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ABSTRACT 

The growing congestion problem on Interstates has been identified as a serious problem for 

accurate data collection from automatic sensors like Inductive loop detectors (ILD). Traffic 

speed and vehicle classification data are typically collected by dual-loop detectors on 

freeways. During congestion, measurement of vehicle lengths which is based on detector ON 

and OFF timestamps (raw loop event data) often lead to misclassification of vehicle data. 

Accurate detection of raw event data and modified classification algorithm are increasingly 

important for higher data accuracy needs for agencies such as Advanced Traffic Management 

Systems (ATMS) and Advanced Traffic Information Systems (ATIS). Vehicle classification 

algorithm works on the assumption of constant vehicle speed in the detection area. This 

assumption is violated during congestion which induces errors in to vehicle length estimates 

leading to more inaccurate vehicle classification data. 

This paper unlike in preceding works presents a model which is simple enough to be 

implemented using existing loop detector hardware. This new model assumes vehicle travels 

with constant acceleration over loop detection area and thus named as ―Constant Acceleration 

based Vehicle Classification model (CAVC)‖. This model first identifies traffic flow state and 

later uses Kinematic equations for estimating vehicle length values. Data is collected by 

videotaping dual loop station and also simultaneously collecting raw loop event data. Ground 

truth vehicle data is then extracted using Vehicle Video-Capture Data Collector (VEVID) 

[Wei et al. 2005] from video data. This improved model (CAVC model) is then validated 

using ground truth classification data and also compared with the results from existing vehicle 

classification model for different traffic flow states (under specific scenarios).  
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CHAPTER 1: INTRODUCTION 

Vehicle classification data on freeways is of considerable use to agencies involved in almost 

all aspects of transportation planning and engineering. This data along with other traffic flow 

data such as volume, occupancy, density, etc provides valuable information for evaluating 

existing roadways and also in planning and designing new infrastructure. Automatic traffic 

sensors are the main data providers for maintaining historical data base of a wide roadway 

networks. These are used to provide data continuously for longer period of time.  

Inductive Loop Detector (ILD) is the major type of intrusive vehicle sensor for 

collecting traffic data. Dual-loop detectors which are formed by two consecutive single-loop 

detectors spaced several feet apart are usually used to collect length based vehicle 

classification data. The governing principle behind existing model for estimation vehicle 

lengths is that the vehicle observes constant speed over detection area. During congestion 

vehicles violate this basic assumption of constant speed leading to misclassification of vehicle 

data. Both synchronized and stop-and-go flow can be summarized as two forms of congestion 

[Neubert et al. 1999]. And thus the existing vehicle classification model needs to be modified 

to identify traffic flow states and should be able to estimate accurate vehicle lengths resulting 

in more accurate vehicle length based classification during congestion. 

1.1 Goals and objectives 

The goal of this research is to improve the vehicle classification model under congestion. This 

requires study and identification of vehicle motion under congested flow and its impact on the 

vehicle length calculation. Parameters which effect vehicle classification include speed (v), 
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on-time (OnT) and acceleration (deceleration) (a). Use of Kinematic equations to modify the 

existing vehicle classification model to accurately estimate vehicle length is proposed. 

Modified vehicle classification model is expected to identify the traffic flow state and 

also acceleration factors and use them for vehicle length calculation during both synchronized 

flow and also non-stopping scenario during stop-and-go flow. This new model will be 

evaluated using video data for corresponding raw loop event data which is collected 

simultaneously. Image processing software ―Vehicle Video-Capture Data Collector‖ 

(VEVID) will be used to process video images to generate vehicle trajectory data and other 

parameters [Wei et al. 2005]. VEVID is developed by Dr. Heng Wei and further improved by 

his Ph.D. Student, Mr. Zhixia Li under his guidance. 

1.2 Background 

Vehicles are classified in different ways like length of vehicle, number of axles and number of 

units (including power and trailer units). Type of classification depends on the type of sensors 

used further depending on its limitations. The kind of sensor installed determines the raw data 

obtained from it which is used for obtaining traffic data such as vehicle classification, volume, 

speed, occupancy, etc. As explained earlier this research considers vehicle classification using 

dual loop detectors which work on the principle of change in inductance for detecting 

vehicle‘s presence.  

As explained earlier existing vehicle classification model assumes that vehicle travels 

with constant speed over the ―loop detection area‖. This is valid and common during free flow 

period where vehicles travels without any significant acceleration or deceleration patterns. 

Detector on-time (occupied time), speed pattern, and other traffic features such as headway 
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and occupancy vary greatly during congestion. Irregular acceleration (deceleration) and 

stopping of vehicles during congestion cause errors in vehicle speed estimates and thus effect 

classification. Traffic flow is classified in to three states they are ―free flow‖, ―synchronized 

flow‖ and ―stop-and-go flow‖. Hence following sections present detailed background of 

different vehicle detection systems and especially the principle and working of inductive loop 

detectors, description of existing vehicle classification model and traffic flow theory. 

1.2.1 Vehicle detection systems 

―Vehicle detection systems‖ or ―Traffic detectors‖ form major data collectors (source) for 

maintaining historical database of traffic data. National Electrical Manufacturers Association 

(NEMA) defines a vehicle detection system as "A system for indicating the presence or 

passage of vehicles". Traffic detectors provide traffic flow data for freeway traffic 

management, data collection and traffic-responsive signal control, etc [Klein et al. 2006]. 

Type of traffic sensor used for a particular roadway section depends on many factors such as 

type of data needed, roadway characteristics and also on available funds.  

Traffic detectors can be broadly classified into: 

1) Non-intrusive detectors  

2) Intrusive detectors 

1.2.1.1 Non-intrusive detectors 

Non-intrusive detectors are placed over pavement and installed without much interruption to 

the ongoing traffic. Examples of non-intrusive sensors are passive and active infrared devices, 

cameras associated with video image processors, ultrasound detectors, microwave radar and 
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acoustic arrays. Following sections give an overview of some major non-intrusive traffic 

detectors. 

1) Video image processor (VIP) 

Video cameras are used for traffic management and surveillance based on their ability to 

transmit television images to a human operators. But in recent days the video image 

processing is done to automatically extract information required for traffic surveillance, 

management and data collection. A video image processor (VIP) system typically consists of 

one or more camera units connected to a microprocessor, which are then used to digitize and 

analyze the images (Traffic Detector Handbook) [Klein et al. 2006]. The software thus used to 

convert the imagery into traffic flow data. 

   

 

 

 

 

 

 

 

Figure 1: Video camera located on the pole for data collection 

(Source: http://www.mctraffic.org/technology.htm, accessed on August 26
th

, 2010) 

Figure 1 here shows a camera installed on the freeway. A VIP can be used to replace in-

ground inductive loops and thus providing detection of vehicles across multiple lanes. VIP‘s 

have high initial costs for installation but have an advantage of lower maintenance costs. VIPs 
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can classify vehicles by their length and also detect vehicle presence, volume, lane 

occupancy, and speed for each class and lane.  

2) Microwave radar sensor 

Radar sensor is a device which is used for transmitting electromagnetic signals and receiving 

echoes from objects or targets within its coverage area [Booth et al. 1993]. Radar stands for 

RAdio Detection And Ranging. Microwave sensors for traffic data collection usually operate 

at frequency intervals near 10.5, 24.0, and 34.0 GHz, these standards are to be satisfied on 

U.S. roadways as per Federal Communications Commission (FCC) regulations. 

Figure 2 shows a typical Microwave radar operation. Microwave sensors which 

transmit a Continuous Wave (CW) in Doppler waveform can only detect vehicle passage. 

They can provide vehicle count and speed data but cannot detect stopped vehicles. Whereas 

microwave sensors that transmit a Frequency Modulated Continuous Wave (FMCW) can 

detect stopped vehicles and thus provide measurements of vehicle count, speed, lane 

occupancy, and vehicle length based classification. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Microwave radar operation  

(Source: Traffic Detector Handbook: Third Edition-Volume I, Klein et al. 2006) 
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3) Infrared sensor 

Infrared sensors can be classified in to two types 1) Active infrared sensors (or Laser radar) 

and 2) Passive infrared sensors. Active infrared sensors illuminate detection zones with 

infrared energy which is transmitted by laser diodes and operate in infrared region of the 

electromagnetic spectrum at 0.85 mm [Klein et al. 2006]. Passive sensors transmit no such 

energy instead detect energy from sources like vehicles, road surfaces, and other objects. 

Figure 3 shows an image of vehicle with trailer detected by active infrared sensor 

 

 

 

 

 

 

Figure 3: Laser sensor image 

(Source: Traffic Detector Handbook: Third Edition-Volume I, Klein et al. 2006; Photograph 

courtesy of Schwartz Electro-Optics, now OSI Laserscan, Orlando, FL). 

1.2.1.2 Intrusive sensors 

Intrusive sensors are installed below pavement surface, examples of Intrusive sensors are 

Inductive loop detector, Weigh in Motion (WIM), Magnetic sensor, etc. They are installed in 

the roadway surface and buried below the pavement and covered with pavement materials.  

1) Inductive-loop detector: 

An inductive-loop detector senses the presence of a metal object by inducing currents in the 

object (further explained in section 1.2.3.1). This further reduces the loop inductance and is 

used to detect the presence of the vehicle. They typically consist of four parts a wire loop 

 



7 

 

embedded in pavement (one or more turns), a lead-in wire connecting the loop to a pull box, a 

lead-in cable connecting the wire to the controller, and finally an electronic unit in the 

controller cabinet. They are installed by cutting a slot in the pavement and placing one or 

more turns of wire. The wires are later covered with sealant. Loop detectors are installed in 

different shapes and sizes depending on data needs.  

 

 

 

 

 

 

Figure 4: Different loop detector shapes 

(Source: Traffic Detector Handbook, Chapter 4, Third Edition—Volume I, Klein et al. 2006) 

Figure 4 shows different shapes commonly used for loop detector installation [Klein et al. 

2006].Many loop configurations were designed to detect various sizes and shapes of vehicles, 

ranging from bicycles, motorcycles to trailer trucks and avoiding detection of vehicles in 

adjacent lanes. 

2) Weigh-in-motion (WIM) 

Weigh-in-motion (WIM) devices are designed to record truck axle weights and gross vehicle 

weights as the vehicle drives over sensor. WIM systems do not require the vehicle to stop 

which makes them much more efficient. The application of these sensors is more for trucks 

which can be weighed as they travel at highway speeds. But WIM can be only used to classify 
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vehicles based on the overall weight and its main application is for following purposes 

(Training guide, http:// training.ce.washington.edu): 

 Pavement and bridge design, monitoring, and research 

 Size and weight enforcement 

 Legislation and regulation 

 Administration and planning 

3) Magnetic sensor 

Magnetic sensors are passive devices which detect the presence of a vehicle (ferrous metal) 

through the magnetic anomaly which they cause in the Earth's magnetic field [Klein et al. 

2006]. Figure 5 shows dipoles on a vehicle and their effect on readings of magnetic compass 

and these determine the sensor output.  

 

 

 

 

 

 

Figure 5: Perturbation of Earth’s magnetic field by ferrous metal vehicle 

(Source: Traffic Detector Handbook, Chapter 4, Third Edition—Volume I, Klein et al. 2006) 

And finally the Table 1 compares different sensor technologies (traffic detectors) based on 

data output, communications bandwidth, and costs. The cost comparison is based on the 

prices in 1999 in dollars ($) and covers almost all major sensors technologies used in the field. 

