# **UNIVERSITY OF CINCINNATI**

Date: 12-Mar-2010

I, Michael Connelly hereby submit this original work as part of the requirements for the degree of: Doctor of Philosophy **Materials Science** in It is entitled: An Analysis of Innovation in Materials and Energy **Student Signature:** Michael Connelly This work and its defense approved by: Jainagesh Sekhar, PhD **Committee Chair:** Jainagesh Sekhar, PhD Ronald Huston. PhD Ronald Huston, PhD Steven Benintendi, PhD Steven Benintendi, PhD Jude Iroh. PhD Jude Iroh, PhD Rodnev Roseman. PhD Rodney Roseman, PhD

# An Analysis of Innovation in Materials and Energy

A dissertation submitted to the

Graduate School

of the University of Cincinnati

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Department of Chemical and Materials Engineering

of the College of Engineering

by

Michael Connelly

M.S. University of Cincinnati

June, 2010

Committee Chair: J.A. Sekhar, Ph.D.

Abstract: This dissertation presents an analysis of innovation in engineering materials and energy sources. More than fifty engineering materials and fourteen energy sources were selected for an evaluation of the relationship between the yearly production activity and yearly patent counts, which may be considered as a measure of innovation, for each. Through the employment of correlation theory, best-fit and origin shift analyses, it has been determined here that engineering materials and energy sources display similar life cycle and innovative activity behaviors. Correlation theory revealed a relationship between the yearly production and yearly patent counts indicating the extent that production and innovation affect each other. Best-fit analysis determined that four-stage life cycles exist for both engineering materials (metals and non-metals) and energy sources. Correlation and best-fit indicators of an estimated Stage III are confirmed by the presence of an origin shift of the patent data when compared to the production data which indicates that patents, or innovation, are driving, or being driven by, production. This driving force could represent the constructive or destructive side of the innovative process, with such sides being delineated by a possible universal constant above which there is destructive innovative behavior and below which exists constructive innovation. The driving force may also illustrate the manner in which an engineering material or energy source transitions into an innovatively less active state, enter Stage IV and possibly become a commodity. A possible Stage V, indicating "Final Death", is introduced in which production is on a steep decline with no signs of recovery. Additionally, innovatively active energy sources are often found to utilize or be supported by innovatively active engineering materials. A model is presented that can be used for the evaluation of innovation and production that can be applied to both engineering materials and energy sources that may be used to predict the innovative behavior of these resources in order that they can be more effectively allocated and utilized.

## **Table of Contents**

| Abstract Pag                                                     | e iii |
|------------------------------------------------------------------|-------|
| List of Tables and Figures Pag                                   | e x   |
| Introduction Pag                                                 | e 1   |
| Section 1 : Measuring InnovationPag                              | e 4   |
| Innovation Pag                                                   | e 4   |
| Measurement of Innovation Pag                                    | e 5   |
| Measurement Excluding Patents Pag                                | e 5   |
| Measurement with Patents Pag                                     | e 7   |
| Section 2 : Data Collection Page                                 | e 9   |
| Engineering Material Production Activity Data Collection . Page  | e 9   |
| Patent Data Collection Pag                                       | e 10  |
| Section 3 : Patent and Production Activity Data Correlation Page | e 11  |
| Section 4 : Best-Fit Pag                                         | e 15  |
| Platform Equation with Chromium as an Example Page               | e 16  |
| Stage Indication Pag                                             | e 24  |
| Section 5 : Best-Fit, Origin Shift and Innovation Page           | e 28  |
| Section 6 : Energy Sources Pag                                   | e 37  |
| Data Collection Pag                                              | e 37  |
| Patent and Production Activity Data Collection Page              | e 38  |
| Best-Fit Pag                                                     | e 40  |
| Wind Energy as an Example Page                                   | e 41  |
| Best-Fit, Origin Shift and Innovation Page                       | : 45  |
| Energy MaterialsPage                                             | : 49  |

|                | Engineering Material Connection | . Page 51 |
|----------------|---------------------------------|-----------|
|                | Result Comparison               | Page 53   |
| Section 7 : An | nalysis                         | Page 54   |
|                | Correlation                     | Page 54   |
|                | Best-Fit                        | Page 55   |
|                | Stage V                         | Page 56   |
|                | Origin Shift                    | Page 57   |
|                | Driving Force                   | Page 58   |
|                | Life Cycle Stage Change         | Page 61   |
|                | Relevance                       | Page 63   |
|                | Conclusion and Summary          | Page 67   |
| Appendix 1 :   | Correlation                     | Page 69   |
| Appendix 2 :   | MatLab                          | Page 71   |
|                | Program Template                | Page 71   |
|                | Zinc Program                    | Page 72   |
| Appendix 3 :   | Engineering Materials Data      | Page 76   |
|                | Aluminum                        | Page 76   |
|                | Antimony                        | Page 78   |
|                | Arsenic                         | Page 81   |
|                | Asbestos                        | Page 83   |
|                | Barite                          | Page 85   |
|                | Bauxite/Alumina                 | Page 87   |
|                | Beryllium                       | Page 90   |
|                | Bismuth                         | Page 92   |
|                | Boron                           | Page 94   |

| Cadmium          | Page 96  |
|------------------|----------|
| Chromium         | Page 98  |
| Cobalt           | Page 100 |
| Copper           | Page 103 |
| Feldspar         | Page 105 |
| Fluorspar        | Page 108 |
| Gold             | Page 110 |
| Graphite         | Page 112 |
| Gypsum           | Page 115 |
| Helium           | Page 117 |
| Hydraulic Cement | Page 120 |
| Iodine           | Page 122 |
| Iron             | Page 125 |
| Kyanite          | Page 127 |
| Lead             | Page 130 |
| Lithium          | Page 132 |
| Magnesite        | Page 135 |
| Magnesium        | Page 137 |
| Manganese        | Page 140 |
| Mercury          | Page 142 |
| Molybdenum       | Page 144 |
| Nickel           | Page 147 |
| Niobium          | Page 149 |
| Nitrogen         | Page 152 |
| Phosphate Rock   | Page 154 |

| PlatinumPage 157                              |
|-----------------------------------------------|
| PotashPage 159                                |
| Rare EarthsPage 161                           |
| Salt Page 164                                 |
| Selenium Page 166                             |
| Silicon Page 168                              |
| SilverPage 171                                |
| Sulfur Page 173                               |
| Talc Page 176                                 |
| Tantalum Page 178                             |
| TinPage 180                                   |
| TitaniumPage 182                              |
| Tungsten Page 185                             |
| VanadiumPage 187                              |
| Zinc Page 190                                 |
| ZirconiumPage 192                             |
| Appendix 4 : Energy Sources Data              |
| U.S. Biofuel Energy Production Page 195       |
| U.S. Biomass Energy ProductionPage 197        |
| U.S. Coal Energy Production Page 200          |
| U.S. Fossil Fuel Energy ProductionPage 202    |
| U.S. Geothermal Energy Production Page 205    |
| U.S. Hydroelectric Energy Production Page 207 |
| U.S. Natural Gas Energy ProductionPage 209    |
| U.S. Nuclear Energy ProductionPage 212        |

|                                            | U.S. Oil Energy Production Page 214       |  |
|--------------------------------------------|-------------------------------------------|--|
|                                            | U.S. Renewable Energy Production Page 216 |  |
|                                            | U.S. Solar Energy Production Page 219     |  |
|                                            | U.S. Total Energy Production Page 221     |  |
|                                            | U.S. Wind Energy Production Page 224      |  |
|                                            | U.S. Wood Energy ProductionPage 226       |  |
| Appendix 5: Energy Materials DataPage 2    |                                           |  |
|                                            | U.S. CoalPage 229                         |  |
|                                            | U.S. Natural GasPage 231                  |  |
|                                            | U.S. OilPage 234                          |  |
|                                            | U.S. Uranium UsagePage 236                |  |
| Appendix 6: Patent Search KeywordsPage 239 |                                           |  |
| Appendix 7: 5                              | ScalingPage 241                           |  |
| Appendix 8: 1                              | Executive SummaryPage 245                 |  |
| References                                 | Page 260                                  |  |

# List of Tables and Figures

#### Introduction

| Table 1: | Selected Engineering Materials | Page 2 |
|----------|--------------------------------|--------|
| Table 2: | Selected Energy Sources        | Page 2 |

### Section 3: Patent and Production Activity Data Correlation

| Figure 1 : | Rare Earths: Activity and Patents | Page 12 |
|------------|-----------------------------------|---------|
| Figure 2:  | Beryllium: Activity and Patents   | Page 12 |
| Table 3:   | Overall Correlation Coefficients  | Page 13 |

#### Section 4: Best-Fit

| Figure 3 :  | Typical Long-Term Life Cycle of a Metal Page 15                  |
|-------------|------------------------------------------------------------------|
| Table 4 :   | Common Pattern Equation Variables Page 17                        |
| Figure 4 :  | USGS World Chromium Production Page 19                           |
| Figure 5 :  | EPO Worldwide Patent Search: Chromium Page 20                    |
| Table 5 :   | Individual Origins, Origin Shifts, Stages, $r$ and $R^2$ Page 21 |
| Figure 6 :  | Chromium: Best-Fit Activity and Patents Page 23                  |
| Figure 7 :  | Zinc: Best-Fit Activity and Patents Page 23                      |
| Figure 8 :  | Aluminum: Activity and Patents Page 25                           |
| Figure 9 :  | Arsenic: Activity and Patents Page 26                            |
| Figure 10 : | Manganese: Activity and Patents Page 26                          |
| Figure 11 : | Mercury: Activity and Patents Page 27                            |

#### Section 5: Best-Fit, Origin Shift and Innovation

| Table 6 :      | $\alpha$ and <i>n</i> Parameters, $\alpha^n$ ratio, and Origin Shift | Page 29 |
|----------------|----------------------------------------------------------------------|---------|
| Figure 12(a) : | Engineering Material Drive Ratio vs. Origin Shift                    | Page 32 |
| Figure 12(b) : | Drive Ratio vs. Origin Shift ( $R^2$ values above 0.85)              | Page 34 |
| Table 7 :      | Origin Shifts and $R^2$ values                                       | Page 35 |
| Figure 12(c) : | Drive Ratio vs. Origin Shift (2 shift average)                       | Page 36 |

#### Section 6: Energy Sources

| Table 8 :   | Energy Source $r$ and $100r^2$ Page 39                                       |
|-------------|------------------------------------------------------------------------------|
| Figure 13 : | U.S. Wind Energy: Activity and Patents Page 39                               |
| Figure 14 : | U.S. Oil Energy: Activity and Patents Page 40                                |
| Figure 15 : | Typical Energy Source Long-Term Life Cycle       Page 40                     |
| Figure 16 : | EIA U.S. Wind Energy Production Page 41                                      |
| Figure 17 : | EPO Worldwide Patent Search: Wind Power Page 42                              |
| Table 9 :   | Individual Origins, Origin Shifts, Stages, $r'$ and $R^2$ Page 44            |
| Figure 18 : | U.S. Wind Energy Best-Fit Activity and Patents Page 45                       |
| Figure 19 : | U.S. Geothermal Energy Best-Fit Activity and PatentsPage 45                  |
| Table 10:   | $\alpha$ and <i>n</i> parameters, $\alpha^n$ ratio and Origin Shifts Page 46 |
| Figure 20 : | Energy Source Drive Ratio vs. Origin Ratio Page 48                           |
| Table 11 :  | Energy Material $R^2$ values, correlation and origin shiftsPage 50           |
| Table 12 :  | Energy Material alpha and <i>n</i> parametersPage 50                         |
| Figure 21:  | Energy Material Drive Ratio vs. OriginPage 51                                |
| Table 13 :  | Energy Sources and Engineering Materials Page 52                             |
| Table 14 :  | Energy Source and Material ComparisonPage 52                                 |

#### Section 7: Analysis

| Figure 22 : | Mercury Production Life Cycle Page 57           |
|-------------|-------------------------------------------------|
| Table 15 :  | Result ChangesPage 61                           |
| Figure 23 : | Manganese Production Activity 1900-2004 Page 62 |
| Figure 24 : | Manganese Production Activity 1900-2007 Page 62 |

## Appendix 1: Correlation

| Table A1.1 :  | Calculated Correlation Terms      | <br>Page 70 |
|---------------|-----------------------------------|-------------|
| Figure A1.1 : | Aluminum Activity and Patent Data | <br>Page 70 |

#### Appendix 2: Matlab

| Program A2.1 : | MatLab Best-Fit Template    |      | Page 71 |
|----------------|-----------------------------|------|---------|
| Program A2.2 : | Zinc Production MatLab Prog | gram | Page 72 |
| Program A2.4 : | Zinc Program Results        |      | Page 74 |

#### Appendix 3: Engineering Materials Data

| Table A3.1 :  | Aluminum Activity and Patents Page 76         |
|---------------|-----------------------------------------------|
| Table A3.2 :  | Correlation Equation Terms Page 76            |
| Figure A3.1 : | Aluminum: Activity and Patents Page 76        |
| Figure A3.2 : | USGS World Aluminum Production Page 77        |
| Figure A3.3 : | EPO Worldwide Patent Search: Aluminum Page 77 |
| Figure A3.4 : | Aluminum Best-Fit Activity and Patents        |
| Figure A3.5 : | Aluminum Independent Patent Best-Fit          |
| Table A3.3 :  | Antimony Activity and Patents Page 78         |
| Table A3.4 :  | Correlation Equation Terms                    |

| Figure A3.6 :  | Antimony: Activity and Patents Page 79        |
|----------------|-----------------------------------------------|
| Figure A3.7 :  | USGS World Antimony Production Page 79        |
| Figure A3.8 :  | EPO Worldwide Patent Search: Antimony Page 80 |
| Figure A3.9 :  | Antimony Best-Fit Activity and Patents        |
| Figure A3.10 : | Antimony Independent Patent Best-Fit          |
| Table A3.5 :   | Arsenic Activity and Patents Page 81          |
| Table A3.6 :   | Correlation Equation Terms Page 81            |
| Figure A3.11 : | Arsenic: Activity and Patents Page 81         |
| Figure A3.12 : | USGS World Arsenic Production Page 82         |
| Figure A3.13:  | Arsenic Independent Patent Best-Fit Page 82   |
| Table A3.7 :   | Asbestos Activity and Patents Page 83         |
| Table A3.8 :   | Correlation Equation Terms Page 83            |
| Figure A3.14 : | Asbestos: Activity and Patents Page 83        |
| Figure A3.15 : | USGS World Asbestos Production Page 84        |
| Figure A3.16:  | Asbestos Independent Patent Best-Fit          |
| Table A3.9 :   | Barite Activity and Patents Page 85           |
| Table A3.10 :  | Correlation Equation Terms Page 85            |
| Figure A3.17 : | Barite: Activity and Patents Page 85          |
| Figure A3.18 : | USGS World Barite Production Page 86          |
| Figure A3.19 : | EPO Worldwide Patent Search: Barite Page 86   |
| Figure A3.20 : | Barite Best-Fit Activity and Patents Page 86  |
| Figure A3.21 : | Barite Independent Patent Best-Fit Page 87    |
| Table A3.11 :  | Bauxite/Alumina Activity and Patents          |
| Table A3.12 :  | Correlation Equation Terms Page 88            |
| Figure A3.22 : | Bauxite/Alumina: Activity and Patents         |

| Figure A3.23 : | USGS World Bauxite/Alumina Produ      | uction Page 88       |
|----------------|---------------------------------------|----------------------|
| Figure A3.24 : | EPO Worldwide Patent Search: Baux     | kite/Alumina Page 89 |
| Figure A3.25 : | Bauxite/Alumina Best-Fit Activity and | nd Patents Page 89   |
| Figure A3.26:  | Bauxite/Alumina Independent Patent    | Best-Fit Page 89     |
| Table A3.13 :  | Beryllium Activity and Patents        | Page 90              |
| Table A3.14 :  | Correlation Equation Terms            | Page 90              |
| Figure A3.27 : | Beryllium: Activity and Patents       | Page 90              |
| Figure A3.28 : | USGS World Beryllium Production       | Page 91              |
| Figure A3.29:  | Beryllium Independent Patent Best-F   | it Page 91           |
| Table A3.15 :  | Bismuth Activity and Patents          | Page 92              |
| Table A3.16 :  | Correlation Equation Terms            | Page 92              |
| Figure A3.30 : | Bismuth: Activity and Patents         | Page 92              |
| Figure A3.31 : | USGS World Bismuth Production         | Page 93              |
| Figure A3.32:  | Bismuth Independent Patent Best-Fit   | Page 93              |
| Table A3.17 :  | Boron Activity and Patents            | Page 94              |
| Table A3.18 :  | Correlation Equation Terms            | Page 94              |
| Figure A3.33 : | Boron: Activity and Patents           | Page 94              |
| Figure A3.34 : | USGS World Boron Production           | Page 95              |
| Figure A3.35:  | Boron Independent Patent Best-Fit     | Page 95              |
| Table A3.19 :  | Cadmium Activity and Patents          | Page 96              |
| Table A3.20 :  | Correlation Equation Terms            | Page 96              |
| Figure A3.36 : | Cadmium: Activity and Patents         | Page 96              |
| Figure A3.37 : | USGS World Cadmium Production         | Page 97              |
| Figure A3.38:  | Cadmium Independent Patent Best-F     | it Page 97           |

| Table A3.21 :  | Chromium Activity and Patents        |       | Page 98  |
|----------------|--------------------------------------|-------|----------|
| Table A3.22 :  | Correlation Equation Terms           |       | Page 98  |
| Figure A3.39 : | Chromium: Activity and Patents       |       | Page 98  |
| Figure A3.40 : | USGS World Chromium Production       |       | Page 99  |
| Figure A3.41 : | EPO Worldwide Patent Search: Chro    | omium | Page 99  |
| Figure A3.42 : | Chromium Best-Fit Activity and Pate  | ents  | Page 99  |
| Figure A3.43 : | Chromium Independent Patent Best-    | Fit   | Page 100 |
| Table A3.23 :  | Cobalt Activity and Patents          |       | Page 100 |
| Table A3.24 :  | Correlation Equation Terms           |       | Page 101 |
| Figure A3.44 : | Cobalt: Activity and Patents         |       | Page 101 |
| Figure A3.45 : | USGS World Cobalt Production         |       | Page 101 |
| Figure A3.46 : | EPO Worldwide Patent Search: Coba    | alt   | Page 102 |
| Figure A3.47 : | Cobalt Best-Fit Activity and Patents |       | Page 102 |
| Figure A3.48:  | Cobalt Independent Patent Best-Fit   |       | Page 102 |
| Table A3.25 :  | Copper Activity and Patents          |       | Page 103 |
| Table A3.26 :  | Correlation Equation Terms           |       | Page 103 |
| Figure A3.49 : | Copper: Activity and Patents         |       | Page 103 |
| Figure A3.50 : | USGS World Copper Production         |       | Page 104 |
| Figure A3.51 : | EPO Worldwide Patent Search: Copp    | oer   | Page 104 |
| Figure A3.52 : | Copper Best-Fit Activity and Patents |       | Page 104 |
| Figure A3.53 : | Copper Independent Patent Best-Fit   |       | Page 105 |
| Table A3.27 :  | Feldspar Activity and Patents        |       | Page 105 |
| Table A3.28 :  | Correlation Equation Terms           |       | Page 106 |
| Figure A3.54 : | Feldspar: Activity and Patents       |       | Page 106 |
| Figure A3.55 : | USGS World Feldspar Production       |       | Page 106 |

| Figure A3.56 : | EPO Worldwide Patent Search: Feld     | spar Page 107  |
|----------------|---------------------------------------|----------------|
| Figure A3.57 : | Feldspar Best-Fit Activity and Paten  | ts Page 107    |
| Figure A3.58:  | Feldspar Independent Patent Best-Fi   | t Page 107     |
| Table A3.29 :  | Fluorspar Activity and Patents        | Page 108       |
| Table A3.30 :  | Correlation Equation Terms            | Page 108       |
| Figure A3.59 : | Fluorspar: Activity and Patents       | Page 108       |
| Figure A3.60 : | USGS World Fluorspar Production       | Page 109       |
| Figure A3.61 : | EPO Worldwide Patent Search: Fluo     | rspar Page 109 |
| Figure A3.62 : | Fluorspar Best-Fit Activity and Pater | nts Page 109   |
| Figure A3.63:  | Fluorspar Independent Patent Best-F   | it Page 110    |
| Table A3.31 :  | Gold Activity and Patents             | Page 110       |
| Table A3.32 :  | Correlation Equation Terms            | Page 111       |
| Figure A3.64 : | Gold: Activity and Patents            | Page 111       |
| Figure A3.65 : | USGS World Gold Production            | Page 111       |
| Figure A3.66:  | Gold Independent Patent Best-Fit      | Page 112       |
| Table A3.33 :  | Graphite Activity and Patents         | Page 112       |
| Table A3.34 :  | Correlation Equation Terms            | Page 113       |
| Figure A3.67 : | Graphite: Activity and Patents        | Page 113       |
| Figure A3.68 : | USGS World Graphite Production        | Page 113       |
| Figure A3.69 : | EPO Worldwide Patent Search: Grap     | bhite Page 114 |
| Figure A3.70 : | Graphite Best-Fit Activity and Paten  | ts Page 114    |
| Figure A3.71 : | Graphite Independent Patent Best-Fi   | t Page 114     |
| Table A3.35 :  | Gypsum Activity and Patents           | Page 115       |
| Table A3.36 :  | Correlation Equation Terms            | Page 115       |

| Figure A3.72 : | Gypsum: Activity and Patents                            |
|----------------|---------------------------------------------------------|
| Figure A3.73 : | USGS World Gypsum Production Page 116                   |
| Figure A3.74 : | EPO Worldwide Patent Search: Gypsum Page 116            |
| Figure A3.75 : | Gypsum Best-Fit Activity and Patents                    |
| Figure A3.76:  | Gypsum Independent Patent Best-Fit Page 117             |
| Table A3.37 :  | Helium Activity and Patents                             |
| Table A3.38 :  | Correlation Equation Terms Page 118                     |
| Figure A3.77 : | Helium: Activity and Patents                            |
| Figure A3.78 : | USGS World Helium Production Page 118                   |
| Figure A3.79 : | EPO Worldwide Patent Search: Helium Page 119            |
| Figure A3.80 : | Helium Best-Fit Activity and Patents Page 119           |
| Figure A3.81 : | Helium Independent Patent Best-Fit Page 119             |
| Table A3.39 :  | Hydraulic Cement Activity and Patents Page 120          |
| Table A3.40 :  | Correlation Equation Terms Page 120                     |
| Figure A3.82 : | Hydraulic Cement: Activity and Patents Page 120         |
| Figure A3.83 : | USGS World Hydraulic Cement Production Page 121         |
| Figure A3.84 : | EPO Worldwide Patent Search: Hydraulic Cement Page 121  |
| Figure A3.85 : | Hydraulic Cement Best-Fit Activity and Patents Page 121 |
| Figure A3.86:  | Hydraulic Cement Independent Patent Best-Fit Page 122   |
| Table A3.41 :  | Iodine Activity and Patents                             |
| Table A3.42 :  | Correlation Equation Terms Page 123                     |
| Figure A3.87 : | Iodine: Activity and PatentsPage 123                    |
| Figure A3.88 : | USGS World Iodine Production Page 123                   |
| Figure A3.89 : | EPO Worldwide Patent Search: Iodine Page 124            |
| Figure A3.90 : | Iodine Best-Fit Activity and Patents       Page 124     |

| Figure A3.91 :  | Iodine Independent Patent Best-FitPage 124    |
|-----------------|-----------------------------------------------|
| Table A3.43 :   | Iron Activity and Patents Page 125            |
| Table A3.44 :   | Correlation Equation Terms Page 125           |
| Figure A3.92 :  | Iron: Activity and Patents Page 125           |
| Figure A3.93 :  | USGS World Iron Production Page 126           |
| Figure A3.94 :  | EPO Worldwide Patent Search: Iron Page 126    |
| Figure A3.95 :  | Iron Best-Fit Activity and Patents Page 126   |
| Figure A3.96:   | Iron Independent Patent Best-Fit Page 127     |
| Table A3.45 :   | Kyanite Activity and Patents                  |
| Table A3.46 :   | Correlation Equation Terms Page 128           |
| Figure A3.97 :  | Kyanite: Activity and Patents                 |
| Figure A3.98 :  | USGS World Kyanite Production Page 128        |
| Figure A3.99 :  | EPO Worldwide Patent Search: Kyanite Page 129 |
| Figure A3.100 : | Kyanite Best-Fit Activity and Patents         |
| Figure A3.101 : | Kyanite Independent Patent Best-Fit           |
| Table A3.47 :   | Lead Activity and Patents                     |
| Table A3.48 :   | Correlation Equation Terms Page 130           |
| Figure A3.102 : | Lead: Activity and Patents                    |
| Figure A3.103 : | USGS World Lead Production Page 131           |
| Figure A3.104 : | EPO Worldwide Patent Search: Lead Page 131    |
| Figure A3.105 : | Lead Best-Fit Activity and Patents            |
| Figure A3.106 : | Lead Independent Patent Best-Fit              |
| Table A3.49 :   | Lithium Activity and Patents                  |
| Table A3.50 :   | Correlation Equation Terms                    |

| Figure A3.107 : | Lithium: Activity and Patents Page 133           |
|-----------------|--------------------------------------------------|
| Figure A3.108 : | USGS World Lithium Production Page 133           |
| Figure A3.109 : | EPO Worldwide Patent Search: Lithium Page 134    |
| Figure A3.110 : | Lithium Best-Fit Activity and Patents            |
| Figure A3.111 : | Lithium Independent Patent Best-Fit Page 134     |
| Table A3.51 :   | Magnesite Activity and Patents Page 135          |
| Table A3.52 :   | Correlation Equation Terms Page 135              |
| Figure A3.112 : | Magnesite: Activity and Patents Page 135         |
| Figure A3.113 : | USGS World Magnesite Production Page 136         |
| Figure A3.114 : | EPO Worldwide Patent Search: Magnesite Page 136  |
| Figure A3.115 : | Magnesite Best-Fit Activity and Patents Page 136 |
| Figure A3.116:  | Magnesite Independent Patent Best-Fit            |
| Table A3.53 :   | Magnesium Activity and Patents Page 137          |
| Table A3.54 :   | Correlation Equation Terms Page 138              |
| Figure A3.117 : | Magnesium: Activity and Patents Page 138         |
| Figure A3.118 : | USGS World Magnesium Production Page 138         |
| Figure A3.119 : | EPO Worldwide Patent Search: Magnesium Page 139  |
| Figure A3.120 : | Magnesium Best-Fit Activity and Patents Page 139 |
| Figure A3.121 : | Magnesium Independent Patent Best-Fit Page 139   |
| Table A3.55 :   | Manganese Activity and Patents Page 140          |
| Table A3.56 :   | Correlation Equation Terms Page 140              |
| Figure A3.122 : | Manganese: Activity and Patents Page 140         |
| Figure A3.123 : | USGS World Manganese Production Page 141         |
| Figure A3.124 : | EPO Worldwide Patent Search: Manganese Page 141  |
| Figure A3.125 : | Manganese Best-Fit Activity and Patents          |

| Figure A3.126 : | Manganese Independent Patent Best    | -Fit Page 142    |
|-----------------|--------------------------------------|------------------|
| Table A3.57 :   | Mercury Activity and Patents         | Page 142         |
| Table A3.58 :   | Correlation Equation Terms           | Page 143         |
| Figure A3.127 : | Mercury: Activity and Patents        | Page 143         |
| Figure A3.128 : | USGS World Mercury Production        | Page 143         |
| Figure A3.129:  | Mercury Independent Patent Best-Fi   | t Page 144       |
| Table A3.59 :   | Molybdenum Activity and Patents      | Page 144         |
| Table A3.60:    | Correlation Equation Terms           | Page 145         |
| Figure A3.130 : | Molybdenum: Activity and Patents     | Page 145         |
| Figure A3.131 : | USGS World Molybdenum Producti       | on Page 145      |
| Figure A3.132 : | EPO Worldwide Patent Search: Mol     | ybdenum Page 146 |
| Figure A3.133 : | Molybdenum Best-Fit Activity and I   | Patents Page 146 |
| Figure A3.134:  | Molybdenum Independent Patent Be     | st-Fit Page 146  |
| Table A3.61 :   | Nickel Activity and Patents          | Page 147         |
| Table A3.62 :   | Correlation Equation Terms           | Page 147         |
| Figure A3.135 : | Nickel: Activity and Patents         | Page 147         |
| Figure A3.136 : | USGS World Nickel Production         | Page 148         |
| Figure A3.137 : | EPO Worldwide Patent Search: Nick    | tel Page 148     |
| Figure A3.138 : | Nickel Best-Fit Activity and Patents | Page 148         |
| Figure A3.139 : | Nickel Independent Patent Best-Fit   | Page 149         |
| Table A3.63 :   | Niobium Activity and Patents         | Page 149         |
| Table A3.64 :   | Correlation Equation Terms           | Page 150         |
| Figure A3.140 : | Niobium: Activity and Patents        | Page 150         |
| Figure A3.141 : | USGS World Niobium Production        | Page 150         |

| Figure A3.142 : | EPO Worldwide Patent Search: Niobium Page 151         |
|-----------------|-------------------------------------------------------|
| Figure A3.143 : | Niobium Best-Fit Activity and Patents                 |
| Figure A3.144 : | Niobium Independent Patent Best-Fit Page 151          |
| Table A3.65 :   | Nitrogen Activity and Patents Page 152                |
| Table A3.66 :   | Correlation Equation Terms                            |
| Figure A3.145 : | Nitrogen: Activity and Patents                        |
| Figure A3.146 : | USGS World Nitrogen Production Page 153               |
| Figure A3.147 : | EPO Worldwide Patent Search: Nitrogen Page 153        |
| Figure A3.148 : | Nitrogen Best-Fit Activity and Patents                |
| Figure A3.149:  | Nitrogen Independent Patent Best-Fit Page 154         |
| Table A3.67 :   | Phosphate Rock Activity and Patents Page 154          |
| Table A3.68 :   | Correlation Equation Terms Page 155                   |
| Figure A3.150 : | Phosphate Rock: Activity and Patent Page 155          |
| Figure A3.151 : | USGS World Phosphate Rock Production Page 155         |
| Figure A3.152 : | EPO Worldwide Patent Search: Phosphate Rock Page 156  |
| Figure A3.153 : | Phosphate Rock Best-Fit Activity and Patents Page 156 |
| Figure A3.154:  | Phosphate Rock Independent Patent Best-Fit Page 156   |
| Table A3.69 :   | Platinum Activity and Patents Page 157                |
| Table A3.70 :   | Correlation Equation Terms Page 157                   |
| Figure A3.155 : | Platinum: Activity and Patents                        |
| Figure A3.156 : | USGS World Platinum Production Page 158               |
| Figure A3.157 : | EPO Worldwide Patent Search: Platinum Page 158        |
| Figure A3.158 : | Platinum Best-Fit Activity and Patents Page 158       |
| Figure A3.159:  | Platinum Independent Patent Best-Fit Page 159         |
| Table A3.71 :   | Potash Activity and Patents Page 159                  |

| Table A3.72 :   | Correlation Equation Terms           | Page 160        |
|-----------------|--------------------------------------|-----------------|
| Figure A3.160 : | Potash: Activity and Patents         | Page 160        |
| Figure A3.161:  | USGS World Potash Production         | Page 160        |
| Figure A3.162:  | Potash Independent Patent Best-Fit   | Page 161        |
| Table A3.73 :   | Rare earths Activity and Patents     | Page 161        |
| Table A3.74 :   | Correlation Equation Terms           | Page 162        |
| Figure A3.163 : | Rare Earths: Activity and Patents    | Page 162        |
| Figure A3.164 : | USGS World Rare Earths Production    | n Page 162      |
| Figure A3.165 : | EPO Worldwide Patent Search: Rare    | Earths Page 163 |
| Figure A3.166 : | Rare Earths Best-Fit Activity and Pa | tents Page 163  |
| Figure A3.167 : | Rare Earths Independent Patent Best  | -Fit Page 163   |
| Table A3.75 :   | Salt Activity and Patents            | Page 164        |
| Table A3.76 :   | Correlation Equation Terms           | Page 164        |
| Figure A3.168 : | Salt: Activity and Patents           | Page 164        |
| Figure A3.169:  | USGS World Salt Production           | Page 165        |
| Figure A3.170 : | EPO Worldwide Patent Search: Salt    | Page 165        |
| Figure A3.171 : | Salt Best-Fit Activity and Patents   | Page 165        |
| Figure A3.172:  | Salt Independent Patent Best-Fit     | Page 166        |
| Table A3.77 :   | Selenium Activity and Patents        | Page 166        |
| Table A3.78 :   | Correlation Equation Terms           | Page 167        |
| Figure A3.173 : | Selenium: Activity and Patents       | Page 167        |
| Figure A3.174:  | USGS World Selenium Production       | Page 167        |
| Figure A3.175:  | Selenium Independent Patent Best-F   | it Page 168     |
| Table A3.79 :   | Silicon Activity and Patents         | Page 168        |

| Table A3.80 :   | Correlation Equation Terms Page 169           |
|-----------------|-----------------------------------------------|
| Figure A3.176 : | Silicon: Activity and Patents                 |
| Figure A3.177 : | USGS World Silicon Production                 |
| Figure A3.178 : | EPO Worldwide Patent Search: Silicon          |
| Figure A3.179 : | Silicon Best-Fit Activity and Patents         |
| Figure A3.180 : | Silicon Independent Patent Best-Fit           |
| Table A3.81 :   | Silver Activity and Patents                   |
| Table A3.82 :   | Correlation Equation Terms Page 171           |
| Figure A3.181 : | Silver: Activity and Patents                  |
| Figure A3.182:  | USGS World Silver Production                  |
| Figure A3.183 : | EPO Worldwide Patent Search: Silver Page 172  |
| Figure A3.184:  | Silver Best-Fit Activity and Patents Page 172 |
| Figure A3.185:  | Silver Independent Patent Best-Fit Page 173   |
| Table A3.83 :   | Sulfur Activity and Patents Page 173          |
| Table A3.84 :   | Correlation Equation Terms Page 174           |
| Figure A3.186 : | Sulfur: Activity and Patents Page 174         |
| Figure A3.187:  | USGS World Sulfur Production Page 174         |
| Figure A3.188 : | EPO Worldwide Patent Search: Sulfur Page 175  |
| Figure A3.189 : | Sulfur Best-Fit Activity and Patents          |
| Figure A3.190:  | Sulfur Independent Patent Best-Fit Page 175   |
| Table A3.85 :   | Talc Activity and Patents                     |
| Table A3.86 :   | Correlation Equation Terms Page 176           |
| Figure A3.191 : | Talc: Activity and PatentsPage 176            |
| Figure A3.192:  | USGS World Talc Production Page 177           |
| Figure A3.193 : | EPO Worldwide Patent Search: Talc             |

| Figure A3.194 : | Talc Best-Fit Activity and Patents    | Page 177      |
|-----------------|---------------------------------------|---------------|
| Figure A3.195:  | Talc Independent Patent Best-Fit      | Page 178      |
| Table A3.87 :   | Tantalum Activity and Patents         | Page 178      |
| Table A3.88 :   | Correlation Equation Terms            | Page 179      |
| Figure A3.196 : | Tantalum: Activity and Patents        | Page 179      |
| Figure A3.197 : | USGS World Tantalum Production        | Page 179      |
| Figure A3.198:  | Tantalum Independent Patent Best-Fit  | t Page 180    |
| Table A3.89 :   | Tin Activity and Patents              | Page 180      |
| Table A3.90 :   | Correlation Equation Terms            | Page 181      |
| Figure A3.199 : | Tin: Activity and Patents             | Page 181      |
| Figure A3.200:  | USGS World Tin Production             | Page 181      |
| Figure A3.201:  | Tin Independent Patent Best-Fit       | Page 182      |
| Table A3.91 :   | Titanium Activity and Patents         | Page 182      |
| Table A3.92 :   | Correlation Equation Terms            | Page 183      |
| Figure A3.202 : | Titanium: Activity and Patents        | Page 183      |
| Figure A3.203 : | USGS World Titanium Production        | Page 183      |
| Figure A3.204 : | EPO Worldwide Patent Search: Titan    | ium Page 184  |
| Figure A3.205 : | Titanium Best-Fit Activity and Patent | s Page 184    |
| Figure A3.206 : | Titanium Independent Patent Best-Fit  | Page 184      |
| Table A3.93 :   | Tungsten Activity and Patents         | Page 185      |
| Table A3.94 :   | Correlation Equation Terms            | Page 185      |
| Figure A3.207 : | Tungsten: Activity and Patents        | Page 185      |
| Figure A3.208 : | USGS World Tungsten Production        | Page 186      |
| Figure A3.209 : | EPO Worldwide Patent Search: Tungs    | sten Page 186 |

| Figure A3.210:  | Tungsten Best-Fit Activity and PatentsPage 186  |
|-----------------|-------------------------------------------------|
| Figure A3.211 : | Tungsten Independent Patent Best-Fit Page 187   |
| Table A3.95 :   | Vanadium Activity and Patents                   |
| Table A3.96 :   | Correlation Equation Terms Page 188             |
| Figure A3.212 : | Vanadium: Activity and Patents Page 188         |
| Figure A3.213 : | USGS World Vanadium Production Page 188         |
| Figure A3.214 : | EPO Worldwide Patent Search: Vanadium Page 189  |
| Figure A3.215 : | Vanadium Best-Fit Activity and Patents          |
| Figure A3.216:  | Vanadium Independent Patent Best-Fit Page 189   |
| Table A3.97 :   | Zinc Activity and Patents                       |
| Table A3.98 :   | Correlation Equation Terms                      |
| Figure A3.217 : | Zinc: Activity and Patents                      |
| Figure A3.218 : | USGS World Zinc Production                      |
| Figure A3.219 : | EPO Worldwide Patent Search: Zinc Page 191      |
| Figure A3.220 : | Zinc Best-Fit Activity and Patents Page 191     |
| Figure A3.221 : | Zinc Independent Patent Best-Fit                |
| Table A3.99 :   | Zirconium Activity and Patents                  |
| Table A3.100 :  | Correlation Equation Terms                      |
| Figure A3.222 : | Zirconium: Activity and Patents                 |
| Figure A3.223 : | USGS World Zirconium Production Page 193        |
| Figure A3.224 : | EPO Worldwide Patent Search: Zirconium Page 194 |
| Figure A3.225 : | Zirconium Best-Fit Activity and Patents         |
| Figure A3.226 : | Zirconium Independent Patent Best-Fit           |

### Appendix 4: Energy Sources Data

| Table A4.1 :   | U.S. Biofuel Energy Activity and Patents                       |
|----------------|----------------------------------------------------------------|
| Table A4.2 :   | Correlation Equation Terms Page 195                            |
| Figure A4.1 :  | U.S. Biofuel energy: Activity and Patents Page 195             |
| Figure A4.2 :  | EIA U.S. Biofuel Energy Production Page 196                    |
| Figure A4.3 :  | EPO Worldwide Patent Search: Biofuel Energy Page 196           |
| Figure A4.4 :  | U.S. Biofuel Energy Best-Fit Activity and Patents Page 196     |
| Figure A4.5 :  | U.S. Biofuel Energy Independent Patent Best-Fit Page 197       |
| Table A4.3 :   | U.S. Biomass Energy Activity and Patents Page 197              |
| Table A4.4 :   | Correlation Equation Terms Page 198                            |
| Figure A4.6 :  | U.S. Biomass Energy: Activity and Patents Page 198             |
| Figure A4.7 :  | EIA U.S. Biomass Energy Production Page 198                    |
| Figure A4.8 :  | EPO Worldwide Patent Search: Energy Power                      |
| Figure A4.9 :  | U.S. Biomass Energy Best-Fit Activity and Patents Page 199     |
| Figure A4.10 : | U.S. Biomass Energy Independent Patent Best-Fit Page 199       |
| Table A4.5 :   | U.S. Coal Energy Activity and Patents Page 200                 |
| Table A4.6 :   | Correlation Equation Terms Page 200                            |
| Figure A4.11 : | U.S. Coal Energy: Activity and Patents Page 200                |
| Figure A4.12 : | EIA U.S. Coal Energy Production Page 201                       |
| Figure A4.13 : | EPO Worldwide Patent Search: Coal Energy Production . Page 201 |
| Figure A4.14 : | Coal Energy Production Best-Fit Activity and PatentsPage 201   |
| Figure A4.15 : | U.S. Coal Energy Independent Patent Best-Fit Page 202          |
| Table A4.7 :   | U.S. Fossil Fuel Energy Activity and Patents Page 202          |
| Table A4.8 :   | Correlation Equation Terms Page 203                            |
| Figure A4.16 : | U.S. Fossil Fuel Energy: Activity and Patents Page 203         |
|                |                                                                |

| Figure A4.17 : | EIA U.S. Fossil Fuel Energy Production Page 203                |
|----------------|----------------------------------------------------------------|
| Figure A4.18 : | EPO Worldwide Patent Search: Fossil Fuel Energy Page 204       |
| Figure A4.19 : | U.S. Fossil Fuel Energy Best-Fit Activity and Patents Page 204 |
| Figure A4.20 : | U.S. Fossil Fuel Energy Independent Patent Best-Fit Page 204   |
| Table A4.9 :   | U.S. Geothermal Energy Activity and Patents Page 205           |
| Table A4.10 :  | Correlation Equation Terms Page 205                            |
| Figure A4.21 : | U.S. Geothermal Energy: Activity and Patents Page 205          |
| Figure A4.22 : | EIA U.S. Geothermal Energy Production Page 206                 |
| Figure A4.23 : | EPO Worldwide Patent Search: Geothermal EnergyPage 206         |
| Figure A4.24 : | U.S. Geothermal Energy Best-Fit Activity and Patents Page 206  |
| Figure A4.25:  | U.S. Geothermal Energy Independent Patent Best-Fit Page 207    |
| Table A4.11 :  | U.S. Hydroelectric Energy Activity and Patents Page 207        |
| Table A4.12 :  | Correlation Equation Terms Page 208                            |
| Figure A4.26 : | U.S. Hydroelectric Energy: Activity and Patents Page 208       |
| Figure A4.27 : | EIA U.S. Hydroelectric Energy Production Page 208              |
| Figure A4.28 : | U.S. Hydroelectric Energy Independent Patent Best-Fit Page 209 |
| Table A4.13 :  | U.S. Natural Gas Energy Activity and Patents Page 209          |
| Table A4.14 :  | Correlation Equation Terms Page 210                            |
| Figure A4.29 : | U.S. Natural Gas Energy: Activity and Patents                  |
| Figure A4.30 : | EIA U.S. Natural Gas Energy Production Page 210                |
| Figure A4.31 : | EPO Worldwide Patent Search: Natural Gas Energy Page 211       |
| Figure A4.32 : | Natural Gas Energy Best-Fit Activity and Patents Page 211      |
| Figure A4.33 : | U.S. Natural Gas Energy Independent Patent Best-FitPage 211    |
| Table A4.15 :  | U.S. Nuclear Energy Activity and Patents Page 212              |
| Table A4.16 :  | Correlation Equation Terms                                     |

| Figure A4.34 : | U.S. Nuclear Energy: Activity and Patents Page 212          |
|----------------|-------------------------------------------------------------|
| Figure A4.35 : | EIA U.S. Nuclear Energy Production Page 213                 |
| Figure A4.36 : | EPO Worldwide Patent Search: Nuclear Energy Page 213        |
| Figure A4.37 : | U.S. Nuclear Energy Best-Fit Activity and Patents Page 213  |
| Figure A4.38 : | U.S. Nuclear Energy Independent Patent Best-Fit Page 214    |
| Table A4.17 :  | U.S. Oil Energy Activity and Patents Page 214               |
| Table A4.18 :  | Correlation Equation Terms                                  |
| Figure A4.39 : | U.S. Oil Energy: Activity and Patents                       |
| Figure A4.40 : | EIA U.S. Oil Energy Production                              |
| Figure A4.41 : | U.S. Oil Energy Independent Patent Best-Fit Page 216        |
| Table A4.19 :  | U.S. Renewable Energy Activity and Patents                  |
| Table A4.20 :  | Correlation Equation Terms Page 217                         |
| Figure A4.42 : | U.S. Renewable Energy: Activity and PatentsPage 217         |
| Figure A4.43 : | EIA U.S. Renewable Energy Production Page 217               |
| Figure A4.44 : | EPO Worldwide Patent Search: Renewable Energy Page 218      |
| Figure A4.45 : | U.S. Renewable Energy Best-Fit Activity and PatentsPage 218 |
| Figure A4.46 : | U.S. Renewable Energy Independent Patent Best-Fit Page 218  |
| Table A4.21 :  | U.S. Solar Energy Activity and Patents Page 219             |
| Table A4.22 :  | Correlation Equation Terms Page 219                         |
| Figure A4.47 : | U.S. Solar Energy: Activity and Patents                     |
| Figure A4.48 : | EIA U.S. Solar Energy Production Page 220                   |
| Figure A4.49 : | EPO Worldwide Patent Search: Solar EnergyPage 220           |
| Figure A4.50 : | U.S. Solar Energy Best-Fit Activity and Patents             |
| Figure A4.51:  | U.S. Solar Energy Independent Patent Best-Fit Page 221      |

| Table A4.23 :  | U.S. Total Energy Activity and Patents Page 221         |
|----------------|---------------------------------------------------------|
| Table A4.24 :  | Correlation Equation Terms Page 222                     |
| Figure A4.52 : | U.S. Total Energy: Activity and Patents Page 222        |
| Figure A4.53:  | EIA U.S. Total Energy Production Page 222               |
| Figure A4.54 : | EPO Worldwide Patent Search: Total EnergyPage 223       |
| Figure A4.55 : | U.S. Total Energy Best-Fit Activity and Patents         |
| Figure A4.56:  | U.S. Total Energy Independent Patent Best-Fit Page 223  |
| Table A4.27 :  | U.S. Wind Power Activity and Patents Page 224           |
| Table A4.28 :  | Correlation Equation Terms Page 224                     |
| Figure A4.57 : | U.S. Wind Energy: Activity and Patents Page 224         |
| Figure A4.58 : | EIA U.S. Wind Energy Production Page 225                |
| Figure A4.59 : | EPO Worldwide Patent Search: Wind EnergyPage 225        |
| Figure A4.60 : | U.S. Wind Energy Best-Fit Activity and Patents Page 225 |
| Figure A4.61:  | U.S. Wind Energy Independent Patent Best-Fit Page 226   |
| Table A4.29 :  | U.S. Wood Energy Activity and Patents Page 226          |
| Table A4.30 :  | Correlation Equation Terms Page 227                     |
| Figure A4.66 : | U.S. Wood Energy: Activity and Patents                  |
| Figure A4.67:  | EIA U.S. Wood Energy Production Page 227                |
| Figure A4.68:  | U.S. Wood Energy Independent Patent Best-Fit Page 228   |

## Appendix 5: EnergyMaterials Data

| Table A5.1 :  | U.S. Coal Activity and Patents   | Page 229 |
|---------------|----------------------------------|----------|
| Table A5.2 :  | Correlation Equation Terms       | Page 229 |
| Figure A5.1 : | U.S. Coal : Activity and Patents | Page 229 |

| Figure A5.2 :  | EIA U.S. Coal Production                                      |
|----------------|---------------------------------------------------------------|
| Figure A5.3 :  | EPO Worldwide Patent Search: Coal ProductionPage 230          |
| Figure A5.4 :  | Coal Production Best-Fit Activity and Patents Page 230        |
| Figure A5.5 :  | U.S. Coal Independent Patent Best-Fit Page 231                |
| Table A5.3 :   | U.S. Natural Gas Activity and Patents Page 231                |
| Table A5.4 :   | Correlation Equation Terms Page 232                           |
| Figure A5.6 :  | U.S. Natural Gas : Activity and Patents Page 232              |
| Figure A5.7 :  | EIA U.S. Natural Gas Production Page 232                      |
| Figure A5.8 :  | EPO Worldwide Patent Search: natural Gas Production Page 233  |
| Figure A5.9 :  | Natural Gas Production Best-Fit Activity and Patents Page 233 |
| Figure A5.10 : | U.S. Natural Gas Independent Patent Best-FitPage 233          |
| Table A5.5 :   | U.S. Oil Activity and Patents Page 234                        |
| Table A5.6 :   | Correlation Equation Terms Page 234                           |
| Figure A5.11 : | U.S. Oil : Activity and Patents Page 234                      |
| Figure A5.12 : | EIA U.S. Oil Production Page 235                              |
| Figure A5.13 : | EPO Worldwide Patent Search: Oil Production Page 235          |
| Figure A5.14 : | Oil Production Best-Fit Activity and PatentsPage 235          |
| Figure A5.15 : | U.S. Oil Independent Patent Best-Fit Page 236                 |
| Table A5.7 :   | U.S. Uranium Activity and Patents Page 236                    |
| Table A5.8 :   | Correlation Equation Terms Page 237                           |
| Figure A5.16 : | U.S. Uranium : Activity and Patents Page 237                  |
| Figure A5.17 : | EIA U.S. Uranium Usage Page 237                               |
| Figure A5.18 : | EPO Worldwide Patent Search: Uranium Usage Page 238           |
| Figure A5.19 : | Uranium Usage Best-Fit Activity and Patents Page 238          |
| Figure A5.20 : | U.S. Uranium Independent Patent Best-Fit Page 238             |

#### Appendix 6: Patent Search Keywords

| Table A6.1: | Patent Search Keywords | Page 239 |
|-------------|------------------------|----------|
|-------------|------------------------|----------|

## Appendix 7: Scaling

| Table A7.1:   | Scale Materials and Sources Comparison | Page 242 |
|---------------|----------------------------------------|----------|
| Figure A7.1 : | Bauxite Unscaled Production Best-Fit   | Page 243 |
| Figure A7.2 : | Bauxite Scaled Production Best-Fit     | Page 244 |

### Appendix 8: Executive Summary

| Figure A8.1: | Illustration of a Typical Long-term Life Cycle for a MaterialPage 246 |
|--------------|-----------------------------------------------------------------------|
| Figure A8.2: | USGS World Chromium Production Page 246                               |
| Figure A8.3: | Biofuel Energy Sensitivity Curve Page 250                             |
| Figure A8.4: | Zinc Best-Fit Activity and PatentsPage 251                            |
| Figure A8.5: | Engineering Materials Origin vs. Drive RatioPage 253                  |
| Figure A8.6: | Energy Source Origin Ratio vs. Drive OriginPage 256                   |
| Table A8.1:  | Energy Sources and Related MaterialsPage 257                          |
| Table A8.2:  | Origin Shift, Origin Ratio and Drive RatioPage 257                    |

#### Introduction

This dissertation continues a valuable and timely study concerned with the relationship between the production and innovation of materials. Invention is the realization and development of new and original ideas and products, while innovation is the successful utilization of such ideas and products, as well as means to conduct business, to market, and to finance, with the ultimate goal of making a profit. Innovations are often much more than inventions. Invention is the creative act or flash of genius while innovation is the exploitation of, and change caused by, the invention itself. Most inventions are technical, but innovations do not have to be technical at all, since, for example, technology is not necessary for the development of market or business model innovations [1,2]. This work examines the linkage between patent and production life cycles for various engineering materials (metals and nonmetals) and explores whether such relationships also apply to energy sources and how such relationships can be employed as a possible predictive tool for the more efficient use and development of these materials and sources for, ultimately, a greater profit.

Invention is necessary for innovation to occur, but invention by itself is not enough for innovation to take place. Innovation can be described as being multi-dimensional, in that innovation requires vision concerning the invention, market need, timing, technology convergence and an implementation strategy [2]. Inventions are relatively low-risk with technology and intellectual property issues dominating. Innovations have large risks attached to them and are dominated by marketplace effectiveness, cost and profit concerns [2]. Anyone with a good idea and imagination can invent, but it takes someone with foresight, knowledge and courage to innovate effectively.

This dissertation expands the previously published work [1-3] on life cycle best-fit analysis to over fifty engineering materials, as well as fourteen energy sources. The selected engineering materials are listed in Table 1 and were not only chosen for the availability of complete sets of production and patent data between the years of 1900-2007, but also as representatives of a wide variety of materials and their applications. Likewise, Table 2 presents fourteen energy sources that were chosen for their representative value as well as the availability of complete production and data sets for the years 1900-2008.

| Aluminum        | Chromium         | Iodine     | Nickel      | Silver    |
|-----------------|------------------|------------|-------------|-----------|
| Antimony        | Cobalt           | Iron       | Niobium     | Sulfur    |
| Arsenic         | Copper           | Kyanite    | Nitrogen    | Talc      |
| Asbestos        | Feldspar         | Lead       | Phosphate   | Tantalum  |
| Barite          | Fluorspar        | Lithium    | Platinum    | Tin       |
| Bauxite/Alumina | Gold             | Magnesite  | Potash      | Titanium  |
| Beryllium       | Graphite         | Magnesium  | Rare Earths | Tungsten  |
| Bismuth         | Gypsum           | Manganese  | Salt        | Vanadium  |
| Boron           | Helium           | Mercury    | Selenium    | Zinc      |
| Cadmium         | Hydraulic Cement | Molybdenum | Silicon     | Zirconium |

 Table 1. Engineering Materials chosen for this study.

**Table 2.** Energy sources chosen for this study.

| U.S. Biofuel Energy     | U.S. Hydroelectric Energy | U.S. Solar Energy |
|-------------------------|---------------------------|-------------------|
| U.S. Biomass Energy     | U.S. Natural Gas Energy   | U.S. Total Energy |
| U.S. Coal Energy        | U.S. Nuclear Energy       | U.S. Wind Energy  |
| U.S. Fossil Fuel Energy | U.S. Oil Energy           | U.S. Wood Energy  |
| U.S. Geothermal Energy  | U.S. Renewable Energy     |                   |

A major goal of this work is to discover relationships between patents (technological inventions) and how such relationships affect, or are affected by, material production. During the 21<sup>st</sup> Century, which is a period of knowledge driven economies, it has been demonstrated that intellectual property could be a dominant force providing the capital that will continue to drive future worldwide economic growth [1,4-54]. However, there is no clear quantitative connection that has been established between patents and production excepted for limited work [1-3]. In order to perform such investigations, innovation needs to be defined and then a measurable proxy for it must be found. Sekhar et. al. [2,3] have clearly demarcated the

difference between invention and innovation based on the overall long-term life cycle. Here, further correlations are made between the production innovation activity, i.e., Stage III and patent activity in a similar Stage III or beyond for the overall life cycle for both measures. Several other methods have been employed to measure and define innovation starting with the work of Joseph Schumpeter [55-57].

Correlation theory was originally applied to the above listed engineering materials to determine if a relationship exists between the production data and the patent data. Best-fit analysis was then applied to the production data sets to generate the life cycles of each material, and then to the patent data sets to discover if any origin shifts in the equation result. Such an origin shift would indicate a driving force being present for the innovative activity that could be ascribed to the patent activity [1-3]. Here is sought a dividing line, possibly numerical, between the creative and destructive modes of the innovative process, which define the driving and driven behavior of innovation. Best-fit analysis will also be applied to determine if a method can be developed to positively identify Stage III materials by seeking common trends in patent and production data and resulting origin shifts in the life cycles of the data.

The procedures applied to engineering materials will then be applied to energy sources to determine if such resources have similar four-stage life cycles, driving force behavior and origin shifts produced by best-fit analysis, and in general follow similar patterns as do engineering materials. Similar behavior will permit already proven engineering material analyses to be applied to energy sources and may reveal relationships between energy sources and related materials that will allow predictions concerning future innovative growth and can lead to a more efficient and profitable allocation of ever more scarce natural and monetary resources.

#### **Section 1: Measuring Innovation**

**Innovation.** An important figure in modern attitudes toward innovation and its measurement is the economist Joseph Alois Schumpeter (1883-1950) [55]. Schumpeterian theory perceives the importance of innovation, and suggests that it is a central part of capitalist economies. This theory postulates that innovation propels the economy, which is in a state of constant change [55]. Capitalism is defined by an ebb and flow with cycles existing in it, which need to be evaluated using the historical record [55]. Innovation destroys and causes havoc as it builds anew. Old conditions and ways of thinking and acting are destroyed when innovations introduce new ideas, making the innovative act a double-edged sword. Entrepreneurs, called "New Men" drive innovation by making creative responses to change, in the form of innovative acts [55].

Schumpeter's writings define his concept of innovation or "new combinations" as carried out by the entrepreneur or "new man" in the following manner:

This concept covers the following five cases: (1) The introduction of a new good – that is one which consumers are not yet familiar – or of a new quality of good. (2) The introduction of a new method of production, that is one not yet tested by experience in the branch of manufacture concerned, which need by no means be founded upon a discovery scientifically new, and can also exist in a new way of handling a commodity commercially. (3) The opening of a new market, that is a market into which the particular branch of manufacture of the country in question has not previously entered, whether or not this market has existed before. (4) The conquest of a new source of supply of raw materials or half-manufactured goods, again irrespective of whether this source already exists or whether it has first to be created. (5) The carrying out of the new organization of any industry, like the creation of a monopoly position (for example through trustification) or the breaking up of a monopoly position [56].

Or put more simply, an innovation is an invention that becomes economically successful and earns profit, where the invention is the creation and establishment of something new [57].

The prime motivation for the innovator in implementing the above is entrepreneurial

profit. "When other participants in the same industry see the new level of high profit, they

quickly try to imitate the innovation. The entrepreneur tries to preserve his high profit for as long as possible, through patents, further innovation, secret processes and advertising – each move an act of 'aggression directed against actual and would-be competitors [55]." The process of incessant revolution of the economic structure from within by destruction of the old system and creation of a new one is titled "Creative Destruction [56]." Innovation is used to make profits, and in doing so great change occurs where new ways are created and old are cast aside. Schumpeterian theory stresses the centrality and importance of innovation in the economy, but methods are needed to quantify innovation to make it a useful indicator of present and future economic growth.

**Measurement of Innovation.** There is truly a multi-disciplinary interest in innovation and its quantification, with multiple books and articles being written on the subject in many diverse areas of research [58-77]. Measurement of innovation has proven to be a difficult task with much argument and difference of opinion, especially when patents are used as an indicator of innovation. Innovation measurement using patent data, and alternatively, innovation measurement excluding patent data, will be discussed below.

**Measurements Excluding Patents.** The belief has been put forward that patents may not be a reliable or representative measurement of innovation and that patents may even hamper innovation itself [58-72]. Some suggest that patents of dubious quality end up at the heart of legal disputes making everyone pay more for innovation and making it less likely to occur [58]. Fewer products in the marketplace are the result, since companies decide not to innovate with new products [58]. Other reports suggest that patents inhibit the innovative process by restricting other people's creativity or that the costs of patenting could be used better elsewhere by businesses and that these costs are burdens on emerging businesses [59]. Patent
infringement suits are considered by some as evidence of a patent system gone wild leading to the stifling of innovation [60]. Some studies have also indicated that stronger, or broader patents do not increase innovation [61,62].

Even those who support the use of patent data have pointed out several direct problems with the use of patents as indicators of innovation. The reliability of patent measurement of innovation has been questioned since not all patented inventions prove to be innovations, many innovations are never patented and patents differ greatly in their economic impact [63]. On account of the differences in national patent offices, the interest in patenting by inventors differs between countries, and firms more often patent domestically rather than in foreign patent offices [64]. Patents do not always represent commercially exploited innovation and seem to be better used as representative of an input into the innovation rather than an output evidence of it [65].

There are no shortages in the literature of alternative innovation measurement techniques. One suggested method of innovation measurement, which was applied to French biotechnology firms, was by linking innovation with firm performance through the efficiency and efficacy of innovation performance [66]. The efficiency of an innovation reflects the degree of success of the innovation while efficacy indicates the effort carried out to achieve that degree of success [66]. Efficacy and efficiency, considered as complimentary dimensions that shape innovation performance, are measured through twelve items, including market share, new markets, cost per innovation, average number of innovation projects, working hours and product range extension [66].

Literature-based Innovation Output (LBIO) data has also become increasingly popular as a means of measuring innovation. LBIO data is compiled by screening specialist trade journals for new-product announcements instead of drawing on R&D figures that are seen as being not comprehensive [67]. Such methods have been applied to public service innovations as well as product innovations [68]. LBIO data methods correctly compiled have no biases, are cost effective and can be an alternative to other innovation data, though they do tend to over-estimate domestic innovation and are limited where there are relatively few trade journals in a specific industry [67].

Research and Development data has been put forth as an innovation measurement. R&D measurement is seen by some as a poor measure since many small companies are innovative but spend little on R&D [69]. This data is also an input data, showing what was spent to get to a possible innovation and not indicative as an output of implemented innovations. Other measurement methods include valuation by royalties [70], radicalness and relative advantage [71], and radical versus incremental innovation [72].

**Measurement with Patents.** Though many options are presented concerning measurement of innovation without the use of patent data, the majority of the literature presents methods of measurement that are based upon some form of patent data. As indicators of technological change or innovation, patents have several advantages. Some of their advantages are:

- They are a direct outcome of the inventive process, and more specifically of those inventions, which are expected to have commercial impact. They are a particularly appropriate indicator for capturing the proprietary and competitive dimension of technological change.
- Because obtaining patent protection is time-consuming and costly, it is likely that applications are filed for those inventions, which, on average, are expected to provide benefits that outweigh these costs.
- Patents are broken down by technical fields and thus provide information not only on the rate of inventive activity, but also on its direction.
- Patent statistics are available in large numbers and for a very long time series.
- Patents are public documents. All information, including patentees' names, is not covered by statistical confidentiality. [64]

Patent data is easily accessible and cost-free through many national and international patent offices such as the United States Patent and Trademark Office (USPTO) and the

European Patent Office (EPO). The ease and simplicity of acquiring patent data make the use of it an obvious choice for analyzing of invention and innovation.

Patents are often cited as indicators of innovative growth, however a rigorous study has never previously been carried out to determine if they are leading or lagging indicators. A study on urban and regional innovation in metropolitan statistical areas (MSA) has found that in the absence of a better set of indicators that patents can serve as a rough measure of innovation. Further, because inventors frequently seek patent protection for new knowledge or processes, patents can serve as a proxy for innovation [73]. A metropolitan area's innovative strengths and growth rates can be indicated through patent data by technical classification of the patents [73]. Patent analysis can provide assistance in strategic planning efforts to firms involved in the ITS (Intelligent Transportation Systems) sector. ITS covers the application of computer, communication, positioning, sensing, control and other systems used to improve aspects of surface transportation. Patent information from the USPTO, EPO and JPO (Japanese Patent Office) concerning ITS and other related worldwide patent developments has been used to assess and provide an overall picture of ITS innovations and future markets [74].

Examples of innovation measurement techniques that are not technology or business specific but in some way depend on patent data information are available from various sources [76-77]. The patent success ratio (PSR) is defined as the ratio of successful patent applications to total patent applications. Supporters of this method claim that the PSR is an accurate measure of how innovative activity has changed over time. Correlations between the PSR and economic growth, or gross domestic product (GDP) are often claimed as being better than the correlation between successful patents and GDP, thus making PSR a better proxy for innovation [75]. The citations made in any patent document have been suggested as indicators of innovation, knowledge flows and spillovers, and thus of technological impact.

The suggestion is often made that the importance and impact of patents are greater when they are cited in succeeding patents [77,78]. The preceding discussion illustrates the divergence in opinion concerning the measurement of innovation. Much time and effort has been spent in seeking the discovery of an accurate measuring technique of something that itself is difficult to perfectly define. On balance the available literature appears to favor the use of some form of patent data as an indicator for innovation and innovative activity.

This dissertation uses patent data as an indicator of innovation and introduces a new long life cycle approach to qualify patents when they become important as innovation drivers. Short-term product cycles have been well studied [3-33]. Long-term life cycles, however, are relatively unstudied [2]. Long-term life cycles are possibly more suited to explain the impact of patents on production activity.

## **Section 2: Data Collection**

**Engineering Material Production Activity Data Collection.** Production activity data was collected from the United States Geologic Survey (USGS) web site [78]. In all fifty cases, world production, by year, of the material in question was used for the activity data. This information was found in the historical statistics compilations of the minerals section of the USGS web site [79]. All activity is reported in metric tons. World production was chosen as the basis for activity due to its relevance to activity in global materials production, the completeness of the data sets available and the generally comparable definitions of world production between the individual materials. World production, for the most part, is based upon primary mine production with specific production definitions for each material being available in Appendix 3. The inclusion of recycled materials, beyond those generally included in primary production, was decided against due to the unavailability of consistent worldwide recycling data covering the years researched. Also, where recycling production

data was available it was apparent that the amount of world production attributed to recycling was at times already included in the primary production numbers or not significant to the world production totals.

**Patent Data Collection.** Data for patents published per year was collected from the European Patent Office (EPO) using its patent search engine [80]. The EPO web site was chosen because it offered the widest database for collection of global patents from 1900 to the present, while the United States Patent and Trademark Office (USPTO) on-line patent data only goes back to the 1970's. The EPO site provides worldwide searches, encompassing the patent offices of over 80 countries and regional intellectual property organizations including the United States, Germany, Great Britain, Japan, Korea, India, China, the EPO and the World Intellectual Property Organization (WIPO) [80]. The use of the EPO worldwide search, which includes countries who are signatories of the Patent Cooperation Treaty (PCT), is thus more thorough in coverage and scope than searches used to evaluate patent counts and innovation as presented, for example, by reference [74] above in section 1 which uses patent counts to investigate future markets and innovation.

The patent search was conducted through the EPO, using keywords to be found in the title or the abstract of the patent by the year of publication of the patent. As examples, for aluminum, the keywords employed were aluminum, Al and aluminium and for zinc, the keywords chosen were zinc and Zn. All other materials were done in a similar manner.<sup>1</sup> Multiple patent counts of the same patent, caused by multiple filings of patents in different patent offices, were not an issue as the search produced only one listing per patent. This listing would have the various patent offices through which the patent application was published, but would only list it once in the yearly patent count.

<sup>&</sup>lt;sup>1</sup> A complete list of patent search keywords is included in Appendix 6.

Title and abstract fields were chosen, as it was clear that they provided the most likely option for finding the most complete set of patents. Also, this choice was made because the EPO search engine does not provide a claims field, which would have been preferred. Choosing the titles field gives any patent with the selected keywords in the title of the patent document. The abstract field will indicate any patent with the keywords in the abstract and gives any patents that do not include the keywords in the title, which is often the case.

The date of publication field was opted for as well. This selection provided the most complete set of data concerning patents containing the keywords and also was made due to the fact that there was no field for the date of patent issuance. The patents listed in this search field were not necessarily granted patents, but in some cases may be applications that are still pending. The date of publication, is not necessarily the date of issuance, but exhibits an accurate model of the relative innovation occurring during a specific year, since the existence of innovations is proven by publication rather than by an issuance of a patent for them.

# Section 3: Patent and Production Activity Data Correlation

This section describes the method of comparison between the data gathered, representing the production activity per year of an engineering material, and the number of patents published per year for the same material. In correlation theory, two data sets, x and y, are tested to determine the existence of correlation between them. In this case, x is the production activity of a specific material in metric tons per year and y represents the number of patents published involving the same material for the same year. Through correlation theory, a number called the correlation coefficient is generated that expresses the amount of correlation that exists between two groups of data [81-83]. When the coefficient is squared and then multiplied by 100 a percentage is given, which expresses the percentage that changes in group y can be attributed to changes in group x [81,82]. In this manner, a

percentage of the changes in the patent numbers of a material were attributed to changes in the production of the material [83]. A more detailed description of the calculation of the correlation coefficient with an example can be found in Appendix 1. Examples of strong and weak correlations are discussed below in Figs. 1 and 2. A graphical representation of the correlation between the rare earth elements activity and patents is presented in Fig. 1, which indicates that the curves for activity and patents have a strong correlation to each other. A weak correlation is shown in Fig. 2, for beryllium.



**Figure 1. Rare Earths: Activity and Patents.** A strong correlation is illustrated by this figure. The curves track each other fairly well and much of the change in the patents can be attributed to changes in the production according to correlation theory. The calculated correlation coefficient was 0.9659. Data scaled to fit on same figure.



**Figure 2. Beryllium: Activity and Patents.** Weak correlation is exhibited in this figure with the two curves showing scant resemblance. Even visually it is noted that a change in the patents cannot be attributed to change in the production and vice-versa. The calculated correlation coefficient was 0.1132. Data scaled to fit on same figure.

The evaluation presented here indicates weak to strong relationships existing between the material activity and patent data sets depending on the material under study. As is shown below in Table 3, most materials investigated showed some degree of correlation between their activity and their patents. Table 3 gives comparative results arrived at after application of the correlation equations to the remaining forty-eight materials in the same manner as the previous examples for the rare earths and beryllium.

**Table 3. Overall Correlation Coefficients** (*r*) and  $100r^2$ . These *r* values represent the percent of variations in one data set, that affect variations in the other set for all materials studied. The best correlation is when *r* is one (i.e. 100%). An  $(100)r^2$  of 90% means that 90% of the differences between points in one set of data can be attributed to corresponding differences in the other set of data [81-83].

|                  | Overall         |             |             | Overall         |             |
|------------------|-----------------|-------------|-------------|-----------------|-------------|
| Material         | Correlation     | $(100) r^2$ | Material    | Correlation     | $(100) r^2$ |
|                  | Coefficient (r) |             |             | Coefficient (r) |             |
| Aluminum         | 0.9652          | 93.16%      | Magnesite   | 0.8108          | 65.74%      |
| Antimony         | 0.8518          | 72.56%      | Magnesium   | 0.9078          | 82.41%      |
| Arsenic          | 0.3375          | 11.39%      | Manganese   | 0.6835          | 46.72%      |
| Asbestos         | 0.7288          | 53.11%      | Mercury     | -0.1117         | 1.25%       |
| Barite           | 0.7486          | 56.04%      | Molybdenum  | 0.9290          | 86.30%      |
| Bauxite/Alumina  | 0.9310          | 86.68%      | Nickel      | 0.9563          | 91.45%      |
| Beryllium        | 0.1132          | 1.28%       | Niobium     | 0.7543          | 56.93%      |
| Bismuth          | 0.7651          | 58.54%      | Nitrogen    | 0.9164          | 83.98%      |
| Boron            | 0.8691          | 75.53%      | Phosphate   | 0.8708          | 75.83%      |
| Cadmium          | 0.7401          | 54.77%      | Platinum    | 0.9569          | 91.57%      |
| Chromium         | 0.9495          | 90.16%      | Potash      | -0.1414         | 2.00%       |
| Cobalt           | 0.9269          | 85.91%      | Rare Earths | 0.9700          | 94.09%      |
| Copper           | 0.9507          | 90.38%      | Salt        | 0.8996          | 80.93%      |
| Feldspar         | 0.9490          | 90.06%      | Selenium    | 0.6871          | 47.21%      |
| Fluorspar        | 0.7399          | 54.75%      | Silicon     | 0.8893          | 79.09%      |
| Gold             | 0.9385          | 88.08%      | Silver      | 0.8735          | 76.30%      |
| Graphite         | 0.9287          | 86.25%      | Sulfur      | 0.9156          | 83.83%      |
| Gypsum           | 0.9211          | 84.84%      | Talc        | 0.9383          | 88.04%      |
| Helium           | 0.7460          | 55.65%      | Tantalum    | 0.7181          | 51.57%      |
| Hydraulic Cement | 0.9299          | 86.47%      | Tin         | 0.6576          | 43.24%      |
| Iodine           | 0.9105          | 82.90%      | Titanium    | 0.9151          | 83.74%      |
| Iron             | 0.8741          | 76.41%      | Tungsten    | 0.7420          | 55.06%      |
| Kyanite          | 0.9242          | 85.41%      | Vanadium    | 0.7840          | 61.47%      |
| Lead             | 0.7013          | 49.18%      | Zinc        | 0.9387          | 88.12%      |
| Lithium          | 0.9272          | 85.70%      | Zirconium   | 0.9239          | 85.36%      |

The summary presented by Table 3 indicates that forty-eight of fifty materials investigated, according to the correlation methods referred to, establish a possible

relationship between the material's activity and patent data. Most of the materials tested showed some degree of correlation, although correlation for arsenic and beryllium was weak and mercury and potash had negative correlation, which indicates a lack of a relationship. Correlation theory has thus shown that the data sets of production activity and patents for the materials evaluated here are not randomly connected, but are in fact related to each other. This relationship implies that a change in patent trends is due to a corresponding change in the production activity allowing for the confident use of these data sets in further evaluations employing best-fit models of selected metals and non-metals.

