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ABSTRACT 
 

Numerical investigation of the flow in a drop of a dielectric fluid suspended in another 

immiscible dielectric fluid in the presence of an alternating electric field has been carried out. 

When an electric field is applied to a drop of a dielectric fluid, the electric field induces stresses 

at the fluid interface. The normal stresses deform the drop and the tangential stresses produce a 

circulatory motion inside and outside the drop. Such electrical field induced flow can lead to 

significant enhancement of heat or mass transfer to from the drop. A stream function-vorticity 

approach with a finite volume formulation is adopted to numerically determine the unsteady flow 

field in the continuous and the dispersed phases. The volume of fluid (VOF) method is used to 

track the phase boundary and to predict the transient drop shape deformations for a range of 

capillary numbers. A new VOF formulation with Continuum Surface Force model has been 

derived and implemented to account for both the tangential and the normal electrical stresses 

present at the phase interface. Results show that the extent of drop deformation increases with 

capillary number and the strength of the electric field. By tracking Lagrangian fluid particles 

inside the deforming droplet, it is seen that the changing flow patterns due to drop deformation 

lead to significant fluid mixing inside the droplet.  Earlier studies available in the literature 

neglect drop deformations and may significantly underestimate the heat/mass transfer 

enhancement in the presence of an alternating electric field.  
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                                                                        CHAPTER 1 
 

INTRODUCTION 
 

1.1 Motivation and Significance: 

 

To develop energy efficient heat and mass transfer processes, augmentation of heat/mass 

transfer by application of electric field is being explored in two-phase systems.  Examples 

include heat transfer in direct-contact compact heat exchangers and mass transfer in chemical 

extraction where droplets of one liquid move through another liquid. When an electric field is 

applied on a dielectric drop, a charge build up occurs at the drop/continuous phase interface 

which induces stresses both in tangential and normal direction. The tangential stresses induce 

fluid motion in the neighborhood of the interface and normal stresses causes drop deformation. 

This electrically induced motion can be used to enhance the heat/mass transfer. For example, for 

a drop of a liquid that is being heated, the electrically induced flow will bring hot fluid towards 

the drop and bring cold fluid from drop interior to the drop surface and significantly increase 

heat transfer compared to conduction. 

      It has been shown that the maximum increase in the rate of heat transfer with uniform DC 

electric field is 67% compared to heat transfer to a purely translating drop without application of 

electric field (Oliver et al. 1985) for a spherical drop.   However, only under certain combination  
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of electrical and thermo-physical properties of the two fluids, the drop can remain spherical 

(Taylor, 1966). In most cases, the drop will either deform as a prolate or an oblate spheroid.  The 

enhancement in heat/mass transfer is higher in deformed drop compared to a spherical drop 

(Hader & Jog, 1998, Jog & Hader, 1997).  Recent studies have shown that with the application of 

an alternating electric field, significant fluid mixing inside the drop can be induced (Bryden & 

Brenner, 1998, Ward & Homsy, 2001, Ward and Homsy 2003, Christov & Homsy, 2009, 

Abdelaal & Jog, 2011, and Abdelaal & Jog, 2012). For a DC electric field, the drop deforms 

during initial transients and the deformation remains constant thereafter. However, for a time-

modulated electric field, the drop deformation as well as flow inside the drop is expected to 

change with time in a periodic fashion.  It is hypothesized that alternating electric field will cause 

a time varying flow field and continuous drop oscillations that will lead to better mixing inside 

the droplet. Improvements in fluid mixing inside the drop correspond to significantly higher heat 

transfer rates. The aim of the work is to computationally model the complex two-phase flow field 

and interface deformation under the influence of alternating electric field and to determine the 

effect of drop deformation on fluid mixing inside the drop.    

    The complex fluid flow behavior inside and outside the drop due to the combined effect of 

tangential and normal stresses coupled with the shape change due to oscillation of the drop 

makes the study a challenging task. Recent advances in numerical methods to model the 

continuously deforming two-phase interface will be used, to accurately determine the droplet 

shape change, internal and external flow parameters will be quantified for different electric field 

strength.  The results will provide fundamental insights into deforming multiphase interfaces and  
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concomitant heat/mass transfer, and will be useful to practicing engineers to design direct contact 

heat exchangers and mass transfer devices.   

 

1.2 Scope: 
 

Flow and shape deformations are numerically modeled for a droplet of a dielectric fluid 

suspended in another immiscible fluid subjected to an alternating electric field.  The Volume-of-

Fluid (VOF) method is used to track the two phase interface and determine the instantaneous 

drop shape.  Because the VOF method spreads the interface over two or three grid cells, a new 

method was developed to incorporate the interfacial tangential stress induced by the electric 

field. The electric field in the two phases is determined at each time step and the corresponding 

interfacial stresses are evaluated.  The drop shape and the electric field-induced flow inside the 

drop are obtained by solving the Navier-Stokes equations in the two phases. A stream-function-

vorticity formulation is adopted for this purpose.  Using the developed numerical model, drop 

behavior is simulated for different capillary numbers. When capillary number is very small, a 

Lagrangian particle inside the drop follow closed streamlines. However, as the capillary number 

increases, the particle paths tend to cover a larger domain indicating enhanced fluid mixing. 

