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Abstract 

 The Cox proportional hazards model is commonly used to analyze the exposure-

response relationship in occupational cohort studies. This analysis involves identifying 

cases (those who experience the outcome of interest) and forming risk-sets for each 

case. The risk-set for a case is the set of cohort members whose failure times are at 

least as large as the case’s failure time and are under observation immediately before 

the case’s failure time. Thomas proposed the idea of randomly sampling controls from 

each risk-set to use for analysis, which results in a nested case-control study. It has 

been shown that the analysis using the full risk-sets and the analysis using the sampled 

risk-sets produce asymptotically unbiased results. Also, the asymptotic relative 

efficiency between analyzing the full risk-sets and using Thomas’ estimator to analyze 

the sampled risk-sets (sampling m controls per case) is 
�
��� when there is no exposure-

response relationship. 

 A simulation study investigated the non-asymptotic properties of the nested case-

control study design and found that the relative efficiency decreased as the number of 

cases in the cohort decreased, the true exposure-response parameter increased, and 

the skewness of the exposure distribution of the risk-sets increased. There also 

appeared to be some bias in a nested case-control study and this bias tended to be 

away from the null, however, this was not a major issue. In fact, when 10 or more 

controls were matched with each case, the bias was never more than 10%. 

 A second simulation study compared the estimates obtained from a nested case-

control analysis for a given cohort to the estimate obtained from analyzing the full cohort 
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with Cox proportional hazards regression. The nested case-control estimate generally 

overestimated the full cohort estimate and the size of this discrepancy varied from 

cohort to cohort. Also, the sample variance of the estimates from a nested case-control 

study for a given cohort decreased dramatically as the case: control ratio increased. 

 An alternative estimator for a nested case-control study was proposed by Chen 

and a set of simulations compared the performance of this estimator to that of the 

traditional Thomas estimator. Chen’s estimator requires the user to define a function, 

����. The support of ����, defines which controls It was shown that the performance of 

Chen’s estimator is somewhat sensitive to the definition of ����. In particular, if the 

support of ���� was small, Chen’s estimator performed poorly. However, for larger 

definitions of the support of ����, Chen’s estimator performed comparable, if not better 

than, Thomas’ estimator in terms of the bias and relative efficiency.  

 Finally, a simulation study investigated the effect of classical measurement error 

on the Cox proportional hazards model. The simulations suggest that the introduction of 

measurement error may change the perceived shape of the exposure-response curve. 

In fact, the curve was more likely to level-off in the high exposure range which is 

commonly seen in occupational cohort studies and this effect became more severe as 

the magnitude of the error increased. 
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Chapter 1: Introduction 

 
1.1 Cohort Studies 

 
 A cohort study follows a defined group of individuals over time to study the effect 

of predictive factors on the occurrence of a particular outcome. In an occupational 

cohort study, the defined group of individuals is generally those who worked in a 

factory/plant dealing with a particular exposure of interest during a defined period of 

time. Further restrictions on the cohort definition may be made, such as selecting only 

those with a minimum duration of employment. The individuals are then considered at 

risk until the outcome of interest occurs (such as death from lung cancer) or until the 

observation is censored. Censoring may occur for various reasons, such as death from 

another disease, loss to follow-up, or survival until the end of study (Breslow and Day, 

1987).  

 There are several methods used to analyze cohort studies, however, this paper 

will focus on the Cox proportional hazards model and the nested case-control study 

design. 

 
1.2 Analysis of Cohort Study Data: 
 
Cox Proportional Hazards: 
 

Often, researchers are interested in evaluating the effect of various covariates on 

the survival time (i.e. the amount of time until an event occurs) of an individual. To 

describe the distribution of the survival time, T, the common functions are: 

 Cumulative Density Function:  
��� � �
� � �� 
 Survivor Function:  ���� �  �
� � �� � 1 � 
��� 
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 Hazard Function:  ���� �  lim∆��	
�
�� �  �� ∆� |�"��

∆�  (1.1) 

If a specific distribution is assumed for T, standard maximum likelihood 

procedures may be used to estimate unknown parameters of the model. In particular, 

suppose there n observation in a cohort with k observed events (and therefore n – k 

censored events) and suppose the survival times are assumed to follow a distribution 

with pdf f(t|θ), where θ is the unknown parameter to be estimated. Arranging the 

observations so that observations 1 to k are the observed events and observations k + 1 

to n are the censored observations, the likelihood function will have the following setup: 

 

 #�$� �  ∏ &��'|$�∏ ���'|$�(')*��*')�  (1.2) 

 

(Lee and Wang, 2003). 

Alternatively, the Cox proportional hazards model is frequently used in 

occupational cohort studies to evaluate the hazard associated with a given exposure. 

The Cox model is desirable because it does not require knowledge about the exact 

underlying distribution of the survival times. In fact, the only assumption that is made is 

that the hazard function of an individual with prognostic factors or covariates X = (x1, x2, 

…)’ can be expressed in the following manner: 

 

 ���|+� � �	���,�+� (1.3) 

 

where �	��� is the baseline hazard function (i.e. the hazard function when ,�+� � 1) 

and ,�+� is a function only of the covariates X. The function ,�+� may only implicitly be 
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a function of time, t, if the covariates of interest are functions of t. Often it is assumed 

that ,�+�, which is the effect of the covariates on the hazard function, is log-linear and 

takes the following form: 

 ,�+� �  -./  + � -.010� .212� …  (1.4) 

where ββββ represent the coefficients of the covariates and are the unknown parameters to 

be estimated. However, other forms of ,�+� may be used. This topic will be discussed 

further in Chapter 4. 

Cox (1972) proposed the use of a partial likelihood function, which is free of 

�	���, to estimate the unknown parameter ββββ. To construct the partial likelihood function, 

again suppose a given data set or cohort has n observations with k observed deaths, 

and let t(1), t(2),… t(k) be the observed failure times. For each observed failure time, let 

R(t(i)) be the risk-set at time t(i), i.e. it is the set of individuals who are under observation 

at time t(i)  and whose survival times are at least t(i). Let X1(t), X2(t) … Xn(t) be the 

covariates of the n individuals evaluated at time t. Then, for a given risk-set R(t(i)), the 

probability that the death occurs to the observed individual is: 

 

 
4���5�|+�5����5���

∑ 4���5�|+7���5���789�:�5��
� 4;���5��<.

/+�=��:�5��

∑ 4;>��5�?<.
/+@�:�5��789�:�5��

� <./+�=��:�5��
∑ <./+@�:�5��789�:�5��

  (1.5) 

 

Each risk-set contributes a factor and therefore, the partial likelihood function becomes: 

 #�.�  �  ∏ <./+�=��:�5��
∑ <./+@�:�5��78A�:�=��

*' ) �  (1.6) 

Since the above equation does not specify all factors of the model, it is not a true 

likelihood function. 



 

 However, even though the above equation is not a true likelihood, Cox (1974) 

outlined the theory that the standard asymptotic properties of likelihood functions 

Namely, the estimator is a consistent estimator and is asymptotically normal with the 

inverse of the Fisher information matrix as the variance

Anderson and Gill (1982) reformulated the Cox

to rigorously prove the asymptotic properties of the partial maximum likelihood 

estimator. In particular, they defined 

up to time t. They also assign the following random intensity process for 

 

again where Xi(t) is the covariate for subject 

Yi(t) is an indicator process taking the values 1 and 0 representing when subject 

is not under observation. Therefore, 

 Under this formulation, and with certain regularity conditions, Anderson and Gill 

were able to show that , the estimator from the partial likelihood function, is:

  Consistent: 

  Asymptotically Normal:

where  is an invertible, positive d

 

 
Nested Case-control Analysis
 
 Performing Cox PH regression on a given cohort requires forming risk

each observed failure time and evaluating the exposure history of every individual in the 
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However, even though the above equation is not a true likelihood, Cox (1974) 

outlined the theory that the standard asymptotic properties of likelihood functions 

Namely, the estimator is a consistent estimator and is asymptotically normal with the 

inverse of the Fisher information matrix as the variance-covariance matrix.

Anderson and Gill (1982) reformulated the Cox-model using a counting process 

ly prove the asymptotic properties of the partial maximum likelihood 

estimator. In particular, they defined Ni(t) as the number of observed events for subject 

. They also assign the following random intensity process for N

 

is the covariate for subject i at time t and h0(t) is a baseline function. 

is an indicator process taking the values 1 and 0 representing when subject 

is not under observation. Therefore, Ni(t) only increases by one when Yi(t)

Under this formulation, and with certain regularity conditions, Anderson and Gill 

, the estimator from the partial likelihood function, is:

 

Asymptotically Normal:   

is an invertible, positive definite matrix such that: 

 

control Analysis: 

Performing Cox PH regression on a given cohort requires forming risk

each observed failure time and evaluating the exposure history of every individual in the 

However, even though the above equation is not a true likelihood, Cox (1974) 

outlined the theory that the standard asymptotic properties of likelihood functions hold. 

Namely, the estimator is a consistent estimator and is asymptotically normal with the 

covariance matrix. 

model using a counting process 

ly prove the asymptotic properties of the partial maximum likelihood 

as the number of observed events for subject i 

Ni(t): 

(1.7) 

is a baseline function. 

is an indicator process taking the values 1 and 0 representing when subject i is and 

(t) = 1. 

Under this formulation, and with certain regularity conditions, Anderson and Gill 

, the estimator from the partial likelihood function, is: 

 (1.8) 

(1.9) 

Performing Cox PH regression on a given cohort requires forming risk-sets for 

each observed failure time and evaluating the exposure history of every individual in the 
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risk-set at the failure time. Therefore, if an individual appears in multiple risk-sets, 

his/her exposure has to be re-evaluated at each failure time. This can be quite 

financially and computationally expensive to carry out for every member of each risk-

set, especially if the cohort is very large.  

To ease the burden of this cost, Thomas (Liddell et al, 1977) proposed the idea 

ofsampling controls from each of the risk-sets to use in analysis. Notice that the partial 

likelihood for Cox regression is identical to the conditional logistic likelihood used in 

matched case-control studies. In a matched case-control study, individuals with an 

outcome of interest (called cases) are randomly selected from an infinite population. 

Then one or more individuals without the outcome of interest (called controls) are 

randomly sampled and matched with each case based on matching variables (such as 

age or gender).  

In a cohort study, for each case, one could match m controls by sampling from 

the case’s risk-set. Here, the populations are the risk-sets and the matching variable is 

the failure time. Therefore, this design can be thought of as a matched case-control 

design nested within a cohort study. Randomly sampling m controls without 

replacement from each risk-set results in the following likelihood: 

 #��.�  �  ∏ <./+�=��:�5��
∑ <./+@�:�5��78AB�:�=��

*' ) �  (1.10) 

where AB���'�� consists of the case plus the m sampled controls from risk-set A���'��. 
Goldstein and Langholz (1992) showed, using Anderson and Gill’s counting 

process formulation of the Cox model, that CD�, the estimator from the above likelihood, 

is: 
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Consistent: CD� ��  C  

Asymptotically Normal: EFG�CD� �  C� H�  I�0, ΓM��  (1.11) 

 

where  is an invertible, positive definite matrix such that: 

 

 �N OG
OP5OP7 log#��.�S |P) PTU

��  Γ. (1.12) 

 

Furthermore, they gave a relationship between the variance parameters of the full 

cohort analysis using Cox regression and the nested case-control analysis when C � 0 

(i.e. a null association). In particular, they showed that Γ �  ����Σ where  is as in 

equation 1.8. Therefore, the asymptotic relative efficiency of 1:m nested case-control 

sampling relative to the full cohort with one predictor variable is 
WXF
YXF � 

�
��� when C � 0 . 

 

Application to Occupational Cohort Studies: 

 Generally, in occupational cohorts, the main covariate of interest is exposure to a 

particular physical or chemical agent and the outcome of interest is death or occurrence 

of a particular disease (such as lung cancer). As a result, age is usually used as the 

time scale (as opposed to calendar time or time on study) since age is one of the most 

important risk factors for most diseases (Breslow et al., 1983). Furthermore, in a 

simulation study, use of time-on-study as the time scale was associated with biased 

results whereas use of chronological age as the time scale was not (Thiébaut and 

Bénichou, 2004).   
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To calculate the exposure history for individuals in a cohort, detailed work history 

records are collected. From these work histories, information about employment begin 

and end dates for various job titles held are obtained. Then, for each job title, an 

exposure assessor assigns an exposure intensity to each job based on various 

information. For example, in the nuclear industry, radiation badge monitoring is 

practiced and information from these badges can be used to assign exposure intensities 

to different job titles or even to individual workers of the cohort.  

Once exposure is summarized for each job title/worker the choice of exposure 

metric is also considered. The most common exposure metrics used are duration of 

exposure, cumulative exposure (i.e., the product of exposure duration and exposure 

intensity, summed over all jobs worked), peak exposure, and average exposure (i.e., 

cumulative exposure divided by duration of exposure).  Depending on the outcome and 

underlying physiological process, different metrics might be more appropriate than 

others (Kriebel et al., 2007).   

After the appropriate exposure metric is decided upon and the analysis is 

conducted, risk is generally summarized in terms of the hazard ratio. For example, 

suppose cumulative exposure is the exposure metric of interest and the following form 

of the hazard function is modeled assuming a log-linear relative risk model: 

 ���|-Z[� � �	���-P\<]^ (1.13) 

Once β is estimated, -P is reported and is interpreted as the hazard ratio for a 1 unit 

increase in exposure. A hazard ratio of 1 (i.e. β = 0) indicates no effect of exposure on 

the hazard function. 
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1.3 Issues with Nested Case-Control Studies: 

 Anderson and Gill (1982) proved all the asymptotic properties of the Cox 

proportional hazards model and Goldstein and Langholz (1992) proved all the 

asymptotic properties of nested case-control analysis using conditional logistic 

regression. However, the non-asymptotic properties of these analyses have not been 

formally investigated. A few issues with the use of the nested case-control design were 

highlighted in a study of workers at a naval shipyard. 

In a study investigating the relationship between external ionizing radiation 

exposure and leukemia mortality among workers at the Portsmouth Naval Shipyard 

(PNS), the nested case-control model was used with 1:4 matching (Kubale et al, 2005). 

Risk was modeled with a log-linear model as well as a linear excess relative risk model. 

A significant hazard ratio of 1.08 per 10 mSv (95% confidence interval = 1.01 – 1.16) 

was reported for the log-linear model and CD = 0.23 per 10 mSv (95% CI = 0.03 - 0.88) 

was reported for the linear model. These estimates were higher than those reported in 

other studies. In particular, in a similar study of A-bomb survivors, β was estimated to be 

0.04 per 10 mSv of exposure when a linear hazard model was analyzed (Yiin et al, 

2005). 

To investigate this discrepancy further, the authors considered a subcohort of 

13,468 radiation-monitored PNS workers, which included 34 leukemia cases (Kubale et 

al, 2006). Detailed exposure histories were collected for these individuals, which made it 

possible to analyze the full subcohort as well as perform a nested case-control analysis 

on this subcohort. To investigate the effect of the case: control ratio on bias and 
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variability of the risk estimates obtained from a nested case-control study, 4, 10, 15, 20 

and 50 controls were randomly sampled from each risk-set (with age as the time scale) 

and matched with each case. For each case to control ratio, 250 control selections were 

conducted and analyzed using conditional logistic regression. The distribution of results 

for each case to control ratio was compared to the analysis of the full cohort. 

Figure 1-1 gives a histogram of the exposure summary for the full subcohort of 

13,468 individuals. The data was very right-skewed, and their distribution was best 

approximated as hybrid-lognormal as described by Kumazawa and Numakunai (1981). 

The hazard ratio for the total cohort analysis with a log-linear model was 1.05 per 10 

mSv (95% CI = 1.01 – 1.09). Table 1-1 gives descriptive statistics of the nested case-

control analyses and Figure 1-2 plots the 1,250 estimated hazard ratios (250 for each 

case-control matching ratio) versus the matching ratio. The authors noted that the 

nested case-control analysis had a tendency to over-estimate the full cohort analysis 

estimate however this bias decreased as the case/control matching ratio increased.  

Intuitively, the estimates from a nested case-control analysis would be higher (on 

average) than the estimate of the full cohort analysis when the exposure variable is very 

right skewed, making it unlikely to randomly sample individuals with high exposure. This 

raises a couple of concerns. Namely, what are the non-asymptotic properties of a 

nested case-control analysis and how are the results affected by the number of cases in 

the cohort, the distribution of the exposure parameter and the strength of the exposure-

response parameter? These questions will be investigated in Chapter 2. 

There have been alternative methods of analysis for nested case-control studies 

proposed in the literature. One such estimator was proposed by Chen (2004), and this 
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estimator asymptotically outperforms the traditional estimator proposed by Thomas. 

How Chen’s estimator performs non-asymptotically and how it compares to Thomas’ 

estimator will be investigated in Chapter 3. 

Finally, classical measurement error of the exposure variable is always a concern 

in cohort studies. Measurement error has been shown to cause attenuation of the 

exposure-response parameter estimate. However, measurement error may also effect 

the perceived shape of the exposure-response curve. In fact, in many occupational 

cohort studies, the exposure-response curve tends to level off for high exposures and 

sometimes begins to decrease. This issue will be considered in Chapter 4. 
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Figures and Tables 

Figure 1-1: Histogram of exposure for the 13,468 PNS workers. (graph from Kubale et 
al, 2006) 

 

Table 1-1: Descriptive statistics from the multiple nested case-control analysis (n = 250) 
(table from Kubale et al, 2006) 
 

 
Control to Case 
Ratio 
 

 
Parameter Estimate 
Mean at 10 mSv 
 

 
Odds Ratio 
Mean 
 

 
Odds Ratio 
SD 
 

 
4:1 
 

 
0.091 
 

 
1.10 
 

 
0.048 
 

 
10:1 

 
0.069 

 
1.07 

 
0.026 
 

 
15:1 

 
0.066 

 
1.07 

 
0.020 
 

 
20:1 

 
0.061 

 
1.06 

 
0.016 
 

 
50:1 

 
0.055 

 
1.06 

 
0.008 
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Figure 1-2: Plot of hazard ratio estimate vs. case/control ratio. Items in black are within 

1 standard deviation from the mean, items in blue are between 1 and 2, 
items in light blue are between 2 and 3 and items in red are over 3 standard 
deviations from the mean (graph from Kubale et al, 2006) 
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Chapter 2: 

 
Relative Efficiency and Bias of Nested Case-Control Studies 
 
Section 1 
 
Objective: 
 

The Cox proportional hazards model involves the analysis of the risk-sets of a 

given cohort. Often it is desirable to not analyze the full risk-sets but rather a subset of 

risk-set members for each case. This is because analysis of the full risk-sets would 

involve getting detailed exposure information for everyone in the cohort, which may be 

very costly. For example, one may randomly select five controls from each risk-set to 

match with each case. This study design is called the nested case-control. 

 Goldstein and Langholz proved that estimates from the nested case-control 

design are asymptotically unbiased and that when there is no exposure-response 

relationship (i.e. when the true exposure parameter is 0) the asymptotic relative 

efficiency from sampling m controls compared to analyzing the full cohort is 
�
���, 

regardless of the distribution of the exposure variable (1992). For instance, the 

asymptotic relative efficiency of sampling 1 control for each case would be 
�
_, which 

means the variance of the estimate from the sample risk-set analysis is twice as big as 

the variance of the estimate obtained if the full cohort was analyzed. 

 This formula gives the asymptotic relative efficiency, i.e. it is the limit of the 

relative efficiency as the sample size increases to infinity. Also, it only applies when 

there is no exposure-response relationship. There is very little in the literature that 
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addresses how the strength of the exposure-response relationship affects the relative 

efficiency (i.e. when C ` 0). 

Occupational cohorts were simulated to get a better understanding of the 

following questions:  

1. How is the relative efficiency and bias affected by the number of cases in the cohort? 

2.  How is the relative efficiency and bias affected by the magnitude of the exposure-

response relationship? 

3.  How is the relative efficiency and bias affected by the distribution of the exposure 

variable? 

 

Method: 

 Simulations were conducted using SAS Software (version 9.1.3, SAS Institute 

Inc., Cary, NC).  Cohorts were simulated based on a method developed by Richardson 

and Loomis (Richardson and Loomis, 2004) and further used in a simulation performed 

by Hein et al (2009). Thirty-six simulation scenarios were performed defined by the 

number of cases in the cohort (~30, ~100, or ~300 cases), the exposure-response 

relationship (hazard ratio per unit exposure = 1, 1.005, 1.01, or 1.015), and the 

distribution of the exposure intensity [Distribution 0: Normal(25, 64) - Truncated(0, 50), 

Distribution 1: Log - Normal( 2.5, 0.5) - Truncated(0, 50), Distribution 2: Log - 

Normal(0.75, 1) – Truncated(0, 50)]. The distributions were chosen to study the effect of 

the distribution’s skewness on the bias and relative efficiency. Distribution 0 is the least 

skewed (skewness of 0) and Distribution 2 is the most skewed. Figures 2-1 shows 

histograms of cumulative exposure for example cohort’s risk-sets of each distribution. 
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 For each scenario with ~30 cases, 10,000 cohorts were simulated. For the 

scenarios with ~100 cases, 3,000 cohorts were simulated and for the scenarios with 

~300 cases, 1,000 cohorts were simulated. The number of cohorts simulated varied due 

to time (simulating and analyzing a cohort with ~30 cases didn’t take very long 

compared to simulating a cohort with ~300 cases, therefore more cohorts could be 

simulated with ~30 cases). Also, presumably the results from the scenarios with more 

cases would be more stable and therefore fewer simulated cohorts would be required. 

Each worker was randomly assigned values for age at first exposure (18 years 

plus a random exponential variable with mean 10), and maximum follow-up time (40 

years minus a random exponential variable with mean 5). Each worker was assigned a 

maximum exposure duration of 15 years. 

 At each year of a workers maximum follow-up time, the workers current age and 

cumulative exposure (equal to the workers exposure intensity multiplied by exposure 

duration) was calculated. Also, at each year, a conditional probability of mortality from 

the outcome of interest (conditional on survival to that age), h, was assigned to each 

worker based on the workers age and cumulative exposure, cumexp, by the following 

formula: 

 � �  -a;� �.c\defghijj k� P\lm�<]^ (2.1) 

where C is the exposure-response parameter (so that the hazard ratio per 1 unit 

increase in cumulative exposure is -P). The variable �	 is an intercept parameter which 

varied in each simulation scenario and was chosen to obtain the desired number of 

cases. It is not possible to completely control the number of cases in each cohort 

through this simulation method; rather the number of cases in each simulated cohort will 
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vary. The actual values for �	 used as well as summary statistics of the resulting 

number of cases in each scenario can be found in Table 2-1 and Table 2-2, 

respectively. Additionally, at each year, a conditional probability of mortality from any 

another outcome (conditional on survival to that age), c, was assigned to each worker 

based only on the worker’s age by the following formula: 

 n �  -Mc� c\defghijj k. (2.2) 

Specific parameters for these conditional probabilities (hazard rates) were used by 

Richardson and Loomis (2004) as well as Hein et al (2009).   

Two Bernoulli random variables were assigned to each worker at each year, one 

with probability h and one with probability c. A Bernoulli random variable of 1 represents 

a death in that year from the outcome of interest or from another outcome, respectively. 

A worker is followed up until his first death. A worker is considered censored if his first 

death is from another outcome or if he made it through all years of his maximum follow-

up time with no deaths, in which case he is considered lost to follow-up. A worker is 

considered a case if his first death is from the outcome of interest. The final cohort 

consisted of 5,000 workers with variables indicating for each worker the age at first 

exposure, age at death/censor, age at last exposure (which is the minimum of age at 

first exposure plus 15 and age at death/censor), exposure intensity, and case-status. 

 

Analysis: 

 Risk-sets were created for each cohort, with age as the time scale. For each 

case, 1, 5, 10, 15, and 20 controls were randomly sampled from the risk-sets. The full 

as well as the sampled risk-sets were analyzed using conditional logistic regression 
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(procedure PHREG in SAS) to obtain estimates of the exposure-response parameter 

using a log-linear model. For each scenario, 10,000, 3,000 and 1,000 estimates of the 

exposure-response parameter were obtained for the analysis of full risk-sets and for 

each of the sampled risk-sets from the cohorts with ~30, ~100, and ~300 cases, 

respectively. The sample variance of these estimates was obtained. The relative 

efficiency of 1:m sampling was estimated by dividing the sample variance obtained from 

the full risk-set analysis by the sample variance obtained from the m-sampled risk-set 

analysis. The bias was estimated by subtracting the true exposure-response parameter 

(i.e. the log of the true hazard ratio) from the mean of the estimated parameters and is 

reported as a percentage of the true parameter estimate.  

 

Results and Discussion: 

 For each scenario, Tables 2-3 contains summary statistics of cumulative 

exposure for cases and controls of the risk-sets. As expected, the cases have higher 

cumulative exposures than controls when there is a positive exposure-response 

relationship. The tables also indicate that the distributions of cumulative exposure for 

the full risk-sets are similar for different values of the hazard ratio for Distribution 0 and 

1 (as can be seen by comparing the summary statistics for the controls of each hazard 

ratio since these statistics will be similar to the summary statistics for the full risk-sets). 

However, for Distribution 2, the resulting distributions of cumulative exposure of the risk-

sets for hazard ratio 1.015 are different compared to the other hazard ratios with 

Distribution 2. In particular, the max and variance of the distributions are smaller. 

Consequently, differences in the results from comparing the scenario with hazard ratio 
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1.015 with other hazard ratios for Distribution 2 may be due to either a change in the 

distribution or to the change in the true hazard ratio. 

The parameter estimates from each scenario are summarized in Tables 2-4.  

Observations were deleted if the resulting standard error calculated by PHREG for the 

parameter estimate was greater than 1 because this was taken as an indication that the 

procedure had trouble converging. This was not an issue in most of the simulation 

scenarios. The most severe scenario was in the scenario using Distribution 1, ~30 

cases per cohort and a true hazard ratio of 1.015. In this scenario, 10,000 cohorts were 

created. However, only 7,911 of the parameter estimates calculated with 1:1 matching 

had calculated standard errors less than 1 (some had standard errors greater than 

5,000). Only these observations were used to calculate the mean and variance of the 

parameter estimates in Tables 2-4. 

 The procedure PHREG will not converge if, in every risk-set, the exposure 

variable for the case is higher (lower) than the exposure variable of every control in the 

risk-set. In fact, the maximum likelihood estimate for this situation will be infinity 

(-infinity). As a result, PHREG will report the last estimate from when the optimization 

algorithm stopped, which most likely will be a large estimate with a large standard error. 

As a result of deleting these observations, the mean and variance of the estimates listed 

in Tables 2-4 where not all observations were used will be biased. Presumably, the 

reported mean variance is lower since the very large estimates were removed. 

 It is interesting to note that this issue was most severe in the scenarios with ~30 

cases and a true hazard ratio of 1.015. The issue became significantly less severe as 

the number of cases increased and/or as the true hazard ratio decreased. This is to be 



19 

 

expected because with a high true hazard ratio, the difference between the exposure 

variables for the controls and the exposure variable for the case will be larger in each 

risk-set. This is illustrated in Tables 2-3. Note that as the true hazard ratio increases, the 

mean of the cumulative exposure for the cases increases and the difference between 

the means for the cases and controls also increases. Therefore, the higher the true 

hazard ratio, the more likely it becomes to randomly select controls that have lower 

exposures than the case in every risk-set (especially when there are few cases and few 

controls being sampled). 

 From Tables 2-4, it appears that the estimated variance is an unbiased estimator 

of the true variance, even with few number of cases. It also appears that the variance is 

inversely proportional to the number of cases. Note that the variances of the estimates 

with ~30 cases are about 3-4 times larger than the corresponding variances with ~100, 

and they are about 10 times larger than the corresponding variances with ~300 cases. 

