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Abstract

The Korteweg- de Vries equation models unidirectional propagation of small finite amplitude

long waves in a non-dispersive medium. The well-posedness, that is the existence, uniqueness

of the solution, and continuous dependence on data, has been studied on unbounded,

periodic, and bounded domains.

This research focuses on an initial and boundary value problem (IBVP) for the Korteweg-

de Vries (KdV) equation posed on a bounded interval with general nonhomogeneous boundary

conditions. Using Kato smoothing properties of an associated linear problem and the

contraction mapping principle, the IBVP is shown to be locally well-posed given several

conditions on the parameters for the boundary conditions, in the L2-based Sobolev space

Hs(0, 1) for any s ≥ 0.
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CHAPTER 1

Introduction

The research presented here is concerned with the Korteweg-de Vries equation (KdV-

equation henceforth)

ut + ux + uux + uxxx = 0 (1.1)

posed as an initial- and boundary-value problem. In the conception pursued here, one asks

for a solution of (1.1) for (x, t) ∈ Ω× R+, where Ω = (a, b) is a finite interval in R, subject

to an initial condition

u(x, 0) = φ(x) (1.2)

and the following general boundary conditions at the ends of the interval (without loss of

generality, we choose (a, b) = (0, 1)):


B1u := α1uxx(0, t) + α2ux(0, t) + α3u(0, t) = h1(t),

B2u := β1uxx(1, t) + β2ux(1, t) + β3u(1, t) = h2(t),

B3u := ξ1ux(1, t) + ξ2u(1, t) = h3(t)

(1.3)

where αi, βi, ξj for i = 1, 2, 3 j = 1, 2 are real constants.

It is shown that this problem has a unique solution that depends continuously on initial

data in the L2-based Sobolev space Hs(0, 1) for any s ≥ 0 when given conditions on the

parameters for the boundary conditions are imposed.

The well-posedness will be proven using the approach developed by Bona, Sun and Zhang

in [8]. It relies heavily on the smoothing properties of the associated linear problem

 ut + uxxx = f, u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t)
(1.4)
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There are three types of smoothing associated with solving this problem (1.4); the

smoothing effects of the solution u with respect to the forcing f , the initial value φ and

the boundary data hj = 0, j = 1, 2, 3, respectively. It will be demonstrated that

(i) For φ ∈ L2(0, 1) with f ≡ 0, hj ≡ 0, j = 1, 2,, the solution u of (1.4) belongs to the

space C(R+;L2(0, 1)) ∩ L2(R+;H1(0, 1));

(ii) For f ∈ L1(R+;L2(0, 1)) with φ ≡ 0, hj ≡ 0, j = 1, 2, 3, the solution u of (1.4)

belongs to the space C(R+;L2(0, 1)) ∩ L2(R+;H1(0, 1));

(iii) For h1, h2 ∈ H
1
3
loc(R

+), h3 ∈ L2
loc(R

+) with f ≡ 0, φ ≡ 0, the solution u of (1.4)

belongs to the space C(R+;L2(0, 1)) ∩ L2(R+;H1(0, 1)).

With the aid of those smoothing properties of the associated linear system, the well-

posedness of the nonlinear IBVP (1.1)-(1.3) will be established by the contraction mapping

principle.

The organization of this paper is as follows: in chapter one, a brief history of the

development and renewed interest in the study of the Korteweg-de Vries equation is presented.

The second section details the derivation of the KdV equation. Chapter two is devoted to

relevant notation, definitions, and the motivation for this research. The second section of

the chapter is an overview from a purely mathematical perspective of the well-posedness of

initial and boundary value problems of the KdV equation on infinite, periodic and bounded

domains.

Chapters three and four contain the main results of the dissertation. The estimates for

the associated linear problem using homogeneous and nonhomogeneous generalized boundary

conditions are developed in chapter three. The well-posedness of the problem is considered

in chapter four. Conclusions and future research are presented in chapter five. The appendix

contains relevant theorems and a brief review of the semigroup theory used in chapters three

and four.
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1.1 History of Korteweg-de Vries Equation Introduction

1.1. History of Korteweg-de Vries Equation

During the nineteenth century, the study of water waves was of great interest due to

applications for naval architecture and engineering as well as for the knowledge of tides and

floods in regards to commercial and industrial growth. John Scott Russell (1808–1882), a

Scottish engineer, investigated the feasibility of steam-powered canal transport and, as part

of his research, studied the connection between resistance to motion and wave-generation. He

presented these findings to the British Association for the Advancement of Science (BAAS).

Due to this work the association appointed Russell and Scottish physicist, Sir John Robison,

to a ‘Committee on Waves’ in 1837. The report generated by the committee was published

in 1844 and contained observations of waves at sea, in rivers and canals, and in Russell’s

own wave tank constructed for experiments. Included in the report was the observation of a

‘Great Wave of Translation’, now termed a solitary wave. While observing a canal boat at

the Edinburgh-Glasgow canal, Russell noticed a wave moving in front of a canal boat.

I was observing the motion of a boat which was rapidly drawn along a narrow channel by

a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel

which it had put in motion; it accumulated round the prow of a vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the

form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or diminution of

speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or

nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot

and a half in height. Its height gradually diminished, and after a chase of one or two miles

I lost it in the windings of the channel. Such, in the month of August 1834, was my first

chance interview with that singular and beautiful phenomenon which I have called the Wave

of Translation.

In his observations of the ‘Wave of Translation’, both in the field and his experiments

conducted in his homemade wave tank, he noted that these waves were stable and could

3



1.1 History of Korteweg-de Vries Equation Introduction

travel over very large distances. This conflicted with the contemporary wave theory, as

normal waves would tend to either flatten out or rise and topple over. Russell also noted

that the speed of the solitary wave depended on the size of the wave, and its width depended

on the depth of water. Another curious observation was that these solitary waves never

merged. When two moved in the same direction, and the large one overtook the slower,

smaller wave ahead of it, a nonlinear interaction occurred, after which both waves returned

to their original shape. If one of these solitary waves was too big for a particular depth

of water, the wave split into two, one component with larger amplitude than the other.

Russell’s observations challenged the accepted theories of Newton and Bernoulli regarding

hydrodynamics. Mathematician Sir George Biddell Airy objected to the emphasis placed

by Russell on his ‘Great Wave’, arguing that it was just one consequence of linear shallow

water wave theory. Airy also raised doubts that the solitary wave could propagate without

change in form. George Gabriel Stokes submitted that the only permanent wave would

be sinusoidal, and the solitary wave would eventually dissipate. Despite these objections,

experimental results for the existence of the solitary wave remained strong, and it was Joseph

Boussinesq who first developed the mathematical theory to support Russell’s observations.

There were also several publications during the later part of the nineteenth century that

offered mathematical theory allowing for the observed solitary waves. In an 1871 publication,

Boussinesq considered long shallow waves in a canal with regular cross section and found a

partial differential equation that allowed for the existence of solitary waves. In his approach,

he used a fixed coordinate system and the assumption that the potential and its derivatives

with respect to x, y, and t vanish for x → ±∞. Independently, in 1876, Lord Rayleigh

also proposed an equation that allowed for solitary waves. He proposed a constant basic

velocity equal and opposite to the wave to eliminate the dependence on time. In addition,

he assumed the existence of a solitary wave vanishing at infinity. The issue was not truly

settled until 1895 when Korteweg and de Vries derived and published a model equation for

the motion of waves on the surface of a layer of fluid above a flat bottom:

4
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∂η

∂t
=

3

2

√
g

h

∂

∂x

(
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂x2

)
,

where η is the surface elevation above the equilibrium level h, α is small arbitrary constant

related to the uniform motion of the liquid, g is the gravitational acceleration, and

σ = h3/3 − Th/ρg with surface capillary tension T and density ρ. This equation is known

as the Korteweg-de Vries equation (KdV) equation.

In the paper, Korteweg and de Vries used an independent approach to develop their

theory of the behavior of long waves in shallow water. Their approach used a coordinate

system moving with the wave and did not assume that the potential and its derivatives

vanish, giving a new free surface condition.

Re-scaling and translating the dependent and independent variables to eliminate the

physical constants using the transformations

t′ ≡ 1

2

√
g

hσ
t, x′ ≡ − x√

σ
, u ≡ −1

2
η − 1

3
α,

The KdV equation becomes

ut + 6uux + uxxx = 0.

This model is known to have the solitary wave solution and describes the phenomenon

observed by Russell. After the KdV equation was presented in 1865, the solitary wave was

not considered significant. It was a small aspect of the mathematical structure of nonlinear

wave theory. The dispute had been settled, and the equation and research in the area faded.

However, within the next 50 years, interest in the equation would become much greater.

It was not until 1965 that the full significance of the solitary wave and its generalization

would be revealed. Palais [57] describes the events leading to the renewed interest in his

1997 paper. In the early 1950’s, Enrico Fermi, John Pasta, and Stanislaw Ulam (FPU) [32]

were exploring the heat-transfer in crystal lattices with nonlinear interactions and made an

interesting discovery. They wanted to verify numerically the conjecture that if a mechanical
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system has many degrees of freedom and is close to a stable equilibrium, a generic nonlinear

interaction would cause the energy to become equidistributed among the normal modes

of the corresponding linearized system. The computer simulations surprised them because

the system showed very little tendency towards equidistribution of energy. Ten years later

Zabuski and Kruskal [71], at the Plasma Physics Laboratory in Princeton University, decided

to re-investigate the problem. They demonstrated that certain solutions of the FPU Lattice

Equations could be described in terms of solutions of the KdV equation. Zabusky and

Kruskal coined the term soliton to describe these particle-like solitary waves. In fact, it was

quickly recognized that the soliton was a vital new feature of nonlinear dynamics. The KdV

equation established a mathematical basis for the study of the phenomena.

Understanding nonlinear wave equations that had soliton solutions became a primary

focus for research in both pure and applied mathematics. Many equations exhibit solitonic

behavior, examples include the Schrödinger equation, the sine-Gordon, Born-Infeld, and

the Boussinesq equation. The KdV equation has been found to have applications in the

studies of plasma physics, anharmonic lattices, elastic rods, shock waves, nonlinear optics,

superconductivity, blood flow in the body, and protein folding. Several far reaching results

have been discovered while investigating the KdV equation. In 1967, Gardner, Greene,

Kruskal and Miura [37] devised a method for exact solution of the initial value problem

of the KdV equation through a sequence of linear problems. This method, called Inverse

Scattering Transform, is known as the nonlinear Fourier transform. In 1968, Peter Lax

[55] made a fundamental step forward by providing a mathematical framework to apply the

inverse-scattering theory to initial-value problems for partial differential equations. Research

regarding the behavior of the KdV equation solutions has yielded many real world applications

and methods applicable to the study of ordinary and partial differential equations.

6
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1.2. Derivation of the Korteweg-de Vries Equation

From conservation laws we will derive the KdV equation. First recall that the conservation

of mass is given by

∂tρ+∇ · (ρ~v) = 0 (1.5)

where ρ is the density, and ~v is the velocity of the fluid. The conservation of momentum

is given by

ρ(∂t + ~v · ∇)~v = −∇P + ~f (1.6)

where P is the internal pressure and ~f is the external force density.

We wish to model long waves in a shallow canal with rectangular cross section, where

the length of the channel is far greater than the width. The comparison between the length

and width allow the flow to be considered one dimensional. Let the x-direction be in the

direction of flow (the length of the canal) and y-axis be oriented vertically. Friction for the

fluid and along the boundaries of the canal will also be neglected, and the flow is assumed to

have no viscosity (called inviscid flow). In order to derive the model we will assume that the

fluid is incompressible and homogeneous, therefore the density is constant. We then have

ρt = 0 and ∇ρ = 0 (1.7)

The vorticity of a fluid is the circulation per unit area at a point in the fluid flow, the

curl of the fluid velocity. We can assume that the flow being considered is rotation free. For

irrotational flow we have

∇× ~v = 0, (1.8)

In addition we will look at the velocity field as the gradient of a scalar function called

the velocity potential, φ, that is ~v = ∇φ ≡ u~x + v~y. Combining the potential function and

7
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the conditions given by incompressible and irrotational flow we can rewrite the conservation

of mass equation (1.5)

∇ · ~v = ∇2φ = ∆φ = 0 (1.9)

For the momentum equation first recall that

~v × (∇× ~v) = ∇
(1

2
~v · ~v

)
− ~v · ∇~v

Using this with the fact that the fluid is rotation free (1.8) and the velocity potential we

have that

~v · ∇~v = ∇
(1

2
∇φ · ∇φ

)
We will also assume that the external force in the momentum equation is gravity acting

in the negative y-direction, ~f = ∇(−gy). Assuming that φ = φ(x, y, t) is smooth enough,

the momentum equation (1.6) becomes

∇
(
φt +

1

2
∇φ · ∇φ+

P

ρ
+ gy

)
= 0

therefore

φt +
1

2
∇φ · ∇φ+

P

ρ
+ gy + χ(t) = 0 (1.10)

Suppose that the depth of water in the channel at rest is given by y = h. The bottom of

the channel is rigid so the water cannot move it, therefore we have the boundary condition

φy

∣∣∣
(x,0,t)

= 0. Also, assume that the amplitude of the traveling wave is given by η = η(x, t).

We then have at the free surface that y = h + η(x, t). Using the velocity potential φ, we

have at the surface

v
∣∣∣
surface

=
dy

dt

∣∣∣
surface

= ηt + ηx
dx

dt

∣∣∣
surface

8
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which gives the kinematic condition

φy = ηt + φxηx at y = h+ η(x, t) (1.11)

Next consider the surface tension of the water. Let T represent the surface tension,

looking at the force balance over a small element of the free surface gives

pfδs = patmδs+ 2Tsin(δθ/2)

where pf is the pressure of the fluid at the surface, δs is the arc length associated with

the angle δθ, and patm is the atmospheric pressure at the surface. Since δs ∼ Rδθ where R

is the radius of curvature, we have

pf − patm =
T

R

We have the following estimate involving the curvature

1

R
= −∂

2ys

∂x2

where ys = h+ η(x, t) is the surface of the water. Therefore we find that

pf − patm = −T ∂
2η

∂x2

Using this in equation (1.10) for P = pf − patm at the surface we find

φt +
1

2
∇φ · ∇φ+ gη + χ(t) =

T

ρ

∂2η

∂x2
(1.12)

which can be rewritten

φt+
1

2
(φ2

x+φ2
y)+gη+χ(t) = φt+

1

2
(u2+v2)+gη+χ(t) =

T

ρ

∂2η

∂x2
at y = h+η(x, t) (1.13)

9
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This is where an important difference occurs in the approach of Korteweg and de Vries.