A review of the pertinent literature is presented in chapter 2. Mathematical formulation of the 

problem including the governing equations for flow and electric field along with the appropriate 

boundary conditions are outlined in chapter 3.  A new method to incorporate interfacial stresses 

in the VOF framework is derived in chapter 4.  Results are presented and discussed in chapter 5. 

A summary of the finding of this study and recommendations for future work are listed in 

chapter 6.    
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                                                                                     CHAPTER 2 
 

LITERATURE SURVEY 

 

2.1 .Drop deformation: 

 

     Chester et al. (1953) were perhaps the first to report deformations in a dielectric drop 

suspended in a dielectric medium subjected to a uniform electric field.  They considered a drop 

of volume 4/3 r
3
, of a material of inductive capacity e2, suspended in a medium e1, to which 

was applied a parallel electric field of strength E.  The distortion of the drop was assumed to be 

very small so that the shape of the droplet may be approximated as an ellipsoid of minor axis and 

major axis b with an eccentricity e.  They derived an analytical expression for eccentricity e in 

terms of the Electric strength E by minimizing the surface energy of the droplet. They found 

from the expression that irrespective of the polarity of the electric strength, the droplet always 

elongated in the direction of the field whether its dielectric constant is greater or less than that of 

the surrounding medium for the case where the surrounding medium can be regarded as perfect 

dielectric. 

        Allan & Mason (1962) found that, on the exposure of drop of a dielectric fluid which is 

suspended in another dielectric fluid to a steady electric field leads to local charge accumulation 

on the interface causing tangential electrical stresses. These tangential stresses, induce 

circulation of the fluid inside and outside the drop. This was first demonstrated by (Taylor, 1966) 

in his experiments with silicone oil drops suspended in a mixture of castor oil and corn oil as 

shown in Figure 1.  The normal stresses cause the droplet to deform. 
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Figure.1. Circulation inside the droplet due to electric field 

 

              Torza, Cox & Mason (1971) did both experimental and analytical study on  the 

deformations in a droplet suspended in a dielectric medium when subjected to an alternating 

electric field for different frequencies from υ= 0 Hz to  υ = 60 Hz  and thermo physical 

properties both. According to their experimental study, the spherical droplet always deformed 

into a prolate spheroid at υ = 60 Hz for at least 22 drop/medium combinations. This suggested 

that in systems which formed oblate spheroids at υ = 0 Hz there should exist a critical frequency 

υc at which no deformation occurs no matter how high the field. They also observed that at υ = 1 

Hz the drop oscillated twice as fast as the field with a significant oscillation of the drop surface. 

A number of other differences in modes of deformation between υ = 0 Hz to  υ = 60 Hz  were 
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observed which couldn’t be explained by Taylor’s theory which, strictly speaking applies only at 

υ = 0 Hz. 

       The drop circulation and deformation caused due to electric field can significantly influence 

the mass and heat transport inside a droplet leading to an enhancement in these transports. 

 

2.2. Enhancement in mixing in a drop subjected to electric field 

    

  Oliver et al. (1985) numerically investigated the transient heat transfer to a neutrally buoyant 

droplet suspended in an electric field and compared it with a translating drop in the absence of 

electric field. Although the deformations due to normal stresses were not considered in their 

study, they have found a significant enhancement in mixing of 67% higher than the translating 

drop. 

   Subramanian & Jog (2005) studied the enhancement of heat transfer by electric field in a 

translating drop. Their study unlike (Oliver et al., 1985) involved both translational and electrical 

effect on the flow field, but with no deformation. They found that the enhancement in heat 

transfer caused due to both translational and electric field driven flow is substantially greater 

than that of purely translational flow or purely electrically driven flow.  

    Hader & Jog (1992) studied the effect of droplet deformation due to steady electric field on 

enhancement in heat transfer .An electrically induced flow field was determined for both prolate 

and oblate drop shapes. They concluded that enhancement in heat transfer for oblate drops are 

significantly higher than those for prolate drops, hence the enhancement of direct contact heat or 
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mass transfer is more effective for a combination of liquids for the continuous phase and the drop 

phase that leads to an oblate deformation of the drop under the application of an electric field. 

   Christov & Homsy (2009) studied the transport of heat or mass from circulating droplets that 

are both settling and subject to an axial unsteady electric field with no deformations, as a 

function of four dimensionless numbers Peclet number Pe, the dimensionless amplitudes of both 

the steady and unsteady electric field and the dimensionless frequency( ) of the modulation. 

There results suggest that for a steady drop the enhancement factor is higher with Taylor flow 

than without. For modulated electric field the enhancement factor is not a simple function of 

parameters and shows resonant peaks at particular values of ( ) for which the enhancement 

factor is extremely large. 

