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ABSTRACT 

The ever-increasing applications of UAV’s have shown the great capabilities of these 

technologies.  However, for many cases where one UAV is a powerful tool, an autonomous 

swarm all working cooperatively to the same goal presents amazing potential.  Environment that 

are dangerous for humans, are either too small or too large for safe or reasonable exploration, 

and even those tasks that are simply boring or unpleasant are excellent areas for UAV swarm 

applications.  In order to work cooperatively, the swarm must allocate tasks and have adequate 

path planning capability.   

This paper presents a methodology for two-dimensional target allocation and path 

planning of a UAV swarm using a hybridization of control techniques.  Genetic algorithms, fuzzy 

logic, and to an extent, dynamic programming are utilized in this research to develop a code 

known as “UNCLE SCROOGE” (UNburdening through CLustering Effectively and Self-

CROssover GEnetic algorithm).  While initially examining the Traveling Salesman Problem, 

where an agent must visit each waypoint in a set once and then return home in the most efficient 

path, the work’s end goal was a variant on this problem that more closely resembled the issues a 

UAV swarm would encounter.   

As an extension to Dr. Obenmeyer’s “Polygon-Visiting Dubins Traveling Salesman 

Problem”, the Multi-Depot Polygon-Visiting Dubins Multiple Traveling Salesman Problem 

consists of a set number of visibility areas, or polygons that a number of UAV’s, based in 

different or similar depot must visit.  While this case is constant altitude and constant velocity, 

minimum turning radii are considered through the use of Dubins curves.  UNCLE SCROOGE 

was found to be adaptable to the PVDTSP, where it competed well against the methods proposed 
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by Obenmeyer.  Due to limited benchmarking ability, as these are newly formed problems, 

Obenmeyer’s work served as the only basis for comparison for the PVDTSP.  UNCLE 

SCROOGE brought a 9.8% increase in accuracy, and a run-time reduction of more than a factor 

of ten for a 20 polygonal case with strict turning requirements.  This increase in performance 

came with a 99% certainty of receiving the best found solution over the course of 100 runs.  With 

only a 1% chance for error in this particular case, the hybridized method has been shown to be 

quite powerful. 

While no comparison is currently possible for MDPVDMTSP solutions, UNCLE 

SCROOGE was found to develop promising results.  On average, it takes the code 25.62 seconds 

to approximately solve a 200 polygon, 4 depot, 5 UAV’s per depot problem.  This polygon count 

was increased even up to 2,500, with a solution taking 9.8 hours.  It has been shown that UNCLE 

SCROOGE performs well in solving the MDPVDMTSP and has acceptable scalability. 

 

. 
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CHAPTER 1: INTRODUCTION 

UAV’s are being utilized increasingly more often as the technology develops.  The 

capability of complete autonomy will push the envelope of UAV applications even further.   

These autonomous systems could be utilized as backups during communication outages, or as the 

primary navigation operators of each UAV. Proper target allocation and path planning are 

necessary parts of this progress.  A variant of the Traveling Salesman Problem (TSP), the Multi-

Depot Polygon-Visiting Dubins Traveling Salesman Problem (MDPVDMTSP) is the subject of 

this thesis.  This extension of Dr. Obenmeyer’s PVDTSP [1] is a new problem that more closely 

resembles the problems encountered by UAV swarms. 

This chapter will focus on the motivation, objective, problem statement, and assumptions 

of this research.   

1.1 Motivation 

An autonomous squadron of fully functional fighter-bombers would bring an increase to 

the safety of our servicemen and the capability to litter the skies with as many attack drones as 

our factories can output.  However, there are many more tangible and realistic benefits of this 

work for the given year and technology that would be much less of a logistical, political, and 

ethical nightmare.  A swarm of autonomous reconnaissance UAV’s that can navigate an 

environment cooperatively, avoiding obstacles and needing a link to a human-operated computer 

only to display results has numerous uses.   

In every possible application of UAV’s, the elimination of a trained pilot (or in the case 

of a UAV swarm, a large multitude of trained pilots) brings much greater accessibility, 

affordability, and portability.   In the U.S. Army alone, UAV’s of all types have over a million 
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hours of flight time [24, 25].  Especially with this increasing popularity, efficient allocation of 

these UAV’s is vital to cost-effectiveness.  Working in conjunction with other softwares, the end 

goal of this research could eliminate the need for a human operator, or at least reduce it to simply 

monitoring progress and verifying results.   

Firefighters, police officers, SWAT teams and other professions that deal with dangerous 

environments inside buildings or other environments where overhead fly-bys are not useful are 

prime examples.  Outside of the world of UAV’s, this knowledge could be useful to robotic 

manufacturing or surgery, and perhaps one day medical nanites that can cooperatively hunt 

cholesterol. While seemingly farfetched, current developments in many fields of science and 

engineering make the list of possible applications of this digital research seemingly endless.   

1.2 Thesis Objective 

The objective of this thesis is to offer an algorithm for large-scale multi-agent 

resource allocation, visibility, and flight-path planning problems encountered by a swarm 

of UAV’s that provides near-optimal solutions for the constant velocity, constant altitude, 

and two-dimensional case. 

In this research, multiple scenarios are studied, each containing an added complexity to 

the last. Being aimed towards use with UAV swarms, the first situation analyzed is the 

traditional Euclidean Traveling Salesman Problem (TSP).  Here a starting depot is provided from 

which an UAV must depart, visit a set number of static points in the X,Y plane, and then return.  

Aircraft dynamics are ignored in this case; the path is simply a collection of straight edges 

between waypoints.   
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Additional nuances are added to the scenario until the problem now consists of multiple 

UAV’s, flying at a constant altitude and velocity, based out of a single or multiple bases, that 

must encounter at least one point of all visibility polygons in a set, return to their corresponding 

depot, and do so in the most efficient manner possible.  Thus this work is aimed to: 

1. Simulate a two-dimensional, multi-depot, multi-agent, polygon visibility resource 

allocation and path planning problem 

2. Develop a novel approach to approximate the MDPVDMTSP 

3. Benchmark Matlab results to other methods, when possible 

4. Determine the usefulness and limits of this methodology 

1.3 Problem Statement 

The problem of creating UAV swarm target allocation and path planning algorithms is 

indeed a complicated one.  This can be approached through different means; however this study 

begins by examining the Traveling Salesman Problem (TSP).  The Travelling Salesman Problem 

is a NP-hard (non-deterministic polynomial-time hard) mathematical and computational scenario 

that has a wide array of applications as described by Korte and Vygen [2].  

In the most basic form, the TSP involves finding the shortest path, referred to as tour, of 

visiting a given set of cities and returning to the starting point. A city can be any necessary 

target, with distance of round trip being a measure of fitness, whether the actual variable be cost, 

time, etc. The TSP has seen applications in several diverse areas such as aerospace, logistics, 

genetics, manufacturing, telecommunications, and neuroscience [3].  
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Figure 1: Example of a 10 City TSP Solution 

The TSP lends itself to formulate the assignment of a UAV to multiple tasks as depicted 

by Rasmussen and Shima [4] and Goldberg [7]. In recent times, research has focused on finding 

new and unique strategies which enable UAV teams to optimize the use of their combined 

resources to accomplish their mission given the need for real-time task allocation using learning 

methods based on artificial neural networks [5,6]. 