Since Boussinesq assumed that f and its derivatives vanish for x → ±∞, the arbitrary

function χ(t) can be eliminated from the equation. Korteweg and de Vries do not make this

assumption, and the function χ(t) is eliminated by taking the derivative of the equation with

respect to x. Differentiating (1.13) along the channel flow, that is with respect to x, and

evaluating at the surface, we find the following free surface condition

φxt + φxφxx + φyφxy + gηx −
T

ρ

∂3η

∂x3
= ut + uux + vvx + gηx −

T

ρ

∂3η

∂x3
= 0 (1.14)

Next we consider φ as a power series in y,

φ =
∞∑

n=0

ynφn(x, t)

then substitute this into (1.9),

∆φ = φxx + φyy = 0(∑∞
n=0 y

nφn

)
xx

+
(∑∞

n=0 y
nφn

)
yy

= 0∑∞
n=0 y

nφn,xx +
∑∞

n=2 y
n−2(n)(n− 2)φn = 0∑∞

n=0 y
n{φn,xx + (n+ 2)(n+ 1)φn+2} = 0

φn,xx + (n+ 2)(n+ 1)φn+2 = 0

(1.15)

we also have φy =
∑∞

n=1 ny
n−1φn(x, t). Recall that φy

∣∣∣
(x,0,t)

= 0, so we have that φ1 = 0.

Using this with (1.15), we find that the terms with odd values of n vanish. Letting

f ≡ φ0(x, t) we now have

φ = f − y2

2!
fxx +

y4

4!
fxxxx −

y6

6!
f (6) + · · · =

∞∑
n=0

(−1)ny2n

(2n)!
f (2n) (1.16)

where f (2n) is the 2n-derivative of f with respect to x.

10
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Therefore we have

u = φx = fx − y2

2!
fxxx + y4

4!
f (5) − · · ·

v = φy = −yfxx + y3

3!
fxxxx + · · ·

(1.17)

Using (1.17), in the free surface condition (1.14) and the kinematic condition (1.11) we

can develop approximations for the waves. For the approximations we will also use that

y = h + η(x, t) and f(x, t) = φ0(x, t) = q0 + β(x, t) where q0 is an undetermined constant

velocity. Also note that
√
gh is the approximate linear, non-dispersive wave speed for small

amplitude disturbances. The first order approximation for small η and for a wave progressing

in the positive x-direction is the expression

η = η(x− (q0 +
√
gh)t)

If we let q0 = −
√
gh, then we have

∂η

∂t
= 0,

∂β

∂t
= 0

and

∂β

∂x
= −q0

h

∂η

∂x
= − g

q0

∂η

∂x

therefore

β = − g

q0
(η + a)

where a is an undetermined constant. The next approximation is obtained by

f(x, t) = q0 −
g

q0
(η + α+ γ(x, t))

with γ small in comparison with η and a.

11
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Substitution into the free surface condition (1.14) and the kinematic condition (1.11)

gives two equations for η and γ. We can then rewrite into a single equation eliminating γ to

find

∂η

∂t
=

3

2

g

q0

∂

∂x

(1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂x2

)
(1.18)

with σ = 1
3
h3 − Th

ρg
. Consider the transformation from a fixed coordinate system (x, y)

to a moving frame where

ξ = x−
(√

gh− α

√
g

h

)
t, τ = t (1.19)

Applying this to (1.18) we have the Korteweg-de Vries equation as described in section

one

∂η

∂t
=

3

2

√
g

h

∂

∂x

(
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂x2

)
(1.20)

If we view this over the entire real line, this can be rewritten using the following transformations

t′ ≡ 1

2

√
g

hσ
t, x′ ≡ − x√

σ
, u ≡ −1

2
η − 1

3
α (1.21)

We then have(leaving off the primes),

ut − 6uux + uxxx = 0 (1.22)

The factor of six is left in for reasons of complete integrability, but can easily be scaled

out. This transform is not available on the half line or the finite domain, so the drift term

(derived from taking ∂
∂x

(
2
3
αη
)
) would not be eliminated.

12
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In general, the family of KdV equations is given by

ut + uxxx + (P (u))x = 0 (1.23)

P (u) is a polynomial in terms of u. When P (u) = cuk+1, then the equation is referred to

as generalized KdV of order k. The original KdV equation is the generalized KdV of order

one.

13





CHAPTER 2

Problems and Motivation

2.1. Notation and Definitions

Definition 2.1. If X is a Banach space, the continuous mappings w : [a, b] → X,

equipped with the maximum norm

max
a≤t≤b

||w(t)||X ,

is again a Banach space denoted by C(a, b;X).

Definition 2.2. Let X be a Banach space, 1 ≤ p ≤ ∞ and −∞ ≤ a < b ≤ ∞. Then

Lp(a, b;X) is a class of Lp functions from (a, b) into X which is a Banach space with the

norm

||f ||Lp(a,b;X) =

(∫ b

a

|f(t)|pXdt
) 1

p

.

Let Hs(R), where s ≥ 0, be the Sobolev-class of L2-functions whose first s (s is not

necessarily an integer) derivatives belongs to L2. Then for f ∈ Hs(R)

‖f‖Hs(R) =

(∫ ∞

−∞
(1 + ξ2)s|f̂(ξ)|2dξ

) 1
2

, (2.1)

is the norm on Hs(R). Given the Parseval formula,

∫ ∞

−∞
|f(t)|2dt =

∫ ∞

−∞
|f̂(ξ)|2dξ

We have that for s = 0, H0(R) = L2(R).

In addition the norm on Hs(R) is equivalent to the usual norm
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(
s∑

j=0

‖f (j)(x)‖2
L2

) 1
2

,

when s is an positive integer.

Definition 2.3. Let B(X, Y ) denote the set of all bounded linear operators from X and

Y . The associated norm is denoted by ||·||X,Y . The domain of an operator A is written as

D(A).

The following are useful spaces for this research

Definition 2.4. For any T > 0 and s ≥ 0 define the space,

Xs,T = Hs(0, 1)×H(s+1)/3(0, T )×H(s+1)/3(0, T )×Hs/3(0, T )

with norm

‖(φ,~h)‖Xs,T
:=
(
‖φ‖2

Hs(0,1) + ‖h1‖2
H(s+1)/3(0,T ) + ‖h2‖2

H(s+1)/3(0,T ) + ‖h3‖2
Hs/3(0,T )

) 1
2

Definition 2.5. For s ≥ 0, and T > 0, let

Hs,T = H(s+1)/3(0, T )×H(s+1)/3(0, T )×Hs/3(0, T )

If T = ∞, denote Hs,T by Hs. The norm on the space Hs,T is defined as

‖~h‖Hs,T
≡
(
‖h1‖2

H(s+1)/3(0,T ) + ‖h2‖2
H(s+1)/3(0,T ) + ‖h3‖2

Hs/3(0,T )

)1/2

Definition 2.6. Let Ys,T be the space of functions v(x, t) such that v ∈ C([0, T ];Hs(0, 1))∩

L2([0, T ];Hs+1(0, 1)) with vx ∈ C([0, 1];L2(0, T )) The norm for v ∈ Ys,T is defined as

‖v‖Ys,T
:=
(
‖v‖2

C([0,T ];Hs(0,1)) + ‖v‖2
L2([0,T ];Hs+1(0,1)

) 1
2

16
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In addition , let

Ys,T = Ys,T ∩Hs/3(0, T );H1(0, 1))

with its norm defined as

‖v‖Ys,T
:=
(
‖v‖2

Ys,T
+ ‖v‖2

Hs/3(0,T ;H1(0,1))

) 1
2

Note that if u is a C∞-smooth solution of the IBVP(1.1)-(1.3) then the initial data

u(x, 0) = φ(x) and its boundary values hj(t), j = 1, 2, 3 must satisfy the following compatibility

conditions:

B1φk = h
(k)
1 (0), B2φk = h

(k)
2 (0), B3φk = h

(k)
3 (0)

for k = 0, 1, . . ., where h
(k)
j (t) is the k−th order derivative of hj and φ0(x) = φ(x),

φk(x) = −(φ′′′k−1(x)− φ′k−1(x) + Σk−1
j=0(φj(x)φk−j−1(x))

′).
(2.2)

Definition 2.7 (Compatibility Conditions). Let s ≥ 0 be given. For any φ ∈ Hs(0, 1)

and

~h = (h1, h2, h3) ∈ H
s+1
3

loc (R+)×H
s+1
3

loc (R+)×H
s
3
loc(R

+),

we say that (φ,~h) is s−compatible if

B1(φk) = h
(k)
1 (0), B2(φk) = h

(k)
2 (0), B3(φk) = h

(k)
3 (0) in the space Hs−3k(0, 1) (2.3)

for k = 0, 1, 2, · · · , [ s
3
]− 1.

Note here when we say that af ′′(0) + bf ′(0) + cf(0) = 0 in the space Hµ(0, 1) with

f ∈ Hµ(0, 1) it means for real µ ≥ 0, a, b, and c,
cf(0) = 0 if 1

2
< s ≤ 3

2
;

bf ′(0) + cf(0) = 0 if 3
2
< s ≤ 5

2
;

af ′′(0) + bf ′(0) + cf(0) = 0 if s > 5
2
.

17
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2.2. Well-Posedness of the Boundary Value Problem

The modern definition of a well-posed problem is based on a classification proposed by

J. Hadamard. He proposed that for mathematical models of physical phenomena to be well-

posed, the problem should have the following properties: A solution exists, the solution is

unique, and the solution depends continuously on the data in some topology. The solutions

can exist in the classical (or strong) sense or in the weak (or mild) sense. Existence of

a solution may also only be local, over a time interval to some time T, or there a global

solution as T →∞. The remainder of this section will review the research conducted on the

well-posedness of the initial value problem (IVP) for the KdV equation posed on the real

line or periodic domain, and the IBVP problem posed on the half line and bounded domain.

2.2.1. Infinite or Periodic Domain. The first natural problem to consider for the

KdV equation is the Cauchy problem, in which the initial position u(x, 0) is specified.

ut + ux + uux + uxxx = 0, u(x, 0) = φ(x), x ∈ Ω, t ∈ R+ (2.4)

The solution of (2.4) depends on (x, t) ∈ Ω × R+. The space Ω for the initial value

problem is either the real line R, where there is the assumption of some decay at infinity, or

on a periodic domain S, where the initial data φ is periodic.

The study of the Cauchy problem where Ω = R, was initiated by Gardner et al.

[37] and Lax [55] with the development of inverse scattering theory. Later this problem

was investigated by Sjöberg [66] and Temam [68] using new methods for the analysis of

nonlinear partial differential equations. The well-posedness where φ lies in an L2(R)-based

Sobolev space Hs(R) has received much attention. Various smoothing properties have been

discovered in researching the pure initial value problem (2.4) that enable one to prove that

it is (analytically) well-posed in the space Hs(R). A brief review follows.

Bona and Smith [5] showed the Cauchy problem

18
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 ut + uux + uxxx = 0, x ∈ R, t ∈ R

u(x, 0) = φ(x)

was well-posed in the space Hs(R) for s ≥ 2 using a regularization approach. In 1979

this was improved by T. Kato [45] to s > 3
2

using a semingroup approach developed by Kato

for abstract evolution equations in Banach spaces in the late 1960’s.

Remark 2.8. The use of semigroups will play an important role in the development of

the research presented in this dissertation. More information regarding semigroup theory is

located in the appendix.

Using a contraction mapping approach, Kening, Ponce and Vega ([47],[48], and [49])

improved the results to s > 3
4
. It was thought that this would be a sharp result for this

approach, however Bourgain [15], used the contraction mapping principle and what is now

termed the Bourgain space

Xs,b = {f ∈ L2(R;Hs(R)); ‖f‖Xs,b
:= Λ(f) <∞},

where

Λ(f) =

(∫ ∞

−∞

∫ ∞

−∞
(1 + |ξ|)2s(1 + |τ − ξ3|)2b|f̂(ξ, τ)|2dξdτ

) 1
2

to improve the value to s ≥ 0. This led to further research and smoothing properties

shown by Kenig et al. ([50], [52]) that show that the Cauchy problem for Ω = R is well-posed

for s > −3
4
.

On the periodic domain S, (e.g., the unit circle in the plane), the well-posedness has also

been well researched using similar methods. In 1979 Kato [45] proved that the problem was

well-posed for s > 3
2
. Bourgain [15] improved this to s ≥ 0 in 1993. The problem (2.4) on

the periodic domain has been shown to globally well-posed in Hs(S) for s ≥ −1, in the real

case by Kappeler and Topalov [44]. For more details on the IVP for both R and S domains

19
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please see [4], [5], [14], [15], [26], [40], [41], [45], [46], [48], [49], [50], [51], [52], [55], [56], [61],

[62], [63], [65], [67], [68], [72], [73], and [74].

2.2.2. Half Line. For the one point boundary value problem of the KdV equation, or

the KdV equation posed on the half line, the corresponding solution is the wave propagating

to right. The problem is as follows,

 ut + ux + uux + uxxx = 0, u(x, 0) = φ(x),

u(0, t) = h(t)
(2.5)

where x ∈ R+ and t < ∞. This model with φ(x) ≡ 0 corresponds to experimental data

with the waves generated by a wave-maker at the left-hand end of the channel and monitored

as they propagate down the channel, with the experiment ceasing as soon as the waves reach

the other end to leave out reflected components ([3], [40], [41], and [70]). Therefore the KdV

equation no longer models the behavior of the wave once the incoming wave encounters the

boundary reflections. Another assumption for the half line domain problem is that the zero

boundary condition holds as x→ +∞. The study of its well-posedness was initiated by Ton

in [69], where existence and uniqueness were established assuming that the initial data φ is

smooth and the boundary data, h ≡ 0. The first well-posedness result for the IBVP (2.5) was

presented by Bona and Winther ([12],[13]); they showed that the IBVP (2.5) is (globally)

well-posed in the space H3k+1(R+) with (φ, h) ∈ H3k+1(R+) × Hk+1
loc (R+) for k = 1, 2, · · ·

There have been many works on the well-posedness of (2.5) since then. The reader is referred

to [2], [6], [7], [9], [10], [25], [28],[29], [30], [31], [33], [34], [35], [36], [43] and the references

therein for an overall literature review. In particular Bona, Sun and Zhang in [6] extended

the theory of Kenig, Ponce and Vega ([48],[51]) on the initial value problem (IVP) for the

KdV equation posed on the whole line R to the IBVP (2.5), showing that it is well-posed in

the space Hs(R+)×H
(s+1)/3
loc (R+) for s > 3/4.

