in Bennett (1983). Mathematical properties

of the covariate effect estimator in the proportional odds model are studied by Wu (1995),

Murphy, Rossini, and van der Vart (1997). For time-invariant covariates, a generalized odds

model family is proposed that includes both proportional hazards and proportional odds

model as special cases (Harrington and Fleming 1982, Clayton and Cuzick 1986, Dabrowska

and Doskum 1988a). Estimation of covariate effect parameter for the generalized odds

model is studied in Clayton and Cuzick (1986), Dabrowska and Doskum (1988b), Cheng,

Wei and Ying (1995, 1997), Scharfstein, Tsiatis, and Gilbert (1998). Zeng and Lin (2006,

2007) extend the generalized odds model family to a transformation family for time-varying

covariates. In discrete time survival analysis, there are a few different extensions of the

Cox proportional hazards model. They include the discrete logistic model proposed in Cox

(1972), the grouped relative risk model studied in Kalbfleisch and Prentice (1973) and the

discrete relative risk model. These discrete time models are summarized in an encompassing

formulation in Kalbfleisch and Prentice (2002, Page 136).

While there is a natural correspondence between survival analysis and the default risk

modeling, such a link has not been explored in the literature until Shumway (2001) proposed

a discrete hazard model. The conditional default probability πi,k that the ith firm files for

bankruptcy at time tk given it survives past time tk−1 is modeled through a multi-period

logistic regression by the ith firm’s specific characteristics Zi(tk) at time tk,

πi,k =
1

1 + exp(−α− βτZi(tk))
.

Here the time-varying covariate values Zi(tk) are usually firm’s financial ratios obtained

from accounting statements and firm’s market variables from public trading record; β is the

covariate effect parameter and α is a scalar parameter. Not surprisingly, Shumway (2001)

also shows that hazard, or survival modeling, is advantageous by coping with time-varying

panel data, while static model ignores the fact that firms change through time and may

produce biased and inconsistent bankruptcy probability estimates. This discrete hazard

model quickly gains popularity in corporate bankruptcy prediction and is used in Chava
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and Jarrow (2004); Bharath and Shumway (2008); Campbell et al. (2008). This popular

Shumway’s discrete hazard model is in fact the discrete logistic model of Cox (1972) for time-

varying covariates. The Cox proportional hazards model has also been used for bankruptcy

prediction in Duffie, Saita and Wang (2007); Duffie, Eckner, Horel, and Saita (2009).

In this paper, we propose a class of discrete-time transformation model family to bankruptcy

probability prediction with time-varying covariates

πi,k =

{
1 − 1

[1+c exp(αk+β
τ
Zi(tk))]1/c

, c > 0;

1 − exp[− exp(αk + βτZi(tk))], c = 0.
(1.1)

or

πi,k =

{
1 − 1

1+ 1

ρ{exp[ρ exp(αk+β
τ
Zi(tk))]−1}

, ρ > 0;
1

1+exp(αk+β
τ
Zi(tk))

, ρ = 0.
(1.2)

Here c (or ρ) is a scalar transformation parameter. The proposed discrete-time transforma-

tion models are derived formally in Section 1.3 by applying a monotonic transformation on

difference of the minus log survival functions. Inverse of a class of Box-Cox transformations

and inverse of a class of logarithmic transformations are used. Essentially we are proposing

to apply the transformation families in Zeng and Lin (2006) for continuous survival models

to an equivalent formulation of the discrete-time survival models in Kalbfleisch and Prentice

(2002). This class of transformation model family contains the Shumway (2001) model (or

discrete logistic model, Cox 1972) when c = 1 or ρ = 0 and the grouped relative risk model

(Kalbfleisch and Prentice 1973) when c = 0 or ρ = 1 as special cases.

The estimated covariate effect parameter β can be used to rank companies’ default risk

based on their covariate values Zi(tk): companies with higher βτZi(tk) values would have

higher default risk at given time tk. Thus βτZi(tk) can be considered as a credit score

like those given out by the rating agencies such as Moody’s and S&P. Abundant literature

and ongoing research are dedicated to obtain good credit scores. However, actual default

probability is needed to assess the portfolio risk for calculating banking reserves as in Basel

II. Actual default probability is also essential to combine with the loss given default measure

(Schuermann 2005).

Figure 1.1 shows the default probability curves for different transformation parameter

values. We can see that same scores would correspond to different default probabilities
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under different transformation parameters. In our empirical analysis, we apply the proposed

discrete-time transformation model family on a comprehensive bankruptcy data set spanning

from 1981 to 2006. Log-likelihood plots of the fit on quarterly and annually firm observations

show that the optimal transformation parameter resides near the point c = 10 which is

neither Shumway’s model nor the grouped relative risk model.

[Insert Figure 1.1]

In addition, out-of-sample prediction with withholding period 2002-2006 shows improved

accuracy ratio and model goodness-of-fit. We also investigate the asset pricing implication

conjectured by Fama and French (1996) that investors require a positive return premium for

holding stocks with high default probabilities. We sort stocks into portfolios by the predicted

default probability using the proposed discrete transformation survival model. We find that

stocks with higher default probabilities deliver anomalously lower returns, which challenges

the original Fama and French’s (1996) conjecture. Our findings, however, are consistent to

those documented by some recent literature such as Campbell et al. (2008). Furthermore,

a simulation study is conducted, showing promises of the proposed transformation model

family.

The original motivation of our proposed class of Box-Cox and logarithmic transforma-

tions for discrete survival models comes from the continuous time generalized odds-rate

model of Dabrowska and Doskum (1988) with time-invarying covariate and Zeng and Lin

(2006, 2007) for time-varying covariate. We are proposing a similar extension of this class of

transformation families to discrete failure time distribution. However, our proposed models

are different from those continuous transformation models. In Section 1.3 we show in de-

tail that the transformation is on the difference of the minus log survival functions, while

transformation of Zeng and Lin (2006) depends on the entire history of covariate values.

Simple discrete extension of Zeng and Lin (2006) is ill-defined, due to some unique features

for bankruptcy prediction application. In particular: Firstly, actual calendar time needs to

be used. This is because same firm specific characteristics at different calendar time may

expose to different default probability due to different macroeconomic conditions. Secondly,

differing from the classical survival model set-up, companies from the bankruptcy database
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do not share a common starting point. This is due to the use of calendar time (see discussion

in Section 1.3.5). Data for most firms start from the beginning of the sample observation

period despite that they have prior accounting statements and trading activities. On the

other hand, a number of firms enter in the middle of the sample period since they have just

started public trading. Hence, the transformation model of Zeng and Lin (2006), depending

on the entire history of covariates from the same starting point, is not well-defined. Thirdly,

the proposed class of discrete transformation model family enjoys the same appealing “mem-

oryless feature” as Shumway (2001) and common discrete survival models (Kalbfleisch and

Prentice 2002). That is, the conditional default probability only depends on the last avail-

able observation, instead of the whole path of covariates as in Zeng and Lin (2006). The first

two features of bankruptcy prediction imply that a practical model needs to be memoryless.

Finally, by nature, the accounting and market information used in the default prediction

study are collected only at discrete time period over a fixed time window. For example,

accounting data from sample period 1981-2006 are obtained for our study from the quarter

end balance sheet, income statement and cash flow report.

The rest of paper is organized as following. Section 1.2 describes the bankruptcy data we

use in the study. Section 1.3 presents the class of discrete time transformation survival model

family and links to continuous time survival analysis. Empirical results of the corporate

bankruptcy application and a simulation study are given in Section 1.4. The Appendices

give detailed mathematical derivations.

1.2 Bankruptcy Data

In our study, we develop a comprehensive bankruptcy database by merging the Center for

Research in Security Prices (CRSP) with Compustat from Standard & Poor’s (COMPUS-

TAT) database through Wharton Research Data Services (WRDS)2. The CRSP database

provides a complete collection of security data including price, return, and volume data

for the three major stock exchange markets: NYSE, AMEX, and NASDAQ. COMPUSTAT

maintains quarterly accounting information for companies including reports of Income State-

ment, Balance Sheet, and Statement of Cash Flows etc. Our bankruptcy database includes

2website: http://wrds-web.wharton.upenn.edu/wrds/
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all the publicly traded companies in the United States between 1981 and 2006. To mea-

sure the probability of default using our proposed transformation model, we need a set of

exploratory variables and an event indicator of bankruptcy for default companies. In our

empirical study, we define a firm as default if it files under either Chapter 7 or Chapter

11 bankruptcy code. Because it usually takes a long time to settle bankruptcy disputes,

in some cases, the COMPUSTAT updates the default status with a substantial delay. The

delay makes it difficult to identify accurately the corporate default in the most recent period.

To address this issue, we end our sampling period in the year 2006 and restrict our sampling

time window from 1981 to 2006. In addition, eight covariate measures are constructed for

the exploratory variables: profitability, leverage, short-term liquidity, the market-to-book

ratio (MB), volatility and excess return over the S&P 500 index return, as well as the firm’s

relative size to the S&P 500 index value and the price. The formation of this set of covariates

follows Campbell et al. (2008) closely.

Note that a firm may exit the database at any time due to its financial health status, it

may also enter the database in different time periods. For most healthy firms, their Initial

Public Offering (IPO) dates were prior to the year of 1981. In this case, the firms enter

our database coincidentally with the start of our sampling period. On the other hand,

there may be firms with IPO dates after 1981. This case is particularly common during

the “dot-com bubble” period in the late 1990s and early 2000. Under such situation, we

record the first observation of the firm at the time of its first trading date. For example, the

IPO date for the IT company “Microsoft Corporation” was March 1986. Therefore, the firm

“Microsoft Corporation” enters our database in the year of 1986, instead of the starting time

of our sampling period, 1981. Such property of having “different starting time” is unique for

bankruptcy data, and therefore, needs special treatment when linking with survival models.

1.3 Model

1.3.1 A Class of Discrete Time Transformation Survival Models

Financial data are discrete in nature. For example, commonly used predictors such as firms’

financial ratios are obtained through accounting statements quarterly. Hence, a discrete time
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model is needed for corporate bankruptcy prediction.

Suppose there are K fixed observation time t = t1, t2, ..., tK for the whole observa-

tion period. For example, these are the quarter end date for quarterly data. Total i =

1, 2, ..., n public firms are in the data base during the sample period, each with observed

data (Bi, Xi,∆i,Zi,k), k = 1, ..., K. Here Bi denotes the starting time – the first time the

firm is publicly traded during the observation period. If a firm in the data base is traded

prior to t1, then Bi = t1. Here Xi denotes the last time the firm is observed during the

observation period. It is subject to right censoring by the end of observational period. If a

firm files for bankruptcy after tK , then Xi = tK . Zi,k = Zi(tk) is the d-dimensional covariate

vectors for firm i at time t = tk. ∆i is the so called censoring indicator in survival analysis:

∆i = 1 if the ith firm enters bankruptcy filing process at t = Xi; ∆i = 0 otherwise. A

healthy firm may experience early exit from the data base, such as merger or acquisition. In

those cases, Xi < tK but ∆i = 0.

Denote T the calendar death time. For firms with common starting point B = t1, without

loss of generality if t1 = 0, then T is equivalent to the survival time in the literature. Let

SZ(t) = Pr(T > t|Z = z) be the survival function given Z. Here Z is the covariate process

over the whole time period. Denote

πi,k = Pr(T = tk|X ≥ tk,Z(tk) = Zi,k)

the conditional probability that the firm files for bankruptcy at time tk given it is at risk at

time tk (survival past time tk−1).

Formally, let

G[− log
SZ(tk)

SZ(tk−1)
] = exp[βτZ(tk)]G[− log

S0(tk)

S0(tk−1)
], (1.3)

where G is a strictly increasing transformation function with G(0) = 0 and G(∞) = ∞; β

is a d-dimensional covariate effect parameter; S0(·) is the (baseline) survival function when

Z ≡ 0.

Our class of discrete time transformation survival model family then takes the form in

(1.1)

πi,k =

{
1 − 1

[1+c exp(αk+β
τ
Zi,k)]1/c

, c > 0;

1 − exp[− exp(αk + βτZi,k)], c = 0.

8



for transformation function Gc that belongs to family

Gc(x) =

{
1
c
[exp(cx) − 1], c > 0;

x, c = 0.
(1.4)

Or it takes the form in (1.2)

πi,k =

{
1 − 1

1+ 1

ρ{exp[ρ exp(αk+β
τ
Zi,k)]−1}

, ρ > 0;
1

1+exp(αk+β
τ
Zi,k)

, ρ = 0.

for transformation function Gρ that belongs to family

Gρ(x) =

{ 1
ρ
log[1 + ρ(exp(x) − 1)], ρ > 0;

exp(x) − 1, ρ = 0.
(1.5)

Appendix 1 gives detailed derivations of the discrete time transformation survival models

(1.1) and (1.2) based on (1.3) and monotonic transformations (1.4) and (1.5). Here Gc

and Gρ are common monotonic transformations used in the continuous survival analysis

literature. Inverse of Gc is equivalent to a class of logarithmic transformations and inverse of

Gρ is similar to the class of Box-Cox transformations considered in Chen et al. (2002) and

Zeng and Lin (2006) etc. For firms with different starting point B = tk∗ > t1, for k ≥ k∗, let

the conditional default probability πi,k take the values as in (1.1) and (1.2). This is feasible

due to their memoryless features.

Note when c = 0 or ρ = 1, the proposed discrete time transformation survival model

is equivalent to the classical grouped relative risk model. When c = 1 or ρ = 0, it is the

popular so-called discrete hazard model proposed in Shumway (2001) and is then followed

by most bankruptcy prediction literature such as Chava and Jarrow (2004), Campbell et al.

(2008) etc. Our transformation model would estimate the transformation parameter c (or

ρ) in addition to parameters αk and β.

1.3.2 Estimation and Algorithm

The likelihood function for the proposed discrete transformation survival model is

n∏

i=1

∏

k: Bi<tk≤Xi

πi,k
∆i,k(1 − πi,k)

1−∆i,k ,

9



where ∆i,k = ∆iI{Xi = tk} and πi,k = Pr(T = tk|X ≥ tk,Z(tk) = Zi,k) is modeled by (1.1)

and (1.2). The log-likelihood function is then

L =
n∑

i=1

Li =
n∑

i=1

∑

k: Bi<tk≤Xi

∆i,klog(πi,k) + (1 −∆i,k)log(1 − πi,k). (1.6)

Therefore, for a fixed c (or ρ) value, the fitting of αk and β can be implemented mathe-

matically using logistic regression with a specified link function on independent ∆i,k’s even

though ∆i,k’s are dependent in the data set. When assumption of the grouped relative risk

model or the Shumway (2001) model holds, our estimates would give about the same results.

Our transformation model would provide better fit when the transformation parameters are

not close to 0 or 1.

For estimation, we could maximize (1.6) with (1.1) (or (1.2)) over the transformation

parameter c (or ρ), covariate effect parameter β and baseline parameter αk simultaneously

on the data set. For graphing purpose, we compute the parametric maximum likelihood esti-

mator for the covariate effect parameter β and αk over a grid window of the transformation

parameter c (or ρ). At each point value of c (or ρ), log-likelihood given by (1.6) is maximized

over the parameter β and αk. This is a standard nonlinear optimization procedure. Many

scientific optimization package can conduct the maximization computation.

However, we note that when the sampling time period extends or the sampling frequency

increases (for example, from annual data to quarter data), the parameter space may expand

significantly, which may potentially lead to some common numerical problems in large-scale

nonlinear optimization. Here we adopt the profile-likelihood method (Murphy and van der

Vaart, 2000). Our algorithm is as below. For a given c (or ρ) over a fixed grid window,

• Step 0. Initialize parameter β̂
(0)

and α̂(0)
k for k = 1, 2, ..., K. Sensible initial values,

such as a vector of 0 or 1 can be used. Alternatively, we may use the parameter

estimated through Shumway’s multi-period logistic regression as an initial estimate.

• Step 1. Given estimated β̂
(j)

, obtain α̂(j+1)
k for k = 1, 2, ..., K. Each αk is estimated

only on the set of firm observations at time tk for k = 1, 2, ..., K. Hence, the likelihood

given by equation (1.6) is maximized over one parameter for each time period. This

can be done almost instantaneously.
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• Step 2. Given estimated α̂(j+1)
k for k = 1, 2, ..., K, estimate β̂

(j+1)
on the entire data

set. This step involves the entire dataset to conduct the optimization procedure. How-

ever, the dimension of covariate parameter β is relatively small so that the convergence

is quite fast.

Then iterate step 1 and step 2 until convergence.

From our experience, the merit of the profile-likelihood algorithm is to expedite the com-

putational process, especially over a relatively large parameter space. Alternatively, Newton-

Raphson method when applying a special feature may also be applied. See Kalbfleisch and

Prentice (2002, Page 139) for details.

Note that the optimization algorithm does not guarantee a global maximum value on

likelihood. To avoid the local minimum situation, we experiment on different initial values

of β and αk. Our experience shows that the sensible initial values, such as a vector of 0 or

1 may easily lead to a satisfactory performance.