Tables 2-5 lists the relative efficiency and percent bias for each scenario and 

Figures 2-2 and Figures 2-3 give graphical representations of this data. Note that the 

relative efficiency when the true hazard ratio is 1 is close to 
�
��� for 1:m matching, and it 

gets closer to this value as the number of cases increases. This supports what is 

reported in the literature (Goldstein and Langholz, 1992). However, when the true 

hazard ratio increases, the relative efficiency decreases substantially. The relative 

efficiencies do appear to increase as the number of cases increase, but it does not 

appear that they are approaching 
�
���. For example, even with ~300 cases per cohort, 

the relative efficiency of 1:5 matching with exposure intensity Distribution 1 and true 

hazard ratio 1.015 is approximately 18.17% which is considerably lower than 83.33%, 
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the estimate given by 
�
���. 

The reason for this drop in relative efficiency may be similar to the reason that 

PHREG has trouble converging described above. With a high hazard ratio, the 

difference between the exposure variables for the controls and the case will be greater 

in each risk-set and as a result, it would be more likely to get very large exposure-

response estimates, especially when only a few controls are sampled. This would result 

in a large variance for the exposure-response variable, and therefore a drop in relative 

efficiency. 

It also appears that the bias of the estimate is affected by the strength of the 

exposure-response parameter. In particular, the bias increases as the exposure-

response variable gets stronger and this bias tends to be away from the null. However, 

as the number of cases increases, the bias decreases significantly supporting the fact 

that the estimate is asymptotically unbiased. 

Next, it seems that the relative efficiency and bias are dependent on the 

distribution of exposure-intensity (and consequently dependent on the distribution of 

cumulative exposure of a cohort). Cumulative exposure is exposure intensity times 

duration of exposure. In these simulations, everyone was assigned a duration of 

exposure of 15 years (unless their age at death or age at censor occurred earlier than 

their maximum 15 years of employment), therefore, the distribution of cumulative 

exposure is about 15 times the distribution of exposure intensity. Note that Distribution 0 

has the smallest skewness value (close to 0) and Distribution 2 has the largest 

skewness value. 

 It seems that, in general, Distribution 0 yields the highest relative efficiency and 
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smallest bias for a fixed true hazard ratio and approximate number of cases. Distribution 

2 yields the lowest relative efficiency and largest bias (away from the null).  

Through these simulations, it seems apparent that 
�
��� gives a good estimate of 

the relative efficiency for 1:m matching in a nested case-control study when there is no 

exposure-response relationship. This is all the theory guarantees. However, as the true 

exposure-response becomes stronger (resulting in a higher hazard ratio) the relative 

efficiency begins to drop. Even with ~300 cases (which is large for a cohort of 5000 

individuals) the relative efficiency still decreases notably as the hazard ratio increases. 

The relative efficiency seems to increase slightly as the number of cases increases and 

the efficiency also appears to be affected by the distribution of the exposure parameter 

distribution. In particular, as the skewness of the distribution of the exposure variable 

increases, the efficiency decreases. Also, in these simulations, there appears to be 

some bias away from the null in a nested case-control study when the exposure 

distribution is right skewed. This bias increases as the true exposure-response 

becomes stronger and as the skewness of the exposure distribution increases. 

However, the bias decreases significantly and is not a major issue as the number of 

cases increases and as the case-control ratio increases. In fact, when 10 or more 

controls were matched with each case, the bias was never more than 10%, even with 

~30 cases per cohort. Furthermore, for all simulations with ~100 cases, when 5 or more 

controls were matched with each case, the bias was never more than 3%.  

Also, it is important to note that the size of the variance was always much larger 

compared to the bias. For example, if we considered the mean square error (mse) of 

the estimates, the variance of the estimate made up over 90% of the mse in every 
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simulation scenario. 

 

Section 2 
 
Objective: 

 

It is also of interest to investigate the results of a nested case-control study for a 

given a cohort. For example, how do the parameter estimates and the estimated 

standard errors from a 1:5 matched nested case-control design of a given cohort 

compare to those estimates from the full cohort. In practice, we are given a cohort of 

workers and perform 1:m matching expecting to get similar results as if we analyzed the 

full cohort. 

In this section, within cohort bias is defined as the expected parameter estimate 

from 1:m matching given a cohort minus the parameter estimated from the given full 

cohort (as opposed to the theoretical parameter that was investigated in Section 1). The 

variance of the parameter estimate within a cohort was also considered. In particular, 

occupational cohorts were simulated to get a better understanding of the following 

questions:  

1.  How is the within cohort bias of 1:m matching affected by the exposure-response 

relationship of the full cohort, the distribution of the exposure variable, and the 

number of cases in the cohort? 

2.  How is the variance of the parameter estimate within a cohort affected by the 

exposure-response relationship of the full cohort, the distribution of the exposure 

variable, and the number of cases in the cohort? 
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Method and Analysis: 
 

The same simulation scenarios from Section 1 were considered. However, for 

this section, 100 cohorts were simulated for each scenario. Risk-sets were created for 

each cohort with age as the time scale. Then for each case, 1, 5, 10, 15, and 20 

controls were randomly sampled 500 times from the risk-sets. The full as well as the 

sampled risk-sets were analyzed using conditional logistic regression (procedure 

PHREG in SAS) to get estimates of the exposure-response parameter. Therefore, for 

each simulated cohort, one estimate of the exposure-response parameter was obtained 

from analyzing the full cohort and 500 estimates were obtained from each of the 1:1, 

1:5, 1:10, 1:15 and 1:20 sampled risk-sets. 

Bias for 1:m matching within a cohort was estimated by subtracting the exposure-

response estimate of analyzing the full cohort from the average of the 500 exposure-

response estimates obtained by analyzing the sampled risk-sets. Therefore, there were 

100 estimates of the within cohort bias obtained for each simulation scenario.  

 

Results and Discussions: 
 

As discussed in Section 1, results were deleted if the estimated standard error 

was greater than 1, as this was a sign that the model had trouble converging. Again, 

this was not a problem for most of the simulation scenarios. 

For each cohort, summary statistics for the 100 within cohort bias estimates from 

each simulation scenario are summarized in Tables 2-6. Again, the trends reflect the 

conclusions from Section 1. Namely increasing the parameter estimate of the full cohort, 

increasing the skewness of the exposure distribution, and decreasing the number of 
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cases causes the percent bias to increase. Also, this bias tends to be away from the 

null. It is also interesting to note that the mean of the within cohort percent bias values 

of Tables 2-6 are similar to the percent bias of Section 1 listed in Tables 2-5. However, 

the within cohort bias varies greatly between cohorts. For some cohorts, the within 

cohort bias was greater than 100%. 

Looking at the bias within a cohort may give some insight as to why the bias 

tends to be away from the null, and how the distribution affects this bias. Figures 2-4 are 

graphs of the parameter estimates of an example cohort with ~30 cases, a true hazard 

ratio of 1.005 and exposure intensity Distribution 0 and 2. The 500 parameter estimates 

are plotted vs. the number of matched controls per case (in black) along with the 

average of the 500 estimates (in red). A line represents the estimate of the full cohort. 

Note that the estimates corresponding to Distribution 0 (which is approximately 

symmetric) seem to be symmetrically distributed around the full cohort parameter 

estimate, whereas the estimates corresponding to Distribution 2 seem to have a 

tendency to overestimate the full cohort estimate. This may be due to the fact that 

Distribution 2 is skewed, making it more likely to sample lower exposed controls for 

each case. This would thus make it more likely to give a larger parameter estimate. 

However, it should be noted that in each simulation scenario, the 95% 

confidence interval from a nested case-control analysis contained the estimate from the 

full cohort analysis nearly 100% of the time. This indicates that even though the nested 

case-control parameter estimates are straying from the full cohort estimate, the 

estimated variances are also getting larger so that confidence intervals are large 

enough to capture the full cohort estimate. 
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It was noted at the end of Section 1 that the variance is the dominating factor of 

the mse. It is interesting to investigate the variance by separating it into two 

components; the within cohort variance and the between cohort variance. To do this, for 

each simulation, define Xci as the ith estimate from the cth cohort where c = 1,…,100 and i 

= 1,…,Ic (generally Ic = 500, however some estimates were dropped if their 

corresponding estimated standard errors were greater than 1). Then let: 

 ol. � ∑ pq55
rq  (2.3) 

 o.. � ∑ pq.q
�		  (2.4) 

and define: 

 st��tE �� �  ∑ ∑ �ol' �  ol.�_'l  (2.5) 

 u-�v--E �� �  ∑ ∑ �ol. � o..�_'l  (2.6) 

 �w�xy �� �  ∑ ∑ �ol' � o..�_'l  (2.7) 

Note that Within SS + Between SS = Total SS. Tables 2-7 summarize the Within SS,  

Between SS, and Total SS for each simulation scenario. Note that the Total SS is 

proportional to the sample variance of the parameter estimate from a nested case-

control analysis with 1:m matching, which was estimated in Section 1. Also, when ol. is 

close to the full cohort estimate (which is especially true when the case-control ratio is 

high or there are many cases in the cohort), the Between SS is proportional to the sample 

variance of the parameter estimates from analyzing the full cohort. Therefore, in these 

situations, the percent contribution of the Between SS  to the Total SS is very close to the 

relative efficiency calculated in Section 1. 
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 Notice that generally with a small case to control ratio, the Within SS makes up a 

large percentage of the Total SS and the percentage increases substantially when the 

exposure-response increases. However, the Within SS decreases substantially as the 

case: control ratio increases and it also appears to be inversely proportional to this ratio 

(i.e. the Within SS is cut in half when the case: control ratio is doubled).  In fact, it will 

eventually decrease to 0 when the ratio is large enough that the entire risk-sets are 

sampled. It therefore seems that there is much to be gained, in terms of the within 

cohort variance of the parameter estimate, by selecting a larger case-to control ratio.   

  

Comparison to Gold Miners Data: 

To illustrate the implications of these simulations, data collected for the analysis 

of silicosis among gold miners (Steenland, Brown 1995) will be considered. The study 

consisted of 3,330 gold miners who worked for at least 1 year between 1940 – 1965 

and were exposed to high levels of silica. Workers were followed-up until 1990 and 

there were 170 cases of silicosis determined. For this analysis, silicosis has the 

advantage of being associated with silica exposure alone so that no confounders had to 

be evaluated. Also, in this study, it was determined that cumulative exposure (or log of 

cumulative exposure) was the best predictor of disease when compared to duration of 

exposure and average exposure. Therefore, cumulative exposure was used as the 

exposure metric. 

Cumulative exposure data was available for the entire cohort so that the full risk-

sets as well as sampled risk-sets could be analyzed. Table 2-8 gives descriptive 

statistics of cumulative exposure and log of cumulative exposure for the risk-sets of the 
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data and Figures 2-5 are a histogram of this data. In particular, the cumulative exposure 

of individuals in the risk-sets has a range of 275 – 225521 and a skewness value of 2.1. 

The log of cumulative exposure has a range of 5.62 – 12.33 and a skewness value of 

-0.07. To compare this data to the simulations, the exposure variable must be scaled so 

that the range of the exposure metric for the risk-sets matches that of the simulations. 

Table 2-9 gives descriptive statistics of each exposure metric after being appropriately 

scaled. Table 2-10 gives the results of Cox proportional hazards regression on the full 

cohort with age as the time scale and using the original data and the scaled data for 

each exposure metric as the independent variable.  

The risk-sets were formed using age as the time scale. From each risk-set, 1, 5, 

10, 15, and 20 controls were randomly selected 500 times. The sampled risk-sets were 

then analyzed using conditional logistic regression and thus 500 parameter estimates 

were obtained for each case to control ratio. Summary statistics of this analyses are 

summarized in Table 2-11. The results were then compared to the analysis of the full 

cohort and the results of this comparison are summarized in Table 2-12. 

Again, bias was defined as the difference between the parameter estimate of the 

full cohort and the mean of the 500 estimates obtained from the sample risk-set 

analysis. Also, relative efficiency was estimated as the estimated variance from the full 

cohort analysis divided by the average of the 500 estimated variances from the sampled 

cohort analysis. Similar trends are seen in this cohort as were seen in the previous 

sections. Namely, when the exposure distribution is very skewed (as is the case when 

the exposure metric used is cumulative exposure) there tends to be bias away from the 

null and the estimated relative efficiency is quite small. When the analysis is performed 
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on the log of cumulative exposure (which is not very skewed), the bias is smaller, 

compared to the analysis with cumulative exposure as the exposure metric. In fact, the 

bias is towards the null when the analysis is performed on the log of cumulative 

exposure for this cohort. This demonstrates the effect the exposure distribution has on 

the nested case-control estimate and reinforces the trends seen in the simulations. 

Namely, when the exposure distribution is skewed, the within cohort bias tends to be 

larger and it is more likely that the bias is away from the null. 

Figures 2-6 plot the 500 parameter estimates vs. the sampling ratio with a red dot 

indicating the average of the 500 estimates and a dotted line indicating the estimate 

from the full cohort analysis.  

Notice that when cumulative is used as the exposure metric, nested case-control 

analysis tends to overestimate the exposure-response parameter and this bias is 

greater than that of the nested case-control analysis when log of cumulative exposure is 

used as the exposure metric. Furthermore, the efficiency is smaller for the cumulative 

exposure analysis as compared to the log of cumulative exposure analysis. This 

supports the fact that when the exposure distribution is skewed, nested case-control 

analysis is more likely to give a larger estimate than the estimate from the full cohort 

analysis as was seen in the simulations.  

 

Chapter 2 Conclusions: 
 

Nested case-control studies are used to analyze cohorts in hopes of saving time 

and money. In practice, a ratio of 4 – 6 controls are selected and generally the 

justification for this ratio is that this analysis yields an asymptotically unbiased result and 
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the relative efficiency is about 80%, under the null hypothesis, when compared to the 

analysis performed on the full cohort. However, these are asymptotic properties, and we 

rarely conduct a study with the expectation of having no exposure-response 

relationship. Therefore, the non-asymptotic properties of a nested case-control study 

should be investigated. 

These simulations have shown that the relative efficiency decreases and bias 

increases as: 

• the exposure-response relationship becomes stronger 

• the skewness of the exposure distribution increases 

• the number of cases decreases 

for nested case-control studies. Furthermore, the variance of the estimator is the 

dominating term of the mean square error when compared to the bias.  

 In Section 1, when the theoretical bias was estimated by comparing estimates to 

the true exposure-response relationship, the bias appeared to not be a major issue. It 

only seemed to be somewhat problematic in the simulations with ~30 cases per cohort, 

a skew distribution and a strong exposure-response relationship. However, when 10 

controls were matched with each case, the bias was never more than 10%. 

In practice, nested case-control studies are carried out in the hope of getting an 

estimate that is similar to the estimate from analyzing the full cohort. When the bias of a 

nested case-control study was considered with respect to the full cohort estimate, as 

was investigated in Section 2, the issue was a bit more severe. The within cohort bias 

varied quite a bit between cohorts and it was possible to still have a large within cohort 

bias, especially with a strong exposure-response relationship and a skewed exposure 
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distribution. However, as the bias increased, so did the variance estimate, which 

resulted in wide confidence intervals that almost always contained the full cohort 

parameter. 

 In Section 1, the variance of the parameter estimate for a nested case-control 

study was shown to dominate the mean square error. In Section 2, it was shown that 

most of the variance occurred within a cohort with a small case-control ratio. However, 

the within cohort variance of the parameter estimates appears to be inversely 

proportional to the case: control ratio and therefore, there could be significant gains by 

selecting a larger ratio. This is especially true when there are a few number of cases, 

since the variance is the largest in this situation and the impact on the cost of the study 

would be smaller. For example, performing a 1:5 matched nested case-control study for 

a cohort with 300 cases would require as much work as performing a 1:50 matched 

nested case-control study for a cohort with 30 cases. 
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Section 1 Tables and Graphs 
 

Table 2-1: Values of α0 used in each simulation scenario 

 

  Distribution 0
a   Distribution 1

b   Distribution 2
c 

 

~30 

cases 

~100 

cases 

~300 

cases  

~30 

cases 

~100 

cases 

~300 

cases  

~30 

cases 

~100 

cases 

~300 

cases 

True 

Hazard 

Ratio α0 α0 α0   α0 α0 α0   α0 α0 α0 

1 -8.20 -7.10 -6.00  -8.20 -7.10 -6.00  -8.20 -7.10 -6.00 

1.005 -10.10 -9.00 -7.85  -9.50 -8.20 -7.05  -8.70 -7.40 -6.60 

1.01 -12.30 -11.25 -10.10  -10.90 -9.70 -8.45  -9.20 -7.90 -7.80 

1.015 -14.90 -13.80 -12.55   -13.20 -11.70 -10.05   -10.10 -8.50 -9.10 

 
a
 – Distribution 0: normal (25, 64) - truncated (0, 50) 

b
 – Distribution 1: log-normal (2.5, 0.5) - truncated (0, 50) 

c
 – Distribution 2: log-normal (0.75, 1) – truncated (0, 50) 

 

Table 2-2: Summary statistics of the number of cases for each simulation scenario  

a) 

 

Distribution 0 

 ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio mean median min max   mean median min max   mean median min max 

1 34.73 35 13 58  103.17 103 67 138  304.08 304 251 360 

1.005 33.60 33 12 58  99.83 100 69 135  305.41 305 244 354 

1.01 36.51 36 18 60  102.17 102 67 136  300.22 300 256 362 

1.015 36.76 37 18 62   103.55 103 71 138   303.17 303 253 360 
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b) 

 

Distribution 1 

 ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio mean median min max   mean median min max   mean median min max 

1 34.70 35 15 61  103.57 103 73 138  304.35 304 243 363 

1.005 27.70 28 9 50  100.52 100 65 138  304.73 305 251 356 

1.01 34.78 35 14 58  105.41 105 72 148  307.12 308 255 359 

1.015 33.52 33 10 57   102.20 102 67 141   307.90 309 250 365 

 

 

 

c) 

 

Distribution 2 

 ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio mean median min max   mean median min max   mean median min max 

1 34.68 35 16 59  103.53 104 70 138  303.39 303 246 363 

1.005 28.20 28 12 50  101.92 102 70 148  296.32 296 253 357 

1.01 31.53 31 14 55  101.48 101 68 136  295.65 295 251 349 

1.015 34.02 34 14 58   105.94 106 77 141   307.49 307 249 377 
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Table 2-3:  Averaged summary statistics of the cumulative exposure for cases and controls of the full risk-sets in each simulation scenario. For each 

cohort simulated, the risk-sets were formed and the mean, variance, skewness, min and max of the cumulative exposures across all risk-

sets were calculated. Then these statistics were averaged across all cohorts and are summarized below. 

a) 

 

Distribution 0 

  ~30 cases  ~ 100 cases  ~ 300 cases 

  Cumulative Exposure  Cumulative Exposure  Cumulative Exposure 

True 

Hazard 

Ratio Group Mean Variance Skew Min Max   Mean Variance Skew Min Max   Mean Variance Skew Min Max 

1 case 325.081 20592.19 -0.10389 44.835 606.674   324.702 20559.87 -0.08661 23.236 655.976   323.726 20590.51 -0.08553 14.315 692.522 

  cont 323.912 20114.56 -0.0579 0.967 743.025   323.465 20218.86 -0.05947 0.66 743.181   322.338 20334.91 -0.05576 0.515 742.736 

                                      

1.005 case 420.635 17554.89 -0.26963 121.711 669.954  420.075 17469.63 -0.2944 65.2 705.352  417.398 17550.58 -0.30936 31.215 727.841 

 cont 335.713 18863.08 -0.09052 1.26 743.042  334.994 18870.57 -0.09198 0.848 743.004  332.971 18825.87 -0.09139 0.655 742.824 

                   

1.01 case 499.092 14169.74 -0.31913 220.821 713.522   496.172 13992.8 -0.35243 157.731 731.688   488.593 13638.49 -0.3673 98.688 740.068 

  cont 340.914 18232.66 -0.10326 1.433 742.95   339.643 18176.76 -0.1081 1.073 742.944   336.392 17944.18 -0.11876 0.837 742.954 

                                      

1.015 case 558.663 11013.94 -0.43632 309.967 731.288  551.871 10759.55 -0.46241 250.941 739.853  534.388 10039.18 -0.44613 190.601 742.411 

 cont 342.634 17972.82 -0.11202 1.532 742.911  340.972 17841.92 -0.12491 1.152 742.697  336.008 17416.64 -0.1526 0.969 742.547 
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b) 

 

 

 

 

 

 

 

 

Distribution 1 

  ~30 cases  ~ 100 cases  ~ 300 cases 

  Cumulative Exposure  Cumulative Exposure  Cumulative Exposure 

True 

Hazard 

Ratio Group Mean Variance Skew Min Max   Mean Variance Skew Min Max   Mean Variance Skew Min Max 

1 case 178.127 11746.55 1.01864 23.183 483.99   178.163 11780.39 1.15077 11.914 574.606   177.592 11774.27 1.19354 7.472 644.814 

  cont 177.404 11574.94 1.23746 2.39 740.38   177.235 11598.19 1.23458 2.139 740.166   176.551 11601.85 1.23361 2.039 740.88 

                                      

1.005 case 263.038 23976.9 0.85517 47.622 634.868  261.051 23563.95 0.89836 21.532 704.581  255.366 22326.59 0.91801 11.499 728.371 

 cont 182.042 11479.13 1.24004 2.552 740.239  181.325 11383.63 1.23045 2.231 740.1  179.467 11087.07 1.21065 2.086 739.522 

                   

1.01 case 408.371 34728.35 0.0481 84.367 726.094   388.514 32132.97 0.12724 47.949 737.02   349.49 26423.56 0.27261 23.911 736.481 

  cont 185.138 11253.99 1.2241 2.576 739.753   183.365 10886.1 1.17281 2.327 739.178   179.039 10065.31 1.07253 2.19 736.65 

                                      

1.015 case 537.765 23688.83 -0.78623 171.304 737.846  482.093 22740.9 -0.49277 100.268 737.109  403.74 19026.45 -0.18024 51.686 712.977 

 cont 185.824 11033.34 1.18461 2.622 738.691  182.121 10404.67 1.07983 2.377 736.722  175.856 9237.21 0.92274 2.241 712.859 
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c) 

 

Distribution 2 

  ~30 cases  ~ 100 cases  ~ 300 cases 

  Cumulative Exposure  Cumulative Exposure  Cumulative Exposure 

True Hazard 

Ratio Group Mean Variance Skew Min Max   Mean Variance Skew Min Max   Mean Variance Skew Min Max 

1 case 44.648 3329.91 2.37747 2.34064 252.885   44.415 3265.82 3.07615 1.18338 355.083   44.568 3294.77 3.50839 0.6443 463.604 

  cont 44.554 3301.63 3.86759 0.08303 704.384   44.51 3296.41 3.86505 0.0673 704.758   44.337 3282.89 3.87194 0.06103 705.347 

                                      

1.005 case 79.936 14198.81 2.48816 3.27776 478.333  78.25 13427.19 2.91972 1.38916 630.207  73.469 11413.22 3.03429 0.75332 678.114 

 cont 44.926 3315.11 3.83868 0.08886 704.138  44.643 3239.02 3.7976 0.06863 704.346  44.011 3077.04 3.70717 0.06098 698.692 

                   

1.01 case 207.442 49165.55 1.01213 4.54812 691.181   157.908 32697.3 1.34277 1.90514 688.298   117.156 19132.32 1.68722 0.92986 651.426 

  cont 45.213 3175.34 3.60282 0.09056 696.879   44.221 2894.2 3.36787 0.07104 687.452   42.784 2525.98 3.09729 0.06241 651.354 

                                      

1.015 case 329.562 43954.6 -0.14686 9.19886 669.689  218.439 29901.04 0.4295 2.78664 600.67  144.119 16918.88 0.89394 1.1687 523.298 

 cont 44.514 2885.79 3.25436 0.08945 654.948  43.171 2519.9 2.95098 0.07269 597.407  41.242 2096.55 2.66393 0.06273 522.927 
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Figures 2-1: Histograms of cumulative exposure for an example cohort’s risk-sets of each distribution 
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Table 2-4: Summary statistics of the exposure-response parameter estimates for each scenario 

 

a) 

Distribution 0 

  ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio Match N
a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
   N

a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
   N

a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
 

1 = e
0
 1:1 10000 -2.01E-05 4.66E-06 4.23E-06   3000 1.50E-05 1.28E-06 1.24E-06   1000 -1.91E-05 4.07E-07 4.05E-07 

  1:5 10000 8.52E-06 2.30E-06 2.23E-06   3000 -2.84E-06 7.26E-07 7.17E-07   1000 -2.16E-06 2.44E-07 2.40E-07 

  1:10 10000 -6.35E-06 2.03E-06 2.01E-06   3000 5.31E-06 6.72E-07 6.54E-07   1000 -5.46E-06 2.30E-07 2.20E-07 

  1:15 10000 1.83E-06 1.95E-06 1.94E-06   3000 -6.28E-06 6.56E-07 6.33E-07   1000 -5.18E-06 2.19E-07 2.13E-07 

  1:20 10000 -3.83E-06 1.92E-06 1.91E-06   3000 2.85E-06 6.53E-07 6.23E-07   1000 -5.37E-06 2.17E-07 2.09E-07 

  full 10000  -1.75E-06 1.80E-06 1.81E-06   3000 -1.72E-06 6.14E-07 5.93E-07   1000 -5.74E-06 2.10E-07 1.99E-07 

1.005 = 

e
0.00499

 1:1 10000 5.57E-03 3.37E-05 1.02E-04  3000 5.20E-03 1.98E-06 1.91E-06  1000 5.06E-03 6.16E-07 5.86E-07 

 1:5 10000 5.11E-03 2.92E-06 2.82E-06  3000 5.03E-03 9.20E-07 8.93E-07  1000 5.01E-03 3.02E-07 2.88E-07 

 1:10 10000 5.07E-03 2.46E-06 2.40E-06  3000 5.03E-03 7.81E-07 7.74E-07  1000 5.00E-03 2.56E-07 2.50E-07 

 1:15 10000 5.04E-03 2.31E-06 2.25E-06  3000 5.01E-03 7.26E-07 7.31E-07  1000 4.99E-03 2.42E-07 2.37E-07 

 1:20 10000 5.03E-03 2.22E-06 2.18E-06  3000 5.01E-03 7.37E-07 7.12E-07  1000 5.00E-03 2.29E-07 2.31E-07 

 full 10000 5.00E-03 2.00E-06 1.98E-06  3000 5.00E-03 6.63E-07 6.51E-07  1000 4.99E-03 2.16E-07 2.12E-07 

1.01 = 

e
0.00995

 1:1 9993 1.14E-02 3.21E-05 3.93E-05   3000 1.04E-02 4.55E-06 4.35E-06   1000 1.01E-02 1.28E-06 1.33E-06 

  1:5 10000 1.03E-02 4.94E-06 4.57E-06   3000 1.01E-02 1.55E-06 1.49E-06   1000 9.97E-03 5.43E-07 4.95E-07 

  1:10 10000 1.02E-02 3.49E-06 3.36E-06   3000 1.00E-02 1.17E-06 1.13E-06   1000 9.97E-03 4.13E-07 3.85E-07 

  1:15 10000 1.01E-02 3.03E-06 2.96E-06   3000 1.00E-02 1.03E-06 1.01E-06   1000 9.96E-03 3.48E-07 3.45E-07 

  1:20 10000 1.01E-02 2.81E-06 2.77E-06   3000 1.00E-02 9.68E-07 9.52E-07   1000 9.96E-03 3.31E-07 3.25E-07 

  full 10000 1.00E-02 2.12E-06 2.12E-06   3000 9.97E-03 7.49E-07 7.47E-07   1000 9.95E-03 2.64E-07 2.59E-07 