From the discussion above it can be concluded that there is a correlation between the data gathered concerning material activity and the numbers of patents published, which represent innovations utilizing such materials, making further comparisons and evaluations of the data sets more valid. This has been proven employing standard statistical procedures for forty-eight of fifty materials studied in this paper. The variations in the patent data during the dominant part of the life-cycle, namely Stage 3, illustrated in Figure 3 below, [2,3] do not appear to occur on their own, but can be correlated to the variations in the material production activity.

Where correlation exists, as here in reference to engineering material production and patenting data, the disclosed relationship could possibly be used for predicting the future behavior of one set of data based upon knowledge of future behavior of the other data set. For example, if a material has strong correlation between production and patenting, or innovation, and the government announces that it will provide billions of dollars for innovative development of the material, it might be a good option to provide resources for future production of the material since correlation theory predicts a rise in production will mirror the announced increase in innovative activity measured by patents.

# Section 4: Best-Fit

Now that the correlation between activity and patents has been established, these sets of data can be used in conjunction with the common pattern equation for production of metals initially proposed by Yerramilli and Sekhar [2] and modified by Connelly and Sekhar [1]. A further modification is proposed below in this section. The equation predicts and illustrates a four-stage life cycle for metals. These four stages are the Initial Stage (I), the Lift Off and Decay Stage (II), the Revival and Rapid Growth Stage (III) and the Survival Stage (IV) [2]. The patterns found are common to the materials tested and are similar to common patterns and cycles found in overall life behaviors as illustrated by long wave theory [2]. A similar hypothesis for shorter life products, which postulates that that most successful products pass through recognizable stages during their life cycles was first proposed by Levitt and has been applied by others in evaluations of industry and business activities for various products and product groups [84-89].



**Figure 3. Illustration of a Typical Long-term Life Cycle for a Metal from References 1-3.** The plot indicates the division of the life cycle into four stages that is common to metals. All metals may not have all four stages depending on the length of time that the metal has been in use. Such life cycles are also applicable to non-metals.

Figure 3 illustrates an example of a life cycle of a material, comprised of the four previously mentioned stages. Stage I (*Initial Stage*) is the developmental stage that begins with the discovery and the invention of a process and ends when the development of the

technology is enough to start low-scale industrial production of the material. Stage II (Lift Off and Decay Stage) begins with the rise in the activity of the material and ends at the low point of the activity in the so-called "valley of death." Stage III (Revival and Rapid Growth) begins at the "valley of death" and continues through the material's full growth potential with the take-off in activity typically being at a high rate. Stage III ends at the onset of Stage IV (Survival or Low Growth Stage) where the material has reached maturity and the activity has leveled off or has begun to die [2,3]. Invention driven activity occurs during Stages I and II while innovation is dominant in Stages III and stage IV. Stages I and II are the periods, in the life of a material, where the invention itself is developed into a market innovation with technological R&D, possibly being very important. Stages I and II may be technically driven whereas Stages III and IV include market, teaming and financial factors. The type of leadership required may evolve as the stages are transitioned [1-3]. Dramatic changes in Patents and Production activity occur in Stages III and IV compared to the early stages, i.e. when innovation becomes the major focus. In these latter stages any early invention is fully developed, mature and possibly patented. R&D is complete for the most part and marketplace interest in the product begins to develop. Stages III and IV are the times in the life cycle of the product for commercial exploitation. Market place effectiveness as well as cost and profit issues predominate. If the invention has not previously been patented, it may be patented now as a means to protect the invention as well as any follow-on innovation that arises from it [1].

**Platform equation with Chromium as an example.** As shown in Section 3, chromium displays good positive correlation between its activity and patent data. Chromium has been widely used for over several decades. This wide use has provided strong and consistent numbers for production activity as well as patents per year.

The best-fit method requires the determination, by trial and error, of multiple parameters to be entered into an equation and a MatLab computer program, examples of which are found in Appendix 3. The common pattern equation for this method is

$$y = x^{n} \left[ \alpha^{n} x^{2} + \beta^{n} x \sin(\omega x) \right] + \left( \exp\left[ \left( x - \mu \right) / v \right] \exp\left[ -\exp\left[ \left( x - \mu \right) / v \right] \right] \delta / v \right), \tag{1}$$

with the variables,  $\alpha$ ,  $\beta$ ,  $\alpha$ , n,  $\mu$ , v and  $\delta$  defined in Table 4 to be determined for each material tested. The original equation in reference [2] is modified by substitution of  $\alpha$  and  $\beta$  with  $\alpha^n$  and  $\beta^n$  to eliminate the possibility of multiple values of  $\alpha$  and n giving equally acceptable  $R^2$ . Only one set of  $\alpha$  and n give an obvious best  $R^2$ , which is the value consistently chosen, with the  $\alpha^n$  and  $\beta^n$  equation while the  $\alpha$  and  $\beta$  equation might give a less obvious choice concerning the generated  $R^2$  value.

**Table 4. Common Pattern Evaluation Variables.** Variables to be determined in connection with the common pattern equation (1). Normalized years are the span of years under consideration and are represented by *x*. Production is *y*. The remaining variables are found through trial and error.

| ~  | Called the "Take-off constant". Facilitates the rate of take-off after the end of Stage II. The rate of growth             |
|----|----------------------------------------------------------------------------------------------------------------------------|
| α  | of activity is very sensitive to $\alpha$ . Dimension is dependent on <i>n</i> .                                           |
| 0  | Increases the amplitude (visibility) of the cyclicity. Magnitude of cyclicity increase as $\beta$ decreases. The           |
| ρ  | dimensions of $\beta$ are dependent on <i>n</i> . Dimension is dependent on <i>n</i> .                                     |
| 0  | Called the "wavelength constant". Increases in $\omega$ increase cyclicity. Value of $\omega$ expressed in "per year" and  |
| ω  | equals $(2^*\pi)$ /wavelength.                                                                                             |
| μ  | Called the "Stage II location constant". Position of the Stage II hump is shifted to the right as value of $\mu$           |
|    | increases and is expressed in "years".                                                                                     |
| ., | Called the "Stage II scaling constant". As value of v increases, the Stage II hump is stretched out and is also            |
| V  | expressed in "years".                                                                                                      |
| δ  | As the value of $\delta$ increases, the peak (amplitude) of the Stage II hump increases. $\delta$ is given in tons.        |
|    | Along with $\alpha$ has a strong influence on the shape of the curve. It is a positive number between 0 and 2. <i>n</i> is |
| n  | dimensionless. Dimensionlessness is assured through normalizing by dividing by $n_0$ , which is one.                       |
| x  | Time in normalized years. Actual year of data $(x_r)$ minus year of origin $(x_0)$ .                                       |
| y  | Metric tons per year (In some cases scaled to kilotons, megatons or kilograms). Entered by thousands.                      |

These seven parameters, as well as the date of origin,  $x_0$ , of the data are entered into a MatLab computer program which generates an actual curve of the data, a fitted curve and an

 $R^2$  value, which is an established measure of best-fit, and which needs to be as near one as possible to obtain the best fitted curve [1]. The origin,  $x_0$  is determined from the earliest available production data and is usually 1900. Some materials have an  $x_0$  later than 1900 due to lack of data back to 1900 because of missing data or a material whose production, or use, did not begin until after 1900.

Equation 1, from reference [1], is a modified form of the first published form of equation 1, in references [2,3]. It is further noted that *n* is non-dimensional while  $\alpha$  and  $\beta$  have the same units as *y*. For  $x=(x_r-x_0)$ ,  $x_r$  is the actual year of the data and  $x_0$  is the first year of the data set. Also,  $n=n/n_0$  where  $n_0$  always takes the value of 1 (below it is noted that  $n_0$  appears to be a universal constant which is determined from Figures 12(a-c)).

The optimal parameters and resulting  $R^2$  value for chromium activity are listed below in Fig. 4. It has been determined that  $\alpha$  and *n* cause the most drastic change in  $R^2$  and are used during the fitting to get the  $R^2$  value closest to one. The origin,  $x_0$ , is simply the first year of the data. For chromium, an  $R^2$  of .9731 was found for its production data, which produces a best-fit curve that tracks, the actual data curve that displays Stage III features and indicates a Stage III best-fit for chromium production.

In general, as with chromium, the production is entered in the best-fit production equation as thousands of tons. For many materials this leads to a high  $R^2$  value and also to an eventual shift in origin. In other cases the production must be scaled differently to achieve a high  $R^2$  value and an origin shift. Scaling is sought to achieve the least differential between the scale of the production and patent data. A material with production numbers much larger than its patent numbers may need to be scaled up and entered as thousands of kilotons or megatons. When patent data counts are much greater than production, the production is entered as thousands of kilograms. This procedure allows for a more accurate evaluation of the best-fit of both production and patent data by resulting in  $R^2$  values generally closer to one and resulting origin shifts, but also is representative of the same amount of production only in a different scale. It is possible that the relative changes from year to year in the production data create the features in the plots that determine the stage of the material rather than the scale of the data. A material would be in the same stage whether its data is in tens, hundreds or thousands because the relative changes between data points would be the same from year to year resulting in identical plots with different y-axis scales.<sup>2</sup>



Figure 4. USGS World Chromium Production. Fitted chromium production activity curve with bestfit parameters and  $R^2$  value and origin. The data is from the US Geologic Survey world chromium production by year [78]. Shown in the figure are both the actual data curve and a best-fit curve.

An identical best-fit equation was employed for the patent data using the same parameters as were found for the production activity to generate a modified patent fit curve as apposed to an independent patent best-fit curve which has parameters independent of the production common pattern equation. Minimal changes were made in the program code to allow for differences of the scaling for the plots, i.e. between the production activity and the patent data. The only changes in the parameters were the use of the number of patents data rather than metric tons of production for *y*, and the choice of origin,  $x_0$ . Identical  $\delta$  were used for modified best fits, but were scaled down on the figures, such as Fig. 5, by a factor of one

<sup>&</sup>lt;sup>2</sup> A discussion of scaling is found in Appendix 7.

thousand to better reflect the scale of the Stage II hump in reference to the patent data. The patent data was not entered as thousands as was the production data, but was instead accounted for by scaling the  $\delta$  on the modified best-fit figures. The origin for the patent best-fit was moved a number of years backwards or forwards relative to the origin of the activity best-fit equation, i.e. 1900 for chromium. An  $R^2$  as close to one as possible was sought. In the case of chromium, as displayed on Fig. 5, a shift of origin to 1897, with all other parameters the same, gives an  $R^2$  of .9320 which results in a fitted curve that tracks the actual patent data curve, having stage III attributes, and signifies a possible Stage III fit for chromium patent data.



Figure 5. EPO Worldwide Patent Search: Chromium, Cr or Chrome in Title or Abstract by Date of Publication. Chromium modified patent fit curve with best-fit parameters and  $R^2$  value and origin. The data is from the European Patent Office worldwide patents containing chromium or Cr in the title or abstract of the patent by date of publication.  $\delta$  scaled down from .3e6 to .3e3 (See Appendix 7).

The origin of 1897 for the chromium patent best-fit curve signifies a 3-year lag for the activity data when compared to patenting. The 3-year lag of production activity can be observed by examining the Stage II hump of the activity curve and that of the patents. Fig. 4 shows the hump at roughly 1942 for the patent best-fit while Fig. 5 shows the hump for activity best-fit at about 1939. Three years after the patent data met this point in its life cycle, the activity data crossed the same normalized position in its own life cycle.

Table 5. Engineering Material Production, Independent Patent and Modified Patent  $R^2$  Values, Correlation Coefficients (*r*), Origins, Origin Shifts and Stage. Materials are listed in order of descending Production  $R^2$  values. An origin shift indicates the presence of a material in Stage III of its life cycle. Strong correlation and  $R^2$  values near one are indicators of possible overall Stage III, but are not definitive evidence. Negative Production  $R^2$  values, no correlation and lack of origin shift are indicative of Stage IV materials. (\*Estimations were made to fill in gaps in the USGS production data for lead following patterns suggested by existing data. <sup>+</sup> Indicates materials using Equation (2) presented below). Possible Stage V materials are indicated.

| Material            | Production<br>R <sup>2</sup> | Independent<br>Patent<br>R <sup>2</sup> | Modified<br>Patent<br>R <sup>2</sup> | Correlation <i>r</i> | Production<br>Origin | Patent<br>Origin | Origin Shift | Stage |
|---------------------|------------------------------|-----------------------------------------|--------------------------------------|----------------------|----------------------|------------------|--------------|-------|
| Nickel              | 0.9823                       | 0.9502                                  | 0.7331                               | 0.9563               | 1900                 | 1831             | (-)69 years  | III   |
| Aluminum            | 0.9818                       | 0.9554                                  | 0.9658                               | 0.9652               | 1900                 | 1915             | (+)15 years  | III   |
| Hydraulic Cement    | 0.9743                       | 0.9328                                  | 0.9280                               | 0.9299               | 1926                 | 1925             | (-)1 year    | III   |
| Chromium            | 0.9731                       | 0.9368                                  | 0.9320                               | 0.9495               | 1900                 | 1897             | (-)3 years   | III   |
| Copper              | 0.9576                       | 0.9416                                  | 0.9320                               | 0.9507               | 1900                 | 1911             | (+)11 years  | III   |
| Molybdenum          | 0.9538                       | 0.9388                                  | 0.4214                               | 0.929                | 1900                 | 1712             | (-)188 years | III   |
| Platinum            | 0.9539                       | 0.9121                                  | 0.6065                               | 0.9569               | 1900                 | 1810             | (-)90 years  | III   |
| Bauxite/Alumina     | 0.9521                       | 0.9074                                  | 0.4465                               | 0.931                | 1900                 | 1721             | (-)179 years | III   |
| Sulfur              | 0.9322                       | 0.9678                                  | 0.2273                               | 0.9156               | 1900                 | 1650             | (-)250 years | III   |
| Talc                | 0.9226                       | 0.9108                                  | 0.2900                               | 0.9383               | 1904                 | 1571             | (-)333 years | III   |
| Phosphate           | 0.8815                       | 0.9668                                  | 0.5014                               | 0.8708               | 1900                 | 1741             | (-)159 years | III   |
| Zinc                | 0.8805                       | 0.9617                                  | 0.9669                               | 0.9387               | 1900                 | 1918             | (+)18 years  | III   |
| Cobalt              | 0.8796                       | 0.9652                                  | 0.3584                               | 0.9269               | 1901                 | 1645             | (-)256 years | III   |
| Gypsum              | 0.8740                       | 0.9543                                  | 0.7123                               | 0.9211               | 1924                 | 1865             | (-)59 years  | III   |
| Lithium             | 0.867                        | 0.9284                                  | 0.5000                               | 0.9272               | 1925                 | 1819             | (-)106 years | III   |
| Titanium            | 0.86                         | 0.9620                                  | 0.9630                               | 0.9151               | 1925                 | 1926             | (+)1 year    | III   |
| Iron                | 0.8599                       | 0.9329                                  | 0.6888                               | 0.8741               | 1904                 | 1815             | (-)89 years  | III   |
| Salt                | 0.8438                       | 0.9782                                  | 0.3468                               | 0.8996               | 1913                 | 1663             | (-)250 years | III   |
| Kyanite             | 0.8387                       | 0.9040                                  | 0.8825                               | 0.9242               | 1928                 | 1948             | (+)20 years  | III   |
| Rare Earths         | 0.8256                       | 0.8152                                  | 0.4483                               | 0.97                 | 1900                 | 1799             | (-)101 years | III   |
| Niobium             | 0.8235                       | 0.5007                                  | 0.5237                               | 0.7545               | 1964                 | 1827             | (-)137 years | III   |
| Magnesite           | 0.8231                       | 0.7719                                  | 0.5681                               | 0.8108               | 1913                 | 1743             | (-)170 years | III   |
| Graphite            | 0.8122                       | 0.9617                                  | 0.9045                               | 0.9287               | 1900                 | 1876             | (-)24 years  | III   |
| Vanadium            | 0.8038                       | 0.5164                                  | 0.7590                               | 0.784                | 1960                 | 1870             | (-)90 years  | III   |
| Feldspar            | 0.7833                       | 0.7775                                  | 0.4073                               | 0.949                | 1908                 | 1800             | (-)108 years | III   |
| Barite              | 0.7803                       | 0.8540                                  | 0.3185                               | 0.7486               | 1919                 | 1760             | (-)159 years | III   |
| Magnesium           | 0.7502                       | 0.9733                                  | 0.7010                               | 0.9078               | 1937                 | 1854             | (-)83 years  | III   |
| Nitrogen            | 0.7316                       | 0.8936                                  | 0.4491                               | 0.9164               | 1946                 | 1770             | (-)176 years | III   |
| Antimony            | 0.7192                       | 0.9664                                  | 0.7644                               | 0.8518               | 1900                 | 1825             | (-)75 years  | III   |
| Iodine <sup>+</sup> | 0.7185                       | 0.3816                                  | 0.6347                               | 0.9105               | 1960                 | 1827             | (-)133 years | III   |
| Zirconium           | 0.6913                       | 0.8964                                  | 0.9536                               | 0.9239               | 1944                 | 1923             | (-)21 years  | III   |

| Potash               | 0.6511   | 0.0208   | -      | -0.1414 | 1951 | -    | No Shift     | IV   |
|----------------------|----------|----------|--------|---------|------|------|--------------|------|
| Tungsten             | 0.6449   | 0.8969   | 0.3494 | 0.742   | 1905 | 1673 | (-)232 years | III  |
| Helium               | 0.6286   | 0.8457   | 0.4755 | 0.746   | 1935 | 1779 | (-)156 years | III  |
| Silicon <sup>+</sup> | 0.6029   | 0.6195   | 0.8980 | 0.8893  | 1964 | 1934 | (-)30 years  | III  |
| Manganese            | 0.5728   | 0.9132   | 0.9666 | 0.6835  | 1900 | 1923 | (+)23 years  | III  |
| Fluorspar            | 0.5703   | 0.8372   | 0.4717 | 0.7399  | 1913 | 1800 | (-)113 years | III  |
| Tantalum             | 0.5484   | 0.3886   | -      | 0.7181  | 1969 | -    | No Shift     | IV   |
| Lead* <sup>+</sup>   | 0.5368   | 0.9172   | 0.7303 | 0.7013  | 1900 | 1859 | (-)41 years  | III  |
| Silver               | 0.5027   | 0.7582   | 0.3484 | 0.8735  | 1900 | 1921 | (+)21 years  | III  |
| Boron                | 0.4209   | 0.4225   | -      | 0.8691  | 1964 | -    | No Shift     | IV   |
| Asbestos             | 0.3850   | 0.0131   | -      | 0.7288  | 1900 | -    | No Shift     | IV-V |
| Gold                 | Negative | Negative | -      | 0.9385  | 1900 | -    | No Shift     | IV   |
| Arsenic              | Negative | 0.8399   | -      | 0.3375  | 1910 | -    | No Shift     | IV   |
| Beryllium            | Negative | 0.0455   | -      | 0.1132  | 1935 | -    | No Shift     | IV-V |
| Bismuth              | Negative | 0.9463   | -      | 0.7651  | 1937 | -    | No Shift     | IV   |
| Cadmium              | Negative | 0.8552   | -      | 0.7401  | 1900 | -    | No Shift     | IV   |
| Mercury              | Negative | 0.8454   | -      | -0.1117 | 1900 | -    | No Shift     | IV-V |
| Selenium             | Negative | 0.7969   | -      | 0.6871  | 1938 | -    | No Shift     | IV   |
| Tin                  | Negative | 0.9400   | -      | 0.6576  | 1905 | -    | No Shift     | IV   |

The remaining materials were also evaluated using the same best-fit procedure. However, in the cases of iodine, lead and silicon, where the first year of the production data is much greater then zero, a further modification was made to Equation 1 in order to obtain a more reasonable  $R^2$  value. A constant, C1, was added to both the production and modified patent equation giving

$$y = C1 + x^{n} \left[ \alpha^{n} x^{2} + \beta^{n} x \sin(\omega x) \right] + \left( \exp[(x - \mu) / v] \exp[-\exp[(x - \mu) / v] \right] \delta/v).$$
(2)

C1 was equal to the first year of production for the specific material and allowed the fitted curve to match up better with the actual production producing an  $R^2$  closer to one. In effect, the addition of C1 is a form of scaling similar to that discussed above, and in Appendix 7, causing the actual production data to be closer to the generated fitted data. Table 5 shows that seven materials had lags in their patent life cycles, indicating positive shifts forward in years in their fitted patent life cycles compared to their production activity life cycles. Positive shifts forward in origin mean that activity occurs before the patents and that patent output may be driven by the activity. Thirty-one materials have lags in their activity life cycles, rather than a lag in the patent life cycles, which illustrate negative shifts backwards in these materials' fitted patent life cycles. Negative origin shifts indicate that the patent production precedes the activity of the material and that the patents may drive the activity. Fig. 6 and Fig. 7 display these shifts graphically for chromium and zinc and show a negative and positive lag respectively.



**Figure 6. Chromium Best-Fit Activity and Patents.** Plot showing the origin shift of patent and activity best-fit curves for chromium. The shift is negative, indicating patent activity occurring before production activity and thus possibly driving the production.



**Figure 7. Zinc Best-Fit Activity and Patents.** Plot depicting the origin shift of patent and activity best-fit curves for zinc. The shift is positive, indicating patent activity occurring after production activity and thus possibly being driven by the production.

The shifts in the fitted patent life cycles appear to be dependent on the material itself and outside factors affecting production and patenting. A negative shift, or lag in the activity life cycle illustrates where patenting precedes the production of the material and suggests that patenting may drive production. In such cases the patent represents the innovation that drives the economy and causes production of the material. The positive shift, or lag, of the patent life cycle may be attributed to the case where production of a material precedes the patenting of ideas related to that material. Invention and innovation follow and are possibly driven by production of the material. A lack of a shift occurred in all cases where Stage IV behavior might be evident and may indicate a lack of innovation [1,83]. The case where patents drive activity could be analogous to innovation driving the economy in a creative manner. Patents give an incentive to innovate by offering property rights and cause increased production activity as a result. In the same way, the destructive activity of innovations, where they destroy to build the economy anew, may be analogous to activity leading patents, where patents are employed to prevent innovators from effectively competing [1,83].

Correlation theory and best-fit analysis provide tools for the examination of the life cycle of a material. Through study and manipulation of the production and patent data of materials, curves can be generated that can be used as indicators in determining the stage where a specific material resides in its life cycle by looking for the classic features common to the four identified material stages identified in Fig. 3.

### **Stage Indication**

The estimated stage of the material is based upon a combination of indicators that point towards the stage in its life cycle that the material is in. Strong correlation is the first indicator of possible Stage III (Table 3), which is illustrated by a graphical plot of the production and patent data. At times the plots relating to correlation reveal curves with Stage III features. This first indicator signals possible Stage III when the correlation coefficient is strong, or approaching one. Best-fit  $R^2$  values approaching one for either or both the production activity and patent data of a material are also indicators of a possible Stage III material. Such  $R^2$  values are produced for curves that have Stage III life cycle attributes as shown in Fig. 3. and are generated from Eq. 1 using linear alphas, which are found to generate Stage III best-fit curves [2].



**Figure 8. Aluminum: Activity and Patents.** Aluminum Production curve displaying typical Stage III features. "Valley of Death" crossed in 1946 with high rate of growth since and into 2007 with patents tracking the growth, indicating continuing innovation.

Aluminum is shown to be an estimated Stage III material in Fig. 8, where in 2007 it is still exhibiting rapid innovative stage (stage III) growth and has strong correlation and  $R^2$  values approaching one. Stage IV behavior is displayed by arsenic in Fig. 9. Arsenic shows no rapid growth, but instead a general leveling off with local oscillations depicted, indicating less innovative activity and has weak correlation and a negative production  $R^2$ . In examples such as aluminum and arsenic the stage of the material is suggested by examining the plots of the activity and patents as well. In cases where there is no clear delineation between stage III and IV, as in manganese in Fig. 10, the correlation coefficient, *r*, and the best-fit  $R^2$  and

origin shifts can be employed as indicators in the determination of the possible stage of the material.



**Figure 9. Arsenic: Activity and Patents.** Arsenic production curve displaying typical Stage IV features. This material appears to have reached maturity with no more sustained rapid growth and activity generally leveling off. Oscillations for growth and shrinkage are common in Stage IV materials. Production is stagnant in a time averaged since, but patents grow in number.



**Figure 10. Manganese: Activity and Patents.** Manganese production curve possibly illustrating a material fluctuating between Stage III and IV. As indicated by Best-fit analysis below Manganese is in Stage III in 2007. However, in 2005 when the data was studied,, Mn appeared to be a Stage IV material. This suggests that materials can be in a place in their life cycle where they fluctuate between stages depending on the production numbers for those years.



**Figure 11. Mercury: Activity and Patents.** Mercury production curve displaying a possible Stage V. Production is well beyond the survival stage and has greatly dropped in a sustained manner. Correlation theory indicates little relationship between production and activity and Best-fit analysis produces a negative  $R^2$ . There is very little production for any patents to drive.

Mercury, in Fig. 11, presents an interesting case. It has a negative  $R^2$ , its correlation coefficient is negative, which indicates no relationship between production and patents, and there is no shift in its origin. Fig. 11 presents a curve that reveals no growth, and not even a leveling off, but instead a sustained downturn in production having no signs of stopping. Mercury appears to be in its death throes of production, due to its toxicity and environmental concerns regarding it [90]. Production of this material is being replaced by recycling of presently available material. Any innovation associated with mercury is generally innovation away from it or in replacement of it, which would explain increasing patenting activity seen in Fig. 11 [90]. Such a material could be in a Stage V or "Final Death Stage." Other toxic materials such as asbestos and beryllium exhibit such behaviors and could be called Stage V materials as well. Sometimes the stage of a material is suggested by the appearance of its curves. In other cases the stage is not obvious, but the combination of these indicators allows an intelligent inference of the stage of a metal or non-metal. From this, assumptions can be made concerning the innovative activity, past and present, of a material allowing for more educated and informed decisions concerning the future behavior of a material and more efficient development and use of them. A more definitive method is needed that will strongly identify a material as being in Stage III rather than just indicating the possibility of it existing. Such a novel method is presented below utilizing the origin shift of the patent best-fit data that is present in all materials that exhibit the above mentioned Stage III indicators.

# Section 5: Best-Fit, Origin Shift and Innovation

The best-fit approach can be applied to comparisons of activity and patent data with patent and origin shifts, allowing inferences to be made concerning the relationship of innovations to production. For this application, the best-fit equation and program were applied to all of the studied materials' activity and patent data independently. This analysis was performed successfully on the materials listed below in Table 6. These materials were estimated to be in Stage III since, in general, they had strong correlation, High  $R^2$  values and production plots that revealed common Stage III attributes. Origin shift analysis was not successful in the remaining materials where an origin shift could not be found and where such materials were considered to be in Stage IV due to their weak correlation, low  $R^2$  values and production curves that exhibited Stage IV features. The presence or absence of an origin shift verified these stage assumptions in all cases.

**Table 6.**  $\alpha$  and n Parameters,  $\alpha^n$  Ratio and Origin Shifts, Origin Ratios and Modified  $R^2$ . Alpha and *n* are from the pattern equation. Ratio of  $\alpha^n$  indicates strength of the driving force of the material. The farther the ratio is from one, in either direction, the greater the driving force. A positive origin shift could indicate patents being driven by production. A negative origin shift suggests production being driven by patents. A positive origin shift results in an origin ratio greater than one, while a negative origin shift leads to an origin ratio less than one. Note that  $(n_\alpha/n_p)$  is less than one when the origin shift is negative and one or greater when the shift is positive. Modified  $R^2$  generally becomes smaller then one as the origin ratio moves farther from one. The materials are listed by descending order of origin shift and origin ratio.

|             | ~          |       | or <sup>n</sup> | ~          |       | or <sup>n</sup> | Drive |               | Origin | Origin | Modified |
|-------------|------------|-------|-----------------|------------|-------|-----------------|-------|---------------|--------|--------|----------|
|             | $\alpha_a$ | $n_a$ | $\alpha_a$      | $\alpha_p$ | $n_p$ | $\alpha_p$      | Ratio | $n_{a'}n_{p}$ | Shift  | Ratio  | $R^2$    |
| Manganese   | 23         | 0.9   | 16.81           | 22         | 0.8   | 11.86           | 1.418 | 1.13          | +23    | 1.012  | 0.5728   |
| Silver      | 5          | 1.2   | 6.90            | 3          | 1.1   | 3.35            | 2.060 | 1.09          | +21    | 1.011  | 0.3484   |
| Kyanite     | 22         | 0.6   | 6.39            | 16         | 0.5   | 4               | 1.597 | 1.2           | +20    | 1.010  | 0.8825   |
| Zinc        | 20         | 0.9   | 14.82           | 24         | 0.8   | 12.71           | 1.17  | 1.13          | +18    | 1.009  | 0.9669   |
| Aluminum    | 13         | 1.1   | 16.80           | 15         | 1.0   | 15              | 1.12  | 1.1           | +15    | 1.008  | 0.9658   |
| Copper      | 13         | 1.0   | 13              | 9          | 1.0   | 9               | 1.44  | 1             | +11    | 1.006  | 0.9320   |
| Titanium    | 19         | 1     | 19              | 18         | 1     | 18              | 1.06  | 1             | +1     | 1.001  | 0.9630   |
| Hyd. Cement | 15         | 0.5   | 3.87            | 15         | 0.51  | 3.98            | 0.973 | 0.980         | -1     | 0.999  | 0.9280   |
| Chromium    | 25         | 0.79  | 12.72           | 26         | 0.8   | 13.55           | 0.939 | 0.99          | -3     | 0.998  | 0.9320   |
| Zirconium   | 16         | 0.85  | 10.56           | 15         | 1     | 15              | 0.704 | 0.85          | -21    | 0.989  | 0.9536   |
| Graphite    | 18         | 0.6   | 5.66            | 16         | 0.7   | 6.94            | 0.813 | 0.86          | -24    | 0.987  | 0.9045   |
| Silicon     | 16         | 1.2   | 27.85           | 16         | 1.5   | 64              | 0.435 | 0.8           | -30    | 0.985  | 0.8980   |
| Lead        | 12         | 0.8   | 7.30            | 23         | 0.9   | 16.81           | .434  | 0.89          | -41    | 0.978  | 0.7303   |
| Gypsum      | 28         | 0.4   | 3.79            | 34         | 0.6   | 8.30            | 0.457 | 0.67          | -59    | 0.969  | 0.8740   |
| Nickel      | 43         | 0.58  | 8.86            | 14         | 0.9   | 10.75           | 0.824 | 0.64          | -69    | 0.964  | 0.7331   |
| Antimony    | 42         | 0.3   | 3.07            | 35         | 0.5   | 5.92            | 0.519 | 0.6           | -75    | 0.961  | 0.7644   |
| Magnesium   | 15         | 0.7   | 6.66            | 25         | 1     | 25              | 0.266 | 0.7           | -83    | 0.957  | 0.7010   |
| Iron        | 13         | 0.7   | 6.02            | 27         | 0.9   | 19.41           | 0.31  | 0.78          | -89    | 0.955  | 0.6888   |
| Vanadium    | 75         | 0.4   | 5.62            | 21         | 0.9   | 15.49           | 0.363 | 0.44          | -90    | 0.954  | 0.7590   |
| Platinum    | 14         | 0.5   | 3.74            | 31         | 0.7   | 11.07           | 0.338 | 0.71          | -90    | 0.953  | 0.6065   |
| Rare Earths | 22         | 0.26  | 2.23            | 33         | 0.5   | 5.74            | 0.389 | 0.52          | -101   | 0.947  | 0.4483   |
| Lithium     | 23         | 0.5   | 4.80            | 16         | 0.9   | 12.12           | 0.396 | 0.56          | -106   | 0.945  | 0.5000   |
| Feldspar    | 11         | 0.01  | 1.02            | 11         | 0.3   | 2.05            | 0.499 | 0.033         | -108   | 0.943  | 0.4073   |
| Fluorspar   | 1          | 0.003 | 1               | 15         | 0.3   | 2.25            | 0.444 | 0.01          | -113   | 0.941  | 0.4717   |
| Iodine      | 10         | 0.4   | 2.51            | 9          | 1     | 9               | 0.279 | 0.4           | -133   | 0.932  | 0.6347   |
| Niobium     | 16         | 0.5   | 4               | 13         | 1.16  | 19.6            | 0.204 | 0.43          | -137   | 0.930  | 0.5237   |
| Helium      | 20         | 0.23  | 1.99            | 15         | 0.7   | 6.66            | 0.299 | 0.33          | -156   | 0.919  | 0.4755   |
| Phosphate   | 30         | 0.35  | 3.29            | 27         | 0.7   | 10.05           | 0.327 | 0.5           | -159   | 0.916  | 0.5014   |
| Barite      | 14         | 0.017 | 1.05            | 18         | 0.4   | 3.18            | 0.329 | 0.04          | -159   | 0.917  | 0.3185   |
| Magnesite   | 35         | 0.08  | 1.33            | 43         | 0.4   | 4.50            | 0.295 | 0.2           | -170   | 0.911  | 0.5681   |
| Nitrogen    | 14         | 0.56  | 4.38            | 13         | 1.2   | 21.71           | 0.202 | 0.47          | -176   | 0.910  | 0.1770   |
| Alumina     | 59         | 0.3   | 3.40            | 26         | 0.7   | 9.78            | 0.347 | 0.43          | -179   | 0.906  | 0.4465   |
| Molybdenum  | 17         | 0.36  | 2.77            | 36         | 0.7   | 12.29           | 0.226 | 0.51          | -188   | 0.901  | 0.4214   |
| Tungsten    | 27         | .23   | 2.13            | 17         | .7    | 7.27            | 0.294 | 0.33          | -232   | 0.878  | 0.3494   |
| Sulfur      | 20         | 0.25  | 2.11            | 16         | 0.8   | 9.19            | 0.230 | 0.31          | -250   | 0.868  | 0.2273   |
| Salt        | 19         | 0.47  | 3.99            | 20         | 1     | 20              | 0.200 | 0.47          | -250   | 0.869  | 0.3468   |
| Cobalt      | 24         | 0.2   | 1.89            | 15         | 0.7   | 6.66            | 0.284 | 0.29          | -256   | 0.865  | 0.3584   |
| Talc        | 1          | 0.01  | 1               | 17         | 0.5   | 4.12            | 0.243 | 0.02          | -333   | 0.825  | 0.2900   |

The use of the pattern equation creates a relationship between  $\alpha$  and *n* that can be evaluated and compared to origin shifts produced by independent patent and production activity best-fit derivations. A graphical representation, such as Fig. 12, of the relative scale, or distance, of the origin shift can be made, using a ratio of the shift and the origin,  $x_0$ , of the production data, indicating an absolute amount that the patent or activity driving force has on the other. This ratio, called the Origin Ratio, composes the x-axis of Fig. 12 and is defined as

Origin Ratio = 
$$(x_0 + OS)/x_0$$
 (3)

where  $x_0$  equals the production data origin and *OS* is the shift in origin of the best-fit patent data. The origin ratio is dimensionless since  $x_0$  and *OS* are both in years which are then cancelled out. The y-axis of Fig. 12 is the drive ratio of the material and is expressed as

Drive Ratio = 
$$(\alpha^n)_{\alpha}/(\alpha^n)_p$$
 (4)

where  $(\alpha^n)_a$  equals the modified patent best-fit variable alpha to the *n* power, which is the same as the alpha and *n* from the production activity best fit equation, and  $(\alpha^n)_p$  is equal to the independent patent best-fit variable alpha raised to the power *n*, in both cases *n*, being best-fit variables. The drive ratio is dimensionless as well since  $(\alpha^n)_p$  is generated from a best fit equation having data with patents as units. Likewise,  $(\alpha^n)_a$  results from a modified patent equation, that is used to generate the origin shift, having units of patents. These units cancel each other upon calculation of the ratio. Such a curve with the origin ratio on the x-axis and the drive ratio on the y-axis may effectively represent innovative behavior.

Table 6 presents the  $\alpha$  and *n* values for the independent activity and patent data and the original origin shifts and origin ratio derived for predicted Stage III materials in Section 4 as well as  $\alpha^n$  and drive ratios. The drive ratio generally becomes progressively larger than one, as the origin ratio grows larger than one, which represents the origin shift moving away from zero in a positive shift direction. Likewise, the drive ratio approaches zero as the origin ratio becomes progressively smaller away from one, which is representative of the origin shift moving further in the negative direction from zero as shown in Figs. 12(a, b and c) below. The figures show the calculated positions for all those materials that possess a shift in origin. Note that the activity of nitrogen is possibly being driven the most by its patents since its ratio is nearest to zero for materials whose activity is driven by patents. Similarly, the patents of silver may be driven the most by its activity because its ratio is farthest from one for materials whose patents are driven by activity.

Three patterns emerge from the best-fit analysis shown in Table 6. The first is that when a positive origin shift is indicated, the drive ratio is always above one (the ratio is always less than one and approaches zero when the origin shift is negative). Second, when  $n_a$ is divided by  $n_p$  the result is always less then one for materials that have negative shifts in origin and the result is always one or greater for materials with a positive origin shift. While  $n_a$  is the value for the *n* variable for the activity best-fit evaluation,  $n_p$  is the value for the independent patent best-fit evaluation. The ratio between them may be indicative of the driving force of the material. Lastly, as the origin ratios move away from one in either direction the modified patent  $R^2$ , which is generated by patent data being run with the common pattern equation production parameters, generally becomes smaller than one. As indicated in Table 6 and on Fig. 12(a) materials such as talc, sulfur, cobalt and salt have origin ratios the farthest below one and lower modified  $R^2$  than do materials with ratios nearer to one. In the same way silver, and manganese have the highest origin ratios and have  $R^{2}$ 's less than materials with origin ratios near to one. This could indicate that materials approach Stage IV when they reach origin ratio extremes and enter stage IV when modified  $R^2$  values become too small to support an origin shift or origin ratio.



silver is strongest for a material whose patents are possibly driven by its production activity since its ratio is farthest above one. Alternately, the difference could be couched in terms of a hypothesis that elements like Niobium are driven by technical reasons or in other words, the innovation is highly technically influenced whereas the influence of new material technology on innovation diminishes for materials like Kyanite and Cu. Note also that the cross over point occurs at 1 (y-axis). The origin shift Figure 12(a). Engineering Materials Origin vs. Drive Ratio. Origin Ratio vs. Drive Ratio displaying relative strength of driving force of either patents or production activity. The driving force of mitrogen is strongest for a material whose production activity is driven by its patents since its ratio is farthest below one. The driving force of is the shift described in section 3 between the best-fit activity and best-fit patent evaluations for each material using the common pattern equation (1). Fig. 12(a) appears to divide the materials evaluated into two groups. Group 1 is composed of materials whose patent activity is driving their production as suggested by the lag in production. The remaining materials in Group 2, are those in which patenting is driven by production suggested, conversely, by a lag in patenting. Stage IV materials do not fit into either of these groups and are possibly commodities in the full sense of the word whose pricing is fully set by demand and supply and with no supplier having a technological edge and no driving force associated with them.

Group 1 materials, according to their drive ratios had more than one patent published per normalized unit of production where patents may be thought to *drive* production activity. Nitrogen, for example, had one patent published per 0.202 normalized units of production. Group 2 materials had less than one patent published per normalized unit of production where the patents are possibly *driven* by production. For instance, silver had one patent published per 2.060 normalized units of production according to its drive ratio. In other words for each normalized unit of nitrogen production, 4.95 patents are found to be driving the production and for each normalized unit of silver production 0.49 patents are being driven by that unit of production. These results may be interpreted to mean that Group 1 is more innovatively active since more patents. Group 2 still is still innovatively active, but not as much as Group 1.

Alternatively, Fig. 12(b) presents materials whose production activity  $R^2$  values are higher than 0.85 as opposed to Fig. 12(a) that includes all calculated values. The overall  $R^2$ for the equation of the plot for 12(b) is higher than that of 12(a) indicating that higher best-fit  $R^2$  values may predict a more accurate picture of what materials are in Stage III of their life cycles.



Figure 12(b). Engineering Materials With  $R^2$  Over 0.85 Origin Ratio vs. Drive Ratio. Displays relative strength of driving force of either patents or production activity of materials with production activity  $R^2$  values of over 0.85. This figure has higher overall  $R^2$  value than Fig. 12(a) and crosses y-axis near one.

Figure 12(a) presents all materials whose data were capable of revealing best-fit  $R^2$  values for their production data, then an  $R^2$  value and an origin shift for their patent data when plugged into the same best-fit equation. An origin shift presents strong evidence of a Stage III material since a shift in origin displays driving or driven innovation and innovative activity is most strongly associated with Stage III. Better evidence of Stage III may be presented when a best-fit equation is run with the patent data first, resulting in a second patent  $R^2$  value. Then the production data is plugged into the equation, leading to a second production  $R^2$  and resulting origin shift. For the thirty-eight materials in Table 6, evaluation as just described led to twenty-one materials having new  $R^2$  values for patents and production as well as a new origin shift in the opposite direction of the original as shown in Table 6. The

data and evaluations of the remaining seventeen materials would not support a second set of

 $R^2$  values.

**Table 7. Origin Ratios, Shifts and**  $\mathbb{R}^2$ . 1<sup>st</sup> production and patent  $\mathbb{R}^2$  represent the case where a production best-fit equation and  $\mathbb{R}^2$  were established then patent data was plugged into the equation resulting in a patent  $\mathbb{R}^2$  and an origin shift. Likewise, 2<sup>nd</sup> production and patent  $\mathbb{R}^2$  represent the case where a patent best-fit equation and  $\mathbb{R}^2$  were established first, rather than production as was done first previously, then production data was plugged into the equation resulting in a production  $\mathbb{R}^2$  and an origin shift. The 2<sup>nd</sup> shifts for all materials were in the opposite directions than the 1<sup>st</sup> shifts. The Avg. shift is the average of the absolute values of the two shifts, 1<sup>st</sup> and 2<sup>nd</sup>, with the sign of the 1<sup>st</sup> shift being employed in all cases for consistency. As a convention the sign chosen was the same as the 1<sup>st</sup> shift, but could be the sign of the 2<sup>nd</sup> if all are kept consistent.

| Material    | Production $(1^{st}) R^2$ | Modified<br>Patent<br>(1 <sup>st</sup> ) R <sup>2</sup> | Shift (1 <sup>st</sup> ) | Patent $(2^{nd}) R^2$ | Modified<br>Production<br>(2 <sup>nd</sup> ) R <sup>2</sup> | Shift<br>(2 <sup>nd</sup> ) | Avg.<br>Shift | Origin<br>Ratio |
|-------------|---------------------------|---------------------------------------------------------|--------------------------|-----------------------|-------------------------------------------------------------|-----------------------------|---------------|-----------------|
| Aluminum    | 0.9818                    | 0.9658                                                  | (+)15                    | 0.9554                | 0.9562                                                      | (-)17                       | (+)16         | 1.008           |
| Antimony    | 0.7192                    | 0.7644                                                  | (-)75                    | 0.6640                | 0.9076                                                      | (+)65                       | (-)70         | 0.961           |
| Bauxite     | 0.9521                    | 0.4465                                                  | (-)179                   | 0.9074                | 0.3453                                                      | (+)50                       | (-)114.5      | 0.906           |
| Chromium    | 0.9731                    | 0.9320                                                  | (+)3                     | 0.9368                | 0.9698                                                      | (+)4                        | (-)3.5        | 0.998           |
| Copper      | 0.9576                    | 0.9320                                                  | (+)11                    | 0.9416                | 0.9728                                                      | (-)13                       | (+)12         | 1.006           |
| Feldspar    | 0.7833                    | 0.4073                                                  | (-)108                   | 0.7775                | 0.9789                                                      | (+)48                       | (-)78         | 0.943           |
| Graphite    | 0.8122                    | 0.9045                                                  | (-)24                    | 0.9617                | 0.6803                                                      | (+)21                       | (-)22.5       | 0.987           |
| Gypsum      | 0.8740                    | 0.7123                                                  | (-)59                    | 0.9543                | 0.6674                                                      | (+)42                       | (-)50.5       | 0.969           |
| Hyd. Cem.   | 0.9743                    | 0.9280                                                  | (-)1                     | 0.9326                | 0.9732                                                      | (+)2                        | (-)1.5        | 0.999           |
| Iron        | 0.8599                    | 0.6888                                                  | (-)89                    | 0.9329                | 0.0501                                                      | (+)49                       | (-)69         | 0.953           |
| Kyanite     | 0.8387                    | 0.8825                                                  | (+)20                    | 0.9040                | 0.9293                                                      | (-)28                       | (+)24         | 1.010           |
| Lead        | 0.5368                    | 0.7303                                                  | (-)41                    | 0.9172                | 0.1267                                                      | (+)40                       | (-)40.5       | 0.979           |
| Manganese   | 0.5782                    | 0.9666                                                  | (+)23                    | 0.9132                | 0.7614                                                      | (-)36                       | (+)29.5       | 1.012           |
| Nickel      | 0.9823                    | 0.7331                                                  | (-)69                    | 0.9502                | 0.7436                                                      | (+)41                       | (-)55         | 0.964           |
| Platinum    | 0.9539                    | 0.6065                                                  | (-)90                    | 0.9121                | 0.9370                                                      | (+)48                       | (-)69         | 0.953           |
| Rare Earths | 0.8256                    | 0.4483                                                  | (-)101                   | 0.8152                | 0.8547                                                      | (+)43                       | (-)72         | 0.947           |
| Silicon     | 0.6029                    | 0.8980                                                  | (-)30                    | 0.6195                | 0.6801                                                      | (+)31                       | (-)30.5       | 0.984           |
| Silver      | 0.5027                    | 0.3484                                                  | (+)21                    | 0.7582                | 0.5563                                                      | (-)51                       | (+)36         | 1.011           |
| Titanium    | 0.8600                    | 0.9630                                                  | (+)1                     | 0.9620                | 0.8774                                                      | (-)3                        | (+)2          | 1.001           |
| Zinc        | 0.8805                    | 0.9669                                                  | (+)18                    | 0.9617                | 0.9650                                                      | (-)24                       | (+)21         | 1.009           |
| Zirconium   | 0.6913                    | 0.9536                                                  | (-)21                    | 0.8964                | 0.4545                                                      | (+)17                       | (-)19         | 0.989           |

Table 7 contains two sets of two  $R^2$  values and their resulting origin shifts and ratios as well as the average of the absolute values of the shifts. Origin shifts and  $R^2$  values were sought by evaluating the production data first, then plugging in the patent data and then doing the same using the patent data first. In this way, four  $R^2$  values are obtained as well as two origins, which have opposite signs. The opposite signs indicate that in one case the production or patents are the driving force and in the other case they are the driven force. For example, aluminum's 1<sup>st</sup>  $R^2$  values indicate that its production is driving its patents by the positive origin shift. The  $2^{nd} R^2$  values, on the other hand, reveal that the patents are being driven by the production as shown by the negative shift in origin. Each set of  $R^2$  values is revealing the same behavior, but from opposite directions. This leads to the averaging of the absolute value of the shifts, which may reveal a more accurate picture of the materials origin shift, innovative behavior and reaffirm the material as Stage III.

Figure 12(c) presents the shifts of the materials found in Table 7 and another method to express the drive ratio and evidence of Stage III. The results in it are similar to Fig. 12(a) and 12(b) with an exponential Drive Ratio/Origin Ratio plot that crosses the logarithmic yaxis near one and a fairly constant slope. The three Drive Ratio/Origin Ratio plots indicate materials that are in Stage III of their life cycles due to the presence of innovative driving forces coupled with the idea that innovative behavior is strongest in Stage III.



Figure 12(c). Engineering Materials With Two  $R^2$  and Origin Shifts Origin Ratio vs. Drive Ratio. Displays relative strength of driving force of either patents or production activity of materials with two sets of two  $R^2$  values and two origin shifts. Again, the plot crosses the y-axis near one and an overall  $R^2$  value near that of Fig. 12(a).

## **Section 6: Energy Sources**

An important goal of this dissertation is the determination of whether energy sources behave in a similar pattern as do engineering materials and if they can be evaluated in a like manner. Due to climate change and scarcity of energy resources there is a great interest in the development, diffusion and innovation of renewable, sustainable and carbon friendly forms of energy as well as policies that may be adopted by governments to utilize these clean energy sources [92-126]. The application of life cycle, best-fit and origin shift analyses as well as correlation theory to such energy sources would be a valuable addition to the understanding of their behavior. Accordingly, these procedures were applied to the energy sources listed in Table 2. Following the application of correlation theory, best-fit and origin shift analyses to engineering materials the same procedures were performed on the energy sources in Table 2. Due to the availability of consistent and continuous data sets, United States production for energy sources was chosen. Worldwide statistics were not available for the years to be researched on a complete basis and for many of the systems investigated there was no data.

## **Data Collection**

The patent data for energy sources and materials was collected from the European Patent Office (EPO) web site in the same manner as described previously for engineering materials. Worldwide searches of patent counts per year were performed for each energy source using keywords in the titles and abstracts of published patents. Worldwide patent counts were made, rather than patent counts from only the USPTO, due to the existence of patent treaties which result in the effects of the innovation, that are represented by patents, being more global in scope. The global scope would lead to U.S. innovation relating to the U.S. production of these energy sources being affected by the honoring of patents from other PCT member nations making worldwide patent counts legitimate for the purposes of this dissertation.

Production activity data for these systems and materials were collected from the U.S. Energy Information Administration (EIA), which is affiliated with the United States Department of Energy [91]. The data found on this site from this agency is consistent and complete for the years and energy sources required. The energy source production data for all energy sources is reported in billion or quadrillion Btu and then converted to kilo joules (kJ). Detailed production definitions can be found in Appendix 4.

# Patent and Production Activity Data Correlation

The selected energy sources were subjected to the same correlation evaluations that were performed above on engineering materials. Correlation was sought between data sets relating to the production of kJ for energy sources, per year, and data sets composed of patents published per year for the same energy source. As with the evaluated engineering materials, a coefficient constant, r, and  $100r^2$  were generated for each energy source listed in Table 8 below. Comparative plots of the generated production and activity were generated as well and can illustrate graphically the extent of any correlation that is present. Examples of such graphical illustration are found in Figs. 13 and 14. Figure 13 presents the correlation between the production activity and patents of wind energy and reveals a strong correlation and coefficient, r, of 0.9681. Figure 14 represents the correlation of the production activity and patent data of U.S. oil energy production and indicates a lack of correlation or coefficient, r, of -0.4862.

Table 8 reveals that there exists some degree of correlation for the production and patent data sets for energy sources except for U.S. oil energy. A relationship is thus exhibited between the production and patenting or innovation of energy resources allowing an assumption that changes in one data set cause or are caused by changes in the other set of data as was shown for engineering materials. Further analysis of this data is thereby more reliable due to this proven correlative relationship. It is also apparent that energy sources behave in a similar manner as engineering materials when correlation theory is applied.

| Material                | <b>Overall Correlation Coefficient</b> <i>r</i> | $(100) r^2$ |
|-------------------------|-------------------------------------------------|-------------|
| US Biofuel Energy       | 0.9469                                          | 89.67%      |
| US Biomass Energy       | 0.5624                                          | 31.63%      |
| US Coal Energy          | 0.8235                                          | 67.82%      |
| US Fossil Fuel Energy   | 0.5956                                          | 35.50%      |
| US Geothermal Energy    | 0.6660                                          | 44.36%      |
| US Hydroelectric Energy | 0.3617                                          | 13.0%       |
| US Natural Gas Energy   | 0.4728                                          | 22.36%      |
| US Nuclear Energy       | 0.8541                                          | 72.95%      |
| US Oil Energy           | -0.4862                                         | -23.64%     |
| US Renewable Energy     | 0.4030                                          | 16.24%      |
| US Solar Energy         | 0.4786                                          | 27.90%      |
| US Total Energy         | 0.8064                                          | 65.02%      |
| US Wind Energy          | 0.9681                                          | 93.72%      |
| US Wood Energy          | 0.8271                                          | 68.40%      |

Table 8. Energy Sources Correlation Coefficients r and  $100r^2$ . Some correlation between production and patents exists to some degree for all energy sources except U.S. oil energy.



**Figure 13**. **U.S. Wind Energy Activity and Patents.** A strong correlation is illustrated by this figure. The calculated correlation coefficient was 0.9681. Data scaled to fit on the same figure.



**Figure 14. U.S. Oil Energy Activity and Patents.** No correlation is exhibited in this figure with the two curves showing little resemblance. The calculated correlation coefficient was -0.4862. Data scaled to fit on the same figure.

#### **Best-Fit**

The best-fit common pattern equation (1) was applied, using a MatLab program, to energy sources data in an identical manner as was employed with engineering materials. As was the case with engineering materials, energy sources produced similar four-stage life cycles for production and patent data sets. Figure 15 displays a typical long–term four-stage life cycle for the production activity of U.S. hydroelectric energy. Stages I-IV are all present as well as a Stage II hump and "valley of death."



**Figure 15. U.S Hydroelectric Energy**. Illustration of a typical long-term life cycle for an energy source. The plot indicates the division of the life cycle into four stages that is common to engineering materials and specifically here to U.S. hydroelectric energy production.

Wind Energy as an Example. The common pattern equation and best-fit analysis were applied to fourteen energy sources as described in Section 4 for engineering materials. Wind energy serves as a good example of best-fit applied to energy sources. Figure 16 represents best-fit analysis for the production data of U.S. wind energy in thousands of kJ. The curve of the actual activity reveals that wind energy is likely in Stage III of its life cycle. Stages I-II are present along with a probable Stage III and rapid growth. There is no sign of leveling off or onset of the survival mode of Stage IV. A good  $R^2$  of 0.8516 is present indicating a good fit. Figure 17 is composed of the best-fit analysis for the patent data is also appears to be in Stage III as depicted by the strong rapid growth phase existing to the present. The patent data also has a good  $R^2$  of 0.8183. All of the parameters in Figs. 16 and 17 are the same except for the origin, which has shifted negatively to 1961 for the patent data from the 1983 origin of the production data.



Figure 16. EIA U.S. Wind Energy Production. Fitted wind energy production activity curve with best-fit parameters and  $R^2$  value and origin. The data is from EIA U.S. wind power production in kJ per year [91]. Shown in the figure are both the actual data curve and a best-fit curve.


Figure 17. EPO Worldwide Patent Search: Wind and (Power or Energy) in Title or Abstract by Date of Publication. Wind energy modified patent curve with best-fit parameters and  $R^2$  value and origin. The data is from the European Patent Office worldwide patents containing wind and (energy or power) in the title or abstract of the patent by date of publication. Parameters are the same as for the wind power production activity curve with only a shift in the origin.

The origin of 1961 for the wind energy patent best-fit curve signifies a 22-year lag for the production activity data when compared to patenting data. Twenty-two years after the patent data met a point in its life cycle, the activity data crossed the same normalized position in its own life cycle, which suggests that the patenting or innovative activity associated with wind energy is driving the production of the wind energy.

Table 9 below contains the individual origins and the origin shifts between the patent and activity curves for each of the energy sources evaluated. Wind, fossil fuel, solar, renewable, total, natural gas and coal energy displayed negative shifts of origin of 22, 38, 93, 97, 331, 392 and 428 years respectively. Such negative shifts indicate that the patenting curve reached a point in its life cycle a number of years before the production curve reached the same point in its life cycle. This could indicate that patenting or innovative behavior is *driving* production and displaying the constructive side of the innovative process. Figure 18 shows the negative 22 year origin shift for U.S. wind energy production. For wind power, a specific point that was reached by its activity production life cycle in 1990 was reached by its patenting plot in 1978. The innovative behavior, represented by patents, thus occurred before the production of the wind energy. It could be then said that the innovation is causing or *driving* the production and that the innovation is strong and constructive which may be the case in a new technology where new processes and innovation are creating a need for new production.

Likewise, Table 9 shows that biofuel, biomass, geothermal and nuclear energy have positive shifts of 7, 8, 20 and 36 years, respectively, indicating that the patent curve reached a point in its life cycle a certain number of years after the production curve of the system reached the same point in its life cycle. This could indicate that the production of the energy source happens before the patenting or innovation and is being *driven* by the production. Such a behavior can be seen as an example of the destructive side of the innovative process. Figure 19 is an example of a positive origin shift of 20 years in U.S. geothermal energy. For geothermal energy, a certain point reached in the life cycle of the production activity that was reached in 1982, was likewise reached by the patenting plot in 2002. The patenting occurred twenty years after the production and thus was caused by or is being *driven* by the production of the system. Less strong innovative activity and the negative aspect of the innovative process is displayed in a case such as this and may occur in an older technology where innovation is being employed to better utilize production.

As with engineering materials, there are a number of indicators that point towards the life cycle stage that the energy source is in. Strong correlation is the first indicator of possible Stage III (Table 3), which is illustrated by a comparative graphical plot of the production and patent data. At times the plots relating to correlation reveal curves with Stage III features.

Positive best-fit  $R^2$  values for either or both the production activity and patent data of an energy source are indicators of a possible Stage III as well. Such  $R^2$  values are produced for curves that have Stage III life cycle attributes as shown in Fig. 3. Due to the fact that the

43

span of years for most energy sources is comparatively short when compared to engineering materials and the common pattern equation does not function optimally, lower values of  $R^2$  are acceptable here where they would not for engineering materials.

The lower values of  $R^2$  attainable for energy sources may be explained by the fact that the pattern equation is attempting to create a best-fit for a material or source with Stage III features. Sources with Stage I and II features may still generate an  $R^2$  albeit a lower one. Stage IV sources need parabolic alphas and would not generate an  $R^2$  with a linear alpha as have been employed here. Possibly, at the least,  $R^2$  values generated for energy materials may suggest sources that are not in Stage IV but may be in Stage I, II or III.

Table 9. Energy Source Production and Patent  $R^2$  values, correlation coefficient (*r*), origins, origin shifts and Stages. Energy sources are listed in order of descending Production  $R^2$  values. As with engineering materials, an origin shift indicates the presence of a system in Stage III of its life cycle. Strong correlation and  $R^2$  values near one are indicators of possible overall Stage III, but are not definitive evidence. Negative Production  $R^2$  values, no correlation and lack of origin shift are indicative of Stage IV production energy sources. (\* Indicates sources using Equation (2) for same scaling reasons as when used with engineering materials in Section 4.)

| Energy Source            | Production<br>R <sup>2</sup> | Independent<br>Patent<br>R <sup>2</sup> | Modified<br>Patent R <sup>2</sup> | Correlation<br>r | Production<br>Origin | Patent<br>Origin | Origin Shift | Stage |
|--------------------------|------------------------------|-----------------------------------------|-----------------------------------|------------------|----------------------|------------------|--------------|-------|
| US Biofuel Energy        | 0.9024                       | 0.8037                                  | 0.7881                            | 0.9469           | 1981                 | 1988             | (+)7 years   | III   |
| US Coal Energy*          | 0.8547                       | 0.5431                                  | 0.1697                            | 0.8235           | 1949                 | 1521             | (-)428 years | III   |
| US Wind Energy           | 0.8516                       | 0.9097                                  | 0.8183                            | 0.9681           | 1983                 | 1961             | (-)22 years  | III   |
| US Renewable Energy*     | 0.7404                       | 0.3748                                  | 0.1237                            | 0.4030           | 1949                 | 1852             | (-)97 years  | III   |
| US Biomass Energy*       | 0.7154                       | 0.6243                                  | 0.6839                            | 0.5624           | 1949                 | 1957             | (+)8 years   | III   |
| US Nuclear Energy        | 0.7142                       | 0.1540                                  | 0.1758                            | 0.8541           | 1957                 | 1993             | (+)36 years  | III   |
| US Geothermal Energy     | 0.6273                       | 0.7138                                  | 0.4764                            | 0.660            | 1960                 | 1980             | (+)20 years  | III   |
| US Total Energy*         | 0.3703                       | 0.6511                                  | 0.2801                            | 0.8064           | 1949                 | 1618             | (-)331 years | III   |
| US Fossil Fuel Energy*   | 0.1995                       | 0.7868                                  | 0.6993                            | 0.5956           | 1949                 | 1911             | (-)38 years  | III   |
| US Solar Energy          | 0.1186                       | 0.6355                                  | 0.4413                            | 0.4786           | 1984                 | 1891             | (-)93 years  | III   |
| US Natural Gas Energy*   | 0.0989                       | 0.8949                                  | 0.2094                            | 0.4728           | 1949                 | 1557             | (-)392 years | III   |
| US Wood Energy*          | 0.3728                       | 0.9312                                  | -                                 | 0.8271           | 1949                 | -                | No Shift     | IV    |
| US Hydroelectric Energy* | 0.1357                       | 0.8470                                  | -                                 | 0.3617           | 1949                 | -                | No Shift     | IV    |
| US Oil Energy            | Negative                     | 0.5041                                  | -                                 | -0.4862          | 1949                 | -                | No Shift     | IV    |



**Figure 18. U.S. Wind Energy Best-Fit Activity and Patents.** Plot showing the origin shift of patent and activity best-fit curves for wind energy. The shift is negative, indicating patent activity occurring before production activity and thus possibly driving the production. All parameters for the pattern equation are identical for the patent and production activity curves except for the difference in the origin that result in the negative origin shift.



**Figure 19. U.S. Geothermal Energy Best-Fit Activity and Patents.** Plot depicting the origin shift of patent and activity best-fit curves for geothermal energy. The shift is positive, indicating patent activity occurring after production activity and thus possibly being driven by the production. All parameters for the pattern equation are identical for the patent and production activity curves except for the origins (the matching results in the positive origin shift).

## Best-Fit, Origin Shift and Innovation

As with engineering materials the best-fit approach can be applied to comparisons of

energy sources activity and patent data with patent and origin shifts, allowing inferences to be

made concerning the relationship of innovations to production for these energy sources. The best-fit equation and program were applied to all of the studied energy sources' activity and patent data independently. This analysis was performed successfully on the energy sources listed below in Table 10. Table 10 presents the  $\alpha$  and *n* values for the independent activity and patent data and the original origin shifts and resulting origin ratios,  $(x_0 + OS)/x_0$ , derived for Stage III energy sources as well as  $\alpha^n$  and the drive ratios, again defined as  $(\alpha^n)_{activity} / (\alpha^n)_{patent}$ . Similar to the drive ratio for engineering materials, the drive ratio generally becomes progressively larger than one, as the origin ratio becomes larger than one representing the origin shift moving away from zero in a positive shift direction. The drive ratio also approaches zero as the origin ratio becomes progressively smaller than one which is the result of the origin shift moving further in the negative direction from zero as shown in Fig. 20 below.

Table 10. Energy source  $\alpha$  and n parameters, drive ratio and origin shifts, origin ratios and modified  $\mathbb{R}^2$ . Alpha and *n* are from the pattern equation. Ratio of  $\alpha^n$  indicates strength of the driving force of the material. The farther the ratio is from one, in either direction, the greater the driving force. A positive origin shift could indicate patents being driven by production. A negative origin shift suggests production being driven by patents. Note that  $(n_\alpha/n_p)$  is less than one for production sources with negative shifts in origin and one or above for sources with positive origin shifts. Modified  $\mathbb{R}^2$  generally becomes smaller then one as the origin ratio moves farther from one.

|              | $\alpha_{a}$ | n <sub>a</sub> | $\alpha_a^n$ | $\alpha_{p}$ | n <sub>p</sub> | $\alpha_{p}^{n}$ | Drive<br>Ratio | $n_{a}/n_{p}$ | Origin<br>Shift | Origin<br>Ratio | Modified<br><i>R</i> <sup>2</sup> |
|--------------|--------------|----------------|--------------|--------------|----------------|------------------|----------------|---------------|-----------------|-----------------|-----------------------------------|
| Nuclear      | 13           | 1.3            | 28.06        | 16           | 1              | 16               | 1.75           | 1.3           | +36             | 1.018           | 0.1758                            |
| Geothermal   | 17           | 0.8            | 9.65         | 31           | 0.5            | 9.65             | 1.73           | 1.6           | +20             | 1.010           | 0.4764                            |
| Biomass      | 12           | 1              | 12           | 14           | 0.9            | 10.75            | 1.12           | 1.11          | +8              | 1.004           | 0.6839                            |
| Biofuel      | 15           | 1.2            | 25.78        | 22           | 0.9            | 16.15            | 1.60           | 1.33          | +7              | 1.004           | 0.7881                            |
| Wind         | 13           | 1.1            | 16.80        | 13           | 1.5            | 46.87            | 0.36           | 0.73          | -22             | 0.989           | 0.8183                            |
| Fossil Fuel  | 36           | 0.29           | 2.83         | 41           | 1              | 41               | 0.069          | 0.29          | -38             | 0.981           | 0.6993                            |
| Solar        | 37           | 0.7            | 12.52        | 39           | 1.4            | 168.9            | 0.074          | 0.5           | -93             | 0.953           | 0.4413                            |
| Renewables   | 1            | 0.09           | 1            | 14           | 0.5            | 3.74             | 0.267          | 0.18          | -97             | 0.950           | 0.1237                            |
| Total Energy | 46           | 0.34           | 3.68         | 12           | 1.2            | 19.73            | 0.186          | 0.283         | -331            | 0.830           | 0.2801                            |
| Nat. Gas     | 22           | 0.2            | 1.86         | 32           | 0.9            | 22.63            | 0.082          | 0.22          | -392            | 0.799           | 0.2094                            |
| Coal         | 28           | 0.2            | 1.95         | 17           | 1              | 17               | 0.115          | 0.2           | -428            | 0.780           | 0.1697                            |

As with engineering materials the use of the pattern equation in the case of energy sources creates a relationship between  $\alpha$  and *n* that can be evaluated and compared to origin shifts produced by independent patent and production activity best-fit derivations. A graphical representation, such as Fig. 20, of the relative scale, or distance, of the origin shift can be made, indicating an absolute amount that the patent or activity driving force has on the other. Such a curve may effectively represent innovation behavior. Noted is that the activity of fossil fuel power is possibly being driven the most by its patents since its drive ratio is nearest to zero for systems whose activity is driven by patents. Similarly, the patents of nuclear power may be driven the most by its activity because its ratio is farthest from one for energy sources whose patents are driven by activity

Again, as with engineering materials three patterns emerge from the best-fit analysis for energy sources shown in Table 10. The first is that when a positive origin shift is indicated, the drive ratio is always above one (the ratio is always less than one and approaches zero when the origin shift is negative). Second, when  $n_a$  is divided by  $n_p$  the resulting ratio is always less than one for energy sources that have negative shifts in origin and the resulting ratio is always one or above for energy sources with a positive origin shift. Lastly, as the origin ratios move away from one in either direction the modified patent  $R^2$ , which is generated by patent data being run with the common pattern equation production parameters, generally becomes smaller than one. As indicated in Table 10 and on Fig. 20 energy sources such as coal and natural gas energy have origin ratios the farthest below one and lower modified  $R^2$  than do sources with ratios nearer to one. In the same way nuclear energy has the highest origin ratio and has an  $R^2$  less than sources with origin ratios near to one. This could indicate that energy sources may approach Stage IV when they reach origin ratio extremes and enter stage IV when modified  $R^2$  values become too small to support an origin shift or origin ratio in a manner similar to engineering materials.

Fig. 20 appears to divide the energy sources evaluated into two groups. Group 1, containing coal, natural gas, wind, renewable, fossil fuel, solar and total energy, is composed

of energy sources whose patent activity is driving their production as suggested by the lag in production. Biomass, biofuel, geothermal and nuclear energy are in Group 2, in which patenting is driven by production suggested, conversely, by a lag in patenting.



**Figure 20.** Energy Source Origin Ratio vs. Drive Origin. Displays relative strength of driving force of either patents or production activity.

Group 1 energy sources, according to their drive ratios had more than one patent published per normalized unit of production where patents may be thought to *drive* production activity. U.S. fossil fuel energy, for example, had one patent published per 0.069 normalized units of production. Group 2 energy sources had less than one patent published per normalized unit of production where the patents are possibly *driven* by production. U.S. nuclear energy had one patent published per 1.75 normalized units of production according to its drive ratio. In other words for each normalized unit of fossil fuel energy production, 14.5 patents were found to drive the production and for each normalized unit of nuclear energy

production 0.57 patents are being driven. These results may be interpreted to mean that Group 1 has more innovation associated with it since more patents are required to drive one unit of production than Group 2 where production drives patents. Group 2 is still innovatively active, but not as much as Group 1. And, like engineering materials, the presence of an origin shift in energy sources indicates constructive or destructive innovation, which is a classic feature of Stage III and thereby strongly points towards the presence of a Stage III source or at least an energy source that is not in Stage IV. It is possible that Stage I or II is in evidence for materials such as solar and wind energy that have had shorter life cycles and produce low  $R^2$  values. These energy sources may be in the opening stages of their long-term life cycles. Their origin shifts indicate the presence of constructive or destructive innovation which could exist in Stages I and II as well as they do in Stage III, though to a lesser degree. In such cases an origin shift is good if not definite evidence of the presence of Stage III, but it is strong evidence of the absence of Stage IV.

## **Energy Materials**

This section contains correlation, best-fit and origin shift analysis data for the production and patents of energy producing materials, in tons, barrels or cubic feet, of coal, natural gas, oil and uranium rather than energy (kJ) produced by them, which was done for energy sources above. The production data is from the EIA web site [91] and the patent data is from the EPO site [80]. All data gathering techniques, correlation, best-fit and origin shift analyses were carried out in an identical manner as for engineering materials and energy sources. Energy materials behaved in a similar manner as engineering and materials. Details concerning the gathered data and evaluations for energy materials can be found in Appendix 5. These four materials all exhibit Stage III behavior with origin shifts.

| Energy Source  | Production<br>R <sup>2</sup> | Independent<br>Patent<br>R <sup>2</sup> | Modified<br>Patent<br>R <sup>2</sup> | Correlation<br>r | Production<br>Origin | Patent<br>Origin | Origin Shift | Stage |
|----------------|------------------------------|-----------------------------------------|--------------------------------------|------------------|----------------------|------------------|--------------|-------|
| US Coal        | 0.7142                       | 0.7523                                  | 0.6276                               | 0.8368           | 1900                 | 1870             | (-)30 years  | III   |
| US Natural Gas | 0.3701                       | 0.9332                                  | 0.2536                               | 0.6982           | 1936                 | 1610             | (-)326 years | III   |
| US Oil         | 0.2334                       | 0.9243                                  | 0.4524                               | 0.5402           | 1900                 | 1920             | (+)20 years  | III   |
| US Uranium     | 0.1256                       | 0.0159                                  | .0154                                | 0.6265           | 1949                 | 1819             | (-)130 years | III   |

**Table 11.** Production and Patent  $R^2$  values, correlation coefficients (*r*), origins, origin shifts and Stage for each evaluated energy materials. Equation 2 was used in all cases.