In order to incorporate a UAV swarm, the problem evolves to the Multiple Traveling 

Salesman Problem (MTSP) and the Multi-Depot Multiple Traveling Salesman Problem 

(MDMTSP).  These problems are intuitive, simply switching the objective to finding the most 

efficient path for a set of UAV’s to visit each target, where each target can come out of either the 

same or different bases or depots as a starting and returning location.  This problem has been 

examined in varied scales as a representation of cooperating UAV’s, as by Shima et al. [8] 
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Figure 2: Example of a 100 city MTSP solution 

As an extension of Dr. Karl Obenmeyer’s work while at Wright-Patterson’s AFRL 

[reference], the Polygon-Visiting Dubins Traveling Salesman Problem (PVDTSP) includes other 

complications.  Here the point targets are switched to a polygon of any size in which the UAV 

must pass through at some point.  This is a reduction of a visibility scenario, in which a sphere of 

some radius represents the effective camera or weapon range of the UAV. Buildings, mountains, 

and other such cover could block a portion of this hemisphere that is above ground.  Taking a 

slice of the remaining hemisphere, assuming constant altitude, creates this visibility polygon.  An 

illustration by Obenmeyer depicts this clearly: 
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Figure 3: Breakdown of the creation of visibility polygons [1] 

If aircraft dynamics are included, in a most basic form, some type of constraint on turning 

is required.  Utilizing Dubins curves [9] a constant velocity is set, and as with most vehicles, a 

set minimum turning radius coincides with this constant velocity.  Utilizing this view of 

simplistic vehicle dynamics, the most efficient path between two poses (coordinate and heading) 

is a combination of minimum turning radius turns and straight paths.  Combining all of these 

forms the Multi-Depot Polygon Visiting Dubins Multiple Traveling Salesman Problem 

(MDPVDMTSP), which is the problem this thesis attempts to solve.   
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Figure 4: Example 4 depot, 4uav/depot, 200 polygon MDPVDMTSP case 

With these added constraints, the problem becomes much closer to a realistic scenario 

than the base TSP, and acts as a proper proving ground for these methods in attempt to produce a 

fully-functional software. 

1.4 Assumptions 

Some simplifying assumptions are necessary to begin examining such a complex problem 

in this method.  The Euclidean Traveling Salesman Problem in two dimensions assumes constant 

height and velocity, and neglects any aircraft dynamics (turning radii).  The methods utilized 

(Chapter 3) certainly can be applied to three dimensions relatively simply.  However, for the 

sake of the problem requirements, only a two-dimensional case is examined in this study.   
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Each base or depot is assumed to have unlimited simultaneous take-off and landing 

capabilities.  That is, an infinite number of UAV’s are allowed to return to the base at the same 

time without need of loitering.  For the polygon-visiting Dubins case, a minimum turning radius 

is implemented, assuming constant velocity.  While this does not incorporate aircraft dynamics, 

this simplification serves as a good starting point to vie away from the unrealistic application of 

the base TSP to UAV path planning. 

For the Euclidean TSP, the distance from one point to another is the same in the opposite 

direction.  This implies that for the method in this study, wind is neglected.  The total number of 

waypoints is constant, and obstacles are not present.  Lastly, the waypoints, in both the point and 

polygonal cases, are static. 

 

CHAPTER 2: LITERATURE REVIEW 

A review of the literature related to the research will be discussed here.   As the methods 

presented by Dr. Obenmeyer [1] are the only current comparison possibilities for the PVDTSP, 

his work will be a primary focus.  No publically available work could be found for 

benchmarking the proposed algorithm’s performance in solving the MDPVDMTSP, or similar 

problems.  The techniques utilized by the research will also be discussed. 

2.1 Roadmap Methods 

The sampling-based roadmap method utilized by Obenmeyer [1] was created through a 

multi-step process to approximate the PVDTSP.  The complexities of which will not be fully 

reviewed in this study.   
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The construction of this method begins by sampling a finite discrete set of poses, which 

consist of an x, y, and heading value.  The PVDTSP-feasible set of Dubins paths consist of all 

possible Dubins paths, with a given minimum turning radius, that can solve the proposed 

problem.  The Finite One-in-a-set TSP (FOTSP) is where the vertices are now “finitely many 

nonempty mutually exclusive vertex sets called clusters” [1].  The FOTSP’s solution is 

determining which vertex is to be selected for each polygon.   

The poses in each polygon are sampled using a Halton Sequence, a quasirandom 

sequence. The use of a Noon-Bean Transformation allows an approximate conversion of a 

FOTSP to an asymmetric TSP.  The ATSP is simply a TSP with directional costs, to which many 

solvers currently exist.  The solution to this ATSP instance thus contains the solution to the 

PVDTSP.  The method is referred to as “resolute complete” since it “provably converges to at 

least as good as any nonisolated solution as the number of samples in the roadmap increases” [1]. 

2.2 Fuzzy Logic 

Developed by Lofti Zadeh in 1965 [10], fuzzy logic proposes a different way to describe 

information about continuous variables. Becoming increasingly popular over the past few 

decades, many published products that utilize Fuzzy Logic Systems (FLS’s) have been quite 

successful.  This approach allows an input to be included in multiple classification groups 

instead of a singular one, for example an object can be classified as some combination of blue 

and yellow, rather than green, or running at some percent power, rather than on or off.  This type 

of classification, known as fuzzification, allows us apply a combination of if then rules based on 

membership in these groups.  This rule base, developed from expert knowledge of the system, 

can solve many problems without investigation into complex equations and other 
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computationally expensive (or even impossible) obstacles.  Fuzzy logic is discussed in detail in 

many texts and papers.  As such, only a brief overview will be presented here. 

Fuzzification allows the computer to handle information in a method more similar to our 

brains. Utilizing this process, a crisp value is given, and input into a membership function.  This 

function maps out to what degree this crisp input belongs to the group, ranging from 0 to 1, 

rather than 0 or 1.   There are usually a variety of membership functions in a given Fuzzy Logic 

System (FLS) that a crisp input can belong to over its domain.  The breakdown of this crisp input 

into its level of membership in these functions is fuzzification.   

In the example shown below, 3 membership functions exist, covering input values 

ranging from 0 to 10.  These membership functions are triangular, but trapezoidal membership 

functions operate similarly.  This particular scenario could represent load on a circuit or pressure 

in a tank, with the three membership functions being “Low”, “Medium”, and “High”.  The crisp 

input of 3 belongs to multiple membership functions. 

 

Figure 5: Example membership functions and fuzzification 
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As seen in Figure (5), this input belongs mostly to membership function 1.  Based on its 

percent membership in each function, a rule base determines the crisp output of the system. This 

rule base is dependent on both expert knowledge and common sense to form a series of “if then” 

rules.   

Our brains handle a vast multitude of complex problems on a daily basis.  These 

problems often have incomplete or uncertain information that may not be easily quantifiable by a 

single crisp value, such as “on” or “off”.  This fuzzy information is usually not considered by 

machines which see only in binary numbers.  Thus machines cannot typically utilize these rules 

that we live by, such as if a pot is “too hot to touch, remove your hand.”  Instead a machine 

would operate with a line of script along the lines of “if temperature exceed 110.0 degrees, 

remove hand”.  For such examples these lines of logic can typically handle most needs, however 

what if a less quantifiable input is examined?  When we decide how much to tip at a restaurant, 

we base the decision typically on how good the food tasted, the quality of service provided, and 

perhaps the cleanliness of the building.  Defining an exact measurement for what rude service or 

tasty food is presents a weakness in only examining crisp or specific data.  Fuzzy logic allows 

the computer to operate with inputs such as “good” service, or “average” food.   

Which membership function the rule base will see is variable, but a typical approach is 

the centroid method.  The combined area of the membership in each function is created, as seen 

in the previous figure, and whatever membership function the centroid of this combined area lies 

in is what the rule base will activate off of.   

Output membership functions are created similarly to the input functions.  The final 

product of this process will take a crisp input such as vehicle speed, and through fuzzification 
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determine that it mostly lies within the membership function “way too high”.  The rule if “way 

too high”, then “apply strong braking” will activate, and a centroid method can be employed 

again to determine the actual crisp output that the braking system will receive.  This last process 

it termed “defuzzification”. 