1.015 = 

e
0.01489

 1:1 9782 1.88E-02 2.24E-04 4.39E-04  3000 1.58E-02 1.72E-05 1.33E-05  1000 1.52E-02 3.45E-06 3.28E-06 

 1:5 9999 1.57E-02 1.26E-05 1.09E-05  3000 1.51E-02 3.28E-06 3.03E-06  1000 1.49E-02 1.03E-06 9.86E-07 

 1:10 10000 1.53E-02 7.20E-06 6.62E-06  3000 1.50E-02 2.13E-06 2.07E-06  1000 1.49E-02 6.75E-07 6.97E-07 

 1:15 10000 1.52E-02 5.74E-06 5.30E-06  3000 1.50E-02 1.73E-06 1.73E-06  1000 1.49E-02 5.67E-07 5.94E-07 

 1:20 10000 1.52E-02 5.06E-06 4.70E-06  3000 1.50E-02 1.55E-06 1.56E-06  1000 1.49E-02 5.20E-07 5.41E-07 

  full 10000 1.50E-02 2.74E-06 2.66E-06   3000 1.49E-02 8.95E-07 9.44E-07   1000 1.49E-02 3.19E-07 3.46E-07 

 
a
 N is the number of parameter estimates with corresponding standard error calculated by Proc Phreg less than 1 

b
 The sample variance of the parameter estimates 

c
 Average of the variance estimates from each analysis 
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b) 

Distribution 1 

  ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio Match N
a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
   N

a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
   N

a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
 

1 = e
0
 1:1 10000 -2.23E-06 8.07E-06 7.17E-06   3000 3.00E-05 2.02E-06 1.99E-06   1000 3.38E-05 6.47E-07 6.43E-07 

  1:5 10000 -1.45E-04 3.80E-06 3.65E-06   3000 -1.46E-05 1.13E-06 1.14E-06   1000 1.59E-05 3.76E-07 3.78E-07 

  1:10 10000 -1.72E-04 3.38E-06 3.29E-06   3000 -2.30E-05 1.01E-06 1.03E-06   1000 -5.34E-06 3.43E-07 3.46E-07 

  1:15 10000 -1.83E-04 3.24E-06 3.17E-06   3000 -2.84E-05 9.92E-07 1.00E-06   1000 2.22E-06 3.15E-07 3.35E-07 

  1:20 10000 -1.75E-04 3.18E-06 3.11E-06   3000 -3.44E-05 9.60E-07 9.81E-07   1000 9.29E-06 3.16E-07 3.30E-07 

  full 10000 -1.89E-04 2.98E-06 2.94E-06   3000 -3.61E-05 9.05E-07 9.34E-07   1000 3.64E-06 2.98E-07 3.14E-07 

1.005 = 

e
0.00499

 1:1 9999 5.80E-03 1.60E-05 1.58E-05  3000 5.20E-03 2.26E-06 2.13E-06  1000 5.05E-03 6.91E-07 6.72E-07 

 1:5 10000 5.13E-03 3.49E-06 3.30E-06  3000 5.03E-03 8.32E-07 8.24E-07  1000 4.99E-03 3.01E-07 2.75E-07 

 1:10 10000 5.05E-03 2.70E-06 2.57E-06  3000 5.01E-03 6.63E-07 6.54E-07  1000 4.99E-03 2.36E-07 2.20E-07 

 1:15 10000 4.99E-03 2.46E-06 2.30E-06  3000 5.00E-03 5.98E-07 5.93E-07  1000 4.97E-03 2.19E-07 2.01E-07 

 1:20 10000 4.97E-03 2.27E-06 2.17E-06  3000 4.98E-03 5.65E-07 5.61E-07  1000 4.98E-03 2.03E-07 1.91E-07 

 full 10000 4.89E-03 1.82E-06 1.76E-06  3000 4.97E-03 4.69E-07 4.64E-07  1000 4.98E-03 1.74E-07 1.59E-07 

1.01 = 

e
0.00995

 1:1 9952 1.23E-02 1.29E-04 3.23E-04   3000 1.04E-02 4.63E-06 4.61E-06   1000 1.01E-02 1.42E-06 1.36E-06 

  1:5 10000 1.04E-02 4.88E-06 4.55E-06   3000 1.01E-02 1.25E-06 1.27E-06   1000 9.99E-03 4.50E-07 4.35E-07 

  1:10 10000 1.02E-02 2.94E-06 2.80E-06   3000 1.00E-02 8.40E-07 8.48E-07   1000 9.98E-03 3.18E-07 3.06E-07 

  1:15 10000 1.01E-02 2.35E-06 2.24E-06   3000 1.00E-02 7.13E-07 7.01E-07   1000 9.94E-03 2.55E-07 2.56E-07 

  1:20 10000 1.01E-02 1.98E-06 1.94E-06   3000 1.00E-02 6.17E-07 6.22E-07   1000 9.96E-03 2.38E-07 2.31E-07 

  full 10000 9.96E-03 9.19E-07 9.21E-07   3000 9.97E-03 3.15E-07 3.18E-07   1000 9.95E-03 1.32E-07 1.32E-07 

1.015 = 

e
0.01489

 1:1 7911 2.04E-02 4.84E-04 1.64E-03  2992 1.69E-02 4.38E-05 4.52E-05  1000 1.52E-02 3.53E-06 3.51E-06 

 1:5 9897 1.74E-02 1.19E-04 2.71E-04  3000 1.53E-02 4.29E-06 3.88E-06  1000 1.49E-02 8.97E-07 9.55E-07 

 1:10 9987 1.62E-02 5.98E-05 8.20E-05  3000 1.51E-02 2.41E-06 2.30E-06  1000 1.49E-02 6.14E-07 6.31E-07 

 1:15 9996 1.58E-02 1.46E-05 1.24E-05  3000 1.51E-02 1.88E-06 1.79E-06  1000 1.49E-02 5.21E-07 5.13E-07 

 1:20 9996 1.56E-02 1.05E-05 9.51E-06  3000 1.50E-02 1.52E-06 1.50E-06  1000 1.49E-02 4.39E-07 4.50E-07 

  full 10000 1.50E-02 1.50E-06 1.47E-06   3000 1.49E-02 4.46E-07 4.82E-07   1000 1.49E-02 1.63E-07 1.91E-07 

 
a
 N is the number of parameter estimates with corresponding standard error calculated by Proc Phreg less than 1 

b
 The sample variance of the parameter estimates 

c
 Average of the variance estimates from each analysis 
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c) 

 

Distribution 2 

  ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio Match N
a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
   N

a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
   N

a
 Mean Variance

b
 

Mean of 

Estimated 

Variance
c
 

1 = e
0
 1:1 10000 -1.71E-04 4.56E-05 3.60E-05   3000 -1.61E-04 8.91E-06 7.74E-06   1000 3.66E-05 2.67E-06 2.25E-06 

  1:5 10000 -8.56E-04 1.82E-05 1.61E-05   3000 -3.40E-04 4.59E-06 4.20E-06   1000 -5.85E-05 1.34E-06 1.29E-06 

  1:10 10000 -9.51E-04 1.59E-05 1.43E-05   3000 -3.85E-04 4.01E-06 3.79E-06   1000 -8.98E-05 1.20E-06 1.17E-06 

  1:15 10000 -9.90E-04 1.49E-05 1.37E-05   3000 -4.01E-04 3.83E-06 3.66E-06   1000 -7.93E-05 1.15E-06 1.14E-06 

  1:20 10000 -1.02E-03 1.47E-05 1.34E-05   3000 -4.06E-04 3.77E-06 3.59E-06   1000 -9.87E-05 1.16E-06 1.12E-06 

  full 10000 -1.08E-03 1.35E-05 1.25E-05   3000 -4.13E-04 3.57E-06 3.40E-06   1000 -1.03E-04 1.09E-06 1.06E-06 

1.005 = 

e
0.00499

 1:1 10000 7.01E-03 7.07E-05 5.13E-05  3000 5.51E-03 5.97E-06 5.89E-06  1000 5.14E-03 2.14E-06 1.89E-06 

 1:5 10000 5.14E-03 1.08E-05 9.20E-06  3000 5.09E-03 2.02E-06 1.94E-06  1000 4.98E-03 6.70E-07 6.90E-07 

 1:10 10000 4.90E-03 7.92E-06 6.79E-06  3000 5.05E-03 1.42E-06 1.45E-06  1000 4.97E-03 5.35E-07 5.25E-07 

 1:15 10000 4.79E-03 6.94E-06 5.94E-06  3000 5.00E-03 1.30E-06 1.27E-06  1000 4.98E-03 4.64E-07 4.65E-07 

 1:20 10000 4.72E-03 6.49E-06 5.50E-06  3000 4.98E-03 1.22E-06 1.17E-06  1000 4.96E-03 4.45E-07 4.31E-07 

 full 10000 4.44E-03 4.81E-06 4.07E-06  3000 4.91E-03 8.59E-07 8.40E-07  1000 4.95E-03 3.28E-07 3.19E-07 

1.01 = 

e
0.00995

 1:1 9999 1.36E-02 1.16E-04 1.01E-04   3000 1.08E-02 8.97E-06 8.85E-06   1000 1.02E-02 2.93E-06 2.74E-06 

  1:5 10000 1.07E-02 9.79E-06 8.96E-06   3000 1.02E-02 2.30E-06 2.26E-06   1000 9.98E-03 7.64E-07 8.39E-07 

  1:10 10000 1.04E-02 5.54E-06 5.13E-06   3000 1.01E-02 1.43E-06 1.45E-06   1000 1.00E-02 5.83E-07 5.80E-07 

  1:15 10000 1.03E-02 4.02E-06 3.86E-06   3000 1.01E-02 1.14E-06 1.17E-06   1000 1.00E-02 4.79E-07 4.80E-07 

  1:20 10000 1.02E-02 3.20E-06 3.20E-06   3000 1.00E-02 9.87E-07 1.01E-06   1000 9.98E-03 3.95E-07 4.25E-07 

  full 10000 9.96E-03 8.00E-07 7.91E-07   3000 9.97E-03 3.14E-07 3.39E-07   1000 9.97E-03 1.78E-07 1.91E-07 

1.015 = 

e
0.01489

 1:1 9791 2.51E-02 1.08E-03 1.82E-03  3000 1.61E-02 1.77E-05 1.67E-05  1000 1.52E-02 4.38E-06 4.19E-06 

 1:5 10000 1.67E-02 4.41E-05 4.43E-05  3000 1.52E-02 3.95E-06 3.72E-06  1000 1.50E-02 1.20E-06 1.21E-06 

 1:10 9998 1.59E-02 1.53E-05 1.42E-05  3000 1.51E-02 2.35E-06 2.27E-06  1000 1.50E-02 8.30E-07 8.05E-07 

 1:15 10000 1.56E-02 8.95E-06 8.25E-06  3000 1.50E-02 1.74E-06 1.76E-06  1000 1.49E-02 6.21E-07 6.51E-07 

 1:20 10000 1.54E-02 6.91E-06 6.42E-06  3000 1.50E-02 1.48E-06 1.50E-06  1000 1.49E-02 5.31E-07 5.68E-07 

  full 10000 1.50E-02 8.68E-07 8.96E-07   3000 1.49E-02 3.14E-07 3.73E-07   1000 1.49E-02 1.82E-07 2.12E-07 

 
a
 N is the number of parameter estimates with corresponding standard error calculated by Proc Phreg less than 1 

b
 The sample variance of the parameter estimates 

c
 Average of the variance estimates from each analysis 
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Table 2-5: Relative Efficiency and Bias of the exposure-response parameter estimate for each scenario. 

a) 

Distribution 0 

  ~30 cases  ~ 100 cases  ~ 300 cases 

True 

Hazard 

Ratio Match 

Percent 

Bias
a 

Relative 

Efficiency
b 

95% CI 

Captures 

True Value   

Percent 

Bias
a
 

Relative 

Efficiency
b
 

95% CI 

Captures 

True Value   

Percent 

Bias
a
 

Relative 

Efficiency
b
 

95% CI 

Captures 

True Value 

1 1:1   38.68% 96.41%     48.16% 95.77%     51.60% 95.00% 

  1:5   78.34% 95.36%     84.57% 95.23%     86.07% 94.90% 

  1:10   88.68% 95.37%     91.37% 94.80%     91.30% 95.30% 

  1:15   92.60% 95.33%     93.60% 94.57%     95.89% 95.80% 

  1:20   94.00% 95.26%     94.03% 94.77%     96.77% 94.60% 

  full   100.00% 95.16%     100.00% 94.74%     100.00% 95.41% 

                          

1.005 1:1 11.68% 5.94% 96.57%  4.26% 33.42% 95.87%  1.45% 35.06% 94.60% 

 1:5 2.46% 68.41% 95.54%  0.85% 72.07% 94.93%  0.45% 71.52% 95.50% 

 1:10 1.65% 81.43% 95.18%  0.85% 84.89% 95.03%  0.25% 84.38% 95.20% 

 1:15 1.05% 86.72% 94.99%  0.45% 91.32% 95.13%  0.05% 89.26% 95.40% 

 1:20 0.85% 90.21% 95.13%  0.45% 89.96% 94.83%  0.25% 94.32% 94.70% 

 full 0.25% 100.00% 94.96%  0.25% 100.00% 94.77%  0.05% 100.00% 95.31% 

             

1.01 1:1 14.47% 6.60% 96.55%   4.02% 16.45% 95.90%   1.20% 20.56% 94.00% 

  1:5 3.51% 42.91% 95.36%   1.40% 48.39% 95.63%   0.20% 48.62% 95.50% 

  1:10 2.11% 60.78% 95.60%   0.80% 64.02% 95.07%   0.20% 63.92% 94.70% 

  1:15 1.71% 69.99% 95.49%   0.50% 73.07% 95.40%   0.10% 75.86% 95.20% 

  1:20 1.60% 75.55% 95.47%   0.70% 77.38% 94.87%   0.10% 79.76% 94.60% 

  full 0.70% 100.00% 95.07%   0.20% 100.00% 95.04%   0.00% 100.00% 95.31% 

                          

1.015 1:1 26.07% 1.22% 95.60%  6.32% 5.19% 96.07%  2.02% 9.26% 95.40% 

 1:5 5.32% 21.64% 96.15%  1.35% 27.33% 94.87%  0.28% 31.00% 95.10% 

 1:10 2.90% 37.97% 95.67%  1.02% 42.06% 94.90%  0.14% 47.26% 96.20% 

 1:15 2.16% 47.61% 95.31%  0.61% 51.82% 95.03%  0.14% 56.26% 95.30% 

 1:20 2.02% 54.08% 95.17%  0.75% 57.78% 95.67%  0.28% 61.35% 95.70% 

 full 0.48% 100.00% 94.79%  0.21% 100.00% 95.77%  0.14% 100.00% 95.60% 

                          
a
 Percent bias between the true exposure-response relationship (log of the true hazard ratio) and the mean of the exposure-response parameter 

estimates 
b 

Relative efficiency is estimated by 100% times dividing the sample variance of the exposure-response parameter estimates for the full cohort by 

the sample variance of the exposure-response parameter estimates for the sampled cohort  
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b) 

Distribution 1 

  ~30 cases  ~ 100 cases  ~ 300 cases 

True 

Hazard 

Ratio Match 

Percent 

Bias 

Relative 

Efficiency 

95% CI 

Captures 

True Value   

Percent 

Bias 

Relative 

Efficiency 

95% CI 

Captures 

True Value   

Percent 

Bias 

Relative 

Efficiency 

95% CI 

Captures 

True Value 

1 1:1   36.94% 97.09%     44.71% 95.83%     46.06% 95.40% 

  1:5   78.49% 95.61%     80.16% 95.50%     79.26% 95.60% 

  1:10   88.33% 95.27%     89.43% 95.63%     86.88% 94.40% 

  1:15   92.12% 95.34%     91.23% 95.43%     94.60% 96.10% 

  1:20   93.86% 95.20%     94.27% 95.47%     94.30% 95.50% 

  full   100.00% 95.09%     100.00% 95.84%     100.00% 95.70% 

                          

1.005 1:1 16.29% 11.34% 96.64%  4.26% 20.80% 95.13%  1.25% 25.18% 94.50% 

 1:5 2.86% 52.14% 95.91%  0.85% 56.37% 95.23%  0.05% 57.81% 93.70% 

 1:10 1.25% 67.40% 95.84%  0.45% 70.74% 95.57%  0.05% 73.73% 95.10% 

 1:15 0.05% 73.95% 95.26%  0.25% 78.43% 95.60%  -0.35% 79.45% 93.60% 

 1:20 -0.35% 80.04% 95.72%  -0.15% 83.01% 95.27%  -0.15% 85.71% 94.40% 

 full -1.96% 100.00% 95.16%  -0.35% 100.00% 94.84%  -0.15% 100.00% 93.81% 

             

1.01 1:1 23.81% 0.71% 96.24%   4.72% 6.80% 96.57%   1.50% 9.27% 94.90% 

  1:5 4.12% 18.82% 96.28%   1.30% 25.18% 96.10%   0.40% 29.33% 94.90% 

  1:10 2.51% 31.27% 95.82%   0.60% 37.50% 95.27%   0.30% 41.51% 94.80% 

  1:15 1.91% 39.06% 95.88%   0.60% 44.18% 95.10%   -0.10% 51.76% 95.80% 

  1:20 1.50% 46.41% 95.53%   0.60% 51.05% 95.47%   0.10% 55.46% 95.40% 

  full 0.10% 100.00% 95.41%   0.20% 100.00% 95.14%   0.00% 100.00% 94.91% 

                          

1.015 1:1 36.95% 0.31% 94.57%  13.44% 1.02% 96.52%  2.23% 4.61% 95.50% 

 1:5 16.80% 1.26% 96.27%  2.76% 10.40% 95.47%  0.35% 18.17% 95.70% 

 1:10 9.01% 2.51% 96.41%  1.69% 18.51% 95.17%  0.21% 26.55% 96.60% 

 1:15 6.12% 10.29% 96.57%  1.42% 23.69% 94.90%  0.28% 31.29% 94.50% 

 1:20 4.71% 14.28% 96.08%  1.02% 29.40% 95.43%  0.28% 37.13% 96.40% 

 full 1.02% 100.00% 95.56%  0.28% 100.00% 95.54%  -0.13% 100.00% 96.60% 

                          

 
a
 Bias is the true exposure-response relationship (log of the true hazard ratio) minus the mean of the exposure-response parameter estimates 

b 
Relative efficiency is the variance of the exposure-response parameter estimates for the full cohort divided by the variance of the exposure-

response parameter estimates for the sampled cohort times 100% 
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c) 

Distribution 2 

  ~30 cases  ~ 100 cases  ~ 300 cases 

True 

Hazard 

Ratio Match 

Percent 

Bias 

Relative 

Efficiency 

95% CI 

Captures 

True Value   

Percent 

Bias 

Relative 

Efficiency 

95% CI 

Captures 

True Value   

Percent 

Bias 

Relative 

Efficiency 

95% CI 

Captures 

True Value 

1 1:1   29.60% 98.35%     40.06% 96.37%     40.79% 94.30% 

  1:5   74.35% 96.20%     77.85% 95.53%     80.95% 95.30% 

  1:10   85.11% 95.82%     88.94% 95.00%     90.67% 95.40% 

  1:15   90.36% 95.71%     93.21% 95.57%     95.02% 95.60% 

  1:20   91.95% 95.50%     94.69% 94.97%     93.63% 95.30% 

  full   100.00% 95.05%     100.00% 95.10%     100.00% 95.01% 

                          

1.005 1:1 40.55% 6.81% 96.86%  10.48% 14.38% 96.37%  3.06% 15.36% 94.10% 

 1:5 3.06% 44.70% 97.31%  2.05% 42.59% 95.13%  -0.15% 48.96% 95.10% 

 1:10 -1.76% 60.73% 97.28%  1.25% 60.37% 95.67%  -0.35% 61.31% 95.00% 

 1:15 -3.96% 69.32% 97.34%  0.25% 66.33% 96.07%  -0.15% 70.69% 95.30% 

 1:20 -5.36% 74.10% 97.05%  -0.15% 70.41% 95.47%  -0.55% 73.71% 95.70% 

 full -10.98% 100.00% 95.96%  -1.55% 100.00% 95.10%  -0.75% 100.00% 95.01% 

             

1.01 1:1 36.28% 0.69% 95.45%   8.04% 3.50% 95.67%   2.71% 6.09% 95.20% 

  1:5 7.84% 8.17% 95.71%   2.01% 13.67% 95.33%   0.30% 23.30% 96.00% 

  1:10 4.82% 14.43% 95.21%   1.00% 21.90% 95.73%   0.50% 30.53% 96.10% 

  1:15 3.41% 19.89% 95.55%   1.10% 27.45% 95.17%   0.50% 37.16% 95.20% 

  1:20 2.81% 24.97% 95.94%   0.80% 31.81% 95.53%   0.30% 45.06% 95.70% 

  full 0.10% 100.00% 95.32%   0.20% 100.00% 96.07%   0.20% 100.00% 95.80% 

                          

1.015 1:1 68.25% 0.08% 95.52%  7.80% 1.77% 96.13%  2.23% 4.15% 96.40% 

 1:5 12.43% 1.97% 96.07%  2.23% 7.94% 95.07%  0.55% 15.20% 95.30% 

 1:10 6.79% 5.68% 95.83%  1.29% 13.36% 94.90%  0.61% 21.93% 95.00% 

 1:15 4.64% 9.70% 95.77%  0.82% 18.01% 95.60%  0.35% 29.31% 94.70% 

 1:20 3.64% 12.56% 95.91%  0.88% 21.27% 95.17%  0.28% 34.27% 95.70% 

 full 0.68% 100.00% 96.02%  0.14% 100.00% 96.87%  0.01% 100.00% 96.80% 

                          
 

a
 Bias is the true exposure-response relationship (log of the true hazard ratio) minus the mean of the exposure-response parameter estimates 

b 
Relative efficiency is the variance of the exposure-response parameter estimates for the full cohort divided by the variance of the exposure-

response parameter estimates for the sampled cohort times 100% 
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Figures 2-2:  relative efficiency vs. number of matched controls by true hazard ratio. The line T represents the graph of the equation 
�
��� which is 

the theoretical relative efficiency when β = 0 
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Figures 2-3: Percent Bias vs. Number of matched controls by true hazard ratio 
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Section 2 Figures and Graphs 

 
Tables 2-6: Summary statistics for within cohort percent bias for each simulation scenario. There were 100 cohorts simulated for each scenario and 

therefore, there were 100 estimates of the within cohort bias. These tables give summary statistics for those 100 estimates. 

a) 

 

Distribution 0 

  ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio Match Mean Median Min Max 

95% CI 

Coverage
a
   Mean Median Min Max 

95% CI 

Coverage
a
   Mean Median Min Max 

95% CI 

Coverage
a
 

1.005 1:1 9.48% 8.21% -21.42% 52.89% 99.18%  3.62% 3.78% -13.68% 17.08% 98.98%  0.72% 1.02% -7.88% 14.24% 98.75% 

 1:5 1.63% 1.77% -15.87% 14.42% 99.99%  0.91% 1.40% -7.16% 6.76% 99.99%  0.16% 0.29% -4.23% 5.09% 99.99% 

 1:10 0.95% 1.14% -9.64% 9.52% 100.00%  0.50% 0.70% -4.18% 3.76% 100.00%  0.13% 0.19% -2.91% 2.64% 100.00% 

 1:15 0.57% 0.75% -7.45% 5.67% 100.00%  0.30% 0.33% -2.99% 2.85% 100.00%  0.08% 0.09% -2.09% 1.88% 100.00% 

 1:20 0.40% 0.64% -5.96% 4.29% 100.00%  0.25% 0.31% -2.15% 2.02% 100.00%  0.07% 0.09% -1.64% 1.40% 100.00% 

1.01 1:1 13.18% 12.98% -22.34% 66.94% 98.28%   2.90% 3.25% -12.83% 23.66% 97.40%   1.16% 0.87% -10.20% 8.91% 97.29% 

  1:5 2.32% 1.87% -10.11% 22.55% 99.74%   0.39% 0.75% -9.60% 10.07% 99.44%   0.32% 0.30% -5.55% 5.12% 99.53% 

  1:10 1.27% 0.87% -7.92% 16.29% 99.95%   0.11% 0.36% -7.74% 6.00% 99.91%   0.21% 0.17% -3.89% 3.71% 99.96% 

  1:15 0.85% 0.64% -6.64% 12.03% 99.99%   0.05% 0.08% -6.82% 4.66% 99.98%   0.18% 0.17% -3.03% 2.81% 99.99% 

  1:20 0.71% 0.43% -5.04% 10.02% 100.00%   0.05% 0.33% -5.43% 3.56% 100.00%   0.11% 0.08% -2.70% 2.21% 100.00% 

1.015 1:1 29.01% 26.84% -8.79% 77.18% 97.25%  7.05% 6.05% -8.13% 25.68% 97.57%  1.42% 1.89% -8.21% 12.22% 96.49% 

 1:5 5.01% 4.26% -10.68% 27.84% 98.91%  2.09% 2.09% -8.62% 12.04% 98.50%  0.41% 0.43% -6.47% 7.52% 98.52% 

 1:10 2.72% 2.85% -8.11% 18.27% 99.49%  1.34% 1.65% -6.87% 9.53% 99.34%  0.37% 0.37% -4.76% 5.38% 99.53% 

 1:15 2.02% 1.92% -7.13% 16.34% 99.75%  1.03% 1.64% -5.26% 7.76% 99.70%  0.26% 0.32% -4.11% 4.53% 99.77% 

  1:20 1.62% 1.59% -5.98% 14.32% 99.85%   0.84% 1.08% -5.01% 6.67% 99.87%   0.23% 0.22% -3.45% 3.86% 99.91% 
 

a – Percent of the 50,000 confidence intervals calculated (100 cohorts sampled 500 times) that contained the full cohort estimate 
 

 

 

 

 

 

 

 

 



54 

 

b) 

 

Distribution 1 

  ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio Match Mean Median Min Max 

95% CI 

Coverage
a
   Mean Median Min Max 

95% CI 

Coverage
a
   Mean Median Min Max 

95% CI 

Coverage
a
 

1.005 1:1 20.51% 18.35% -18.54% 85.08% 98.88%  4.45% 4.26% -19.44% 23.12% 98.01%  2.53% 2.71% -9.41% 15.40% 97.49% 

 1:5 5.54% 6.06% -11.51% 29.54% 99.80%  1.39% 1.64% -11.52% 11.42% 99.71%  0.96% 1.00% -6.11% 8.17% 99.72% 

 1:10 3.28% 3.81% -6.94% 18.70% 99.96%  0.83% 0.95% -7.70% 7.18% 99.95%  0.56% 0.53% -4.35% 5.84% 99.97% 

 1:15 2.47% 2.76% -5.73% 12.64% 99.98%  0.57% 0.65% -5.86% 5.03% 99.99%  0.45% 0.53% -3.64% 4.25% 99.99% 

 1:20 1.92% 2.40% -4.71% 9.00% 100.00%  0.45% 0.46% -4.73% 4.10% 100.00%  0.36% 0.41% -2.82% 3.68% 100.00% 

1.01 1:1 22.08% 16.97% -18.89% 79.30% 97.11%   4.52% 3.86% -13.83% 23.71% 96.35%   1.31% 0.61% -6.70% 10.49% 96.45% 

  1:5 4.75% 3.66% -15.38% 30.54% 98.46%   0.60% 0.11% -9.55% 11.43% 98.05%   0.27% 0.33% -5.90% 6.39% 98.46% 

  1:10 2.97% 2.89% -11.48% 21.20% 99.08%   0.21% -0.10% -7.08% 8.92% 98.99%   0.17% 0.05% -4.60% 4.89% 99.32% 

  1:15 2.26% 2.09% -8.84% 17.75% 99.47%   0.10% -0.24% -5.69% 7.42% 99.38%   0.11% -0.01% -3.93% 4.23% 99.63% 

