
Last Printed:2/18/2011 Document Of Defense Form

Stephen SharyStudent's name:

1340

This work and its defense approved by:

Committee member: Philip Wilsey, PhD

Committee member: Karen Davis, PhD

Committee chair: Marc Cahay, PhD

Date: 12/14/2010

I, Stephen Shary , hereby submit this original work as part of the requirements for the
degree of Master of Science in Computer Engineering.

It is entitled:

Java Simulator of Qubits and Quantum-Mechanical Gates Using the Bloch
Sphere Representation

University of Cincinnati

Java Simulator of Qubits and Quantum-Mechanical Gates Using the Bloch

Sphere Representation

A thesis submitted to the Division of Research and Advanced Studies of the University of

Cincinnati in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in the Department of Computer Engineering of the College of Engineering and Applied

Science

December, 2010

by

Stephen Shary

B.S., University of Cincinnati of Computer Engineering

2004

Committee Chair: Marc Cahay, Ph.D.

Abstract

One of the most promising paradigms for the development of novel high-speed and energy

efficient devices is spin electronics or spintronics. It is based on the simultaneous manipula-

tion of the electron spin and large degrees of freedom. It offers the possibility of developing

electronic devices based on the control of the electron spin. The spin polarization of a sin-

gle electron can exist in a coherent superposition of two orthogonal spin polarizations (i.e.

mutually anti-parallel spin orientations) for a relatively long time without losing the phase

coherence. The charge degree of freedom, on the other hand, loses phase coherence much

faster. Therefore spin has become the preferred vehicle to host a quantum bit (or ”qubit”)

which is a coherent superposition of two orthogonal states representing classical logic states

of 0 and 1. The potential application of spin manipulation to a scalable quantum logic

processor has led to the field of quantum computing.

To date, several physical quantum computers have been proposed [8, 9, 12, 21] which

all require appropriate mechanisms to create, manipulate and measure individual spins.

Each operation can be mapped to the action of a quantum-mechanical system acting on

the spin state of the electron also known as the qubit state. The Bloch sphere is a useful

tool to represent the actions of various quantum-mechanical operators on a spinor because it

provides a visual representation of the qubit state evolution. Most importantly, it provides

a link between the rather abstract concept of a spinor and the more intuitive way (although

not rigorous) of thinking of the spinor of the electrons being associated with an intrinsic

magnetic moment.

In this thesis, a simulation software is built to provide a visual representation of a quan-

tum state or qubit based on the Bloch sphere representation. This software uses the Java

language and libraries to provide a multi-platform simulator that can be quickly distributed

and viewed using the Java web-start technology. This simulator shows the different qubit

ii

states, their representation in both the two dimensional complex plan along with the bra-

ket representation. It provides the ability to visualize simple basic operators representing

the action of quantum gates. It allows the user to enter simple operations which can be

represented by the action of 2x2 matrices. It also features some more complex functionality

important in spintronics including the Larmor precession and the spin flip process under the

combined action of a constant and rotating magnetic field as described by the Rabi formula.

iii

Acknowledgments

This has been a long process for me to be able to complete this thesis. There were many

times where I was not sure if I would actually have the persistence and endurance to finish

this. I would like to thank my advisor, Dr. Cahay, for all of his work and patience with me

to complete this project. Though this started as a class project, he encouraged me to pursue

and expand this to what it is today. He has been very patient with my pace to complete

this. He spent his extra time outside of his already incredibly packed schedule to pursue

this with me. He encouraged me both to start this project, form it into a thesis, and now

to finish it. He helped me with many of equations that govern the quantum evolution due

to magnetic fields. I was honored to work under him. He literally wrote the book on this

subject.

I secondly want to thank my wife, Lucia. She is a great source of encouragement and a

stable person to lean against. She has been very supportive even when I am not to her. I am

so glad to have her as my partner. So much of who I am has been strengthened being with

her. I want to thank my parents that have understood the balance between encouragement

and expectation. They are so supportive and yet have always nudged me to finish projects

that I start. I want to thank so many of the guys from my home church: Rob Stower, Matt

Bair and Bertholt Schroeder. They have provided great friendships that are able to distract

me when I need to relax. So much of their attitude is serving and supporting others. I feel

really lucky to have such a base of friends during this.

I want to thank Dr. Wilsey and Dr. Davis. I have known both of them personally and

throughout my undergraduate and graduate experience. Dr. Wilsey has pushed me hard to

move forward and not settle short. I would also like to thank Dr. Franco for teaching me

the foundation of Java and really exposing me to security issues and principles.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Survey of Current Simulators . 2

2 Background 7

2.1 Introduction to the Bloch sphere . 7

2.1.1 Quantum state notation: the ”qubit” 8

2.1.2 Bloch Sphere . 9

2.2 Operators . 14

2.2.1 X operator . 15

2.2.2 Y operator . 16

2.2.3 Z operator . 16

2.2.4 Properties of the Pauli matrices . 17

2.2.5 H operator . 19

2.2.6 S and T operator . 20

2.2.7 Rotation matrices . 21

2.3 Time evolution of qubit . 24

2.3.1 Larmor precession . 24

2.3.2 Rabi field . 27

vi

3 Bloch Sphere Simulator 37

3.1 Simulator description . 37

3.1.1 Running the application . 37

3.1.2 Requirements to run the simulator 40

3.1.3 An overview of the simulator user interface 41

3.1.4 Simulator menu bar . 43

3.1.5 Viewing the qubit state on the Bloch sphere 48

3.1.6 Changing qubit state . 48

3.1.7 Using the custom operator . 50

3.1.8 Using the record/playback functionality 53

3.1.9 Using the Larmor precession tab . 57

3.1.10 Using the Rabi field tab . 58

3.2 Technologies Used . 62

3.2.1 Java . 62

3.2.2 Java3D . 62

3.2.3 JNLP . 65

3.3 Simulator Implementation . 66

3.3.1 Previous work . 66

3.3.2 Overview of current work . 66

3.3.3 Foundational code . 67

3.3.4 Help dialogs . 74

3.3.5 Qubit operator . 79

3.3.6 Larmor precession code . 85

3.3.7 Rabi field code . 87

4 Conclusion 93

vii

Appendices 100

A Interface for IComplexNumber.java 100

B The base class for the Help dialog: ExampleDialog.java 104

viii

Chapter 1

Introduction

1.1 Motivation

Quantum mechanical theory has been discussed for nearly a century with many additions,

tests and advances. Not until about 20 years ago did the idea of applying the field to the

area of computing become a possibility [16]. With technology continuing to advance, we have

begun to test and apply those theories on real physical systems. The fields of spintronics and

quantum computation are now rapidly expanding. The theory of solving classical problems

in very efficient manners has been shown for some time [18, 10, 35]. Some classical problems

with exponential complexity can be solved in polynomial time using quantum algorithms.

Bacon and Van Dam describe the growth of quantum algorithms in problems such as growth

in quantum random walks, NAND trees, hidden symmetries, the hidden sub-group problem,

and physical simulation of quantum mechanical systems[3].

Some of the basic concepts of quantum computation can be difficult to grasp. Expen-

sive equipment is needed to probe physical systems at the quantum level to observe their

interaction and quantum states. Interaction at the quantum level can become very complex

quickly with many outside factors that affect the measurement. It is only through repeating

1

an experiment that we can obtain a probability distribution of physical observables. The

concept of a repeatable experiment with different outcomes is strange. Many times, it is not

intuitively understood.

This simulator was created to provide an easy tool to visually describe simple quantum

states and also apply operators to those states. This software simulator can be installed

on a computer easily with little configuration needed. It is based on a web host as the

distribution mechanism that can deploy off-line versions of the application. It uses the

Bloch sphere theory to visually describe the state of a quantum bit or qubit. Operators can

be entered or popular operators can be used to show how the state of a qubit is affected by

the operators. The 3D Bloch sphere also allows an animation of the qubit state to be shown

over time under the influence of constant or time-dependent, spatially uniform magnetic

fields. It also provides the ability to record and playback different operators so the time

evolution of the qubit can be displayed.

1.2 Survey of Current Simulators

Current simulators provide the ability to describe the state of one or more qubits and how

they are affected by outside magnetic fields and various quantum gates. This section briefly

describes existing simulators that describe the physical systems, networks of quantum oper-

ators (or quantum circuits) and Bloch sphere simulations of specialized states.

The first group of simulators focuses on the analysis of a real-world implementation of

a quantum interaction. There are different types of physical systems that can manipulate

and measure quantum interference and states. The first type uses optical lasers, beam split-

ters and phase shifts to investigate the quantum effects. This is achieved by introducing a

single-photon representation of several quantum bits, building on the equivalence between

traditional linear optics elements such as beam splitters or phase shifters and one-bit quan-

2

Figure 1.1: Optical configurations and their logical quantum operators described in [7]
.

tum gates[7]. Cerf et al. focuses on building the basic quantum operators from simple

optical devices and completes a demonstration of how it can be used to construct different

quantum circuits. In Fig. 1.1, there are three examples of how optical devices can be used

to simulate quantum operators. The top half shows the optical setup and the bottom shows

the corresponding quantum operator in circuit form. Part (a) shows how two beam splitters

can be used to create the Hadamard gate. Part (b) shows how a C-NOT gate can be created

from a polarization rotator and part (c) shows how a beam splitter can be used to create a

C-NOT gate with inverted control lines.

Another interesting simulator looks at the numerical analysis of simulations using quan-

tum dots [23]. The approach uses laterally coupled quantum dots and shows how they can

be used in a semiconductor heterostructure to create a series of quantum gates that can

be manipulated and measured. The authors use different modeling equations to show the

effects on two quantum dots in close proximity. Rather than working on the correlation to

abstract quantum operators, this work focuses on calculating expected eigenenergies due to

the change of different biases. The model is able to reproduce the electron charging behav-

ior of the quantum dots. With the rising popularity of nano structures, this shows how a

3

quantum gate (or a series of them) can be used to demonstrate quantum effects and how

their states can be manipulated.

Poyatos et al. look at the characterization and the quality parameters of a two qubit

system [32]. They describe how any physical implementation that can be fully characterized

or simulated can be quantified into four different parameters to measure the action of the

quantum gate. The four characteristics are the ”quantum fidelity”, ”quantum degree”, ”gate

purity”, and ”entanglement capability.” As an example, they show how the simulation and

characterization of the ion trap can be formalized into these parameters. This expands from

beyond previous works by categorizing and comparing different physical quantum systems.

It provides a benchmark to rate the usability of a quantum system.

The second group of quantum computer simulation moves from the physical implemen-

tation to an architectural and computational realm. Quantum operators are interesting in

how they affect the complex state of a qubit, but the computation significance is when mul-

tiple qubits can become entangled to produce an interesting outcome. The circuit diagrams

use the quantum operators with inputs and outputs on the left and right. The typical flow

from the starting state to the final state is from left to right. Figure 1.2 from [15] shows

some of the elementary quantum circuits. More complex diagrams can be created to imple-

ment interesting algorithms. Figure 1.3 taken from [26] displays a quantum circuit using the

Hadamard, σx and C-NOT gates to complete Grover’s search algorithm in [18].

The quantum circuit simulators that have been created run into problems of complex-

ity. Quantum system simulators require large amounts of classical computation. In fact, a

super-polynomial amount of memory and time is needed to simulate quantum systems [19].

Viamontes et al. designed their quantum, circuit simulator for optimal performance [26].

They look at the efficient implementation of Grover’s search algorithm with a polynomial

number of qubits. Another approach uses the statistical inference of quantum systems using

a Monte Carlo algorithm to closely approximate 2D correlated systems [11]. Even then the

4

Figure 1.2: A simple diagram of reversible computer gates in the standard logical notation
and also in the quantum circuit notation [15].

Figure 1.3: An advanced quantum circuit diagram that implements Grover’s search algorithm
[26].

5

analysis was completed on supercomputers with distributed memory and vector pipelines to

allow for quick computations. More current simulators look to use distributed systems that

form grid systems and super computers [6, 22]. Their focus is on the ability to simulate

larger quantum systems.

Up to this point, the simulators that have been described look towards accurately cal-

culating the physical state of a quantum implementation simulating the outcome of the

operation of a series of gates set in a network. The transformation of a quantum state can

be hard to grasp because there is no simple way to explain it. There have been systems

developed to show the states of qubits through graphs and lines [13, 14] but they have not

been very popular. There are some simulators describing the state of the quantum gates

and showing the evolution of their state visually through the Bloch sphere. These simula-

tors give an intuition of quantum transformations which can help lead to new discoveries

and understandings [25]. One implementation is a package of libraries used in Matlab to

visualize, measure, and transform quantum states [24]. The foundation of Matlab allows the

user to manipulate the states through a large number of numerical transformations. The

package allows the display of qubit states and the states of many qubits through the density

matrix. The display though requires the user to understand the bra-ket notation and only

it only provides the ability to display a static quantum state. In [4], the authors use the

Bloch sphere to show the analysis of two photon systems (known as Raman systems) and

how their state (mixed and pure) can be displayed on the Bloch sphere so that ”the effects of

decay, detuning, and optical pumping to be quickly intuited.” Though there are simulators

that use the Bloch sphere to describe states of qubits, they are limited to specific quantum

scenarios or they have a high learning curve. There is a missing tool to easily manipulate

qubit states to gain and understanding of quantum properties through the representation of

the Bloch sphere.

6

Chapter 2

Background

2.1 Introduction to the Bloch sphere

The Bloch sphere is a useful tool to represent a quantum bit (or qubit for short) or spinor

state and also the action of various quantum-mechanical operators acting on it. it provides a

link between the rather abstract concept of the spin and the more intuitive way of thinking

of a spin as a tiny magnet. This section will show that the Bloch sphere provides a very

useful way to depict the action of a uniform magnetic field on a spin.

The Bloch sphere provides a visual representation of a two level system pure state. There

are multi-level states that may exist in quantum theory. In the field of spintronics and

quantum computation, the two level state is popular because there is a direct translation to

to classical computing concept of the 0 and 1. As we will see later, the interesting aspect

of quantum theory is that the two states of 0 and 1 may be represented by two states that,

though they are distinct within the same system, can correlate to each other and affect

each other. This phenomenon is powerful in quantum computation because it allows one

operation on two or more states to be affected at the same time with only the work of the

one operation. We can also observe how the state of the spinor evolves as it is affected by the

7

action of magnetic fields. One interesting case is when two magnetic fields, one static and

one rotating perpendicular to each other, can act simultaneously to cause the probability of

the spinor to ”flip” or change state from the north pole to south pole (on the Bloch sphere).

The probability of the spin flip was first derived by Rabi [33]. One of the more popular

application of the Rabi theories is Nuclear Magnetic Resonance (NMR).

2.1.1 Quantum state notation: the ”qubit”

The term ”qubit” is short-hand for a quantum bit. This is the basic unit that is processed

by a quantum computer. Like a classical computer that takes an input and maps to an

output of classical bits (0 and 1), a quantum computer has inputs and outputs as qubits.

We represent the qubit as the spin state expressed as two coherent orthogonal superpositions.

Mathematically, we describe the qubit as a two dimensional complex vector that represents

a pure state in the Hilbert space H. This state contains two complex values that can made

analogous to the two states in classical computing (0,1). In the area of spintronics, we view

these two states as spin up and spin down. The most commonly used basis set to describe

the state of a qubit is given by

|0〉 =

 1

0

 , (2.1)

and

|1〉 =

 0

1

 . (2.2)

These two basis vectors can be used to describe any general, pure state qubit as follows,

|ψ〉 = α |0〉 + β |1〉 where α, β are complex numbers. It would seem at this point that |ψ〉

can have both values of |0〉 and |1〉. This is not entirely true. What we find is that if we

take a measurement along the z-axis, we find that the measured value comes out as a |0〉

sometimes and other times as a |1〉. The values of α and β are the probability amplitude

8

for the qubit to be in the |0〉 or |1〉, respectively the qubit is in state |0〉 with a probability

of |α|2 and in state |1〉 with a probability of |β|2. Being probabilities, they must satisfy the

condition |α|2 + |β|2 = 1. This interesting constraint of the two probabilities allows us to

map the state of the qubit using a sphere of radius 1. We will discuss later in this chapter

how the mapping to the unit sphere or Bloch sphere is completed.

From now on, we describe state vectors using the Dirac notation. This notation allows

vectors or states to be displayed as both ”kets” and ”bras”. We have displayed the qubit

states in kets, but they may also be described as a bra. The bra is vector displayed horizon-

tally where each element in the vector is the complex conjugate of the element in the ket.

For a general state give by the ket

|ψ〉 =

 α

β

 , (2.3)

we have the corresponding bra

〈ψ| =
(
α∗ β∗

)
. (2.4)

Next we discuss how the qubit is represented on the Bloch sphere.