This all allows Fuzzy Logic Systems to be utilized as a very strong approximation 

technique.  While not an optimal technique for every situation, this can be very useful when any 

combination of un-quantifiable, partial, or uncertain information is all that is available [11].  

Additionally, in a computational sense, when acquiring exact information is possible, but only 

through very expensive and lengthy calculations, it may be better to avoid this and work with 

what is available through such a system.   

2.3 Genetic Algorithms 

While evolution was investigated in computers by Barricelli in the 1950’s, and further 

developments of the technique brought by Holland in the 1970’s, genetic algorithms did not see 

much industrial application until the late 1980’s [7].  Since then, this approximating technique 

has been utilized in a multitude of applications due to its very lax requirements and effective 

capabilities.  Based on the theories of evolution and natural selection, genetic algorithms (GA’s) 

have become a shining example of effectively implementing a characteristic of nature to solving 

complex mathematical and engineering-related problems [12].   

Given a cost function, and a set of constraints dictating the necessary qualities of a 

solution, a genetic algorithm can be created.  In this iterating computational process, a random 

population of possible solutions is first formed.  Each of these random solutions must adhere to 

all constraints, and be evaluable by the given cost function.  In GA terms, each solution is 
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referred to as a “string”.  Depending on the type of problem, each string can be a binary number, 

an array of integers, or a list of rules.  Genetic programming [13] takes this a step further where 

each string is a length of code.  As an example, if we wanted to minimize the function: 

ݕ ൌ  ଶݔ	

Over the range of: 

0 ൑ 	ݔ ൑ 31 

Our strings would consist of binary numbers (combination of 0’s and 1’s) that are 5 digits 

long, as the binary number 11111 is equivalent to 31.  Thus every possible string must be an 

array with length 5, with any assortment of 1’s and/or 0’s.  Each string is then run through the 

cost function in order to determine its measure of optimality, commonly referred to as its 

“fitness”. Since this is a minimization problem, a lower fitness measure is considered to be 

better.     

A key quality of each string to be aware of are the “schema” that it contains.  A schema is 

simply a subset of the string.  The string: 

1 1 0 1 0 

Contains the following schemas: 

* 1 0 * * 0 

1 * * * * 

* * 0 1 0 

 Where the asterisk (*) denotes a “don’t care” position in the string.  Patterns can easily be 

noticed after examining a population of strings as to which schemas are associated with higher 
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fitness strings.  The importance of this will be discussed in more detail later in this chapter and 

the next. 

It is at this point that the exact specification of what constitutes a genetic algorithm 

becomes less specific.  However every genetic algorithm takes this population of strings, whose 

fitness has been determined, and emulates a generation of a biological population.  The strong, or 

fit, have a higher chance to survive and produce offspring for the next generation.  This process 

continues until a satisfactory solution is found. Such emulation can be done in a vast multitude of 

ways, but every method contains some form of polling the population.  Most common methods 

include simply selecting the top X % of the population, roulette wheel style polling, or 

tournament style polling [1].   

In roulette wheel polling, each string is given a set percentage chance to be selected based 

on its fitness, with the sum of all chances totaling 100%.  While every string can be selected, the 

stronger members of the population have a higher probability.  Tournament polling shares this 

quality, but through a different approach.  Here a tournament or polling size is predetermined.  A 

group of this size (typically much less than the total population size) is selected at random from 

the entire population.  The fittest member of this smaller group “wins the tournament” and is 

selected.  Both of these methods are repeated multiple times for each generation.   

The chosen strings then go through some form of breeding process.  The exact 

mechanisms here vary greatly from one algorithm to the next, but often some form of copying, 

crossover, and mutation is implemented.  Copying refers to the chances that the chosen string 

will simply be moved into the next generation’s population without any modification.  Through 

crossover, two selected strings are paired, and a crossover point selected.  The strings swap their 
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members, or “genetic material” with each other over this crossover point.  For example, given 

two strings: 

1 1 | 0 1 0 

and 

0 0 | 1 1 1 

Two different strings would be produced as offspring and placed into the next 

generation’s population.  The resultant strings would be: 

1 1 | 1 1 1 

and 

0 0 | 0 1 0 

Crossover often results in drastic recoding of the strings’ structure.  As seen above, many 

possible schemas are disturbed by crossover, as more than half of each string is altered in this 

case.  Crossover has some key strengths compared to other mechanisms; its large changes to the 

string help the initial population quickly become filled with more reasonable solutions and 

provide assistance in mitigating (not avoiding) local minima.  Not every breeding mechanism is 

this drastic. 

Mutation is another common breeding mechanism; however this acts on an individual 

string rather than a selected pair.  This mechanism alters smaller sections of the string, rather 

than large sweeping portions.  Similar to mutation in DNA, mutation can be the swapping of a 

specific 0 to a 1, replacing the 2nd digit in the string with the 4th, or any other desired operation.  

The key point here is that smaller changes are made to the string.  This alters fewer schemas, and 

is capable of making a good string better with less chances of disturbing it too much.   
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Other mechanisms are popular, and many algorithms employ a variety of them.  With 

some creativity, countless are possible.  The decision of which mechanisms to utilize should be 

based upon the complexity of the algorithm.  Genetic algorithms are very susceptible to 

damaging local optima; a population of strings can easily begin to settle towards one and may 

have great difficulties in moving past it.  For simple problems such as the function in this 

example, there are no local optima, only the global minimum at x = 0.  Thus a set of quick and 

dirty mechanisms should be created.  For more complex problems, such as the TSP, local 

minima are very abundant.   This type of problem demands a variety of mechanisms, some aimed 

toward rapid improvement of fitness, others more focused on mitigating and moving past local 

minima.   

How the populations alter from one generation to the next must also be decided.  Some 

algorithms keep a set percentage of the old population and only replace a portion of it to create a 

new equal sized generation, and others create an entirely new population each time [14].  These 

iterations of generations can be terminated in a number of ways. If an optimal bound of the cost 

function is known, a string having such a fitness value could end the process.   The algorithm can 

be told to run through a set number of generations, or coded to end when the optimal value has 

not improved after a set number of generations.   

While investigating genetic algorithms, one would do well to also examine the processes 

undergone to domesticate certain animals and select breeds.  While some important factors 

differentiate a genetic algorithm’s optimal process from that of the recent domestication of the 

silver fox experiments in Russia [15] for example, there is knowledge to glean from these 

studies.  Each foxes traits are comparable to the schema in a string, but the genetic algorithm has 

the benefit of being able to run through multiple generations of populations in the same second.  
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With this capability, there is less of a need for “immediate results” as we would see in the regular 

domestication of an animal.   

A good example of the downsides of this rush is the continual genetic defects found in 

dogs that are bred for pedigree and certain traits, such as size or color.  Common issues in certain 

breeds include inclination towards hip problems, blindness, ear infections, and even cancer. It 

has been shown that mutts, or cross-breeds, have less inclination to share these issues with their 

purebred counterparts, and are much more likely to live healthier lives [16].  What the genetic 

algorithm designer should take away from this is that creating a setup that is extremely biased 

towards only the fittest members in the population has the potential to have a particular string or 

set of schema overpower a population.  While this will lead to a quick improvement during the 

beginning iterations, it will quickly lead to damaging local optima that the algorithm will 

struggle to surpass.  By maintaining some level of diversity in the string population, the initial 

progress will be slower, but this problem can be avoided to a degree.  This is accomplished by 

ensuring that the bias to select and benefit the fittest strings is not overbearing. 

2.4 Discussion 

Found within sections 2.2 and 2.3 are the methods that form the basis of this research.  

Genetic algorithms and fuzzy logic pair well together [17] and have been shown to hybridize to 

amazing results.  The typical genetic-fuzzy system is a fuzzy system whose parameters are 

determined by a genetic algorithm.  The genetic-fuzzy system outlined in this work does not 

follow this pattern. 