In [25], Colliander and Kenig demonstrated how the powerful theory developed by Kenig,

Ponce and Vega, Bourgain and others for the pure initial value problems for nonlinear
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dispersive wave equations can be adapted to deal with initial boundary value problems for the

same equations. They showed in [25] that for a given s−compatible pair (φ, h) ∈ Hs(R+)×

H
(s+1)/3
loc (R+) with 0 ≤ s ≤ 1, s 6= 1

2
, the IBVP (2.5) admits a solution u ∈ C([0, T ];Hs(R+))

which depends continuously on (φ, h). This result was strengthened later by Holmer [43]

to include the case −3/4 < s < 0. In a recent paper [10], Bona, Sun and Zhang showed

that the IBVP (2.5) possesses a strong global smoothing property that comes about because

of the dissipative mechanism introduced through imposition of the boundary condition at

x = 0. With the aid of this boundary smoothing property and the use of restricted Bourgain

spaces, they resolved the uniqueness issue left open in [25] and showed that the IBVP (2.5)

is unconditionally well-posed in the space Hs(R+) × Hs+13loc(R+) for any s > −3
4
. More

recently, they showed that the (2.5) well-posed in a weighted Sobolev space Hs
ν(R

+) for any

s > −1 where

Hs
ν(R

+) = {f ∈ Hs((R+); eνf ∈ Hs(R+)}.

2.2.3. Bounded Domain. Perhaps the most realistic application of the KdV equation

is the two point boundary value problem. As mentioned earlier the KdV equation is used

to model unidirectional propagation of small finite amplitude long waves in canals, and in

most physical applications, fluid dynamical experiments, and numerical computations, the

region is finite. Therefore it is realistic to consider the KdV equation in a bounded domain,

namely an interval in R. Traditionally the problem is viewed in one of two ways


ut + ux + uux + uxxx = 0, 0 < x < 1, t > 0

u(x, 0) = φ(x),

u(0, t) = h1(t), u(1, t) = h2(t), ux(1, t) = h3(t)

(2.6)


ut + ux + uux − uxxx = 0, 0 < x < 1, t > 0

u(x, 0) = φ(x),

u(0, t) = h1(t), u(1, t) = h2(t), ux(0, t) = h3(t)

(2.7)
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the only difference being the direction of the wave. For our discussions we will refer to

problem (2.6).

Bubnov ([20], [21]) studied the general two point boundary value problem

 ut + uux + uxxx = f, x ∈ (0, 1), t ≥ 0,

u(x, 0) = 0,
(2.8)

with boundary conditions


α1uxx(0, t) + α2ux(0, t) + α3u(0, t) = 0,

β1uxx(1, t) + β2ux(1, t) + β3u(1, t) = 0,

ξ1ux(1, t) + ξ2u(1, t) = 0

(2.9)

where αi, βi, ξj for i = 1, 2, 3 j = 1, 2 are real constants. In order to ensure that the energy

would decay and that there would be three distinct boundary conditions, Bubnov developed

the following conditions on the parameters αi, βi, ξj for i = 1, 2, 3 j = 1, 2.



(i.) If α1β1ξ1 6= 0, then F1 > 0, F2 > 0

(ii.) If β1 6= 0, ξ1 6= 0, α1 = 0, then F2 > 0, α2 = 0, α3 6= 0

(iii.) If β1 = 0, ξ1 6= 0, α1 6= 0, then F1 > 0, F3 6= 0

(iv.) If α1 = β1 = 0, ξ1 6= 0, then F3 6= 0, α2 = 0, α3 6= 0

(v.) If β1 = 0, α1 6= 0, ξ1 = 0, then F1 > 0, F3 6= 0

(vi.) If α1 = β1 = ξ1 = 0, then F3 6= 0, α2 = 0, α3 6= 0

(2.10)

where F1 = α3

α1
− α2

2

2α2
1
, F2 = β2ξ2

β1ξ1
− β3

β1
− ξ2

2

2ξ1
2 and F3 = β2ξ2 − β3ξ1.

Given on of these conditions held, Bubnov proved the problem was well-posed.

Theorem 2.9 (Bubnov). Assume that one of the conditions of (3.2) is satisfied. Let

T > 0 be given and

φ ≡ 0, hj ≡ 0 for j = 1, 2, 3.
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For any f ∈ H1([0, T ];L2(0, 1)), there exists a T ∗ > 0 depending on ||f ||H1([0,T ];L2(0,1)) such

that (2.8)-(2.9) admits a unique solution solution

u ∈ L2([0, T ∗];H3(0, 1)), ut ∈ L∞([0, T ∗];L2(0, 1)) ∩ L2([0, T ∗];H1(0, 1)).

In proving the theorem Bubnov used the linear form of the partial differential equation

and considered the following equation along with the conditions (3.2):

ut + uxxx + νuux = F, 0 ≤ ν ≤ 1

Defining the set A = ν ∈ [0, 1] as the values for which the equation had a solution, he

proved that the set A was closed using the linear approximation and that the set was open

using Shauder’s principle.

Zhang [72] considered boundary control of KdV equation posed on a finite interval (0, 1)

with the Dirichlet boundary conditions
ut + uux + uxxx = 0, x ∈ (0, 1), t ≥ 0,

u(x, 0) = φ(x),

u(0, t) = 0, u(1, t) = 0, ux(1, t) = 0,

(2.11)

He showed that the IBVP (2.11) is globally well-posed in the space H3k+1(0, 1) for k =

0, 1, . . . .

Colin and Ghidaglia [23] considered the following initial-boundary problem
ut + uux + uxxx = 0, x ∈ (0, 1), t ≥ 0,

u(x, 0) = φ(x),

u(0, t) = h1(t), ux(1, t) = h2(t), uxx(1, t) = h3(t)

(2.12)

and showed that the IBVP (2.12) is locally well-posed in the space H1(0, 1) with the initial

data φ ∈ H1(0, 1) and boundary data from the product space C1[0, T ]×C1[0, T )×C1[0, T ).
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Bona, Sun and Zhang [8], considered the following initial-boundary value problem with

nonhomogeneous boundary conditions
ut + ux + uux + uxxx = 0, x ∈ (0, 1), t ≥ 0,

u(x, 0) = φ(x),

u(0, t) = h1(t), u(1, t) = h2(t), ux(1, t) = h3(t).

(2.13)

They proved using smoothing properties of the associated linear problem, various linear

estimates, the contraction mapping principle, and finding a priori estimates for the smooth

solution of (2.13) as well as nonlinear interpolation theory. that the IBVP (2.13) is locally

well-posed in the space Hs(0, 1) for any s ≥ 0 with s−compatible φ ∈ Hs(0, 1), h1, h2 ∈

H
s+1
3

loc (R+) and h3 ∈ H
s
3
loc(R

+).

This well-posedness result in Hs(0, 1) was extended later to the case of s > −3
4

by Homler

[43], and then by Bona, Sun and Zhang [11], to reach s > −1.

In this dissertation, we continue Bubnov’s work to study the general two-point boundary

value problem with nonhomogeneous boundary conditions for its well-posedness in the space

Hs(0, 1).

2.3. Statement of Results

The focus of this dissertation is the well-posedness of

ut + ux + uux + uxxx = 0 (2.14)

subject to an initial condition

u(x, 0) = φ(x) (2.15)

and the following general boundary conditions at the ends of the interval (without loss of

generality, we choose (a, b) = (0, 1)):
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B1u := α1uxx(0, t) + α2ux(0, t) + α3u(0, t) = h1(t),

B2u := β1uxx(1, t) + β2ux(1, t) + β3u(1, t) = h2(t),

B3u := ξ1ux(1, t) + ξ2u(1, t) = h3(t)

(2.16)

where αi, βi, ξj for i = 1, 2, 3 j = 1, 2 are real constants.

The IBVP (2.14)-(2.16) will be considered with the following assumptions imposed on

the coefficients of the boundary conditions:



(a) If α1β1ξ1 6= 0, then F1 ≥ 0, F2 ≥ 0

(b) If β1 6= 0, ξ1 6= 0, α1 = 0 then F2 ≥ 0, α2 = 0, α3 6= 0

(c) If β1 = 0, ξ1 6= 0, α1 6= 0, then F1 ≥ 0, F3 6= 0

(d) If β1 = 0, α1 6= 0, ξ1 = 0, then F1 ≥ 0, F3 6= 0

(2.17)

where,

F1 =
α3

α1

− α2
2

2α2
1

, F2 =
β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2 and F3 = β2ξ2 − β3ξ1.

Theorem 2.10 (Well-Posedness). Assume one of the conditions of (2.17) is satisfied.

Let T > 0, s ≥ 0 and η > 0 be given. For any s−compatible

(φ,~h) ∈ Hs(0, 1)×H
s+1
3 (0, T )×H

s+1
3 (0, T )×H

s
3 (0, T ))

with

‖(φ,~h)‖
Hs(0,1)×H

s+1
3 (0,T )×H

s+1
3 (0,T )×H

s
3 (0,T )

≤ η,

there exists a T ∗ ∈ (0, T ] depending only on η such that the IBVP (2.14)-(2.16) admits a

unique solution

u ∈ C([0, T ∗];Hs(0, 1)) ∩ L2(0, T ∗;Hs+1(0, 1)).

Moreover, the solution map is real analytic in the corresponding spaces.
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CHAPTER 3

Linear Estimates

In this chapter the following initial boundary value problem of the linear KdV equation

posed on the finite interval (0, 1) is considered

 ut + uxxx = f, u(x, 0) = φ(x), x ∈ (0, 1), t ≥ 0,

B1u = h1(t), B2u = h2(t), B3u = h3(t)
(3.1)

for various estimates and smoothing properties of its solutions.

In continuing Bubnov’s work to study the general two-point boundary value problem with

nonhomogeneous boundary conditions for its well-posedness in the space Hs(0, 1), consider

the assumptions Bubnov [20] imposed on the parameters for the boundary conditions (mentioned

in section 2.3 of chapter two), namely,



(i.) If α1β1ξ1 6= 0, then F1 > 0, F2 > 0

(ii.) If β1 6= 0, ξ1 6= 0, α1 = 0, then F2 > 0, α2 = 0, α3 6= 0

(iii.) If β1 = 0, ξ1 6= 0, α1 6= 0, then F1 > 0, F3 6= 0

(iv.) If α1 = β1 = 0, ξ1 6= 0, then F3 6= 0, α2 = 0, α3 6= 0

(v.) If β1 = 0, α1 6= 0, ξ1 = 0, then F1 > 0, F3 6= 0

(vi.) If α1 = β1 = ξ1 = 0, then F3 6= 0, α2 = 0, α3 6= 0

(3.2)

where,

F1 =
α3

α1

− α2
2

2α2
1

, F2 =
β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2 and F3 = β2ξ2 − β3ξ1.

For this research the IBVP (3.1) will be considered under the following assumptions

imposed on the coefficients of the boundary conditions



Linear Estimates



(a) If α1β1ξ1 6= 0, then F1 ≥ 0, F2 ≥ 0

(b) If β1 6= 0, ξ1 6= 0, α1 = 0 then F2 ≥ 0, α2 = 0, α3 6= 0

(c) If β1 = 0, ξ1 6= 0, α1 6= 0, then F1 ≥ 0, F3 6= 0

(d) If β1 = 0, α1 6= 0, ξ1 = 0, then F1 ≥ 0, F3 6= 0

(3.3)

where,

F1 =
α3

α1

− α2
2

2α2
1

, F2 =
β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2 and F3 = β2ξ2 − β3ξ1.

The difference in the inequalities for (3.2) to (3.3) is due the difference in the equation

under consideration. Bubnov considered ut + uxxx + uux = f with generalized homogeneous

boundary conditions, however in the research presented here the equation under consideration

is ut + uxxx = f with nonhomogeneous boundary conditions. In addition the cases (iv) and

(vi) presented in (3.2) are shown below to be equivalent to the Dirichlet boundary conditions

for the linear partial differential equation studied for this research.

First consider case (iv), where we have α1 = β1 = 0, ξ1 6= 0. This reduces the boundary

conditions of (3.1) to

α2gx(0) = h1(t)− α3g(0), gx(1) =
1

β2

h2(t)−
β3

β2

g(1), gx(1) =
1

ξ1
h3(t)−

ξ2
ξ1
g(1)

In this case we also have F3 6= 0 and α2 6= 0 and α3 = 0, so the boundary conditions can

be rewritten further resulting in

gx(0) =
1

α2

h1(t), g(1) =
1

β2ξ2 − β3ξ1
(ξ1h2(t) + β2h3(t)), gx(1) =

1

ξ1
h3(t)−

ξ2
ξ1
g(1)

Now consider case (vi), we have α1 = β1 = ξ1 = 0 which gives the following boundary

conditions

α2gx(0) = h1(t)− α3g(0), β2gx(1) = h2(t)− β3g(1), g(1) = h3(t)
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For (vi) we also have that F3 6= 0 and α2 6= 0 and α3 = 0, so the boundary conditions

become

gx(0) =
1

α2

h1(t), gx(1) =
1

β2

h2(t)−
β3

β2

g(1), g(1) = h3(t)

Therefore given cases (iv) and (vi) the boundary conditions can be rewritten in the

following form:

g(0, t) = f1(t), g(1, t) = f2(t), gx(1, t) = f3(t)

whose corresponding well-posedness in Hs(0, 1) has been thoroughly studied as reviewed

in chapter two.

The IBVP (3.1) will broken up for analysis. First the linear problem with homogeneous

boundary conditions is considered, followed by the nonhomogeneous boundary value problem.