2.1.2 Bloch Sphere

The Bloch sphere is a three dimensional representation of a qubit on a unit sphere. Since

the qubit is a coherent superposition of two states of |0〉 and |1〉, we know that the qubit

described as a vector will always have a length of 1. With the qubit (|ψ〉) being described

as |ψ〉 = α |0〉+ β |1〉, each α and β are complex, we can write α and β as α = αreal +αimagi

and β = βreal + βimagi. If we convert these to polar coordinates we get

α = rα(cosθα + sinθαi), (2.5)

9

and

β = rβ(cosθβ + sinθβi). (2.6)

Using Euler’s formula, we get

α = rαe
iθα , (2.7)

and

β = rβe
iθβ . (2.8)

Applying this to |ψ〉, we obtain the equation

|ψ〉 = rαe
iθα |0〉+ rβe

iθβ |1〉 . (2.9)

We are now going to manipulate this equation to show that it maps to the unit sphere.

We first start by multiplying the |ψ〉 by e−iθα . This is possible because we know that

|α|2 + |β|2 = 1 and

|αeiθα|2 = |α|2eiθαe−iθα = |α|2. (2.10)

Multiplying |ψ〉 by e−iθα gives us

|ψ〉 = rα |0〉+ rβe
iθβ−θα |1〉 . (2.11)

We substitute φ = θβ − θα and get

|ψ〉 = rα |0〉+ rβe
iφ |1〉 . (2.12)

We can show that this matches the unit sphere. We convert rβe
iφ back to Cartesian

coordinates

10

rβe
iφ = (x+ iy). (2.13)

Since |α|2 + |β|2 = 1, substituting the values of α and β above, we get

|rα|2 + |x+ iy|2 = 1, (2.14)

or

r∗αrα + (x+ iy)∗(x+ iy) = 1, (2.15)

or

r2
α + (x− iy)(x+ iy) = 1, (2.16)

and finally

r2
α + x2 + y2 = 1. (2.17)

This is the equation for the unit sphere where rα = z. Now we use the mapping of

Cartesian coordinates to polar coordinates and we get

|ψ〉 = z |0〉+ (x+ iy) |1〉 ,

|ψ〉 = cosθ |0〉+ [sinθcosφ+ i(sinθsinφ)] |1〉 ,

|ψ〉 = cosθ |0〉+ sinθ(cosφ+ isinφ |1〉 ,

|ψ〉 = cosθ |0〉+ eiφsinθ |1〉 .

At this point, we have a mapping from Cartesian coordinates to the polar coordinates.

But this mapping is not a one-to-one mapping, it is actually as ”a 2 to 1 homomorphism of

SU(2) on SO(3).”[17] There are multiple angles that can be used to describe the Cartesian

coordinates. If we start with a point with the spherical coordinates R = (1, θ, φ), adding the

11

angle of π to each angle will give us the following:

|ψ〉 = cos(θ + π) |0〉+ ei(φ+π) sin(θ + π) |1〉 (2.18)

= − cos(θ) |0〉 − eiφeiπ sin(θ) |1〉

= − cos(θ) |0〉 − eiφ sin(θ) |1〉

|ψ〉 = −1
(
cos(θ) |0〉+ eiφ sin(θ) |1〉

)
. (2.19)

The ”-1” is what we can categorize as a global phase factor, removing any effect on the

state of the qubit. If we choose the angle θ, which has a range of (0 ≤ θ ≤ 2π) and confine

it to a range of (0 ≤ θ′ ≤ π) where θ′ = θ
2
, then we effectively create a one-to-one mapping.

Shown on the next page is the image of the Bloch sphere from [30].

12

Figure 2.1: The Bloch sphere showing the θ and φ angles to place the qubit [30].

13

2.2 Operators

Operators are mappings from one Hilbert space to another Hilbert space. All quantum

operators representing the action of quantum gates must be unitary, i.e.,

MM † = I, (2.20)

where I is the 2x2 identity matrix and the dagger represents the action of the transpose

operation and the complex conjugation operation. M? is the complex conjugate operation

on the operator where each element multiplies the imaginary part of the element by -1. This

is important because it shows that the operator is a rotation of unit modulus. Operators

representing physical observables must also be Hermitian. An operator is Hermitian if after

taking the complex conjugate and transpose of that operator, we get back the original oper-

ator. We represent the adjoint operation as a dagger. If an operator is equal to its adjoint,

then it is Hermitian. An operator is Hermitian if M = M †. Here we show the mapping of

the operator elements in relation to their original value:

 a b

c d


†

=

 a∗ c∗

b∗ d∗

 . (2.21)

We can see that if an operator is both Hermitian and unitary, then applying the operator

twice will map the qubit back to its original state. Additionally, if an operator is unitary,

Shankar states that ”if one reads the columns of an n x n unitary matrix as components

of n vectors, these vectors are orthonormal. In the same way, the rows may be interpreted

as components of n orthonormal vectors”[34]. A simple example of this is the 2x2 identity

matrix. This matrix is both Hermitian and unitary. The following sections will show the set

of Hermitian operators that form the rotation matrices around the three axes of the Bloch

14

sphere. These three rotation matrices are known as the Pauli matrices.

2.2.1 X operator

The X operator is one of the three Pauli matrices. It is also known as the NOT operator

because it flips the |0〉 qubit to the |1〉 qubit and vice versa. It is Hermitian and unitary. It

is also referred to as the σx operator. On the Bloch sphere, it corresponds to a π rotation

around the x-axis. Knowing its mapping, we can derive the operator from the sum of the

outer products that represent the matrix. The outer products

〈0| |1〉 =

 0 0

1 0

 , (2.22)

and

〈1| |0〉 =

 0 1

0 0

 , (2.23)

form the full expression of the σx operator as

σx = 〈0| |1〉+ 〈1| |0〉 =

 0 0

1 0

+

 0 1

0 0

 =

 0 1

1 0

 . (2.24)

This is Hermitian, i.e. σx =σ†x, as easily checked

 0 1

1 0

 =

 0 1

1 0


†

=


 0 1

1 0


∗

T

=

 0 1

1 0

 . (2.25)

15

2.2.2 Y operator

The Y operator is another of the three Pauli matrices. Like the X operator, it is both

Hermitian and unitary. This is also referred to as the σy operator. On the Bloch sphere, it

is the operator that rotates the qubit around the y-axis by an angle of π. The 2x2 matrix

form of the σy operator is given as:

σy =

 0 −i

i 0

 , (2.26)

which is Hermitian since σy =σ†y. Indeed

 0 −i

i 0

 =

 0 −i

i 0


†

(2.27)

=


 0 1

1 0


∗

T

(2.28)

=

 0 i

−i 0


T

(2.29)

=

 0 −i

i 0

 . (2.30)

2.2.3 Z operator

The last of the three Pauli matrices is the Z operator which is also Hermitian and unitary.

This is commonly referred to as the σz operator. On the Bloch sphere, it is equivalent to a

rotation around the z-axis by an angle of π. The 2x2 matrix form of the operator is given

16

as:

σz =

 1 0

0 −1

 , (2.31)

which is indeed Hermitian since σz =σ†z

 1 0

0 −1

 =

 1 0

0 −1


†

(2.32)

=


 1 0

0 −1


∗

T

(2.33)

=

 1 0

0 −1


T

(2.34)

=

 1 0

0 −1

 . (2.35)

2.2.4 Properties of the Pauli matrices

Since all Pauli matrices are both unitary and Hermitian, applying the operator twice on a

qubit (MM |ψ〉) will give back the original qubit, i.e., M2 = I where M is either σx, σy, or

σz.

Another interesting property about the Pauli matrices involves their product. Taking

the product of σx, and σy, we get

17

 1 0

0 1


 0 −i

i 0

 =

 i 0

0 −i

 (2.36)

= i

 1 0

0 −1

 (2.37)

= iσz. (2.38)

This is equivalent to the qubit |ψ〉 being rotated around the x-axis by an angle of π and then

around the y-axis by and angle of π. If we were to apply the σz operator to the original state

of |ψ〉, we would see that it moves it to the same spot. There is the interesting ”i” factor

that exists in the equation. However, this has no measurable effect on the state of the qubit.

Similarly, we can calculate all the different products of the Pauli matrices.

18

σxσy =

 0 1

1 0


 0 −i

i 0

 =

 i 0

0 −i

 = iσz, (2.39)

σyσx =

 0 −i

i 0


 0 1

1 0

 =

 −i 0

0 i

 = −iσz, (2.40)

σyσz =

 0 −i

i 0


 1 0

0 −1

 =

 0 i

i 0

 = iσx, (2.41)

σzσy =

 1 0

0 −1


 0 −i

i 0

 =

 0 −i

−i 0

− iσx, (2.42)

σxσz =

 0 1

1 0


 1 0

0 −1

 =

 0 −1

1 0

 = iσy, (2.43)

σzσx =

 1 0

0 −1


 0 1

1 0

 =

 0 1

−1 0

 = −iσy. (2.44)

The product of any two Pauli matrices is the third Pauli matrix multiplied by the phase

factor of i and −i. This does not change the probability distribution associated to the α

and β values. Additionally, since the phase factors are i and −i, we can rewrite them as e
iπ
2

and ei
3π
2 . With the standard description of qubit as |ψ〉 = eiφ

(
cos θ

2
|0〉+ eiγsin θ

2
|1〉
)
, the

constant associated with the operator will only affect the phase factor on the qubit, eiφ.

2.2.5 H operator

The Hadamard operator is the also known as the
√
NOT or the square root of the NOT

operator. This is because visually the operator rotates the qubit around the y-axis by π/2

followed by a rotation along the x-axis by π. The H operator is defined as

19

Figure 2.2: The visual effect of the Hadamard operator on the qubit ψ = |0〉+|1〉√
2

[30]

H =
1√
2

 1 1

1 −1

 , (2.45)

which is unitary and Hermitian. Even though it is called the square root of NOT operator,

applying it twice does not create the NOT operator seen in classical computation. Since the

operator is both unitary and Hermitian, applying the operator twice is the same as applying

the identity operator and does not affect the state of the qubit. Figure 2.2 is an illustration

of the Hadamard operator [30].

2.2.6 S and T operator

The S and T operators are two operators that define a partial spin around the Z-axis. The

S operator is defined as

S =

 1 0

0 i

 , (2.46)

20

and the T operator is defined as

T =

 1 0

0 1√
2

+ 1√
2
i

 . (2.47)

We can make the angle of rotation appear explicitly if we redefine S and T using Euler’s

relation. In that case

S =

 1 0

0 ei
π
2

 , (2.48)

and

T =

 1 0

0 ei
π
4 i

 . (2.49)

Using Euler’s relation eiθ = cos(θ) + i sin(θ), we can conclude that the rotation for the S

operator of π
2

is

ei
π
2 = cos(

π

2
) + i sin(

π

2
) = i, (2.50)

and for the T operator with a rotation of π
4

is

ei
π
4 = cos(

π

4
) + i sin(

π

4
) =

1√
2

+
1√
2
i. (2.51)

These operators are unitary but not Hermitian.

2.2.7 Rotation matrices

Next, we seek the matrices associated to rotations on the Bloch sphere around the three axes

by any arbitrary angle, not just π. To show the rotation in each axis, we will first derive the

general equation that can be applied to each rotation. We define an arbitrary rotation by

representing it by the operator that rotates around that axis. We define this operator as A.

21

We will start by describing the rotation around an axis through the basic equation

rot(|ψ〉) = ei
θ
2
A |ψ〉 , (2.52)

where ei
θ
2
A is a rotation around that axis by an angle of θ. Using the Taylor series

expansion

ek =
∞∑
k=0

xk

k!
, (2.53)

we get the following rotation operator expansion

ei
θ
2
A = I + i

θ

2
A+

(i θ
2
A)2

2!
+

(i θ
2
A)3

3!
+

(i θ
2
A)4

4!
+ (2.54)

Next, we regroup the terms into even and odd powers

ei
θ
2
A =

(
I +

(i θ
2
A)2

2!
+

(i θ
2
A)4

4!
+ ...

)
+

(
i
θ

2
A+

(i θ
2
A)3

3!
+

(i θ
2
A)5

5!
+ ...

)
. (2.55)

Since we know that the A operator is one of the Pauli matrices (σx, σy, σz), we have

A2 = I. Using this property, we then obtain

ei
θ
2
A =

(
I +

(i θ
2
)2I

2!
+

(i θ
2
)4I2

4!
+ ...

)
+

(
i
θ

2
A+

(i θ
2
)3IA

3!
+

(i θ
2
)5I2A

5!
+ ...

)
(2.56)

or

ei
θ
2
A =

(
1−

(θ
2
)2

2!
+

(θ
2
)4

4!
− ...

)
I + i

(
θ

2
−

(θ
2
)3

3!
+

(θ
2
)5

5!
− ...

)
A. (2.57)

Using the Taylor expansion series for sin and cos, i.e.,

22

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, (2.58)

and

cos(x) =
∞∑
k=0

(−1)k
x2k

(2k)!
, (2.59)

we finally get

ei
θ
2
A = cos(

θ

2
)I − i sin(

θ

2
)A. (2.60)

For the special case where A is the Pauli matrix σx, we get

ei
θ
2
σx = cos(

θ

2
)I − i sin(

θ

2
)σx, (2.61)

=

 cos(θ
2
) 0

0 cos(θ
2
)

−
 0 i sin(θ

2
)

i sin(θ
2
) 0

 ,

=

 cos(θ
2
) −i sin(θ

2
)

−i sin(θ
2
) cos(θ

2
)

 .

This matrix corresponds to a rotation around the x-axis by and angle of θ. Using the

same approach starting with the y and z Pauli matrices, we get

Ry(θ) = e
iθσy
2 =

 cos(θ
2
) − sin(θ

2
)

sin(θ
2
) cos(θ

2
)

 , (2.62)

and

23

Rz(θ) = e
iθσz
2 =

 − cos(θ
2
) + sin(θ

2
) 0

0 cos(θ
2
)− sin(θ

2
)

 . (2.63)

Thus, we can describe any rotation around the three axes. An arbitrary rotation is merely

the combination of rotations of one or more rotations around the x, y, and z axes.

2.3 Time evolution of qubit

The simulator also provides an animation which describes the evolution of a qubit in the

presence of a DC electromagnetic field applied along the z-axis. A second simulation allows

the consideration of another DC magnetic field rotating with uniform angular velocity in

the x-y plane. This is referred to as the Rabi Field. The simulator shows how the different

strengths of the applied electromagnetic fields affect the state of one or more qubits. The

Rabi field simulation also allows for the simulation to show interesting scenarios where the

state of the qubit will ”flip” back and forth between the |1〉 and |0〉 states as an illustration

of the Rabi formula.

2.3.1 Larmor precession

The simulator performs a time evolution of a qubit known as the Larmor precession. The

precession is the spin of an electron due to a constant magnetic field, as shown in Fig. 2.3.

The earliest observations of this effect was the Stern-Gerlach experiment [29]. The equa-

tions governing this spin evolution are derived from the Ehrenfest theorem that describes the

time evolution of the expectation value of a quantum-mechanical operator. The Ehrenfest

equation is given by

d

dt
< A >=

1

i~
< [A,H(t)] > + <

dA

dt
> . (2.64)

24

Figure 2.3: The rotation path of a qubit under the influence of a constant a magnetic field
applied along the z-axis. The figure illustrates the Larmor precession at a constant angular
velocity on a cone whose principle axis in along the z-axis.

25

Following ref. [5], we derive the equations that describe the Larmor precession by using

the Pauli matrices: σx, σy, and σz for the operator A in Eq. (2.64):

d

dt
< σx >=

gµB
~

(By < σz > −Bz < σy >), (2.65)

d

dt
< σy >=

gµB
~

(Bx < σx > −Bx < σz >), (2.66)

d

dt
< σz >=

gµB
~

(Bz < σy > −By < σx >). (2.67)

We can write these three equations in a more compact notation, i.e.,

d < ~σ >

dt
=
gµB
~

(~B× < ~σ >) = ~Ω× < ~σ >, (2.68)

where ~Ω = gµB
~
~B and µB = e~

2m0
is the Bohr magnetron. Since ~S = ~

2
~σ, Eq. (2.68) can be

rewritten as follows

d < ~S >

dt
=
gµB
~

(~B× < ~S >) = ~Ω× < ~S >, (2.69)

where < ~S > is the expected value of the spin angular momentum. Equation (2.69)

gives us the standard Larmor equation describing the Larmor precession. Starting with Eq.

(2.69), we easily get

d(~S · ~B)

dt
= 0, (2.70)

which means that the angle between the two vectors time independent. This fixes the

apex angle, θ of the qubit. Furthermore, using Eq. (2.69), it can be shown that the azimuthal

angle, φ increases at a constant angular velocity given by

26

dφ

dt
=
gµBBz

~
, (2.71)

which is defined as the Larmour frequency

ωl
def
=

egB

2m0

, (2.72)

where e is the energy of the charge, g is the ”g-factor” or gyro-magnetic ratio (”the

ratio of the magnitude of the magnetic moment to that of the angular momentum”[29])

and m0 is the free electron mass. In the simulator, we set m0 = 9.109 × 10−31kilograms

[28], e = −1.26 × 10−19C [28] and g = 2.002319[31]. Thus, we finally describe the two

characteristic factors of the qubit as:

θ = c, (2.73)

and

φ = φ0 + ωlt (2.74)

.