Check marks indicate the sensors ability to collect the type of data mentioned. 
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Table 1: Comparison of vehicle detection systems (traffic detectors) 

(Source: Traffic Detector Handbook, Chapter 4, Third Edition—Volume I, Klein et al. 2006) 

 

Where,  

a- Costs related to installation, repair and maintenance not included. 

b- Speed can be measured using two sensors at fixed distance (speed traps). 

c- Uses special electronic units to classify vehicles. 

d- With the help of special sensor layouts and signal processing software. 

e- Only applicable with microwave radar sensors that are capable of signal processing and 

transmitting the proper waveform. 

f- Available with infrared sensors capable of multi-detection zone feature. 

g- With models that contain appropriate beam forming and signal processing. 

h- Depends on type of data transmitted to the TMC (higher-bandwidth/ lower-bandwidth raw 

data or video image data) 

i- The price includes intrusive sensor unit and receiver electronics unit. 

1.2.2 Vehicle classification  

Information on truck and freight movements is important considering the role of freight 

mobility on the economy. The classification data is also used by highway engineers for the 

Sensor 

Technologies 
Count Presence Speed 

Output 

State 
Classification 

Multiple  

lane, multiple 

detection 

zone data 

Communication  

band width 

Sensor purchase  
      (each in 

1999) 

Inductive loop    b   c  
Low to 

moderate 
     ($500-

$800) 

Magnetometer 

(two axis 

fluxgate) 

   b    Low 
          

($900-$6,300) 

Magnetic 

Induction coil 
  d  b    Low           

Low to 

 ($385-$2000) 

Microwave 

radar 
  e   e  e  e Moderate 

Low to moderate 

($700-$2000) 

Active 

infrared 
   f    

Low to 

moderate 

Moderate to high 

($3300-$6,500) 

Passive 

infrared 
   f    

Low to 

moderate 

Low to moderate 

($700-$1200) 

Ultrasonic       Low 

Low to moderate 

(Pulse model: 

$600-$1900) 

Acoustic array       g 
Low to 

moderate 

Moderate  

($3100-$8100) 

Video image 

processor 
      

Low to       

 

Moderate to high 

($5000-$26,000) 
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geometric and structural design of roadways and bridges. Common uses of vehicle 

classification information include: 

 Pavement design and management 

 Scheduling the resurfacing, reconditioning, and reconstruction of highways  

 Design inputs relative to the current and predicted capacity of highways 

 Development of weight enforcement strategies 

 Environmental impact analysis, including air quality studies 

 Analysis of alternative highway regulatory and investment policies. 

Many valuable statistics can be extracted from the vehicle classification data using the 

historical database. These include vehicle distance traveled (VDT) information, and also 

considering the sensitivity of pavement to truck volume and also truck VDT has important 

role to play in pavement design. Other common uses of VDT statistics by vehicle class 

include air quality emission monitoring, crash statistics by type of vehicle and general 

transportation trend monitoring. Dual loop sensors classify vehicles into more general 

classifications less than FHWA‘s 13 classes. This is because of following reasons: 

 Length classifiers already in use are not accurate to measure small differences in 

vehicle lengths [Bonsall et al. 1987]. Hence broad vehicle length categories are used 

which reduce the total amount of error and in turn lead to more accurate classification. 

 Also Inductive loop detectors cannot differentiate between multiple smaller units 

joined together and a single long vehicle. 

 Length based classification also cannot precisely identify vehicle classes like tractor, 

trucks, five-axle, semi-trailer for their variety of lengths in use.  
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But still length based vehicle classification provides accurate enough data for transportation 

planning and engineering requirements [Kell et al. 1990]. Vehicle classification bins are most 

common approach for classifying vehicles depending upon vehicle lengths [Nihan et al. 

2002]. Three or four classes are still sufficient for many planning and analytical purposes. 

Practically as the number of vehicle classes increase the chances of placing the vehicle in to 

wrong bin increases giving rise to need of more accurate vehicle detection systems. Loop 

detectors cannot detect the number of axles of the vehicle; this disadvantage leads to 

classifying vehicles only using length. With respect to engineering, planning and design 

applications this classification data in fewer bins (three or four) is sufficient.The data 

presented in this research is in the form of bins. 

Vehicle classification into three bins (ODOT): 

1. Small: Personal vehicles and smaller vehicles (length 28ft or less) 

2. Medium: Small trucks and buses (28ft to 46ft) 

3. Large: Larger trucks and buses (length greater than 46ft) 

Vehicle classification into four bins (WSDOT): 

1. Bin 1: Personal vehicles and smaller vehicles (length 26ft or less) 

2. Bin 2: Small trucks and buses (26ft to 39ft) 

3. Bin 3: Larger trucks and buses (39ft to 65ft) 

4. Bin 4: Largest trucks and articulated buses (length greater than 65ft) 

1.2.3 Loop detectors 

Loop detectors are most common and widely used detectors on interstates for collecting 

traffic data. As explained earlier in Figure 4 (section 1.2.1.2) loop detectors are of different 
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sizes and shapes depending on the type of data desired, lane widths, etc. The following 

sections present you the principle behind dual loop detection and also the existing length 

based vehicle classification model. 

1.2.3.1 Loop detection principle 

Operation of loop detectors involves passing of an alternating current through a loop which 

generates a fluctuating magnetic field around its wires. This extends above and below the road 

surface and when a metal object enters this field it produces eddy currents. Vehicle‘s own 

magnetic field couples with the loop field and reduce the loop‘s inductance which is measured 

by the loop detector circuitry. Amount of inductance change depends on the strength of the 

magnetic field cutting the vehicle [Bonsall et al. 1987]. When such inductance change is 

observed the loop is assumed to be occupied by controller and produces a value of ―1‖ 

(occupied) otherwise ―0‖ (unoccupied).  

Typically loop detection area is classified based on the area covered in to two categories, 1) 

large-area detection 2) small-area detection. Large-area detection normally contains a 

detection zone covering an area of at least 20ft (6m) or more in a traffic lane [Klein et al. 

2001]. They are primarily used for detecting the presence of a vehicle as long as the area is 

occupied. Whereas small-area detection is commonly implemented with a single short 

inductive loop. 

Loops detectors used for traffic data collection can be classified as below: 

1. Single loop detectors 

2. Dual loop detectors  
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Single loop detectors are mainly installed for traffic flow counts. They provide data of 

individual vehicle actuations which are in the form of count and occupancy. Vehicle length 

estimation using single loop is not accurate and many assumptions are made for its 

calculation. Thus use of dual loops for vehicle classification is widely adopted. 

Figure 6: Layout of typical dual loop detector 

As explained earlier a dual-loop detector consists of two consecutive single loops that 

are spaced few feet apart (usually 20ft). In Figure 6 we can see the layout of typical dual loop 

detector with corresponding loop dimensions. The raw data (time stamps t1, t2, t3 and t4) from 

loops is used as input to vehicle classification model to calculate vehicle speed, length and 

occupancy. Dual loops are more accurate in vehicle length calculations since each vehicle is 

observed twice on dual loops. Loop detectors as explained earlier can detect only the presence 

of vehicle (metal body) and thus vehicles with trailer in some cases are detected as two 

vehicles.  
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1.2.3.2 Loop detector errors 

Loop detector data is erroneous due to several reasons such as malfunction of hardware, 

insufficient computing power of the cabinet controller, crosstalk between sensors, sensitivity, 

pulse breakups, omitted phase etc. Many researchers have tried to address these problems 

using algorithms to filter out the erroneous data. It is observed that loop detectors produce 

either reasonable accurate data or erroneous data all the time rather than fluctuating [Chen and 

May, 1987]. Several methodologies using occupancy measurements for intervals of 20 second 

to 5 minutes were proposed to identify detector errors. Selected samples are then tested for 

quality depending on threshold limits of flow (or volume, q), density (k), and speed (v).  

Sensitivity of loops is a major type of detection errors. Basic operating principle 

behind the inductive loop (explained in section 1.2.3.1) is the interaction between the 

magnetic field produced by the loop and the conducting surface which in this case is the 

vehicle. According to Coifman, B. (2001) loop detector data does not provide sufficient 

information necessary to separate length due to sensitivity from the vehicle's actual length. 

According to Cheevarunothai et al. 2006 loop sensitivity problems can be divided into two 

categories: 

1) Sensitivity discrepancies between the upstream loop (M) and downstream loop (S). 

2) Unsuitable sensitivity levels of both the M and S loops.   

Vehicle length distribution is used to find the appropriate sensitivity levels. A statistical 

approach was applied using ―Short Vehicle‖ (SV) length distribution as observed by Wang 

and Nihan. 2004. They observed SV which corresponds to Bin-1 vehicle class follow a 

normal distribution with a mean of 15.21ft (4.64m) and a standard deviation of 2.20ft 
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(0.67m). And this length information for SVs was used to trace a correct sensitivity level for 

the loop. Thus in this study, they [Cheevarunothai et al. 2006] used the SV-length distribution 

reported by Wang and Nihan et al. 2004 as the ground-truth vehicle length distribution for 

SVs. Crosstalk which is another type of detection error induces considerable amount of 

misrepresentation of actual data because it produces false detection of vehicles. The common 

source of cross talk is two sensors set to similar frequencies. Crosstalk occurs when one 

detector activates another detector in an adjacent lane or happens when two loop‘s lead-in 

cables share a common conduit or when two loops are installed within a few feet of each other 

or when there are poor quality of splices and couplings [Bhagat and Woods, 1997; Kell et al. 

1990]. 

Researchers like Bhagat and Woods have examined physical characteristics that cause 

cross talk. These studies thus provide some advice for correcting cross talk and also thus 

localizing the unit with cross-talk using a specialized loop tester that bypasses the controller 

and loop sensor. Coifman (1999) on the other hand presented a simple application of the error 

detection for detecting cross talk between sensors. He proposed that each loop of a dual loop 

station is set to a different operating frequency and a small amount of cross talk which affects 

the detection is detected through a differencing method. Thus loop detectors can be corrected 

for these detection errors during installation and also checked frequently for ensuring accurate 

data collection. 

1.2.4 Existing vehicle classification model 

Raw loop actuation data is the loop event data and is accurate to 1/60th of a second. Sixty data 

points for every second are collected. This data when processed using vehicle classification 
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model results in vehicle length calculation. As shown in Table 2 ‗M‘ represents up stream 

loop, ‗S‘ represents the downstream loop. Each data point (vehicle) consists of status of the 

loop whether occupied or unoccupied represented by ‗1‘ or ‗0‘ respectively. The time stamp is 

represented by converting time period in to 1/60
th

 of second units. 

 Figure 7 shows a time-space representation of loop detector output along with pulses. 

The highlighted area represents the path of vehicle over the loop detection area with reference 

to time on X axis. Vehicle as shown in figure records four different time stamps using both 

front and rear bumpers. Each loop as explained in earlier section are separated by a small 

distance (20ft) and together form dual loop detector (or speed-trap).  