**Table 12.** Energy material  $\alpha$  and n parameters, drive ratio and origin shifts and ratios for energy materials. Materials arrange by descending modified  $R^2$ .

|          | $lpha_a$ | n <sub>a</sub> | $\alpha_{a}^{n}$ | $\alpha_{p}$ | <i>n</i> <sub>p</sub> | $\alpha_p^n$ | Drive<br>Ratio | $n_{a}/n_{p}$ | Origin<br>Shift | Origin<br>Ratio | Modified<br>R <sup>2</sup> |
|----------|----------|----------------|------------------|--------------|-----------------------|--------------|----------------|---------------|-----------------|-----------------|----------------------------|
| Coal     | 15       | 0.6            | 5.08             | 23           | 0.7                   | 8.98         | 0.566          | 0.86          | -30             | 0.984           | 0.6276                     |
| Oil      | 24       | 0.7            | 9.25             | 33           | 0.6                   | 8.14         | 1.14           | 1.17          | +20             | 1.011           | 0.4524                     |
| Nat. Gas | 17       | 0.23           | 1.92             | 15           | 0.8                   | 8.73         | 0.220          | 0.288         | -326            | 0.832           | 0.2536                     |
| Uranium  | 2        | 0.29           | 1.22             | 10           | 0.3                   | 1            | 0.61           | 0.97          | -130            | 0.94            | .0154                      |

Table 11 reveals that oil has a positive origin shift and therefore in the destructive mode of innovation while coal, natural gas and uranium have negative shifts and are in the creative mode of the innovation process. Table 12 continues the trends displayed by engineering materials and energy sources of positive origin shifts producing origin ratios and drive ratios over one and negative shifts producing ratios below one. The modified  $R^2$  also tends to be farther from one the larger the shift in origin is.

Figure 21 shows that oil is in group 2 and natural gas, coal and uranium are in group 1. By comparison in Fig. 20, nuclear energy is in group 2 while coal and natural gas energy are in Group 1 and oil energy is in Stage IV with no origin shift. No pattern emerges since only two of the materials have the same direction of shift as its energy counterpart. Similar behavior is exhibited, though, for energy systems as has been revealed for engineering materials and energy sources.



Figure 21. Energy Materials Origin Ratio vs. Drive Ratio. Displays relative strength of driving force of either patents or production activity for energy materials.  $R^2$  is high probably due to only four points being in the plot.

## **Engineering Material Connection**

In several cases the best-fit and correlation evaluations of energy sources revealed a connection between such energy sources that are predicted to be in Stage III, or innovatively active and engineering materials that are also innovatively active, or in Stage III, of their life cycles. Table 13 give examples of energy sources and the engineering materials that are both being innovated and helping to innovate the energy source. Vanadium and silicon are Stage III materials in the constructive mode and are commonly used in products related to solar and wind power production [90]. Other materials such as graphite, nickel, cobalt, silver, manganese, the rare earths and lithium, which are in Stage III, are being innovated largely in support of energy production and storage. Even Stage IV materials (cadmium, selenium, fluorspar) are being innovated in the energy generation field [90]. In three cases innovatively

active energy sources, coal energy, nuclear energy and natural gas energy use for fuel, coal, uranium and natural gas that are also in Stage III. With energy resources declining worldwide and environmental concerns, it seems logical that materials are being innovatively employed to meet energy requirements in an environmentally friendly manner resulting in Stage III growth and Stage IV stability for these materials. It appears that where the need for innovative energy sources arises the innovative behavior of engineering materials that might fill that need rise as well.

| Energy source      | <b>Related Material</b>     | Usage                                          |
|--------------------|-----------------------------|------------------------------------------------|
| Solar Energy       | Vanadium                    | Vanadium Redox Batteries (large power storage) |
| "                  | Silicon, Selenium           | Solar Cells                                    |
| Wind Energy        | Vanadium                    | Vanadium Redox Batteries (large power storage) |
| Nuclear Energy     | Fluorspar                   | Nuclear Fuel Additive                          |
| "                  | Uranium                     | Fuel                                           |
| Renewable Energy   | Graphite                    | Fuel Cells, Batteries                          |
| "                  | Nickel, Rare Earths, Cobalt | Rechargeable Batteries                         |
| "                  | Lithium, Cadmium, Lead      | Batteries                                      |
| "                  | Manganese                   | Dry Cell Batteries                             |
| "                  | Silver                      | Battery Electrodes                             |
| Coal Energy        | Coal                        | Fuel                                           |
| Natural Gas Energy | Natural Gas                 | Fuel                                           |

**Table 13.** Examples of energy sources and the engineering materials that are innovatively active possibly due to their usage in the related energy source [90].

**Table 14.** Comparison of origin shifts, origin ratios and drive ratios of energy sources and the engineering and energy materials that are related to them [90].

|                         | Origin Shift | Origin Ratio | <b>Drive Ratio</b> |
|-------------------------|--------------|--------------|--------------------|
| Solar Energy            | -93 years    | 0.953        | 0.074              |
| Vanadium                | -90 years    | 0.954        | 0.363              |
| Silicon                 | -30 years    | 0.985        | 0.435              |
| Wind Energy             | -22 years    | 0.989        | 0.36               |
| Vanadium                | -90 years    | 0.954        | 0.363              |
| Nuclear energy          | +36 years    | 1.018        | 1.75               |
| Uranium                 | -130 years   | 0.94         | 0.61               |
| Fluorspar               | -113 years   | 0.941        | 0.444              |
| Coal Energy             | -428 years   | 0.780        | 0.115              |
| Coal                    | -30 years    | 0.984        | 0.57               |
| Natural Gas Energy      | -392 years   | 0.799        | 0.082              |
| Natural Gas             | -326 years   | 0.832        | 0.22               |
| <b>Renewable Energy</b> | -97 years    | 0.950        | 0.267              |
| Graphite                | -24 years    | 0.987        | 0.813              |
| Nickel                  | -69 years    | 0.964        | 0.824              |
| Rare Earths             | -101 years   | 0.947        | 0.389              |

| Cobalt    | -256 years | 0.865 | 0.284 |
|-----------|------------|-------|-------|
| Lithium   | -106 years | 0.945 | 0.396 |
| Lead      | -41 years  | 0.978 | 0.434 |
| Manganese | +23 years  | 1.012 | 1.418 |
| Silver    | +21 years  | 1.011 | 2.060 |

Table 14 indicates that in a majority of cases the origin shift direction of the materials follows that of their particular related energy source. Likewise, the origin and drive ratios are higher or lower than one for the material as that of its related energy source. Nuclear energy is the only obvious exception to this pattern, however it has only two materials to compare it with. The degree of the shift or ratio of the materials seem to have little relation to that of the energy sources. It still can be said that innovatively active, or Stage III, energy sources utilize or are partially enabled by engineering and energy materials that are also innovatively active

## **Energy Source and Engineering Material Result Comparison**

The application of correlation theory and best-fit analysis to energy sources as was applied to engineering materials has disclosed that energy sources behave in a similar manner to engineering materials. In both cases, correlation theory has revealed that production and patent data have a relationship to each other and that changes in one set of data have an impact on changes in the other data set. Energy sources have been shown to display the same four-stage life cycle exhibited by engineering materials in both production and patent data. Origin shift and innovative patterns are found in each case as well. Positive shifts are always found where the drive ratio is greater than one and negative when the drive ratio is less than one. Also, the ratio produced by dividing  $n_a$  by  $n_p$  is less than one where a negative origin shift is found and one or above where a positive origin shift exists.

The drive ratio versus origin shift plots (Figs. 12 (a-c), 20 and 21) for energy sources, engineering materials and energy materials all reveal a possible connection to the dual nature of innovation as proposed by Schumpeter [55]. Engineering materials and energy sources

with drive ratios below one indicate production drive by innovation and the constructive nature of the innovative process. Energy sources and engineering materials with drive ratios above one represent the destructive facet of the innovative process where production drives innovation as measured by patents. Innovation is present in both instances but is stronger on the constructive side. Finally, Stage III is indicated in both engineering materials and energy sources where a shift in origin is found though best-fit analysis.

#### Section 7: Analysis

Schumpeterian economic theory posits the idea that innovation propels capitalistic economies through a process of "Creative Destruction" where innovation constantly destroys the old while it creates anew [55]. Patents, being analogous to innovation, may be considered as tools to carry out this process of "Creative Destruction." Patents can be used to prevent innovation or deny the right to compete when used to protect property rights by blocking the technical innovation of others in the same industry. This is the destructive side of patents. The creative side is illustrated by the use of innovation to overcome protective patents, which result in more patents and new innovative products. Numerical and graphical proof that patents can indicate and measure the destructive and creative functions that innovation can exhibit is offered here.

## **Correlation**

Correlation, to some degree, was shown to exist between patent and activity data for forty-eight of fifty evaluated engineering materials and thirteen of fourteen energy sources. Thus, statistically, the number of patents published, in reference to an engineering material or energy source, is often correlated at least to some degree to the amount of production for that material or energy source on a yearly basis. Materials and energy sources with strong correlation (Al, Cr, Ni, wind power, e.g.) often appeared to be in Stage III of their life cycles while those with weak or no correlation (Hg, Be, As, hydroelectric power, e.g.) are commonly considered to be in Stage IV. The correlation coefficient r gives evidence that variations in one of the data sets, activity or patent, can be attributed to variations in the other data set. In other words, change in one set of data drives the change in the other set. Comparisons of the production and patent data are thus more relevant due to the relationship that exists between them, which correlation theory indicates. Best-fit analysis can aid in determining which data came first and thus, drove the change in the other set.

## **Best-Fit**

The best-fit equation and program can identify the four stages in the life of the production and patent data of an engineering material or an energy source. Most innovative activity occurs during Stage III and appears to diminish or cease at the onset of Stage IV, making the identification of these stages an important objective. The curves and coefficients produced via correlation analysis are a start in identifying the stage of a material or system. There is an obvious flattening of the curves during Stage IV when compared to Stage III. If the correlation curve flattens for an extended period and the correlation coefficient drops, the material or system is likely in Stage IV. Another indicator of the stage of a material or system is its  $R^2$  value. The materials and systems studied here show that, in general, Stage III items have  $R^2$  values for production and patenting data approaching one for engineering materials and positive  $R^2$  values for energy sources and materials. The strongest and most obvious Stage III materials and systems have  $R^2$  values approaching one generated from the production, modified patent and independent patent best-fit evaluations such as nickel, aluminum and wind power. Stage IV is very strongly indicated when  $R^2$  is negative or near negative such as for cadmium, arsenic, beryllium and fossil fuel power whose generated life

cycle curves back up this inference. The combination of no correlation, a negative or near negative  $R^2$  and life cycle curves that illustrate a steep sustained drop off of production, as for mercury, may indicate a Stage V or "Final Death" where innovative activity is very low again reaching the initial starting levels of its Stage 1.

## Stage V

As suggested previously in section 2, a Stage V may exist in the life cycle of materials. Figure 22 below shows a proposed Stage V occurring after Stage IV for mercury. Stage V exhibits a steady decline in production with no clear sign from the data of revival as exists in Stages III or IV. With no clear sign of revival, Stage V can be called the "Final Death" stage. Such "final" death may be due solely to resource depletion. However, environmental and health concerns for toxic substances, such as asbestos, mercury and beryllium could also explain a decrease in production [90]. A final explanation for death could be the replacement of a material with another less costly one or the successful innovating around a toxic or expensive material thereby causing a decrease in production. While the onset of Stage V may be caused by resource depletion, the materials investigated here that display Stage V behavior are asbestos, beryllium and mercury, which are toxic substances with environmental concerns attached to them. Arsenic and cadmium, also toxic materials, are now Stage IV but seem to be approaching Stage V. Such environmental concerns seem to be a more likely cause, rather than resource depletion, for the onset of Stage V according to the results of this study.



**Figure 22. Mercury Production Life Cycle.** The life cycle curve for mercury depicting it as a Stage V material. This figure identifies the four stages as discussed in Section 2 and shown in Fig. 3. Also shown is the possible Stage V or "Final Death Stage". Here Stage V begins around 1988 and is identified by a steep decline in production with little clear sign from the production data for any future stabilization or revival as is often displayed in Stages III and IV. Stage V could indicate resource depletion or less demand for the material or innovating away from the material due to environmental or toxicity concerns such as exist with asbestos and mercury. Activity is in tens of tons.

### **Origin Shift**

The best-fit analysis of the data can confirm and further identify the time frames where Stages III and IV may exist. The best-fit equation was applied to the patent data of each engineering material and energy source with the same pattern equation and parameters, as was previously done to the production data. A change or shift was sought in the data origin in these modified patent best-fit equations. Positive and negative shifts were each found for engineering materials and energy sources. A negative shift implies that the patenting occurs previous to the activity and therefore variations in the patents may drive change in the activity. A positive origin shift indicates that activity occurs first and variations in it possibly drive variations in the patents. Also, the presence of an origin shift indicates Stage III since a shift possibly predicts the mode or direction of innovative activity and such activity is strongest in Stage III, which in these materials and systems is backed, for the most part, by Stage III type curves, good correlations and high  $R^2$  values.

#### **Driving Force**

Driving force behavior can be illustrated by best-fit analysis and comparisons of  $\alpha$ and *n* parameters with origin ratios of these thirty-eight materials and twelve energy sources. Nitrogen appears to be, amongst the engineering materials studied here, the one whose patents most drive its production activity. Silver, on the other hand, is the material whose activity drives its patenting the most. Nitrogen, along with the other group 1 materials (Fig. 12(a)), have a drive ratio less than the universal constant  $n_{\theta}$  of one and could be thought to be in the creative mode of the innovative process where patents and innovation spur production and economic growth. Silver and the remaining group 2 materials are in the destructive or negative mode of the innovative process with drive ratios above the universal constant,  $n_0$ , of one where patents could be used as protection of property rights and as a result stifle innovation and possibly economic growth. Materials with low drive ratios may be in the position of being farthest into the creative part of the innovative process due to their use in the electronics, metallurgical or other high-tech industries [90]. Patenting and innovation are very focused for materials in these areas. High drive ratio materials are used for a wide variety of applications in lower-tech industries [90]. The activity of such materials may be driving the patenting because the variety of products made from them are less cutting-edge and high-tech than those of a material, such as nickel, whose patents drive its production activity.

Examples of the uses of specific engineering materials seem to support the idea that negative origin shifts and high alpha ratios indicate more innovative activity while positive shifts indicate less. Aluminum, copper, manganese, titanium and zinc are used in a great variety of applications and lack a narrow focus of innovation and patenting though they do have some high-tech applications [90]. Materials with negative origin shifts, or low origin ratios, and low alpha ratios often have application in very focused, high-tech and currently highly innovative areas. Nickel is used for super alloys, aerospace and rechargeable batteries [90]. Silicon is employed in solar cells and semiconductors, the rare earths are important in rechargeable batteries and electronics and iodine is a component of LCDs, which are very important in the electronics industry [90]. Though there are some anomalies, the general pattern illustrated is that that lower alpha ratios and lower origin ratios are signs of innovatively stronger materials while less innovative materials have higher ratios and shifts.

U.S. fossil fuel energy appears to be the energy source whose patents most drive its production while U.S. nuclear power is the energy source whose patents are most driven by its production. As with engineering materials, the group 1 energy sources of renewable, wind, coal, natural gas, fossil fuel, solar and total energy, have drive ratios less that the universal constant,  $n_0$ , of one and are systems that appear to be relatively high-tech and in currently highly innovative areas [92-99, 106-110]. Group 2 energy sources, biofuel, biomass, nuclear and geothermal energy, have drive ratios above the universal constant of one also in the same manner of engineering materials and could be said to be in less high-tech areas [100-105]. Energy sources in group 1 could be said to be in the constructive phase of innovation since their production is being drive by innovation as measured by patents while those in group 2, where production drives innovation, are in the destructive segment of the innovative process.

Origin ratios below one represent negative origin shifts and the constructive mode of the innovative process. However, some engineering materials and energy sources seem not to have the cutting edge applications that would merit a high degree of innovation but are nonetheless in Group 1. Materials such as talc, salt and sulfur and the energy sources of coal and total energy have some of the lowest origin ratios of those evaluated. These five materials and energy sources and others with low origin ratios also, in general, also have lower modified patent  $R^2$  values as shown in Figs. 6 and 10 than do those with origin ratios near one. Such relatively poorer fits of patent data to production activity best-fit parameters may indicate that the resulting innovative activity is mainly to keep the production afloat instead of developing new innovative uses of or improvements to the material or energy source. A material or energy source may enter Stage IV when the modified patent  $R^2$  becomes so low that it cannot generate a shift in origin and thereby an origin ratio. Such a point could illustrate where innovation can no longer keep the production afloat and Stage IV sets in.

Origin ratios above one indicate the destructive aspect of the innovative process where production is driving the patenting. Engineering materials and energy sources in Group 2 have drive ratios above one, origin shifts above one and modified patent  $R^2$  values that decrease from one as the origin shift grows larger than one. Silver and nuclear energy are the material and energy source, respectively, that have the highest origin ratio and lowest  $R^2$ value for group 2 materials and energy sources. Silver and nuclear energy may be nearest to having no innovation for production to drive and thus to Stage IV. This may be the case since as the  $R^2$  values decrease in Group 2 they will not be able to produce an origin shift or ratio.

Analysis of the driving force may reveal two means that a material or energy source may leave Stage III and enter Stage IV. Stage IV seems to be approached when a material or energy sources nears either end of the trend lines of Figs. 12(a-c) and 20. In either case it appears that the driving force is losing the driven production or patenting. In Group 2 the materials or energy sources at the extreme of the trend lines have production with little innovation to drive, are not innovatively active, leave Stage III and becomes commodities. With Group 1, materials or sources at the extreme of the trend lines, have little production for the innovative activity to drive and may also enter Stage IV.

## Life Cycle Stage Change

The results generated by the processes described here are not static for the tested materials and sources but instead are of a fluid nature. The r,  $R^2$ , stage, origin shift or driving force of a material can change over time. A previous study of twelve metals, utilizing production and patent data for the years 1900-2004 produced results that in some cases were quite different from the results generated in this dissertation which covers the years 1900-2007 [127]. Table 15 indicates that of the twelve metals evaluated in the previous study, four of them (iron, manganese, molybdenum and tungsten), changed from being Stage IV to Stage III.

| Result Changes Between 1900-2004 and 1900-2007 Data |         |          |        |               |       |                                  |        |         |  |  |  |
|-----------------------------------------------------|---------|----------|--------|---------------|-------|----------------------------------|--------|---------|--|--|--|
| Material                                            | Estimat | ed Stage | Correl | Correlation r |       | n Best-Fit <i>R</i> <sup>2</sup> | Origin | n Shift |  |  |  |
|                                                     | 2004    | 2007     | 2004   | 2007          | 2004  | 2007                             | 2004   | 2007    |  |  |  |
| Aluminum                                            | III     | III      | .9623  | .9652         | .9801 | .9818                            | +15    | +15     |  |  |  |
| Chromium                                            | III     | III      | .9483  | .9495         | .9690 | .9731                            | -2     | -3      |  |  |  |
| Copper                                              | III     | III      | .9430  | .9507         | .9397 | .9576                            | +11    | +11     |  |  |  |
| Iron                                                | IV      | III      | .8682  | .8741         | .5162 | .8599                            | -      | -89     |  |  |  |
| Magnesium                                           | III     | III      | .8817  | .9078         | .6467 | .7502                            | -79    | -83     |  |  |  |
| Manganese                                           | IV      | III      | .6312  | .6835         | .6140 | .5728                            | -      | -23     |  |  |  |
| Molybdenum                                          | IV      | III      | .9184  | .9289         | .9430 | .9538                            | -      | -188    |  |  |  |
| Nickel                                              | III     | III      | .9525  | .9563         | .9676 | .9823                            | -57    | -69     |  |  |  |
| Titanium                                            | III     | III      | .9011  | .9150         | .8303 | .8600                            | +2     | +1      |  |  |  |
| Tungsten                                            | IV      | III      | .7587  | .7419         | .5528 | .6449                            | -      | -232    |  |  |  |
| Zinc                                                | III     | III      | .9249  | .9387         | .8655 | .8805                            | +26    | +18     |  |  |  |
| Zirconium                                           | III     | III      | .8900  | .9239         | .5520 | .6913                            | -22    | -21     |  |  |  |

**Table 15.** Comparison of the current 1900-2007 results with previous results for twelve metals for the years 1900-2004 [92]. The stage in the life cycle of the material as well as its origin shift and r and  $R^2$  values for each span of years are recorded.

Manganese production for the years 1900-2004 is displayed in Fig. 23. In 2004 Mn was in Stage IV with its production oscillating after peak production in 1976. 2004 production had not reached the peak production of 1976. Production was rising and falling during these Stage IV years of 1976-2004 with no clear signs of a continual rise in production.



**Figure 23. Manganese production activity covering the years 1900-2004.** In 2004 Mn was in Stage IV, or the survival stage, with production oscillating and not rising or dropping permanently over time. 2004 production was 9,350,000 tons and not above the peak production of 10,000 tons in 1976.



**Figure 24. Manganese production activity covering the years 1900-2007.** In 2007 Mn is in Stage III. Oscillations in production have stopped with a continual rise in production from 1999–2007. 2007 production was 12,600,000 tons. 1976 production was surpassed in 2005.

Figure 24 shows manganese production for the years 1900-2007. Indicated is a steady continuous rise in production from 1976 to 2007. The peak production of 1976 was surpassed in 2005 with increases until 2007 where Mn re-entered Stage III. Production plots graphically illustrate Stage III features and Stage III is possibly further indicated by the presence of an origin shift and a linear alpha in its best-fit equation rather than a parabolic alpha, which is

required for Stage IV materials [2]. It is possible that in another span of three years these materials could return to Stage IV due to decline in production or oscillation caused by resources depletion or economic and environmental forces. If there is a steady rise in the production data over the last few years evaluated, the material or system will likely be in Stage III. If there is steady decline or no change in production data over the last few years of production, Stage IV is probably present. The stage depends on whether the material or system is in the peak or valley of the oscillating production data at the most recent date.

## **Relevance**

The processes and evaluations presented in this dissertation set forth original and important tools that can possibly be used for the prediction of the innovative behavior of engineering materials and energy sources. Each step in the evaluation process presented here provides a certain level of predictive ability for the more efficient usage of ever more scarce natural resources. Also, the use of these procedures allow for the wiser and more profitable allocation of monetary resources that in light of the present economic environment, are vital for financial stability for individuals, corporations and nations.

Correlation theory provides the first predictive tool. As has been demonstrated, resources such as engineering materials and energy sources in almost every case tested, display some degree of correlation. This means a change in one of the data sets, such as production, was statistically the result of changes in the patent data set or vice versa. From this, it can be suggested that if an individual or group has information that reveals probable future increases in production, such as governmental stimulus monies available for production of energy sources, it may be profitable to participate in future innovation, since, if correlation is high for the material or system the patenting curve will follow the trend of the production curve. Likewise, if it is announced that governmental funds will be available for

innovative activity applied to renewable energy it could signal an opportunity to provide resources for the production of renewable energy if there is strong correlation since the increase in production will mirror the increase in innovation. If production is predicted to drop in the future due to resource depletion, environmental concerns or global conditions it can be inferred that innovation will decline as well and decisions concerning development can be based upon this knowledge.. The stronger that the correlation between the production and patenting data of a material or system is, will make any development or research decisions more logical and intelligent.

Best-fit analysis and the identification of the long-term life cycles of materials and system also provide tools in the allocation of natural and economic resources. It has previously been proven that metals and non-metals have four-stage life cycles, and above, it has been shown that energy sources also have a four-stage life cycle similar to metals and non-metals allowing for identical evaluation. The common pattern equation (Eq. 1) and bestfit analysis can be used to show the life cycle of engineering materials and energy sources by the plots generated as well as the  $R^2$  values calculated. Determining the likely life cycle point that a material or system is in currently allows for intelligent development and allocation decisions. Development of a material or system found to be in Stage III of its production life cycle would be a more logical choice than development of a Stage IV material. Stage III materials are in a time of rapid growth while those in Stage IV are in survival mode with little growth. If growth occurs in a Stage IV it is probably for the short term due to the oscillations in activity existing in this stage. A Stage IV material may return to Stage III or it may fall into a possible Stage V. There is thus far more risk in allocating resources in Stage IV materials than in Stage III. However, Stage IV materials often offer opportunities in the innovation around or in replacement of them, which again is an example of the destructive side of the innovative process.

Indicators of a Stage III engineering material and energy source are firstly strong correlation between the data sets. Other indications of Stage III are  $R^2$  values near one for engineering materials and positive for energy sources in regards to production activity and patenting best-fit evaluation, while the presence of an origin shift is final evidence of the presence of Stage III. It is suggested here that the presence of an origin shift in the patent data of a material confirms the presence of Stage III that is predicted by the previously mentioned indicators. In all cases for engineering materials and energy sources, the models proposed in this dissertation have shown that when Stage III seems to be likely, that an origin shift is in existence.

The origin shifts produced by best-fit analysis offer a possible time frame in which the allocation of monetary resources for research and development may more safely take place. If a material or system experiences a negative origin shift in patent best-fit, its patenting or innovation occurs before its production at an identical point in their respective life cycles. This suggests that if a material or system is in Stage III and the innovative activity happens X number of years previous to the production, then when the production life cycle curve enters Stage IV, the innovative activity won't reach that same point in its life cycle for that X number of years. This outcome possibly gives a window of X number of years to consider innovation relating to that material.

On the other hand if there is a positive shift in the patent best-fit origin the innovative activity reaches a point in its life cycle after the production activity crosses the same point in its life cycle. It may be less profitable to invest time and money on a material or system if this is the case. Consideration may be needed to spend less on the production for a material whose innovative activity has reached Stage IV a number of years before its production has. If innovation is declining there may be less of a reason to continue further production.

U.S. wind power, for example, has a strong correlation coefficient of 0.9681, a high best-fit  $R^2$  of 0.8561, is likely in Stage III and has a negative origin shift of 22 years. Development of wind power is likely a good decision. It is in Stage III, or rapid growth stage and has production that is being driven by its innovation, where the constructive side of the innovative process exists and the universal constant,  $n_0$ , and drive ratio are below one, as indicted by the negative origin shift in patent data. Twenty-two years before the production data of wind power reached a specific point in its life cycle, its patent data reached that same point. In other words, 22 years after the production of wind power reaches the survival stage (Stage IV), the innovative behavior, as measured by the patent data will reach a like point in its life cycle. Such gives a possible 22 year window to safely allocate resources for the development of wind power after it has reached Stage IV in its production.

The evaluation of kyanite, on the other hand, produced a positive 20 year shift in its patent data origin indicating that innovative activity in this case is being driven by production. Twenty years after the production curve reaches a certain point in its life cycle the patenting data will reach the same point in its life cycle. The destructive side of the innovation process is present and innovation will still be present but to a lesser degree than where constructive innovation exists. With kyanite, or other materials or systems with positive origin shifts, an individual, company or nation might want to be more cautious about allocating resources since there will be less innovative activity and the production will reach Stage IV before the patenting data. More information would be needed to make an intelligent choice. If it is foreseen, with kyanite, that its production Stage IV will last 20 years or longer it may still be profitable to invest resources in it. In such a case opportunities will be present in innovating around the technology or in replacement of it or to use present production.

It is strongly believed that presented above is a powerful method for the evaluation of the relationship of engineering materials and energy sources, which can be employed, for the allocation of scarce economic and natural resources. Varying fields such as engineering, economics, law and business will all benefit from the predictive value that this model provides.

**Conclusion and Summary:** The study presented in this paper has shown that patents are a good measure of technical innovation for engineering materials and energy sources. For Stage III materials and energy sources, the patents mirror and behave similarly to the production activity as described by the life cycle platform (1-3,83). Correlation theory and best-fit analysis when applied to the fifty engineering materials and fourteen energy sources studied provide several indicators that when combined can suggest the stage of a material or system and the driving force of the innovative activity of the material or system. Stage III is generally indicated by a life cycle curve that is still growing, strong correlation and a production and patenting data  $R^2$  values near one. The existence of an origin shift verifies the existence of Stage III for engineering materials and energy sources. Even more, a negative origin shift and low drive ratio points towards the strongest innovative activity for a Stage III material or system, while a positive shift and higher ratio indicates not as strong innovative activity.

Although not conclusively established as the sole reason, the dual nature of Schumpeterian innovation is possibly also highlighted when comparing the patents and production of the various substances. It has been found that the life cycle stage of a material or energy source, as well as the relative extent of the driving force acting upon that item's production can be determined. When the drive ratio of a material or system is below the universal constant  $n_0$ , of one, the material or substance may be in the creative mode of innovation where patents and innovation spur economic growth. When the drive ratio is greater than one, or  $n_0$ , the destructive side of the innovative process might be present. The y-

axis of the plots shown in Figs. 12(a-c) and 20, which correlate the driving force to origin shift, appears to always be at 1 when the origin shift is 0, thus perhaps indicating that there is one universal constant, common to the life cycle of all engineering materials and energy sources.

# **Appendix 1: Correlation**

The correlation, or sample correlation coefficient, r, is calculated with the equation,

$$r = S_{xy} / (S_{xx} * S_{yy})^{1/2}$$
(A1.1),

where

$$S_{xx} = \sum_{i=1}^{n} \frac{\sum_{i=1}^{n} (\sum_{i=1}^{n} x_i)^2 / n$$
 (A1.2)

$$S_{yy} = \sum_{i=1}^{n} \frac{y_i^2}{(\sum_{i=1}^{n} y_i)^2} / n$$
 (A1.3)

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i) / n$$
 (A1.4)

and n is equal to the number of pairs of x and y in the data set. As an example, the correlation coefficient will be determined for the accumulated data concerning aluminum. In the case of aluminum, 108 data entries were made for activity and patents, x and y respectively, giving an n value of 108. For aluminum,

$$\Sigma x = 833134000, \ \Sigma y = 486253, \ \Sigma x^2 = 1.6e16, \ \Sigma y^2 = 5.81e9 \ and \ \Sigma x y = 9.43e12.$$

Calculating, using equations A1.2, A1.3 and A1.4 and the above values,

$$S_{xx} = 16e16 - (833134000)^2 / 108 = 9.559e15 ,$$
  
$$S_{yy} = 5.81e9 - (486253)^2 / 108 = 3.62e9 \text{ and}$$
  
$$S_{xy} = 9.43e12 - \{833134000\} * (486253)\} / 108 = 5.68e12.$$

By substitution of the above values into the Eq. (A1.1),  $r = S_{xy} / (S_{xx} * S_{yy})^{1/2}$ 

we get

$$5.68e12 / (9.559e15 * 3.62e9)^{1/2} = 0.965222$$

which indicates a good correlation between the activity and patent data. The r value of 0.9652 can be squared then multiplied by 100 resulting in 93.17 suggesting that 93.17% of the variations in the patent numbers can be attributed to corresponding differences in the activity data [81-83]. Table A1.1 below displays the results calculated above and Fig. A1.1 shows a comparison of aluminum activity and patent data. Each material was treated in the same manner.

 Table A1.1. Correlation Eq.(A1.1) terms calculated from Table A3.1 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 833134000 | 486253 | 1.6E+16            | 5.81E+09           | 9.43E+12 | 9.559E+15 | 3.62E+09 | 5.68E+12 | 0.965222 | 93.16534          |



Figure A1.1. Aluminum activity and patent data illustrating correlation.

## **Appendix 2: MatLab**

**Program A2.1:** MatLab program template used for Best-Fit analysis [2]. Common pattern equation (1) is contained within the program. Individual parameters, x (activity), y and r (years) entered for each material. A plot with individual curves, displaying the actual activity values and fitted data are produced as well as an  $R^2$  value is produced by this program.

year=[];%please input the years in the brackets. separate individual values by a comma and separate lines by '.....'

%example [1990, 1991.....

% 1992]

activity=[];%please input the years in the brackets. separate individual values by a comma and separate lines by '.....'

%example [2.8, 3.6.... % 4.8]

%constants

%Please choose the values for the parameters below

| %0~~~~~ |                                                                      |
|---------|----------------------------------------------------------------------|
| a=;     | %alpha                                                               |
| b=;     | %Beta                                                                |
| u=;     | %mu "u" is the location parameter. It gives the position of the mean |
| v=;     | %nu "v" is the scale factor, which controls the width of peak        |
| const=; | %delta                                                               |
| c=;     | %omega                                                               |
| x0=;    | %origin of the data                                                  |
| n=;     | %power exponent                                                      |
|         |                                                                      |
| r=[];   | %choose years where you want to predict                              |

%syntax: (1) r=<start year>:<increment>:<end year>; % (2) r=[1900, 1901, 1903, ...,2000];

#### % %END USER INPUTS

%~

% From data plot(year,activity\*1e3,'r'); %plots (Year VS Activity)

hold on; %to plot two graphs in the same figure

% From Equation x=r-x0; %normalized years R2=0; %non-linear R^2 value initialized to zero

% EQUATIONS z=const\*(exp((x-u)./v).\*exp(-exp((x-u)./v)))/v; %calculation of the additive part in the equation y=x.^n.\*[(a^n.\*x.^2)+(b^n\*sin(c\*x))]+z; %calulation of the complete equation

plot(r,y,'b'); %plotting the equation

xlabel('Years'); ylabel('Activity');

%Calculation of R2 actmeany=sum(y)/length(y);

for i=1:length(y) SStot=(activity\*1e3-actmeany).^2; SSreg=(y-activity\*1e3).^2; end R2=1-(sum(SSreg)/sum(SStot)); disp(R2); %displaying the R^2 value

**Program A2.2:** Zinc Production MatLab Program. The years 1900-2007 are entered for the year and "r" inputs while the production data for each year is entered in the activity input. The parameters a, b, u, v, const, c, x0 and n ( $\alpha$ ,  $\beta$ ,  $\mu$ , v,  $\delta$ ,  $\omega$ , x0 and n respectively) are entered as well. Running the program results in a plot and an  $R^2$  value. The best-fit is the curve with an  $R^2$  value closest to one indicating the best estimate of the equation parameters [2]. Each material was evaluated in the same manner.

\_\_\_\_\_

# clear all; % %START USER INPUTS

year=[1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920.....

1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940.....

1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960.....

1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980.....

1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000.....

2001, 2002, 2003, 2004, 2005, 2006, 2007];%please input the years in the brackets. separate individual values by a comma and separate lines by '.....'

%example [1990, 1991.....

% 1992]

activity=[479, 510, 547, 574, 629, 660, 704, 738, 723, 775, 810, 895, 971, 939, 795, 760, 882, 901, 849, 719, 682, 464, 730.....

889, 986, 1190, 1410, 1420, 1360, 1320, 1260, 904, 709, 892, 1060, 1210, 1330, 1470, 1420, 1500, 1470, 1590, 1630, 1830, 1870.....

1470, 1440, 1600, 1690, 1730, 2150, 2360, 2590, 2670, 2660, 2900, 3110, 3150, 2950, 3020, 3090, 3490, 3570, 3660, 4030, 4310.....

4500, 4840, 4970, 5340, 5460, 5520, 5440, 5710, 5780, 5850, 5690, 5920, 5850, 5990, 5950, 5950, 6130, 6280, 6520, 6760, 6840, 7190.....

6770, 6820, 7150, 7270, 7250, 6910, 7050, 7280, 7480, 7540, 7570, 7960, 8770, 8910, 8880, 9520, 9590, 9930, 10000, 10900 ];%please input the years in the brackets. separate individual values by a comma and separate lines by '.....'

%example [2.8, 3.6.... % 4.8] 86

%constant

%Please choose the values for the parameters below

b= 30; %Beta

u=27; %mu "u" is the location parameter. It gives the position of the mean

v=0.9; %nu "v" is the scale factor, which controls the width of peak

const=1.5e6; %delta

c= 0.7; %omega

x0=1900; %origin of the data

n=0.9; %power exponent

r= [1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920.....

1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940.....

1941, 1942, 1943, 1944, 1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960.....

1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980.....

1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000.....

2001, 2002, 2003, 2004, 2005, 2006, 2007] %choose years where you want to predict

%syntax: (1) r=<start year>:<increment>:<end year>;

% (2) r=[1900, 1901, 1903, ...,2000];

% %END USER INPUTS

%~~~~

% From data plot(year,activity.\*1e3,'r'); %plots (Year VS Activity)

hold on; %to plot two graphs in the same figure

% From Equation x=r-x0; %normalized years R2=0; %non-linear R^2 value initialized to zero

% EQUATIONS z=const\*(exp((x-u)./v).\*exp(-exp((x-u)./v)))./v; %calculation of the additive part in the equation

y=x.^n.\*[(a^n.\*x.^2)+(b^n.\*x.\*sin(c\*x))]+z; %calulation of the complete equation

plot(r,y,'b'); %plotting the equation

xlabel('Years'); ylabel('Activity');

%Calculation of R2 actmeany=sum(y)/length(y);

```
for i=1:length(y)
SStot=(activity*1e3-actmeany).^2;
SSreg=(y-activity*1e3).^2;
end
R2=1-(sum(SSreg)/sum(SStot));
disp(R2);
%displaying the R^2 value
```

**Program A2.3:** Data resulting from program A2.2 composed of "r" values, an  $R^2$  of 0.8805 and an actual and best-fit curve plot.

\_\_\_\_\_

 $\mathbf{r} =$ 

Columns 1 through 9

| 1900       | 1901      | 1902 | 1903 | 1904 | 1905 | 1906 | 1907 | 1908 |
|------------|-----------|------|------|------|------|------|------|------|
| Columns 10 | 0 through | 18   |      |      |      |      |      |      |
| 1909       | 1910      | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 |
| Columns 19 | 9 through | 27   |      |      |      |      |      |      |
| 1918       | 1919      | 1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 |
| Columns 2  | 8 through | 36   |      |      |      |      |      |      |
| 1927       | 1928      | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | 1935 |
| Columns 3' | 7 through | 45   |      |      |      |      |      |      |
| 1936       | 1937      | 1938 | 1939 | 1940 | 1941 | 1942 | 1943 | 1944 |
| Columns 4  | 6 through | 54   |      |      |      |      |      |      |
| 1945       | 1946      | 1947 | 1948 | 1949 | 1950 | 1951 | 1952 | 1953 |
| Columns 5  | 5 through | 63   |      |      |      |      |      |      |
| 1954       | 1955      | 1956 | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 |
| Columns 64 | 4 through | 72   |      |      |      |      |      |      |
| 1963       | 1964      | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| Columns 7. | 3 through | 81   |      |      |      |      |      |      |
| 1972       | 1973      | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 |
| Columns 82 | 2 through | 90   |      |      |      |      |      |      |
| 1981       | 1982      | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| Columns 9  | l through | 99   |      |      |      |      |      |      |

| 1990      | 1991       | 1992  | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 |
|-----------|------------|-------|------|------|------|------|------|------|
| Columns 1 | 00 througl | n 108 |      |      |      |      |      |      |
| 1999      | 2000       | 2001  | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| 0.8805    |            |       |      |      |      |      |      |      |



# **Appendix 3: Engineering Material Data**

| Year | х          | у        | Year | х          | у        | Year | x          | у        | Year | x          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 6800       | 117      | 1927 | 220000     | 539      | 1954 | 2810000    | 1170     | 1981 | 15100000   | 7673     |
| 1901 | 6800       | 129      | 1928 | 258000     | 592      | 1955 | 3140000    | 1189     | 1982 | 13400000   | 8912     |
| 1902 | 7900       | 143      | 1929 | 280000     | 644      | 1956 | 3370000    | 1420     | 1983 | 13900000   | 9348     |
| 1903 | 8500       | 187      | 1930 | 272000     | 841      | 1957 | 3370000    | 1531     | 1984 | 15700000   | 9747     |
| 1904 | 10000      | 177      | 1931 | 220000     | 868      | 1958 | 3510000    | 1567     | 1985 | 15400000   | 10485    |
| 1905 | 13000      | 187      | 1932 | 153000     | 876      | 1959 | 4060000    | 1729     | 1986 | 15400000   | 11407    |
| 1906 | 17000      | 155      | 1933 | 142000     | 848      | 1960 | 4490000    | 2372     | 1987 | 16500000   | 11271    |
| 1907 | 22000      | 181      | 1934 | 170000     | 735      | 1961 | 4700000    | 2181     | 1988 | 18500000   | 11856    |
| 1908 | 17000      | 207      | 1935 | 259000     | 832      | 1962 | 5060000    | 2300     | 1989 | 19000000   | 13416    |
| 1909 | 30000      | 187      | 1936 | 360000     | 824      | 1963 | 5320000    | 2379     | 1990 | 19300000   | 13523    |
| 1910 | 45000      | 197      | 1937 | 482000     | 827      | 1964 | 5940000    | 2519     | 1991 | 19700000   | 13455    |
| 1911 | 46000      | 233      | 1938 | 579000     | 984      | 1965 | 6310000    | 2871     | 1992 | 19500000   | 15034    |
| 1912 | 58000      | 192      | 1939 | 720000     | 823      | 1966 | 6880000    | 2668     | 1993 | 19800000   | 13599    |
| 1913 | 65000      | 233      | 1940 | 787000     | 635      | 1967 | 7570000    | 3129     | 1994 | 19200000   | 13897    |
| 1914 | 69000      | 213      | 1941 | 1040000    | 563      | 1968 | 8020000    | 2895     | 1995 | 19700000   | 13498    |
| 1915 | 78000      | 159      | 1942 | 1400000    | 491      | 1969 | 8970000    | 2917     | 1996 | 20800000   | 13572    |
| 1916 | 106000     | 116      | 1943 | 1950000    | 436      | 1970 | 9650000    | 3325     | 1997 | 21700000   | 13505    |
| 1917 | 123000     | 117      | 1944 | 1690000    | 397      | 1971 | 10300000   | 3480     | 1998 | 22600000   | 15369    |
| 1918 | 128000     | 119      | 1945 | 870000     | 486      | 1972 | 11000000   | 4112     | 1999 | 23600000   | 15872    |
| 1919 | 121000     | 199      | 1946 | 790000     | 473      | 1973 | 12100000   | 3884     | 2000 | 24300000   | 18286    |
| 1920 | 125000     | 279      | 1947 | 1080000    | 548      | 1974 | 13200000   | 3496     | 2001 | 24300000   | 17164    |
| 1921 | 70000      | 429      | 1948 | 1270000    | 784      | 1975 | 12100000   | 3908     | 2002 | 26100000   | 17853    |
| 1922 | 87000      | 409      | 1949 | 1310000    | 776      | 1976 | 12600000   | 4373     | 2003 | 27900000   | 17453    |
| 1923 | 141000     | 389      | 1950 | 1490000    | 637      | 1977 | 13800000   | 4961     | 2004 | 29800000   | 17721    |
| 1924 | 168000     | 435      | 1951 | 1800000    | 837      | 1978 | 14100000   | 5705     | 2005 | 31900000   | 16944    |
| 1925 | 178000     | 501      | 1952 | 2060000    | 1124     | 1979 | 14600000   | 5620     | 2006 | 33700000   | 16577    |
| 1926 | 195000     | 449      | 1953 | 2470000    | 936      | 1980 | 15400000   | 7279     | 2007 | 37900000   | 18141    |

**Table A3.1.** Aluminum Activity<sup>3</sup> and Patents<sup>4</sup>

Table A3.2. Correlation Eq.(A1.1) terms calculated from Table A3.1 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 833134000 | 486253 | 1.6E+16            | 5.81E+09           | 9.43E+12 | 9.559E+15 | 3.62E+09 | 5.68E+12 | 0.965222 | 93.16534          |



Figure A3.1. Aluminum: Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

 <sup>&</sup>lt;sup>3</sup> Activity represents world production of aluminum, defined at usgs.gov as "...world primary aluminum production. Data are reported in the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
 <sup>4</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Aluminum, Al

<sup>&</sup>lt;sup>4</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Aluminum, Al and aluminium were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.2. USGS World Aluminum Production.** World aluminum production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.3. EPO Worldwide Patent Search: Aluminum, Al or Aluminum in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.4. Aluminum Best-Fit Activity and Patents. Illustrates aluminum best-fit origin shift.


Figure A3.5. Aluminum Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 28000      | 50       | 1954 | 39900      | 103      | 1981 | 59200      | 350      |
| 1901 |            |          | 1928 | 28500      | 51       | 1955 | 46300      | 83       | 1982 | 53800      | 366      |
| 1902 |            |          | 1929 | 31600      | 64       | 1956 | 53300      | 130      | 1983 | 48400      | 373      |
| 1903 |            |          | 1930 | 23600      | 86       | 1957 | 50800      | 116      | 1984 | 53400      | 401      |
| 1904 |            |          | 1931 | 15600      | 82       | 1958 | 46300      | 139      | 1985 | 55000      | 443      |
| 1905 |            |          | 1932 | 17300      | 67       | 1959 | 53300      | 119      | 1986 | 59900      | 401      |
| 1906 | 14500      | 19       | 1933 | 20200      | 68       | 1960 | 53300      | 225      | 1987 | 56100      | 367      |
| 1907 | 15000      | 17       | 1934 | 22600      | 61       | 1961 | 51900      | 192      | 1988 | 64400      | 439      |
| 1908 | 16000      | 15       | 1935 | 29800      | 64       | 1962 | 53700      | 201      | 1989 | 68400      | 479      |
| 1909 | 15000      | 15       | 1936 | 35300      | 78       | 1963 | 58000      | 227      | 1990 | 60400      | 496      |
| 1910 | 15000      | 22       | 1937 | 38600      | 101      | 1964 | 63000      | 254      | 1991 | 64700      | 515      |
| 1911 | 15500      | 34       | 1938 | 33900      | 79       | 1965 | 63000      | 313      | 1992 | 76000      | 518      |
| 1912 | 24200      | 26       | 1939 | 38800      | 50       | 1966 | 61400      | 217      | 1993 | 73000      | 509      |
| 1913 | 24500      | 22       | 1940 | 46300      | 66       | 1967 | 58400      | 243      | 1994 | 106000     | 537      |
| 1914 | 23600      | 21       | 1941 | 49000      | 51       | 1968 | 61500      | 220      | 1995 | 103000     | 487      |
| 1915 | 43200      | 13       | 1942 | 51400      | 36       | 1969 | 66200      | 198      | 1996 | 156000     | 504      |
| 1916 | 81600      | 8        | 1943 | 53200      | 32       | 1970 | 70000      | 187      | 1997 | 155000     | 530      |
| 1917 | 57200      | 13       | 1944 | 36000      | 27       | 1971 | 64100      | 208      | 1998 | 117000     | 548      |
| 1918 | 30800      | 18       | 1945 | 27000      | 52       | 1972 | 68100      | 243      | 1999 | 108000     | 597      |
| 1919 | 11800      | 13       | 1946 | 26000      | 56       | 1973 | 69300      | 209      | 2000 | 118000     | 625      |
| 1920 | 29000      | 19       | 1947 | 38000      | 42       | 1974 | 70500      | 209      | 2001 | 157000     | 656      |
| 1921 | 18300      | 27       | 1948 | 45000      | 64       | 1975 | 67900      | 262      | 2002 | 118000     | 778      |
| 1922 | 18900      | 31       | 1949 | 37000      | 64       | 1976 | 69200      | 305      | 2003 | 116000     | 700      |
| 1923 | 17600      | 30       | 1950 | 50000      | 57       | 1977 | 72200      | 296      | 2004 | 142000     | 649      |
| 1924 | 17500      | 33       | 1951 | 65000      | 57       | 1978 | 68800      | 279      | 2005 | 171000     | 618      |
| 1925 | 25500      | 44       | 1952 | 44500      | 86       | 1979 | 71900      | 268      | 2006 | 173000     | 586      |
| 1926 | 29000      | 51       | 1953 | 33600      | 63       | 1980 | 67200      | 371      | 2007 | 170000     | 621      |

**Table A3.3.** Antimony Activity<sup>5</sup> and Patents<sup>6</sup>

<sup>&</sup>lt;sup>5</sup> Activity represents world production of antimony, defined at usgs.gov as "...world mine production in terms of antimony content. U.S. production is withheld and not available in the total for the years 1985-92 and 2000 to the most recent. Data are reported in the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>6</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Antimony and stibium were used as keywords found in the patent title or abstract by year of publication.

Table A3.4. Correlation Eq.(A1.1) terms calculated from Table A3.3 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|---------|----------|----------|-------------------|
| 5899990 | 22160 | 4.79E+11           | 9177362            | 1.94E+09 | 1.565E+11 | 4630458 | 7.25E+08 | 0.851817 | 72.55915          |



Figure A3.6. Antimony: Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.7**. **USGS World Antimony Production.** World antimony production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.8. EPO Worldwide Patent Search: Antimony or Stibium in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.9. Antimony Best-Fit Activity and Patents. Illustrates antimony best-fit origin shift.



Figure A3.10. Antimony Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y (natont) | Year | X<br>(activity) | y (patent) | Year | X<br>(activity) | y<br>(natont) | Year | X<br>(activity) | y<br>(natont) |
|------|-----------------|------------|------|-----------------|------------|------|-----------------|---------------|------|-----------------|---------------|
| 1000 | (activity)      | (patent)   | 1027 | 20000           | (patent)   | 1054 | 26100           |               | 1091 | (activity)      | 228           |
| 1900 |                 |            | 1927 | 42200           | 42         | 1934 | 20100           | 41            | 1901 | 33100           | 220           |
| 1901 |                 |            | 1928 | 43200           | 12         | 1955 | 22700           | 41            | 1982 | 21000           | 201           |
| 1902 |                 |            | 1929 | 40000           | 42         | 1950 | 20000           | 62            | 1983 | 31900           | 273           |
| 1903 |                 |            | 1930 | 49000           | 59         | 195/ | 30900           | 62            | 1984 | 33000           | 334           |
| 1904 |                 |            | 1931 | 51500           | 39         | 1958 | 27300           | 51            | 1985 | 40300           | 439           |
| 1905 |                 |            | 1932 | 51500           | 45         | 1959 | 32100           | 54            | 1986 | 39600           | 435           |
| 1906 |                 |            | 1933 | 27300           | 46         | 1960 | 39400           | 102           | 1987 | 47200           | 423           |
| 1907 |                 |            | 1934 | 38200           | 40         | 1961 | 40500           | 93            | 1988 | 40400           | 500           |
| 1908 |                 |            | 1935 | 41600           | 51         | 1962 | 34100           | 79            | 1989 | 49400           | 492           |
| 1909 |                 |            | 1936 | 42200           | 42         | 1963 | 36600           | 121           | 1990 | 40400           | 436           |
| 1910 | 6810            | 17         | 1937 | 42400           | 57         | 1964 | 39900           | 103           | 1991 | 34800           | 457           |
| 1911 | 12800           | 12         | 1938 | 52200           | 44         | 1965 | 38600           | 135           | 1992 | 34700           | 497           |
| 1912 | 27600           | 17         | 1939 | 42800           | 42         | 1966 | 39500           | 117           | 1993 | 31900           | 349           |
| 1913 | 13400           | 13         | 1940 | 40400           | 32         | 1967 | 44600           | 115           | 1994 | 35400           | 321           |
| 1914 | 11500           | 6          | 1941 | 46000           | 34         | 1968 | 46400           | 104           | 1995 | 35600           | 287           |
| 1915 | 13300           | 5          | 1942 | 47700           | 14         | 1969 | 37700           | 108           | 1996 | 32500           | 237           |
| 1916 | 13300           | 8          | 1943 | 50200           | 19         | 1970 | 37500           | 105           | 1997 | 31800           | 253           |
| 1917 | 16400           | 3          | 1944 | 51800           | 8          | 1971 | 37800           | 100           | 1998 | 30500           | 358           |
| 1918 | 23200           | 11         | 1945 | 42100           | 37         | 1972 | 31400           | 143           | 1999 | 31600           | 365           |
| 1919 | 19000           | 15         | 1946 | 31800           | 32         | 1973 | 35200           | 111           | 2000 | 47500           | 406           |
| 1920 | 27900           | 12         | 1947 | 42400           | 20         | 1974 | 37200           | 94            | 2001 | 45000           | 370           |
| 1921 | 16200           | 15         | 1948 | 40900           | 34         | 1975 | 30700           | 105           | 2002 | 44700           | 387           |
| 1922 | 23500           | 20         | 1949 | 26500           | 26         | 1976 | 26100           | 134           | 2003 | 69700           | 364           |
| 1923 | 47300           | 30         | 1950 | 35700           | 20         | 1977 | 23200           | 119           | 2004 | 57800           | 421           |
| 1924 | 47200           | 26         | 1951 | 47400           | 19         | 1978 | 23300           | 182           | 2005 | 60000           | 461           |
| 1925 | 50300           | 37         | 1952 | 37100           | 41         | 1979 | 22400           | 127           | 2006 | 61200           | 391           |
| 1926 | 41100           | 46         | 1953 | 20600           | 23         | 1980 | 23600           | 240           | 2007 | 55900           | 451           |

**Table A3.5.** Arsenic Activity<sup>7</sup> and Patents<sup>8</sup>

Table A3.6. Correlation Eq.(A1.1) terms calculated from Table A3.5 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|---------|----------|----------|-------------------|
| 3579210 | 14344 | 1.44E+11           | 4431828            | 5.84E+08 | 1.344E+10 | 2332335 | 59759598 | 0.337535 | 11.39299          |



Figure A3.11. Arsenic: Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>7</sup> Activity represents world production of antimony, defined at usgs.gov as "...world production of arsenic trioxide in terms of arsenic content. Data are not available for the years 1906-09. Data are from the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>8</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Arsenic was used as a keyword found in the patent title or abstract by year of publication.



**Figure A3.12**. **USGS World Arsenic Production.** World arsenic production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.  $R^2$  has a negative value indicating Stage IV. No best-fit for the patent data was obtainable.



Figure A3.13. Arsenic Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        | Year | х          | У        | Year | x          | У        | Year | x          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 20600      | 104      | 1927 | 342000     | 209      | 1954 | 1510000    | 189      | 1981 | 4350000    | 324      |
| 1901 | 30500      | 117      | 1928 | 354000     | 189      | 1955 | 1770000    | 197      | 1982 | 4560000    | 325      |
| 1902 | 28400      | 154      | 1929 | 400000     | 205      | 1956 | 1810000    | 215      | 1983 | 4430000    | 313      |
| 1903 | 34300      | 183      | 1930 | 339000     | 245      | 1957 | 1890000    | 231      | 1984 | 4310000    | 272      |
| 1904 | 41100      | 180      | 1931 | 235000     | 238      | 1958 | 1860000    | 198      | 1985 | 4250000    | 254      |
| 1905 | 56000      | 154      | 1932 | 186000     | 276      | 1959 | 2050000    | 184      | 1986 | 4030000    | 213      |
| 1906 | 64700      | 126      | 1933 | 249000     | 232      | 1960 | 2210000    | 274      | 1987 | 4240000    | 203      |
| 1907 | 66300      | 133      | 1934 | 271000     | 240      | 1961 | 2510000    | 245      | 1988 | 4320000    | 220      |
| 1908 | 14100      | 146      | 1935 | 337000     | 229      | 1962 | 2410000    | 263      | 1989 | 4240000    | 337      |
| 1909 | 73600      | 130      | 1936 | 460000     | 207      | 1963 | 2510000    | 276      | 1990 | 4010000    | 324      |
| 1910 | 84700      | 135      | 1937 | 556000     | 247      | 1964 | 2770000    | 328      | 1991 | 3530000    | 304      |
| 1911 | 114000     | 150      | 1938 | 413000     | 246      | 1965 | 2810000    | 344      | 1992 | 3350000    | 333      |
| 1912 | 117000     | 156      | 1939 | 425000     | 182      | 1966 | 2970000    | 289      | 1993 | 2520000    | 269      |
| 1913 | 145000     | 166      | 1940 | 428000     | 155      | 1967 | 2910000    | 392      | 1994 | 2250000    | 221      |
| 1914 | 106000     | 153      | 1941 | 528000     | 144      | 1968 | 3010000    | 379      | 1995 | 2180000    | 201      |
| 1915 | 117000     | 128      | 1942 | 509000     | 131      | 1969 | 3270000    | 344      | 1996 | 2100000    | 207      |
| 1916 | 142000     | 91       | 1943 | 575000     | 118      | 1970 | 3490000    | 419      | 1997 | 2150000    | 153      |
| 1917 | 141000     | 78       | 1944 | 546000     | 94       | 1971 | 3580000    | 424      | 1998 | 1980000    | 192      |
| 1918 | 144000     | 94       | 1945 | 573000     | 127      | 1972 | 3780000    | 451      | 1999 | 1850000    | 149      |
| 1919 | 181000     | 136      | 1946 | 680000     | 144      | 1973 | 4190000    | 397      | 2000 | 2110000    | 157      |
| 1920 | 193000     | 168      | 1947 | 816000     | 155      | 1974 | 4160000    | 359      | 2001 | 2060000    | 111      |
| 1921 | 91100      | 203      | 1948 | 930000     | 224      | 1975 | 4140000    | 429      | 2002 | 2320000    | 141      |
| 1922 | 136000     | 198      | 1949 | 884000     | 209      | 1976 | 4770000    | 439      | 2003 | 2400000    | 140      |
| 1923 | 201000     | 171      | 1950 | 1290000    | 126      | 1977 | 4790000    | 444      | 2004 | 2330000    | 138      |
| 1924 | 198000     | 185      | 1951 | 1420000    | 157      | 1978 | 4690000    | 386      | 2005 | 2250000    | 126      |
| 1925 | 312000     | 195      | 1952 | 1420000    | 172      | 1979 | 4760000    | 249      | 2006 | 2180000    | 149      |
| 1926 | 329000     | 175      | 1953 | 1420000    | 173      | 1980 | 4700000    | 333      | 2007 | 2200000    | 349      |

**Table A3.7.** Asbestos<sup>9</sup> Activity<sup>10</sup> and Patents<sup>11</sup>

**Table A3.8**. Correlation Eq.(A1.1) terms calculated from Table A3.7 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy    | Sxy      | r        | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|----------|-----------|--------|----------|----------|-------------------|
| 87587400 | 23886 | 5.93E+14           | 6179482            | 5.28E+10 | 2.672E+14 | 896695 | 1.13E+10 | 0.728794 | 53.11403          |



Figure A3.14 Asbestos: Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>9</sup> Fibrous amphibole mineral [128].

<sup>&</sup>lt;sup>10</sup> Activity represents world production of asbestos, defined at usgs.gov as "...world mine production of asbestos. Data for the years 1900-04 include only Canada and the United States. For the years 1904-12 data include Canada, The United States and Russia. World asbestos mine production data are from the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>11</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Asbestos was used as a keyword found in the patent title or abstract by year of publication.



**Figure A3.15. USGS World Asbestos Production.** World asbestos production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A3.16. Asbestos Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | у        | Year | x          | у        | Year | Х          | у        | Year | x          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 536000     | 0        | 1954 | 2080000    | 4        | 1981 | 8310000    | 39       |
| 1901 |            |          | 1928 | 635000     | 0        | 1955 | 2420000    | 0        | 1982 | 7400000    | 45       |
| 1902 |            |          | 1929 | 677000     | 1        | 1956 | 2700000    | 1        | 1983 | 5470000    | 61       |
| 1903 |            |          | 1930 | 592000     | 0        | 1957 | 3340000    | 0        | 1984 | 5910000    | 72       |
| 1904 |            |          | 1931 | 468000     | 1        | 1958 | 2480000    | 1        | 1985 | 6160000    | 68       |
| 1905 |            |          | 1932 | 368000     | 0        | 1959 | 2700000    | 0        | 1986 | 4790000    | 92       |
| 1906 |            |          | 1933 | 439000     | 1        | 1960 | 2710000    | 0        | 1987 | 4810000    | 110      |
| 1907 |            |          | 1934 | 770000     | 0        | 1961 | 2820000    | 0        | 1988 | 5660000    | 64       |
| 1908 |            |          | 1935 | 726000     | 0        | 1962 | 3080000    | 1        | 1989 | 5820000    | 101      |
| 1909 |            |          | 1936 | 854000     | 0        | 1963 | 2880000    | 0        | 1990 | 5870000    | 95       |
| 1910 |            |          | 1937 | 992000     | 0        | 1964 | 3170000    | 1        | 1991 | 5570000    | 98       |
| 1911 |            |          | 1938 | 975000     | 1        | 1965 | 3540000    | 4        | 1992 | 4840000    | 105      |
| 1912 |            |          | 1939 | 961000     | 1        | 1966 | 3690000    | 2        | 1993 | 4470000    | 103      |
| 1913 |            |          | 1940 | 959000     | 0        | 1967 | 3570000    | 3        | 1994 | 4470000    | 139      |
| 1914 |            |          | 1941 | 1030000    | 0        | 1968 | 3420000    | 0        | 1995 | 4830000    | 120      |
| 1915 |            |          | 1942 | 1000000    | 1        | 1969 | 3850000    | 0        | 1996 | 6060000    | 126      |
| 1916 |            |          | 1943 | 1010000    | 0        | 1970 | 3940000    | 0        | 1997 | 6690000    | 135      |
| 1917 |            |          | 1944 | 1120000    | 1        | 1971 | 3730000    | 1        | 1998 | 5750000    | 126      |
| 1918 |            |          | 1945 | 964000     | 1        | 1972 | 3960000    | 10       | 1999 | 6160000    | 139      |
| 1919 | 359000     | 0        | 1946 | 1110000    | 0        | 1973 | 4750000    | 7        | 2000 | 6560000    | 157      |
| 1920 | 453000     | 0        | 1947 | 1360000    | 0        | 1974 | 4870000    | 5        | 2001 | 6740000    | 135      |
| 1921 | 242000     | 0        | 1948 | 1210000    | 0        | 1975 | 5010000    | 10       | 2002 | 6160000    | 128      |
| 1922 | 414000     | 1        | 1949 | 1340000    | 1        | 1976 | 5360000    | 13       | 2003 | 6780000    | 167      |
| 1923 | 445000     | 0        | 1950 | 1450000    | 0        | 1977 | 5960000    | 16       | 2004 | 7760000    | 149      |
| 1924 | 487000     | 2        | 1951 | 1670000    | 0        | 1978 | 7000000    | 18       | 2005 | 8110000    | 156      |
| 1925 | 536000     | 1        | 1952 | 1780000    | 1        | 1979 | 7170000    | 25       | 2006 | 7960000    | 133      |
| 1926 | 527000     | 0        | 1953 | 1960000    | 1        | 1980 | 7600000    | 52       | 2007 | 7630000    | 119      |

**Table A3.9.** Barite<sup>12</sup> Activity<sup>13</sup> and Patents<sup>14</sup>

Table A3.10. Correlation Eq.(A1.1) terms calculated from Table A3.9 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 304959000 | 3171  | 1.59E+15           | 365171             | 1.96E+10 | 5.406E+14 | 252190.8 | 8.74E+09 | 0.748629 | 56.04449          |



Figure A3.17. Barite: Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>12</sup> Orthorhombic mineral form of barium sulfate [128].

<sup>&</sup>lt;sup>13</sup> Activity represents world production of barite, defined at usgs.gov as "...world crude barite production. Data are not available for the years 1900-12 and 1914-1918. Data are reported in the MR [Mineral Resources of the United States] and the MYB [Minerals Yearbook]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

or barium sulphate were used as keywords found in the patent title or abstract by year of publication.



Figure A3.18. USGS World Barite Production. World barite production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A3.19. EPO Worldwide Patent Search: Barite, Baryte or Barium Sulphate in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.20. Barite Best-Fit Activity and Patents. Illustrates barite best-fit origin shift.



Figure A3.21. Barite Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | у        | Year | x          | у        | Year | x          | у      | Yr.  | х          | у      |
|------|------------|----------|------|------------|----------|------|------------|--------|------|------------|--------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | patent |      | (activity) | patent |
| 1900 | 88000      | 19       | 1927 | 1880000    | 80       | 1954 | 16200000   | 278    | 1981 | 85300000   | 1466   |
| 1901 | 106000     | 21       | 1928 | 2030000    | 95       | 1955 | 17800000   | 260    | 1982 | 79300000   | 1605   |
| 1902 | 136000     | 16       | 1929 | 2150000    | 81       | 1956 | 18800000   | 331    | 1983 | 78700000   | 1674   |
| 1903 | 189000     | 26       | 1930 | 1630000    | 127      | 1957 | 20500000   | 374    | 1984 | 87200000   | 1854   |
| 1904 | 133000     | 27       | 1931 | 1150000    | 103      | 1958 | 21400000   | 432    | 1985 | 84200000   | 1895   |
| 1905 | 159000     | 19       | 1932 | 1000000    | 107      | 1959 | 23100000   | 414    | 1986 | 88200000   | 2162   |
| 1906 | 201000     | 20       | 1933 | 1100000    | 102      | 1960 | 27600000   | 581    | 1987 | 91600000   | 2004   |
| 1907 | 269000     | 22       | 1934 | 1330000    | 100      | 1961 | 29400000   | 434    | 1988 | 97400000   | 2207   |
| 1908 | 243000     | 37       | 1935 | 1770000    | 109      | 1962 | 31100000   | 435    | 1989 | 103000000  | 3058   |
| 1909 | 275000     | 28       | 1936 | 2830000    | 124      | 1963 | 30700000   | 453    | 1990 | 113000000  | 2794   |
| 1910 | 356000     | 27       | 1937 | 3750000    | 113      | 1964 | 33400000   | 502    | 1991 | 111000000  | 2652   |
| 1911 | 425000     | 23       | 1938 | 3870000    | 143      | 1965 | 37400000   | 595    | 1992 | 105000000  | 2795   |
| 1912 | 435000     | 20       | 1939 | 4340000    | 100      | 1966 | 40700000   | 542    | 1993 | 110000000  | 2463   |
| 1913 | 539000     | 39       | 1940 | 4390000    | 93       | 1967 | 44600000   | 619    | 1994 | 106000000  | 2447   |
| 1914 | 236000     | 28       | 1941 | 6110000    | 84       | 1968 | 46000000   | 616    | 1995 | 112000000  | 2331   |
| 1915 | 321000     | 35       | 1942 | 8360000    | 63       | 1969 | 51800000   | 520    | 1996 | 117000000  | 2266   |
| 1916 | 701000     | 16       | 1943 | 14000000   | 49       | 1970 | 57800000   | 644    | 1997 | 122000000  | 2218   |
| 1917 | 1030000    | 19       | 1944 | 6960000    | 75       | 1971 | 62100000   | 692    | 1998 | 123000000  | 2562   |
| 1918 | 818000     | 15       | 1945 | 3430000    | 80       | 1972 | 64900000   | 872    | 1999 | 129000000  | 2611   |
| 1919 | 569000     | 37       | 1946 | 4360000    | 95       | 1973 | 70400000   | 783    | 2000 | 136000000  | 2687   |
| 1920 | 901000     | 45       | 1947 | 6320000    | 125      | 1974 | 79600000   | 786    | 2001 | 137000000  | 2331   |
| 1921 | 318000     | 47       | 1948 | 8360000    | 143      | 1975 | 74800000   | 966    | 2002 | 144000000  | 2347   |
| 1922 | 701000     | 43       | 1949 | 8230000    | 159      | 1976 | 77400000   | 1101   | 2003 | 153000000  | 2478   |
| 1923 | 1200000    | 33       | 1950 | 8180000    | 143      | 1977 | 81900000   | 1113   | 2004 | 164000000  | 2346   |
| 1924 | 1160000    | 43       | 1951 | 10900000   | 144      | 1978 | 81000000   | 1142   | 2005 | 179000000  | 2219   |
| 1925 | 1380000    | 81       | 1952 | 12800000   | 220      | 1979 | 85500000   | 1018   | 2006 | 199000000  | 2110   |
| 1926 | 1380000    | 57       | 1953 | 13800000   | 184      | 1980 | 89200000   | 1513   | 2007 | 202000000  | 2198   |

**Table A3.11.** Bauxite/Alumina<sup>15</sup> Activity<sup>16</sup> and Patents<sup>17</sup>

<sup>15</sup> Aluminum ore and aluminum oxide [128].

<sup>&</sup>lt;sup>16</sup> Activity represents world production of bauxite, defined at usgs.gov as "...world mine production of bauxite is reported on a 'dried bauxite equivalents' basis. U.S. bauxite production data are withheld from the total for the years 1989 to the most recent. Alumina world production data is reported as 'quantity produced' (alumina), for the years 1968-71, and as 'calcined alumina equivalents' for the years after 1971. All data are reported in the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>1</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Bauxite or alumina were used as keywords found in the patent title or abstract by year of publication.

Table A3.12. Correlation Eq.(A1.1) terms calculated from Table A3.9 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 4.731E+09 | 83680 | 5.05E+17           | 1.6E+08            | 8.62E+12 | 2.974E+17 | 95135138 | 4.95E+12 | 0.930961 | 86.66877          |



Figure A3.22. Bauxite and Alumina Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.23**. **USGS World Bauxite/Alumina Production.** World bauxite/alumina production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.24. EPO Worldwide Patent Search: Bauxite or Alumina in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.25. Bauxite/Alumina Best-Fit Activity and Patents. Illustrates bauxite/Alumina best-fit origin shift.



Figure A3.26. Bauxite/Alumina Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 | 279        | 54       | 1981 | 385        | 80       |
| 1901 |            |          | 1928 |            |          | 1955 | 323        | 43       | 1982 | 327        | 115      |
| 1902 |            |          | 1929 |            |          | 1956 | 468        | 64       | 1983 | 366        | 111      |
| 1903 |            |          | 1930 |            |          | 1957 | 410        | 74       | 1984 | 359        | 107      |
| 1904 |            |          | 1931 |            |          | 1958 | 279        | 87       | 1985 | 326        | 125      |
| 1905 |            |          | 1932 |            |          | 1959 | 406        | 83       | 1986 | 356        | 124      |
| 1906 |            |          | 1933 |            |          | 1960 | 446        | 117      | 1987 | 345        | 102      |
| 1907 |            |          | 1934 |            |          | 1961 | 468        | 133      | 1988 | 332        | 114      |
| 1908 |            |          | 1935 | 16         | 71       | 1962 | 399        | 133      | 1989 | 301        | 112      |
| 1909 |            |          | 1936 | 17         | 50       | 1963 | 265        | 149      | 1990 | 284        | 103      |
| 1910 |            |          | 1937 | 15         | 52       | 1964 | 178        | 178      | 1991 | 263        | 107      |
| 1911 |            |          | 1938 | 42         | 72       | 1965 | 222        | 144      | 1992 | 278        | 115      |
| 1912 |            |          | 1939 | 36         | 104      | 1966 | 165        | 152      | 1993 | 243        | 117      |
| 1913 |            |          | 1940 | 87         | 79       | 1967 | 197        | 183      | 1994 | 218        | 137      |
| 1914 |            |          | 1941 | 164        | 58       | 1968 | 263        | 168      | 1995 | 247        | 118      |
| 1915 |            |          | 1942 | 120        | 43       | 1969 | 322        | 144      | 1996 | 255        | 101      |
| 1916 |            |          | 1943 | 218        | 31       | 1970 | 249        | 145      | 1997 | 276        | 114      |
| 1917 |            |          | 1944 | 118        | 29       | 1971 | 210        | 156      | 1998 | 289        | 160      |
| 1918 |            |          | 1945 | 39         | 33       | 1972 | 157        | 148      | 1999 | 248        | 133      |
| 1919 |            |          | 1946 | 68         | 58       | 1973 | 144        | 151      | 2000 | 202        | 163      |
| 1920 |            |          | 1947 | 57         | 55       | 1974 | 126        | 140      | 2001 | 120        | 169      |
| 1921 |            |          | 1948 | 99         | 67       | 1975 | 119        | 124      | 2002 | 101        | 161      |
| 1922 |            |          | 1949 | 183        | 68       | 1976 | 93         | 100      | 2003 | 107        | 170      |
| 1923 |            |          | 1950 | 269        | 33       | 1977 | 103        | 103      | 2004 | 111        | 128      |
| 1924 |            |          | 1951 | 243        | 76       | 1978 | 105        | 110      | 2005 | 137        | 116      |
| 1925 |            |          | 1952 | 301        | 65       | 1979 | 96         | 81       | 2006 | 179        | 97       |
| 1926 |            |          | 1953 | 298        | 44       | 1980 | 373        | 97       | 2007 | 179        | 123      |

**Table A3.13** Beryllium Activity<sup>18</sup> and Patents<sup>19</sup>

Table A3.14. Correlation Eq.(A1.1) terms calculated from Table A3.13 data.

| Sum x | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy  | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-------|-------|--------------------|--------------------|---------|-----------|----------|----------|----------|-------------------|
| 16089 | 7671  | 4540781            | 923695             | 1729386 | 994809.48 | 117609.5 | 38718.62 | 0.113195 | 1.281319          |



Figure A3.27. Beryllium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>18</sup> Activity represents world production of beryllium, defined at usgs.gov as "...the estimated beryllium content of beryllium-bearing ores produced throughout the world. World mine production data are based on a beryllium metal equivalent of 4 percent Be in beryl and bertrandite ores, reported as equivalent to beryl ore containing 11 percent BeO. Data are not available prior to the year 1935. U.S. production data for the years 1964-67 and 1969-79 are not available and are not included in the total. Data are from the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>19</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Beryllium was

<sup>&</sup>lt;sup>19</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Beryllium was used as the keyword found in the patent title or abstract by year of publication.