1.3.3 Large Sample Properties

The proposed class of transformation models on the bankruptcy prediction has three para-

metric components: d-dimensional covariate effect parameter β, K-dimensional baseline

parameter αk = α(tk) and the scalar transformation parameter c (or ρ). This is a usual

parametric problem set-up. Hence, under some mild conditions, large sample properties for

estimates of our proposed class of discrete transformation models (1.1) or (1.2) can be eas-

ily established following the standard parametric maximum likelihood estimators with total

fixed d+K +1 parameters to estimate, similar to those in Lehmann and Casella (1998) and

Kalbfleisch and Prentice (2002). Root-n consistency and asymptotic normality are readily

available for further inference.

Formally, assume the firm’s birth time B is a random variable with P (B = tk) > 0 for k =

1, 2, ..., K. Given B = tk∗ , the covariate process Z = (Z(tk∗),Z(tk∗+1), ...,Z(tK)) is generated

from a distribution with probability density function fk∗ . For the calendar death time T ,

the conditional probability of T = tk is given by model (1.1) or (1.2), censoring indicator

∆ = I(T ≤ tK) and X = min(T, tK). The observed random variables for the company are

11



χ = (B,X,∆,Z = [Z(B), ...,Z(X)]). We observe n random replicates (Bi, Xi,∆i,Zi) from

this probability distribution.

Assumptions below are needed to establish the following asymptotic theorem.

Assumptions

(i) The true parameter θ0 = (βT
0 , α0,1, · · · , α0,K , c0) or θ0 = (βT

0 , α0,1, · · · , α0,K , ρ0) is an

interior point of ω, an open subset of the parameter space Ω.

(ii) L1(x, θ) admits third derivatives with respect to θ = (θ1, θ2, · · · , θd+K+1) for all θ ∈ ω.

Furthermore, there exist functions Mjkl such that
∣∣∣∣

∂3

∂θj∂θk∂θl
L1(x,θ)

∣∣∣∣ ≤ Mjkl(x) for all θ ∈ ω,

where

mjkl = Eθ0
[Mjkl(χ)] < ∞ for all j, k, l.

(iii) The Fisher Information I(θ) = Eθ[{ ∂

∂θ
L1(x, θ)}⊗2] exists. Here and below, for a vector

v, v⊗2 denotes vvτ . We assume that I(θ) is positive definite for all θ ∈ ω.

Theorem Under Assumptions (i) to (iii), the likelihood equation (1.6) has a consistent root

θ̂ and
√

n(θ̂ − θ0) is asymptotically normal with mean zero and variance [I(θ0)]−1.

For a fixed number of K time periods, the parameters are θ = (βT , α1, ..., αK , c) or θ =

(βT , α1, ..., αK , ρ). Our estimators are the parametric maximum likelihood estimator θ̂ for

the discrete transformation models (1.1) or (1.2). Under the standard regularity conditions

(e.g., Lehmann and Casella 1998, Chapter 6; Kalbfleisch and Prentice 2002, Chapter 3), for

large samples, θ̂ has the true value θ0 for the parameter θ as asymptotic mean and the

inverse of Fisher Information, 1
n
I−1(θ0) as asymptotic variance. The Fisher Information can

be estimated by

Î(θ̂) =
1

n

n∑

i=1

{ ∑

k: Bi<tk≤Xi

(
∆i,k

πi,k

−
1 −∆i,k

1 − πi,k

)
∂

∂θ
πi,k

}⊗2
|
θ=

ˆθ
.

The variance and confidence intervals for the parameters can then be calculated using this

information. Notice that one of the standard regularity condition is that the true parameter

value θ0 is an interior point of the parameter space. c = 0 (grouped relative risk model)

and ρ = 0 (Shumway’s model) are on the boundary of the parameter space. Therefore,
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two families (1.1) and (1.2) instead of only one are considered in practice. For data from

those two models, we would use the other transformation families. The boundary points

c = 0 (grouped relative risk model) and ρ = 0 (Shumway’s model) correspond to interior

points ρ = 1 and c = 1, respectively, of the other family. The two families together include

extensions of these two standard models from both directions.

1.3.4 Link to Continuous Time Survival Models

The proposed class of discrete transformation survival models is originally motivated from

the continuous generalized odds-rate model of Dabrowska and Doskum (1988a) with time-

invarying covariate and Zeng and Lin (2006) for time-varying covariate Z(t). In essence we

are applying inverse of Box-Cox transformation and logarithmic transformation families in

Zeng and Lin (2006) to an equivalent formulation of the discrete survival transformation

models in Kalbfleisch and Prentice (2002).

Transformation models (1.3) are different from those in continuous survival analysis.

The transformation G is on [− log SZ(tk)
SZ(tk−1)

] or equivalently on the difference of minus log of

survival functions. Equation (1.3) can be rewritten as

G[− log SZ(tk) − (− log SZ(tk−1))] = exp[βτZ(tk)]G[− log SZ(tk) − (− log SZ(tk−1))]. (1.7)

Instead, the transformation of Zeng and Lin (2006) is on the cumulative hazard function

ΛZ(t) = − log SZ(t)

G(ΛZ(t)) =

∫ t

0

eβ
T
Z(s)dΛ(s),

which depends on the entire history of covariate values {Z(s)}t
s=0. Here Λ(.) is an unspecified

increasing function.

After some calculation (see Appendix 2), Zeng and Lin (2006)’s model can be reexpressed

by
d

dt
G[ΛZ(t)] = exp[βτZ(t)]

d

dt
G[Λ0(t)]. (1.8)

Equation (1.7) can be regarded as taking the difference of − log SZ(tk) first and then take

transformation G on the difference. Equation (1.8) applies the transformation G on ΛZ(t) =

− log SZ(tk) first before taking difference. Again note that (1.7) and (1.8) are fundamentally

different transformation models.
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Zeng and Lin (2006) can not be extended similarly to the bankruptcy prediction appli-

cation. When the covariate Z(t) is time-varying, their likelihood function depends on the

values of the covariate process Z(s) for all time s between s = 0 and s = Xi. Therefore

their maximum likelihood estimator can not be found unless we observe the whole covariate

process Z(s) between s = 0 and s = Xi. For a new public company starting at time Bi > 0,

certainly the covariate process Z(s) does not exist for the time interval between s = 0 and

s = Bi. That is, ΛZ(Bi) is unknown as long as there is covariate effect and the time-varying

covariate is not known for t < Bi. Hence, simple discrete extension of Zeng and Lin (2006)

is ill-defined for bankruptcy prediction application. By applying the transformation families

Gc(·) and Gρ(·) on the differences as in equation (1.7), this approach yields measures that

only depend on covariate values at one last period but not on the whole past history of

covariates.

Note when Z is time invariant covariates, the generalized odds-rate model of Dabrowska

and Doskum (1988a) has similar transformation identity as equation (1.8) since

G[ΛZ(t)] = exp[βτZ]G[Λ0(t)],

where ΛZ(t) is their cumulative hazard function in continuous time.

Inverse of logarithmic transformation Gc(·) of (1.4) and inverse of Box-Cox Transforma-

tion Gρ(·) of (1.5) are commonly used in continuous time transformation survival models

(e.g. Dabrowska and Doskum 1988; Chen et al. 2002; Zeng and Lin 2006). The generalized

odds-rate model family includes the classical Cox proportional hazard model (c = 0) and

the proportional odds model (c = 1) as special cases. The Cox proportional hazards model

corresponds to c = 0, a boundary point on the parameter space, for the family Gc. Transfor-

mation Gρ(·) of (1.5) yields alternative families where the Cox proportional hazards model

corresponds to an interior point of the parameter space with the Cox proportional hazards

model (ρ = 1) and the proportional odds model (ρ = 0) as special cases.

Though the transformation (1.3) or (1.7) is very different from the transformation for

continuous survival analysis, this transformation alone is not new for discrete survival models.

In fact, Kalbfleisch and Prentice (2002) suggested an equivalent encompassing formulation
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of transformation

h(πi,k) = βτZi(tk) + h(π0,k),

where h(·) is a monotone-increasing and twice-differentiable function mapping [0, 1] to (−∞,∞)

with h(0) = −∞. Three common examples are provided for the function h(·) that yields the

grouped relative risk model, the discrete logistic model and the discrete relative risk model.

In discrete failure time regression, conditional default probability is traditionally called the

hazard at time tk. Here πi,k = 1−SZi(tk)/SZi(tk−1) can also be considered as the differential

increment of the cumulative hazard function ΛZ(tk) (see Kalbfleisch and Prentice 2002, Page

9). Denote the baseline hazard π0,k = 1−S0(tk)/S0(tk−1) when Z = 0. Therefore, equations

(1.3) and (1.7) can be rewritten as

G[− log(1 − πi,k)] = exp[βτZi(tk)]G[− log(1 − π0,k)].

That is, transformation families Gc(·) and Gρ(·) are actually on the minus logarithm of one

minus the hazard at time tk. And equivalently,

h(x) = log[G(− log(1 − x)],

where in our paper G(·) takes the forms of Gc(·) of (1.4) (inverse of logarithmic transforma-

tion of Zeng and Lin 2006) and Gρ(·) of (1.5) (inverse of Box-Cox transformation of Zeng

and Lin 2006). Note that when Z = 0, h(π0,k) = log{G(− log(1−π0,k)} = αk. Hence the pa-

rameter αk in models (1.1) and (1.2) may be regarded as a reparametrization of the baseline

hazard π0,k.

In this paper, we incorporate a class of logarithmic transformations and Box-Cox trans-

formations with additional transformation scalar parameters c and ρ, which enables a flexible

class of model family. Application to bankruptcy database and a simulation study in Sec-

tion 1.4 show promises of the proposed class of transformation model family.

1.3.5 Discussion

Doksum and Gasko (1990) pointed out a correspondence between logistic regression models

in binary regression analysis and the generalized odds-rate model in survival analysis with

time invarying covariates. The binary regression is done for the indicator variable on survival
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past a fixed time point. In Section 1.3.1, we similarly show that the discrete transformation

(1.3) along with Gc(·) of (1.4), the inverse of logarithmic transformations, and Gρ(·) of (1.5),

the inverse of Box-Cox transformations, with time-varying covariates in survival analysis

corresponds to logistic regressions (1.1) or (1.2) on indicators for survival in each discrete

time period as if those indicators were independent. This new correspondence links the

survival analysis model techniques to the application of bankruptcy probability modeling.

Literature on survival analysis is extensive in biomedical fields. Although it is natural to

model the bankruptcy of a company as a survival event, the advanced survival analysis model

results have rarely been applied to the bankruptcy prediction. There is a technical reason

for this. In most survival analysis theory, the focus is on the survival probability curves from

a common starting time t = 0, generally a clinic event such as the beginning of a medical

treatment or diagnose of the disease. That is, the time used is not the actual calendar

time. The literature on modeling of bankruptcy prediction, in contrast, generally adopts

calendar time. It is important to understand the reason for the difference. In the biomedical

applications, it is reasonable to expect that individuals with same covariate value history

(physical characteristics, medical treatments, etc.) will follow the same biological process

after, say, a surgical operation. Therefore, those patients should have same probability to

survive after one year, regardless the operation was done in calendar year 1985 or year

1990. However, we would not expect companies with same covariate value history (say same

financial measures for the last 5 years) to have same one year bankruptcy probability in

calendar year 1985 as in calendar year 1990. This is due to the different macroeconomics

environment in 1985 versus 1990. With the actual calendar time, we can no longer ensure a

common starting time t = 0 for all individuals as companies are not all started at the same

time. The application of survival analysis models to the bankruptcy prediction needs to take

this difference into account. For example, the transformation model (1.8) is not well-defined

unless covariate process Z(t) exists from the common starting time. So it can not be applied

directly to the bankruptcy prediction problem.
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1.3.6 Model Evaluation

Accurate default probability prediction is of great importance for practitioners and regula-

tors to gauge the exposure to default risk, which, as we had learnt from the recent worldwide

financial crisis, could have a devastating effect on personal investment and aggregate econ-

omy. In the past decade, academic researchers have been striving to develop sophisticated

corporate bankruptcy models that provide improved out-of-sample forecasts. In the existing

literature, the usefulness or goodness of a prediction model is judged mainly by its ability of

accurately distinguishing companies with high default probability from companies with low

default probability in the out-of-sample context. Along the release and implementation of

Basel II, an accurate default probability becomes even crucial in practice due to its decisive

role in determining capitals that banks need to put aside to protect against certain financial

and operational risks.

In particular, for a company with covariate values Z(t) = Znew, its default probability

according to the model (1.1) is given by πnew = π(Znew;αt,β, c) = 1 − exp{−G−1
c [exp(αt +

βτZnew)]}. Hence with parameters estimated from data, the predicted default probability for

this company at time t is π̂new = π(Znew; α̂t, β̂, ĉ). Denote π̂j,new the predicted probabilities

for company j with covariate Zj(t) = Zj,new, j = 1, ...,m. In practice, we are interested in

out-of-sample prediction of default probability at time period t that is in the future beyond

the fitted time periods.

Generally, it is recognized that there are two components of the performance of predicted

probabilities of binary events (Hosmer and Lemeshow 2000; Sobehart, Keenan and Stein

2001; Wilks 2006; Cook 2008): (a) discrimination, that is, the ability to discriminate between

those subjects experiencing the event of interest and those not; (b) calibration, that is,

providing correct prediction probability for event occurrence.

The corporate default literature has often reported only measures of discrimination. For

example, Shumway (2001) and Chava and Jarrow (2004) use a crude measure of decile

ranking to compare the out-of-sample performance using different predictor variables. Al-

ternatively, accuracy ratio is another commonly used gauge of default model prediction

evaluation (Duffie, Saita and Wang 2007). Following the literature, the discriminant ability
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of our model is evaluated through accuracy ratio, which is defined as twice the difference

between the area under the ROC (Receiver Operating Characteristic) curve (AUC) and 0.5.

Accuracy ratio of 0 corresponds to the random forecast, and accuracy ratio of 1 corresponds

to the perfect forecast.

Note that without proper calibration, models above can be used to produce default

scores that rank the risks of default for different companies, but may not provide accurate

default probabilities for a portfolio needed in bank reservation level calculations required by

BASEL II. In statistics literature, one way to check the calibration is through the Hosmer-

Lemeshow test (Hosmer and Lemeshow 1980; Hosmer and Lemeshow 2000). Like the Chi-

square goodness-of-fit test statistics, Hosmer-Lemeshow test is a popular way to evaluate

the model deviation. A high Hosmer-Lemeshow statistics, or equivalently, a low p-value for

the Hosmer-Lemeshow test indicates a poor calibration.

For our default prediction model, the discrimination is achieved through the scores

β̂
τ
Zj,new. Since the default rate in practice is very low, the models with c = 0 (grouped

relative risk model), c = 1 (Shumway’s model) and c = 10, for example, are all very close

for most companies. Thus simply fitting Shumway’s model can result in scores that provide

similar rankings of default probabilities to our scores. Hence we would expect the accuracy

ratios of our model prediction to be close to those of Shumway’s model (Chava and Jarrow

2004; Bharath and Shumway 2008; Campbell et al. 2008) or those making Cox proportional

hazards assumption (Duffie, Saita and Wang 2007; Duffie et al. 2009). Some slight improve-

ment in accuracy ratio may result from a better estimate of β with correct value specification

on the transformation parameter c.

On the other hand, we do expect our model to improve the calibration over Shumway’s

model (c = 1, ρ = 0) or the grouped relative risks model (c = 0, ρ = 1) if the true

transformation parameters do not take those special values. This should be reflected via

a lower value of Hosmer-Lemeshow test statistics or a bigger p-value from the Hosmer-

Lemeshow test.

In summary, there are two most important gauges for formal evaluation of default prob-

ability models: discrimination and calibration. In principal, we are searching for the model
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that maximizes the discriminatory power subject to proper calibration. For the binary out-

comes such as default, one possible statistical test for calibration is Hosmer-Lemeshow test.

For models that are properly calibrated, those with higher accuracy ratio or equivalently

higher AUC are more useful for practitioners. It is worth noting that both discriminatory

power and calibration performance should be examined using not only the in-sample data

but also out-of-sample validation data to prevent over-fitting. In fact, the standard for inter-

nal rating based approach to Basel II is to use one-year-ahead default probability prediction

and out-of-sample backtesting for default probability model validation. This is implemented

in our current application (e.g. Table 1.3).

Note that future studies are warranted in order to incorporate censoring. Under the as-

sumption of independent censoring, for the discrete-time survival model here, the discrimina-

tory power and calibration performance for the one-time-period-ahead default probabilities

can be checked as above using uncensored cases. However, generally there may be bias for

the tests for calibration (e.g. Hosmer-Lemeshow test) and measures of discriminatory power

(e.g. accuracy ratio or AUC) for checking multiple-time-periods-ahead default probabilities.