3.1. Homogeneous Boundary Conditions

Consideration in this section is given to the following problem:

 ut + uxxx = f, u(x, 0) = φ(x), x ∈ (0, 1), t ≥ 0,

B1u = 0, B2u = 0, B3u = 0.
(3.4)

Let A be the linear operator defined in the space L2(0, 1) by

Ag = −gxxx

with domain

D(A) = {g ∈ H3(0, 1)| B1g = 0, B2g = 0 and B3g = 0}

Then we also have

A∗ = −A
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with D(A) = D(A∗).

Lemma 3.1. Assume that one of the conditions from (3.3) is satisfied, both operator A

and A∗ are dissipative, i.e., for any g ∈ D(A),

〈
Au, u

〉
L2(0,1)

≤ 0,
〈
A∗v, v

〉
L2(0,1)

≤ 0.

Proof. Consider g ∈ D(A) in
〈
Ag, g

〉
L2(0,1)

using integration by parts we have,

〈
Ag, g

〉
L2(0,1)

= −
1∫

0

gxxxgdx

= −gxxg
∣∣∣1
0
+

1

2
(gx)

2
∣∣∣1
0

= −gxx(1)g(1) + gxx(0)g(0) +
1

2
g2

x(1)−
1

2
g2

x(0)

(3.5)

Suppose case (a) from (3.3) is satisfied. That is, for the given boundary conditions

α1β1ξ1 6= 0. We can then rewrite the boundary conditions as

gxx(0) =
−α2

α1

gx(0)− α3

α1

g(0), gxx(1) =
(β2ξ2
β1ξ1

− β3

β1

)
g(1), gx(1) =

−ξ2
ξ1

g(1) (3.6)

Using the rewritten boundary conditions and Young’s inequality where

− α2

α1

gx(0)g(0) ≤
1

2
g2

x(0) +
α2

2

2α1
2
g2(0) (3.7)

we find that〈
Ag, g

〉
L2(0,1)

= −gxx(1)g(1) + gxx(0)g(0) +
1

2
g2

x(1)−
1

2
g2

x(0)

= −
(β2ξ2
β1ξ1

− β3

β1

)
g2(1)− α2

α1

gx(0)g(0)−
α3

α1

g2(0) +
ξ2

2

2ξ1
2 g

2(1)− 1

2
gx

2(0)

= −
(β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2

)
g2(1)− α2

α1

gx(0)g(0)−
α3

α1

g2(0)

≤ −F2g
2(1)− F1g

2(0) ≤ 0
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as F1 ≥ 0 and F2 ≥ 0. Therefore the operator A is dissipative.

Next we need to consider the adjoint operator A∗g = gxxx. Using integration by parts it

can be determined that,

〈
Ag, v

〉
L2(0,1)

= −gxxv
∣∣∣1
0
+ gxvx

∣∣∣1
0
− gvxx

∣∣∣1
0
+
〈
g, A∗v

〉
L2(0,1)

Given that (a) holds, we can then rewrite the boundary conditions and substitute to

determine,

− gxxv
∣∣∣1
0
+ gxvx

∣∣∣1
0
− gvxx

∣∣∣1
0

= −
(β2ξ2
β1ξ1

− β3

β1

)
g(1)v(1)− α2

α1

gx(0)v(0)−
α3

α1

g(0)v(0)− ξ2
ξ1
g(1)vx(1)

− gx(0)vx(0)− g(1)vxx(1) + g(0)vxx(0)

(3.8)

Reorganizing the terms and setting equal to zero gives the following boundary conditions

for the adjoint problem.

vxx(1) = −
(β2ξ2
β1ξ1

− β3

β1

)
v(1)− ξ2

ξ1
vx(1), vxx(0) =

α3

α1

v(0), vx(0) = −α3

α1

v(0) (3.9)

Then for v ∈ D(A∗) we find that

〈
A∗v, v

〉
L2(0,1)

=

1∫
0

vxxxv dx

= vxxv
∣∣∣1
0
− 1

2
v2

x

∣∣∣1
0

= −
(β2ξ2
β1ξ1

− β3

β1

)
v2(1)− ξ2

ξ1
vx(1)v(1)−

(α3

α1

− α2
2

2α1
2

)
v2(0)− 1

2
v2

x(1)

≤ −
(β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2

)
v2(1)−

(α3

α1

− α2
2

2α1
2

)
v2(0)

= −F2v
2(1)− F1v

2(0) ≤ 0
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where we have used the inequality,

− ξ2
ξ1
vx(1)v(1) ≤

1

2
v2

x(1) +
ξ2

2

2ξ1
2v

2(1) (3.10)

and the assumptions for (a) that F1 ≥ 0 and F2 ≥ 0.

Therefore both the operator A and the adjoint A∗ are dissipative for case (a).

Next consider case (b) of (3.3). If β1 6= 0, ξ1 6= 0, α1 = 0, the boundary conditions for

(3.4) can be rewritten:

gx(0) = −α3

α2

g(0), gxx(1) =
(β2ξ2
β1ξ1

− β3

β1

)
g(1), gx(1) =

−ξ2
ξ1

g(1)

Then we have

〈
Ag, g

〉
L2(0,1)

= −gxxg
∣∣∣1
0
+

1

2
(gx)

2
∣∣∣1
0

= −gxx(1)g(1) + gxx(0)g(0) +
1

2
g2

x(1)−
1

2
g2

x(0)

= −F2g
2(1) + gxx(0)g(0) +

(α3

α2

+
1

2

)
g2

x(0)

Case (b) also requires α2 = 0 and α3 6= 0. These conditions combined with the boundary

condition α2gx(0) = −α3g(0) forces g(0) = 0. In addition we have that, F2 ≥ 0. Hence the

operator A is dissipative.

For the adjoint boundary conditions we have, −gxxv
∣∣∣1
0
+ gxvx

∣∣∣1
0
− gvxx

∣∣∣1
0

= 0, which leads

to the following adjoint boundary conditions for case (b),

v(0) = 0, vx(0) = 0, vxx(1) +
ξ2
ξ1
vx(1) +

(β2ξ2
β1ξ1

− β3

β1

)
v(1) = 0

Then
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〈
A∗v, v

〉
L2(0,1)

= vxxv
∣∣∣1
0
− 1

2
(vx)

2
∣∣∣1
0

= −ξ2
ξ1
vx(1)v(1)−

(β2ξ2
β1ξ1

− β3

β1

)
v2(1)− 1

2
v2

x(1)

≤ −F2v
2(1) ≤ 0

where we have used inequality (3.10) and F2 ≥ 0. The adjoint operator is therefore

dissipative.

For cases (c) and (d) of (3.3), the boundary conditions for (3.4) can be rewritten to the

same result. First consider case (c), where we have β1 = 0, ξ1 6= 0, α1 6= 0. This reduces the

boundary conditions to

gxx(0) =
−α2

α1

gx(0)− α3

α1

g(0), gx(1) = −β3

β2

g(1), gx(1) = −ξ2
ξ1
g(1)

In order to ensure there are three distinct boundary conditions, it is required in case

(c) that F3 = β2ξ2 − β3ξ1 6= 0. Looking at the boundary conditions gx(1) = −β3

β2
g(1) and

gx(1) = − ξ2
ξ1
g(1) we see that (β2ξ2−β3ξ1)g(1) = 0. As a result gx(1) = g(1) = 0 since F3 6= 0.

The argument is similar for case (d).

The assumptions β1 = 0, α1 6= 0, ξ1 = 0 for (d), give the following

gxx(0) = −α2

α1

gx(0)− α3

α1

g(0), gx(1) = −β3

β2

g(1), ξ2g(1) = 0

Again to ensure there are three distinct boundary conditions we require F3 6= 0. This

means that ξ2 6= 0. Therefore the resulting boundary conditions are the same as case (c).

gxx(0) =
−α2

α1

gx(0)− α3

α1

g(0), gx(1) = 0, g(1) = 0

Using these boundary conditions we can prove that A and A∗ are dissipative.

33



3.1 Homogeneous Boundary Conditions Linear Estimates

〈
Ag, g

〉
L2(0,1)

= −gxxg
∣∣∣1
0
+

1

2
(gx)

2
∣∣∣1
0

= −α2

α1

gx(0)g(0)−
α3

α1

g2(0)− 1

2
g2

x(0)

given the inequality (3.7) we have that A is dissipative,

〈
Ag, g

〉
L2(0,1)

≤ −F1g
2(0) ≤ 0

since F1 ≥ 0.

For the adjoint boundary conditions again consider, −gxxv
∣∣∣1
0
+gxvx

∣∣∣1
0
−gvxx

∣∣∣1
0
. The adjoint

boundary conditions assuming the conditions for case (c) or (d) are

v(1) = 0, vx(0) = −α2

α1

v(0), vxx(0) =
(α3

α1

)
v(0)

Therefore for the adjoint we have

〈
A∗v, v

〉
L2(0,1)

= vxxv
∣∣∣1
0
− 1

2
v2

x

∣∣∣1
0

= −
(α3

α1

− α2
2

2α1
2

)
v2(0)− 1

2
v2

x(1)

since F1 ≥ 0 then
〈
A∗v, v

〉
L2(0,1)

≤ 0.

The proof is complete.

�

The following corollary then follows from the standard semi-group theory [58].

Corollary 3.2. The operator A is the infinitesimal generator of a C0 semigroup W0(t)

in the space L2(0, 1). Furthermore, for given φ ∈ L2(0, 1) and f ∈ L1
loc(R

+;L2(0, 1)), there
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is a unique solution u ∈ C(R+;L2(0, 1)) to (3.4) which can be written in the form of .

u(x, t) = W0(t)φ(x) +

t∫
0

W (t− τ)f(τ)dτ. (3.11)

Next we demonstrate the solution u of (3.4) also possesses a global Kato smoothing

property.

Proposition 3.3. Let T > 0 be given and assume one of the conditions of (3.3) is

satisfied. There exists a constant C > 0 such that for any φ ∈ L2(0, 1) and f ∈ L1(0, T ;L2(0, 1)),

the corresponding solution u ∈ C([0, T ];L2(0, 1)) of the IBVP (3.4) also belongs to the space

L2(0, T ;H1(0, 1)) and satisfies

sup
0≤t≤T

‖u(·, t)‖L2(0,1) + ‖u(·, t)‖L2(0,T ;H1(0,1)) ≤ C
(
‖φ‖L2(0,1) + ‖f‖L1(0,T ;L2(0,1))

)
Proof. Without loss of generality we may assume that φ ∈ D(A) and f ∈ L2(0, T ;D(A)).

From corollary (3.2)the solution u then belongs to the space C([0, T ];D(A))∩C1(0, T ;L2(0, 1)).

Using the fact that we have u in the form (3.11) consider problem (3.4).

Multiply both sides of the differential equation in (3.4) by ueλx, with 0 ≤ λ ≤ 1
2
,and

integrate over (0, 1).

1∫
0

(utue
λx + uxxxue

λx)dx =

1∫
0

fueλxdx

Consider the terms on the left side of the equation,

1∫
0

utue
λx dx =

1

2

d

dt

1∫
0

u2eλx dx

and using integration by parts,
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1∫
0

uxxxue
λx dx = uxxue

λx
∣∣∣1
0
−1

2
ux

2eλx
∣∣∣1
0
+
λ2

2
u2eλx

∣∣∣1
0
−λuxue

λx
∣∣∣1
0
+

3λ

2

1∫
0

u2
xe

λxdx−λ
3

2

1∫
0

u2eλx dx

Rewriting the original equation gives,

1

2

d

dt

1∫
0

u2eλx dx+ uxxue
λx
∣∣∣1
0
− 1

2
ux

2eλx
∣∣∣1
0
+
λ2

2
u2eλx

∣∣∣1
0

− λuxue
λx
∣∣∣1
0
+

3λ

2

1∫
0

u2
xe

λxdx− λ3

2

1∫
0

u2eλx dx =

1∫
0

fueλxdx

(3.12)

Suppose that (a) of (3.3) is satisfied. Since α1β1ξ1 6= 0, (3.12) can be rewritten using the

boundary conditions as

1

2

d

dt

1∫
0

u2eλx dx+
3λ

2

1∫
0

u2
xe

λxdx− λ3

2

1∫
0

u2eλx dx+
[
F2 +

λξ2
ξ1

+
λ2

2

]
eλu2(1)

+
[α2

α1

+ λ
]
ux(0)u(0) +

[α3

α1

− λ2

2

]
u2(0) +

1

2
u2

x(0) =

1∫
0

fueλxdx

(3.13)

From the inequality above consider
1∫
0

u2eλxdx. For the following recall x ∈ (0, 1)
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u2(x)eλx − u2(0) =

x∫
0

(u2eλx)xdx

=

x∫
0

(2uuxe
λx + λu2eλx)dx

= 2

x∫
0

uuxe
λxdx+ λ

x∫
0

u2eλxdx

≤ 2

x∫
0

|u||ux|eλxdx+ λ

x∫
0

u2eλxdx

≤ 2

1∫
0

|u||ux|eλxdx+ λ

1∫
0

u2eλxdx

Integrating both sides over (0, 1),

1∫
0

u2(x)eλxdx− u2(0) ≤
1∫

0

(
2

1∫
0

|u||ux|eλxdx+ λ

1∫
0

u2eλxdx
)
dx

≤ 2

1∫
0

|u||ux|eλxdx+ λ

1∫
0

u2eλxdx

Rearranging the terms and using Young’s inequality |u||ux|eλx ≤ εu2eλx + 1
ε
ux

2eλx, where

ε > 0

(1− λ)

1∫
0

u2eλxdx ≤ 2

1∫
0

|u||ux|eλxdx+ u2(0)

≤ ε

1∫
0

u2eλxdx+
1

ε

1∫
0

u2
xe

λx + u2(0)

Therefore,
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(1− λ− ε)

1∫
0

u2eλxdx ≤ 1

ε

1∫
0

u2
xe

λx + u2(0)

One can choose λ and ε such that 1− λ− ε > 0, which gives

1∫
0

u2eλxdx ≤ 1

ε(1− λ− ε)

1∫
0

u2
xe

λx +
1

1− λ− ε
u2(0)

Then given 0 ≤ λ ≤ 1
2
,

−
(λ3

2

)( 1

ε(1− λ− ε)