  1:20 1.89% 1.81% -7.83% 14.48% 99.66%   -0.05% -0.31% -4.79% 6.56% 99.68%   0.09% 0.07% -3.40% 3.82% 99.81% 

1.015 1:1 37.75% 40.01% -19.60% 79.76% 95.24%  10.58% 10.51% -14.89% 47.69% 95.68%  2.87% 3.46% -8.51% 14.92% 96.29% 

 1:5 14.88% 10.42% -20.11% 72.20% 97.07%  0.95% 0.47% -10.72% 14.84% 96.57%  1.17% 1.10% -6.64% 7.38% 97.54% 

 1:10 6.76% 5.54% -18.69% 47.56% 97.74%  0.35% 0.30% -8.40% 10.91% 97.67%  0.86% 0.86% -5.13% 5.82% 98.57% 

 1:15 4.41% 3.59% -16.66% 38.96% 98.26%  0.06% -0.26% -8.04% 8.25% 98.21%  0.73% 0.74% -4.49% 5.58% 99.09% 

  1:20 3.24% 2.94% -14.79% 29.62% 98.54%   0.00% -0.31% -7.06% 8.50% 98.70%   0.64% 0.59% -3.83% 5.40% 99.33% 

 
a – Percent of the 50,000 confidence intervals calculated (100 cohorts sampled 500 times) that contained the full cohort estimate 
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c) 

 

Distribution 2 

  ~30 cases  ~100 cases  ~300 cases 

True 

Hazard 

Ratio Match Mean Median Min Max 

95% CI 

Coverage
a
   Mean Median Min Max 

95% CI 

Coverage
a 

  Mean Median Min Max 

95% CI 

Coverage
a
 

1.005 1:1 56.40% 44.47% -25.96% 220.19% 98.66%  12.60% 11.13% -20.80% 85.75% 97.44%  4.83% 3.23% -13.62% 32.64% 97.04% 

 1:5 17.57% 15.91% -24.78% 83.53% 99.18%  3.90% 1.87% -15.04% 32.29% 99.01%  1.50% 0.90% -11.84% 15.57% 99.11% 

 1:10 11.41% 10.78% -19.97% 58.97% 99.46%  2.46% 0.80% -11.23% 21.91% 99.56%  0.92% 0.07% -8.44% 10.40% 99.68% 

 1:15 8.57% 8.46% -16.82% 42.24% 99.70%  1.83% 0.40% -8.91% 17.53% 99.78%  0.68% 0.08% -7.34% 9.10% 99.91% 

 1:20 7.24% 7.08% -12.11% 36.90% 99.79%  1.52% 0.16% -7.22% 15.10% 99.86%  0.53% 0.26% -6.12% 7.54% 99.96% 

1.01 1:1 37.38% 30.78% -20.34% 277.00% 95.93%   6.70% 6.28% -16.23% 30.70% 96.49%   3.14% 3.03% -12.89% 20.33% 95.82% 

  1:5 7.66% 7.94% -20.45% 48.11% 96.57%   1.76% 1.98% -13.99% 16.87% 97.67%   1.26% 0.77% -10.30% 15.07% 97.08% 

  1:10 4.48% 4.46% -20.19% 36.10% 97.18%   1.19% 1.04% -10.86% 13.61% 98.29%   0.86% 0.93% -8.46% 12.23% 97.98% 

  1:15 3.37% 3.65% -18.73% 29.58% 97.58%   1.05% 0.97% -9.15% 13.91% 98.67%   0.73% 0.80% -7.28% 10.59% 98.46% 

  1:20 2.74% 2.84% -17.29% 28.36% 97.83%   0.95% 0.69% -8.36% 12.15% 98.94%   0.65% 0.65% -6.57% 9.64% 98.90% 

1.015 1:1 63.83% 55.04% -5.46% 205.89% 95.84%  8.51% 7.40% -8.28% 48.05% 96.31%  1.91% 1.65% -10.74% 13.59% 96.35% 

 1:5 13.15% 8.18% -16.11% 90.40% 96.92%  1.83% 0.58% -9.84% 18.92% 96.77%  0.63% 0.13% -6.88% 8.57% 97.59% 

 1:10 7.93% 5.53% -15.35% 94.94% 97.05%  0.81% 0.04% -8.68% 15.63% 97.26%  0.45% 0.04% -5.18% 7.60% 98.18% 

 1:15 6.09% 3.45% -15.00% 80.27% 97.16%  0.48% 0.00% -7.98% 13.36% 97.86%  0.40% 0.09% -4.13% 6.65% 98.79% 

  1:20 5.08% 3.04% -13.98% 69.54% 97.41%   0.33% 0.02% -7.61% 11.61% 98.14%   0.39% 0.18% -3.64% 6.11% 99.01% 
 

a – Percent of the 50,000 confidence intervals calculated (100 cohorts sampled 500 times) that contained the full cohort estimate 
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Figures 2-4: Plot of Parameter Estimates by Match Ratio for example cohorts. Each black dot represents one of the 500 estimates for each match 

ratio, the red dot is the mean of the 500 estimates, and the dotted line is the value from the analysis of the full cohort. 
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Tables 2-7: Summary of the within cohort and between cohort sum of squares for each simulation as described by Equations 2.3 – 2.7 

 

a) 

 

Distribution 0 

  ~30 cases  ~ 100 cases  ~ 300 cases 

True 

Hazard 

Ratio Match 

Within 

SS 

Between 

SS Total SS 

Within 

% 

Between 

%   

Within 

SS 

Between 

SS 

Total 

SS 

Within 

% 

Between 

%   

Within 

SS 

Between 

SS 

Total 

SS 

Within 

% 

Between 

% 

1 1:1 0.2038 0.1622 0.3660 55.69% 44.31%   0.0319 0.0296 0.0616 51.88% 48.12%   0.0104 0.0106 0.0210 49.60% 50.40% 

  1:5 0.2229 0.2673 0.4902 45.47% 54.53%   0.0061 0.0283 0.0344 17.82% 82.18%   0.0020 0.0104 0.0124 16.34% 83.66% 

  1:10 0.0434 0.2014 0.2448 17.72% 82.29%   0.0030 0.0281 0.0311 9.67% 90.33%   0.0010 0.0100 0.0110 9.13% 90.87% 

  1:15 0.0176 0.1774 0.1950 9.02% 90.98%   0.0020 0.0281 0.0301 6.64% 93.36%   0.0007 0.0102 0.0109 6.11% 93.89% 

  1:20 0.0174 0.1765 0.1939 8.98% 91.02%   0.0015 0.0281 0.0296 5.05% 94.96%   0.0005 0.0102 0.0107 4.65% 95.35% 

                                      

1.005 1:1 0.2320 0.1514 0.3834 60.51% 39.49%  0.0562 0.0452 0.1014 55.45% 44.55%  0.0168 0.0137 0.0305 54.99% 45.01% 

 1:5 0.0336 0.1123 0.1459 23.01% 76.99%  0.0108 0.0381 0.0489 22.10% 77.91%  0.0034 0.0121 0.0154 21.81% 78.19% 

 1:10 0.0169 0.1078 0.1247 13.55% 86.45%  0.0056 0.0372 0.0428 13.00% 87.00%  0.0018 0.0119 0.0136 12.92% 87.08% 

 1:15 0.0114 0.1059 0.1172 9.69% 90.31%  0.0038 0.0368 0.0406 9.28% 90.73%  0.0012 0.0119 0.0131 9.12% 90.89% 

 1:20 0.0084 0.1046 0.1130 7.45% 92.55%  0.0028 0.0366 0.0394 7.11% 92.89%  0.0009 0.0119 0.0128 7.00% 93.00% 

                   

1.01 1:1 1.8962 0.3210 2.2172 85.52% 14.48%   0.1613 0.0723 0.2337 69.04% 30.96%   0.0449 0.0225 0.0674 66.64% 33.36% 

  1:5 0.0918 0.1432 0.2350 39.07% 60.93%   0.0287 0.0475 0.0762 37.64% 62.36%   0.0091 0.0172 0.0263 34.75% 65.25% 

  1:10 0.0461 0.1264 0.1726 26.74% 73.26%   0.0154 0.0429 0.0584 26.45% 73.55%   0.0049 0.0167 0.0216 22.70% 77.30% 

  1:15 0.0315 0.1193 0.1507 20.88% 79.13%   0.0107 0.0409 0.0516 20.72% 79.28%   0.0035 0.0162 0.0197 17.60% 82.40% 

  1:20 0.0245 0.1153 0.1397 17.50% 82.50%   0.0083 0.0403 0.0487 17.12% 82.88%   0.0027 0.0158 0.0185 14.52% 85.48% 

                                      

1.015 1:1 12.0315 0.7675 12.7990 94.00% 6.00%  0.5829 0.1404 0.7233 80.58% 19.42%  0.1255 0.0362 0.1618 77.60% 22.40% 

 1:5 0.3850 0.2560 0.6410 60.06% 39.94%  0.0778 0.0724 0.1502 51.81% 48.19%  0.0237 0.0238 0.0475 49.87% 50.13% 

 1:10 0.1595 0.1901 0.3496 45.63% 54.37%  0.0402 0.0584 0.0986 40.76% 59.25%  0.0127 0.0186 0.0313 40.55% 59.45% 

 1:15 0.1046 0.1664 0.2710 38.62% 61.39%  0.0280 0.0527 0.0807 34.71% 65.30%  0.0090 0.0180 0.0270 33.39% 66.61% 

 1:20 0.0801 0.1536 0.2337 34.28% 65.72%  0.0220 0.0499 0.0718 30.61% 69.40%  0.0071 0.0169 0.0241 29.64% 70.36% 
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b) 

 

Distribution 1 

  ~30 cases  ~ 100 cases  ~ 300 cases 

True 

Hazard 

Ratio Match 

Within 

SS 

Between 

SS Total SS 

Within 

% 

Between 

%   

Within 

SS 

Between 

SS 

Total 

SS 

Within 

% 

Between 

%   

Within 

SS 

Between 

SS 

Total 

SS 

Within 

% 

Between 

% 

1 1:1 0.2244 0.1755 0.4000 56.11% 43.89%   0.0532 0.0557 0.1088 48.85% 51.15%   0.0166 0.0155 0.0321 51.80% 48.20% 

  1:5 0.0330 0.1400 0.1730 19.09% 80.91%   0.0099 0.0526 0.0625 15.81% 84.19%   0.0032 0.0150 0.0182 17.48% 82.52% 

  1:10 0.0157 0.1350 0.1507 10.44% 89.57%   0.0048 0.0521 0.0568 8.39% 91.62%   0.0016 0.0148 0.0163 9.59% 90.41% 

  1:15 0.0101 0.1332 0.1433 7.07% 92.93%   0.0032 0.0519 0.0551 5.72% 94.28%   0.0011 0.0147 0.0158 6.66% 93.34% 

  1:20 0.0076 0.1319 0.1395 5.45% 94.55%   0.0024 0.0518 0.0541 4.39% 95.61%   0.0008 0.0143 0.0151 5.16% 94.84% 

                                      

1.005 1:1 0.5362 0.1747 0.7109 75.42% 24.58%  0.0758 0.0430 0.1188 63.82% 36.18%  0.0239 0.0127 0.0366 65.24% 34.76% 

 1:5 0.0641 0.1120 0.1760 36.41% 63.59%  0.0157 0.0332 0.0488 32.07% 67.93%  0.0051 0.0100 0.0150 33.71% 66.29% 

 1:10 0.0325 0.1035 0.1360 23.87% 76.13%  0.0084 0.0313 0.0397 21.19% 78.81%  0.0028 0.0093 0.0121 22.96% 77.04% 

 1:15 0.0222 0.1005 0.1227 18.08% 81.92%  0.0058 0.0307 0.0365 15.92% 84.08%  0.0019 0.0091 0.0110 17.23% 82.77% 

 1:20 0.0171 0.0991 0.1163 14.73% 85.27%  0.0044 0.0303 0.0347 12.73% 87.27%  0.0015 0.0088 0.0102 14.47% 85.53% 

                   

1.01 1:1 3.7882 0.3303 4.1185 91.98% 8.02%   0.2015 0.0426 0.2441 82.56% 17.44%   0.0533 0.0195 0.0728 73.26% 26.74% 

  1:5 0.1356 0.0840 0.2196 61.74% 38.27%   0.0340 0.0219 0.0558 60.85% 39.15%   0.0111 0.0123 0.0234 47.53% 52.47% 

  1:10 0.0684 0.0629 0.1313 52.09% 47.91%   0.0187 0.0187 0.0374 50.02% 49.98%   0.0062 0.0101 0.0164 38.04% 61.96% 

  1:15 0.0473 0.0550 0.1022 46.24% 53.76%   0.0135 0.0173 0.0307 43.79% 56.21%   0.0045 0.0092 0.0137 33.00% 67.00% 

  1:20 0.0365 0.0505 0.0870 41.98% 58.02%   0.0106 0.0166 0.0272 38.98% 61.02%   0.0036 0.0088 0.0124 29.18% 70.82% 

                                      

1.015 1:1 15.9885 0.3717 16.3602 97.73% 2.27%  2.7746 0.2613 3.0359 91.39% 8.61%  0.1518 0.0322 0.1840 82.50% 17.50% 

 1:5 4.3316 0.6778 5.0094 86.47% 13.53%  0.1237 0.0748 0.1985 62.32% 37.68%  0.0282 0.0171 0.0454 62.25% 37.75% 

 1:10 1.5052 0.3340 1.8392 81.84% 18.16%  0.0613 0.0549 0.1162 52.73% 47.27%  0.0151 0.0131 0.0282 53.42% 46.59% 

 1:15 0.4013 0.2154 0.6167 65.08% 34.92%  0.0417 0.0472 0.0888 46.90% 53.10%  0.0108 0.0116 0.0224 48.24% 51.76% 

 1:20 0.2102 0.1705 0.3808 55.21% 44.79%  0.0328 0.0428 0.0756 43.42% 56.58%  0.0086 0.0108 0.0193 44.23% 55.77% 
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c) 

 

Distribution 2 

  ~30 cases  ~ 100 cases  ~ 300 cases 

True 

Hazard 

Ratio Match 

Within 

SS 

Between 

SS Total SS 

Within 

% 

Between 

%   

Within 

SS 

Between 

SS 

Total 

SS 

Within 

% 

Between 

%   

Within 

SS 

Between 

SS 

Total 

SS 

Within 

% 

Between 

% 

1 1:1 1.5065 1.6097 3.1162 48.35% 51.66%   0.2326 0.1790 0.4116 56.51% 43.49%   0.0571 0.0511 0.1082 52.80% 47.21% 

  1:5 0.1697 1.0823 1.2520 13.55% 86.45%   0.0361 0.1527 0.1888 19.14% 80.87%   0.0107 0.0481 0.0588 18.15% 81.85% 

  1:10 0.0778 1.0029 1.0807 7.20% 92.81%   0.0172 0.1482 0.1655 10.41% 89.59%   0.0052 0.0475 0.0527 9.82% 90.18% 

  1:15 0.0495 0.9711 1.0206 4.85% 95.15%   0.0113 0.1466 0.1579 7.13% 92.87%   0.0035 0.0473 0.0507 6.83% 93.17% 

  1:20 0.0366 0.9583 0.9950 3.68% 96.32%   0.0083 0.1464 0.1547 5.39% 94.61%   0.0026 0.0471 0.0497 5.20% 94.80% 

                                      

1.005 1:1 1.9770 0.4906 2.4676 80.12% 19.88%  0.2257 0.0756 0.3014 74.91% 25.09%  0.0719 0.0245 0.0964 74.54% 25.46% 

 1:5 0.2154 0.2621 0.4775 45.11% 54.89%  0.0454 0.0573 0.1027 44.22% 55.78%  0.0157 0.0175 0.0332 47.31% 52.69% 

 1:10 0.1096 0.2325 0.3421 32.03% 67.98%  0.0251 0.0525 0.0775 32.35% 67.65%  0.0087 0.0159 0.0245 35.32% 64.68% 

 1:15 0.0731 0.2189 0.2920 25.03% 74.97%  0.0179 0.0497 0.0676 26.49% 73.51%  0.0061 0.0152 0.0213 28.81% 71.19% 

 1:20 0.0564 0.2112 0.2676 21.09% 78.91%  0.0140 0.0484 0.0624 22.49% 77.51%  0.0048 0.0148 0.0196 24.52% 75.48% 

                   

1.01 1:1 8.1215 0.9882 9.1097 89.15% 10.85%   0.3756 0.0690 0.4446 84.48% 15.53%   0.1132 0.0271 0.1403 80.69% 19.31% 

  1:5 0.3307 0.1240 0.4547 72.73% 27.27%   0.0684 0.0412 0.1096 62.43% 37.57%   0.0246 0.0156 0.0403 61.20% 38.80% 

  1:10 0.1572 0.0725 0.2297 68.44% 31.56%   0.0382 0.0342 0.0724 52.74% 47.26%   0.0138 0.0126 0.0264 52.34% 47.66% 

  1:15 0.1082 0.0553 0.1635 66.21% 33.80%   0.0279 0.0312 0.0591 47.16% 52.84%   0.0103 0.0114 0.0217 47.41% 52.60% 

  1:20 0.0837 0.0485 0.1323 63.31% 36.69%   0.0224 0.0293 0.0518 43.36% 56.64%   0.0083 0.0108 0.0191 43.68% 56.32% 

                                      

1.015 1:1 44.3054 2.5152 46.8205 94.63% 5.37%  0.8612 0.1406 1.0019 85.96% 14.04%  0.1718 0.0292 0.2010 85.46% 14.54% 

 1:5 1.9373 0.5624 2.4996 77.50% 22.50%  0.1261 0.0638 0.1899 66.41% 33.59%  0.0365 0.0204 0.0569 64.21% 35.79% 

 1:10 0.6692 0.3959 1.0651 62.83% 37.17%  0.0659 0.0490 0.1150 57.34% 42.66%  0.0203 0.0167 0.0370 54.81% 45.20% 

 1:15 0.4441 0.3075 0.7516 59.09% 40.91%  0.0465 0.0430 0.0895 51.93% 48.07%  0.0147 0.0147 0.0294 49.99% 50.02% 

 1:20 0.3022 0.2559 0.5581 54.15% 45.86%  0.0370 0.0392 0.0762 48.62% 51.38%  0.0119 0.0141 0.0260 45.88% 54.12% 
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Table 2-8:  Descriptive statistics of the original cumulative exposure and log of cumulative 

exposure for the Gold Miners data risk-sets 

 

Gold Miner Data 

Exposure 

Metric Group Mean Variance Skew Min Max 

Cumulative 

Exposure 

case 9.39E+04 2.29E+09 0.18 521.97 2.19E+05 

cont 2.62E+04 1.16E+09 2.10 275.48 2.26E+05 

              

Log 

Cumulative 

Exposure 

case 11.24 0.68 -2.37 6.26 12.30 

cont 9.37 1.83 -0.07 5.62 12.33 

              

 

 

 

 

 

 

Table 2-9:  Descriptive statistics of cumulative exposure and log of cumulative exposure after 

being scaled to match the range of the simulations for the Gold Miners data risk-

sets  

 

Gold Miner Adjusted Data 

Exposure Metric Group Mean Variance Skew Min Max 

Adjusted 

Cumulative 

Exposure 

case 290.96 2.22E+04 0.18 0.77 679.99 

cont 80.56 1.12E+04 2.10 0.00 700.00 

              

Adjusted Log 

Cumulative 

Exposure 

case 628.02 8.51E+03 -2.37 71.46 746.76 

cont 419.19 2.29E+04 -0.07 0.00 750.00 
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Figure 2-5: Histogram of a) Cumulative Exposure and b) Log of Cumulative Exposure for the Gold Miner data risk-sets 

 

a) b)                                                                                                                                 
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Table 2-10:  Results from Cox proportional hazards analysis for the full cohort for each exposure 

metric. The model was fitted with the original exposure data and on the data where 

the exposure variables were scaled to have a range of 0 – 750. 

 
Gold Miner Data Analysis for Full Cohort 

 Analysis on original data  Analysis on adjusted data 

Exposure 

Metric   

Parameter 

Estimate 

Standard 

Error 

Hazard 

Ratio (per 

unit 

increase)   

Parameter 

Estimate 

Standard 

Error 

Hazard Ratio 

(per unit 

increase) 

Cumulative 

Exposure 

  0.00002 1.1935E-06 1.00002   0.00739 0.00038 1.00742 

                

Log 

Cumulative 

Exposure 

 1.55565 0.11007 4.73817  0.01391 0.0009844 1.014007194 

                

 

 

 

Table 2-11:  Summary statistics for the matched nested case-control analysis 

of the Gold Miner adjusted data 

 

  

 

Analysis on Adjusted Cumulative 

Exposure  

Analysis on Adjusted Log Cumulative 

Exposure 

Match Mean Var 

Average of 

Estimated Var   Mean Var 

Average of 

Estimated Var 

1:1 0.0106 2.86E-06 2.58E-06  0.0124 2.28E-06 3.80E-06 

1:5 0.0095 5.15E-07 6.43E-07  0.0134 5.18E-07 1.59E-06 

1:10 0.0089 2.73E-07 4.12E-07  0.0137 2.67E-07 1.29E-06 

1:15 0.0086 1.79E-07 3.29E-07  0.0138 1.86E-07 1.19E-06 

1:20 0.0084 1.30E-07 2.85E-07  0.0138 1.44E-07 1.14E-06 
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Table 2-12: The within cohort percent bias, efficiency and MSE as 

compared to the full cohort estimates for matched nested  

case-control analysis of the Gold Miner adjusted data 
 

 

 

 

 

Analysis on Adjusted Cumulative 

Exposure  

Analysis on Adjusted Log 

Cumulative Exposure 

Match 

Percent 

Bias Efficiency
a
 MSE  

Percent 

Bias Efficiency
a
 MSE 

1:1 43.30% 5.71% 1.31E-05  -10.73% 25.50% 4.50E-06 

1:5 28.29% 22.94% 4.88E-06  -3.76% 60.85% 7.88E-07 

1:10 20.72% 35.83% 2.61E-06  -1.82% 75.06% 3.30E-07 

1:15 16.18% 44.80% 1.62E-06  -1.03% 81.46% 2.06E-07 

1:20 13.09% 51.76% 1.07E-06  -0.60% 85.22% 1.50E-07 

                

 
a
 - Efficiency is defined as the estimated variance from the full cohort 

analysis divided by the average of the estimated variances from the 

nested case-control analysis 
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Figures 2-6: Plot of the parameter estimates by matched ratio for the Gold Miner adjusted data for a) Cumulative Exposure and b) Log of 

Cumulative Exposure. Each black dot represents one of the 500 estimates for each match ratio, the red dot is the mean of the 500 

estimates, and the dotted line is the value from the analysis of the full cohort 
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Chapter 3: 
 
Evaluation of Chen’s Estimator in Nested Case-Control Study 
 
Section 1 
 
Introduction: 
 
 Thomas’ partial likelihood estimator (Liddell et al, 1977) is the most common 

method of analysis for nested case-control studies. Alternative methods have been 

proposed for the analysis of nested case-control study data in the hopes of improving 

efficiency (Chen, 2001; Langholz and Goldstein, 1996; Robins et al, 1994; Samuelsen, 

1997); however, these methods involve collecting additional data than that needed for 

Thomas’ estimator. For example, the idea of counter-matching has been proposed 

which involves selecting controls based on knowledge of a surrogate variable related to 

the covariate of interest (Langholz and Goldstein, 1996).  

Chen (2004) proposed an alternative estimator in the analysis of nested case-control 

study data which involves only the data collected for Thomas’ estimator. Chen showed 

that his estimator is consistent and asymptotically normal. Furthermore, he was able to 

show that his estimator has a smaller asymptotic variance than that of Thomas’ 

estimator and therefore has a greater asymptotic relative efficiency compared to the full 

cohort analysis.  

 

Description of Chen’s Estimator: 

 The motivation for Chen’s estimator is that heuristically, gains in efficiency could 

be made by not only including those controls sampled from the risk-set associated with 
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the failure at time t, z� , but also considering controls sampled from risk-sets z{ where s 

is in some neighborhood of t. 

 In particular, to define Chen’s estimator, let z{\ be the m sampled controls from 

risk-set z{  and let ���� be an infinitely differentiable nonnegative even function with 

bounded support. Then, using the counting process notation of the Cox model, define: 

 I|�}� ~� ∑ �
(

(')� I'�}� (3.1) 

 �(��� � � fE
F
��k (3.2)  

 ���� ~� � ∑ ����M{�<��
/ �7�����|�{�789�\

�
;

�� ����M{��
; ��|�{�  (3.3) 

 v'��� ~� �����
<��/ �5�:�� �����

 (3.4) 

where C�  is Thomas’ estimator from the data. Also, define: 

 �*��, C� ~� � ∑ �(�� � }�v��}�o�*�}�-P/p7�{��8��\
�
	 �I|�}�        � � 0, 1, 2 (3.5) 

where the power 2 on covariate o��}� indicates the outer product �2. Then Chen’s 

estimator is the solution of: 

 ��C� ~� ∑ � v'��� �o'��� � �F��,P��;��,P��
�
	

(')� �I'��� � 0 (3.6) 

and: 

 �� ���|�) PT � � N�G��,PT� �;��,PT� � �
�F��,PT� 
�;��,PT� �

�_
S∑ v'����I'���(')�

�
	  (3.7) 

gives a consistent estimator of the inverse of the covariance matrix.  

Chen’s estimator asymptotically outperforms that of Thomas’ estimator in the 

sense that its asymptotic variance is smaller than that of Thomas’ estimator. However, it 

is not clear how well it will perform with few or moderate number of cases. Also, Chen’s 
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estimator requires defining a function ����, and it is not clear how different definitions of 

���� will affect the estimate. The function ���� has bounded support which guarantees 

that the asymptotic support of �(��� ~� � fE
F
��k converges to {0} at a rate of EF�. The 

support of �(��� defines the neighborhood around t whose controls will also be 

considered.  

 

Objective: 

Occupational cohorts were simulated to get a better understanding of the 

following questions: 

1. How does the efficiency and bias of Chen’s estimate compare to Thomas’ estimate 

with few and moderate number of cases? 

2. How sensitive is Chen’s estimate to the definition of ����? 

 

Method: 

 The cohorts were simulated identically as they were in Section 1 of Chapter 2. In 

particular, eight simulation scenarios were performed defined by number of cases in the 

cohort (~30 or ~100), the exposure-response relationship (hazard ratio per unit 

exposure = 1.005 or 1.01), and the distribution of the exposure intensity [Distribution 0: 

Normal(25, 64) - Truncated(0, 50), Distribution 2: Log-Normal(.75, 1) – Truncated(0, 

50)]. For each scenario with ~30 cases, 2,000 cohorts were simulated and for the 

scenarios with ~100 cases, 1,000 cohorts were simulated. All other details are 

described in Chapter 2 methods. 
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Analysis: 

 Risk-sets were created for each cohort, with age as the time scale. Then for each 

case, 5 controls were randomly sampled from the risk-sets. The full cohort was 

analyzed using Cox proportional hazards regression (procedure PHREG in SAS) to 

obtain estimates of the exposure-response parameter. The sampled risk-sets were 

analyzed using Thomas’ estimation procedure (which is identical to conditional logistic 

regression; procedure PHREG in SAS) and using Chen’s procedure. For Chen’s 

procedure, 3 different functions for �(��� were defined as follows: 

 Phi 1: �(��� � �1.5_ � �_��� |�| � 1.5 �  

 Phi 2: �(��� � �2.5_ � �_��� |�| � 2.5 � 
 Phi 3: �(��� � �5.5_ � �_��� |�| � 5.5 � (3.7) 

 
where t is measured in years and ��. � is an indicator function. Figures 3-1 graph the 

above functions. For Phi 1, Phi 2 and Phi 3, each risk-set considers controls sampled 

for cases with failure age within 1.5, 2.5 and 5.5 year, respectively. 