**Figure A3.28. USGS World Beryllium Production.** World beryllium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.  $R^2$  has a negative value indicating Stage IV. No best-fit for the patent data was obtainable.



**Figure A3.29.** Beryllium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | У        | Year | X          | У        | Year | X          | У        | Year | X          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 | 1680       | 57       | 1981 | 3750       | 236      |
| 1901 |            |          | 1928 |            |          | 1955 | 1910       | 43       | 1982 | 4110       | 215      |
| 1902 |            |          | 1929 |            |          | 1956 | 2400       | 60       | 1983 | 3980       | 259      |
| 1903 |            |          | 1930 |            |          | 1957 | 2270       | 66       | 1984 | 3480       | 240      |
| 1904 |            |          | 1931 |            |          | 1958 | 2090       | 61       | 1985 | 4410       | 207      |
| 1905 |            |          | 1932 |            |          | 1959 | 2270       | 77       | 1986 | 3660       | 234      |
| 1906 |            |          | 1933 |            |          | 1960 | 2400       | 124      | 1987 | 3170       | 221      |
| 1907 |            |          | 1934 |            |          | 1961 | 2590       | 107      | 1988 | 3220       | 261      |
| 1908 |            |          | 1935 |            |          | 1962 | 3040       | 110      | 1989 | 3650       | 339      |
| 1909 |            |          | 1936 |            |          | 1963 | 2530       | 110      | 1990 | 3440       | 497      |
| 1910 |            |          | 1937 | 700        | 46       | 1964 | 2890       | 149      | 1991 | 3230       | 385      |
| 1911 |            |          | 1938 | 1000       | 51       | 1965 | 2960       | 134      | 1992 | 2870       | 506      |
| 1912 |            |          | 1939 | 1300       | 47       | 1966 | 3110       | 118      | 1993 | 3550       | 472      |
| 1913 |            |          | 1940 | 1400       | 39       | 1967 | 3380       | 124      | 1994 | 3410       | 430      |
| 1914 |            |          | 1941 | 1400       | 43       | 1968 | 3770       | 122      | 1995 | 3430       | 387      |
| 1915 |            |          | 1942 | 1700       | 15       | 1969 | 3760       | 94       | 1996 | 3600       | 457      |
| 1916 |            |          | 1943 | 1400       | 14       | 1970 | 3720       | 103      | 1997 | 4490       | 468      |
| 1917 |            |          | 1944 | 1200       | 18       | 1971 | 3830       | 129      | 1998 | 3990       | 504      |
| 1918 |            |          | 1945 | 1100       | 32       | 1972 | 4000       | 132      | 1999 | 5490       | 545      |
| 1919 |            |          | 1946 | 940        | 22       | 1973 | 3720       | 132      | 2000 | 3760       | 542      |
| 1920 |            |          | 1947 | 1500       | 26       | 1974 | 4820       | 135      | 2001 | 4420       | 570      |
| 1921 |            |          | 1948 | 1500       | 45       | 1975 | 3980       | 153      | 2002 | 4600       | 603      |
| 1922 |            |          | 1949 | 1500       | 35       | 1976 | 3940       | 145      | 2003 | 5100       | 651      |
| 1923 |            |          | 1950 | 1400       | 31       | 1977 | 4480       | 157      | 2004 | 5600       | 665      |
| 1924 |            |          | 1951 | 1770       | 32       | 1978 | 4250       | 155      | 2005 | 5400       | 602      |
| 1925 |            |          | 1952 | 1770       | 37       | 1979 | 3420       | 162      | 2006 | 5700       | 588      |
| 1926 |            |          | 1953 | 2090       | 34       | 1980 | 3610       | 221      | 2007 | 6300       | 671      |

**Table A3.15** Bismuth Activity<sup>20</sup> and Patents<sup>21</sup>

Table A3.16. Correlation Eq.(A1.1) terms calculated from Table A3.15 data.

| Sum x  | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|--------|-------|--------------------|--------------------|----------|-----------|---------|----------|----------|-------------------|
| 222300 | 15502 | 8.17E+08           | 6186822            | 62618120 | 120900631 | 2802146 | 14081576 | 0.765053 | 58.53064          |



Figure A3.30. Bismuth Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>20</sup> Activity represents world production of bismuth, defined at usgs.gov as "...bismuth content of world mine production. Data were not available prior to 1912 or for the years 1922-36. Data for the years 1912-21 and 1972-2003 exclude U.S. production. Data are from the MR [Mineral Resources of the United States] and the MYB [Minerals Yearbook]. Data for 2004 is an unpublished revision published by the Commodity Specialist." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>21</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Bismuth was

used as the keyword found in the patent title or abstract by year of publication.



Figure A3.31. USGS World Bismuth Production. World bismuth production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.  $R^2$  has a negative value indicating possible Stage IV. No best-fit for the patent data was obtainable.



Figure A3.32. Bismuth Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(a ativity) | y (notont) | Year | X<br>(a ativity) | y (notont) | Year  | X<br>(activity) | y<br>(notont) | Year | X<br>(activity) | y (notont) |
|------|------------------|------------|------|------------------|------------|-------|-----------------|---------------|------|-----------------|------------|
| 1000 | (activity)       | (patent)   | 1000 | (activity)       | (patent)   | 10.51 | (activity)      | (patent)      | 1001 | (activity)      | (patent)   |
| 1900 |                  |            | 1927 |                  |            | 1954  |                 |               | 1981 | 2560000         | 796        |
| 1901 |                  |            | 1928 |                  |            | 1955  |                 |               | 1982 | 2270000         | 946        |
| 1902 |                  |            | 1929 |                  |            | 1956  |                 |               | 1983 | 2240000         | 1126       |
| 1903 |                  |            | 1930 |                  |            | 1957  |                 |               | 1984 | 2510000         | 1147       |
| 1904 |                  |            | 1931 |                  |            | 1958  |                 |               | 1985 | 2510000         | 1425       |
| 1905 |                  |            | 1932 |                  |            | 1959  |                 |               | 1986 | 2510000         | 1383       |
| 1906 |                  |            | 1933 |                  |            | 1960  |                 |               | 1987 | 2690000         | 1536       |
| 1907 |                  |            | 1934 |                  |            | 1961  |                 |               | 1988 | 2990000         | 1705       |
| 1908 |                  |            | 1935 |                  |            | 1962  |                 |               | 1989 | 2990000         | 1899       |
| 1909 |                  |            | 1936 |                  |            | 1963  |                 |               | 1990 | 2910000         | 1759       |
| 1910 |                  |            | 1937 |                  |            | 1964  | 172000          | 412           | 1991 | 2960000         | 1785       |
| 1911 |                  |            | 1938 |                  |            | 1965  | 189000          | 466           | 1992 | 2670000         | 2097       |
| 1912 |                  |            | 1939 |                  |            | 1966  | 209000          | 435           | 1993 | 2640000         | 1691       |
| 1913 |                  |            | 1940 |                  |            | 1967  | 221000          | 437           | 1994 | 3810000         | 1737       |
| 1914 |                  |            | 1941 |                  |            | 1968  | 232000          | 378           | 1995 | 4020000         | 1543       |
| 1915 |                  |            | 1942 |                  |            | 1969  | 251000          | 359           | 1996 | 4330000         | 1558       |
| 1916 |                  |            | 1943 |                  |            | 1970  | 257000          | 400           | 1997 | 4580000         | 1537       |
| 1917 |                  |            | 1944 |                  |            | 1971  | 284000          | 410           | 1998 | 4570000         | 1764       |
| 1918 |                  |            | 1945 |                  |            | 1972  | 314000          | 489           | 1999 | 4460000         | 1902       |
| 1919 |                  |            | 1946 |                  |            | 1973  | 342000          | 422           | 2000 | 4600000         | 2147       |
| 1920 |                  |            | 1947 |                  |            | 1974  | 328000          | 385           | 2001 | 4740000         | 2182       |
| 1921 |                  |            | 1948 |                  |            | 1975  | 354000          | 473           | 2002 | 4580000         | 2319       |
| 1922 |                  |            | 1949 |                  |            | 1976  | 2340000         | 505           | 2003 | 4750000         | 2342       |
| 1923 |                  |            | 1950 |                  |            | 1977  | 2730000         | 498           | 2004 | 4960000         | 2140       |
| 1924 |                  |            | 1951 |                  |            | 1978  | 2660000         | 549           | 2005 | 4840000         | 1990       |
| 1925 |                  |            | 1952 |                  |            | 1979  | 2520000         | 553           | 2006 | 3580000         | 1926       |
| 1926 |                  |            | 1953 |                  |            | 1980  | 2610000         | 782           | 2007 | 3840000         | 2089       |

 Table A3.17 Boron Activity<sup>22</sup> and Patents<sup>23</sup>

Table A3.18. Correlation Eq.(A1.1) terms calculated from Table A3.17 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 112123000 | 54424 | 4E+14              | 88106536           | 1.81E+11 | 1.143E+14 | 20788996 | 4.24E+10 | 0.869138 | 75.54004          |



Figure A3.33. Boron Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>22</sup> Activity represents world production of boron, defined at usgs.gov as "...world mine production. For most years, world mine production data are reported in gross weight. Data could not be converted to contained  $B_2O_3$  because various boron units are used when reporting the minerals and compounds of boron. World production data are not reported for the years 1914-64. Data reported in the MR [*Minerals Resources of the United* States] and MYB [*Minerals Yearbook*] cover the years 1900-13 and 1976 to the most recent and are all gross weight data. Data for the years 1964-75 are calculated  $B_2O_3$  content and are reported in the 1975 and 1980 MFP [*Mineral Facts and Problems*]. World production data from 2006 to most recent does not include U.S. data." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>23</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Boron was used as the keyword found in the patent title or abstract by year of publication.



**Figure A3.34**. **USGS World Production.** World boron production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A3.35. Boron Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(a ativity) | y (notont) | Year | X<br>(activity) | y (notont) | Year | X<br>(a ativity) | y (notont) | Year | X<br>(a ativity) | y<br>(notont) |
|------|------------------|------------|------|-----------------|------------|------|------------------|------------|------|------------------|---------------|
| 1000 | (activity)       | (patent)   | 1027 | (activity)      | (patent)   | 1054 | (activity)       |            | 1001 | (activity)       | (patent)      |
| 1900 | 14               | 3          | 1927 | 001             | 39         | 1954 | /300             | 185        | 1981 | 1/400            | 0/2           |
| 1901 | 13               | 8          | 1928 | 1500            | 65         | 1955 | 8390             | 211        | 1982 | 16400            | /60           |
| 1902 | 13               | 6          | 1929 | 2180            | 70         | 1956 | 9070             | 242        | 1983 | 17600            | 809           |
| 1903 | 17               | 10         | 1930 | 2480            | 80         | 1957 | 9390             | 275        | 1984 | 19600            | 892           |
| 1904 | 25               | 6          | 1931 | 1230            | 104        | 1958 | 9800             | 241        | 1985 | 19100            | 941           |
| 1905 | 25               | 6          | 1932 | 1040            | 87         | 1959 | 10200            | 252        | 1986 | 19100            | 1039          |
| 1906 | 21               | 11         | 1933 | 1950            | 115        | 1960 | 11100            | 399        | 1987 | 19000            | 1070          |
| 1907 | 39               | 17         | 1934 | 2480            | 124        | 1961 | 11700            | 326        | 1988 | 21900            | 1171          |
| 1908 | 37               | 12         | 1935 | 3150            | 136        | 1962 | 11700            | 318        | 1989 | 21400            | 1316          |
| 1909 | 39               | 16         | 1936 | 3390            | 146        | 1963 | 11800            | 351        | 1990 | 20200            | 1223          |
| 1910 | 43               | 10         | 1937 | 3970            | 127        | 1964 | 12700            | 418        | 1991 | 20900            | 1241          |
| 1911 | 55               | 7          | 1938 | 4010            | 155        | 1965 | 11900            | 450        | 1992 | 19600            | 1516          |
| 1912 | 67               | 14         | 1939 | 4580            | 140        | 1966 | 13000            | 428        | 1993 | 18700            | 1565          |
| 1913 | 62               | 7          | 1940 | 5220            | 139        | 1967 | 13200            | 499        | 1994 | 18200            | 1615          |
| 1914 | 80               | 8          | 1941 | 5220            | 92         | 1968 | 15000            | 458        | 1995 | 20100            | 1829          |
| 1915 | 78               | 11         | 1942 | 5030            | 44         | 1969 | 17600            | 429        | 1996 | 18900            | 2010          |
| 1916 | 119              | 3          | 1943 | 5380            | 48         | 1970 | 16500            | 476        | 1997 | 20300            | 2132          |
| 1917 | 172              | 7          | 1944 | 5320            | 45         | 1971 | 15400            | 468        | 1998 | 20200            | 2491          |
| 1918 | 165              | 13         | 1945 | 4760            | 75         | 1972 | 16700            | 502        | 1999 | 20000            | 2439          |
| 1919 | 89               | 11         | 1946 | 4050            | 93         | 1973 | 17200            | 467        | 2000 | 20300            | 3090          |
| 1920 | 81               | 24         | 1947 | 4930            | 85         | 1974 | 17300            | 408        | 2001 | 20000            | 3045          |
| 1921 | 54               | 20         | 1948 | 4870            | 127        | 1975 | 15200            | 423        | 2002 | 17800            | 3566          |
| 1922 | 128              | 28         | 1949 | 5220            | 148        | 1976 | 17000            | 458        | 2003 | 18400            | 3272          |
| 1923 | 248              | 27         | 1950 | 6010            | 115        | 1977 | 18300            | 474        | 2004 | 18700            | 3225          |
| 1924 | 245              | 26         | 1951 | 6070            | 130        | 1978 | 17300            | 543        | 2005 | 20200            | 2898          |
| 1925 | 4116             | 46         | 1952 | 6170            | 163        | 1979 | 18700            | 397        | 2006 | 19900            | 2743          |
| 1926 | 960              | 33         | 1953 | 7060            | 135        | 1980 | 18200            | 633        | 2007 | 20400            | 2295          |

**Table A3.19** Cadmium Activity<sup>24</sup> and Patents<sup>25</sup>

Table A3.20. Correlation Eq.(A1.1) terms calculated from Table A3.19 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 1010886 | 64815 | 1.62E+10           | 1.22E+08           | 1.16E+09 | 6.721E+09 | 83019689 | 5.53E+08 | 0.740132 | 54.77951          |



Figure A3.36. Cadmium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>24</sup> Activity represents world production of cadmium, defined at usgs.gov as "...world refinery production of cadmium. World production begins in 1932. Data prior to 1932 are production data from selected countries. Data are from the MR [*Minerals Resources of the United* States] and MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>25</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Cadmium or

<sup>&</sup>lt;sup>23</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Cadmium or Cd were used as keywords found in the patent title or abstract by year of publication.



Figure A3.37. USGS World Cadmium Production. World cadmium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.  $R^2$  has a negative value indicating possible Stage IV. No best-fit for the patent data was obtainable.



**Figure A3.38. Cadmium Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 16500      | 42       | 1927 | 124000     | 222      | 1954 | 924000     | 413      | 1981 | 2550000    | 2850     |
| 1901 | 27900      | 36       | 1928 | 140000     | 289      | 1955 | 1040000    | 479      | 1982 | 2390000    | 3420     |
| 1902 | 26400      | 44       | 1929 | 197000     | 326      | 1956 | 1200000    | 526      | 1983 | 2540000    | 3693     |
| 1903 | 29500      | 42       | 1930 | 173000     | 391      | 1957 | 1370000    | 601      | 1984 | 2950000    | 3649     |
| 1904 | 36600      | 48       | 1931 | 127000     | 458      | 1958 | 1130000    | 578      | 1985 | 3180000    | 4006     |
| 1905 | 44500      | 57       | 1932 | 101000     | 413      | 1959 | 1150000    | 582      | 1986 | 3530000    | 4428     |
| 1906 | 49700      | 45       | 1933 | 123000     | 342      | 1960 | 1250000    | 836      | 1987 | 3450000    | 4546     |
| 1907 | 34700      | 55       | 1934 | 183000     | 385      | 1961 | 1220000    | 739      | 1988 | 3870000    | 4563     |
| 1908 | 20700      | 48       | 1935 | 241000     | 441      | 1962 | 1280000    | 732      | 1989 | 4320000    | 5068     |
| 1909 | 33300      | 42       | 1936 | 317000     | 359      | 1963 | 1170000    | 777      | 1990 | 3950000    | 4750     |
| 1910 | 33600      | 61       | 1937 | 392000     | 415      | 1964 | 1290000    | 833      | 1991 | 4060000    | 4776     |
| 1911 | 25100      | 67       | 1938 | 362000     | 439      | 1965 | 1490000    | 968      | 1992 | 3420000    | 5239     |
| 1912 | 38000      | 65       | 1939 | 347000     | 361      | 1966 | 1360000    | 863      | 1993 | 3080000    | 5130     |
| 1913 | 45500      | 62       | 1940 | 457000     | 270      | 1967 | 1430000    | 1083     | 1994 | 3090000    | 5336     |
| 1914 | 48500      | 49       | 1941 | 509000     | 247      | 1968 | 1560000    | 1042     | 1995 | 4530000    | 5225     |
| 1915 | 57400      | 53       | 1942 | 637000     | 207      | 1969 | 1670000    | 1003     | 1996 | 3660000    | 5028     |
| 1916 | 87000      | 39       | 1943 | 542000     | 177      | 1970 | 1910000    | 1176     | 1997 | 4330000    | 4872     |
| 1917 | 81300      | 52       | 1944 | 411000     | 173      | 1971 | 2000000    | 1309     | 1998 | 4460000    | 5380     |
| 1918 | 96500      | 48       | 1945 | 318000     | 190      | 1972 | 1970000    | 1462     | 1999 | 4810000    | 5286     |
| 1919 | 52900      | 62       | 1946 | 352000     | 214      | 1973 | 2030000    | 1341     | 2000 | 4750000    | 5708     |
| 1920 | 53200      | 76       | 1947 | 521000     | 246      | 1974 | 2230000    | 1242     | 2001 | 3740000    | 5690     |
| 1921 | 41400      | 122      | 1948 | 644000     | 331      | 1975 | 2530000    | 1383     | 2002 | 4510000    | 6275     |
| 1922 | 43300      | 153      | 1949 | 650000     | 332      | 1976 | 2430000    | 1530     | 2003 | 4770000    | 5887     |
| 1923 | 63500      | 178      | 1950 | 720000     | 239      | 1977 | 2600000    | 1759     | 2004 | 5480000    | 5989     |
| 1924 | 90200      | 129      | 1951 | 823000     | 290      | 1978 | 2990000    | 1916     | 2005 | 5810000    | 5331     |
| 1925 | 95300      | 160      | 1952 | 963000     | 430      | 1979 | 2590000    | 1976     | 2006 | 5850000    | 5383     |
| 1926 | 112000     | 174      | 1953 | 1130000    | 327      | 1980 | 2830000    | 2836     | 2007 | 6620000    | 5703     |

**Table A3.21.** Chromium Activity<sup>26</sup> and Patents<sup>27</sup>

 Table A3.22 Correlation Eq.(A1.1) terms calculated from Table A3.21 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|---------|----------|----------|-------------------|
| 169232500 | 173719 | 5.73E+14           | 7.2E+08            | 6.21E+11 | 3.074E+14 | 4.4E+08 | 3.49E+11 | 0.949454 | 90.14634          |



Figure A3.39. Chromium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>26</sup> Activity represents world production of chromium, defined at usgs.gov as "...an estimate of world chromite ore mine production measured in contained chromium. World production reported in gross weight was converted to contained chromium by assuming that its chromic oxide content was the same as that of chromite ore imported into the United States. Before content of chromite ore was reported, a time-averaged value was used "Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals uses gov

was used." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.<sup>27</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Chromium, Cr or Chrome were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.40. USGS World Chromium Production.** World chromium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.41. EPO Worldwide Patent Search: Chromium, Cr or Chrome in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.42 Chromium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



**Figure A3.43**. Chromium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 1180       | 72       | 1954 | 13100      | 298      | 1981 | 30700      | 1018     |
| 1901 | 180        | 11       | 1928 | 1180       | 99       | 1955 | 13300      | 319      | 1982 | 24600      | 1044     |
| 1902 | 540        | 9        | 1929 | 1360       | 127      | 1956 | 14400      | 388      | 1983 | 37900      | 1094     |
| 1903 | 640        | 8        | 1930 | 1270       | 151      | 1957 | 14400      | 431      | 1984 | 40900      | 1086     |
| 1904 | 540        | 9        | 1931 | 910        | 205      | 1958 | 12600      | 389      | 1985 | 47400      | 1109     |
| 1905 | 450        | 8        | 1932 | 1090       | 180      | 1959 | 14800      | 401      | 1986 | 50200      | 1098     |
| 1906 | 450        | 15       | 1933 | 1270       | 173      | 1960 | 14200      | 511      | 1987 | 41200      | 1117     |
| 1907 | 910        | 11       | 1934 | 1450       | 169      | 1961 | 14400      | 449      | 1988 | 43800      | 1099     |
| 1908 | 1360       | 15       | 1935 | 2000       | 182      | 1962 | 17100      | 457      | 1989 | 42900      | 1169     |
| 1909 | 1450       | 8        | 1936 | 2720       | 151      | 1963 | 14500      | 417      | 1990 | 42300      | 1117     |
| 1910 | 1000       | 19       | 1937 | 3800       | 191      | 1964 | 17800      | 467      | 1991 | 33300      | 1092     |
| 1911 | 820        | 13       | 1938 | 4500       | 199      | 1965 | 19000      | 526      | 1992 | 28000      | 1234     |
| 1912 | 860        | 7        | 1939 | 4500       | 187      | 1966 | 21800      | 441      | 1993 | 21900      | 1216     |
| 1913 | 820        | 16       | 1940 | 5000       | 120      | 1967 | 20500      | 469      | 1994 | 18000      | 1106     |
| 1914 | 360        | 19       | 1941 | 4000       | 129      | 1968 | 19600      | 457      | 1995 | 24500      | 1144     |
| 1915 | 230        | 22       | 1942 | 3500       | 66       | 1969 | 20200      | 396      | 1996 | 26200      | 1186     |
| 1916 | 410        | 12       | 1943 | 4200       | 60       | 1970 | 24200      | 415      | 1997 | 27400      | 1338     |
| 1917 | 360        | 16       | 1944 | 3900       | 60       | 1971 | 25100      | 440      | 1998 | 35300      | 1655     |
| 1918 | 450        | 16       | 1945 | 4700       | 90       | 1972 | 24800      | 610      | 1999 | 32700      | 1637     |
| 1919 | 360        | 24       | 1946 | 3500       | 143      | 1973 | 29400      | 620      | 2000 | 37900      | 1899     |
| 1920 | 360        | 25       | 1947 | 5000       | 129      | 1974 | 30900      | 563      | 2001 | 47900      | 1892     |
| 1921 | 180        | 33       | 1948 | 6100       | 181      | 1975 | 30800      | 727      | 2002 | 50700      | 1998     |
| 1922 | 820        | 29       | 1949 | 5900       | 181      | 1976 | 21400      | 726      | 2003 | 52900      | 2011     |
| 1923 | 640        | 37       | 1950 | 7170       | 179      | 1977 | 21500      | 765      | 2004 | 58600      | 1853     |
| 1924 | 1090       | 38       | 1951 | 8440       | 183      | 1978 | 26800      | 913      | 2005 | 63400      | 1716     |
| 1925 | 1090       | 56       | 1952 | 10100      | 282      | 1979 | 29900      | 859      | 2006 | 65900      | 1634     |
| 1926 | 820        | 41       | 1953 | 11300      | 189      | 1980 | 31300      | 981      | 2007 | 65500      | 1749     |

**Table A3.23** Cobalt Activity<sup>28</sup> and Patents<sup>29</sup>

<sup>&</sup>lt;sup>28</sup> Activity represents world mine production of cobalt, defined at usgs.gov as "...cobalt content of refined products or the cobalt content, recoverable cobalt content, or recovered cobalt content of mined ores, concentrates, or intermediate products depending on the producing country and year....Data for the years 1901-36 are from IC [*U.S. Bureau of Mines Information* Circular] 8103. Data for the years 1937 to the most recent are from the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>29</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Cobalt was used as the keyword found in the patent title or abstract by year of publication.

Table A3.24. Correlation Eq.(A1.1) terms calculated from Table A3.23 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy     | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|----------|---------|----------|-------------------|
| 1777030 | 56341 | 6.21E+10           | 63953703           | 1.92E+09 | 3.258E+10 | 34287270 | 9.8E+08 | 0.926925 | 85.91898          |



Figure A3.44 Cobalt Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.45. USGS World Cobalt Production.** World cobalt production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.46. EPO Worldwide Patent Search: Cobalt in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.47 Cobalt Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.48. Cobalt Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | x          | у        | Year | x          | у        | Year | x          | у        | Year | х          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 495000     | 165      | 1927 | 1520000    | 447      | 1954 | 2640000    | 773      | 1981 | 7690000    | 4182     |
| 1901 | 526000     | 169      | 1928 | 1730000    | 511      | 1955 | 2900000    | 824      | 1982 | 7580000    | 4673     |
| 1902 | 555000     | 186      | 1929 | 1950000    | 538      | 1956 | 3200000    | 964      | 1983 | 7610000    | 4684     |
| 1903 | 596000     | 232      | 1930 | 1610000    | 640      | 1957 | 3300000    | 1016     | 1984 | 7810000    | 5125     |
| 1904 | 660000     | 221      | 1931 | 1400000    | 773      | 1958 | 3190000    | 896      | 1985 | 7990000    | 5574     |
| 1905 | 713000     | 236      | 1932 | 909000     | 646      | 1959 | 3430000    | 925      | 1986 | 7940000    | 6094     |
| 1906 | 724000     | 198      | 1933 | 1050000    | 611      | 1960 | 3940000    | 1301     | 1987 | 8240000    | 5766     |
| 1907 | 721000     | 254      | 1934 | 1280000    | 601      | 1961 | 4090000    | 1190     | 1988 | 8720000    | 7025     |
| 1908 | 744000     | 257      | 1935 | 1500000    | 695      | 1962 | 4220000    | 1100     | 1989 | 9040000    | 9723     |
| 1909 | 828000     | 219      | 1936 | 1720000    | 675      | 1963 | 4290000    | 1255     | 1990 | 9200000    | 8660     |
| 1910 | 858000     | 200      | 1937 | 2290000    | 670      | 1964 | 4450000    | 1335     | 1991 | 9330000    | 8422     |
| 1911 | 890000     | 194      | 1938 | 1990000    | 749      | 1965 | 4660000    | 1548     | 1992 | 9470000    | 9392     |
| 1912 | 1000000    | 218      | 1939 | 2130000    | 637      | 1966 | 4580000    | 1424     | 1993 | 9490000    | 8266     |
| 1913 | 996000     | 241      | 1940 | 2400000    | 560      | 1967 | 4630000    | 1806     | 1994 | 9500000    | 8197     |
| 1914 | 938000     | 197      | 1941 | 2480000    | 430      | 1968 | 5010000    | 1751     | 1995 | 1000000    | 7604     |
| 1915 | 1060000    | 182      | 1942 | 2590000    | 322      | 1969 | 5520000    | 1677     | 1996 | 11000000   | 7831     |
| 1916 | 1420000    | 125      | 1943 | 2620000    | 316      | 1970 | 5900000    | 1992     | 1997 | 11500000   | 7423     |
| 1917 | 1430000    | 117      | 1944 | 2460000    | 300      | 1971 | 5940000    | 2066     | 1998 | 12100000   | 8551     |
| 1918 | 1430000    | 120      | 1945 | 2110000    | 368      | 1972 | 6540000    | 2404     | 1999 | 12800000   | 8868     |
| 1919 | 994000     | 228      | 1946 | 1780000    | 451      | 1973 | 6920000    | 2240     | 2000 | 13200000   | 10521    |
| 1920 | 959000     | 234      | 1947 | 2130000    | 490      | 1974 | 7100000    | 2049     | 2001 | 13700000   | 10566    |
| 1921 | 558000     | 310      | 1948 | 2210000    | 673      | 1975 | 6740000    | 2235     | 2002 | 13600000   | 11246    |
| 1922 | 884000     | 260      | 1949 | 2140000    | 649      | 1976 | 7260000    | 2526     | 2003 | 13800000   | 11222    |
| 1923 | 1270000    | 310      | 1950 | 2380000    | 495      | 1977 | 7420000    | 2820     | 2004 | 14700000   | 11303    |
| 1924 | 1360000    | 327      | 1951 | 2490000    | 576      | 1978 | 7280000    | 2840     | 2005 | 15000000   | 10065    |
| 1925 | 1530000    | 386      | 1952 | 2570000    | 731      | 1979 | 7350000    | 2710     | 2006 | 15100000   | 9776     |
| 1926 | 1510000    | 368      | 1953 | 2600000    | 564      | 1980 | 7200000    | 3820     | 2007 | 15400000   | 10130    |

**Table A3.25.** Copper Activity<sup>30</sup> and Patents<sup>31</sup>

Table A3.26. Correlation Eq.(A1.1) terms calculated from Table A3.25 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 510898000 | 289648 | 4.27E+15           | 2.04E+09           | 2.82E+12 | 1.851E+15 | 1.26E+09 | 1.45E+12 | 0.950672 | 90.37776          |





<sup>&</sup>lt;sup>30</sup> Activity represents world production of copper, defined at usgs.gov as follows. "World mine production is based on a compilation of available data published in the MR and the MYB and generally reflects the copper content of concentrates, precipitates, and electrowon copper. For some countries, including the United States, recoverable copper content is used. For other countries, such as Chile, data includes copper content of nonduplicative mine and metal products produced from domestic ores and concentrates." (usgs.gov) Data is in metric tons, as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>31</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Copper or Cu were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.50**. **USGS World Copper Production.** World copper production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.51. EPO Worldwide Patent Search: Copper or Cu in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.52. Copper Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.53. Copper Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year  | x          | v          | Year | x          | v        | Year | x          | v        | Year  | x          | v        |
|-------|------------|------------|------|------------|----------|------|------------|----------|-------|------------|----------|
| 1.041 | (activity) | (patent)   |      | (activity) | (patent) |      | (activity) | (patent) | 1 001 | (activity) | (patent) |
| 1900  |            | <b>u</b> / | 1927 | 340000     | 0        | 1954 | 945000     | 5        | 1981  | 3230000    | 18       |
| 1901  |            |            | 1928 | 366000     | 4        | 1955 | 1070000    | 7        | 1982  | 3520000    | 18       |
| 1902  |            |            | 1929 | 331000     | 3        | 1956 | 1130000    | 3        | 1983  | 3590000    | 16       |
| 1903  |            |            | 1930 | 284000     | 5        | 1957 | 1260000    | 5        | 1984  | 3790000    | 22       |
| 1904  |            |            | 1931 | 239000     | 2        | 1958 | 1210000    | 9        | 1985  | 4030000    | 23       |
| 1905  |            |            | 1932 | 189000     | 3        | 1959 | 1370000    | 6        | 1986  | 4120000    | 30       |
| 1906  |            |            | 1933 | 258000     | 3        | 1960 | 1570000    | 6        | 1987  | 4380000    | 14       |
| 1907  |            |            | 1934 | 280000     | 2        | 1961 | 1630000    | 11       | 1988  | 4840000    | 31       |
| 1908  | 150000     | 4          | 1935 | 316000     | 6        | 1962 | 1630000    | 6        | 1989  | 5180000    | 55       |
| 1909  | 168000     | 3          | 1936 | 381000     | 7        | 1963 | 1710000    | 8        | 1990  | 5990000    | 44       |
| 1910  | 179000     | 2          | 1937 | 426000     | 8        | 1964 | 1890000    | 5        | 1991  | 5670000    | 53       |
| 1911  | 210000     | 0          | 1938 | 320000     | 5        | 1965 | 2010000    | 9        | 1992  | 5990000    | 56       |
| 1912  | 206000     | 1          | 1939 | 390000     | 4        | 1966 | 2150000    | 10       | 1993  | 6170000    | 52       |
| 1913  | 156000     | 4          | 1940 | 400000     | 2        | 1967 | 2040000    | 18       | 1994  | 6490000    | 62       |
| 1914  | 193000     | 3          | 1941 | 475000     | 13       | 1968 | 2240000    | 20       | 1995  | 7910000    | 48       |
| 1915  | 155000     | 3          | 1942 | 440000     | 5        | 1969 | 2450000    | 10       | 1996  | 8290000    | 60       |
| 1916  | 168000     | 3          | 1943 | 440000     | 2        | 1970 | 2530000    | 17       | 1997  | 8650000    | 64       |
| 1917  | 174000     | 6          | 1944 | 465000     | 2        | 1971 | 2550000    | 22       | 1998  | 9330000    | 62       |
| 1918  | 136000     | 7          | 1945 | 500000     | 1        | 1972 | 2720000    | 12       | 1999  | 9980000    | 79       |
| 1919  | 108000     | 8          | 1946 | 675000     | 5        | 1973 | 2770000    | 21       | 2000  | 9540000    | 103      |
| 1920  | 207000     | 10         | 1947 | 700000     | 10       | 1974 | 3010000    | 16       | 2001  | 11800000   | 99       |
| 1921  | 167000     | 9          | 1948 | 770000     | 4        | 1975 | 2630000    | 13       | 2002  | 14100000   | 99       |
| 1922  | 208000     | 12         | 1949 | 660000     | 8        | 1976 | 2800000    | 20       | 2003  | 13600000   | 124      |
| 1923  | 250000     | 8          | 1950 | 721000     | 9        | 1977 | 2940000    | 13       | 2004  | 15100000   | 119      |
| 1924  | 362000     | 3          | 1951 | 793000     | 3        | 1978 | 3030000    | 16       | 2005  | 16200000   | 83       |
| 1925  | 314000     | 6          | 1952 | 803000     | 9        | 1979 | 3110000    | 14       | 2006  | 17600000   | 80       |
| 1926  | 345000     | 3          | 1953 | 793000     | 4        | 1980 | 3200000    | 17       | 2007  | 18100000   | 111      |

|  | Fable A3.27 | Feldspar <sup>32</sup> | Activity <sup>33</sup> | and | Patents <sup>34</sup> |
|--|-------------|------------------------|------------------------|-----|-----------------------|
|--|-------------|------------------------|------------------------|-----|-----------------------|

<sup>&</sup>lt;sup>32</sup> Silicate minerals linked with potassium, sodium and calcium [128].

<sup>&</sup>lt;sup>33</sup> Activity represents world production of feldspar, defined at usgs.gov as "...the quantity of feldspar that was produced annually throughout the world as reported in the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]. World production does not include production data for nepheline syenite" Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>34</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Feldspar was used as the keyword found in the patent title or abstract by year of publication.

Table A3.28. Correlation Eq.(A1.1) terms calculated from Table A3.27 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy  | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|---------|-----------|----------|----------|----------|-------------------|
| 301396000 | 2168  | 2.62E+15           | 133006             | 1.8E+10 | 1.707E+15 | 86003.76 | 1.15E+10 | 0.949019 | 90.06377          |



Figure A3.54. Feldspar Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.55**. **USGS World Feldspar Production.** World feldspar production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.56. EPO Worldwide Patent Search: Feldspar in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.57. Feldspar Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.58. Feldspar Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 317000     | 6        | 1954 | 1220000    | 7        | 1981 | 5100000    | 37       |
| 1901 |            |          | 1928 | 345000     | 11       | 1955 | 1410000    | 13       | 1982 | 4530000    | 31       |
| 1902 |            |          | 1929 | 376000     | 5        | 1956 | 1700000    | 7        | 1983 | 4230000    | 41       |
| 1903 |            |          | 1930 | 291000     | 7        | 1957 | 1830000    | 5        | 1984 | 4830000    | 36       |
| 1904 |            |          | 1931 | 166000     | 8        | 1958 | 1840000    | 12       | 1985 | 4980000    | 20       |
| 1905 |            |          | 1932 | 128000     | 11       | 1959 | 1720000    | 21       | 1986 | 4850000    | 28       |
| 1906 |            |          | 1933 | 229000     | 8        | 1960 | 2020000    | 17       | 1987 | 4600000    | 35       |
| 1907 |            |          | 1934 | 286000     | 6        | 1961 | 2060000    | 18       | 1988 | 5280000    | 45       |
| 1908 |            |          | 1935 | 340000     | 7        | 1962 | 2150000    | 12       | 1989 | 5560000    | 34       |
| 1909 |            |          | 1936 | 455000     | 8        | 1963 | 2150000    | 18       | 1990 | 5120000    | 29       |
| 1910 |            |          | 1937 | 519000     | 16       | 1964 | 2460000    | 9        | 1991 | 4300000    | 49       |
| 1911 |            |          | 1938 | 456000     | 16       | 1965 | 2770000    | 26       | 1992 | 4120000    | 44       |
| 1912 |            |          | 1939 | 577000     | 15       | 1966 | 2840000    | 19       | 1993 | 4180000    | 32       |
| 1913 | 171000     | 4        | 1940 | 616000     | 8        | 1967 | 3170000    | 23       | 1994 | 3750000    | 24       |
| 1914 | 121000     | 3        | 1941 | 698000     | 6        | 1968 | 3640000    | 19       | 1995 | 4040000    | 51       |
| 1915 | 163000     | 0        | 1942 | 883000     | 9        | 1969 | 3890000    | 13       | 1996 | 4180000    | 46       |
| 1916 | 201000     | 0        | 1943 | 1040000    | 9        | 1970 | 4190000    | 16       | 1997 | 4180000    | 53       |
| 1917 | 279000     | 1        | 1944 | 1040000    | 0        | 1971 | 4760000    | 21       | 1998 | 4430000    | 77       |
| 1918 | 313000     | 1        | 1945 | 674000     | 10       | 1972 | 4530000    | 24       | 1999 | 4300000    | 67       |
| 1919 | 196000     | 2        | 1946 | 524000     | 8        | 1973 | 4580000    | 28       | 2000 | 4450000    | 74       |
| 1920 | 264000     | 3        | 1947 | 655000     | 3        | 1974 | 4860000    | 19       | 2001 | 4590000    | 79       |
| 1921 | 92500      | 8        | 1948 | 795000     | 6        | 1975 | 4520000    | 22       | 2002 | 4450000    | 79       |
| 1922 | 208000     | 1        | 1949 | 710000     | 10       | 1976 | 4320000    | 21       | 2003 | 4850000    | 122      |
| 1923 | 215000     | 12       | 1950 | 844000     | 19       | 1977 | 4380000    | 38       | 2004 | 5230000    | 89       |
| 1924 | 255000     | 5        | 1951 | 1030000    | 7        | 1978 | 4670000    | 35       | 2005 | 5280000    | 101      |
| 1925 | 263000     | 9        | 1952 | 1180000    | 10       | 1979 | 4610000    | 34       | 2006 | 5330000    | 95       |
| 1926 | 310000     | 8        | 1953 | 1210000    | 5        | 1980 | 5010000    | 31       | 2007 | 5690000    | 84       |

**Table A3.29** Fluorspar<sup>35</sup> Activity<sup>36</sup> and Patents<sup>37</sup>

Table A3.30. Correlation Eq.(A1.1) terms calculated from Table A3.29 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy     | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|---------|----------|-------------------|
| 233165500 | 2321  | 9.38E+14           | 117819             | 9.19E+09 | 3.654E+14 | 61113.31 | 3.5E+09 | 0.739928 | 54.74942          |



Figure A3.59. Fluorspar Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

 <sup>&</sup>lt;sup>35</sup> Fluorite or a mineral form of calcium fluoride [128].
 <sup>36</sup> Activity represents world production of fluorspar, defined at usgs.gov as "...data for the years 1913 to the most recent represent the total estimated quantities of fluorspar that were produced annually throughout the world. Data were recorded from the MR [Mineral resources of the United States] and the MYB [Minerals Yearbook]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at

<sup>&</sup>lt;sup>37</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Fluorspar or fluorite were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.60**. USGS World Fluorspar Production. World fluorspar production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.61. EPO Worldwide Patent Search: Fluorspar or Fluorite in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.62. Fluorspar Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.63. Fluorspar Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y<br>(natont) | Year | X<br>(activity) | y (patent) | Year | X<br>(activity) | y (patent) | Year | X<br>(activity) | y<br>(patont) |
|------|-----------------|---------------|------|-----------------|------------|------|-----------------|------------|------|-----------------|---------------|
| 1000 | (activity)      | (patent)      | 1027 | (activity)      | (patent)   | 1054 | (activity)      | (patent)   | 1001 | (activity)      | (patent)      |
| 1900 | 380             | 34            | 1927 | 597             | 70         | 1954 | 903             | 03         | 1901 | 1280            | 034           |
| 1901 | 395             | 45            | 1928 | 603             | /3         | 1955 | 947             | 90         | 1982 | 1340            | /52           |
| 1902 | 451             | 50            | 1929 | 609             | 87         | 1956 | 9/8             | 100        | 1983 | 1400            | 867           |
| 1903 | 496             | 53            | 1930 | 648             | 81         | 1957 | 1020            | 11         | 1984 | 1460            | 866           |
| 1904 | 526             | 48            | 1931 | 695             | 84         | 1958 | 1050            | 108        | 1985 | 1530            | 898           |
| 1905 | 575             | 45            | 1932 | 754             | 76         | 1959 | 1130            | 97         | 1986 | 1610            | 1072          |
| 1906 | 608             | 42            | 1933 | 793             | 80         | 1960 | 1190            | 180        | 1987 | 1660            | 1071          |
| 1907 | 623             | 45            | 1934 | 841             | 82         | 1961 | 1230            | 167        | 1988 | 1870            | 1204          |
| 1908 | 668             | 44            | 1935 | 924             | 91         | 1962 | 1290            | 188        | 1989 | 2010            | 1348          |
| 1909 | 687             | 39            | 1936 | 1030            | 75         | 1963 | 1340            | 242        | 1990 | 2180            | 1442          |
| 1910 | 689             | 51            | 1937 | 1100            | 77         | 1964 | 1390            | 262        | 1991 | 2160            | 1418          |
| 1911 | 699             | 34            | 1938 | 1170            | 89         | 1965 | 1440            | 324        | 1992 | 2260            | 1530          |
| 1912 | 705             | 42            | 1939 | 1230            | 81         | 1966 | 1450            | 321        | 1993 | 2280            | 1315          |
| 1913 | 694             | 46            | 1940 | 1310            | 52         | 1967 | 1420            | 364        | 1994 | 2260            | 1410          |
| 1914 | 663             | 41            | 1941 | 1080            | 57         | 1968 | 1440            | 301        | 1995 | 2230            | 1280          |
| 1915 | 704             | 22            | 1942 | 1120            | 31         | 1969 | 1450            | 360        | 1996 | 2290            | 1250          |
| 1916 | 685             | 30            | 1943 | 896             | 25         | 1970 | 1480            | 404        | 1997 | 2450            | 1268          |
| 1917 | 631             | 22            | 1944 | 813             | 31         | 1971 | 1450            | 412        | 1998 | 2500            | 1466          |
| 1918 | 578             | 24            | 1945 | 762             | 34         | 1972 | 1390            | 481        | 1999 | 2570            | 1533          |
| 1919 | 550             | 28            | 1946 | 860             | 35         | 1973 | 1350            | 454        | 2000 | 2590            | 1763          |
| 1920 | 507             | 32            | 1947 | 900             | 58         | 1974 | 1250            | 381        | 2001 | 2600            | 1746          |
| 1921 | 498             | 38            | 1948 | 932             | 52         | 1975 | 1200            | 454        | 2002 | 2550            | 1891          |
| 1922 | 481             | 42            | 1949 | 964             | 66         | 1976 | 1210            | 436        | 2003 | 2540            | 1958          |
| 1923 | 554             | 52            | 1950 | 879             | 66         | 1977 | 1210            | 427        | 2004 | 2420            | 1869          |
| 1924 | 592             | 52            | 1951 | 883             | 64         | 1978 | 1210            | 521        | 2005 | 2470            | 1710          |
| 1925 | 591             | 59            | 1952 | 868             | 84         | 1979 | 1210            | 522        | 2006 | 2430            | 1643          |
| 1926 | 602             | 56            | 1953 | 864             | 75         | 1980 | 1220            | 639        | 2007 | 2380            | 1839          |

| Fable A3.31 | Gold Activity <sup>38</sup> | <sup>8</sup> and Patents <sup>39</sup> |
|-------------|-----------------------------|----------------------------------------|
|             | Gold Littling               | and I acomo                            |

<sup>&</sup>lt;sup>38</sup> Activity represents world production of gold, defined at usgs.gov as "...World gold production data for the years 1900–26 are from reported estimates by Ridgeway (1929). World gold production data for the years 1927 to the most recent are from the MYB in the "Salient gold statistics" and "Gold: World production by country" tables. Updated values for world gold production for the years 1929-50 reflect revised estimates by the USGS gold commodity specialist for some countries." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>39</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Gold was used as the keyword found in the patent title or abstract by year of publication.

Table A3.32. Correlation Eq.(A1.1) terms calculated from Table A3.31 data.

| Sum x  | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy        | Sxx      | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|--------|-------|--------------------|--------------------|---------------|----------|----------|----------|----------|-------------------|
| 131193 | 48266 | 2.02E+08           | 57810854           | 9.5481495E+07 | 42538212 | 36240421 | 36850372 | 0.938546 | 88.08688898       |



Figure A3.64. Gold Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.65**. **USGS World Gold Production.** World gold production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. R<sup>2</sup> is negative possibly indicating Stage IV. No best-fit for the patent data was obtainable.



Figure A3.66. Gold Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Vear  | v          | v        | Vear  | v          | v        | Vear  | x          | V        | Vear  | v          | v        |
|-------|------------|----------|-------|------------|----------|-------|------------|----------|-------|------------|----------|
| I cui | (activity) | (natent) |
| 1900  | 81600      | 29       | 1927  | 154000     | 100      | 1954  | 168000     | 177      | 1981  | 589000     | 1070     |
| 1901  | 77100      | 20       | 1928  | 150000     | 93       | 1955  | 272000     | 217      | 1982  | 562000     | 1185     |
| 1902  | 81600      | 23       | 1929  | 150000     | 93       | 1956  | 263000     | 217      | 1983  | 604000     | 1303     |
| 1903  | 77100      | 2.9      | 1930  | 118000     | 100      | 1957  | 372000     | 271      | 1984  | 625000     | 1305     |
| 1904  | 77100      | 38       | 1931  | 77100      | 125      | 1958  | 318000     | 253      | 1985  | 584000     | 1307     |
| 1905  | 90700      | 52       | 1932  | 72600      | 119      | 1959  | 372000     | 312      | 1986  | 625000     | 1407     |
| 1906  | 104000     | 46       | 1933  | 86200      | 102      | 1960  | 435000     | 447      | 1987  | 643000     | 1440     |
| 1907  | 109000     | 44       | 1934  | 109000     | 90       | 1961  | 413000     | 403      | 1988  | 575000     | 1418     |
| 1908  | 95300      | 51       | 1935  | 145000     | 124      | 1962  | 535000     | 433      | 1989  | 1010000    | 1744     |
| 1909  | 95300      | 43       | 1936  | 150000     | 103      | 1963  | 679000     | 402      | 1990  | 946000     | 1566     |
| 1910  | 95300      | 33       | 1937  | 159000     | 123      | 1964  | 620000     | 439      | 1991  | 771000     | 1528     |
| 1911  | 109000     | 43       | 1938  | 177000     | 122      | 1965  | 607000     | 456      | 1992  | 670000     | 1643     |
| 1912  | 118000     | 42       | 1939  | 222000     | 116      | 1966  | 484000     | 423      | 1993  | 648000     | 1447     |
| 1913  | 136000     | 46       | 1940  | 254000     | 92       | 1967  | 358000     | 536      | 1994  | 517000     | 1509     |
| 1914  | 104000     | 28       | 1941  | 231000     | 66       | 1968  | 437000     | 520      | 1995  | 584000     | 1517     |
| 1915  | 113000     | 36       | 1942  | 272000     | 57       | 1969  | 376000     | 498      | 1996  | 555000     | 1546     |
| 1916  | 172000     | 20       | 1943  | 277000     | 67       | 1970  | 393000     | 608      | 1997  | 685000     | 1450     |
| 1917  | 209000     | 29       | 1944  | 263000     | 55       | 1971  | 394000     | 595      | 1998  | 651000     | 1666     |
| 1918  | 181000     | 25       | 1945  | 136000     | 56       | 1972  | 361000     | 671      | 1999  | 692000     | 1839     |
| 1919  | 122000     | 36       | 1946  | 95300      | 78       | 1973  | 395000     | 584      | 2000  | 846000     | 1940     |
| 1920  | 118000     | 54       | 1947  | 122000     | 106      | 1974  | 497000     | 549      | 2001  | 816000     | 1796     |
| 1921  | 90700      | 81       | 1948  | 163000     | 137      | 1975  | 451000     | 568      | 2002  | 932000     | 2004     |
| 1922  | 104000     | 78       | 1949  | 168000     | 117      | 1976  | 449000     | 621      | 2003  | 999000     | 1966     |
| 1923  | 95300      | 70       | 1950  | 159000     | 103      | 1977  | 493000     | 640      | 2004  | 1020000    | 2072     |
| 1924  | 95300      | 79       | 1951  | 195000     | 122      | 1978  | 534000     | 824      | 2005  | 1040000    | 2078     |
| 1925  | 122000     | 83       | 1952  | 177000     | 166      | 1979  | 626000     | 609      | 2006  | 1020000    | 1835     |
| 1926  | 136000     | 67       | 1953  | 168000     | 132      | 1980  | 597000     | 1008     | 2007  | 1110000    | 1922     |

**Table A3.33.** Graphite<sup>40</sup> Activity<sup>41</sup> and Patents<sup>42</sup>

<sup>40</sup> Natural Graphite [78].

<sup>&</sup>lt;sup>41</sup> Activity represents world production of graphite, defined at usgs.gov as follows. "....were reported in the MR [*Minerals Resources of the* United States] and the MYB [Minerals Yearbook]." (usgs.gov) Data is in metric tons, as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>42</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Graphite was

used as the keyword found in the patent title or abstract by year of publication.

Table A3.34. Correlation Eq.(A1.1) terms calculated from Table A3.33 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 39677600 | 60774 | 2.3E+13            | 79940074           | 4.06E+10 | 8.438E+12 | 45741194 | 1.82E+10 | 0.928652 | 86.23946          |



Figure A3.67. Graphite Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.68. USGS World Graphite Production**. World graphite production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.


Figure A3.69. EPO worldwide Patent Search: Graphite in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.70. Graphite Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.71. Graphite Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | y        | Year | X          | у        | Year | X          | У        | Year | X          | У   |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|-----|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) |     |
| 1900 |            |          | 1927 | 11200000   | 35       | 1954 | 28000000   | 31       | 1981 | 76200000   | 374 |
| 1901 |            |          | 1928 | 11800000   | 19       | 1955 | 32100000   | 26       | 1982 | 72500000   | 342 |
| 1902 |            |          | 1929 | 12500000   | 37       | 1956 | 33500000   | 31       | 1983 | 80700000   | 385 |
| 1903 |            |          | 1930 | 11900000   | 46       | 1957 | 34200000   | 40       | 1984 | 85800000   | 337 |
| 1904 |            |          | 1931 | 9400000    | 46       | 1958 | 37800000   | 35       | 1985 | 87000000   | 336 |
| 1905 |            |          | 1932 | 7800000    | 49       | 1959 | 43100000   | 46       | 1986 | 88200000   | 317 |
| 1906 |            |          | 1933 | 7400000    | 54       | 1960 | 4000000    | 37       | 1987 | 93000000   | 325 |
| 1907 |            |          | 1934 | 7900000    | 35       | 1961 | 40500000   | 33       | 1988 | 101000000  | 355 |
| 1908 |            |          | 1935 | 8300000    | 45       | 1962 | 43500000   | 40       | 1989 | 104000000  | 427 |
| 1909 |            |          | 1936 | 9400000    | 31       | 1963 | 45500000   | 42       | 1990 | 10400000   | 409 |
| 1910 |            |          | 1937 | 7790000    | 30       | 1964 | 46800000   | 50       | 1991 | 10000000   | 421 |
| 1911 |            |          | 1938 | 6030000    | 44       | 1965 | 48000000   | 64       | 1992 | 98800000   | 531 |
| 1912 |            |          | 1939 | 8030000    | 23       | 1966 | 48700000   | 48       | 1993 | 97200000   | 451 |
| 1913 |            |          | 1940 | 7940000    | 29       | 1967 | 46200000   | 75       | 1994 | 96300000   | 465 |
| 1914 |            |          | 1941 | 8960000    | 14       | 1968 | 49400000   | 78       | 1995 | 98400000   | 488 |
| 1915 |            |          | 1942 | 9350000    | 19       | 1969 | 52200000   | 66       | 1996 | 104000000  | 522 |
| 1916 |            |          | 1943 | 8480000    | 13       | 1970 | 51600000   | 64       | 1997 | 107000000  | 629 |
| 1917 |            |          | 1944 | 8400000    | 17       | 1971 | 53100000   | 119      | 1998 | 104000000  | 678 |
| 1918 |            |          | 1945 | 9800000    | 12       | 1972 | 57600000   | 126      | 1999 | 109000000  | 703 |
| 1919 |            |          | 1946 | 14400000   | 17       | 1973 | 61500000   | 94       | 2000 | 108000000  | 735 |
| 1920 |            |          | 1947 | 16500000   | 24       | 1974 | 61400000   | 132      | 2001 | 105000000  | 778 |
| 1921 |            |          | 1948 | 21200000   | 17       | 1975 | 59200000   | 142      | 2002 | 111000000  | 764 |
| 1922 |            |          | 1949 | 19000000   | 13       | 1976 | 66100000   | 219      | 2003 | 114000000  | 751 |
| 1923 |            |          | 1950 | 22600000   | 19       | 1977 | 74500000   | 328      | 2004 | 120000000  | 774 |
| 1924 | 9700000    | 13       | 1951 | 18400000   | 25       | 1978 | 77800000   | 420      | 2005 | 122000000  | 781 |
| 1925 | 10700000   | 26       | 1952 | 24100000   | 18       | 1979 | 80400000   | 336      | 2006 | 125000000  | 772 |
| 1926 | 11300000   | 28       | 1953 | 25400000   | 21       | 1980 | 78400000   | 384      | 2007 | 152400000  | 784 |

**Table A3.35** Gypsum<sup>43</sup> Activity<sup>44</sup> and Patents<sup>45</sup>

Table A3.36. Correlation Eq.(A1.1) terms calculated from Table A3.35 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy     | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|---------|---------|----------|-------------------|
| 4.521E+09 | 18559 | 3.73E+17           | 9503115            | 1.77E+12 | 1.292E+17 | 5402681 | 7.7E+11 | 0.921142 | 84.85017          |



Figure A3.72. Gypsum Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>43</sup> Monoclinic mineral form of hydrated calcium sulphate.

<sup>&</sup>lt;sup>44</sup> Activity represents world production of gypsum, defined at usgs.gov as "...mine production of crude gypsum. Data are not available prior to 1924. Data are recorded in the MR [Mineral Resources of the United States] and the MYB [Minerals Yearbook]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>45</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Gypsum was

used as the keyword found in the patent title or abstract by year of publication.



Figure A3.73. USGS World Gypsum Production. World gypsum production (activity)scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A3.74. EPO Worldwide Patent Search: Gypsum in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.75. Graphite Best-Fit Activity and Patents. Illustrates best-fit origin shift.



**Figure A3.76. Gypsum Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 | 914        | 27       | 1981 | 5580       | 198      |
| 1901 |            |          | 1928 |            |          | 1955 | 1060       | 50       | 1982 | 1830       | 270      |
| 1902 |            |          | 1929 |            |          | 1956 | 1170       | 58       | 1983 | 3480       | 256      |
| 1903 |            |          | 1930 |            |          | 1957 | 1400       | 49       | 1984 | 8570       | 309      |
| 1904 |            |          | 1931 |            |          | 1958 | 1600       | 64       | 1985 | 9750       | 371      |
| 1905 |            |          | 1932 |            |          | 1959 | 2290       | 58       | 1986 | 10000      | 355      |
| 1906 |            |          | 1933 |            |          | 1960 | 3080       | 100      | 1987 | 11600      | 429      |
| 1907 |            |          | 1934 |            |          | 1961 | 3490       | 90       | 1988 | 13300      | 406      |
| 1908 |            |          | 1935 | 49         | 21       | 1962 | 3420       | 103      | 1989 | 14800      | 548      |
| 1909 |            |          | 1936 | 22.4       | 16       | 1963 | 10800      | 122      | 1990 | 15600      | 420      |
| 1910 |            |          | 1937 | 23.1       | 15       | 1964 | 19400      | 110      | 1991 | 15900      | 426      |
| 1911 |            |          | 1938 | 29.2       | 21       | 1965 | 21000      | 147      | 1992 | 16900      | 561      |
| 1912 |            |          | 1939 | 30.1       | 17       | 1966 | 22100      | 130      | 1993 | 16900      | 453      |
| 1913 |            |          | 1940 | 45.3       | 10       | 1967 | 22700      | 169      | 1994 | 17900      | 525      |
| 1914 |            |          | 1941 | 77.5       | 3        | 1968 | 22500      | 157      | 1995 | 18800      | 396      |
| 1915 |            |          | 1942 | 159        | 6        | 1969 | 22500      | 174      | 1996 | 18800      | 397      |
| 1916 |            |          | 1943 | 558        | 2        | 1970 | 22200      | 173      | 1997 | 23400      | 376      |
| 1917 |            |          | 1944 | 608        | 1        | 1971 | 22400      | 165      | 1998 | 22700      | 484      |
| 1918 |            |          | 1945 | 454        | 10       | 1972 | 20200      | 203      | 1999 | 22900      | 478      |
| 1919 |            |          | 1946 | 279        | 10       | 1973 | 16000      | 212      | 2000 | 19800      | 571      |
| 1920 |            |          | 1947 | 337        | 12       | 1974 | 4900       | 179      | 2001 | 17900      | 564      |
| 1921 |            |          | 1948 | 303        | 14       | 1975 | 5870       | 177      | 2002 | 18500      | 665      |
| 1922 |            |          | 1949 | 264        | 10       | 1976 | 7120       | 156      | 2003 | 24400      | 594      |
| 1923 |            |          | 1950 | 390        | 13       | 1977 | 7830       | 140      | 2004 | 26100      | 555      |
| 1924 |            |          | 1951 | 537        | 19       | 1978 | 8400       | 176      | 2005 | 27100      | 481      |
| 1925 |            |          | 1952 | 693        | 31       | 1979 | 8890       | 158      | 2006 | 28100      | 436      |
| 1926 |            |          | 1953 | 772        | 31       | 1980 | 7560       | 181      | 2007 | 28900      | 428      |

| <b>Table A3.57.</b> Henum Activity and Patents | Table | A3.37. | Helium | Activity <sup>46</sup> | and Patents <sup>4</sup> |
|------------------------------------------------|-------|--------|--------|------------------------|--------------------------|
|------------------------------------------------|-------|--------|--------|------------------------|--------------------------|

10

<sup>&</sup>lt;sup>46</sup> Activity represents world production of helium, defined at usgs.gov as follows. "....World production data for the years 1935–71 were recorded from the MYB. World production data for the years 1972 to the most recent were recorded from the MCS. World production data for the years 1935 to the most recent represent the summed quantity of total U.S. helium production and the total estimated production capacity of all other helium-producing countries. For the years 1935–62, world production is equal to U.S. production." Data is in metric tons, as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>47</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Helium was used as the keyword found in the patent title or abstract by year of publication.

Table A3.38. Correlation Eq.(A1.1) terms calculated from Table A3.37 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|----------|-----------|---------|----------|----------|-------------------|
| 755934.6 | 15742 | 1.43E+10           | 6148154            | 2.62E+08 | 6.425E+09 | 2753489 | 99225238 | 0.745984 | 55.64915          |



Figure A3.77. Helium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.78**. **USGS World Helium Production.** World helium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.79. EPO Worldwide Patent Search: Helium in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.80. Helium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.81. Helium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y (notont) | Year | X<br>(activity) | y (notont) | Year |            | y<br>(notont) | Year | X<br>(activity) | y (nat) |
|------|-----------------|------------|------|-----------------|------------|------|------------|---------------|------|-----------------|---------|
| 1000 | (activity)      | (patent)   | 1027 | (activity)      | (patent)   | 1054 | (activity) | (patent)      | 1001 | (activity)      | (pat)   |
| 1900 |                 |            | 1927 | 6/800000        | 13         | 1954 | 194900000  | 17            | 1981 | 886/00000       | /3      |
| 1901 |                 |            | 1928 | 72200000        | 11         | 1955 | 21/300000  | 1/            | 1982 | 88/400000       | 102     |
| 1902 |                 |            | 1929 | 74900000        | 16         | 1956 | 235400000  | 10            | 1983 | 916600000       | 96      |
| 1903 |                 |            | 1930 | 72300000        | 12         | 1957 | 246900000  | 13            | 1984 | 941100000       | 124     |
| 1904 |                 |            | 1931 | 62100000        | 15         | 1958 | 262500000  | 13            | 1985 | 959400000       | 103     |
| 1905 |                 |            | 1932 | 49300000        | 21         | 1959 | 294300000  | 21            | 1986 | 1.008E+09       | 92      |
| 1906 |                 |            | 1933 | 48200000        | 22         | 1960 | 316500000  | 26            | 1987 | 1.053E+09       | 114     |
| 1907 |                 |            | 1934 | 58300000        | 20         | 1961 | 333200000  | 18            | 1988 | 1.118E+09       | 99      |
| 1908 |                 |            | 1935 | 65400000        | 24         | 1962 | 358500000  | 19            | 1989 | 1.042E+09       | 152     |
| 1909 |                 |            | 1936 | 62800000        | 12         | 1963 | 378000000  | 22            | 1990 | 1.043E+09       | 150     |
| 1910 |                 |            | 1937 | 82700000        | 18         | 1964 | 415600000  | 20            | 1991 | 1.185E+09       | 183     |
| 1911 |                 |            | 1938 | 85900000        | 23         | 1965 | 433400000  | 32            | 1992 | 1.123E+09       | 174     |
| 1912 |                 |            | 1939 | 93000000        | 16         | 1966 | 464200000  | 22            | 1993 | 1.291E+09       | 207     |
| 1913 |                 |            | 1940 | 81000000        | 7          | 1967 | 479800000  | 30            | 1994 | 1.37E+09        | 213     |
| 1914 |                 |            | 1941 | 88000000        | 9          | 1968 | 515200000  | 28            | 1995 | 1.445E+09       | 212     |
| 1915 |                 |            | 1942 | 80900000        | 7          | 1969 | 543100000  | 26            | 1996 | 1.493E+09       | 154     |
| 1916 |                 |            | 1943 | 71200000        | 9          | 1970 | 571800000  | 29            | 1997 | 1.547E+09       | 197     |
| 1917 |                 |            | 1944 | 54900000        | 18         | 1971 | 59000000   | 37            | 1998 | 1.54E+09        | 185     |
| 1918 |                 |            | 1945 | 49500000        | 6          | 1972 | 661000000  | 34            | 1999 | 1.6E+09         | 226     |
| 1919 |                 |            | 1946 | 72500000        | 4          | 1973 | 702000000  | 39            | 2000 | 1.66E+09        | 203     |
| 1920 |                 |            | 1947 | 85800000        | 4          | 1974 | 703200000  | 49            | 2001 | 1.75E+09        | 200     |
| 1921 |                 |            | 1948 | 102000000       | 13         | 1975 | 702200000  | 53            | 2002 | 1.85E+09        | 219     |
| 1922 |                 |            | 1949 | 115000000       | 12         | 1976 | 735400000  | 65            | 2003 | 2.02E+09        | 211     |
| 1923 |                 |            | 1950 | 133000000       | 11         | 1977 | 797100000  | 68            | 2004 | 2.19E+09        | 228     |
| 1924 |                 |            | 1951 | 149000000       | 5          | 1978 | 853000000  | 77            | 2005 | 2.35E+09        | 207     |
| 1925 |                 |            | 1952 | 161000000       | 6          | 1979 | 872400000  | 39            | 2006 | 2.55E+09        | 209     |
| 1926 | 62400000        | 11         | 1953 | 178000000       | 12         | 1980 | 883100000  | 66            | 2007 | 2.77E+09        | 197     |

**Table A3.39** Hydraulic Cement<sup>48</sup> Activity<sup>49</sup> and Patents<sup>50</sup>

Table A3.40. Correlation Eq.(A1.1) terms calculated from Table A3.39 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 5.573E+10 | 5777  | 7.39E+19           | 867369             | 7.71E+12 | 3.604E+19 | 460372.3 | 3.79E+12 | 0.929922 | 86.4755           |



Figure A3.82. Hydraulic Cement Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>48</sup> Portland, natural, masonry, and slag or pozzolanic cement [78].

<sup>&</sup>lt;sup>49</sup> Activity represents world production of hydraulic cement, defined at usgs.gov as "...recorded from the MYB [*Minerals Yearbook*] and MR [*Minerals Resources of the United States*]. World production statistics were not available from 1900-1925" Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>50</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Hydraulic and cement were used as the keywords found in the patent title or abstract by year of publication.



**Figure A3.83**. **USGS World Hydraulic Cement Production.** World hydraulic cement production scaled in metric megatons with actual and best-fit curves and common pattern equation parameters.



Figure A3.84. EPO Worldwide Patent Search: Hydraulic Cement in Title or Abstract by date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.85. Hydraulic Cement Best-Fit activity and Patents. Illustrates best-fit origin shift.



Figure A3.86. Hydraulic Cement Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Vear  | v          | v        | Vear  | x          | v        | Vear | v          | v        | Vear  | v          | v             |
|-------|------------|----------|-------|------------|----------|------|------------|----------|-------|------------|---------------|
| I cai | (activity) | (natent) | 1 cai | (activity) | (natent) | Itai | (activity) | (natent) | I cai | (activity) | y<br>(natent) |
| 1900  | (uccivity) | (parent) | 1927  | (uteritig) | (parent) | 1954 | (ucurrey)  | (parent) | 1981  | 12000      | 443           |
| 1901  |            |          | 1928  |            |          | 1955 |            |          | 1982  | 12300      | 452           |
| 1902  |            |          | 1929  |            |          | 1956 |            |          | 1983  | 12500      | 466           |
| 1903  |            |          | 1930  |            |          | 1957 |            |          | 1984  | 12400      | 387           |
| 1904  |            |          | 1931  |            |          | 1958 |            |          | 1985  | 12800      | 482           |
| 1905  |            |          | 1932  |            |          | 1959 |            |          | 1986  | 13000      | 496           |
| 1906  |            |          | 1933  |            |          | 1960 | 3030       | 143      | 1987  | 12700      | 490           |
| 1907  |            |          | 1934  |            |          | 1961 | 3360       | 147      | 1988  | 14900      | 587           |
| 1908  |            |          | 1935  |            |          | 1962 | 3410       | 131      | 1989  | 16300      | 642           |
| 1909  |            |          | 1936  |            |          | 1963 | 3580       | 171      | 1990  | 16000      | 643           |
| 1910  |            |          | 1937  |            |          | 1964 | 4190       | 207      | 1991  | 17300      | 538           |
| 1911  |            |          | 1938  |            |          | 1965 | 4480       | 254      | 1992  | 16500      | 626           |
| 1912  |            |          | 1939  |            |          | 1966 | 5560       | 177      | 1993  | 16100      | 602           |
| 1913  |            |          | 1940  |            |          | 1967 | 5250       | 232      | 1994  | 14300      | 654           |
| 1914  |            |          | 1941  |            |          | 1968 | 5290       | 195      | 1995  | 13400      | 669           |
| 1915  |            |          | 1942  |            |          | 1969 | 7070       | 188      | 1996  | 14100      | 681           |
| 1916  |            |          | 1943  |            |          | 1970 | 8260       | 211      | 1997  | 15700      | 689           |
| 1917  |            |          | 1944  |            |          | 1971 | 9360       | 167      | 1998  | 18600      | 795           |
| 1918  |            |          | 1945  |            |          | 1972 | 9740       | 228      | 1999  | 18400      | 701           |
| 1919  |            |          | 1946  |            |          | 1973 | 10900      | 209      | 2000  | 19500      | 823           |
| 1920  |            |          | 1947  |            |          | 1974 | 10400      | 184      | 2001  | 20700      | 679           |
| 1921  |            |          | 1948  |            |          | 1975 | 10800      | 205      | 2002  | 21000      | 779           |
| 1922  |            |          | 1949  |            |          | 1976 | 11000      | 265      | 2003  | 24600      | 858           |
| 1923  |            |          | 1950  |            |          | 1977 | 10300      | 296      | 2004  | 24800      | 732           |
| 1924  |            |          | 1951  |            |          | 1978 | 10400      | 282      | 2005  | 26500      | 773           |
| 1925  |            |          | 1952  |            |          | 1979 | 11100      | 242      | 2006  | 26700      | 719           |
| 1926  |            |          | 1953  |            |          | 1980 | 11600      | 482      | 2007  | 25700      | 738           |

**Table A3.41** Iodine Activity<sup>51</sup> and Patents<sup>52</sup>

<sup>&</sup>lt;sup>51</sup> Activity represents world production of iodine, defined at usgs.gov as "World production data for the years 1960-75, are reported in the mine production table of the CDS [*Commodity Data Summaries*]. Data for the years 1976 to the most recent are reported in the world production table of the MYB [*Minerals Yearbook*]. Excludes production in the U.S. in 2006." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>52</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Iodine was

<sup>&</sup>lt;sup>32</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Iodine was used as a keyword found in the patent title or abstract by year of publication.

| Sum x  | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|--------|-------|--------------------|--------------------|----------|-----------|---------|----------|----------|-------------------|
| 614500 | 21168 | 1.01E+10           | 12351438           | 3.46E+08 | 2.228E+09 | 3016350 | 74640680 | 0.910526 | 82.90567          |

Table A3.42. Correlation Eq.(A1.1) terms calculated from Table A3.41 data.



