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Resilin is an elastomeric protein characterized by rubber-like elasticity, very high re-

silience and high fatigue lifetime. These outstanding material properties are conferred

by multiple elastic repeats, similar to those found in other elastomeric proteins. In

this thesis I use molecular dynamics to elucidate the effect of amino-acid sequence

variation on the mechanical properties of resilin-like peptides. In particular, I address

the role of disorder in the relaxed (unstretched) state and the amount of conforma-

tional entropy lost upon extension. I simulate model systems comprising multiple

identical repeats from single elastic units observed in fruit fly and mosquito resilin

gene products. The length of the simulated peptides ranges from 11 to 176 residues.

In order to study the nature of the restoring force in resilin I use steered molecu-

lar dynamics (SMD) and fixed end simulations. I find a high level of disorder and

lack of stable secondary structure for the well solvated relaxed state in all simu-

lated peptides; these results are consistent with conclusions from circular dichroism

spectra of resilin-like peptides. Structural parameters, computed from molecular dy-

namics trajectories, are compared with experimental NMR and SAXS results. While

upon stretching the conformational entropy is significantly decreased, the enthalpy

is estimated to remain essentially unchanged. I conclude that the restoring force is

primarily of entropic origin and largely insensitive to the amino-acid composition of

resilin-like elastic repeats. Finally, I build a coarse-grained model from all-atomic

simulation of two repeats in mosquito resilin and apply it larger peptides in order to

assess flexibility and the effect of cross-linking in multiple resilin-like polypeptides.
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Chapter 1

Introduction

1.1 Proteins

Proteins are polypeptides that are built in living cells from the 20 standard amino

acids. Amino acids are linked to each other by peptide bonds, forming linear chains

of unique sequence. The amino acid sequence, called the primary structure of the

protein, is encoded in a gene, and it determines the protein’s 3D structure together

with its function.

All amino acids have a common chemical structure: amino group, α-carbon, car-

boxyl group, and a side chain. The first three groups of each amino acid form the

protein backbone, where the carboxyl group of one amino acid is linked to the amino

group of the next amino acid by a peptide bond. By convention, the numbering of the

protein residues goes from amino group to carboxyl group, in other words, from N- to

C-terminal. The side chains are unique for each amino acid and are attached to the

backbone central α-carbon. There are two exceptions - proline, where an additional

bond between its side chain atom and the backbone amide is formed; and glycine,

that does not have a side chain. These two amino acids present extreme cases of the

backbone largest and smallest flexibility.
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1.1.1 Structure

During or after synthesis, proteins usually adopt a well-defined three-dimensional

(3D) structure, known as the native state. The process of the structural changes

from initial conformation to the native state is called protein folding. It depends

on many factors, including the protein environment, the concentration of salts, tem-

perature, the presence of folding assisting proteins, etc. Usually, the native state is

much more energetically favorable than other states and is stabilized by a hydropho-

bic core, covalent bonding, and intra-protein hydrogen bonds. Certain 3D forms of

the local arrangement in the proteins, known as the secondary structures have been

recognized. The most common secondary structures include: α-helix, β-sheet, turn,

and polyproline II helix (PPII). The PPII helix is the only secondary structure that

is not stabilized by the internal hydrogen bonding, it has been a subject of many

debates regarding whether or not one should consider PPII as a secondary structure.

Although proline is very common in PPII helices, in half of the cases the PPII helices

are formed by non-proline residues [14]. For example, it was shown with NMR and

CD spectroscopies that for seven residue polyalanines the dominant structure is the

PPII helix at the temperatures close to zero degrees of Celcius [57].

While the secondary structures are local arrangement in proteins, the overall 3D

structure is called the tertiary structure. Since the process of experimentally deter-

mining protein’s primary structure is much faster than the tertiary structure determi-

nation, the prediction of the tertiary structure from sequence alone, known as protein

structure prediction, is one of the most important goals pursued by bioinformatics

and theoretical chemistry.

Proteins that adopt a well defined 3D shape can be crystallized, so that 3D struc-

ture can be deduced from the resulting X-ray pattern. For highly flexible proteins,

X-ray crystallography is not applicable, so other methods like NMR or CD spectro-

scopies are used to get insights into the protein’s structure.
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1.1.2 Dynamics

During folding, the proteins adopt different conformations before the native state

is reached. At the equilibrium, the system occupies a state that corresponds to

the minimal free energy. Such a state for the proteins is called the native state.

Some proteins are intrinsically disordered, which means that many conformations

are available to them with similar free energies. An intrinsically disordered protein

is therefore characterized by a broad ensemble of states, as opposed to structural

proteins that are represented by a much smaller ensemble of similar states.

Conformational changes

As it was mentioned earlier, proteins adopt many conformations in solution forming

a conformational ensemble. The thermal fluctuations and low free energy barriers

allow many transitions between conformations in this ensemble. Computational ap-

proaches, such as Monte Carlo (MC) or molecular dynamics (MD), allow one to model

such an ensemble in atomic detail. Since the protein’s energy landscape is very rough,

simple MC or MD algorithms suffer from so called local minimum trapping problem.

This happens because there are many energy barriers between the conformations

in the ensemble. Therefore, in order to have a statistically meaningful ensemble, a

proper sampling of the conformational space is required.

Sampling

The most common practices for effective sampling of the conformational space include:

replica exchange molecular dynamics (REMD) or Monte Carlo (REMC) simulations,

steered molecular dynamics (SMD) simulations, and free energy methods.

The REMD method, introduced by Sugita and Okamoto [59], is an example of a

method that considers trajectories (replicas) of the system at different temperatures.

The non-interacting replicas of the same system, each simulated at different tem-
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perature, can be exchanged between different trajectories at random points in time,

enabling effective crossing of energy barriers. For the success of the algorithm, one

must ensure that the rate of replica exchange is sufficiently high. This is achieved by

choosing enough replicas to cover the simulation temperature range, and by choosing

the temperatures that result in the high overlap of the energy distributions between

two replicas. Recently, an automatic adjustment of the temperatures was proposed

[60]. Starting with an arbitrary choice of the temperatures, the method readjusts

them in such a way that replica diffusion in the temperature space is maximized.

1.1.3 Disorder

Not long time ago, it was believed that only the proteins with well-defined 3D struc-

ture are important. In the last decade, a new class of proteins that are unstructured

and functional, has become an active area of research. Intrinsically disordered pro-

teins (IDP) are mostly found in eukaryotes (see review on the field [18, 65]). Some of

the functions include: molecular recognition and assembly and protein modification.

Some IDPs become structured upon binding to certain ligands, while others have

flexible linkers and participate in macromolecular assembly [16]. Advances have been

made in the prediction of the disordered regions in proteins. There is a database

(DisProt) of the disordered proteins [58], and more than dozen web-servers predict

disordered regions in proteins from sequence alone.

Experimental methods to study disordered proteins

Since disordered proteins do not adopt particular 3D structure, they can not be deter-

mined by X-ray crystallography and therefore are missing from the database of protein

structures (PDB). The primary methods to obtain information about disordered pro-

teins are NMR spectroscopy, circular dichroism (CD), fluorescence spectroscopy, small

angle X-ray scattering (SAXS), and Raman spectroscopy (for a review see [17]). In
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the NMR experiments such properties as chemical shifts, J-coupling constants, and

distance constraints are typically measured. The constraints are derived from the

transfer of spin polarization from one spin population to another – a phenomenon

known as the Nuclear Overhauser Effect (NOE).

In CD spectroscopy the difference in absorbency spectra of left and right circularly

polarized light is measured. Protein’s secondary structure fractions can be estimated

from CD spectra profiles. For example, proteins with dominant disordered and PPII

helical secondary structures have CD spectra with a deep minimum at the wavelengths

around 195 nm (illustrated in Fig. 1.5). Unfortunately, CD spectra do not reveal any

information on how the secondary structures are distributed in the protein sequence.

Finally, from the SAXS experiments one can estimate the size of macromolecules,

such as the radius of gyration of the molecule. Although SAXS experiments do not

reveal many details about structural properties of the molecules, it is primarily used

when other crystallographic methods can not be applied.

1.1.4 Elastomeric proteins

Elastomeric proteins are found in many biosystems, including plants, insects, humans,

etc. For example, elasticity in wheat grain is attributed to a protein called gluten.

When flour is mixed with water, the resulting dough becomes soft and elastic, whereas

if it is dried, it loses the elastic properties and becomes stiff. In clams, the elastomeric

protein abductin is involved in the primitive swimming action of the mollusks. Being

compressed by a muscle that closes the shell, it can rapidly open the shell once the

muscle is relaxed.

Spiders use two kinds of the elastomeric silk in their webs: dragline silk, which is

stiff and forms radial spikes in the pray catching web, and soft flagelliform silk, that

forms web orbs. The latter absorbs the energy of the impacting insect, preventing

the insect from bouncing off the web.
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The most studied example of elastomeric proteins is elastin, which is responsible

for the elasticity of the skin and aorta. When the heart ejects a portion of blood,

the aorta is stretched, thus smoothing blood flow, and then it relaxes back. This

mechanism is more efficient in blood circulation if compared to discrete propulsions

of blood. Elastin is also remarkable for its unusual property to become less disordered

with the increase of temperature. Elastin is a cross-linked protein in the extracellular

matrix. There are two models of elastin’s elasticity: the random-chain model, that is

based on rubber-like (or entropic) elasticity and the beta-spiral model, which is based

on regular organization of the repetitive structural elements, such as beta-turns [62].

In either model the entropic elastic force arises upon stretching and is the result

of damping of internal chain dynamics. Elastin is found only in mammals, while

in insects there is a protein with similar elastic properties, called resilin. Recently,

the interest in studying resilin is due to synthetic production of this material in the

lab, opening great possibilities for industrial and biomedical applications of synthetic

resilin, or resilin-like materials [20].

1.2 Resilin

Resilin is an elastomeric protein with remarkable mechanical properties, including

high resilience and long fatigue lifetime. Identified originally in the flight systems

of desert locusts and dragonflies by Weis-Fogh [63, 64], resilin has since become the

subject of intense experimental efforts to elucidate and potentially enhance its rubber-

like properties. Resilin was also found in jumping organs of fleas and froghoppers and

sound producing thymbals of cicadas.
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1.2.1 Crosslinking and resilin fibers

In insects the individual resilin peptides undergo light-induced crosslinking whereby

tyrosines form stable di- and trityrosine covalent bonds [3]. Random network of

highly flexible chains provide resilin with entropic elasticity, similar to that observed

in rubber. The level of disorder in resilin is so high that, even stretched to nearly the

breaking point and then slowly dried, resilin did not show any trace of crystallization

in X-ray diffraction and electron microscopy experiments [19]. Swollen and unstrained

resilin completely returned to its amorphous state, suggesting that resilin might have

a long fatigue life. Studying the resilin tendon from the dragonfly, Elvin et al showed

that it is highly expressed only during the pupal stage of the insect [20], emphasizing

that resilin must function for the rest of the insect’s life, undergoing many deformation

cycles.

1.2.2 Resilience

Resilience is the ability of a material to recover deformation energy after the stretching

(compressing) force has been removed. Quantitatively, resilience is defined as the ratio

of the areas under loading and unloading force-extension curves (Fig. 1.1). Thus, the

higher the resilience of a material, the less energy is irreversibly transformed into heat

upon deformation.

Experimentally, resilience of materials can be measured with the atomic force

microscope (AFM) [29]. The experimental setup is illustrated in Figure 1.2, where

the bending in cantilever results in the laser beam deflection. Thus, knowing the

spring constant of the cantilever, one can compute the force exerted on it at the

different levels of tip penetration into the sample.
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Figure 1.1: Force-extension curves in loading/unloading experiments. The resilience
is defined as a ratio of the areas under loading and unloading forces.

Figure 1.2: Schematic representation of atomic force microscope. The base of can-
tilever moves is approaching the sample and once tip touches the sample, cantilever
bends and photodiode detects deflection in the reflected laser beam. From the data
of laser deflections from tip that moves in and out of the sample, resilience can be
computed from the resulting force-extension curves obtained.
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Figure 1.3: Schematic representation of the domain structure of the gene product
CG15920 from Drosophila species, which consists of three domains. From left to right
these domains are: N-terminal elastic repeats, chitin-binding domain, and C-terminal
elastic repeat units.

Figure 1.4: Consensus sequences of elastic repeats from N-terminal (top) and C-
terminal (bottom) domain in CG15920 gene product. More conserved residues are
higher. Tyrosines, for example, are completely conserved in both repeats.