A SAS macro was written to obtain Chen’s estimate. Chen’s method involves 

solving equation 3.6 for β. The Newton-Raphson method was used and iterations were 

stopped when the solution to equation 3.6 evaluated at the current estimate was less 

than 0.0001. If this condition was not satisfied after 10 iterations, the estimate was said 

to have not converged. 

For each scenario, 2,000 and 1,000 estimates of the exposure-response 

parameter were obtained for the analysis of full risk-sets and for each of the sampled 

risk-sets from the cohorts with ~30 and ~100 cases, respectively. The sample variance 

of these estimates was obtained. The relative efficiency was estimated by dividing the 
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sample variance obtained from the full risk-set analysis by the sample variance obtained 

from the sampled risk-set analysis. The bias was estimated by subtracting the true 

exposure-response parameter (i.e. the log of the true hazard ratio) from the mean of the 

estimated parameters.  

 

Results and Discussion: 

 Tables 3-1 give summary statistics of the simulations and Tables 3-2 give a 

summary of the relative efficiency and percent bias for the various analyses. Only those 

cohorts whose estimates converged for all three Chen estimators and Thomas’ estimate 

were included in the summary tables. For example, for the scenario using exposure 

intensity Distribution 0, with ~30 cases and a true hazard ratio of 1.005, two thousand 

cohorts were simulated but only 1992 cohorts were summarized because for 8 of the 

cohorts, one of the three Chen estimators did not converge. 

 Notice that the estimated variance of the Chen estimate generally overestimated 

the sample variance of the parameter estimates. This is especially true for Distribution 

2. This would result in conservative hypothesis tests and confidence intervals. 

 Also note that the relative efficiency for Chen’s estimator using Phi 3 is always 

greater than that of Thomas’ estimator for all simulations scenarios. Also, the magnitude 

of the percent bias is either similar or smaller than that of Thomas’. Phi 3 had the largest 

support and therefore included the controls of more neighboring risk-sets compared to 

the Phi 1 and Phi 2 analyses. 

 In addition, notice that generally, for the simulations with ~30 cases, Chen’s 

estimator using Phi 1 performs worse (i.e. has greater bias and smaller efficiency) than 
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that of Thomas’. This indicates the importance of how ���� is defined in the analysis, 

especially in cohorts with few cases. In particular, if the support of ���� is not large 

enough then Chen’s estimate will perform poorly. In fact, a preliminary simulation was 

ran (the results are not shown) in which the support of ���� was defined to be smaller 

than the difference in time between the two closest risk-sets and the bias and relative 

efficiency of Chen’s estimate was much worse than that of Thomas’ estimate. 

 Therefore, from these simulations, it appears that Chen’s estimate may 

outperform Thomas’ estimate, even with few or moderate number of cases. However, 

for Chen’s estimate to be effective a sufficient number of neighboring risk-sets must be 

grouped for each failure time. This will happen if the support of ���� is sufficiently large 

and/or when the failure times are sufficiently dense (which will occur as the number of 

cases increases). However, from these simulations, the improvement was moderate. 

 

 

Section 2: 

 

Simulation with Gold Miner Cohort 
 

 Chen’s estimator was used on the Gold Miner data set discussed in Section 2 of 

Chapter 2 and compared with Thomas’s estimator. The Gold Miner data set contained 

170 cases. To further study the effect of the number of cases on Chen’s estimator, the 

Gold Miner data set was edited. Thirty cases were randomly sampled from the 170 

cases, along with their risk-sets. Therefore, two sets of simulations were ran; one on the 

original Gold Miner data set and one on the sampled Gold Miner data set.  



71 

 

Figures 3-2 give plots of the cases vs their failure age. This was used to help 

build our definition of ���� used in Chen’s estimator. From this it appears that the risk-

sets are very densely populated, and that groupings of 1 year would be sufficient. 

However, to study the effect of ����, the following seven functions will be investigated: 

 Phi 0: �(��� � �. 0005_ � �_��� |�| � .0005 � 
 Phi 1: �(��� � �. 25_ � �_��� |�| � .25 � 
 Phi 2: �(��� � �. 5_ � �_��� |�| � .5 � 
 Phi 3: �(��� � �. 75_ � �_��� |�| � .75 � 
 
 Phi 4: �(��� � �1_ � �_��� |�| � 1 � 
 Phi 5: �(��� � �2_ � �_��� |�| � 2 � 
 Phi 6: �(��� � �3_ � �_��� |�| � 3 � (3.8) 
 

which corresponds to grouping risk-sets within 0.0005, 0.25, 0.5, 0.75, 1, 2, and 3 

years. Phi 0 was chosen so that no risk-sets would be grouped together. The closest 

two risk-sets were 2 days apart (i.e. ~.005 years apart). 

Risk-sets were formed based on cases age, and 5 controls from each risk-set 

were randomly sampled 500 times. Risk was analyzed with respect to cumulative 

exposure and log of cumulative exposure. Eight exposure-response estimates were 

obtained for each exposure metric by analyzing the sampled risk-sets; one from 

Thomas’ method and seven from Chen’s method corresponding to the seven �(��� 
listed above. 

The results from analyzing the full original cohort are summarized in Table 3-3. 

The results from analyzing the sampled risk-sets of the original cohort are summarized 

in Table 3-4. Note that Chen’s estimate with Phi 0 performed very poorly when 
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compared to Thomas’ estimate. The estimated and sample variances were much larger 

as well as the bias. This demonstrates the fact that Chen’s estimate performs poorly 

when the definition of �(��� has a support that is smaller than the two closest risk-sets. 

The remaining discussion will exclude the results of Chen’s estimate based on Phi 0. 

As was seen in the Chapter 2, Thomas’ estimate tended to overestimate the 

exposure response parameter of the full cohort when risk was based on cumulative 

exposure and underestimate the exposure response parameter when risk was based on 

the log of cumulative exposure. Chen’s estimate also followed this same trend. Also 

note that the mean of the estimated variances always decreased as the support of �(��� 
increased and that the sample variance for Chen’s estimates were always smaller than 

that of Thomas’ estimate. However, the average estimated variance for Chen’s estimate 

was not always smaller than that of Thomas’ estimate when the log of cumulative 

exposure was modeled.  

Table 3-5 gives the percent bias and mean squared error (mse) for the estimates 

as compared to the estimate from analyzing the full cohort. It also gives the estimated 

relative efficiency which is estimated as the variance estimate from the full cohort 

analysis divided by the average of the variance estimates from the sampled risk-sets 

analysis. For the analysis based on cumulative exposure, Chen’s estimate 

outperformed Thomas’s estimate regardless of the definition of �(���. The percent bias 

and mse decreased significantly and the relative efficiency was always larger. However, 

for the analysis based on log of cumulative exposure, the bias increased and became 

larger than the bias of Thomas’ estimate as the support of �(��� increased. Also, the 
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estimated relative efficiency increased as the support of �(��� increased, although the 

estimates were similar.  

The results from analyzing the full edited cohort are summarized in Table 3-6. 

The results from analyzing the sampled risk-sets of the edited cohort are summarized in 

Table 3-7 and the percent bias, relative efficiency and mse are summarized in Table 3-

8. It appears that Chen’s estimate continues to improve as the support of �(��� 
increases, and perhaps larger supports should have been considered. The bias and 

sample variance decreased and the relative efficiency increased.  

When cumulative exposure was used as the exposure metric, the bias and mse 

were always smaller for Chen’s estimate when compared to Thomas’ estimate. 

However, when the log of cumulative exposure was used as the metric, improvement 

over Thomas’ estimate wasn’t seen until the larger supports of �(���. 
Overall, the Chen estimate seems to be comparable to the Thomas estimator. 

The definition of �(��� seems to present an issue and it is unclear at this point how to 

determine an optimal support for �(��� in order to see any real significant benefit from 

Chen’s estimate. However, it is clear that with fewer cases, larger supports for �(��� are 

required. 
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Figures and Tables 

Figures 3-1: Graphs of each of the three phi functions used for 

Chen’s Estimator in Section 1. t is measured in years. 
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Tables 3-1: Summary statistics of the estimates from the simulations with 1:5 matching for 

each scenario by analysis method 

Distribution 0 

  ~30 cases  ~ 100 cases 

True 

Hazard 

Ratio Method N
a
 Mean

b
 Variance

c
 

Average 

Estimated 

Variance
d
   N

a
 Mean

b
 Variance

c
 

Average 

Estimated 

Variance
d
 

1.005= 

e
0.00499

 Thomas 1992 5.110E-03 2.722E-06 2.827E-06   993 5.020E-03 9.350E-07 8.900E-07 

  Phi 1 1992 5.370E-03 2.885E-06 3.177E-06   993 5.120E-03 9.380E-07 9.150E-07 

  Phi 2 1992 5.280E-03 2.776E-06 3.027E-06   993 5.070E-03 9.250E-07 8.940E-07 

  Phi 3 1992 5.130E-03 2.629E-06 2.839E-06   993 4.950E-03 8.960E-07 8.640E-07 

                      

1.01= 

e
0.00995

 Thomas 1992 1.024E-02 4.538E-06 4.535E-06  995 1.007E-02 1.527E-06 1.489E-06 

 Phi 1 1992 1.038E-02 3.572E-06 4.920E-06  995 1.007E-02 1.244E-06 1.409E-06 

 Phi 2 1992 1.025E-02 3.482E-06 4.510E-06  995 1.002E-02 1.226E-06 1.359E-06 

 Phi 3 1992 1.009E-02 3.433E-06 4.087E-06  995 9.930E-03 1.218E-06 1.305E-06 

                      

 

Distribution 2 

  ~30 cases  ~ 100 cases 

True 

Hazard 

Ratio Method N
a
 Mean

b
 Variance

c
 

Average 

Estimated 

Variance
d
   N

a
 Mean

b
 Variance

c
 

Average 

Estimated 

Variance
d
 

1.005= 

e
0.00499

 Thomas 1996 5.210E-03 1.072E-05 9.258E-06   989 5.060E-03 1.866E-06 1.934E-06 

  Phi 1 1996 5.400E-03 1.140E-05 1.297E-05   989 5.040E-03 1.814E-06 2.198E-06 

  Phi 2 1996 5.300E-03 1.095E-05 1.215E-05   989 5.030E-03 1.815E-06 2.130E-06 

  Phi 3 1996 5.180E-03 1.046E-05 1.118E-05   989 5.010E-03 1.825E-06 2.071E-06 

                      

1.01= 

e
0.00995

 Thomas 1979 1.064E-02 8.789E-06 8.768E-06  990 1.011E-02 2.296E-06 2.256E-06 

 Phi 1 1979 1.028E-02 8.346E-06 1.326E-05  990 9.530E-03 1.948E-06 2.324E-06 

 Phi 2 1979 1.009E-02 7.668E-06 1.158E-05  990 9.610E-03 1.890E-06 2.192E-06 

 Phi 3 1979 1.001E-02 6.700E-06 9.927E-06  990 9.760E-03 1.791E-06 2.089E-06 

                      
 

a – The number of sampled risk-sets such that all 4 parameter estimates converged 
b – Mean of the parameter estimates 
c – Sample variance of the parameter estimates 
d – Average of the variance estimates 
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Tables 3-2: Percent bias, relative efficiency, and 95% confidence interval coverage 

probabilities for the simulation scenarios with 1:5 matching 

Distribution 0 

  ~30 cases  ~ 100 cases 

True 

Hazard 

Ratio Method N
a
 

Percent 

Bias
b
 

Relative 

Efficiency
c
 

95% CI 

Captures 

True 

Value
d
   N

a
 

Percent 

Bias
b
 

Relative 

Efficiency
c
 

95% CI 

Captures 

True 

Value
d
 

1.005 Thomas 1992 2.47% 71.37% 95.84%   993 0.65% 74.89% 95.17% 

  Phi 1 1992 7.73% 67.33% 96.59%   993 2.57% 74.62% 95.47% 

  Phi 2 1992 5.82% 69.99% 96.34%   993 1.61% 75.65% 94.76% 

  Phi 3 1992 2.79% 73.88% 96.14%   993 -0.71% 78.13% 94.76% 

                      

1.01 Thomas 1992 2.87% 45.30% 95.94%  995 1.21% 46.52% 95.08% 

 Phi 1 1992 4.36% 57.55% 98.09%  995 1.19% 57.09% 96.68% 

 Phi 2 1992 2.99% 59.04% 97.44%  995 0.75% 57.95% 96.18% 

 Phi 3 1992 1.42% 59.87% 96.94%  995 -0.19% 58.33% 95.98% 

                      

 

Distribution 2 

  ~30 cases  ~ 100 cases 

True 

Hazard 

Ratio Method N
a
 

Percent 

Bias
b
 

Relative 

Efficiency
c
 

95% CI 

Captures 

True 

Value
d
   N

a
 

Percent 

Bias
b
 

Relative 

Efficiency
c
 

95% CI 

Captures 

True 

Value
d
 

1.005 Thomas 1996 4.55% 44.88% 96.95%   989 1.44% 46.98% 96.67% 

  Phi 1 1996 8.32% 42.21% 98.10%   989 1.14% 48.34% 96.66% 

  Phi 2 1996 6.17% 43.97% 98.00%   989 0.83% 48.31% 96.26% 

  Phi 3 1996 3.81% 46.01% 97.65%   989 0.41% 48.05% 95.96% 

                      

1.01 Thomas 1979 6.94% 8.70% 95.81%  990 1.58% 13.79% 94.65% 

 Phi 1 1979 3.34% 9.16% 95.76%  990 -4.23% 16.24% 92.32% 

 Phi 2 1979 1.41% 9.97% 95.15%  990 -3.41% 16.75% 93.23% 

 Phi 3 1979 0.61% 11.41% 94.54%  990 -1.94% 17.67% 94.14% 

                      
a – The number of simulated cohorts such that all 4 parameter estimates converged 
b – Percent bias is defined as the percent difference between the mean of the estimates 

and the true value of β 
c – Relative efficiency is defined as the sample variance of the full cohort estimates 

divided by the sample variance of the sample risk-set estimates 
d – The percent of calculated Wald based confidence intervals that contained the true 

value of β  
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Figures 3-2: Plot of each case’s failure age for the original Gold Miner Data set with 170 

cases and the sampled Gold Miner data set with 30 cases 

 

 

 
Table 3-3: Summary of analysis on the full cohort of the original Gold Miner Data 
 

Gold Miner Data Analysis 

 Analysis on full cohort 

Exposure 

Metric 

Parameter 

Estimate 

Variance 

Estimate 

Hazard 

Ratio 

(per unit 

increase) 

Cumulative 

Exposure 

0.00740 1.47E-07 1.00743 

      

Log 

Cumulative 

Exposure 

0.01391 9.69E-07 1.01401 
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Table 3-4: Summary statistics of the analysis on the 500 1:5 matched sampled risk-sets 
from the original Gold Miner Data 

 

Analysis on Sampled Risk-Sets 

 Cumulative Exposure  Log Cumulative Exposure 

Method n Mean Var 

Average 

Estimated 

Variance   n Mean Var 

Average 

Estimated 

Variance 

Thomas 494 0.00945 5.29E-07 6.38E-07  500 0.01339 4.84E-07 1.59E-06 

Phi 0 494 0.01118 7.30E-07 1.73E-06  500 0.01577 6.82E-07 3.53E-06 

Phi 1 494 0.00864 3.69E-07 5.26E-07  500 0.01358 3.04E-07 1.76E-06 

Phi 2 494 0.00855 3.41E-07 4.30E-07  500 0.01338 2.82E-07 1.60E-06 

Phi 3 494 0.00851 3.19E-07 3.88E-07  500 0.01323 2.54E-07 1.51E-06 

Phi 4 494 0.00858 3.15E-07 3.70E-07  500 0.01317 2.37E-07 1.47E-06 

Phi 5 494 0.00871 3.39E-07 3.42E-07  500 0.01314 2.34E-07 1.42E-06 

Phi 6 494 0.00877 3.62E-07 3.34E-07  500 0.01313 2.30E-07 1.40E-06 

                    

 
 
 
Table 3-5: Summary of percent bias, estimated relative efficiency and mean square 

error (compared to the full cohort estimate) for each analysis on the original 
Gold Miner data set with 1:5 matching. 

 

Analysis on Sampled Risk-Sets 

 Cumulative Exposure  Log Cumulative Exposure 

Method 

Percent 

Bias 

Relative 

Efficiency MSE   

Percent 

Bias 

Relative 

Efficiency MSE 

Thomas 27.97% 23.05% 4.71E-06  -3.78% 60.83% 3.63E-05 

Phi 0 51.46% 8.50% 1.50E-05  13.34% 27.48% 7.07E-05 

Phi 1 17.16% 27.94% 1.91E-06  -2.39% 55.06% 3.85E-05 

Phi 2 15.80% 34.20% 1.65E-06  -3.84% 60.48% 3.60E-05 

Phi 3 15.51% 37.88% 1.56E-06  -4.88% 64.05% 3.43E-05 

Phi 4 16.13% 39.75% 1.70E-06  -5.37% 65.97% 3.35E-05 

Phi 5 17.97% 43.00% 2.05E-06  -5.59% 68.22% 3.31E-05 

Phi 6 19.03% 44.07% 2.24E-06  -5.61% 69.31% 3.31E-05 
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Table 3-6: Summary of analysis on the full cohort of the sampled Gold Miner Data with 
30 cases 

 

Gold Miner Data Analysis 

 Analysis on full cohort 

Exposure Metric 

Parameter 

Estimate 

Variance 

Estimate 

Hazard 

Ratio 

(per unit 

increase) 

Cumulative 

Exposure 

8.94E-03 8.48E-07 1.00898 

      

Log Cumulative 

Exposure 

0.02215 0.00001 1.02240 

      

 
 
Table 3-7: Summary statistics of the analysis on the 500 1:5 matched sampled risk-sets 

from the sampled Gold Miner Data with 30 cases 
 

Analysis on Sampled Risk-Sets 

 Cumulative Exposure  Log Cumulative Exposure 

Method n Mean Var 

Average 

Estimated 

Variance   n Mean Var 

Average 

Estimated 

Variance 

Thomas 476 0.01263 6.51E-06 7.13E-06  466 0.02419 1.47E-05 3.81E-05 

Phi 0 476 0.01488 8.93E-06 2.62E-05  466 0.02873 2.13E-05 1.36E-04 

Phi 1 476 0.01250 7.71E-06 1.24E-05  466 0.02543 1.83E-05 7.42E-05 

Phi 2 476 0.01231 7.64E-06 1.10E-05  466 0.02547 1.82E-05 6.87E-05 

Phi 3 476 0.01234 7.69E-06 1.10E-05  466 0.02559 1.85E-05 6.87E-05 

Phi 4 476 0.01170 7.31E-06 8.17E-06  466 0.02448 1.30E-05 5.11E-05 

Phi 5 476 0.01121 6.33E-06 5.38E-06  466 0.02329 1.10E-05 3.54E-05 

Phi 6 476 0.01099 5.34E-06 4.55E-06  466 0.02272 8.82E-06 3.08E-05 
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Table 3-8: Summary of percent bias, estimated relative efficiency and mean square 
error (compared to the full cohort estimate) for each analysis on the sampled 
Gold Miner data set with 30 cases with 1:5 matching. 

 
 

Analysis on Sampled Risk-Sets 

 Cumulative Exposure  Log Cumulative Exposure 

Method 

Percent 

Bias 

Relative 

Efficiency MSE   

Percent 

Bias 

Relative 

Efficiency MSE 

Thomas 41.47% 11.86% 2.01E-05  9.22% 28.95% 1.89E-05 

Phi 0 66.68% 3.23% 4.42E-05  29.70% 8.14% 6.46E-05 

Phi 1 40.12% 6.83% 2.04E-05  14.82% 14.89% 2.91E-05 

Phi 2 37.90% 7.68% 1.90E-05  15.00% 16.09% 2.92E-05 

Phi 3 38.28% 7.70% 1.93E-05  15.53% 16.07% 3.03E-05 

Phi 4 31.18% 10.35% 1.49E-05  10.51% 21.61% 1.84E-05 

Phi 5 25.49% 15.72% 1.15E-05  5.13% 31.17% 1.23E-05 

Phi 6 23.04% 18.59% 9.55E-06  2.56% 35.85% 9.14E-06 
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Chapter 4: 

 
Effect of Classical Measurement Error on the Cox Proportional 
Hazard Model 
 
 
Introduction: 
 
 

Often, the estimated exposure-response curve (i.e. the curve reflecting how 
4��|+�
4;���  

changes with respect to cumulative exposure) from occupational cohort studies tends to 

“level off”, or even decrease, at high cumulative exposure levels. There have been 

many explanations, including the healthy worker survivor effect, a saturation effect, 

and/or misclassification or mismeasurement of exposure (Stayner 2003). 

It is well known that mismeasurement of exposure under a classical error model 

leads to bias of the exposure-response parameter, and this bias tends to be towards the 

null (Hu and Lin, 2002). A classical error model assumes the error term and the true 

exposure are independent. The error model can be additive, in which case the error 

term and the true exposure are added to obtain the observed exposure, or 

multiplicative, in which case the error term and true exposure variable are multiplied to 

obtain the observed exposure. 

Hu and Lin (2002), through a simulation study, showed that the introduction of an 

additive classical error model caused the exposure-response parameter estimate to be 

biased towards the null, and the bias increased as the standard deviation of the 

distribution of the error term increases. They further proposed estimators which 

corrected this bias; however, this required some knowledge of the form of the 
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distribution of the error term. 

It is also possible that measurement error may cause the perceived shape of the 

exposure-response curve to change resulting in the leveling off of the curve that is often 

seen at higher exposures.  

In practice, the shape of the exposure-response curve is estimated by fitting 

different models and comparing model fit statistics such as the Akaike information 

criterion (AIC) value. The most common models fit are: 

Log-Linear:  ���|�Z[� � �	���-P\�]^ 
Power/ Log-Log:  ���|�Z[� � �	����Z[P � �	���-P\de ��]^� 
Linear:  ���|�Z[� � �	��� \ �1    C \ �Z[� (4.1) 

where Exp represents the exposure metric of interest, such as cumulative exposure. 

Also, fitting splines or a categorical model will give good visuals of how the hazard ratio 

varies with exposure, however for parsimonious reasons and ease of interpretation, one 

of the above models is usually reported. Note that the shape of the exposure-response 

curves associated with the log-linear and linear models do not level off at the higher 

exposures, whereas, the shape of the power model does level-off at higher exposures if 

β < 1. In practice, the log-linear model frequently doesn’t fit well and in radiation 

epidemiology studies, the linear model is the preferred model. 

 The PHREG procedure in SAS is often used to perform Cox proportional hazards 

regression. However, this procedure assumes the hazard ratio is log-linear and 

therefore can only fit the log-linear and power models. The power model can be fit by 

fitting a log-linear model based on the log of exposure. However, for the power model, 

further consideration must be made if there are exposure values equal to 0. Often, a 
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constant, k, is added to the exposure value before taking the log and thus the hazard 

function will have the following form:  

 ���|�Z[� � �	�����   �Z[�P � �	���-P\de �*� �]^� (4.2) 

This constant can be interpreted as a background level of exposure or is simply present 

to avoid taking the logarithm of 0. It can be assigned a specific value, a priori, or can be 

considered as an additional parameter to be estimated in the model (Steenland, 2004).  

The linear model cannot be fit using the PHREG procedure. However other 

programs, such as Epicure, allow for a linear model. Also, recently Langholz and 

Richardson (2009) proposed a method for the SAS procedure NLMIXED to 

appropriately handle this model. See Appendix 1 for a detailed description of this 

method.  

 

Objective: 
 

In occupational cohorts, cumulative exposure of an individual is estimated by 

multiplying an exposure intensity for a particular job by the duration worked at that job 

and summing this product across all jobs worked. It seems that there will be little to no 

error in the measure of duration of a worker, and most of the error in the cumulative 

exposure estimate would be the result of error in the measurement of the intensity of 

exposure. The exposure intensity is commonly assumed to follow a log - normal 

distribution. In particular, the exposure intensity, X, is commonly assumed to satisfy the 

model: 

�  �  ln�o� �  s    ¦ 
or 
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 o � -§-¨ (4.3) 

where  

 X = the observed exposure intensity 

 W = the true log-transformed exposure intensity 

 ε = the measurement error 

and W and e are assumed to be independent, following a normal distribution (Kim et al, 

2006). Therefore, the error model is multiplicative, or additive on the log scale. 

Occupational cohorts were simulated to get a better understanding of the 

following questions: 

  

1. How does the above measurement error affect the estimated exposure-response 

parameter? 

2. What is the probability of model form misspecification with and without measurement 

error? 

3. How does the perceived shape of the exposure-response curve change with the 

introduction of measurement error? In particular, is there a tendency for the curve to 

level off at high exposures in the presence of error? 

 

Method: 

 Simulations were conducted using SAS Software (version 9.1.3, SAS Institute Inc., 

Cary, NC).  There were six simulation scenarios performed, defined by the true hazard 

ratio form (log-linear, linear, and power) and the true exposure-response parameter (β = 

log(1.005) or log (1.01) for log-linear model, β = 0.01 or 0.02 for linear model, and β = 
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0.01 or 0.02 for power model). The method of simulating cohorts is as described in the 

Methods section of Chapter 2. In particular, the true exposure intensity Distribution 2 

(Log-Normal(.75, 1) – Truncated(0, 50)) was used in each simulation and at each year 

of follow-up, the probability of mortality from the outcome of interest, h, was assigned to 

each worker based on the workers age and cumulative exposure, cumexp, by the 

following formulas: 

 � �  -a;� �.c\defghijj k� P\lm�<]^ (4.4) 

for the log-linear model, 

 � �  -a;� �.c\defghijj k� 1    C \ n«¬-Z[� (4.5) 

for the linear model, and 

 � �  -a;� �.c\defghijj k� P\de�lm�<]^� (4.6) 

for the power model, where C is the true exposure-response parameter. The parameter 

α0 was chosen so that there would be ~300 cases per cohort. 

Once the cohorts were generated, three different observed exposure intensity 

values were assigned to each worker by multiplying the true exposure intensity value by 

a random Log-Normal(0, std2) variable where std= 0.1, 0.3 or 0.5. Altogether, there 

were six simulation scenarios performed with 1,000 cohorts of 5,000 workers. 

  

Analysis: 

 Each full cohort was analyzed using Cox proportional hazards regression with 

attained age as the time scale using the PHREG procedure for log-linear and power 

models and the NLMIXED procedure for linear models. For each cohort, the true 

cumulative exposure and each of the three observed cumulative exposures were 
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modeled as a log-linear, power, and linear model resulting in a total of 12 parameter 

estimates for each cohort. The AIC value was obtained for all regression models to 

assess model fit. 

For each model, the average of the 1,000 parameter estimates was obtained and 

compared to assess the effect of measurement error on the parameter estimate. 

Furthermore, the AIC values of the models were compared and the model with the 

smallest AIC value was said to give the best fit to the data. 

 

Results and Discussion: 

For each cohort, summary statistics were collected for the true and observed 

cumulative exposure of each worker and the average of each of these summary statistic 

values for the 1,000 cohorts per simulation scenario are summarized in Tables 4-1. 

Note that the worst case error model, error model with standard deviation 0.05, had a 

range of observed exposure values more than double the size of the true exposure 

values.  

The summary statistics for the 1,000 parameter estimates are summarized in 

Tables 4-2. Notice that the measurement error introduced caused attenuation in the 

exposure response parameter in every scenario as can be seen by comparing the mean 

value of the estimates for the model based on the true cumulative exposure and the 

corresponding  models based on the observed cumulative exposures. The attenuation 

became more severe as the error standard deviation increased. However, the estimated 

standard errors also decreased and therefore, in these simulations, all parameter 
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estimates remained significant based on a Wald significance test with an α = 0.05 level 

of significance (results not shown). 