Inverse probability weighting approach (e.g. Gerds and Schumacher 2006; Uno et al. 2011)

may be considered. For dependent censoring, a model of the dependence and adjustments

to the calibration test and estimation of the discriminatory measures are needed, which

certainly deserves future study.

1.4 Empirical Results

1.4.1 The Data

To measure the distress risk using our proposed transformation survival model, we need an

event indicator of bankruptcy for the distressed firms and a set of exploratory variables.

In our work, we classify a firm as in distress if it files under either Chapter 7 or Chapter

11 bankruptcy protection code. To obtain the list of distressed firms, we take the firms

as default if its reported deletion reason is liquidation or bankruptcy by COMPUSTAT or

it was delisted from CRSP due to the same reason. As such, our bankruptcy database

includes 1, 565 firms that went bankrupted from January 1981 to December 2006. The
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default indicator equals to one in the month that firm was delisted due to Chapter 7 or

Chapter 11 bankruptcy filing. All the other exiting reasons such as merger or acquisition

would set the default indicators to zero.

Table 1.1 reports the properties of firm defaults by year in more details. We note that

the default rate exhibits substantial variation across time. The pattern reflects mainly the

fact that firms have more difficulties in fulfilling their financial obligations during business

recessions than during business expansions. Specifically, in our sample, the default rate

peaks in the year 1991, when the economy was in a recession accompanied by a severe credit

crunch due to monetary tightening (e.g., Bernanke, Lown and Friedman 1991). Similarly,

the default rate is at an elevated level in the year 2001, when the economy fell into recession

following the burst of the technology bubble. Such time-varying default rate highlights the

importance of taking into account the distinct macro-economic effect featured by different

calendar time on default probability, as in our proposed survival model.

[Insert Table 1.1]

To construct the exploratory variables for our model, we merge the daily and monthly

equity data from CRSP with the quarterly and annually updated accounting data from

COMPUSTAT. We adopt eight covariates as in Campbell et al. (2008), which has been

considered to be the state-of-art model in the bankruptcy literature. Furthermore, in a

separate working paper on dynamic variable selection, we also confirm that these variables

remain significant in explaining default probability. Among these eight covariates, three

are accounting ratio measures. Profitability (NIMTA) is calculated by dividing the net

income by the market value of the total asset. Leverage (TLMTA) is calculated by dividing

total liability by the market value of the total asset. Short-term liquidity (CASHMTA) is

calculated by dividing the cash and short-term asset by the market value of the total asset.

Here the market value of the total asset is the sum of the firm market equity and its book

liability.

We follow Daniel and Titman (2006) to determine the firm book equity in market-to-

book ratio (MB) calculation. To avoid the outliers of the book equity, we adjust the book

equity by adding 10% of the difference between the book equity and the market equity. Four
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market variables based on the equity information are excess return (EXRET), firm’s market

capitalization or relative size (RSIZE), volatility (SIGMA) and stock price (PRICE). We use

the standard deviation of the daily stock price over the previous three month to estimate the

volatility. Both the excess return and the firm’s relative size are evaluated over the S&P 500

index as the market value. Except for volatility, the other three market measures including

the excess return, the firm’s relative size, and the price enter the estimation model in its log

scale.

To be consistent with previous literature, we further modify our data set in the following

ways. Companies report their accounting data with a delay. To ensure we use the accounting

information that is available at the time of the forecast, we lag all the annually updated

accounting measures, including net income, total liability and the cash and short-term assets

by four months and quarterly updated accounting data by two months. All the covariate

measures are constructed after such lagging on the accounting data. Great care has also

been taken in aligning the fiscal time with the calendar time.

Table 1.2 reports the summary statistics of the eight covariate measures. Panel A gives

the summary statistics on the entire 1, 812, 730 firm-month observations. Panel B summa-

rizes the eight covariates’ statistical property on the default group only, a total of 1, 565

observations. Comparison between Panel A and Panel B demonstrates strong distribution

differences among the eight covariates between the entire data set and the default group.

[Insert Table 1.2]

1.4.2 Results

We apply the proposed class of discrete transformation survival models in (1.1) and (1.2)

to the quarterly updated bankruptcy data from 1981 to 2006 using the two-step profile

likelihood algorithm described in Section 1.3.2. Figure 1.2 gives the model maximum log-

likelihood values over a grid of transformation parameters c and ρ. From Figure 1.2, we

observe that the log-likelihood decreases monotonically over ρ so that the optimal model

resides in the Gc transformation. The log-likelihood increases sharply from c = 0 and

stabilizes around the interval from c = 10 to c = 12 with little variation. The maximum is
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achieved around the point of c = 11.5. Clearly neither Shumway’s model (c = 1 or ρ = 0)

nor the grouped relative risk (c = 0 or ρ = 1) is optimal on the bankruptcy probability

prediction for this data set.

[Insert Figure 1.2]

Similarly, Figure 1.3 plots the observed values for the log-likelihood function of the fit

on the annually updated data set under the transformation functions Gc in (1.4) and Gρ in

(1.5). Again, we observe that the log-likelihood value is maximized neither close to the c = 1

for Shumway’s model nor c = 0 for the grouped relative risk model, but at around c = 10.

[Insert Figure 1.3]

We further withhold data from 2002 to 2006 for validation purpose and estimate the

default probability via expanding window approach. To that end, we predict the probability

of default for each validation year on an estimation window from the start of the sampling

period up to the forecasting period to eliminate look-ahead bias. For the reason of compu-

tational efficiency, we use annually updated firm data. We investigate accuracy ratio and

the Hosmer-Lemeshow goodness-of-fit test statistics on the validation data set by comparing

three different models: the optimal transformation model with c = 10, Shumway’s model

c = 1 and the grouped relative risk model c = 0.

Table 1.3 displays our out-of-sample performance evaluation results. We find our optimal

transformation model with c = 10 yields a slightly better accuracy ratio. The high p-value

for the Hosmer-Lemeshow test attests the out-of-sample improvement of our selected model

in the overall significance.

[Insert Table 1.3]

Proper calibration requires good estimation of the transformation parameter c (or ρ)

and baseline αk = α(tk) in addition to good estimation of covariate parameter β. When

calculating the out-of-sample Hosmer-Lemeshow test, we ignored the prediction of α(tk)

here by using its data estimation. The Hosmer-Lemeshow tests show that the standard

models of c = 1 or c = 0 are not properly calibrated for out-of-sample predictions while
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the selected transformation model of c = 10 significantly improves the calibration. Using

correct transformation parameter also leads to better estimation of β thus improving the

discrimination as well, although the improvement in this component is small. The out-of-

sample prediction of α(tk) requires further modeling and will be a topic for future research.

1.4.3 Asset Pricing Implication

We further investigate Fama and French’s (1996) conjecture that investors require a positive

return premium for holding distressed stocks. As in Campbell et al. (2008), we measure

the distress premium by sorting stocks according to their predicted default probabilities,

estimated from the selected optimal discrete transformation survival model. In particular,

at the beginning of each year from 1985 to 2006, we update the firm’s default probability

only using historically available data. We then form 10 portfolios according to their default

risk distribution and hold each portfolio for one year. Detailed specification of the cut-off

percentile points for such ten portfolios is listed in Table 1.4. Note that those percentile

cut-off points are not equally spaced, but provide finer grids to the tail of the distribution.

Table 1.4 summarizes our findings.

[Insert Table 1.4]

We first investigate the average of simple return4 in excess of the S&P 500 index return for

each portfolio. From Panel A, we observe stocks with high conditional default probabilities

have substantially lower returns than do stocks with low conditional default probabilities.

For example, the portfolio with the lowest default probability has an annualized average

excess return of 3.29%, compared with the −12.03% for the portfolio with the highest de-

fault probability. Such a finding poses a significant challenge to Fama and French’s (1996)

conjecture that distressed stocks have a higher expected return.

We then examine the question “can stock return anomalies be explained by the three-

factor model” (Fama and French 1996) by regressing each portfolio’s value-weighted return

on the standard Fama and French three factors5. Panel B shows portfolio with high distress

4equal-weighted return
5Data are available at Professor Kenneth R. French’s website.
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risk tends to have high loadings on the size factor (Small Minus Big or SMB) and value

risk factor (High Minus Low or HML), yet an anomalously negative alpha. Alpha is the

estimated intercept after fitting the value-weighted return on the three factors. A significant

alpha suggests that the risk premium is not fully priced by the three factors. In the first row

of Panel A, we observe that the reported alpha for the highest default risk portfolio in the

99th to the 100th percentile is −18.96% with a t-statistics of −19.62. The alpha deviates

significantly from 0. Therefore, it shows that distress risk estimated from the selected optimal

transformation model cannot be fully explained by the commonly used Fama and French’s

(1996) three-factor model. Additional risk factor may be needed in order to explain the

anomalous stock return. These results confirm the findings in Campbell et al. (2008), where

a discrete hazard model with c = 1 is used.

Panel C shows the average of the default probabilities of stocks (p̂), market capitalization

(rSize) and market-to-book equity ratio (MB) within each portfolio. We can see that as the

average default probability increases, the portfolio tends to have a monotonically decreased

market capitalization. By contrast, the market-to-book equity ratio first decreases and

then increases when the default risk is elevated. In summary, our asset pricing implication

demonstrated by Table 1.4 imposes challenges to the standard Fama and French’s (1996)

conjecture, but is consistent with Campbell et al. (2008)’s findings among others.

1.4.4 Simulation

We further conduct a simulation study that is designed to mimic the real bankruptcy data.

For illustration purpose, suppose there are 26 fixed time periods. At the start of the sampling

period, we first generate N1 = 4000 firms. At each following time period, Nk new companies

are generated from a Poisson distribution with mean parameter estimated from the real data.

For each company, eight time-varying covariates are independently generated at each time

period during its lifetime following distributions similar to the real data. For example, one

covariate mimicking profitability variable NIMTA is generated from a normal distribution

with the same mean and standard deviation as those from the real data while a covariate

mimicking PRICE is generated from a lognormal distribution. The discrete baseline values αk

are generated from a random walk process. The default probability follows a transformation
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model family (1.1) with the true transformation parameter c = 10. The censoring indicators

are then generated using a Bernoulli distribution. For evaluation purpose, we apply our

proposed transformation survival models on the first 25 time periods, and withhold the last

time period for out-of-sample comparison.

Table 1.5 reports some summary statistics for the covariate parameter estimates from

the 400 Monte Carlo simulations, including the bias and standard error. We also show

the 95% confidence interval coverage, a percentage that the true parameter lies within the

95% confidence interval determined by the asymptotic standard error. Here, the asymptotic

standard error is derived by taking the square root of the inverse of the diagonal entries from

the fisher information matrix as described in Section 1.3.3. Results from the grouped relative

risk model (c = 0) are shown in Panel A, discrete logistic model (c = 1) in Panel B and

model with c = 10 in Panel C. Panel D displays the results from our transformation model

fit. We note that the estimation biases from discrete logistic model and grouped relative risk

model are far worse than those from the model c = 10, and yet, our optimal model from the

proposed transformation model class achieves the performance very close to the model with

c = 10. In addition, our optimal model consistently provides much improved 95% confidence

interval coverage comparing to the case of c = 0 and c = 1 for each covariate estimate. Such

performance is close to the case as if the transformation parameter c is known.

[Insert Table 1.5]

Table 1.6 gives the probabilistic measures. we calculate the mean absolute deviation

(MAD) between the estimated and true default probability both on the estimation and vali-

dation sample. In addition, we examine accuracy ratio and Hosmer-Lemeshow test statistics

across different models. Unlike directly reporting the Hosmer-Lemeshow test statistics as

in the empirical study, we report the selection percentage over the grouped relative risk

model (c = 0), discrete logistic model (c = 1) and the optimal model from the proposed

transformation model class (c = optimal) based on their Hosmer-Lemeshow test statistics.

We find both of the discrete logistic model and the grouped relative risk model yield much

larger MAD than the model with c = 10, whereas, our optimal model performs very close

to the model with c = 10. For accuracy ratio, though our optimal model’s performance
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remains very close to the model with c = 10, the improvement over the two benchmark

models with c = 0 and c = 1 is small. This indicates that a measure like accuracy ratio

that evaluates discrimination power may not be very sensitive in this case. However, such

findings are consistent with our empirical results. The selection percentage, presented in

the last row, shows that according to the Hosmer-Lemeshow goodness-of-fit test statistics,

about 99.75% of the simulation runs suggest that neither the classical grouped relative risk

model nor the Shumway’s discrete hazard model is correct for the default data. From our

limited simulation study, Hosmer-Lemeshow test appears to be useful to select the correct

model specification.

[Insert Table 1.6]

1.4.5 Conclusion

We applied our proposed class of discrete transformation survival model to the bankruptcy

data from 1981 to 2006. An optimal model with c around 10 was selected using two-step

profile likelihood estimation. This model is recommended over Shumway’s model (c = 1)

or the grouped relative risk model (c = 0), when accurate default probability prediction

is needed. Out-of-sample performance is examined through annual expanding window ap-

proach for withholding sample from 2002 to 2006 and is shown with improved accuracy ratio

as well as model goodness-of-fit. Further asset pricing implication challenges the famous

Fama and French’s (1996) conjecture on investors demand risk premiums for distress com-

panies. However, the findings are consistent with some recent literature such as Campbell

et al. (2008). Results of a simulation study are consistent with the empirical findings. The

proposed class of discrete transformation survival model may be potentially used in other

applications with similar characteristics.

1.5 Appendix

Appendix 1: Derivations of the discrete transformation models (1.1) or (1.2).
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For our discrete time model where T can only take values at t1, ..., tK , the survival function

S(t) = P (T > t), t = t1, ..., tK .

G[− log
SZ(tk)

SZ(tk−1)
] = exp[βτZ(tk)]G[− log

S0(tk)

S0(tk−1)
]. (A.1)

Assuming independent censoring,

πi,k = Pr(T = tk|X ≥ tk,Z(tk) = Zi,k) = Pr(T = tk|T ≥ tk,Z(tk) = Zi,k).

Hence it can be represented as

πi,k = Pr(T = tk|T ≥ tk,Z(tk) = Zi,k)

= 1 − SZ(tk)
SZ(tk−1)

= 1 − exp{−G−1[G(− log S0(tk)
S0(tk−1)

) exp(βτZi,k)]}
= 1 − exp{−G−1[exp(αk + βτZi,k)]}

where αk = log[G(− log S0(tk)
S0(tk−1))].

When G belongs to the family (1.4)

G−1
c (x) =

{
1
c
log(1 + cx), c > 0;

x, c = 0.

Hence

exp[−G−1
c (x)] =

{ 1
(1+cx)1/c , c > 0;

exp(−x), c = 0.

This gives

πi,k =

{
1 − 1

[1+c exp(αk+β
τ
Zi,k)]1/c

, c > 0;

1 − exp[− exp(αk + βτZi,k)], c = 0.
(A.2)

When c > 0, note left hand side of equation (A.1) indicates

G[− log
SZ(tk)

SZ(tk−1)
] =

1

c
[exp(c(− log

SZ(tk)

SZ(tk−1)
))−1] =

1

c
[exp(log

Sc
Z(tk−1)

Sc
Z
(tk)

)−1] =
1

c

Sc
Z(tk−1) − Sc

Z(tk)

Sc
Z
(tk)

.

Right hand side of equation (A.1) indicates

exp[βτZ(tk)]G[− log
S0(tk)

S0(tk−1)
] = exp[βτZ(tk)]

1

c

Sc
0(tk−1) − Sc

0(tk)

Sc
0(tk)

.

Equation (A.1) indicates

Sc
Z(tk−1) − Sc

Z(tk)

Sc
Z
(tk)

= exp[βτZ(tk)]
Sc

0(tk−1) − Sc
0(tk)

Sc
0(tk)

.
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In particular, when c = 1 this leads to

SZ(tk−1) − SZ(tk)

SZ(tk)
= exp[βτZ(tk)]

S0(tk−1) − S0(tk)

S0(tk)
,

equivalently
πi,k

1 − πi,k

= exp[βτZ(tk)]
πi,0

1 − πi,0
.

This is equivalent to binary regression model with logit link with panel data, which is the

popular so-called discrete hazard model in bankruptcy literature following Shumway (2001).

When c = 0, Equation (A.1) indicates

− log
SZ(tk)

SZ(tk−1)
= exp[βτZ(tk)](− log

S0(tk)

S0(tk−1)
).

or
− log SZ(tk) − (− log SZ(tk−1))

− log S0(tk) − (− log S0(tk−1))
= exp[βτZ(tk)].

This is equivalent to proportional hazards model in continuous case when regarding − log[S(t)],

the cumulative hazard function in continuous case, as step functions with jumps at t =

t1, ..., tK and the difference of − log[S(t)] is equivalent to hazard rate function in continuous

sense.

For G in the family (1.5),

G−1
ρ (x) =

{
log{1 + 1

ρ
[exp(ρx) − 1]}, ρ > 0;

log(1 + x), ρ = 0.

Hence

exp[−G−1
ρ (x)] =

{
1

1+ 1

ρ [exp(ρx)−1]
, ρ > 0;

1
1+x

, ρ = 0.