1.2.3 Resilin gene and elastic repeats

Since the early 1960s resilin had remained unnoticed until Ardell et al identified the

gene product CG15920 as a tentative D. melanogaster (fruit fly) resilin precursor

[5]. Comparing the amino-acid sequence of the tentative pro-resilin with the known

proteins, the domain structure was proposed. It consists of three regions: N-terminal

domain, chitin-binding domain, and C-terminal domain (Fig. 1.3). Only N- and C-

terminal domains have repetitive sequence structure and are believed to be responsible

for the resilin’s elasticity. Although the elastic repeats vary in sequence and length,

two consensus motifs (GGRPSDSYGAPGGGN and GYSGGRPGGQDLG) (Fig. 1.4

) were proposed to be the putative units of the elasticity in the protein [5]. The chitin-

binding domain is a variant of the so-called RR-2 consensus sequence in proteins from

solid cuticles [52] and it doesn’t play a role in the elasticity of resilin [5].
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1.3 Experimental approaches for studies of elastic-

ity

In a seminal study, Elvin et al cloned and expressed the first exon of the CG15920 D.

melanogaster resilin gene, which corresponds to the N-terminal domain. The soluble

recombinant protein, named Rec1-resilin, was then converted into a resilin-like matrix

by photochemically induced crosslinking of tyrosine residues. Elvin and coworkers

showed that highly stretched synthetic material has high resilience (90-97%), similar

to that of the native resilin [20]. In order to distinguish individual uncrosslinked

resilin-like protein/peptides from the crosslinked matrix of resilin, Elvin et al referred

to the individual resilin-like peptide as pro-resilin [20].

In another study, a resilin-like elastomer, called RLP12, was designed and syn-

thesized [13]. The constructed peptides had a modular structure, comprising an

elastic domain together with some biologically active domains, such as: cell adhesion,

growth factor, and material degradation. Resilin-like domains comprised 12 elastic

repeats, with the amino-acid sequence based on the N-terminal elastic domain in D.

melanogaster resilin. Remarkably, similar CD and Fourier Transform Infrared (FTIR)

spectra were obtained for RLP12 before and after crosslinking, suggesting that the

secondary structures do not significantly change upon crosslinking. CD spectra of

modular RLP12 peptides were similar to those reported by Bochicchio et al [11] for

a few short resilin-like peptides and to those reported for a single 15-residue repeat

from N-terminal domain of D. melanogaster [47].

Nairn et al proposed a synthetic construct based on a consensus repeat in malaria

mosquito (A. gambiae) pro-resilin [42]. Recombinant peptides, labeled as AN16,

comprised 16 ideal copies of the repeat sequence AQTPSSQYGAP. Raman spectra of

the AN16 before and after crosslinking were similar, suggesting similar distribution

of the secondary structures. Particularly, secondary structures from CD and NMR
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spectra indicate a lack of stable α-helices and β-sheets. Chemical shifts from the

NMR spectra indicate on random-coil configurations. In addition to local structural

properties, the radius of gyration of AN16 was estimated from SAXS experiments.

The value of 50± 5 Å was obtained for a 185-residue AN16 peptide, which is in the

range of Rg reported by Kohn et al for denatured proteins [36].

Comparative analysis of two recombinant resilin-like proteins, An16 and Dros16

were shown to have similar material properties to that of Rec1-resilin [38]. These

peptides were constructed as 16 ideal copies of consensus repeats in malaria mosquito

and drosophila. Using CD, AFM, and tensile testing, the authors did not find signifi-

cant differences in modulus, elasticity, resilience, or dityrosine content of the synthetic

ideal constructs compared with Rec1-resilin.

Based on the consensus sequence of N- and C-terminal elastic domains in D.

melanogaster proresilin, the level of disorder in two kinds of 15-residue peptides (la-

beled as DN1 and DC1) was assessed [47]. CD spectra for DN1 and DC1 peptides

both had pronounced minimum at the wavelength 195 nm (Fig. 1.5), indicating a

high level of disorder and a high level of PPII secondary structures.

In Table 1.1, I summarize relevant experimental data about resilin and synthetic

resilin-like peptides.

1.4 Theoretical models of elasticity in proteins

1.4.1 Restoring force

For a polypeptide stretched by an extension δL, the force f has two components,

namely, the internal energy component fU and the entropic component fS. The

change in the Helmholtz free energy due to a stretching force f is δF = fδL. Since
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Figure 1.5: CD spectra of 15-residue DN1 and DC1 peptides, constructed as con-
sensus repeats from N- (solid line) and C-terminal (dots) elastomeric domains in
D. melanogaster resilin. Pronounced minimum at the wavelength around 195 nm
indicates on the dominance of disorder and PPII helices.
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Table 1.1: Summary of the experimental data on resilin-like peptides.

Name (authors) Experimental data

rec1-resilin degree of crosslinking

(Elvin et al, 2005) high resilience

AN16 synthetic construct 3JHNHα coupling constants

(Nairn et al, 2008) chemical shifts

NOE restraints

radius of gyration (from SAXS)

sec. structures (from CD spectra)

AN16, Dros16, rec1-resilin resilience

(Lyons et al, 2009)

RLP12 synthetic constructs CD spectra

with other biological domains

(Charati et al, 2009)

DN1, DC1 synthetic constucts sec. structures (from CD spectra)

(Petrenko et al, submitted)

free energy change is δF = δU − TδS, we have

fU =

(
∂U

∂L

)
N,V,T

(1.1)

fS = −T

(
∂S

∂L

)
N,V,T

(1.2)

These two components present two different mechanisms of the restoring force in

stretched polypeptides. The energetic component fU is a result of an increase in po-
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Figure 1.6: Example of damping chain dynamics upon extension of a 30-residue
peptide from 50 to 100 Å . For clarity, only backbone α-carbons are shown. Spheres
on the left and right are drawn for the constrained atoms. Significant reduction of
entropy is achieved by the fact that the peptide is highly disordered in the relaxed
state (top).

tential energy upon stretching, and it always becomes dominant for large enough ex-

tensions. The entropic component is significant if in the relaxed state the polypeptide

chains are highly agitated in thermal fluctuations that are damped upon stretching.

Materials in which the entropic mechanism of elasticity is dominant are said to have

rubber-like (or entropic) elasticity. Such rubber-like elastomeric proteins are the focus

of this dissertation. In Figure 1.6 the damping of chain dynamics with extension is

shown.

Following Flory et al [24] the entropic component of the force can also be written

as

fS = T

(
∂f

∂T

)
N,V,L

(1.3)

From the temperature dependence of the tensile force at a given extension one might

find energetic and entropic components from a linear fit of f = a+ bT . The slope and

y-intercept from such a fit would give fS/T and fU . This approach is the basis of the

energy-entropy decomposition of the restoring force in the thermoelastic experiments.
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1.4.2 Radius of gyration of unstructured proteins

Recently Kohn et al [36] showed that for the denaturated proteins there is a similar to

the random-coil theory behavior between the number of the residues and the ensemble

average radius of gyration

Rg = R0N
ν (1.4)

with R0 = 1.93± 0.25 and ν = 0.598 ± 0.028 obtained by least-squares fitting (with

95% confidence level) of experimentally derived Rg from 17 proteins and peptides

(ranging from 8 to 549 residues) under the denaturation conditions. By fitting SAXS

intensity profiles to power-law model of random coil model, Nairn et al [42] estimated

the radius of gyration of AN16 peptide to be 50±5 Å that falls in the range of values

described by Eqn. 1.4.

1.5 Computational approach to study elasticity in

resilin-like peptides

The primary goal of this thesis is to elucidate the nature of the restoring force in

small resilin-like peptides and estimate its strength upon different extensions. Due

to the limitations of computational power, all-atom simulations of the whole cross-

linked resilin matrix is not feasible. We used the repetitive nature of the resilin-like

peptides to reduce the entire protein sequence to smaller peptides with a couple of

the elastic repeats. Particularly, the structural properties from the simulations of one

and two repeats in mosquito resilin were compared with those from the simulation of

16 repeat units.

For stretched peptides, the entropic part of the restoring force was computed by

subtracting energetic restoring force from the total force. Several simulations were

performed to ensure quasi-equilibrium process.
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In order to investigate further the entropic force in resilin-like peptides, I per-

formed fixed-end simulations at different values of stretching, similar to my com-

putational study with fruit fly peptide [46]. The entropic force is proportional to

the entropy change upon extension, and therefore it can be calculated from entropy

changes. I ignore solvent entropy and only conformational entropy of the peptide’s

backbone is considered. The conformational entropy is computed using the quasi-

harmonic approximation, in which heavy backbone atoms are considered as coupled

quasi-classical harmonic oscillators.

Long simulation times are required for either method of finding the entropic force.

While in the fixed-end simulations long trajectories are required for conformational

entropy convergence (especially, at small extensions); in the SMD simulations slow

pulling velocities are needed in order to keep the system in equilibrium.

Then, I compare the entropic forces between resilin-like peptides from mosquito,

fruit fly and pea aphid. While resilin-like peptides from other insects were also iden-

tified, the interest in the putative pea aphid resilin is motivated by observation that

its sequence lacks proline residues. Proline residues are believed to play a crucial role

in providing rubber-like elasticity [51].

The coarse-grained simulations were used to simulate larger time and length scales

than those that are typical for the all-atom simulations. Particularly, I simulated a

system of four mosquito peptides, each comprising 16 repeat units. The coarse-grained

model was built from the all-atom simulations of mosquito resilin-like peptide. The

force-field had the same structure as in the all-atom simulations, only with differ-

ent parameters. The parameters were derived from all-atom simulations of one and

two repeats. From the coarse-grained molecular dynamics simulations I find better

agreement of the radius of gyration with experiment. The effect of cross-linking is

discussed.
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Chapter 2

Identification of putative

resilin-like peptides in genomic

databases

2.1 Homology-based search for resilin-like peptides

A homology search of CG15920 D. melanogaster (gi:75026432) was performed using

the BLAST[2] (Basic Local Alignment Search Tool) program, which finds regions of

local similarity between a query sequence and all sequences from a non-redundant

protein database. Using a threshold of E-value 1.0 and BLOSUM62 amino acid sub-

stitution matrix [27], the BLAST search resulted in 27 sequences. The best matches

with E-value up to 10−36 were among all 12 known species of Drosophila (FlyBase

[61]). Therefore, only one sequence (from D. melanogaster) was used to represent all

Drosophila homologs. After removing redundancy to the 90% maximum similarity

level, the remaining sequences were separated into two groups, depending whether

or not they possessed a chitin-binding domain [8]. I will refer to the group with the

chitin-binding domain as RLP-1, and to the another group as RLP-2, respectively.

17



Table 2.1: Predicted resilin-like peptides, that are highly homologous to CG15920
gene product and have the same domain structure (N-terminal elastic domain, CBD,
and C-terminal elastic domain).

Label Insect GI code NCBI annotation

DN D. melanogaster 75026432 CG15920-PA

TN T. castaneum 189235130 predicted

BN Ap. mellifera 66557459 predicted

NN N. vitripennis 156554483 predicted

PHa P. humanus corporis 212513300 putative

PHb P. humanus corporis 212516240 putative

AP Ac. pisum 193652801 partial

2.2 Resilin-like peptides with chitin-binding do-

main

The well characterized CG15920 gene product from D. melanogaster serves as a rep-

resentative protein from the RLP-1 group. The other four tentative resilin sequences

were from T. castaneum, Ap. melifera, N. vitripennis, Ac. pisum, as shown in Table

2.1. Surprisingly, two predictions from P. humanus corporis (human louse) were also

homologous to the CG15920 gene. As opposed to other species, lice are the only

insects in the group that do not have wings, making the function of resilin in this

insect questionable.

The domain structure of the identified peptides is similar to that of the CG15920

gene product (Fig. 1.3), starting and ending with the N- and C-terminal elastic

domains that contain multiple repeats. There is a chitin-binding domain (CBD) in

the middle of the protein sequence that is believed to play no role in the protein’s
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elasticity. While the sequence of each elastic repeat (as well as the number of repeats)

varies in each elastic domain, the CBD domain is very well conserved among species

(described below). 1

The elastic N- and C-domains in all species are highly disordered. This fact is

illustrated in Figure 2.1 on the example of the disorder prediction in D. melanogaster

resilin.

All prediction servers consistently identify disorder in the N-terminal elastomeric

domain, and only some servers predict the C-terminal domain to be disordered. Sig-

nal peptides (at the beginning of each sequence) and chitin-binding domains were

predicted to be most ordered.

The number of repeats in the N-terminal domain in all species varied from 10

to 20 and they were equally distributed in the sequence. By comparing consensus

sequences of the elastic repeats, I found that the YGAP-motif, highly conserved in

fruit flies, is not well conserved in other species. In fact, the YGPP-motif is more

common in PHa, NN, BN, TN peptides. Another evolutionary conservation is the

location of prolines with respect to tyrosine (four residues before and three residues

after). Surprisingly, in pea aphids (AP), there are no prolines, raising questions about

the importance of prolines in elastic repeats. It could also mean that the identified AP

sequence is not a resilin-like peptide and has a different function (or properties) in pea

aphids. The presence of valines is observed only in PHa and PHb at the fourth and

first positions within repeat (Fig. 2.2). The importance of this amino-acid mutation

in lice is unknown.