This is the description of the qubit rotation around the z-axis, like a cone, at a constant

angular velocity due to the influence of a constant magnetic field.

2.3.2 Rabi field

IN this section, we look at the action of two magnetic fields on a qubit. The first field

is applied along the z-axis as in the case of the Larmor precession studied in the previous

section. We use the notation Bz to describe this magnetic field. The second magnetic will

be a DC field that rotates around the origin in the x-y plane at a constant angular velocity.

27

The direction of the magnetic field is away from the origin. We denote this second magnetic

field Bxy. The qubit will not rotate on a cone, but will experience an additional magnetic

force duo to Bxy. The angular velocity and the strength of the Bxy will have an effect on the

qubit. A question of interest is: ”What if the force of the magnetic field Bz were to push

the qubit around the z-axis as the same rate as Bxy rotates in the xy-plane?” As we will

show, this can lead to a spin flip from the north to Sought pole on the Bloch sphere. I.I.

Rabi was the first to calculate the probability of the spin flip between the two poles. Here

we will present a different derivation that focuses on the two-state qubit to show the effect

of the Rabi field.

The Hamiltonian of a qubit submitted to the superposition of the two magnetic fields

described above is given by

H(t) = BzSz +Bxy [cos(ωt)Sx + sin(ωt)Sy] (2.75)

=
~
2
Bz

 1 0

0 −1

+
~
2
Bxy[cos(ωt)

 0 1

1 0

+ sin(ωt)

 0 −i

i 0

]

=
~
2

 Bz 0

0 −Bz

+
~
2


 0 Bxye

−iωt

Bxye
iωt 0




=
~
2

 Bz Bxye
−iωt

Bxye
iωt −Bz

 (2.76)

where

Sy =
~
2
σy, (2.77)

and

Sz =
~
2
σz. (2.78)

28

Figure 2.4: The rotation path of a qubit with a magnetic field applied along the x-axis.

29

We describe the current state of qubit |ψ〉 at time t as |ψ(t)〉. If we use the basis set (|0〉,

|1〉), the state of the qubit at any given time t is given by

|ψ(t)〉 = α(t) |0〉+ β(t) |1〉 . (2.79)

The latter must satisfy the Schroedinger equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (2.80)

Substituting the expression |ψ(t)〉 above in the last equation, we find that α(t) and β(t)

must satisfy the following coupled differential equations

i
dα(t)

dt
=
Bz

2
α(t) +

Bxy

2
e−iωtβ(t), (2.81)

and

i
dβ(t)

dt
=
Bxy

2
eiωtα(t)− Bz

2
β(t). (2.82)

Now, we will change the reference frame to describe the qubit evolution. Currently, we

view the magnetic fields and the state of the qubit from a fixed perspective. But if we

change that perspective to a rotating reference, we then solve this equation in a more simple

manner. The frame of reference is the rotation of the magnetic field that is rotating around

the z-axis along the x-y axis. Here we define the rotational reference components α̂(t) and

β̂(t) as

α̂(t) = e
iωt
2 α(t), (2.83)

and

β̂(t) = e
iωt
2 β(t). (2.84)

30

It is easily shown that these new variables satisfy the following equations

i
dα̂(t)

dt
= −4ω

2
α̂(t) +

Bxy

2
β̂(t), (2.85)

and

i
dβ̂(t)

dt
=
Bxy

2
α̂(t) +

4ω
2
β̂(t), (2.86)

where 4ω = ω2 − Bz. The derivatives of the components α̂(t) and β̂(t) can be written

in the qubit and operator form

i~
d |ψ̂〉
dt

= Ĥ |ψ̂〉 , (2.87)

where

|ψ̂〉 =

 α̂(t)

β̂(t)

 = α̂(t) |0〉+ β̂(t) |1〉 , (2.88)

and

Ĥ =
~
2

 −4ω Bxy

Bxy 4ω

 . (2.89)

Now we will show the mapping from |ψ(t)〉 to |ψ̂(t)〉. We define the mapping of the |ψ(t)〉

to the |ψ̂(t)〉 through the rotation operator R(t). We define R(t) as

R(t) = e
iωt
~ Sz , (2.90)

such that

|ψ̂(t)〉 = R(t) |ψ(t)〉 , (2.91)

31

and

|ψ(t)〉 = R(t)−1 |ψ̂(t)〉 . (2.92)

Using the definitions of α̂(t) and β̂(t) we get the function R(t), a rotation around the

z-axis

R(t) = e
−iωt

~ Sz , (2.93)

and so the inverse is

R−1(t) = e
−iωt

2
σz . (2.94)

These last two equations can be rewritten in the form of a Schroedinger equation by

introducing the column vector

|ψ̂(t)〉 =

 α̂(t)

β̂(t)

 . (2.95)

The two equations for α̂(t) and β̂(t) can then be recast as follows

d

dt
|ψ̂(t)〉 =

Ĥ

i~
|ψ̂〉 = X̂ |ψ̂〉 , (2.96)

where the matrix X̂ is given by

X̂ =
−i
2

 −4ω Bxy

Bxy 4ω

 = i

 4ω
2

−Bxy
2

−Bxy
2

−4ω
2

 . (2.97)

We seek a solution of this last equation as follows

|ψ̂(t)〉 = eQ(t) |ψ̂(0)〉 . (2.98)

Since X̂ is time independent, it is easy to show by simple substitution that Q(t) is given

32

by

Q(t) =

∫ t

0

X̂(t) dt = i

 4ωt
2

−Bxyt
2

−Bxyt
2

−4ωt
2

 . (2.99)

Next, we introduce γ and δ to simplify the equations below

γ =
4ω
2
t, (2.100)

and

δ = −Bxy

2
t. (2.101)

In this case

Q(t) =

 γ δ

δ −γ

 . (2.102)

To calculate eQ(t) we first diagonalize Q(t). Calling S the matrix which diagonalizes Q(t),

then

Λ(t) = S−1Q(t)S. (2.103)

where Λ(t) is the column vector containing the two eigenvalues of Q(t). Taking the

exponential on both sides of this equation, we obtain

eΛ(t) = S−1eQ(t)S, (2.104)

which leads to the following expression for eQ(t)

eQ(t) = SeΛ(t)S−1. (2.105)

33

The latter can be calculated explicitly once we have the eigenvalues of Q(t). The eigen-

values are

λ1 = i
√
γ2 + δ2, (2.106)

and

λ2 = −i
√
γ2 + δ2, (2.107)

and therefore eΛ(t) is given by

eΛ(t) =

 eλ1 0

0 eλ2

 =

 ei
√
γ2+δ2 0

0 e−i
√
γ2+δ2

 . (2.108)

The matrix S which diagonalizes Q(t) is formed by the two column vectors which are

the corresponding eigenvectors to λ1 and λ2. These eigenvectors can be found easily and S

is given explicitly as follows

S =

 −δ
γ−
√
γ2+δ2

−δ
γ+
√
γ2+δ2

1 1

 . (2.109)

The inverse of the matrix is found to be

S−1 =
δ

2
√
γ2 + δ2

 1 δ

γ+
√
γ2+δ2

−1 δ

γ−
√
γ2+δ2

 . (2.110)

This allows us to write the equation that will provide a mapping from that state of the

qubit at time t, though this is from the rotating perspective around the z-axis at the rate of

ω radians per second.

|ψ̂(t)〉 = SeΛ(t)S−1 |ψ̂(0)〉 (2.111)

34

Since we also know the mapping from |ψ̂〉 to |ψ〉, we can finally determine the equation that

describes |ψ〉 at time t:

|ψ〉 = R−1(t) |ψ̂〉 ,

= R−1(t)
(
SeΛ(t)S−1

)
|ψ̂(0)〉 ,

= R−1(t)
(
SeΛ(t)S−1

)
R−1(0) |ψ(0)〉 ,

|ψ〉 = R−1(t)
(
SeΛ(t)S−1

)
|ψ(0)〉 . (2.112)

Now we combine all of the operators found above to get an analytic expression for the

operator on the right hand side of Eq. (2.112)

R−1(t) = e
−iωt

2
σz

=

 cos
(
ωt
2

)
− i sin

(
ωt
2

)
0

0 cos
(
ωt
2

)
+ i sin

(
ωt
2

)


SeΛ(t)S−1 =
δ

2
√
γ2 + δ2

 −δ
γ−
√
γ2+δ2

−δ
γ+
√
γ2+δ2

1 1


 ei
√
γ2+δ2 0

0 e−i
√
γ2+δ2


 1 δ

γ+
√
γ2+δ2

−1 δ

γ−
√
γ2+δ2


(2.113)

We condense this by defining

ρ =
√
γ2 + δ2, (2.114)

which finally leads to

SeΛ(t)S−1 =
δ

2ρ

 −γeiρ
γ−ρ −

−γe−iρ
γ+ρ

eiρ + e−iρ

eiρ − e−iρ γeiρ

γ+ρ
+ γe−iρ

γ−ρ

 . (2.115)

35

This is the explicit form of the matrix needed to find |ψ〉 at all time t as a result of the

two magnetic fields.

36

Chapter 3

Bloch Sphere Simulator

3.1 Simulator description

3.1.1 Running the application

The Bloch sphere simulator has been written so that it can be launched in three different

ways: as an application, as an applet on a web page or as an application launched from a web

page. Java has three different launch configurations. The first is the Java application. In this

case, there is either a script that runs the Java virtual machine directly using the compiled

Java classes as an argument, or the launch parameters can be embedded in a compressed file

containing the Java classes. Our implementation uses a script. This is because we wanted

to be able to support several different operating systems and processor configurations. Our

application supports three different operating systems and two different architectures. This

simulator has the launch configurations for Windows (XP, Vista, 7) in the x86-32 and x86-

64 architectures, Linux in the x86-32 and x86-64 architectures, and Mac OSX in the x86

architecture. The deployment, or list of files that are used when running the application are:

the scripts to launch the application, the Java libraries that contain the classes to run the

application, and the architecture/operating system specific libraries to run the 3D part of

37

the application.

To run the application in Windows, one must either run the runSimulatorWindows32.bat

or the runSimulatorWindows64.bat. The 32 is for the 32bit version of the Java Virtual

Machine and the 64 is for the 64 bit version of the Java Virtual Machine. Windows does

allow 32 bit programs to be run on its 64 bit version of the operating system. To run

the application on Linux, you should run either the runSimulatorLinux32.sh or run the

runSimulatorLInux64.sh. Like the windows version, the JVM determines which version (32

or 64 bit) as opposed to the OS version. Additionally, the script assumes that the bash shell

script is installed in the Linux environment. Running the application in MacOSX requires

that the user run the shell script runSimulatorOSX.sh. The bash shell is installed by default

with all default Mac OSX installations.

The second method to launch the application is by launching the application through

Java Native Launch Protocol (JNLP). The JNLP technology works by clicking on the JNLP

link on the bloch3d.html web page. This will prompt a security warning. This is because

the files that are used to run the application need to be signed. The current version of the

application does not have a certificate authority (CA) to provide the ability to sign the jar

files [27]. One of the advantages of running the application through JNLP is that is can be

cached on the local computer. After running the simulator once, if the computer does not

have in Internet connection, the simulator can be launched through a local cached version.

To run the locally cached version of the application, one must first open the Java Control

Panel. In Windows, this can be accomplished by opening the control panel and then opening

”Java”. In Linux, you can do this by running the ”javacpl” located in the ”JRE HOME bin”

directory where ”JRE HOME” is the path the Java installation. Figure 3.1 shows the Java

control panel.

Clicking on the ”View...” button under the section ”Temporary Internet Files” will bring

up the Java Cache Viewer. This is a collection of previously run JNLP programs. An

38

Figure 3.1: The Java Control Panel window

39

Figure 3.2: The Java Cache Viewer window

example of this can be seen in fig. 3.2 There are many options to run the program offline.

One option is to create a shortcut and other options as seen in fig. 3.3.

The third method to launch the application is similar to the JNLP application launch

method. This method allows the application to be run within the browser. Instead of clicking

on a link, the Bloch sphere simulator is automatically started when the web page is loaded.

3.1.2 Requirements to run the simulator

To run the Bloch sphere simulator, there are some software and hardware requirements for

the application to run. The program was written in Java 1.6.0. This is a recent version of

Java. The requirements for Java 1.6.0 are available on the Internet [2]. Java supports the

Solaris, Windows, Linux and Mac OSX operating systems. The Java virtual machine (or

JVM) needs to be installed on the computer before the application can be run [4]. If the

user has an older version of java (at least JVM 1.3), then the JVM should be able to detect

that a newer version is required. It will automatically download the JVM from java.sun.com.

40

Figure 3.3: The selection options in the Java Cache Viewer window

When running the application, it will automatically download the required 3D libraries used

to run the application.

Windows, Mac OSX, and Linux require that OpenGL version 1.3 (or greater) be installed

on the operating system. All version of Windows comes with OpenGL already installed with

the operating system[1].

3.1.3 An overview of the simulator user interface

The application has four major parts to it: The toolbar, the 3D qubit viewer, the qubit

state control panel, and the external magnetic force control panel. Figure 3.4 displays those

four parts. The top section, labeled ”A”, is the toolbar. Below the toolbar is the 3D

representation of the Bloch sphere, labeled ”B”. The third is the qubit state control panel,

labeled ”C”. Finally, the bottom right part, labeled ”D”, is the series of tabs for the custom

operators, Larmor precession, record and playback, and the Rabi Field controls.

41

Figure 3.4: The Bloch sphere simulator with the parts highlighted in different colors.

42

3.1.4 Simulator menu bar

The menu bar, located at the top has three menu selections: ”Simulator”, ”Qubit Operators”,

and ”Using the Application”. The simulator menu option has three selections: ”Reset View”,

”Save Current State”, and ”Load State From File”. The Reset view function allows the

Figure 3.5: The Bloch sphere simulator menu selection.

application to reset the point-of view of the 3D Bloch sphere. As the Bloch sphere can be

rotated, this resets the view. The save and load current state allows the user to save the

current state of each of the qubits. This includes the visibility of the qubit. The qubit state

files are saved as ”.bss” files. The ”.bss” is a Bloch sphere simulation file. This is a text file

that is created with the phi, theta and visibility property for each of the qubits. Below is

an example files saving the default state of the qubits. The file has the phi and theta values

as floats that represent the phi and theta angle of the qubit. The angle is a float value in

the unit of degrees. The visible property associated with the qubit is true if the qubit is

currently visible and false if it is hidden.

The next menu option is the ”Qubit Operators”. This provides information about some

of the operators that are available in the simulator. These are the σx, σy, σz, the Hadamard

operator and the phase shift operator.

Each of these provides a dialog that shows an animation of the qubit to demonstrate

the rotation effect of each operator. Along with it on the right side is information about

the operator and some of the properties of the operator. Each of the operators will show a

rotation of the qubit based on the effect of the operator. Since the operators are rotations,

43

text 1 An example file showing the saved state of the qubits in the simulator.
qbit.0.phi=0.0

qbit.0.theta=0.0

qbit.0.visible=true

qbit.1.phi=36.0

qbit.1.theta=18.0

qbit.1.visible=true

qbit.2.phi=72.0

qbit.2.theta=36.0

qbit.2.visible=true

qbit.3.phi=108.0

qbit.3.theta=54.0

qbit.3.visible=true

qbit.4.phi=144.0

qbit.4.theta=72.0

qbit.4.visible=true

qbit.5.phi=180.0

qbit.5.theta=90.0

qbit.5.visible=true

qbit.6.phi=216.0

qbit.6.theta=108.0

qbit.6.visible=true

qbit.7.phi=252.0

qbit.7.theta=126.0

qbit.7.visible=true

qbit.8.phi=288.0

qbit.8.theta=144.0

qbit.8.visible=true

qbit.9.phi=324.0

qbit.9.theta=162.0

qbit.9.visible=true

44

Figure 3.6: The Bloch sphere qubit operators menu selection.

the animation shows the rotation. Though the operator does not slowly move the state of

the qubit, this is done so the rotation is apparent. Figure 3.7 shows the help information for

the σx operator.

The last menu selection item is the ”Using the Application” menu. This allows the user to

see information about the advanced features of the application. This shows the information

to set the qubit state, use the custom operator, use the record/playback functionality, the

Larmor precession, and the Rabi field. Figure 3.8 shows the menu options available.

Selecting each one provides an understanding of the controls along with some of the

theory behind the interaction. Figure 3.9 displays the example dialog of the information

provided for the Larmor precession.

45

Figure 3.7: The Bloch sphere example help that shows the qubit starting before the σx
operator is applied.

Figure 3.8: The Bloch sphere qubit operators menu selection.

46

Figure 3.9: An example dialog showing how to use the Larmor precession and its basic
theory.

47

3.1.5 Viewing the qubit state on the Bloch sphere

The 3D qubit viewer is the visual representation of the qubits. They show the representation

of the qubit using the Bloch sphere theory. As discussed in Chapter 3, the Bloch sphere is

a spherical representation of the qubit for the alpha and beta values describing the qubit

states. The point of view can be manipulated by dragging the cursor in the viewer. Dragging

of the mouse with the left mouse button horizontally will cause the sphere to rotate around

the X-axis. Dragging the mouse using the left mouse button horizontally will cause the

sphere to rotate around the Y axis. The changing of the point of view on the Bloch sphere

in the viewer will have no effect on the position or motion of the qubits with respect to the

axis of the Bloch sphere. As stated before, the point of view can be reset using the ”Reset

View” option under the ”Simulator” menu.