Figure A3.87. Iodine Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



Figure A3.88. USGS World Iodine Production. World iodine production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.89. EPO Worldwide Patent Search: Iodine in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.90. Iodine Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.91. Iodine Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

|      | 1          | 1    | 1    | 1          | 1        |      |            | 1      | 1    | 1          | 1      |
|------|------------|------|------|------------|----------|------|------------|--------|------|------------|--------|
| Year | х          | У    | Year | х          | У        | Year | х          | У      | Yr.  | х          | У      |
|      | (activity) | pat. |      | (activity) | (patent) |      | (activity) | (pat.) |      | (activity) | (pat.) |
| 1900 |            |      | 1927 | 171000000  | 922      | 1954 | 405000000  | 954    | 1981 | 858000000  | 6201   |
| 1901 |            |      | 1928 | 174000000  | 909      | 1955 | 369000000  | 1088   | 1982 | 781000000  | 7271   |
| 1902 |            |      | 1929 | 201000000  | 964      | 1956 | 395000000  | 1320   | 1983 | 74000000   | 7605   |
| 1903 |            |      | 1930 | 179000000  | 1130     | 1957 | 434000000  | 1215   | 1984 | 829000000  | 7745   |
| 1904 | 95500000   | 717  | 1931 | 119000000  | 1281     | 1958 | 405000000  | 1123   | 1985 | 861000000  | 8070   |
| 1905 | 116000000  | 662  | 1932 | 76200000   | 1121     | 1959 | 439000000  | 1103   | 1986 | 864000000  | 8961   |
| 1906 | 10000000   | 590  | 1933 | 91200000   | 964      | 1960 | 522000000  | 1525   | 1987 | 903000000  | 8758   |
| 1907 | 135000000  | 598  | 1934 | 12000000   | 910      | 1961 | 503000000  | 1341   | 1988 | 967000000  | 9147   |
| 1908 | 10900000   | 580  | 1935 | 138000000  | 965      | 1962 | 508000000  | 1337   | 1989 | 1.01E+09   | 10130  |
| 1909 | 126000000  | 548  | 1936 | 17000000   | 876      | 1963 | 523000000  | 1466   | 1990 | 983000000  | 9728   |
| 1910 | 142000000  | 521  | 1937 | 212000000  | 912      | 1964 | 583000000  | 1469   | 1991 | 956000000  | 9348   |
| 1911 | 133000000  | 474  | 1938 | 162000000  | 999      | 1965 | 621000000  | 1741   | 1992 | 925000000  | 10660  |
| 1912 | 151000000  | 464  | 1939 | 204000000  | 828      | 1966 | 636000000  | 1482   | 1993 | 953000000  | 9741   |
| 1913 | 177000000  | 555  | 1940 | 204000000  | 698      | 1967 | 623000000  | 1837   | 1994 | 992000000  | 9994   |
| 1914 | 118000000  | 442  | 1941 | 220000000  | 493      | 1968 | 679000000  | 1772   | 1995 | 1.03E+09   | 9689   |
| 1915 | 116000000  | 351  | 1942 | 235000000  | 434      | 1969 | 713000000  | 1638   | 1996 | 1.02E+09   | 9529   |
| 1916 | 139000000  | 256  | 1943 | 231000000  | 368      | 1970 | 769000000  | 2067   | 1997 | 1.07E+09   | 9576   |
| 1917 | 142000000  | 265  | 1944 | 203000000  | 376      | 1971 | 787000000  | 2198   | 1998 | 1.05E+09   | 10732  |
| 1918 | 127000000  | 288  | 1945 | 162000000  | 445      | 1972 | 778000000  | 2446   | 1999 | 1.02E+09   | 10700  |
| 1919 | 110000000  | 433  | 1946 | 154000000  | 455      | 1973 | 846000000  | 2341   | 2000 | 1.07E+09   | 11910  |
| 1920 | 124000000  | 550  | 1947 | 187000000  | 535      | 1974 | 898000000  | 2283   | 2001 | 1.04E+09   | 11425  |
| 1921 | 73000000   | 746  | 1948 | 219000000  | 821      | 1975 | 902000000  | 2528   | 2002 | 1.1E+09    | 12041  |
| 1922 | 104000000  | 723  | 1949 | 223000000  | 904      | 1976 | 899000000  | 2790   | 2003 | 1.21E+09   | 11430  |
| 1923 | 136000000  | 710  | 1950 | 251000000  | 680      | 1977 | 841000000  | 3792   | 2004 | 1.36E+09   | 11736  |
| 1924 | 130000000  | 699  | 1951 | 294000000  | 769      | 1978 | 847000000  | 4042   | 2005 | 1.54E+09   | 11190  |
| 1925 | 151000000  | 823  | 1952 | 297000000  | 1106     | 1979 | 903000000  | 4149   | 2006 | 1.82E+09   | 11033  |
| 1926 | 155000000  | 800  | 1953 | 338000000  | 732      | 1980 | 891000000  | 6089   | 2007 | 2.03E+09   | 11840  |

**Table A3.43** Iron Activity<sup>53</sup> and Patents<sup>54</sup>

Table A3.44. Correlation Eq.(A1.1) terms calculated from Table A3.43 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 5.485E+10 | 357718 | 4.74E+19           | 2.87E+09           | 3.41E+14 | 1.852E+19 | 1.64E+09 | 1.52E+14 | 0.874126 | 76.40968          |



Figure A3.92. Iron Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>53</sup> Activity represents world production of iron, defined at usgs.gov as "...the world production of iron ore, iron ore concentrates, and iron ore agglomerates. For the years 1913–22, world production is reported as "production in principal countries." A graph of the time series for world production gives a smooth curve when the category name changes, indicating that major producers were included. World production data were recorded from the MR [*Minerals Resources of the United States*] and the MYB [*Minerals Yearbook*]. "Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>54</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Iron of Fe were

<sup>&</sup>lt;sup>34</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Iron of Fe were used as keyword founds in the patent title or abstract by year of publication.



**Figure A3.93**. **USGS World Iron Production.** World iron production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.94. EPO Worldwide Patent Search: Iron or Fe in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.95. Iron Best-Fit Activity and Patents. Illustrates best-fit origin shift.



**Figure A3.96. Iron Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 | 73000      | 3        | 1981 | 330000     | 120      |
| 1901 |            |          | 1928 | 2300       | 0        | 1955 | 38000      | 0        | 1982 | 290000     | 132      |
| 1902 |            |          | 1929 | 3700       | 0        | 1956 | 58000      | 1        | 1983 | 240000     | 140      |
| 1903 |            |          | 1930 | 8800       | 1        | 1957 | 82000      | 1        | 1984 | 280000     | 122      |
| 1904 |            |          | 1931 | 3500       | 1        | 1958 | 76000      | 4        | 1985 | 340000     | 114      |
| 1905 |            |          | 1932 | 5700       | 0        | 1959 | 77000      | 3        | 1986 | 300000     | 114      |
| 1906 |            |          | 1933 | 4500       | 1        | 1960 | 95000      | 3        | 1987 | 340000     | 121      |
| 1907 |            |          | 1934 | 9700       | 0        | 1961 | 130000     | 3        | 1988 | 380000     | 133      |
| 1908 |            |          | 1935 | 20000      | 0        | 1962 | 130000     | 3        | 1989 | 410000     | 154      |
| 1909 |            |          | 1936 | 25000      | 1        | 1963 | 120000     | 8        | 1990 | 400000     | 137      |
| 1910 |            |          | 1937 | 27000      | 0        | 1964 | 120000     | 7        | 1991 | 310000     | 146      |
| 1911 |            |          | 1938 | 29000      | 1        | 1965 | 120000     | 8        | 1992 | 320000     | 142      |
| 1912 |            |          | 1939 | 15000      | 0        | 1966 | 130000     | 11       | 1993 | 270000     | 118      |
| 1913 |            |          | 1940 | 13000      | 0        | 1967 | 130000     | 7        | 1994 | 280000     | 147      |
| 1914 |            |          | 1941 | 22000      | 3        | 1968 | 120000     | 4        | 1995 | 280000     | 150      |
| 1915 |            |          | 1942 | 25000      | 1        | 1969 | 140000     | 6        | 1996 | 300000     | 163      |
| 1916 |            |          | 1943 | 23000      | 0        | 1970 | 200000     | 10       | 1997 | 350000     | 152      |
| 1917 |            |          | 1944 | 15000      | 1        | 1971 | 190000     | 6        | 1998 | 460000     | 170      |
| 1918 |            |          | 1945 | 15000      | 1        | 1972 | 180000     | 13       | 1999 | 360000     | 207      |
| 1919 |            |          | 1946 | 23000      | 4        | 1973 | 200000     | 12       | 2000 | 406000     | 209      |
| 1920 |            |          | 1947 | 43000      | 0        | 1974 | 180000     | 13       | 2001 | 424000     | 201      |
| 1921 |            |          | 1948 | 46000      | 0        | 1975 | 190000     | 33       | 2002 | 391000     | 182      |
| 1922 |            |          | 1949 | 61000      | 2        | 1976 | 230000     | 33       | 2003 | 386000     | 202      |
| 1923 |            |          | 1950 | 58000      | 2        | 1977 | 250000     | 29       | 2004 | 456000     | 211      |
| 1924 |            |          | 1951 | 73000      | 0        | 1978 | 240000     | 43       | 2005 | 450000     | 189      |
| 1925 |            |          | 1952 | 67000      | 2        | 1979 | 290000     | 69       | 2006 | 444000     | 176      |
| 1926 |            |          | 1953 | 47000      | 2        | 1980 | 350000     | 123      | 2007 | 443000     | 170      |

| Table A3.45 Kyanite | Activity <sup>56</sup> and Patents <sup>5</sup> | / |
|---------------------|-------------------------------------------------|---|
|---------------------|-------------------------------------------------|---|

<sup>&</sup>lt;sup>55</sup> Includes synthetic mullite and kyanite [78].

<sup>&</sup>lt;sup>56</sup> Activity represents world production of kyanite, defined at usgs.gov as "...data for the years 1928-60 are from the "World Production" table in the 1960 MYB [*Minerals Yearbook*]. World production data for the years 1961–70 were from the "World Mine Production" table in the CDS. World production for the years 1971–2002 were from the MCS[*Mineral Commodity Summaries*]. Data for the years 2003 to the most recent are unpublished revisions made by the Commodity Specialist." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>57</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Kyanite or aluminum silicate were used as keywords found in the patent title or abstract by year of publication.

Table A3.46. Correlation Eq.(A1.1) terms calculated from Table A3.45 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r       | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|----------|-----------|----------|----------|---------|-------------------|
| 14464200 | 4701  | 4.36E+12           | 712065             | 1.66E+09 | 1.748E+12 | 435822.5 | 8.07E+08 | 0.92419 | 85.4127           |



Figure A3.97. Kyanite Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.98. USGS World Kyanite Production.** World kyanite production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



**Figure A3.99. EPO Worldwide Patent Search: Kyanite or Aluminum Silicate in Title or Abstract by Date of Publication.** Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.100. Kyanite Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.101. Kyanite Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | У        | Year | х          | У        | Year | X          | У        | Year | х          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 749000     | 231      | 1927 | 1540000    | 594      | 1954 | 2000000    | 796      | 1981 | 3350000    | 5204     |
| 1901 | 800000     | 220      | 1928 | 1680000    | 595      | 1955 | 2010000    | 839      | 1982 | 3450000    | 6114     |
| 1902 | 850000     | 250      | 1929 | 1610000    | 605      | 1956 | 2400000    | 982      | 1983 | 3350000    | 6262     |
| 1903 | 900000     | 340      | 1930 | 1520000    | 793      | 1957 | 2380000    | 1093     | 1984 | 3200000    | 7004     |
| 1904 | 950000     | 307      | 1931 | 1260000    | 792      | 1958 | 2350000    | 919      | 1985 | 3390000    | 7531     |
| 1905 | 1000000    | 294      | 1932 | 1050000    | 785      | 1959 | 2320000    | 955      | 1986 | 3240000    | 8034     |
| 1906 | 1040000    | 283      | 1933 | 1040000    | 687      | 1960 | 2390000    | 1342     | 1987 | 3430000    | 7876     |
| 1907 | 993000     | 334      | 1934 | 1200000    | 679      | 1961 | 2390000    | 1173     | 1988 | 3420000    | 8485     |
| 1908 | 1280000    | 281      | 1935 | 1380000    | 691      | 1962 | 2510000    | 1174     | 1989 | 3400000    | 10449    |
| 1909 | 1060000    | 272      | 1936 | 1470000    | 746      | 1963 | 2560000    | 1228     | 1990 | 3370000    | 10534    |
| 1910 | 1100000    | 297      | 1937 | 1590000    | 720      | 1964 | 2530000    | 1305     | 1991 | 3260000    | 10354    |
| 1911 | 1110000    | 324      | 1938 | 1700000    | 824      | 1965 | 2700000    | 1535     | 1992 | 3200000    | 11860    |
| 1912 | 1160000    | 310      | 1939 | 1740000    | 687      | 1966 | 2850000    | 1212     | 1993 | 2900000    | 10598    |
| 1913 | 1150000    | 342      | 1940 | 1700000    | 631      | 1967 | 2870000    | 1447     | 1994 | 2800000    | 10758    |
| 1914 | 1100000    | 290      | 1941 | 1600000    | 467      | 1968 | 3010000    | 1396     | 1995 | 2710000    | 9998     |
| 1915 | 1000000    | 243      | 1942 | 1500000    | 409      | 1969 | 3240000    | 1380     | 1996 | 2920000    | 9867     |
| 1916 | 950000     | 184      | 1943 | 1400000    | 383      | 1970 | 3390000    | 1580     | 1997 | 3100000    | 9596     |
| 1917 | 900000     | 178      | 1944 | 1300000    | 314      | 1971 | 3490000    | 1700     | 1998 | 3060000    | 10648    |
| 1918 | 800000     | 169      | 1945 | 1250000    | 375      | 1972 | 3450000    | 2118     | 1999 | 3080000    | 10770    |
| 1919 | 764000     | 294      | 1946 | 1030000    | 438      | 1973 | 3490000    | 2027     | 2000 | 3200000    | 11815    |
| 1920 | 804000     | 323      | 1947 | 1310000    | 575      | 1974 | 3490000    | 1824     | 2001 | 3120000    | 11672    |
| 1921 | 783000     | 452      | 1948 | 1380000    | 791      | 1975 | 3440000    | 1917     | 2002 | 2850000    | 12153    |
| 1922 | 972000     | 428      | 1949 | 1370000    | 782      | 1976 | 3690000    | 2179     | 2003 | 3150000    | 11756    |
| 1923 | 1080000    | 464      | 1950 | 1640000    | 601      | 1977 | 3410000    | 2817     | 2004 | 3200000    | 11619    |
| 1924 | 1220000    | 489      | 1951 | 1600000    | 663      | 1978 | 3460000    | 2986     | 2005 | 3520000    | 11626    |
| 1925 | 1410000    | 549      | 1952 | 1810000    | 888      | 1979 | 3510000    | 3674     | 2006 | 3650000    | 11748    |
| 1926 | 1470000    | 554      | 1953 | 1870000    | 680      | 1980 | 3520000    | 5202     | 2007 | 3770000    | 12083    |

Table A3.47 Lead Activity<sup>58</sup> and Patents<sup>59</sup>

Table A3.48. Correlation Eq.(A1.1) terms calculated from Table A3.47 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 232875000 | 339111 | 6.09E+14           | 2.86E+09           | 1.04E+12 | 1.064E+14 | 1.79E+09 | 3.06E+11 | 0.701272 | 49.17827          |



Figure A3.102. Lead Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>58</sup> Activity represents world production of lead, defined at usgs.gov as "...contained lead in world smelter production for the years 1900–54 and for world mine production for the years 1955–98. Data were from the MYB and MR for the years 1900–73 and the MCS for the years 1974 to the most recent. World production data were for contained lead in world smelter production originating from ores and may include secondary lead when inseparable. Blank cells in the worksheet indicate that data were not available for the years 1901–05, 1914–18, 1926, 1937, and 1940–44." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>59</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Lead or Pb were used as keywords found in the patent title or abstract by year of publication.



Figure A3.103. USGS World Lead Production. World lead production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.104. EPO Worldwide Patent Search: Lead or Pb in Title or Abstract by Date of Publication. Bestfit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.105. Lead Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.106. Lead Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | У        | Year | х          | У        | Year | X          | у        | Year | х          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 5260       | 15       | 1954 | 93200      | 174      | 1981 | 90200      | 1025     |
| 1901 |            |          | 1928 | 5970       | 20       | 1955 | 86000      | 193      | 1982 | 83600      | 1230     |
| 1902 |            |          | 1929 | 3140       | 19       | 1956 | 105000     | 268      | 1983 | 93700      | 1332     |
| 1903 |            |          | 1930 | 3030       | 25       | 1957 | 111000     | 265      | 1984 | 108000     | 1335     |
| 1904 |            |          | 1931 | 679        | 50       | 1958 | 87800      | 288      | 1985 | 122000     | 1427     |
| 1905 |            |          | 1932 | 690        | 40       | 1959 | 62400      | 296      | 1986 | 132000     | 1496     |
| 1906 |            |          | 1933 | 738        | 50       | 1960 | 87100      | 427      | 1987 | 139000     | 1450     |
| 1907 |            |          | 1934 | 1200       | 42       | 1961 | 57200      | 392      | 1988 | 154000     | 1499     |
| 1908 |            |          | 1935 | 1540       | 55       | 1962 | 47300      | 401      | 1989 | 173000     | 1690     |
| 1909 |            |          | 1936 | 2060       | 34       | 1963 | 49500      | 372      | 1990 | 163000     | 1664     |
| 1910 |            |          | 1937 | 3280       | 32       | 1964 | 64000      | 418      | 1991 | 149000     | 1660     |
| 1911 |            |          | 1938 | 2510       | 43       | 1965 | 68500      | 507      | 1992 | 156000     | 1824     |
| 1912 |            |          | 1939 | 3060       | 51       | 1966 | 3450       | 407      | 1993 | 127000     | 1761     |
| 1913 |            |          | 1940 | 3440       | 56       | 1967 | 7590       | 482      | 1994 | 128000     | 1954     |
| 1914 |            |          | 1941 | 4400       | 36       | 1968 | 63700      | 469      | 1995 | 177000     | 2078     |
| 1915 |            |          | 1942 | 6990       | 17       | 1969 | 68000      | 459      | 1996 | 214000     | 2196     |
| 1916 |            |          | 1943 | 9180       | 19       | 1970 | 73100      | 553      | 1997 | 213000     | 2504     |
| 1917 |            |          | 1944 | 15600      | 20       | 1971 | 73400      | 524      | 1998 | 178000     | 3181     |
| 1918 |            |          | 1945 | 2830       | 28       | 1972 | 19700      | 605      | 1999 | 188000     | 3389     |
| 1919 |            |          | 1946 | 4540       | 43       | 1973 | 79300      | 521      | 2000 | 204000     | 4013     |
| 1920 |            |          | 1947 | 5350       | 69       | 1974 | 113000     | 525      | 2001 | 210000     | 4197     |
| 1921 |            |          | 1948 | 4540       | 99       | 1975 | 122000     | 570      | 2002 | 219000     | 4578     |
| 1922 |            |          | 1949 | 6270       | 77       | 1976 | 75000      | 655      | 2003 | 252000     | 4450     |
| 1923 |            |          | 1950 | 18000      | 92       | 1977 | 74300      | 611      | 2004 | 262000     | 4468     |
| 1924 |            |          | 1951 | 25200      | 94       | 1978 | 81900      | 687      | 2005 | 345000     | 4514     |
| 1925 | 3730       | 13       | 1952 | 25500      | 158      | 1979 | 76000      | 580      | 2006 | 395000     | 4987     |
| 1926 | 4530       | 17       | 1953 | 57800      | 155      | 1980 | 92800      | 945      | 2007 | 388000     | 5149     |

| Table A3.49 Lithium A | ctivity <sup>60</sup> and Patents <sup>61</sup> |
|-----------------------|-------------------------------------------------|
|-----------------------|-------------------------------------------------|

<sup>&</sup>lt;sup>60</sup> Activity represents world production of lithium, defined at usgs.gov as "...data are in gross tons of lithium minerals and brine. Since 1967, lithium production was reported as ore and ore concentrates from mines and lithium carbonate from brine deposits. World production data for the years 1966–67 do not include data 4 from Rhodesia (Zimbabwe) and some other African countries. Zimbabwe was by far the largest producer at the time. After 1954, world production does not include U.S. production. Data were not available for the years 1900–24." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>61</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Lithium or Li were used as keywords found in the patent title or abstract by year of publication.

Table A3.50. Correlation Eq.(A1.1) terms calculated from Table A3.49 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 7236797 | 85114 | 1.29E+12           | 2.43E+08           | 1.69E+10 | 6.635E+11 | 1.56E+08 | 9.43E+09 | 0.927197 | 85.96949          |



Figure A3.107. Lithium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.108. USGS World Lithium Production.** World lithium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



**Figure A3.109. EPO Worldwide Patent Search: Lithium or Li in Title or Abstract by Date of Publication.** Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.110. Lithium Best-Fit Activity and Patents. Illustrates best-fit origin shift.





| Year | X<br>(activity) | y (notont) | Year | X<br>(activity) | y (notont) | Year | X<br>(activity) | y<br>(notont) | Year | X<br>(activity) | У   |
|------|-----------------|------------|------|-----------------|------------|------|-----------------|---------------|------|-----------------|-----|
| 1000 | (activity)      | (patent)   | 1027 | (activity)      | (patent)   | 1054 | (activity)      | (patent)      | 1001 | (activity)      | 97  |
| 1900 |                 |            | 1927 | 833000          | 29         | 1954 | 1020000         | 80            | 1981 | 11300000        | 80  |
| 1901 |                 |            | 1928 | 827000          | 31         | 1955 | 1930000         | 85            | 1982 | 11400000        | 80  |
| 1902 |                 |            | 1929 | 1060000         | 36         | 1956 | 2360000         | 112           | 1983 | 11300000        | 137 |
| 1903 |                 |            | 1930 | 834000          | 59         | 1957 | 2470000         | 120           | 1984 | 11800000        | 100 |
| 1904 |                 |            | 1931 | 691000          | 73         | 1958 | 2330000         | 122           | 1985 | 12200000        | 105 |
| 1905 |                 |            | 1932 | 697000          | 59         | 1959 | 3740000         | 105           | 1986 | 12300000        | 140 |
| 1906 |                 |            | 1933 | 883000          | 49         | 1960 | 6820000         | 123           | 1987 | 12000000        | 125 |
| 1907 |                 |            | 1934 | 1160000         | 51         | 1961 | 7250000         | 79            | 1988 | 12000000        | 131 |
| 1908 |                 |            | 1935 | 1440000         | 61         | 1962 | 7440000         | 84            | 1989 | 12000000        | 155 |
| 1909 |                 |            | 1936 | 1590000         | 58         | 1963 | 8980000         | 81            | 1990 | 10500000        | 147 |
| 1910 |                 |            | 1937 | 2000000         | 58         | 1964 | 9540000         | 93            | 1991 | 9790000         | 159 |
| 1911 |                 |            | 1938 | 1700000         | 68         | 1965 | 10000000        | 109           | 1992 | 10200000        | 152 |
| 1912 |                 |            | 1939 | 2000000         | 47         | 1966 | 10100000        | 67            | 1993 | 8280000         | 164 |
| 1913 | 556000          | 11         | 1940 | 2000000         | 52         | 1967 | 10200000        | 91            | 1994 | 9020000         | 151 |
| 1914 | 434000          | 9          | 1941 | 2000000         | 44         | 1968 | 10700000        | 62            | 1995 | 10600000        | 195 |
| 1915 | 307000          | 10         | 1942 | 2300000         | 36         | 1969 | 9630000         | 76            | 1996 | 11000000        | 159 |
| 1916 | 599000          | 8          | 1943 | 2400000         | 30         | 1970 | 8720000         | 87            | 1997 | 10100000        | 160 |
| 1917 | 753000          | 5          | 1944 | 2000000         | 21         | 1971 | 8970000         | 65            | 1998 | 11400000        | 200 |
| 1918 | 364000          | 6          | 1945 | 1200000         | 31         | 1972 | 8830000         | 86            | 1999 | 9830000         | 234 |
| 1919 | 284000          | 9          | 1946 | 1200000         | 41         | 1973 | 9070000         | 77            | 2000 | 12700000        | 227 |
| 1920 | 576000          | 16         | 1947 | 1600000         | 42         | 1974 | 9870000         | 86            | 2001 | 11100000        | 210 |
| 1921 | 384000          | 19         | 1948 | 2400000         | 62         | 1975 | 9640000         | 108           | 2002 | 14100000        | 190 |
| 1922 | 536000          | 25         | 1949 | 2700000         | 59         | 1976 | 9070000         | 115           | 2003 | 14100000        | 237 |
| 1923 | 514000          | 22         | 1950 | 1330000         | 59         | 1977 | 9960000         | 103           | 2004 | 16500000        | 233 |
| 1924 | 491000          | 20         | 1951 | 1650000         | 53         | 1978 | 10200000        | 96            | 2005 | 15100000        | 254 |
| 1925 | 716000          | 20         | 1952 | 1520000         | 70         | 1979 | 10900000        | 70            | 2006 | 15000000        | 216 |
| 1926 | 716000          | 29         | 1953 | 1780000         | 58         | 1980 | 11500000        | 105           | 2007 | 15200000        | 246 |

**Table A3.51** Magnesite<sup>62</sup> Activity<sup>63</sup> and Patents<sup>64</sup>

Table A3.52. Correlation Eq.(A1.1) terms calculated from Table A3.51 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy  | Sxx       | Syy      | Sxy      | r       | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|---------|-----------|----------|----------|---------|-------------------|
| 81715000 | 8632  | 5.91E+15           | 1160874            | 7.7E+10 | 2.353E+15 | 376543.2 | 2.41E+10 | 0.81084 | 65.7462           |



Figure A3.112. Magnesite Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

581

 <sup>&</sup>lt;sup>62</sup> Magnesium carbonate.
 <sup>63</sup> Activity represents world production of magnesite, defined at usgs.gov as "...metric tons gross weight of magnesite (magnesium carbonate)
 <sup>64</sup> Activity represents world production of magnesite, defined at usgs.gov as "...metric tons gross weight of magnesite (magnesium carbonate) produced. Data were from the MR [Mineral Resources of the United States] and the MYB [Minerals Yearbook]. Blank cells for the years 1900-12 in the worksheet indicate that data were not available." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

and carbonate were used as the keywords found in the patent title or abstract by year of publication.



**Figure A3.113**. **USGS World Magnesite Production.** World magnesite production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.114. EPO Worldwide Patent Search: Magnesium and Carbonate in title or Abstract by Date of **Publication**. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.115. Magnesite Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.116. Magnesite Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | y (mathematic | Year | X<br>(     | y        | Year | X          | y<br>(material) | Year | X          | y<br>(material) |
|------|------------|---------------|------|------------|----------|------|------------|-----------------|------|------------|-----------------|
|      | (activity) | (patent)      |      | (activity) | (patent) |      | (activity) | (patent)        |      | (activity) | (patent)        |
| 1900 |            |               | 1927 |            |          | 1954 | 119000     | 524             | 1981 | 308000     | 2253            |
| 1901 |            |               | 1928 |            |          | 1955 | 121000     | 602             | 1982 | 254000     | 2491            |
| 1902 |            |               | 1929 |            |          | 1956 | 103000     | 697             | 1983 | 260000     | 2604            |
| 1903 |            |               | 1930 |            |          | 1957 | 117000     | 728             | 1984 | 328000     | 2737            |
| 1904 |            |               | 1931 |            |          | 1958 | 71200      | 752             | 1985 | 325000     | 2881            |
| 1905 |            |               | 1932 |            |          | 1959 | 74700      | 731             | 1986 | 322000     | 3224            |
| 1906 |            |               | 1933 |            |          | 1960 | 92900      | 969             | 1987 | 324000     | 3142            |
| 1907 |            |               | 1934 |            |          | 1961 | 105000     | 859             | 1988 | 334000     | 3375            |
| 1908 |            |               | 1935 |            |          | 1962 | 134000     | 787             | 1989 | 344000     | 3832            |
| 1909 |            |               | 1936 |            |          | 1963 | 143000     | 858             | 1990 | 354000     | 3732            |
| 1910 |            |               | 1937 | 19600      | 431      | 1964 | 151000     | 947             | 1991 | 342000     | 3975            |
| 1911 |            |               | 1938 | 23900      | 529      | 1965 | 162000     | 1022            | 1992 | 295000     | 4133            |
| 1912 |            |               | 1939 | 29400      | 436      | 1966 | 163000     | 901             | 1993 | 269000     | 3901            |
| 1913 |            |               | 1940 | 37800      | 416      | 1967 | 185000     | 1090            | 1994 | 282000     | 4356            |
| 1914 |            |               | 1941 | 59800      | 365      | 1968 | 189000     | 1025            | 1995 | 395000     | 4331            |
| 1915 |            |               | 1942 | 105000     | 308      | 1969 | 198000     | 938             | 1996 | 378000     | 4300            |
| 1916 |            |               | 1943 | 238000     | 245      | 1970 | 220000     | 1107            | 1997 | 384000     | 4314            |
| 1917 |            |               | 1944 | 218000     | 232      | 1971 | 232000     | 1103            | 1998 | 396000     | 5485            |
| 1918 |            |               | 1945 | 62000      | 276      | 1972 | 234000     | 1324            | 1999 | 341000     | 6298            |
| 1919 |            |               | 1946 | 24000      | 253      | 1973 | 240000     | 1150            | 2000 | 422000     | 7313            |
| 1920 |            |               | 1947 | 32000      | 326      | 1974 | 130000     | 1009            | 2001 | 420000     | 6851            |
| 1921 |            |               | 1948 | 31000      | 450      | 1975 | 235000     | 1214            | 2002 | 432000     | 7207            |
| 1922 |            |               | 1949 | 34000      | 396      | 1976 | 249000     | 1319            | 2003 | 509000     | 7560            |
| 1923 |            |               | 1950 | 45600      | 330      | 1977 | 257000     | 1398            | 2004 | 595000     | 7770            |
| 1924 |            |               | 1951 | 82600      | 399      | 1978 | 288000     | 1780            | 2005 | 622000     | 7583            |
| 1925 |            |               | 1952 | 150000     | 514      | 1979 | 307000     | 1698            | 2006 | 689000     | 7695            |
| 1926 |            |               | 1953 | 153000     | 408      | 1980 | 316000     | 2339            | 2007 | 749000     | 7980            |

## **Table A3.53** Magnesium Activity<sup>65</sup> and Patents<sup>66</sup>

<sup>&</sup>lt;sup>65</sup> Activity represents world production of magnesium, defined at usgs.gov as "...primary magnesium produced. Data were from the MR [Minerals Resources of the United States] and the MYB [Minerals Yearbook]. Blank cells in the worksheet indicate that data were not available for the years 1915–36." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>66</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine  $\underline{esp@cenet}$ . Magnesium or

Mg were used as keywords found in the patent title or abstract by year of publication.

Table A3.54. Correlation Eq.(A1.1) terms calculated from Table A3.53 data.

| Sum x    | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 16855500 | 166508 | 5.84E+12           | 7.74E+08           | 6.36E+10 | 1.837E+12 | 3.84E+08 | 2.41E+10 | 0.907816 | 82.41297          |



Figure A3.117. Magnesium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.118. USGS World Magnesium Production.** World magnesium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.119. EPO Worldwide Patent Search: Magnesium or Mg in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.120. Magnesium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.121. Magnesium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 592000     | 38       | 1927 | 1430000    | 116      | 1954 | 4500000    | 261      | 1981 | 8400000    | 2258     |
| 1901 | 429000     | 25       | 1928 | 1280000    | 156      | 1955 | 4870000    | 310      | 1982 | 8580000    | 2589     |
| 1902 | 441000     | 45       | 1929 | 1580000    | 200      | 1956 | 5310000    | 410      | 1983 | 7780000    | 2587     |
| 1903 | 411000     | 51       | 1930 | 1590000    | 199      | 1957 | 5820000    | 406      | 1984 | 8600000    | 2599     |
| 1904 | 416000     | 49       | 1931 | 982000     | 247      | 1958 | 5580000    | 341      | 1985 | 8690000    | 2851     |
| 1905 | 481000     | 30       | 1932 | 559000     | 225      | 1959 | 5830000    | 386      | 1986 | 8830000    | 3190     |
| 1906 | 868000     | 50       | 1933 | 779000     | 206      | 1960 | 6120000    | 549      | 1987 | 8340000    | 3161     |
| 1907 | 1080000    | 42       | 1934 | 1310000    | 212      | 1961 | 6110000    | 463      | 1988 | 8650000    | 3325     |
| 1908 | 641000     | 40       | 1935 | 1800000    | 243      | 1962 | 6400000    | 448      | 1989 | 9250000    | 3684     |
| 1909 | 811000     | 43       | 1936 | 2340000    | 211      | 1963 | 6630000    | 491      | 1990 | 9080000    | 3774     |
| 1910 | 888000     | 45       | 1937 | 2740000    | 252      | 1964 | 7240000    | 478      | 1991 | 7600000    | 3671     |
| 1911 | 719000     | 48       | 1938 | 2380000    | 270      | 1965 | 7980000    | 569      | 1992 | 7260000    | 4360     |
| 1912 | 856000     | 53       | 1939 | 1110000    | 239      | 1966 | 8150000    | 520      | 1993 | 7070000    | 4245     |
| 1913 | 1040000    | 58       | 1940 | 2540000    | 174      | 1967 | 7510000    | 649      | 1994 | 6530000    | 4308     |
| 1914 | 840000     | 56       | 1941 | 2450000    | 168      | 1968 | 7800000    | 558      | 1995 | 7970000    | 4425     |
| 1915 | 636000     | 41       | 1942 | 2290000    | 114      | 1969 | 8420000    | 517      | 1996 | 8180000    | 4390     |
| 1916 | 850000     | 24       | 1943 | 1800000    | 112      | 1970 | 8200000    | 608      | 1997 | 7520000    | 4454     |
| 1917 | 864000     | 18       | 1944 | 1270000    | 102      | 1971 | 9070000    | 656      | 1998 | 7330000    | 4862     |
| 1918 | 934000     | 28       | 1945 | 1900000    | 107      | 1972 | 9080000    | 804      | 1999 | 6390000    | 4836     |
| 1919 | 550000     | 56       | 1946 | 1650000    | 162      | 1973 | 9740000    | 739      | 2000 | 6960000    | 5767     |
| 1920 | 754000     | 65       | 1947 | 1750000    | 163      | 1974 | 9270000    | 697      | 2001 | 7580000    | 5658     |
| 1921 | 523000     | 90       | 1948 | 1830000    | 223      | 1975 | 9810000    | 783      | 2002 | 7800000    | 6277     |
| 1922 | 535000     | 87       | 1949 | 2160000    | 229      | 1976 | 1000000    | 893      | 2003 | 8790000    | 5973     |
| 1923 | 731000     | 94       | 1950 | 2530000    | 161      | 1977 | 8690000    | 1006     | 2004 | 9900000    | 6080     |
| 1924 | 919000     | 99       | 1951 | 3180000    | 202      | 1978 | 8690000    | 1333     | 2005 | 11000000   | 5517     |
| 1925 | 1170000    | 98       | 1952 | 4440000    | 284      | 1979 | 9800000    | 1411     | 2006 | 12200000   | 5514     |
| 1926 | 1370000    | 83       | 1953 | 4940000    | 194      | 1980 | 9670000    | 2051     | 2007 | 12600000   | 6018     |

**Table A3.55** Manganese Activity<sup>67</sup> and Patents<sup>68</sup>

Table A3.56. Correlation Eq.(A1.1) terms calculated from Table A3.55 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 510129000 | 141337 | 3.8E+15            | 5.59E+08           | 1.16E+12 | 1.394E+15 | 3.74E+08 | 4.94E+11 | 0.683516 | 46.71938          |



Figure A3.122. Manganese Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>67</sup> Activity represents world production of manganese, defined at usgs.gov as "...contained manganese of world manganese mine production. For the period 1900–50, the reported values were calculated by multiplying gross weight (adjusted to metric tons) reported in Materials Survey— Manganese (U.S. Bureau of Mines and U.S. Geological Survey, 1952) by 0.45 (45 percent). The 45-percent-content estimate was used for consistency with what appears to have been used for the oldest years given in Mineral Facts and Problems. For the period 1951–63, the reported values were calculated by multiplying the gross weight (adjusted to metric tons) reported in MYB series by 0.45. For the period 1964–79, the reported values were taken directly from the values (adjusted to metric tons) reported in the MFP. For the years 1980 to the most recent, the reported values were taken directly from the values published in MYB world production table data series. In more recent years, the manganese content figure has been closer to 35 percent." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>68</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Manganese or Mn were used as keywords found in the patent title or abstract by year of publication.



Figure A3.123. USGS World Manganese production. World manganese production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.124. EPO Worldwide Patent Search: Manganese or Mn in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.125. Manganese Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.126. Manganese Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | v        | Year | Х          | v        | Year | X          | v        | Year | x          | v    |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | ·    |
| 1900 | 3150       | 82       | 1927 | 5170       | 216      | 1954 | 6180       | 277      | 1981 | 7270       | 757  |
| 1901 | 2960       | 80       | 1928 | 5140       | 212      | 1955 | 6380       | 310      | 1982 | 6820       | 896  |
| 1902 | 3800       | 61       | 1929 | 5610       | 256      | 1956 | 7620       | 350      | 1983 | 6230       | 919  |
| 1903 | 3640       | 104      | 1930 | 3760       | 333      | 1957 | 8260       | 342      | 1984 | 6740       | 921  |
| 1904 | 3350       | 140      | 1931 | 3420       | 396      | 1958 | 8490       | 285      | 1985 | 6140       | 1037 |
| 1905 | 3340       | 151      | 1932 | 2850       | 383      | 1959 | 7710       | 328      | 1986 | 7780       | 1020 |
| 1906 | 3860       | 147      | 1933 | 2060       | 349      | 1960 | 8340       | 429      | 1987 | 5530       | 890  |
| 1907 | 3310       | 118      | 1934 | 2650       | 371      | 1961 | 8260       | 380      | 1988 | 6840       | 904  |
| 1908 | 3300       | 125      | 1935 | 3460       | 366      | 1962 | 8430       | 364      | 1989 | 6750       | 953  |
| 1909 | 3230       | 112      | 1936 | 4270       | 343      | 1963 | 8260       | 401      | 1990 | 4100       | 893  |
| 1910 | 3690       | 129      | 1937 | 4590       | 362      | 1964 | 8800       | 445      | 1991 | 2540       | 894  |
| 1911 | 4250       | 137      | 1938 | 5170       | 463      | 1965 | 9230       | 458      | 1992 | 1960       | 942  |
| 1912 | 4160       | 136      | 1939 | 4830       | 299      | 1966 | 9140       | 439      | 1993 | 1730       | 922  |
| 1913 | 4050       | 142      | 1940 | 7130       | 280      | 1967 | 8000       | 516      | 1994 | 1960       | 911  |
| 1914 | 3740       | 110      | 1941 | 9170       | 194      | 1968 | 8950       | 502      | 1995 | 3190       | 880  |
| 1915 | 3890       | 100      | 1942 | 8990       | 165      | 1969 | 9970       | 447      | 1996 | 2560       | 797  |
| 1916 | 3500       | 67       | 1943 | 7870       | 138      | 1970 | 9790       | 505      | 1997 | 2410       | 887  |
| 1917 | 3970       | 51       | 1944 | 5330       | 108      | 1971 | 10400      | 475      | 1998 | 1580       | 1009 |
| 1918 | 3420       | 50       | 1945 | 4180       | 131      | 1972 | 9620       | 571      | 1999 | 1320       | 955  |
| 1919 | 3100       | 80       | 1946 | 4960       | 134      | 1973 | 9250       | 552      | 2000 | 1360       | 1000 |
| 1920 | 2910       | 118      | 1947 | 5360       | 184      | 1974 | 8880       | 526      | 2001 | 1500       | 901  |
| 1921 | 2130       | 140      | 1948 | 3260       | 276      | 1975 | 8700       | 554      | 2002 | 1490       | 1061 |
| 1922 | 3170       | 156      | 1949 | 4160       | 255      | 1976 | 8090       | 583      | 2003 | 1730       | 1068 |
| 1923 | 3210       | 161      | 1950 | 4940       | 192      | 1977 | 6580       | 590      | 2004 | 1900       | 1076 |
| 1924 | 3070       | 134      | 1951 | 5060       | 232      | 1978 | 6250       | 642      | 2005 | 1520       | 1111 |
| 1925 | 3560       | 202      | 1952 | 5190       | 296      | 1979 | 6010       | 554      | 2006 | 1150       | 1151 |
| 1926 | 4000       | 190      | 1953 | 5510       | 243      | 1980 | 6810       | 756      | 2007 | 1170       | 1157 |

**Table A3.57** Mercury Activity<sup>69</sup> and Patents<sup>70</sup>

<sup>&</sup>lt;sup>69</sup> Activity represents world production of mercury, defined at usgs.gov as "...from the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]. Mercury production data for the United States, primarily as a byproduct of gold, copper, and zinc mining, were withheld from world mine production data for the years 1993–97 and were not available for the years 1998 to the most recent." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>70</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Mercury or Hg were used as the keywords found in the patent title or abstract by year of publication.

 Table A3.58. Correlation Eq.(A1.1) terms calculated from Table A3.51 data.

| Sum x  | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy        | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|--------|-------|--------------------|--------------------|---------------|-----------|----------|----------|----------|-------------------|
| 545520 | 48893 | 3.43E+09           | 33904655           | 2.3702068E+08 | 672858667 | 11770160 | -9943296 | -0.11173 | 1.248402059       |



Figure A3.127. Mercury Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.128. USGS World Mercury Production.** World mercury production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. Negative  $R^2$  as well as non-linear  $\alpha$  indicate possible Stage IV. No best-fit for the patent data was obtainable. Lack of correlation and Stage IV make meaningful activity best-fit impossible.



Figure A3.129. Mercury Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Vear  | x          | v        | Vear  | x          | v        | Vear  | x          | v        | Vear  | x          | v    |
|-------|------------|----------|-------|------------|----------|-------|------------|----------|-------|------------|------|
| I cui | (activity) | (patent) | I cui | (activity) | (patent) | I cui | (activity) | (patent) | I cui | (activity) | 3    |
| 1900  | 10         | 4        | 1927  | 1220       | 72       | 1954  | 29700      | 206      | 1981  | 109000     | 1675 |
| 1901  | 22         | 1        | 1928  | 1720       | 109      | 1955  | 34000      | 281      | 1982  | 95000      | 1978 |
| 1902  | 46         | 2        | 1929  | 2000       | 93       | 1956  | 31900      | 279      | 1983  | 63800      | 2046 |
| 1903  | 148        | 4        | 1930  | 1910       | 163      | 1957  | 34600      | 337      | 1984  | 97700      | 2039 |
| 1904  | 62         | 4        | 1931  | 1590       | 197      | 1958  | 26200      | 339      | 1985  | 98400      | 2330 |
| 1905  | 91         | 8        | 1932  | 1320       | 177      | 1959  | 32400      | 338      | 1986  | 93200      | 2483 |
| 1906  | 91         | 12       | 1933  | 2990       | 152      | 1960  | 40400      | 464      | 1987  | 99500      | 2574 |
| 1907  | 91         | 25       | 1934  | 5130       | 139      | 1961  | 33600      | 394      | 1988  | 113000     | 2454 |
| 1908  | 136        | 20       | 1935  | 6530       | 149      | 1962  | 26900      | 445      | 1989  | 136000     | 2786 |
| 1909  | 91         | 8        | 1936  | 9030       | 140      | 1963  | 34000      | 524      | 1990  | 127000     | 2631 |
| 1910  | 91         | 18       | 1937  | 14800      | 173      | 1964  | 35300      | 509      | 1991  | 115000     | 2496 |
| 1911  | 91         | 25       | 1938  | 16400      | 207      | 1965  | 44700      | 610      | 1992  | 114000     | 2764 |
| 1912  | 181        | 16       | 1939  | 15600      | 202      | 1966  | 56700      | 568      | 1993  | 99200      | 2734 |
| 1913  | 91         | 23       | 1940  | 17400      | 114      | 1967  | 64300      | 658      | 1994  | 108000     | 2898 |
| 1914  | 136        | 18       | 1941  | 20300      | 107      | 1968  | 65700      | 652      | 1995  | 136000     | 2897 |
| 1915  | 272        | 11       | 1942  | 29000      | 72       | 1969  | 72300      | 668      | 1996  | 127000     | 2757 |
| 1916  | 454        | 13       | 1943  | 31600      | 72       | 1970  | 82300      | 723      | 1997  | 138000     | 2683 |
| 1917  | 590        | 13       | 1944  | 21500      | 64       | 1971  | 77600      | 706      | 1998  | 135000     | 3019 |
| 1918  | 816        | 14       | 1945  | 16300      | 72       | 1972  | 79300      | 900      | 1999  | 129000     | 2983 |
| 1919  | 408        | 10       | 1946  | 10800      | 112      | 1973  | 81700      | 838      | 2000  | 135000     | 3541 |
| 1920  | 181        | 27       | 1947  | 14000      | 109      | 1974  | 84200      | 681      | 2001  | 133000     | 3430 |
| 1921  | 45         | 31       | 1948  | 13600      | 149      | 1975  | 81800      | 746      | 2002  | 122000     | 3892 |
| 1922  | 45         | 46       | 1949  | 11400      | 145      | 1976  | 88700      | 763      | 2003  | 131000     | 3748 |
| 1923  | 136        | 36       | 1950  | 14500      | 110      | 1977  | 95100      | 871      | 2004  | 159000     | 3939 |
| 1924  | 272        | 52       | 1951  | 20300      | 141      | 1978  | 100000     | 1043     | 2005  | 186000     | 3538 |
| 1925  | 680        | 75       | 1952  | 22600      | 205      | 1979  | 104000     | 1057     | 2006  | 184000     | 3410 |
| 1926  | 816        | 52       | 1953  | 28400      | 153      | 1980  | 111000     | 1588     | 2007  | 205000     | 3652 |

| Table A3.59 | Molybdenum | Activity <sup>71</sup> | and Patents <sup>7</sup> | 2 |
|-------------|------------|------------------------|--------------------------|---|
|             |            |                        |                          |   |

<sup>&</sup>lt;sup>71</sup> Activity represents world production of molybdenum, defined at usgs.gov as "...world mine production of ores and concentrates. For the years 1900–04, data are from Sutolov (1983, p.251-252)[*Sutolov, Alexander, ed., [1983], Statistical summary 1900-1982, in Internet molybdenum yearbook 1983, v. V of Internet molybdenum encyclopedia: Santiago, Chile, Alexander Sutolov Internet Publications, p. 248-297.*]. For the years 1905 to the most recent, data are from the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>72</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Molybdenum or Mo were used as the keywords found in the patent title or abstract by year of publication.

Table A3.60. Correlation Eq.(A1.1) terms calculated from Table A3.59 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 5395233 | 98731 | 5.77E+11           | 2.45E+08           | 1.13E+10 | 3.078E+11 | 1.55E+08 | 6.42E+09 | 0.928979 | 86.30013          |



Figure A3.130. Molybdenum Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.131. USGS World Molybdenum Production.** World molybdenum production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.132. EPO Worldwide Patent Search: Molybdenum or Mo in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.133. Molybdenum Best-Fit Activity and Patents. Illustrates best-fit origin shift.



**Figure A3.134. Molybdenum Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y (notont) | Year | X<br>(activity) | y (notont) | Year | X<br>(activity) | y<br>(notont) | Year | X<br>(activity) | y<br>(notont) |
|------|-----------------|------------|------|-----------------|------------|------|-----------------|---------------|------|-----------------|---------------|
| 1000 | (activity)      | 27         | 1027 | 24500           | 248        | 1054 | 216000          | (patent)      | 1091 | (activity)      | 2617          |
| 1900 | 9290            | 37         | 1927 | 50200           | 240        | 1954 | 220000          | 500           | 1901 | 621000          | 4204          |
| 1901 | 12200           | 37         | 1928 | 56200           | 252        | 1955 | 259000          | 744           | 1982 | 672000          | 4294          |
| 1902 | 12200           | 40<br>54   | 1929 | 54200           | 355        | 1950 | 239000          | 010           | 1965 | 772000          | 4081          |
| 1903 | 10200           | 54         | 1930 | 34200           | 433        | 195/ | 280000          | 010           | 1984 | //3000          | 4910<br>5260  |
| 1904 | 10300           | 50         | 1931 | 30300           | 355        | 1958 | 224000          | //0           | 1985 | 813000          | 5500          |
| 1905 | 15600           | 57         | 1932 | 21800           | 452        | 1959 | 285000          | 843           | 1986 | 852000          | 5639          |
| 1906 | 16000           | 54         | 1933 | 46300           | 402        | 1960 | 320000          | 1108          | 1987 | 891000          | 5552          |
| 1907 | 16300           | 68         | 1934 | 71600           | 388        | 1961 | 361000          | 1091          | 1988 | 952000          | 5850          |
| 1908 | 14900           | 76         | 1935 | 77400           | 441        | 1962 | 357000          | 1033          | 1989 | 987000          | 6489          |
| 1909 | 17000           | 79         | 1936 | 93400           | 399        | 1963 | 339000          | 1070          | 1990 | 974000          | 6108          |
| 1910 | 23100           | 73         | 1937 | 120000          | 434        | 1964 | 371000          | 1160          | 1991 | 1010000         | 5879          |
| 1911 | 25200           | 80         | 1938 | 115000          | 496        | 1965 | 425000          | 1394          | 1992 | 1010000         | 6657          |
| 1912 | 27900           | 68         | 1939 | 122000          | 438        | 1966 | 412000          | 1323          | 1993 | 928000          | 6006          |
| 1913 | 32200           | 98         | 1940 | 140000          | 359        | 1967 | 449000          | 1670          | 1994 | 932000          | 6218          |
| 1914 | 30000           | 83         | 1941 | 162000          | 290        | 1968 | 497000          | 1560          | 1995 | 1040000         | 5949          |
| 1915 | 39100           | 75         | 1942 | 158000          | 203        | 1969 | 487000          | 1591          | 1996 | 1060000         | 5906          |
| 1916 | 45500           | 48         | 1943 | 167000          | 207        | 1970 | 628000          | 1815          | 1997 | 1140000         | 5780          |
| 1917 | 46200           | 37         | 1944 | 157000          | 167        | 1971 | 637000          | 1841          | 1998 | 1180000         | 6605          |
| 1918 | 47600           | 53         | 1945 | 145000          | 214        | 1972 | 611000          | 2189          | 1999 | 1170000         | 6597          |
| 1919 | 23100           | 76         | 1946 | 123000          | 282        | 1973 | 710000          | 1986          | 2000 | 1290000         | 7656          |
| 1920 | 35700           | 111        | 1947 | 140000          | 290        | 1974 | 770000          | 1807          | 2001 | 1350000         | 7387          |
| 1921 | 10400           | 161        | 1948 | 151000          | 410        | 1975 | 802000          | 2057          | 2002 | 1350000         | 7636          |
| 1922 | 11800           | 142        | 1949 | 146000          | 437        | 1976 | 792000          | 2315          | 2003 | 1370000         | 7602          |
| 1923 | 31100           | 143        | 1950 | 145000          | 360        | 1977 | 828000          | 2402          | 2004 | 1420000         | 7542          |
| 1924 | 35300           | 130        | 1951 | 132000          | 410        | 1978 | 658000          | 2717          | 2005 | 1490000         | 6815          |
| 1925 | 37100           | 186        | 1952 | 146000          | 573        | 1979 | 686000          | 2657          | 2006 | 1580000         | 6717          |
| 1926 | 33900           | 179        | 1953 | 198000          | 454        | 1980 | 779000          | 3660          | 2007 | 1660000         | 7025          |

**Table A3.61** Nickel Activity<sup>73</sup> and Patents<sup>74</sup>

 Table A3.62. Correlation Eq.(A1.1) terms calculated from Table A3.61 data.

| Sum x    | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 46347690 | 221664 | 4.19E+13           | 1.14E+09           | 2.13E+11 | 2.198E+13 | 6.86E+08 | 1.17E+11 | 0.956269 | 91.44502          |



Figure A3.135. Nickel Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>73</sup> Activity represents world production of nickel, defined at usgs.gov as "...mine production and is reported as recoverable nickel contained in the ore mined. Where actual mine output was not available, data related to a more highly processed form were used to indicate the minimum magnitude of mine output. In 1953, production data for countries once comprising the former Soviet Union were included for the first time. Data are sourced as follows: 1900–29, MS50 [*Materials Survey-Nickel 1950*]; and 1930 to the most recent year, MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>74</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Nickel or Ni were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.136. USGS World Nickel Production.** World nickel production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.137. EPO Worldwide Patent search: Nickel or Ni in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.138. Nickel Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.139. Nickel Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | Х          | У        | Year | X          | У        | Year | x          | У        | Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 |            |          | 1981 | 14800      | 671      |
| 1901 |            |          | 1928 |            |          | 1955 |            |          | 1982 | 10600      | 873      |
| 1902 |            |          | 1929 |            |          | 1956 |            |          | 1983 | 8580       | 1034     |
| 1903 |            |          | 1930 |            |          | 1957 |            |          | 1984 | 13900      | 993      |
| 1904 |            |          | 1931 |            |          | 1958 |            |          | 1985 | 14800      | 1107     |
| 1905 |            |          | 1932 |            |          | 1959 |            |          | 1986 | 14600      | 1282     |
| 1906 |            |          | 1933 |            |          | 1960 |            |          | 1987 | 9360       | 1325     |
| 1907 |            |          | 1934 |            |          | 1961 |            |          | 1988 | 16900      | 1453     |
| 1908 |            |          | 1935 |            |          | 1962 |            |          | 1989 | 14100      | 1591     |
| 1909 |            |          | 1936 |            |          | 1963 |            |          | 1990 | 15300      | 1567     |
| 1910 |            |          | 1937 |            |          | 1964 | 2480       | 181      | 1991 | 15700      | 1484     |
| 1911 |            |          | 1938 |            |          | 1965 | 3120       | 282      | 1992 | 15300      | 1828     |
| 1912 |            |          | 1939 |            |          | 1966 | 5060       | 275      | 1993 | 12400      | 1905     |
| 1913 |            |          | 1940 |            |          | 1967 | 5150       | 296      | 1994 | 15700      | 1934     |
| 1914 |            |          | 1941 |            |          | 1968 | 4950       | 270      | 1995 | 15600      | 1819     |
| 1915 |            |          | 1942 |            |          | 1969 | 6610       | 302      | 1996 | 16200      | 1711     |
| 1916 |            |          | 1943 |            |          | 1970 | 8460       | 314      | 1997 | 20500      | 1656     |
| 1917 |            |          | 1944 |            |          | 1971 | 3740       | 342      | 1998 | 26200      | 1797     |
| 1918 |            |          | 1945 |            |          | 1972 | 5950       | 380      | 1999 | 24600      | 1729     |
| 1919 |            |          | 1946 |            |          | 1973 | 14700      | 308      | 2000 | 24800      | 1981     |
| 1920 |            |          | 1947 |            |          | 1974 | 9340       | 292      | 2001 | 31100      | 1928     |
| 1921 |            |          | 1948 |            |          | 1975 | 7860       | 361      | 2002 | 33000      | 2423     |
| 1922 |            |          | 1949 |            |          | 1976 | 9470       | 335      | 2003 | 40400      | 2286     |
| 1923 |            |          | 1950 |            |          | 1977 | 8800       | 408      | 2004 | 41900      | 2385     |
| 1924 |            |          | 1951 |            |          | 1978 | 9670       | 445      | 2005 | 60300      | 2021     |
| 1925 |            |          | 1952 |            |          | 1979 | 14000      | 448      | 2006 | 51200      | 2095     |
| 1926 |            |          | 1953 |            |          | 1980 | 15100      | 645      | 2007 | 60400      | 2168     |

| Table A3.63    | Niobium.    | Activity <sup>75</sup> | and Pater  | nts <sup>76</sup> |
|----------------|-------------|------------------------|------------|-------------------|
| 1 4010 1 10100 | 1 100 Iulii | incurvity              | und i uton | 105               |

<sup>&</sup>lt;sup>75</sup> Activity represents world production of niobium, defined at usgs.gov as "...the niobium content of niobium-bearing ores and mineral concentrates that were produced from mines throughout the world. Data for the years 1964–68 were recorded from the MFP [*Mineral Facts and Problems*] and the MCP [*Mineral Commodity Summaries*], and for the years 1969 to the most recent were recorded from the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>76</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Niobium or Nb or Columbium were used as keywords found in the patent title or abstract by year of publication.
Table A3.64. Correlation Eq.(A1.1) terms calculated from Table A3.63 data.

| Sum x  | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|--------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 772700 | 50930 | 2.22E+10           | 82904308           | 1.24E+09 | 8.637E+09 | 23952833 | 3.43E+08 | 0.754531 | 56.93172          |



Figure A3.140. Niobium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.141. USGS World Niobium Production.** World niobium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



**Figure A3.142. EPO Worldwide Patent Search: Niobium, Nb or Columbium in Title or Abstract by Date of Publication.** Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.143. Niobium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.144. Niobium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        | Year | X          | У        | Year | X          | У        | Year | X          | у    |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) |      |
| 1900 |            |          | 1927 |            |          | 1954 | 7300000    | 387      | 1981 | 77000000   | 2601 |
| 1901 |            |          | 1928 |            |          | 1955 | 8070000    | 486      | 1982 | 75900000   | 2702 |
| 1902 |            |          | 1929 |            |          | 1956 | 8620000    | 567      | 1983 | 80400000   | 2746 |
| 1903 |            |          | 1930 |            |          | 1957 | 9270000    | 668      | 1984 | 88600000   | 2868 |
| 1904 |            |          | 1931 |            |          | 1958 | 10800000   | 658      | 1985 | 91000000   | 3225 |
| 1905 |            |          | 1932 |            |          | 1959 | 11800000   | 651      | 1986 | 91100000   | 3718 |
| 1906 |            |          | 1933 |            |          | 1960 | 12900000   | 920      | 1987 | 95100000   | 3892 |
| 1907 |            |          | 1934 |            |          | 1961 | 14000000   | 878      | 1988 | 99300000   | 4634 |
| 1908 |            |          | 1935 |            |          | 1962 | 11900000   | 910      | 1989 | 99300000   | 5372 |
| 1909 |            |          | 1936 |            |          | 1963 | 17100000   | 968      | 1990 | 97500000   | 5299 |
| 1910 |            |          | 1937 |            |          | 1964 | 19400000   | 1077     | 1991 | 93800000   | 5314 |
| 1911 |            |          | 1938 |            |          | 1965 | 21800000   | 1202     | 1992 | 93400000   | 6091 |
| 1912 |            |          | 1939 |            |          | 1966 | 25000000   | 999      | 1993 | 91600000   | 5700 |
| 1913 |            |          | 1940 |            |          | 1967 | 28700000   | 1230     | 1994 | 93800000   | 6041 |
| 1914 |            |          | 1941 |            |          | 1968 | 32100000   | 1163     | 1995 | 10000000   | 6039 |
| 1915 |            |          | 1942 |            |          | 1969 | 35900000   | 1059     | 1996 | 105000000  | 5676 |
| 1916 |            |          | 1943 |            |          | 1970 | 38800000   | 1098     | 1997 | 103000000  | 5907 |
| 1917 |            |          | 1944 |            |          | 1971 | 41100000   | 1023     | 1998 | 104000000  | 6945 |
| 1918 |            |          | 1945 |            |          | 1972 | 43000000   | 1391     | 1999 | 107000000  | 7085 |
| 1919 |            |          | 1946 | 2380000    | 175      | 1973 | 46700000   | 1284     | 2000 | 108000000  | 8344 |
| 1920 |            |          | 1947 | 3330000    | 245      | 1974 | 48400000   | 1170     | 2001 | 105000000  | 8452 |
| 1921 |            |          | 1948 | 3950000    | 299      | 1975 | 49500000   | 1634     | 2002 | 10900000   | 8885 |
| 1922 |            |          | 1949 | 4560000    | 308      | 1976 | 56900000   | 1935     | 2003 | 110000000  | 8761 |
| 1923 |            |          | 1950 | 4810000    | 208      | 1977 | 62000000   | 2111     | 2004 | 117000000  | 9024 |
| 1924 |            |          | 1951 | 5240000    | 273      | 1978 | 67200000   | 2039     | 2005 | 123000000  | 7868 |
| 1925 |            |          | 1952 | 5300000    | 382      | 1979 | 71100000   | 1897     | 2006 | 126000000  | 7508 |
| 1926 |            |          | 1953 | 6450000    | 324      | 1980 | 73600000   | 2442     | 2007 | 131000000  | 7844 |

**Table A3.65** Nitrogen Activity<sup>77</sup> and Patents<sup>78</sup>

Table A3.66. Correlation Eq.(A1.1) terms calculated from Table A3.65 data.

| Sum x   | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|---------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 625E+09 | 192602 | 3.18E+17           | 1.09E+09           | 1.79E+13 | 1.063E+17 | 4.89E+08 | 6.61E+12 | 0.916433 | 83.98487          |

3.



Figure A3.145. Nitrogen Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>77</sup> Activity represents world production of nitrogen, defined at usgs.gov as "... ammonia produced. Data for 1946–57 were for "fertilizer nitrogen compounds," and were reported as fertilizer years (July 1–June 30), not calendar years. Blank cells in the worksheet indicate that data were not available for the years 1943–45. Data were from the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>78</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Nitrogen was

<sup>&</sup>lt;sup>18</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Nitrogen was used as the keyword found in the patent title or abstract by year of publication.



Figure A3.146. USGS World Nitrogen Production. World nitrogen production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A3.147. EPO Worldwide Patent Search: Nitrogen in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.148. Nitrogen Best-Fit Activity and Patents. Illustrates best-fit origin shift.



**Figure A3.149. Nitrogen Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | x          | у        | Year | X          | у        | Year | X          | у        | Year | x          | у     |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|-------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (pat) |
| 1900 | 3150000    | 16       | 1927 | 9990000    | 78       | 1954 | 30500000   | 385      | 1981 | 145000000  | 1253  |
| 1901 | 3000000    | 13       | 1928 | 10100000   | 136      | 1955 | 30500000   | 424      | 1982 | 129000000  | 1370  |
| 1902 | 3120000    | 13       | 1929 | 10400000   | 147      | 1956 | 34200000   | 420      | 1983 | 143000000  | 1376  |
| 1903 | 3450000    | 19       | 1930 | 11800000   | 274      | 1957 | 33200000   | 534      | 1984 | 154000000  | 1411  |
| 1904 | 3870000    | 20       | 1931 | 7860000    | 318      | 1958 | 33700000   | 426      | 1985 | 151000000  | 1532  |
| 1905 | 3850000    | 19       | 1932 | 7110000    | 260      | 1959 | 38400000   | 531      | 1986 | 141000000  | 1639  |
| 1906 | 4190000    | 17       | 1933 | 8900000    | 214      | 1960 | 41800000   | 638      | 1987 | 147000000  | 1605  |
| 1907 | 4720000    | 17       | 1934 | 9510000    | 203      | 1961 | 45500000   | 558      | 1988 | 166000000  | 1614  |
| 1908 | 5380000    | 13       | 1935 | 10500000   | 227      | 1962 | 63300000   | 570      | 1989 | 163000000  | 1878  |
| 1909 | 4950000    | 24       | 1936 | 11300000   | 207      | 1963 | 54600000   | 597      | 1990 | 162000000  | 1932  |
| 1910 | 5430000    | 29       | 1937 | 12900000   | 219      | 1964 | 63700000   | 601      | 1991 | 150000000  | 1920  |
| 1911 | 5940000    | 28       | 1938 | 12900000   | 241      | 1965 | 71400000   | 701      | 1992 | 139000000  | 2170  |
| 1912 | 6730000    | 21       | 1939 | 12800000   | 202      | 1966 | 84500000   | 638      | 1993 | 119000000  | 1974  |
| 1913 | 7230000    | 22       | 1940 | 10300000   | 146      | 1967 | 87300000   | 811      | 1994 | 127000000  | 1931  |
| 1914 | 5420000    | 25       | 1941 | 10800000   | 147      | 1968 | 94100000   | 683      | 1995 | 130000000  | 2087  |
| 1915 | 4120000    | 21       | 1942 | 8800000    | 123      | 1969 | 92100000   | 688      | 1996 | 135000000  | 2085  |
| 1916 | 4830000    | 20       | 1943 | 9250000    | 114      | 1970 | 95100000   | 735      | 1997 | 143000000  | 2129  |
| 1917 | 4710000    | 13       | 1944 | 9330000    | 101      | 1971 | 9400000    | 765      | 1998 | 144000000  | 2565  |
| 1918 | 4190000    | 18       | 1945 | 10900000   | 171      | 1972 | 101000000  | 914      | 1999 | 137000000  | 2598  |
| 1919 | 4150000    | 29       | 1946 | 15300000   | 178      | 1973 | 111000000  | 747      | 2000 | 132000000  | 2922  |
| 1920 | 6870000    | 17       | 1947 | 18300000   | 206      | 1974 | 123000000  | 689      | 2001 | 126000000  | 2860  |
| 1921 | 5430000    | 54       | 1948 | 19400000   | 270      | 1975 | 109000000  | 818      | 2002 | 136000000  | 3156  |
| 1922 | 5940000    | 41       | 1949 | 19700000   | 232      | 1976 | 109000000  | 908      | 2003 | 138000000  | 3233  |
| 1923 | 7120000    | 45       | 1950 | 23400000   | 228      | 1977 | 121000000  | 960      | 2004 | 143000000  | 3386  |
| 1924 | 7780000    | 35       | 1951 | 24600000   | 281      | 1978 | 127000000  | 1078     | 2005 | 150000000  | 3028  |
| 1925 | 8900000    | 48       | 1952 | 26400000   | 327      | 1979 | 134000000  | 929      | 2006 | 151000000  | 3138  |
| 1926 | 9380000    | 68       | 1953 | 27200000   | 311      | 1980 | 147000000  | 1226     | 2007 | 156000000  | 3520  |

**Table A3.67** Phosphate Rock<sup>79</sup> Activity<sup>80</sup> and Patents<sup>81</sup>

<sup>&</sup>lt;sup>79</sup> Phosphates or salts based formally on phosphorous oxoacids [128].

<sup>&</sup>lt;sup>80</sup> Activity represents world production of phosphatea ordered [125]. *Resources of the United States*] and the MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>(</sup>USGS) at minerals.usgs.gov. <sup>81</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Phosphate was used as the keyword found in the patent title or abstract by year of publication.

100r<sup>2</sup> Sum x<sup>2</sup> Sum y<sup>2</sup> Sum x Sum y Sum xy Sxx Syy Sxy r 6.541E+09 1.63E+08 3.738E+17 95356234 5.2E+12 0.870809 85552 7.7E+17 1.04E+13 75.83086

Table A3.68. Correlation Eq.(A1.1) terms calculated from Table A3.67 data.



Figure A3.150. Phosphate Rock Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.151. USGS World Phosphate Rock Production.** World phosphate rock production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.152. EPO Worldwide Patent Search: Phosphate in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.153. Phosphate Rock Best-fit Activity and Patents. Illustrates best-fit origin shift.





| Year | х          | У        | Year | x          | У        | Year | x          | У        | Year | х          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 6.62       | 57       | 1927 | 4.64       | 59       | 1954 | 29.2       | 116      | 1981 | 216        | 1288     |
| 1901 | 9.85       | 58       | 1928 | 4.31       | 71       | 1955 | 33.9       | 177      | 1982 | 200        | 1417     |
| 1902 | 9.33       | 55       | 1929 | 4.84       | 75       | 1956 | 34.5       | 204      | 1983 | 203        | 1525     |
| 1903 | 7.03       | 53       | 1930 | 4.75       | 84       | 1957 | 41.1       | 215      | 1984 | 238        | 1567     |
| 1904 | 9.03       | 54       | 1931 | 8.94       | 71       | 1958 | 27.7       | 288      | 1985 | 247        | 1615     |
| 1905 | 6.24       | 79       | 1932 | 6.53       | 66       | 1959 | 32.8       | 263      | 1986 | 260        | 2088     |
| 1906 | 6.59       | 64       | 1933 | 6.77       | 55       | 1960 | 39.7       | 364      | 1987 | 271        | 1811     |
| 1907 | 9.65       | 61       | 1934 | 12.9       | 54       | 1961 | 41.8       | 312      | 1988 | 280        | 1955     |
| 1908 | 8          | 58       | 1935 | 12.1       | 88       | 1962 | 50.5       | 293      | 1989 | 282        | 2466     |
| 1909 | 8.45       | 38       | 1936 | 14.2       | 83       | 1963 | 63.4       | 306      | 1990 | 291        | 2727     |
| 1910 | 8.89       | 46       | 1937 | 14.8       | 88       | 1964 | 79.2       | 372      | 1991 | 287        | 2757     |
| 1911 | 9.74       | 50       | 1938 | 16.8       | 100      | 1965 | 92.3       | 422      | 1992 | 280        | 3055     |
| 1912 | 9.77       | 48       | 1939 | 16.9       | 81       | 1966 | 94.5       | 405      | 1993 | 276        | 2687     |
| 1913 | 8.31       | 58       | 1940 | 14.5       | 54       | 1967 | 98.8       | 550      | 1994 | 269        | 2714     |
| 1914 | 8.11       | 44       | 1941 | 14.9       | 60       | 1968 | 106        | 515      | 1995 | 326        | 2646     |
| 1915 | 4.45       | 44       | 1942 | 16.9       | 36       | 1969 | 107        | 507      | 1996 | 324        | 2869     |
| 1916 | 2.8        | 26       | 1943 | 19.6       | 38       | 1970 | 132        | 629      | 1997 | 339        | 2783     |
| 1917 | 2.59       | 20       | 1944 | 16         | 35       | 1971 | 127        | 648      | 1998 | 354        | 3092     |
| 1918 | 1.96       | 17       | 1945 | 30         | 31       | 1972 | 133        | 758      | 1999 | 366        | 3078     |
| 1919 | 2.11       | 32       | 1946 | 17.9       | 58       | 1973 | 163        | 688      | 2000 | 364        | 3345     |
| 1920 | 2.3        | 31       | 1947 | 15.6       | 69       | 1974 | 179        | 604      | 2001 | 395        | 3026     |
| 1921 | 1.84       | 36       | 1948 | 16.3       | 105      | 1975 | 178        | 664      | 2002 | 414        | 3159     |
| 1922 | 2.17       | 53       | 1949 | 17.9       | 81       | 1976 | 194        | 740      | 2003 | 466        | 3011     |
| 1923 | 2.56       | 42       | 1950 | 18.7       | 81       | 1977 | 203        | 710      | 2004 | 481        | 2999     |
| 1924 | 3.56       | 39       | 1951 | 21         | 96       | 1978 | 200        | 805      | 2005 | 504        | 2828     |
| 1925 | 3.23       | 55       | 1952 | 21.8       | 108      | 1979 | 202        | 855      | 2006 | 513        | 2993     |
| 1926 | 4.42       | 42       | 1953 | 24.1       | 91       | 1980 | 213        | 1206     | 2007 | 509        | 2925     |

**Table A3.69** Platinum Activity<sup>82</sup> and Patents<sup>83</sup>

Table A3.70. Correlation Eq.(A1.1) terms calculated from Table A3.69 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 12404.68 | 85220 | 3635945            | 1.92E+08           | 25696304 | 2211166.3 | 1.25E+08 | 15908093 | 0.956927 | 91.57099          |



Figure A3.155. Platinum Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

 <sup>&</sup>lt;sup>82</sup> Activity represents world production of platinum, defined at usgs.gov as "...recorded from the MR [*Mineral Resources of the United States*] and MYB [*Minerals Yearbook*] for the years 1900 to the most recent." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
 <sup>83</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Platinum or Pt

<sup>&</sup>lt;sup>35</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Platinum or Pt were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.156. USGS World Platinum Production.** World platinum production (activity) scaled to kilograms with actual and best-fit curves and common pattern equation parameters.