Presented next in the thesis will be the development of a system that utilized genetic 

algorithms, fuzzy logic, and to an extent, dynamic programming in an effort to approximate the 

MDPVDMTSP.  These control techniques work cooperatively, rather than layered inside one 
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another, in an effort to solve this very complex problem.  This approach is feasible due to each 

method having separate and unique strengths.  
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CHAPTER 3: METHODOLOGY 

The advantages of both genetic algorithms and fuzzy logic discussed in the previous 

chapter are why they are the foundation of this research.  Here the actual construction of the 

UNCLE SCROOGE (UNburdening through CLustering Efficiently and Self-CROssover 

Optimized Genetic Algorithm) program will be described in detail.    

3.1 Genetic Algorithm – “SCROOGE” 

As mentioned before, a genetic algorithm needs to be customized to best fit the problem 

to which it is being applied.  The following sections will break down the construction of each 

component of SCROOGE. Two prior publications [19, 20] display portions of this work. 

3.1.1 String Structure 

Each string of a genetic algorithm must adhere to the constraints of the problem.  For the 

TSP, a solution is an array of cities, representing the order in which they are visited.  All points 

must be visited, no point shall be visited more than once, and the UAV must return to the initial 

point at the end of the tour. While these constraints noticeably limit a genetic algorithm 

approach, this does not enforce a single string structure.  Examining the following 5-city TSP, 

with cost function “J” will show this to be true: 

ܬ ൌ 	෍ඥሺሺݕ௜ାଵ െ	ݕ௜ሻଶ ൅ ሺݔ௜ାଵ െ	ݔ௜ሻଶሻ
௡

௜ୀଵ
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Figure 6: Example 5 city TSP 

The optimal solution to this problem is quite simple to find, and it is clear that the 

solution shown above is indeed the optimal.  An obvious way to depict this route as a genetic 

algorithm string is: 

1 2 3 4 5 1 

However, since the “1” at the end of the string is merely a copy of the initial member, we 

can remove this from the actual string and simply script the return to the initial member as a part 

of the cost function, resulting in: 

1 2 3 4 5 

Changing the cost function to: 
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ܬ ൌ 	ඥሺሺݕଵ െ	ݕ௡ሻଶ ൅ ሺݔଵ െ	ݔ௡ሻଶሻ 	൅	෍ඥሺሺݕ௜ାଵ െ	ݕ௜ሻଶ ൅ ሺݔ௜ାଵ െ	ݔ௜ሻଶሻ
௡ିଵ

௜ୀଵ

 

A choice is present now to either lock the starting point as a constant, or allow it to 

change with the algorithm.  If we do incorporate point “1” as a permanent starting location, the 

string size reduces again, thus making the genetic algorithm slightly less computationally 

expensive.  However, it reduces the number of optimal strings to two, namely: 

2 3 4 5 

5 4 3 2  

By doing this, the number of ways the optimal solution can be represented has been 

greatly reduced.  If this were reduced to only one possible string representation, a strong benefit 

would be present in the fact that certain schema would be designated as always optimal.  In 

reality however, it is clear that: 

* 3 4 * 

is a schema that does not always lead to optimality.  If we do not lock the solution to a 

starting point, our string length is increased by one, but the number of possible representations is 

greatly increased, with a few examples shown here: 

2 3 4 5 1 

2 1 5 4 3  

5 1 2 3 4 

5 4 3 2 1 
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While the difference in string size may be noticeable for this small-scale example, the 

actual difference in computational cost for larger cases with points (n) greater than 50 is 

practically negligible.  The presence of harmful local minima in the 5-city case is relatively low, 

but for a scenario such as in the following figure, they are much more pronounced.   

 

Figure 7: Example 200 city TSP 

With this in mind, SCROOGE was structured to not have the UAV’s depot be locked as 

the initial member in the strings.  Since it does not matter either way in the eyes of the cost 

function, and it provides more possible string representations of the optimal solution, it is 

preferable in this case.    

3.1.2 Polling Style and Generation Structure 

Since local optima abound in the TSP, the polling style and generation structure must be 

chosen with this in mind.  After studies of a variety of methods, it was noted that the tournament 
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style polling was a more powerful tool than roulette wheel polling, with different tournament 

sizes seeming to be effective at different iterations into the simulation.  During the onset of the 

simulation, a large tournament size enabled the population to fill with reasonable solutions 

quickly, without too much bias to a particular string.  As the run progressed, the optimal 

tournament size lowered, and was reduced even further towards the end of the run.  This is 

logical, as the need to mitigate local minima increases with iteration, and the smaller tournament 

size allows the weaker strings to have a chance to breed and perhaps introduce helpful new 

schema.   

Since tournament polling selects a random group of strings, with no bias towards fitness, 

to compete with each other, the odds of a weak group was often noted to be greater than he odds 

of the weaker strings being selected through roulette wheel polling.  While this guarantees that 

the weakest string of a generation will never breed, it has a higher chance of promoting moderate 

diversity.   Thus morphing parameters were introduced to SCROOGE, with 3 phases; Initial, 

Intermediate, and Final.   

In an effort to further this goal, a new population is created every generation.  That is, for 

a population size of n, n groups of randomly selected strings are created.  The winner of each 

goes through the reproductive process to create 1 string for the new generation.  Thus the next 

generation maintains the size of n. 

3.1.3 Breeding Mechanisms 

With the selected string structure, and with most string representations of the TSP [1], 

basic crossover is unable to meet the constraints of the problem.  
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Table 1: Example of improper crossover for TSP 

As depicted in Table (1), a child of crossover could easily contain duplicate point visits.  

There are methods to alter the crossover procedure that avoid this, shown by Goldberg [1].  Such 

approaches include partially matched crossover, order crossover, and cycle crossover.  Kundu 

and Pal [18] propose a different sort of approach; self-crossover.  This method is similar to 

asexual reproduction that organisms such as starfish can undergo.  Here, one string crosses with 

itself in a set number of locations. An example being: 

9 10 | 2 5 6 3 1 | 4 8 7 

Would become: 

4 8 7 | 9 10 | 2 5 6 3 1 

While being a one-string mechanism, the effect of schema redistribution that normal 

crossover has is witnessed here as well.  More self-crossover sites are utilized in larger strings to 

produce similar distributions. The fact that this method, which is in reality an extreme mutation, 

produces similar results to other forms of crossover is not its main strength however.  Methods 

such as order crossover, or partially matched crossover, require more computational cost to 

execute due to their larger number of steps required.  Despite the fact that these other 

mechanisms produce two offspring, the larger amount of coding required offsets this. Self-

crossover has been found to be incredibly computationally efficient through this research. 
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Following a more traditional route, mutation is utilized in combination with self-

crossover inside SCROOGE.  Mutation’s strength of small changes inside strings is focused on, 

and a good mutation is often found to be necessary to find the optimal solution of larger tours.  

When a string is chosen for reproduction it is checked against a crossover rate and a mutation 

rate, to see if neither, either, or both of these mechanisms occur.  This percentage chance changes 

with time into the run, similar to polling size.  Crossover rate is higher towards the beginning of 

the run, and lowers slightly towards the end.  Mutation rate is relatively low at the onset of the 

simulation, but increases drastically over time.  These changes are discrete rather than 

continuous; however more research into this area could perhaps develop a continuous 

distribution of these parameters.  This will be discussed further in Chapter 4.   