         Meizhong et al. (2002) studied the effect of droplet oscillation on internal heat transfer 

numerically using a three dimensional Navier Stokes solver for free surface flows. The 

oscillation was induced by perturbing the droplet initially and allowing it to stabilize. There 

hypothesis on enhancement in heat transfer was supported by their results but the effect of the 

magnitude Nusselt number was very small. They also concluded that a continuous perturbation 

of the droplet with a constant source have a higher chance in improving mixing. 

             The above literature review shows that application of electric field to enhance heat or 

mass transfer from liquid drops has received much attention in the literature. Both steady and 

alternating fields have been considered but all of the work deals with steady electric field with no 

deformation, unsteady electric field with no deformation and deformation with no electric field 

due to complexities involved in modeling changing flow field, drop shape changes and 

integration of electric field with changing drop shape. The current study is based on coupling 



8 
 

both drop deformation and unsteady (alternating) electric field, and its effects on heat and mass 

transport inside a neutrally buoyant drop. 

2.3. Numerical methodology to capture drop dynamics: 

 

    The two phase flow involving droplet and the medium it is suspended poses a challenging 

task to accurately determine the interface of these two phases. The numerical method developed 

to capture the free interface should have the following features: 

1. A scheme  to compute the shape and locate the interface accurately,  

2.  Evolution of  the shape and location with time accurately. 

3. Effect of the change in shape on both the droplet and the medium.   

        Many numerical methods have been developed in the recent past to track the interface and 

these methods are used widely in the study of physical phenomena such as bubbles, wind-water-

wave-extraction etc. Some commonly used methods for interfacial tracking for two-phase flows 

include Lagrangian grid methods, Marker particle method front-tracking, level-set and the 

volume-of-fluid (VOF) method. These methods are outlined below: 

 

2.3.1. Lagrangian grid methods 

 

  The interface can be tracked by a Lagrangian grid which moves with the fluid. The grid 

movement linked with the fluid movement results in tracking of the interface. Examples can be 

found in (Hirt & Nichols, 1979). However, as the interface evolves the grid used in Lagrangian 

methods will change at each time step, since the values at the new grid points need to be 

approximated from the old grid, errors are induced. Furthermore, the Lagrangian grid method 

cannot track the interface when the amplitude is large, and it cannot handle a breaking interface. 
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2.3.2. Marker and cell method (MAC) 

 

        The MAC method is one of the earliest numerical methods used to track the interface 

evolution in fixed Eulerian grid. It was first introduced by (Harlow & Welch, 1965). The location 

of the fluid within a grid cell is tracked by a set of markers that move along with the fluid. The 

free interface is considered passing through a grid cell if that cell has at least one neighboring 

grid cell which is empty (with no markers in it). Evolution of the free interface is calculated by 

moving the markers along the fluid flow. The MAC method doesn't track the interface directly, 

instead it tracks the evolution of the fluid volume. The interface is then the boundary of the fluid. 

Many improvements have been added to the original MAC method to improve accuracy or 

include other physical aspects, such as surface tension on the interface. However one of the 

limitations for the MAC method is that in order to achieve a certain accuracy, it requires high 

computational costs associated with the required number of markers, especially when the 

deformation of the interface is large. 

 

 

2.3.3. Volume of fluid (VOF) 

 

    The VOF method (Hirt & Nichols, 1981) was first introduced to maintain similar features of 

the MAC method, but with reduced computational cost. In the VOF method, only one fluid 

quantity, the fluid volume fraction, is used. The fluid volume fraction (say, F) is defined as a 

function which gives the percentage of phase 1 in a grid cell. Hence, F = 0 for the grid cell in the 

phase 2 and F = 1 for the grid cell in the phase 1. Function F will only achieve some values 
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between 0 and 1 if the grid cell is at the interface. The slope and the curvature of the interface is 

calculated using the volume fractions in the neighboring cells and the interface location is 

determined by the slope, curvature, as well as the volume fraction.  

  To compute the time evolution of the interface, the basic kinematic equation for the fluid 

volume fraction is used which for an incompressible flow, 

 

0
Df

Dt
  (1) 

 . 0
f

u f
t


  


 (2) 

          

           Where the velocities are updated using the Navier-Stokes Equations. The VOF method 

has been used widely and has been applied successfully in much different applications. VOF 

method complies with mass conservation. Consider a grid cell (i, j) with volume fraction f then 

the volume of phase 1 in that cell at a particular time n will be 
,

n

i j
f V, where V is the volume of 

the cell. A natural definition of mass conservation for an incompressible flow is a method which 

conserves the total volume at each time step so that 

1

, ,

n n

i j i j
ij ij

f f


   (3) 

         Eqn. (1) perfectly realize the condition given in Eqn. (3) which proves the method complies 

with mass conservation unlike other methods. However, the VOF method has trouble capturing 

the exact location of the interface, exact location of the interface is required to apply the 

interfacial forces like surface tension. This can be overcome by interface reconstruction (Aulisa 
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et al., 2007) but with high computational cost. In the current study, CSF (Continuum surface 

force model) method is used to provide the interfacial forces, which eliminates the need of 

interface reconstruction and reduces the computational cost. 