Figure A3.157. EPO Worldwide Patent Search: Platinum or Pt in Title or Abstract by date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.158. Platinum Best-fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.159. Platinum Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 2000000    | 55       | 1954 | 6620000    | 35       | 1981 | 27100000   | 37       |
| 1901 |            |          | 1928 | 2030000    | 87       | 1955 | 7260000    | 48       | 1982 | 24500000   | 56       |
| 1902 |            |          | 1929 | 2200000    | 103      | 1956 | 7530000    | 56       | 1983 | 27400000   | 54       |
| 1903 |            |          | 1930 | 2050000    | 98       | 1957 | 7890000    | 54       | 1984 | 29300000   | 43       |
| 1904 |            |          | 1931 | 1400000    | 122      | 1958 | 7980000    | 40       | 1985 | 29200000   | 45       |
| 1905 |            |          | 1932 | 1250000    | 89       | 1959 | 8530000    | 34       | 1986 | 28800000   | 69       |
| 1906 |            |          | 1933 | 1670000    | 86       | 1960 | 9070000    | 33       | 1987 | 30500000   | 42       |
| 1907 |            |          | 1934 | 1980000    | 80       | 1961 | 9710000    | 43       | 1988 | 31800000   | 32       |
| 1908 |            |          | 1935 | 2270000    | 94       | 1962 | 9800000    | 42       | 1989 | 29300000   | 22       |
| 1909 |            |          | 1936 | 2310000    | 70       | 1963 | 11300000   | 32       | 1990 | 27500000   | 27       |
| 1910 |            |          | 1937 | 2820000    | 79       | 1964 | 12300000   | 28       | 1991 | 26100000   | 44       |
| 1911 |            |          | 1938 | 3010000    | 85       | 1965 | 13700000   | 24       | 1992 | 23900000   | 40       |
| 1912 |            |          | 1939 | 2730000    | 53       | 1966 | 14600000   | 22       | 1993 | 20400000   | 32       |
| 1913 |            |          | 1940 | 2810000    | 41       | 1967 | 15700000   | 36       | 1994 | 23100000   | 25       |
| 1914 |            |          | 1941 | 3210000    | 31       | 1968 | 16200000   | 33       | 1995 | 24700000   | 33       |
| 1915 |            |          | 1942 | 3170000    | 24       | 1969 | 17400000   | 28       | 1996 | 23900000   | 40       |
| 1916 |            |          | 1943 | 3270000    | 18       | 1970 | 18200000   | 30       | 1997 | 25500000   | 32       |
| 1917 |            |          | 1944 | 3040000    | 28       | 1971 | 19900000   | 20       | 1998 | 26000000   | 59       |
| 1918 |            |          | 1945 | 1910000    | 18       | 1972 | 20000000   | 25       | 1999 | 27200000   | 41       |
| 1919 | 122000     | 30       | 1946 | 2310000    | 34       | 1973 | 18900000   | 19       | 2000 | 27000000   | 61       |
| 1920 | 224000     | 32       | 1947 | 2620000    | 36       | 1974 | 21100000   | 23       | 2001 | 26400000   | 48       |
| 1921 | 994000     | 53       | 1948 | 2940000    | 50       | 1975 | 24700000   | 19       | 2002 | 27100000   | 43       |
| 1922 | 1400000    | 52       | 1949 | 2540000    | 26       | 1976 | 24300000   | 15       | 2003 | 28600000   | 66       |
| 1923 | 1250000    | 31       | 1950 | 3130000    | 23       | 1977 | 25200000   | 18       | 2004 | 31100000   | 67       |
| 1924 | 1100000    | 30       | 1951 | 5080000    | 31       | 1978 | 26100000   | 20       | 2005 | 32500000   | 84       |
| 1925 | 1590000    | 70       | 1952 | 5620000    | 49       | 1979 | 25700000   | 12       | 2006 | 29100000   | 88       |
| 1926 | 1710000    | 45       | 1953 | 5900000    | 46       | 1980 | 27900000   | 46       | 2007 | 34600000   | 113      |

|  | Fable A3.71 | Potash <sup>84</sup> | Activity <sup>85</sup> | and Patents <sup>86</sup> |  |
|--|-------------|----------------------|------------------------|---------------------------|--|
|--|-------------|----------------------|------------------------|---------------------------|--|

 <sup>&</sup>lt;sup>84</sup> Potassium compounds [128].
 <sup>85</sup> Activity represents world production of potash, defined at usgs.gov as "...recorded from the MR [*Mineral Resources of the United States*] and MYB [*Minerals Yearbook*] for the years 1900 to the most recent." Data is in metric tons as reported by the United States Geologic Survey

<sup>(</sup>USGS) at minerals.usgs.gov. <sup>86</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Potash was used as the keyword found in the patent title or abstract by year of publication.

Table A3.72. Correlation Eq.(A1.1) terms calculated from Table A3.71 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy  | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|---------|-----------|----------|----------|----------|-------------------|
| 1.254E+09 | 4077  | 2.89E+16           | 237793             | 5.4E+10 | 1.127E+16 | 51029.75 | -3.4E+09 | -0.14144 | 2.000428          |



Figure A3.160. Potash Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.161. USGS World Potash production.** World potash production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A3.162. Potash Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | У        | Year | X          | У        | Year | x          | У        | Year | х          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 1040       | 3        | 1927 | 352        | 2        | 1954 | 7840       | 3        | 1981 | 30600      | 229      |
| 1901 | 1090       | 1        | 1928 | 180        | 4        | 1955 | 5760       | 7        | 1982 | 26600      | 229      |
| 1902 | 863        | 2        | 1929 | 197        | 3        | 1956 | 5230       | 6        | 1983 | 31400      | 204      |
| 1903 | 2030       | 1        | 1930 | 17         | 8        | 1957 | 5980       | 16       | 1984 | 41400      | 212      |
| 1904 | 2860       | 4        | 1931 | 50         | 1        | 1958 | 8060       | 8        | 1985 | 43500      | 223      |
| 1905 | 2780       | 0        | 1932 | 530        | 3        | 1959 | 2810       | 9        | 1986 | 39900      | 267      |
| 1906 | 2600       | 2        | 1933 | 302        | 8        | 1960 | 2270       | 30       | 1987 | 46900      | 328      |
| 1907 | 2580       | 3        | 1934 | 564        | 1        | 1961 | 3690       | 23       | 1988 | 55300      | 429      |
| 1908 | 2840       | 2        | 1935 | 2130       | 4        | 1962 | 8020       | 24       | 1989 | 60700      | 762      |
| 1909 | 3690       | 0        | 1936 | 1840       | 4        | 1963 | 6060       | 28       | 1990 | 52900      | 551      |
| 1910 | 3020       | 0        | 1937 | 2150       | 6        | 1964 | 3680       | 27       | 1991 | 41700      | 496      |
| 1911 | 2490       | 0        | 1938 | 3310       | 4        | 1965 | 6960       | 35       | 1992 | 50100      | 506      |
| 1912 | 2500       | 1        | 1939 | 2510       | 2        | 1966 | 16200      | 44       | 1993 | 46700      | 554      |
| 1913 | 1480       | 0        | 1940 | 2370       | 2        | 1967 | 16900      | 56       | 1994 | 55100      | 497      |
| 1914 | 992        | 2        | 1941 | 2380       | 2        | 1968 | 16200      | 78       | 1995 | 74300      | 503      |
| 1915 | 870        | 1        | 1942 | 1500       | 1        | 1969 | 18100      | 75       | 1996 | 79700      | 482      |
| 1916 | 731        | 0        | 1943 | 1900       | 0        | 1970 | 15900      | 89       | 1997 | 68300      | 509      |
| 1917 | 1730       | 0        | 1944 | 3200       | 2        | 1971 | 16400      | 83       | 1998 | 77100      | 566      |
| 1918 | 1470       | 0        | 1945 | 1440       | 2        | 1972 | 18200      | 92       | 1999 | 86600      | 605      |
| 1919 | 1210       | 0        | 1946 | 721        | 0        | 1973 | 24000      | 106      | 2000 | 90900      | 714      |
| 1920 | 1590       | 0        | 1947 | 1300       | 7        | 1974 | 25600      | 82       | 2001 | 94500      | 742      |
| 1921 | 929        | 1        | 1948 | 2720       | 5        | 1975 | 22100      | 82       | 2002 | 98200      | 811      |
| 1922 | 189        | 3        | 1949 | 1290       | 1        | 1976 | 19700      | 100      | 2003 | 97100      | 853      |
| 1923 | 138        | 5        | 1950 | 470        | 4        | 1977 | 24500      | 113      | 2004 | 102000     | 851      |
| 1924 | 348        | 1        | 1951 | 1240       | 3        | 1978 | 26500      | 163      | 2005 | 122000     | 792      |
| 1925 | 12         | 2        | 1952 | 1820       | 2        | 1979 | 28800      | 131      | 2006 | 137000     | 822      |
| 1926 | 146        | 2        | 1953 | 3960       | 3        | 1980 | 27300      | 196      | 2007 | 124000     | 983      |

**Table A3.73** Rare Earths<sup>87</sup> Activity<sup>88</sup> and Patents<sup>89</sup>

<sup>&</sup>lt;sup>87</sup> Rare earth oxides [78]. Lanthanide, lanthanoid, yttrium or scandium.
<sup>88</sup> Activity represents world production of the rare earths, defined at usgs.gov as "...REO (Rare Earth Oxides) content of ores produced." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>89</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent office (EPO) search engine esp@cenet. Lanthanide, Interview of a worldwide data base patent search on the European Patent s

lanthanoid, yttrium or scandium were used as keywords found in the patent title or abstract by year of publication.

Table A3.74. Correlation Eq.(A1.1) terms calculated from Table A3.73 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r       | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|---------|----------|---------|-------------------|
| 2339921 | 16546 | 1.62E+11           | 9589606            | 1.22E+09 | 1.116E+11 | 7054698 | 8.61E+08 | 0.96997 | 94.08413          |



Figure A3.163. Rare Earths Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.164. USGS World Rare Earth Production.** World rare earths production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.165. EPO Worldwide Patent Search: Lanthanide, Lanthanoid, Yttrium or Scandium in Title or Abstract by date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.166. Rare Earths Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.167. Rare Earths Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | У        | Year | x          | у        | Year | x          | У     | Yr.  | x          | У        |
|------|------------|----------|------|------------|----------|------|------------|-------|------|------------|----------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (pat) |      | (activity) | (patent) |
| 1900 |            |          | 1927 | 26100000   | 291      | 1954 | 60500000   | 836   | 1981 | 171000000  | 6311     |
| 1901 |            |          | 1928 | 27100000   | 343      | 1955 | 65000000   | 997   | 1982 | 164000000  | 6632     |
| 1902 |            |          | 1929 | 25700000   | 431      | 1956 | 68200000   | 1169  | 1983 | 159000000  | 6703     |
| 1903 |            |          | 1930 | 28100000   | 463      | 1957 | 71900000   | 1291  | 1984 | 173000000  | 7003     |
| 1904 |            |          | 1931 | 24400000   | 560      | 1958 | 74800000   | 1100  | 1985 | 173000000  | 7234     |
| 1905 |            |          | 1932 | 26200000   | 485      | 1959 | 79700000   | 1175  | 1986 | 175000000  | 7875     |
| 1906 |            |          | 1933 | 28500000   | 440      | 1960 | 84800000   | 1606  | 1987 | 179000000  | 7890     |
| 1907 |            |          | 1934 | 30200000   | 492      | 1961 | 85000000   | 1411  | 1988 | 186000000  | 8081     |
| 1908 |            |          | 1935 | 30700000   | 559      | 1962 | 91500000   | 1374  | 1989 | 192000000  | 9163     |
| 1909 |            |          | 1936 | 31800000   | 579      | 1963 | 96100000   | 1514  | 1990 | 183000000  | 9630     |
| 1910 |            |          | 1937 | 30200000   | 579      | 1964 | 98600000   | 1692  | 1991 | 202000000  | 9151     |
| 1911 |            |          | 1938 | 27900000   | 703      | 1965 | 109000000  | 2088  | 1992 | 185000000  | 9830     |
| 1912 |            |          | 1939 | 32000000   | 498      | 1966 | 111000000  | 1782  | 1993 | 187000000  | 9829     |
| 1913 | 17600000   | 153      | 1940 | 33200000   | 435      | 1967 | 119000000  | 2420  | 1994 | 191000000  | 10815    |
| 1914 | 16900000   | 140      | 1941 | 36700000   | 335      | 1968 | 126000000  | 2186  | 1995 | 199000000  | 11042    |
| 1915 | 15300000   | 116      | 1942 | 38600000   | 272      | 1969 | 137000000  | 1960  | 1996 | 204000000  | 10836    |
| 1916 | 17100000   | 73       | 1943 | 41200000   | 261      | 1970 | 146000000  | 2442  | 1997 | 221000000  | 11252    |
| 1917 | 17600000   | 65       | 1944 | 40400000   | 267      | 1971 | 144000000  | 2309  | 1998 | 20000000   | 12879    |
| 1918 | 17800000   | 90       | 1945 | 36000000   | 310      | 1972 | 146000000  | 3041  | 1999 | 210000000  | 12277    |
| 1919 | 19800000   | 123      | 1946 | 38300000   | 350      | 1973 | 155000000  | 2607  | 2000 | 195000000  | 14103    |
| 1920 | 21900000   | 127      | 1947 | 40500000   | 455      | 1974 | 166000000  | 2368  | 2001 | 199000000  | 13958    |
| 1921 | 17600000   | 202      | 1948 | 44000000   | 665      | 1975 | 162000000  | 2996  | 2002 | 214000000  | 15031    |
| 1922 | 23400000   | 186      | 1949 | 43000000   | 571      | 1976 | 161000000  | 3609  | 2003 | 225000000  | 15927    |
| 1923 | 23300000   | 168      | 1950 | 48100000   | 548      | 1977 | 157000000  | 3707  | 2004 | 236000000  | 16829    |
| 1924 | 23700000   | 208      | 1951 | 55900000   | 664      | 1978 | 168000000  | 3929  | 2005 | 250000000  | 16158    |
| 1925 | 25000000   | 260      | 1952 | 54200000   | 812      | 1979 | 173000000  | 4069  | 2006 | 262000000  | 15119    |
| 1926 | 26200000   | 247      | 1953 | 59300000   | 689      | 1980 | 169000000  | 5833  | 2007 | 257000000  | 17405    |

Table A3.75 Salt Activity<sup>90</sup> and Patents<sup>91</sup>

Table A3.76. Correlation Eq.(A1.1) terms calculated from Table A3.76 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 9.879E+09 | 375689 | 1.56E+18           | 3.8E+09            | 7.08E+13 | 5.359E+17 | 2.32E+09 | 3.17E+13 | 0.899574 | 80.92342          |



Figure A3.168. Salt Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>90</sup> Activity represents world production of salt, defined at usgs.gov as "...reported in the MR for the years 1900–06. The MR stopped reporting world production for the years 1907-22. The 1923 MR reported world salt production for the years 1913-23 with continued reporting in the MR [Minerals resources of the United states] and in the MYB [Minerals Yearbook] for the years 1924 to the most recent." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.  $^{91}$  Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Salt was used

as the keyword found in the patent title or abstract by year of publication.



**Figure A3.169. USGS World Salt Production.** World salt production (activity) scaled to metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.170. EPO Worldwide Patent Search: Salt in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.171. Salt Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.172. Salt Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | Х          | у        | Year | х          | у        | Year | X          | у        | Year | х          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 | 636        | 77       | 1981 | 1290       | 173      |
| 1901 |            |          | 1928 |            |          | 1955 | 736        | 72       | 1982 | 1120       | 212      |
| 1902 |            |          | 1929 |            |          | 1956 | 872        | 90       | 1983 | 1400       | 206      |
| 1903 |            |          | 1930 |            |          | 1957 | 872        | 86       | 1984 | 1490       | 168      |
| 1904 |            |          | 1931 |            |          | 1958 | 663        | 92       | 1985 | 1320       | 199      |
| 1905 |            |          | 1932 |            |          | 1959 | 748        | 83       | 1986 | 1400       | 184      |
| 1906 |            |          | 1933 |            |          | 1960 | 758        | 102      | 1987 | 1420       | 201      |
| 1907 |            |          | 1934 |            |          | 1961 | 951        | 92       | 1988 | 1680       | 230      |
| 1908 |            |          | 1935 |            |          | 1962 | 948        | 107      | 1989 | 1600       | 261      |
| 1909 |            |          | 1936 |            |          | 1963 | 914        | 97       | 1990 | 1770       | 206      |
| 1910 |            |          | 1937 |            |          | 1964 | 981        | 113      | 1991 | 1640       | 193      |
| 1911 |            |          | 1938 | 285        | 75       | 1965 | 816        | 96       | 1992 | 1770       | 253      |
| 1912 |            |          | 1939 | 194        | 40       | 1966 | 895        | 80       | 1993 | 1740       | 220      |
| 1913 |            |          | 1940 | 251        | 43       | 1967 | 930        | 104      | 1994 | 2160       | 249      |
| 1914 |            |          | 1941 | 754        | 38       | 1968 | 883        | 82       | 1995 | 2070       | 260      |
| 1915 |            |          | 1942 | 645        | 42       | 1969 | 1290       | 77       | 1996 | 2250       | 267      |
| 1916 |            |          | 1943 | 532        | 45       | 1970 | 1310       | 94       | 1997 | 1720       | 317      |
| 1917 |            |          | 1944 | 424        | 55       | 1971 | 1140       | 84       | 1998 | 1470       | 310      |
| 1918 |            |          | 1945 | 387        | 48       | 1972 | 1230       | 102      | 1999 | 1410       | 323      |
| 1919 |            |          | 1946 | 475        | 52       | 1973 | 1220       | 103      | 2000 | 1460       | 304      |
| 1920 |            |          | 1947 | 508        | 77       | 1974 | 1210       | 89       | 2001 | 1470       | 305      |
| 1921 |            |          | 1948 | 471        | 117      | 1975 | 1180       | 106      | 2002 | 1480       | 353      |
| 1922 |            |          | 1949 | 387        | 97       | 1976 | 1110       | 117      | 2003 | 1570       | 400      |
| 1923 |            |          | 1950 | 418        | 66       | 1977 | 1380       | 148      | 2004 | 1440       | 453      |
| 1924 |            |          | 1951 | 488        | 55       | 1978 | 1440       | 157      | 2005 | 1340       | 500      |
| 1925 |            |          | 1952 | 532        | 66       | 1979 | 1620       | 132      | 2006 | 1440       | 385      |
| 1926 |            |          | 1953 | 668        | 60       | 1980 | 1280       | 184      | 2007 | 1470       | 534      |

| Table A3.7 | 7 Selenium | Activity <sup>92</sup> | and | Patents <sup>93</sup> |
|------------|------------|------------------------|-----|-----------------------|
|            |            | ~                      |     |                       |

<sup>&</sup>lt;sup>92</sup> Activity represents world production of selenium, defined at usgs.gov as "...world refinery production of selenium metal. Data were not available for the years 1900–37. World production estimates for the years 1985–1987 and 1997 to the most recent do not include withheld U.S. production data. Data were recorded from the MR [Minerals Resources of the United States] and MYB [Minerals Yearbook]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>93</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Selenium was

used as the keyword found in the patent title or abstract by year of publication.

Table A3.78. Correlation Eq.(A1.1) terms calculated from Table A3.77 data.

| Sum x | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx      | Syy      | Sxy     | r        | 100r <sup>2</sup> |
|-------|-------|--------------------|--------------------|----------|----------|----------|---------|----------|-------------------|
| 77822 | 11408 | 1.03E+08           | 2800784            | 15380861 | 16376463 | 941605.9 | 2698098 | 0.687089 | 47.20916          |



Figure A3.173. Selenium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.174**. USGS World Selenium Production. World selenium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. The negative  $R^2$  may indicate a possible Stage IV. No best-fit for the patent data was obtainable.



**Figure A3.175. Selenium Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Veen |            |          | Veen |            |          | Veen |            |                  | Veen |            |          |
|------|------------|----------|------|------------|----------|------|------------|------------------|------|------------|----------|
| Year | X          | y<br>(   | rear | X<br>(     | y<br>(   | Year | X          | y<br>(mathematic | Year | X          | y<br>(   |
| 1000 | (activity) | (patent) | 1005 | (activity) | (patent) | 1054 | (activity) | (patent)         | 1001 | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 |            |                  | 1981 | 2600000    | /028     |
| 1901 |            |          | 1928 |            |          | 1955 |            |                  | 1982 | 2410000    | 8852     |
| 1902 |            |          | 1929 |            |          | 1956 |            |                  | 1983 | 2540000    | 9680     |
| 1903 |            |          | 1930 |            |          | 1957 |            |                  | 1984 | 2730000    | 10189    |
| 1904 |            |          | 1931 |            |          | 1958 |            |                  | 1985 | 2830000    | 11640    |
| 1905 |            |          | 1932 |            |          | 1959 |            |                  | 1986 | 2740000    | 13130    |
| 1906 |            |          | 1933 |            |          | 1960 |            |                  | 1987 | 2760000    | 13268    |
| 1907 |            |          | 1934 |            |          | 1961 |            |                  | 1988 | 2990000    | 13966    |
| 1908 |            |          | 1935 |            |          | 1962 |            |                  | 1989 | 3380000    | 14889    |
| 1909 |            |          | 1936 |            |          | 1963 |            |                  | 1990 | 4130000    | 14900    |
| 1910 |            |          | 1937 |            |          | 1964 | 1130000    | 995              | 1991 | 3950000    | 14050    |
| 1911 |            |          | 1938 |            |          | 1965 | 1160000    | 1225             | 1992 | 3470000    | 16106    |
| 1912 |            |          | 1939 |            |          | 1966 | 1160000    | 1157             | 1993 | 3200000    | 15057    |
| 1913 |            |          | 1940 |            |          | 1967 | 1490000    | 1387             | 1994 | 3170000    | 15032    |
| 1914 |            |          | 1941 |            |          | 1968 | 1540000    | 1345             | 1995 | 3100000    | 14428    |
| 1915 |            |          | 1942 |            |          | 1969 | 1590000    | 1277             | 1996 | 3200000    | 14643    |
| 1916 |            |          | 1943 |            |          | 1970 | 1640000    | 1485             | 1997 | 3400000    | 14422    |
| 1917 |            |          | 1944 |            |          | 1971 | 1570000    | 1510             | 1998 | 3200000    | 16633    |
| 1918 |            |          | 1945 |            |          | 1972 | 1670000    | 2058             | 1999 | 3400000    | 17869    |
| 1919 |            |          | 1946 |            |          | 1973 | 1780000    | 1752             | 2000 | 3500000    | 22557    |
| 1920 |            |          | 1947 |            |          | 1974 | 1800000    | 1516             | 2001 | 3500000    | 23289    |
| 1921 |            |          | 1948 |            |          | 1975 | 2100000    | 1730             | 2002 | 3720000    | 24647    |
| 1922 |            |          | 1949 |            |          | 1976 | 2320000    | 2029             | 2003 | 4500000    | 22817    |
| 1923 |            |          | 1950 |            |          | 1977 | 2260000    | 2698             | 2004 | 5030000    | 22574    |
| 1924 |            |          | 1951 |            |          | 1978 | 2550000    | 3071             | 2005 | 5160000    | 21012    |
| 1925 |            |          | 1952 |            |          | 1979 | 2840000    | 4126             | 2006 | 5400000    | 21762    |
| 1926 |            |          | 1953 |            |          | 1980 | 2750000    | 6338             | 2007 | 5590000    | 22494    |

| Table A3.79    | Silicon | Activity <sup>94</sup> | and | Patents <sup>95</sup> |
|----------------|---------|------------------------|-----|-----------------------|
| 1 4010 1 10117 | Sincon  | rictivity              | unu | 1 atomo               |

<sup>&</sup>lt;sup>94</sup> Activity represents world production of silicon, defined at usgs.gov as "...for the years 1964–78 were reported in the MFP [*Mineral Facts and Problems*]. World production data for the years 1979 to the most recent were reported in the MCS [*Mineral Commodity Summaries*]. World production data for the years 1964–2005 represent the total silicon content in all ferrosilicon and 3 silicon metal that were produced annually, excluding silicon metal production in China. Starting in 2006, world production data exclude the amount of silicon metal that was produced annually in the United States. Global silicon metal production data were found on a gross-weight basis in the ferroalloys chapter of the MYB [*Minerals Yearbook*]; the typical silicon content of silicon metal is 98% of the gross weight." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>99</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Silicon or Si were used as keywords found in the patent title or abstract by year of publication.

Table A3.80. Correlation Eq.(A1.1) terms calculated from Table A3.79 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 126950000 | 472633 | 4.22E+14           | 7.8E+09            | 1.71E+12 | 5.528E+13 | 2.72E+09 | 3.45E+11 | 0.889319 | 79.08883          |



Figure A3.176. Silicon Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.177**. **USGS World Silicon production.** World silicon production scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.178. EPO Worldwide Patent Search: Silicon or Si in Title or Abstract by Date of Publication. Bestfit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.179. Silicon Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.180. Silicon Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | y        | Year | X          | y        | Year | X          | у        | Year | X          | y        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 5400       | 62       | 1927 | 7900       | 146      | 1954 | 6670       | 422      | 1981 | 11200      | 2797     |
| 1901 | 5380       | 58       | 1928 | 8020       | 184      | 1955 | 7000       | 464      | 1982 | 11500      | 2975     |
| 1902 | 5060       | 57       | 1929 | 8120       | 227      | 1956 | 7020       | 475      | 1983 | 12100      | 3264     |
| 1903 | 5220       | 77       | 1930 | 7740       | 208      | 1957 | 7190       | 555      | 1984 | 13100      | 3686     |
| 1904 | 5110       | 59       | 1931 | 6080       | 230      | 1958 | 7430       | 577      | 1985 | 13100      | 3824     |
| 1905 | 5360       | 74       | 1932 | 5130       | 220      | 1959 | 6910       | 654      | 1986 | 13000      | 4516     |
| 1906 | 5130       | 53       | 1933 | 5340       | 216      | 1960 | 7320       | 718      | 1987 | 14000      | 5050     |
| 1907 | 5730       | 75       | 1934 | 5990       | 260      | 1961 | 7370       | 818      | 1988 | 15500      | 5709     |
| 1908 | 6320       | 70       | 1935 | 6890       | 296      | 1962 | 7650       | 867      | 1989 | 16400      | 5736     |
| 1909 | 6600       | 77       | 1936 | 7920       | 371      | 1963 | 7780       | 898      | 1990 | 16600      | 6312     |
| 1910 | 6900       | 66       | 1937 | 8640       | 373      | 1964 | 7730       | 1023     | 1991 | 15600      | 5726     |
| 1911 | 7040       | 63       | 1938 | 8320       | 261      | 1965 | 8010       | 1140     | 1992 | 14900      | 5940     |
| 1912 | 6980       | 71       | 1939 | 8300       | 211      | 1966 | 8300       | 1207     | 1993 | 14100      | 5999     |
| 1913 | 7010       | 69       | 1940 | 8570       | 212      | 1967 | 8030       | 1209     | 1994 | 14000      | 5831     |
| 1914 | 5240       | 57       | 1941 | 8140       | 212      | 1968 | 8560       | 1954     | 1995 | 14900      | 5995     |
| 1915 | 5730       | 43       | 1942 | 7780       | 262      | 1969 | 9200       | 4102     | 1996 | 15100      | 5994     |
| 1916 | 5250       | 39       | 1943 | 6380       | 276      | 1970 | 9360       | 5156     | 1997 | 16500      | 6264     |
| 1917 | 5420       | 49       | 1944 | 7540       | 310      | 1971 | 9170       | 4980     | 1998 | 17200      | 5775     |
| 1918 | 6140       | 44       | 1945 | 5040       | 237      | 1972 | 9380       | 5256     | 1999 | 17600      | 5918     |
| 1919 | 5490       | 83       | 1946 | 3970       | 318      | 1973 | 9700       | 5373     | 2000 | 18100      | 6139     |
| 1920 | 5390       | 72       | 1947 | 5220       | 254      | 1974 | 9260       | 4742     | 2001 | 18900      | 6346     |
| 1921 | 5330       | 73       | 1948 | 5440       | 251      | 1975 | 9430       | 3269     | 2002 | 18800      | 6040     |
| 1922 | 6530       | 84       | 1949 | 5570       | 295      | 1976 | 9840       | 2089     | 2003 | 18800      | 6119     |
| 1923 | 7650       | 86       | 1950 | 6320       | 292      | 1977 | 10300      | 1434     | 2004 | 19900      | 5528     |
| 1924 | 7450       | 93       | 1951 | 6210       | 357      | 1978 | 10700      | 1953     | 2005 | 20600      | 5249     |
| 1925 | 7650       | 119      | 1952 | 6700       | 369      | 1979 | 10800      | 2322     | 2006 | 20200      | 4230     |
| 1926 | 7890       | 137      | 1953 | 6900       | 427      | 1980 | 10700      | 2356     | 2007 | 20800      | 2860     |

**Table A3.81** Silver Activity<sup>96</sup> and Patents<sup>97</sup>

Table A3.82 Correlation Eq.(A1.1) terms calculated from Table A3.81 data.

| Sum x   | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|---------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 1011880 | 205020 | 1.15E+10           | 9.55E+08           | 2.85E+09 | 1.998E+09 | 5.66E+08 | 9.29E+08 | 0.873549 | 76.30875          |



Figure A3.181. Silver Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>96</sup> Activity represents world production of silver, defined at usgs.gov as "...for the years 1900 to the most recent represent the recoverable silver content of precious-metal ores that were extracted from mines throughout the world. World production data were recorded from the MR [*Minerals Resources of the United* States] and MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>97</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Silver or Ag

<sup>&</sup>lt;sup>97</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Silver or Ag were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.182**. **USGS World Silver Production.** World silver production (activity) scaled in kilograms with actual and best-fit curves and common pattern equation parameters.



Figure A3.183. EPO Worldwide Patent Search: Silver or Ag in Title or Abstract by Date of Publication. Bestfit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.184. Silver Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.185. Silver Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | у        | Year | х          | у        | Year | X          | у        | Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 1420000    | 101      | 1927 | 5890000    | 214      | 1954 | 12800000   | 474      | 1981 | 53600000   | 2229     |
| 1901 | 1420000    | 80       | 1928 | 5690000    | 285      | 1955 | 15500000   | 462      | 1982 | 50600000   | 2125     |
| 1902 | 4390000    | 117      | 1929 | 6200000    | 334      | 1956 | 17000000   | 606      | 1983 | 49800000   | 2010     |
| 1903 | 4540000    | 114      | 1930 | 6400000    | 392      | 1957 | 17000000   | 613      | 1984 | 52500000   | 1970     |
| 1904 | 1320000    | 70       | 1931 | 5180000    | 499      | 1958 | 16100000   | 532      | 1985 | 53800000   | 2008     |
| 1905 | 1420000    | 79       | 1932 | 3760000    | 408      | 1959 | 17200000   | 539      | 1986 | 53700000   | 2206     |
| 1906 | 1320000    | 89       | 1933 | 4570000    | 409      | 1960 | 19600000   | 675      | 1987 | 57000000   | 2284     |
| 1907 | 1320000    | 83       | 1934 | 5080000    | 364      | 1961 | 20600000   | 579      | 1988 | 59200000   | 2457     |
| 1908 | 1220000    | 95       | 1935 | 5690000    | 392      | 1962 | 21300000   | 643      | 1989 | 58900000   | 2620     |
| 1909 | 1320000    | 84       | 1936 | 5390000    | 385      | 1963 | 21900000   | 689      | 1990 | 57800000   | 2654     |
| 1910 | 1420000    | 110      | 1937 | 5990000    | 412      | 1964 | 23500000   | 745      | 1991 | 54600000   | 2789     |
| 1911 | 1420000    | 101      | 1938 | 5590000    | 440      | 1965 | 25200000   | 805      | 1992 | 50700000   | 3080     |
| 1912 | 1630000    | 106      | 1939 | 7320000    | 316      | 1966 | 26500000   | 741      | 1993 | 51600000   | 2896     |
| 1913 | 1830000    | 97       | 1940 | 7930000    | 237      | 1967 | 28400000   | 815      | 1994 | 53400000   | 3082     |
| 1914 | 1070000    | 85       | 1941 | 7520000    | 201      | 1968 | 29500000   | 857      | 1995 | 54800000   | 2919     |
| 1915 | 1290000    | 67       | 1942 | 8030000    | 182      | 1969 | 30700000   | 743      | 1996 | 55200000   | 3000     |
| 1916 | 1440000    | 37       | 1943 | 6710000    | 122      | 1970 | 41900000   | 851      | 1997 | 56900000   | 3299     |
| 1917 | 1980000    | 56       | 1944 | 6600000    | 148      | 1971 | 42700000   | 854      | 1998 | 57400000   | 3563     |
| 1918 | 2140000    | 56       | 1945 | 6200000    | 209      | 1972 | 45500000   | 1081     | 1999 | 57400000   | 3652     |
| 1919 | 1800000    | 89       | 1946 | 7320000    | 260      | 1973 | 48200000   | 1075     | 2000 | 59300000   | 4182     |
| 1920 | 1590000    | 108      | 1947 | 8640000    | 302      | 1974 | 51200000   | 1081     | 2001 | 59500000   | 4079     |
| 1921 | 2230000    | 172      | 1948 | 9450000    | 331      | 1975 | 50700000   | 1470     | 2002 | 62000000   | 4535     |
| 1922 | 2090000    | 160      | 1949 | 9960000    | 328      | 1976 | 50900000   | 1745     | 2003 | 64100000   | 4410     |
| 1923 | 2380000    | 151      | 1950 | 10800000   | 299      | 1977 | 52300000   | 1698     | 2004 | 66200000   | 4523     |
| 1924 | 3860000    | 176      | 1951 | 11400000   | 347      | 1978 | 52100000   | 1776     | 2005 | 67000000   | 4288     |
| 1925 | 4780000    | 190      | 1952 | 12100000   | 433      | 1979 | 53200000   | 1687     | 2006 | 66800000   | 3766     |
| 1926 | 5490000    | 195      | 1953 | 11700000   | 368      | 1980 | 55000000   | 2192     | 2007 | 68400000   | 4181     |

| Table A3.83 | Sulfur | Activity <sup>98</sup> | and | Patents <sup>99</sup> |
|-------------|--------|------------------------|-----|-----------------------|
|             |        |                        |     |                       |

<sup>&</sup>lt;sup>98</sup> Activity represents world production of sulfur, defined at usgs.gov as "...all forms of sulfur and are in terms of their sulfur content. Data prior to 1936 include elemental sulfur production from principal producing countries and world pyrite production. Data for the years 1936 to the most recent are world production of all forms of sulfur. Data are from the MR [*Minerals Resources of the United* States] and MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

*Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>99</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Sulfur or Sulphur were used as keywords found in the patent title or abstract by year of publication.

Table A3.84 Correlation Eq.(A1.1) terms calculated from Table A3.83 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 2.694E+09 | 122320 | 1.27E+17           | 3.2E+08            | 6.06E+12 | 5.937E+16 | 1.81E+08 | 3.01E+12 | 0.915594 | 83.83128          |



Figure A3.186. Sulfur Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.187**. **USGS World Sulfur Production.** World sulfur production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



**Figure A3.188. EPO Worldwide Patent Search: Sulfur or Sulphur in Title or Abstract by date of Publication.** Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.189. Sulfur Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.190. Sulfur Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | у        | Year | х          | у        | Year | х          | у        | Year | x          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 431000     | 18       | 1954 | 1470000    | 59       | 1981 | 7270000    | 198      |
| 1901 |            |          | 1928 | 389000     | 26       | 1955 | 1620000    | 88       | 1982 | 7060000    | 212      |
| 1902 |            |          | 1929 | 421000     | 24       | 1956 | 1750000    | 98       | 1983 | 7060000    | 249      |
| 1903 |            |          | 1930 | 364000     | 30       | 1957 | 2010000    | 131      | 1984 | 7570000    | 246      |
| 1904 | 118000     | 11       | 1931 | 384000     | 40       | 1958 | 1910000    | 98       | 1985 | 7830000    | 271      |
| 1905 | 124000     | 9        | 1932 | 331000     | 32       | 1959 | 2350000    | 159      | 1986 | 7760000    | 285      |
| 1906 | 151000     | 12       | 1933 | 430000     | 35       | 1960 | 2520000    | 153      | 1987 | 8470000    | 264      |
| 1907 | 191000     | 13       | 1934 | 399000     | 36       | 1961 | 2710000    | 129      | 1988 | 8810000    | 285      |
| 1908 | 160000     | 16       | 1935 | 424000     | 51       | 1962 | 2670000    | 110      | 1989 | 9240000    | 361      |
| 1909 | 178000     | 13       | 1936 | 472000     | 53       | 1963 | 2990000    | 160      | 1990 | 9370000    | 315      |
| 1910 | 202000     | 9        | 1937 | 515000     | 45       | 1964 | 3520000    | 143      | 1991 | 9060000    | 317      |
| 1911 | 208000     | 11       | 1938 | 420000     | 49       | 1965 | 3570000    | 167      | 1992 | 8500000    | 349      |
| 1912 | 171000     | 15       | 1939 | 488000     | 38       | 1966 | 3710000    | 131      | 1993 | 8420000    | 340      |
| 1913 | 279000     | 10       | 1940 | 664000     | 33       | 1967 | 3960000    | 162      | 1994 | 8260000    | 323      |
| 1914 | 213000     | 11       | 1941 | 840000     | 26       | 1968 | 4350000    | 119      | 1995 | 8490000    | 365      |
| 1915 | 224000     | 3        | 1942 | 1170000    | 20       | 1969 | 4680000    | 107      | 1996 | 9880000    | 371      |
| 1916 | 257000     | 5        | 1943 | 1120000    | 13       | 1970 | 4820000    | 128      | 1997 | 10400000   | 379      |
| 1917 | 266000     | 4        | 1944 | 1010000    | 12       | 1971 | 4740000    | 138      | 1998 | 9410000    | 445      |
| 1918 | 252000     | 4        | 1945 | 840000     | 20       | 1972 | 4830000    | 169      | 1999 | 9470000    | 424      |
| 1919 | 255000     | 7        | 1946 | 950000     | 28       | 1973 | 5400000    | 114      | 2000 | 8730000    | 497      |
| 1920 | 322000     | 10       | 1947 | 1060000    | 33       | 1974 | 5810000    | 105      | 2001 | 9060000    | 401      |
| 1921 | 207000     | 12       | 1948 | 1300000    | 46       | 1975 | 4900000    | 120      | 2002 | 8030000    | 446      |
| 1922 | 353000     | 16       | 1949 | 1280000    | 39       | 1976 | 5270000    | 143      | 2003 | 7800000    | 389      |
| 1923 | 336000     | 14       | 1950 | 1430000    | 41       | 1977 | 6090000    | 118      | 2004 | 7840000    | 393      |
| 1924 | 375000     | 8        | 1951 | 1570000    | 42       | 1978 | 6400000    | 141      | 2005 | 7950000    | 289      |
| 1925 | 398000     | 10       | 1952 | 1410000    | 54       | 1979 | 6870000    | 125      | 2006 | 7750000    | 263      |
| 1926 | 344000     | 17       | 1953 | 1480000    | 51       | 1980 | 7540000    | 208      | 2007 | 7620000    | 338      |

**Table A3.85** Talc and Pyrophyllite<sup>100</sup> Activity<sup>101</sup> and Patents<sup>102</sup>

Table A3.86 Correlation Eq.(A1.1) terms calculated from Table A3.85 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx     | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|----------|---------|---------|----------|----------|-------------------|
| 62746000 | 13713 | 2.47E+15           | 3678389            | 9.23E+10 | 1.2E+15 | 1870251 | 4.45E+10 | 0.938294 | 88.03948          |



Figure A3.191. Talc and Pyrophyllite Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

362

<sup>&</sup>lt;sup>100</sup> Magnesium silicate and aluminum silicate hydroxide [78,128].

<sup>&</sup>lt;sup>101</sup> Activity represents world production of talc, defined at usgs.gov as "...for the years 1904 to the most recent were recorded from the MR [Minerals Resources of the United States] and MYB [Minerals Yearbook]. World production data for the years 1904–12 represent the summed weights of all talc and soapstone materials that were produced annually throughout the world. World production data for the years 1913 to the most recent represent the summed weights of all tale, pyrophyllite, soapstone, steatite, and other unspecified tale-related materials that were produced annually throughout the world." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>102</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Talc or Pyrophyllite were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.192. USGS World Talc Production.** World talc and pyrophyllite production (activity) scaled in metric kilotons with actual and best-fit curves and common pattern equation parameters.



Figure A3.193. EPO Worldwide Patent Search: Talc or Pyrophyllite in Title or Abstract by date of **Publication**. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.194. Talc and Pyrophyllite Best-Fit Patents and Activity. Illustrates best-fit origin shift.



Figure A3.195. Talc and Pyrophyllite Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | Х          | У        | Year | х          | у        | Year | x          | У        | Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 |            |          | 1981 | 403        | 614      |
| 1901 |            |          | 1928 |            |          | 1955 |            |          | 1982 | 284        | 801      |
| 1902 |            |          | 1929 |            |          | 1956 |            |          | 1983 | 313        | 877      |
| 1903 |            |          | 1930 |            |          | 1957 |            |          | 1984 | 315        | 883      |
| 1904 |            |          | 1931 |            |          | 1958 |            |          | 1985 | 315        | 1031     |
| 1905 |            |          | 1932 |            |          | 1959 |            |          | 1986 | 215        | 1126     |
| 1906 |            |          | 1933 |            |          | 1960 |            |          | 1987 | 275        | 1187     |
| 1907 |            |          | 1934 |            |          | 1961 |            |          | 1988 | 292        | 1245     |
| 1908 |            |          | 1935 |            |          | 1962 |            |          | 1989 | 395        | 1561     |
| 1909 |            |          | 1936 |            |          | 1963 |            |          | 1990 | 396        | 1491     |
| 1910 |            |          | 1937 |            |          | 1964 |            |          | 1991 | 477        | 1577     |
| 1911 |            |          | 1938 |            |          | 1965 |            |          | 1992 | 399        | 1775     |
| 1912 |            |          | 1939 |            |          | 1966 |            |          | 1993 | 292        | 1557     |
| 1913 |            |          | 1940 |            |          | 1967 |            |          | 1994 | 333        | 1587     |
| 1914 |            |          | 1941 |            |          | 1968 |            |          | 1995 | 361        | 1436     |
| 1915 |            |          | 1942 |            |          | 1969 | 388        | 319      | 1996 | 436        | 1402     |
| 1916 |            |          | 1943 |            |          | 1970 | 318        | 360      | 1997 | 562        | 1468     |
| 1917 |            |          | 1944 |            |          | 1971 | 496        | 368      | 1998 | 779        | 1674     |
| 1918 |            |          | 1945 |            |          | 1972 | 371        | 412      | 1999 | 656        | 1802     |
| 1919 |            |          | 1946 |            |          | 1973 | 384        | 357      | 2000 | 1070       | 2210     |
| 1920 |            |          | 1947 |            |          | 1974 | 436        | 328      | 2001 | 1180       | 2304     |
| 1921 |            |          | 1948 |            |          | 1975 | 411        | 351      | 2002 | 1340       | 2513     |
| 1922 |            |          | 1949 |            |          | 1976 | 339        | 381      | 2003 | 1390       | 2370     |
| 1923 |            |          | 1950 |            |          | 1977 | 409        | 393      | 2004 | 1520       | 2241     |
| 1924 |            |          | 1951 |            |          | 1978 | 362        | 422      | 2005 | 1470       | 2021     |
| 1925 |            |          | 1952 |            |          | 1979 | 476        | 410      | 2006 | 964        | 2030     |
| 1926 |            |          | 1953 |            |          | 1980 | 544        | 584      | 2007 | 815        | 2098     |

**Table A3.87** Tantalum Activity<sup>103</sup> and Patents<sup>104</sup>

<sup>&</sup>lt;sup>103</sup> Activity represents world production of talc, defined at usgs.gov as "...data for the years 1964–68 were not available. World production data for the years 1969 to the most recent represent the tantalum content in tantalum-bearing ores and mineral concentrates that were produced from mines throughout the world. World production data for the years 1969 to the most recent were recorded from the

MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>104</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Talc or Pyrophyllite were used as keywords found in the patent title or abstract by year of publication.

Table A3.88 Correlation Eq.(A1.1) terms calculated from Table A3.87 data.

| Sum x | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy     | r        | 100r <sup>2</sup> |
|-------|-------|--------------------|--------------------|----------|-----------|----------|---------|----------|-------------------|
| 22181 | 47566 | 17723137           | 76964848           | 34118459 | 5107835.4 | 18951403 | 7065601 | 0.718141 | 51.57272          |



Figure A3.196. Tantalum Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



Figure A3.197. USGS World Tantalum Production. World tantalum production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A3.198. Tantalum Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | У        | Year | х          | У        | Year | х          | У        | Year | x          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 161000     | 180      | 1954 | 192000     | 255      | 1981 | 238000     | 1652     |
| 1901 |            |          | 1928 | 180000     | 183      | 1955 | 200000     | 268      | 1982 | 219000     | 1873     |
| 1902 |            |          | 1929 | 196000     | 195      | 1956 | 203000     | 284      | 1983 | 197000     | 2096     |
| 1903 |            |          | 1930 | 179000     | 200      | 1957 | 204000     | 303      | 1984 | 188000     | 2154     |
| 1904 |            |          | 1931 | 149000     | 198      | 1958 | 156000     | 277      | 1985 | 181000     | 2345     |
| 1905 | 93600      | 117      | 1932 | 96500      | 210      | 1959 | 164000     | 309      | 1986 | 173000     | 2583     |
| 1906 | 98400      | 95       | 1933 | 90400      | 187      | 1960 | 183000     | 452      | 1987 | 180000     | 2742     |
| 1907 | 93800      | 104      | 1934 | 122000     | 159      | 1961 | 187000     | 378      | 1988 | 205000     | 2803     |
| 1908 | 106000     | 107      | 1935 | 137000     | 209      | 1962 | 190000     | 471      | 1989 | 233000     | 3165     |
| 1909 | 106000     | 118      | 1936 | 182000     | 223      | 1963 | 194000     | 517      | 1990 | 221000     | 3097     |
| 1910 | 105000     | 116      | 1937 | 213000     | 207      | 1964 | 197000     | 542      | 1991 | 201000     | 2965     |
| 1911 | 112000     | 120      | 1938 | 166000     | 200      | 1965 | 204000     | 650      | 1992 | 191000     | 3382     |
| 1912 | 122000     | 121      | 1939 | 180000     | 181      | 1966 | 211000     | 604      | 1993 | 190000     | 3078     |
| 1913 | 136000     | 107      | 1940 | 240000     | 168      | 1967 | 218000     | 705      | 1994 | 178000     | 3149     |
| 1914 | 128000     | 100      | 1941 | 244000     | 154      | 1968 | 232000     | 680      | 1995 | 201000     | 3009     |
| 1915 | 129000     | 76       | 1942 | 124000     | 108      | 1969 | 229000     | 632      | 1996 | 220000     | 2987     |
| 1916 | 128000     | 75       | 1943 | 146000     | 100      | 1970 | 232000     | 731      | 1997 | 241000     | 2929     |
| 1917 | 135000     | 58       | 1944 | 102000     | 75       | 1971 | 235000     | 796      | 1998 | 231000     | 3259     |
| 1918 | 128000     | 60       | 1945 | 88400      | 99       | 1972 | 244000     | 954      | 1999 | 245000     | 3459     |
| 1919 | 123000     | 81       | 1946 | 89400      | 126      | 1973 | 238000     | 757      | 2000 | 278000     | 4068     |
| 1920 | 126000     | 109      | 1947 | 115000     | 151      | 1974 | 233000     | 697      | 2001 | 246000     | 4031     |
| 1921 | 110000     | 134      | 1948 | 156000     | 197      | 1975 | 222000     | 842      | 2002 | 233000     | 4173     |
| 1922 | 127000     | 150      | 1949 | 164000     | 170      | 1976 | 218000     | 945      | 2003 | 258000     | 4010     |
| 1923 | 130000     | 152      | 1950 | 172000     | 132      | 1977 | 231000     | 1002     | 2004 | 298000     | 3945     |
| 1924 | 142000     | 150      | 1951 | 172000     | 137      | 1978 | 241000     | 1069     | 2005 | 292000     | 3569     |
| 1925 | 147000     | 176      | 1952 | 177000     | 210      | 1979 | 245000     | 1134     | 2006 | 302000     | 3760     |
| 1926 | 146000     | 140      | 1953 | 193000     | 176      | 1980 | 245000     | 1640     | 2007 | 320000     | 3697     |

| <b>Table A3.89</b> Tin Activity <sup>105</sup> and Patents | 106 |
|------------------------------------------------------------|-----|
|------------------------------------------------------------|-----|

<sup>&</sup>lt;sup>105</sup> Activity represents world production of talc, defined at usgs.gov as "...tin content of mine and mill production. Data were from the MYB [*Mineral Yearbook*] and MR [*Mineral Resources of the United States*]. Blank cells in the worksheet indicate that data were not available for the years 1900–04." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

Pyrophyllite were used as keywords found in the patent title or abstract by year of publication.

Table A3.90 Correlation Eq.(A1.1) terms calculated from Table A3.89 data.

| 18814500 108875 3.73E+12 | 2.89E+08 | 2.46E+10 | 2.959E+11 | 1.74E+08 | 4.72E+09 | 0.657578 | 43.24093 |
|--------------------------|----------|----------|-----------|----------|----------|----------|----------|



Figure A3.199. Tin Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.200. USGS World Tin Production.** World tin production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters. The negative  $R^2$  may indicate possible Stage IV. No best-fit for the patent data was obtainable.



Figure A3.201. Tin Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | у        | Year | х          | У        | Year | х          | у        | Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 | 36100      | 60       | 1954 | 1180000    | 317      | 1981 | 5140000    | 2623     |
| 1901 |            |          | 1928 | 40100      | 80       | 1955 | 1340000    | 450      | 1982 | 4420000    | 3105     |
| 1902 |            |          | 1929 | 48200      | 91       | 1956 | 1750000    | 493      | 1983 | 4040000    | 3283     |
| 1903 |            |          | 1930 | 43500      | 123      | 1957 | 1930000    | 569      | 1984 | 5320000    | 3469     |
| 1904 |            |          | 1931 | 43700      | 150      | 1958 | 1650000    | 650      | 1985 | 5110000    | 3869     |
| 1905 |            |          | 1932 | 65700      | 150      | 1959 | 1830000    | 707      | 1986 | 5100000    | 4333     |
| 1906 |            |          | 1933 | 79000      | 133      | 1960 | 2100000    | 984      | 1987 | 5950000    | 4676     |
| 1907 |            |          | 1934 | 106000     | 152      | 1961 | 2230000    | 836      | 1988 | 6280000    | 5038     |
| 1908 |            |          | 1935 | 174000     | 154      | 1962 | 2100000    | 835      | 1989 | 6570000    | 5696     |
| 1909 |            |          | 1936 | 226000     | 192      | 1963 | 2190000    | 856      | 1990 | 6250000    | 5769     |
| 1910 |            |          | 1937 | 284000     | 210      | 1964 | 2540000    | 828      | 1991 | 5330000    | 5868     |
| 1911 |            |          | 1938 | 323000     | 226      | 1965 | 2680000    | 971      | 1992 | 6050000    | 6557     |
| 1912 |            |          | 1939 | 89600      | 208      | 1966 | 2870000    | 786      | 1993 | 6040000    | 6116     |
| 1913 |            |          | 1940 | 361000     | 164      | 1967 | 3020000    | 1007     | 1994 | 6030000    | 6361     |
| 1914 |            |          | 1941 | 248000     | 170      | 1968 | 3230000    | 952      | 1995 | 6240000    | 6030     |
| 1915 |            |          | 1942 | 217000     | 156      | 1969 | 3610000    | 879      | 1996 | 6210000    | 6148     |
| 1916 |            |          | 1943 | 379000     | 123      | 1970 | 4020000    | 1064     | 1997 | 6450000    | 6344     |
| 1917 |            |          | 1944 | 483000     | 109      | 1971 | 3750000    | 1084     | 1998 | 7050000    | 8456     |
| 1918 |            |          | 1945 | 532000     | 108      | 1972 | 3610000    | 1340     | 1999 | 6550000    | 8690     |
| 1919 |            |          | 1946 | 527000     | 132      | 1973 | 3920000    | 1221     | 2000 | 7350000    | 9308     |
| 1920 |            |          | 1947 | 704000     | 146      | 1974 | 4400000    | 1056     | 2001 | 7570000    | 8650     |
| 1921 |            |          | 1948 | 736000     | 190      | 1975 | 4030000    | 1308     | 2002 | 7730000    | 8938     |
| 1922 |            |          | 1949 | 844000     | 205      | 1976 | 4390000    | 1290     | 2003 | 8210000    | 8816     |
| 1923 |            |          | 1950 | 884000     | 186      | 1977 | 4350000    | 1519     | 2004 | 8380000    | 9298     |
| 1924 |            |          | 1951 | 160000     | 199      | 1978 | 4760000    | 1646     | 2005 | 8450000    | 8326     |
| 1925 | 14800      | 49       | 1952 | 942000     | 288      | 1979 | 4660000    | 1611     | 2006 | 9740000    | 8165     |
| 1926 | 21400      | 47       | 1953 | 860000     | 228      | 1980 | 5380000    | 2390     | 2007 | 1000000    | 8520     |

| Table A3.91 Titanium Activity         and Patents | Table A3.91 | Titanium Activity <sup>107</sup> | and Patents <sup>1</sup> | 08 |
|---------------------------------------------------|-------------|----------------------------------|--------------------------|----|
|---------------------------------------------------|-------------|----------------------------------|--------------------------|----|

<sup>&</sup>lt;sup>107</sup> Activity represents world production of titanium, defined at usgs.gov as "…ilmenite and natural rutile, and titanium slag, but does not include ilmenite used to produce titanium slag to avoid double counting. Data are not available prior to 1925. Titanium slag was not produced prior to 1950. Data are from the MR [*Mineral Resources of the United States*] and the MYB [*Minerals Yearbook*]; the typical silicon content of silicon metal is 98% of the gross weight." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.
<sup>108</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Titanium or Ti were used as keywords found in the patent title or abstract by year of publication.

Table A3.92. Correlation Eq.(A1.1) terms calculated from Table A3.91 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy  | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|---------|-----------|----------|----------|----------|-------------------|
| 270552100 | 204530 | 1.52E+15           | 1.25E+09           | 1.3E+12 | 6.429E+14 | 7.47E+08 | 6.34E+11 | 0.915079 | 83.73694          |



Figure A3.202. Titanium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.203. USGS World Titanium Production.** World titanium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.204. EPO Worldwide Patent Search: Titanium or Ti in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.205. Titanium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.206. Titanium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | x<br>(activity) | y<br>(natent) |
|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|
| 1900 | (activity)      | (putent)      | 1927 | 4400            | 100           | 1954 | 33800           | 160           | 1981 | 50300           | 602           |
| 1901 |                 |               | 1928 | 5500            | 144           | 1955 | 35700           | 205           | 1982 | 47000           | 666           |
| 1902 |                 |               | 1929 | 7500            | 145           | 1956 | 35800           | 169           | 1983 | 40900           | 740           |
| 1903 |                 |               | 1930 | 7900            | 190           | 1957 | 29100           | 233           | 1984 | 46200           | 787           |
| 1904 |                 |               | 1931 | 6400            | 244           | 1958 | 24200           | 200           | 1985 | 46600           | 890           |
| 1905 | 1700            | 14            | 1932 | 3200            | 230           | 1959 | 26400           | 195           | 1986 | 43500           | 1036          |
| 1906 | 1900            | 22            | 1933 | 5900            | 193           | 1960 | 31200           | 293           | 1987 | 42500           | 1030          |
| 1907 | 2600            | 55            | 1934 | 7800            | 187           | 1961 | 33000           | 260           | 1988 | 50900           | 1180          |
| 1908 | 1800            | 64            | 1935 | 10700           | 187           | 1962 | 31300           | 240           | 1989 | 51000           | 1331          |
| 1909 | 2500            | 39            | 1936 | 11800           | 189           | 1963 | 27100           | 289           | 1990 | 51900           | 1409          |
| 1910 | 3300            | 34            | 1937 | 18500           | 213           | 1964 | 28100           | 327           | 1991 | 48200           | 1323          |
| 1911 | 3200            | 48            | 1938 | 17800           | 245           | 1965 | 27000           | 341           | 1992 | 42900           | 1581          |
| 1912 | 4200            | 35            | 1939 | 20100           | 194           | 1966 | 28600           | 297           | 1993 | 34300           | 1285          |
| 1913 | 3900            | 65            | 1940 | 20700           | 126           | 1967 | 28500           | 380           | 1994 | 34000           | 1307          |
| 1914 | 3500            | 46            | 1941 | 23900           | 123           | 1968 | 31000           | 398           | 1995 | 38500           | 1201          |
| 1915 | 5200            | 41            | 1942 | 24100           | 85            | 1969 | 32500           | 380           | 1996 | 34700           | 1288          |
| 1916 | 10000           | 33            | 1943 | 28600           | 75            | 1970 | 32400           | 398           | 1997 | 33200           | 1230          |
| 1917 | 12300           | 26            | 1944 | 23400           | 73            | 1971 | 35400           | 417           | 1998 | 37000           | 1523          |
| 1918 | 15200           | 29            | 1945 | 10900           | 89            | 1972 | 38500           | 511           | 1999 | 37700           | 1616          |
| 1919 | 7000            | 31            | 1946 | 9040            | 131           | 1973 | 37900           | 501           | 2000 | 44000           | 2237          |
| 1920 | 5500            | 49            | 1947 | 13700           | 122           | 1974 | 37600           | 429           | 2001 | 50800           | 2217          |
| 1921 | 2300            | 63            | 1948 | 17800           | 139           | 1975 | 38300           | 419           | 2002 | 47000           | 2341          |
| 1922 | 3000            | 75            | 1949 | 15800           | 152           | 1976 | 38000           | 441           | 2003 | 47200           | 2094          |
| 1923 | 3300            | 87            | 1950 | 18300           | 117           | 1977 | 41100           | 411           | 2004 | 66600           | 1955          |
| 1924 | 2900            | 94            | 1951 | 24800           | 124           | 1978 | 46100           | 424           | 2005 | 59600           | 1584          |
| 1925 | 4900            | 123           | 1952 | 32700           | 174           | 1979 | 48600           | 415           | 2006 | 56600           | 1559          |
| 1926 | 5800            | 97            | 1953 | 34400           | 128           | 1980 | 52000           | 559           | 2007 | 54500           | 1603          |

**Table A3.93** Tungsten Activity<sup>109</sup> and Patents<sup>110</sup>

Table A3.94. Correlation Eq.(A1.1) terms calculated from Table A3.93 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx      | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|----------|----------|----------|----------|-------------------|
| 2698440 | 52196 | 1.01E+11           | 62604270           | 2.15E+09 | 3.05E+10 | 36153567 | 7.79E+08 | 0.741966 | 55.05131          |



Figure A3.207. Tungsten Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>109</sup> Activity represents world production of tungsten, defined at usgs.gov as "...tungsten content of concentrate. Data for the years 1905–2001 were from the MR [Mineral Resources of the United States] and the MYB [Minerals Yearbook]; datum for 2002 is a previously unpublished revision; data for 2003 to the most recent year are from the MYB. Blank cells in the worksheet indicate that data were not available for the years 1900–04." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>110</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Tungsten or

Wolfram were used as keywords found in the patent title or abstract by year of publication.


**Figure A3.208. USGS World Tungsten Production.** World tungsten production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.209. EPO Worldwide Patent Search: Tungsten or Wolfram in Title or Abstract by date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.210. Tungsten Best-Fit Activity and Patents. Illustrates best-fit origin shift.



**Figure A3.211. Tungsten Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | Х          | у        | Year | х          | у        | Year | x          | у        | Year | X          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 |            |          | 1981 | 35300      | 501      |
| 1901 |            |          | 1928 |            |          | 1955 |            |          | 1982 | 27200      | 500      |
| 1902 |            |          | 1929 |            |          | 1956 |            |          | 1983 | 27200      | 447      |
| 1903 |            |          | 1930 |            |          | 1957 |            |          | 1984 | 31100      | 501      |
| 1904 |            |          | 1931 |            |          | 1958 |            |          | 1985 | 31000      | 475      |
| 1905 |            |          | 1932 |            |          | 1959 |            |          | 1986 | 32000      | 415      |
| 1906 |            |          | 1933 |            |          | 1960 | 5040       | 196      | 1987 | 32000      | 476      |
| 1907 |            |          | 1934 |            |          | 1961 | 7850       | 154      | 1988 | 33000      | 471      |
| 1908 |            |          | 1935 |            |          | 1962 | 6080       | 164      | 1989 | 33000      | 510      |
| 1909 |            |          | 1936 |            |          | 1963 | 6500       | 160      | 1990 | 33200      | 503      |
| 1910 |            |          | 1937 |            |          | 1964 | 7170       | 172      | 1991 | 26400      | 553      |
| 1911 |            |          | 1938 |            |          | 1965 | 8300       | 215      | 1992 | 26700      | 624      |
| 1912 |            |          | 1939 |            |          | 1966 | 8440       | 173      | 1993 | 2500       | 607      |
| 1913 |            |          | 1940 |            |          | 1967 | 9610       | 217      | 1994 | 3200       | 616      |
| 1914 |            |          | 1941 |            |          | 1968 | 11400      | 216      | 1995 | 3600       | 542      |
| 1915 |            |          | 1942 |            |          | 1969 | 10300      | 172      | 1996 | 35100      | 587      |
| 1916 |            |          | 1943 |            |          | 1970 | 14900      | 206      | 1997 | 37100      | 599      |
| 1917 |            |          | 1944 |            |          | 1971 | 15800      | 257      | 1998 | 42700      | 736      |
| 1918 |            |          | 1945 |            |          | 1972 | 15500      | 250      | 1999 | 36300      | 764      |
| 1919 |            |          | 1946 |            |          | 1973 | 16000      | 215      | 2000 | 41000      | 949      |
| 1920 |            |          | 1947 |            |          | 1974 | 20400      | 203      | 2001 | 41800      | 877      |
| 1921 |            |          | 1948 |            |          | 1975 | 21600      | 292      | 2002 | 51000      | 880      |
| 1922 |            |          | 1949 |            |          | 1976 | 29200      | 288      | 2003 | 47900      | 1017     |
| 1923 |            |          | 1950 |            |          | 1977 | 29000      | 326      | 2004 | 51900      | 899      |
| 1924 |            |          | 1951 |            |          | 1978 | 29400      | 409      | 2005 | 56400      | 780      |
| 1925 |            |          | 1952 |            |          | 1979 | 37700      | 329      | 2006 | 56300      | 840      |
| 1926 |            |          | 1953 |            |          | 1980 | 35900      | 454      | 2007 | 58500      | 1027     |

| Table A3.95 | Vanadium Activ | rity <sup>111</sup> and Patents <sup>11</sup> | 12 |
|-------------|----------------|-----------------------------------------------|----|
|-------------|----------------|-----------------------------------------------|----|

Activity represents world production of Vanadium, defined at usgs.gov as "...mine production of vanadium. Data were from the MR [*Mineral Resources of the United States*] and MYB [*Minerals Yearbook*] for the years 1912–22, 1925, 1927-31, 1934–43, 1945–47, and 1998 to the most recent, the CDS [*Commodity Data Summaries*] for the years 1960–77, and the MCS for the years 1978–84 and 1990–97. Blank cells in the worksheet indicate that data were not available for the years 1900–11, 1923–24, and 1948–59. World production was interpolated to two significant figures for the years 1926, 1932–33, 1944, and 1985–89. World production data for the years 1927–31 and 1997–99 do not contain U.S. production." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>&</sup>lt;sup>112</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Vanadium was used as the keyword found in the patent title or abstract by year of publication.

Table A3.96. Correlation Eq.(A1.1) terms calculated from Table A3.95 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|---------|----------|----------|-------------------|
| 1279490 | 22764 | 4.58E+10           | 13890388           | 7.56E+08 | 1.166E+10 | 3094561 | 1.49E+08 | 0.783991 | 61.46415          |



Figure A3.212. Vanadium Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A3.213**. **USGS World Vanadium Production**. World vanadium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.214. EPO Worldwide Patent search: Vanadium in Title or Abstract by Date of Publication. Bestfit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.215. Vanadium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.216. Vanadium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 479000     | 141      | 1927 | 1420000    | 313      | 1954 | 2660000    | 647      | 1981 | 5950000    | 2788     |
| 1901 | 510000     | 121      | 1928 | 1360000    | 361      | 1955 | 2900000    | 699      | 1982 | 6130000    | 3144     |
| 1902 | 547000     | 120      | 1929 | 1320000    | 384      | 1956 | 3110000    | 796      | 1983 | 6280000    | 3144     |
| 1903 | 574000     | 156      | 1930 | 1260000    | 517      | 1957 | 3150000    | 781      | 1984 | 6520000    | 3247     |
| 1904 | 629000     | 134      | 1931 | 904000     | 556      | 1958 | 2950000    | 715      | 1985 | 6760000    | 3367     |
| 1905 | 660000     | 122      | 1932 | 709000     | 488      | 1959 | 3020000    | 752      | 1986 | 6840000    | 3682     |
| 1906 | 704000     | 135      | 1933 | 892000     | 506      | 1960 | 3090000    | 1119     | 1987 | 7190000    | 3627     |
| 1907 | 738000     | 146      | 1934 | 1060000    | 511      | 1961 | 3490000    | 1019     | 1988 | 6770000    | 4000     |
| 1908 | 723000     | 151      | 1935 | 1210000    | 549      | 1962 | 3570000    | 924      | 1989 | 6820000    | 4387     |
| 1909 | 775000     | 132      | 1936 | 1330000    | 542      | 1963 | 3660000    | 992      | 1990 | 7150000    | 4233     |
| 1910 | 810000     | 148      | 1937 | 1470000    | 496      | 1964 | 4030000    | 1022     | 1991 | 7270000    | 4395     |
| 1911 | 895000     | 144      | 1938 | 1420000    | 643      | 1965 | 4310000    | 1164     | 1992 | 7250000    | 4914     |
| 1912 | 971000     | 154      | 1939 | 1500000    | 470      | 1966 | 4500000    | 1042     | 1993 | 6910000    | 4485     |
| 1913 | 939000     | 142      | 1940 | 1470000    | 357      | 1967 | 4840000    | 1291     | 1994 | 7050000    | 4561     |
| 1914 | 795000     | 115      | 1941 | 1590000    | 320      | 1968 | 4970000    | 1167     | 1995 | 7280000    | 4277     |
| 1915 | 760000     | 101      | 1942 | 1630000    | 274      | 1969 | 5340000    | 1087     | 1996 | 7480000    | 4352     |
| 1916 | 882000     | 86       | 1943 | 1830000    | 225      | 1970 | 5460000    | 1231     | 1997 | 7540000    | 4157     |
| 1917 | 901000     | 77       | 1944 | 1870000    | 191      | 1971 | 5520000    | 1335     | 1998 | 7570000    | 4851     |
| 1918 | 849000     | 74       | 1945 | 1470000    | 306      | 1972 | 5440000    | 1485     | 1999 | 7960000    | 4908     |
| 1919 | 719000     | 124      | 1946 | 1440000    | 327      | 1973 | 5710000    | 1339     | 2000 | 8770000    | 5522     |
| 1920 | 682000     | 162      | 1947 | 1600000    | 365      | 1974 | 5780000    | 1217     | 2001 | 8910000    | 5554     |
| 1921 | 464000     | 234      | 1948 | 1690000    | 492      | 1975 | 5850000    | 1510     | 2002 | 8880000    | 5953     |
| 1922 | 730000     | 228      | 1949 | 1730000    | 468      | 1976 | 5690000    | 1610     | 2003 | 9520000    | 5954     |
| 1923 | 889000     | 222      | 1950 | 2150000    | 385      | 1977 | 5920000    | 1677     | 2004 | 9590000    | 5797     |
| 1924 | 986000     | 225      | 1951 | 2360000    | 503      | 1978 | 5850000    | 2034     | 2005 | 9930000    | 5689     |
| 1925 | 1190000    | 261      | 1952 | 2590000    | 608      | 1979 | 5990000    | 2066     | 2006 | 1000000    | 5645     |
| 1926 | 1410000    | 254      | 1953 | 2670000    | 482      | 1980 | 5950000    | 2698     | 2007 | 10900000   | 5884     |

**Table A3.97** Zinc Activity<sup>113</sup> and Patents<sup>114</sup>

Table A3.98. Correlation Eq.(A1.1) terms calculated from Table A3.97 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 395126000 | 171684 | 2.35E+15           | 6.34E+08           | 1.16E+12 | 9.058E+14 | 3.61E+08 | 5.37E+11 | 0.938743 | 88.12379          |



Figure A3.217. Zinc Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

Activity represents world production of Zinc, defined at usgs.gov as "...zinc content of smelter production for the years 1900–12, 1914–17, and 1929–42. World mine production data were used for the years 1913, 1918–28, and 1943 to the most recent. Data were from the MR [*Mineral Resources of the United States*] and MYB [*Minerals Yearbook*]." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov.

<sup>(</sup>USGS) at minerals.usgs.gov. <sup>114</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Zinc or Zn were used as keywords found in the patent title or abstract by year of publication.



**Figure A3.218. USGS World Zinc Production.** World zinc production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



Figure A3.219. EPO Worldwide Patent Search: Zinc or Zn in Title or Abstract by Date of Publication. Bestfit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.220. Zinc Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.221. Zinc Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 | 63200      | 109      | 1981 | 645000     | 908      |
| 1901 |            |          | 1928 |            |          | 1955 | 78200      | 170      | 1982 | 710000     | 1030     |
| 1902 |            |          | 1929 |            |          | 1956 | 118000     | 186      | 1983 | 666000     | 1204     |
| 1903 |            |          | 1930 |            |          | 1957 | 146000     | 256      | 1984 | 736000     | 1308     |
| 1904 |            |          | 1931 |            |          | 1958 | 105000     | 270      | 1985 | 815000     | 1419     |
| 1905 |            |          | 1932 |            |          | 1959 | 103000     | 272      | 1986 | 741000     | 1596     |
| 1906 |            |          | 1933 |            |          | 1960 | 129000     | 417      | 1987 | 753000     | 1777     |
| 1907 |            |          | 1934 |            |          | 1961 | 159000     | 371      | 1988 | 929000     | 1941     |
| 1908 |            |          | 1935 |            |          | 1962 | 149000     | 387      | 1989 | 979000     | 2259     |
| 1909 |            |          | 1936 |            |          | 1963 | 195000     | 365      | 1990 | 852000     | 2155     |
| 1910 |            |          | 1937 |            |          | 1964 | 191000     | 363      | 1991 | 795000     | 2173     |
| 1911 |            |          | 1938 |            |          | 1965 | 235000     | 408      | 1992 | 856000     | 2379     |
| 1912 |            |          | 1939 |            |          | 1966 | 244000     | 383      | 1993 | 796000     | 2292     |
| 1913 |            |          | 1940 |            |          | 1967 | 293000     | 475      | 1994 | 897000     | 2257     |
| 1914 |            |          | 1941 |            |          | 1968 | 309000     | 476      | 1995 | 918000     | 2165     |
| 1915 |            |          | 1942 |            |          | 1969 | 386000     | 405      | 1996 | 894000     | 2083     |
| 1916 |            |          | 1943 |            |          | 1970 | 399000     | 478      | 1997 | 830000     | 2004     |
| 1917 |            |          | 1944 | 17300      | 37       | 1971 | 432000     | 443      | 1998 | 732000     | 2419     |
| 1918 |            |          | 1945 | 19700      | 48       | 1972 | 369000     | 557      | 1999 | 673000     | 2503     |
| 1919 |            |          | 1946 | 24700      | 51       | 1973 | 379000     | 497      | 2000 | 731000     | 2711     |
| 1920 |            |          | 1947 | 25900      | 53       | 1974 | 397000     | 445      | 2001 | 750000     | 2604     |
| 1921 |            |          | 1948 | 26600      | 77       | 1975 | 418000     | 535      | 2002 | 973000     | 2960     |
| 1922 |            |          | 1949 | 24100      | 88       | 1976 | 448000     | 503      | 2003 | 1030000    | 2841     |
| 1923 |            |          | 1950 | 25200      | 73       | 1977 | 505000     | 562      | 2004 | 1090000    | 3106     |
| 1924 |            |          | 1951 | 46200      | 126      | 1978 | 525000     | 658      | 2005 | 1100000    | 2694     |
| 1925 |            |          | 1952 | 33900      | 114      | 1979 | 629000     | 623      | 2006 | 1250000    | 2879     |
| 1926 |            |          | 1953 | 53300      | 80       | 1980 | 680000     | 867      | 2007 | 1470000    | 3082     |

**Table A3.99** Zirconium Activity<sup>115</sup> and Patents<sup>116</sup>

Activity represents world production of Zirconium, defined at usgs.gov as "...zirconium mineral concentrates. Data were from the MR [*Mineral Resources of the United States*] and MYB [*Minerals Yearbook*]. Blank cells in the worksheet indicate that data were not available for the years 1900-43. Production data for the United States were not included for the years 1944-52, 1959-87, and 1993 to the most recent." Data is in metric tons as reported by the United States Geologic Survey (USGS) at minerals.usgs.gov. <sup>116</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Zirconium or

Zr were used as keywords found in the patent title or abstract by year of publication.