Self-Crossover and mutation combine to manipulate strings in manner shown below: 

 

Table 2: Possible breeding mechanisms within SCROOGE 

3.1.4 Additional Mechanisms 

SCROOGE contains a few extra parameters with each serving a specialized purpose 

during specific cases.  During longer cases where finding the exact optimal is desired, 

SCROOGE can be set to not allow duplicates of any string to exist. It accomplishes this by 

simply changing the string to a different representation of the same solution, as shown in Chapter 

3.1.1.  This can help to mitigate local minima, but does slow performance. 
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Additionally, another phenomenon worth noting is the effective difference between 

breeding mechanisms based on string size.  As discussed in Chapter 2.3, crossover typically has 

a more drastic effect on the string than mutation.  However if one analyzes a 2 city TSP, with the 

following string: 

1 2 

Any type of mutation, or crossover on this string would result in the offspring: 

2 1 

While the difference in breeding mechanisms is more pronounced in a 3 city TSP, and so 

on, smaller case TSP’s (less than 10 cities) can be solved as accurately by just one breeding 

mechanism.  For such small cases, SCROOGE’s is set to mutation only, providing a boost in 

computational speed without a loss in accuracy. 

3.1.5 MTSP Implementation Issues 

As presented in a prior publication [20] SCROOGE was successfully adapted to solve the 

Multiple TSP (MTSP).  Since this research has eventual goals for a real-time program solving 

even more complicated problems than the TSP, the very lengthy run time of this adaptation (over 

2 hours to solve a 100 city, 5 UAV MTSP).  It was clear that the single TSP was the extent that 

SCROOGE should be pushed to, and that hybridizing with other heuristic methods was 

necessary to keep run-time at a minimum.   

3.2 Fuzzy Logic – “UNCLE” System 

In order to determine how to properly utilize a fuzzy logic system (FLS) to work 

alongside SCROOGE, the MTSP version of SCROOGE was observed during multiple cases.  

Below is Figure 2 again: 
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Figure 8: Figure 2 again, example 100 city, 5 UAV MTSP 

Notice the constraints on the MTSP cost function; in this scenario each UAV has to go to 

a minimum number of points.  Otherwise, the algorithm would output a solution where 4 of the 5 

UAV’s are inactive, and the 5th visits every city (as this would be the most efficient in terms of 

distance).  The problem has now become a balance of optimizing total time and distance.  

Through the rest of this research, the multi-agent cases follow this rule.  The algorithm can easily 

be changed to optimize purely for distance, or for time (a measure of the average distance of 

each UAV).   

The figure shows each UAV receiving a cluster of cities in a mostly radial fashion.  

Keeping to this pattern, the UNCLE system was developed by first converting all of the points’ 

coordinates to polar notation, with the depot considered the origin.  Since the solver is outputting 

loop-like paths, the main focus of the polar coordinates is the angle rather than the radius. 
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Fuzzy c-means clustering, a variation on MacQueen’s K-means clustering [21], takes a 

set of coordinate measures and forms a given number of clusters based on the minimization of 

the following cost function [22]: 

,      

     ,      

 

Here “u” is the degree of membership, and “c” is the center of the cluster, for “m” 

clusters.  This extension of K-means clustering allows each point to belong to multiple clusters.  

The output in the 5 UAV case will be the coordinates of the 5 cluster’s centers, and the 

membership values that each point has to these clusters.  

While this breakdown of the points into a separate subset for each UAV is an effective 

technique, improvements were noticed when a fuzzy logic system was implemented to take each 

point’s membership into these clusters as an input.  This provides a drastic reduction in run-time, 

but slightly worse results. 
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Figure 9: 5 UAV UNCLE input membership functions for random target distribution 

 

Figure 10: 5 UAV UNCLE output membership functions for random target distribution 

Each input membership function’s peak is a center of a cluster, and each membership 

function overlaps the center to its left and its right by a set amount. These figures are for a 5 

UAV case; the membership functions change with each run.  This set overlap was shown to 

provide good performance, and is a very cost effective method, as shown in [20].  While 

originally the membership functions were defined based on the density of targets within the 
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sweep of the cluster’s angle, this was previously shown to be costly and, sometimes, inaccurate. 

By simply using this set overlap of membership functions, which can be seen in Figure (9), the 

system was autonomous and results found to be more accurate and drastically quicker.  The rules 

and outputs for this system are incredibly simple, where if an input belongs mainly to cluster 1 

(“C1”), that point is put with UAV 1, and so forth.  They are shown below: 

 If (Input is C1), then (Output is UAV1) 
 If (Input is C2), then (Output is UAV2) 
 If (Input is C3 Positive or C3 Negative), then (Output is UAV3) 
 If (Input is C4), then (Output is UAV4) 
 If (Input is C5), then (Output is UAV5) 

For cases where the targets do not fully surround the starting location, or depot, only 5 

membership functions are utilized, as there is no need for jumps between -180 to 180 degrees.   

 

Figure 11: 5 UAV UNCLE rule surface for random target distribution 

This rule surface was unexpected; it is a product of utilizing different fuzzy logics to 

cluster the cities.  The refinement of this system, which follows simplistic steps but provides 

very effective results, took place over multiple iterations. This was accomplished by noticing the 

improvements at each step, as shown in a previous publication [20]. 
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The defuzzification method, or the way in which a fuzzy result is released as a crisp 

output from the system, is the middle of maxima (MoM) method.  Here, a control action is made 

based upon the average value or all local inputs that reach the maximum membership.  Avoiding 

the centroid defuzzification method furthered the difference between the fuzzy c-means 

clustering and the fuzzy logic system UNCLE is based upon.  Additionally, wider membership 

functions, such as Cluster 3 in Figure (9) can sometimes dominate the border between clusters.  

This is due to the fact that if the centroid defuzzification method is utilized, a smaller level of 

membership in one function can outweigh a higher membership in the function next to it due to a 

smaller base.  This method produces a result where the border from one cluster to another is not 

as pre-defined, thus avoiding some scenarios where a suboptimal target distribution is noticed. 

While only a single input single output system, the UNCLE system prevents the scenario 

from being simply split by radial lines of set angles.  By examining both TSP and MTSP 

solutions, and determining that optimal paths are loops where paths never intersect, this fuzzy 

logic system was determined to be an effective approximation.  While further work must be done 

to perfect the system, the work thus far polished the clustering process nicely and produced 

effective results in a very quick manner.  Including additional inputs may further the accuracy of 

UNCLE, and especially with the addition of complexities such as three-dimensionality, a 

multiple input system must be looked into. 

It is important to note that UNCLE SCROOGE is an approximation technique.  The 

MTSP has limited benchmarking capabilities, partially due to the variation in any given cost 

functions.  The combination of all of the advanced control methods inside UNCLE SCROOGE is 

all that is necessary to begin solving such complex problems as the MDPVDMTSP. The process 

of developing this capability with UNCLE SCROOGE is shown in the proceeding chapter.
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CHAPTER 4: DEVELOPMENT 

Past publications [19, 20] have shown the effectiveness of both SCROOGE and the 

UNCLE system as a TSP approximator and clustering code. This chapter will focus on covering 

the development and optimization of the code and adapting UNCLE SCROOGE to the final aim 

of this thesis, the MDPVDMTSP. The work and results shown in this paper were constructed 

with the Matlab programming language, on a Windows based laptop with an Intel i7 1.73 GHz 

quad-core processor and 6.00 GB (2GB x 3) of RAM.   

4.1 Adaptation to MDPVDMTSP 

Through a series of additions to UNCLE SCROOGE, a multitude of functions were 

created that broke down each section of this problem, in a manner as to avoid introducing error 

whenever possible. 

4.1.1 Multi-Depot MTSP 

Just as a MTSP is broken down into multiple TSP’s, the multi-depot MTSP (MDMTSP) 

is reduced to multiple MTSP’s.  This is accomplished through another clone of the UNCLE 

system, which utilizes the exact same process, except remaining in the Cartesian coordinate 

system.   

This results in an even distribution of waypoints if the depots are both located towards 

the middle of the map.  Such a distribution more closely resembles the time-optimal MDMTSP.  