1The exception is isoform B of resilin CG15920-PB in D. melanogaster, which has incomplete

sequence of CBD domain with a large gap in the middle.
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Figure 2.1: Disorder predictions from 7 servers of Droshophila resilin CG15920 gene
product. Residues with black color were predicted to be disordered by all servers.
Highlighted is the chitin binding domain that is predicted to form stable secondary
structures.
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Figure 2.2: Consensus sequences for elastic repeats in RLP-1 peptides (from top to
down: DN, PHa, NN, BN, TN, PHb, AP). High conservation of proline and tyrosine
residues is observed.
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Table 2.2: Predicted resilin-like peptides that are homologous to AGAP002367-PA
gene product (mosquito).

Name Insect GI code NCBI annotation

DNb D. melanogaster 24648035 CG7709-PA

CN C. quinquefasciatus 170030538 pro-resilin

AN An. gambiae 158291080 AGAP002367-PA

TNb T. castaneum 91076994 predicted

BNb Ap. mellifera 110758137 predicted

2.3 Resilin-like peptides without chitin-binding do-

main

Despite similarity in consensus repeats of the sequences from this group with the RLP-

1 peptides, the chitin-binding domain was missing in all proteins in this group. It

was shown that 16 ideal repeats from the consensus sequence of An. gambiae peptide

from this group have very similar properties [42] to those in Drosophila pro-resilin

[20].

From eight proteins in this group four proteins belong to the Drosophila family

and only the representative D. melanogaster is retained. Thus, this group consists of

five sequences (Table 2.2), with only mosquito resilin-like peptide that is known to

have high resilience [38].

In general, the peptides from this group have more elastic repeats than those from

the RLP-1 group. Consensus sequences of all repeats in this group (Fig. 2.3) are very

similar to those in the RLP-1 group.
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Figure 2.3: Consensus sequences of the elastic repeats in RLP-2 peptides. From
top to down: DNb, CN, AN, TNb, BNb. Note conservation of proline positions with
respect to tyrosine: four and three residues before and after tyrosine.
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Figure 2.4: Sequence alignment of CBD domain in RLP-1 peptides. The
VLLPDGR-motif is completely conserved in species. As opposed to sequence varia-
tions in the elastic repeats, there are only a few mutations in the CBD domains of
different species.

2.4 Chitin-binding domain

Finally, I highlight the sequence and structural properties of the chitin-binding do-

main, found in all RLP-1 peptides. While this domain is not elastic and therefore does

not play a direct role in elasticity, it bears a close similarity to the D. melanogaster

pro-resilin and makes stronger the assumption that the selected tentative peptides

have similar function to resilin in fruit flies. This domain is very well conserved

among species (Table 2.4). Particularly, the sequence VLLPDGR (residues 363-369

in D. melanogaster) can be used as a new query to look for other RLP-1 peptides. I

searched non-redundant protein database for at least one occurrence of the sequence

VLLLPDGR, and after filtering results, so that each sequence had at least eight seg-

ments with the pattern A-XXX-Y-XX-B (where A is either P, G, V, or S; X is any

amino acid letter, and B is either P or G), I reproduced a BLAST search of tentative

proteins with the CBD domain.

To my knowledge, there is no crystal structure of this domain, so the only struc-

tural information I could obtain is from the amino-acid sequence by using several
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Figure 2.5: Secondary structure predictions of CBD domain in D. melanogaster
using Sable[1], Porter[48], PSIPRED[31] servers. Fully buried residues as predicted
by Sable server are in bold. Most likely, the highlighted residues form hydrophobic
core in the folded CBD domain. The image was generated using POLYVIEW server
[49].

secondary structure prediction servers. All of them consistently agree on the pres-

ence of several β-strands (Fig. 2.5).

2.5 Conclusion

I have presented a systematic classification of resilin-like peptides based on the an-

notated genes CG15920 in D. melanogaster and the AGAP002367-PA gene in An.

gambiae. Also, I have identified novel putative resilin-like peptides based on sequence

similarity and sequence pattern search. The results of this analysis helped me iden-

tify mutations in consensus sequences to address the effect of sequence variation on

structural and mechanical properties of resilin-like peptides using molecular dynamics

simulations.
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Chapter 3

Molecular dynamics and related

simulation methods

3.1 Molecular dynamics

Since the 1970s, molecular dynamics (MD) has been widely used to study the struc-

ture and dynamics of macromolecules, including proteins, nucleic acids, membranes

and their complexes. There are two main families of MD methods, defined by the

model (and the resulting mathematical formalism) which is used to represent a phys-

ical system. In classical MD simulations, molecules are treated as classical objects,

resembling very much the “ball and stick” model. Atoms correspond to soft balls and

elastic sticks correspond to bonds. The laws of classical mechanics define the dynam-

ics of the system. The quantum or first-principles MD simulations, on the other hand,

which started in the 1980’s with the seminal work of Car and Parinello, take explicitly

into account the quantum nature of the chemical bond. The electron density func-

tional for the valence electrons that determine bonding in the system is computed

using equations of quantum mechanics, whereas the dynamics of ions (nuclei with

their inner electrons) is followed classically. Quantum MD simulations represent an

important improvement over the classical approach, and they provide insights into a
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number of biological problems, including those that involve chemical changes, such

as enzymatic reactions. However, they require more computational resources. At

present, only classical MD is practical for simulations of large biomolecular systems

comprising thousands of atoms over time scales of nanoseconds. In this dissertation

only classical MD simulations are considered.

3.1.1 Newtonian dynamics

Molecular dynamics is a simulation method to study properties of many-body sys-

tems. It uses computational algorithms to numerically solve the system of Newtonian

equations of motion. Normally, a simulation is run for a certain number of time steps

that represent real time. Depending on the algorithm used, a time step is usually

either 1 or 2 fs, which corresponds to a typical frequency of bond fluctuations. At

every k-th time step the positions of atoms are updated according to the forces acting

on them (Eq. 3.1).

mi
dvki
dtk

=
∑
j �=i

F k
i,j (3.1)

Fi,j = −∂Ui

∂xj

(3.2)

During a simulation a snapshot of the simulated system is saved every n-th time step

for later analysis. At the end of simulation one obtains a number of snapshots which

is called the trajectory. Since molecular systems are stochastic in nature, the point

of molecular dynamics simulation is mostly to observe average values of different

quantities, instead of a finding a particular value. Due to the small value of the time

step, and relatively large size of the simulated systems, the values computed from

the same trajectory are not statistically independent. This results in poor sampling

for some observables. One way to evaluate statistical independence is by computing

the autocorrelation function, c(τ) =< (xt+τ − μ)(xt − μ) > /σ2, from which the

autocorrelation time, τ , can be found using the relation c(τ) ≈ exp(−t/τ). Statistical
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independence is achieved either by saving frames separated in time by more than τ

or by obtaining several trajectories of the same system and then averaging over all

trajectories.

3.1.2 Numerical integration of the equations of motion

The aim of the numerical integration of Newton’s equations of motion is to find an

expression that defines positions vs. time in terms of the already known positions

at time t. Because of its simplicity and stability, the Verlet algorithm is commonly

used in MD simulations. The basic formula of this algorithm can be derived from the

Taylor expansions for the positions ri(t+Δt) and ri(t−Δt) and it reads:

ri(t+Δt) � 2ri(t)− ri(t−Δt) +
Fi(t)

mi

Δt2 (3.3)

The corresponding velocities can be calculated from the positions or propagated

explicitly as in the alternative leap-frog or velocity Verlet schemes. The exact tra-

jectories correspond to the limit of an infinitesimally small integration step. It is,

however, desirable to use larger time steps to sample longer trajectories. In practice,

the time step is determined by the fastest motion in the system. Bonds involving

light atoms vibrate with periods of several femtoseconds, implying that the time step

should be on a sub-femtosecond scale to ensure stability of the integration. Although

the fastest and not crucial vibrations can be eliminated by imposing constraints on

the bond length in the integration algorithm, a time step of more than 5 fs rarely

can be achieved in all-atom simulations of biomolecules. On the other hand, coarse-

grained simulations deal with groups of atoms which (due to larger mass) move slower,

allowing for a significant increase of the integration time step and the overall length

of the trajectories.
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3.1.3 Force-field

Atoms are represented by points with certain masses and partial charges. The force-

field consists of bonded and non-bonded interactions. Bonded interactions include:

bond, angle, dihedral angle and improper angle terms. Non-bonded interactions

include the van der Waals potential and Coulomb interaction due to partial charges on

atoms. The van der Waals potential consists of two terms: repulsion, arising from the

Pauli exclusion principle, and an attraction term from induced dipole interactions.

While the potential energy, describing bond vibrations and bond angle vibrations,

have a unique set of spring constants, for the dihedral angles multiple interactions

can be defined.

The force is calculated as a partial derivative of a set of classical potentials, called

the force field (Eqn. 3.2). There are several force field parameterizations, based on ex-

perimental data and quantum mechanical computations, and I use the CHARMM27

force-field [40]. While bond lengths and bond angles are governed by quadratic po-

tentials (Eqns. 3.4, 3.5), the dihedral angle interaction term has the form (Eqn.

3.6).

Ul = kl (l − l0)
2 (3.4)

Uθ = kθ (θ − θ0)
2 (3.5)

Uφ = kφ [1 + cos(nφ− φ0)] (3.6)

The Lennard-Jones potential is used for the van der Waals interactions (Eqn. 3.7)
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and electrostatic interactions are described by the Coulomb potential.

ULJ
i,j = εi,j

[(
Rmin

i,j

Ri,j

)12

− 2

(
Rmin

i,j

Ri,j

)6
]

(3.7)

εi,j =
√
εiεj (3.8)

Rmin
i,j =

1

2

(
Rmin

i +Rmin
j

)
(3.9)

UCoulomb
i,j =

qiqj
4πε0ri,j

(3.10)

Due to the limitations imposed by currently available computational speed, the

simulated systems of interest are usually much smaller than the real system. For

example, in the simulations of a protein in solution, it is not feasible to create a water

box with dimensions much larger than the size of the protein, since the majority of

the computations will be spent on water interactions. On the other hand, taking a

water box of small size introduces artificial boundary effects. One way to overcome

such effects is by using periodic boundary conditions (PBC). A protein of interest

is placed in a water box (unit cell), and the whole system is infinitely replicated in

space along unit cell vectors. Since van der Waals interactions decrease faster (r−6)

than the electrostatic interactions (r−1), one can use a cutoff distance to truncate the

interactions at certain distance. But such a truncation introduces a discontinuity in

the van der Waals force at the cutoff distance since force is a derivative of the corre-

sponding potential (Eq. 3.2). One of the solutions is to use a switching function that

smoothly brings the potential to zero at the cutoff distance. With the electrostatic

potential, the usage of a cutoff distance introduces large errors in force calculations

due to the long-range nature of the potential. For simulations in PBC one can use

the particle-mesh Ewald (PME) algorithm [15, 21] that is based on Ewald summa-

tion [22]. The idea behind Ewald summation is to separate the electrostatic potential

into a short-ranged term that converges quickly in real space and a long-ranged term

that converges quickly in reciprocal (Fourier) space. For a system of N particles the

method has better scaling (N logN) when compared to direct pairwise summation
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(N2).

3.1.4 Statistical ensembles

A statistical ensemble model considers many microscopic states that correspond to

the same macroscopic conditions of the system. This formalism is related to physi-

cal experiments, where macroscopic conditions, like temperature or pressure, can be

imposed on a system, but microscopic conditions are not under control.

Three important ensembles considered in thermodynamics are: the microcanonical

(NVE), the canonical (NVT), and the grand canonical ensembles. The NVE ensemble

is an ensemble of systems with the same total energy, that is, when the system is not

interacting with the surrounding. In the NVT ensemble heat transfer between the

system and coupled to it heat reservoir is possible. In the grand canonical ensemble

exchange of particles is allowed, thus, volume, temperature and chemical potential

are fixed. In the thermodynamic limit, that is for large systems when fluctuations

become negligible, the thermodynamic observables from all ensembles converge to the

same values.