3.1.6 Changing qubit state

When using the simulator, you have the ability to measure the current state of the qubit

(without destroying it)! You also have the ability to manipulate the state to see how an

operator, or series of operators will affect the state of the qubit. Figure 3.10 highlights the

control panel for the qubit states in the top left. There are three ways that the qubit state

can be change: by manually typing in the theta and phi angles (in degrees), adjusting the

slider values of the angles, or entering the α and β values. Whenever the state of the qubit

is modified by using one control, it will update the values in the other controls. Changing

the angle using the slider will update the text value of the angle and also the α and β values.

As stated before, one the ways to change the qubit state is to use the sliders on the qubit

control panel. The theta value can vary from 0 to 180 degrees. The theta angle is the angle

between the positive z axis or the |0〉 state and the qubit. When the user enters a new value

and then changes the focus of the text field by hitting the tab key, or by using the mouse

48

Figure 3.10: The Bloch sphere simulator highlighting the qubit control panel in the top right.

49

to change the focus by clicking on another component, the application will update the qubit

state using the new angle to set the qubit state. If the user enters a value that is outside of

the range of 0 to 180, then the application will reset the value back to the previous value.

The user can also change the phi angle. The phi angle is the angle between the positive

x-axis and the projections of the qubit in the (x, y) plane. Phi varies between 0 to 360

degrees. Again, to change the values by manually entering the numeric value, the tab key

must be hit, or transfer focus to another part of the application to have the value take effect.

The second method to change the qubit state is by using the sliders. A slider works by

having the user select the slider, by tabbing to it, or by clicking on it. The value can be

changed by dragging the slider marker left and right using the mouse, or by using the left

and right arrow keys to adjust the value by one increment. As the slider changes value, the

qubit state will be immediately modified and displayed on the Bloch sphere.

The third method to change the qubit value is by modifying the alpha and beta values of

the qubit. The alpha and beta fields can have complex numbers entered into either field. If

a field is left blank, the application will assume that it has a value of zero. When both values

have been changed in the two text fields, the value can be updated by pressing the ”Update

Value” button. Setting the qubit value through this control can be the most precise, but also

the most tricky. The simulator will adjust the value if it is not normalized. Remember that

the α and the β values must adhere to the equation: |α|2 + |β|2 = 1. Secondly, if a complex

number is entered to the alpha value, it will be changed to a real number by multiplying

both the α and the β values by the complex conjugate of α.

3.1.7 Using the custom operator

The custom operator allows the user to select an operator, or to enter a custom operator.

The custom operator tab has three parts to the screen: the operator values, the preset

operators, and the action buttons. Figure 3.11 shows the three different parts.

50

Figure 3.11: The custom operator tab.

The first part contains the operator values. When an operation is applied to the current

state of the qubits, the values that are in the two by two matrix, consisting of complex

numbers. The simulator checks that the operator is unitary. The basic definition is that an

operator is unitary if when multiplied by its adjoint, that we get the identity operator. The

simulator will check that the operator is correct by multiplying the elements and verifying

that they are equal to the elements in the identity matrix. The operation performs the

multiplication

 a b

c d


 a∗ b∗

c∗ d∗

 =

 1 0

0 1

 (3.1)

i.e., it checks if the following equalities are satisfied

51

aa∗ + bc∗ = 1, (3.2)

ab∗ + bd∗ = 0, (3.3)

ca∗ + dc∗ = 0, (3.4)

and

cb∗ + dd∗ = 1. (3.5)

If the operator values do not pass this check, then the simulator will not apply the

operator. The action of the operator is done when the user clicks on either the ”Apply To

Visible Qubits” or ”Apply To All Qubits” button. The ”Apply To Visible Qubits” button

will have the operator act on all the qubits that are visible on the 3D Bloch sphere or if

their ”Display” check box is checked in the qubit state tab. The other button will have the

operator act on the qubit regardless of its visibility on the Bloch sphere. Each time the

button is clicked, the operator will act on the qubits. There are several functions that are

both unitary and Hermitian, so having the operator act on the qubits twice will have a null

effect. The qubits will return to their original state.

The operators can be difficult to understand and grasp. For this, the simulator provides

the ability to load popular operators. The user can click on the left side of the operator tab

to load the operator values for the σx, σy, σz, H, R, S and T operators. This will not have

the operators act on the qubits, but it will load the values of the operators into the operator

values. The user can have the operator then act on the qubits by clicking on the action

buttons. The bottom three operators are the generic rotation operators. The operators can

rotate around the X, Y, or Z axis. When the user clicks on any of these, a dialog appears

allowing them to specify the angle of the desired rotation. Figure 3.12 shows this dialog.

The user must enter the angle rotation in radians. Unfortunately, the application does not

52

allow the user to put in ”2pi” or ”pi/2”. The value must be a decimal that is greater than

zero. Instead of π, the user should type in 3.141. After a valid angle has been entered, the

simulator willl calculate the rotation values and enter them into the operator values.

Figure 3.12: The custom operator tab.

The custom operator gives the user to create an infinite number of operations to apply to

the qubit. The effect can be seen immediately on the state of one or more qubits. The next

section will discuss how a series of these operators can be recorded to show the evolution of

the state of a qubit as it experience multiple operators acting upon it in a sequential manner.

3.1.8 Using the record/playback functionality

The record/playback functionality allows users to record a sequence of operators that act

upon the qubit states. The recording function allows the user to use the custom operator to

create operators and have them act on the qubits. As they are applied to the qubits, they

are recorded in the order that they are applied. The recorded operators can then be saved

to a file for playback later. The playback functionality allows the user to load a saved file

and then ”play” or have the operators applied to the qubit state in the same order that they

were recorded. The speed at which the operators are applied can be varied and the user can

choose to individually step through each operator.

When the user clicks on the ”Record/Playback” tab, the first screen that comes up allows

the user to decide to record a series of operators, or play them back. This is seen in Fig.

3.13.

53

Figure 3.13: The record/playback tab.

When the user clicks on the record screen, the qubit state panel is replaced with the

record panel and the only tab that is available on the bottom left is the ”Custom Operator”

tab. At this point, the simulator is in recording mode and any operator that is applied to

the qubits will be recorded on the top left record panel. Figure 3.13 shows the default state

with the recording panel on the top and the custom operator panel on the bottom.

As the operators are applied to the qubits, the record panel will show the value of the

operator. The operator at the top of the list is the first operator that is applied. Each

operator applied after that will appear below in the order that they are applied to the

qubits. The Custom operator tab at the bottom works in the same manner when applying

an operator to a qubit state. When all the desired operators have been recorded, the user

can save the recorded operators by clicking on the ”Save” button in the record panel. This

will bring up a file explorer dialog to choose the file name and location.

The file that stores the operators is a plain text file that contains the operator number and

then the four elements of the operator, deliminated by a comma. File 1 shows an example

file that contains the σx, σy, and σz operators recorded (in that order).

The contents of the file do not need to be created by the simulator, they may be created

54

Figure 3.14: The right hand side of the simulator when in recording mode.

manually by typing it into a text editor, or by creating a custom program that creates the

operators. There is no theoretical limit to the number of operators that may be recorded.

In initial development, several hundred were tested and performed well.

The second part of functionality described is the playback function. When the user clicks

on ”Playback”, they will have to select a file to playback. Currently, the user must select a

file that has the extension ”.bso”. This stands for Bloch Sphere operators. When a file has

been selected, the playback tab will be displayed in the bottom right. Figure 3.15 shows

the state of the playback when File 1 is loaded.

55

File 1 An example of recorded operators saved to a file.
operator.0=1,0,0,1

operator.1=-i,0,0,i

operator.2=0,1,-1,0

Figure 3.15: The right hand side of the simulator when in recording mode.

After the recorded operators have been loaded, there are several things that can be done

to play back the operators. The first is the delay. The user can set the delay between the

acting on the qubits. The standard delay is half a second. That means that the application

will wait one half of a second between applying the current operator and the next operator.

The delay can be changed as long as the application is not playing back the operators. To

start the playback, the user should click the ”Play” button. This will apply the first operator

and then wait the delay before applying the next operator and continuing on. At any time,

the user can pause the playback by hitting the ”Pause” button. The pause button is only

enabled though when the operators are being played back. Additionally, if the playback

is paused, then the user can manually step through each of the operators by hitting the

”Step” button. This will apply the next operator in the playback sequence. The operator

56

application sequence can be set back to the first operator by hitting the ”Restart” button.

When playback is finished, the user should click the ”End Playback” to return to the normal

simulator functionality.

The record playback function allows users to view visually the evolution of the qubits

as quantum operators are acted on them. The record and playback functionality gives the

user the flexibility to apply any number of operators without restriction on the operators

themselves. The simple format of the saved file also allows the user to translate the output

of other applications to the Bloch sphere simulator to view that effect.

3.1.9 Using the Larmor precession tab

The Larmor precession allows the user to see how the state of a qubit is affected by a constant

magnetic field. The magnetic field in this simulator points from the origin, along the Z axis,

to Z+. The user has the ability to alter the field and view in real time the effects of that field.

Figure 3.16 shows the tab that displayed on the simulator when the user selects the ”Larmor

Precession” tab. There are four controls that are available. The first is the magnetic force

strength slider. This slider allows the user to slide the scale from 0.1 to 10 Teslas. As the

strength of the magnetic field is increases, the angular velocity of the qubits will increase.

The precession does not start until the user hits the ”Start” button. At this point, the

effect of the constant magnetic field will be seen on the qubits. The user may continue to use

the slider to change the strength of the magnetic field. When the user is finished applying

the magnetic field to the qubits, the ”Stop” button should be clicked. The stop button will

immediately end the effect of the Larmor precession, but will keep the qubits in their last

state. Clicking on the ”Restart” button will bring the qubits back to their original state

when the precession was last started.

57

Figure 3.16: The Larmor Precession tab.

3.1.10 Using the Rabi field tab

The Rabi Field tab allows the user to see how the state of qubit is affected by two magnetic

fields. The one rotates around the z-axis, on the x-y plane pointing towards the origin, and

the second is a field the magnetic field along the z-axis that points from toward to the origin

from Z+. There are three sliders on the tab when selecting the Rabi Field. Figure 3.17

shows the control tab on the simulator. The first slider is the Bz value which is the strength

of the magnetic field that is along the z-axis. Adjusting this from low to high will make

the qubit rotate around the z-axis at a faster pace. The second slider controls the strength

of the perpendicular magnetic field that is rotating around the z-axis, along the x-y plane.

Increasing the value of the slider will cause the qubit to rotate at a higher speed around

the rotating magnetic field. This can be difficult to see if the magnetic field is rotating at

a higher speed and also if the strength of the Bz is high (relatively speaking). The final

58

slider controls the angular velocity (ω) for the Bperp magnetic field around the z-axis. This

is measured in radians/second.

Figure 3.17: The Rabi Field tab.

There is a check box that allows the simulator to match the speed of the rotation of the

Bperp to the Larmor frequency. This is the frequency at which the combined force of Bperp

and Bz are matched in such a way that the Bz pushes the qubit around the z-axis at the

same speed of the Bperp magnetic field causing it to ”flip” or move from the Z+ and Z- poles.

When the user checks this check box, the simulator will calculate the correct value of ω and

will change it correctly. If the Bz value is changed, the ω value will be updated accordingly.

The last control does not affect the simulation of the Rabi Field, but it allows the user

to view the path of the qubit, affected by the two magnetic fields. When the user clicks on

the button ”Show Trail”, it will become depressed and the length of the trail, or previous

states of the qubit will be shown. Because of computing constraints, the trail is limited and

59

will continually follow the path of the qubit. Figure 3.18 shows the evolution of the qubit

where Bz, Bperp have the value of 1 Tesla, and ω with the value of 1 rad/sec.

To start the effects of the Rabi field, click on the ”Start” button. This will apply the two

magnetic fields on only the visible qubits in the simulator. If the slider values are changed,

they will take effect immediately. One this to note is that the effect of the magnetic fields is

the change in the qubit from its original state. Changing the slider may cause the qubit(s)

to move in a sudden or jerky motion. This is the because the the calculation of the current

qubit state is the effect of the magnetic field with the spinor values applied from the start

time to the current time. If there are problems viewing the trail of the spinor, it may be

best to ”hide” the trail of the qubit and then ”show” it later after the spinor values have

been set.

Lastly, the probability that the qubit will ”flip” from the north and south, along the

z-axis pole when matching ω to the Larmor frequency is greatest when the qubit starts at

the state of |1〉 or |0〉. The simulator will assume that the starting state of the qubit is its

current state when the ”Start” button is hit. If the Rabi Field simulation is stopped and

started multiple times, each time it is started, the simulator will assume that the original

state of the qubit is the last place that the Rabi Field stopped it. This means that the Rabi

field cannot be paused. Since the starting state affects the overall path of the qubit, the

qubit must be put at the original state to replay the same evolution.

60

Figure 3.18: The Rabi Field shown with a trail where Bz and Bperp have the value of 1 Tesla,
and ω with the value of 1 rad/sec. The trail of red dots show the previous path of the qubit.

61

3.2 Technologies Used

3.2.1 Java

The simulator is written in is Java. This is a popular programming language that is used in

application and server environments. It has a philosophy of ”compile once, run everywhere.”

This means that the code can be compiled in Java byte codes and then run on many different

operator systems. All Java programs are pre-compiled in the the byte codes and then the byte

codes are interpreted by a ”virtual machine” to execute the code in a native environment.

The simulator consists of many class files. Each of the class files represent a class (or

object in object oriented language terms) and is be grouped together into one file that

becomes more easy to manage. The Java archive file (JAR) is a compressed archive of the

the class files that are used to execute the simulator in the Java virtual machine (JVM).

The simulator has all of the images, HTML help files, and Java class files into one jar:

Bloch3d.jar. The simulator relies on other technologies such as Java3D (discussed in the

next section) to correctly display the Bloch sphere in a 3D environment.

When running a Java program in the JVM, a list of locations is used to allow the program

to fetch classes and resources. The path or listing of available files is called the class path

and the JVM will look for the first class file or resource on the list that will satisfy the

request. If there are multiple copies available then the first one specified on the class path

will be used. If any of the classpath entries are in JARs or folders, then the JVM will search

inside of those archives.

3.2.2 Java3D

Java 3D is the second technology that was used in the Bloch sphere simulator. The simulator

uses Java 3D to display a representation of the Bloch sphere and the qubits that lie in its

domain. Java3D is an extension of Java that links the 3D hardware accelerated functions of

62

each platform to Java functions so 3D programs may be created. Each implementation of

Java3D is platform specific. The libraries link to OpenGL and DirectX available on different

platforms. The Bloch sphere simulator uses the different launch scripts to allow operating

system (OS) specific launch files to be used. The application contains all of the different

libraries and the user must choose the correct launch script. They are seen in the table

Windows32 runSimulatorWindows32.bat
Windows64 runSimulatorWindows64.bat
Linux32 runSimulatorLinux32.sh
Linux64 runSimulatorLinux64.sh
OSX runSimulatorOSX.sh

Figure 3.19: The launch files for each OS. The 32 and 64 versions of Linux and Windows
are the bit widths of the word length defined by the OS.

Each launch file uses the platform specific libraries. File 2 is an example launch script

to use the libraries in Windows. File 3 lists the Java3D jars to launch the simulator in the

Linux OS.

File 2 The Windows (32 bit JVM) launch script to start the application.

@echo off

rem The path to the Java 3D installation where the lib/ext jars are located.

set JAVA_3D_PATH=./windows-32

rem The path the OS specific binary files are located.

set JAVA_3D_LIBRARY_PATH=./%JAVA_3D_PATH%/bin

set CLASSPATH=./lib/bloch3d.jar

set CLASSPATH=%CLASSPATH%;%JAVA_3D_PATH%/lib/ext/j3dcore.jar

set CLASSPATH=%CLASSPATH%;%JAVA_3D_PATH%/lib/ext/j3dutils.jar

set CLASSPATH=%CLASSPATH%;%JAVA_3D_PATH%/lib/ext/vecmath.jar

java -Djava.library.path=%JAVA_3D_LIBRARY_PATH% edu.uc.ece.blochSphere.BlochApplication

The Java3D has a well defined application program interface (API) that defines how the

libraries can be used. Their functionality and use does not change even though the underlying

63

File 3 The Linux (32 bit JVM) launch script to start the application.

#!/bin/bash

setenv J3D_HOME=/linux-32

export LD_LIBRARY_PATH=${J3D_HOME}/lib/i386

export CLASSPATH=./lib/bloch3d.jar

export CLASSPATH=${CLASSPATH}:${J3D_HOME}/lib/ext/j3dcore.jar

export CLASSPATH=${CLASSPATH}:${J3D_HOME}/lib/ext/j3dutils.jar

export CLASSPATH=${CLASSPATH}:${J3D_HOME}/lib/ext/vecmath.jar

java edu.uc.ece.blochSphere.BlochApplication

operating system does change. The 3D implementation in the native environments uses

OpenGL, an established 3D display API and programming platform.