) 1∫
0

u2
xe

λxdx−
(λ3

2

)( 1

1− λ− ε

)
u2(0) ≤ −

(λ3

2

) 1∫
0

u2eλxdx (3.14)

With this result and the following inequality,

−1

2
u2

x(0)− 1

2

[α2

α1

+ λ
]2
u2(0) ≤

[α2

α1

+ λ
]
ux(0)u(0)

We can now rewrite (3.13) as follows,

1

2

d

dt

1∫
0

u2eλxdx+
[3λ

2
− λ3

2ε(1− λ− ε)

] 1∫
0

u2
xe

λxdx+ eλ
[
F2 +

λξ2
ξ1

+
λ2

2

]
u2(1)

+
[α3

α1

− λ2

2
− λ3

2(1− λ− ε)
− 1

2

[α2

α1

+ λ
]2]

u2(0) ≤
1∫

0

fueλxdx

(3.15)

For (a) we have that F1 ≥ 0and F2 ≥ 0. We can choose 0 ≤ λ ≤ 1
2

and ε ≥ 0 such that

3λ
2
− λ3

2ε(1−λ−ε)
≥ 0, F2 + λξ2

ξ1
+ λ2

2
≥ 0, α3

α1
− λ2

2
−+ λ3

2(1−λ−ε)
− 1

2

[
α2

α1
+ λ
]2
≥ 0

Let C0 = 3λ
2
− λ3

2ε(1−λ−ε)
, the inequality becomes,

1

2

d

dt

1∫
0

u2eλxdx+ C0

1∫
0

u2
xe

λxdx ≤
1∫

0

fueλxdx (3.16)
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Multiplying by two and using C0 ≥ 0 we have

d

dt

1∫
0

u2eλxdx ≤ 2

1∫
0

fueλxdx

≤ 2

1∫
0

(1

2
f 2eλx +

1

2
u2eλx

)
dx

≤
1∫

0

f 2eλxdx+

1∫
0

u2eλxdx

By Gronwall’s Inequality we have

1∫
0

u2eλxdx ≤ et
[ 1∫

0

(
u(x, 0)

)2

eλxdx+

t∫
0

1∫
0

f 2eλxdxdτ
]

≤ et

1∫
0

φ2eλx dx+ et

t∫
0

1∫
0

f 2eλxdxdτ

With φ ∈ L2(0, 1), f ∈ H1([0, T ];L2(0, 1)) and eλx bounded when 0 ≤ λ ≤ 1
2
, x ∈ (0, 1)

we find that

1∫
0

u2dx ≤
1∫

0

u2eλxdx ≤ et

1∫
0

φ2eλx dx+

t∫
0

1∫
0

f 2eλxdxdτ

with,

sup
0≤t≤T

1∫
0

u2dx ≤ eT

1∫
0

φ2eλx dx+ eT

T∫
0

1∫
0

f 2eλxdxdτ

≤M

1∫
0

φ2 dx+M

T∫
0

1∫
0

f 2dxdτ
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Therefore,

sup
0≤t≤T

‖u‖L2(0,1) ≤M

1∫
0

φ2 dx+M

T∫
0

1∫
0

f 2dxdτ (3.17)

From inequality (3.16) will now consider

C0

1∫
0

u2
xe

λxdx ≤
1∫
0

fueλxdx

Combing the properties that C0 > 0, eλx is bounded when 0 ≤ λ ≤ 1
2

and x ∈ [0, 1], we

find that

1∫
0

u2
xdx ≤

1∫
0

u2
xe

λxdx ≤ 1

C0

1∫
0

fueλxdx

≤ 1

C0

( 1∫
0

f 2dx

1∫
0

(
ueλx

)2

dx
)

≤ 1

C0

(1

2

1∫
0

f 2eλxdx+
1

2

1∫
0

u2eλxdx
)

≤ M

2C0

( 1∫
0

f 2dx+

1∫
0

u2dx
)

≤ M

2C0

( 1∫
0

f 2dx+M

1∫
0

φ2 dx+M

T∫
0

1∫
0

f 2dxdτ
)

≤ M2

2C0

1∫
0

φ2 dx+
M

2C0

1∫
0

f 2dx+
M2

2C0

T∫
0

1∫
0

f 2dxdτ

Therefore,

‖ux‖2
L2(0,T,L2(0,1)) ≤

M2

2C0

1∫
0

φ2 dx+
M

2C0

1∫
0

f 2dx+
M2

2C0

T∫
0

1∫
0

f 2dxdτ (3.18)
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Combining (3.17) and (3.18) we have,

sup
0≤t≤T

‖u‖L2(0,1) + ‖ux‖2
L2(0,T,L2(0,1))

≤M

1∫
0

φ2 dx+M

T∫
0

1∫
0

f 2dxdτ +
M2

2C0

1∫
0

φ2 dx+
M

2C0

1∫
0

f 2dx+
M2

2C0

T∫
0

1∫
0

f 2dxdτ

≤
(
M +

M2

2C0

) 1∫
0

φ2 dx+
M

2C0

1∫
0

f 2dx+
(
M +

M2

2C0

) T∫
0

1∫
0

f 2dxdτ

≤ C1‖φ‖L2(0,1) + C2‖f‖L2(0,T ;L2(0,1))

(3.19)

This proves the Proposition for case (a).

Starting with (3.12) assume that case (b) of (3.3) is satisfied. Using the boundary conditions

with the assumptions that β1 6= 0, ξ1 6= 0, α1 = 0, α2 = 0, and α3 6= 0 we have that u(0) = 0

(as shown in the proof of Lemma (3.1)). with these boundary conditions and inequality

(3.14), (3.12) can be rewritten as:

1

2

d

dt

1∫
0

u2eλx dx+
[3λ

2
− λ3

2ε(1− λ− ε)

] 1∫
0

u2
xe

λxdx

+
[
F2 +

λξ2
ξ1

+
λ2

2

]
eλu2(1) +

1

2
u2

x(0) ≤
1∫

0

fueλxdx

where ε ≥ 0. As with case (a) we can choose 0 ≤ λ ≤ 1
2

and ε ≥ 0 such that

C0 = 3λ
2
− λ3

2ε(1−λ−ε)
≥ 0, thereby reducing the above inequality to (3.16).

The remainder of the proof is the same as for case (a).

Lastly we consider cases (c) and (d) together. Recall that the boundary conditions

determined for cases (c) and (d) reduced to the same result. These boundary conditions

along with the inequalities (3.7) and (3.14) allow (3.12) to become:
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1

2

d

dt

1∫
0

u2eλxdx+
[3λ

2
− λ3

2ε(1− λ− ε)

] 1∫
0

u2
xe

λxdx

+
[α3

α1

− λ2

2
−+

λ3

2(1− λ− ε)
− 1

2

[α2

α1

+ λ
]2]

u2(0) ≤
1∫

0

fueλxdx

Furthermore with F1 ≥ 0 for both (c) and (d) it is clear that α3

α1
≥ 0. Then it is possible

to choose 0 ≤ λ ≤ 1
2

and ε ≥ 0 such that C0 = 3λ
2
− λ3

2ε(1−λ−ε)
≥ 0 and

[
α3

α1
− λ2

2
− λ3

2(1−λ−ε)
−

1
2

[
α2

α1
+ λ
]2]

≥ 0. Thereby reducing the inequality to (3.16).

The remainder of the proof is the same as for case (a), so the proposition holds in all

cases. �

3.2. Nonhomogeneous Boundary Value Problem

In this subsection we turn to consider the following nonhomogeneous boundary value

problem of the linear KdV equation. ut + uxxx = 0, u(x, 0) = 0,

B1u = h1(t), B2u = h2(t), B3u = h3(t)
(3.20)

Using the Laplace transform an explicit solution formula for (3.20) will be determined in

terms of the boundary values. Applying the Laplace transform with respect to t, (3.20) is

converted to

 sû(x, s) + ûxxx(x, s) = 0,

B1û = ĥ1(s), B2û = ĥ2(s), B3û = ĥ3(s)
(3.21)

where

û(x, s) =

∞∫
0

estu(x, t)dt, ĥj(s) =

∞∫
0

esthj(t)dt for j = 1, 2, 3.
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The solution of (3.21) can be written in the form

û(x, s) = c1(s)e
λ1(s)x + c2(s)e

λ2(s)x + c3(s)e
λ3(s)x =

3∑
j=1

cj(s)e
λj(s)x

where λj = λj(s), j=1,2,3, are the solutions for the characteristic equation

λ3 + s = 0

For the cj = cj(s), j=1,2,3, are constants depending only on s. Notice that

ûx(x, s) =
3∑

j=1

cjλje
λjx, and ûxx(x, s) =

3∑
j=1

cjλj
2eλjx

The cj, j=1,2,3, then solve the system


α1

∑3
j=1 cjλj

2 + α2

∑3
j=1 cjλj + α3

∑3
j=1 cj = ĥ1(s),

β1

∑3
j=1 cjλj

2eλj + β2

∑3
j=1 cjλje

λj + β3

∑3
j=1 cje

λj = ĥ2(s)

ξ1
∑3

j=1 cjλje
λj + ξ2

∑3
j=1 cj = ĥ3(s)

Rewriting the system we have



c1

(
α1λ1

2 + α2λ1 + α3

)
+ c2

(
α1λ2

2 + α2λ2 + α3

)
+ c3

(
α1λ3

2 + α2λ3 + α3

)
= ĥ1(s),

c1e
λ1

(
β1λ1

2 + β2λ1 + β3

)
+ c2e

λ2

(
β1λ2

2 + β2λ2 + β3

)
+c3e

λ3

(
β1λ3

2 + β2λ3 + β3

)
= ĥ2(s),

c1e
λ1

(
ξ1λ1 + ξ2

)
+ c2e

λ2

(
ξ1λ2 + ξ2

)
+ c3e

λ3

(
ξ1λ3 + ξ2

)
= ĥ3(s),

Let ∆(s) be the determinant of the coefficient matrix and ∆j(s) be the determinants of

the matrices that are obtained by replacing the j th-column of ∆(s) by the column vector

〈ĥ1(s), ĥ2(s), ĥ3(s)〉T , j = 1, 2, 3 Cramer’s rule implies that

cj =
∆j(s)

∆(s)
, j = 1, 2, 3
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for ∆(s) 6= 0. For ∆(s) = 0 we can look at homogeneous boundary conditions. Recall

the linear operator A,

Ag = −gxxx, D(A) = {g ∈ H3(0, 1)|B1g = 0, B2g = 0 and B3g = 0}

Consider

Av = λv, v ∈ D(A)

then we have  −v′′′ = λv

B1v = 0, B2v = 0, B3v = 0

The solutions µ1,µ2 and µ3 for the characteristic equation −µ3 = λ lead to the following

v = c1(λ)eµ1(λ)x + c2(λ)eµ2(λ)x + c3(λ)eµ3(λ)x

Since B1v = 0, B2v = 0, and B3v = 0, we have the following system of linear equations

c1

(
α1µ1

2 + α2µ1 + α3

)
+ c2

(
α1µ2

2 + α2µ2 + α3

)
+ c3

(
α1µ3

2 + α2µ3 + α3

)
= 0,

c1e
µ1

(
β1µ1

2 + β2µ1 + β3

)
+ c2e

µ2

(
β1µ2

2 + β2µ2 + β3

)
+c3e

µ3

(
β1µ3

2 + β2µ3 + β3

)
= 0,

c1e
µ1

(
ξ1µ1 + ξ2

)
+ c2e

µ2

(
ξ1µ2 + ξ2

)
+ c3e

µ3

(
ξ1µ3 + ξ2

)
= 0,

Let ∆(λ) = ∆(s) be the determinant of the coefficient matrix. Hence, there will be a

nontrivial solution v, if and only if ∆(λ) = 0.

The following proposition has now been proven.

Proposition 3.4. λ is an eigenvalue of A if and only if ∆(λ) = 0.

Next we look more closely at the possible eigenvalues of A.

Proposition 3.5. Suppose that one of the conditions from (3.3) holds. If Re(λ) > 0,

then λ is not an eigenvalue of A.
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Proof. Recall that the operator A has been shown to be dissipative if one of the

conditions of (3.3) holds,
〈
Av, v

〉
L2(0,1)

≤ 0. Suppose there is an eigenvalue for A such

that Re(λ) > 0. Then

Re
(〈
Av, v

〉
L2(0,1)

)
= Re

(〈
λv, v

〉
L2(0,1)

)
= Re

(
λ
〈
v, v
〉

L2(0,1)

)
≥ 0

This contradicts the fact that A is dissipative. �

Consider

Av = λv, v ∈ D(A)

with λ = iρ, ρ ∈ R. Then we have

 −v′′′ = iρv

B1v = 0, B2v = 0, B3v = 0

The solutions for the characteristic equation −µ3 = iρ, give the following

v = c1(ρ)e
µ1(ρ)x + c2(ρ)e

µ2(ρ)x + c3(ρ)e
µ3(ρ)x

Since B1v = 0, B2v = 0, and B3v = 0, we have the following system of linear equations

c1

(
α1µ1

2 + α2µ1 + α3

)
+ c2

(
α1µ2

2 + α2µ2 + α3

)
+ c3

(
α1µ3

2 + α2µ3 + α3

)
= 0,

c1e
µ1

(
β1µ1

2 + β2µ1 + β3

)
+ c2e

µ2

(
β1µ2

2 + β2µ2 + β3

)
+c3e

µ3

(
β1µ3

2 + β2µ3 + β3

)
= 0,

c1e
µ1

(
ξ1µ1 + ξ2

)
+ c2e

µ2

(
ξ1µ2 + ξ2

)
+ c3e

µ3

(
ξ1µ3 + ξ2

)
= 0,

Let ∆(ρ) be the determinant of the coefficient matrix. Given the solutions for the characteristic

equation are

µ1 = iρ
1
3 , µ2 = −1

2
ρ

1
3 (i+

√
3), µ3 =

1

2
ρ

1
3 (−i+

√
3)
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we can rearranging the terms for ∆(ρ) into the real and imaginary parts by powers of ρ.