Table 4-3 gives the results of comparing the AIC values from fitting a log-linear, 

linear and power model to each cohort and lists the percentage of cohorts for which that 

model gave the best fit. For example, when the true hazard ratio function was log-linear 

and had a true hazard ratio of 1.01 the linear model fit the observed data (with std = 0.5) 

best for 79.6% of the 1,000 cohorts simulated. There does appear to be some model 

misspecification even when there is no measurement error. However, as the exposure 

response relationship was increased, the probability of misspecification decreased in all 

models. 

Also, notice that when the true hazard ratio had a log-linear form, the linear 

model fit the observed data best more often as the error standard deviation increased. 

Furthermore, when the true hazard ratio had a linear form, the power model fit the data 

best more often as the error standard deviation increased. However, when the true 

hazard function had a Power form, the Power model fit best more often as the error 

standard deviation increased. This suggests that the introduction of this measurement 

error does change the perceived shape of the exposure-response curve. In fact, there 

appears to be more attenuation in the high exposure end of the curve causing the 

curves to “level-off” as evidence by the fact that the power model tends to fit the data 

more often. 

To illustrate how well categorical analysis and spline analysis gives a good 

visualization of the shape exposure-response curve, Figures 4-1 are graphs of the 

results of a categorical and a restricted cubic spline analysis (Harrell, 2001) as well as 
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the corresponding true model analysis on the true exposure data for three example 

cohorts. Five categories were selected based on the quintiles of the distribution of the 

cases exposure variable. For the restricted cubic spline analysis, three knots were 

chosen at the 10th, 50th, and 90th percentiles of the overall exposure distribution of the 

risk-sets. Notice that the spline graph matches the underlying true model and therefore 

gives a good representation of the shape without imposing a particular parametric 

model.  

To illustrate the effect of the introduction of measurement error, Figures 4-2 

graph the results of a categorical and a restricted cubic spline analysis on the same 

cohorts based on the true and observed exposures. Note that the true and observed 

curves almost agree in the lower exposure end of the curve, and deviated more as the 

exposure increased. This may be due to the fact that under this error model, the 

measurement error is more severe in high exposure categories, which is a common 

assumption in exposure assessment. 

In summary, the introduction of this multiplicative error model caused attenuation 

of the estimated exposure-response parameter if the true model is fit. The attenuation 

was more severe as the variance of the error term was increased. In addition, the 

introduction of this error caused the perceived shape of the exposure response curve to 

change, resulting in the leveling off of the curve in the high exposure range. 
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Figures and Graphs 

 
Tables 4-1: Average summary statistics for the true and observed cumulative exposures of each 

cohort in each simulation scenario. The summary statistics were calculated for each 

cohort, then averaged across the 1,000 cohorts simulated for each scenario. 

 

Log-Linear True Model 

True 

Hazard 

Ratio Error Model Mean Var Skewness Min Max 

1.005 True 50.49 3761.06 3.66 0.41 697.95 

  Error Std = 0.1 50.75 3865.92 3.73 0.41 740.32 

  Error Std = 0.3 52.85 4790.17 4.29 0.38 1003.41 

  Error Std = 0.5 57.25 7158.83 5.42 0.31 1496.64 

              

1.01 True 50.43 3632.89 3.45 0.44 650.52 

 Error Std = 0.1 50.68 3731.88 3.51 0.43 686.37 

 Error Std = 0.3 52.76 4614.23 4.03 0.40 927.15 

 Error Std = 0.5 57.14 6928.36 5.19 0.32 1432.49 

              

 

Linear True Model 

True β Error Model Mean Var Skewness Min Max 

0.01 True 50.57 3778.13 3.67 0.43 701.63 

  Error Std = 0.1 50.82 3877.62 3.73 0.42 742.68 

  Error Std = 0.3 52.90 4787.49 4.27 0.38 999.29 

  Error Std = 0.5 57.29 7156.96 5.41 0.32 1496.20 

              

0.02 True 50.50 3748.91 3.67 0.43 701.55 

 Error Std = 0.1 50.76 3850.36 3.73 0.43 741.12 

 Error Std = 0.3 52.84 4751.87 4.27 0.39 989.14 

 Error Std = 0.5 57.25 7113.80 5.37 0.32 1479.52 

              

 

Power True Model 

True β Error Model Mean Var Skewness Min Max 

0.25 True 50.52 3782.49 3.70 0.45 704.87 

  Error Std = 0.1 50.78 3889.59 3.77 0.45 752.48 

  Error Std = 0.3 52.85 4789.10 4.29 0.40 1001.59 

  Error Std = 0.5 57.22 7136.19 5.40 0.33 1490.12 

              

0.5 True 50.53 3769.04 3.69 0.48 703.41 

 Error Std = 0.1 50.79 3871.43 3.76 0.47 746.38 

 Error Std = 0.3 52.87 4781.06 4.30 0.43 1003.07 

 Error Std = 0.5 57.22 7107.78 5.36 0.35 1470.01 
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Tables 4-2:  Summary statistics of parameter estimates from modeling the true cumulative exposure, the observed 

cumulative exposure using a log-linear, linear, and power model. 

 

a) 

 

Log-Linear True Model 

   Log-Linear  Linear  Power 

True 

Hazard 

Ratio   

Error 

Standard 

Deviation Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance   Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance   Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance 

1.005= 

e
0.00499

   No Error 0.0050 3.27E-07 3.19E-07   0.0115 9.58E-06 9.94E-06   0.2942 4.19E-03 3.15E-03 

    .1 0.0048 3.15E-07 3.05E-07   0.0112 9.17E-06 9.55E-06   0.2912 4.12E-03 3.12E-03 

    .3 0.0038 3.11E-07 2.19E-07   0.0097 6.80E-06 7.18E-06   0.2713 3.70E-03 2.89E-03 

    .5 0.0026 2.70E-07 1.32E-07   0.0073 4.25E-06 4.34E-06   0.2391 3.11E-03 2.53E-03 

                            

1.01= 

e
0.00995

  No Error 0.0100 1.74E-07 1.92E-07  0.0583 2.42E-04 2.79E-04  0.7776 6.52E-03 3.74E-03 

  .1 0.0096 2.09E-07 1.79E-07  0.0569 2.26E-04 2.61E-04  0.7692 6.37E-03 3.69E-03 

  .3 0.0071 5.40E-07 1.13E-07  0.0470 1.34E-04 1.54E-04  0.7082 5.52E-03 3.34E-03 

  .5 0.0045 6.46E-07 6.10E-08  0.0336 6.31E-05 6.62E-05  0.6135 4.45E-03 2.83E-03 

                            

 

 

b) 

 

Linear True Model 

   Log-Linear  Linear  Power 

True 

β   

Error 

Standard 

Deviation Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance   Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance   Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance 

0.01   No Error 0.0039 3.85E-07 4.05E-07   0.0104 1.08E-05 1.02E-05   0.2840 4.30E-03 3.31E-03 

    .1 0.0038 3.74E-07 3.89E-07   0.0102 1.04E-05 9.82E-06   0.2814 4.26E-03 3.27E-03 

    .3 0.0031 3.23E-07 2.90E-07   0.0087 7.67E-06 7.31E-06   0.2628 3.85E-03 3.04E-03 

    .5 0.0021 2.62E-07 1.80E-07   0.0064 4.85E-06 4.32E-06   0.2322 3.36E-03 2.67E-03 

                            

0.02  No Error 0.0050 2.95E-07 2.76E-07  0.0210 3.28E-05 3.22E-05  0.4440 4.19E-03 3.23E-03 

  .1 0.0049 2.98E-07 2.64E-07  0.0205 3.11E-05 3.05E-05  0.4394 4.14E-03 3.20E-03 

  .3 0.0039 3.40E-07 1.93E-07  0.0171 2.07E-05 2.05E-05  0.4084 3.76E-03 2.96E-03 

  .5 0.0027 2.85E-07 1.17E-07  0.0122 1.03E-05 1.04E-05  0.3592 3.09E-03 2.58E-03 
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c) 

 

Power True Model 

   Log-Linear  Linear  Power 

True 

β   

Error 

Standard 

Deviation Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance   Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance   Mean 

Empirical 

Variance 

Mean of 

Estimated 

Variance 

0.25   No Error 0.0028 4.19E-07 5.15E-07   0.0067 6.25E-06 6.25E-06   0.2519 2.85E-03 3.02E-03 

    .1 0.0027 3.99E-07 4.96E-07   0.0066 5.98E-06 6.00E-06   0.2493 2.82E-03 2.99E-03 

    .3 0.0022 3.26E-07 3.86E-07   0.0055 4.63E-06 4.52E-06   0.2329 2.66E-03 2.79E-03 

    .5 0.0015 2.21E-07 2.44E-07   0.0041 2.87E-06 2.73E-06   0.2063 2.29E-03 2.45E-03 

                            

0.5  No Error 0.0046 2.53E-07 2.92E-07  0.0255 5.37E-05 5.70E-05  0.5006 2.96E-03 3.15E-03 

  .1 0.0045 2.54E-07 2.79E-07  0.0248 5.12E-05 5.33E-05  0.4959 2.95E-03 3.12E-03 

  .3 0.0036 2.88E-07 2.05E-07  0.0197 3.06E-05 3.12E-05  0.4606 2.72E-03 2.89E-03 

  .5 0.0025 2.53E-07 1.29E-07  0.0132 1.36E-05 1.33E-05  0.4030 2.40E-03 2.51E-03 
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Tables 4-3: Percent of cohorts that were fit best by each model 

 

Log-Linear True Model 

  No Error  Error std = 0.1  Error std = 0.3  Error std = 0.5 

True 

Hazard 

Ratio Model               

1.005  Log-Linear 91.0%   88.6%   63.2%   28.8% 

  Linear 9.0%   11.4%   36.3%   70.1% 

  Power 0.0%   0.0%   0.5%   1.1% 

                  

1.01  Log-Linear 99.8%  99.9%  90.9%  20.4% 

 Linear 0.2%  0.1%  9.1%  79.6% 

 Power 0.0%  0.0%  0.0%  0.0% 

                  

 

Linear True Model 

  No Error  Error std = 0.1  Error std = 0.3  Error std = 0.5 

True β Model               

0.01 Log-Linear 16.7%   14.9%   9.1%   4.6% 

  Linear 73.0%   73.9%   75.6%   68.8% 

  Power 10.3%   11.2%   15.3%   26.6% 

                  

0.02 Log-Linear 3.1%  2.7%  0.6%  0.5% 

 Linear 90.7%  90.7%  85.8%  70.7% 

 Power 6.2%  6.6%  13.6%  28.8% 

                  

 

Power True Model 

  No Error  Error std = 0.1  Error std = 0.3  Error std = 0.5 

True β Model               

0.25 Log-Linear 0.7%   0.8%   0.9%   0.9% 

  Linear 9.1%   8.4%   8.2%   7.6% 

  Power 90.2%   90.8%   90.9%   91.5% 

                  

0.5 Log-Linear 0.0%  0.0%  0.0%  0.0% 

 Linear 4.7%  5.0%  2.9%  1.5% 

 Power 95.3%  95.0%  97.1%  98.5% 
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Figure 4-1: Graph of categorical, true model (solid curve) and restricted cubic spline (dashed 

curve) on the true exposure for an example cohort where true hazard ratio shape is 

log-linear, linear, and power 
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Figure 4-2: Graph of categorical analysis and restricted cubic spline analysis on the true exposure (solid curves) 

and observed exposure (std = 0.5) (dashed curves) for example cohorts where true hazard ratio 

shape follows a log-linear, linear, and power model 
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Appendix A 

 
Performing Linear Cox Proportional Hazard Analysis in SAS 
 

Currently, there is only one procedure written in SAS to explicitly perform Cox 

proportional hazard regression, namely PHREG. However, this procedure assumes that 

the hazard function has the following form: 

���|+� � �	���-.′­­+ 

where t is time, X is a vector of the covariates,  ���|+� � �	���-.′­­+ and ββββ contains the 

parameters to be estimated. However, it may desirable to generalize the above function 

in the following manner: 

���|+� � �	���,�+, .� 
where g(.) is any function only of the covariates, X, and the parameters, ββββ. For example, 

in radiation studies, the hazard function is often assumed to have a linear form: 

���|�Z[� � �	����1    C \ �Z[� 
where Exp is exposure. Currently, there is no procedure that will explicitly perform Cox 

proportional hazards regression for general hazard functions and therefore, other 

software packages are used. 

 However, Langholz and Richardson (2009) provided code that will fit general 

hazard models. To do this, they defined pi corresponding to risk-set Ri as follows:  

['�.� �  ,�+=, .�
∑ ,�+@, .��8�5

  

Then the likelihood function for Cox proportional hazard would be the product of all n 

risk-sets, i.e.: 
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Notice that this is the same as the likelihood from observing n “successes” from a 

Bernoulli trial with probability of successes pi(ββββ). Procedure NLMIXED has the capability 

of fitting a Bernoulli model of this type and can therefore be used to fit the data. 

 Before NLMIXED can be used, the data set must be formatted so that all 

information from a risk-set is contained in one line. For example, when Cox proportional 

hazards regression is performed, the data set is formatted in the following manner: 

Risk_Set Case X 

1 1 25 

1 0 14 

2 1 19 

2 0 4 

3 1 72 

3 0 27 

etc…   

where the variable Risk_set indexes each risk-set, case is an indicator variable 

indicating if the observation is a case or not, and X is the corresponding covariate of 

interest. Here the case is listed first for each risk-set and each risk-set contains only two 

observations. The following code may be used on the above data set to appropriately 

format the data: 

data analytic (keep= risk_set t x1-x2 ); set risk_sets; 

   by Risk_set; 

   array x{2}; 

   retain i x1-x2; 

 

   if first.Risk_set then do; 

      i = 0; 
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      do t=1 to 2; 

         x(t)=0; 

      end; 

   end; 

 

   i = i + 1; 

 

   x{i}=x; 

 

   if last.Risk_set then do; 

      t = 1; 

      output; 

   end; 

run; 

 

Thus, the data will be formatted as follows: 

Risk_Set t X1 X2 

1 1 25 14 

2 1 19 4 

3 1 72 27 

etc…    

Where X1 is the covariate of the case of each risk-set and X2 is the covariate of the 

control and t is a variable that is always 1. With this data set, NLMIXED may be used in 

the following manner: 

proc nlmixed data=analytic; 

   parms b=0; 

   sum=0; 

   array x{2}; 

 

   do i = 1 to 2;  

     sum=sum + (1 + b*x(i));  

   end; 

 

   p = (1 + b*x(1))/sum; 

   model t ~ binary(p); 

run; 

 

This will fit the Bernoulli likelihood which is equivalent to the Cox proportional hazards 

likelihood with a linear hazard function as described above with parameter b. This code 
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has the obvious extension to the situation when there are more than 2 individuals in 

each risk-set and there are more than one covariate of interest. Also, additional forms of 

the hazard function may fit. 
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Appendix B 
 
Chapter 2 Simulations: Simulating and Analyzing Realistic Occupational 
Cohorts 
 

/*****************************************************************************************************************/  

/***                                                                                                           ***/  

/*** author:  Stephen Bertke/Misty Hein                                                                        ***/  

/*** purpose: To generate occupational cohorts under various scenarios for risk.                               ***/ 

/***          Save output to analyze Bias and Efficiency of analyzing full cohort and sampled risk sets       ***/  

/***                                                                                                           ***/  

/*****************************************************************************************************************/  

    

%macro%macro%macro%macro cohort(cohort); 

%put; %put; %put CREATING COHORT NUMBER: &i_cohort; 

 

*** Randomly assign age at exposure begin (integer), exposure intensity, maximum exposure duration (integer), and 

     maximum follow-up (integer);   

data cohort1; 

  cohort = 1111*&cohort; 

  do worker = 1111 to &n_workers; 

    age_exp_begin    = &beta_1 + ROUND(&beta_2*ranexp(&seed),1111); 

    age_risk_begin   = age_exp_begin; 

 

    if      &exp_method = 0000 then do; 

        do until (0000<exp_intensity<50505050); 

            exp_intensity = 25252525 + 8888*rannor(0000); 

  end; 

 end; 

 

    else if &exp_method = 1111 then do; 

     do until (exp_intensity<50505050); 

            exp_intensity = exp(2.52.52.52.5 + .5.5.5.5*rannor(0000)); 

  end; 

 end; 

 

    else if &exp_method = 2222 then do; 

        do until (exp_intensity<50505050); 

            exp_intensity =  exp(.75.75.75.75 + 1111*rannor(0000));  

  end; 

 end; 

 

 

 

    else exp_intensity = ....; 

    max_duration_exp = 15151515; 

    max_follow_up    = &gamma_1 - ROUND(&gamma_2*ranexp(&seed),1111); 

    if max_follow_up < 1111 then max_follow_up = 1111; 

    lag_risk_years   = 1111*&lag_risk_years; 

    output; 

    end; 

  keep cohort worker age_exp_begin age_risk_begin exp_intensity max_duration_exp max_follow_up lag_risk_years; 

  run; 

 

*** Assign age and cumulative exposure (under the true risk lag) at yearly follow-up intervals;  

data cohort2; 

  set cohort1; 

  by cohort worker; 

  retain temp_exp; 

    temp_exp   = 0000; 

    if max_follow_up LE max_duration_exp then do; 

      *** Scenario A1: max_follow_up LE max_duration_exp --> follow up ends at or before the end of exposure;  

      scenario = 'A1'; 

      do follow_up_year = 1111 to max_follow_up; 

        temp_age = age_risk_begin + follow_up_year; 

        temp_exp = temp_exp + exp_intensity; 
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        output; 

        end; 

    end; *** End A1;  

    else do; /*if max_follow_up GT max_duration_exp then*/ 

      *** Scenario A2: max_follow_up GT max_duration_exp --> follow up extends beyond the end of exposure;  

      scenario = 'A2'; 

      do follow_up_year = 1111 to max_duration_exp; 

        temp_age = age_risk_begin + follow_up_year; 

        temp_exp = temp_exp + exp_intensity; 

        output; 

      end; 

      temp_exp = temp_exp; 

      do follow_up_year = max_duration_exp+1111 to max_follow_up; 

        temp_age = age_risk_begin + follow_up_year; 

        output; 

      end; 

    end; *** End A2;  

run; 

 

*** Assign hazards for risk of death (h) and censoring (c) and determine case/censor status for each follow-up year;  

data cohort3; 

  set cohort2;  

  h = min(0.9990.9990.9990.999,exp(&delta_0 + &delta_1*log(temp_age/&age_divisor) + &phi*temp_exp)); 

  c = min(0.9990.9990.9990.999,exp(&neta_0 + &neta_1*log(temp_age/&age_divisor))); 

  if h LE 0000 then case = 0000; 

  else           case = ranbin(0000,1111,h); 

  if c LE 0000 then censor = 0000; 

  else           censor = ranbin(0000,1111,c); 

  run; 

 

 

*** Determine case and censor status by selecting the first observation with case=1 or censor=1 

    if none then output the last observation;  

*** Note that if the first observation with case=1 or censor=1 has both case=1 and censor=1, 

    then case status is assigned automatically;  

data cohort4; 

  set cohort3; 

  by cohort worker; 

  retain stop; 

  if first.cohort or first.worker then stop = 0000; 

  if stop = 0000 then do; 

    if case = 1111 and censor = 1111 then do;         case_status = 1111; censor_status = 0000; stop = 1111; output; end; 

    else if case = 1111 then do;                   case_status = 1111; censor_status = 0000; stop = 1111; output; end; 

    else if censor = 1111 then do;                 case_status = 0000; censor_status = 1111; stop = 1111; output; end; 

    else if last.cohort or last.worker then do; case_status = 0000; censor_status = 0000; stop = 1111; output; end; 

    end; 

  run; 

 

*** Compute age at risk end, actual cumulative exposure, time exposed, age at exposure end,  

    actual duration of exposure and actual follow-up time;  

data cohort5; 

  set cohort4; 

  age_risk_end = temp_age; 

  if age_exp_begin + max_duration_exp < age_risk_end then do; 

    *** Exposure ceased prior to risk end so truncation is not necessary;  

    cumulative_exp = exp_intensity * max_duration_exp; 

    age_exp_end = age_exp_begin + max_duration_exp; 

    end; 

  else do; 

    *** Exposure extends beyond risk end so exposure is truncated at risk end; 

    cumulative_exp = exp_intensity * (age_risk_end - age_risk_begin); 

    age_exp_end = age_risk_end; 

    end; 

  time_exposed = age_exp_end - age_exp_begin; 

  time_at_risk = age_risk_end - age_exp_begin; 

  keep cohort worker age_exp_begin  

       exp_intensity 

       censor_status case_status cumulative_exp 

       age_risk_begin age_risk_end age_exp_end 

       max_duration_exp max_follow_up 
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       time_exposed time_at_risk; 

  run; 

 

*** Create final cohort to use in analyses;  

data cohort; 

  set cohort5; 

run; 

 

*** Get number of cases in cohort ***; 

proc means data=cohort noprint; 

 var case_status; 

 output out=casesum n=n sum=cases; 

run; 

 

*** Clean up datasets;  

ods exclude all; 

proc datasets library=work; 

  delete cohort1 cohort2 cohort3 cohort4 cohort5 cohort_summary_new; 

run; quit; ods select all; 

%mend%mend%mend%mend cohort; 

 

**********************************************************************************************************************;  

*** RISKSETS macro definition:  create the risk sets for the cohort for use in Cox regression on the full cohort   ***;  

***                             and nested case-control analyses                                                   ***;  

***                             risk sets are defined based on attained age and attained age pus age at death or   ***;  

***                             censor                                                                             ***;   

*** input files:  cohort                                                                                           ***;   

*** output files: risk_sets                                                                                        ***;  

**********************************************************************************************************************;  

%macro%macro%macro%macro risksets(cohort); 

%put CREATING RISK SETS FOR COHORT NUMBER: &i_cohort; 

 

*** Identify the cases;  

data cases; 

  set cohort; 

  if case_status = 1111; 

  case_age = age_risk_end; 

  case_id = worker; 

run; 

 

*** Determine the number of cases and save as a macro variable;  

proc means data=cases noprint; 

  by cohort; 

  var case_status; 

  output out=n_cases sum=n_cases; 

run; 

data n_cases; 

  set n_cases; 

  call symput('n_cases',n_cases); 

run; 

 

*** For each case, identify members of the risk set for both matching on attained age (aacontrol) and ; 

*** matching on attained age plus age at death or;  

*** censor (dccontrol);  

%do i_cases = 1111 %to &n_cases; 

  data case_n; 

    set cases; 

    if _n_=&i_cases; 

    keep cohort case_age case_id; 

    run; 

  data risk_set_new; 

    set cohort; 

    if _n_ = 1111 then set case_n; 

    *** Select out eligible controls;  

    if age_exp_begin LT case_age LE age_risk_end;  

    *** Note - LT is important here because of the risk evaluation at yearly intervals;  

    *** Identify the cases;  

    case = (worker = case_id); 

    *** Compute cumulative exposure truncated to the age of the case;  

    new_exp1 = (exp_intensity)*min((case_age-age_exp_begin),(age_exp_end-age_exp_begin)); 
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    label new_exp1 = 'TruncCumExp-unlagged'; 

run; 

 

proc append base=risk_sets data=risk_set_new force; 

run; 

 

%END; 

 

*** Prepare final dataset with all risk sets;  

data risk_sets; 

  set risk_sets; 

  if cohort = .... then delete; 

  time = 2222 - case; 

run; 

 

proc phreg data=risk_sets; 

 by cohort; 

 strata case_id; 

 model time*case(0000) = new_exp1; 

 ods output parameterestimates=parameter_full; 

run; 

  

*** Clean up datasets;  

ods exclude all; 

proc datasets library=work; 

  delete n_cases case_n risk_set_new; 

  run; quit; ods select all; 

 

proc means data=risk_sets noprint; 

  var new_exp1; 

  output out=rs_summ n=n sum=sum mean=mean var=var skew=skew min=min max=max; 

run; 

 

****************************** Separate Cases and Controls *********************************; 

data cases; set risk_sets; 

 if case = 1111; 

run; 

data controls; set risk_sets; 

 if case = 0000; 

run; 

 

proc means data=cases noprint; 

  by case; 

  var new_exp1; 

  output out=rs_summ_case n=n sum=sum mean=mean var=var skew=skew min=min max=max; 

run; 

proc means data=controls noprint; 

  by case; 

  var new_exp1; 

  output out=rs_summ_cont n=n sum=sum mean=mean var=var skew=skew min=min max=max; 

run; 

%mend%mend%mend%mend risksets; 

 

%macro%macro%macro%macro nestedcc_agenestedcc_agenestedcc_agenestedcc_age; 

%put NESTED CASE-CONTROL REGRESSION FOR COHORT NUMBER: &i_cohort REPS: &i_rep; 

 

 

  *** Select out the appropriate number of controls for each case;  

data cases; set risk_sets; 

 if case = 1111; 

run; 

data controls; set risk_sets; 

 if case = 0000; 

run; 

 

proc surveyselect data=controls out=out_1 method=srs sampsize=1111 SELECTALL noprint; 

 strata case_id; 

run; 

data ncc_1; set cases out_1; 

proc sort data=ncc_1; by case_id case; 
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run; 

proc phreg data=ncc_1 nosummary; 

 by cohort; 

 model time*case(0000)=new_exp1; 

 strata case_id; 

 ods output parameterestimates=parameter_1; 

run; 

 

 

proc surveyselect data=controls out=out_3 method=srs sampsize=3333 SELECTALL noprint; 

 strata case_id; 

run; 

data ncc_3; set cases out_3; 

proc sort data=ncc_3; by case_id case; 

run; 

proc phreg data=ncc_3 nosummary; 

 by cohort; 

 model time*case(0000)=new_exp1; 

 strata case_id; 

 ods output parameterestimates=parameter_3; 

run; 

 

 

proc surveyselect data=controls out=out_5 method=srs sampsize=5555 SELECTALL noprint; 

 strata case_id; 

run; 

data ncc_5; set cases out_5; 

proc sort data=ncc_5; by case_id case; 

run; 

proc phreg data=ncc_5 nosummary; 

 by cohort; 

 model time*case(0000)=new_exp1; 

 strata case_id; 

 ods output parameterestimates=parameter_5; 

run; 

 

 

proc surveyselect data=controls out=out_10 method=srs sampsize=10101010 SELECTALL noprint; 

 strata case_id; 

run; 

data ncc_10; set cases out_10; 

proc sort data=ncc_10; by case_id case; 

run; 

proc phreg data=ncc_10 nosummary; 

 by cohort; 

 model time*case(0000)=new_exp1; 

 strata case_id; 

 ods output parameterestimates=parameter_10; 

run; 

 

 

proc surveyselect data=controls out=out_15 method=srs sampsize=15151515 SELECTALL noprint; 

 strata case_id; 

run; 

data ncc_15; set cases out_15; 

proc sort data=ncc_15; by case_id case; 

run; 

proc phreg data=ncc_15 nosummary; 

 by cohort; 

 model time*case(0000)=new_exp1; 

 strata case_id; 

 ods output parameterestimates=parameter_15; 

run; 

 

 

proc surveyselect data=controls out=out_20 method=srs sampsize=20202020 SELECTALL noprint; 

 strata case_id; 

run; 

data ncc_20; set cases out_20; 

proc sort data=ncc_20; by case_id case; 
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run; 

proc phreg data=ncc_20 nosummary; 

 by cohort; 

 model time*case(0000)=new_exp1; 

 strata case_id; 

 ods output parameterestimates=parameter_20; 

run; 

 

 

proc datasets library=work; 

  delete ncc_1 ncc_3 ncc_5 ncc_10 ncc_15 ncc_20 ; 

run; 

 

 

%mend%mend%mend%mend; 

 

********************************************************************************************************************;  

*** ITERATE macro definition:  iterate through {create cohort, summarize, define risk sets, Cox regression,      ***; 

***                            NCC sampling, and Cox regression                                                  ***;  

*** input files:  none                                                                                           ***;  

*** output files: Lots!                                                                                          ***;  

********************************************************************************************************************;  

 