If one depot is located in a corner behind another depot, it will only receive the minimum 

number of points so each aircraft can satisfy its minimum tour length requirement.  This is more 

of a distant optimal MDMTSP.  As the TSP is the optimal distance solution for any MTSP, so 
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too is the MTSP to a MDMTSP.  Clearly if given a specific objective (time or distance 

optimizing) the cost function would need to be altered to either optimize towards average UAV 

tour length (time-optimal MDMTSP for constant velocity) or for total combined UAV flight 

distance. 

4.1.2 TSP to Polygon-Visiting Dubins TSP 

A much more complex addition to the system is the capability to change from the base 

TSP to the Polygon-Visiting Dubins TSP (PVDTSP).  First, given a set of polygons, the 

centroids of each are calculated.  These centroids are sent to SCROOGE to run through the GA, 

producing a result such as: 

 

Figure 12: Initial phase of PVDTSP 

The above is simply utilized to determine what order the polygons are visited in, not 

necessarily where in the visibility polygon the UAV crosses.  It is important to note that 
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extremely irregular polygons, especially ones that are very elongated, may produce error in 

determining the order of polygons to visit. With the current definition of a visibility polygon 

being a plane of a hemisphere with possible blocked portions, such a polygon will not occur.   

Following this, the point along the border of the polygon that the UAV actually crosses 

must be determined.  Breaking this down effectively using a simplified form of dynamic 

programming allows the program to utilize brute force, but still keep a satisfactory run-time.  

Instead of simultaneously examining every polygon, the problem looks are three polygons at 

once.  Let i be the polygon that is being examined, i-1 be the polygon before it in the string, and 

i+1 the one after t.   

Initially, the point in which the code evaluates the polygon from is the centroid.  Then the 

following cost function is calculated for each point, n, sampled along the border of the ith 

polygon: 

ݐݏ݋ܥ ൌ ݁ܿ݊ܽݐݏ݅ܦ	 ൅ ݎ݋ݐܿܽܨ݈݁݃݊ܣ ∗ ሺ180° െ  ሻ݈݁݃݊ܣ

Where “AngleFactor” is just some weight applied to the Angle value to increase its 

importance in the cost function and: 
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These equations provide the distance of the two line segments that the 3 points create, 

and the angle they make with the ith polygon as the vertex.  The figure below depicts this 

process: 

 

Figure 13: Polygon Point Selection Process 

The point that produces the shortest and straightest set of lines would be considered 

optimal.  A higher weight on the angle will take a longer path that produces less turning.  A 

balance is required when Dubins paths are added.  Two measures of this cost are recorded; static, 

where only the three polygons are examined, and stacking, were the cost is additive around the 

entire loop. 

Each iteration updates the point selected on the ith polygon; for the first iteration this 

means switching from the centroid t some point on the border.  The process continues a set 

number of iterations, and does so at a much quicker time than analyzing all polygons at once.  It 

is important to note that a check is necessary to determine if the point chosen is inside another 

polygon, in which case that polygon can be skipped.   
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 The heading at each point must now be found, to find a pose (x, y, θ) that can be fed as an 

input to a Dubins path solver.  The code simply determines these θ’s by diving the angle utilized 

by the preceding cost function in half.  This results in a well-spread distribution of turning 

between the polygons.   After finding the order of polygons visited, and the corresponding series 

of poses (x, y, θ), the PVDTSP is solved by simply running through a Dubins path solver.  The 

particular one utilized in this study (thanks again to Steve Rasmussen at AFRL) takes a starting 

pose and an end pose, and find the optimal path through a series of either turn-straight-turn, turn-

turn-turn. straight-turn, or turn-straight maneuvers depending on the headings and the set 

minimum turning radius. The image below, courtesy of Steven Lavalle at Cambridge University 

[23], shows some example poses, q, and their appropriate Dubins paths. 

 

 

Figure 14: Example Dubins Paths [23] 

 Combining these methods together, UNCLE SCROOGE can been adapted to solve the 

more complex MDPVDMTSP. A 3 depot, 12 UAV (4 at each depot) MDPVDMTSP run is 

broken down as follows: 
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 Modified UNCLE system distributed polygons to each depot 

 Each depot becomes a MTSP, where the UNCLE system is run based on centroids of 

polygons 

o A cluster created by UNCLE is assigned to a particular UAV 

o Now a collection of PVDTSP’s, SCROOGE is ran for each based on centroids 

 Afterwards, points are selected on each polygon based on the iterative 

process described previously 

 Poses are created and run through the Dubins solver, with a set minimum 

turning radius, to calculate distance 

o The code runs through this process for each UAV at the depot 

 The sum of the solutions from each PVDMTSP problem is the solution to the 

MDPVDMTSP 

For the capability to handle any polygon count, with up to 4 depots, and up to 5 UAV’s at 

each depot, the code is a combination of 34 Matlab function files, with one master .m file, 

totaling to over 10,000 lines of code.  The amount of heuristic methods and assumptions present 

is certainly more than other approaches; something that does not sit well with critics of such 

techniques.  The next chapter will focus on the results of this hybridized approach. 

4.2 Optimization of UNCLE SCROOGE 

During the infancy of this research, the code was simple enough to run trade studies on 

Monte Carlo simulations with different values for each parameter.  Polling size, self-crossover 

rate, mutation rate, and population size were the only variable parameters.  Coupling is present 
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between these, but with this short list, three iterations of trade studies brought convergence [19].   

However, this only looked into set intervals, and only two decimal places for the percent 

parameters. 

Such a method would not be feasible given the time of this research for the code 

described in Chapter 4.1.  The following parameters needed to be determined: 

Parameter Description 

C_r1 Crossover rate for SCROOGE during Initial Phase 

C_r2 Crossover rate for SCROOGE during Intermediate Phase 

C_r3 Crossover rate for SCROOGE during Final Phase 

M_r1 Mutation rate for SCROOGE during Initial Phase 

M_r2 Mutation rate for SCROOGE during Intermediate Phase 

M_r3 Mutation rate for SCROOGE during Final Phase 

P_1 Tournament polling size for SCROOGE during Initial Phase 

P_2 Percent value of P_1 that represents polling size during Intermediate Phase 

P_3 Percent value of P_1 that represents polling size during Final Phase 

gens 
Scalar that is multiplied by Polygon count to determine how many generations 
to run each instance of SCROOGE for 

pop 
Scalar that is multiplied by Polygon/city count to determine how many strings 
are utilized in each instance of SCROGE 

O 
Utilized by UNCLE to determine how much the membership functions 
overlap 

AngleFactor 
Scalar that is multiplied by the angle found in polygon point selection; puts 
more weight on ease of turning rather than optimizing by distance 

Table 3: Variable Parameters within UNCLE SCROOGE 

A 13 parameter trade study, with coupling present amongst many of them being out of 

the question, an alternate method was investigated.  Reviewing the strengths of genetic 
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algorithms, it is recalled that the only information necessary is a cost function and the constraints 

on feasible solutions.  As such, another genetic algorithm deemed “GOGS” (Genetic algorithm 

Optimizing Genetic algorithmS) was created.  Here the strings consisted of 13 numbers that 

ranged from 0 to 1, up to 4 decimal places (the result of the Matlab “rand” function). GOGS’ 

cost function is UNCLE SCROOGE.  That is, each string is a series of inputs that are run 

through the code, with some pre-determined scenario.  For the percentage-based parameter, no 

manipulation of these values was necessary.  For each of the other parameters (P_1, gens, pop, 

O, and AngleFactor), an upper bound was chosen.  The percentage is multiplied by this upper 

bound before being sent as an input. 

Due to the randomness present in UNCLE SCROOGE, GOGS evaluates each string three 

times, and utilizes the average of these values as the fitness of each string.  This genetic 

algorithm utilizes a combination of traditional crossover and mutation.  There is only one 

mutation mechanism present, where a random member of the string is replaced by a new random 

number.  Running GOGS was a lengthy optimization process, but certainly faster than random or 

brute searches.     