Table 2: Raw loop event data 

Vehicle No Loop status Upstream (M) 

timestamp (1/60 sec) 

Downstream (S) 

timestamp (1/60 sec) 

1 
1 3111959 3111973 

0 3111975 3111988 

2 
1 3112344 3112359 

0 3112380 3112394 

3 
1 3112447 3112461 

0 3112529 3112478 

4 
1 3112765 3112780 

0 3112830 3112845 

5 1 3112909 3112925 

0 3112930 3112945 
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Figure 7: Time-space representation of loop detector pulses 

(Source: Using Dual Loop Speed Traps to Identify Detector Errors by Benjamin Coifman, 

1999) 

Where, 

tup-on= t1 = on-time stamp at upstream Loop (M loop);    

tup-off  = t2 = off-time stamp at upstream Loop (M loop); 

tdown-on = t3 =  on-time stamp at downstream Loop (S loop); 

tdown-off = t4 =  off-time stamp at downstream Loop (S loop);    

Spac dual = d=loop spacing; 

Loop length = length of loop measured along the roadway; 

Once the detection of vehicle over dual loop detection area produces four different time 

stamps the existing vehicle classification as shown in Figure 8 is used to calculate vehicle 

length using speed and on-time. Speed is calculated by dividing the distance between the 
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loops (Spac dual) by the difference between the On-time stamps at downstream loop (tdown-on)  

and at the upstream loop (tup-on).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Existing length based vehicle classification model 

Where, 

Speed (v) = Speed of vehicle on the loop (normally constant during free flow); 

Loop length (l) = Length of loop measured along the roadway; 

A similar calculation for speed using rear bumper can also be done using off-time 

stamps at both M (upstream) and S (downstream) loops. Thus using dual loop produces much 

more accurate velocity measurements than the results from single loop detectors. Detection 

Zone is not a point phenomenon hence a vehicle which travels over the loop is "detected" for 
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slightly longer period. This is calibrated such that the loops provide accurate data for 

detection of vehicles. 

1.2.5 Traffic flow theory 

In past few decades many researchers and scientists have developed a wide range of different 

mathematical models for traffic flow aiming to explain the complex nature of traffic. These 

models are based on the behavior of drivers and expected to show phenomena observed in 

real traffic. Traffic flow models are classified depending on the non-linear interaction and 

dynamics of vehicles. For example submicroscopic models take into account details such as 

perception thresholds, changing gears, acceleration characteristics of specific vehicle type, 

reaction to brake light, etc.  

On the other hand Gas-kinetic model formulate a partial differential equation for the 

temporal evolution of vehicles density and velocity distribution. It is common to distinguish 

two classes of macroscopic models they are first order models such as the Lighthill-Whitham-

Richard (LWR) model [Lighthill and Whitham, 1955; Richards, 1956]. These are based on a 

partial differential equation for the density or velocity-density relation or a fundamental 

diagram (flow-density relation). This model was developed to represent traffic flow by 

collective traffic flow parameters which include flow rate q (x,t), traffic speed v(x,t) and 

traffic density ρ (x,t) which are functions of space (x) and time (t). The LWR model is based 

on conversation equation as follows  

          
  

  
 

     

  
          (1) 

 LWR model is proposed based on fundamental assumption that the road section 

without any sources and exits have number of vehicles conserved and also the flow (q) is 
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assumed to be the product of density (ρ) and speed (v). They also proposed that under steady 

conditions, the ratio of flow to density known as space-mean speed is observed to be nearly 

constant (for uncongested regime). But during congested conditions due to rise in densities 

the driving situations vary leading to constraint on drivers from choosing desired speed. 

Second-order models on the other hand contain an additional partial differential 

equation for the average velocity and take into account the finite relaxation time to adapt the 

velocity to changing traffic conditions. If identical driver-vehicle units are assumed, 

macroscopic traffic models can be derived from microscopic car-following models 

[Payne,1971, 1979a; Nelson, 2000; Helbing et al. 2002], and thus the approximations needed 

in gas-kinetic derivations can be avoided. In recent times simultaneous micro-macro-

simulation [Helbing et al. 2002], which can be performed based on empirical boundary 

conditions are developed. Mesoscopic or hybrid traffic models describe the dynamics of 

single vehicles depending on the aggregate quantities such as the density [Kates et al. 1998]. 

And finally queueing models restrict to the temporal change of numbers of vehicles as a 

function of entering and leaving flows [Kerner, 2001]. 

Mathematical models which represent traffic flow theory are explained below and also 

the significance and identification of three states of traffic flow are presented. Kerner (1994) 

based on the Queuing model proposed three-phase traffic theory: 

1. Free flow,  

2. Synchronized flow, and  

3. Stop-and-go flow (or) wide moving jam 
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Similarly Polus et al. (2002) proposed three phases of traffic flow as free flow, dense 

flow, and unstable flow. The traffic breakdown is defined as the change from dense flow to 

unstable flow. According to Kerner (1998) the movement of downstream front of stop-and-go 

phase (wide jam) is a deterministic process and is determined by the drivers behavior who 

tend to escape from the jam (congested section). He defined this velocity of escape (vg) using 

density (ρmax) and average delay time (tdel) between vehicles following each other trying to 

escape from the jam as follows, 

                                       (2) 

On the other hand Kockelman (2001) considered that each class of driver will be able 

to control the spacing at which he follows the vehicle preceding them. From assumption 

Daganzo (1997) the spacing is represented as a linear function of speed and inverse of density 

which is nothing but average spacing between vehicles.  And Kockelman found that for speed 

determination such assumption is reasonable during congested period using the empirical 

data. Thus Kockelman proposed that total vehicle density as inverse of average spacing of 

vehicles, average spacing proportioned by weighted sum of class densities (eq. 3)  

             
 

 
 

 

      
 

 

            
                     (3) 

where, 

si = inter vehicle spacing, 

i = class of vehicle, 

ai and bi = constants defining the behavior of ith class, 

k = density 

pi = proportion of road vehicles of driver/vehicle ith class 
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 Kerner (2005) defined deterministic microscopic traffic model called Speed 

Adaptation model (SA model) which also considers three-phase traffic theory. SA model is 

also helpful in showing spatiotemporal congested traffic patterns (from adequate empirical 

results). Various local driving situations and behaviors are incorporated into the model. SA 

model considers minimum free flow speed (    
      

), space gaps (during jams or stop-and-go 

states) and vehicle accelerations depending on traffic state (free or synchronized or stop-and-

go flow). Equations which form the basis of the model are as explained below. 

           
  

  
            (4) 

           
  

  
  

               
                 

     
 

              
                 

     
 

                
     

 

         (5) 

Where, 

x = vehicle space coordinate, 

t = time coordinate, 

v = speed 

    
      

 = free flow minimum speed 

     ,              vehicle acceleration (deceleration) in the free flow, synchronized flow and 

stop-and-go (wide moving jams), 

g = space gaps, 

    
     

 = maximum space gaps during jams. 

 Further Kener simplified and presented math functions with space gap (g) as variable 

to calculate average speed in synchronized traffic state     
     

 . They are as follows, 
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   ,          (6) 

   
     

            
     

   
   

   
                   (7) 

where, 

function             
     

, 

  = space gaps, 

V1 = steady state speed (constant),  

   
   

 = average safety time gap in synchronized state (constant), 

c = constant 

Kerner explained that the onset of congestion in SA model is associated with an F → 

S transition and stop-and-go state (moving jam) occurs spontaneously in synchronized flow 

(observed from empirical results). SA model is thus shown useful to simulate an F → S 

transition and also the features the sequence of F → S → J transitions. SA model thus 

confirms the assumption of three-phase traffic theory regarding the fundamental hypothesis 

about the F→S→J transitions (based on mathematical models). Kener further modeled the 

transition from two effects one that the discontinuity of steady speed solutions (from Figure 9 

(a), (c) and (e)) or their instability in area close to the maximum points of free flow  

(    
       ρ

   
      ). Another Speed adaptation (SA) effect is modeled through                

which adjusts the present speed to the speed of proceeding vehicle in synchronized flow.  In 

Figure 9 a, c represent space-gap-speeds and b, d, e, f, g, h represent SA models for flow-

density plane during different steady state models of SA model.  
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Figure 9: Steady state Speed Adaptation (SA) model 

1.2.5.1 Free flow   

Free flow traffic state is defined as the state in which vehicle density is low enough and it is 

easy for vehicles to pass or overtake each other on multi-lane roads (Kerner 1999). Speeds are 

usually much higher than in congested traffic and driver has the opportunity to travel at his 
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desired speed. In free flow state average vehicle speed may be different for different lanes. 

Individual vehicle speeds depend on different parameters such as lane, geometric design and 

driver‘s perspective of his safe and comfortable speed. The low vehicle density in free flow 

makes it easy for vehicles to overtake each other and hence the average speed for each lane 

tends to be different. 

In the Figure 10 (a)  shows speeds in different lanes during free flow and we can observe that 

speeds usually range between 45 to 70 mph (70 to 110 kph). And also the densities are less 

than or around 32 vehicles per mile (20 vehicles per kilometer). If the density is high enough, 

the flow becomes congested and a transition from free flow to synchronized flow occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Comparison between free flow (a, b) and synchronized flow (c, d) 

(Source: The physics of traffic; Kerner, 1999) 
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1.2.5.2 Synchronized flow 

Synchronized flow can be considered as the state which is between the free flow and wide 

moving jam. In synchronized flow vehicles in different lanes move with almost the same 

speed. Density is high and overtaking is not so easy thus forcing individual vehicles to move 

with almost the same average speed in the different lanes.  

Thus synchronized flow is characterized with low average vehicle speed, high flow rate 

(higher than free flow). In synchronized flow, fluctuations in speed can be noticeably smaller 

in amplitude compared to free flow as vehicles tend to travel as a group. In Figure 9 (c) 

Kerner, 1999 observed that speeds are as low as 18 mph (30 kph) and as high as 45 mph (70 

kph). Similarly in another research by Habib-Mattar et al. (2009) defined the beginning of the 

unstable flow using speed and density. They observed speed drop during the transition from 

free flow to unstable flow for at least a 5-minute period and this is then accompanied with 

increase in density. 

1.2.5.3 Stop-and-go flow 

Kerner (1998) summarized that the in a density range where homogeneous states of traffic 

flow cannot exist due to instability or phase transitions leads to stop-and-go pattern [Kerner, 

1998]. Shockwaves occur as a result of differences in flow and density which occur when 

there are constrictions in traffic flow. These constrictions lead to heavy congestion. The speed 

at which the growth of the ensuing queue results in shockwave, and is defined as the 

difference in flow divided by the difference in density. 

The stop-and-go traffic is considered as extreme unstable flow. Stop-and-go flow (jam) 

emerges in two steps first with the phase transition of free flow to synchronized flow which is 
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followed by step known as the "pinch effect‖. During this process the synchronized flow 

compresses itself into a very high density state. Spontaneous local perturbations grow and 

lead to a traffic jam. Compared to synchronized flow, stop-and-go is characterized by very 

high density but both flow rate and vehicle speed are very low. In the Figure 11 we can 

observe the speed distributions during stop-and-go flow range between 0 MPH to 15 MPH.  

 

 

 

 

 

 

 

 

 

Figure 11: Speed pattern observed during stop-and-go flow 

(Source: The physics of traffic; Kerner, 1999) 

From Kerner‘s SA model empirical observations (Figure 9) and also from above definition, 

traffic parameter threshold values are tabulated (Table 3). This presents a comparison of 

different traffic flow parameters thresholds values during different traffic flow states. The 

traffic flow parameters here include speed (v), dual loop on-time difference (OnT1-OnT2), 

density (k), flow (q) and gap (g). 
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Table 3: Thresholds of traffic flow parameters. 

Traffic flow 

parameters Speed, v 

(miles per 

hour) 

Loop on-time 

difference 

(OnT1- OnT2) 

(seconds) 

Density, k (no. 

of vehicles per 

mile) 

Flow, q (no. 

of vehicles 

per hour) 

Gap between 

vehicles, g 

(ft) Traffic flow 

states 

Free flow v > 45 < (+/- (3.5/60) k < 40 0 – 2400 g > 82 

Synchronized 45 > v > 15 
≥ (+/- (3.5/60) 

40 < k < 120 1300 – 2200  82 > g > 40 

Stop-and-go v < 15 k > 120 q < 1300 g < 40 

 

1.3 Problem statement 

As explained in earlier sections the existing vehicle length based classification algorithm 

assumes that vehicle travels at constant speed over dual loop detection area. The above 

assumption is true when the flow over the loops is free-flow. This results in identical on-times 

on both loops (M and S). Existing model can thus produce satisfactory results with high 

accuracy for vehicles which travel during free flow. But during congestion this assumption 

(constant speed) is violated as vehicles travel at non constant speeds. Not only during stop-

and-go flow but also during synchronized flow, vehicles travel for longer periods of time and 

slight acceleration or deceleration have much effect on vehicle length estimation.  