This gives

πi,k =

{
1 − 1

1+ 1

ρ{exp[ρ exp(αk+β
τ
Zi,k)]−1}

, ρ > 0;
1

1+exp(αk+β
τ
Zi,k)

, ρ = 0.

Appendix 2: Derivation of transformation equation (1.8).
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Zeng and Lin (2006) assumes that

ΛZ(t) = G−1{
∫ t

0

eβ
T
Z(s)dΛ(s)},

where Λ(.) is an unspecified increasing function. The baseline hazard is

Λ0(t) = G−1{
∫ t

0

1dΛ(s)} = G−1{Λ(t)}.

Notice that their Λ(t) is not the baseline hazard, G−1{Λ(t)} is. So their Λ(t) = G{Λ0(t)}.

We have dΛ(t) = dG{Λ0(t)}. Therefore, dG{ΛZ(t)} = eβ
T
Z(t)dΛ(t) = eβ

T
Z(t)dG{Λ0(t)}.
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Year Num of Bankruptcy Number of Firms Default Rate (in %)

1981 32 4085 0.78
1982 45 4345 1.04
1983 36 4474 0.81
1984 49 4785 1.02
1985 53 4944 1.07
1986 80 4971 1.61
1987 39 5203 0.75
1988 68 5444 1.25
1989 73 5404 1.35
1990 81 5362 1.51
1991 125 5345 2.34
1992 93 5357 1.74
1993 47 5615 0.84
1994 50 6508 0.77
1995 51 7003 0.73
1996 57 7226 0.79
1997 71 7587 0.94
1998 95 7554 1.26
1999 63 7188 0.88
2000 69 7008 0.99
2001 79 6738 1.17
2002 79 6310 1.25
2003 44 5881 0.75
2004 25 5634 0.44
2005 20 5572 0.36
2006 10 5523 0.18

Table 1.1: Firm data: This table lists the number of defaults and number of active firms
each year in our sampling period. The number of active firm is calculated by averaging over
the number of active firms across all months of the year.
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Figure 1.1: This plots how the same scores are translated into different probabilities under
different transformation parameter c or ρ values. The solid line gives the probabilities con-
verted according to Shumway’s model c = 1 or ρ = 0. The optimal parameter value from
the fit on the real bankruptcy data is around c = 10.
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c Accuracy Ratio
Hosmer Lemeshow Test

χ2 p-value

c = 0 0.7956 22.8885 0.0035
c = 1 0.8006 19.4592 0.0126
c = 10 0.8095 8.7790 0.3613

Table 1.3: Out-of-Sample Accuracy Ratio and Hosmer Lemeshow Test statistics and its p-
value for c = 0 (grouped relative risk model), c = 1 (Shumway’s model) and c = 10 (the
optimal selected transformation model) under the transformation function Gc on annually
updated bankruptcy data.
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Figure 1.2: This plots the observed values of the log-likelihood functions for the quarterly
bankruptcy data from 1981 to 2006: (a) pertains the transformation function Gc; (b) pertains
the transformation function Gρ.
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Metrics c = 0 c = 1 c = 10 c = optimal

Panel A: In-Sample Evaluation
MAD 0.0090(0.0034) 0.0069(0.0025) 0.0013(0.0004) 0.0014(0.0005)

Panel B: Out-of-Sample Evaluation
MAD 0.0151(0.0073) 0.0119(0.0057) 0.0017(0.0016) 0.0018(0.0016)
Accuracy Ratio 0.7244(0.1175) 0.7251(0.1167) 0.7268(0.1160) 0.7268(0.1160)
Selection Percentage (%) 0.00 0.25 −− 99.75

Table 1.6: In-Sample and Out-of-Sample Evaluation of default probability estimates from
400 Simulations. Shown are Mean Absolute Deviation (MAD), Accuracy ratio and Hosmer-
Lemeshow statistics based Selection Percentage.
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Figure 1.3: This plots the observed values of the log-likelihood functions for the annual
bankruptcy data from 1981 to 2006: (a) pertains the transformation function Gc; (b) pertains
the transformation function Gρ.
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2   Chapter Two 

Variable Selection and Corporate Bankruptcy Forecasts 
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2.1 Introduction 

 Accountants and financial economists have considered various predictive variables in the 

reduced-form corporate bankruptcy forecast model.  Earlier studies, e.g., Beaver (1966), Altman 

(1968), Ohlson (1980), and Zmijewski (1984), have routinely used accounting ratios, i.e., 

financial ratios constructed from only accounting data, as a gauge of default risk.  In an attempt 

to improve the empirical performance of the reduced-form model, Shumway (2001) advocates 

for incorporating market variables in the bankruptcy forecast, in addition to two accounting 

ratios.1  In a similar vein, Campbell, Hilscher, and Szilagyi (2008; CHS thereafter) introduce new 

market variables and financial ratios; and they also propose a modification of the accounting 

ratios adopted in Shumway (2001) by using the market value of assets rather than the book 

value. While Shumway (2001) and CHS (2008) have shown their models exhibit noticeable 

improvement over the models proposed in previous studies, none of existing studies has provided 

a formal analysis on the relative importance for a comprehensive set of bankruptcy predictors.  In 

this paper, we try to fill the gap by introducing a robust variable selection technique proposed by 

Tibshirani (1996)—the least absolute shrinkage and selection operator (LASSO). 

Statisticians develop variable-selection methods to achieve two main objectives—(1) 

identifying relevant predictive variables and (2) improving prediction accuracy (see, e.g., Fan 

and Li (2001)).  A formal variable-selection analysis thus allows us to shed new light on the 

corporate bankruptcy forecast literature in two important ways.  First, it enables us to identify 

from an exhaustive set of bankruptcy predictors proposed in existing studies a parsimonious 

subset of the most relevant ones. Such identification has important implications for testing 

bankruptcy theories, designing regulations in credit markets, and conducting credit risk analysis.  

                                                 
1 Accounting researchers, e.g., Ohlson (1980), have noted that market data are potentially important in bankruptcy 
forecasts. These authors, however, do not pursue this investigation because their main research interest is the 
informativeness of accounting data for bankruptcy rather than the search for a good bankruptcy forecast model.   
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Second, as we confirm in this paper, the selected reduced-form model has superior in-sample and 

out-of-sample predictive power and outperforms the prominent models in the existing literature. 

LASSO penalizes regression coefficients through a shrinkage method and thus provides a 

sparse variable-set solution. LASSO has been widely used in variable-selection studies (see, e.g., 

Efron, Hastie, Johnstone, and Tibshirani (2004)) and is a state-of-the-art variable selection tool.  

LASSO enjoys the easy interpretability as the traditional subset variable selection does but has 

added benefits of the stability of model selection and prediction accuracy. Compared with other 

commonly used variable selection methods such as the subset or stepwise selection, LASSO has 

several desirable statistical properties that suit particularly for the main empirical issues that we 

try to address in this paper.  First, given the rareness of default events, robustness is a necessary 

requirement of variable section techniques used for bankruptcy forecasts.  LASSO is quite robust 

to small perturbations of data changes.  Second, the shrinkage method improves prediction 

accuracy. Third, LASSO naturally produces an entire variable selection path to provide the 

relative importance of the selected variables. Finally, LASSO is computationally efficient, 

especially when there are a large number of candidate predictors. 

We adopt LASSO variable selection using time-varying covariates for the panel data. 

Variable selection and modeling that use full information of the panel data are obviously 

appealing. Shumway (2001) shows that the discrete hazard model using time-varying panel data 

has important advantages compared with static models using cross-sectional data (e.g., Altman 

(1968), Ohlson (1980) and Zmijewski (1984)). Specifically, the latter ignore the fact that firms 

change over time and thus may produce biased and inconsistent bankruptcy probability 

estimates. 
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In the empirical analysis, we construct a comprehensive bankruptcy database by merging 

daily and monthly equity data from the Center for Research in Security Prices (CRSP) with 

annual financial information from COMPUSTAT.  A company is in default if it files for either 

Chapter 7 (liquidation) or Chapter 11 (reorganization) bankruptcy protection.  We include an 

exhaustive list of 39 financial ratios and market variables that have been used in the bankruptcy 

literature as candidate default-risk predictors.  As in Shumway (2001), Chava and Jarrow (2004), 

CHS (2008), and others, we model the bankruptcy risk using the discrete hazard model. 

Over the full sample spanning the 1980 to 2009 period, LASSO selects seven predictive 

variables into the reduced-form bankruptcy forecast model. We find strong support for 

Shumway’s (2001) argument of including market variables in the bankruptcy forecast. Two 

market variables advocated by Shumway (2001) and CHS (2008), i.e., stock return volatility and 

the excess stock return, and one newly-proposed market variable by CHS (2008), i. e. stock 

price, enter into the LASSO-selected reduced-form model.  Shumway (2001) shows that (1) the 

net income to total assets ratio and (2) the total liabilities to total assets ratio constructed using 

accounting information are significant predictors even when controlling for market variables in 

the bankruptcy forecast. CHS (2008), however, suggest that we should modify these two 

variables using the market value of assets instead of the book value. Our formal variable 

selection analysis allows us to shed light on this debate: LASSO selects CHS’s modified 

financial ratios but not Shumway’s (2001) original variables. 

Of CHS’s (2008) eight predictive variables, five variables are selected into our reduced-

form bankruptcy forecast model.  These results indicate that CHS have done a reasonably good 

job in selecting the bankruptcy predictors.2 Nevertheless, the formal variable selection analysis 

                                                 
2 Of 5 predictive variables proposed by Shumway (2001), 4 variables enter into our LASSO-selected reduced-form 
model either directly or in a modified form. 
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improves CHS’s model in two important ways. First, LASSO identifies two new predictive 

variables—(1) the current liabilities to total assets ratio and (2) the total debts to total assets ratio.  

This result confirms the important role of accounting ratios in the bankruptcy forecast.  Second, 

three of CHS’s predictive variables, i.e., the market capitalization, the market to book ratio, and 

the ratio of cash and short-term assets to the market value of assets, are not included in the 

LASSO-selected reduced-form model. 

 Note that variables that are not selected do not necessarily correspond to their statistical 

insignificance in in-sample estimation.  For example, using our data, we confirm CHS’s (2008) 

finding that market capitalization, the market to book ratio, and the ratio of cash and short-term 

assets to the market value of assets have statistically significant in-sample predictive power for 

the default risk, although these variables are not selected. The variable selection results are 

strikingly stable across various subsample periods; specifically, we select the identical set of 

predictive variables over the 1980 to 2000, 1980 to 2002, 1980 to 2005, and 1996 to 2009 

periods.  These results also highlight a potentially important advantage of LASSO—it allows us 

to identify a stable parsimonious set of most relevant explanatory variables that may have 

superior out-of-sample predictive power. 3  Indeed, the LASSO-selected bankruptcy model 

outperforms CHS’s model in the out-of-sample forecast. 

 The distance-to-default (DD) constructed from Merton’s (1974) structural model is a 

popular bankruptcy risk measure for practitioners. CHS (2008) and Bharath and Shumway 

(2008), however, argue that DD provides little additional information about future bankruptcy 

beyond the variables used in their reduced-from models.  The formal variable selection analysis 

                                                 
3 In a similar vein, Pesaran and Timmermann (1995) advocate for selecting a parsimonious set of stock market 
return predictors on their performance in the historical sample, and find that the data-determined model has 
significant out-of-sample predictive power for market returns.  However, unlike the bankruptcy forecast, Pesaran 
and Timmermann (1995) find that the set of selected stock market return predictors change substantially across time.     
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allows us to test this conjecture directly.  When we add DD as a candidate predictor along with 

the other 39 predictive variables, DD is not selected by LASSO and the set of selected predictors 

is identical to that without DD as a candidate. In the out-of-sample forecast, the performance of 

DD alone model is similar to, or slightly better than, that of CHS’s reduced-form model. In 

contrast, the LASSO-selected reduced-form model performs noticeably better than DD alone 

model. 

 While CHS (2008) have advocated for constructing financial ratios using the market 

value of assets, accounting researchers, e.g., Beaver, McNichols, and Rhie (2005), have 

reiterated the relevance of accounting ratios in the bankruptcy forecast by showing that their 

predictive power is strikingly stable across time.  We provide support for both arguments.  

Specifically, LASSO selects the market value of assets for the net income to total assets ratio and 

the total liabilities to total assets ratio but chooses the book value for the current liabilities to 

total assets ratio and the total debts to total assets ratio.  These results possibly reflect the fact 

that, while the former is a measure of a company’s ability to pay off debts, the latter is arguably 

an indicator of a company’s tolerance toward bankruptcy risk.  Specifically, George and Hwang 

(2010) argue that the target or book leverage depends on a company’s bankruptcy costs—

companies with high (low) bankruptcy costs tend to have low (high) target leverage.4      

  The remainder of the paper proceeds as follows.  We discuss briefly the discrete hazard 

model and the LASSO variable selection method in Section 2.2. Data description is presented in 

Section 2.3.  Section 2.4 reports the empirical findings.  In Section 2.5, we present a comparison 

study on distance-to-default and expected-default-frequency from Merton’s structural model 

under discrete hazard model framework. We offer some concluding remarks in Section 2.6. 

2.2 Model and LASSO Variable Selection 

                                                 
4 See also Johnson, Chebonenko, Cunha, D’Almeida, and Spencer (2011). 
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2.2.1  Discrete Hazard Model 

 To investigate each firm’s default risk at any specific time, we use the discrete hazard 

model to forecast bankruptcy over the next time period (Shumway (2001)). The discrete hazard 

model implies a logistic regression between the dependent variable and time-varying covariates. 

For one-year-ahead or equivalently twelve-month-ahead default risk prediction, the model can be 

expressed in the formula below 
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  ,                                        (2.1) 

where 
ti,Χ  is the covariate vector of time-varying firm-specific explanatory variables. In 

particular, 
ti,Χ  may be a vector of observed financial ratios or market variables at time t for firm 

i. Coefficient β  is a covariate effect parameter vector and 0β
 
is a scalar parameter.

 
 t can be any 

observation time period. In this paper, t represents month-end for monthly data. 12, +Υ
ti

 is the 

associated default indicator after 12 months or one year. 12, +Υ
ti

 is set to 1 if the company i files 

for bankruptcy protection code within 12 months from time t and zero otherwise.   

2.2.2 LASSO Variable Selection 

 Many accounting ratios and market variables have been introduced to improve the 

prediction accuracy in the bankruptcy research literature (e.g. Beaver (1966), Altman (1968), 

Beaver et al. (2005), Shumway (2001), Chava and Jarrow (2004), and CHS (2008)). However, 

there is no consensus on which variables should be included in the reduced-form bankruptcy 

model of equation (2.1). Moreover, explanatory determinants are often established subjectively 

based on expert or field judgment prior to the analysis. To formally identify relevant variables 

from a comprehensive variable set considered in the literature, we introduce a state-of-the-art 

LASSO variable selection using the available panel data. 
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 Variable selection has long been an important topic in the statistics literature. Variable 

selection is essential to identify relevant predictive variables and to improve prediction accuracy. 

Recent development in variable selection literature shows promising evidence from the emerging 

of new penalized shrinkage approaches. In his seminal work, Tibshirani (1996) proposes a 

regularization approach LASSO, for simultaneous parameter estimation and variable selection 

that yield nice statistical properties. In contrast to subset regression that either zeros a coefficient 

or inflates it, shrinkage method tries to zero some coefficients, shrink others and thus more stable 

(Breiman (1995); Fan and Li (2001)). This state-of-the-art variable selection method is not only 

computationally efficient, but also possesses superior performance in terms of stability and 

prediction accuracy. This robust feature is particularly important for the bankruptcy forecasting 

because corporate bankruptcy has been a rather rare event, even if all the historical information 

of panel data is considered.    

 In our discrete hazard model framework, the LASSO estimate is obtained by minimizing 

the negative log-likelihood function and a roughness penalty on the sum of the absolute value of 

the covariate parameter, the so-called “l1 penalty” or equivalently with certain “l1 constraint”. 

LASSO uniformly penalizes the coefficients. Such penalization or constraints placed on 

parameter estimate enjoys nice properties theoretically and computationally. LASSO also 

provides the nice feature of continuous shrinkage in coefficient estimate, with some coefficients 

to exact zeros.  

 Best-subset and stepwise (backward/forward) variable selection are commonly-used 

classical variable selection approaches. When the total number of variables M in consideration is 

moderate, best-subset selection involves selection of the best model from 2M-1 different 

combination according to some criterion such as Akaike information criterion (AIC) (Akaike 
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(1974)). The computation becomes forbiddingly intensive as M increases. For example, when a 

comprehensive set of 39 accounting ratios and market variables are considered in this paper, a 

combination of 239-1 or about 275 billion models need to be built for an exhaustive best-subset 

search. In practice, stepwise-subset selection is usually adopted as a surrogate for best-subset by 

sequentially deleting or adding one variable at a time based on some significant tests. However, 

due to the nature of stepwise selection, algorithm may yield a local optimal solution rather than 

the global optimal solution. Through comprehensive simulations studies, Breiman (1995) shows 

that subset regression is instable even with small changes of data. For example, removing one 

sample data point can result in drastically different selection of significant variables. Such 

feature is certainly not favorable in terms of model robustness, which is a crucial feature desired 

by the bankruptcy prediction. Furthermore, the subset variable selection procedures ignore the 

stochastic errors in the variable selection stage (Fan and Li (2001)).  