Table A3.100. Correlation Eq.(A1.1) terms calculated from Table A3.99 data.

| Sum x    | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy     | r        | 100r <sup>2</sup> |
|----------|-------|--------------------|--------------------|----------|-----------|----------|---------|----------|-------------------|
| 31992300 | 70977 | 2.48E+13           | 1.43E+08           | 5.75E+10 | 8.797E+12 | 64722075 | 2.2E+10 | 0.923869 | 85.35335          |



Figure A3.222. Zirconium Activity and Patents. data illustrates correlation. Activity scaled to fit plot.



**Figure A3.223. USGS World Zirconium Production.** World zirconium production (activity) scaled in metric tons with actual and best-fit curves and common pattern equation parameters.



**Figure A3.224. EPO Worldwide patent Search: Zirconium or Zr in Title or Abstract by Date of Publication.** Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A3.225. Zirconium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A3.226. Zirconium Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

## **Appendix 4: Energy Sources Data**

| Year | х          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 |            |          | 1981 | 13043.9    | 1        |
| 1901 |            |          | 1928 |            |          | 1955 |            |          | 1982 | 35281.53   | 1        |
| 1902 |            |          | 1929 |            |          | 1956 |            |          | 1983 | 64754.16   | 0        |
| 1903 |            |          | 1930 |            |          | 1957 |            |          | 1984 | 79274.4    | 1        |
| 1904 |            |          | 1931 |            |          | 1958 |            |          | 1985 | 95527.26   | 2        |
| 1905 |            |          | 1932 |            |          | 1959 |            |          | 1986 | 109831.4   | 0        |
| 1906 |            |          | 1933 |            |          | 1960 |            |          | 1987 | 125855.1   | 0        |
| 1907 |            |          | 1934 |            |          | 1961 |            |          | 1988 | 127221.9   | 0        |
| 1908 |            |          | 1935 |            |          | 1962 |            |          | 1989 | 128575.7   | 0        |
| 1909 |            |          | 1936 |            |          | 1963 |            |          | 1990 | 113694.6   | 1        |
| 1910 |            |          | 1937 |            |          | 1964 |            |          | 1991 | 131265.1   | 2        |
| 1911 |            |          | 1938 |            |          | 1965 |            |          | 1992 | 148704.8   | 0        |
| 1912 |            |          | 1939 |            |          | 1966 |            |          | 1993 | 173374.6   | 1        |
| 1913 |            |          | 1940 |            |          | 1967 |            |          | 1994 | 193197.2   | 8        |
| 1914 |            |          | 1941 |            |          | 1968 |            |          | 1995 | 204894.4   | 5        |
| 1915 |            |          | 1942 |            |          | 1969 |            |          | 1996 | 146431.5   | 5        |
| 1916 |            |          | 1943 |            |          | 1970 |            |          | 1997 | 188311.9   | 8        |
| 1917 |            |          | 1944 |            |          | 1971 |            |          | 1998 | 206162.7   | 10       |
| 1918 |            |          | 1945 |            |          | 1972 |            |          | 1999 | 214298.2   | 16       |
| 1919 |            |          | 1946 |            |          | 1973 |            |          | 2000 | 241725.6   | 12       |
| 1920 |            |          | 1947 |            |          | 1974 |            |          | 2001 | 259057.8   | 13       |
| 1921 |            |          | 1948 |            |          | 1975 |            |          | 2002 | 311003.3   | 15       |
| 1922 |            |          | 1949 |            |          | 1976 |            |          | 2003 | 415283.1   | 33       |
| 1923 |            |          | 1950 |            |          | 1977 |            |          | 2004 | 515133.9   | 62       |
| 1924 |            |          | 1951 |            |          | 1978 |            |          | 2005 | 596543.9   | 119      |
| 1925 |            |          | 1952 |            |          | 1979 |            |          | 2006 | 798629.3   | 167      |
| 1926 |            |          | 1953 |            |          | 1980 |            |          | 2007 | 1029982    | 426      |
|      |            |          |      |            |          |      |            | 1        | 2008 | 1420147    | 638      |

**Table A4.1** U.S. Biofuel Energy Activity<sup>117</sup> and Patents<sup>118</sup>

| <b>Table A4.2</b> Correlation Eq.(A1.1) terms calculated from Table A4.1 data. |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 8087206.9 | 1546  | 5.07E+12           | 636588             | 1.61E+09 | 2.733E+12 | 551226.7 | 1.16E+09 | 0.946938 | 89.66916          |



Figure A4.1. U.S. Biofuel Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>117</sup> Activity represents United States production of biofuel energy, defined at eia.doe.gov as energy from " total biomass inputs to the production of fuel ethanol and biodiesel." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>118</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Biofuel or biofuels or biodiesel were used as keywords found in the patent title or abstract by year of publication.



**Figure A4.2. EIA U.S. Biofuel Energy Production.** U.S. biofuel power production (activity) scaled in billion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.3. EPO Worldwide Patent Search: Biofuel or Biofuels or Biodiesel in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.4. U.S. Biofuel Energy best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.5. U.S. Biofuel Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y<br>(natent) |
|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|
| 1000 | (activity)      | (patent)      | 1027 | (activity)      | (patent)      | 1054 | 1471015         |               | 1091 | 2730352         | 55            |
| 1001 |                 |               | 1927 |                 |               | 1954 | 1502471         | 0             | 1002 | 2739332         | 01            |
| 1901 |                 | ł             | 1920 |                 |               | 1955 | 1302471         | 0             | 1902 | 2065517         | 106           |
| 1902 |                 | 1             | 1929 |                 |               | 1950 | 1493/44         | 0             | 1903 | 3136105         | 100           |
| 1903 |                 | 1             | 1930 |                 |               | 1957 | 1305805         | 0             | 1904 | 3184131         | 120           |
| 1904 |                 | 1             | 1931 |                 |               | 1950 | 1393893         | 0             | 1905 | 3005665         | 123           |
| 1905 |                 | 1             | 1932 |                 |               | 1959 | 1427262         | 0             | 1900 | 3035644         | 143           |
| 1900 |                 | 1             | 1933 |                 |               | 1900 | 1365074         | 0             | 1907 | 3184602         | 143           |
| 1907 |                 | 1             | 1934 |                 |               | 1901 | 1371755         | 0             | 1900 | 3335821         | 157           |
| 1900 |                 | 1             | 1935 |                 |               | 1962 | 1306008         | 0             | 1909 | 2887027         | 157           |
| 1010 |                 |               | 1930 |                 |               | 1903 | 1410326         | 0             | 1990 | 2037553         | 137           |
| 1011 |                 |               | 1039 |                 |               | 1965 | 1410320         | 0             | 1991 | 3096042         | 167           |
| 1012 |                 |               | 1030 |                 |               | 1965 | 1400175         | 0             | 1992 | 3072057         | 164           |
| 1012 |                 |               | 1939 |                 |               | 1900 | 1413963         | 0             | 1993 | 3198106         | 175           |
| 1913 |                 | 1             | 1940 |                 |               | 1907 | 1413903         | 0             | 1994 | 3178100         | 211           |
| 1015 |                 | 1             | 1941 |                 |               | 1900 | 1510714         | 0             | 1995 | 3331884         | 100           |
| 1915 |                 | 1             | 1942 |                 |               | 1909 | 1509665         | 0             | 1990 | 3282854         | 224           |
| 1017 |                 |               | 1044 |                 |               | 1071 | 1511101         | 0             | 1008 | 3094379         | 373           |
| 1018 |                 |               | 1045 |                 |               | 1072 | 1585734         | 7             | 1000 | 3132753         | 554           |
| 1010 |                 |               | 1046 |                 |               | 1073 | 1613167         | 7             | 2000 | 3175992         | 491           |
| 1020 |                 |               | 1047 |                 |               | 1074 | 1624338         | 1             | 2000 | 2773944         | 728           |
| 1020 |                 |               | 1048 |                 |               | 1075 | 1581164         | 10            | 2001 | 2860810         | 677           |
| 1022 |                 |               | 1040 | 1634471         | 0             | 1976 | 1807609         | 13            | 2002 | 2000010         | 1912          |
| 1922 |                 |               | 1950 | 1648234         | 0             | 1977 | 1939440         | 18            | 2003 | 3176138         | 1728          |
| 1923 |                 |               | 1951 | 1619076         | 0             | 1978 | 2149673         | 41            | 2004 | 3291750         | 3179          |
| 1925 |                 |               | 1952 | 1555459         | 0             | 1970 | 2270261         | 47            | 2005 | 3491022         | 1183          |
| 1926 |                 |               | 1953 | 1496624         | 0             | 1980 | 2611653         | 52            | 2003 | 3780533         | 1503          |
| 1/20 |                 |               | 1755 | 1.50021         | Ŭ             | 1,00 | 2011000         |               | 2008 | 4114410         | 2304          |

**Table A4.3** U.S. Biomass Energy Activity<sup>119</sup> and Patents<sup>120</sup>

Activity represents U.S. production of biomass energy, defined at usgs.gov as energy from "Wood and wood derived fuels, biomass waste, fuel ethanol and biodiesel." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ.. <sup>120</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Biomass was used as the keyword found in the patent title or abstract by year of publication.

Table A4.4. Correlation Eq.(A1.1) terms calculated from Table A4.3 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 139604559 | 17311 | 3.66E+14           | 27790219           | 5.75E+10 | 4.132E+13 | 22795707 | 1.73E+10 | 0.562375 | 31.62656          |



Figure A4.6. U.S. Biomass Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A4.7. EIA U.S. Biomass Energy Production.** U.S. biomass energy production (activity) scaled in billion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.8. EPO Worldwide Patent Search: Biomass in title or abstract by date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.9. U.S. Biomass Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.10. U.S. Biomass Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y<br>(natent) | Year | x<br>(activity) | y<br>(natent) | Year | X<br>(activity) | y<br>(natent) | Year | X<br>(activity) | y<br>(nat.) |
|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|-------------|
| 1900 | (ucu reg)       | (puttint)     | 1927 | (uccivity)      | (patent)      | 1954 | 11122283        | 267           | 1981 | 19387496        | 2289        |
| 1901 |                 |               | 1928 |                 |               | 1955 | 13049936        | 279           | 1982 | 19663906        | 2539        |
| 1902 |                 |               | 1929 |                 |               | 1956 | 14038182        | 312           | 1983 | 18195238        | 2675        |
| 1903 |                 |               | 1930 |                 |               | 1957 | 13779770        | 301           | 1984 | 20803773        | 2442        |
| 1904 |                 |               | 1931 |                 |               | 1958 | 11376158        | 232           | 1985 | 20388050        | 2266        |
| 1905 |                 |               | 1932 |                 |               | 1959 | 11370773        | 217           | 1986 | 20582487        | 2209        |
| 1906 |                 |               | 1933 |                 |               | 1960 | 11412355        | 285           | 1987 | 21248865        | 2200        |
| 1907 |                 |               | 1934 |                 |               | 1961 | 11021681        | 288           | 1988 | 21878209        | 1981        |
| 1908 |                 |               | 1935 |                 |               | 1962 | 11500091        | 262           | 1989 | 22534988        | 2022        |
| 1909 |                 |               | 1936 |                 |               | 1963 | 12500937        | 262           | 1990 | 23724363        | 1676        |
| 1910 |                 |               | 1937 |                 |               | 1964 | 13212694        | 270           | 1991 | 22826427        | 1842        |
| 1911 |                 |               | 1938 |                 |               | 1965 | 13773326        | 318           | 1992 | 22887309        | 1857        |
| 1912 |                 |               | 1939 |                 |               | 1966 | 14208401        | 281           | 1993 | 21454115        | 1556        |
| 1913 |                 |               | 1940 |                 |               | 1967 | 14585889        | 343           | 1994 | 23423198        | 1613        |
| 1914 |                 |               | 1941 |                 |               | 1968 | 14357155        | 327           | 1995 | 23346675        | 1561        |
| 1915 |                 |               | 1942 |                 |               | 1969 | 14625830        | 266           | 1996 | 24043606        | 1510        |
| 1916 |                 |               | 1943 |                 |               | 1970 | 15410453        | 297           | 1997 | 24591643        | 1596        |
| 1917 |                 |               | 1944 |                 |               | 1971 | 13910727        | 333           | 1998 | 25367685        | 1722        |
| 1918 |                 |               | 1945 |                 |               | 1972 | 14866728        | 373           | 1999 | 24576314        | 1781        |
| 1919 |                 |               | 1946 |                 |               | 1973 | 14761693        | 340           | 2000 | 23985929        | 1676        |
| 1920 |                 |               | 1947 |                 |               | 1974 | 14848546        | 356           | 2001 | 24842169        | 1660        |
| 1921 |                 |               | 1948 |                 |               | 1975 | 15813727        | 435           | 2002 | 23982510        | 1733        |
| 1922 |                 |               | 1949 | 12632446        | 214           | 1976 | 16514640        | 648           | 2003 | 23308803        | 1843        |
| 1923 |                 |               | 1950 | 14833442        | 162           | 1977 | 16621252        | 921           | 2004 | 24108964        | 2012        |
| 1924 |                 |               | 1951 | 15212388        | 195           | 1978 | 15729848        | 1262          | 2005 | 24460374        | 2144        |
| 1925 |                 |               | 1952 | 13434700        | 301           | 1979 | 18504260        | 1378          | 2006 | 25097933        | 3000        |
| 1926 |                 |               | 1953 | 12953022        | 221           | 1980 | 19620601        | 1725          | 2007 | 24784843        | 4032        |
|      |                 |               |      |                 |               |      |                 |               | 2008 | 25167991        | 4778        |

**Table A4.5** U.S. Coal Energy Activity<sup>121</sup> and Patents<sup>122</sup>

Table A4.6 Correlation Eq.(A1.1) terms calculated from Table A4.5 data.

| Sum x      | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|------------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 1092767796 | 73886 | 2.13E+16           | 1.54E+08           | 1.59E+12 | 1.382E+15 | 63499265 | 2.44E+11 | 0.823513 | 67.81735          |



Figure A4.11. U.S. Coal Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>121</sup> Activity represents United States production of coal energy, defined at eia.doe.gov as primary energy production from coal and in 1989 waste coal and 2001 refuse recovery. Data is in billions of Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ..

to kJ... <sup>122</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Coal was used as the keyword found in the patent title or abstract by year of publication.



**Figure A4.12**. **EIA U.S. Coal Energy Production.** U.S. coal production (activity) scaled in trillions of kJ's with actual and best-fit curves and common pattern equation parameters.



Figure A4.13. EPO Worldwide Patent Search: Coal in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.14. U.S. Coal Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.15. U.S. Coal Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        | Year | X          | у        | Year | x          | у        | Year | X          | y (pat) |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|---------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) |         |
| 1900 |            |          | 1927 |            |          | 1954 | 35621368   | 820      | 1981 | 61748438   | 3838    |
| 1901 |            |          | 1928 |            |          | 1955 | 39418682   | 847      | 1982 | 60617996   | 4154    |
| 1902 |            |          | 1929 |            |          | 1956 | 41958882   | 1026     | 1983 | 57408839   | 4460    |
| 1903 |            |          | 1930 |            |          | 1957 | 42340826   | 1160     | 1984 | 62085860   | 4236    |
| 1904 |            |          | 1931 |            |          | 1958 | 39263220   | 1075     | 1985 | 60703354   | 4115    |
| 1905 |            |          | 1932 |            |          | 1959 | 41192703   | 1005     | 1986 | 59686869   | 4114    |
| 1906 |            |          | 1933 |            |          | 1960 | 42061918   | 1312     | 1987 | 60310921   | 4077    |
| 1907 |            |          | 1934 |            |          | 1961 | 42524028   | 1222     | 1988 | 61058103   | 3810    |
| 1908 |            |          | 1935 |            |          | 1962 | 44027139   | 1114     | 1989 | 60644226   | 4078    |
| 1909 |            |          | 1936 |            |          | 1963 | 46459226   | 1072     | 1990 | 61780380   | 3869    |
| 1910 |            |          | 1937 |            |          | 1964 | 48307343   | 1088     | 1991 | 61054672   | 3829    |
| 1911 |            |          | 1938 |            |          | 1965 | 49832822   | 1252     | 1992 | 60826087   | 4207    |
| 1912 |            |          | 1939 |            |          | 1966 | 52787312   | 1129     | 1993 | 58892299   | 3596    |
| 1913 |            |          | 1940 |            |          | 1967 | 55489974   | 1321     | 1994 | 61236037   | 3769    |
| 1914 |            |          | 1941 |            |          | 1968 | 57293027   | 1269     | 1995 | 60704840   | 3782    |
| 1915 |            |          | 1942 |            |          | 1969 | 59381275   | 1105     | 1996 | 61598522   | 3599    |
| 1916 |            |          | 1943 |            |          | 1970 | 62441305   | 1193     | 1997 | 62093750   | 3763    |
| 1917 |            |          | 1944 |            |          | 1971 | 61233846   | 1240     | 1998 | 62576342   | 4590    |
| 1918 |            |          | 1945 |            |          | 1972 | 62179489   | 1528     | 1999 | 60783280   | 4706    |
| 1919 |            |          | 1946 |            |          | 1973 | 61444773   | 1318     | 2000 | 60521144   | 5067    |
| 1920 |            |          | 1947 |            |          | 1974 | 59428950   | 1267     | 2001 | 61761121   | 4458    |
| 1921 |            |          | 1948 |            |          | 1975 | 57743603   | 1486     | 2002 | 60022709   | 5321    |
| 1922 |            |          | 1949 | 30329326   | 572      | 1976 | 57732655   | 1786     | 2003 | 59245148   | 5552    |
| 1923 |            |          | 1950 | 34353614   | 454      | 1977 | 58131325   | 2188     | 2004 | 58989213   | 6039    |
| 1924 |            |          | 1951 | 37760719   | 596      | 1978 | 58103194   | 2464     | 2005 | 58083775   | 6038    |
| 1925 |            |          | 1952 | 36900452   | 860      | 1979 | 61195917   | 2410     | 2006 | 59046401   | 7237    |
| 1926 |            |          | 1953 | 37293549   | 673      | 1980 | 62253306   | 3210     | 2007 | 59339357   | 9154    |
|      |            |          |      |            |          |      |            |          | 2008 | 61126974   | 10376   |

|--|

<sup>&</sup>lt;sup>123</sup> Activity represents United States production of fossil fuel energy, defined at eia.doe.gov as primary energy from coal, natural gas (dry), crude oil, and natural gas plant liquids."Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to

kJ. <sup>124</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Coal, petroleum and natural gas were used as keywords found in the patent title or abstract by year of publication.

Table A4.8 Correlation Eq.(A1.1) terms calculated from Table A4.7 data.

| Sum x      | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy     | r        | 100r <sup>2</sup> |
|------------|--------|--------------------|--------------------|----------|-----------|----------|---------|----------|-------------------|
| 3270432426 | 176896 | 1.83E+17           | 7.95E+08           | 1.04E+13 | 5.185E+15 | 2.74E+08 | 7.1E+11 | 0.595587 | 35.47237          |



Figure A4.16. U.S. Fossil Fuel Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A4.17**. **EIA U.S. Fossil Fuel Energy Production.** U.S. fossil fuel power production (activity) scaled in trillion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.18. EPO Worldwide Patent Search: Fossil Fuel or Natural Gas or Coal in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.19. U.S. Fossil Fuel Power Best-fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.20. U.S. Fossil Fuel Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y<br>(natent) |
|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|
| 1000 | (activity)      | (patent)      | 1027 | (activity)      | (patent)      | 1954 | (activity)      | (patent)      | 1081 | 129810 4        | 30            |
| 1901 |                 |               | 1027 |                 |               | 1955 |                 |               | 1082 | 110507          | 52            |
| 1902 |                 |               | 1920 |                 |               | 1956 |                 |               | 1983 | 136452.6        | 46            |
| 1902 |                 | 1             | 1930 |                 |               | 1957 |                 | 1             | 1984 | 173965 3        | 41            |
| 1904 |                 |               | 1931 |                 |               | 1958 |                 |               | 1985 | 209187.5        | 48            |
| 1905 |                 |               | 1932 |                 |               | 1959 |                 |               | 1986 | 231232.8        | 38            |
| 1906 |                 |               | 1933 |                 |               | 1960 | 816.57          | 0             | 1987 | 241720.5        | 34            |
| 1907 |                 |               | 1934 |                 |               | 1961 | 2300.955        | 0             | 1988 | 229241          | 31            |
| 1908 |                 |               | 1935 |                 |               | 1962 | 2459.205        | 0             | 1989 | 334607          | 27            |
| 1909 |                 |               | 1936 |                 |               | 1963 | 3930.93         | 0             | 1990 | 354270.1        | 27            |
| 1910 |                 |               | 1937 |                 |               | 1964 | 4768.6          | 1             | 1991 | 365290.6        | 24            |
| 1911 |                 |               | 1938 |                 |               | 1965 | 4427.835        | 0             | 1992 | 368521          | 22            |
| 1912 |                 |               | 1939 |                 |               | 1966 | 4399.35         | 0             | 1993 | 383720.4        | 13            |
| 1913 |                 |               | 1940 |                 |               | 1967 | 7264.73         | 1             | 1994 | 356703.9        | 20            |
| 1914 |                 |               | 1941 |                 |               | 1968 | 9933.88         | 0             | 1995 | 310057.1        | 26            |
| 1915 |                 |               | 1942 |                 |               | 1969 | 14011.46        | 0             | 1996 | 332883.1        | 36            |
| 1916 |                 |               | 1943 |                 |               | 1970 | 11971.09        | 0             | 1997 | 342831.7        | 45            |
| 1917 |                 |               | 1944 |                 |               | 1971 | 12514.41        | 1             | 1998 | 346359.7        | 36            |
| 1918 |                 |               | 1945 |                 |               | 1972 | 33210.35        | 4             | 1999 | 349119.5        | 37            |
| 1919 |                 |               | 1946 |                 |               | 1973 | 44948.28        | 3             | 2000 | 334219.8        | 40            |
| 1920 |                 |               | 1947 |                 |               | 1974 | 56081.69        | 11            | 2001 | 328383.5        | 53            |
| 1921 |                 |               | 1948 |                 |               | 1975 | 74011.42        | 13            | 2002 | 346364.9        | 54            |
| 1922 |                 |               | 1949 |                 |               | 1976 | 82452.47        | 29            | 2003 | 348734.5        | 56            |
| 1923 |                 |               | 1950 |                 |               | 1977 | 81675.99        | 28            | 2004 | 359841.5        | 66            |
| 1924 |                 |               | 1951 |                 |               | 1978 | 67889.25        | 32            | 2005 | 361417.7        | 54            |
| 1925 |                 |               | 1952 |                 |               | 1979 | 88396.34        | 31            | 2006 | 361734.2        | 85            |
| 1926 |                 |               | 1953 |                 |               | 1980 | 115813.7        | 35            | 2007 | 367910.2        | 116           |
|      |                 |               |      |                 |               |      |                 |               | 2008 | 378214.3        | 139           |

**Table A4.9** U.S. Geothermal Energy Activity<sup>125</sup> and Patents<sup>126</sup>

Table A4.10. Correlation Eq.(A1.1) terms calculated from Table A4.9 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy     | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|---------|----------|-------------------|
| 9216580.2 | 1485  | 2.82E+12           | 85903              | 4.19E+08 | 1.082E+12 | 40898.41 | 1.4E+08 | 0.665995 | 44.35495          |



Figure A4.21. U.S. Geothermal Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

Activity represents U.S. production of geothermal energy, defined at usgs.gov as "...electricity generation (converted to Btu using the geothermal energy plants heat rate), and geothermal heat pump and direct energy use energy." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>126</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Geothermal

and (power or energy) were used as keywords found in the patent title or abstract by year of publication.



**Figure A4.22. EIA U.S. Geothermal Energy Production.** U.S. geothermal energy production (activity) scaled in billion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.23. EPO Worldwide Patent Search: Geothermal and (Energy or Power) in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.24. U.S. Geothermal Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.25. U.S. Geothermal Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Voar  | v          | V             |
|-------|------------|---------------|-------|------------|---------------|-------|------------|---------------|-------|------------|---------------|
| I cai | (activity) | y<br>(natent) | 1 cai | (activity) | y<br>(natent) | 1 cai | (activity) | y<br>(natent) | 1 cai | (activity) | y<br>(natent) |
| 1900  | (activity) | (patent)      | 1927  | (activity) | (patent)      | 1954  | 1366571    | 0             | 1981  | 2771758    | 36            |
| 1901  |            |               | 1928  |            |               | 1955  | 1366643    | 2             | 1982  | 3281886    | 55            |
| 1902  |            |               | 1929  |            |               | 1956  | 1441885    | 3             | 1983  | 3544896    | 25            |
| 1903  |            |               | 1930  |            |               | 1957  | 1523191    | 1             | 1984  | 3402740    | 32            |
| 1904  |            |               | 1931  |            |               | 1958  | 1599927    | 2             | 1985  | 2985043    | 35            |
| 1905  |            |               | 1932  |            |               | 1959  | 1556207    | 1             | 1986  | 3086535    | 24            |
| 1906  |            |               | 1933  |            |               | 1960  | 1616015    | 1             | 1987  | 2647681    | 39            |
| 1907  |            |               | 1934  |            |               | 1961  | 1664745    | 1             | 1988  | 2345936    | 40            |
| 1908  |            |               | 1935  |            |               | 1962  | 1825222    | 0             | 1989  | 2851449    | 30            |
| 1909  |            |               | 1936  |            |               | 1963  | 1780212    | 0             | 1990  | 3061623    | 43            |
| 1910  |            |               | 1937  |            |               | 1964  | 1895746    | 1             | 1991  | 3031023    | 40            |
| 1911  |            |               | 1938  |            |               | 1965  | 2069372    | 6             | 1992  | 2630523    | 55            |
| 1912  |            |               | 1939  |            |               | 1966  | 2071827    | 4             | 1993  | 2906071    | 44            |
| 1913  |            |               | 1940  |            |               | 1967  | 2358397    | 0             | 1994  | 2696874    | 64            |
| 1914  |            |               | 1941  |            |               | 1968  | 2360372    | 2             | 1995  | 3221334    | 41            |
| 1915  |            |               | 1942  |            |               | 1969  | 2661223    | 2             | 1996  | 3607604    | 46            |
| 1916  |            |               | 1943  |            |               | 1970  | 2646715    | 6             | 1997  | 3658660    | 65            |
| 1917  |            |               | 1944  |            |               | 1971  | 2838272    | 4             | 1998  | 3313539    | 40            |
| 1918  |            |               | 1945  |            |               | 1972  | 2878184    | 2             | 1999  | 3283913    | 69            |
| 1919  |            |               | 1946  |            |               | 1973  | 2875755    | 4             | 2000  | 2825172    | 66            |
| 1920  |            |               | 1947  |            |               | 1974  | 3192463    | 3             | 2001  | 2253067    | 68            |
| 1921  |            |               | 1948  |            |               | 1975  | 3170380    | 1             | 2002  | 2702462    | 79            |
| 1922  |            |               | 1949  | 1431846    | 0             | 1976  | 2991146    | 2             | 2003  | 2838656    | 105           |
| 1923  |            |               | 1950  | 1422488    | 2             | 1977  | 2344918    | 6             | 2004  | 2703528    | 90            |
| 1924  |            |               | 1951  | 1430914    | 2             | 1978  | 2951668    | 12            | 2005  | 2716457    | 105           |
| 1925  |            |               | 1952  | 1473141    | 1             | 1979  | 2945339    | 15            | 2006  | 2883380    | 113           |
| 1926  |            |               | 1953  | 1419923    | 0             | 1980  | 2914645    | 20            | 2007  | 2458621    | 157           |
|       |            |               |       |            |               |       |            |               | 2008  | 2464333    | 206           |

**Table A4.11** U.S. Hydroelectric Energy Activity<sup>127</sup> and Patents<sup>128</sup>

<sup>&</sup>lt;sup>127</sup> Activity represents United States production of hydroelectric energy, defined at eia.doe.gov as "Conventional hydroelectricity net generation..." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>128</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Hydroelectric was used as the keyword found in the patent title or abstract by year of publication.

Table A4.12 Correlation Eq.(A1.1) terms calculated from Table A4.11 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy  | Sxx       | Syy      | Sxy   | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|---------|-----------|----------|-------|----------|-------------------|
| 150260117 | 1918  | 4.03E+14           | 164888             | 5.4E+09 | 2.653E+13 | 103575.9 | 6E+08 | 0.361657 | 13.07958          |



Figure A4.26. U.S. Hydroelectric Power Activity and Patent. Data illustrates correlation. Activity scaled to fit plot.



**Figure A4.27**. **EIA U.S. Hydroelectric Energy Production.** U.S. hydroelectric energy (activity) production scaled in billion kJ with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data or origin shift was obtained suggesting Stage IV.



Figure A4.28. U.S. Hydroelectric Power Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | у        | Year | X          | у        | Year | х          | у        | Year | X          | у      |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|--------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (pat.) |
| 1900 |            |          | 1927 |            |          | 1954 | 10333674   | 58       | 1981 | 23216892   | 284    |
| 1901 |            |          | 1928 |            |          | 1955 | 11166530   | 56       | 1982 | 21638152   | 309    |
| 1902 |            |          | 1929 |            |          | 1956 | 11905545   | 42       | 1983 | 19810258   | 310    |
| 1903 |            |          | 1930 |            |          | 1957 | 12548239   | 63       | 1984 | 21397197   | 334    |
| 1904 |            |          | 1931 |            |          | 1958 | 12901710   | 57       | 1985 | 20278314   | 373    |
| 1905 |            |          | 1932 |            |          | 1959 | 14068012   | 76       | 1986 | 19717848   | 328    |
| 1906 |            |          | 1933 |            |          | 1960 | 14893548   | 111      | 1987 | 20415151   | 352    |
| 1907 |            |          | 1934 |            |          | 1961 | 15459810   | 89       | 1988 | 20950640   | 361    |
| 1908 |            |          | 1935 |            |          | 1962 | 16151448   | 74       | 1989 | 21105926   | 422    |
| 1909 |            |          | 1936 |            |          | 1963 | 17114378   | 90       | 1990 | 21628417   | 473    |
| 1910 |            |          | 1937 |            |          | 1964 | 18042085   | 93       | 1991 | 21663872   | 462    |
| 1911 |            |          | 1938 |            |          | 1965 | 18629439   | 115      | 1992 | 21878654   | 560    |
| 1912 |            |          | 1939 |            |          | 1966 | 20052029   | 91       | 1993 | 22146601   | 525    |
| 1913 |            |          | 1940 |            |          | 1967 | 21226961   | 140      | 1994 | 22934638   | 559    |
| 1914 |            |          | 1941 |            |          | 1968 | 22565464   | 152      | 1995 | 22707639   | 637    |
| 1915 |            |          | 1942 |            |          | 1969 | 24123701   | 98       | 1996 | 23077258   | 627    |
| 1916 |            |          | 1943 |            |          | 1970 | 25507577   | 148      | 1997 | 23092897   | 656    |
| 1917 |            |          | 1944 |            |          | 1971 | 26188618   | 141      | 1998 | 23245595   | 884    |
| 1918 |            |          | 1945 |            |          | 1972 | 26169364   | 209      | 1999 | 23071112   | 952    |
| 1919 |            |          | 1946 |            |          | 1973 | 26117715   | 200      | 2000 | 23497418   | 1144   |
| 1920 |            |          | 1947 |            |          | 1974 | 24983786   | 164      | 2001 | 23961903   | 1118   |
| 1921 |            |          | 1948 |            |          | 1975 | 23225445   | 191      | 2002 | 23207896   | 1206   |
| 1922 |            |          | 1949 | 6426049    | 43       | 1976 | 23006770   | 181      | 2003 | 23248886   | 1269   |
| 1923 |            |          | 1950 | 7443872    | 21       | 1977 | 23096381   | 245      | 2004 | 22744423   | 1369   |
| 1924 |            |          | 1951 | 8794588    | 30       | 1978 | 22925843   | 217      | 2005 | 22057842   | 1340   |
| 1925 |            |          | 1952 | 9454245    | 58       | 1979 | 23592362   | 203      | 2006 | 22553307   | 1347   |
| 1926 |            |          | 1953 | 9917543    | 48       | 1980 | 23380098   | 309      | 2007 | 23243847   | 1699   |
|      |            |          |      |            |          |      |            |          | 2008 | 24860924   | 1827   |

Table A4.13 U.S. Natural Gas Energy Activity<sup>129</sup> and Patents<sup>130</sup>

<sup>&</sup>lt;sup>129</sup> Activity represents United States production of natural gas energy, defined at eia.doe.gov as primary energy produced from dry natural gas and natural gas plant liquids. Data is in billions of Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ.

kJ.. <sup>130</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Natural and gas or methane or ethane were used as keywords found in the patent title or abstract by year of publication.

Table A4.14 Correlation Eq.(A1.1) terms calculated from Table A4.13 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 1.195E+09 | 25540 | 2.54E+16           | 23262650           | 5.75E+11 | 1.577E+15 | 12391123 | 6.61E+10 | 0.472812 | 22.35514          |



Figure A4.29. U.S. Natural Gas Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A4.30. EIA U.S. Natural Gas Energy Production.** U.S. natural gas energy production (activity) scaled in billion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.31. EPO Worldwide Patent Search: Natural Gas or Methane or Ethane in Title or Abstract by Date of Production. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.32. U.S. Natural Gas Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.33. U.S. Natural Gas Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X<br>(activity) | y<br>(natent) |
|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|---------------|
| 1900 | (ucu (icy)      | (parent)      | 1927 | (uccivity)      | (puttint)     | 1954 | (uccivity)      | (parent)      | 1981 | 3173006         | 1995          |
| 1901 |                 |               | 1928 |                 |               | 1955 |                 |               | 1982 | 3303361         | 1957          |
| 1902 |                 |               | 1929 |                 |               | 1956 |                 |               | 1983 | 3378689         | 1684          |
| 1903 |                 |               | 1930 |                 |               | 1957 | 118.16          | 246           | 1984 | 3747920         | 1745          |
| 1904 |                 |               | 1931 |                 |               | 1958 | 2020.325        | 402           | 1985 | 4299719         | 2424          |
| 1905 |                 |               | 1932 |                 |               | 1959 | 2307.285        | 490           | 1986 | 4621015         | 2572          |
| 1906 |                 |               | 1933 |                 |               | 1960 | 6357.43         | 852           | 1987 | 5015399         | 2715          |
| 1907 |                 |               | 1934 |                 |               | 1961 | 20760.29        | 844           | 1988 | 5894251         | 2202          |
| 1908 |                 |               | 1935 |                 |               | 1962 | 27845.67        | 855           | 1989 | 5910280         | 2300          |
| 1909 |                 |               | 1936 |                 |               | 1963 | 40245.09        | 911           | 1990 | 6440089         | 2106          |
| 1910 |                 |               | 1937 |                 |               | 1964 | 42009.05        | 886           | 1991 | 6775349         | 1983          |
| 1911 |                 |               | 1938 |                 |               | 1965 | 45538.02        | 871           | 1992 | 6835562         | 1993          |
| 1912 |                 |               | 1939 |                 |               | 1966 | 67686.69        | 871           | 1993 | 6763076         | 1781          |
| 1913 |                 |               | 1940 |                 |               | 1967 | 93321.08        | 907           | 1994 | 7062040         | 1826          |
| 1914 |                 |               | 1941 |                 |               | 1968 | 149318.4        | 941           | 1995 | 7464585         | 1619          |
| 1915 |                 |               | 1942 |                 |               | 1969 | 162176.7        | 758           | 1996 | 7476441         | 1632          |
| 1916 |                 |               | 1943 |                 |               | 1970 | 252511.1        | 766           | 1997 | 6959827         | 1729          |
| 1917 |                 |               | 1944 |                 |               | 1971 | 435650.6        | 821           | 1998 | 7456538         | 1896          |
| 1918 |                 |               | 1945 |                 |               | 1972 | 615858.4        | 828           | 1999 | 8028820         | 1912          |
| 1919 |                 |               | 1946 |                 |               | 1973 | 960236.7        | 752           | 2000 | 8294778         | 1959          |
| 1920 |                 |               | 1947 |                 |               | 1974 | 1342048         | 718           | 2001 | 8474495         | 1977          |
| 1921 |                 |               | 1948 |                 |               | 1975 | 2004287         | 693           | 2002 | 8590959         | 2245          |
| 1922 |                 |               | 1949 |                 |               | 1976 | 2227233         | 877           | 2003 | 8396595         | 2327          |
| 1923 |                 |               | 1950 |                 |               | 1977 | 2850359         | 1169          | 2004 | 8674194         | 2307          |
| 1924 |                 |               | 1951 |                 |               | 1978 | 3190453         | 1190          | 2005 | 8608830         | 2242          |
| 1925 |                 |               | 1952 |                 |               | 1979 | 2928497         | 1337          | 2006 | 8665600         | 2130          |
| 1926 |                 |               | 1953 |                 |               | 1980 | 2889823         | 1558          | 2007 | 8922961         | 2297          |
|      |                 |               |      |                 |               |      |                 |               | 2008 | 8920274         | 2461          |

**Table A4.15** U.S. Nuclear Energy Activity<sup>131</sup> and Patents<sup>132</sup>

Table A4.16 Correlation Eq.(A1.1) terms calculated from Table A4.15 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx      | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|----------|----------|----------|----------|-------------------|
| 208511317 | 78559 | 1.41E+15           | 1.42E+08           | 4.13E+11 | 5.71E+14 | 23119498 | 9.81E+10 | 0.854099 | 72.94843          |



Figure A4.34. U.S. Nuclear Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>131</sup> Activity represents United States production of nuclear electric power. Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>132</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Nuclear or

uranium were used as keywords found in the patent title or abstract by year of publication.



**Figure A4.35**. **EIA U.S. Nuclear Energy Production.** U.S. nuclear energy production (activity) scaled in billion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.36. EPO Worldwide Patent Search: Nuclear or Uranium in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.37. U.S. Nuclear Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.38. U.S. Nuclear Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        | Year | X          | У        | Year | X          | У        | Year | X          | У      |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|--------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (pat.) |
| 1900 |            |          | 1927 |            |          | 1954 | 14165411   | 343      | 1981 | 19144050   | 807    |
| 1901 |            |          | 1928 |            |          | 1955 | 15202215   | 345      | 1982 | 19315939   | 873    |
| 1902 |            |          | 1929 |            |          | 1956 | 16015154   | 460      | 1983 | 19403343   | 895    |
| 1903 |            |          | 1930 |            |          | 1957 | 16012817   | 558      | 1984 | 19884890   | 870    |
| 1904 |            |          | 1931 |            |          | 1958 | 14985352   | 537      | 1985 | 20036989   | 834    |
| 1905 |            |          | 1932 |            |          | 1959 | 15753916   | 471      | 1986 | 19386534   | 841    |
| 1906 |            |          | 1933 |            |          | 1960 | 15756015   | 575      | 1987 | 18646906   | 860    |
| 1907 |            |          | 1934 |            |          | 1961 | 16042537   | 482      | 1988 | 18229253   | 749    |
| 1908 |            |          | 1935 |            |          | 1962 | 16375600   | 400      | 1989 | 17003312   | 852    |
| 1909 |            |          | 1936 |            |          | 1963 | 16843912   | 405      | 1990 | 16427600   | 936    |
| 1910 |            |          | 1937 |            |          | 1964 | 17052564   | 355      | 1991 | 16564371   | 978    |
| 1911 |            |          | 1938 |            |          | 1965 | 17430057   | 441      | 1992 | 16060124   | 920    |
| 1912 |            |          | 1939 |            |          | 1966 | 18526881   | 424      | 1993 | 15291583   | 787    |
| 1913 |            |          | 1940 |            |          | 1967 | 19677126   | 454      | 1994 | 14878202   | 883    |
| 1914 |            |          | 1941 |            |          | 1968 | 20370408   | 426      | 1995 | 14650525   | 911    |
| 1915 |            |          | 1942 |            |          | 1969 | 20631745   | 411      | 1996 | 14477658   | 859    |
| 1916 |            |          | 1943 |            |          | 1970 | 21523277   | 450      | 1997 | 14409211   | 913    |
| 1917 |            |          | 1944 |            |          | 1971 | 21134500   | 470      | 1998 | 13963062   | 1241   |
| 1918 |            |          | 1945 |            |          | 1972 | 21143396   | 561      | 1999 | 13135854   | 1189   |
| 1919 |            |          | 1946 |            |          | 1973 | 20565365   | 470      | 2000 | 13037797   | 1357   |
| 1920 |            |          | 1947 |            |          | 1974 | 19596618   | 455      | 2001 | 12957050   | 1312   |
| 1921 |            |          | 1948 |            |          | 1975 | 18704430   | 503      | 2002 | 12832302   | 1342   |
| 1922 |            |          | 1949 | 11270831   | 214      | 1976 | 18211245   | 557      | 2003 | 12687458   | 1367   |
| 1923 |            |          | 1950 | 12076299   | 180      | 1977 | 18413693   | 673      | 2004 | 12135825   | 1514   |
| 1924 |            |          | 1951 | 13753744   | 270      | 1978 | 19447504   | 667      | 2005 | 11565559   | 1379   |
| 1925 |            |          | 1952 | 14011507   | 346      | 1979 | 19099296   | 609      | 2006 | 11395163   | 1704   |
| 1926 |            |          | 1953 | 14422985   | 289      | 1980 | 19252607   | 741      | 2007 | 11310668   | 1989   |
|      |            |          |      |            |          |      |            |          | 2008 | 11098059   | 2190   |

| <b>Table A4.1</b> / U.S. On Energy Activity and Patents | <b>Table A4.17</b> U.S. | Oil Energy | Activity <sup>133</sup> | and Patents <sup>1</sup> | 34 |
|---------------------------------------------------------|-------------------------|------------|-------------------------|--------------------------|----|
|---------------------------------------------------------|-------------------------|------------|-------------------------|--------------------------|----|

<sup>&</sup>lt;sup>133</sup> Activity represents United States production of oil energy, defined at eia.doe.gov as primary energy production of crude oil and lease condensate. Data is in thousand barrels as reported by the Energy Information Administration (EIA) at eia.doe.gov. <sup>134</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Petroleum was

used as the keyword found in the patent title or abstract by year of publication.

Table A4.18 Correlation Eq.(A1.1) terms calculated from Table A4.17 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 983398293 | 45894 | 1.66E+16           | 46031010           | 7.15E+11 | 5.274E+14 | 10926689 | -3.7E+10 | -0.48622 | 23.64057          |



Figure A4.39. U.S. Oil Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A4.40. EIA U.S. Oil Energy Production.** U.S. oil energy production (activity) scaled billion kJ with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A4.41. U.S. Oil Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | У        | Year | х          | У        | Year | X          | У        | Year | х          | у      |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|--------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (pat.) |
| 1900 |            |          | 1927 |            |          | 1954 | 290.55744  | 0        | 1981 | 577.88195  | 1      |
| 1901 |            |          | 1928 |            |          | 1955 | 293.71063  | 0        | 1982 | 636.63542  | 4      |
| 1902 |            |          | 1929 |            |          | 1956 | 300.7364   | 0        | 1983 | 692.32582  | 1      |
| 1903 |            |          | 1930 |            |          | 1957 | 300.58997  | 0        | 1984 | 688.23199  | 2      |
| 1904 |            |          | 1931 |            |          | 1958 | 307.542    | 0        | 1985 | 652.70529  | 1      |
| 1905 |            |          | 1932 |            |          | 1959 | 306.09126  | 0        | 1986 | 656.71925  | 2      |
| 1906 |            |          | 1933 |            |          | 1960 | 308.9693   | 0        | 1987 | 605.69249  | 5      |
| 1907 |            |          | 1934 |            |          | 1961 | 311.58433  | 0        | 1988 | 587.66011  | 8      |
| 1908 |            |          | 1935 |            |          | 1962 | 329.02433  | 0        | 1989 | 674.53187  | 4      |
| 1909 |            |          | 1936 |            |          | 1963 | 326.88078  | 0        | 1990 | 654.9746   | 7      |
| 1910 |            |          | 1937 |            |          | 1964 | 340.5157   | 0        | 1991 | 658.32897  | 3      |
| 1911 |            |          | 1938 |            |          | 1965 | 358.4928   | 0        | 1992 | 632.48632  | 3      |
| 1912 |            |          | 1939 |            |          | 1966 | 362.35811  | 0        | 1993 | 660.92332  | 13     |
| 1913 |            |          | 1940 |            |          | 1967 | 389.69579  | 0        | 1994 | 649.5692   | 13     |
| 1914 |            |          | 1941 |            |          | 1968 | 398.53058  | 0        | 1995 | 707.35693  | 11     |
| 1915 |            |          | 1942 |            |          | 1969 | 432.73473  | 0        | 1996 | 756.18634  | 8      |
| 1916 |            |          | 1943 |            |          | 1970 | 430.00291  | 0        | 1997 | 757.58959  | 9      |
| 1917 |            |          | 1944 |            |          | 1971 | 450.30934  | 0        | 1998 | 702.53062  | 14     |
| 1918 |            |          | 1945 |            |          | 1972 | 464.03215  | 0        | 1999 | 705.01599  | 10     |
| 1919 |            |          | 1946 |            |          | 1973 | 467.69427  | 0        | 2000 | 660.61726  | 9      |
| 1920 |            |          | 1947 |            |          | 1974 | 503.17117  | 0        | 2001 | 560.99878  | 16     |
| 1921 |            |          | 1948 |            |          | 1975 | 498.32862  | 0        | 2002 | 622.31475  | 38     |
| 1922 |            |          | 1949 | 3137553    | 0        | 1976 | 503.00206  | 1        | 2003 | 648.62972  | 45     |
| 1923 |            |          | 1950 | 3141492    | 0        | 1977 | 448.26971  | 1        | 2004 | 659.16041  | 46     |
| 1924 |            |          | 1951 | 3121180    | 0        | 1978 | 531.60796  | 0        | 2005 | 676.24223  | 75     |
| 1925 |            |          | 1952 | 3101891    | 0        | 1979 | 545.05298  | 0        | 2006 | 723.40263  | 88     |
| 1926 |            |          | 1953 | 2987190    | 0        | 1980 | 578.71181  | 2        | 2007 | 717.40095  | 201    |
|      |            |          |      |            |          |      |            |          | 2008 | 771.80751  | 313    |

| <b>Table A4.19</b> U.S. | Renewable Energ   | v Activity <sup>135</sup>     | and Patents <sup>136</sup> |
|-------------------------|-------------------|-------------------------------|----------------------------|
| 1401011111/0.0.         | reene maore Energ | <i>j</i> 1 1001 7 10 <i>j</i> |                            |

<sup>&</sup>lt;sup>135</sup> Activity represents United States production of renewable energy, defined at eia.doe.gov as "…hydroelectric, geothermal, solar, wind and biomass power." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>136</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Renewable

and energy were used as the keywords found in the patent title or abstract by year of publication.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx      | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|----------|----------|----------|----------|-------------------|
| 310250481 | 954   | 1.76E+15           | 158766             | 6.81E+09 | 1.51E+14 | 143597.4 | 1.88E+09 | 0.403048 | 16.24474          |

Activity (10000 Billion kJ per Year) - Patents per Year 

US Renewable Energy: Activity and Patents

Figure A4.42. U.S. Renewable Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



Figure A4.43. EIA U.S. Renewable Energy Production. U.S. renewable energy production (activity) scaled trillion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.44. EPO Worldwide Patent Search: Renewable and Energy in Title or Abstract by date of **Publication**. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.45. U.S. Renewable Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.46. U.S. Renewable Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | x<br>(activity) | y<br>(patent) | Year | x<br>(activity) | y<br>(patent) | Year | x<br>(activity) | y<br>(patent)   | Year | x<br>(activity) | y<br>(patent) |
|------|-----------------|---------------|------|-----------------|---------------|------|-----------------|-----------------|------|-----------------|---------------|
| 1900 | (               | ( <b>P</b> )  | 1927 | (               | (1.1.1.1)     | 1954 | (               | (participation) | 1981 | (               | ( <b>P</b> )  |
| 1901 |                 |               | 1928 |                 |               | 1955 |                 |                 | 1982 |                 |               |
| 1902 |                 |               | 1929 |                 |               | 1956 |                 |                 | 1983 |                 |               |
| 1903 |                 |               | 1930 |                 |               | 1957 |                 |                 | 1984 | 58.025          | 2323          |
| 1904 |                 |               | 1931 |                 |               | 1958 |                 |                 | 1985 | 117.105         | 2155          |
| 1905 |                 |               | 1932 |                 |               | 1959 |                 |                 | 1986 | 155.085         | 1928          |
| 1906 |                 |               | 1933 |                 |               | 1960 |                 |                 | 1987 | 114.995         | 1656          |
| 1907 |                 |               | 1934 |                 |               | 1961 |                 |                 | 1988 | 99.17           | 1415          |
| 1908 |                 |               | 1935 |                 |               | 1962 |                 |                 | 1989 | 58332.01        | 1507          |
| 1909 |                 |               | 1936 |                 |               | 1963 |                 |                 | 1990 | 63002.49        | 1457          |
| 1910 |                 |               | 1937 |                 |               | 1964 |                 |                 | 1991 | 66135.84        | 1445          |
| 1911 |                 |               | 1938 |                 |               | 1965 |                 |                 | 1992 | 67399.73        | 1740          |
| 1912 |                 |               | 1939 |                 |               | 1966 |                 |                 | 1993 | 70113.19        | 1718          |
| 1913 |                 |               | 1940 |                 |               | 1967 |                 |                 | 1994 | 72318.14        | 1939          |
| 1914 |                 |               | 1941 |                 |               | 1968 |                 |                 | 1995 | 73699.14        | 1990          |
| 1915 |                 |               | 1942 |                 |               | 1969 |                 |                 | 1996 | 74728.82        | 2043          |
| 1916 |                 |               | 1943 |                 |               | 1970 |                 |                 | 1997 | 74100.04        | 2186          |
| 1917 |                 |               | 1944 |                 |               | 1971 |                 |                 | 1998 | 73625.29        | 2597          |
| 1918 |                 |               | 1945 |                 |               | 1972 |                 |                 | 1999 | 72576.62        | 3025          |
| 1919 |                 |               | 1946 |                 |               | 1973 |                 |                 | 2000 | 70039.34        | 3534          |
| 1920 |                 |               | 1947 |                 |               | 1974 |                 |                 | 2001 | 69053.97        | 3761          |
| 1921 |                 |               | 1948 |                 |               | 1975 |                 |                 | 2002 | 67932.51        | 4105          |
| 1922 |                 |               | 1949 |                 |               | 1976 |                 |                 | 2003 | 67119.1         | 4252          |
| 1923 |                 |               | 1950 |                 |               | 1977 |                 |                 | 2004 | 68047.5         | 4378          |
| 1924 |                 |               | 1951 |                 |               | 1978 |                 |                 | 2005 | 69767.15        | 5016          |
| 1925 |                 |               | 1952 |                 |               | 1979 |                 |                 | 2006 | 76194.21        | 5605          |
| 1926 |                 |               | 1953 |                 |               | 1980 |                 |                 | 2007 | 85394.87        | 7327          |
|      |                 |               |      |                 |               |      |                 |                 | 2008 | 96008.17        | 9165          |

**Table A4.21** U.S. Solar Energy Activity<sup>137</sup> and Patents<sup>138</sup>

Table A4.22. Correlation Eq.(A1.1) terms calculated from Table A4.21 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 1436132.5 | 78267 | 1.04E+11           | 3.39E+08           | 5.18E+09 | 2.174E+10 | 93491639 | 6.82E+08 | 0.478581 | 22.90399          |



Figure A4.47. U.S. Solar Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

Activity represents U.S. production of solar energy, defined at usgs.gov as "...solar thermal and photovoltaic electricity net generation (converted to Btu using the fossil-fueled plants heat rate, and solar thermal direct use energy." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>138</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Solar was

<sup>&</sup>lt;sup>138</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Solar was used as the keyword found in the patent title or abstract by year of publication.



**Figure A4.48. EIA U.S. Solar Energy Production.** U.S. solar energy (activity) production scaled in billion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.49. EPO Worldwide Patent Search: Solar in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.50. U.S. Solar Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.51. U.S. Solar Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

|      |            | 1        |      |            | -        |      | I          | 1        |      | 1          | 1     |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|-------|
| Year | х          | У        | Year | х          | У        | Year | х          | У        | Year | х          | У     |
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (patent) |      | (activity) | (pat) |
| 1900 |            |          | 1927 |            |          | 1954 | 38526944   | 820      | 1981 | 70700263   | 4395  |
| 1901 |            |          | 1928 |            |          | 1955 | 42355789   | 847      | 1982 | 70287711   | 4725  |
| 1902 |            |          | 1929 |            |          | 1956 | 44966245   | 1026     | 1983 | 67710786   | 5015  |
| 1903 |            |          | 1930 |            |          | 1957 | 45346843   | 1310     | 1984 | 72716099   | 4775  |
| 1904 |            |          | 1931 |            |          | 1958 | 42340660   | 1345     | 1985 | 71530126   | 4704  |
| 1905 |            |          | 1932 |            |          | 1959 | 44255923   | 1324     | 1986 | 70875075   | 4733  |
| 1906 |            |          | 1933 |            |          | 1960 | 45157969   | 1781     | 1987 | 71383246   | 4702  |
| 1907 |            |          | 1934 |            |          | 1961 | 45660632   | 1652     | 1988 | 72828956   | 4372  |
| 1908 |            |          | 1935 |            |          | 1962 | 47345229   | 1515     | 1989 | 73299825   | 4754  |
| 1909 |            |          | 1936 |            |          | 1963 | 49768279   | 1437     | 1990 | 74770215   | 4467  |
| 1910 |            |          | 1937 |            |          | 1964 | 51754508   | 1457     | 1991 | 74413311   | 4373  |
| 1911 |            |          | 1938 |            |          | 1965 | 53463287   | 1573     | 1992 | 73986513   | 4765  |
| 1912 |            |          | 1939 |            |          | 1966 | 56478580   | 1438     | 1993 | 72264608   | 4033  |
| 1913 |            |          | 1940 |            |          | 1967 | 59480253   | 1662     | 1994 | 74793769   | 4247  |
| 1914 |            |          | 1941 |            |          | 1968 | 61427650   | 1641     | 1995 | 75242995   | 4237  |
| 1915 |            |          | 1942 |            |          | 1969 | 63870798   | 1377     | 1996 | 76636826   | 4008  |
| 1916 |            |          | 1943 |            |          | 1970 | 66993845   | 1510     | 1997 | 76629473   | 4233  |
| 1917 |            |          | 1944 |            |          | 1971 | 66172590   | 1552     | 1998 | 77058186   | 5169  |
| 1918 |            |          | 1945 |            |          | 1972 | 67435669   | 1827     | 1999 | 75862260   | 5330  |
| 1919 |            |          | 1946 |            |          | 1973 | 67081951   | 1529     | 2000 | 75422096   | 5638  |
| 1920 |            |          | 1947 |            |          | 1974 | 65802709   | 1528     | 2001 | 75845604   | 5014  |
| 1921 |            |          | 1948 |            |          | 1975 | 64731176   | 1754     | 2002 | 74836815   | 6001  |
| 1922 |            |          | 1949 | 33466879   | 572      | 1976 | 64989908   | 2126     | 2003 | 74128040   | 6213  |
| 1923 |            |          | 1950 | 37495105   | 454      | 1977 | 65464382   | 2626     | 2004 | 74255012   | 6740  |
| 1924 |            |          | 1951 | 40881899   | 596      | 1978 | 66609727   | 2843     | 2005 | 73455026   | 6707  |
| 1925 |            |          | 1952 | 40002343   | 860      | 1979 | 69574945   | 2815     | 2006 | 74946029   | 7885  |
| 1926 |            |          | 1953 | 40280740   | 673      | 1980 | 70930247   | 3658     | 2007 | 75436328   | 10029 |
|      |            |          |      |            |          |      |            |          | 2008 | 77765323   | 11429 |

| Fable A4.23 U.S. Total Energy | Activity <sup>139</sup> | and Patents <sup>140</sup> |
|-------------------------------|-------------------------|----------------------------|
|-------------------------------|-------------------------|----------------------------|

 <sup>&</sup>lt;sup>139</sup> Activity represents United States production of total energy, defined at eia.doe.gov as "...fossil, nuclear and renewable power." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ.
 <sup>140</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Fossil fuel, nuclear and renewables were used as the keywords found in the patent title or abstract by year of publication.
Table A4.24 Correlation Eq.(A1.1) terms calculated from Table A4.23 data.

| Sum x     | Sum y  | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|--------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 3.789E+09 | 201821 | 2.49E+17           | 1.01E+09           | 1.42E+13 | 9.363E+15 | 3.28E+08 | 1.41E+12 | 0.806353 | 65.02049          |



Figure A4.52. U.S. Total Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A4.53. EIA U.S. Total Energy Production.** U.S. total power production (activity) scaled in trillion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.54. EPO Worldwide Patent Search: Fossil Fuel, Nuclear or Renewables in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.55. U.S. Total Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.56. U.S. Total Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | X          | y        | Year | X          | y        | Year | X ( (; ; ; ( ) | у        | Year | X          | у        |
|------|------------|----------|------|------------|----------|------|----------------|----------|------|------------|----------|
|      | (activity) | (patent) |      | (activity) | (patent) |      | (activity)     | (patent) |      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 |                |          | 1981 |            |          |
| 1901 |            |          | 1928 |            |          | 1955 |                |          | 1982 |            |          |
| 1902 |            |          | 1929 |            |          | 1956 |                |          | 1983 | 29.54      | 364      |
| 1903 |            |          | 1930 |            |          | 1957 |                |          | 1984 | 71.74      | 296      |
| 1904 |            |          | 1931 |            |          | 1958 |                |          | 1985 | 63.3       | 339      |
| 1905 |            |          | 1932 |            |          | 1959 |                |          | 1986 | 46.42      | 329      |
| 1906 |            |          | 1933 |            |          | 1960 |                |          | 1987 | 39.035     | 280      |
| 1907 |            |          | 1934 |            |          | 1961 |                |          | 1988 | 9.495      | 258      |
| 1908 |            |          | 1935 |            |          | 1962 |                |          | 1989 | 23244.82   | 310      |
| 1909 |            |          | 1936 |            |          | 1963 |                |          | 1990 | 30602.39   | 325      |
| 1910 |            |          | 1937 |            |          | 1964 |                |          | 1991 | 32489.78   | 301      |
| 1911 |            |          | 1938 |            |          | 1965 |                |          | 1992 | 31505.47   | 388      |
| 1912 |            |          | 1939 |            |          | 1966 |                |          | 1993 | 32691.29   | 376      |
| 1913 |            |          | 1940 |            |          | 1967 |                |          | 1994 | 37515.8    | 527      |
| 1914 |            |          | 1941 |            |          | 1968 |                |          | 1995 | 34424.65   | 543      |
| 1915 |            |          | 1942 |            |          | 1969 |                |          | 1996 | 35279.2    | 541      |
| 1916 |            |          | 1943 |            |          | 1970 |                |          | 1997 | 35427.96   | 601      |
| 1917 |            |          | 1944 |            |          | 1971 |                |          | 1998 | 32549.92   | 660      |
| 1918 |            |          | 1945 |            |          | 1972 |                |          | 1999 | 48418.17   | 913      |
| 1919 |            |          | 1946 |            |          | 1973 |                |          | 2000 | 60195.14   | 1002     |
| 1920 |            |          | 1947 |            |          | 1974 |                |          | 2001 | 73445.94   | 1161     |
| 1921 |            |          | 1948 |            |          | 1975 |                |          | 2002 | 111127.4   | 1420     |
| 1922 |            |          | 1949 |            |          | 1976 |                |          | 2003 | 120872.4   | 1773     |
| 1923 |            |          | 1950 |            |          | 1977 |                |          | 2004 | 149545.2   | 1912     |
| 1924 |            |          | 1951 |            |          | 1978 |                |          | 2005 | 187882.8   | 2053     |
| 1925 | 1          |          | 1952 |            |          | 1979 |                |          | 2006 | 278243.6   | 2357     |
| 1926 |            |          | 1953 |            |          | 1980 |                |          | 2007 | 359230.7   | 3182     |
|      |            |          |      |            |          |      |                |          | 2008 | 542506.3   | 3805     |

**Table A4.27** U.S. Wind Power Activity<sup>141</sup> and Patents<sup>142</sup>

Table A4.28. Correlation Eq.(A1.1) terms calculated from Table A4.27 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 2257458.4 | 26016 | 6.08E+11           | 49209118           | 5.25E+09 | 4.115E+11 | 23177108 | 2.99E+09 | 0.968074 | 93.71671          |





Activity represents U.S. production of wind energy, defined at usgs.gov as "wind electricity net generation (converted to Btu using the fossilfueled plants heat rate)." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>142</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Wind and (energy or power) were used as keywords found in the patent title or abstract by year of publication.



**Figure A4.58. EIA U.S. Wind Energy Production.** U.S. wind energy production (activity) scaled in billion kJ with actual and best-fit curves and common pattern equation parameters.



Figure A4.59. EPO Worldwide Patent Search: Wind and (Power or Energy) in Title or Abstract by Date of **Publication**. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A4.60. U.S. Wind Energy Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A4.61. U.S. Wind Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Voar  | v          | v        | Voar | v          | V             | Voar | v          | V             | Voar  | v          | v          |
|-------|------------|----------|------|------------|---------------|------|------------|---------------|-------|------------|------------|
| 1 cai | (activity) | (natent) | Itai | (activity) | y<br>(natent) | Itai | (activity) | y<br>(natent) | I cai | (activity) | y<br>(nat) |
| 1900  | (uccivity) | (patent) | 1927 | (uccivity) | (parent)      | 1954 | 1471015    | 5             | 1981  | 2632819    | 70         |
| 1901  |            |          | 1928 |            |               | 1955 | 1502471    | 5             | 1982  | 2648101    | 80         |
| 1902  |            |          | 1929 |            |               | 1956 | 1493744    | 2             | 1983  | 2831906    | 79         |
| 1903  |            |          | 1930 |            |               | 1957 | 1406928    | 3             | 1984  | 2833537    | 88         |
| 1904  |            |          | 1931 |            |               | 1958 | 1395895    | 4             | 1985  | 2834537    | 77         |
| 1905  |            |          | 1932 |            |               | 1959 | 1427282    | 2             | 1986  | 2703051    | 70         |
| 1906  |            |          | 1933 |            |               | 1960 | 1392463    | 2             | 1987  | 2598633    | 55         |
| 1907  |            |          | 1934 |            |               | 1961 | 1365974    | 1             | 1988  | 2718379    | 44         |
| 1908  |            |          | 1935 |            |               | 1962 | 1371755    | 4             | 1989  | 2827002    | 45         |
| 1909  |            |          | 1936 |            |               | 1963 | 1396098    | 1             | 1990  | 2338054    | 52         |
| 1910  |            |          | 1937 |            |               | 1964 | 1410326    | 2             | 1991  | 2335858    | 51         |
| 1911  |            |          | 1938 |            |               | 1965 | 1408173    | 3             | 1992  | 2440712    | 48         |
| 1912  |            |          | 1939 |            |               | 1966 | 1444279    | 1             | 1993  | 2384062    | 49         |
| 1913  |            |          | 1940 |            |               | 1967 | 1413963    | 6             | 1994  | 2451630    | 60         |
| 1914  |            |          | 1941 |            |               | 1968 | 1497567    | 9             | 1995  | 2500212    | 57         |
| 1915  |            |          | 1942 |            |               | 1969 | 1519714    | 4             | 1996  | 2571063    | 60         |
| 1916  |            |          | 1943 |            |               | 1970 | 1507225    | 3             | 1997  | 2501396    | 52         |
| 1917  |            |          | 1944 |            |               | 1971 | 1508892    | 4             | 1998  | 2304289    | 66         |
| 1918  |            |          | 1945 |            |               | 1972 | 1583547    | 10            | 1999  | 2335946    | 81         |
| 1919  |            |          | 1946 |            |               | 1973 | 1610998    | 8             | 2000  | 2386109    | 86         |
| 1920  |            |          | 1947 |            |               | 1974 | 1622332    | 8             | 2001  | 2116154    | 93         |
| 1921  |            |          | 1948 |            |               | 1975 | 1579259    | 7             | 2002  | 2105024    | 68         |
| 1922  |            |          | 1949 | 1634471    | 4             | 1976 | 1805616    | 12            | 2003  | 2112152    | 75         |
| 1923  |            |          | 1950 | 1648234    | 2             | 1977 | 1937533    | 14            | 2004  | 2237920    | 86         |
| 1924  |            |          | 1951 | 1619076    | 6             | 1978 | 2148138    | 16            | 2005  | 2253850    | 82         |
| 1925  |            |          | 1952 | 1555459    | 6             | 1979 | 2268096    | 30            | 2006  | 2270076    | 85         |
| 1926  |            |          | 1953 | 1496624    | 4             | 1980 | 2609923    | 59            | 2007  | 2260250    | 88         |
|       |            |          |      |            |               |      |            |               | 2008  | 2152850    | 120        |

| Table A4.29 U.S. Wood Energy Activ | rity <sup>143</sup> and Patents <sup>144</sup> |
|------------------------------------|------------------------------------------------|
|------------------------------------|------------------------------------------------|

<sup>&</sup>lt;sup>143</sup> Activity represents United States production of wood power, defined at eia.doe.gov as energy from "Wood and wood-derived fuels." Data is in billion Btu's as reported by the Energy Information Administration (EIA) at eia.doe.gov converted to kJ. <sup>144</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Wood and combustion were used as keywords found in the patent title or abstract by year of publication.

Table A4.30 Correlation Eq.(A1.1) terms calculated from Table A4.29 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy     | Sxy     | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|---------|---------|----------|-------------------|
| 119738640 | 2214  | 2.54E+14           | 152602             | 5.27E+09 | 1.491E+13 | 70905.4 | 8.5E+08 | 0.827053 | 68.40168          |



Figure A4.66. U.S. Wood Energy Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A4.67. EIA U.S. Wood Energy Production.** U.S. wood power (activity) production scaled in billion kJ with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A4.68. U.S. Wood Energy Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

## **Appendix 5: Energy Materials Data**

| Year | х          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 268        | 125      | 1927 | 597        | 378      | 1954 | 421        | 267      | 1981 | 824        | 2289     |
| 1901 | 292        | 120      | 1928 | 575        | 440      | 1955 | 492        | 279      | 1982 | 838        | 2539     |
| 1902 | 300        | 138      | 1929 | 608        | 453      | 1956 | 532        | 312      | 1983 | 782        | 2675     |
| 1903 | 356        | 209      | 1930 | 536        | 513      | 1957 | 520        | 301      | 1984 | 896        | 2442     |
| 1904 | 350        | 210      | 1931 | 441        | 514      | 1958 | 433        | 232      | 1985 | 884        | 2266     |
| 1905 | 391        | 160      | 1932 | 359        | 382      | 1959 | 435        | 217      | 1986 | 890        | 2209     |
| 1906 | 412        | 163      | 1933 | 383        | 323      | 1960 | 436        | 285      | 1987 | 919        | 2200     |
| 1907 | 478        | 166      | 1934 | 417        | 373      | 1961 | 423        | 288      | 1988 | 946        | 1981     |
| 1908 | 414        | 165      | 1935 | 424        | 355      | 1962 | 441        | 262      | 1989 | 981        | 2022     |
| 1909 | 459        | 141      | 1936 | 493        | 343      | 1963 | 479        | 262      | 1990 | 1,029      | 1676     |
| 1910 | 500        | 202      | 1937 | 497        | 268      | 1964 | 506        | 270      | 1991 | 996        | 1842     |
| 1911 | 495        | 202      | 1938 | 394        | 312      | 1965 | 521        | 318      | 1992 | 998        | 1857     |
| 1912 | 533        | 176      | 1939 | 446        | 258      | 1966 | 549        | 281      | 1993 | 945        | 1556     |
| 1913 | 568        | 147      | 1940 | 512        | 189      | 1967 | 567        | 343      | 1994 | 1,034      | 1613     |
| 1914 | 511        | 142      | 1941 | 570        | 135      | 1968 | 559        | 327      | 1995 | 1,033      | 1561     |
| 1915 | 530        | 143      | 1942 | 643        | 117      | 1969 | 573        | 266      | 1996 | 1,064      | 1510     |
| 1916 | 589        | 98       | 1943 | 651        | 95       | 1970 | 615        | 297      | 1997 | 1,090      | 1596     |
| 1917 | 650        | 110      | 1944 | 683        | 113      | 1971 | 563        | 333      | 1998 | 1,118      | 1722     |
| 1918 | 677        | 140      | 1945 | 632        | 122      | 1972 | 603        | 373      | 1999 | 1,100      | 1781     |
| 1919 | 553        | 146      | 1946 | 594        | 123      | 1973 | 599        | 340      | 2000 | 1,074      | 1676     |
| 1920 | 657        | 230      | 1947 | 682        | 140      | 1974 | 610        | 356      | 2001 | 1,127.7    | 1660     |
| 1921 | 505        | 304      | 1948 | 657        | 182      | 1975 | 654        | 435      | 2002 | 1,094.3    | 1733     |
| 1922 | 476        | 364      | 1949 | 481        | 214      | 1976 | 685        | 648      | 2003 | 1,071.8    | 1843     |
| 1923 | 657        | 298      | 1950 | 560        | 162      | 1977 | 697        | 921      | 2004 | 1,112.1    | 2012     |
| 1924 | 571        | 319      | 1951 | 576        | 195      | 1978 | 670        | 1262     | 2005 | 1,131.5    | 2144     |
| 1925 | 581        | 361      | 1952 | 507        | 301      | 1979 | 778        | 1378     | 2006 | 1,162.7    | 3000     |
| 1926 | 657        | 306      | 1953 | 488        | 221      | 1980 | 830        | 1725     | 2007 | 1,146.6    | 4032     |
|      |            |          |      |            |          |      |            |          | 2008 | 1,171.5    | 4778     |

**Table A5.1** U.S. Coal Activity<sup>145</sup> and Patents<sup>146</sup>

Table A5.2. Correlation Eq.(A1.1) terms calculated from Table A5.1 data.

| Sum x  | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|--------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 71,481 | 85299 | 53066191           | 1.58E+08           | 75803600 | 6190218.4 | 91036847 | 19865741 | 0.836841 | 70.03036          |



Figure A5.1. U.S. Coal Activity and Patents. data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>145</sup> Activity represents United States production of coal, defined at eia.doe.gov as "Beginning in 2001, includes a small amount of refuse recovery" Data is in thousand of ktons as reported by the Energy Information Administration (EIA) at eia.doe.gov. <sup>146</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Coal was used

as the keyword found in the patent title or abstract by year of publication.