64

3.2.3 JNLP

Java has an architecture that allows applications to be launched through the Internet by using

an XML specification that copies files from central locations (typically HTTP web servers) to

client computers before they are executed on the client machine. The architecture is known

as the Java Native Launch Protocol (JNLP). The other common name of the utility provided

to the client is Java Web Start. One of the great features of JNLP is the extension tag that

allows a set of jars and native libraries to be added to classpath. The JNLP launch program

can then choose the correct set of JARs and libraries based on the client architecture and

operating system.

File 4 The JNLP launch script to load the Bloch Sphere simulator.

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+" codebase="http://daffy-duck.rhod.uc.edu/" href="bloch3d.jnlp">

<information>

<title>Bloch Sphere Simulation</title>

<vendor>University Of Cincinnati: College of Engineering</vendor>

<homepage href="http://daffy-duck.rhod.uc.edu"/>

<description>Bloch Sphere Simulation</description>

<icon href="viewersplash.jpg" kind="splash"/>

<offline-allowed/>

</information>

<security>

<all-permissions/>

</security>

<resources>

<j2se version="1.5+"/>

<jar href="bloch3d.jar" main="true"/>

<extension href="http://download.java.net/media/java3d/webstart/release/java3d-

latest.jnlp"/>

</resources>

<application-desc main-class="edu.uc.ece.blochSphere.BlochApplication"/>

</jnlp>

65

3.3 Simulator Implementation

3.3.1 Previous work

The Bloch sphere simulator has gone through two different development phases. The first

phase was done by Nick Vatatumic, David Kesler and Brian Jauch, form UC students who

took the class on quantum computation taught by Professor Cahay. This was the first version

of the simulator that displayed the 3D Bloch sphere. Operator were computed by rotating

the qubit in the 3D space and then determines the qubit state. This strategy hard-coded

many special cases and was limited to the specific operators implemented. The simulator was

written as a Java application that worked only in Windows. The 3D Bloch sphere was very

well developed, but the UI interface lacked advanced functionality and usability. Additional

work was done by Changming Huo [20] to display the spin flip using the Rabi Field and

the effect of random magnetic pulses. Unfortunately, this work was not combined with the

current simulator work and did not provide documentation on using the advanced features.

The previous work set a foundation of code that was moved to more advanced functionality,

help and flexibility. There originally were tabs for the Larmor precession and for the Rabi

Field, but both controls relied on the user to have mastered the theoretical concepts and

equations. The earlier versions of the Rabi Field simulation and the Larmor Precession were

therefore removed and rewritten.

3.3.2 Overview of current work

The rework of the simulator consisted of eight major changes: refactoring the code to be

launched as an application, through JNLP and also as an Applet, removing out-dated third

party libraries, adding save and load functionality, generalizing the qubit operators, rewriting

the Larmor precession and the Rabi field, adding record and playback functionality, and

adding help menus. There were also numerous bug fixes, memory leak fixes and other

66

changes that improved the functionality and usability of the simulator.

The Bloch simulator consists of 40 Java files containing 5,992 lines of code to create the

simulator. There are additional HTML and configuration files that are used to display help

text in the application. One of the features of the language is that the compiled byte codes

can be run on different platforms. Sun Microsystems (now a subsidiary of Oracle), provides

JVMs for Windows(7/XP/Vista/2000/2003/2008), Solaris (32 and 64 bit), Linux (32 and

64 bit), and Mac OSX. There are different versions of Java. The Bloch sphere supports the

Java 2 Standard Edition (J2SE).

3.3.3 Foundational code

The changes that were made to the simulator are non-functional but it was done to correct the

implementation of the qubit operators. The main move was to correct the simple operators

that acted upon the qubits. The original operators were actual rotations of the 3D qubit.

This does achieve the function of the operator visually but this is more difficult to translate

to all operators. The first task was to focus on the manipulation of the α and β complex

values that define a qubit state. This more accurately represents the qubit. In addition, the

state of the qubit can be modified in a more consistent manner when affecting the values

that represent the state of the qubit rather than the approximation of the qubit on a sphere.

The first step to correctly setting the state of the qubit was to use complex numbers.

Appendix A shows the interface that defines the interaction of the ComplexNumberclass.

Currently there are no classes in the J2SE library that support complex numbers. Because

of this, a complex number interface and class was created to complete the simple operations

of addition, subtraction, multiplication, and division. Additionally, the complex conjugate

operation is available. The other interesting feature of this class is the parseString()method

as seen in the listing 3.1. This allows a string the be parsed as a complex number. The

regular expression

67

[+-]?([\d]+[iI]?|[iI]?[\d]+)[+-]?([\d]+[iI]?|[iI]?[\d]+)

defines the allowed string. Before parsing the string, the code will change all letters to lower

case and will remove all whitespace in the string. It will then try to extract the first number.

Listing 3.1: The function parseString() in the ComplexNumber class
/∗∗
∗ Parses the input s t r i n g to s e t the va l u e s to a complex number . A l l wh i t e space
∗ w i l l be removed be f o r e the numberis parsed . The v a l i d va l u e s are s e t in t h i s
∗ r e gu l a r expre s s i on :
∗ ”[+−]?([\d]+[i I] ? | [i I] ? [\ d]+)[+−]?([\d]+[i I] ? | [i I] ? [\ d]+)”
∗
∗ @param complexNumber
∗ The s t r i n g to parse . A l l wh i t e space w i l l be ignored and the
∗ va l u e s o f ” i ” w i l l be case i n s e n s i t i v e .
∗ @return
∗ A complex number wi th the r e a l and imaginary va l u e s s e t . I f
∗ t h e r e are two imaginary , or two r e a l pa r t s to the Str ing , then
∗ t h i s w i l l use the l a s t va lue o f the va lue and the o ther w i l l be
∗ i gnored .
∗ @throws NumberFormatException
∗ I f the s t r i n g does not conta in a v a l i d format o f the number .
∗/

public stat ic ComplexNumber pa r s eS t r i ng (S t r ing complexNumber)
throws NumberFormatException

{
double r e a l = 0 .0 f ;
double imag = 0 .0 f ;
complexNumber = complexNumber . toLowerCase () ;
complexNumber = complexNumber . r e p l a c eA l l (” ” , ””) ;
while (complexNumber . l ength () > 0)
{

i f (isNextNumberImag (complexNumber))
{

imag = parseNextNumber (complexNumber) ;
}
else
{

r e a l = parseNextNumber (complexNumber) ;
}
i f (complexNumber . charAt (0) == ’− ’ | |

complexNumber . charAt (0) == ’+’){
complexNumber = complexNumber . sub s t r i ng (1) ;

}
// f i nd the next occurance o f ’− ’ or ’+ ’
i f (complexNumber . indexOf (’+’) != −1){

complexNumber = complexNumber . sub s t r i ng (
complexNumber . indexOf (’+’)) ;

}

68

else i f (complexNumber . indexOf (’− ’) != −1){
complexNumber = complexNumber . sub s t r i ng (

complexNumber . indexOf (’− ’)) ;
}
else {

complexNumber = ”” ;
}

}
return new ComplexNumber (r ea l , imag) ;

}

In Listing 3.1, isNextNumberImag() determines if there is an ”i” in the next sequence

of the string before a sign character (”-” or ”+”). It will return true if there is an ”i”. The

other function, parseNextNumber(),will parse the string the next sign character and return

back the decimal value of the number. It will include any leading sign characters into the

conversion of the number and will exclude all values of ”i”.

The next important foundation class is the Operatorclass. This class represents a 2x2

matrix where the four elements are complex numbers. It can be applied to other operators

and it can be applied to qubits. The important uses of this class is with the customer operator

and the Rabi field simulation. The Rabi Field uses four different operators from equation

2.30. This is easily accomplished using the Operatorclass. The function multiply() allows

one operator to be multiplied by another. The listing 3.2 shows the action of the multiply

operator. The operator class defines the complex numbers in the matrix as

Ω =

 topLeft topRight

bottomLeft bottomRight



Listing 3.2: The multiply() function in the Operator class
/∗∗
∗ Mu l t i p l i e s the curren t opera tor by the input
∗ opera tor .
∗
∗ @param opera tor
∗ The opera tor t ha t t h i s opera tor i s mu l t i p l i e d
∗ by .

69

∗ @return
∗ A new Operator t ha t i s the product o f t h i s
∗ opera tor and the input opera tor .
∗/

public Operator mult ip ly (Operator operator){
return new Operator (

topLe f t . mul t ip ly (operator . getTopLeft ())
. add (topRight . mul t ip ly (operator . getBottomLeft ())) ,

topLe f t . mul t ip ly (operator . getTopRight ())
. add (topRight . mul t ip ly (operator . getBottomRight ())) ,

bottomLeft . mul t ip ly (operator . getTopLeft ())
. add (bottomRight . mul t ip ly (operator . getBottomLeft ())) ,

bottomLeft . mul t ip ly (operator . getTopRight ())
. add (bottomRight . mul t ip ly (operator . getBottomRight ()))) ;

}

Another important function is the ability to quickly test if the current operator is unitary.

This is done by multiplying the operator by the complex conjugate of itself. This verifies

that the user is creating a valid operator in the custom operator tab. The user can enter any

complex values and this quickly checks to verify that the operation will not move any of the

qubits in to an unknown or unusable state. The function isOperatorUnitary()in Listing

3.3 shows the function that checks if the operator is unitary.

Listing 3.3: The isOperatorUnitary() function available in the Operator.java class
/∗∗
∗ Checks i f the curren t opera tor i s a un i ta ry opera tor . I t does t h i s
∗ by check ing i f the opera tor (A) i s equa l to I when A∗A = I
∗
∗ @return
∗ I f the opera tor mu l t i p l i e d by the complex con juga te i s e q u i v a l e n t
∗ to I . I t w i l l check t ha t each mu l t i p l i e d va lue i s e q u i v a l e n t to
∗ expec ted va lue o f I . This does rounding due to the rounding problems
∗ and p r e c i s i on o f the ComplexNumber
∗/

public boolean i sOperatorUnitary ()
{

return (
topLe f t . getComplexConjugate () . mul t ip ly (topLe f t)

. add (bottomLeft . getComplexConjugate () . mul t ip ly (bottomLeft))
. equalsRounded (new ComplexNumber (1 , 0) , 2) &&

topLe f t . getComplexConjugate () . mul t ip ly (topRight)
. add (bottomLeft . getComplexConjugate () . mul t ip ly (bottomRight))

. equalsRounded (new ComplexNumber (0 , 0) , 2) &&
topRight . getComplexConjugate () . mul t ip ly (topLe f t)

. add (bottomRight . getComplexConjugate () . mult ip ly (bottomLeft))

70

. equalsRounded (new ComplexNumber (0 , 0) , 2) &&
topRight . getComplexConjugate () . mul t ip ly (topRight)

. add (bottomRight . getComplexConjugate () . mult ip ly (bottomRight))
. equalsRounded (new ComplexNumber (1 , 0) , 2)

) ;
}

Another useful function that is used for checking the validity of an operator is the ability

to generate the adjoint of an operator. The adjoint is defined in equation 2.21. Here in

listing 3.4, the function will create the adjoint of itself.

Listing 3.4: The getAdjoint() function available in the Operator.java class
/∗∗
∗ Creates the ad j o i n t o f the curren t ope tor . The curren t
∗ va lue o f the opera tor are :
∗
∗ { t o pLe f t topRigh t }
∗ { bot tomLef t bottomRight }
∗
∗
∗ @return
∗ The ad j o i n t o f the opera tor where the va l u e s are de f ined
∗ from the opera tor va l u e s above :
∗
∗ { t o pLe f t . getComplexConjugate () bot tomLef t . getComplexConjugate () }
∗ { topRight . . getComplexConjugate () bottomRight . getComplexConjugate () }
∗/

public Operator getAdjo int ()
{

return new Operator (topLe f t . getComplexConjugate () ,
bottomLeft . getComplexConjugate () ,

topRight . getComplexConjugate () ,
bottomRight . getComplexConjugate ()) ;

}

With the adjoint defined, the operator class can quickly determine if the value of an

operator is a Hermitian operator by checking that it is both unitary and equal to its adjoint.

The simulator will use this verify that the operators used are Hermitian to verify that they are

valid operators. The function isOperatorHermitian()provides the simple way to leverage

the getAdjoint()and isUnitary()functions in the class. Listing 3.5 shows the code to

check if the current operator is Hermitian.

71

Listing 3.5: The isOperatorHermitian() function available in the Operator.java class
/∗∗
∗ Determines i f the current opera tor i s Hermitian . I f an opera tor
∗ i s Hermitian , then i t i s both un i ta ry and the opera tor i s equa l
∗ to i t ’ s a d j o i n t .
∗
∗ @return
∗ t rue i f the curren t va l u e s o f the opera tor make the opera tor
∗ both un i ta ry and Hermitian (the opera tor i s equa l to i t ’ s a d j o i n t) .
∗/

public boolean i sOperatorHermit ian (){
return i sOperatorUnitary () &&

this . equa l s (getAdjo int ()) ;
}

One of the new features of the simulator is that it can be run as an application and also

as an applet. Originally, the simulator was created as an applet. One of the disadvantages to

this approach was that there was no ability to run the simulator without Internet connection

or if the server providing simulator was down. Additionally, applets tend to be used more

for small applications and can take longer to load when running from a remote server. The

improvement was to provide an applet and a stand alone application that would use the

same code. This was done by moving majority of the code that controls the UI interactions

to the Bloch3D.java class. Once that was completed, the Bloch3D class can be reused in

both the application and the applet. The application uses the Java JFrame class object

to display the simulator and all of the UI components. The applet uses the JApplet class

object to display the simulator in a web browser. The code for the two methods becomes

smaller, allowing the vast majority of the simulator code to work on both. Listing 3.6 shows

the modified JApplet container class that displays the Bloch sphere simulator. Listing 3.7

shows the coding for displaying the Bloch sphere simulator as a stand-alone application.

Listing 3.6: The BlochApplet class that contains the code to display the simulator in an
applet
public class BlochApplet extends JApplet {

private stat ic f ina l long se r ia lVers ionUID = −4523676628636348991L ;
Bloch3D bloch3d ;
/∗∗

72

∗ A one−t ime i n i t i a l i z a t i o n t ha t w i l l
∗ c r ea t e the b l och sphere s imu la tor and
∗ the menu bar a s s o c i a t e d wi th i t .
∗/

public void i n i t () {
bloch3d = new Bloch3D (this . getContentPane ()) ;
setJMenuBar (new BlochMenuBar (bloch3d) . getMenuBar ()) ;

}
/∗∗
∗ This i s run when the app l e t has f i n i s h e d
∗ i n i t a l i z i n g and i s read to s t a r t .
∗/

public void s t a r t () {
getContentPane () . s e tV i s i b l e (true) ;

}
/∗∗
∗ Run when the app l e t i s no l onger to be
∗ run .
∗/

public void stop () {
getContentPane () . s e tV i s i b l e (fa l se) ;
bloch3d = null ;

}
}

Listing 3.7: The BlochApplication class that displays the Bloch sphere simulation in an
stand-along application
public class BlochAppl icat ion {

private stat ic f ina l long se r ia lVers ionUID = 5384905380645652345L ;
/∗∗
∗ The cons t ruc t o r t ha t w i l l c r ea t e the v i s u a l
∗ window (JFrame) o b j e c t and d i s p l a y i t .
∗
∗/

public BlochAppl icat ion () {
try {

UIManager . setLookAndFeel (UIManager
. getSystemLookAndFeelClassName ()) ;

} catch (Exception e) {
e . pr intStackTrace () ;

}
// run t h i s code no matter what .
f ina l ly {

JFrame blochFrame = new JFrame () ;
Bloch3D blochSim = new Bloch3D (blochFrame . getContentPane ()) ;
blochFrame . s e tT i t l e (”Bloch Sphere Simulator ”) ;
blochFrame . s e t S i z e (900 , 700) ;
blochFrame . s e tLoca t i on (0 , 0) ;
blochFrame . s e tDe fau l tC lo seOperat ion (JFrame .EXIT ON CLOSE) ;

73

BlochMenuBar menuBar = new BlochMenuBar (blochSim) ;
blochFrame . setJMenuBar (menuBar . getMenuBar ()) ;
blochFrame . s e tV i s i b l e (true) ;

}
}

/∗∗
∗ The standard main func t i on used to launch
∗ a stand−a lone a pp l i c a t i o n .
∗
∗ @param args
∗ The arguments passed in t o the a pp l i c a t i o n .
∗ There are no used arguments f o r t h i s a p p l i c a t i o n .
∗/

public stat ic void main (St r ing [] a rgs) {
new BlochAppl icat ion () ;

}
}

Both listings show the use of the Bloch3D class which controls the UI of the 3D Bloch

sphere and also the controls on the right side of the application.