Thus miscalculation of vehicle length resulting from these time stamps is a source for 

inaccurate vehicle length based classification. Thus factors such as acceleration, deceleration 

of vehicles on loops cause vehicle trajectory to vary abruptly and need to be determined for 

accurate classification data. The inaccurate detection of these factors during congestion is the 
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main cause for the failure of existing model.  Modification of the existing model for 

congested flow can thus provide accurate vehicle classification data.  

1.4 Significance and scope of the research 

As explained in earlier sections this research deals with dual loop detectors which are widely 

used traffic detectors on interstates. They are used to collect speed, occupancy and vehicle 

classification data. Vehicle classification data is useful piece of information for many 

transportation planning, design and analysis requirements. Many researchers worked in 

correcting dual loop detector data which includes sensitivity problems, pulse breakups, cross 

talk between loops, etc. But very little importance was given to determine the effect of 

congestion on vehicle detection.  

 The existing vehicle classification algorithm (section 1.2.4) which works on the 

assumption of constant vehicle speed over dual loops is true for free flow but not during 

congestion. Free flow is the period when the driver has the ability to travel at his desired safe 

speed (often at speed limits) and will have the freedom to change lanes and overtake slow 

moving vehicles. On the other hand congested traffic flow occurs due to bottleneck creation 

during merging of lanes at exits and on ramps and also during accidents and extreme climatic 

conditions. This flow is featured by decreased gaps between vehicles in the queue, very low 

speeds and significant amount of accelerations (decelerations) in vehicle trajectory. This leads 

to failure of existing vehicle classification model during congestion and especially for 

vehicles which move over detection area with significant amount of acceleration 

(deceleration) values. Thus development of new vehicle classification model (CAVC model) 

for accurate data is required during congestion. 
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The scope of this research mainly aims in improving the model for synchronized flow 

and also for vehicles which does not stop during stop-and-go flow. Thus the research aims in 

improving accuracy by developing a model which calculates a single acceleration 

(deceleration) value and use it for estimation of more realistic vehicle length during 

congestion. Identification of vehicle flow state is proposed and is necessary to select the type 

of model (existing or CAVC) to be used. This methodology uses traffic parameters calculated 

for each vehicle to identify the flow state and then switch to appropriate classification model. 

Hence existing model is used during free flow and CAVC model is used during congested 

flow (both synchronized flow and for non-stopping vehicles during stop-and-go flow). Thus 

this research deals with vehicle classification issues which are inherent in existing model 

(algorithm) which impact classification data.  

1.5 Outline of thesis 

The thesis report presents detailed procedure followed in data collection, extraction and 

analysis and also presents the background, new vehicle classification model and results. The 

outline of the thesis below presents the scope of each chapter covered in the thesis: 

Chapter 1: Introduction 

After a brief introduction ―Goals and objectives‖ are presented which discuss about possible 

deliverables from the research work presenting objectives of research.This chapter then gives 

a detailed ―Background‖ of the research topic with focus on types of vehicle detection 

systems, vehicle classification system, loop detector principle with existing vehicle 

classification model and finally presents traffic flow theory.  This presents literature review 

and also fundamentals of the research topic useful for understanding the gap in the research. 
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This chapter also includes ―Problem statement‖ discussing the problem being addressed in the 

research, and finally ―Significance of the research‖ presents the importance of research work 

done.   

Chapter 2: Data collection methodology 

This chapter presents the data collection methodology which includes study sites surveyed 

and selected. Then the data collection procedure is explained for both forms of data (video 

and raw loop event data). Then finally the data extraction methodology using VEVID 

software is presented with sample results. 

Chapter 3: Evaluation of existing classification model 

Before we move on to the development and evaluation of new vehicle classification model we 

need to present results showing the failure of existing model during congestion. This 

evaluation is made with the help of ground truth data extracted (as explained in chapter 2). 

Chapter 3 serves thus presents results by categorizing them into free, synchronized and stop-

and-go flow (flow identification is as discussed in sections 1.2.5 and 4.2). Thus this chapter 

ends concluding the failure of existing model during both forms of congestion that is 

synchronized and stop-and-go flow. 

Chapter 4: Constant Acceleration based Vehicle Classification model (CAVC) 

Once the existing model is proved to fail during congested flow condition a new vehicle 

classification model named as Constant Acceleration based Vehicle Classification model 

(CAVC) is presented. Finally presents a traffic flow identification methodology which is used 

to determine the type of model to be used for the extraction of vehicle classification data from 
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raw loop data.The principle and the concept behind this identification is presented with a 

detailed flow chart of data processing yielding vehicle length based classification.  

Chapter 5: Results and discussion 

CAVC model is evaluating using vehicle trajectory data collected.  This chapter then ends 

with concluding remarks from the results and also talks about future research possible in this 

area. Finally the significance of this research and its contribution to the area of vehicle 

classification data collection is discussed.  



33 

 

CHAPTER 2: DATA COLLECTION METHODOLOGY 

One of the major phases in this research is the data collection effort; this chapter explains a 

detailed methodology which was followed in collecting and extracting data. Both raw loop 

event data and corresponding video data are collected. Video data collection was mainly 

aimed to collect ground truth data during different states of congestion. Raw loop event data 

(loop data) is also collected simultaneously from the study site (loop detector station). Both 

existing and improved vehicle classification models are then used to process loop data for 

extracting vehicle classification (Chapter 3 and 5) and then these results are evaluated using 

the ground truth data extracted from video files. 

This chapter thus presents details of study sites selected for data collection such as location of 

dual loop detector station, place of setting up the camera (with images of the loop station). 

Later the chapter deals with extraction methodology of vehicle trajectory data using ―Vehicle 

Video-Capture Data Collector‖ (VEVID). Setting up of VEVID reference system to extract 

the trajectory data and also the new GPS based method is used for this setting up of reference 

points is explained. The trajectory information here includes on-time, vehicle length and 

speed. In this research, consecutive three weekdays of data was collected during July 14th, 

15th and 16th, 2009.  

2.1 Study sites  

A field study was initially conducted in Columbus aiming to find feasible dual-loop detector 

locations which could be videotaped for the ground truth data. A total 16 dual-loop detector 

stations near Columbus were observed for suitability in respect with possible camera location, 
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loop data quality and the amount of congestion observed near the station. List of loop stations 

surveyed and their location: 

1. V0001: Near Long St towards North I 71. 

2. V0004: Near East 11
th

 St on I 71. 

3. V0007: Near Velma Rd on I 71.  

4. V0010: Near East Weber Rd on I-71. 

5. V0013: Near East North Broadway St on I 71.  

6. V0016: Near E Cooke Road on I-71. 

7. V0019: Near Morse Road on I-71. 

8. V0022: Near E Dublin Granville Rd on I-71. 

9. V0025: Near Schrock Rd on I-71. 

10. V0027: Near exit 119A on I-71. 

11. V0030: Near Park Rd on I-71. 

12. V0033: Near Polaris Pkwy on I-71. 

13. V1002: Near S Front St on I-70/71.  

14. V1003: Near S 4th St on I-70/71 

15. V1005: Near S Grant Ave on I 70/71 

16. V1008: Near E town St on I 71. 

After initial survey of the detector stations, two stations V1002 and V1003 for data collection 

are selected depending on suitable place to mount the camera and also the congestion patterns 

observed. These dual-loop stations are located on Interstate 70/71 which is within downtown 

Columbus, OH. At this location, recurrent congestion has been observed during both morning 
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and evening peak hours. A camcorder was set nearby to videotape the traffic congestion. 

Following section gives a description of the dual loop study sites selected. 

2.1.1 V1002 dual loop detector station 

This dual-loop detector station is located on I-70/71 at S Front Street.  Both sides (i.e. I-71 

north and south) have the detectors (Figure 12, 13). The location is within downtown area 

with very close on ramps and off ramps and observes recurrent stop-and-go traffic during 

peak hours. Detectors on both eastbound and westbound pavement are clearly visible. 

Camera Location: Camera is set in the corner on the top (the 5
th

 Floor) of the Franklin County 

parking garage. The distance between the detectors and the possible camera location is 

estimated to be about 70 meters (Figures 12). The parking garage is owned by the Franklin 

county Juvenile department and operated by Public facility management. 

 

 

 

 

 

 

 

 

 

Figure 12: V1002 detector station and neighboring area. 

(Source: Picture taken from the top of Franklin County parking garage) 
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Figure 13: View of the V1002 detector station from parking garage. 

(Source: Google maps, accessed on July 5
th

 2010) 

 

2.1.2 V1003 dual loop detector station  

This loop detector station is located on I-70WB/I71SB near 4
th

 Street (Figure 14). The 

location is within downtown area with very close on ramps and off ramps and experiences 

recurrent congestion during peak hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: V1003 detector station and neighboring area. 

(Source: Google maps, accessed on July 5
th

 2010) 
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Camera Location: Camera is set in the school on the right side of I-71N and it is close to the 

Interstate. The school is on a higher level compared to the pavement, and the ideal camera 

location is at the edge of the school (Figure 15). The estimated distance between the camera 

and the detectors is about 30 meters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: View of V1003 detector station from the school. 

(Source: Picture taken from Col. Africentric Ec Elementary School parking lot) 

2.2 Video data collection 

As mentioned earlier the video data is collected simultaneously for extracting ground truth 

data. Selected dual loop locations are videotaped from an elevated position from which the 

vehicle traveling over the dual loops can be viewed, as shown in Figure 16. Data is collected 

from the V1002 and V1003 dual-loop stations located on Interstate 70/71. This is within 

downtown Columbus, OH which usually observes congestion. At this location, recurrent 

congestion has been observed during both morning and evening peak hours. A camera was 

installed on the top floor of a parking garage to videotape station V1002 next to Interstate 
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(Figure 17). Similarly an elevated position from school parking for V1003 dual loop station 

was selected.  

 

 

 

 

 

 

Figure 16: Videotaping procedure demonstration 

 

 

 

 

 

 

 

 

 

Figure 17: Videotaping at selected loop station. 

(Source: Picture taken from the top of Franklin County parking garage) 
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A vehicle with a GPS data logger was made to drive over the loop detector station at a 

constant speed. Cruise control feature has been used to maintain constant speed. This is used 

for setting reference system for extraction of trajectory data. The video tapes were converted 

into AVI files at a specified frame rate to be compatible for extraction using VEVID. VEVID 

needs each small segments of video file; hence the AVI files are split into multiple files of 

about 1 minute each.  

2.3 Event dual loop data collection 

Raw loop event data (loop data) at these stations is requested from ODOT (Ohio Department 

of Transportation) with the help from Dr. Benn Coifman from Ohio state university (OSU). 

Traffic management center (TMC) was also instrumental in the data collection of raw loop 

actuation data for the same period of time during the field data collection. The format of 

sample raw loop data is as shown in earlier section 1.2.4 (Table 2).  

Raw loop actuation data is the loop event data and is accurate to 1/60th of a second. 

Sixty data points for every second are collected. Thus data is collected at proposed study sites 

along the freeway section which is experiencing congestion during peak hours of traffic. 

Particularly care was taken that traffic over loops experience congestion during data 

collection. 

2.4 Vehicle trajectory data extraction 

Once the video data was collected the next step is to extract the data. This data thus forms the 

ground truth data which is used for evaluating existing vehicle classification model and also 
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new improved vehicle classification model. This section introduces VEVID software used for 

data extraction, setting up of reference system and final data collection procedure.   