GOGS was run on a Windows 7 based desktop, with 16.0 GB of RAM (4GB x 4) and an 

Intel 3.4 GHz dual core processor. As this code does not utilize parallel processing, this machine 

was more suited for the lengthy task.  25, 50, 100, 150, and 200 polygon cases were utilized, all 

with 1 depot and 5 UAV’s, as there are no variable parameters for the multi-depot section. While 

it is doubtful that the true optimal values for each parameter was found, performance was 

noticeably improved after the development and running of GOGS.  
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CHAPTER 5: RESULTS 

The results of this research will be presented in this chapter.  Since benchmarking is only 

currently possible for the PVDTSP, this will be shown first.  Next, a variety of cases will be 

examined, showcasing the capabilities of the program.  Lastly, some instances that depict the 

weaknesses of the code and possible areas of improvement are displayed.   

5.1 Benchmarking of PVDTSP 

As the first work investigating this particular variant of the TSP, Dr. Obenmeyer’s 

research [1] serves as the only current basis for comparison between these methods.   His work 

examines a few particular cases, but we will only compare the most complex case here: a 20 

polygon map that is tightly packed, includes some overlapping polygons, and has a relatively 

small minimum turning radius of 3 meters (though these units are arbitrary).  Many methods 

would find difficulties with this layout, resulting in 360 degree maneuvers and U-turns. 

 

Figure 15: 20 Polygon PVDTSP [1] 



Page | 41  
 

It is important to note that the above figure also depicts Obenmeyer’s best found solution 

of 118.99 meters.  UNCLE SCROOGE’s solution is found below: 

 

Figure 16: UNCLE SCROOGE’s Solution to Sample PVDTSP 

Graphically it is somewhat difficult to tell these solutions apart, but there are a few 

differences.  These differences are exemplified in the following table, though a vital preliminary 

note must be discussed. While his work presents the above solution as a “1500 sample Resolute 

Complete” run, his data also shows that he received a similar result in a roughly “1125 sample 

Resolute Complete”.   

Code 
Optimal Distance 

(m)  
Computational Cost 

(sec) 
Chance of obtaining 

optimal 

1500 Sample Resolute 
Complete 

118.99  506.07  100% 

Roughly 1125 Sample 
Resolute Complete 

118.99  Roughly 175  100% 

UNCLE SCROOGE  108.31  17.09  99% 

Table 4: Comparison between “Resolute Complete” roadmap method and UNCLE SCROOGE 
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As seen in Table (4), whether comparing to the strongest Resolute Complete method or 

the first to present the best solution, UNCLE SCROOGE can find a much better result in much 

less time.  This is despite the fact that the Obenmeyer’s results are found on a computer that is 

slightly more optimized for such tasks (again, UNCLE SCROOGE does not utilize parallel 

processing), but is also created in C++ [1].  Matlab, while praised for its user-friendliness and 

ease of code creation, is known to be a slow-running computer language.  Conversion of UNCLE 

SCROOGE to C++ would indeed reduce the run time.  By what degree is unknown offhand, but 

due to the amount of loops in UNCLE SCROOGE, it ought to be quite noticeable.   

Comparing the two routes, it is clear that the polygon border point selection algorithm in 

UNCLE SCROOGE is operating well.  Also note that the order of polygons visited for both 

solutions seems to be the same.  For this case, the centroid assumption to utilize SCROOGE 

allows rapid run-times with no loss of performance.  Additionally, while the code utilizes 

methods that produce uncertain results, over the average of 100 runs a 99% optimality rate was 

found with an average run-time of 17.09 seconds.   

The results show the drastic increase in performance and speed that can be received by 

adopting approximating control techniques, if one can stomach a 1% chance of not obtaining the 

optimal solution.  Technically speaking, if UNCLE SCROOGE’s solution of 108.31 meters is the 

current best solution to this problem, or the current optimal, the Resolute Complete methods 

have a 0.00% chance of obtaining the current optimal value.  If the small chance of sub-

optimality is a reason for one to be uneasy, this should help cope with the risk.   

Now examine the results if the minimum turning radius is pushed even further, say from 

3 meters to 4.  A solution without any U-turns or 360 degree maneuvers is certainly feasible if 
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the route is pushed back to the far external edges of the outside polygons.  Here is what UNCLE 

SCROOGE outputs: 

 

Figure 17: Increased Minimum Turning Radius Solution 

The code could not compensate for such a tight turning maneuver and required some long 

turning maneuvers.  How much off from optimal this solution is currently unknown, but it is 

clear that improvements for extremely tight turning radii cases are possible.   

5.2  MDPVDMTSP Results 

Now the final results will be covered for the end-goal of this research, solving the Multi-

Depot Polygon-Visiting Dubins Multiple Traveling Salesman Problem.  As far as what can be 

publically found, such a problem has not been examined previously.  However, we can compare 

these results performance-wise with the final aim of developing a real-time target allocation and 

path planning algorithm.  This entails that runtimes must be similarly low and scalability must be 
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satisfactory.   For these cases, extremely large minimum turning radii relative to polygon size 

and distribution will not be examined, as UNCLE SCROOGE’s strengths in this area has been 

demonstrated in 5.1.   

First to be presented is a relatively simple case, a 50 Polygon, 2 depot, 1 UAV/Depot 

MDPVDMTSP.  The figures in this section will not show the actual curvature of the UAV’s 

path, but rather the points at which it begins a turning maneuver.  Solutions to a few random 

cases with these parameters are shown.  

 

Figure 18: 100 Polygon, 2 Depot, 1 UAV/Depot Example 1 
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Figure 19: 100 Polygon, 2 Depot, 1 UAV/Depot Example 2 

  

Figure 20: 100 Polygon, 2 Depot, 1 UAV/Depot Example 3 
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An average of 100 runs resulted in a run-time of 12.27 seconds for these cases.  With a 

less strict minimum turning radius, run-time is reduced compared to the tests ran in 5.1.  These 

cases more closely resemble a desert observation patrol, a much looser environment in terms of 

maneuverability.  The possible distribution issue with the modified UNCLE system to break 

down the MDPVDMTSP into two different PVDMTSP’s is shown in Figure (18).  Here, one 

depot is located in the back corner, and since distance optimization is the priority, takes a much 

less dominant role than the central depot. 

Moving on to a more complex case, the capabilities of the current UNCLE SCROOGE 

are maxed with 4 depots, 5 UAV/depot simulations.  First, smaller-scale cases will be examined; 

results will be shown with 250 polygons below: 



Page | 47  
 

Figure 21: 250 Polygon, 4 Depot, 5 UAV/Depot Example 1 

In the example shown in Figure (19), 2 depots were located along the bottom edge of the 

map; a good display of UNCLE SCROOGE’s freedom of depot placement.  Depots do not have 

to be located within the center of the polygon field.  Here each UAV had to visit a minimum of 3 

polygons, with the upper depots covering a larger area. 
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Figure 22: 250 Polygon, 4 Depot, 5 UAV/Depot Example 2 

Figure (20) shows a slightly more balanced distribution.  While there is no method to 

determine what percent optimal these runs are, by inspection, and based on performance of the 

individual PVDTSP solver, they appear to be accurate.  There are clearly a few polygons on the 

border of each cluster that could improve overall fitness by switching to a neighboring cluster, 

though these are the rarity.   

Over a similar 100 runs, an average run-time of 25.62 seconds was found though with 

more variability.  This is understandable, as particularly long routes for individual UAV’s will 

introduce more computational cost than a more balanced set of routes.   Considering that 

initially, the goal for SCROOGE was to solve 100 city TSP’s in under 30 seconds [19], the fact 
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that the code can now solve 250 polygon, 5 depot, 20 UAV MDPVDMTSP problems in a similar 

timeframe is very promising.   