3.3.4 Help dialogs

One of the important aspects of the simulator is to help others understand how quantum

gates and operators affect the state of the qubit. This being said, the help dialogs were

created to further provide instruction and demonstration on the function of the operators.

The help dialogs show the rotations of the qubits based on the operator that affects it.

Though the operators do not put the qubits into partial rotation states as they are applied,

the help dialogs show the path of rotation, further aiding in the idea of the rotation.

The help dialogs were created using a base template and all implementing classes of

that template would only need to provide the rotation animation of the qubit state, and

a reference to the HTML that displays the information about the quantum operator. The

operator template is setup into two different pieces, the rotation animation, and the HTML

help information. Figure 3.20 shows the two different sections. The rotation animation is a

small 3D Bloch sphere that displays a single qubit and shows the action of the operator as

74

a slow motion rotation (or series of rotations).

Figure 3.20: The template of the help dialog.

The code design of help dialogs is displayed in the UML diagram referenced in Fig. 3.21.

This shows the package structure, the base class (the ExampleDialog.java class) and the

child classes.

The parent, or base class, that creates the dialog and all of the code associated with the

UI interaction is described in Appendix B. This code defines the dialog, the placement of the

title, the 3D Bloch sphere, and the scrolling text pane. There are three abstract methods

associated with this class. The abstract method defines that any concrete, or class that can

be instantiated with a new operator in Java must have these methods in that class. The

abstract keyword allows the abstract class to define the function signature (inputs, outputs,

name). Using this, the abstract class can use these functions assuming that they will be

75

Figure 3.21: The UML diagram of the example help template and child classes that were
used.

implemented by a concrete, child class. Listing 3.8 shows the function signatures for the

ExampleDialog class.

Listing 3.8: The abstract methods associated with the ExampleDialog.java class

public abstract class ExampleDialog
implements Act ionLi s tener ,
Runnable , IBlochDia log {

. . .

/∗∗
∗ This func t i on shou ld be implemented to show the animation o f the example .

76

∗ I t shou ld cont inue and s top when m dia log . i s V i s i b l e () i s f a l s e .
∗/

public abstract void run () ;
/∗∗
∗ This func t i on w i l l re turn the t i t l e o f the he l p d i a l o g t ha t shou ld be
∗ d i s p l a y ed
∗
∗ @return The t i t l e o f the he l p d i a l o g .
∗/

public abstract St r ing g e tD i a l o gT i t l e () ;
/∗∗
∗ Def ines the html page t ha t shou ld be used in the d i s p l a y o f the he l p
∗ d i a l o g . A l l d i a l o g s shou ld have the html page d i s p l a y ed in the
∗ edu/uc/ ece / b lochSphere /docs f o l d e r o f the b loch3d . j a r
∗
∗ @return The name o f the HTML f i l e (i n c l ud i n g the f i l e e x t ens ion) . The
∗ f o l d e r i s assumed .
∗/

public abstract St r ing getHtmlHelpPage () ;

The abstract functions from are then implemented in a class that inherits from the

ExampleDialog class. The listing 3.9 shows the small amount of code that is required to

implement the σy operator animation. The animation shows a rotation of the qubit around

the Y-axis by an angle of π
2
.

Listing 3.9: The σy help dialog that extends from the ExampleDialog class

/∗∗
∗ The he l p d i a l o g t ha t d i s p l a y s the Sigma Y opera tor .
∗ This w i l l show the in format ion about the opera tor and
∗ w i l l a l s o demonstrate a r o t a t i on around the Y ax i s by
∗ PI/2 , or 180 degrees .
∗
∗ @author Stephen Shary
∗
∗/

public class SigmaYExampleDialog extendsExampleDialog {

protected stat ic boolean m animationRun = fa l se ;

public SigmaYExampleDialog (
Frame parentFrame) {

super (parentFrame) ;
}

@Override
public St r ing g e tD i a l o gT i t l e () {

77

return ”Sigma Y Example” ;
}

@Override
public St r ing getHtmlHelpPage () {

return ”sigmay . html” ;
}

public void run () {
try {

// Wait f o r the d i a l o g to be d i s p l a y ed i n i t i a l l y .
while (! d i a l o g . i s V i s i b l e ()) {

Thread . s l e e p (1 0 0) ;
}
qubitModel . s e tV i s i b l e (true) ;
while (d i a l o g . i s V i s i b l e ()) {

qubitModel . r e s e tAx i sRota t i on s () ;
Thread . s l e e p (1000) ;
// Go through 180 degrees .
for (int i = 0 ; i < 180 ; i++) {

qubitModel . doYAxisRotation (i) ;
qubitModel . f i n i s hRo t a t i on () ;
Thread . s l e e p (2 0) ;

}
Thread . s l e e p (1000) ;

}
} catch (Inter ruptedExcept ion e) {

e . pr intStackTrace () ;
}

}
}

78

3.3.5 Qubit operator

Using the Operator and the ComplexNumber classes, we have the code foundation to quickly

and accurately define and modify the qubit states. This is done in the custom operator tab

of the simulator. The simulator provides the ability for the user to enter in the complex

number values into the four fields for the operator. The class that provides the UI and the

functions to apply common operators is the qubit Operator class. This has a 2x2 grid of

text fields that allows the user to enter in custom operators that are applied to the qubits.

Since the Operator class is available, there are convenient functions to allow the verification

of a valid operator and its application to the qubits in the simulator.

To apply the common operators that are available, the simulator will simply fill out the

2x2 grid of values that define the operator. Each of the buttons that are on the form are

registered with the QubitOperator class so that the class can handle the click action and fill

in the correct values. Listing 3.10 shows the actionPerformed() function that fills out the

values in the grid when the button has been pressed. The function contains the hard-coded

values of each of the operators.

Listing 3.10: The actionPerformed() function in the QubitOperator class.
/∗∗
∗ This i s c a l l e d when a c l i c k event i s f i r e d on one o f the custom opera tor .
∗/

public void act ionPerformed (ActionEvent e)
{

. . .

else i f (e . getSource () . equa l s (this . xOperatorButton)){
s e tOperato rva lue s (”0” , ”1” , ”1” , ”0”) ;

}
else i f (e . getSource () . equa l s (this . yOperatorButton)){

s e tOperato rva lue s (”0” , ”− i ” , ” i ” , ”0”) ;
}
else i f (e . getSource () . equa l s (this . zOperatorButton)){

s e tOperato rva lue s (”1” , ”0” , ”0” , ”−1”) ;
}
else i f (e . getSource () . equa l s (this . hOperatorButton)){

s e tOperato rva lue s (” 0 .7071 ” , ” 0 .7071 ” , ” 0 .7071 ” , ”−0.7071”) ;
}

79

else i f (e . getSource () . equa l s (this . sOperatorButton)){
s e tOperato rva lue s (”1” , ”0” , ”0” , ” i ”) ;

}
else i f (e . getSource () . equa l s (this . tOperatorButton)){

s e tOperato rva lue s (”1” , ”0” , ”0” , ” 0.707+0.707 i ”) ;
}

. . .
}

There are three available operators that are general rotation operations. The user can

choose between a rotation around the X, Y, or Z axis. When the user selects one of the rota-

tion operators, the simulator then prompts the user to enter the magnitude of the rotation.

This is entered in radians. Listing 3.11 shows the code to enter the custom angle and listing

3.12 shows the section of the actionPerformed() that handles the input of the angle and

then the calculates the operator values.

Listing 3.11: The getRotationAngle() function in the QubitOperator class.
/∗∗
∗ Prompts the user to en ter the r o t a t i on ang le (in rad ians) . This w i l l
∗ then parse and re−prompt the user to en ter and ang le i f t h e r e are
∗ any problems .
∗
∗ @return
∗ A doub le va lue o f the r o t a t i on ang le . I f the user has cance l ed
∗ from the process , then t h i s i n d i c a t e s t ha t the user wants to
∗ cance l the opera tor ac t i on .
∗/

private Double getRotat ionAngle (){
Double ang le = null ;
while (ang le == null){

St r ing ang l eS t r i ng = (St r ing) JOptionPane . showInputDialog (
this . getContro lPane l () ,
” Please ente r the r o t a t i on ang le (in rad ians) ” ,
”Enter Rotation Angle” ,
JOptionPane .OK OPTION) ;
i f (ang l eS t r i ng == null){

return null ;
}
try{

ang le = Double . parseDouble (ang l eS t r i ng) ;
}
catch (NumberFormatException nfe){

JOptionPane . showMessageDialog (this . getContro lPane l () ,
” Please ente r a number to r ep r e s en t the ang le (in rad ians) . ”) ;

80

}
}
return ang le . doubleValue () ;

}

Listing 3.12: The actionPerformed() function in the QubitOperator class showing the action
of the custom rotation operators.
/∗∗
∗ This i s c a l l e d when a c l i c k event i s f i r e d on one o f the custom opera tor .
∗/

public void act ionPerformed (ActionEvent e)
{

. . .
else i f (e . getSource () . equa l s (this . rXOperatorButton)){

Double ang le = getRotat ionAngle () ;
i f (ang le == null){

return ;
}
ComplexNumber topLe f t =

new ComplexNumber (Math . cos (ang le / 2) , 0) ;
ComplexNumber topRight =

new ComplexNumber (0 , −1 ∗ Math . s i n (ang le / 2)) ;
ComplexNumber bottomLeft =

new ComplexNumber (0 , −1 ∗ Math . s i n (ang le / 2)) ;
ComplexNumber bottomRight =

new ComplexNumber (Math . cos (ang le / 2) , 0) ;
s e tOperato rva lue s (topLe f t . t oS t r i ng (3) ,

topRight . t oS t r i ng (3) ,
bottomLeft . t oS t r i ng (3) ,
bottomRight . t oS t r i ng (3)) ;

}
else i f (e . getSource () . equa l s (this . rYOperatorButton)){

Double ang le = getRotat ionAngle () ;
i f (ang le == null){

return ;
}
ComplexNumber topLe f t =

new ComplexNumber (Math . cos (ang le / 2) , 0) ;
ComplexNumber topRight =

new ComplexNumber (−1 ∗ Math . s i n (ang le / 2) , 0) ;
ComplexNumber bottomLeft =

new ComplexNumber (Math . s i n (ang le / 2) , 0) ;
ComplexNumber bottomRight =

new ComplexNumber (Math . cos (ang le / 2) , 0) ;
s e tOperato rva lue s (topLe f t . t oS t r i ng (3) ,

topRight . t oS t r i ng (3) ,
bottomLeft . t oS t r i ng (3) ,
bottomRight . t oS t r i ng (3)) ;

}
else i f (e . getSource () . equa l s (this . rZOperatorButton)){

81

Double ang le = getRotat ionAngle () ;
i f (ang le == null){

return ;
}
ComplexNumber topLe f t =

new ComplexNumber (Math . cos (ang le / 2) , −1 ∗ Math . s i n (ang le / 2)) ;
ComplexNumber topRight =

new ComplexNumber (0 , 0) ;
ComplexNumber bottomLeft =

new ComplexNumber (0 , 0) ;
ComplexNumber bottomRight =

new ComplexNumber (Math . cos (ang le / 2) , Math . s i n (ang le / 2)) ;
s e tOperato rva lue s (topLe f t . t oS t r i ng (3) ,

topRight . t oS t r i ng (3) ,
bottomLeft . t oS t r i ng (3) ,
bottomRight . t oS t r i ng (3)) ;

}

. . .
}

All of the coding above has shown how the custom operator values are set into the UI and

allow them to be applied to the qubits. The code below will show how the qubit operators

are applied to the change the qubit values. There are three functions that are used to apply

an operator. There is the getOperatorFromUI()function, shown in listing 3.15 that fetches

the complex values from text fields on the UI. This does a complex number validation making

sure that all of the four fields are valid complex numbers. This uses the functions in the

ComplexNumber class to parse the strings and make a determination if the String values are

valid. The second function is the checkOperator()function. This function, shown in listing

3.16, will look at the four complex numbers fetched from the UI and determine if together,

they form a valid quantum operator can be created. The validation that is done uses the

Operator class to verify that the operator is unitary. The last is the applyOperation()

function takes the list of qubits and applies the operator that was created. Listing 3.14

shows the code that used to complete the applyOperation() function. When the code

has arrived at the applyOperation() function, it is assumed that all applicable checks and

validations have been completed. Listing 3.13 shows the code the orchestrates all of these

82

functions.

Listing 3.13: The actionPerformed() that shows the application of the qubit operations.
/∗∗
∗ This i s c a l l e d when a c l i c k event i s f i r e d on one o f the custom opera tor .
∗/

public void act ionPerformed (ActionEvent e)
{

i f (e . getSource () . equa l s (applyToVis ib le)){
i f (checkOperator ()){

applyOperation (getAppl i cab leQubi t s (true)) ;
}

}
else i f (e . getSource () . equa l s (this . applyToAll)){

i f (checkOperator ()){
applyOperation (getAppl i cab leQubi t s (fa l se)) ;

}
}

. . .
}

Listing 3.14: The function applyOperation()
/∗∗
∗ This w i l l app ly the opera tor on the each o f the q u b i t s t h a t
∗ are supp l i e d in the Vector . I f the Vector i s empty , then the
∗ opera t ion w i l l not be done .
∗
∗ @param qu b i t s
∗ The q u b i t s t h a t shou ld have the opera tor app l i e d to them .
∗/

private void applyOperation (Vector<Qubit>qub i t s){
Operator operator = getOperatorFromUI () ;
for (Qubit qubit : qub i t s){

ComplexNumber qubitAlphaNum =
new ComplexNumber (qubit . m alphaValue , 0) ;

ComplexNumber qubitBetaNum =
new ComplexNumber (qubit . m betaRealValue ,

qubit . m betaImaginaryValue) ;
ComplexNumber productAlpha =

operator . applyOperatorToAlpha (qubitAlphaNum ,
qubitBetaNum) ;

ComplexNumber productBeta =
operator . applyOperatorToBeta (qubitAlphaNum ,

qubitBetaNum) ;
qubit . setAlphaBetaFul lValues (productAlpha . getRealPart () ,

productAlpha . getImaginaryPart () ,
productBeta . getRealPart () ,
productBeta . getImaginaryPart ()) ;

83

}
}

Listing 3.15: The function getOperatorFromUI()
/∗∗
∗ Fetches the opera tor from the va l u e s t ha t are s e t on the UI .
∗ I f the va l u e s are not w e l l formed , then t h i s w i l l show a pop−up
∗ d i a l o g wi th the va lue t ha t i s malformed .
∗
∗ @return
∗ The opera tor repre sen t ed by the va l u e s s e t on the UI . I f any
∗ o f the va l u e s are not v a l i d complex numbers then t h i s w i l l
∗ re turn nu l l .
∗/

public Operator getOperatorFromUI ()
{

St r ing errorValue = null ;
try {

er rorValue = ”Alpha” ;
ComplexNumber alphaNum = new ComplexNumber (a lphaTextFie ld . getText ()) ;
e r rorVa lue = ”Beta” ;
ComplexNumber betaNum = new ComplexNumber (betaTextFie ld . getText ()) ;
e r rorVa lue = ”Gamma” ;
ComplexNumber gammaNum = new ComplexNumber (gammaTextField . getText ()) ;
e r rorVa lue = ”Delta ” ;
ComplexNumber deltaNum = new ComplexNumber (de l taTextF i e ld . getText ()) ;
return new Operator (alphaNum , betaNum , deltaNum , gammaNum) ;

}
catch (NumberFormatException ne)
{

JOptionPane . showMessageDialog (this . mainControlPanel ,
e r rorVa lue + ” value must be in the form A+Bi or A−Bi” ,
”Alpha Number Error ” ,
JOptionPane .ERRORMESSAGE) ;

return null ;
}

}

Listing 3.16: The checkOperator() function.
/∗∗
∗ An in t e r n a l check to v e r i f y t ha t the opera tor i s non−nu l l , a l l
∗ e n t r i e s are w e l l formed complex numbers and t ha t the opera tor
∗ i s un i ta ry .
∗
∗ @return
∗ t rue i f the opera tor i s non−nu l l , we l l−formed , and t ha t the
∗ opera tor va l u e s make the opera tor un i ta ry .
∗ o the rw i s e f a l s e .

84

∗/
private boolean checkOperator () {

Operator operator = getOperatorFromUI () ;
i f (operator == null){

return fa l se ;
}
else i f (! operator . i sOperatorUnitary ()){

JOptionPane . showMessageDialog (this . mainControlPanel ,
”The operator must be Unitary . ” ,
”Operator Value Error ” ,
JOptionPane .ERRORMESSAGE) ;

return fa l se ;
}
return true ;

}

3.3.6 Larmor precession code

The Larmor Precession is the first of the two time evolution simulations that were imple-

mented. This simulation shows the evolution of the qubit state as a constant magnetic force

is applied along the Z-axis. The UI for this simulation is fairly simple: a single slider to

determine the strength of the magnetic field and a start, stop and restart button to control

the simulator. The class LarmorPrecession contains the code for the UI and the qubit in-

teraction when the precession is started. The class contains two main functions that handle

the control of the simulation and the calculation of the qubit states during the simulation.