2.4.1 Introduction of VEVID 

To extract ground-truth vehicle event data, the software VEVID (Vehicle Video-Capture Data 

Collector) is used to extract high-resolution vehicle trajectory data from videotapes. The 

software VEVID had been developed to extract accurate trajectory data [Wei et al. 2005], and 

the accuracy of its outputs has been proven [Wei, 2008]. A new GPS based setting up 

reference points in VEVID has been used in our research. Using VEVID, the timestamps, on-

times, speeds, and lengths are extracted.  

2.4.2 Setting reference system for data extraction 

Reference points are required to be measured in the field. Traditional way of setting up 

reference points is done through marking intervals (approximately 20ft) along both sides of 

the roadway. This traditional method of setting reference points on Interstate poses safety 

concerns for data collection.  

 

 

 

 

 

 

Figure 18: Vehicle demonstrating VP-GPS method of referencing 
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In order to solve this case a new method using Global Positioning System (GPS) device is 

used. Video-capture, Perspective drawing techniques using Cruise control function and GPS-

based probe technology form the base of this new approach and thus named as VP-GPS 

approach by University of Cincinnati research team.  

With the VP-GPS approach, no staff is needed in field while the accuracy of the reference 

points is well ensured. The new method (Figure 18) uses two small red flags symmetrically to 

the rear bumper of a car. Flags are hanged under the bumper and the flags ends are placed just 

above the road surface such that they do not touch the ground (Figure 18). The car with red 

flags runs to and fro passing the segment of the road, using the cruise control function to 

maintain a constant speed which is monitored by GPS travel logger (Figure 19). 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: GPS travel logger instrument 
(Source: www.eFronteir.com, accessed July 14

th
 2010, 19) 

This method of reference system marking has been used and its accuracy has been tested in 

field by the University of Cincinnati research team. Flags are used to locate the exact point on 
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the ground. Vehicle positioning from video frames using video-capture and linear perspective 

drawing techniques are used to determine reference points using VEVID software. 

 

 

 

 

 

 

 

Figure 20: VEVID interface showing reference system 

Speed probed by the testing vehicle is used to determine the reference spacing intervals, and 

then a real (ground) distance coordinate system is formed in VEVID. Figure 20 shows the 

VEVID interface with reference system and is ready for extraction of vehicle trajectory data. 

2.4.3 Data extraction 

Once the reference system is successfully established then process of manual 

extraction of trajectory data starts (Figure 21). The vehicle trajectory ground-truth data 

extracted using VEVID, is used to evaluate both existing vehicle classification model and also 

proposed new vehicle classification model (CAVC) for different traffic states. Table 4 below 

shows sample vehicle trajectory data extracted from raw video data using VEVID. Speed on 

M and S are calculated similar to existing loop algorithm. Frame ID (number) is used to 

calculate time  
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Figure 21: Demonstration of vehicle length data extraction using VEVID 

 

Table 4: Format of extracted trajectory data  

Veh 

No. 

Speed on M 

loop (mph) 

Speed on S 

loop (mph) 

Ontime1 

(M loop) (Sec) 

Ontime2 

(S loop) 

(Sec) 

Vehicle 

Length (ft) 

1 58.47078 54.03409 0.3 0.266667 15.4 

2 54.20455 51.75 1.033333 1.033333 70.29 

3 48.53571 47.1733 0.3 0.333333 15.73 

4 55.02273 51.51989 0.3 0.333333 16.03 

5 52.56818 47.30114 0.3 0.333333 15.28 

6 49.34659 45.5 0.8 0.833333 49.81 

7 51.34091 45.53693 0.4 0.4 19.57 

8 49.62784 46.86364 0.366667 0.4 18.6 

9 46.05195 46.79545 0.333333 0.4 18.09 

10 47.62987 42.46875 0.366667 0.4 15.13 

11 49.16761 48.78409 0.3 0.3 15.18 

12 49.73864 55.15057 0.733333 0.8 49.9 

13 50.69805 53.46307 0.3 0.333333 15.94 

14 49.90909 47.76136 0.333333 0.333333 17.07 
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travelled between different vehicle motions. In VEVID we can achieve up to an accuracy of 

1/30
th

 of a second frame rate. Both vehicle location (obtained from reference system) and 

frame ID (or values) are used for calculating flow parameters like speed and ontime whereas 

individual vehicle length is obtained from the location of front bumper and rear bumper of the 

vehicle. 
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CHAPTER 3: EVALUATION OF EXISTING VEHICLE 

CLASSIFICATION MODEL 

The existing vehicle classification model as explained earlier is based on the assumption that 

individual vehicle speed over the dual loop detection area is constant. To evaluate this model, 

vehicle length and also vehicle classification during different traffic states is extracted using 

existing vehicle classification model and compared with ground truth data. The comparison is 

made in different traffic flow states separately. The ground truth data is collected from video 

data using VEVID software (as explained in earlier section 2.4.3). This is done by 

synchronizing the loop and video timestamps and extracting individual trajectory data which 

yields ground truth data. Different traffic states considered are ―free-flow‖, ―synchronized 

flow‖ and ―stop and go flow‖. Thus existing vehicle classification data is compared with 

ground truth data for the above mentioned traffic states.  

Ground truth data was extracted for free flow condition is based on start and end 

timestamps from both video segment and loop timestamps (total numbers of vehicles were 

matched). On the other hand for synchronized and stop-and-go flow conditions the trajectory 

data is extracted by matching individual vehicles in both data formats.  This is done by 

verifying the vehicle detected on the loop (from raw data) with that from video segment (upon 

careful observation of timestamps). 

3.1 Existing model during free flow 

Existing classification model is compared with the ground truth vehicle classification data for 

free flow condition. Ground truth data for V1002 EB lane 3 for July 15 is collected using 

VEVID. A total of 661 vehicles are collected which forms our sample to evaluate the existing 
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model for free flow state. Existing vehicle classification model is used to estimate vehicle 

lengths from raw loop data and later vehicles are classified based on their length.  

Table 5: Vehicle classification in to bins from existing model (free flow) 

  Ground 

truth 

classification 

Existing classification 

model 

 

Misclassification  

(Existing-Ground) 

(No. of vehicles)   No of 

vehicles 

No.of vehicles 

ODOT     

Small <= 28ft 564 573 (573-564) = 9 

Medium <=46ft 23 25 2 

Large >46 ft 74 63 -11 

WSDOT    

 Bin 1: <= 26ft 558 566 8 

Bin 2: <= 39ft 24 26 2 

Bin 3: <= 65ft 21 18 -3 

Bin 4: > 65ft 58 51 -7 

Total  661 661  

The classification of data as per standard ODOT and WSDOT vehicle length based 

classification bins can be seen in Table 5. The table shows a comparison between the 

classification results obtained from both existing and ground truth data. According to ODOT 

classification an error (misclassification) of -11 vehicles (negative sign represents less 

vehicles detected by model than actual ground truth classification) was found for large 

vehicles. Similarly as per WSDOT classification results we can see that Bin 3 and Bin 4 were 

underestimated (-3 and -7 vehicles) by existing vehicle classification model. This error is 

small compared to sample size taken and also considering the fact that the sample is not 

formed by identical matching of vehicles. This mismatch is due to the fact that data was 

collected between 2:24 PM and 2:45 PM on July 15
th

 in lane 3 which yielded 661 vehicles 

(video). And only 642 vehicles (loop data) during that time, this under detection of loop data 
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is due to detection errors (pulse break ups and omitted phases). More 19 vehicles were added 

from loop data beyond 2:45 PM and leading to samples which are not completely identical. 

Classification error is also due to observed lane changing (5 vehicles) and presence of trolleys 

(vehicles with multiple units) (3 vehicles). Hence the error is due to during vehicle detection 

and also the fact that the sample may not be exactly identical lead to this minor error. But in 

case of congested vehicles they are exactly matched form both the data and all the vehicles 

which observed lane changing behavior (or detection error) are eliminated from the analysis. 

And thus for congested case the samples are exactly identical. Hence we can conclude from 

observing the vehicle lengths and classification data (Table 4) that the existing model 

accurately estimates vehicle length during free flow. Thus existing model works well during 

free flow traffic condition.  

3.2 Existing model under synchronized flow 

Synchronized flow as previously explained (section 1.2.5.2) refers to slow moving traffic and 

considered as an intermediate state between free flow and stop-and-go flow (wide moving 

jams). Vehicles observe acceleration (deceleration) during this period resulting in change in 

speed over the detection area. This contradicts the basic assumption of constant speed of 

existing vehicle classification model. This leads to misclassification of vehicle data for 

synchronized flow state. Classification data is evaluated using ground truth data. The ground 

truth data in this case is collected as explained earlier by identifying individual vehicles using 

both timestamps. Thus each individual vehicle length from existing model is compared with 

the ground truth vehicle length.  
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For estimating required sample size for synchronized vehicles we assume a confidence 

level of 95% (z = 1.96) and error allowed (precision, e) as 2ft and standard deviation (σ) of 

16.55 (from ground truth data).  

    
     

  
           (8) 

Where, 

 n0 is the sample size,  

z is the abscissa of the normal curve that cuts off an area at the tails,  

e is the desired level of precision (in the same unit of measure as the variance),   

   is the standard deviation of an attribute in the population.  

The calculated minimum sample size for synchronized flow calculated using the 

formula mentioned above (eq. 8) is 264 vehicles. The sample size used in the study is 414 

vehicles which more than required sample size. A total of 414 vehicles are collected from 

both V1002 (July 14
th

, 2009) and V1003 (July 16, 2009) stations. Initial observations 

confirmed that vehicles were overestimated in most of the cases and many smaller vehicles 

were detected as medium or large vehicles. To explain this further a graphical representation 

of the length estimates of existing model and ground truth data are presented in Figure 22. By 

observing the data we can understand the impact of acceleration and deceleration on vehicle 

length estimate.  

As we can see from the graph the results are much dispersed from the linear line 

(y=x), which shows the inaccuracy of the existing model in predicting the vehicle lengths. 

Two straight lines representing error ranges are drawn on either side linear line (y=x) to form 

upper and lower boundaries of the dispersion of data points. Two straight lines representing 
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error ranges of   ± 40%  
                                             

             
      are drawn connecting 

origin (0, 0) and              . These lines (  
 

 
        

 

 
 ) show the dispersion 

of vehicle length estimation about the ground truth value.  

 

Figure 22: Existing model vs Ground truth data (synchronized flow) 

From graph we can observe the impact of acceleration (deceleration) resulting in 

underestimating (overestimating) vehicle lengths (outliers). Observed outliers are for example 
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  Ground truth Existing model  

Misclassification 

(Existing-Ground) 

(No. of vehicles) 

  No of vehicles No.of vehicles 

ODOT     

Small <= 28ft 328 320 (320-328) = -8.00 

Medium <=46ft 15 20 5.00 

Large >46 ft 71 74 3.00 

WSDOT    
 

Bin 1: <= 26 ft 330 315 -15.00 

Bin 2: <= 39 ft 8 19 11.00 

Bin 3: <= 65 ft 18 32 14.00 

Bin 4: > 65 ft 58 48 -10.00 

Total  414 414 
 

 

171ft, 148ft, 125ft, 121ft etc. On detailed analysis of these data points (outliers) yielded 

valuable information required for adjusting the model. For example a vehicle detected as 11ft 

was actually 18ft. The vehicle accelerated resulting in on-times difference between loops and 

underestimated vehicle length by about 7ft. For example vehicle detected as 148ft is actually 

75ft long vehicle. This vehicle decelerated on the loop detection area. Similarly another 

vehicle which is detected as 171ft is actually 72ft long. This vehicle similar to previous 

example observed deceleration. 