 

2.3.4. Level set method 

 

Level set method (Osher & Sethian, 1988) unlike the MAC method tracks the shape rather than 

the particle itself. These methods are advantageous over the particle tracking methods in 

problems involving splitting of the curve, developing holes etc. The greatest advantage of Level 

set methods are the numerical computation of tracking the interface can be performed in a single 

grid without having to use a moving grid. The main disadvantage of Level set method is that it 

doesn’t ensure mass conservation unlike the VOF method discussed above. There are 

conservative level set methods like CLSVOF (Sussman & Puckett, 2000) which is difficult to 

implement computationally hence not used in the current work. 

 

2.3.5. Continuum surface force model (CSF) 

 

The continuum surface force model (CSF) (Brackbill et al., 1992) is a method to model the 

forces at the interface namely surface tension force, electrical force etc. The forces at the 

interface like surface tension forces are surface forces, which often become a boundary condition 

for most of the two phase flow problems. 
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                                        Figure 2. Interface band 

 

Accurate location of an interface in a two phase flow is a numerically challenging task, existing 

methods in the literature like PLIC (piecewise linear interface calculation), SLIC (simple line 

interface calculation) (Noh et al., 1976), are difficult to implement and computationally 

expensive. 

       CSF model eliminates the need of an exact location of the interface thereby simplifying the 

calculation. It considers the interface as a band of width   where, 0   as shown in Fig. 2. 

The forces acting at the interface which was a single surface of surface area A is converted in to 

a force which acts inside a band of volume V such that the net force acting on a surface is same 

as the force acting on the volume as shown in Eqn. (1). 

Phase 

1 

Phase 

2 

Fictitious 

Interface 


 

Exact 

interface 

SAF  

SVF  
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0
limSA SV

A V

F d A F dV


   (4) 

The above equation is only satisfied when, 

 
( )

| |SV SA

c x
F F

c


  (5) 

The VOF method works very effectively with CSF approach because the later assumes interface 

to be a band in which the volume fraction varies from 0 to 1. 

 

2.4. Characterization of mixing:- 

 

Bryden & Brenner (1998) investigated the mixing properties of a droplet translating by buoyancy 

through an immiscible liquid which is undergoing simple shear by qualitative measures of the 

extent of mixing, accompanied by visualization of the regions exhibiting high mixing in the form 

of Poincare sections by Lagrangian particle tracking approach. This study made by Bryden and 

Brenner being the key motivation to study the mixing in the current work by Lagrangian particle 

tracking method. 

2.4.1. Lagrangian particle tracking (lpt):- 

 

Lagrangian particle tracking is used to determine the trajectory of a particle immersed within the 

currents of a fluid. LPT gives a visual indication of scalar transport in a system. In the current 

study LPT is used to qualitatively determine the mixing induced in a droplet due to droplet 

oscillations. It gives the transient streamlines inside a droplet while it is oscillating. 
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    The equation governing the Lagrangian trajectories of a fluid particle ( , )ox x x t  inside an 

oscillating droplet, with  u  the velocity vector due to the flow field inside is: 

d x
u

dt
  (6) 

Where x  is the position vector of the particle and ox  is the initial position of the particle. 

Multiple particles are tracked in the current study to get an elaborate picture of mixing taking 

place inside a droplet. 
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                                                        CHAPTER 3 
 

                                                FORMULATION 
 

3.1. Problem description: 

 

We consider a spherical fluid drop as shown in Fig. 3 of radius R, density , viscosity , 

dielectric constant , electrical conductivity , suspended in a fluid of density , viscosity  

, dielectric constant , electrical conductivity . The interface separating the two fluids is 

assumed to have a constant surface tension coefficient  so that the variation in surface tension 

force along the tangential direction can be neglected. An alternating voltage    is 

applied using the parallel plates to generate an alternating and uniform electric field E along the 

z-direction. The electric field generated induces stresses at the drop interface and deforms the 

drop depending on the properties. To study the two phase system effectively the properties are 

defined in terms of property ratios: , , , .  The 

density ratio = 1 so that the drop is neutrally buoyant and viscosity ratio is kept close to 1 

to avoid numerical instability due to large gradient in properties and study can be centered only 

on the effects of  electrical forces and surface tension forces on the deformation.   
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Figure.3. A schematic of the droplet and the coordinate system 

 

 

 

3.2. Coordinate system: 

 

The flow and the volume fraction transport equations are solved on a spherical coordinate 

system Fig. 3 for the dispersed phase (phase 2) or the drop phase. A transformed domain with a 

transformation of  along the r-direction is used to solve the equations in continuous phase 

(phase 1) or the phase which contains the medium. The grid is shown in Fig. 4.  The 

transformation is performed so that the grid is finer near the interface, which is domain of 

interest, and the grid becomes coarser as we proceed from the interface to the computational 
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infinity where all gradients are expected to be very small. The computational infinity is chosen to 

be  r = 148 or z = 5 such that the boundary effect is negligible (Subramanian, 2005). 