 

%macro%macro%macro%macro iterate(/***********************************************************************************************************/  

               /*                                                                                                  */  

               /*** input parameters that might vary within a set of simulations                                   */  

               n_cohorts      = ,             /* number of cohorts                                                 */  

               n_workers      = ,             /* number of workers per cohort                                      */  

               n_rep          = ,             /* number of repetitions per cohort                                  */ 

               exp_method     = ,             /* exp_method in 1=uniform, 2=lognormal, 3=exponential               */  

               phi            = ,             /* risk parameter                                                    */  

               /***                                                                                                */  

               /*** input parameters that should remain constant within a set of simulations                       */  

               seed           = 0000,            /* initial seed                                                      */  

               beta_1         = 18181818,           /* age at exposure begin parameter                                   */  

               beta_2         = 10101010,           /* age at exposure begin parameter                                   */  

               gamma_1        = 40404040,           /* max follow-up parameter                                           */  

               gamma_2        = 5555,            /* max follow-up parameter                                           */  

               zeta_1         = 25252525,           /* max duration of exposure parameter                                */ 

      delta_0        = , 

               delta_1        = 1.51.51.51.5,            /* risk parameter                                                  */  

               age_divisor    = 55555555,           /* divisor for age in risk and censoring models                      */  

               neta_0         = -5.05.05.05.0,         /* censoring parameter                                               */  

               neta_1         = 5.05.05.05.0);          /* censoring parameter                                              */  

/*******************************************************************************************************************/  

 

title1 "Simulating &n_cohorts cohorts of size &n_workers workers using a seed of &seed."; 

title2 "Exposure based on method &exp_method and risk lag = &lag_risk_years years."; 

title3 "Risk parameters include delta_0=&delta_0, delta_1=&delta_1 and phi=&phi."; 

title4 "Censoring parameters include neta_0=&neta_0 and neta_1=&neta_1."; 

 

*** Assign Library for data and log to be saved ***; 

data _null_; 

  rr = exp(&phi); 

  call symput('rr', trim(left(rr))); 

run; 

libname steve "&lib\&exp_method\&rr"; 

 

filename mylist "&lib\&exp_method\&rr\listing.lst";  

filename mylog  "&lib\&exp_method\&rr\log.log";  

proc printto log=mylog print=mylist; 

run; 

 

data param_full; run; 

data param_1; run; 

data param_3; run; 

data param_5; run; 

data param_10; run; 

data param_15; run; 
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data param_20; run; 

 

 

data casesummary; run; 

data rs_summary; run; 

data rs_summary_cont; run; 

data rs_summary_case; run; 

 

*** Iterate by cohort ***;  

%do i_cohort = 1111 %to &n_cohorts; 

    %cohortcohortcohortcohort(&i_cohort); 

    data casesummary; set casesummary casesum; run; 

 

 

    %risksets%risksets%risksets%risksets(&i_cohort); 

    data param_full; set param_full parameter_full; keep cohort estimate stderr probchisq; run; 

 

 data rs_summary; set rs_summary rs_summ; run; 

 data rs_summary_cont; set rs_summary_cont rs_summ_cont; run; 

 data rs_summary_case; set rs_summary_case rs_summ_case; run; 

  %do i_rep = 1 %to &n_rep; 

 

    %nestedcc_age%nestedcc_age%nestedcc_age%nestedcc_age; 

 data param_1; set param_1 parameter_1; keep cohort estimate stderr probchisq; run; 

 data param_3; set param_3 parameter_3; keep cohort estimate stderr probchisq; run; 

    data param_5; set param_5 parameter_5; keep cohort estimate stderr probchisq; run; 

    data param_10; set param_10 parameter_10; keep cohort estimate stderr probchisq; run; 

 data param_15; set param_15 parameter_15; keep cohort estimate stderr probchisq; run; 

    data param_20; set param_20 parameter_20; keep cohort estimate stderr probchisq; run; 

 

  %end; 

 

 

 

    proc datasets library=work; 

  delete cohort risk_sets; 

 run; 

 

 

%end; 

*** Clear out titles;  

title1;title2;title3;title4; 

 

*** Save data ***; 

data steve.param_full; set param_full; run; 

data steve.param_1; set param_1; run; 

data steve.param_3; set param_3; run; 

data steve.param_5; set param_5; run; 

data steve.param_10; set param_10; run; 

data steve.param_15; set param_15; run; 

data steve.param_20; set param_20; run; 

 

data steve.summary; set casesummary; run; 

 

data steve.rs_summary; set rs_summary; run; 

data steve.rs_summary_cont; set rs_summary_cont; run; 

data steve.rs_summary_case; set rs_summary_case; run; 

 

************* Print the Log and Output in their respective windows *********************; 

proc printto; 

run; 

 

%mend%mend%mend%mend iterate; 

 

 

%let lib =; 

 

 

%iterateiterateiterateiterate(seed       = , 

         n_cohorts  = , 
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 n_rep      = , 

         n_workers  = , 

delta_0    = ,  

         exp_method = ,   

         lag_risk_years = , 

         phi        = ); 
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Appendix C: 
 
Performing Chen’s Regression for a Given Cohort 
 
%macro%macro%macro%macro bbbb; 

 

*** Determine the number of CASES AND TOTAL CONTROLS*********************; 

proc means data=_cases noprint; 

  var &strata; 

  output out=n_rs n=n_rs; 

  run; 

data _NULL_; 

  set n_rs; 

  call symput('n_rs',n_rs); 

run; 

 

proc means data=_controls noprint; 

  var &STRATA; 

  output out=n_WKRS n=n_WKRS; 

  run; 

data _NULL_; 

  set n_WKRS; 

  call symput('n_WKRS',n_WKRS); 

run; 

****************************************************************; 

 

*********************** Calculate b and w **********************; 

PROC IML;  

 

USE BETA; 

READ VAR {&beta_var} INTO BETA; 

 

do time=1111 to &n_rs; 

 

 top=0000; 

 bottom=0000; 

 

    use _cases; 

    READ point time VAR {case_age} INTO t; 

 READ point time VAR {&strata} INTO strata; 

 

    do worker=1111 to &n_WKRS; 

       USE _controls; 

    read point worker VAR {case_age} into case_age; 

       read point worker VAR {&VAR} into Z; 

    phi=&f_phi; 

 

    top = TOP + (1111/&n)*exp(beta*z`)*phi; 

 end; 

 do rs=1111 to &n_rs; 

       use _cases; 

    read point rs var {case_age} into case_age; 

       phi=&f_phi; 

 

    bottom = bottom + (&m./&n.)*phi; 

 end; 

 

 b=top/bottom; 

 next=strata||b; 

 beta_hat = beta_hat//next; 

end; 

 

 CREATE bhat_all FROM beta_hat[colname={"&strata" 'bhat'}]; 

 APPEND FROM beta_hat;  

 

RUN; 

 



111 

 

 

DATA _controls; MERGE _controls BHAT_ALL; BY &strata; 

  W = ((&m.*bhat)/(exp(&bx) + &m.*bhat)); 

DATA _cases; MERGE _cases BHAT_ALL; BY &strata; 

  W = ((&m.*bhat)/(exp(&bx) + &m.*bhat)); 

RUN; 

%mend%mend%mend%mend; 

 

%macro%macro%macro%macro ssss; 

 

*********************** Calculate S0 and S1, S2 *********************; 

L=SHAPE(0000,1111,1111); 

F=SHAPE(0000,1111,&V);      

FP=SHAPE(0000,&V,&V); 

 

do time=1111 to &n_rs; 

    use _cases; 

    READ point time VAR {case_age} INTO t; 

     

    S0=SHAPE(0000,1111,1111);      

    S1=SHAPE(0000,1111,&V); 

    S2=SHAPE(0000,&V,&V); 

 

    USE _controls; 

    do worker=1111 to &n_WKRS; 

       read point worker VAR {w} into w; 

    read point worker VAR {case_age} into case_age; 

       read VAR {&VAR} into Z; 

 

    phi=&f_phi; 

 

    mult=(1111/&N)*w*exp(beta*z`)*phi; 

       S0=S0 + MULT; 

       S1=S1 + MULT*Z; 

       S2=S2 + MULT*(Z`*Z); 

    end; 

 

    USE _cases; 

    READ POINT TIME VAR {W} INTO W; 

    READ POINT TIME VAR {&VAR} INTO Z; 

 

 L = L + W*(beta*z` - LOG(S0)); 

    F = F + W*(Z - (1111/S0)*S1); 

    FP = FP - W*(((1111/S0)*S2) - (((1111/S0)*S1)`*((1111/S0)*S1))); 

 

end; 

 

%MEND%MEND%MEND%MEND; 

 

 

 

%macro%macro%macro%macro newnewnewnewtontontonton; 

 

*********************** Perform Newton Algorithm **********************; 

 

PROC IML; 

 USE BETA; 

 READ VAR {&beta_var} INTO BETA; 

  

 do r=1111 to 10101010 until (s<.0000001.0000001.0000001.0000001); 

  %ssss; 

  BETA=(BETA` - INV(FP)*F`)`; 

  S=F*F`; 

 end; 

 

 VARIABLE={&VARQ}; 

 VARIABLE=VARIABLE`; 

 ESTIMATE=BETA`;  

 COV=-INV(FP); 

 VARIANCE=VECDIAG(COV); 
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 GRADIENT=F`; 

 

 OUTPUT=ESTIMATE||VARIANCE||GRADIENT; 

 CREATE OUTPUT FROM OUTPUT[COLNAME={'ESTIMATE' 'VAR' 'GRADIENT'}] ; 

 APPEND FROM OUTPUT; 

 

 CREATE PARAMETER FROM VARIABLE[COLNAME={'PARAMETER'}] ; 

 APPEND FROM VARIABLE; 

 

 CREATE L FROM L[COLNAME={'L'}] ; 

 APPEND FROM L; 

RUN; 

DATA OUTPUT; MERGE PARAMETER OUTPUT; 

PROC PRINT DATA=OUTPUT; 

RUN; 

 

%mend%mend%mend%mend; 

 

%macro%macro%macro%macro analyze(data=,n=,m=,strata=,var=,supp=); 

DATA N; 

 M=count("&VAR", ' '); 

 v=M+1111; 

 CALL SYMPUT('v',v); 

RUN; 

%let beta_var=; 

%LET VARQ=; 

 

%DO I=1111 %TO &v; 

  %LET VARRI=%SCAN(&VAR,&I, %STR( )); 

  DATA _NULL_; 

 CALL SYMPUT('beta_var', SYMGET('beta_var')|| ' '||"bp_&VARRI. "); 

 CALL SYMPUT('varq', SYMGET('varq')|| ' '||"'&VARRI.' "); 

  RUN; 

%END; 

 

%LET BX =; 

%DO I=1111 %TO &v; 

  %LET VARRI=%SCAN(&VAR,&I, %STR( )); 

  DATA _NULL_; 

    IF &I NE &v THEN DO; 

    call symput('BX', symget('BX') ||' '||"&VARRI.*BP_&VARRI. +"); 

 END; 

 ELSE DO; 

    call symput('BX', symget('BX') ||' '||"&VARRI.*BP_&VARRI."); 

 END; 

  RUN; 

%END; 

 

   ********** Define the function phi *************************************; 

   ********** Macro variable supp defines the support of phi **************; 

   %let f_phi=(abs(t - case_age) <= &supp)*((&supp)**2 - (t - case_age)**2); 

 

proc phreg data=&data; 

 strata &strata; 

 model time*case(0000) = &var; 

 ods output parameterestimates=ncc_p; 

run; 

 

*** Create dataset containing estimates ****************; 

proc transpose data=ncc_p out=beta prefix=bp_; id parameter; 

 var estimate; 

run; 

data betap beta; set beta; 

 drop _name_ _label_; 

run; 

DATA NCC; IF _N_=1111 THEN SET BETAP; SET &DATA; RUN; 

************************************************************; 

 

DATA _controls; SET NCC; 

   IF CASE=0000; 
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DATA _cases; SET NCC; 

   IF CASE=1111; 

RUN; 

 

%bbbb; 

%newtonnewtonnewtonnewton; 

proc print data=OUTPUT; 

run; 

%mend%mend%mend%mend; 

 

%macro%macro%macro%macro cohort(cohort); 

%put; %put; %put CREATING COHORT NUMBER: &i_cohort; 

 

*** Randomly assign age at exposure begin (integer), exposure intensity, maximum exposure duration (integer), and 

     maximum follow-up (integer);   

data cohort1; 

  cohort = 1111*&cohort; 

  do worker = 1111 to &n_workers; 

    age_exp_begin    = &beta_1 + ROUND(&beta_2*ranexp(&seed),1111); 

    age_risk_begin   = age_exp_begin; 

 

    if      &exp_method = 0000 then do; 

        do until (0000<exp_intensity<50505050); 

            exp_intensity = 25252525 + 8888*rannor(0000); 

  end; 

 end; 

 

    else if &exp_method = 1111 then do; 

     do until (exp_intensity<50505050); 

            exp_intensity = exp(2.52.52.52.5 + .5.5.5.5*rannor(0000)); 

  end; 

 end; 

 

    else if &exp_method = 2222 then do; 

        do until (exp_intensity<50505050); 

            exp_intensity =  exp(.75.75.75.75 + 1111*rannor(0000));  

  end; 

 end; 

 

 

 

    else exp_intensity = ....; 

    max_duration_exp = 15151515; 

    max_follow_up    = &gamma_1 - ROUND(&gamma_2*ranexp(&seed),1111); 

    if max_follow_up < 1111 then max_follow_up = 1111; 

    lag_risk_years   = 1111*&lag_risk_years; 

    output; 

    end; 

  keep cohort worker age_exp_begin age_risk_begin exp_intensity max_duration_exp max_follow_up lag_risk_years; 

  run; 

 

*** Assign age and cumulative exposure (under the true risk lag) at yearly follow-up intervals;  

data cohort2; 

  set cohort1; 

  by cohort worker; 

  retain temp_exp; 

    temp_exp   = 0000; 

    if max_follow_up LE max_duration_exp then do; 

      *** Scenario A1: max_follow_up LE max_duration_exp --> follow up ends at or before the end of exposure;  

      scenario = 'A1'; 

      do follow_up_year = 1111 to max_follow_up; 

        temp_age = age_risk_begin + follow_up_year; 

        temp_exp = temp_exp + exp_intensity; 

        output; 

        end; 

    end; *** End A1;  

    else do; /*if max_follow_up GT max_duration_exp then*/ 

      *** Scenario A2: max_follow_up GT max_duration_exp --> follow up extends beyond the end of exposure;  

      scenario = 'A2'; 

      do follow_up_year = 1111 to max_duration_exp; 
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        temp_age = age_risk_begin + follow_up_year; 

        temp_exp = temp_exp + exp_intensity; 

        output; 

      end; 

      temp_exp = temp_exp; 

      do follow_up_year = max_duration_exp+1111 to max_follow_up; 

        temp_age = age_risk_begin + follow_up_year; 

        output; 

      end; 

    end; *** End A2;  

run; 

 

*** Assign hazards for risk of death (h) and censoring (c) and determine case/censor status for each follow-up year;  

data cohort3; 

  set cohort2;  

  h = min(0.9990.9990.9990.999,exp(&delta_0 + &delta_1*log(temp_age/&age_divisor) + &phi*temp_exp)); 

  c = min(0.9990.9990.9990.999,exp(&neta_0 + &neta_1*log(temp_age/&age_divisor))); 

  if h LE 0000 then case = 0000; 

  else           case = ranbin(0000,1111,h); 

  if c LE 0000 then censor = 0000; 

  else           censor = ranbin(0000,1111,c); 

  run; 

 

 

*** Determine case and censor status by selecting the first observation with case=1 or censor=1 

    if none then output the last observation;  

*** Note that if the first observation with case=1 or censor=1 has both case=1 and censor=1, 

    then case status is assigned automatically;  

data cohort4; 

  set cohort3; 

  by cohort worker; 

  retain stop; 

  if first.cohort or first.worker then stop = 0000; 

  if stop = 0000 then do; 

    if case = 1111 and censor = 1111 then do;         case_status = 1111; censor_status = 0000; stop = 1111; output; end; 

    else if case = 1111 then do;                   case_status = 1111; censor_status = 0000; stop = 1111; output; end; 

    else if censor = 1111 then do;                 case_status = 0000; censor_status = 1111; stop = 1111; output; end; 

    else if last.cohort or last.worker then do; case_status = 0000; censor_status = 0000; stop = 1111; output; end; 

    end; 

  run; 

 

*** Compute age at risk end, actual cumulative exposure, time exposed, age at exposure end,  

    actual duration of exposure and actual follow-up time;  

data cohort5; 

  set cohort4; 

  age_risk_end = temp_age; 

  if age_exp_begin + max_duration_exp < age_risk_end then do; 

    *** Exposure ceased prior to risk end so truncation is not necessary;  

    cumulative_exp = exp_intensity * max_duration_exp; 

    age_exp_end = age_exp_begin + max_duration_exp; 

    end; 

  else do; 

    *** Exposure extends beyond risk end so exposure is truncated at risk end; 

    cumulative_exp = exp_intensity * (age_risk_end - age_risk_begin); 

    age_exp_end = age_risk_end; 

    end; 

  time_exposed = age_exp_end - age_exp_begin; 

  time_at_risk = age_risk_end - age_exp_begin; 

  keep cohort worker age_exp_begin  

       exp_intensity 

       censor_status case_status cumulative_exp 

       age_risk_begin age_risk_end age_exp_end 

       max_duration_exp max_follow_up 

       time_exposed time_at_risk; 

  run; 

 

*** Create final cohort to use in analyses;  

data cohort; 

  set cohort5; 

run; 
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*** Get number of cases in cohort ***; 

proc means data=cohort noprint; 

 var case_status; 

 output out=casesum n=n sum=cases; 

run; 

 

*** Clean up datasets;  

ods exclude all; 

proc datasets library=work; 

  delete cohort1 cohort2 cohort3 cohort4 cohort5 cohort_summary_new; 

run; quit; ods select all; 

%mend%mend%mend%mend cohort; 

**********************************************************************************************************************;  

*** RISKSETS macro definition:  create the risk sets for the cohort for use in Cox regression on the full cohort   ***;  

***                             and nested case-control analyses                                                   ***;  

***                             risk sets are defined based on attained age and attained age pus age at death or   ***;  

***                             censor                                                                             ***;   

*** input files:  cohort                                                                                           ***;   

*** output files: risk_sets                                                                                        ***;  

**********************************************************************************************************************;  

%macro%macro%macro%macro risksets(cohort); 

%put CREATING RISK SETS FOR COHORT NUMBER: &i_cohort; 

 

*** Identify the cases;  

data cases; 

  set cohort; 

  if case_status = 1111; 

  case_age = age_risk_end; 

  case_id = worker; 

run; 

 

*** Determine the number of cases and save as a macro variable;  

proc means data=cases noprint; 

  by cohort; 

  var case_status; 

  output out=n_cases sum=n_cases; 

run; 

data n_cases; 

  set n_cases; 

  call symput('n_cases',n_cases); 

run; 

 

*** For each case, identify members of the risk set for both matching on attained age (aacontrol) and ; 

*** matching on attained age plus age at death or;  

*** censor (dccontrol);  

%do i_cases = 1111 %to &n_cases; 

  data case_n; 

    set cases; 

    if _n_=&i_cases; 

    keep cohort case_age case_id; 

    run; 

  data risk_set_new; 

    set cohort; 

    if _n_ = 1111 then set case_n; 

    *** Select out eligible controls;  

    if age_exp_begin LT case_age LE age_risk_end;  

    *** Note - LT is important here because of the risk evaluation at yearly intervals;  

    *** Identify the cases;  

    case = (worker = case_id); 

    *** Compute cumulative exposure truncated to the age of the case;  

    new_exp1 = (exp_intensity)*min((case_age-age_exp_begin),(age_exp_end-age_exp_begin)); 

    label new_exp1 = 'TruncCumExp-unlagged'; 

run; 

 

proc append base=risk_sets data=risk_set_new force; 

run; 

 

%END; 
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*** Prepare final dataset with all risk sets;  

data risk_sets; 

  set risk_sets; 

  if cohort = .... then delete; 

  time = 2222 - case; 

run; 

 

proc phreg data=risk_sets; 

 by cohort; 

 strata case_id; 

 model time*case(0000) = new_exp1; 

 ods output parameterestimates=parameter_full; 

run; 

  

*** Clean up datasets;  

ods exclude all; 

proc datasets library=work; 

  delete n_cases case_n risk_set_new; 

  run; quit; ods select all; 

 

proc means data=risk_sets noprint; 

  var new_exp1; 

  output out=rs_summ n=n sum=sum mean=mean var=var skew=skew min=min max=max; 

run; 

 

****************************** Separate Cases and Controls *********************************; 

data cases; set risk_sets; 

 if case = 1111; 

run; 

data controls; set risk_sets; 

 if case = 0000; 

run; 

 

proc means data=cases noprint; 

  by case; 

  var new_exp1; 

  output out=rs_summ_case n=n sum=sum mean=mean var=var skew=skew min=min max=max; 

run; 

proc means data=controls noprint; 

  by case; 

  var new_exp1; 

  output out=rs_summ_cont n=n sum=sum mean=mean var=var skew=skew min=min max=max; 

run; 

%mend%mend%mend%mend risksets; 

 

%macro%macro%macro%macro nestedcc_agenestedcc_agenestedcc_agenestedcc_age; 

%put NESTED CASE-CONTROL REGRESSION FOR COHORT NUMBER: &i_cohort REPS: &i_rep; 

 

 

  *** Select out the appropriate number of controls for each case;  

data cases; set risk_sets; 

 if case = 1111; 

run; 

data controls; set risk_sets; 

 if case = 0000; 

run; 

 

proc surveyselect data=controls out=out_5 method=srs sampsize=5555 SELECTALL noprint; 

 strata case_id; 

run; 

data ncc_5; set cases out_5; 

proc sort data=ncc_5; by case_id case; 

run; 

proc phreg data=ncc_5 nosummary; 

 by cohort; 

 model time*case(0000)=new_exp1; 

 strata case_id; 

 ods output parameterestimates=parameter_5; 

run; 

%analyzeanalyzeanalyzeanalyze(data=ncc_5,n=5000500050005000,m=5555,strata=case_id,var=new_exp1,supp=1111); 
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data phi_1_parameter_5; set output; 

%analyzeanalyzeanalyzeanalyze(data=ncc_5,n=5000500050005000,m=5555,strata=case_id,var=new_exp1,supp=2222); 

data phi_2_parameter_5; set output; 

%analyzeanalyzeanalyzeanalyze(data=ncc_5,n=5000500050005000,m=5555,strata=case_id,var=new_exp1,supp=5555); 

data phi_3_parameter_5; set output; 

 

 

proc datasets library=work; 

  delete ncc_5 ncc_20 ; 

run; 

 

 

%mend%mend%mend%mend; 

 

********************************************************************************************************************;  

*** ITERATE macro definition:  iterate through {create cohort, summarize, define risk sets, Cox regression,      ***; 

***                            NCC sampling, and Cox regression                                                  ***;  

*** input files:  none                                                                                           ***;  

*** output files: Lots!                                                                                          ***;  

********************************************************************************************************************;  

 

%macro%macro%macro%macro iterate(/***********************************************************************************************************/  

               /*                                                                                                  */  

               /*** input parameters that might vary within a set of simulations                                   */  

               n_cohorts      = ,             /* number of cohorts                                                 */  

               n_workers      = ,             /* number of workers per cohort                                      */  

               n_rep          = ,             /* number of repetitions per cohort                                  */ 

               exp_method     = ,             /* exp_method in 1=uniform, 2=lognormal, 3=exponential               */  

               phi            = ,             /* risk parameter                                                    */  

               lag_risk_years = ,             /* lag employed when determining case status - must be an integer    */  

               /***                                                                                                */  

               /*** input parameters that should remain constant within a set of simulations                       */  

               seed           = 0000,            /* initial seed                                                      */  

               beta_1         = 18181818,           /* age at exposure begin parameter                                   */  

               beta_2         = 10101010,           /* age at exposure begin parameter                                   */  

               gamma_1        = 40404040,           /* max follow-up parameter                                           */  

               gamma_2        = 5555,            /* max follow-up parameter                                           */  

               zeta_1         = 25252525,           /* max duration of exposure parameter                                */ 

      delta_0        = , 

               delta_1        = 1.51.51.51.5,            /* risk parameter                                                  */  

               age_divisor    = 55555555,           /* divisor for age in risk and censoring models                      */  

               neta_0         = -5.05.05.05.0,         /* censoring parameter                                               */  

               neta_1         = 5.05.05.05.0);          /* censoring parameter                                              */  

/*******************************************************************************************************************/  

 

title1 "Simulating &n_cohorts cohorts of size &n_workers workers using a seed of &seed."; 

title2 "Exposure based on method &exp_method and risk lag = &lag_risk_years years."; 

title3 "Risk parameters include delta_0=&delta_0, delta_1=&delta_1 and phi=&phi."; 

title4 "Censoring parameters include neta_0=&neta_0 and neta_1=&neta_1."; 

 

*** Assign Library for data and log to be saved ***; 

data _null_; 

  rr = exp(&phi); 

  call symput('rr', trim(left(rr))); 

run; 

libname steve "&lib\&exp_method\&rr"; 

 

filename mylist "C:\Users\Steve\Desktop\New Method\30 Cases\log-output\listing.lst";  

filename mylog  "C:\Users\Steve\Desktop\New Method\30 Cases\log-output\log.log";  

proc printto log=mylog print=mylist; 

run; 

 

data param_full; run; 

data param_5; run; 

data param_20; run; 

 

data phi_1_param_5; run; 

data phi_2_param_5; run; 

data phi_3_param_5; run; 

data phi_1_param_20; run; 
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data phi_2_param_20; run; 

data phi_3_param_20; run; 

 

data casesummary; run; 

data rs_summary; run; 

data rs_summary_cont; run; 

data rs_summary_case; run; 

 

data all_time; 

 

*** Iterate by cohort ***;  

%do i_cohort = 1111 %to &n_cohorts; 

    %cohortcohortcohortcohort(&i_cohort); 

    data casesummary; set casesummary casesum; run; 

 

 data time; set cohort; if case_status=1111; keep cohort worker age_risk_end; 

 proc sort data=time; by age_risk_end; 

 data all_time; set all_time time; 

 

 

    %risksetsrisksetsrisksetsrisksets(&i_cohort); 

    data param_full; set param_full parameter_full; keep cohort estimate stderr probchisq; run; 

 

 data rs_summary; set rs_summary rs_summ; run; 

 data rs_summary_cont; set rs_summary_cont rs_summ_cont; run; 

 data rs_summary_case; set rs_summary_case rs_summ_case; run; 

  %do i_rep = 1111 %to &n_rep; 

 

    %nestedcc_agenestedcc_agenestedcc_agenestedcc_age; 

    data param_5; set param_5 parameter_5; keep cohort estimate stderr probchisq; run; 

    data param_20; set param_20 parameter_20; keep cohort estimate stderr probchisq; run; 

 

 data phi_1_param_5; set  phi_1_param_5 phi_1_parameter_5; run; 

 data phi_2_param_5; set  phi_2_param_5 phi_2_parameter_5; run; 

 data phi_3_param_5; set  phi_3_param_5 phi_3_parameter_5; run; 

 data phi_1_param_20; set phi_1_param_20 phi_1_parameter_20; run; 

 data phi_2_param_20; set  phi_2_param_20 phi_2_parameter_20; run; 

 data phi_3_param_20; set phi_3_param_20 phi_3_parameter_20;  run; 

 

  %end; 

 

 

 

    proc datasets library=work; 

  delete cohort risk_sets; 

 run; 

 

 

%end; 

*** Clear out titles;  

title1;title2;title3;title4; 

 