Finally classifying vehicles into standard vehicle classification bins during 

synchronized flow is as shown in the Table 6. We can observe that existing vehicle 

classification is not accurately predicting the classification. Especially the small and medium 

class (ODOT) and also all four classes of WSDOT classification have significant amount of 

misclassification (error). For small vehicle (ODOT) class of misclassification by -8 vehicles 

(negative represents that less vehicles are identified). Similarly for Bin 1, Bin 2 and Bin 3 we 

can observe -15, 11 and 14 vehicles of misclassification respectively.  

Table 6: Vehicle classification in to bins from existing model (synchronized flow) 
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Small vehicles have been identified as medium vehicles or large vehicles for ODOT 

classification. And similarly Bin 1 vehicles have been misclassified as either Bin 2 or Bin 3 

class vehicles. Thus the existing model in most of the cases has overestimated small vehicles 

as large vehicles. Hence the existing vehicle classification model needs to be modified to 

improve the vehicle classification for synchronized traffic flow condition. 

3.3 Existing model under stop-and-go flow 

Stop-and-go traffic flow which is also known as ―wide moving jam‖ is most complex scenario 

of the congested flow. During stop-and-go flow vehicles usually travel at lower speeds 

compared to synchronized flow and occasionally stop on the dual loop detection area. 

Vehicles during stop-and-go flow pose a challenging task as vehicles also undergo quick 

acceleration and deceleration motions. In this section the existing vehicle classification model 

is evaluated for the stop-and-go traffic data. Data is collected from stations V1002 and V1003 

during stop-and go traffic flow.   

A total of 130 vehicles are collected from both V1002 (July 14
th

, 2009) and V1003 

(July 16, 2009) stations. Similar to the procedure explained for synchronized flow minimum 

sample size required for stop-and-go flow is calculated to determine data sufficiency. But 

considering the complexity of stop-and-go flow the desired level of precision (e) is assumed 

as 3ft.  Thus the sample size required for stop-and-go data for 95% confidence interval and 

standard deviation of 16.55ft (similar to section 3.2) is calculated as 117 vehicles. Thus 

collected sample of 130 vehicles is sufficient to validate the model. 

From initial observation it is confirmed that vehicles were overestimated in most of 

the cases. Thus smaller vehicles are detected as medium and in some cases as even large 
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vehicles (similar to synchronized flow, section 3.2). This is further explained using graphical 

representation of the length estimates from existing model and ground truth data (Figure 23). 

As we can see from the graph the results are much dispersed about the drawn linear line 

(y=x), which shows the inaccuracy of the existing model in predicting the vehicle lengths.  

Figure 23: Existing model vs Ground truth data (stop-and-go flow) 
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Similar to synchronized flow (3.2) two straight lines (  
 

 
        

 

 
 ) 

representing ±50% error ranges are drawn on either side. The data has few outliers which 

represent the inaccuracy of existing classification model. For example 17ft vehicle has been 

detected as 198ft long vehicle. This can be explained as the vehicle was observed to stop on 

M loop and accelerated and also stopped on S loop. Similarly an 18ft vehicle has been 

detected as 148ft. In this case the vehicle decelerated and stopped on loop S only. In both 

previous cases vehicle lengths are overestimated due to factors such as acceleration 

(deceleration) and stopping patterns. Similarly in another data point a 67ft vehicle is 

underestimated as 19ft vehicle, in this case vehicle observed acceleration over loop detection 

area. In another example 68ft vehicle has been detected as 12ft vehicle and this is the case of 

vehicle stopped on M loop and then accelerated over rest of the detection area. In both the 

cases vehicle lengths have been underestimated by existing vehicle classification model.  

Table 7: Vehicle classification in to bins from existing model (stop-and-go flow) 

 

 

 

 

 

 

 

 

 

  Ground truth 

classification 

Existing classification  

model 

 

Misclassification  

(Existing-Ground) 

(No. of vehicles) 
  No of vehicles No.of vehicles 

ODOT     

Small <= 28ft 121 108 -13 

Medium <=46ft 1 8 7 

Large >46 ft 8 14 6 

WSDOT  
  

 Bin 1: <= 26ft 120 106 -14 

Bin 2: <= 39ft 1 6 5 

Bin 3: <= 65ft 2 9 7 

Bin 4: > 65ft 7 9 2 

Total  130 130  
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Finally the vehicles are classified in to standard bins (Table 7) which compares the 

results from existing model with that of ground truth data. From the table we can observe that 

vehicle lengths have been overestimated resulting in more medium, Bin 2 and Bin 3 vehicles. 

We can observe this by a misclassification of -13 vehicles (Small) and -14 vehicles (Bin 1) 

which result in overestimation of 7 vehicles for medium class, 5 vehicles for Bin 2 and 7 

vehicles for Bin 3. From the results and analysis we can conclude that the existing vehicle 

classification model fails during stop-and-go traffic condition and needs to be improved. 
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CHAPTER 4: CONSTANT ACCELERATION BASED 

VEHICLE CLASSIFICATION MODEL (CAVC) 

Existing model as explained in earlier sections assumes that vehicle runs across loop detectors 

at constant speed. This model is valid under light traffic (free flow) and results evaluated in 

chapter 3 show that the existing classification model is not accurate enough during congested 

traffic (synchronized flow and stop-and-go flow). It is difficult for vehicles to maintain 

constant speed during congested traffic and the acceleration (deceleration) will distort the 

results obtained from the existing model.  

From analysis of existing model data and observations we can conclude that the 

acceleration effect on estimated vehicle length is different for different vehicle classes (or 

type of vehicle). Hence estimation of individual acceleration factors is necessary than 

proposing a constant acceleration value for all vehicle classes. For example a long vehicle 

(e.g. 65 ft) experiencing small amount of acceleration, the calculated vehicle length will be 

much different from the real length. This difference in length is much higher compared to that 

for a small vehicle with same amount of acceleration (deceleration).  

To solve for vehicle estimate and produce accurate vehicle length based classification 

Kinematic equations are used in this research. We can draw relevant information useful for 

solving the problem of acceleration (deceleration) during congestion from these equations. 

The following section thus presents a new vehicle classification model named as Constant 

Acceleration based Vehicle Classification model (CAVC model). This model is used to solve 

both cases of congestion which are synchronized and stop-and-go. The principle behind new 
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CAVC model for the congested traffic flow condition and traffic state identification 

methodology will be discussed in next sections. 

4.1 Principle behind CAVC model 

As explained in earlier section the new model considers the acceleration factors which 

influence vehicle motion on roadway (especially during congestion). Figure 24 represents a 

dual loop detector with direction of traffic flow and upstream loop (M) and downstream loop 

(S). Where D is the distance between the loops and t1, t2, t3, t4 are time stamps for the vehicle 

travelling over the loops which is collected as raw loop data.  

 

 

 

 

 

 

Figure 24: Layout of dual loop detectors 

 

Where,  

t1 = loop M on-time stamp 

t2 = loop M off-time stamp 

t3 = loop S on-time stamp 

t4 = loop S off-time stamp 
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As we can see in from Figure 24 for each vehicle four time stamps are recorded. Two of them 

being on-time stamps and other two are off-time stamps. The front bumper of vehicle which 

initializes the detection results in on-time stamps over both M and S loops. Similarly the rear 

bumper results in recoding of off-time stamps while leaving both loops. Thus constitute two 

trajectories one front bumper and another rear bumper. We can thus only calculate only two 

speeds for the vehicle using these four different time stamps and their locations (from loop 

dimensions). Thus accurate determination of vehicle length using these two speeds which 

assume that vehicle travels with constant speed ignores the impact of acceleration 

(deceleration) during congestion.   

This new model which is named as CAVC model assumes that vehicle runs across the 

dual-loop detector area at variable speed which is the result of constant acceleration 

(deceleration). 

The following four equations forms the basis for CAVC model: 

              
 

 
       

           (9) 

              
 

 
       

        (10) 

                                          (11) 

         
 

 
                                   (12) 

Where, 

Lv: Length of vehicle 

Ls: Length of single loop; in this study, Ls = 8.5ft (in our case) 
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vo: Speed of vehicle when it is entering the upstream loop (M loop) 

vt: Speed of vehicle when it is entering the downstream loop (S loop) 

a: Vehicle acceleration 

D: Distance between loops  

t: Time taken for vehicle to travel from M loop to S loop = (t3 – t1) 

OnT1: Total time for which the vehicle is detected on M loop = (t2-t1) 

OnT2: Total time for which the vehicle is detected on M loop = (t4-t3) 

We here have four equations and four unknowns (variables). Variables here include ‗Lv‘, ‗vo‘, 

‗vt‘, and ‗a‘. And OnT1, OnT2 and t are derived from raw loop event data (as shown above). 

On the other hand Ls and D are constants and for our dual loop stations (V1002 and V1003) 

these values are 8.5 ft and 20 ft respectively. Solving the equations (9, 10, 11 and 12) for Lv 

(length of vehicle) we derive following equation (model). 

             
 

 
   

                    

                        
        (13) 

Sample output of the CAVC model under congested traffic flow is shown in Table 8 and 

compared with the results from both existing model and ground-truth data. It can be seen that 

the accuracy of vehicle length calculation has been improved which results in improved 

vehicle classification.  
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Vehicle length 

(ft) 

(Ground truth) 

Vehicle length 

(ft) 

(Existing model)  

Vehicle length  

(ft) 

(CAVC model)  

 (Existing-Ground)  

d1 (ft) 

(CAVC-Ground)  

d2 (ft)  

16 39 17 (39-16) = 23 (17-16)= 1 

16 4 14 -12 -2 

65 54 67 -11 2 

15 8 14 -7 -1 

65 113 77 48 12 

70 85 73 15 3 

65 86 68 21 3 

 

Table 8: Sample data of estimated length using different models 

Note: Negative d1 or d2 represent that the vehicle length calculated is less than ground truth 

data 

4.2 Identification of traffic flow state 

The next step is to classify the data in three traffic flow conditions as to use the appropriate 

vehicle classification model. To classify the traffic flow as free flow, synchronized and stop-

and-go flow traffic flow threshold values are used as explained in chapter 1 (section 1.2.5). 

According to Coifman (2002) during free flow on-time difference (OnT1-OnT2) would be in 

the range of ± (3.5/60) sec. From the field observation it is observed that this range is valid 

and can be used as an indicator for congestion. All the vehicles with in this on-time difference 

range would fall in to free flow and the existing vehicle classification model can be used. The 

rest of the vehicles fall into congested traffic condition and are further classified into 

synchronized flow and stop-and-go flow using speed of vehicle.  

As explained earlier (section 1.2.5.2) synchronized flow is characterized with low 

average vehicle speeds. From discussions of Kerner (1999) we can observe that speeds as low 

as 18 mph (30 kph) and as high as 45 mph (70 kph) constitute to synchronized flow. Based on 
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the information gained from his [Kerner 1999] observations and other traffic flow models and 

also from the field data collected, a model is developed to classify the traffic flow as 

synchronized vehicle whose speed is less than 45 mph and greater than 15 mph (rounded off). 

Similarly for stop-and-go vehicles the speeds range from 0 mph to 15 mph. To calculate the 

vehicle speed for classifying the existing model approach is used. Two speeds are proposed to 

be calculated one using on-time stamps of both M and S loops (vf) (front bumper) and another 

using off-time stamps of M and S loops (vr) (rear bumper).  

Steps followed for identification of traffic state: 

Step 1: Dual loop data is provided as input to CAVC model (Figure 25). Comparison is made 

between M-loop on-time (OnT1) and N loop on-time (OnT2) and a check is applied on 

condition (OnT1-OnT2). Check If (OnT1-OnT2) ≥ ± (3.5/60) seconds.  