3.1.5 Langevin dynamics

Langevin dynamics (LD) is governed by the following stochastic differential equation

mi
dvi
dt

=
∑
j �=i

Fi,j − γvi + ηi(t) (3.11)

The advantage of using stochastic equations over the deterministic Newtonian

dynamics is in the random noise term, which can help crossing the potential energy

barriers. A Langevin equation is an extension of the Newtonian equation (Eq. 3.1)

in which two additional terms are added to the total force on a particle. One term,

−γv, represents a viscosity of a solvent and the other term is a stochastic force. For
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the i-th particle, the stochastic force is

ηi(t) =
√
2miγkTR(t) (3.12)

where R(t) is a Gaussian random number with zero mean and variance of 1. The

factor before R(t) comes from the fluctuation-dissipation theorem

〈ηi(t)〉 = 0 (3.13)∫ ∞

0

〈ηi(0)ηi(t)〉 dt = 2miγkT (3.14)

(3.15)

If there were only a viscosity term, the system would eventually be damped down

to zero Kelvin motion. Conversely, the stochastic force, without the damping force,

would continuously add extra energy to the simulated system, thus raising the tem-

perature to infinity. The balance of two Langevin terms allows one to control the

simulated system by coupling it to a constant temperature reservoir. Therefore, a

constant temperature ensemble (NVT) can be generated.

3.2 Energy-entropy decomposition

For the NVT ensemble the maximum work that can be extracted from system is

limited by the difference of the Helmholtz free energy (A), defined as

A = U − TS (3.16)

In general, if one is interested in a system transition from state 0 to state 1, a

switching parameter λ can be introduced that varies smoothly between 0 and 1 during

such transition. An intermediate state is described by a potential

Vλ = (1− λ)V0 + λV1 (3.17)

32



The thermodynamic relationships are

ΔU = ∂(βΔA)/∂β (3.18)

TΔS = β(∂ΔA/∂β) (3.19)

which satisfy ΔA = ΔU−TΔS. Using these equations, there are three methods which

can be used to decompose the free energy change into the energetic and the entropic

components - thermodynamic perturbation (TP), thermodynamic integration (TI),

and a method derived from the Jarzynski equality (JE).

3.2.1 Thermodynamic integration and perturbation methods

In TI an integral expression for the ΔA is used

ΔA =

∫ 1

0

〈∂Vλ/∂λ〉λ dλ (3.20)

(3.21)

In TP the free energy difference between two values of λ is computed as an en-

semble average at one λ

ΔA = − 1

β
ln 〈exp(−β[Vλ′ − Vλ])〉λ (3.22)

(3.23)

3.2.2 Jarzynski equality

For a quasi-static process from the second law of thermodynamics the average work

done on a system 〈W 〉 equals the free energy difference ΔF , and the work is always

greater than ΔA for a non-equilibrium process

〈W 〉 ≥ ΔA (3.24)
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The Jarzynski equality (JE) allows one to calculate free energy differences from non-

equilibrium work

ΔA = −kT ln 〈exp(−βW )〉 (3.25)

W =

∫ 1

0

∂V/∂λ dλ (3.26)

Due to the presence of the exponent in this equation, only low values of work con-

tribute significantly to the free energy differences. Since one usually deals with a

limited number of trajectories, the estimate of the average is accurate only if the

fluctuations of work are comparable to the temperature fluctuations kT . Indeed,

from the cummulant expansion of the logarithmic expression in the right hand side

of Eqn.3.25, one gets up to the terms of the second order

ΔA ≈ 〈W 〉 − var(W )

2kT
+ . . . (3.27)

I follow recently published method, where Jarzynski equality is used to calculate

free energy differences from pulling (SMD) computational experiments [43]. In JE

formalism one generates N finite time trajectories of 0-1 transition and records the

non-equilibrium work W. The free energy difference is computed from arithmetic

average of Wi from each trajectory as

ΔA = − 1

β
ln 〈exp(−βWi)〉 (3.28)

= − 1

β
ln

[
1

Ns

∑
i

exp(−βWi)

]
(3.29)

(3.30)

The main difference of this formalism from the above two is the computation of the

non-equilibrium work from each trajectory.

For pulling experiment one can introduce a constraining potential

Vλ = V0 +
k

2
(L− λt)

2 (3.31)
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where L is actual end-to-end distance and λt is an external parameter that represents

a virtual point moving with constant speed along certain direction λt = λ0+vt. Since

λt is a function of time, we can change the integration variable in Eqn. 3.26 from λ

to t and obtain the same expression for the work as in [44]

W =

∫
∂Vλ

∂λ

∂λ

∂t
dt (3.32)

= −kv

∫
(L− λt) dt (3.33)

(3.34)

3.3 Order parameters

Generalized Lipari-Szabo S2 order parameters [37] from trajectories for backbone N-H

vectors [12] are computed,

1− S2 =
4π

5

2∑
m=−2

cov(Y m
2 , Y −m

2 ) (3.35)

cov(a, b) = < ab > − < a >< b > (3.36)

where cov(Y m
2 , Y −m

2 ) covariance of the normalized spherical harmonics Ym
l (θ, φ) of

the second order (l = 2). In the absence of motion S2 is maximal and equal to one.

This approximation is valid when local fluctuations are separable from global motion.

Recently, a more general method, termed isotropic reorientational eigenmode dy-

namics (iRED), for order parameter calculation from MD trajectories was introduced

[50]. For a system of N normalized N-H bond vectors {ei} covariance matrix Mij is

computed as

Mij =
1

2

〈
3 (eiej)

2 − 1
〉

(3.37)

where vectors {ei} are measured with respect to laboratory frame. Since only the

angle between bonds is present in the above equation, this method has an advantage
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in that no assumption about motion separability is needed. By solving eigenvalue

problem M |m >= λm|m >, order parameters can be computed

1− S2
j =

N−5∑
m=1

λm||m >j |2 (3.38)

where the sum is over all eigenvalues except the five largest ones [50].

3.4 Coarse-grained methods and models

For any coarse-grained model the main problem is to derive the governing potential

that has many unknown parameters for each kind of atomic interaction. The repet-

itive nature of the studied peptides simplifies the construction of such potential by

reducing the number of the unique interaction pairs. From the coarse-grained model

one can also get structural parameters, such as the radius of gyration or the end-to-end

distance. Indeed, the goal of any coarse-grained model is to integrate high-frequency

modes into a coarse-grained model, so that the global peptide’s properties can be

studied.

3.4.1 Radial distribution function

For a system with N particles, a radial distribution function, g(r) = g(2)(r1,2), is a

special case of many-particle correlation function, such that if ρ = N/V is the particle

density, the quantity ρg(r)dr is the probability of finding two molecules separated in

space by distances between r and r + dr. Integrating over all space one gets the

normalization condition of g(r)

N − 1 =

∫ ∞

0

ρg(r)4πr2 dr (3.39)

since the probability to find the remaining N − 1 particles at any distance away from

the particle at the origin is equal to one.
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3.4.2 Inverse MC

A method of automatic adjustment of the coarse-grained interaction potential from

known radial distribution functions (RDF) was proposed [39]. The RDFs can be

either known from experiments or computed from the all-atomic simulations (MD or

MC). Without loss of generality, the idea can be illustrated on a system of N identical

particles in a cube with size A. Suppose the dynamics of the particles is governed by a

pairwise potential Vij = V (ri,j) which depends only on the relative distance between

particles ri,j. The total potential is a sum of the number of pairwise interactions

Np = N(N − 1)/2 excluding self-interactions

H =
N∑
i=1

N∑
j=i+1

V (ri,j) (3.40)

To avoid fitting of the potentials Vij to any analytical form it is discretized into M

subintervals

H =
M∑
α=1

SαVα (3.41)

where Sα (0 ≤ Sα ≤ Np) is the number of particle interactions that belong to the

α-th subinterval, and the corresponding interaction potential Vα = V (rα).

The application of this mechanism to the molecular systems consists of the fol-

lowing steps:

1. Define N interaction centers (coarse-grained points);

2. Define a working distance interval [0, Rmax] on which the coarse grained poten-

tial is applied; then divide it into M subintervals; a suitable choice of Rmax is

to set it to half of the simulation box;

3. Run simulations on fine scale and collect distances between coarse points rij

4. For each α-th subinterval of [0, Rmax], compute the number of the corresponding

interactions, averaged over trajectory Sref
α = 〈Sα〉;
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5. Set an initial guess of the interaction potentials V 0
α ; a reasonable approximation

is to use a potential of mean force calculated from RDFs, g(rα)

V 0
α = −kT ln g(rα) (3.42)

6. for each k-th iteration

(a) run simulations of coarse scale to obtain a set of
〈
Sk
α

〉
and covariance

matrix

Ck
α,β = cov

(
Sk
α, S

k
β

)
(3.43)

=
〈
Sk
α, S

k
β

〉− 〈
Sk
α

〉 〈
Sk
β

〉
(3.44)

(b) from the differences of Sα between reference value and the one from the

coarse-grain simulations

δ
〈
Sk
α

〉
=

〈
Sk
α

〉− Sref
α (3.45)

find the correction δV k
α to the initial guess of the interaction potential by

solving a system of linear algebraic equations

δSk
α = − 1

kT

∑
β

Ck
α,β δV k

β (3.46)

(c) update potentials V k+1
α = V k

α + δV k
α to be used in the next iteration

(d) quit iterations if the convergence is reached.
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Chapter 4

Simulated systems and protocols

4.1 Idealized repeats and resilin-like peptides

In addition to the DN2 and AN2 peptides, that are known to be resilin-like, I sim-

ulated other elastomeric proteins (4.1). There is experimental evidence that DC is

a little more ordered than DN. The consensus repeat in TN is different from DN by

a single mutation of alanine to proline in the YGAP-motif. Two repeats from Ac.

pisum (AP) were chosen to address the role of prolines in the elasticity mechanism

of resilin-like peptides, since there are no prolines in the AP consensus repeat (4.1).

4.2 Simulation protocols

The parallel molecular dynamics (MD) package NAMD2.6 [34] was used in all sim-

ulations. The system coordinates were saved every 0.01 ns for later analysis. The

all-atom CHARMM force field [40] was used for peptides and the TIP3P model for

water [32]. Constraining covalently linked hydrogen atoms to fixed lengths with

SHAKE algorithm [54] allowed us to use the integration time step of 2 fs. For van der

Waals interactions the cutoff distance was 12 Å and the switching function started

at 10 Å in order to bring the interactions to zero at the cutoff distance. To compute
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Table 4.1: Amino acid sequences of single repeats in resilin-like peptides. While
the first two repeats (AN and DN) are well established resilin-like repeats with ex-
perimentally known physical properties, the other three repeats (DC, TN, AP) were
derived by sequence homology and their physical properties have not been studied
yet.

Name Sequence

AN AQTPSSQYGAP

DN NGGRPSDSYGAPGGG

DC DLGQNGYSGGRPGGQ

TN NGGRPSDSYGPPGGG

AP GGSGSSGSYGGGSSG

long-range electrostatic forces the particle-mesh Ewald method (PME) was used. De-

pending on the periodic cell size, the grid point spacing for PME was adjusted to be

approximately at 1 Å .

For the simulations in water I performed simulations in two ensembles: NPT en-

semble was used for the unconstrained peptides and NVT ensemble – for the peptide

with fixed end-to-end distance (L). Periodic boundary conditions (PBC) were applied.

For constant pressure simulations, the pressure (1 atm) was controlled by a Langevin

piston Nose-Hoover method [41, 23]. For temperature control I used Langevin dy-

namics (from which all hydrogen atoms were excluded) with friction coefficient of 5

ps−1.

The following protocols were used: unconstrained MD, fixed end-points MD, and

constrained MD. The first protocol was used to assess flexibility of the simulated

peptides, while the second protocol was used to assess the energetic and entropic

components of the elastomeric force. The last protocol was used to directly measure

the tensile force corresponding to different extensions and to double check the energy-

entropy decomposition of the elastomeric force from the thermoelastic behavior of the
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simulated peptides.

4.2.1 Unconstrained molecular dynamics

In the unconstrained simulations the peptides were placed in a water box simulated

in the NPT ensemble at a pressure of 1 atm and temperature of 310 K. A minimum

number of sodium or chloride ions was added in order to neutralize the system’s

charge.

4.2.2 Constrained molecular dynamics

In the constrained MD simulations I applied harmonic potentials (with spring con-

stant 10 kcal/mol) to the backbone carbons at the peptide’s terminal residues. NVT

ensembles were simulated at default temperatures of 310 K. In some cases additional

simulations at 355 K were performed to test the temperature dependence of the re-

ported results.

4.2.3 Steered molecular dynamics

Steered molecular dynamics (SMD) consists of fixing one end of the peptide and

applying a pulling force at the other end. I used a constant velocity protocol in which

a fictitious point is attached by a spring with constant k=694.79 pN/Å and is pulled

with constant velocity v=1.5 Å/ns along z-axis. While this value of the pulling speed

is much higher than that used in AFM experiments, it is small enough to ensure a

quasi-equilibrium process during pulling as was tested by the Jarzynski formula (Eqn.