For Re(∆(ρ)) we have

ρ
5
3α1β1ξ1(−

√
3e−µ1 −

√
3

2
e−µ2 +

√
3

2
e−µ3)

+ ρ
4
3 [α2β1ξ1(

3

2
e−µ2 +

3

2
e−µ3)− α1β1ξ2(

3

2
e−µ2 +

3

2
e−µ3)]

+ ρ[α3β1ξ1(
√

3e−µ1 −
√

3e−µ2 +
√

3e−µ3) + α1β3ξ1(
√

3e−µ1 −
√

3e−µ2 +
√

3e−µ3)

− α2β1ξ2(
√

3e−µ1 −
√

3

2
e−µ2 +

√
3

2
e−µ3) + α1β2ξ2(

√
3e−µ1 −

√
3e−µ2 +

√
3e−µ3)]

+ ρ
2
3 [α2β3ξ1(

3

2
e−µ2 +

3

2
e−µ3)− α3β1ξ2(

3

2
e−µ2 +

3

2
e−µ3) + α2β2ξ2(

3

2
e−µ2 +

3

2
e−µ3)]

+ ρ
1
3 [α3β3ξ1(−

√
3e−µ1 −

√
3

2
e−µ2 +

√
3

2
e−µ3)− α3β2ξ2(

√
3e−µ1 +

√
3

2
e−µ2 −

√
3

2
e−µ3)]

For Im(∆(ρ))

ρ
5
3α1β1ξ1(−

3

2
e−µ2 − 3

2
e−µ3)

+ ρ
4
3 [α2β1ξ1(

√
3e−µ1 +

√
3

2
e−µ2 −

√
3

2
e−µ3)− α1β1ξ2(

√
3e−µ1 +

√
3

2
e−µ2 −

√
3

2
e−µ3)]

+ ρ
2
3 [α2β3ξ1(−

√
3e−µ1 −

√
3

2
e−µ2 +

√
3

2
e−µ3) + α3β1ξ2(

√
3e−µ1 +

√
3

2
e−µ2 −

√
3

2
e−µ3)

− α2β2ξ2(
√

3e−µ1 +

√
3

2
e−µ2 −

√
3

2
e−µ3)]

+ ρ
1
3 [α3β3ξ1(−

3

2
e−µ2 − 3

2
e−µ3)− α3β2ξ2(−

3

2
e−µ2 − 3

2
e−µ3)]

Proposition 3.6. Suppose that one of the conditions from (3.3) holds. There are finitely

many λ = iρ, ρ ∈ R which are eigenvalues. That is, there exists an N such that if |ρ| > N ,

then ∆(ρ) 6= 0.
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Proof. As ρ→∞ we find for Re(∆(ρ))

Given case (a), with α1β1ξ1 6= 0

∆(ρ) ∼ −ρ
5
3 e

√
3

2
ρ

1
3

For the remaining cases: case (b), with α1, α2 = 0, α3β1ξ1 6= 0, case (c), with β1 = 0,

α1ξ1 6= 0 and β2ξ2 − β3ξ1 6= 0 and case (d), with β1, ξ1 = 0, α1 6= 0, and β2ξ2 − β3ξ1 6= 0 we

have

∆(ρ) ∼ −ρe
√

3
2

ρ
1
3

As ρ→∞ we find for Im(∆(ρ))

Given case (a), with α1β1ξ1 6= 0

∆(ρ) ∼ −ρ
5
3 e

√
3

2
ρ

1
3

For case (b), with α1, α2 = 0, α3β1ξ1 6= 0

∆(ρ) ∼ ρ
2
3 e

√
3

2
ρ

1
3

For cases (c), with β1 = 0, α1ξ1 6= 0 and β2ξ2 − β3ξ1 6= 0 and (d)with β1, ξ1 = 0, α1 6= 0,

and β2ξ2 − β3ξ1 6= 0 we have

∆(ρ) ∼ −ρ
2
3 e

√
3

2
ρ

1
3

Given these results we can find for ρ >> 0, that ∆(ρ) 6= 0. �

Now we will go back to considering the solution u(x, t) for (3.20). It can be written in

the form
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u(x, t) = u1(x, t) + u2(x, t) + u3(x, t) =
3∑

n=1

un(x, t) (3.22)

where un(x, t) solves (3.20) with hj ≡ 0 when j 6= n, j, n = 1, 2, 3. Using the inverse

Laplace transform yields

u(x, t) =
1

2πi

r+i∞∫
r−i∞

estû(x, s)ds =
3∑

j=1

1

2πi

r+i∞∫
r−i∞

est ∆j(s)

∆(s)
eλj(s)xds (3.23)

for any r > 0. Combining this with (3.22) we can write the values of un as follows for

n = 1, 2, 3

un(x, t) =
3∑

j=1

1

2πi

r+i∞∫
r−i∞

est ∆j,n(s)

∆(s)
eλj(s)xĥn(s)ds ≡ [Wn(t)hn](x) (3.24)

where ∆j,n(s) is obtained from ∆j(s) by letting ĥn(t) = 1 and ĥk(t) ≡ 0 for k 6= n,

k, n = 1, 2, 3. In the last two formulas, the right-hand sides are continuous with respect to r

for r > 0. For r = 0 we have shown that there are finitely many eigenvalues (3.6). Without

loss of generality we can assume there are no eigenvalues since these can be easily estimated.

Then, as the left-hand sides do not depend on r, we can take r = 0 in these formulas.

un(x, t) =
3∑

j=1

1

2πi

∫ +i∞

0

est ∆j,n(s)

∆(s)
eλj(s)xĥn(s)ds

+
3∑

j=1

1

2πi

∫ 0

−i∞
est ∆j,n(s)

∆(s)
eλj(s)xĥn(s)ds

≡ In(x, t) + IIn(x, t),

for n = 1, 2, 3. Letting s = (−iρ)3 = iρ3 with 0 ≤ ρ < +∞ in the characteristic equation

λ3 + s = 0 the three roots are given in terms of ρ by

λ+
1 (ρ) = iρ, λ+

2 (ρ) = −iρ
(1 + i

√
3

2

)
, λ+

3 (ρ) = −iρ
(1− i

√
3

2

)
(3.25)
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therefore In(x, t) and IIn(x, t) may be written in the form

In =
3∑

j=1

1

2π

∫ +∞

0

eiρ3teλ+
j (ρ)x

∆+
j,n(ρ)

∆+(ρ)
3ρ2ĥ+

n (ρ)dρ

and

IIn =
3∑

j=1

1

2π

∫ +∞

0

e−iρ3teλ−j (ρ)x
∆−

j,n(ρ)

∆−(ρ)
3ρ2ĥ−n (ρ)dρ

for n = 1, 2, 3, where ĥ+
n (ρ) = ĥn(iρ3), ∆+(ρ) and ∆+

j,n(ρ) are obtained from ∆(s) and

∆j,n(s), respectively, by replacing s with iρ3 and λj(s) with λ+
j (ρ), for j = 1, 2, 3.

Notice that we can rewrite, ∆−(ρ) = ∆+(ρ) and ∆−
j,n(ρ) = ∆+

j,n(ρ) for j = 1, 2, 3, and

ĥ−n (ρ) = ĥ+
n (ρ).

Let ~h(t) = 〈h1(t), h2(t), h3(t)〉 and write the solution u of (3.20) using (3.24) as

u(x, t) = [Wb(t)~h](x) =
3∑

n=1

[Wn(t)hn](x) (3.26)

The following lemma from Bona, Sun and Zhang [8] is also used in proving the propositions

presented in this section:

Lemma 3.7. For any f ∈ L2(0,∞), let Kf be the function defined by

Kf(x) =

∫ +∞

0

eγ(µ)xf(µ)dµ

where γ(µ) is a continuous complex-valued function defined on (0,∞) satisfying the

following two conditions:

(i) there exist δ > 0 and b > 0 such that

sup
0<µ<δ

|Re γ(µ)|
µ

≥ b;
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(ii) there exists a complex number α+ iβ such that

lim
µ→+∞

γ(µ)

µ
= α+ iβ.

Then there exists a constant C such that for all f ∈ L2(0,∞),

‖Kf‖L2(0,1) ≤ C(‖eReγ(·)f(·)‖L2(R+) + ‖f(·)‖L2(R+)) (3.27)

The following three propositions will be used to prove the theorem at the end of this

section by providing estimates of u1, u2, and u3.

Proposition 3.8. Assume that one of the conditions from (3.3) is satisfied. There exists

a constant C such that

‖u1‖L2(R+;H1(0,1)) + sup
0≤t≤∞

‖u1(·, t)‖L2(0,1) ≤ C‖h1‖H1/3(R+) (3.28)

and ∂xu1 ∈ Cb([0, 1];L2(R+)) with

sup
x∈(0,1)

‖∂xu1(x, ·)‖L2(R+) ≤ C‖h1‖H1/3(R+) (3.29)

for all h1 ∈ H1/3(R+).

Proof. First note that λ1(s) +λ2(s) +λ3(s) = 0. Next the determinant of the matrices

for ∆j,1(s) with j = 1, 2, 3 will be determined. To determine ∆1,1(s) consider the matrix


1

(
α1λ2

2 + α2λ2 + α3

) (
α1λ3

2 + α2λ3 + α3

)
0 eλ2

(
β1λ2

2 + β2λ2 + β3

)
eλ3

(
β1λ3

2 + β2λ3 + β3

)
0 eλ2

(
ξ1λ2 + ξ2

)
eλ3

(
ξ1λ3 + ξ2

)


we have

∆1,1(s) = e−λ1(λ2 − λ3)[β1ξ1λ2λ3 − β1ξ2λ1 + β2ξ2 − β3ξ1]
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For ∆2,1(s) consider the matrix


(
α1λ1

2 + α2λ1 + α3

)
1

(
α1λ3

2 + α2λ3 + α3

)
eλ1

(
β1λ1

2 + β2λ1 + β3

)
0 eλ3

(
β1λ3

2 + β2λ3 + β3

)
eλ1

(
ξ1λ1 + ξ2

)
0 eλ3

(
ξ1λ3 + ξ2

)


we have

∆2,1(s) = e−λ2(λ3 − λ1)[β1ξ1λ1λ3 − β1ξ2λ2 + β2ξ2 − β3ξ1]

For ∆3,1(s) consider the matrix


(
α1λ1

2 + α2λ1 + α3

) (
α1λ2

2 + α2λ2 + α3

)
1

eλ1

(
β1λ1

2 + β2λ1 + β3

)
eλ2

(
β1λ2

2 + β2λ2 + β3

)
0

eλ1

(
ξ1λ1 + ξ2

)
eλ2

(
ξ1λ2 + ξ2

)
0


we have

∆3,1(s) = e−λ3(λ1 − λ2)[β1ξ1λ1λ2 − β1ξ2λ3 + β2ξ2 − β3ξ1]

Therefore for ∆(s) we have

∆(s) =
(
α1λ1

2+α2λ1+α3

)
∆1,1−

(
α1λ2

2+α2λ2+α3

)
∆2,1+

(
α1λ3

2+α2λ3+α3

)
∆3,1 (3.30)

Notice that for
∆+

1,1(ρ)

∆+(ρ)

∆+
1,1(ρ)

∆+(ρ)
=

e−λ1(λ2 − λ3)[β1ξ1λ2λ3 − β1ξ2λ1 + β2ξ2 − β3ξ1](
α1λ1

2 + α2λ1 + α3

)
∆1,1 −

(
α1λ2

2 + α2λ2 + α3

)
∆2,1 +

(
α1λ3

2 + α2λ3 + α3

)
∆3,1

multiply by eλ1

eλ1
and substituting the values for ∆j,1, j = 1, 2, 3
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∆+
1,1(ρ)

∆+(ρ)
=

(λ2 − λ3)γ
(1)
1(

α1λ1
2 + α2λ1 + α3

)
(λ2 − λ3)γ

(1)
1 − eλ1−λ2(λ3 − λ1)γ

(1)
2 + eλ1−λ3(λ1 − λ2)γ

(1)
3

where

γ
(1)
1 = [β1ξ1λ2λ3 − β1ξ2λ1 + β2ξ2 − β3ξ1]

γ
(1)
2 =

(
α1λ2

2 + α2λ2 + α3

)
[β1ξ1λ1λ3 − β1ξ2λ2 + β2ξ2 − β3ξ1]

γ
(1)
3 =

(
α1λ3

2 + α2λ3 + α3

)
[β1ξ1λ1λ2 − β1ξ2λ3 + β2ξ2 − β3ξ1]

Using (3.25) we have

eλ1−λ2 = e
−3iρ

2 e−
√

3
2

ρ eλ1−λ3 = e
−3iρ

2 e
√

3
2

ρ

As ρ→∞ we find that

∆+
1,1(ρ)

∆+(ρ)
∼ e−

√
3

2
ρ (3.31)

holds for all cases (a)-(d).

Next consider
∆+

2,1(ρ)

∆+(ρ)

∆+
2,1(ρ)

∆+(ρ)
=

e−λ2(λ3 − λ1)[β1ξ1λ1λ3 − β1ξ2λ2 + β2ξ2 − β3ξ1](
α1λ1

2 + α2λ1 + α3

)
∆1,1 −

(
α1λ2

2 + α2λ2 + α3

)
∆2,1 +

(
α1λ3

2 + α2λ3 + α3

)
∆3,1

multiply by eλ2

eλ2
and substituting the values for ∆j,1, j = 1, 2, 3

∆+
2,1(ρ)

∆+(ρ)
=

(λ3 − λ1)γ
(2)
2

eλ2−λ1(λ2 − λ3)γ
(2)
1 −

(
α1λ2

2 + α2λ2 + α3

)
(λ3 − λ1)γ

(2)
2 + eλ2−λ3(λ1 − λ1)γ

(2)
3

where

γ
(2)
1 =

(
α1λ1

2 + α2λ1 + α3

)
[β1ξ1λ2λ3 − β1ξ2λ1 + β2ξ2 − β3ξ1]

γ
(2)
2 = [β1ξ1λ1λ3 − β1ξ2λ2 + β2ξ2 − β3ξ1]

γ
(2)
3 =

(
α1λ3

2 + α2λ3 + α3

)
[β1ξ1λ1λ2 − β1ξ2λ3 + β2ξ2 − β3ξ1]
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Using (3.25) we have

eλ2−λ1 = e
−3iρ

2 e−
√

3
2

ρ eλ2−λ3 = e
√

3ρ

As ρ→∞ we find that

∆+
2,1(ρ)

∆+(ρ)
∼ e−

√
3ρ (3.32)

holds for all cases (a)-(d).