  

                                                                  Figure. 4. Grid 

                                                                                                  

 

3.3. Mass conservation equations:- 

 

For a steady  incompressible flow  the mass conservation equation is:  

* *. 0u   (7) 

 

 By non-dimensionalizing the above equation by the following factors 

 

*
*u

u a
U

   
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We get : 

 (8) 

 

 

3.4. Momentum conservation equations:- 

 

For an unsteady incompressible two-phase flow the governing equations in vector form are:- 

 (9) 

where, 

                    
          

     
 

 

The above equation is non-dimensionalized by the following factors: 

 

, - reference viscosity and density are taken to be that of fluid 2 (fluid inside the 

droplet) 

The non-dimensionalized form of the equation is: 
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 (10) 

             (11) 

 

By multiplying both sides by Re we get: 

 (12) 

 (13) 

Since we are dealing with low Reynolds number (Re  0) flow, the inertia term will be 

small compared to the other terms and it be neglected so that the equation becomes: 

 (14) 

 

3.4.1.  Stream function-vorticity formulation of momentum equation:- 

 

Vorticity  can be defined as  

 (15) 

 

By taking a curl of Eqn. (6) we get 
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 (16) 

    (17) 

For a 2D flow in spherical coordinates  we get the following expansion of Eqn. (9) 

Dispersed phase: 

 
               

(18) 

Continuous phase: 

 (19) 

The stream function  is introduced such that, 

 (20) 

 

Dispersed phase: 

 (21) 
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continuous phase: 

 (22) 

 

Equation (10), (11)and (12) are solved to obtain the flow solution. 

 

3.4.2. Boundary conditions for stream function and vorticity:- 

 

 

 

3.5. VOF (f) equation:- 

 

VOF advection equation for incompressible flow: 

 (23) 

    

By non-dimensionalizing the equation with the factors used in section 2.3 we get: 
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In spherical coordinates: 

 (25) 

Eqn. (22) is solved to track the interface it is coupled with Navier-Stokes equation through ,  

and the properties viscosity and density. 

3.5.1 Boundary conditions:- 

 

 

 

3.6. voltage calculation: 

 

Charge conservation equation: 

 (26) 

   Where,  

 

Voltage equation is derived from charge conservation equation by assuming charge convection 

due to the flow field   and the charge accumulation  to be zero. 

 (27) 

Non-dimensionalization of the Voltage equation: 
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After Non-dimensionalization the above equation becomes 

 (28) 

Where, 

                 
 

Eqn(21) can be expressed in spherical coordinates in the following way: 

 (29) 

 

Where is the conductivity ratio. 

 

3.6.1 Boundary conditions: 

 

 

 

3.6.2 Electric field: 
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Non-dimensionalization of the above equation: 
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We define 

                   
                        

 

Eqn. (20) becomes, 

 (31) 

 
 

3.7. Shear stress due to electric field: 

 

  Shear stress due to electric field acting on the interface of the droplet along normal and 

tangential direction from (Taylor 1966), 

 (32) 
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Where, 
                                                                

 

      

 

3.8. Forces acting at the interface: 

 

The surface tension force and the force due to electric field acting at the interface are surface 

forces, these surface forces are converted in to volume forces using CSF model approach which 

eliminates the need of interface reconstruction (Hirt and Nichols 1981, Aulisa et al., 2006) to 

apply the forces accurately at the interface. 

From (Brackbill et al., 1990), for any surface force at the interface, volume force is evaluated as: 

 (34) 

3.8.1. Surface tension force: 

 

Surface tension force acts only in the normal direction with respect to the interface since there is 

no gradient in surface tension coefficient ( ) along the tangential direction. 

 (35) 

 

( )    
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 (36) 

Non dimensional surface tension force: 

 

(37) 

We define the capillary number as 

, 

Capillary number gives the relative strength of viscous force over the surface tension force, 

hence by considering different values of the Capillary number we can study different systems 

that correspond to different magnitude of surface tension force  relative to the viscous force 

   ,   (38) 

 

The curvature is calculated using an ALE like scheme (Brackbill et al. 1990)  

Spherical coordinates: 
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3.8.2.Electric force: 

 

Electric force acting on the interface in the normal direction: 

 

 

Non dimensional electric stress acting in the normal direction 

 

                  
 (38) 

Now,   
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Spherical coordinates: 

 (40) 

 

Similarly Electric force acting in the tangential direction: 

 (41) 

We define, 

 

, gives the relative strength of Electric force over the surface tension force. The current 

study is based on the parameters ( , , ) 

 

3.9 . Lagrangian particle tracking: 

 

The x and y coordinate or the position of the particle is tracked using the following basic 

equation of kinematics 

 (42) 
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 (43) 

 

 The numerical procedure to track the particle with respect to time is discussed elaborately in 

chapter 4. 
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                                       CHAPTER 4 

 

                                       NUMERICAL METHODOLOGY 

                                                     

4.1. Discretization: 

4.1.1. Vorticity equation: 

 (44) 

  A central difference scheme is adopted to discretize the spatial derivatives with a second order 

accuracy and the vorticity equation is integrated with an ADI scheme. The electric and surface 

tension forces are treated explicitly which gives rise to a stability criteria restricting the time step 

to very low values of the order 10
-6

. The forces can be calculated implicitly eliminating the need 

of very low time step, but the hurdles in implementing an implicit approach demands to adopt an 

explicit treatment in the current study.   