3.27).

The resilience depends on the rate and extent of deformation [26]. While the

stretching rate in the experiments is about 5 mm/min (or 0.001 Å /ns) [20], the natural

stretching rates in insects are much higher. It was shown that energy loss is less than

5% even at 200 Hz (normal frequency of wing beats in insects) [30]. Assuming that the
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Figure 4.1: Schematic representation of typical SMD simulation setup. One end of
the protein is kept fixed, while to the other end a harmonic constraint is applied. The
constraint moves with constant speed along end-to-end vector.

tendon is stretched 100-200% of the length at rest, the speed of extension/contraction

is around 400-800 mm/s (or 4-8 /ns ). The experimentally used pulling speeds are

not practical for all-atom MD simulations due to the very small integration step, one

femtosecond, in the Newtonian equations, that requires very long simulation times. I

used a pulling speed of 1.5 Å /ns that is several times less than the estimated above

rate of resilin extension in insects.
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4.3 Measures and quantities derived from simula-

tions

The end-to-end distance (L) is defined as the distance between backbone α-carbons

of the terminal residues. For a system with N atoms, the radius of gyration was

computed as:

Rg =

√√√√ 1

N

N∑
i=1

(�ri − �rc)
2 (4.1)

where �rc is the center of mass.

4.3.1 Hydrogen bonds

A hydrogen bond was defined as having the acceptor-hydrogen distance smaller than

2.7 and donor-hydrogen-acceptor angle less then 50 degrees. 1 Computation of the

hydrogen bonds was done using VMD package [28]. The end-to-end distance was

measured as a distance between backbone carbon atoms of the terminal residues.

4.3.2 Secondary structures

Secondary structure assignments were performed using the Xtlsstr program [35]. The

advantage of the Xtlsstr program over widely used DSSP [33] program lies in its ability

to identify polyproline II (PPII) type helices in addition to other secondary structures.

The comparison of the assignment of helices, β-strands and turns of Xtlsstr and

DSSP for the unconstrained MD simulations yield similar results. Small letters in the

Xtlsstr assignment denote the end residues of secondary structure stretches. From the

comparison of secondary structures from MD simulations with the ones obtained by

deconvolution of circular dichroism (CD) spectra, I concluded that the terminal PPII

1This choice is similar to the molecular dynamics simulations of elastin [7].
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Table 4.2: Secondary structure 1-letter codes.

Letter code Xtlsstr code Color code Secondary structure

C -,p,N gray disordered

E E,e blue β-strand

H H,h,G,g red α-helix

P P black polyproline II helix

T T green hydrogen-bonded turn

residue (p) and non-hydrogen bonded turn (N) should be considered as a disordered

state (C). For α-helices and β-strands, the terminal secondary structures (e, h, g) were

merged with corresponding secondary structure assignment (E, H, G). Finally, the

310-helix (G) was not distinguished from α-helix (H). Consequently, I have reduced

the 10-state secondary structure assignments to a 5-state model (Table 4.2).

4.3.3 Conformational entropy using quasiharmonic approxi-

mation

For a one-dimensional simple quantum harmonic oscillator (SHO) with frequency ω

and at temperature T (inverse temperature β = 1/kT ), and with the energy levels

En = �ω(n+ 1/2), the canonical partition function Q can be computed analytically.

Summation over all energies yields

Q(β) =
∑
n=0

e−βEn (4.2)

Q =
e−

α
2

1− e−α
(4.3)
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where α = �ω/kT and k is Boltzmann constant. Using standard formulas for the

Helmholtz free energy A, entropy S and average energy U

A = −kT lnQ (4.4)

U = − ∂

∂β
lnQ (4.5)

S =
U − A

T
(4.6)

one gets

Asho = kT
(α
2
+ ln

(
1− e−α

))
(4.7)

Usho = kT

(
α

2
+

α

eα − 1

)
(4.8)

Ssho = k

(
α

eα − 1
− ln

(
1− e−α

))
(4.9)

The classical limit of the coordinate variance,

m
〈
x2

〉
=

kT

ω2
(4.10)

which holds in the limit of small frequencies α � 1, can be applied since it is the

low-frequency motion that contributes significantly to the entropy. Then, the dimen-

sionless variable α can be expressed as

α =

√
�2

mkT 〈x2〉 (4.11)

Andricioaei and Karplus generalized this problem to many degrees of freedom using

the quasiharmonic approximation [4]. Replacing equation (4.10) with an eigenvalue

problem for mass-weighted covariance matrix of atomic coordinates, one gets

0 = det (σi,j − λI) (4.12)

σi,j = cov
(
xi

√
mi, xj

√
mj

)
(4.13)

where λ = kT/ω2 and I is the identity matrix of rank 3N . Then, from the 3N −
6 nonzero eigenvalues λi one can compute the entropy and the energy from Eqs.

(4.8,4.9) by summing over oscillators with αi =
√
�2/(λikT ).
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It should be noted that, while the entropy Ssho defines an upper limit to true

entropy (S < Ssho) [55], the entropy estimation is also dependent on the simulation

length of a system due to logarithmic convergence. In my simulations the differences

between entropies calculated with this method and with commonly used Schlitter’s

heuristic formula [56] were much less when compared to the differences from trajec-

tories of different simulation lengths.

Only heavy backbone atoms were used for entropy calculations as in [53]. The

peptide’s rotations and translations were removed before entropy calculations. I used

a modified version of CARMA software [25], which implements only entropy calcula-

tions, to include internal and free energies into the trajectory analysis.

4.3.4 Order parameters

To calculate order parameters from molecular dynamic trajectories, I used an empir-

ical formula that relies on the number of the close contacts that the backbone amide

hydrogen and the carbonyl oxygen have with the protein’s heavy atoms from the

other residues [66].

1− S2
i = 1.1− tanh

(
2.656

∑
k

e−rOk + 0.8e−rHk

)
(4.14)

To compute order parameters from NMR chemical shifts, the random coil index

(RCI) was used [9, 10].
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Chapter 5

Simulations of idealized resilin-like

peptides from anopheles gambiae

5.1 Fluctuations and disorder in AN2 peptides from

unconstrained MD simulations

Two repeats of idealized anopheles gambiae peptides were simulated in a water box

at the temperature of 310 K. The simulations were carried out in the NPT ensemble

for 200 ns out of which the first 5 ns were considered as equilibration and therefore

excluded from the analysis.

In order to get insights into the structural properties of AN-based peptides, I com-

pute global structural properties, such as, radius of gyration and end-to-end distance.

Then, I compute local properties, such as secondary structures and order parameters

S2. The results are compared with experimental data.

5.1.1 Radius of gyration

The radius of gyration fluctuates significantly around the mean value of 12 Å (Fig.

5.1). The high level of fluctuations indicates that the free energy landscape is rela-
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Figure 5.1: Radius of gyration in AN2 peptide from 200 ns trajectory in uncon-
strained simulations. Fluctuations in the radius of gyration in AN2 peptide (left
panel) and its distribution (right panel).

tively flat and has low energy barriers. There are two pronounced peaks corresponding

to 9 and 11 Å radii of gyration.

Similarly to the large fluctuations of Rg, I observe large fluctuations of the pep-

tide’s end-to-end distance in the range from 5 to 50 Å with mean value 28 Å (Fig.

5.2).

I also simulated single peptides comprising 1 and 16 repeat units. The input struc-

tures were in random conformations. These peptides also exhibited large fluctuations

of the radius of gyration. While the average values of the Rg all fit power-law (Eqn.

1.4), the relative fluctuations of small peptides (AN1 and AN2) are much higher than

those for large AN16 peptide. Namely, the standard deviations of Rg for AN1, AN2,

and AN16 peptides were 10, 16, and 3% of the corresponding averages. Relatively

small fluctuations of Rg in AN16 peptide clearly indicate on inadequate sampling of

the available conformational space or short sampling time.
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Figure 5.2: End-to-end distance in AN2 peptide from 200 ns trajectory in uncon-
strained simulations. Fluctuations in the end-to-end distance in AN2 peptide (left
panel) and its distribution (right panel).

5.1.2 Secondary structures

The fractions of the secondary structures, observed in the trajectories, are in good

agreement with each other and with those from the CD spectra [42, 38]. The high-

est fraction of the secondary structures comes from the disordered/coiled structure

(70%), then the polyproline II helices, turns, and beta-sheets account for 10% each.

The smallest fraction of the secondary structures corresponds to the α-helical confor-

mations. Such secondary structures as turns, helices and beta-sheets were not stable.

A slightly lower fraction of beta-sheet formation observed in simulations, when com-

pared to that from CD spectra, could be due to a single chain approximation. The

proline residues and neighboring residues had most stable PPII helices than other

residues.

The observed high level of fluctuations is supported by a very small number of

intra-peptide hydrogen bonds, observed in all simulations. Most peptide’s hydrogen

bonds were formed with water molecules. The fraction of peptide/water hydrogen

bonds was computed as the average number of peptide/water hydrogen bonds, nor-
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Figure 5.3: Dynamics of the secondary structures in AN2 peptide from the un-
constrained MD simulations. From top to bottom, each line represents peptide’s
conformation. No stable secondary structure is formed, indicating on large fluctua-
tions in the peptide. α-helices are observed only around SSQY-motif and PPII helices
are found around proline residues.

malized by the maximal possible number of HB for a given peptide.

In order to get further insights into structural properties of AN-based peptides I

compute order parameters S2 and compare them with experimental data for AN16

peptides [42]. The simulation temperature of 310 K differs from that used in experi-

ments 278 K.

5.1.3 Order parameters

Computation of Cα andHα chemical shifts from MD trajectories is not trivial. There-

fore, direct comparison of computed chemical shifts with experimentally available data

is not possible. Instead, Lipari-Szabo order parameters S2 are predicted from chemi-

cal shifts using the RCI server and compared with S2 parameters computed from MD

trajectories using empirical formula proposed by Zhang et al [66].

5.1.4 Tyrosine self-recognition

After 100 ns of simulation the YGAP motif from the first repeat of the central simu-

lation cell (residues 8-11) interacted with the YGAP motif from the second repeat of

the image (residues 19-22). This could indicate the importance of the conservation

of YGAP motif among species (as described in Chapter 2) for self association of AN

chains and potential further cross-linking. The relative orientation of YGAP-motifs

is antiparallel, where tyrosine from one chain interacts with proline from another as
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Figure 5.4: The 1-S2 parameters, calculated from the experimental Cα and Hα

chemical shifts (points) and from MD simulations of AN2 peptide (line).

Figure 5.5: Interaction of YGAP-motifs from different chains. The YGAP-motif
from the first repeat (left, blue) interacts with the YGAP-motif from the second
repeat of AN2 image (right, red).

shown in Figure 5.5. The interaction of YGAP motifs can be observed by signifi-

cant decrease in the fluctuations of the virtual bonds between tyrosine and proline in

YGAP motifs (Fig. 5.6).
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Figure 5.6: Distance between backbone α-carbons of tyrosine and proline that are
part of YGAP motif within one peptide. Correlated reduction of fluctuations of
YGAP-motif in each peptide is observed once the two motifs start interacting with
each other.
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Figure 5.7: Interaction of YGAP-motifs from simulations of AN16 peptide.

In the simulation of 16 AN-repeats there were two interactions of the peptide with

its image: above described the YGAP-motifs and anti-parallel arrangement of PSSQY

helices. In detail, the YGAP-motif from the fifth repeat (residues 52-55) interacted

with the YGAP-motif of the second repeat in the peptide’s image (residues 19-22) in

a similar orientation as the one observed in AN2 simulation (Fig. 5.7).

The interaction of PSSQY motifs was not observed in AN2 simulations. In AN16

simulation PSSQY motif (residues 92-98) interacted with the same motif in the image

(residuess 169-173) as shown.

The importance of tyrosine self-recognition is that it gives structural insight into

two facts observed in sequence similarity searches: conservation of the YGAP mo-

tif and conservation of proline location in the sequence, 4 residues before tyrosine

(Chapter 2). My data suggests, that these two evolutionary conservations are de-

signed to facilitate tyrosine self-recognition with the goal to enhance subsequent di-

and trityrosine cross-link formation.

I also observe from simulation of the AN16 peptide an interaction of tyrosines

(residues 74 and 85) from the adjacent repeats of the same chain (Fig. 5.9). This
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Figure 5.8: Anti-parallel arrangement of two helices (sequence PSSQY) from differ-
ent chains, observed in the AN16 simulations.