Lastly, a large-scale case was examined to get a feel for scalability through such 

demanding tests.  Presented below is the solution UNCLE SCROOGE with similar parameters, 

except for larger polygon counts 

.  

Figure 23: 500 Polygon, 4 Depot, 5 UAV/Depot Case 
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Figure 24: 2500 Polygon, 4 Depot, 5 UAV/Depot Case 

 This last case may not be encountered by any modern UAV swarm, but provides insight 

into UNCLE SCROOGE’s performance.  Taking 35,357 seconds, or 9.8 hours, it could hardly be 

imagined to be implemented into a real-time controller, but does show the scaling capabilities of 

the algorithm.   
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Based upon these trade studies of 100 runs each, except for the 2,500 polygon case, Table 

(5) shows the time-performance of UNCLE SCROOGE for the sample cases. 

Case Mean Run-time (sec) Standard Deviation (sec) 
20 Polygon PVDTSP 17.09 0.91 
100 Polygon MDPVDTSP 12.27 0.79 
250 Polygon MDPVDMTSP 25.62 2.82 
500 Polygon MDPVDMTSP 261.33 19.64 
2500 Polygon MDPVDMTSP 35357 (9.8 hours) N/A 

Table 5: Comprehensive Run-Times for Sample Cases 

The impact of these results will be discussed in the following chapter.   
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CHAPTER 6: CONCLUSIONS 

Displayed in this thesis is an approach to solving the Multi-Depot Polygon-Visiting 

Dubins Multiple Traveling Salesman Problem (MDPVDMTSP).  This research developed a 

method that hybridizes genetic algorithms, fuzzy logic systems, and, to an extent, dynamic 

programming.  Through these powerful optimization tools, the PVDTSP presented by Dr. 

Obenmeyer has been expanded.  Without any benchmarks for the MDPVDMTSP, UNCLE 

SCROOGE explored into this new scenario. which more closely represents a UAV swarm 

cooperative control problem. 

While constant velocity and altitude are unrealistic constraints, this is variant of the 

MTSP is approaching functionality in a realistic case.  UNCLE SCROOGE was compared 

against the techniques of Obenmeyer, and then developed to solve the more complex problem.   

UNCLE SCROOGE was found to have a 9.8% increase in accuracy, as well as a decrease of run-

time surpassing 1000% or a factor of 10.  This was despite operating on a slightly slower 

computer, and in a slower programming language.  This increase in performance does however 

come at the cost of only having a 99% chance of reaching this optimal answer.   

In solving the MDPVDMTSP, it was found that in less than 30 seconds, cases with 4 

depots, 5 UAV/depot, and up to 250 polygons were solvable.  Table (5) shows that while this 

code does not scale linearly with time, it still performs well.  Additionally, large cases such as 

the 2,500 polygon example are solvable, taking 9.8 hours for this particular case.  The sheer 

quantity of possible solutions for this problem is staggering, many times more than a 2,500 city 

TSP.   
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Some weaknesses of the code are noticeable.  Depots that are located within corners 

receive very little use compared to those in the middle of a map.  Avoiding this issue requires 

clarification of the cost functions utilized.  When other methods present themselves for solving 

the MDPVDMTSP, this clarification can be determined for benchmarking purposes. 

Additionally, the modified Cartesian UNCLE system in charge of clustering the depots 

shows occasional weakness.  Some polygons on the borders of a cluster would bring an overall 

decrease in cost if switched to a neighboring cluster.  UNCLE however occasionally fails to 

allow this due to distance of the polygon’s centroid to the center of the cluster.   

If additional UAV’s/depot, or depots are desired, they can be implemented easily enough.  

This time consuming process was not deemed necessary until other methods approach that this 

can be tested against. Being the variant of an only-recently studied problem, the MDPVDMTSP 

is a difficult test of an algorithms performance.  UNCLE SCROOGE has shown great strength in 

solving the PVDTSP, as well as the MDPVDMTSP.   
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CHAPTER 7: FUTURE WORK 

The capability to solve such a problem as the MDPVDMTSP lends great promise to a 

code’s ability to solve cooperative control problems faced by UAV swarms.  The fruit of this 

research, UNCLE SCROOGE, has shown great capabilities in this area through a combination of 

powerful techniques.  

Initially, due to the sheer size and complexity of the code, further performance 

optimization is possible.  Additional mechanisms for the genetic algorithm, logics to prevent 

long maneuvers in difficult minimum turning radius PVDTSP’s, and extra honing of the variable 

parameters could all bring about noticeable increases in performance.  A prime example of an 

possible area of improvement is developing an efficient coding for utilizing the Dubins path 

solver with the polygon-boundary point selection logic.  This would refine the solution space, 

likely bringing improvements in both accuracy and run-time.  While the fuzzy logic system 

UNCLE currently is single input, additional inputs could create a better cluster distribution.  

Bringing additional control techniques into the code may also strengthen it, for example utilizing 

methods to lower the possible number of strings the genetic algorithm sees, thus reducing run-

time.  

Additional optimization will most likely always be present, but currently UNCLE 

SCROOGE is ready to approach further complexities.  Removing the constant height altitude 

switches the problem to three-dimensional.  This could be implemented easily enough with some 

minor adjustments throughout the code and the development of new cost functions.  The new 

cost functions would have to include basic aircraft dynamics in terms of altitude increase costs 

and altitude decrease gains of energy.   Complete aircraft dynamics, and a transfer from a static 
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to a dynamic problem would be necessary to create a fully-usable real time controller, but 

perhaps this is not the optimal direction of UNCLE SCROOGE.  While investigation into this 

may provide similar strong results as this study, it may also be that UNCLE SCROOGE should 

work in tandem with other control programs.  If this is to be utilized real-time, the genetic 

algorithm engine must be able to handle a change in number of targets or obstacles mid-run, 

meaning that the string size must be able to change between generations.  Additional research 

into this area would determine the feasibility of utilizing the program in this manner.   

Another complexity that can be added is obstacles.  This could model no-fly zones, 

mountainous regions, and other large-scale obstructions faced by full-sized UAV’s.  For micro-

UAV’s, obstacles could simply be the walls inside a structure, or buildings alongside a city 

street.   For use with police forces, urban micro-UAV’s would also require factoring in the wind 

between these stretches of buildings.  Without adding a complete set of aircraft dynamics, 

velocity may be allowed to be adjusted by determining minimum turn radius of the aircraft at 

each velocity.  Cost functions would then have to reflect the added cost in acceleration time 

afterwards.   

UAV’s are getting more economical and accessible.  The removal of a pilot, or as with a 

UAV-swarm, multiple pilots, brings the same affordability and ease of implementation to a 

UAV-swarm.  Law enforcement, search and rescue, and firefighters could utilize such systems 

much easier without the added cost of trained pilots.   

While in the future this may mean the ability to create a massive army of attack drones at 

the rate our factory can pump them out, there are more realistic benefits.  This work could be 

applied to assist with nano-machine navigation.  A team of robotic probes can be sent on space 
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missions, to distances outside of reasonable control time.  While the ability to acquire data about 

their surroundings would be necessary, the end product of this work would allow them to 

autonomously travel to their destination, avoiding risk and taking time-optimal routes.  

The immediate future of this research includes a combination of adding these additional 

complexities to the problem statement and optimizing the existing algorithms.  The potential for 

this work is high, and a finalized product would be valuable to a wide variety of industries.  

While this work has utilizes a multiple popular techniques, it has become unique on its path 

towards effective UAV swarm cooperative control through application and utilization of these 

methods.  However, there is still a great deal more work to be done before it can be properly 

utilized.  Further refinement of the existing methods and investigation into additional processes 

will allow this work to be applied in a variety of areas.   
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