Lastly consider
∆+

3,1(ρ)

∆+(ρ)

∆+
3,1(ρ)

∆+(ρ)
=

e−λ3(λ1 − λ2)[β1ξ1λ1λ2 − β1ξ2λ3 + β2ξ2 − β3ξ1](
α1λ1

2 + α2λ1 + α3

)
∆1,1 −

(
α1λ2

2 + α2λ2 + α3

)
∆2,1 +

(
α1λ3

2 + α2λ3 + α3

)
∆3,1

multiply by eλ3

eλ3
and substituting the values for ∆j,1, j = 1, 2, 3

∆+
3,1(ρ)

∆+(ρ)
=

(λ1 − λ2)γ
(3)
3

eλ3−λ1(λ2 − λ3)γ
(3)
1 − eλ3−λ2(λ3 − λ1)γ

(3)
2 +

(
α1λ3

2 + α2λ3 + α3

)
(λ1 − λ2)γ

(3)
3

where

γ
(3)
1 =

(
α1λ1

2 + α2λ1 + α3

)
[β1ξ1λ2λ3 − β1ξ2λ1 + β2ξ2 − β3ξ1]

γ
(3)
2 =

(
α1λ2

2 + α2λ2 + α3

)
[β1ξ1λ1λ3 − β1ξ2λ2 + β2ξ2 − β3ξ1]

γ
(3)
3 = [β1ξ1λ1λ2 − β1ξ2λ3 + β2ξ2 − β3ξ1]

Using (3.25) we have

eλ3−λ1 = e
−3iρ

2 e−
√

32
ρ eλ3−λ2 = e−

√
3ρ

As ρ→∞ we find that for cases (a), (c) and (d);

∆+
3,1(ρ)

∆+(ρ)
∼ ρ−2 (3.33)
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For cases (b), since α1 = α2 = 0, we have

∆+
3,1(ρ)

∆+(ρ)
∼ 1 (3.34)

Now we are ready to estimate the solution u1(x, t) = I1(x, t) + II1(x, t). As

I1 =
3∑

j=1

1

2π

∫ +∞

0

eiρ3teλ+
j (ρ)x

∆+
j,1(ρ)

∆+(ρ)
3ρ2ĥ+

1 (ρ)dρ

an application of Lemma (3.7) produces a constant C such that

‖I1(·, t)‖2
L2(0,1) ≤ C

3∑
j=1

∞∫
0

∣∣∣∣∣∆+
j,1(ρ)

∆+(ρ)

∣∣∣∣∣
2 (
eReλ+

j (ρ) + 1
)2 ∣∣∣ĥ+

1 (ρ)3ρ2
∣∣∣2 dρ (3.35)

Using the asymptotic behavior for each case, (3.31), (3.32), (3.33), or (3.34) consider∣∣∣∆+
j,1(ρ)

∆+(ρ)

∣∣∣2 (eReλ+
j (ρ) + 1

)2

from each integral in the sum.

For
∆+

1,1(ρ)

∆+(ρ)

(
e−

√
3

2
ρ
)2 (

e0 + 1
)2

For
∆+

2,1(ρ)

∆+(ρ)

(
e−

√
3ρ
)2 (

e
√

3
2

ρ + 1
)2

For
∆+

3,1(ρ)

∆+(ρ)
we have two possibilities

(
ρ−2
)2 (

e−
√

3
2

ρ + 1
)2

or
(
1
)2 (

e−
√

3
2

ρ + 1
)2

Hence in any of the cases there exists a constant C such that

∣∣∣∣∣∆+
j,1(ρ)

∆+(ρ)

∣∣∣∣∣
2 (
eReλ+

j (ρ) + 1
)2

< C for any ρ ≥ 1.

Therefore, for any t ≥ 0,
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‖I1(·, t)‖2
L2(0,1) ≤ C

∫ ∞

0

|ĥ+
1 (ρ)|2(3ρ2)2dρ

= C

∫ ∞

0

3ρ2|ĥ+
1 (ρ)|23ρ2dρ

≤ C

∫ ∞

0

µ2/3

∣∣∣∣∫ ∞

0

e−iµh1(τ)dτ

∣∣∣∣2 dµ
≤ C‖h1‖2

H1/3(R+).

where we have rewritten the integral in terms of µ = ρ3. The same argument applied to

II1(x, t) gives

‖II1(·, t)‖L2(0,1) ≤ C‖h1‖H1/3(R+).

Therefore (3.28) holds.

To prove (3.29), let θ(µ) be the real solution of µ = ρ3 for ρ ≥ 1. Then for ∂xI1(x, t) we

have

∂xI1(x, t) =
3∑

j=1

1

2π

∫ +∞

0

eiρ3tλ+
j (ρ)eλ+

j (ρ)x
∆+

j,1(ρ)

∆+(ρ)
3ρ2ĥ+

1 (ρ)dρ

=
3∑

j=1

1

2π

∫ +∞

0

eiµtλ+
j (θ(µ))eλ+

j (θ(µ))x
∆+

j,1(θ(µ))

∆+(θ(µ))
ĥ1(iµ)dµ

Using the Plancherel Theorem (with respect to t) yields that for any x ∈ (0, 1),

‖∂xI1(x, ·)‖2
L2(R+) ≤

3∑
j=1

1

2π

∫ +∞

0

∣∣∣∣∣λ+
j (θ(µ))eλ+

j (θ(µ))x
∆+

j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2

|ĥ1(iµ)|2dµ.

In addition,
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∫ 1

0

‖∂xI1(x, ·)‖2
L2(R+)dx ≤ sup

x∈(0,1)

‖∂xI1(x, ·)‖2
L2(R+)

≤ C

3∑
j=1

∫ +∞

0

∣∣λ+
j (θ(µ))

∣∣2 sup
x∈(0,1)

∣∣∣eλ+
j (θ(µ))x

∣∣∣2 ∣∣∣∣∣∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2

|ĥ1(iµ)|2dµ

Consider supx∈(0,1)

∣∣∣eλ+
j (θ(µ))x

∣∣∣2. Looking at each value of λj, j=1,2,3 we have the following

estimates

supx∈(0,1)

∣∣eλ1(ρ)x
∣∣2 = supx∈(0,1) |eiρx|2 ≤ C,

supx∈(0,1)

∣∣eλ2(ρ)x
∣∣2 = supx∈(0,1)

∣∣∣∣∣e−iρ

(
1+i

√
3

2

)
x

∣∣∣∣∣
2

≤ C
(
e
√

3ρ + 1
)
,

supx∈(0,1)

∣∣eλ3(ρ)x
∣∣2 = supx∈(0,1)

∣∣∣∣∣e−iρ

(
1−i

√
3

2

)
x

∣∣∣∣∣
2

≤ C
(
e−

√
3ρ + 1

)
Using these estimates with the results for the asymptotic behavior of

∣∣∣∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣2 namely

(3.31), (3.32), (3.33), and (3.34), we have the following (recall that θ(µ) is the real solution

of µ = ρ3)

supx∈(0,1)

∣∣eλ1(ρ)x
∣∣2 ∣∣∣∆+

1,1(θ(µ))

∆+(θ(µ))

∣∣∣2 ≤ C
(
e−

√
3

2
ρ
)2

,

supx∈(0,1)

∣∣eλ2(ρ)x
∣∣2 ∣∣∣∆+

2,1(θ(µ))

∆+(θ(µ))

∣∣∣2 ≤ C
(
e
√

3ρ + 1
)(

e−
√

3ρ
)2

,

supx∈(0,1)

∣∣eλ3(ρ)x
∣∣2 ∣∣∣∆+

3,1(θ(µ))

∆+(θ(µ))

∣∣∣2 ≤ C
(
e−

√
3ρ + 1

)(
ρ−2
)

or C
(
e−

√
3ρ + 1

)
The two possibilities in the last inequality are due to the results for

∆+
3,1(ρ)

∆+(ρ)
which depend

on the assumptions for the boundary conditions. In any of the cases the expressions on the

right hand side are convergent as ρ→∞, therefore we can find a constant C such that
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∫ 1

0

‖∂xI1(x, ·)‖2
L2(R+)dx ≤ sup

x∈(0,1)

‖∂xI1(x, ·)‖2
L2(R+)

≤ C

3∑
j=1

∫ +∞

0

∣∣λ+
j (θ(µ))

∣∣2 sup
x∈(0,1)

∣∣∣eλ+
j (θ(µ))x

∣∣∣2 ∣∣∣∣∣∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2

|ĥ1(iµ)|2dµ

≤ C

∫ +∞

0

(1 + µ)2/3|ĥ1(iµ)|2dµ ≤ C‖h1‖2
H1/3(R+).

where we have also used the definition of λj, j=1,2,3, rewritten in terms of µ.

To see ∂xI1 is continuous from [0, 1] to the space L2(R+), choose any x0 ∈ [0, 1] and

x ∈ (0, 1) and observe that

∂xI1(x, t)− ∂xI1(x0, t)

=
3∑

j=1

1

2π

∫ +∞

0

eiµtλ+
j (θ(µ))

(
eλ+

j (θ(µ))x − eλ+
j (θ(µ))x0

)∆+
j,1(θ(µ))

∆+(θ(µ))
ĥ1(iµ)dµ.

Using the Plancherel Theorem (with respect to t) as above yields

‖∂xI1(x, ·)− ∂xI1(x0, ·)‖2
L2(R+)

≤
3∑

j=1

1

2π

∫ +∞

0

∣∣∣∣∣λ+
j (θ(µ))

(
eλ+

j (θ(µ))x − eλ+
j (θ(µ))x0

)∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2

|ĥ1(iµ)|2dµ

≤ C

∫ +∞

0

(1 + µ)2/3|ĥ1(iµ)|2dµ.

An application of Fatou’s Lemma gives
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lim
x→x0

‖∂xI1(x, ·)− ∂xI1(x0, ·)‖2
L2(R+)

≤
3∑

j=1

1

2π

∫ +∞

0

∣∣∣∣∣λ+
j (θ(µ)) lim

x→x0

(
eλ+

j (θ(µ))x − eλ+
j (θ(µ))x0

)∆+
j,1(θ(µ))

∆+(θ(µ))

∣∣∣∣∣
2

|ĥ1(iµ)|2dµ

= 0

Continuity is established. Similarly we can show that

∫ 1

0

‖∂xII1(x, ·)‖2
L2(R+)dx ≤ sup

x∈(0,1)

‖∂xII1(x, ·)‖2
L2(R+) ≤ C‖h1‖2

H1/3(R+)

and II1(x, ·) ∈ Cb([0, 1];L2(R+)). Therefore since u1(x, t) = I1(x, t)+II1(x, t), the inequality

(3.29) holds.

�

Next consider u2(x, t) = I2(x, t) + II2(x, t)

Proposition 3.9. Assume that one of the conditions from (3.3) is satisfied. There exists

a constant C such that

‖u2‖L2(R+;H1(0,1)) + sup
0≤t≤∞

‖u2(·, t)‖L2(0,1) ≤ C‖h2‖H1/3(R+) (3.36)

and ∂xu2 ∈ Cb([0, 1];L2(R+)) with

sup
x∈(0,1)

‖∂xu2(x, ·)‖L2(R+) ≤ C‖h2‖H1/3(R+) (3.37)

for all h2 ∈ H1/3(R+).

Proof. The proof will be very similar to the proof for Proposition (3.8). First note that

λ1(s) + λ2(s) + λ3(s) = 0. Next the determinant of the matrices for ∆j,2(s) with j = 1, 2, 3

will be determined. To determine ∆1,2(s) consider the matrix
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3.2 Nonhomogeneous Boundary Value Problem Linear Estimates


0

(
α1λ2

2 + α2λ2 + α3

) (
α1λ3

2 + α2λ3 + α3

)
1 eλ2

(
β1λ2

2 + β2λ2 + β3

)
eλ3

(
β1λ3

2 + β2λ3 + β3

)
0 eλ2

(
ξ1λ2 + ξ2

)
eλ3

(
ξ1λ3 + ξ2

)


we have

∆1,2(s) = −eλ3

(
α1λ2

2 + α2λ2 + α3

)(
ξ1λ3 + ξ2

)
+ eλ2

(
α1λ3

2 + α2λ3 + α3

)(
ξ1λ2 + ξ2

)
For ∆2,2(s) consider the matrix


(
α1λ1

2 + α2λ1 + α3

)
0

(
α1λ3

2 + α2λ3 + α3

)
eλ1

(
β1λ1

2 + β2λ1 + β3

)
1 eλ3

(
β1λ3

2 + β2λ3 + β3

)
eλ1

(
ξ1λ1 + ξ2

)
0 eλ3

(
ξ1λ3 + ξ2

)


we have

∆2,2(s) = eλ3

(
α1λ1

2 + α2λ1 + α3

)(
ξ1λ3 + ξ2

)
− eλ1

(
α1λ3

2 + α2λ3 + α3

)(
ξ1λ1 + ξ2

)
For ∆3,2(s) consider the matrix


(
α1λ1

2 + α2λ1 + α3

) (
α1λ2

2 + α2λ2 + α3

)
0

eλ1

(
β1λ1

2 + β2λ1 + β3

)
eλ2

(
β1λ2

2 + β2λ2 + β3

)
1

eλ1

(
ξ1λ1 + ξ2

)
eλ2

(
ξ1λ2 + ξ2

)
0


we have

∆3,2(s) = −eλ2

(
α1λ1

2 + α2λ1 + α3

)(
ξ1λ2 + ξ2

)
+ eλ1

(
α1λ2

2 + α2λ2 + α3

)(
ξ1λ1 + ξ2

)
For ∆(s) we still have (3.30)
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As in the proof for Proposition (3.8) using (3.25) we find the asymptotic behavior as

ρ → ∞. To determine the behavior we multiply
∆+

j,2(ρ)

∆+(ρ)
by e−λ1

e−λ1
for j = 1, 2, 3. The results

for
∆+

1,2(ρ)

∆+(ρ)
are

∆+
1,2(ρ)

∆+(ρ)
∼ ρ−2 (3.38)

holds for cases (a) and (b).

∆+
1,2(ρ)

∆+(ρ)
∼ 1 (3.39)

holds for case (c) since β1 = 0.

∆+
1,2(ρ)

∆+(ρ)
∼ ρ−1 (3.40)

holds for cases (d) since β1 = ξ1 = 0.