Figure 5.9: Interaction of tyrosines (from left to right: residues 74 and 85) from
the adjacent repeats in one chain, observed in the simulation of AN16 peptide. This
kind of interaction, that could potentially result in dityrosine bond formation, is not
desired, since it ”shortcuts” the fluctuations of the segment between them.

kind of interaction is not desirable, since, when cross-linked, it effectively ”shortcuts”

fluctuations of the segment between two tyrosines and does not contribute to the

entropic force upon stretching.
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Figure 5.10: The 1-S2 parameters the 15-residue AN peptides, cross-linked at ty-
rosine site. While, with overall reduction of fluctuations as compared to the 1-S2

parameters from uncross-linked simulations, there is also a decrease in fluctuations
in YGAP-motif (residues 8-11). The same decrease of fluctuations around YGAP-
sequence was observed in the uncrosslinked simulations.

5.2 Effect of cross-linking on local structure

In order to investigate the effect of cross-linking on structural properties, I cross-linked

two 15-residue AN-based peptides at the tyrosine sites. To make the cross-linking site

in the middle of the simulated sequence, I added to the 11-residue consensus repeat

an extra 4 residues. Similar to free end simulations of AN peptides (Fig. 5.4), some

local order is observed around YGAP motifs (residues 8-11) in both chains, although

the overall level of fluctuations was reduced in the cross-linked system (Fig. 5.10).

As expected, the 1 − S2 parameters from uncross-linked simulations are in bet-

ter agreement with experimental parameters, since the latter were derived from the

chemical shifts of AN16 in solution, before cross-linking. Secondary structures were

similar to the uncross-linked peptides in my previous simulations.
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5.3 Structural parameters and entropic force in

AN2 from constrained MD simulations

5.3.1 Methods

I simulated a 30-residue peptide, based on the AN consensus sequence in a water box

in the NVT ensemble at a temperature of 310 K. I will refer to this peptide as AN2e

to distinguish it from the two-repeat AN2 peptide. The extension of AN2 peptide to

30 residues was done to enable later consistent comparison between AN-based peptide

with 30-residue DN-peptide. Seven simulations were performed for extensions that

correspond to end-to-end distances of 70-98 Å . To the first and last backbone carbons

harmonic constraints were applied with spring constant of 10 kcal/mol. The chosen

value of spring constant resulted in 0.24 Å fluctuations of end-to-end distance at any

extension. Each simulated system was minimized for 200 steps and production run

for 15 ns was carried out. Coordinates and energies were saved every 10 ps, forces

were saved every ps. The tensile force was calculated as an arithmetic average of the

forces in the virtual harmonic springs.

The entropic force was calculated from the conformational entropies. For each

extension, the quasiharmonic conformational entropies and peptide bonded energies

were computed. Then, a spline function with 100 intermediate points was used to get

values for other extensions. Energetic and entropic components of the restoring force

were computed using Eqs. 1.2 and 1.1 , where the derivative was approximated by

the finite difference method from spline points.

5.3.2 Results

Since more stretched peptides sample less conformational space, the conformational

entropies are better converged at higher extensions (Fig. 5.11). Conformational en-
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Figure 5.11: Conformational entropies of AN2 at different extensions. The values of
conformational entropies from L75 and L85 simulations are not shown, since they are
close to entropies from L80, L70 simulations. The entropic decrease with extension is
captured by quasiharmonic approximation used to calculate conformational entropies
of AN2 peptide.

tropy loss is captured by the quasiharmonic approximation, particularly, the dramatic

decrease in the conformational entropy is found when AN2e peptide is stretched to

end-to-end distances of more than 85 Å . Conversely, the change in conformational

entropies is only marginal in the range from 70 to 85 Å .

As opposed to entropies, the tensile forces converge much faster, and within 15 ns

of simulations they seem to fluctuate around the average values (Fig. 5.12). Consis-

tent with the changes in the conformational entropies, tensile force is greatly increased

in peptides stretched to more than 85 Å . Under small extensions (70-85 Å) the tensile

force fluctuates between 30 and 60 pN.

To further explore the nature of the restoring force I computed entropic and en-

ergetic contributions to the total force. Since the number of protein-water hydrogen

bonds were the same (around 10±3) for all extensions and practically no protein-

protein hydrogen bonds were formed, I assumed that protein-solvent interaction en-

ergies do not depend upon extension. Conversely, the peptide bonded interactions,

especially backbone bond angle and dihedral interaction terms, strongly depend on
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Figure 5.12: Tensile forces in stretched to different extensions AN2 peptides. The
force is higher at higher extensions.

extension. Thus, I assumed that only bonded interactions contribute to fU . From

the dependence of fU on extension I observe that the peptide’s bonds are not sig-

nificantly distorted up to extensions of 93 Å (Fig. 5.13). The entropic force fS is

always larger than fU and it is the dominant contribution to the restoring force up

to 93 Å . As one might expect, further extensions, such as L > 100 Å , would result

in totally energetic nature of the restoring force. The results for smaller extensions

(L < 80 Å ,) are not shown, since both entropic and energetic forces highly fluctuated

in that region, resulting in negative forces. This would correspond to expansion force

upon compression and it is not studied here.

The combined entropic and energetic forces are in very good agreement with the

total tensile force, calculated directly from harmonic constraints (Fig. 5.13).

Finally, I compared these results with the results from the steered molecular dy-

namics (SMD) simulations. Two sets of SMD simulations were set up with constant

pulling speed 1.5 Å /ns. Five simulations were used in each SMD set. The initial

structure from the extended conformation was compressed to the relaxed state. The

restoring force was computed using Eqn. 3.27 with up to the second cumulant ex-
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Figure 5.13: Tensile forces in stretched to different extensions AN2 peptides. The
sum of the entropic and energetic components of the restoring force is very close to
the direct measurement of the restoring force. For extensions less than 92 Å , the AN2
peptide acts like an entropic spring, while at higher extensions it behaves more like a
regular spring.

pression of the Jarzynski equality. Work was computed as an average force times ΔL,

which was chosen to be 3.6 Å . The correction to the free energy difference (second

term in Eqn. 3.27) was usually less than 10%. The restoring force from SMD simula-

tions was consistently smaller by around 30 pN than the entropic component of the

restoring force from the constrained MD simulations.
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Chapter 6

Assessment of disorder in

drosophila resilin peptide

6.1 Unconstrained molecular dynamics

The main reason for the flexibility of resilin-like peptides is believed to be due to

high solubility of the peptides in water and lack of such flexibility in vacuum. To

assess the extent of the solvation effect I performed several vacuum simulations. An

input structure in PPII conformation collapses after about 5-10 ns of simulations to

a random coil and stays in that conformation with only minimal fluctuations of the

end-to-end distance (Fig. 6.1). A qualitatively similar picture was observed when the

original peptide was solvated in a 5 Å water shell resulting in only little increase in

the fluctuations, but the overall shape of the peptide did not change.

After the solvation of the peptide in bulk water, within the first 5-10 ns of sim-

ulations virtually all intra-protein hydrogen bonds were replaced by protein-water

hydrogen bonds. As a result, the peptide is highly flexible and remains mostly disor-

dered for the rest of the simulation. The level of fluctuations can be seen, for example,

from the time evolution of the end-to-end distances (Fig. 6.2). This observation is

consistent with one of the functions of water in this kind of proteins as a plasticizer
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Figure 6.1: The end-to-end distance of DN2 peptide from unconstrained molecular
dynamics simulation in vacuum. Regardless of the input conformation, in all simu-
lations the peptide collapsed into a compact conformation and remained in it with
only minimal fluctuations.
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Figure 6.2: The end-to-end distance of DN2 peptides from unconstrained langevin
dynamics in water with different values of damping constants (1, 5, 10 ps−1). In all
three simulations a compact input structure swell in water within 10 ns and remained
highly flexible for the following 90 ns of the simulation time.

that facilitates peptide transitions between different states.

The observed secondary structures correspond mostly to the disordered and PPII
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Figure 6.3: End to end distance and radius of gyration observed in unconstrained
MD simulation of DN2 peptide. Langevin damping constant 1 ps−1.

formations, that is qualitatively consistent with the secondary structures from CD

spectra (to be published). The high flexibility of the peptide is maintained at the

local level as well, since I haven’t observed any formation of the stable secondary

structures within a particular segment. I observed only slight preferences of SSS

segment towards β-strand formation, XPX-motif (where X is either R,S,A, or G)

towards PPII formation, and GNGG segment towards turn formation.

From the SHO analysis the estimated S, U , A are reported in Table 6.1. I ob-

serve that free energy is considerably lowered upon solvation, and the major changes

come from the entropy term in the free energy expression. The lowest free energy

correspond to λ = 5 ps−1 (Fig. 6.1), which is consistent with the original langevin

dynamics study [45] where the optimal value of damping was reported to be around

5 ps−1. Larger values turned the simulated system into non-canonical ensemble while

smaller values provided too weak temperature coupling so that the protein and sol-

vent had different temperatures. The dependence of the conformational entropy on

the langevin damping constant shows that larger values of damping constant reduce

the entropy.
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Figure 6.4: End to end distance and radius of gyration observed in unconstrained
MD simulation of DN2 peptide. Langevin damping constant 10 ps−1.

Table 6.1: Comparison of the thermodynamic variables from different trajectories,
each 100 ns long.

Trajectory U,(kJ/mol) TS,(kJ/mol) A,(kJ/mol)

V1-5 238±6 328±26 -90±32

D1 221 529 -308

D5 218 624 -406

D10 219 585 -366

D100 224 472 -249

From vacuum simulations V1-V5 and water simulations D1,D5,D10 combined tra-

jectories were created. Average end-to-end distance and radius of gyration in water

(20.8±7.4 and 16.0±0.2) are both about twice larger than those in vacuum (11.6±3.0

and 7.8±0.3). As seen from the Table 6.2, the secondary structure fractions do not

capture peptide’s flexibility in water. This can be explained by different nature of dis-

order from vacuum and water simulations. While in each of the vacuum simulations

the peptide collapses into certain conformation with certain fraction of residues in coil
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Table 6.2: Secondary structure fractions from the combined vacuum (500 ns) and
water (500 ns) simulations.

Trajectory C,% E,% H,% P,% T,%

in vacuum 67 5 4 5 16

in water 54 1 23 5 15

state, in contrast, in water simulations the peptide is highly flexible and residues in-

terchange secondary structure states while still maintaining a constant overall fraction

of disorder.

6.2 Constrained molecular dynamics

In was experimentally shown that the elastic force is connected with entropy changes

when an external force is applied to an elastic tendon resilin in dragonflies [64].

Stretching a tendon swollen in water to more than twice of its resting length resulted

in a restoring force of 20 kg/cm2, which was dominantly entropic. In this section I

used MD simulation to estimate the entropic part of the elastomeric force in DN2

peptide fixed at the peptide’s ends with different extensions. Fixing the peptide’s ends

greatly reduces the available conformational space, allowing us to estimate entropy

loss upon extension.

By stretching the DN2 peptide in vacuum (using SMD protocol) I defined the

maximum stretching to correspond to 100-105 Å of end-to-end distance (Fig. 6.5).

Since I was looking only at the distortion of the bonded interactions with extension,

adding water would not change the results. The average distance between adjacent

backbone carbon atoms is around 3.5 Å making the upper limit of L around 105 Å

for a 30-residue peptide. Further stretching results in the distortions of backbone

angles and bonds as can be seen from almost linear rapid increase of the stretching

force with extension (Fig. 6.5).
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Figure 6.5: Force-extension curve from vacuum SMD simulation of a DN2 peptide,
that was originally at some compact state. Significant decrease in force fluctuations
corresponds to distortion of peptide’s bonds and bond angles is observed for end-to-
end distances larger than 100 Å .

Table 6.3: Setup for the constrained MD simulation of DN2 peptide at different
extensions.

Label Time, ns L, Å System size, Å3

L50 200 50.4 27x27x63

L70 200 68.3 25x26x81

L90 200 88.8 21x21x101

L100 200 100.6 21x21x114

A peptide conformation with the end-to-end distance 100 Å was chosen to rep-

resent stretched state and to probe intermediate and relaxed states additional three

simulations were performed: L90, L70, L50 (set Table 6.3 for details). All further

simulations were performed in water.

First, the level of fluctuations was assessed by comparing secondary structure

fractions of DN2 peptide at different extensions. As expected, the fraction of the

extended (or β-strands) conformations increased with the increase in stretching; the
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Table 6.4: Fractions of the secondary structures in DN2 peptide from the constrained
MD simulations.

Name C E H P T

L50 71 2 5 15 8

L70 77 2 2 16 3

L90 62 10 0 28 0

L100 62 31 0 8 0

maximum value of 30% observed in L100 simulation. The highest fraction of PPII

helices is observed in L90 simulation (Table 6.4), which is consistent with a crude

estimate of 3.1 Å for the distance between two adjacent residues in an ideal PPII

helix. Surprisingly, the secondary structure fractions in L50 and L70 simulations

turned out to be almost the same with only minor difference the formation of turns

- higher fraction observed in L50 simulation as the peptide is more compact than in

L70 simulation.