 (45) 
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Figure 5. Stencil
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Eqn. (41) after discretization can be written as: 

                      (50) 
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Where, 

                      (51) 

 

 

4.1.2. Stream function equation: 

 

                      (52) 

 

 
                       

(53) 

 
                     

(54) 

The above equations can be represented in the given form: 
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Where, 
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Stream function equations are elliptic equations solved by a line by line TDMA approach. 
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4.1.3 VOF advection equation: 

 

An explicit upwind scheme is used to advect the volume fraction advection equation in time and 

space. Upwind schemes use an adaptive or solution-sensitive finite difference stencil to 

numerically simulate more properly the direction of propagation of information in a flow field. 

The spatial derivatives are evaluated using a forward or backward difference depending on the 

signs of the velocities in both r and  direction. 

            (57) 

 

          

 
           (58) 

Derivatives: 

            (59) 

            (60) 

 

 

VOF advection equation after discretization: 


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http://en.wikipedia.org/wiki/Finite_difference
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                       (61) 

 

4.1.4. Voltage equation: 

 

 
           

(62) 

The above equation is discretized spatially using a central difference scheme with a second order 

accuracy 
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Eqn(60) can be written in the form  

 
       

(65) 
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(66) 

Voltage equations are solved similar to the stream function equation using a TDMA approach for 

faster convergence. 

 

4.1.5 Lagrangian particle tracking: 

 

 (67) 

The governing equation (Eqn. 64) for particle trajectory is integrated using a fourth order Runge 

Kutta method. RK4 (fourth order Runge Kutta) method is chosen to track the exact location of the 

particle at a particular time with higher accuracy. The velocity field  is obtained from the flow 

solution,  is evaluated from  at a particular locations of   and t with a cubic interpolation 

technique. 

 (68) 

 (69) 

 (70) 

 (71) 

, , ,  are obtained using the interpolated value  

The new position is calculated from , , ,  and old position  
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 (72) 

 

4.1.6. Solution algorithm: 

 

 Initialize the variables , , ,  at time t=0. 

 Calculate   and   using the initial values of   

 Solve the volume fraction advection equation explicitly to obtain volume fraction  

using the values of    and .   

 Calculate density and  using . 

 Solve the voltage equation to obtain the voltage solution and the Electric field at the 

interface. 

 Calculate the forces (Electrical and surface tension) acting at the interface using CSF 

approach. 

 Solve for the vorticity using the vorticity transport equation using the calculated 

interfacial forces at step 5 as the source till convergence is achieved. 

 Solve for stream-function using the stream function equation with the vorticity 

calculated at step 6 as the source till convergence is achieved. 

 Go to step 1 till the required time has reached.     

 1 2 3 4x x  2 2    /  6o k k k k    

  f V

ru u 

f
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                                                                       CHAPTER 5 
 

                              RESULTS AND DISCUSSION 

                                  

5.1. Validation of the numerical model: 

 

     The model is validated by comparing results for the limiting case with no deformation where 

analytical results are available in published literature. The solutions for the stream function and 

vorticity profile inside and outside the droplet are obtained numerically and compared with 

Taylor’s (1966) analytical solution as shown in Fig. 6 and Fig. 7  

 

Figure 6.  Streamlines inside and outside a drop with no deformation Taylor’s analytical solution 

(left) and numerical prediction (right) 

` 
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Figure 7.  Vorticity inside and outside a drop with no deformation numerical prediction (left) and 

Taylor’s analytical solution (right) 

 

Figure 8. Variation of u   for analytical and numerical solutions on the drop surface R=1 along 

 -direction 
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Figure 9. Variation of   for the analytical and numerical solution along r-direction at 45o   
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        Figure 10. Variation of   for Taylor’s analytical solution and numerical solution by present 

model along r-direction at 45o   

    In Fig. 9 and 10, stream function and vorticity values are plotted along the r-direction at 

45o   respectively. The results indicated that the stream function and vorticity values obtained 

numerically matches with the analytical solution proposed by Taylor with an offset average error 

of 0.05% and 0.1% respectively. 

 

Table.1.Maximum velocity at the interface from Taylor’s solution and the numerical model 

 Taylor (1966) Numerical model 

Maximum velocity at the 

interface 
1.0 0.95 
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   In Figure 8, Tangential velocity is plotted at the interface R=1 along the -direction, The 

results indicated that the numerical model predicted the maximum surface velocity to be at 

 and the value to be 0.95 as shown in the table above which is in close agreement with 

Taylor’s (1966) analytical solution with error less than 5%. 