Step 2: If NO for previous condition in Step 1 another check for speed is made If (vf > 45 

mph (AND) vr > 45 mph) is YES traffic flow state is identified as free flow. Where vf and vr 

are speeds calculated using on-time stamps (front bumper) and off-time stamps (rear bumper). 

If the result is NO vehicle is identified to experience congestion (congested traffic). 

Step 3: If YES for condition in Step 1 the vehicle is classified as to experience congested 

traffic. Then another condition is applied for speed (vf ≤ 15 mph (OR) vr ≤ 15 mph). If the 

result for this if-condition is YES then the vehicle is identified to observe stop-and-go flow.  

Step 4: If NO for condition in Step 3 then the vehicle is again checked for speed (vf ≤ 45 mph 

(OR) vr ≤45 mph). If the result for this condition is NO then it is a case of loop detection error 

(eg, Pulse break ups, detector stuck in the 'off‘ or ‗on‘, etc). These vehicles have thus satisfied 

condition in Step 1 as a result of above mentioned loop detection errors and are eliminated 
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through this condition in Step 4. If the result for previous condition (Step 4) is YES then 

vehicle will be identified to observe synchronized flow.  

 

Figure 25: Traffic flow state identification methodology used in CAVC model  
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NO vf > 45 mph 
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vr > 45 mph 

 

Existing model CAVC model 

Free flow traffic Stop-and-go flow Synchronized flow 
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sensitivity, etc) 

NO YES vf ≤ 45 mph 

(OR) 

vr ≤45 mph 

NO YES vf ≤ 15 mph 

(OR) 

vr ≤ 15 mph 

 

Congested traffic 

YES NO 

Dual loop event data 

(OnT1- OnT2) >= (+/- (3.5/60) sec 
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Traffic flow identification methodology used in CAVC model (Figure 25) thus includes the 

all previous steps to identify the traffic state. Once the state of traffic flow is identified as free 

flow or synchronized flow or stop-and-go flow then applicable models are applied. Then the 

existing model is applied on free flow and CAVC model is applied on both synchronized and 

stop-and-go flow.  

Finally we have established a model for vehicle length calculation using kinematic 

equations considering the impact of acceleration. According to the CAVC model (Figure 25) 

the acceleration is assumed to be constant; this assumption has been observed to produce  

significantly good results during synchronized flow and also for vehicles in stop-and-go flow. 

In some cases such when vehicle observes multiple accelerations (acceleration is not fairly 

constant) and also during stopping of vehicles this assumption may not be completely valid. 

These extreme conditions are further discussed in chapter 5 with examples of complex vehicle 

trajectories as outliers.  
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CHAPTER 5: RESULTS AND DISCUSSION 

The Constant Acceleration based Vehicle Classification model (CAVC) is used to improve 

the vehicle classification and also accurately predict vehicle length. CAVC model in this 

chapter is evaluated for congested traffic flow condition. The new model is thus used on the 

corresponding raw loop data to estimate vehicle lengths and vehicle classification. CAVC 

model is used for both synchronized flow and stop-and-go flow conditions and evaluated 

using ground truth data. This model calculates acceleration values for individual vehicles and 

produces length estimates accurately. Vehicles are classified based on calculated vehicle 

lengths in to standard vehicle classification bins. Results are presented by comparing CAVC 

model with ground truth data. 

5.1 CAVC model under synchronized flow 

Sample data used for evaluating existing model (Chapter 3.2) is also used for evaluating 

classification results from CAVC model. For synchronized flow a sample of 414 vehicles 

have been collected (ground truth data). The results from the new model are evaluated based 

on classification bins and also using individual vehicle lengths plotted for corresponding 

ground truth data as in Figure 26. The graph plotted presents the vehicle length data points 

from both CAVC model and existing model comparing them with corresponding ground truth 

vehicle length data. Thus this graph displays the accuracy of vehicle length prediction using 

both old and new models. A linear straight line (y=x) is drawn to represent the accuracy of the 

results and we can see that most of the data points from new CAVC model fall close to the 

straight line. And we can also observe some data falling on both sides of the line (y=x) and to 
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represent the percentage error range (upper and lower range) about the true vehicle length 

values two straight lines representing ±20% error (  
 

 
        

 

 
 ) are drawn. This is a 

significant improvement in results as observed for existing model (in section 3.2) for which 

the data points were beyond the ±40 % error range.  

 
Figure 26: CAVC and Existing model vs Ground truth data (synchronized flow) 
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From the Figure 26 we can observe some outliers which are quite far away from linear 

straight line (y=x). For example 72ft vehicle has been detected as 120ft, in this case vehicle 

has been observed to experience multiple decelerations. Similarly in other outlier 73ft vehicle 

is detected as 94ft and 74ft vehicle is detected as 98 ft. These two vehicles also observed non 

constant deceleration patterns.  

CAVC model as indicated previously is helpful to reduce the amount of error in 

vehicle length estimate. To statistically validate the results from CAVC model the difference 

between the vehicle estimate (CAVC model) and actual vehicle length (ground truth) is 

calculated which forms corresponding sample ‗D‘ as shown in Table 9. This is used to prove 

that there is no significant difference between the vehicle lengths calculated using the 

developed CAVC model and ground truth values. Thus all 414 vehicles have been used to 

calculate this data set ‗D‘ (CAVC-Ground). Theoretically if all vehicles lengths have been 

exactly estimated the values in D should be equal to zero. Hence the difference in length data 

(D) is statistically analyzed using standard t-test. 

Table 9: Explanation of sample D (CAVC-Ground) in ft 

 

 

 

 

 

 

 

 

Veh No. 
Vehicle length 

(ft) (Ground) 

(Ground truth) 

Vehicle length 

(ft) (CAVC) 

(CAVC model) 

(CAVC-Ground) 

D (ft) 

1 14 11.21 (11.21-14) = -2.79 

2 12 11.5 -0.5 

3 21 20.03 -0.97 

4 46 47.01 1.01 

5 70 67.82 -2.18 

6 72 74.44 2.44 

7 75 79.80 4.8 
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Considering the null hypothesis: ―The mean is not significantly different from zero‖  

(H0: μ = 0). 

Alternative hypothesis: ―The mean is significantly different from zero‖ (H1: μ ≠0).  

The t value is calculated from equation 13 using the calculated sample mean (X) of the 

sample D as 0.03938ft, standard deviation (σ) as 3.49ft, sample size (n) of 414 vehicles and 

the population mean (μ = 0). 

   
   μ 

σ

  

           (13) 

The calculated t-statistic is 0.22958 (from Equation 13).  The t critical value for 95% 

confidence interval ( = 0.5) and df (degrees of freedom) of 413 is 1.973. As the t calculated 

is less than t critical (0.229<1.973), the null hypothesis cannot be rejected. Thus we can say 

that the mean of the sample is not significantly different from zero. Therefore there is no 

significant difference between CAVC length estimate and the ground truth vehicle length.  

Finally the vehicle classification in to standard bins is presented in Table 10. From the 

table we can observe the comparison between CAVC model and ground truth data. Except for 

medium vehicle class and Bin1class where CAVC model predicts 2 and 3 vehicles less than 

ground truth data respectively, the rest of classification is accurate enough. We can thus 

conclude that the classification data from CAVC model for synchronized traffic is very 

accurate. And CAVC model produced accurate vehicle length estimates and vehicle 

classification results compared to existing model for synchronized traffic flow. 
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Table 10: Vehicle classification in to bins from CAVC model (synchronized flow) 

  Ground truth CAVC model Misclassification 

(CAVC-Ground) 

(No. of vehicles) 
  No of vehicles No.of vehicles 

ODOT     

Small <= 28ft 328 329 (329-328) = 1 

Medium <=46ft 15 13 -2 

Large >46 ft 71 72 1 

WSDOT     

Bin 1: <= 26 ft 330 327 -3 

Bin 2: <= 39 ft 8 9 1 

Bin 3: <= 65 ft 18 19 1 

Bin 4: > 65 ft 58 59 1 

Total  414 414 

  

5.2 CAVC model under stop-and-go flow  

CAVC model is then applied for stop-and-go flow data and evaluated similar to existing 

model (section 3.3). The vehicles in stop-and-go traffic flow travel at very low speeds (section 

1.2.5.3) and also stop on loops for certain period of time. Same data sample is taken for 

evaluating CAVC model for stop-and-go flow as used in for existing model.  A total of 130 

vehicles are used to compare the results for this new model.  

In Figure 27 the graph is plotted which presents the vehicle length data for both 

CAVC model and existing model comparing them with ground truth vehicle length data. This 

graph displays the accuracy of vehicle length prediction using both old and new models with 

reference to ground truth data. A linear straight line (y=x) is drawn to represent the accuracy 

of the results and we can see that most of the data points from new CAVC model fall close to 

the straight line. 
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Figure 27: CAVC and Existing model vs Ground truth data (stop-and-go flow) 
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And we can also observe for few data points (CAVC model) fall on both sides of the straight 

line (y=x). And to represent the percentage error range (upper and lower boundary) about the 

true vehicle length value, two straight lines representing ±20% error (  
 

 
        

 

 
 ) are 

drawn. This is a significant amount of improvement as observed in (section 3.3) for existing 

model which resulted in error ranges of ±50% and still many data points were beyond the 

lines  

We still can observe few outliers for example 17ft vehicle has been detected as 95ft, 

thus a small vehicle has been detected as large vehicle. This vehicle stopped on M loop and 

also on S loop for significant amount of time (18sec and 36sec respectively). This is a case 

where the vehicle did not observe continues motion (without any stops) on at least one loop. 

Thus the vehicle length estimated is larger than original vehicle length. Similarly in other 

examples 14ft, 16ft and 6ft vehicles have been detected as 72ft, 40ft and 28ft respectively. In 

these cases the vehicles stopped for longer periods of time thus observing multiple 

accelerating and decelerating behaviors. Vehicle entered M loop and started decelerating and 

finally stopped in such a way as to activate both loops simultaneously and a similar vehicle 

trajectory was observed on S loop resulting in overestimation of vehicle length.  

Further statistical validation of results from CAVC model for stop-and-go flow is 

presented to prove that the difference (D) between the vehicle length estimate (CAVC model) 

and actual vehicle length (ground truth) is not significantly high. A t-test is conducted similar 

to synchronized flow data (section 5.1) on the sample D of size 130 stop-and-go vehicles. 

Theoretically if all the vehicle lengths have been exactly estimated the values in D should be 

equal to zero. The difference in length data (D) is statistically analyzed using t-test. 
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Null hypothesis: ―The mean is not significantly different from zero‖ (H0: μ = 0).  

Alternative hypothesis: ―The mean is significantly different from zero‖ (H1: μ ≠0).  

The mean of the sample D is calculated as 1.3335ft, standard deviation as 9.46ft and sample 

size of 130 vehicles. The t value is calculated using equation 13 as 1.607.  The t critical value 

for 95% confidence interval and df (degrees of freedom) of 129 is 1.979. Thus comparing t 

calculated by t critical (1.607<1.979), null hypothesis cannot be rejected. Thus we can say 

that mean of the sample is not significantly different from zero. Therefore there is no 

significant difference in vehicle length estimated (CAVC model) and the ground truth data.  