The secondary structures were more stable at higher extensions reflecting more

order and entropy loss. Once again, the PSSSY-motif had the highest fraction of

β-strand secondary structures, especially when the peptide is maximally stretched at

100 Å extension (Fig. 6.6).

The number of intra-protein hydrogen bonds was extremely small. The number

of protein/water hydrogen bonds was higher at larger extensions (Fig. 6.7). Interest-

ingly, a central asparagine residue formed twice as many hydrogen bonds as serine,

glycine or proline residues. Another observation is that the number of protein/water

hydrogen bonds decreases for residues close to the terminals. This could suggest that

lack of fluctuations suppresses the formation of protein/water hydrogen bonds.

Finally, I report entropic forces at different extensions of the peptide. Due to lack

of the intra-protein HBs the internal energy is not expected to change much, therefore,
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Figure 6.6: Secondary structure fractions observed in the constrained simulations
of DN2 peptides stretched to different extensions. Secondary structure notations are
given in Table 4.2. From top to down the level of stretching is increased. Simulation
labels are: L50, L70, L90, and L100.
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Figure 6.7: Average number of peptide-water hydrogen bonds for each residue.
Results from L50 and L90 constrained MD simulations are shown in open and filled
circles. The reduction of the number of the peptide/water hydrogen bonds is observed
at higher extension.

the entropic component of the elastomeric force becomes dominant. Computing con-

formational entropies of the peptide from each simulation, I approximate derivative in

entropic restoring force (Eq.1.2) by the finite difference method (fS ≈ −TΔS/ΔL).

Ideally, infinitely long simulation is required to sample the available conformational

space. In addition, the conformational entropy of the peptide depends on how well

the conformational space is sampled. Therefore, the question of entropy convergence

should be addressed. In the unconstrained MD simulations the conformational en-

tropy did not converge in all three simulations after 180 ns (data not shown). In

contrast, in the constrained MD simulations, even though I did not get full conver-

gence of the conformational entropies in the L50 (L70) simulations (Fig. 6.8), the

entropy loss upon extension is clearly seen in Figure 6.9. As one might expect, the

shortest time (around 10 ns) to reach convergence in the conformational entropy

calculations was in L100 simulation; twice larger simulation time is required in L90

simulation. The conclusion drawn from the secondary structure distributions that

L50 and L70 that these two simulations represent the same (relaxed) state of DN2 is
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Figure 6.8: Conformational entropies in DN2 peptide from the constrained MD
simulations. Significant reduction in conformational entropy is found at 90 and 100 Å
extensions. Since less conformational space is available at higher extensions, the
conformational entropy convergence is better at higher extensions.

further supported by insignificant difference in the conformational entropies in these

two simulations.

To estimate entropic force in DN2 peptide I used spline function with a stride

of 1 Å to get additional values of the conformational entropies between simulated

extensions. Then, entropic force was computed by finite difference method. The

results are shown in Figure 6.10. Since only one simulation was used per extension,

I can not report error bars on the calculated entropic forces.
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Figure 6.9: Comparison of the conformational entropies in DN2 peptide from con-
strained MD simulations in vacuum and in water. This figure shows significant role
of water in providing high flexibility at the relaxed state in DN2 peptide. While pep-
tide’s entropies in vacuum are reduced a little bit for 90 and 100 Å extensions, the
significantly low entropy in vacuum is observed when peptide is in the relaxed state
(extensions around 50 Å ).
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Figure 6.10: Entropic force in DN2 peptide computed from splined version of the
conformational entropies from the constrained MD simulations.
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Chapter 7

Comparison of entropic force in

other resilin-like peptides

7.1 Relaxation of multiple chains

Based on the consensus repeats of DN, DC, and AP, I constructed the 30-residue

peptides that were simulated in the NVT ensemble at the temperature of 355 K.

The temperature was chosen to be high in order to decrease the equilibration times.

Moreover, in my previous simulations of the DN2 peptides I have not observed the

structural changes between the simulations at the temperatures of 310 and 355 K.

The choice of the peptides is justified as follows: the DC peptide is chosen because

it is not known about the elastic properties of this repeat; and the AP peptide is

chosen since it’s consensus repeat, as opposed to all other repeats, does not contain

any proline residues and it would be interesting to see the effect of prolines on the

elastic properties of the peptides.

In order to look at the structural properties of other resilin-like peptides, first I

verified that assembling multiple chains does not result in the peptide aggregation.

By setting 16 chains of the AP2 and DC2 peptides along z-axis with 10 Å separation

between chains, I observed that in all simulations the average end-to-end distance
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Figure 7.1: I setup 16 AP2 peptides in a 4 by 4 grid in XY plane. The grid size in
either direction was 10 Å and all peptides were highly stretched and oriented along
Z-axis. The averaged over all chains end-to-end distance decreases to an equilibrium
value of 55 Å within 10 ns of simulation. The formation of β-sheets would result in
the end-to-end distances at least 80-90 Å.

decreased from original value (100 Å) to 50-70 Å. An example of such simulation for

AP2 peptide is shown in Figure 7.1. Together with the secondary structure formations

(data not shown) this indicates that neither β-sheets nor PPII nor α-helices were

formed.

The simulation time (10 ns) was very small, so that one might argue that this time

is not long enough to observe, say, β-sheet aggregations. Two additional simulations

were performed with the collagen-like sequence (GPP )10, known to form stable PPII

structures, and 30-residue polyalanine peptides, that is known to form stable β-sheets

in the extended state. Similar setup of 16 chains of each peptide type was used and

within the same simulation time I observed the formation of the stable secondary

structures (PPII helices in the collagen-like peptides, and β-sheets in the polyalanine

peptides).

72



Figure 7.2: Two extreme extensions of DN2 peptide used in SMD simulations. Black
sphere shows fixed atom and red sphere – for SMD atom that was pulled.

7.2 SMD simulations

Once the disorder of the DN2, DC2, and AP2 peptides was established in the multiple

chain simulations, I used a single chain approximation and for each peptide and I

ran 10 compression/extension SMD cycles at temperature of 355 K. A single cycle

consisted of taking an extended structure of a peptide (around 100 Å for end-to-end

distance) and compressing it by 30 Å . After that, the pulling direction was inverted

and the peptide was extended by another 30 Å . Two typical conformations of the

DN2 peptide at two extreme extensions is shown in Figure 7.2.

The force/extension curves in all peptides show small hysteresis (Fig. 7.3), sug-

gesting high resilience. From Figure 7.3 one can see that the presence of prolines in

DC2 and DN2 peptides require larger force for extreme extensions than that in AP2.

At the same time, in the relaxed state all peptides have the same restoring force below

50 pN.
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Figure 7.3: Loading (red, dash) and unloading (black, solid) forces, averaged over
several SMD simulations at temperature 355 K for three resilin-like peptides: DC2,
DN2, AP2. With the exception that proline-lacking AP2 peptide has less restoring
force than DC2 or DN2 peptides at high extensions, no significant differences between
peptides was found. In all three peptides the resilience estimated to be 80±10%.
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Chapter 8

Coarse-grained model of RLP

8.1 PYP-model

I have defined a PYP-model as three beads per repeat. The elastic repeat is defined as

PxxxYxxP sequence, where x is any residue. Since AN- and DN-based peptides differ

mostly in the length of linker (AQT for AN-repeats and GGGNGGR for DN-repeats),

the comparison of coarse-grained parameters is possible.

The beads were placed at the backbone Cα carbons of proline (P) and tyrosine

(Y) residues, hence, the name of the model PYP. We chose tyrosine residues, since

they are the sites of cross-linking, and the choice of prolines was arbitrary. It should

be emphasized, that the coarse-grained model is built only using properties of a single

repeat and a linker between two adjacent repeats and no parametrization as to global

fluctuations of multiple repeats were used in the model. Atomic masses and charges

were equally distributed among the coarse-grained beads.

The all-atom and coarse-grained representation of AN16 peptide is shown in Figure

8.1.

In the harmonic approximation, the integration time step for coarse-grained sim-

ulations τcg can be expressed in terms of the time step for all-atom simulations τf as
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Figure 8.1: The coarse-grained and all-atom models of AN16 peptide. Three beads
per repeat were assigned. The beads were placed at prolines and tyrosine backbone
α-carbons.

follows

Tcg = Tf

√
mcgkH
mHkcg

(8.1)

Formcg ≈ 300mH , as defined by choice of coarse beads, and the largest spring constant

kcg ≈ 0.001kH , as derived from all-atom simulations, we have τcg ≈ 600τH , or about

600 fs.

The bonded interaction parameters are obtained by Boltzmann inversion (Eqn

8.2) from the distributions of virtual bonds in all repeats from all-atom simulations.

These values for virtual bonds P-Y, Y-P, and P-P are shown in Tables 8.1, 8.2, 8.3. In

a similar way, bond angle parameters were obtained, for example, P-Y-P bond angle

parameters are shown in Table 8.4.

K =
kBT

2(〈R2〉 − 〈R〉2) (8.2)

Since there were no charged residues I did not assign charges to the coarse beads,

so that the electrostatic interactions were not present in the coarse-grained force field.

For the van der Waals interactions I assigned Rmin
i to beads in such way, that sum
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Table 8.1: Spring constants and average bond lengths for PY virtual bond in the
coarse-grained model, obtained by Boltzmann inversion of virtual bond distribution
from all-atom simulations.

Peptide K, kcal/(mol Å2) 〈R0〉, Å

DN2 0.06 8.03

AN1 0.18 9.41

AN2 0.18 10.72

AN16 0.06 10.05

Table 8.2: Spring constants and average bond lengths for YP virtual bond in the
coarse-grained model, obtained by Boltzmann inversion of virtual bond distribution
from all-atom simulations.

Peptide K, kcal/(mol Å2) 〈R0〉, Å

DN2 0.43 8.16

AN1 0.32 8.32

AN2 0.45 8.66

AN16 0.27 8.43

Table 8.3: Spring constants and average bond lengths for linkers PP in the coarse-
grained model, obtained by Boltzmann inversion of virtual bond distribution from
all-atom simulations.

Peptide K, kcal/(mol Å2) 〈R0〉, Å

DN2 0.05 10.72

AN2 0.17 11.9

AN16 0.08 10.5

of these radii from two beads give average of the corresponding virtual bond. While

this choice is not justified, varying van der Waals radii did not have significant effect
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Table 8.4: Spring constants and average PYP bond angles in the coarse-grained
model, obtained by Boltzmann inversion of virtual bond distribution from all-atom
simulations.

Peptide K, kcal/(mol rad2) 〈Θ〉, degrees

DN2 0.9 89.2

AN1 1.4 55.5

AN2 2.0 85.5

AN16 0.8 100.0

on the results. The choice of van der Waals ε parameters were chosen uniformly

and adjusted in such a way that fluctuations of radius of gyration in AN2 peptide

are similar to those from all-atom simulations. The Rg from all-atom simulations

of AN2 is 11.8 ± 2.0 Å . In the coarse-grained simulations ε in the range between

0.01 and 0.3 kcal/mol led to Rg comparable with the all-atomistic radius of gyration

Rg = 11.5± 2 Å (Fig. 8.2). When I applied this model to coarse-grained simulations

of AN16 I observe that, starting with ε > 0.1 kcal/mol, the average radius of gyration

started decreasing below 34 Å . On the other hand, for range between 0.01 and 0.1 the

same radius of gyration was obtained 42 ± 8 Å . Thus, final choice of 0.01 kcal/mol

was made. The average kinetic and potential energies were 45 and 10 kcal/mol.

The parameters derived from AN2-segments were used in simulations of coarse-

grained AN16 model. I ran NVT ensemble (with temeprature set to 310 K) langevin

dynamics with PBC (size 105x105x105 Å3) for 15e6 steps that corresponds to 9μs.

The choice of langevin damping constant was the same as in [6] and equal to 2 ps−1.

For van der Waals interactions cutoff distance was 20 Å .

As seen on Figures 8.3, 8.4, 8.5 coarse-grained virtual bonds qualitatively match

the results from all-atom simulations.
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Figure 8.2: Dependence of radius of gyration in the coarse-grained simulations of
AN2 on the value of the van der Waals strength parameter. With the values up to
0.1 kcal/mol high fluctuations of the peptide (as observed in all-atom simulations)
are reproduced.
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Figure 8.3: Comparison of bond distributions from coarse-grained (solid) and all-
atom simulations of AN16 peptide.
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Figure 8.4: Comparison of bond distributions from coarse-grained (solid) and all-
atom simulations of AN16 peptide.
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Figure 8.5: Comparison of bond distributions from coarse-grained (solid) and all-
atom simulations of AN16 peptide.