2.2.3 Model Evaluation 

Corporate bankruptcy modeling involves binary events of default versus non-default. To 

evaluate the overall in-sample performance of the discrete hazard model, formal model 

information criterion based on the negative of log-likelihood and a complexity penalty can be 

used. For example, AIC is a popular goodness-of-fit measurement for likelihood-based model 

selection using two times the number of parameters as a penalty. A model with the smaller AIC 

is desirable. Generally, a good model attempts to balance its accuracy and complexity, which are 

often termed as the tradeoff between bias and variance by the statisticians. For instance, a 

bankruptcy prediction model with increasing number of explanatory variables will always yield 

better in-sample likelihood, however, not necessarily better AIC, and most importantly possibly 

worse out-of-sample prediction due to overfitting or data-snooping. The primary goals to 
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introduce LASSO variable selection process in this paper are indeed two folds: to identify 

relevant predictive variables and to achieve high prediction accuracy in a parsimonious model. 

The area under the ROC (Receiver Operating Characteristic) curve (AUC) (Hosmer and 

Lemeshow (2000)) is a very popular measure to evaluate the model discriminatory power, that is, 

the ability to discriminate between the binary events, bankruptcy and non-bankruptcy, using the 

predicted bankruptcy probabilities. Equivalently, accuracy ratio is calculated as double of the 

difference between AUC and 0.5. It is another commonly used gauge for corporate bankruptcy 

model evaluation (Duffie, Saita and Wang (2007)). In particular, accuracy ratio of 0 or AUC of 

0.5 corresponds to a random forecast, and accuracy ratio or AUC of 1corresponds to a perfect 

forecast. 

 Accurate out-of-sample bankruptcy prediction is essential in addition to good in-sample fit. 

In fact, Basel II standard for internal rating based approach is to use one-year-ahead default 

probability prediction and out-of-sample back-testing for default model validation. We compare 

the out-of-sample predictive performance and implement a similar strategy used in Shumway 

(2001) to predict the bankruptcy probability in the recent withheld test sample. We first build our 

discrete hazard rate model using the bankruptcy data over the training period. With the variables 

selected by LASSO and the coefficient estimates from the discrete hazard model fitting, we 

predict the probabilities of bankruptcy for the firms over the testing period and report the out-of-

sample accuracy ratio and AUC.  

We also report the out-of-sample decile-rankings, which are commonly used in the 

bankruptcy literature (Shumway (2001); Chava and Jarrow (2004)). Specifically, for each year in 

the testing period, we rank the predicted probability of bankruptcy in deciles. The companies 

with highest probabilities of default are ranked in the first decile. With the smallest probabilities 
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of bankruptcy, companies are ranked in the last decile. Year by year, we aggregate the total 

number of bankruptcy filings. Meanwhile, we count the number of firms with its predicted 

probability of bankruptcy ranked in the first decile for each year.  The smaller discrepancy 

between the two counts implies a better predictive model in the out-of-sample performance.  

2.3 Data 

 We obtain bankruptcy information and market and financial variables by merging the daily 

and monthly equity data from CRSP with annually updated accounting data from COMPUSTAT 

over the 1980 to 2009 period.  Note that companies report their accounting data with a delay. To 

ensure we use the accounting information that is available at the time of the bankruptcy forecast, 

all the annually updated accounting measures are lagged by four months. For each predictor 

variable, we truncate at the lowest and highest percentiles to alleviate the effect of outliers. 

 To estimate the discrete hazard model, we need to construct an event indicator for 

bankruptcy. A company is in default if it files for bankruptcy under either Chapter 7 (liquidation) 

or Chapter 11(reorganization) bankruptcy protection.  The bankruptcy indicator of a company 

equals 1 if the company exits the database due to bankruptcy filing and equals zero otherwise.  

Specifically, we assign the bankruptcy indicator a value of zero for healthy firms and firms that 

exited from our database due to other reasons such as merger and acquisition.  In Figure 2.1, we 

plot the total number of firms that file for bankruptcy in each year over the 1980 to 2009 period.  

Consistent with findings in earlier studies, Figure 2.1 shows that bankruptcy filings exhibit 

strong countercyclical patterns with peaks following the 1981-82, 1990-91, 2001, and 2007-09 

business recessions. 

 We consider an exhaustive list of 39 financial and market variables as candidate 
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bankruptcy predictors; and Table 2.1 provides a brief description for each variable.5  Those 

predictive variables are drawn from previous studies in bankruptcy literature, including Beaver 

(1966), Altman (1968), Ohlson (1980), Zmijewski (1984), Shumway (2001), Chava and Jarrow 

(2004), Dwyer, Kocagil, and Stein (2004), Beaver, McNichols, and Rhie (2005), Härdle, Lee, 

Schäfer, and Yeh (2009), Bharath and Shumway (2008), CHS (2008), Ding, Tian, Yu, and Guo 

(2012), and many others.  Earlier studies, e.g., Beaver (1966), Altman (1968), Ohlson (1980), 

Zmijewski (1984), use various accounting ratios in the bankruptcy forecast, and Altman’s (1968) 

Z-score and Ohlson’s (1980) O-score have been the standard distress risk measures for both 

practitioners and academic researchers. Accounting researchers, e.g., Ohlson (1980), have 

conjectured that including market variables may improve substantially the bankruptcy forecast, 

and Shumway (2001) first provides empirical support for this conjecture by applying the discrete 

hazard model to panel data. Specifically, Shumway (2001) shows that three market variables—

the relative market capitalization (RSIZE), the stock return in excess to the market return 

(EXCESS RETURN), and stock return volatility (SIGMA)—have significant predictive power 

for bankruptcy risk. Shumway (2001) also finds that two accounting ratios, the net income to 

total assets ratio (NIAT) and the total liabilities to total assets ratio (LTAT), are also significant 

bankruptcy predictors. Overall, Shumway (2001)’s reduced-form model performs substantially 

better than those proposed in earlier accounting studies, e.g., Altman (1968) and Zmijewski 

(1984). 

 Shumway’s (2001) market-variable-augmented reduced-form model has become popular in 

the bankruptcy forecast literature, and CHS (2008) try to improve its empirical performance in 

                                                 
5 The variables used in this study are available only for publicly traded companies.  Dwyer, Kocagil, and Stein 
(2004) propose some alternative predict variables in the forecast of credit risk for privately held companies. As a 
robustness check, we also include these variables as candidate predictors and find that none of them is selected by 
LASSO.  For brevity, these results are not reported but are available on request. 
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three ways.  First, CHS add a new market variable, the stock price, as a bankruptcy predictor.  

Second, CHS advocate for constructing financial ratios using the market value of assets rather 

than the book value.  That is, CHS replace NIAT and LTAT by the net income to the market 

value of total assets ratio (NIMTA) and the total liabilities to the market value of total assets 

ratio (LTMTA), respectively. Last, CHS include two new financial ratios as bankruptcy 

predictors: The market-to-book equity ratio (MB) and the ratio of cash and short-term investment 

to the market value of total asset (CASHMTA).6  CHS find that their model has a better in-

sample fit than does Shumway’s (2001) model.  Nevertheless, neither Shumway (2001) nor CHS 

choose the variables in their reduced-form models via a formal variable selection analysis, and 

we try to fill the gap in this paper. 

 In Merton’s (1974) bond pricing model, the likelihood of default or the distance-to-default 

(DD) depends on the difference between the face value of the firm’s debts and the market value 

of its assets divided by the volatility of the firm’s asset value. The distance-to-default is a leading 

alternative bankruptcy risk measure, and there is an ongoing debate about the relative 

performance of the structural versus the reduced-form bankruptcy forecast model.  Hillegeist, 

Keating, Cram and Lundstedt (2004) find that the default probability derived from the structural 

model performs substantially better than the Z-score or O-score in the bankruptcy forecast.  CHS 

(2008) and Bharath and Shumway (2008), however, find that the distance-to-default provides no 

additional information about future default risk beyond the market variables and financial ratios 

employed in their reduced-form model. To address this issue, we follow Vassalou and Xing 

(2004) and construct the distance-to-default using CRSP and COMPUSTAT data.7 

                                                 
6 MB correlates negatively with the cross-section of stock returns, and Fama and French (1996) suggest that this 
relation possibly reflects the fact that MB correlates negatively with distress risk. 
7 Practitioners, e.g., Moody’s KMV, adopt the empirical distribution of the distance-to-default estimated from a 
large database, which may potentially yield better fitting and prediction results than our simple distance-to-default 
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2.4  Empirical Analysis 

2.4.1  LASSO Variable Selection Results 

In Figure 2.2, we report the LASSO variable selection results for the full sample spanning the 

1980 to 2009 period.8  The upper panel illustrates the evolution of estimated coefficients on all 

candidate predictive variables listed in Table 2.1 over the LASSO variable selection process.  

The horizontal axis indicates the constraint—the maximum value for the sum of absolute 

coefficients; for each constraint, the vertical axis reports the respective coefficient estimates of 

all candidate predictive variables.  LASSO estimates are close to zero for restrictive constraints, 

and variables are sequentially selected into the predictive regression as their LASSO estimates 

increase in magnitude and become nonzero when the constraint is relaxed. Variables with 

stronger predictive power will enter the process earlier, showing their relatively higher 

importance. The lower panel of Figure 2.2 illustrates the evolution of in-sample AIC corrected 

with a factor of finite sample size (AICC) as the constraint becomes less restrictive.  Similar to 

AIC, AICC provides a goodness-of-fit measurement with regard to information loss (see, e.g., 

Hurvich and Tsai (1989)); a smaller value of AICC indicates a better model fitting.  

Shumway (2001) and CHS (2008) advocate for incorporating market information in 

bankruptcy forecast because compared with accounting information, market information has 

three advantages. First, the stock price is a forward looking variable that incorporates all 

available information. Second, the stock volatility is a direct determinant of the default 

probability in Merton’s (1974) structural model.  Third, the market value is a more accurate 

measure of the true value of assets than the book value.  Consistent with Shumway (2001) and 

                                                                                                                                                             
measure (see Hamilton, Sun and Ding (2011)).  However, the information of the empirical distribution is proprietary 
and is unavailable to us for comparison. 
8 In this paper, we implement empirical analysis using SAS software. As a robustness check, we find the same 
LASSO variable selection results using R provided by Efron, Hastie, Johnstone, and Tibshirani (2004). 
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CHS’s conjecture, Figure 2.2 shows that the stock price (PRICE) and the stock return volatility 

(SIGMA) are the first two predictive variables that are selected by LASSO.  Similarly, the excess 

stock return (EXCESS RETURN) is also selected by LASSO albeit at a relatively late stage. We 

also find support for CHS argument for using the market value of assets instead of the book 

value.  Specifically, Shumway (2001) use the book value of equity in the construction of the net 

income to total assets (NIAT) and the total liabilities to total assets ratio (LTAT).  CHS use the 

market value of equity for the net income to total assets (NIMTA) and the total liability to total 

assets (LTMTA). We find that both NIMTA and LTMTA are selected in the bankruptcy forecast, 

while NIAT and LTAT are not.  Overall, our variable selection results are strikingly consistent 

with the variables advocated by Shumway (2001) and CHS (2008).  Specifically, except for the 

market capitalization, all the variables proposed by Shumway (2001) enter into the LASSO 

variable selection either directly or in a modified form.  Similarly, LASSO chooses five out of 

eight variables used in CHS; two other CHS variables, corporate cash holdings (CASHMTA) 

and the market-to-book equity ratio (MB), are not selected by LASSO, however. 

 Figure 2.2 also offers new insight on the bankruptcy predictors. Two financial ratios 

constructed using only accounting data, the current liabilities to total book assets ratio (LCTAT) 

and the total debt to total book assets ratio (FAT), enter the LASSO-selected bankruptcy forecast 

model. The accounting ratios LCTAT and FAT are common risk measurements in evaluating a 

company’s ability to pay off its debts. LCTAT and FAT provide incremental information about 

future default risk possibly because the leverage measure constructed using the book value 

reveals a company’s tolerance toward the default risk.  Specifically, LCTAT and FAT reveal a 

company’s target leverage level.  This interpretation is consistent with the endogenous leverage 

hypothesis advanced by George and Hwang (2010), who argue that target leverage level depends 
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on the company’s bankruptcy costs.  Intuitively, if a company has high bankruptcy costs, it is 

optimal for the company to maintain a low target leverage level to reduce the default risk.  

Therefore, LCTAT and FAT forecast bankruptcy risk because they are proxies for risk tolerance; 

for example, ceteris paribus, companies that more tolerant with bankruptcy risk are more likely 

to run into bankruptcy in future.  To the best of our knowledge, this link of accounting variables 

with future bankruptcy risk is novel. In the next subsection, we show the accounting ratios are 

statistically significant in in-sample estimate and improve the out-of-sample performance of the 

reduced-form model as well. 

 As a robustness check, we repeat the LASSO analysis using various subsample periods, 

including the 1980 to 2000, 1980 to 2002, 1980 to 2005 and 1996 to 2009 periods.  Interestingly, 

we find the set of LASSO-selected variables are strikingly stable across time. 

2.4.2 In-Sample Estimation and Out-of-Sample Forecast 

 In Table 2.2, we present the discrete hazard model estimation results over the entire 

bankruptcy database, spanning from 1980 to 2009.  Column 1 reports the results for the reduced-

form model with LASSO-selected variables. The predictive variables are all statistically 

significant at the 1% level with expected signs.  For comparison, in column 2, we also report the 

results for CHS’s (2008) model, which are similar to those reported in CHS, although we use an 

updated sample period. The LASSO-selected model has a lower AIC value than the CHS model, 

indicating that the former has less information loss and thus provides a better fit for the 

bankruptcy data. Similarly, with a higher AUC value, the LASSO-selected model has better 

discriminatory power than the CHS model.  As a robustness check, we re-estimate the LASSO-

selected model and the CHS model using the sample spanning the 1980 to 2002 period, and 

entries in column 3 and column 4 show that results are qualitatively similar to those reported in 
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column 1 and column 2 of Table 2.2. To summarize, as expected, the LASSO-selected model 

provides a better in-sample explanation for the bankruptcy data than the CHS model. 

 We then evaluate our model’s out-of-sample predictive ability by splitting the bankruptcy 

data into a training sample ending in 2002 and a testing sample over the 2003 to 2009 period.  

Specifically, we employ the discrete hazard model on the bankruptcy records over the training 

period, and evaluate its out-of-sample predictive performance on the testing sample. Over the 

holdout sample period 2003 to 2009, we sort stocks equally into ten portfolios, with the expected 

default probability decreasing from decile 1 to decile 10.  In Table 2.3, we report the percentage 

of correctly-identified bankruptcy filings in each decile and the out-of-sample accuracy ratio.  

Consistent with the in-sample estimation results reported in Table 2.2, we find that LASSO-

selected model exhibits a better discriminatory power than the CHS (2008) model in the out-of-

sample tests.  The LASSO-selected model delivers an almost 80 percent correct prediction rate in 

the two top deciles (column 1), comparing with 66 percent for the CHS model (column 2).  The 

CHS model yields an out-of-sample accuracy ratio of 0.636 (equivalent to AUC of 0.818), which 

is lower than that of 0.682 (equivalent to AUC of 0.841) for the LASSO-selected model.  To 

summarize, the variables selected via the LASSO method display superior out-of-sample 

predictive performance. 

2.5 A Comparison with Distance-to-Default 

 In this section, we investigate whether the distance-to-default provides additional 

predictive power when included in the reduced-form model. Specifically, we add the distance-to-

default to the candidate predictor set and then apply the LASSO variable selection method to 

determine the most important forecasting variables over the full sample spanning the 1980 to 

2009 period. Interestingly, Figure 2.3 shows that LASSO variable selection coefficient path is 
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almost identical to that reported in Figure 2.2, which is obtained without the distance-to-default 

as a candidate predictor. The distance-to-default is not selected by LASSO, and including the 

distance-to-default as a candidate variable does not affect our results in any qualitatively manner.  

  In Table 2.3, we summarize the predictive power of the distance-to-default in out-of-

sample tests. We find that the distance-to-default only model (column 4) exhibits an out-of-

sample AUC value of 0.824 (or equivalently, an accuracy ratio of 0.648). Comparing with CHS 

(2008) model (column 2), the distance-to-default only model shows improved overall 

discriminatory ability, but its predictive ability is still weaker than the LASSO-selected reduced-

form model (column 1).  

 As a robustness check, we augment the LASSO-selected reduced model by the distance-to-

default. Though the in-sample coefficient estimate of the distance-to-default remains statistically 

significant in the augmented LASSO-selected reduced-form model, we do not observe any 

significant improvement when adding the distance-to-default to the LASSO-selected reduced-

form model in the out-of-sample context (column 3).  