The LarmorPrecession implements the Runnable interface. Implementing this interface

means that this class will have a run() function. This allows a new thread to be created

in the JVM that will execute the run() function. The run() function will continuous run

until the function getApplyField() returns false. This function simply stores the boolean

variable that defines if the precession should be running. When the simulation is started,

then the setApplyField(true) function is called. When the stop button is hit, then the

setApplyField(false) is called. The run() method will then detect the change in the

value after a single simulation step and will stop. The actionPerformed() function, shown

85

in listing 3.17, shows the actions of the different button actions. ‘

Listing 3.17: The actionPerformed() function in the LarmorPrecession class
/∗∗
∗ Receives a l l e ven t s from the r e g i s t e r e d components on the pane l and
∗ proce s s e s t h e i r a c t i on s .
∗
∗ @param e
∗/

public void act ionPerformed (ActionEvent e) {
Object component = e . getSource () ;
// I f we h i t s t a r t , then only s t a r t when i t i sn ’ t a l r eady running .
i f (component . equa l s (m startButton)) {

i f (! getApplyFie ld ()) {
se tApplyFie ld (true) ;
new Thread (this) . s t a r t () ;

}
}
// I f we h i t stop , then s e t the App lyFie ld to f a l s e .
i f (component . equa l s (m stopButton))

setApplyFie ld (fa l se) ;
// I f we h i t the r e s e t button , then s top the f i e l d , and s e t the va lue to
// 1.0 t e s l a (10 on the JS l i d e r) .
i f (component . equa l s (m resetButton)) {

se tApplyFie ld (fa l se) ;
m t e s l a S l i d e r . setValue (1 0) ;
for (int i = 0 ; i < qbi tVector . s i z e () ; i++) {

Qubit qb i t = (Qubit) qb i tVector . get (i) ;
// Set the q u b i t ph i va lue back to the o r i g i n a l .
qb i t . s e tPhi (Math . toDegrees (((Double) m or ig ina lPh i . get (i))

. doubleValue ())) ;
}

}
}

The run() function applies the new φ state to each of the qubit based on the strength

of the magnetic field. The precession is calculated through several constants and through

the magnetic field strength. The spin of the qubit is then scaled down to approximately to

10 radians per second. Listing 3.18 shows the constants in the class and the run() function

that updates the qubit values as the precession occurs.

Listing 3.18: The code in the LarmorPrecession class to apply magnetic field to the qubit(s)
public stat ic f ina l double G STAR = 2.002319 ;
public stat ic f ina l double M 0 = 9.1 ∗ Math . pow(10 , −31);
public stat ic f ina l double E = 1.6 ∗ Math . pow(10 , −19);

86

public stat ic f ina l double H BAR = 6.582 ∗ Math . pow(10 , −16);
public stat ic f ina l double W L = (E ∗ G STAR) / (2 ∗ M 0) ;
public stat ic f ina l double TIME SCALE FACTOR = Math . log10 (W L) ;

. . .

/∗∗
∗ The thread spawned func t i on t ha t w i l l run to app ly the magnetic f i e l d .
∗/

public void run () {
long startTime = Calendar . g e t In s tance () . ge tT imeInMi l l i s () ;
m or ig ina lPh i = new Vector<Double >() ;
for (int i = 0 ; i < qbi tVector . s i z e () ; i++)

m or ig ina lPh i . add (new Double (Math . toRadians (
((Qubit) qb i tVector . get (i)) . getPhi ()))) ;

while (getApplyFie ld () && qbitVector != null
&& qbitVector . s i z e () > 0) {

double deltaTime = new Long (Calendar . g e t In s tance ()
. ge tT imeInMi l l i s ()
− startTime) . doubleValue () / 1000 ;

double de l taPhi = deltaTime ∗ W L
∗ Double . parseDouble (

m BzSl iderValueLabel . getText ())
∗ Math . pow(10 , −TIME SCALE FACTOR) ;

for (int i = 0 ; i < qbi tVector . s i z e () ; i++) {
Qubit qb i t = (Qubit) qb i tVector . get (i) ;
// Only app ly to v i s i b l e q b i t s .
i f (! qb i t . i s V i s i b l e ())

continue ;
// Set the new va lue and remember to conve r t t o degrees .
qb i t . s e tPhi (Math . toDegrees (

m or ig ina lPh i . get (i) − de l taPhi)) ;
// We s l e e p f o r 1 m i l l i s e c ond to g i v e the CPU a break .
// a l s o improves the UI re spons i v ene s s .
try {

Thread . s l e e p (1) ;
} catch (Inter ruptedExcept ion e) {

e . pr intStackTrace () ;
}

}
}

}

3.3.7 Rabi field code

The Rabi Field is the second of the two time evolution simulations that were implemented

in this simulator. This is similar in implementation to the Larmor Precession, using similar

87

functions, but the implementation uses more foundation classes as the simulation is much

more complex. The Rabi field contains three sliders and a check box to vary the different

parameters of the simulation. The most complicated part of the Rabi Field simulation is the

calculation of the correct operator. This is done by taking the slider values and then creating

equation 2.112. The code in listing 3.19 shows the creation of the Operator object that can

be used to set the correct qubit state at ∆t. The input parameters are for the operator are

the three slider values ω, βz, and βperp. Along with ∆t, the inputs can create the operator

that will calculate the correct state of the original qubit.

Listing 3.19: The calculateOperator() function in the Rabi Field class

/∗∗
∗ Ca l cu l a t e s the co r r e c t opera tor t ha t w i l l move the q u b i t from the o r i g i n a l
∗ s t a t e to the s t a t e at deltaTime based on the input parameters .
∗
∗ @param omega
∗ The r o t a t i o n a l speed o f the b perp magnetic f i e l d a long the
∗ XY−ax i s .
∗ @param be ta pe rp
∗ The s t r en g t h (in Te l sas) o f the magnetic f i e l d t ha t i s r o t a t ed
∗ around the XY−ax i s .
∗ @param be t a z
∗ The s t r en g t h (in Te l sas) o f the magnetic f i e l d t ha t i s run a long
∗ the Z−ax i s .
∗ @param deltaTime
∗ The change in time from the o r i g i n a l s t a t e o f the q u b i t (s) .
∗
∗ @return The 2x2 Operator o b j e c t t h a t r ep r e s en t s the r o t a t i on o f the
∗ o r i g i n a l q u b i t s t a t e s to t h e i r c o r r e c t placement .
∗/

private Operator ca l cu l a t eOpera to r (double omega ,
double beta perp ,
double beta z ,
double deltaTime) {

double W = omega ;
double W1 = beta perp ;
double W0 = beta z ;
i f (matchFrequencies . i s S e l e c t e d ()) {
W = Math . sq r t (W0) ;
}
double dW = (W ∗ W) − W0;
Operator rOperator =

new Operator (
new ComplexNumber (Math . cos (W ∗ deltaTime/ 2) ,

88

−1 ∗ Math . s i n (W ∗ deltaTime / 2)) ,
new ComplexNumber (0 , 0) ,
new ComplexNumber (0 , 0) ,
new ComplexNumber (Math . cos (W ∗ deltaTime / 2) ,

Math . s i n (W ∗ deltaTime / 2))) ;
double b = (−1 ∗ W1 ∗ deltaTime) / 2 ;
double a = (dW ∗ deltaTime) / 2 ;
double q = Math . sq r t ((a ∗ a) + (b ∗ b)) ;
double bOverAMinusQ = (a − q) == 0 ? 0 : b / (a − q) ;
double bOverAPlusQ = (a + q) == 0 ? 0 : b / (a + q) ;
Operator sOperator =

new Operator (
new ComplexNumber(−1 ∗ bOverAMinusQ , 0) ,
new ComplexNumber(−1 ∗ bOverAPlusQ , 0) ,
new ComplexNumber (1 , 0) ,
new ComplexNumber (1 , 0)) ;

Operator eLambdaOperator =
new Operator (

new ComplexNumber (Math . cos (q) , Math . s i n (q)) ,
new ComplexNumber (0 , 0) ,
new ComplexNumber (0 , 0) ,
new ComplexNumber (Math . cos (q) , −1 ∗ Math . s i n (q))) ;

Operator s Inver seOperator =
new Operator (

new ComplexNumber (1 , 0) ,
new ComplexNumber (bOverAPlusQ , 0) ,
new ComplexNumber(−1 , 0) ,
new ComplexNumber(−1 ∗ bOverAMinusQ , 0)) ;

return rOperator . mul t ip ly (
sOperator . mul t ip ly (

eLambdaOperator . mul t ip ly (s Inver seOperator)))) ;
}

One of the interesting parts of the calculateOperator() function is the part that checks

if the value of ω (W) is set to the square root of ω0 (W 0). This setting will match ω to

the Larmor frequency.

The animation that shows the movement of the Rabi Field is similar to the Larmor

Precession implementation in that it runs on a separate thread and will continue until the

boolean function getApplyField() return false. Since the operator that is created for the

Rabi Field calculates the rotation of the qubit(s) from their original position, the original α

and β values need to be saved because the values stored in the Qubit objects are the last state

of the simulation at ∆t− 1. The code function in listing 3.20 shows the run() function that

89

loops through and updates the qubit values. This calls the calculateOperator() function

(as seen in figure 3.19) at each ∆t step to determine the operator that will move each qubit

from its original state to its state at time t.

Listing 3.20: The run() function in the RabiField class.

/∗
∗ Created to be run when the s t a r t bu t ton has been s e l e c t e d . This shou ld
∗ app ly the animation to the v i s i b l e q u b i t s .
∗
∗ @see java . lang . Runnable#run ()
∗/

public void run () {
long startTime = Calendar . g e t In s tance () . ge tT imeInMi l l i s () ;
a lphaValues = new Vector<ComplexNumber>() ;
betaValues = new Vector<ComplexNumber>() ;
for (Qubit qb i t : m qbits) {

alphaValues . add (qb i t . getAlphaValue ()) ;
betaValues . add (qb i t . getBetaValue ()) ;

}
double deltaTime = 0 ;
while (getApplyFie ld () && m qbits != null && m qbits . s i z e () > 0) {

deltaTime = new Long (
Calendar . g e t In s tance () . ge tT imeInMi l l i s () − startTime)
. doubleValue () / 1000 ;

double beta z = Double . parseDouble (m magFieldValueLabel . getText ()) ;
double beta perp = Double . parseDouble (m magPerpValueLabel . getText ()) ;
double omega = Double . parseDouble (m omegaValueLabel . getText ()) ;

Operator f i na lOpe ra to r = ca l cu l a t eOpera to r (omega ,
beta perp ,
beta z ,
deltaTime) ;

int counter = 0 ;
for (Qubit qb i t : m qbits) {

// Only app ly to v i s i b l e q b i t s .
i f (qb i t . i s V i s i b l e ()) {

ComplexNumber betaValue = alphaValues . get (counter) ;
ComplexNumber alphaValue = betaValues . get (counter) ;
qb i t . setAlphaBetaValues (

f i na lOpe ra to r . applyOperatorToAlpha (alphaValue , betaValue) ,
f i na lOpe ra to r . applyOperatorToBeta (alphaValue , betaValue)) ;

i f (i sShowPrev iousStates ()) {
addTrackDot (qb i t) ;

}
}
counter++;

}
// This w i l l keep the CPU from sp i k i n g .

90

try {
Thread . s l e e p (2) ;

} catch (Inter ruptedExcept ion e) {
e . pr intStackTrace () ;

}
}

}

The run function has a reference to the TrackDot class. This class is used to store the

previous values of the qubits as they rotate around the origin. The JCheckBox class used in

the UI allows the user to show the previous value of each qubit. The function addTrackDot()

allows the current value of the qubit to be saved and kept in a Vector or list of previous

values. When the the list has exceeded a certain size (in the current implementation 1600),

then the list will remove the oldest point and then add the newest value to the end. This

limiting is done to maintain the performance of the simulator.

Listing 3.21: The addTrackDot() function for the RabiField class

public stat ic f ina l int MAXNUMPREV STATES = 1600 ;

. . .

/∗∗
∗ Adds a new ” t rack dot ” or sma l l p o s i t i o n dot r ep r e s en t i n g
∗ the prev ious va lue o f the q u b i t .
∗
∗ @param qub i t
∗ The curren t q u b i t to c r ea t e a new po s i t i o n dot f o r .
∗/

private void addTrackDot (Qubit qubit) {
Vector<TrackDot> trackDots = a l lTrack s . get (qubit) ;
i f (trackDots == null) {

trackDots = new Vector<TrackDot>() ;
trackDots . add (

new TrackDot (
new Double (0 . 8 f) . doubleValue () ,
qubit . getTh () ,
qubit . getPhi () ,
this . parentBG ,
qubit . getQubitColor () ,
fa l se)) ;

a l lT rack s . put (qubit , trackDots) ;
} else {

i f (trackDots . s i z e () > MAXNUMPREV STATES) {

91

trackDots . get (0) . k i l l () ;
trackDots . remove (0) ;

}
Color3 f c o l o r = qubit . getQubitColor () ;
double magnitude = 0 .8 f ;
boolean big = fa l se ;
t rackDots . add (

new TrackDot (
magnitude ,
qubit . getTh () ,
qubit . getPhi () ,
this . parentBG ,
co lo r ,
b ig)) ;

}
}

92

Chapter 4

Conclusion

The Bloch sphere simulator provides the ability for those that are studying the field of

quantum mechanics and quantum computation to better understand the effects of quantum

mechanical gates and the evolution of the qubit with magnetic fields. The simulator does

have the ability to store the current qubit state, and also record and playback a series of

quantum operations. This allows for the simulator to be expanded beyond just the simple

execution of single operators. Many times a tool can best be understood an applied when

used in the field. The simulator may provide additional benefits or may be able to describe

qubit state changes that were not intended as part of its original design. This in no way

should be discouraged, but rather encouraged.

Further expansions of this simulator can be explored down two different paths. The

first is the expanded path of magnetic field interactions. The simulator can be extended

to simulate the effect of random magnetic fields, magnetic field pulses. Though the Rabi

field and the spin flip effect is very important and the simulator provides controls that set

the strength and rotation, expanded flexibility of the magnetic fields would allow further

simulations.

The second avenue to expand the work on the simulator is to integrate the visualization of

93

qubit states with a quantum circuit simulator. There are different quantum circuit simulators

as described in Section 1.2 that can be used in conjunction with this simulator. The Bloch

sphere provides a way for the state of one or more qubits to be visualized and can help others

see how the state of a qubit evolves over time.

Additional enhancements can be made through integration with other tools. Like the

suggestion to integrate the simulator with a quantum circuit simulator, export and import

functions can be very useful. The transfer of a qubit state, or time evolution to Matlab and

other mathematical programs provides the most flexible expansion of the capabilities of the

simulator.

The Bloch sphere simulator provides a good basis to understand and explore quantum

mechanical gates and interactions. The hope and intent is to provide a solid step for others

to advance the field.

94

Bibliography

[1] Java 3d 1.5.2 release notes. https://j3d-core.dev.java.net/j3d1_5_2/

RELEASE-NOTES.html.

[2] Java.com: Java + you. http://java.com.

[3] Dave Bacon and Wim van Dam. Recent progress in quantum algorithms. Commun.

ACM, 53(2):84–93, 2010.

[4] Ryan S. Bennink, Carlos R. Stroud, and Robert W. Boyd. Graphical solution of co-

herent raman systems using the bloch sphere. In Conference on Lasers and Electro-

Optics/Quantum Electronics and Laser Science Conference, page QTuG17. Optical So-

ciety of America, 2003.

[5] Marc Cahay and Supriyo Bandyopadhyay. Introduction to Spintronics. CRC Press,

2008.

[6] Simona Caraiman, Alexandru Archip, and Vasile Manta. A grid enabled quantum

computer simulator. Symbolic and Numeric Algorithms for Scientific Computing, In-

ternational Symposium on, 0:189–196, 2009.

[7] N. J. Cerf, C. Adami, and P. G. Kwiat. Optical simulation of quantum logic. Phys.

Rev. A, 57(3):R1477–R1480, Mar 1998.

95

[8] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev.

Lett., 74(20):4091–4094, May 1995.

[9] H. K. Cummins and J. A. Jones. Nuclear magnetic resonance: a quantum technology

for computation and spectroscopy, 2000.

[10] David Deutsch. Quantum theory, the church-turing principle and the universal quantum

computer. 400:97–117, 1985.

[11] H. Q. Ding. Monte carlo simulations of quantum systems on massively parallel com-

puters. In Supercomputing ’93: Proceedings of the 1993 ACM/IEEE conference on

Supercomputing, pages 34–43, New York, NY, USA, 1993. ACM.

[12] David P. Divincenzo. The physical implementation of quantum computation. Fortschr.

Phys, 48:2000, 2000.

[13] Sara Felloni, Alberto Leporati, and Giuliano Strini. Diagrams of states in quantum

information: an illustrative tutorial. Technical Report arXiv:0904.2656, Apr 2009.

Comments: 29 pages, 25 figures, to be published in IJUC - International Journal of

Unconventional Computing.