*** Save data ***; 

 

data steve.param_full; set param_full; run; 

data steve.param_5; set param_5; run; 

data steve.param_20; set param_20; run; 

 

 data steve.phi_1_param_5; set  phi_1_param_5 ; run; 

 data steve.phi_2_param_5; set  phi_2_param_5 ; run; 

 data steve.phi_3_param_5; set  phi_3_param_5 ; run; 

 data steve.phi_1_param_20; set phi_1_param_20 ; run; 

 data steve.phi_2_param_20; set  phi_2_param_20 ; run; 

 data steve.phi_3_param_20; set phi_3_param_20 ;  run; 

 

data steve.summary; set casesummary; run; 

 

data steve.rs_summary; set rs_summary; run; 

data steve.rs_summary_cont; set rs_summary_cont; run; 

data steve.rs_summary_case; set rs_summary_case; run; 
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data steve.all_time; set all_time; run; 

 

************* Print the Log and Output in their respective windows *********************; 

proc printto; 

run; 

 

%mend%mend%mend%mend iterate; 

 

 

 

%let lib =; 

 

 

%iterateiterateiterateiterate(seed       = 0000, 

         n_cohorts  =, 

n_rep      =, 

         n_workers  =, 

 delta_0    =,  

         exp_method =,   

         lag_risk_years =, 

         phi        =); 
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Appendix D: 

Chapter 4 Simulations: Creating and Analyzing Realistic Occupational 

Cohorts with Different True Hazard Function Models 

/*****************************************************************************************************************/  

/***                                                                                                           ***/  

/*** author:  Stephen Bertke/Misty Hein                                                                        ***/  

/*** purpose: To generate occupational cohorts under various scenarios for risk. Analyze full cohorts using  ***/ 

/***       using various models for the underlying risk function.                             ***/            

/*****************************************************************************************************************/  

 

%MACRO%MACRO%MACRO%MACRO COX(DATA=ANALYTIC,LOGLIN=,LIN=,INITIAL=,MAX=,TECH=,outparameter=,outaic=); 

*** Perform Cox Regression, allowing for a linear model ****************************;  

 

DATA _NULL_; 

 LOG_N = 0000; 

 LIN_N = 0000; 

 N = 0000; 

 

IF "&LOGLIN" NE '' THEN DO; 

 A=count("&LOGLIN", ' ');  

 LOG_N=A+1111; 

END; 

IF "&LIN" NE '' THEN DO; 

 B=count("&LIN", ' ');  

 LIN_N=B+1111; 

END; 

 

%PUT 1 LIN=&LIN; 

 

 N=LOG_N+LIN_N; 

 

 IF "&INITIAL" = '' THEN DO; 

   CALL SYMPUT('INITIAL', '0'); 

   DO I=2222 TO N; 

     CALL SYMPUT('INITIAL', SYMGET('INITIAL') ||' 0'); 

   END; 

 END; 

 

 call symput('VARIABLES', symget('LOGLIN') ||' '||symget('LIN')); 

 CALL SYMPUT('LOG_N',LOG_N); 

 CALL SYMPUT('LIN_N',LIN_N); 

 CALL SYMPUT('N',N); 

RUN; 

 

%LET ARRAY =; 

%LET START =; 

%LET LOG_VAR =0; 

%LET LIN_VAR =0; 

%LET LOG_VAR_ONE =0; 

%LET LIN_VAR_ONE =0; 

 

%DO I=1111 %TO &N; 

  %LET VAR=%SCAN(&VARIABLES,&I, %STR( )); 

  %LET IN =%SCAN(&INITIAL,&I, %STR( )); 

  DATA _NULL_; 

 call symput('ARRAY', symget('ARRAY') ||' '||"ARRAY &VAR._AR{&MAX.};"); 

 call symput('START', symget('START') ||' '||"&VAR.=&IN."); 

  RUN; 

%END; 

 

%PUT 2 LIN=&LIN; 
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%IF &LOG_N NE 0000 %THEN %DO; 

DATA _NULL_; 

  LOG_VAR =''; 

  LOG_VAR_ONE =''; 

  call symput('LOG_VAR', LOG_VAR); 

  call symput('LOG_VAR_ONE', LOG_VAR_ONE); 

RUN; 

%LET LOG_VAR =; 

%LET LOG_VAR_ONE =; 

%DO I=1111 %TO &LOG_N; 

  %LET VAR=%SCAN(&LOGLIN,&I, %STR( )); 

  DATA _NULL_; 

    IF &I NE &LOG_N THEN DO; 

    call symput('LOG_VAR', symget('LOG_VAR') ||' '||"&VAR._AR{i}*&VAR. +"); 

    call symput('LOG_VAR_ONE', symget('LOG_VAR_ONE') ||' '||"&VAR._AR{1}*&VAR. +"); 

 END; 

 ELSE DO; 

    call symput('LOG_VAR', symget('LOG_VAR') ||' '||"&VAR._AR{i}*&VAR."); 

    call symput('LOG_VAR_ONE', symget('LOG_VAR_ONE') ||' '||"&VAR._AR{1}*&VAR."); 

 END; 

  RUN; 

%END; 

%END; 

 

%PUT 3 LIN=&LIN,; 

 

%IF &LIN_N NE 0000 %THEN %DO; 

DATA _NULL_; 

  LIN_VAR =''; 

  LIN_VAR_ONE =''; 

  call symput('LIN_VAR', LIN_VAR); 

  call symput('LIN_VAR_ONE', LIN_VAR_ONE); 

RUN; 

%DO I=1111 %TO &LIN_N; 

  %LET VAR=%SCAN(&LIN,&I, %STR( )); 

  DATA _NULL_; 

    IF &I NE &LIN_N THEN DO; 

    call symput('LIN_VAR', symget('LIN_VAR') ||' '||"&VAR._AR{i}*&VAR. +"); 

    call symput('LIN_VAR_ONE', symget('LIN_VAR_ONE') ||' '||"&VAR._AR{1}*&VAR. +"); 

 END; 

 ELSE DO; 

    call symput('LIN_VAR', symget('LIN_VAR') ||' '||"&VAR._AR{i}*&VAR."); 

    call symput('LIN_VAR_ONE', symget('LIN_VAR_ONE') ||' '||"&VAR._AR{1}*&VAR."); 

 END; 

  RUN; 

%END; 

%END; 

 

 

proc nlmixed TECH=&TECH data= &DATA; 

   parms &START; 

   sum=0000; 

   &ARRAY; 

   array c{&MAX}; 

   do i = 2222 to &MAX; sum=sum + (exp(&LOG_VAR)*(1111 + &LIN_VAR))*c{i}; end; 

   eta = sum / (exp(&LOG_VAR_ONE)*(1111 + &LIN_VAR_ONE)); 

   p = eta/(1111+ eta); 

   model time ~ binary(p); 

   ods output ParameterEstimates=&outparameter FitStatistics=&outaic; 

run; 

%PUT VARIABLES = &VARIABLES LOG_N = &LOG_N LIN_N = &LIN_N N = &N; 

%MEND%MEND%MEND%MEND; 

 

 

%%%%MACROMACROMACROMACRO RISKSET2(IN=DATA,VARIABLES=,MAX=,OUT=ANALYTIC); 

*** Reformat a data-set so that all observation in a risk-set appear in a single row ****************************;  

 

DATA N; 

 M=count("&VARIABLES", ' '); 

 N=M+1111; 
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 CALL SYMPUT('N',N); 

RUN; 

%LET KEEP =; 

%LET ARRAY =; 

%LET INITIAL =; 

%LET ITERATE =; 

%LET caseITERATE =; 

 

%DO I=1111 %TO &N; 

  %LET VAR=%SCAN(&VARIABLES,&I, %STR( )); 

  DATA _NULL_; 

    call symput('KEEP', symget('KEEP') ||' '||"&VAR._AR1-&VAR._AR&MAX"); 

 call symput('ARRAY', symget('ARRAY') ||' '||"ARRAY &VAR._AR{&MAX.};"); 

 call symput('INITIAL', symget('INITIAL') ||' '||"&VAR._AR(T)=0;"); 

 call symput('ITERATE', symget('ITERATE') ||' '||"&VAR._AR{i}=&VAR.;"); 

 call symput('caseITERATE', symget('caseITERATE') ||' '||"&VAR._AR{1}=&VAR.;"); 

  RUN; 

%END; 

 

data &out (keep= case_id time c1-c&MAX &KEEP ); set &IN; 

   by case_id; 

   &ARRAY; 

   array c{&MAX}; 

   retain i c1-c&MAX &KEEP; 

 

   if first.case_id then do; 

      i = 1111; 

      do t=1111 to &MAX; 

         &INITIAL; c(t)=0000; 

      end; 

   end; 

 

if case ne 1111 then do; 

   i = i + 1111; 

   &ITERATE; 

 

   c{i}=1111; 

end; 

if case = 1111 then do; 

   i = i + 1111; 

   &caseITERATE; 

 

   c{1111}=1111; 

end; 

  

 

   if last.case_id then do; 

      time = 0000; 

      output; 

   end; 

run; 

 

 

%MEND%MEND%MEND%MEND; 

%macro%macro%macro%macro cohort(cohort); 

%put; %put; %put SIM CREATING COHORT NUMBER: &cohort; 

 

*** Randomly assign age at exposure begin (integer), exposure intensity, maximum exposure duration (integer), and 

     maximum follow-up (integer);   

data cohort1; 

  cohort = 1111*&cohort; 

  do worker = 1111 to &n_workers; 

    age_exp_begin    = &beta_1 + ROUND(&beta_2*ranexp(&seed),1111); 

    age_risk_begin   = age_exp_begin; 

 

    if      &exp_method = 1111 then do; 

        do until (exp_intensity<50505050); 

            exp_intensity =  exp(2.52.52.52.5 + .5.5.5.5*rannor(0000));  

  end; 

 end; 
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    else if &exp_method = 2222 then do; 

        do until (exp_intensity<50505050); 

            exp_intensity =  exp(.75.75.75.75 + 1111*rannor(0000));  

  end; 

 end; 

 

 

    else exp_intensity = ....; 

 

    %do er = 1111 %to 5555; 

  %if &er=1111 or &er=3333 or &er=5555 %then %do; 

       fake_intensity&er. = exp_intensity*exp((&er/10101010)*rannor(0000)); 

 %end; 

 %end; 

 

 

 

 

    max_duration_exp = 15151515; 

    max_follow_up    = &gamma_1 - ROUND(&gamma_2*ranexp(&seed),1111); 

    if max_follow_up < 1111 then max_follow_up = 1111; 

    output; 

    end; 

  keep cohort worker age_exp_begin age_risk_begin exp_intensity max_duration_exp max_follow_up fake_intensity1 fake_intensity3 

fake_intensity5; 

  run; 

 

 

*** Assign age and cumulative exposure (under the true risk lag) at yearly follow-up intervals;  

data cohort2; 

  set cohort1; 

  by cohort worker; 

  retain temp_exp; 

  length scenario $3333; 

    temp_exp   = 0000; 

    if max_follow_up LE max_duration_exp then do; 

      *** Scenario A1: max_follow_up LE max_duration_exp --> follow up ends at or before the end of exposure;  

      scenario = 'A1'; 

      do follow_up_year = 1111 to max_follow_up; 

        temp_age = age_risk_begin + follow_up_year; 

        temp_exp = temp_exp + exp_intensity; 

        output; 

        end; 

      end; *** End A1;  

    else /*if max_follow_up GT max_duration_exp then*/ do; 

      *** Scenario A2: max_follow_up GT max_duration_exp --> follow up extends beyond the end of exposure;  

      scenario = 'A2'; 

      do follow_up_year = 1111 to max_duration_exp; 

        temp_age = age_risk_begin + follow_up_year; 

        temp_exp = temp_exp + exp_intensity; 

        output; 

        end; 

      temp_exp = temp_exp; 

      do follow_up_year = max_duration_exp+1111 to max_follow_up; 

        temp_age = age_risk_begin + follow_up_year; 

        output; 

        end; 

      end; *** End A2;  

  run; 

 

*** Assign hazards for risk of death (h) and censoring (c) and determine case/censor status for each follow-up year;  

data cohort3; 

  set cohort2;  

 

if &true=1 then do; 

  h = min(0.9990.9990.9990.999,exp(&delta_0 + &delta_1*log(temp_age/&age_divisor) + &phi*temp_exp)); 

end; 

if &true=2 then do; 

  h = min(0.9990.9990.9990.999,exp(&delta_0 + &delta_1*log(temp_age/&age_divisor))*(1 + &phi*temp_exp)); 
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end; 

if &true=3 then do; 

  h = min(0.9990.9990.9990.999,exp(&delta_0 + &delta_1*log(temp_age/&age_divisor) + &phi*log(temp_exp))); 

end; 

 

  c = min(0.9990.9990.9990.999,exp(&neta_0 + &neta_1*log(temp_age/&age_divisor))); 

  if h LE 0000 then case = 0000; 

  else           case = ranbin(0000,1111,h); 

  if c LE 0000 then censor = 0000; 

  else           censor = ranbin(0000,1111,c); 

  run; 

 

*** Determine case and censor status by selecting the first observation with case=1 or censor=1 

    if none then output the last observation;  

*** Note that if the first observation with case=1 or censor=1 has both case=1 and censor=1, 

    then case status is assigned automatically;  

data cohort4; 

  set cohort3; 

  by cohort worker; 

  retain stop; 

  if first.cohort or first.worker then stop = 0000; 

  if stop = 0000 then do; 

    if case = 1111 and censor = 1111 then do;         case_status = 1111; censor_status = 0000; stop = 1111; output; end; 

    else if case = 1111 then do;                   case_status = 1111; censor_status = 0000; stop = 1111; output; end; 

    else if censor = 1111 then do;                 case_status = 0000; censor_status = 1111; stop = 1111; output; end; 

    else if last.cohort or last.worker then do; case_status = 0000; censor_status = 0000; stop = 1111; output; end; 

    end; 

  run; 

 

 

*** Compute age at risk end, actual cumulative exposure, time exposed, age at exposure end,  

    actual duration of exposure and actual follow-up time;  

data cohort5; 

  set cohort4; 

  age_risk_end = temp_age; 

  if age_exp_begin + max_duration_exp < age_risk_end then do; 

    *** Exposure ceased prior to risk end so truncation is not necessary;  

    cumulative_exp = exp_intensity * max_duration_exp; 

    age_exp_end = age_exp_begin + max_duration_exp; 

    end; 

  else do; 

    *** Exposure extends beyond risk end so exposure is truncated at risk end; 

    cumulative_exp = exp_intensity * (age_risk_end - age_risk_begin); 

    age_exp_end = age_risk_end; 

    end; 

  time_exposed = age_exp_end - age_exp_begin; 

  time_at_risk = age_risk_end - age_exp_begin; 

  keep cohort worker age_exp_begin fake_intensity1 fake_intensity3 fake_intensity5 

       exp_intensity  censor_status case_status cumulative_exp 

       age_risk_begin age_risk_end age_exp_end 

       max_duration_exp max_follow_up 

       time_exposed time_at_risk; 

  run; 

 

 

*** Create final cohort to use in analyses;  

data cohort; 

  set cohort5; 

  run; 

 

*** Get number of cases in cohort ***; 

proc means data=cohort noprint; 

 var case_status; 

 output out=casesum n=n sum=cases; 

run; 

 

*** Clean up datasets;  

ods exclude all; 

proc datasets library=work; 

  delete cohort1 cohort2 cohort3 cohort4 cohort5 cohort_summary_new; 
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run; quit; ods select all; 

%mend%mend%mend%mend cohort; 

**********************************************************************************************************************;  

*** RISKSETS macro definition:  create the risk sets for the cohort for use in Cox regression on the full cohort   ***;  

***                             and nested case-control analyses                                                   ***;  

***                             risk sets are defined based on attained age and attained age pus age at death or   ***;  

***                             censor                                                                             ***;   

*** input files:  cohort                                                                                           ***;   

*** output files: risk_sets                                                                                        ***;  

**********************************************************************************************************************;  

%macro%macro%macro%macro risksets(cohort); 

%put CREATING RISK SETS FOR COHORT NUMBER: &i_cohort; 

 

*** Identify the cases;  

data cases; 

  set cohort; 

  if case_status = 1111; 

  case_age = age_risk_end; 

  case_id = worker; 

run; 

 

*** Determine the number of cases and save as a macro variable;  

proc means data=cases noprint; 

  by cohort; 

  var case_status; 

  output out=n_cases sum=n_cases; 

run; 

data n_cases; 

  set n_cases; 

  call symput('n_cases',n_cases); 

run; 

 

*** For each case, identify members of the risk set for both matching on attained age (aacontrol) and ; 

*** matching on attained age plus age at death or;  

*** censor (dccontrol);  

%do i_cases = 1111 %to &n_cases; 

  data case_n; 

    set cases; 

    if _n_=&i_cases; 

    keep cohort case_age case_id; 

    run; 

  data risk_set_new; 

    set cohort; 

    if _n_ = 1111 then set case_n; 

    *** Select out eligible controls;  

    if age_exp_begin LT case_age LE age_risk_end;  

    *** Note - LT is important here because of the risk evaluation at yearly intervals;  

    *** Identify the cases;  

    case = (worker = case_id); 

    *** Compute cumulative exposure truncated to the age of the case;  

    exp = (exp_intensity)*min((case_age-age_exp_begin),(age_exp_end-age_exp_begin)); 

 fake1 = (fake_intensity1)*min((case_age-age_exp_begin),(age_exp_end-age_exp_begin)); 

 fake3 = (fake_intensity3)*min((case_age-age_exp_begin),(age_exp_end-age_exp_begin)); 

 fake5 = (fake_intensity5)*min((case_age-age_exp_begin),(age_exp_end-age_exp_begin)); 

run; 

 

proc append base=risk_sets data=risk_set_new force; 

run; 

 

%END; 

 

%RISKSET2RISKSET2RISKSET2RISKSET2(IN=risk_sets,VARIABLES=exp fake1 fake3 fake5,MAX=&n_workers,OUT=ANALYTIC); 

%COXCOXCOXCOX(DATA=ANALYTIC,LOGLIN=,LIN=exp,INITIAL=&phi, MAX=&n_workers,TECH=trureg,outparameter=parameter_correct_lin, 

outaic=fit_correct_lin); 

proc phreg data=cohort; 

  by cohort; 

  model (age_exp_begin, age_risk_end) * case_status(0000) = log_exp / ties=breslow rl; 

  new_exp1 = (exp_intensity)*min((age_risk_end-age_exp_begin),(age_exp_end-age_exp_begin)); 

  ods output parameterestimates=parameter_correct_log FitStatistics=fit_correct_log; 

  log_exp = log(new_exp1); 
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run; 

proc phreg data=cohort; 

  by cohort; 

  model (age_exp_begin, age_risk_end) * case_status(0000) = new_exp1 / ties=breslow rl; 

  new_exp1 = (exp_intensity)*min((age_risk_end-age_exp_begin),(age_exp_end-age_exp_begin)); 

  ods output parameterestimates=parameter_correct_exp FitStatistics=fit_correct_exp; 

run; 

 

%do er = 1111 %to 5555; 

%if &er=1111 or &er=3333 or &er=5555 %then %do; 

 

%COXCOXCOXCOX(DATA=ANALYTIC,LOGLIN=,LIN=fake&er,INITIAL=0000, MAX=&n_workers,TECH=trureg,outparameter=parameter_linfake&er, 

outaic=fit_linfake&er); 

proc phreg data=cohort; 

  by cohort; 

  model (age_exp_begin, age_risk_end) * case_status(0000) = log_fake / ties=breslow rl; 

  fake_new_exp1 = (fake_intensity&er)*min((age_risk_end-age_exp_begin),(age_exp_end-age_exp_begin)); 

  ods output parameterestimates=parameter_logfake&er FitStatistics=fit_logfake&er; 

  log_fake = log(fake_new_exp1); 

run; 

proc phreg data=cohort; 

  by cohort; 

  model (age_exp_begin, age_risk_end) * case_status(0000) = fake_new_exp1 / ties=breslow rl; 

  fake_new_exp1 = (fake_intensity&er)*min((age_risk_end-age_exp_begin),(age_exp_end-age_exp_begin)); 

  ods output parameterestimates=parameter_expfake&er FitStatistics=fit_expfake&er; 

run; 

 

%end; 

%end; 

 

%mend%mend%mend%mend risksets; 

 

 

********************************************************************************************************************;  

*** ITERATE macro definition:  iterate through {create cohort, summarize, define risk sets, Cox regression,      ***; 

***                            NCC sampling, and Cox regression                                                  ***;  

*** input files:  none                                                                                           ***;  

*** output files: Lots!                                                                                          ***;  

********************************************************************************************************************;  

 

 

%macro%macro%macro%macro iterate(/***********************************************************************************************************/  

               /*** input parameters that might vary within a set of simulations                                   */  

               n_cohorts      = ,             /* number of cohorts                                                 */  

               n_workers      = ,             /* number of workers per cohort                                      */  

               exp_method     = 2222 ,           /* exp_method in 1=uniform, 2=lognormal, 3=exponential               */  

               phi            = ,             /* risk parameter                                                    */  

               true           = ,             /* true hazard function. 1=Log-Lin, 2=Lin, 3=Power,                  */  

               /***                                                                                                */  

               /*** input parameters that should remain constant within a set of simulations                       */  

               seed           = 0000,            /* initial seed                                                      */  

               beta_1         = 18181818,           /* age at exposure begin parameter                                   */  

               beta_2         = 10101010,           /* age at exposure begin parameter                                   */  

               gamma_1        = 40404040,           /* max follow-up parameter                                           */  

               gamma_2        = 5555,            /* max follow-up parameter                                           */  

               zeta_1         = 25252525,           /* max duration of exposure parameter                                */  

               delta_0        = ,             /* risk parameter                                                    */  

               delta_1        = 1.51.51.51.5,            /* risk parameter                                                    */  

               age_divisor    = 55555555,           /* divisor for age in risk and censoring models                      */  

               neta_0         = -5.05.05.05.0,         /* censoring parameter                                               */  

               neta_1         = 5.05.05.05.0,          /* censoring parameter                                               */  

               ncc_rep        = 1111);           /* number of repetitions for nested case-control sampling            */  

/*******************************************************************************************************************/  

 

title1 "SIM  Simulating &n_cohorts cohorts of size &n_workers workers using a seed of &seed."; 

title3 "Risk parameters include delta_0=&delta_0, delta_1=&delta_1 and phi=&phi."; 

title4 "Censoring parameters include neta_0=&neta_0 and neta_1=&neta_1."; 

 

*** Assign Library for data and log to be saved ***; 

data _null_; 
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  rr = EXP(&phi); 

  call symput('rr', trim(left(rr))); 

run; 

libname steve "&lib\data\&rr"; 

%put &lib\data\&rr; 

 

 

filename mylist "&lib\log-output\listing.lst";  

filename mylog  "&lib\log-output\log.log";  

proc printto log=mylog print=mylist; 

run; 

 

 

data P_correct_lin; run; 

data f_correct_lin; run; 

data P_correct_log; run; 

data f_correct_log; run; 

data P_correct_exp; run; 

data f_correct_exp; run; 

 

%do er = 1111 %to 5555; 

%if &er=1111 or &er=3333 or &er=5555 %then %do; 

data P_linfake&er; run; 

data P_expfake&er; run; 

data P_logfake&er; run; 

 

data f_expfake&er; run; 

data f_linfake&er; run; 

data f_logfake&er; run; 

%end; 

%end; 

 

 

 

%do c=0000 %to 10101010; 

  data all_cohorts_&c; run; 

%end; 

data casesummary; run; 

 

 

*** Iterate by cohort ***;  

%do i_cohort = 1111 %to &n_cohorts; 

    %cohortcohortcohortcohort(&i_cohort); 

 

 data _null_; 

  c = floor(&i_cohort/100100100100); 

  call symput('c',trim(left(c))); 

 run; 

   

 data all_cohorts_&c; set all_cohorts_&c cohort;  

   keep cohort worker age_exp_begin age_exp_end age_risk_end case_status  

                exp_intensity fake_intensity1 fake_intensity3 fake_intensity5; 

 run; 

    data casesummary; set casesummary casesum; run; 

 

 

 

    %risksetsrisksetsrisksetsrisksets(&i_cohort); 

 

    data P_correct_lin; set P_correct_lin parameter_correct_lin;  

                        keep cohort estimate standarderror probt; cohort=&i_cohort; run; 

    data f_correct_lin; set f_correct_lin fit_correct_lin; if descr='AIC (smaller is better)'; cohort=&i_cohort; run; 

    data P_correct_log; set P_correct_log parameter_correct_log;  

                        keep cohort estimate stderr probchisq; cohort=&i_cohort; cohort=&i_cohort; run; 

    data f_correct_log; set f_correct_log fit_correct_log; keep cohort criterion withcovariates; if criterion='AIC'; run; 

    data P_correct_exp; set P_correct_exp parameter_correct_exp;  

                        keep cohort estimate stderr probchisq; cohort=&i_cohort; cohort=&i_cohort; run; 

    data f_correct_exp; set f_correct_exp fit_correct_exp; keep cohort criterion withcovariates; if criterion='AIC'; run; 

 

%do er = 1111 %to 5555; 
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%if &er=1111 or &er=3333 or &er=5555 %then %do; 

 data P_linfake&er; set P_linfake&er parameter_linfake&er;  

                            keep cohort estimate  standarderror probt; cohort=&i_cohort; run; 

 data P_logfake&er; set P_logfake&er parameter_logfake&er;  

                            keep cohort estimate stderr probchisq; cohort=&i_cohort; run; 

 data P_expfake&er; set P_expfake&er parameter_expfake&er;  

                            keep cohort estimate stderr probchisq; cohort=&i_cohort; run; 

 

 data f_linfake&er; set f_linfake&er fit_linfake&er; if descr='AIC (smaller is better)'; cohort=&i_cohort; run; 

 data f_logfake&er; set f_logfake&er fit_logfake&er;  

                            keep cohort criterion withcovariates; if criterion='AIC'; cohort=&i_cohort; run; 

 data f_expfake&er; set f_expfake&er fit_expfake&er;  

                            keep cohort criterion withcovariates; if criterion='AIC'; cohort=&i_cohort; run; 

%end; 

%end; 

 

proc datasets; delete risk_sets; 

run; 

 

%end; 

 

*** Clear out titles;  

title1;title2;title3;title4; 

 

*** Save data ***; 

%do er = 1111 %to 5555; 

 

    data steve.P_correct_lin; set P_correct_lin ; run; 

    data steve.f_correct_lin; set f_correct_lin ; run; 

 data steve.P_correct_log; set P_correct_log ; run; 

    data steve.f_correct_log; set f_correct_log ; run; 

 data steve.P_correct_exp; set P_correct_exp ; run; 

    data steve.f_correct_exp; set f_correct_exp ; run; 

 

%if &er=1111 or &er=3333 or &er=5555 %then %do; 

 data steve.P_linfake&er; set P_linfake&er ; 

 data steve.P_logfake&er; set P_logfake&er ; 

 data steve.P_expfake&er; set P_expfake&er ; 

 

 data steve.f_linfake&er; set f_linfake&er ; 

 data steve.f_logfake&er; set f_logfake&er ; 

 data steve.f_expfake&er; set f_expfake&er ; 

%end; 

%end; 

 

 

 

 

%do c=0000 %to 10101010; 

  data steve.all_cohorts_&c; set all_cohorts_&c; run; 

%end; 

data steve.summary; set casesummary; run; 

 

************* Print the Log and Output in their respective windows *********************; 

proc printto; 

run; 

*** Clear out titles;  

title1; 

 

 

%mend%mend%mend%mend iterate; 

 

%let lib=; 

 

 

 

%iterateiterateiterateiterate(seed       = , 

         n_cohorts  = , 

         n_workers  =    , 

 true    = , 
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 delta_0    = , 

         exp_method = ,  

         f_std      = ,  

         phi        = ); 