 Therefore, in the discrete hazard model setup, the distance-to-default provides little 

supplementary information about future bankruptcy risk beyond the market variables and 

accounting variables used in the previous reduced-form models.  Our finding differs from those 

reported by Hillegeist et al. (2004) because these authors compare the default probability 

constructed from the structural model with only accounting ratios. In contrast, our results provide 

a formal statistical confirmation for the conjecture by Bharath and Shumway (2008) and CHS 

(2008), who emphasize the importance of market information in the bankruptcy forecast. 

2.6 Conclusion 

 We introduce a state-of-the-art variable selection method, LASSO, to the discrete hazard 
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model of corporate bankruptcy and document three important findings.  First, we find that 

accounting ratios provide significant supplemental information about future default beyond 

market variables and financial ratios constructed using the market value of assets.  Second, the 

reduced model selected via the LASSO method performs better in out-of-sample prediction than 

the models adopted in the previous studies, including the CHS (2008) model.  Last, the distance-

to-default does not provide additional predictive power in the reduced-form models. 
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Table 2.1: Variable Description 

Variable Description Variable Description 

NIAT Net Income / Total Asset APSALE Accounts Payable / Sales 

NISALE Net Income / Sales LOG(AT) log(Total Assets) 

OIADPAT Operating Income / Total Asset INVCHINVT Growth of Inventories / Inventories 

OIADPSALE Operating Income / Sales FFOLT Funds from Operations / Total Liabilities 

EBITAT Earnings before Interest and Tax / Total Asset MVEF Market Equity (Yearly) / Total Debit 

(EBIT+DP)/AT 
(Earnings before Interest and Tax + 
Amortization and Depreciation) / Total Asset LT/(LT+MKET) 

Total Liabilities / (Total Liabilities + Market 
Equity) 

EBITSALE Earnings before Interest and Tax / Sales RELCT Retained Earnings / Current Liabilities 

SEQAT Equity / Total Asset CASHAT Cash and Short-term Investment / Total Assets 

REAT Retained Earnings / Total Asset LCTSALE Current Liabilities / Sales 

(LCT-CH)/AT (Current Liabilities – Cash) / Total Asset FAT Total Debt / Total Assets 

LTAT Total Liabilities / Total Assets LCTAT Current Liabilities / Total Asset 

LOG(SALE) log(Sale) NIMTA Net Income /(Market Equity + Total Liabilities) 

CHAT Cash  / Total Assets LTMTA 
Total Liabilities /(Market Equity + Total 
Liabilities) 

CHLCT Cash / Current Liabilities CASHMTA 
Cash and Short-term Investment /(Market Equity + 
Total Liabilities) 

QALCT Quick Assets / Current Liabilities RSIZE Log(Market Capitalization) 

ACTLCT Current Assets/ Current Liabilities PRICE Log(Price) 

WCAPAT Working Capital / Total Assets MB Market-to-Book Ratio 

LCTLT Current Liabilities / Total Liabilities SIGMA Stock Volatility 

INVTSALE Inventories / Sales 
EXCESS 
RETURN Excess Return Over S&P 500 Index 

SALEAT Sales / Total Assets   

Note: This table provides description for 39 bankruptcy predictors that we consider in the variable selection analysis.  
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Table 2.2: Discrete Hazard Model Estimations 

 LASSO CHS 
LASSO 

(1980-2002) 
CHS 

(1980-2002) 
Panel A: Parameter Estimations 

LCTAT  
0. 5641 
(3.30)**  

0. 6557 
(3.63)**  

FAT  
0. 0013 
(5.57)**  

0. 0013 
(5.41)**  

NIMTA 
-1.0104 
(5.74)** 

-1.1949 
(6.63)** 

-1.1475 
(6.20)** 

-1.3940 
(7.38)** 

LTMTA 
1.3582 

(10.26)** 
1.7785 

(13.22)** 
1.1910 

(8.45)** 
1.6707 

(11.74)** 

CASHMTA 
 

-0.7096 
(3.07) **  

-0.9904 
(3.81)** 

RSIZE 
 

-0.0939 
(3.81)**  

-0.1130 
(4.24)** 

PRICE 
-0.5644 

(17.05)** 
-0.5330 

(13.63)** 
-0.5630 

(16.53)** 
-0.5142 

(12.58)** 

MB 
 

0.0693 
(3.92)**  

0.0810 
(4.48)** 

SIGMA 
0.5491 

(7.92)** 
0.5367 

(7.76)** 
0.4472 

(6.22)** 
0.4293 

(5.99)** 
EXCESS 
RETURN 

-0.8803 
(5.22)** 

-0.8769 
(5.18)** 

-0.8320 
(4.71)** 

-0.8332 
(4.69)** 

INTERCEPT 
-7.8232 

(63.23)** 
-8.8070 

(26.74)** 
-7.6472 

(59.83)** 
-8.8584 

(25.03)** 
Panel B: Goodness-of-Fit Statistics 

AIC 14683 14712 13035 13053 
AUC 0.711 0.710 0.720 0.717 

Notes: The table reports the estimation results of the discrete hazard model.  Unless otherwise indicated, we use the 
annual sample spanning the 1980 to 2009 period.  Column “LASSO” is the LASSO-selected reduced-model.  
Column “CHS” is the CHS (2008) model.  Column “LASSO (1980-2002)” is the LASSO-selected reduced-model 
for the 1980 to 2002 period.  Column “CHS” is the CHS model (2008) for the 1980 to 2002 period.  In-sample AIC 
and AUC (the area under the ROC curve) is shown in the third row.  The absolute z-statistics are reported in the 
parenthesis, and ** denotes significance at the 1% level.   
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Table 2.3: Out-of-Sample Performance over the year 2003 to 2009 
 

Note: The table report three out-of-sample performance measures, including the out-of-sample accuracy ratio and 
the out-of-sample AUC (area under the ROC curve), and decile ranking.  Column “LASSO” is the LASSO-selected 
reduced-model.  Column “CHS” is the CHS (2008) model.  Column “LASSO+DD” is the LASSO-selected model 
augmented by the distance-to-default.  Column “DD” is the reduced-form model with the distance-to-default as the 
only predictive variable.   

 
  

 LASSO CHS LASSO+DD DD 
Accuracy Ratio 0.682 0.636 0.682 0.648 

AUC 0.841 0.818 0.841 0.824 
Percentage of Bankruptcy Filings 

1 59.62 58.65 59.62 55.77 
2 19.23 7.69 18.27 20.19 
3 5.77 12.5 7.69 7.69 
4 5.77 7.69 2.88 3.84 
5 0.96 5.77 3.85 1.92 

6-10 8.65 7.69 7.69 10.57 
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Figure 2.1: Number of Bankruptcy Filings in Each Year: 1980 to 2009. 
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Figure 2.2: Coefficient Paths using LASSO Variable Selection with 39 Explanatory Variables 
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Figure 2.3: Coefficient Paths using LASSO Variable Selection with 40 Explanatory Variables 
and Distance to Default 

  
 



 
 

 

3   Chapter Three 

Data Sample Selection Issues for Bankruptcy Prediction 

  



 

63 
 

3.1 Introduction 

There is continuing interest in developing and refining corporate bankruptcy prediction 

studies, especially given today’s tumultuous market environment. Corporate bankruptcy not 

only incurs serious financial loss to its creditors, but also has a high cost to the society and 

the country’s economy (Warner, 1977). In the United States, there are 245,695 reported 

bankruptcies filings made in the first quarter of year 2008 alone. While in 2002, the reported 

default loss reached 100 millions. This loss soared to an extremely high level of a trillion 

dollars today. Consequently, bankruptcy prediction studies that aid financial and investment 

decision-making have become very important to all those involved: owners, shareholders, 

lenders, suppliers, and government (Dimitras et al., 1996).  

Within the corporate bankruptcy arena, researchers have intensively devoted themselves 

to develop bankruptcy prediction models, for example, Altman (1968), Ohlson (1980), Odom 

and Sharda(1990) and Chava and Jarrow (2004). However, the issue of data sample selection, 

an indispensible and crucial step necessary for testing any bankruptcy prediction model, has 

received considerable less attention.  

Methodological issues on data selection were first investigated by Zmijewski (1984). In 

general, there are two major sampling techniques on data sample selection: choice based 

sampling technique and complete data sampling technique (Zmijewski, 1984). Choice based 

sampling technique implies keeping all of the available bankrupted company records in the 

data sample, while at the same time, keeping only part of the non-bankrupted companies to 

match with the bankrupted ones. Such matching is conducted either by random selection or 

by some criteria, like industry code, size of the company, etc. This approach is widely used in 

studies such as Beaver (1966), Altman (1968), Norton and Smith (1979), where models are 

estimated on data samples obtained by combining all distressed firms with the exact same 

number of the matched non-distressed firms. In addition, with the extensive number of 

artificial intelligent studies used in the corporate bankruptcy forecasting, choice based 

sampling technique has been applied as one of the most common data selection methods in 

neural networks (Odom and Sharda, 1990; Tam and Kiang, 1992; Latcher et al., 1995), 
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support vector machines (Härdle et al., 2005; Kim and Sohn, 2010) and etc. Choice based 

sampling technique successfully remedies the potential problem of extremely low frequency 

rate of bankruptcy events in the population. However, due to the inconsistent bankruptcy 

rates between the data sample and the population, choice based sampling technique might 

introduce biased parameter estimates and probability estimates. On the other hand, the 

complete data sampling technique carries all of the available companies’ records subject to a 

“complete data criterion” in population into the data sample. Data samples used in Ohlson 

(1980), Vassalou and Xing (2004), Chava and Jarrow (2004), Bharath and Shumway (2008) 

are constructed by maintaining their entire “known” corporate records. This data sample 

selection approach effectively eliminates the previous estimation bias but it might require 

more computational efforts.  

Despite the existence of different data sample selection methods, there have been few 

studies conducted to explore data sample selection issues in the corporate bankruptcy 

research. This paper uses both a corporate bankruptcy data set and simulation examples to 

examine the data selection issues. For the corporate data set, we constructed an updated 

bankruptcy database consisting of firms traded either on “NYSE”, “AMEX”, or “NASDAQ” 

from the “Compustat” database. 

For the simulation examples, we conducted a full simulation study using the Monte 

Carlo method. Simulation studies are important tools for model validation in the statistics and 

engineering literature, they are not popular in the finance literature. One of the nice features 

of simulation is the fact that the underlying true patterns are known. Such feature is of 

particular interest under the framework of Basel II. Basel II significantly promotes the 

importance of validating the bankruptcy prediction model. However, corporate bankruptcy 

probabilities can only be obtained from estimation. Alternatively, with simulation, one can 

gain better insight into the effect of data sample selection methods on the bankruptcy 

predictions, and derive more solid and convincing methodology. Monte Carlo simulation 

studies can effectively eliminate random sample errors through multiple replications, 

resulting in reliable simulation conclusions. Hence, Monte Carlo simulations are applied in 
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order to investigate the effect of data sample selection methods on different bankruptcy 

prediction studies more thoroughly. 

Bankruptcy classification is important to help the creditors make financial decisions. To 

measure the goodness of fit for data selection methods, several common criteria are used in 

this work. In the context of forecasting binary bankruptcy decisions, predicted classifications 

could result in two types of misclassification errors. One is referred as Type I error, the error 

of misclassifying a bankrupted firm as a non-bankrupted one. Type II error is considered as 

misclassifying a non-bankrupted firm as a bankrupted one. As in most existing bankruptcy 

prediction studies, we assess the overall misclassification rate, i.e. we count the total 

misclassification errors regardless of the error type. Such an approach is equivalent to 

assigning a symmetric cost to these two misclassification errors (Hsieh, 1993). However, it is 

worth noting that in the bank decision context, the costs associated with these two types of 

misclassification errors might differ. From the empirical study of commercial bank loan in 

Altman et al. (1977), it is demonstrated that the cost of misclassifying a bankrupt firm as a 

non-bankruptcy is approximate 35 times the cost of the other misclassification error. In Weiss 

and Capkun (2005), Type I error can be compared to the cost of lending to a defaulted firm. 

The loss includes both of the lending principle and interest. The Type II error cost is 

considered as the opportunity cost for not lending to a healthy firm. Thus, compared to Type I 

error, cost of Type II error is much less or even negligible. To address such asymmetric 

misclassification cost issues, we incorporate a higher error cost of misclassifying a 

bankrupted firm as a non-bankruptcy, and compare the weighted misclassification rate. 

On the other hand, knowing the probability of bankruptcy is of great interest, like the 

credit risk and bond pricing studies (Merton, 1974). For example, as one of the four key 

parameters used in the internal rating based (IRB) approach (Schuermann and Hanson, 2004), 

the probability of default assessment has a crucial influence on credit loss estimation. The 

product of the probability of default and the loss given default yields the so-called expected 

loss. This resulting expected loss estimate is the key part of the New Accord Capital Basel. 

New Accord Capital Basel is currently used by the major banks on a daily basis to report the 
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regulatory capital (Crouchy et al., 2000). To evaluate the accuracy of the predicted 

probability, the simulation study compares the differences between the underlying true 

probability and the estimated probability of bankruptcy. 

It is worth noting that all the goodness-of-fit measurements stated above are evaluated on 

the same hold-out prediction data sample. This design provides a consistent benchmark of the 

out-of-sample predictive performance for different data sample selection methods.  

In our study for both simulation and empirical data, we discovered that for binary 

bankruptcy classification problems, we concurred with Zmijewski (1984) findings in terms of 

negligible choice based sample bias in the overall classification rate for the financial distress 

models, if the model is assessed under symmetric misclassification cost. Within the scenario 

of an asymmetric misclassification error cost, our results indicate that applying 0.5, a fixed 

cut-off probability, for different data sampling methods leads to an increased number of Type 

I errors. The implication of this is not favored because the high loss cost is often associated 

with Type I errors. A further study suggests if “expensive” Type I errors are assumed, the 

“in-sample” bankruptcy rate is a recommended cut-off probability. Both our updated 

corporate bankruptcy data and simulation results suggest this cut-off probability choice 

provides stable Type I errors. In particular, this conclusion could be justified within the 

logistic regression model setting. Thus, we argue that, within the logistic regression model 

context, the choice based sampling technique is sufficient to provide the equivalent predictive 

ability as the complete data sampling technique if the in-sample bankruptcy rate is applied as 

the cut-off probability. 

Under the circumstance that an explicit probability of undergoing financial distress may 

be desired, our simulation results recommend applying the complete data sampling technique. 

The complete data sampling technique presents negligible deviance of the estimated 

probability from the true probability of bankruptcy. The choice based sampling technique 

yields a biased probability estimate. In logistic regression, the main coefficient estimation 

bias lies in the intercept term. Therefore, correcting the intercept could eliminate the 

probability bias significantly.  
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On the corporate bankruptcy data set, our study further investigates two non-linear 

classification methods, Neural Network (NNET) and Support Vector Machines (SVM), to 

examine the prediction effect of data sample selection methods. NNET and SVM have been 

widely used in the field of artificial intelligence. But recently, those methods have also gained 

significant popularity in bankruptcy classification studies. In our limited empirical study, 

both NNET and SVM present higher number of correct predictions of the bankruptcy records 

if choice based sampling technique is used. In particular, when the training sample is 

consisted of equal number of bankrupted companies and the non-bankrupted companies, 

NNET and SVM outperform logistic regression in classification prediction. However, failing 

to adjust the cut-off probability would produce devastating predictions. Applying 0.5 as the 

cut-off probability might possibly result in no successful bankruptcy prediction. Given the 

superior importance of predictive accuracy in the bankruptcy records, the choice based 

sampling technique is recommended for both NNET and SVM.  

 Our paper is organized as follows. Section 3.2 presents our approach to compare 

different data sample selection methods. Section 3.3 describes the simulation designs used in 

this study and briefly discusses the simulation results. This is then followed by the real-life 

bankruptcy database description of Section 3.4 Section 3.5 describes an empirical study 

analysis. Section 3.6 concludes the paper. 

3.2 Model 

Our main focus of this paper is to study the prediction effect of data sample selection 

methods. For validation purpose, we adopt the logistic regression model, the most extensively 

used statistical model in bankruptcy prediction studies, to illustrate and compare the different 

data sample selection methods. Other models could also be used.  

First, let n  be the sample size, and ( )Τ
ΥΥΥ=Υ

n
,,, 21  be the observed 

cross-sectional binary outcome vector, indicating a firm’s bankruptcy status: Υ
i

=1, if the ith 

company filed bankruptcy during the sample period and Υ
i

= 0, otherwise.  