8.1.1 Cross-linking

I assembled four AN16 coarse-grained peptides and created four cross-links at random

places to connect all chains into one network. The parameters for cross-linking were

derived from 200 ns simulations of two cross-linked peptides (two 15-residue peptides

with AN-based repeat sequence). In principle, cross-linking bond length and related

angles can be derived, I used only tyrosine-tyrosine bond length parameters in our

coarse-grained cross-link model. The spring constant and equilibrium length for Y-

Y cross-link were 1.2 kcal/(mol Å) and 8.9 Å . Two simulations were performed for

50μs, with and without crosslinks, in NVT ensemble at temperature 310 K. Periodic

boundary conditions were applied to the cubic simulation cell with cube size of 100 Å .

A snapshot from trajectory of the cross-linked system is shown in Figure 8.6.

As seen from Table 8.5, moderate level of crosslinking (12.5% of tyrosines con-

verted to cross-links) does not reduce peptides fluctuations. This fact is consistent
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Figure 8.6: A system of four coarse-grained AN16 chains with four randomly placed
cross-links. Each chain from the central cell is shown in different color and chains
from periodic cell images are shown in gray.

Table 8.5: Radius of gyration for a system of four coarse-grained AN16 chains with
and without cross-linking. Average and standard deviations are reported.

Chain Rg (free), Å Rg (cross), Å

1 41±8 42±8

2 41±8 41±7

3 41±8 40±7

4 42±8 42±8

with the experimental results (Raman scattering and CD spectra) that with the level

of crosslinking at 16% in AN16 peptides the dynamics of peptides does not change

([38]). Also, it was shown for N-terminal domain of D. melanogaster resilin that the

cross-linking reaches a plateau when 20% of tyrosines are transformed into di- and

trityrosine cross-links, and even at that level resilience remains relatively high [20].

The distribution of the radius of gyration of a single chain in the cross-linked and

uncross-linked systems show good fit with normal distribution (Fig. 8.7). A small

deviation of the normal distribution of the maximum probable radius of gyration,
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Figure 8.7: Distribution of the radius of gyration of a single chain in simulations of
four coarse-grained chains of AN16 peptide with and without cross-linking. Gaussian
fit was used to the distributions from simulations.

observed in simulations, is most likely due to weak van der Waals intra- and inter-

peptide interactions.

Experimentally reported level of cross-link formation includes both, intra- and

inter-chain cross-links and for high resilience the formation of the cross-links between

chains is desired. Since the resilience was reported to be similar for different cross-

linking levels [20], it means that there is some mechanism that favors inter-chain

cross-links over intra-chain ones. Perhaps, the fact that resilin-like peptides do not

collapse into a compact structure is sufficient to provide inter-chain cross-linking.

All the scripts to build coarse-grained model and run NAMD simulations are

available at http:/bmiwiki.cchmc.org/index.php/Coarse-graining web site.
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Chapter 9

Conclusions

I have presented a comprehensive analysis of the resilin-like peptides using bioinfor-

matics and molecular dynamics approaches. To the best of my knowledge this is the

first attempt to relate elastomeric properties of the idealized resilin-like peptides to

their structure using computational methods.

9.1 Disorder

Based on a number of molecular dynamics simulations with different systems and

different conditions I conclude that all studied here peptides are highly agitated in

thermal motion and possess rubber-like elasticity. High level of disorder is supported

by the following observations: i) lack of stable secondary structure, particularly low

content of α-helices and β-strands that are known to stabilize protein structures; ii)

lack of stable intra-protein hydrogen bonds; iii) the 1− S2 structural parameters are

close to those for random coil proteins; iv) large fluctuations in radius of gyration.

As was observed in several simulations one of the resilin-like peptides collapsed to

some compact state, but that state was not stable and, after some time, a highly

fluctuating behavior of the peptide resumed.
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9.2 Entropic force

From the tensile and stretching computer experiments I have found the restoring force

to be dominantly of the entropic nature over a range of extensions (up to 100%). For

each peptide the resilience and the entropic part of the restoring force were computed.

9.3 Cross-linked biopolymers

Using the results from the all-atom simulations, I have built a coarse-grained model

of the AN and DN-based peptides. This allows one to simulate larger peptides and

explore larger timescales. Randomly cross-linked model of four AN16 peptides was

built on the coarse level. Up to the level of cross-linking when 12% of tyrosine residues

form dityrosine chemical bonds, no significant decrease in peptide fluctuations was

observed.

I hope that this study would serve as a starting point in revealing the mechanism

of high resilience in resilin-like peptides and can help design biomaterial with given

mechanical properties.

85



References

[1] R. Adamczak, A. Porollo, and J. Meller. Combining prediction of secondary
structure and solvent accessibility in proteins. Proteins, 59(3):467–475, May
2005.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, October
1990.

[3] S. O. Andersen. The cross-links in resilin identified as dityrosine and trityrosine.
Biochimica et biophysica acta, 93:213–215, October 1964.

[4] I. Andricioaei and M. Karplus. On the calculation of entropy from covariance ma-
trices of the atomic fluctuations. The Journal of Chemical Physics, 115(14):6289–
6292, 2001.

[5] D. Ardell and S. O. Andersen. Tentative identification of a resilin gene in
drosophila melanogaster. Insect Biochemistry and Molecular Biology, 31(10):965–
970, September 2001.

[6] A. Arkhipov, W. H. Roos, G. J. L. Wuite, and K. Schulten. Elucidating the mech-
anism behind irreversible deformation of viral capsids. Biophys J, 97(7):2061–
2069, Oct 2009.

[7] M. Baer, E. Schreiner, A. Kohlmeyer, R. Rousseau, and D. Marx. Inverse tem-
perature transition of a biomimetic elastin model: Reactive flux analysis of fold-
ing/unfolding and its coupling to solvent dielectric relaxation†. The Journal of
Physical Chemistry B, 110(8):3576–3587, March 2006.

[8] A. Bateman et al. The pfam protein families database. Nucleic Acids Res.,
32:D138–D141, 2004.

[9] M. V. Berjanskii and D. S. Wishart. A simple method to predict protein flexibility
using secondary chemical shifts. Journal of the American Chemical Society,
127(43):14970–14971, November 2005.

[10] M. V. Berjanskii and D. S. Wishart. The RCI server: rapid and accu-
rate calculation of protein flexibility using chemical shifts. Nucl. Acids Res.,
35(suppl 2):W531–537, July 2007.

86



[11] B. Bochicchio, A. Pepe, and A. M. Tamburro. Investigating by cd the molecular
mechanism of elasticity of elastomeric proteins. Chirality, 20(9):985–994, Sep
2008.

[12] R. Brueschweiler and P. E. Wright. Nmr order parameters of biomolecules: A new
analytical representation and application to the gaussian axial fluctuation model.
Journal of the American Chemical Society, 116(18):8426–8427, September 1994.

[13] M. B. Charati, J. L. Ifkovits, J. A. Burdick, J. G. Linhardt, and K. L. Kiick. Hy-
drophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter,
5(18):3412–3416, 2009.

[14] M. V. Cubellis, F. Caillez, T. L. Blundell, and S. C. Lovell. Properties of polypro-
line ii, a secondary structure element implicated in protein-protein interactions.
Proteins, 58(4):880–892, Mar 2005.

[15] T. Darden, D. York, and L. Pedersen. Particle mesh ewald: An n [center-dot]
log(n) method for ewald sums in large systems. The Journal of Chemical Physics,
98(12):10089–10092, 1993.

[16] H. J. Dyson and P. E. Wright. Coupling of folding and binding for unstructured
proteins. Curr Opin Struct Biol, 12(1):54–60, Feb 2002.

[17] H. J. Dyson and P. E. Wright. Unfolded proteins and protein folding studied by
nmr. Chem Rev, 104(8):3607–3622, Aug 2004.

[18] H. J. Dyson and P. E. Wright. Intrinsically unstructured proteins and their
functions. Nat Rev Mol Cell Biol, 6(3):197–208, Mar 2005.

[19] G. Elliott et al. On the structure of resilin. J Mol Biol, 13:791–795, 1965.

[20] C. M. Elvin, A. G. Carr, M. G. Huson, J. M. Maxwell, R. D. Pearson, T. Vuocolo,
N. E. Liyou, D. C. C. Wong, D. J. Merritt, and N. E. Dixon. Synthesis and
properties of crosslinked recombinant pro-resilin. Nature, 437(7051):999–1002,
October 2005.

[21] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Peder-
sen. A smooth particle mesh ewald method. The Journal of Chemical Physics,
103(19):8577–8593, 1995.

[22] P. P. Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale.
Annalen der Physik, 369(3):253–287, 1921.

[23] S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks. Constant pressure
molecular dynamics simulation: The langevin piston method. The Journal of
Chemical Physics, 103(11):4613–4621, 1995.

[24] P. J. Flory, A. Ciferri, and C. A. J. Hoeve. The thermodynamic analysis of ther-
moelastic measurements on high elastic materials. Journal of Polymer Science,
45(145):235–236, 1960.

87



[25] N. M. Glykos. Carma: a molecular dynamics analysis program. J Comp Chem,
27:1765–1768, 2006.

[26] J. Gosline et al. Elastic proteins: biological roles and mechanical properties. Phil
Trans R Soc Lond B, 357:121–132, 2002.

[27] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences of the United States of
America, 89(22):10915–10919, November 1992.

[28] W. Humphrey, A. Dalke, and K. Schulten. Vmd: Visual molecular dynamics.
Journal of Molecular Graphics, 14(1):33–38, February 1996.

[29] M. Huson and J. Maxwell. The measurement of resilience with a scanning probe
microscope. Polymer Testing, 25(1):2–11, February 2006.

[30] M. Jensen and T. Weis-Fogh. Biology and physics of locust flight. V. Strength
and elasticity of locust cuticle. Phil Trans Roy Soc Lond B, 245:137–169, 1962.

[31] D. T. Jones. Protein secondary structure prediction based on position-specific
scoring matrices. Journal of molecular biology, 292(2):195–202, September 1999.

[32] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.
Klein. Comparison of simple potential functions for simulating liquid water. The
Journal of Chemical Physics, 79(2):926–935, 1983.

[33] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22(12):2577–2637, December 1983.
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[55] H. Schäfer, A. E. Mark, and W. F. van Gunsteren. Absolute entropies from
molecular dynamics simulation trajectories. The Journal of Chemical Physics,
113(18):7809–7817, 2000.

[56] J. Schlitter. Estimation of absolute and relative entropies of macromolecules us-
ing the covariance matrix. Chemical Physics Letters, 215(6):617–621, December
1993.

[57] Z. Shi, C. A. Olson, G. D. Rose, R. L. Baldwin, and N. R. Kallenbach. Polyproline
ii structure in a sequence of seven alanine residues. Proc Natl Acad Sci U S A,
99(14):9190–9195, Jul 2002.

[58] M. Sickmeier, J. A. Hamilton, T. Legall, V. Vacic, M. S. Cortese, A. Tantos,
B. Szabo, P. Tompa, J. Chen, V. N. Uversky, Z. Obradovic, and A. K. Dunker.
Disprot: the database of disordered proteins. Nucleic Acids Res, 35(Database
issue), January 2007.

[59] Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics method for
protein folding. Chemical Physics Letters, 314:141–151, 1999.

[60] S. Trebst, M. Troyer, and U. H. E. Hansmann. Optimized parallel tempering
simulations of proteins. J Chem Phys, 124(17):174903, May 2006.

[61] S. Tweedie, M. Ashburner, K. Falls, P. Leyland, P. Mcquilton, S. Marygold,
G. Millburn, D. Osumi-Sutherland, A. Schroeder, R. Seal, H. Zhang, and T. F.
Consortium. Flybase: enhancing drosophila gene ontology annotations. Nucl.
Acids Res., 37(suppl 1):D555–559, January 2009.

90



[62] D. Urry et al. Elastin: a representative ideal protein elastomer. Phil. Trans. R.
Soc. Lond. B, 357:169–184, 2002.

[63] T. Weis-Fogh. A rubber-like protein in insect cuticle. J Exp Biol, 37(4):889–907,
December 1960.

[64] T. Weis-Fogh. Thermodynamic properties of resilin, a rubber-like protein. J Mol
Biol, 3:520–531, 1961.

[65] P. E. Wright and H. J. Dyson. Linking folding and binding. Curr Opin Struct
Biol, 19(1):31–38, Feb 2009.

[66] F. Zhang and R. Bruschweiler. Contact model for the prediction of NMR NH
order parameters in globular proteins. Journal of the American Chemical Society,
124(43):12654–12655, October 2002.

91