Table 11: Vehicle classification in to bins from CAVC model (stop-and-go data) 

  
Ground truth CAVC model Misclassification 

(CAVC-Ground) 

(No. of vehicles)   
No of vehicles No.of vehicles 

ODOT 
    

Small <= 28ft 121 116 (115-120) = -5 

Medium <=46ft 1 4 3 

Large >46 ft 8 10 2 

WSDOT 
    

Bin 1: <= 26ft 120 115 -5 

Bin 2: <= 39ft 1 3 2 

Bin 3: <= 65ft 2 4 2 

Bin 4: > 65ft 7 8 1 

Total 
 

130 130 
 

And finally vehicles are classified based on vehicle lengths estimated using CAVC 

model and compared with ground truth data as shown in Table 11. We can observe that 

CAVC model produced accurate vehicle classification compared to existing model. For 

instance in small vehicle bin existing  model underestimated 13 vehicles whereas CAVC 

model reduced it to only 5 vehicles. Similarly for Bin3 vehicle classification underestimates 

only by 2 vehicles in CAVC model compared to 7 vehicles for existing model.  
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5.3 Conclusions 

Existing model for free flow data produced accurate vehicle classification proving that 

the constant speed assumption is valid for free flow data. For synchronized vehicle data 

existing model observed error due to misclassification as high as -8 (negative represents 

underestimating number of vehicles) for small vehicle class and also an error 14 and -15 for 

Bin3 and Bin1vehicle class. The CAVC model on the other hand was successful in reducing 

the error to 1, 1, and -3 for small, Bin3 and Bin1 vehicle class respectively. This is significant 

improvement compared to the misclassification observed earlier in the existing model. On the 

other hand for stop-and-go vehicle data results show that existing model predicts most of the 

smaller vehicles as large vehicles. Thus existing model is over estimating most of small 

vehicles as either medium or large vehicles which is reduced by CAVC model. For example 

existing model produced an error due to misclassification of -14 (negative represents 

underestimating number of vehicles) for Bin1, -13 for small and 6 for large vehicle class.  

Whereas CAVC model was successful in reducing this to -5, -5, and -2 respectively for 

previously mentioned vehicle classes.   

Traffic flow state identification methodology which is presented in this research works 

by analyzing the traffic flow parameters like on-time difference and speed. This methodology 

will allow us to switch back and forth between existing vehicle classification model and 

Constant Acceleration based Vehicle Classification model (CAVC). The vehicle length 

estimation using CAVC model is very accurate for synchronized flow compared to that in 

stop-and-go flow. This can be attributed to the stopping pattern of vehicles. It has been 

observed that CAVC model is accurate for vehicles observing constant motion (without 
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stopping) and also for vehicle stopping once (either on M or S loop). But in other cases such 

as vehicles stopping on both loops simultaneously and also experiencing multiple stops in the 

loop detection area creates a complex scenario. More analysis of acceleration patterns 

observed during these stop conditions are required and their impact on vehicle length 

estimation has to be analyzed. Also more advanced data collection methods are recommended 

(GPS, etc.) to accurately study these acceleration patterns, stopping behaviors and headway 

distribution during stop-and-go traffic flow. Finally concluding that the proposed CAVC 

model can be used for improving vehicle length based classification.  

5.4 Contribution to the area of research 

This research has significant contribution to the area of vehicle classification data collection 

using dual loop detector data. As mentioned previously freeway vehicle classification data is 

collected mostly by using dual loop detectors as they are widely installed in the roadway 

network. This research unlike in any other previous studies concentrates in improving length 

based vehicle classification data during congestion, by introducing the acceleration factor for 

more accurate vehicle length estimation. Constant speed assumption for existing vehicle 

length based classification is a big source of error. This not only affects stop-and-go data but 

also synchronized vehicle classification data.  

The main purpose of this research is not only quantifying the error due to existing 

model but also propose a new improved model (CAVC model) for accurate vehicle length 

estimate. This new model thus can be used for synchronized flow vehicles and also for non-

stopping vehicles during stop-and-go flow. This new model considers application of 

acceleration factors on more vehicle by vehicle approach instead of specifying a range of 
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acceleration values. Further the model incorporates a traffic identification methodology to 

determine whether the vehicle is observing free flow or synchronized flow or stop-and-go 

flow. This model uses two traffic flow parameters on-times difference and speed to identify 

the traffic state.  

As CAVC model calculates vehicle acceleration for each individual vehicle depending 

on timestamps recorded it eliminates any error in acceleration prediction due to seasonal, 

location based and vehicle class based variance. Each vehicle is treated as a new vehicle and a 

distinct and more accurate acceleration value is calculated which yields more representative 

vehicle length based classification.  



74 

 

REFERENCES 

1. Bhagat, V., and Woods, D. (1997). "Loop Detector Crosstalk." ITE Journal, 67(2). 

2. Bonsall, P., and Bell, M. (1987). Information technology applications in transport. VNU 

Science Press BV, The Netherlands.  

3. Booth, C. J., and Kurpis, G. (1993). "The new IEEE standard dictionary of electrical and 

electronics terms [including abstracts of all current IEEE standards]." New York: IEEE.  

4. Cheevarunothai, P., Wang, Y., and Nihan, N. L. (2006). "Identification and Correction of 

Dual-Loop Sensitivity Problems." Transportation Research Record: Journal of the 

Transportation Research Board, 1945(-1), 73-81.  

5. Chen, L., and May, A. (1987). "Traffic detector errors and diagnostics." Transportation 

Research Record, 1132 82–93.  

6. Coifman, B. (1999). "Using dual loop speed traps to identify detector errors." 

Transportation Research Record: Journal of the Transportation Research Board, 1683(-

1), 47-58. 

7. Coifman, B. (2001). "Improved velocity estimation using single loop detectors." 

Transportation Research Part A: Policy and Practice, 35(10), 863-880. 

8. Coifman, B. (2003). "Identifying the onset of congestion rapidly with existing traffic 

detectors." Transportation Research Part A: Policy and Practice, 37(3), 277-291.  

9. Coifman, B., and Yang, Y. (2004). "Estimating spatial measures of roadway network 

usage from remotely sensed data." Transportation Research Record: Journal of the 

Transportation Research Board, 1870(-1), 133-138.  

10. Daganzo, C. F. (1997). Fundamentals of transportation and traffic operations. Pergamon. 



75 

 

11. Guide, T. M., and Counts, S. D. (2001). "TRAFFIC MONITORING GUIDE.".  

12. Habib-Mattar, C., Polus, A., and Cohen, M. A. (2009). "Analysis of the Breakdown 

Process on Congested Freeways." Transportation Research Record: Journal of the 

Transportation Research Board, 2124(-1), 58-66. 

13. Helbing, A. (2002). "Micro-and macro-simulation of freeway traffic." Mathematical and 

Computer Modelling, 35(5-6), 517-547.  

14. Kates, R., Bogenberger, K., and Hoops, M. (1998). "Mesoscopic simulation with 

ANIMAL: Optimal utilization of downstream traffic detector data and the propagation of 

information." Traffic and Granular Flow'97: Gerhard-Mercato-Universität Duisburg, 

Germany, 6-8 October 1997, 453.  

15. Kell, J. H., Fullerton, I. J., and Mills, M. (1990). "Traffic detector handbook." Federal 

Highway Administration, Washington, DC.  

16. Kerner, B. S., and Konhäuser, P. (1994). "Structure and parameters of clusters in traffic 

flow." Physical Review E, 50(1), 54-83. 

17. Kerner, B. S. (1998). "Experimental features of self-organization in traffic flow." 

Phys.Rev.Lett., 81(17), 3797-3800. 

18. Kerner, B. S. (1999). "The physics of traffic." Physics World, 8(99), 25.  

19. Kerner, B. S. (2000). "Theory of breakdown phenomenon at highway bottlenecks." 

Transportation Research Record: Journal of the Transportation Research Board, 1710(-

1), 136-144.  

20. Kerner, B. S. (2001). "Complexity of synchronized flow and related problems for basic 

assumptions of traffic flow theories." Networks and Spatial Economics, 1(1), 35-76. 



76 

 

21. Kerner, B. S., and Klenov, S. L. (2005). "Deterministic microscopic three-phase traffic 

flow models." Journal of Physics A: Mathematical and General, 39 1775.  

22. Klein, L. A. (2001). Sensor technologies and data requirements for ITS. Artech House 

Publishers.  

23. Klein, L. A., Mills, M. K., and Gibson, D. R. P. (2006). Traffic Detector Handbook: -

Volume I.  

24. Kockelman, K. M. (2001). "Modeling traffic's flow-density relation: Accommodation of 

multiple flow regimes and traveler types." Transportation, 28(4), 363-374. 

25. Lighthill, M., and Whitham, G. (1955). "On kinematic waves. II. A theory of traffic flow 

on long crowded roads." Proceedings of the Royal Society of London. Series A, 

Mathematical and Physical Sciences, 229(1178), 317-345.  

26. May, A. D., Cayford, R., Coifman, B., and Merritt, G. (2003). "Loop detector data 

collection and travel time measurement in the Berkeley highway laboratory."  

27. Nelson, P. (2000). "Synchronized traffic flow from a modified Lighthill-Whitman model." 

Physical Review E, 61(6), 6052-6055.  

28. Neubert, L., Santen, L., Schadschneider, A., and Schreckenberg, M. (1999). "Single-

vehicle data of highway traffic: A statistical analysis." Physical Review E, 60(6), 6480-

6490.  

29. Nihan, N. L., Zhang, X., Wang, Y., and Briglia, P. (2002). "Evaluation of dual-loop data 

accuracy using video ground truth data." Washington, US.  



77 

 

30. Nihan, N. L., Zhang, X., and Wang, Y. (2005). "Improved dual-loop detection system for 

collecting real-time truck data." Transportation Research Record: Journal of the 

Transportation Research Board, 1917(-1), 108-115.  

31. Oman, R. M., and Oman, D. M. (1997). How to solve physics problems. Schaum's Outline 

Series.  

32. Payne, H. J. (1971). "Models of freeway traffic and control." Mathematical Models of 

Public Systems, 1(1), 51-61.  

33. Payne, H. J. (1979). "A critical review of a macroscopic freeway model." Engineering 

Foundation Conference on Research Directions in Computer Control of Urban Traffic 

Systems, 251-265.  

34. Polus, A., and Pollatschek, M. A. (2002). "Stochastic nature of freeway capacity and its 

estimation." Canadian Journal of Civil Engineering, 29(6), 842-852.  

35. Richards, P. I. (1956). "Shock waves on the highway." Operations Research, 42-51.  

36. Sin, J., Lee, S. H., and Choi, K. (2002). "A single loop detector-based freeway speed 

estimation." KSCE Journal of Civil Engineering, 6(1), 1-9.  

37. Viti, F., Verbeke, W., and Tampère, C. M. J. (2008). "Sensor Locations for Reliable 

Travel Time Prediction and Dynamic Management of Traffic Networks." Transportation 

Research Record: Journal of the Transportation Research Board, 2049(-1), 103-110.  

38. Wang, Y., and Nihan, N. L. (2004). "Dynamic Estimation of Freeway Large-Truck 

Volumes Based on Single-Loop Measurements." Journal of Intelligent Transportation 

Systems, 8(3), 133-141.  



78 

 

39. Wei, H., Feng, C., Meyer, E., and Lee, J. (2005). "Video-capture-based approach to 

extract multiple vehicular trajectory data for traffic modeling." Journal of Transportation 

Engineering. 131 496.  

40. Wei, H. (2008). "Characterize Dynamic Dilemma Zone and Minimize its Effect at 

Signalized Intersections." Ohio.  

41. "Weigh-in-Motion (WIM) systems." accessed on 8/31/2010, 

http://training.ce.washington.edu/wsdot/Modules/04_design_parameters/wim.htm 2010). 

42. Zhang, H. M., and Shen, W. (2009). "A Numerical Investigation of Stop-and-go Traffic 

Patterns Upstream of a Freeway Lane-drop." 88th Transportation Research Board Annual 

Meeting, Washington, DC.  

 