The logistic model is:  
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Logit p
i( )= log

p
i

1− p
i

 

 
 

 

 
 = Χ

i
* β

   
for ni ,,2,1 = ,             (3.1) 

where the predictor i
Χ  is an independent covariate vector for the ith observation, β  is the 

regression parameter vector, and  
i

p  is the probability of the ith firm going bankruptcy. That 

is, 

p
i

= Ρ Υ
i
= 1Χ

i( ).                          (3.2) 

Let 
i

Υ̂  be the predicated bankruptcy status. 
i

Υ̂  
is predicted to be 1 if the estimated 

probability of a firm going bankrupt, ˆ p 
i
, is greater than a certain threshold, and 0 otherwise. 

Such a threshold is the so-called cut-off probability, denoted by cut
p . Determining an optimum 

cut-off probability in the bankruptcy classification prediction study is also important. We will 

elaborate more on this part in our simulation analysis (Section 3.3).  

There has been much research developed for variable selection methods to form a 

good predictor i
Χ

 
in order to achieve improved predictive performance. For illustration 

purpose, our study applies Return on Assets (ROA), Financial Leverage (FINL) and Liquidity 

(LIQ) as the covariate i
Χ , the same set of financial ratios as in Zmijewski (1984). 

Alternative covariate vectors consisting of cash-flow ratios and turn-over ratios could also be 

used.  

Several criteria are employed to measure the goodness of fit. If a binary bankruptcy 

classification prediction is of interest, we establish a two by two misclassification matrix, as 

in Table 3.1. In this misclassification matrix, let entry A report the total number of correct 

bankruptcy predictions, i.e. when 1ˆ =Υ=Υ
ii  

for  ,,,2,1 ni =  and D report the total 

number of correct non-bankruptcy predictions, where 0ˆ =Υ=Υ
ii

. Entry B reports the total 

number of Type I errors, i.e. when 0ˆ =Υ
i

 but 1=Υ
i . C reports total number of Type II 

errors, i.e. 1ˆ =Υ
i

 but 0=Υ
i . In addition, we report the misclassification rates under two 

different scenarios. One is for the symmetric misclassification cost case, and the other is for 
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the asymmetric misclassification cost case. The symmetric misclassification rate (MR) is 

derived by taking the quotient of the total number of misclassified cases over the total 

number of observations. Applying our matrix notation, MR can be calculated as 

%100*
D)CB(A

CB
Rateication MisclassifMR

+++

+
== .                (3.3) 

In contrast, the asymmetric misclassification rate, denoted by the weighted misclassification 

rate (wMR), incorporates the asymmetric misclassification cost ratio parameter ρ  (Nanda 

and Pendharkar, 2001) to (3.3). Hence, using matrix notation: 

%,100*
D)CB1)(A+(

C*B
Rateication Misclassif eighted

+++

+
==

ρ

ρ
wwMR

      

(3.4) 

where ρ  is the cost ratio of Type I errors over Type II errors. Note that because the cost of 

making Type I errors and/or Type II errors are intangible and immeasurable (Koh, 1992), and 

it may also vary within different industries, it is not easy to obtain a good estimate for the 

value of ρ . Nevertheless within our banking decision context, it remains safe to assume that 

1≥ρ . 

On the other hand, given that the true underlying probability of bankruptcy i
p

 
is 

known in the simulation study, the model goodness-of-fit can be measured by the 1-norm 

distance (also known as Manhattan distance) and 2-norm distance (also known as Euclidean 

distance) between the true probability p
i
, and the estimated probability i

p̂ . That is, 

1-norm distance between p and p̂ : 
=

−=
n

i

iip
pp

n
D

1

,1
ˆ

1
,              (3.5) 

2-norm distance between p and p̂ : ( )2

1
,2

ˆ
1

ii

n

i

p
pp

n
D −= 

=

.          (3.6) 

Here p  and p̂ without the subscript “i” denote the corresponding probability vectors for 

the n observations, where n is the sample size. 

The 1-norm distance and 2-norm distance between the true regression parameter 

vector β  and the estimated regression parameter β̂  are also reported, denoting by, 
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1-norm distance between β  and β̂ : 
=

−=
k

j

jj
k

D
1

,1
ˆ1

βββ ,         (3.7) 

2-norm distance between β  and β̂ : ( )2

1
,2

ˆ1
jj

k

j k
D βββ −= 

=

.       (3.8) 

Here k is the number of regression parameters. In our case, k = 4.  

3.3 Simulation Analysis 

To address the data sample selection issues, we conducted a Monte Carlo simulation 

study. In this simulation study, the multivariate vector, Χ
i
,  is designed to follow a 

multivariate normal distribution, using the notation, 

Χ
i
~ N µ,( )   ni ,,2,1 = , 

where the vector µ  is obtained by concatenating the respective expectations of the three 

independent financial ratio variables: ROA, FINL, and LIQ;   is the corresponding 

covariance variance matrix, and n is the sample size. In the subsequent simulation analysis, 

we present the results obtained at a sample size n = 10000. Data sets with different sample 

sizes have also been simulated and we reached similar conclusions. 

To mimic the real data situation, we choose appropriate values for µ  and . Since 

our simulation study adopts the unbiased parameter estimator β = −4.8,−3.599,−5.406,−0.1( ) 

from Zmijewski (1984) as the regression parameter vector, the values of µ  and  are 

therefore assigned as the reported sample statistics for ROA, FINL, and LIQ respectively, in 

that sample period 1972 to 1978. Also 
i

p , the underlying true probabilities of bankruptcy, is 

computed by fitting the logistic regression model in (3.1). 

In order to relate the binary classification variable i
Υ

 
with its underlying probability, 

i
p , a Bernoulli distribution is applied to generate the variable i

Υ
 

and represented by 

Υ
i
~ Bernoulli p

i( ).
 

The above designed procedure produces the entire simulation data set. All of the 
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following validation steps are then applied to this data set. In particular, we start by 

partitioning this simulation data set into two subsamples, an “estimate data subsample” 

(training data sample population), and a “prediction data subsample” (testing data sample). 

With different data sampling techniques, training data samples are selected from this training 

data sample population. The testing data sample is used to assess the goodness of fit metrics 

across all the training data samples. Such out-of-sample testing design not only provides a 

good benchmark for model comparison and validation, it also effectively eliminates the 

“in-sample over-fitting” effect (Clark, 2004). As stated previously, consistent simulation 

conclusions could be reached by running the Monte Carlo simulation for 100 replications. For 

illustration purposes, one simulation with training data sample population consisted of 403 

“1”s and 4598 “0”s and testing data sample with 402 “1”s and 4597 “0”s is presented.  

As a subsequent step, three choice based data samples are selected using the choice 

based sampling technique. Every choice based training data sample includes all 403 “1”s 

records in training data sample population. However, the number of randomly selected “0”s 

varies from 403, 806 to 1612. As a result, the in-sample bankruptcy rates are 0.5, 0.3333 and 

0.2 respectively. One more data sample is selected from the training data sample population 

using the complete data sampling technique. Such selection method creates a complete 

replication of the original training data sample population. Therefore, a total of four different 

training data samples, three from the choice based sampling technique and one from the 

complete data sampling technique, are available to be modeled and compared by their 

goodness of fit measures evaluated on the same testing data sample. Here we present the 

results with the cost ratio parameter 35=ρ  as suggested in Altman et al. (1977) to derive 

the weighted misclassification rate (wMR) as in equation (3.4) for the purpose of illustration. 

Other choices of the cost ratio capture similar trends. 

Table 3.2 reports the resulting misclassification matrices for the model developed from 

the four training data samples. Clearly, the upper block of Table 3.2 demonstrates that as the 

composition of the training data sample approaches the training data sample population, the 

total misclassification rate decreases if applying 0.5 as the cut-off probability. Such fact 
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concurs with Zmijewski (1984) findings. However, it is also worth noting that the weighted 

misclassification rate displays an increasing trend.  

Next, let us focus on the case of the asymmetric cost: in extreme, assume that the Type 

I error cost is infinity while the Type II error cost is 0. Then, the comparison on the weighted 

misclassification rate reduces to comparing the reported entry B for each training data sample. 

It is then obvious that the number of Type I errors is almost 5 times larger across these four 

training data samples. Such significant increase implies that it is not appropriate to apply a 

fixed cut-off probability across different training data samples, given that the cost ratio is 

asymmetric. Therefore, as the data sample approaches the complete sample, we conclude that 

using a fixed cut-off probability would incur increased Type I errors, but decreased total 

misclassification errors.  

The lower part of Table 3.2 describe the resulting misclassification matrices if applying a 

cut-off probability equal to the corresponding in-sample bankruptcy rate in the “choice based 

training data sample”. Such in-sample bankruptcy rate is computed by dividing the number of 

bankrupted companies by the total number of companies in the estimate data sample. It is 

shown that every reported number in entry A through D does not vary much. As a direct 

result, a series of stable misclassification rates are captured for both the unweighted and 

weighted misclassification rates. Such results confirm the statement that under the logistic 

regression model, the choice based sampling technique produces a predictive classification 

ability equivalent to the complete data sampling technique when the cut-off probability 

applied on the hold-out testing sample is set to the respective training sample’s bankruptcy 

rate. 

Furthermore, it is also shown in Table 3.2 that with one training data sample, choice of 

cut-off probabilities has a significant effect on the weighted misclassification rates. This is 

due to the dramatic change in the reported number of Type I errors, which dominates the 

weighted misclassification rate computation. Therefore, in different choice-based data 

samples, an appropriate choice of cut-off probability depends on the specification of the cost 

ratio. Also, if more attention is needed for Type I errors, the choice based sampling technique 
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with a cut-off probability equal to the training sample’s in-sample bankruptcy rate may be 

recommended.  

The first two rows of Table 3.3 report the resulting 1-norm distance p,1D
 

and 2-norm 

distance p,2D  between the true probability, p , and the estimated probability of bankruptcy,

p̂ . One can see that the probability difference decreases significantly in the first three 

samples, and becomes negligible in the complete data sample. Figure 3.1 depicts the 

graphical comparisons between the true probability and the predicted probability of 

bankruptcy on the same predication data sample for the four simulation samples. An 

up-lifting effect is observed in the first plot, which is obtained from the training sample with 

equal number of bankruptcy records and non-bankruptcy records. But the trend fades out 

gradually, and a straight line is plotted for the complete data sample. This is an evidence of 

the fact that oversampling the bankrupted records would produce an inevitable biased 

probability estimate effect. Based on these simulation facts, we propose to apply complete 

data sampling method to reduce the deviance of the predicted probability from the true 

probability. Table 3.3 and Figure 3.1 yield consistent results in this sense. Therefore, we 

conclude that if the probability of bankruptcy is of interest, the complete data sample 

selection is a recommended sampling technique. 

The 1-norm distance β,1D
 

and 2-norm distance β,2D  between β and β̂  are 

reported in the last two rows of Table 3.3. Similar to the previous comments, the difference 

between the true regression parameter and the estimated regression parameter is smallest in 

the complete data sample.  

We also tried Monte Carlo simulation with 100 replications, and get similar results. 

Thus, we only report the above results in the interest of parsimony. We see that for binary 

bankruptcy classification predictions, the choice based sample technique may still be 

appropriate and displays satisfactory misclassification rates. Especially in logistic regression 

model setting, it is verified that with some moderate cut-off probability justification, choice 

based sampling technique yields the same predictive effect as the complete data sampling 
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technique. However, necessary attention should be paid to determine a suitable cut-off 

probability based on different specifications of the cost ratio “ ρ ”. Regarding the assignment 

of a higher cost associated with Type I error, our simulation study demonstrates that applying 

the cut-off probability equal to the training data sample’s in-sample bankruptcy rate presents 

smaller weighted misclassification rates and thus outperforms the fixed cut-off probability. 

Alternatively, if a probability of bankruptcy is desired, the complete sampling technique is 

recommended. The complete sampling technique provides the negligible difference between 

the estimated probability and the true probability of bankruptcy, whereas, the choice-based 

sampling technique would result in a biased probability estimate. 

3.4 Data  

In section 3.3, we mainly discuss the data sample selection issues from the 

perspective of simulation. In the subsequent empirical analysis, we employ a similar 

procedure and further verify the proposed recommendations.  

As part of the empirical study, we construct a bankruptcy database by including all 

publicly traded companies available in the “Compustat North America” with Standard 

Industrial Classification (SIC) code less than 6000. We further screened the corporate data 

sample by excluding firms other than those traded on either “NYSE”, “AMEX”, or 

“NASDAQ” stock exchange during 1972 to 2000. The “Compustat” database contains the 

corporate financial data until 2009. However, after 2000, there is a notable dropping in the 

number of the reported bankrupted firms. Only a few bankruptcy filings were recorded after 

that. Such trend is not in line with the reports from other major research works. Hence, we 

limit our analysis only up to the year 2000.  

In our study, a firm is defined as bankrupted if it makes either a Chapter 7 or Chapter 

11 filing between January 1972 and December 2000. Applying all these filter conditions 

resultes in a database consisted of a total of 172 bankrupted companies and 7218 

non-bankrupted companies. This is a more up-to-date database compared to Zmijewski 

(1984)’s work, which was built on a time horizon from 1972 to 1978. 
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For our empirical study, we apply different data sampling techniques on a cross 

sectional data set. For the bankrupted companies, only the most recently reported financial 

record, prior to the bankruptcy filing, will be collected. for the non-bankrupted company, we 

randomly select a fiscal year from the sample period. Only the selected year’s annual 

accounting data entry for a non-bankrupted company will be used for the following empirical 

analysis.  

Figure 3.2 reports the total number of bankruptcies over the sample period. It is 

shown that the number of bankruptcies increases over the entire period, and rise dramatically 

in the middle of 1980s and early 1990s. 

Then, a partition strategy, similar to the one we used on our simulation data set is 

applied to this data set. It results in an “estimate data subsample” of 86 bankrupted companies 

and 3609 non-bankrupted, and a “prediction data subsample” of 86 bankrupted companies 

and 3609 non-bankrupted companies. Again, for model comparison and validation purpose, 

the prediction data subsample is designed to capture the out-of-sample predictive 

performance across different data sampling techniques. 

3.5 Empirical Application 

To investigate the recommendations derived from the Monte Carlo simulation study 

on this corporate bankruptcy data set, we apply the same validation procedure to the training 

data sample population, and report our goodness-of-fit measures on the testing data sample. 

In particular, three training data samples are selected using the choice based sampling 

technique. Every choice based data sample includes all of the 86 bankruptcy records, as 

defined. But we manipulate the composition ratio “r”, for each estimate data sample, by 

randomly selecting different numbers of non-bankruptcy records. And “r” is the ratio of the 

number of bankruptcies over the number of non-bankruptcies. As a result, the three training 

data sample contains 86 (i.e. 1:1=r ), 258 (i.e. 3:1=r ) to 860 (i.e. 10:1=r ) 

non-bankrupted companies with the in-sample bankruptcy rates 0.5, 0.25 and 0.0909 

respectively. Furthermore, the complete data sampling technique creates one more data 

sample of the 86 bankrupted companies, and 3609 non-bankrupted companies. Therefore, we 



 

76 
 

report the misclassification matrices and the two types of misclassification rates for these four 

training data samples as the goodness of fit in the regime of the binary bankruptcy forecasting 

study.  

In addition to the application of the logistic regression validation model, we further 

investigate two popular classification methods, neural network (NNET) technique and 

Support Vector Machines (SVM) approach, to study the prediction effect of the different data 

sample selection methods on this corporate bankruptcy data set. The misclassification 

matrices and the two types of misclassification rates are reported. 

Note that the power of this empirical study is limited to provide the probability 

deviance comparisons for the estimated probabilities of bankruptcy from the true probability, 

as reported in the simulation analysis. This is because the validation of such comparison is 

violated due to the unavailability of the true probability of bankruptcy. Again, in order to 

provide a convincing benchmark conclusion, the same hold-out test sample is used across 

models for validation comparisons.  

3.5.1 Logistic Regression 

Table 3.4 reports the empirical results of using the logistic regression model for our 

bankruptcy data set. It is shown that using 0.5 as the cut-off probability, the total 

misclassification rate has decreased significantly, whereas the weighted misclassification rate 

increases as the sample bankruptcy rate approaches the population bankruptcy rate. However, 

if the cut-off probability is chosen to be the in-sample bankruptcy rate, similar “stable 

misclassification rate and weighted misclassification rates” phenomenon is observed here as 

in the simulation data set.  

Figure 3.3 compares the weighted misclassification rates associated with different cost 

ratios, “ ρ ”, for different data sampling techniques. To obtain this plot, we calculate the 

weighted misclassification rates by iterating the cost ratio “ ρ ”, from 1 to 200, for three 

samples: the first two choice based data samples and the last one, the complete data sample. 

The black dot and the red diamond depict the choice based sampling technique for the data 

sample with “r” as 1:1 and 1:3. The complete data sample is plotted with blue triangle 
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elements. Each resulting misclassification matrix is computed by applying the in-sample 

bankruptcy rate as the cut-off probability. Note that the weighted misclassification rates 

generated by the three samples are very close to each other. Also, the three lines converge to 

one thicker line when ρ  grows bigger. This plot visually verifies the stable 

misclassification entries reported in Table 3.4 when the cut-off probability is set to the 

bankruptcy rate in sample.  