[14] Sara Felloni, Alberto Leporati, and Giuliano Strini. Evolution of quantum systems

by diagrams of states. Technical Report arXiv:0912.0026, Dec 2009. Comments: 20

pages, 12 figures; to be published in IJUC - International Journal of Unconventional

Computing.

[15] Richard P. Feynman. Quantum mechanical computers. Optics News, 11(2):11–20, 1985.

[16] Richard Phillips Feynman. Feynman Lectures on Computation. Perseus Books, Cam-

bridge, MA, USA, 2000.

96

[17] Ian Glendinning. The bloch sphere. http://www.vcpc.univie.ac.at/~ian/hotlist/

qc/talks/bloch-sphere.pdf, February 2005.

[18] Lov K. Grover. A fast quantum mechanical algorithm for database search. In ANNUAL

ACM SYMPOSIUM ON THEORY OF COMPUTING, pages 212–219. ACM, 1996.

[19] Anthony J. G. Hey, editor. Feynman and computation: exploring the limits of computers.

Perseus Books, Cambridge, MA, USA, 1999.

[20] Changming Huo. A Bloch Sphere Animation Software using a Three Dimensional Java

Simulator. Master’s thesis, University of Cincinnati, Cincinnati, OH, 2010.

[21] J. A. Jones and M. Mosca. Implementation of a quantum algorithm on a nuclear

magnetic resonance quantum computer. The Journal of Chemical Physics, 109(5):1648–

1653, 1998.

[22] Hideaki Kikuchi, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, Hiroshi Iyetomi,

Shuji Ogata, Takahisa Kouno, Fuyuki Shimojo, Kenji Tsuruta, and Subhash Saini.

Collaborative simulation grid: multiscale quantum-mechanical/classical atomistic sim-

ulations on distributed pc clusters in the us and japan. In Supercomputing ’02: Proceed-

ings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–8, Los Alamitos,

CA, USA, 2002. IEEE Computer Society Press.

[23] D. V. Melnikov L. X. Zhang and Jean-Pierre Leburton. Simulation of spin-qubit quan-

tum dot circuit with integrated quantum point contact read-out. Journal of Computa-

tional Electronics, 4(1-2):111–114, Aug 2005.

[24] Shai Machnes. Qlib - a matlab package for quantum information theory calculations

with applications. 2007.

97

[25] A Mandilara, J W Clark, and M S Byrd. Elliptical orbits in the bloch sphere. Journal

of Optics B: Quantum and Semiclassical Optics, 7(10):S277, 2005.

[26] George Viamontes Manoj, Manoj Rajagopalan, Igor L. Markov, and John P. Hayes.

Gate-level simulation of quantum circuits. In Los Alamos Quantum Physics Archive,

Aug. 2002 http://xxx.lanl.gov/abs/quant-ph/0208003, pages 295–301, 2003.

[27] Mauro Marinilli. Java Deployment: with JNLP and WebStart. Sams, Indianapolis, IN,

USA, 2001.

[28] Peter J. Mohr, Barry N. Taylor, and David B. Newell. Codata recommended values of

the fundamental physical constants: 2006. Rev. Mod. Phys., 80(2):633–730, Jun 2008.

[29] Roger G. Newton. Quantum Physics: A Text for Graduate Students. Springer, 2002.

[30] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-

mation. Cambridge University Press, 2000.

[31] B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse. New measurement of the elec-

tron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett.,

97(3):030801, Jul 2006.

[32] J. F. Poyatos, J. I. Cirac, and P. Zoller. Complete characterization of a quantum process:

The two-bit quantum gate. Phys. Rev. Lett., 78(2):390–393, Jan 1997.

[33] I. I. Rabi. On the process of space quantization. Phys. Rev., 49(4):324–328, Feb 1936.

[34] Ramamurti Shankar. Principles of Quantum Mechanics. Springer, 1994.

[35] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

98

Appendices

99

Appendix A

Interface for IComplexNumber.java

IComplexNumber.java

package edu . uc . ece . blochSphere ;

/∗∗
∗ The r ep r e s en t a t i on o f complex numbers . This p rov ide s the a b i l i t y to add ,
∗ sub t rac t , mu l t i p l y , and d i v i d e by o ther complex numbers . There i s a l s o some
∗ robus t pars ing f u n c t i o n a l i t y to import a s t r i n g and conver t i t to a Complex
∗ Number .
∗
∗ @author Stephen Shary
∗
∗/

public interface IComplexNumber {

/∗∗
∗ Allows the r e a l par t o f the Complex Number to be de f ined .
∗
∗ @param r ea l
∗ The r e a l par t o f the complex number . I f t h e r e i s no r e a l part ,
∗ then supp ly 0 .0 f .
∗/

public void setRea lPart (double r e a l) ;
/∗∗
∗ Allows the imaginary par t o f the complex number to be de f ined .
∗
∗ @param imaginary
∗ The imaginary par t o f the complex number .
∗/

public void set ImaginaryPart (

100

double imaginary) ;
/∗∗
∗ Gets the r e a l par t o f the Complex Number .
∗
∗ @return The r e a l par t o f the complex number . I f t h e r e i s not de f ined
∗ value , then the va lue w i l l be 0 .0 f .
∗/

public double getRealPart () ;
/∗∗
∗ Gets the imaginary par t o f the Complex Number .
∗
∗ @return The imaginary par t o f the complex number . I f t h e r e i s not de f ined
∗ value , then the va lue w i l l be 0 .0 f .
∗/

public double getImaginaryPart () ;
/∗∗
∗ Returns a new ComplexNumber o b j e c t where the r e a l par t o f the number i s
∗ una f f e c t e d and the imaginary par t i s mu l t i p l i e d by ”−1”, e f f e c t i v e l y
∗ changing the s i gn o f the imaginary par t o f the complex number .
∗
∗ @return A new ComplexNumber o b j e c t where the new o b j e c t i s the complex
∗ con juga te o f the curren t va lue o f t h i s o b j e c t .
∗/

public ComplexNumber getComplexConjugate () ;
/∗∗
∗ Returns a new complex number where the va lue o f t h i s complex number i s
∗ added to the input parameter .
∗
∗ @param compNum
∗ The complex number t ha t shou ld be added to t h i s number .
∗ @return The sum of the two complex numbers . I f the input number i s nu l l ,
∗ then t h i s w i l l r e turn the a new complex number o b j e c t wi th the
∗ va l u e s o f t h i s .
∗/

public ComplexNumber add (
ComplexNumber compNum) ;

/∗∗
∗ Returns a new complex number where the va lue o f t h i s complex number i s
∗ s u b t r a c t e d by the input parameter .
∗
∗ @param compNum
∗ The complex number t ha t shou ld be su b t r a c t e d from t h i s number .
∗ @return The d i f f e r e n c e o f the two complex numbers . I f the input number i s
∗ nu l l , then t h i s w i l l r e turn the a new complex number o b j e c t wi th
∗ the va l u e s o f t h i s .
∗/

public ComplexNumber subt rac t (
ComplexNumber compNum) ;

/∗∗
∗ Returns a new complex number where the va lue o f t h i s complex number
∗ mu l t i p l i e d by the input parameter .

101

∗
∗ @param compNum
∗ The complex number t ha t shou ld be mu l t i p l i e d by t h i s number .
∗ @return The product o f the two complex numbers . I f the input number i s
∗ nu l l , then t h i s w i l l r e turn the a new complex number wi th a va lue
∗ o f zero (f o r r e a l and imaginary par t s) .
∗/

public ComplexNumber mult ip ly (
ComplexNumber compNum) ;

/∗∗
∗ Returns a new complex number where the va lue o f t h i s complex number i s
∗ d i v i d ed by the input parameter .
∗
∗ @param compNum
∗ The complex number t ha t t h i s number w i l l be d i v i d ed by .
∗ @return The r e s u l t o f d i v i d i n g t h i s by the input complex number . I f the
∗ input number i s nu l l , then t h i s w i l l r e turn the a new complex
∗ number wi th a va lue o f zero (f o r r e a l and imaginary par t s) .
∗/

public ComplexNumber dividedBy (
ComplexNumber compNum) ;

/∗∗
∗ Determines i f the input number i s the complex con juga te o f t h i s .
∗
∗ @param conjuga te
∗ The input number to check i f i t i s the complex con juga te .
∗ @return t rue i f the input complex number i s non−nu l l and i t i s the
∗ complex con juga te o f the current va lue . Otherwise , f a l s e .
∗/

public boolean isComplexConjugateOf (
ComplexNumber conjugate) ;

/∗∗
∗ Determines i f the input number i s equa l to the curren t va l u e s .
∗
∗ @return t rue i f the input o b j e c t i s a complex number wi th the r e a l and
∗ imaginary par t s t h a t are equa l . Otherwise , f a l s e .
∗/

public boolean equa l s (
Object equalsComplex) ;

/∗∗
∗ Determines i f the number are equa l to a c e r t a i n degree o f accuracy .
∗
∗ @param equalsComplex
∗ The complex number to compare .
∗ @param dec imalP laces
∗ The number o f decimal p l a c e s to check to in the comparison o f
∗ the imaginary and r e a l va l u e s .
∗ @return t rue i f the va l u e s are non−nu l l and they are equa l to the number
∗ o f decimal p l a c e s as s p e c i f i e d above .
∗/

public boolean equalsRounded (

102

Object equalsComplex ,
int dec imalPlaces) ;

}

103

Appendix B

The base class for the Help dialog:

ExampleDialog.java

ExampleDialog.java

package edu . uc . ece . blochSphere . exampleDialog ;

import java . awt . Color ;
import java . awt . Container ;
import java . awt . Font ;
import java . awt . Frame ;
import java . awt . event . ActionEvent ;
import java . awt . event . Act i onL i s t ene r ;
import java . i o . IOException ;
import javax . swing . JButton ;
import javax . swing . JDialog ;
import javax . swing . JEditorPane ;
import javax . swing . JLabel ;
import javax . swing . JPanel ;
import javax . swing . JScro l lPane ;
import edu . uc . ece . blochSphere . Bloch3DCanvas ;
import edu . uc . ece . blochSphere . IBlochDia log ;
import edu . uc . ece . blochSphere . Qubit3DModel ;

/∗∗
∗ A base c l a s s t ha t was crea t ed t ha t shows the Bloch Sphere on the l e f t and has
∗ a r i ch t e x t window on the r i g h t . The Examples w i l l have an animation in the
∗ Bloch sphere and must implement the {@link #run ()} method .
∗

104

∗ @author Stephen Shary
∗
∗/

public abstract class ExampleDialog
implements Act ionLi s tener ,
Runnable , IBlochDia log {

protected JDialog d i a l o g = null ;
protected JLabel t i t l e L a b e l = null ;
protected JButton c loseButton = null ;
protected Bloch3DCanvas blochCanvas = null ;
protected JEditorPane exampleEditorPane = null ;
protected Qubit3DModel qubitModel = null ;

/∗∗
∗ This was made p r i v a t e so a l l o ther c h i l d c l a s s e s must use the cons t ruc t o r
∗ be low t ha t d e f i n e s the parent frame .
∗/

private ExampleDialog () {
}

public ExampleDialog (Frame parentFrame) {
d i a l o g = new JDialog (parentFrame , true) ;
d i a l o g . s e t S i z e (DIALOGWIDTH, DIALOG HEIGHT) ;
d i a l o g . s e tRe s i z ab l e (fa l se) ;

}

/∗∗
∗ I n i t i a l i z e s a l l o f the components in the Dia log .
∗
∗/

public f ina l void bu i ldDia log () {
Container contentPane = d i a l o g

. getContentPane () ;
JPanel basePanel = new JPanel () ;
basePanel . setLayout (null) ;
basePanel . s e t S i z e (DIALOGWIDTH, DIALOG HEIGHT) ;
// Add t i t l e l a b e l a t the top .
t i t l e L a b e l = new JLabel () ;
t i t l e L a b e l . setBounds (PADDING,

PADDING,
200 ,
5 0) ;

t i t l e L a b e l . setText (”Abstract Example”) ;
t i t l e L a b e l . setFont (new Font (

Font . SANS SERIF ,
Font . ITALIC , 2 0)) ;

t i t l e L a b e l . setText (g e tD i a l o gT i t l e ()) ;
// Add c l o s e but ton at bottom r i g h t
c loseButton = new JButton () ;
c loseButton . setText (”Close ”) ;

105

int buttonWidth = 100 ;
int buttonHeight = 40 ;
c loseButton . setBounds (DIALOGWIDTH − (PADDING ∗ 2) − buttonWidth ,

DIALOG HEIGHT − (PADDING ∗ 4) − buttonHeight ,
buttonWidth ,
buttonHeight) ;

c loseButton . addAct ionLis tener (this) ;
// Add pane l f o r Demonstration Text .
exampleEditorPane = new JEditorPane () ;
exampleEditorPane . s e tEd i t ab l e (fa l se) ;
setPage (getHtmlHelpPage ()) ;
JScro l lPane s c r o l lPane = new JScro l lPane (exampleEditorPane) ;
s c r o l lPane . setBackground (Color . gray) ;
int exampleWidth = 380 ;
int exampleHeight = closeButton . getY () − (PADDING ∗ 2) ;
s c r o l lPane . setBounds (400 ,

c loseButton . getY () − PADDING − exampleHeight ,
exampleWidth ,
exampleHeight) ;

s c r o l lPane . s e tHo r i z on t a l S c r o l lBa rPo l i c y (JScro l lPane .HORIZONTAL SCROLLBAR AS NEEDED) ;
s c r o l lPane . s e tVe r t i c a l S c r o l lB a rPo l i c y (JScro l lPane .VERTICAL SCROLLBAR AS NEEDED) ;
// Add the BlochSphere
blochCanvas = new Bloch3DCanvas () ;
blochCanvas . buildCanvas () ;
blochCanvas . getCanvas () . setBounds (PADDING,

(PADDING ∗ 2) + t i t l e L a b e l . getHeight () ,
380 ,
440) ;

// Add the QBit . We don ’ t s e t i t to v i s i b l e , but r e l y on the animation
// to do t ha t when i t i s ready .
qubitModel = new Qubit3DModel (

45 ,
0 ,
Bloch3DCanvas .RED,
blochCanvas . getQubitsGroup ()) ;

qubitModel . s e t In i t a lXAng l e (0) ;
qubitModel . s e t In i t a lYAng l e (0) ;
qubitModel . s e t I n i t a lZAng l e (4 5) ;
basePanel . add (t i t l e L a b e l) ;
basePanel . add (c loseButton) ;
basePanel . add (s c r o l lPane) ;
basePanel . add (blochCanvas . getCanvas ()) ;
contentPane . add (basePanel) ;

}

/∗∗
∗ Disp lays the d i a l o g and s t a r t s the animation . The animation code shou ld
∗ be implmented in the pu b l i c vo id run () func t i on .
∗/

public f ina l void showDialog () {
// S ta r t the animation . We do t h i s f i r s t because the s e tV i s i b l e ()

106

// func t i on i s b l o c k i n g .
new Thread (this) . s t a r t () ;
d i a l o g . s e tV i s i b l e (true) ;

}

/∗∗
∗ This func t i on shou ld be implemented to show the animation o f the example .
∗ I t shou ld cont inue and s top when m dia log . i s V i s i b l e () i s f a l s e .
∗/

public abstract void run () ;

/∗∗
∗ This func t i on w i l l re turn the t i t l e o f the he l p d i a l o g t ha t shou ld be
∗ d i s p l a y ed
∗
∗ @return The t i t l e o f the he l p d i a l o g .
∗/

public abstract St r ing g e tD i a l o gT i t l e () ;

/∗∗
∗ Def ines the html page t ha t shou ld be used in the d i s p l a y o f the he l p
∗ d i a l o g . A l l d i a l o g s shou ld have the html page d i s p l a y ed in the
∗ edu/uc/ ece / b lochSphere /docs f o l d e r o f the b loch3d . j a r
∗
∗ @return The name o f the HTML f i l e (i n c l ud i n g the f i l e e x t ens ion) . The
∗ f o l d e r i s assumed .
∗/

public abstract St r ing getHtmlHelpPage () ;

/∗∗
∗ Handles ac t i on even t s from the c l o s e bu t ton on the d i a l o g t ha t w i l l c l o s e
∗ the d i a l o g .
∗/

public void act ionPerformed (
ActionEvent e) {

// This w i l l end the animation as we l l .
d i a l o g . d i spo s e () ;

}

/∗∗
∗ Se t s the html documentation from in the edu/uc/ ece / b lochSphere /docs in
∗ the b l och . j a r f i l e .
∗
∗ Al l images t ha t are re f e r enced r e l a t i v e l y shou ld be p laced in the
∗ edu . uc . ece . b lochSphere . docs . images package .
∗
∗ @param htmlPageName
∗ the name o f the html f i l e .
∗
∗/

public void setPage (

107

St r ing htmlPageName) {
try {

exampleEditorPane . setPage (ExampleDialog . class
. getResource (” . . / docs /” + htmlPageName)) ;

} catch (IOException e) {
e . pr intStackTrace () ;
return ;

}
}
}

108