5.2. Results: 

 

Results are obtained for two electric capillary numbers ECa = 40, 80 and a range of 

dimensionless frequencies =5, 15 and 50 with a fixed ECa =80. The flow Reynolds number 

(Re) and other physical properties are kept constant as shown in the table. 

Cases: 

Ce  Ca 
ECa  q=k1/k2 Frequency 

( ) 

Re Viscosity 

ratio( ) 

Density 

ratio(

) 

Conductivity 

Ratio(R) 

1000 0.08 80 0.0019 5 1 1 1 0.03125 

500 0.08 40 0.0019 5 1 1 1 0.03125 

1000 0.08 80 0.0019 15 1 1 1 0.03125 

1000 0.08 80 0.0019 50 1 1 1 0.03125 

                            

                                      Table 2. Cases simulated in the current work 



45 




k

k
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5.3. Study of flow field for ECa  = 80, dimensionless frequency = 5 

 

        In Figure11, the transient voltage fields for ECa = 80 and  are plotted. The alternating 

voltage is given in the form of a sine wave  , where . The voltage field plotted 

for different times corresponds to  on the sine wave  as shown 

in Figure 8.  It is observed that the voltage field repeats after 1 sine cycle that is at    . 

   

        On the contrary, the flow field or the velocity vector field plotted at different times as 

shown in Figures12-15, repeats at  which is ½ of a sine cycle. The change in the time 

period of both the fields can be attributed to the electric normal stress behavior at theta = 0 and 

theta = pi/2 plotted against the time in Fig.16 and Fig.17 respectively. It is observed from Fig.16 

and Fig.17 that the normal stress which is a function of voltage or the electric field shows the 

same behavior after a ½ sine cycle irrespective of the change in sign of the voltage after a ½ 

cycle. 

 

 

 

5 

sinoV V  t 

0, 2, ,3 2,2     sinoV V 

 
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Figure 11. Contours of the voltage field at different times corresponding to 
3

0, , , ,2
2 2

 
    



44 
 

 

            Figure 12. Velocity vector field and streamlines for 80ECa  , 5   at t=0 or 0   
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Figure 13. Velocity vector field and streamlines for 80ECa  , 5   at t=0.05 or 
2


   
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Figure 14.  Velocity vector field and streamlines for 80ECa   at t=0.1 or    
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Figure 15.  Velocity vector field and streamlines for 80ECa  at t=0.15 or  
3

2


   
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Figure 16. Normal stress at the interface, 
2


   with time for one cycle, 80ECa  , 5   

 

Figure 17. Normal stress at the interface, 0  with time for one cycle, 80ECa  , 5   
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Figure 18. Tangential stress at the interface,
2


   with time for one cycle, 80ECa  , 5   

 

 

Figure 19. Tangential stress at the interface, 0   with time for one cycle, 80ECa  , 5   
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From Fig.13 and Fig.15, it can also be inferred that circulations are very strong at 

where the voltage peaks are found. The magnitude of the voltage or the electric field determines 

the magnitude of  and , because of very high at the voltage peaks  as 

shown in Fig. 18 and Fig.19, the circulations are significant compared to the lower portion of the 

voltage peak especially at   where the dominant force acting on the interface is the 

surface tension force which is trying to bring the drop shape to the initial spherical shape.  

   Streamlines (Fig.12 and Fig.14) cut through the surface in the entire cycle indicating that there 

are surface velocities which keeps the interface in motion for the entire cycle. 

5.4. Effect of  ECa  on mixing for ECa = 40 and 80 at a constant dimensionless 

frequency = 5 

 

      It has been shown that the maximum increase in the rate of heat transfer with uniform electric 

field is 67% compared to heat transfer to a purely translating drop without application of electric 

field (Oliver et al., 1985). It is hypothesized that alternating electric field will cause a time 

varying flow field and continuous drop oscillations that will lead to a particle path deviant from 

the normal circular path at steady state. 

       In Figures. 20-22, trajectory of three particles are obtained for a droplet with zero oscillation 

or for a droplet subjected to a steady electric field. It was observed that both the particles tracked, 

repeat the same circular path irrespective of the time it was tracked. The flow field inside a 

droplet for 80ECa  , when subjected to a steady electric field does not change with time as 

shown in fig.6, hence the particle tend to move in the same path. 

      

2,3 2  

Enn En En 2,3 2  

0, 
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Figure 20. Trajectory of 2 particles after a time t = 320 inside a droplet with no deformation 
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Figure 21. Trajectory of 2 particles after a time t = 320 inside a droplet with no deformation 
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Figure 22. Trajectory of  particle 3 after a time t = 320 inside a droplet with no deformation 
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          Figure 23. Trajectory of  particle 1 inside a droplet for 40ECa  , 5   after  time t = 320 
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Figure 24. Trajectory of  particle 2 inside a droplet for 40ECa  , 5   after  time t = 320 
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       Figure 25. Trajectory of  particle 3 inside a droplet for 40ECa  , 5   after  time t = 320 
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Figure 26. Trajectory of particle 1 inside a droplet for 80ECa  , 5   after a time t = 320 
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Figure 27.  Trajectory of particle 2 inside a droplet for 80ECa  , 5   after a time t = 320 
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Figure 28. Trajectory of particle 3 inside a droplet for 80ECa  , 5  after a time t = 320 

.  