Therefore, we reach consistent conclusion for our empirical study and the simulation 

study. With the logistic regression model, choice based sampling technique and the complete 

data sampling technique yield similar predictive effect if the cut-off probability is set to the 

bankruptcy rate in the estimate sample. In an asymmetric cost case, the strategy of choice 

based sampling technique with a cut-off probability equal to the in-sample bankruptcy rate is 

recommended.  

3.5.2 Neural Networks 

Both the Neural Network (NNET) and SVM are important non-linear classification 

methods with much attention in recent development. In this section, we further examine the 

data sample selection issues for bankruptcy prediction with the neural network approach 

through an empirical study.  

Neural network is a nonparametric learning system. It is constructed with 

inter-connected processing units, organized in layers. In general, there are three layers in the 

neural network: input layer, output layer, and hidden layer. Pioneer works, such as Odom and 

Sharda (1990), Tam and Kiang (1992), and Zhang et al. (1999), have shown the superior 

bankruptcy prediction results achieved by the neural network approach. Particularly, in the 

case of severe loss incurred by the Type I errors, neural network is suggested as a “more 

robust approach” (Latcher et al., 1995). With the virtues stated above, we conduct the 

empirical work with two simple neural network configurations: one without hidden layers 

and the other has a 5-unit hidden layer. The results of the corresponding classification 

matrices are presented in the upper panel and lower panel, respectively, of Table 3.5. 
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We observe the followings. First, with one training data sample, applying the 

bankruptcy rate in sample as the cut-off probability always yields higher misclassification 

rate but lower weighted misclassification rate than the case of using a fixed 0.5 as the cut-off 

probability. In particular, if applying in sample bankruptcy rate as the cut-off probability, less 

bankruptcy predictions are correctly captured, when the data sample approaches to the 

population composition. Second, for both Two-layer NNET and three-layer NNET, choice 

based sampling technique managed to provide higher rate of correct prediction of bankruptcy 

records than the complete data sampling technique. In contrast, the predictive performance hit 

the bottom if complete data sampling technique is adopted combining with the cut-off 

probability set to 0.5. In our case, for the two-layer neural network, the number of correct 

bankruptcy predictions decreased to zero drastically from 54 by changing from choice based 

sampling technique to complete data sampling technique using 0.5 as the cut-off probability. 

And in the three-layer neural network configuration, the number of the correct bankruptcy 

predictions displays the same dropping trend, but in a slower rate. This is possibly due to the 

“rare event” phenomenon of the bankruptcy data in nature. Third, it is also worth noting that 

both the misclassification rates and the weighted misclassification rates reported in the lower 

part are much lower than those in the upper part. This is directly due to the additional layer, 

which is designed to generate a better learning model.  

With the neural network approach, choice based sampling technique demonstrates 

higher accuracy in capturing the bankruptcy records and setting cut-off probability as the 

bankruptcy rate in sample provides relatively stably lower weighted misclassification rate. 

Thus, for this empirical study, if “expensive” Type I errors are assumed, choice based 

sampling technique with cut-off probability equal to the bankruptcy rate in sample is 

recommended. 

3.5.3 Support Vector Machines  

In addition, we examine the data sample selection issues using the Support Vector 

Machines (SVM) for this empirical data. The results of misclassification matrices using the 

SVM approach are shown in Table 3.6. Support Vector Machine, developed by Vapnik 
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(2000), is a non-linear classification method developed from statistical learning theory. It has 

been widely applied in the expert system, text recognition, just to name a few. The appealing 

properties of SVM are its transparency and accuracy in the predictive study. Thus, under the 

Basel II framework, which greatly promotes the model’s accuracy, SVM becomes an 

attractive candidate for the corporate bankruptcy prediction study. Many researchers 

including Härdle et al. (2005) and Kim and Sohn (2010) have reported the significant 

improvement in bankruptcy prediction accuracy using SVM technique.  

Table 3.6 demonstrates the classification ability of SVM controlled at different level of 

capacity C -- the regularization term in the Lagrange formulation. The capacity C is related to 

the generalization ability of the SVM. In Table 3.6, the classification results with capacity C 

= 1 is presented in the upper panel, and the capacity reported in the lower panel is set to 100.  

Similar trends shown in the neural network setting are also observed here. For instance, 

applying the bankruptcy rate in sample as the cut-off probability outperforms the fixed 

cut-off probability in the weighted misclassification rate, but underperforms it in the 

symmetric cost case.  

Besides, we also notice that, especially in the complete data sample when C = 1, SVM 

totally missed the bankruptcy records when a fixed 0.5 cut off probability is used. Such “zero 

entry” for the correct count of bankruptcy is the least desirable. The very low frequency rate 

of the bankruptcy events of the data in nature might be the reason for such outcome. And one 

possible remedy is to adjust the cut-off probability, as illustrated here, from 0.5 to the 

bankruptcy rate in sample. Such a cut-off probability adjustment increases the number of 

correct bankruptcy prediction by 10 when C = 1, and by 2 when C = 100. 

In this empirical study, SVM also managed to provide higher bankruptcy classification 

accuracy than the logistic regression in the data sample of equal number of the bankruptcy 

records and the non-bankruptcy records. In particular, SVM with C = 1 provides 65 correct 

“1” predictions, whereas the logistic provides only 49 correct bankruptcy predictions. Given 

the above limited empirical study, complete data sampling technique may not be 

recommended under the SVM model setting. Choice based sampling technique with 0.5 cut 
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off probability is capable of providing superior prediction results. Thus in SVM, if 

“expensive” Type I errors are the major concerns, choice based sampling technique is 

recommended.  

In summary, the empirical results obtained by fitting the logistic regression model are 

consistent with the simulation results. Hence, under logistic regression setting, we 

recommend special care to be devoted in choosing a suitable cut-off probability for the binary 

bankruptcy classification problem. The choice for the cut-off probability depends on the cost 

ratios between the Type I errors and Type II errors. In a symmetric cost case, complete data 

sampling technique is always recommend, whereas in an asymmetric cost case, choice based 

sampling technique with cut-off probability equal to the in sample bankruptcy rate would 

provide lower weighted misclassification rate. On the other hand, extrapolating from the 

simulation results, if a precise probability of bankruptcy is of interest, the complete data 

sampling technique is recommended. 

NNET and SVM have also been able to produce accurate classification results. In the 

asymmetric cost case with higher loss associated with Type I error, NNET and SVM 

outperform the logistic regression by presenting more correct bankruptcy predictions. The 

suggested strategy is to choose equal number of records from both groups: bankruptcy and 

non-bankruptcy, and the cut-off probability is set to 0.5.  

To conclude for this empirical study, for both NNET model and SVM setting, if Type I 

errors are assumed to incur a significant asymmetric cost, choice based sampling technique 

with 0.5 as the cut-off probability is recommended. 

3.6 Conclusion  

Our study developed a framework to investigate the data sample selection issues for 

bankruptcy prediction studies and provided guidelines for data sample selection process for 

both academics and practitioners. With the presence of different data sample selection 

methods, we conclude that the method used to select the data sample depends on the 

objective of a given study. In the context of binary bankruptcy prediction studies, the choice 

based sampling technique is a suitable and easy-to-implement data selection method. 

However, if one takes into account the different misclassification costs incurred by the two 
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different types of misclassifications, it is essential to make an appropriate choice of cut-off 

probability. It is shown in our study that if within the decision role similar to a bank lender, i. 

e. misclassifying a bankruptcy as a non-bankruptcy incurs a much higher cost than 

misclassifying a non-bankrupted firm as a bankruptcy, applying a fixed or predefined cut-off 

probability to classify bankruptcy across different data samples implies increased unfavorable 

costly errors, whereas, selecting a cut-off probability equivalent to the estimate data sample 

bankruptcy rate leads to a considerably more stable out-of-sample predictive ability. On the 

other hand, if a precise probability of bankruptcy is of interest, the complete data sampling 

technique is recommended because estimation obtained via this sampling technique results in 

negligible deviance from the underlying true patterns. 
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Table 3.1: Misclassification Matrix 

Entry A reports the total number of correct bankruptcy predictions, and entry D reports the 

total number of correct non-bankruptcy predictions. Entry B reports the total number of 

misclassifying a bankruptcy as a non-bankruptcy while entry C reports the total number of 

misclassifying a non-bankruptcy as a bankruptcy. The last two appended rows report the total 

misclassification rate (MR), and weighted total misclassification rate (wMR). 
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Table 3.2: Simulated data sample results for bankruptcy classification study 

Table 3.2 reports the resulting misclassification matrices of the three different choice based 

data samples and one complete data sample for a binary classification bankruptcy prediction 

study along with the total misclassification rate. “r” is the composition ratio of the estimate 

data sample, reported as the number of bankruptcies over the number of non-bankruptcies in 

the training data sample. Two types of cut-off probability are used, one is fixed at 0.5 and the 

other is varied according to the bankruptcy rate in each estimation sample. 

 Choice Based  

r = 1:1 

Choice Based  

r = 1:2 

Choice Based  

r = 1:4 

Complete 

Sampling 

5.0=
cut

p  356 570 330 370 290 201 200 61 

46 4027 72 4227 112 4398 201 4536 

M.R. 12.32% M.R. 8.84% M.R. 6.26% M.R. 5.26% 

w.M.R. 1.21% w.M.R. 1.61% w.M.R. 2.29% w.M.R.  3.94% 

*samplein 

 rate Bankruptcy=
cut

p
 

356 570 358 595 363 610 368 629 

46 4027 44 4002 39 3978 34 3968 

M.R. 12.32% M.R. 12.78% M.R. 13.50% M.R. 13.27% 

w. M.R 1.21% w. M.R 1.19% w. M.R 1.10% w. M.R 1.01% 

*Bankruptcy rate is calculated as dividing the total number of records in sample by the 

number of the bankruptcy records. 
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Table 3.3: Probability distance result from simulated data samples 

The first two rows of Table 3.3 report the 1-norm and 2-norm distance, calculated as in (3.5) 

and (3.6) respectively, between the true probability and the estimated probability of 

bankruptcy on the “predicted data subsample” across these four data samples. The third and 

fourth row of Table 4 report 1-norm and 2-norm distance, calculated as in (3.7) and (3.8) 

respectively, between the true regression parameter and the estimated regression parameter 

on the “predicted data subsample” across these four data samples. 

 Choice 

Based  

r = 1:1 

Choice 

Based  

r = 1:2 

Choice 

Based  

r = 1:4 

Complete 

Sampling 

p,1D
 

(*0.01) 12.447 8.323 4.595 0.409 

p,2D (*0.001) 48.501 23.490 8.306 0.098 

β,1D
 

3.209 3.104 2.867 2.846 

β,2D
 

36.246 32.440 31.013 30.216 
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Table 3.4: Empirical data sample analysis using logistic regression 

Table 3.4 reports the resulting misclassification matrices along with the total 

misclassification rate of these four data samples for a binary classification bankruptcy 

prediction study. “r” is the composition ratio of the estimate data sample, reported as the 

number of bankruptcies over the number of non-bankruptcies in the training data sample. 

Two types of cut-off probability are used, one is fixed at 0.5 and the other is varied according 

to the bankruptcy rate in each estimation sample. 

 

 Choice Based  

r = 1:1 

Choice Based  

r = 1:3 

Choice Based  

r = 1:10 

Complete  

Sampling 

5.0=
cut

p  49 1579 2 40 1 16 0 2 

37 2030 84 3569 85 3593 86 3607 

M.R. 43.73% M.R. 3.36% M.R. 2.73% M.R. 2.38% 

w. M.R 2.16% w. M.R 2.24% w. M.R 2.25% w. M.R 2.26% 

*samplein 

rate Bankruptcy=
cut

p

 

49 1579 51 1590 47 1477 51 1665 

37 2030 35 2019 39 2131 35 1994 

M.R. 43.73% M.R. 43.98% M.R. 41.03% M.R. 46.01% 

w. M.R 2.16% w. M.R 2.12% w. M.R 2.14% w. M.R 2.17% 

*Bankruptcy rate is calculated as dividing the total number of records in sample by the 

number of the bankruptcy records. 
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Table 3.5: Empirical data sample analysis using Neural Network  

Table 3.5 reports the resulted misclassification matrices along with the total misclassification 

rate of these four data samples. The model used for the upper part is the Neural Network 

without hidden layer, i.e. a two-layer structural Neural Network, and the lower part is 

reported for a Neural Network with a 5-units hidden layer. In each case, two types of cut-off 

probability are further used, one is fixed at 0.5 and the other is varied according to the 

bankruptcy rate in each estimation sample 

NNET  Choice Based  

r = 1:1 

Choice Based  

r = 1:3 

Choice Based  

r = 1:10 

Complete  

sampling 

Two- 

Layer
 

5.0=
cut

p  54 1548 1 17 0 2 0 3 

32 2061 85 3592 86 3607 86 3606 

M.R. 42.76% M.R. 2.76% M.R. 2.38% M.R. 2.41% 

w. M.R 2.00% w. M.R 2.25% w. M.R 2.26% w. M.R 2.27% 

*samplein  rate

Bankruptcy=
cut

p

 

54 1548 64 1943 61 1849 26 1023 

32 2061 22 1666 25 1760 60 2586 

M.R. 42.76% M.R. 53.18% M.R. 50.72% M.R. 29.31% 

w. M.R 2.00% w. M.R 2.04% w. M.R 2.05% w. M.R 2.35% 

Three

-Laye

r
 

5.0=
cut

p  52 874 35 362 13 44 9 0 

34 2735 51 3247 73 3565 77 3609 

M.R. 24.57% M.R. 11.18% M.R. 3.17% M.R. 2.08% 

w. M.R 1.55% w. M.R 1.61% w. M.R 1.95% w. M.R 2.03% 

*samplein  rate

 Bankruptcy=
cut

p

 

52 874 50 808 40 649 47 533 

34 2735 36 2801 46 2960 39 3076 

M.R. 24.57% M.R. 22.84% M.R. 18.81% M.R. 15.48% 

w. M.R 1.55% w. M.R 1.55% w. M.R 1.70% w. M.R 1.43% 

*Bankruptcy rate is calculated as dividing the total number of records in sample by the 

number of the bankruptcy records. 
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Table 3.6: Empirical data sample analysis with SVM  

Table 3.6 reports the resulted misclassification matrices along with the total misclassification 

rate of these four data samples. The model used is the Support Vector Machine with “Radial 

basis” kernel type, and the capacity parameter is realized as C = 1 and C = 100 respectively. 

In each case, two types of cut-off probability are further used, one is fixed at 0.5 and the 

other is varied according to the bankruptcy rate in each estimation sample.  

SVM  Choice Based 

 r = 1:1 

Choice Based 

 r = 1:3 

Choice Based 

 r = 1:10 

Complete 

sampling 

 

 

 

C=1 

5.0=
cut

p  65 1408 18 126 0 1 0 0 

21 2201 68 3483 86 3608 86 3609 

M.R. 38.6% M.R. 5.25% M.R. 2.35% M.R. 2.33% 

w.M.R. 1.61% w.M.R. 1.88% w.M.R. 2.26% w.M.R. 2.26% 

*samplein  rate

 Bankruptcy=
cut

p

 

65 1408 27 264 14 18 10 4 

21 2201 59 3345 72 3591 76 3605 

M.R. 38.6% M.R. 8.74% M.R. 2.71% M.R. 2.17% 

w.M.R. 1.61% w.M.R. 1.75% w.M.R. 1.91% w.M.R. 2.00% 

 

 

 

C=10

0 

5.0=
cut

p  55 853 36 245 14 15 10 3 

31 2756 50 3364 72 3594 76 3606 

M.R. 23.9% M.R. 7.98% M.R. 2.35% M.R. 2.14% 

w.M.R. 1.46% w.M.R. 1.50% w.M.R. 1.91% w.M.R. 2.00% 

*samplein  rate

 Bankruptcy=
cut

p

 

55 853 45 418 17 57 12 42 

31 2756 41 3191 69 3552 74 3567 

M.R. 23.9% M.R. 12.4% M.R. 3.41% M.R. 3.14% 

w.M.R. 1.46% w.M.R. 1.39% w.M.R. 1.86% w.M.R. 1.98% 

*Bankruptcy rate is calculated as dividing the total number of records in sample by the 

number of the bankruptcy records. 

 

  



 

88 
 

 

 

 

Figure 3.1: Comparisons between the true probability and the predicted probability of 

bankruptcy for the simulation samples. 
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Figure 3.2: total number of bankruptcies by year. 
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Figure 3.3: In logistic regression model, this figure displays the weighted misclassification 

rate with different cost ratio for ρ = 1, 2, …, 200 using the in-sample bankruptcy rate as the 

cut-off probability. Black dot represents results for the choice based sampling technique with 

r = 1:1, Red diamond corresponding to the r = 1:3 while the blue rectangle for the complete 

data sampling technique, where “r” is the composition ratio of the estimate data sample, 

reported as the number of bankruptcies over the number of non-bankruptcies in the training 

data sample. Three curves virtually overlay each other. 
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