**Figure A5.2. EIA U.S. Coal Production.** U.S. coal production (activity) scaled in kilotons with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A5.3. EPO Worldwide Patent Search: Coal in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A5.4. U.S. Coal Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A5.5. U.S. Coal Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Voor  | v               | N.            | Voor  | v               | N.            | Voor  | W               | N.            | Voor  | v               | X7            |
|-------|-----------------|---------------|-------|-----------------|---------------|-------|-----------------|---------------|-------|-----------------|---------------|
| 1 Cal | A<br>(activity) | y<br>(natent) | 1 cai | A<br>(activity) | y<br>(natent) | 1 cai | A<br>(activity) | y<br>(natent) | 1 cai | A<br>(activity) | y<br>(natent) |
| 1900  | (activity)      | (patent)      | 1927  | (activity)      | (patent)      | 1954  | 10984850        | 210           | 1981  | 21587453        | 742           |
| 1901  |                 |               | 1927  |                 |               | 1955  | 11719794        | 223           | 1982  | 20272254        | 898           |
| 1902  |                 |               | 1920  |                 |               | 1956  | 12372905        | 254           | 1983  | 18659046        | 890           |
| 1902  |                 |               | 1930  |                 |               | 1957  | 12906669        | 301           | 1984  | 20266522        | 924           |
| 1904  |                 |               | 1931  |                 |               | 1958  | 13146635        | 306           | 1985  | 19606699        | 1015          |
| 1905  |                 |               | 1932  |                 |               | 1959  | 14229272        | 317           | 1986  | 19130711        | 1064          |
| 1906  |                 |               | 1933  |                 |               | 1960  | 15087911        | 452           | 1987  | 20140200        | 1017          |
| 1907  |                 |               | 1934  |                 |               | 1961  | 15460312        | 452           | 1988  | 20999255        | 1080          |
| 1908  |                 |               | 1935  |                 |               | 1962  | 16038973        | 408           | 1989  | 21074425        | 1204          |
| 1909  |                 |               | 1936  | 2691512         | 120           | 1963  | 16973368        | 405           | 1990  | 21522622        | 1257          |
| 1910  |                 |               | 1937  | 3084567         | 95            | 1964  | 17535553        | 463           | 1991  | 21750108        | 1209          |
| 1911  |                 |               | 1938  | 3108858         | 119           | 1965  | 17963100        | 493           | 1992  | 22132249        | 1439          |
| 1912  |                 |               | 1939  | 3387095         | 86            | 1966  | 19033839        | 424           | 1993  | 22725642        | 1263          |
| 1913  |                 |               | 1940  | 3752702         | 65            | 1967  | 20251776        | 524           | 1994  | 23580706        | 1273          |
| 1914  |                 |               | 1941  | 4168116         | 57            | 1968  | 21325000        | 516           | 1995  | 23743628        | 1310          |
| 1915  |                 |               | 1942  | 4525095         | 51            | 1969  | 22679195        | 428           | 1996  | 24113536        | 1230          |
| 1916  |                 |               | 1943  | 5024449         | 34            | 1970  | 23786453        | 446           | 1997  | 24212677        | 1254          |
| 1917  |                 |               | 1944  | 5708288         | 45            | 1971  | 24088031        | 437           | 1998  | 24108128        | 1627          |
| 1918  |                 |               | 1945  | 6000161         | 58            | 1972  | 24016109        | 594           | 1999  | 23822711        | 1736          |
| 1919  |                 |               | 1946  | 6293037         | 88            | 1973  | 24067202        | 508           | 2000  | 24173875        | 2034          |
| 1920  |                 |               | 1947  | 6733230         | 111           | 1974  | 22849793        | 456           | 2001  | 24500779        | 1986          |
| 1921  |                 |               | 1948  | 7178777         | 127           | 1975  | 21103530        | 548           | 2002  | 23941279        | 2246          |
| 1922  |                 |               | 1949  | 7546825         | 144           | 1976  | 20943778        | 581           | 2003  | 24118978        | 2322          |
| 1923  |                 |               | 1950  | 8479650         | 112           | 1977  | 21097071        | 594           | 2004  | 23969678        | 2513          |
| 1924  |                 |               | 1951  | 9689372         | 131           | 1978  | 21308815        | 535           | 2005  | 23456822        | 2515          |
| 1925  |                 |               | 1952  | 10272566        | 213           | 1979  | 21883353        | 473           | 2006  | 23535018        | 2533          |
| 1926  |                 |               | 1953  | 10645798        | 163           | 1980  | 21869692        | 744           | 2007  | 24590602        | 3133          |
|       |                 |               |       |                 |               |       |                 |               | 2008  | 26032337        | 3408          |

**Table A5.3.** U.S. Natural Gas Activity<sup>147</sup> and Patents<sup>148</sup>

<sup>&</sup>lt;sup>147</sup> Activity represents United States production of natural gas, defined at eia.doe.gov as "Natural gas gross withdrawals." Data is in million cubic feet as reported by the Energy Information Administration (EIA) at eia.doe.gov. <sup>148</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Natural and

gas were used as keywords found in the patent title or abstract by year of publication.

Table A5.4. Correlation Eq.(A1.1) terms calculated from Table A5.3 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 1.245E+09 | 59033 | 2.5E+16            | 92636613           | 1.29E+12 | 3.794E+15 | 44898324 | 2.88E+11 | 0.698263 | 48.75718          |



Figure A5.6. U.S. Natural Gas Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A5.7. EIA U.S. Natural Gas Production.** U.S. natural gas production (activity) scaled in billion cubic feet with actual and best-fit curves and common pattern equation parameters.



Figure A5.8. EPO Worldwide Patent Search: Natural Gas in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A5.9. U.S. Natural Gas Best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A5.10. U.S. Natural Gas Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

| Year | х          | У        | Year | х          | У        | Year | X          | У        | Year | х          | У        |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
|      | (activity) | (patent) |
| 1900 | 63621      | 55       | 1927 | 901129     | 109      | 1954 | 2314988    | 343      | 1981 | 3128624    | 807      |
| 1901 | 69389      | 60       | 1928 | 901474     | 146      | 1955 | 2484428    | 345      | 1982 | 3156715    | 873      |
| 1902 | 88767      | 56       | 1929 | 1007323    | 159      | 1956 | 2617283    | 460      | 1983 | 3170999    | 895      |
| 1903 | 100461     | 65       | 1930 | 898011     | 236      | 1957 | 2616901    | 558      | 1984 | 3249696    | 870      |
| 1904 | 117081     | 74       | 1931 | 851081     | 248      | 1958 | 2448987    | 537      | 1985 | 3274553    | 834      |
| 1905 | 134717     | 73       | 1932 | 785159     | 220      | 1959 | 2574590    | 471      | 1986 | 3168252    | 841      |
| 1906 | 126494     | 49       | 1933 | 905656     | 210      | 1960 | 2574933    | 575      | 1987 | 3047378    | 860      |
| 1907 | 166095     | 60       | 1934 | 908065     | 209      | 1961 | 2621758    | 482      | 1988 | 2979123    | 749      |
| 1908 | 178527     | 57       | 1935 | 993942     | 231      | 1962 | 2676189    | 400      | 1989 | 2778773    | 852      |
| 1909 | 183171     | 50       | 1936 | 1098513    | 248      | 1963 | 2752723    | 405      | 1990 | 2684687    | 936      |
| 1910 | 209557     | 47       | 1937 | 1277653    | 188      | 1964 | 2786822    | 355      | 1991 | 2707039    | 978      |
| 1911 | 220449     | 45       | 1938 | 1213254    | 222      | 1965 | 2848514    | 441      | 1992 | 2624632    | 920      |
| 1912 | 222935     | 51       | 1939 | 1264256    | 207      | 1966 | 3027763    | 424      | 1993 | 2499033    | 787      |
| 1913 | 248446     | 61       | 1940 | 1503176    | 179      | 1967 | 3215742    | 454      | 1994 | 2431476    | 883      |
| 1914 | 265763     | 55       | 1941 | 1404182    | 210      | 1968 | 3329042    | 426      | 1995 | 2394268    | 911      |
| 1915 | 281104     | 45       | 1942 | 1385479    | 149      | 1969 | 3371751    | 411      | 1996 | 2366017    | 859      |
| 1916 | 300767     | 26       | 1943 | 1505613    | 139      | 1970 | 3517450    | 450      | 1997 | 2354831    | 913      |
| 1917 | 335316     | 21       | 1944 | 1677904    | 153      | 1971 | 3453914    | 470      | 1998 | 2281919    | 1241     |
| 1918 | 355928     | 22       | 1945 | 1713655    | 147      | 1972 | 3455368    | 561      | 1999 | 2146732    | 1189     |
| 1919 | 378367     | 52       | 1946 | 1733424    | 154      | 1973 | 3360903    | 470      | 2000 | 2130707    | 1357     |
| 1920 | 442929     | 61       | 1947 | 1856987    | 195      | 1974 | 3202585    | 455      | 2001 | 2117511    | 1312     |
| 1921 | 472183     | 75       | 1948 | 2020185    | 232      | 1975 | 3056779    | 503      | 2002 | 2097124    | 1342     |
| 1922 | 557531     | 109      | 1949 | 1841940    | 214      | 1976 | 2976180    | 557      | 2003 | 2073453    | 1367     |
| 1923 | 732407     | 83       | 1950 | 1973574    | 180      | 1977 | 3009265    | 673      | 2004 | 1983302    | 1514     |
| 1924 | 713940     | 86       | 1951 | 2247711    | 270      | 1978 | 3178216    | 667      | 2005 | 1890106    | 1379     |
| 1925 | 620373     | 103      | 1952 | 2289836    | 346      | 1979 | 3121310    | 609      | 2006 | 1862259    | 1704     |
| 1926 | 770874     | 128      | 1953 | 2357082    | 289      | 1980 | 3146365    | 741      | 2007 | 1848450    | 1989     |
|      |            |          |      |            |          |      |            |          | 2008 | 1811817    | 2190     |

**Table A5.5.** U.S. Oil Activity<sup>149</sup> and Patents<sup>150</sup>

Table A5.6. Correlation Eq.(A1.1) terms calculated from Table A5.5 data.

| Sum x     | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy      | Sxy      | r        | 100r <sup>2</sup> |
|-----------|-------|--------------------|--------------------|----------|-----------|----------|----------|----------|-------------------|
| 196873681 | 51754 | 4.86E+14           | 46982414           | 1.23E+11 | 1.307E+14 | 22409235 | 2.92E+10 | 0.540152 | 29.17646          |



Figure A5.11. U.S. Oil Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.

<sup>&</sup>lt;sup>149</sup> Activity represents United States production of oil, defined at eia.doe.gov as "Field production of crude oil." Data is in thousand barrels as reported by the Energy Information Administration (EIA) at eia.doe.gov. <sup>150</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine esp@cenet. Petroleum was

used as the keyword found in the patent title or abstract by year of publication.



**Figure 5.12. EIA U.S. Oil Production.** U.S. oil production (activity) scaled in kilo barrels with actual and best-fit curves and common pattern equation parameters. No best-fit for the patent data was obtainable.



Figure A5.13. EPO Worldwide Patent Search: Petroleum in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A5.14. U.S. Oil best-Fit Activity and Patents. Illustrates best-fit origin shift.



Figure A5.15. U.S. Oil Independent Patent Best-Fit. Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

|      |            | 1        |      | r          | r        |      |            | 1        |      |            |          |
|------|------------|----------|------|------------|----------|------|------------|----------|------|------------|----------|
| Year | X          | У        |
|      | (activity) | (patent) |
| 1900 |            |          | 1927 |            |          | 1954 | 4.95       | 43       | 1981 | 20.335     | 341      |
| 1901 |            |          | 1928 |            |          | 1955 | 6.58       | 43       | 1982 | 18.885     | 313      |
| 1902 |            |          | 1929 |            |          | 1956 | 12.21      | 79       | 1983 | 13.03      | 321      |
| 1903 |            |          | 1930 |            |          | 1957 | 17.03      | 131      | 1984 | 12.59      | 239      |
| 1904 |            |          | 1931 |            |          | 1958 | 28.59      | 236      | 1985 | 8.855      | 213      |
| 1905 |            |          | 1932 |            |          | 1959 | 34.39      | 271      | 1986 | 12.705     | 219      |
| 1906 |            |          | 1933 |            |          | 1960 | 35.64      | 306      | 1987 | 13.545     | 210      |
| 1907 |            |          | 1934 |            |          | 1961 | 31.85      | 234      | 1988 | 12.815     | 177      |
| 1908 |            |          | 1935 |            |          | 1962 | 29.11      | 196      | 1989 | 12.42      | 210      |
| 1909 |            |          | 1936 |            |          | 1963 | 25.42      | 199      | 1990 | 15.295     | 169      |
| 1910 |            |          | 1937 |            |          | 1964 | 17.9       | 200      | 1991 | 10.375     | 171      |
| 1911 |            |          | 1938 |            |          | 1965 | 14.44      | 182      | 1992 | 13.075     | 180      |
| 1912 |            |          | 1939 |            |          | 1966 | 12.49      | 184      | 1993 | 10.53      | 121      |
| 1913 |            |          | 1940 |            |          | 1967 | 10.55      | 184      | 1994 | 11.125     | 137      |
| 1914 |            |          | 1941 |            |          | 1968 | 11.57      | 134      | 1995 | 18.77      | 158      |
| 1915 |            |          | 1942 |            |          | 1969 | 11.11      | 107      | 1996 | 20.11      | 122      |
| 1916 |            |          | 1943 |            |          | 1970 | 10.805     | 125      | 1997 | 15.82      | 144      |
| 1917 |            |          | 1944 |            |          | 1971 | 17.075     | 135      | 1998 | 16.655     | 169      |
| 1918 |            |          | 1945 |            |          | 1972 | 12.8       | 130      | 1999 | 21.855     | 203      |
| 1919 |            |          | 1946 |            |          | 1973 | 12.635     | 140      | 2000 | 17.63      | 192      |
| 1920 |            |          | 1947 |            |          | 1974 | 10.03      | 137      | 2001 | 18.82      | 147      |
| 1921 |            |          | 1948 |            |          | 1975 | 11.8       | 135      | 2002 | 19.82      | 165      |
| 1922 |            |          | 1949 | 2.33       | 19       | 1976 | 13.945     | 172      | 2003 | 20.9       | 139      |
| 1923 |            |          | 1950 | 3.21       | 22       | 1977 | 15.74      | 229      | 2004 | 27.59      | 185      |
| 1924 |            |          | 1951 | 3.82       | 28       | 1978 | 17.685     | 213      | 2005 | 23.845     | 162      |
| 1925 |            |          | 1952 | 3.72       | 26       | 1979 | 17.135     | 233      | 2006 | 25.105     | 150      |
| 1926 |            |          | 1953 | 3.06       | 31       | 1980 | 20.75      | 271      | 2007 | 22.215     | 145      |
|      |            |          |      |            |          |      |            |          | 2008 | 21.9       | 143      |

| Table A5.7. U.S | . Uranium | Usage Activity <sup>151</sup> | and Patents <sup>152</sup> |
|-----------------|-----------|-------------------------------|----------------------------|
|                 |           |                               |                            |

Activity represents U.S. uranium usage, defined at usgs.gov as domestic concentrate production and imports minus exports. Data is in thousands of tons as reported by the Energy Information Administration (EIA) at eia.doe.gov. <sup>152</sup> Patents are total patents by a worldwide data base patent search on the European Patent Office (EPO) search engine <u>esp@cenet</u>. Uranium was used as the keyword found in the patent title or abstract by year of publication.

Table A5.8. Correlation Eq.(A1.1) terms calculated from Table A5.7 data.

| Sum x   | Sum y | Sum x <sup>2</sup> | Sum y <sup>2</sup> | Sum xy   | Sxx       | Syy    | Sxy      | r        | 100r <sup>2</sup> |
|---------|-------|--------------------|--------------------|----------|-----------|--------|----------|----------|-------------------|
| 956.985 | 10020 | 18620.23           | 1989320            | 180220.5 | 3356.5606 | 315980 | 20404.03 | 0.626526 | 39.25345          |



Figure A5.16. U.S. Uranium Usage Activity and Patents. Data illustrates correlation. Activity scaled to fit plot.



**Figure A5.17. EIA Uranium Usage (Production and Imports minus Exports).** U.S. uranium usage (activity) scaled in tons with actual and best-fit curves and common pattern equation parameters.



Figure A5.18. EPO Worldwide Patent Search: Uranium in Title or Abstract by Date of Publication. Best-fit generated using patent data in the production best-fit equation with production parameters. Only origin is changed.



Figure A5.19. U.S. Uranium Best-Fit Activity and Patents. Illustrates best-fit origin shift.



**Figure A5.20. U.S. Uranium Independent Patent Best-Fit.** Best-fit evaluation using patent data and pattern equation with unique patent equation parameters.

## **Appendix 6: Patent Search Keywords**

**Table A6.1.** Engineering materials, energy sources and energy materials with the patent search keyword terms used for the patent search for each per year on the European Patent Office (EPO) Search Engine. Keywords were to be searched for in the title or abstract of the patents.

| Engineering Material | Patent Search Keywords                      |
|----------------------|---------------------------------------------|
| Aluminum             | Al, aluminum or aluminium                   |
| Antimony             | antimony or stibium                         |
| Arsenic              | arsenic                                     |
| Asbestos             | asbestos                                    |
| Barite               | barite, baryte or (barium and sulfate)      |
| Bauxite/Alumina      | bauxite or alumina                          |
| Beryllium            | beryllium                                   |
| Bismuth              | bismuth                                     |
| Boron                | boron                                       |
| Cadmium              | cadmium or Cd                               |
| Chromium             | cobalt                                      |
| Cobalt               | chromium, chrome or Cr                      |
| Copper               | copper or Cu                                |
| Feldspar             | feldspar                                    |
| Fluorspar            | fluorspar or fluorite                       |
| Gold                 | gold                                        |
| Graphite             | graphite                                    |
| Gypsum               | gypsum                                      |
| Helium               | helium                                      |
| Hydraulic Cement     | hydraulic and cement                        |
| Iodine               | iodine                                      |
| Iron                 | iron or Fe                                  |
| Kyanite              | kyanite or (aluminum and silicate)          |
| Lead                 | lead or Pb                                  |
| Lithium              | lithium or Li                               |
| Magnesite            | magnesium and carbonate                     |
| Magnesium            | magnesium or Mg                             |
| Manganese            | manganese or Mn                             |
| Mercury              | mercury or Hg                               |
| Molybdenum           | molybdenum or Mo                            |
| Nickel               | nickel or Ni                                |
| Niobium              | niobium, Nb or columbium                    |
| Nitrogen             | nitrogen                                    |
| Phosphate Rock       | phosphate                                   |
| Platinum             | platinum or Pt                              |
| Potash               | potash                                      |
| Rare Earths          | lanthanide, lanthanoid, yttrium or scandium |
| Salt                 | salt                                        |
| Selenium             | selenium                                    |
| Silicon              | silicon or Si                               |
| Silver               | silver or Ag                                |
| Sulfur               | sulfur or sulphur                           |

| Talc                      | talc or pyrophyllite                                                  |  |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Tantalum                  | tantalum or Ta                                                        |  |  |  |  |  |
| Tin                       | tin or Sn                                                             |  |  |  |  |  |
| Titanium                  | titanium or Ti                                                        |  |  |  |  |  |
| Tungsten                  | tungsten or wolfram                                                   |  |  |  |  |  |
| Vanadium                  | vanadium or V                                                         |  |  |  |  |  |
| Zinc                      | zinc or Zn                                                            |  |  |  |  |  |
| Zirconium                 | zirconium or Zr                                                       |  |  |  |  |  |
|                           |                                                                       |  |  |  |  |  |
| Energy Sources            | Patent Search Keywords                                                |  |  |  |  |  |
| U.S. Biofuel Energy       | biofuel or biofuels or biodiesel                                      |  |  |  |  |  |
| U.S. Biomass Energy       | biomass                                                               |  |  |  |  |  |
| U.S. Coal Energy          | coal                                                                  |  |  |  |  |  |
| U.S. Fossil Fuel Energy   | coal + (natural and gas) or methane or ethane + petroleum             |  |  |  |  |  |
| U.S. Geothermal Energy    | geothermal and (power or energy)                                      |  |  |  |  |  |
| U.S. Hydroelectric Energy | hydroelectric                                                         |  |  |  |  |  |
| U.S. Natural Gas Energy   | (natural and gas) or methane or ethane                                |  |  |  |  |  |
| U.S. Nuclear Energy       | (nuclear and(power or energy)) or uranium                             |  |  |  |  |  |
| U.S. Oil Energy           | petroleum                                                             |  |  |  |  |  |
| U.S. Renewable Energy     | renewable and energy                                                  |  |  |  |  |  |
| U.S. Solar Energy         | solar                                                                 |  |  |  |  |  |
| U.S. Total Energy         | coal + (natural and gas) or methane or ethane + petroleum + renewable |  |  |  |  |  |
| 0.5. Total Energy         | and energy + (nuclear and(power or energy)) or uranium                |  |  |  |  |  |
| U.S. Wind Energy          | wind and (energy or power)                                            |  |  |  |  |  |
| U.S. Wood Energy          | wood and combustion                                                   |  |  |  |  |  |
|                           |                                                                       |  |  |  |  |  |
| Energy Materials          | Patent Search Keywords                                                |  |  |  |  |  |
| Coal                      | coal                                                                  |  |  |  |  |  |
| Natural Gas               | natural and gas                                                       |  |  |  |  |  |
| Oil                       | petroleum                                                             |  |  |  |  |  |
| Uranium                   | uranium                                                               |  |  |  |  |  |

## **Appendix 7: Scaling**

In general, the production data is entered in the best-fit production equation as thousands of tons. For many materials this leads to a high  $R^2$  value and also to an eventual shift in origin. In other cases the production must be scaled differently to achieve a high  $R^2$  value and an origin shift. Scaling is sought to achieve the least differential between the scale of the production and patent data. A material with production numbers much larger than its patent numbers may need to be scaled up and entered as thousands of kilotons or megatons. When patent data counts are much greater than production, the production is entered as thousands of kilograms. This procedure allows for a more accurate evaluation of the best-fit of both production and patent data by resulting in  $R^2$  values generally closer to one and resulting origin in shifts, but also is representative of the same amount of production only in a different scale.

Table A7.1 lists the materials which were tested with their production in tons and scaled in kilotons, megatons or kilograms. Listed also are three energy sources that were evaluated in billion kJ and scaled in trillion kJ. Some patterns may be revealed. In many cases  $R^2$  values are closer to one for the scaled production best-fits meaning the fit is better in these cases. When the  $R^2$  value is less for the scaled data it is still near the original  $R^2$ . When a material or source is scaled up the numbers entered into the Matlab program are smaller by units of a thousand (kiloton, megaton, trillion kJ) depending on the new scale. For example, one million tons would be entered in the program as 1000. But when scaled in kilotons it is entered as one. The resulting y-axis data would be less by a degree of 1000 as would the  $\delta$  parameter (e.g. 4e6 goes to 4e3) which is the peak amplitude of the Stage II hump given in tons. In all cases  $\delta$  decreased by the same multiple that the entered scaled data was subjected to. Similarly when a material or source is scaled down the numbers entered into the Matlab program are larger by units of a thousand (kilogram) depending on the new scale. For example, one ton would be entered in the program as .001. But when scaled in kilograms it is entered as one. The resulting y-axis data would be more by a degree of 1000 as would the  $\delta$  parameter (e.g. 4e3 to 4e6) which is the peak amplitude of the Stage II hump given in tons. In the only case of scaling down presented here,  $\delta$  decreased by the same multiple that the entered scaled data was subjected to. Platinum had no original parameters to compare because definite ones are not produced with a negative  $R^2$ .

**Table A7.1.** Materials and energy sources that had scaled production data to achieve a modified patent data origin shift. Production is scaled up or down to better match the scale of the patent data. Platinum had no  $\alpha$ , n,  $\mu$  or  $\delta$  for material in tons since with the case of a negative  $R^2$  these best value of these parameters cannot be precisely determined. Best-fit parameters not listed ( $\beta$ ,  $\omega$  and v) did not change when materials or sources were scaled.  $\delta$  may not have change exactly the by the same multiple as the scaling, but this is due to the original in tons not being at the optimal amount.

| Engineering<br>Material in Tons | α  | n    | δ     | μ  | $R^2$ | Units<br>Scaled to | α              | п    | δ     | μ  | $R^2$ |
|---------------------------------|----|------|-------|----|-------|--------------------|----------------|------|-------|----|-------|
| Barite                          | 14 | 1    | 1e6   | 11 | .5876 | Ktons              | 14             | .017 | 1e3   | 11 | .7803 |
| Bauxite/Alumina                 | 22 | 1.25 | 8e6   | 43 | .9776 | Ktons              | 59             | 0.3  | 4e4   | 43 | .9521 |
| Feldspar                        | 13 | 1    | 1e6   | 19 | .8925 | Ktons              | 11             | .01  | 1e3   | 19 | .7833 |
| Fluorspar                       | 18 | 0.9  | 0.6e6 | 30 | .6347 | Ktons              | 1 <sup>.</sup> | .003 | .6e3  | 30 | .5703 |
| Gypsum                          | 29 | 1.29 | 4e7   | 39 | .7524 | Ktons              | 28             | 0.4  | 4e4   | 6  | .8740 |
| Hydraulic Cem.                  | 16 | 1.8  | 1e8   | 16 | .9224 | Mtons              | 15             | .05  | 1e4   | 16 | .9743 |
| Iron                            | 18 | 1.6  | 1.3e8 | 25 | .7549 | Ktons              | 13             | 0.7  | 1.3e5 | 25 | .8599 |
| Magnesite                       | 22 | 1    | 1e6   | 30 | .6706 | Ktons              | 35             | .08  | 1e3   | 30 | .8231 |
| Nitrogen                        | 14 | 1.58 | 1e7   | 15 | .5337 | Ktons              | 14             | .56  | 1e4   | 15 | .7316 |
| Phosphate                       | 33 | 1.2  | 5e6   | 30 | .7896 | Ktons              | 30             | .35  | 5e3   | 30 | .8815 |
| Platinum                        | -  | -    | -     | -  | Neg.  | Kilograms          | 14             | 0.5  | 1e4   | 10 | .9539 |
| Salt                            | 19 | 1.4  | 5e6   | 7  | .6760 | Ktons              | 19             | .47  | 5e3   | 7  | .8438 |
| Silver                          | 4  | 0.1  | 1.5e5 | 11 | .6964 | Kilograms          | 5              | 1.2  | 1.5e8 | 11 | .5027 |
| Sulfur                          | 16 | 1.2  | 5e6   | 3  | .8399 | Ktons              | 20             | .25  | 5e3   | 3  | .9322 |
| Talc                            | 11 | 1    | 1e6   | 39 | .8551 | Ktons              | 1              | .01  | 1e3   | 39 | .9226 |
|                                 |    |      |       |    |       |                    |                |      |       |    |       |
| Energy Sources<br>in Billion kJ | α  | n    | δ     | μ  | $R^2$ | Units<br>Scaled to | α              | n    | δ     | μ  | $R^2$ |
| Coal                            | 18 | 0.6  | 4.2e6 | 26 | .2633 | Trillion kJ        | 28             | 0.2  | 4e3   | 26 | .8547 |
| Fossil Fuel                     | 24 | 1.2  | 8.4e7 | 26 | .0153 | Trillion kJ        | 36             | 0.29 | 2e5   | 23 | .1995 |
| Total Energy                    | 20 | 1.3  | 4.2e5 | 26 | .0258 | Trillion kJ        | 46             | 0.34 | 2e5   | 24 | .3703 |

It is possible that the relative changes from year to year in the production data create the features in the plots that determine the stage of the material rather than the scale of the data. A

material would be in the same stage whether its data is in tens, hundreds or thousands because the relative changes between data points would be the same from year to year resulting in identical plots of the actual production data with different y-axis scales. As shown in Figs. A7.1 and A7.2 there is a change in the fitted curve when the production is scaled to kilotons. This change would be caused by the differing best-fit parameters used in either case.



Figure A7.1. Bauxite production best-fit with production in tons.

For example, best-fit parameters were determined for bauxite as shown by Fig. A7.1 using tons as the unit for production activity producing a strong  $R^2$  of 0.9776. However the numbers entered for the production data were in the tens of thousands to the hundreds of Millions while the entered patent data ranged from the tens to the thousands. The  $\delta$  peak, which is measured in tons, produced by the production was to large to allow the patent data to run with the production equation. The  $\delta$  peak was larger than the patent data itself. By scaling up to kilotons the entered production data was in the range of tens to hundreds of thousands with the patent data remaining the same. This scaling factor was mirrored by the  $\delta$  value and peak in Fig. A7.2 that resulted in a scale that could be handled by the patent data. The scale also matches more accurately the scale of the production data in the y-axis. The shift in the production data of

a certain multiple of 1000 is matched by the  $\delta$  being scaled by the same amount allowing the data set and equation to use the same  $y_0$  as the un-scaled one, leaving  $\alpha$  dimensionless and rendering such scaling permissible. The same procedures were performed for all of the scaled engineering materials of energy sources.



**Figure A7.2. Bauxite production best-fit plot with production scaled in metric kilotons.** The actual patent data curve is identical in shape to the curve in Fig. A6.1. Note the fitted curve is different due to different parameters.

While the  $\delta$  parameter used for the calculation of the modified best-fit was identical to the  $\delta$  used to obtain the production best-fit, the  $\delta$  presented on all of the modified and independent patent best-fit figures was scaled down by a factor of one thousand. If the  $\delta$  was 1e6 for production it was recorded on the figure as 1e3 since this better reflects the scale of the entered patent data. The patent data was not entered as one thousands as was the production data, but was still processed by an equation that treated the data as one thousands. The resulting  $\delta$  values would describe a Stage II hump that was greater than the scale of the data itself. Scaling back  $\delta$  solved this discrepancy with no change in results and only in the scale of the Stage II hump to reflect it more accurately.

## **Appendix 8: Executive Summary**

- Long-term life cycles can be used to describe the patterns that exist in the overall lifetime of a product, system or even living organism [2,84-89]. Such cycles exist in nature and in the business, manufacturing and engineering worlds. Life cycles may display the changes in the production of an item or the physical growth of a system or organism over a period of years. Four common stages have been identified in the past within the life cycle allowing for an evaluation of the trends that are present in the item and giving an indication of where the item is positioned in reference to its life cycle.
  - a) Stage I: This stage is called the Initial Stage and is a developmental stage that begins with the discovery and invention of a process or product and ends when the development of the technology is great enough to start low-scale industrial production [2].
  - b) Stage II: Stage II is known as the Lift Off and Decay Stage and begins with the rise of in the activity, or production, of a material and ends at the low point, or "valley of death" of the activity. Invention driven activity occurs in Stages I and II [2]
  - c) Stage III: Stage III, or Revival and Rapid Growth starts at the "valley of death" and continues through the material's full growth potential with the take-off in activity typically being at a high rate [2].
  - d) Stage IV: This stage is called the Survival or Low Growth Stage and is where the material has reached maturity and the activity has leveled off or has begun to die. Innovation is dominant in Stages III and IV [2]



Figure A8.1. Illustration of a Typical Long-term Life Cycle for a Material. The plot indicates the division of the life cycle into four stages that is common to metals and non-metals. Common stage features are displayed.

2) The features common to the various life cycle stages are presented in Fig. A8.1. These features may be obvious from the raw data, but at times the stage of a material or system in not obvious. A model was needed that would mathematically capture the features of the stages of the life cycle and present a fitted curve that would represent the life cycle of a material in a form more suitable for evaluation.



**Figure A8.2. USGS World Chromium Production.** Typical fitted production activity curve with best-fit parameters and  $R^2$  value and origin. Shown in the figure are both the actual data curve and a best-fit curve.

- a) A life cycle model for metals was proposed by Yeramilli in 2006. An equation, y = x<sup>n</sup> [αx<sup>2</sup> + β x sin(αx)] + (exp[(x μ) / v] exp[-exp[(x μ) / v]] δ/v), was developed that revealed that metals could be modeled successfully and that they displayed four-stage life cycles [2]. Such a model is shown in Fig. A8.2.
- b) This equation was modified by Connelly in 2008 by raising the  $\alpha$  and  $\beta$  parameters to the power of *n* leading to more consistent and reliable results [1].
- c) Here, the equation is further modified by the normalizing of *n* by dividing it by  $n_0$  which is equal to one, thereby making *n* dimensionless.
- d) Also modified here to account for early years of production data which are far above zero and, as such, are much greater than the corresponding fitted curves resulting in low R<sup>2</sup> values. A constant, called C1, equal to the first year of the production data is added to the equation leading to y =C1 + x<sup>n</sup> [α<sup>n</sup>x<sup>2</sup> + β<sup>n</sup> x sin(ωx)] + (exp[(x μ) / v] exp[-exp[(x μ) / v]] δ / v) (2). Employed only with iodine, lead and silicon where more reasonable R<sup>2</sup> resulted.
- e) The first part of the equation, x<sup>n</sup> [α<sup>n</sup>x<sup>2</sup> + β<sup>n</sup> x sin(ωx)], is responsible for the shape of Stage III (and Stage IV if a parabolic Alpha is used) in the fitted curve while the second part, + (exp[(x μ) / v] exp[-exp[(x μ) / v]] δ/v), controls the shape of Stages I-II in the fitted curve.
  - i) Therefore, the second part of the equation is concerned with invention and the first part of the equation is concerned with innovation.

- ii) Alpha and n are found only in the first part of the equation and only affect the innovative portion of the life cycle (Stage III). If alpha is small, the inventive stages are stretched out, are longer, and dominate the fitted curve. Conversely, if alpha is large, then the inventive stages are shorter and the innovative stage is longer and dominates.
  - (1) Large alphas could indicate that a material is more mature and is farther into Stage III, or the innovative portion of its life cycle. Small alphas may indicate that a material is just entering Stage III and less advanced in its overall life cycle.
  - (2) Alpha may be a measure of initial invention, measuring the period of time that was needed to develop the material inventively.
  - (3) Since alpha, beta and x are all raised to the power n, n may be a measure of the importance of an invention. Materials such as talc with small n values (0.01), might then be of low technical importance and approaching Stage IV along Path A in Fig. A8.5.
- 3) This modified equation was applied to obtain a best-fit for the production, in tons per year, for over fifty engineering materials (metals and non-metals) and also for their associated patents.
  - a) The production data and patent data were evaluated separately to reveal fitted curves modeling life cycle stages I-III. Linear alphas were used in the common pattern equation to reveal Stage III behavior. (Parabolic alphas model and reveal Stage IV, but were not employed here since only Stage III materials were sought.)

- b) The result of each production and patent data best-fit evaluation was a fitted curve and an  $R^2$  value indicating the extent of the fit of the generated curves. An  $R^2$  value near one for the fitted curve for the production of a material was considered as an indication that the material was in Stage III of its production life cycle. Likewise, an  $R^2$  value near one for the fitted curve for the patent data of a material was considered as evidence that the material was in Stage III in its patent data life cycle.
- c) Correlation theory was applied to the production and the patent data to explore if any relationships exist between the two data sets for each material. It was found that the production data and patent data for materials were correlated to some degree in most cases across their entire life cycles. This implies that changes in the production data set can be attributed to changes in the patent data set or vice versa. If strong correlation exists, Stage III is assumed to be present. Stage IV or V (Stage V being a newly introduced stage beyond Stage IV where production is in a very steep decline with little evidence of future recovery), is assumed if correlation is very weak or is not indicated.
- 4) The point at which a material leaves Stage III and enters Stage IV is an important concept that, as of yet, has no clear answer. This transition from Stages III to IV could take place over a span of several years. The transition could occur due to resource depletion, environmental concerns or low impact of new patents. A parabolic alpha, when employed in the equation presented here, may be useful in describing a Stage IV material. Conversely, Stage III may be indicated when a constant, or linear alpha, produces a fitted curve with a good  $R^2$  value. Further best-fit analysis presented here may offer a possible dividing line between Stage III and Stage IV.

- a) The patent data was manipulated to reveal a new best-fit curve with a new origin that can be either earlier or later than the original.
  - i) The patent data was entered into the equation used to determine the best-fit for the production data. The data set was merged by using dimensions of the corresponding data set. All parameters were kept the same except for the data set and the data origin.
  - ii) The origin was move backward or forward to obtain the  $R^2$  value nearest to one. This change in origin became a positive (forward) or negative (backward) origin shift.
  - iii) The value of  $R^2$  is sensitive to the movement of the origin leading to an optimal  $R^2$  value. A change in the year away from the origin shift that produces the  $R^2$  nearest one results in a typical steep drop-off away from the optimal  $R^2$ . Figure A8.3 shows that for biofuel energy the  $R^2$  nearest one was obtained with an origin shift of seven years from 1981 to 1988. The  $R^2$  values drop steeply away from this value as the origin shift moves away from the origin shift of seven years in both directions. A best value of  $R^2$  is thereby assured in all cases.



**Figure A8.3. Biofuel Energy Sensitivity Curve:**  $R^2$  Values by Number of Years Shifted From Origin. Origin at 1981,  $R^2$  closest to 1 at 1988. Illustrates steep drop-off of R2 after best R2 was attained at a positive seven year shift in origin. Such drops are typical for all origin shift evaluations.

- b) This new curve can be superimposed upon the original to graphically reveal a shift in origin. A typical origin shift is shown for Zinc in Fig. A8.4.
  - i) Shifts may be seen by examining the Stage II humps if they are prominent. They
    often are not obvious. Shifts may can be seen in both the actual and fitted curves and
    are the same for both.



**Figure A8.4. Zinc Best-Fit Activity and Patents.** Plot depicting the origin shift of patent and activity best-fit curves for zinc. The shift is positive, indicating patent activity occurring after production activity and thus possibly being driven by the production. All parameters for the pattern equation are identical for the patent and production activity curves except for the origins (the matching results in the positive origin shift).

 ii) A positive shift occurs where the production data of the material reached a point in its life cycle previous to the patent data reaching the same point in its life cycle. In a positive shift, the production occurs first and drives the patenting.

- iii) A negative shift is present where the production reached a point in its life cycle after the patent data reached the same point in its life cycle. Where a negative shift exists, the production is being driven by the patenting.
- c) Positive shifts may indicate innovation being driven by production and the destructive side of the innovative process while negative shifts may represent innovation driving production and the constructive side of the innovative process as proposed by Schumpeter [55]. These shifts in origin are considered as strong evidence of Stage III which verify indications of Stage III provided by strong correlation and  $R^2$  values near one for engineering materials.
- d) A graphical representation, such as Fig. A8.5, of the relative scale, or distance, of the origin shift can be made, using a ratio of the shift and the origin, x<sub>0</sub>, of the production data, indicating an absolute amount that the patent or activity driving force has on the other. This ratio, called the Origin Ratio, composes the x-axis of Fig. A8.5 and is defined as (x<sub>0</sub> + OS)/x<sub>0</sub>, where x<sub>0</sub> equals the production data origin and OS is the shift in origin of the modified best-fit patent data. The y-axis of Fig. 4 is the drive ratio of the material and is expressed as (α<sup>n</sup>)<sub>α</sub>/(α<sup>n</sup>)<sub>p</sub>, where (α<sup>n</sup>)<sub>α</sub> equals the activity best-fit variable alpha to the *n* power and (α<sup>n</sup>)<sub>p</sub> is equal to the patent best-fit variable alpha raised to the power *n*, in both cases *n*, being best-fit variables. Such a curve with the origin ratio on the x-axis and the drive ratio on the y-axis, both being non-dimensional (origin ratio is years over years and drive ratio results from (α<sup>n</sup>)<sub>α</sub>/(α<sup>n</sup>)<sub>p</sub> which both result from equations with units of patents which cancel each other), may effectively represent innovative behavior.

 i) In Figure A8.5 the materials are divided into two groups. Group 1 materials all have drive ratios below one and origin ratios below one. Group 2 materials each have drive ratios of one or above and origin ratios of one or above.



**Figure A8.5. Engineering Materials Origin vs. Drive Ratio.** Origin Ratio vs. Drive Ratio displaying relative strength of driving force of either patents or production activity. Note also that the cross over point occurs at 1 (y-axis). The origin shift is the shift described in section 3 between the best-fit activity and best-fit patent evaluations for each material using the common pattern equation (1). Also depicts possible paths to Stage IV.

ii) Group 1 materials have negative origin shifts with patents driving production while Group 2 materials have positive origin shifts indicating patents are being driven by production. This may mean that Group 1 materials are in the constructive mode of innovation since patents, which are a measure of innovation, are driving the production of these materials. Group 2 may be in the destructive mode of the innovative process because patents, representing innovation, are being driven by production.

- iii) A point,  $n_0$ , equal to one, near where the trend line of the data points cross the y-axis at the point where the x-axis equals one, may delineate the dividing line between the constructive and destructive modes of the innovative process.
- iv) Such a figure may also provide an answer concerning when Stage IV is reached.
- e) Materials such as talc, in Fig. A8.5, may leave Stage III and enter Stage IV as their origin ratios and drive ratios become farther below one as represented by the Path A arrow in Fig. 4. As both the ratios become progressively lower, patenting is strong but there is less production to drive and a point may be reached where the ratios become so small that patenting, or innovation, is no longer correlated to production and Stage IV will thus be reached. The Path B arrow in Fig. A8.5 represents materials such as silver whose origin and drive ratios are growing greater than one. In such an example, production is driving fewer and fewer patents to a point where there is little innovative activity to correlate to production. Stage IV is entered and the material becomes a commodity.
- 5) All of the preceding analyses were then applied to energy sources. It was discovered that energy sources behaved in a similar manner to engineering materials in regards to correlation, best-fit and origin shift.
  - a) Energy sources displayed correlation between production (in kJ) and patents per year.
  - b) Similar life cycle and best-fit results were exhibited  $R^2$  values were lower for production best-fit. This may be due newer energy sources, such as wind, solar and renewables, still

may only be in Stage I or II of their life cycles. The best-fit analysis and equation may be reading aspects of Stage I or II as Stage III resulting in lower  $R^2$  values. With mature energy sources, such as oil or coal energy which have been used for many decades, the available data sets may be only displaying Stage III production leading to a lower  $R^2$ values as well.

- c) Figure A8.6 depicts a comparison of drive ratio and origin ratio done in the same manner as Fig. A8.5 for engineering materials. The same patterns emerge as for engineering materials.
  - i) Drive and origin ratios below one exist for Group 1 energy sources which indicate patents driving production inferring constructive innovative behavior.
  - ii) Group 2 is composed of energy sources with drive and origin ratios of one or greater indicating patents being driven by production and the negative mode of the innovative process.
  - iii) The dividing line between the modes of the innovative process,  $n_0$ , appears also to be one as was the case for engineering materials.
  - iv) As with engineering materials Stage IV may be entered from either Path A from the constructive mode of innovation or via Path B from the destructive side of the innovative process becoming a commodity.
  - v) The dashed line in Fig. A8.6 represents a possible trend line for the remaining energy source data points when coal and total energy are removed or move into Stage IV.



**Figure A8.6. Energy Source Origin Ratio vs. Drive Origin.** Displays relative strength of driving force of either patents or production activity. Possible paths A and B into Stage IV depicted by Arrows. Predicted trend line of energy source data without coal, natural gas and total energy illustrated by dashed line.  $R^2$  for the dashed line is .6632 with an equation of  $y = 1E-19e^{43.483x}$ .

- 6) After evaluation of both engineering materials and energy sources it was realized that Stage III energy sources often employ or are enable by engineering and energy materials that are also in Stage III.
  - a) Table A8.1 lists Stage III energy sources and the Stage III engineering materials with their related uses in reference to the energy source.
  - b) Table A8.2 lists Stage III energy sources with the Stage III materials that are related to them. In most cases the origin shift is in the same direction and the ratios are higher or lower than one for the material as they are for the energy source. The size of the shift or ratio may not be the same but Table A8.1 is evidence of a relationship between

innovatively active energy sources being innovated by or helping to innovate Stage III

materials.

**Table A8.1.** Examples of energy sources and the engineering materials that are innovatively active possibly due to their usage in the related energy source.

| Energy source      | <b>Related Material</b>     | Usage                                          |  |  |
|--------------------|-----------------------------|------------------------------------------------|--|--|
| Solar Energy       | Vanadium                    | Vanadium Redox Batteries (large power storage) |  |  |
| "                  | Silicon, Selenium           | Solar Cells                                    |  |  |
| Wind Energy        | Vanadium                    | Vanadium Redox Batteries (large power storage) |  |  |
| Nuclear Energy     | Fluorspar                   | Nuclear Fuel Additive                          |  |  |
| "                  | Uranium                     | Fuel                                           |  |  |
| Renewable Energy   | Graphite                    | Fuel Cells, Batteries                          |  |  |
| "                  | Nickel, Rare Earths, Cobalt | Rechargeable Batteries                         |  |  |
| "                  | Lithium, Cadmium, Lead      | Batteries                                      |  |  |
| "                  | Manganese                   | Dry Cell Batteries                             |  |  |
| "                  | Silver                      | Battery Electrodes                             |  |  |
| Coal Energy        | Coal                        | Fuel                                           |  |  |
| Natural Gas Energy | Natural Gas                 | Fuel                                           |  |  |

**Table A8.2** Comparison of origin shifts, origin ratios and drive ratios of energy sources and the engineering and energy materials that are related to them. **Energy sources** are in kJ/year.

|                         | Origin Shift | Origin Ratio | Drive Ratio |
|-------------------------|--------------|--------------|-------------|
| Solar Energy            | -93 years    | 0.953        | 0.074       |
| Vanadium                | -90 years    | 0.954        | 0.363       |
| Silicon                 | -30 years    | 0.985        | 0.435       |
| Wind Energy             | -22 years    | 0.989        | 0.36        |
| Vanadium                | -90 years    | 0.954        | 0.363       |
| Nuclear energy          | +36 years    | 1.018        | 1.75        |
| Uranium                 | -130 years   | 0.94         | 0.61        |
| Fluorspar               | -113 years   | 0.941        | 0.444       |
| <b>Coal Energy</b>      | -428 years   | 0.780        | 0.115       |
| Coal                    | -30 years    | 0.984        | 0.57        |
| Natural Gas Energy      | -392 years   | 0.799        | 0.082       |
| Natural Gas             | -326 years   | 0.832        | 0.22        |
| <b>Renewable Energy</b> | -97 years    | 0.950        | 0.267       |
| Graphite                | -24 years    | 0.987        | 0.813       |
| Nickel                  | -69 years    | 0.964        | 0.824       |
| Rare Earths             | -101 years   | 0.947        | 0.389       |
| Cobalt                  | -256 years   | 0.865        | 0.284       |
| Lithium                 | -106 years   | 0.945        | 0.396       |
| Lead                    | -41 years    | 0.978        | 0.434       |
| Manganese               | +23 years    | 1.012        | 1.418       |
| Silver                  | +21 years    | 1.011        | 2.060       |

7) This dissertation expands upon previous research relating to long-term life cycles in materials and extends such research into energy sources. Four-stage life cycles, which were found to
exist for the production of metals were discovered to exist in an expanded list of metals and also were shown to be present in non-metals as well as energy sources and materials. The equation used to model the life cycles of metals was modified here to render it more reliable and consistent. Similar behavior was noted for energy sources as was exhibited by engineering materials. Patterns relating to correlation, best-fit, life cycles and origin shifting were the same for both engineering materials and energy source. Shifts in the origin of the data for a modified patent best-fit revealed a possible point at which Stage III may transition into Stage IV for both materials and energy sources and verify various indicators that point towards the existence of Stage III.

The driving or driven behavior of patents, represented by an origin shift, may indicate the dual nature of innovation by identifying the constructive and destructive modes of the innovative process. A universal constant,  $n_0$ , which is equal to one, may represent the dividing point between the two modes of the innovative process and were seen in relation to both engineering materials and energy sources.

Stage III energy sources were often found to be supported by Stage III materials that are innovatively active and seem to be contributing to the innovation of the energy source while possibly being innovated themselves at the same time. Due to lower  $R^2$  values generated from best-fit analyses for energy sources, it is suggested here that mature energy sources such as coal and oil energy may only have production data that is in Stage III with earlier Stage I-II data being unavailable. In contrast, relatively newer energy sources, such as wind and solar energy, may still be in Stage I or II. Since the position in a life cycle can change over the years only the passage of time will reveal the exact position of these newer energy sources in their life cycles. Advancements in the study of life cycles are presented here which may further the understanding of the innovative process in general and for engineering materials and energy sources in particular. New and original contributions are made concerning the dual nature of the innovative process and the transition from Stage III to Stage IV in long-term life cycles. It is strongly believed that the processes described here could successfully be applied to a variety of materials and systems in the future and not confined solely to the evaluation of engineering materials and energy systems.

## References

- [1] Connelly, M.C. and Sekhar, J.A.; "Inventions and Innovation: A Case Study in Metals" *Key Engineering Materials* eds. Sekhar, J.A. and Dismukes J. D., 380, pp.15-39, (2008).
- [2] Yerramilli, C. and Sekhar, J.A.; "A common pattern in long-term metals production,"*Resources Policy* 31 (2006), pp. 27-36.
- [3] Sekhar J. A., & Dismukes J.; Generic innovation dynamics across the industrial technology life cycle: Platform equation modeling of invention and innovation activity, Technological Forecasting and Social Change, Vol. 76, Issue 1, pp 192-203, 2009.
- [4] Betz, F.; *Managing Technological Innovation: Competitive Advantage From Change*, 2<sup>nd</sup> Edition, John Wiley & Sons, New York, NY, ISBN# 0-471-22563-0, (2003).
- [5] Kondratiev, N. D.; "Die langen Wellen der Konjuktur", *Archiv fur Sozialwissenschaft und Sozialpolitik*, Vol. 56, 573-606, (1926).
- [6] Rogers, E.M.; *Diffusion of Innovations*, 1<sup>st</sup>-5<sup>th</sup> Editions, Free Press, New York, NY (1962-2003).
- [7] Lotka, A.J.; *Elements of Physical Biology*, Williams & Wilkins Company, Baltimore, Maryland, (1925).
- [8] Bass, F.M.; "A new product growth model for consumer durables," *Management Science*, vol. 15, pp. 215-227, (1969).
- [9] Mahajan, V. and Peterson, R.A.; *Models For Innovation Diffusion*, Sage Publications, Beverly Hills, CA, (1985).
- [10] Mahajan, V., Muller, E. and Bass, F.M.; "New product diffusion models in marketing: A review and directions for research," *Journal of Marketing*, vol. 54, pp. 1-26, (1990).
- [11] Anderson, P. and Tushman, M.L.; "Technological discontinuities and dominant designs: A cyclical model of technological change," *Administrative Science Quarterly*, vol. 35, pp. 604-633, (1990).
- [12] Geroski, P.A.; "Models of technology diffusion," *Research Policy*, vol. 29, pp. 603-625, (2000).
- [13] Filson, D.; "The nature and effects of technological change over the industry life cycle," *Review of Economic Dynamics*, vol. 4, pp. 460-494, (2001).
- [14] Bass, F.M., Gordon, K., Ferguson, T.L. and Githens, M.L.; "DIRECTV: Forecasting diffusion of a new technology prior to product launch," *Interfaces*, vol. 3,S82-S93, (2001).
- [15] Jiang, Z., Bass, F.M., and Bass, P.I.; "Virtual bass model and the left-hand datatruncation bias in diffusion of innovation studies," *International Journal of Research in Marketing*, vol. 23, pp 93-106, (2006).
- [16] Perez, C; *Technological Revolutions and Financial Capital: The Dynamics of Bubbles and Golden Ages*, Edward Elgar Publishing, Northampton, MA, (2002).
- [17] Moore, G.A.; *Crossing the Chasm*, Harper Business Publishers, New York, NY, (1991, 1999, 2002).
- [18] Hirooka, M.; "Nonlinear dynamism of innovation and business cycles," *J. Evol. Econ.*, vol. 13, pp 549-576, (2003).
- [19] Utterback, J.M.; "Innovation in industry and the diffusion of technology," *Science*, vol. 183, No. 4125, Feb. 15, 1974.

- [20] Roberts, E.B.; "Managing invention and innovation," Research-Technology Management, vol. 50, pp. 35-54, January – February, 2007. <u>Note</u>: This article was first published Research-Technology Management, Volume 31, pp. 11-29, 1985.
- [21] Utterback, J.M., and Fernando, F.; "Innovation, competition, and industry structure," *Research Policy*, vol. 22, pp 1-21, 1993.
- [22] Fusfeld, H.I.; *Industry's Future: Changing Patterns of Industrial Research*, American Chemical Society, Washington, DC, (1994).
- [23] Utterback, J.M.; *Mastering the Dynamics of Innovation*, Harvard Business School Press, Cambridge, MA, 1994.
- [24] Stokes, D.E.; *Pasteur's Quadrant: Basic Science and Technological Innovation*, Brookings Institution Press, Washington D.C., (1997).
- [25] Bush, V.; 1946, Science The Endless Frontier: A Report to the President on a Program for Postwar Scientific Research, Reviewed in SCIENCE and TECHNOLOGY POLICY YEARBOOK 1994, AAAS, Washington DC, 1994.
- [26] Myers, S. and Marquis, D.; "Successful industrial innovations," *National Science Foundation, Report* NSF 69-17, Washington DC, (1969).
- [27] Myers, S. and Sweezy, E.E.; "Why innovations falter and fail: A study of 200 cases," U.S. Department of Commerce, NTIS Report PB-159-108, (1976).
- [28] Kelly, P., and Kranzberg, P., Editors; *Technological Innovation: A Critical Review of Current Knowledge*, San Francisco Press, San Francisco, CA, 1978.
- [29] Mensch, G.; *Stalemate in Technology: Innovations Overcome The Depression*, Ballinger Publishing Company, Cambridge, MA, 1982.
- [30] Quinn, J.B.: Innovation Explosion, Simon & Schuster, New York, NY, (1997).
- [31] Auerswald, P.E. and Branscomb, L.M.; "Valleys of death and Darwinian Seas: financing the invention to innovation transition in the United States," *Journal of Technology Transfer*, vol. 28, pp. 227-239, (2003).
- [32] Bromley, D.A.; "Science, technology and politics," *Technology in Society*, vol. 24, pp. 9-26, (2002).
- [33] Bromley, D.A.; "Technology policy", *Technology in Society*, vol. 26, pp. 455-468, (2004).
- [34] Godin, B.; "The linear model of innovation: The historical construction of an analytical framework," *Science, Technology & Human Values*, vol. 31, Number 6, pp. 639-667, November (2006).
- [35] Grove, A.S.; Only The Paranoid Survive: How To Exploit the Crisis Points that Challenge Every Company, Doubleday, New York, NY, (1996).
- [36] Chesbrough, H. and Rosenbloom, R.S.; "The role of the business model in capturing value from innovation: Evidence from Xerox Corporation's technology spin-off companies," *Industrial and Corporate Change*, vol. 11, No. 3, pp. 529-555, (2002).
- [37] Chesbrough, H.W.; Open Innovation: *The New Imperative for Creating and Profiting from Technology*, Harvard Business School Press, Boston, MA (2003).
- [38] Chesbrough, H. and Spohrer, J.; "A research manifesto for services science," *Communications of the ACM*, vol. 49, No. 7, pp. 33-40, July (2006).
- [39] Burt, R.S.; *The Network Structure of Social Capital, in Research in Organizational Behavior*, R. I. Sutton, B. M. Staw, Editors, JAI Press, Greenwich, CT, pp. 345-423, (2000).
- [40] Burt, R.S.; "Bridge decay", *Social Networks*, vol. 24, issue 4, pp. 333-363, (2002).

- [41] Smits, R.; "Innovation studies in the 21<sup>st</sup> century: Questions from a user's perspective," *Technological Forecasting and Social Change*, vol. 69, pp. 861-883, (2002).
- [42] Tellis, G.J.; "Disruptive technology or visionary leadership," *Journal of Product Innovation Management*, vol. 23, issue 1, 34-38, (2006).
- [43] Gerybadze, A. and Reger, G.; "Globalization of R&D: Recent changes in the management of innovation in transnational corporation," *Research Policy*, vol. 28, pp. 251-274, (1999).
- [44] Forrest, J.E.; "Models of the process of technological innovation," *Technology Analysis* and Strategic Management, vol. 4, no. 4, 439-452, (1991).
- [45] Rothwell, R.; "Towards the fifth-generation innovation process," *International Marketing Review*, vol. 11, pp. 7-31, 1994.
- [46] Porter, M.E.; *The Competitive Advantage of Nations*, The Free Press, New York, New York, 1990.
- [47] Leifer, R., McDermot, C.M., O'Connor, G.C., Peters, L.S., Rice, M., and Veryzer, R.W.; *Radical Innovation: How Mature Companies Can Outsmart Upstarts*, Harvard Business School Press, Boston, MA, (2000).
- [48] Christensen, C.M.; "The ongoing process of building a theory of disruption," *Journal of Product Innovation Management*, vol. 23, issue 1, 39-55, (2006).
- [49] Drucker, P.E.; "The discipline of Innovation," *Harvard Business Review*, pp. 67-71, May-June 1985.
- [50] Voss, C.A.; "The need for a field of study of implementation of innovations," J. Prod. Innov. Management, vol. 4, pp. 266-271, (1985).
- [51] Age, J.O.; "Development of a model for technological innovation process," *Technology Management*, vol. 2, 291-292, (1995).
- [52] Rich, B.R. and Janos, L.; *Skunk Works: A Personal Memoir of My Years at Lockheed*, Little, Brown and Company, New York, NY, (1994).
- [53] Friedman., T.L.; *The World is Flat: A Brief History of the Twenty-First Century*, Farrar, Straus and Giroux, New York, NY, (2005).
- [54] "Innovate America National Innovation Initiative Report", Council on Competitiveness, Washington, DC, 1<sup>st</sup> Edition, Dec. 2004; and 2<sup>nd</sup> Edition, <u>http://www.compete.org/</u>, (2005).
- [55] McGraw, T.K.; *Prophet of Innovation: Joseph Schumpeter and Creative Destruction*. The Belknap Press of Harvard University Press, Cambridge Mass, (2007).
- [56] Schumpeter, J.A.; *Capitalism, Socialism and Democracy*. Harper & Brothers Publishers, New York, (1942).
- [57] Erwin, D.H. and Krakauer, D.C.; "Insights into innovation," *SCIENCE* 304, pp. 1117-1119, (2004).
- [58] Brandt, A.; "Patent overload hampers tech innovation," <u>WWW.PCWORLD.COM</u>, pg. 24 April, 2006.
- [59] Schneiderman, R.; "Patents cuffing innovation? Patent claims are threatening what have been accepted as royalty-free standards," *Electronic Design* 53 (9), (2005).
- [60] Reguly, E.; "Patent protection a threat to innovation," *The Globe and Mail*, January 1, 2006.
- [61] Branstetter, L.; "Do stronger patents induce more local innovation?," *Journal of International Economic Law* 7 (2) pp. 359-370, (2004).

- [62] Sakakibara, M. and Branstetter, L.; "Do stronger patents induce more innovation? Evidence from the 1988 Japanese patent law reforms," *RAND Journal of Economics* 32 (1), pp.77-100, (2001).
- [63] Acs, Z.J. and Audretsch, D.B.; "Patents as a measure of innovative activity," *Kyklos* 42 (2),pp. 171-180, (1989).
- [64] Archibugi, D. and Pianta, M.; "Measuring technological change through patents and innovation surveys," *Technovation* 16 (9), pp. 451-468, (1996).
- [65] Rogers, M.; "The definition and measurement of innovation," *Melbourne Institute of Applied Economic and Social Research, The University of Melbourne, Melbourne Institute Working Paper No.* 10/98, (1998).
- [66] Alegre, J., Lapiedra, R. and Chiva, R.; "A measurement scale for product innovation performance," *European Journal of Innovation Management* 9 (4), pp. 333-346, (2006).
- [67] Van Der Panne, G.; "Issues in measuring innovation," *Scientometrics* 71 (3), pp. 495-507, (2007).
- [68] Walker, R.M., Jeanes, E. and Rowlands, R.; "Measuring innovation applying the literature based innovation output indicator to public services," *Public Administration* 80 (1), pp. 201-214, (2002).
- [69] Blankley, W. and D. Kaplan: Innovation and South African Industry: What are We Trying to Measure? South African Journal of Science 94 (2), pp. 50-53, (1998).
- [70] Sherry, E.F. and Teece, D.J.; "Royalties, evolving patent rights, and the value of innovation," *Research Policy* 33, pp.179-191, (2003).
- [71] Wilson, A.L., Ramamurthy, K. and Nystrom, P.C.; "A multi-attribute measurement for innovation adoption: The context of imaging technology," *IEEE Transactions on Engineering Management* 46 (3), pp. 311-320, (1999).
- [72] Green, S.G., Gavin, M.B. and Aiman-Smith, L.; "Assessing a multidimensional measure of radical technological innovation," *IEEE Transactions on Engineering Management* 42(3), pp. 203-214, (1995).
- [73] Worgan, A. and Nunn, S.; "Exploring a complicated labyrinth: Some tips on using patent data to measure urban and regional innovation," *Economic Development Quarterly* 16 (3), pp. 229-236, (2002).
- [74] Wu, Y.J. and Lee, P.; "The use of patent analysis in assessing ITS innovations: US, Europe and Japan," *Transportation Research part A* 41, pp. 568-586, (2006).
- [75] McAleer, M. and Slottje, D.; "A new measure of innovation: The patent success ratio," *Scientometrics* 63 (3), pp. 421-429, (2005).
- [76] Jaffe, A.B., Fogarty, M.S. and Banks, B.A.; "Evidence from patents and patent citations on the impact of NASA and other federal labs on commercial innovation," *The Journal of Industrial Economics* 46 (2), pp. 183-204, (1998).
- [77] Alcacer, J. and Gittleman, M.; "Patent citations as a measure of knowledge flows: The influence of examiner citations," *The Review of Economics and Statistics* 88 (4), pp. 774-779, (2006).
- [78] United States Geologic Survey. usgs.gov.
- [79] United States Geologic Survey. <u>http://minerals.usg.gov/minerals</u>.
- [80] European Patent Office. <u>esp@cenet</u>.
- [81] Walpole, R.E., Myers, R.H. and Myers, S; *Probability and Statistics for Engineers and Scientists*, Sixth Edition. Prentice-Hall Inc., NJ (1998).

- [82] Miller, I., Freund, J.E. and Johnson, R.A.; *Probability and Statistics for Engineers,* Fourth Edition. Prentice-Hall, Inc., NJ (1990).
- [83] Connelly, M.C.; "The Relationship Between Patents and Technical Innovation: Innovation measurement as applied to metals." MS Thesis, University of Cincinnati, 2007.
- [84] Connelly, M.C., Dismukes, J.P. and Sekhar, J.A.; "New Relationships Between Patents and Technological Innovation: Modeling patent Activity as a Driver of Innovation." PICMET '09 Proceedings, Portland, Oregon, August 2009. For shorter product life cycles See also [Levitt, T.: "Exploit the product life cycle," *Harvard Business Review*, November-December (1965)].
- [85] Freeman. C., (Ed.): *Long Wave Theory*. Elgar Publishing Limited, Cheltenham, U.K (1996).
- [86] Jenner, R. A.; "Real wages, business cycles and new production patterns," *Small Business Economics* 23, 441-452 (2004).
- [87] Keklik, M.: Schumpeter Innovation and Growth: Long Cycle Dynamics in Post WWII American Manufacturing Industries. Ashgate, Vermont (2003).
- [88] Phillips, K. L. and Wrase, J.; "Is Schumpterian 'creative destruction' a plausible source of endogenous real business cycle shocks?," *Journal of economic Dynamics & Control* 30, 1885-1913 (2006).
- [89] Wong, H. and Ellis, P. D.; "Is market orientation affected by the product life cycle?," *Journal of World Business* 42, 145-156 (2007).
- [90] United States Geologic Survey. usgs.gov.; *Minerals Handbook*, (2007).
- [91] U.S. Energy Information Administration [EIA]. <u>http://www.eia.doe.gov</u>.
  a) For natural gas : <u>http://tonto.eia.doe.gov/dnav/ng/ng\_prod\_sum\_dcu\_NUS\_a.htm</u>
  b) For oil: <u>http://tonto.eia.doe.gov/dnav/pet/pet\_crd\_crpdn\_adc\_mbbl\_a.htm</u>
  c) For renewable energy sources biomass, solar, hydroelectric, geothermal, wind, biofuel, wood and total renewables: <u>http://www.eia.doe.gov/emeu/aer/renew.html</u>
  d) For uranium: <u>http://www.eia.doe.gov/emeu/aer/nuclear.html</u>
  e) For fossil fuel and nuclear: <u>http://www.eia.doe.gov/emeu/aer/overview.html</u>
  f) For coal: <u>http://www.eia.doe.gov/emeu/aer/coal.html</u> and http://www.eia.doe.gov/cneaf/coal/page/coal\_production\_review.pdf
- [92] Berry, D.; "Innovation and the price of wind energy in the US," *Energy Policy* 37, pp. 4493-4499, (2009).
- [93] Dismukes, J.P., Miller, L.K. and Bers, J.A.; "The industrial life cycle of wind energy electrical power generation ARI methodology of life cycle dynamics," *Technological Forecasting & Social Change* 76, pp. 178-191, (2009).
- [94] Inoue, Y. and Miyazaki, K.; "Technological innovation and diffusion of wind power in Japan," *Technological Forecasting & Social Change* 75, pp. 1303-1323, (2008).
- [95] Muylaert de Araújo, M.S. and Vasconcelos de Freitas, M.A.; "Acceptance of renewable energy innovation in Brazil-case study of wind energy," *Renewable and Sustainable Energy Reviews* 12, pp. 548-591, (2008).
- [96] Shikha, Bhatti, T.S. and Kothari, D.P.; "New Horizons for Offshore Wind Energy: Shifting Paradigms and Challenges," *Energy Sources* 27, pp. 349-360, (2005).
- [97] Kobos, P.H., Erickson, J.D. and Drennen, T.E.; "Technological learning and renewable energy costs: implications for US renewable energy policy," *Energy Policy* 34, pp. 1654-1658, (2006).

- [98] Harborne, P. and Hendry, C.; "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," *Energy Policy* 37, pp. 3580-3595, (2009).
- [99] Wüstenhagen, R., Wolsink, M. and Bürer, M.J.; "Social acceptance of renewable energy innovation: An introduction to the concept," *Energy Policy* 35, pp. 2683-2691, (2007).
- [100] Negro, S.O. and Hekkert, M.P.; "Explaining the success of emerging technologies by innovation system functioning: the case of biomass digestion in Germany," *Technology Analysis & Strategic Management* 20, pp. 465-482, (2008).
- [101] Louime, C. and Uckelmann, H.; "Cellulosic Ethanol: Securing the Planet Future Energy Needs," *International Journal of Molecular Sciences* 9, pp. 838-841, (2008).
- [102] Kelly-Yong, T.L., Lee, K.T., Mohamed, A.R. and Bhatia, S.; "Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide," *Energy Policy* 35, pp. 5692-5701, (2007).
- [103] van der Laak, W.W.M., Raaven, R.P.J.M. and Verbong, G.P.J.; "Strategic niche management for biofuels: Analyzing past experiments for developing new biofuel policies," *Energy Policy* 35, pp. 3213-3225, (2007).
- [104] Wonglimpiyarat, J.; "Technological change of the energy innovation system: From oilbased to bio-based energy," *Applied Energy* 87, pp. 749-755, (2010).
- [105] Vertès, A.A., Inui, M. and Yukawa, H.; "Technological Options for Biological Fuel Ethanol," *Journal of Molecular Microbiology and Biotechnology* 15, pp. 16-30, (2008).
- [106] Trancik, J.E.; "Scale and innovation in the energy sector: a focus on photovoltaics and nuclear fission," *Environmental Research Letters* 1, 014009 (7 pp.), (2006).
- [107] Lee, T.J., Lee, K.H. and Oh, K.B.; "Strategic environments for nuclear energy innovation in the next half century," *Progress in Nuclear Energy* 49, pp. 397-408, (2007).
- [108] Li, J.; "Scaling up concentrating solar thermal technology in China," *Renewable and Sustainable Energy Reviews* 13, pp. 2051-2060, (2009).
- [109] Faiers, A., Neame, C. and Cook, M.; "The adoption of domestic solar-power systems: Do consumers assess product attributes in a stepwise process?" *Energy Policy* 35, pp. 3418-3423, (2007).
- [110] Faiers, A. and Neame, C.; "Consumer attitudes towards domestic solar power systems," *Energy Policy* 34, pp. 1797-1806, (2006).
- [111] Huang, A.Y.J. and Liu, R.H.; "Learning for supply as a motive to be the early adopter of a new energy technology: A study on the adoption of stationary fuel cells," *Energy Policy* 36, pp. 2143-2153, (2008).
- [112] Suurs, R.A.A., Hekkert, M.P. and Smits, R.E.H.M.; "Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies," *International Journal of Hydrogen Energy* 34, pp. 9639-9654, (2009).
- [113] Hellman, H.L. and van der Hoed, R.; "Characterising fuel cell technology: Challenges of the commercialisation process," *International Journal of Hydrogen Energy* 32, pp. 305-315, (2007).
- [114] Rourke, F.O., Boyle, F. and Reynolds, A.; "Tidal energy update 2009," *Applied Energy* 87, pp. 398-409, (2010).
- [115] Bañales-López, S. and Norberg-Bohm, V.; "Public policy for energy technology innovation: A historical analysis of fluidized bed combustion development in the USA," *Energy Policy* 30, pp. 1173-1180, (2002).

- [116] Tsoutsos, T.D. and Stamboulis, Y.A.; "The sustainable diffusion of renewable energy technologies as an example of an innovation-focused policy," *Technovation* 25, pp. 753-761, (2005).
- [117] de Vries, B.J.M, van Vuuren, D.P. and Hoogwijk, M.M.; "Renewable energy sources: Their global potential for the first-half of the 21<sup>st</sup> century at a global level: An integrated approach," *Energy Policy* 35, pp. 2590-2610, (2007).
- [118] Bergek, A., Jacobsson, S. and Sandén, B.A.; "'Legitimation' and 'development of positive externalities': two key processes in the formation phase of technological innovation systems," *Technology Analysis & Strategic Management* 20, No. 5, pp. 575-592, (2008).
- [119] Sovacool, B.K.; "Resolving the impasse in American energy policy: The case for a transformational R&D strategy at the U.S. Department of energy," *Renewable and Sustainable Energy Reviews* 13, pp. 346-361, (2009).
- [120] Bonilla, S.H., Almeida, C.M.V.B., Giannetti, B.F. and Huisingh, D.; "The roles of cleaner production in the sustainable development of modern societies: an introduction to this special issue," *Journal of Cleaner Production* 18, pp. 1-5, (2010).
- [121] Schmidt, R.C. and Marschinski, R.; "A model of technological breakthrough in the renewable energy sector," *Ecological Economics* 69, pp. 435-444, (2009).
- [122] Norberg-Bohm, V.; "Creating Incentives for Environmentally Enhancing Technological Change: Lessons From 30 Years of U.S. Energy Technology Policy," *Technological Forecasting and Social Change* 65, pp. 125-148, (2000).
- [123] Narayanamurti, V., Anadon, L.D. and Sagar, A.D.; "Transforming Energy Innovation," *Issues in Science & Technology*, pp. 57-64, (Fall 2009).
- [124] Bürer, M.J. and Wustenhagen, R.; "Which renewable energy policy is a venture capitalist's best friend? Empirical evidence from a survey of international cleantech investors," *Energy Policy* 37, pp. 4997-5006, (2009).
- [125] Bonvillian, W.B. and Weiss, C.; "Stimulating Innovation in Energy Technology," *Issues in Science & Technology*, pp. 51-56, (Fall 2009).
- [126] Wang, T.J. and Liu, S.Y.; "Shaping and exploiting technological opportunities: The case of technology in Taiwan," *Renewable Energy* 35, pp. 360-367, (2010).
- [127] Connelly, M.C. and Sekhar, J.A.; "A Case Study in Metals for Inventions and Innovations" PICMET '08 Proceedings, Cape Town, South Africa, (July 2008).
- [128] Isaacs, A., Daintith and Martin, E., Eds.; *Dictionary of Science*, Grange Books, London, (2005) Originally published as *Oxford Dictionary of Science*, Market House Books Ltd, (2003).