 

In Figures 23-25 and 26-28, trajectory of three particle inside a droplet are plotted for ECa = 40 

and 80 respectively. Particle trajectory for ECa = 40 and ECa = 80 inside a droplet forms a band 

compared to the particle trajectory inside a droplet with no deformation (Fig. 22), It can be 

qualitatively concluded from the plots that there is a significant amount of mixing inside a 

droplet which is oscillating compared to a droplet with zero oscillation. 

  It is also observed from Figs. 23-25 and Figs. 26-28 that the band width of the particle 

trajectory  for ECa = 80 is much greater than ECa  = 40, which signifies that the extent of mixing 

taking place inside the droplet is much higher for ECa = 80 than 40. Electric capillary number (
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ECa ) gives the measure of electrical force over the surface tension force, by increasing ECa  the 

deformation of the drop increases, so is the oscillation allowing the particle to cover a larger 

area. 

 

 

 

Figure 29.  Trajectory of  particle 1 inside a droplet for 80ECa  , 50    after a time t = 320 
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Figure 30. Trajectory of particle 2 inside a droplet for 80ECa  , 50     after a time t = 320             
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Figure 31. Trajectory of particle 3 inside a droplet for 80ECa  , 50   after a time t = 320                     
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Figure 32.  Trajectory of particle 1 inside a droplet for 80ECa  , 15   after a time t = 320                  
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Figure 33  Trajectory of particle 2 inside a droplet for 80ECa  , 15   after a time t = 320 
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Figure 34. Trajectory of particle 3 inside a droplet for 80ECa  , 15   after a time t = 320 

 

 

5.5. Effect of frequency on mixing at a constant  ECa  = 80 

 

     In Figures 29-31, 31-33 and 33-35, the particle trajectories inside a droplet  are plotted for = 

50, 15 and 5 at a constant ECa = 80. It is observed that for  = 50, the particle retraces the same 

circular path, but for  = 15 a band is formed, as the frequency decreases the band width 

increases implying greater mixing. 

 When the frequency is high as in the case of  = 50, the voltage shoots up to its maximum 

value within a short interval of time restricting the droplet to deform and retain the initial 








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spherical shape. As the frequency decreases, the voltage gradually increases with time allowing 

the droplet to deform well enough to increase the oscillation. The increase in deformation 

thereby oscillation leads to better mixing inside the droplet at low frequencies. 
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                                                                           CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

6.1 Conclusions: 

 

 The mixing inside the droplet subjected to an alternating electric field has been studied. An 

unsteady axisymmetric flow by varying the electric capillary number ( ECa ) and frequency with 

constant thermo physical properties was considered. The flow field was solved with a vorticity-

stream function formulation and coupled with the deformations caused due to alternating nature 

of the electric field, by the VOF advection equation. The effects of ECa   and frequency on 

mixing were studied. The results for the flow field, stress field, voltage field and mixing (particle 

trajectory) were obtained. From the results obtained the following conclusion can be drawn: 

1. The time period of repetition of flow field is half that of the voltage field, indicating that 

the Electric stress field is not a function of the sign of the voltage. The stress profile is the 

same for both positive and the negative voltage half cycle. 

2.  Two circulations are found at the voltage peaks,  where the electric 

stresses are dominant over surface tension force compared to the lower portion of the 

voltage peak especially at  where a single circulation is found where the 

dominant force acting on the interface is the surface tension force which is trying to 

change the drop shape to initial spherical shape. 

2,3 2  

0, 
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3. The particle tracked inside a droplet with no deformation moves in a circle or repeats the 

same path irrespective of the time it is tracked, while the trajectory of the particle tracked 

inside a droplet with deformation for ECa = 40, 80, forms a band which shows there is a 

mixing. 

4. The trajectory of the particle tracked for ECa = 80 forms a bigger band than ECa = 40, 

which shows the mixing inside the droplet is significantly higher for ECa = 80 than 40. 

5. The extent of mixing is inversely proportional to the frequency, because as the frequency 

was decreased  the particle tracked  inside the droplet covered a larger area compared to a 

particle tracked at a higher frequency. 

6.2  Scope for future work: 

 

1.  The effect of fluid mixing inside a droplet subjected to an alternating electric field on heat and 

mass transfer can be studied solving the energy and species conservation equations with the 

Navier-Stokes equations. 

2.  The mixing properties inside a droplet translating in a dielectric medium coupled with the 

droplet deformations due to an alternating electric field can be studied. 

3. The mixing properties inside a droplet subjected to alternating electric field for very high 

electric capillary numbers > 100 can be studied.  
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