For
∆+

2,2(ρ)

∆+(ρ)
we have

∆+
2,2(ρ)

∆+(ρ)
∼ e−

√
3

2
ρ (3.41)

holds for all cases (a)-(d).

The results for
∆+

3,2(ρ)

∆+(ρ)
are

∆+
3,2(ρ)

∆+(ρ)
∼ ρ−2 (3.42)

holds for cases (a) and (b);

∆+
3,2(ρ)

∆+(ρ)
∼ 1 (3.43)

holds for case (c) since β1 = 0;

∆+
3,2(ρ)

∆+(ρ)
∼ ρ−1 (3.44)
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holds for cases (d) since β1 = ξ1 = 0.

Next, recall that u2(x, t) = I2(x, t) + II2(x, t), consider

I2 =
3∑

j=1

1

2π

∫ +∞

0

eiρ3teλ+
j (ρ)x

∆+
j,2(ρ)

∆+(ρ)
3ρ2ĥ+

1 (ρ)dρ

An application of Lemma (3.7) produces a constant C such that

‖I2(·, t)‖2
L2(0,1) ≤ C

3∑
j=1

∞∫
0

∣∣∣∣∣∆+
j,2(ρ)

∆+(ρ)

∣∣∣∣∣
2 (
eReλ+

j (ρ) + 1
)2 ∣∣∣ĥ+

2 (ρ)3ρ2
∣∣∣2 dρ

As in the proof of Proposition (3.8) the asymptotic behavior of (3.38), (3.39), (3.40),

(3.41), (3.42), (3.43) or (3.44) allows the term
∣∣∣∆+

j,2(ρ)

∆+(ρ)

∣∣∣2 (eReλ+
j (ρ) + 1

)2

to be bounded for

each integral in the sum. The inequality becomes

‖I2(·, t)‖2
L2(0,1) ≤ C

∫ ∞

0

|ĥ+
2 (ρ)|2(3ρ2)2dρ

≤ C

∫ ∞

0

(1 + µ)2/3

∣∣∣∣∫ ∞

0

e−iµh2(τ)dτ

∣∣∣∣2 dµ
≤ C‖h2‖2

H1/3(R+).

where we have rewritten the integral in terms of µ = ρ3. The same argument applied to

II2(x, t) gives

‖II2(·, t)‖L2(0,1) ≤ C‖h2‖H1/3(R+).

Therefore (3.36) holds. To prove (3.37), we follow the same steps as in the proof of

Proposition (3.8)

�

Lastly we consider u3(x, t) = I3(x, t) + II3(x, t)
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Proposition 3.10. Assume that one of the conditions from (3.3) is satisfied. There

exists a constant C such that

‖u3‖L2(R+;H1(0,1)) + sup
0≤t≤∞

‖u3(·, t)‖L2(0,1) ≤ C‖h3‖H1/3(R+) (3.45)

and ∂xu3 ∈ Cb([0, 1];L2(R+)) with

sup
x∈(0,1)

‖∂xu3(x, ·)‖L2(R+) ≤ C‖h3‖H1/3(R+) (3.46)

for all h3 ∈ H1/3(R+).

Proof. The proof will be very similar to the proof for Proposition (3.8). First note that

λ1(s) + λ2(s) + λ3(s) = 0. Next the determinant of the matrices for ∆j,3(s) with j = 1, 2, 3

will be determined. To determine ∆1,3(s) consider the matrix


0

(
α1λ2

2 + α2λ2 + α3

) (
α1λ3

2 + α2λ3 + α3

)
0 eλ2

(
β1λ2

2 + β2λ2 + β3

)
eλ3

(
β1λ3

2 + β2λ3 + β3

)
1 eλ2

(
ξ1λ2 + ξ2

)
eλ3

(
ξ1λ3 + ξ2

)


we have

∆1,3(s) = eλ3

(
α1λ2

2+α2λ2+α3

)(
β1λ3

2+β2λ3+β3

)
−eλ2

(
α1λ3

2+α2λ3+α3

)(
β1λ2

2+β2λ2+β3

)
For ∆2,3(s) consider the matrix


(
α1λ1

2 + α2λ1 + α3

)
0

(
α1λ3

2 + α2λ3 + α3

)
eλ1

(
β1λ1

2 + β2λ1 + β3

)
0 eλ3

(
β1λ3

2 + β2λ3 + β3

)
eλ1

(
ξ1λ1 + ξ2

)
1 eλ3

(
ξ1λ3 + ξ2

)


we have
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∆2,3(s) = −eλ3

(
α1λ1

2+α2λ1+α3

)(
β1λ3

2+β2λ3+β3

)
+eλ1

(
α1λ3

2+α2λ3+α3

)(
β1λ1

2+β2λ1+β3

)
For ∆3,3(s) consider the matrix


(
α1λ1

2 + α2λ1 + α3

) (
α1λ2

2 + α2λ2 + α3

)
0

eλ1

(
β1λ1

2 + β2λ1 + β3

)
eλ2

(
β1λ2

2 + β2λ2 + β3

)
0

eλ1

(
ξ1λ1 + ξ2

)
eλ2

(
ξ1λ2 + ξ2

)
1


we have

∆3,3(s) = eλ2

(
α1λ1

2+α2λ1+α3

)(
β1λ2

2+β2λ2+β3

)
−eλ1

(
α1λ2

2+α2λ2+α3

)(
β1λ1

2+β2λ1+β3

)
For ∆(s) we still have (3.30)

As in the proof for Proposition (3.8) using (3.25) we find the asymptotic behavior as

ρ → ∞. To determine the behavior we multiply
∆+

j,3(ρ)

∆+(ρ)
by e−λ1

e−λ1
for j = 1, 2, 3. The results

for
∆+

1,3(ρ)

∆+(ρ)
are

∆+
1,3(ρ)

∆+(ρ)
∼ ρ−1 (3.47)

holds for all cases (a)-(d).

For
∆+

2,3(ρ)

∆+(ρ)
we have

∆+
2,3(ρ)

∆+(ρ)
∼ ρ−1e−

√
3

2
ρ (3.48)

holds for all cases (a)-(d).

The results for
∆+

3,3(ρ)

∆+(ρ)
are

∆+
3,3(ρ)

∆+(ρ)
∼ ρ−1 (3.49)

63



3.2 Nonhomogeneous Boundary Value Problem Linear Estimates

holds for all cases (a)-(d).

Next, recall that u3(x, t) = I3(x, t) + II3(x, t), consider

I3 =
3∑

j=1

1

2π

∫ +∞

0

eiρ3teλ+
j (ρ)x

∆+
j,3(ρ)

∆+(ρ)
3ρ2ĥ+

1 (ρ)dρ

An application of Lemma (3.7) produces a constant C such that

‖I3(·, t)‖2
L2(0,1) ≤ C

3∑
j=1

∞∫
0

∣∣∣∣∣∆+
j,3(ρ)

∆+(ρ)

∣∣∣∣∣
2 (
eReλ+

j (ρ) + 1
)2 ∣∣∣ĥ+

3 (ρ)3ρ2
∣∣∣2 dρ

As in the proof for Proposition (3.8) the asymptotic behavior of (3.47), (3.48), or (3.49)

allows the term
∣∣∣∆+

j,3(ρ)

∆+(ρ)

∣∣∣2 (eReλ+
j (ρ) + 1

)2

to be bounded for each integral in the sum. The

inequality becomes

‖I3(·, t)‖2
L2(0,1) ≤ C

∫ ∞

0

|ĥ+
3 (ρ)|2(3ρ2)2dρ

≤ C

∫ ∞

0

(1 + µ)2/3

∣∣∣∣∫ ∞

0

e−iµh3(τ)dτ

∣∣∣∣2 dµ
≤ C‖h3‖2

H1/3(R+).

where we have rewritten the integral in terms of µ = ρ3. The same argument applied to

II3(x, t) gives

‖II3(·, t)‖L2(0,1) ≤ C‖h3‖H1/3(R+).

Therefore (3.45) holds. To prove (3.46), we follow the same steps as in the proof of

Proposition (3.8)

�

For s ≥ 0, and T > 0, let

Hs,T = H(s+1)/3(0, T )×H(s+1)/3(0, T )×Hs/3(0, T )
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3.2 Nonhomogeneous Boundary Value Problem Linear Estimates

If T = ∞, denote Hs,T by Hs.

‖~h‖Hs,T
≡
(
‖h1‖2

H(s+1)/3(0,T ) + ‖h2‖2
H(s+1)/3(0,T ) + ‖h3‖2

Hs/3(0,T )

)1/2

The following theorem regarding problem (3.20) has now been proven, combining the

results from the beginning of the section with Propositions (3.8)-(3.10).

Theorem 3.11. Assume that one of the conditions of (3.3) holds. For any ~h ∈ H0 ut + uxxx = 0, u(x, 0) = 0,

B1u = h1(t), B2u = h2(t), B3u = h3(t)

admits a unique solution

u(x, t) = [Wb(t)~h(t)](x)

which belongs to the space Cb(R
+;L2(0, 1)) ∩ L2(R+;H1(0, 1)) with ux ∈ Cb([0, 1];L2(R+)),

if one of the conditions from (3.3) holds. Moreover there exists a constant C such that

‖u‖L2(R+;H1(0,1)) + sup
0≤t≤∞

‖u(·, t)‖L2(0,1) ≤ C‖~h‖H0

and

sup
x∈(0,1)

‖ux(x, ·)‖L2(R+) ≤ C‖~h‖H0

for all ~h ∈ H0.
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CHAPTER 4

Well-Posedness

In this chapter the well-posedness of the nonlinear IBVP

 ut + ux + uux + uxxx = 0, u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t).
(4.1)

is considered. For any T > 0 and s ≥ 0, let Xs,T be the space defined by

Xs,T := Hs(0, 1)×H(s+1)/3(0, T )×H(s+1)/3(0, T )×Hs/3(0, T )

with norm

‖(φ,~h)‖Xs,T
:=
(
‖φ‖2

Hs(0,1) + ‖h1‖2
H(s+1)/3(0,T ) + ‖h2‖2

H(s+1)/3(0,T ) + ‖h3‖2
Hs/3(0,T )

) 1
2

Let Ys,T be the space of functions v(x, t) such that v ∈ C([0, T ];Hs(0, 1))∩L2([0, T ];Hs+1(0, 1))

with its norm defined as

‖v‖Ys,T
:=
(
‖v‖2

C([0,T ];Hs(0,1)) + ‖v‖2
L2([0,T ];Hs+1(0,1))

) 1
2

In addition, let

Ys,T = Ys,T ∩Hs/3(0, T ;H1(0, 1))

with its norm defined as

‖v‖Ys,T
=
(
‖v‖2

Ys,T
+ ‖v‖2

H
s
3 (0,T ;H1(0,1))

) 1
2
.

Note that Y0,T = Y0,T .

The following two lemmas are helpful in establishing the well-posedness of (4.1).



Well-Posedness

Lemma 4.1. (i) For s ≥ 0 there exists a C ≥ 0 such that for any T > 0 and

u, v ∈ Ys,T ,

T∫
0

‖uvx‖Hs(0,1) dτ ≤ C(T
1
2 + T

1
3 )‖u‖Ys,T

‖v‖Ys,T
(4.2)

(ii) For 0 ≤ s ≤ 3 there exists a C ≥ 0 such that for any T > 0 and u, v ∈ Ys,T ,

‖uvx‖W
s
3 ,1(0,T ;L2(0,1)

≤ C(T
1
2 + T

1
3 )‖u‖Ys,T

‖v‖Ys,T
(4.3)

Proof. It is only necessary to prove (4.3) since (4.2) has already been established in

[[8], Lemma 3.1]. Note first

‖uvx‖W 0,1(0,T ;L2(0,1)) =

∫ T

0

‖uvx‖L2(0,1)dτ ≤ C(T
1
2 + T

1
3 )‖u‖Y0,T

‖v‖Y0,T

according to (4.2) (with s = 0). Since

(uvx)t = utvx + uvxt,

and ut, vt ∈ Y0,T if u, v ∈ Y3,T , we have

‖(uvx)t‖W 0,1(0,T ;L2(0,1)) ≤ C(T
1
2 + T

1
3 )(‖ut‖Y0,T

‖v‖Y0,T
+ ‖u‖Y0,T

‖vt‖Y0,T
)

Therefore

‖uvx‖W 1,1(0,T ;L2(0,1)) ≤ C1(T
1
2 + T

1
3 )‖u‖Y3,T

‖v‖Y3,T

So estimate (4.3) is true for s = 0 and s = 3. For 0 < s < 3 the result follows from the

nonlinear interpolation theory developed in Bona and Scott [4]. �

Consider the following linear IBVP ut + uxxx = f, u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t).
(4.4)
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Note that if u is a C∞-smooth solution then the initial data u(x, 0) = φ(x) and its

boundary values hj(t), j = 1, 2, 3 must satisfy the following compatibility conditions:

B1φk = h
(k)
1 (0), B2φk = h

(k)
2 (0), B3φk = h

(k)
3 (0)

for k = 0, 1, . . ., where h
(k)
j (t) is the k−th order derivative of hj and φ0(x) = φ(x),

φk(x) = −(φ′′′k−1(x)− φ′k−1(x) + Σk−1
j=0(φj(x)φk−j−1(x))

′).
(4.5)

Therefore for any s ≥ 0, φ ∈ Hs(0, 1) and

~h = (h1, h2, h3) ∈ H
s+1
3

loc (R+)×H
s+1
3

loc (R+)×H
s
3
loc(R

+),

(φ,~h) is called s−compatible if

B1(φk) = h
(k)
1 (0), B2(φk) = h

(k)
2 (0), B3(φk) = h

(k)
3 (0) in the space Hs−3k(0, 1) (4.6)

for k = 0, 1, 2, · · · , [ s
3
]− 1.

Lemma 4.2. Let T > 0 and 0 ≤ s ≤ 3 be given and assume that one of the conditions of

(3.3) is satisfied. There exists a constant C > 0 such that for any f ∈ W
s
3
,1(0, T ;L2(0, 1))

and s−compatible (φ,~h) ∈ Xs,T , the IBVP (4.4) admits a unique solution u ∈ Ys,T satisfying

‖u‖Ys,T
≤ C

(
‖f‖

W
s
3 ,1(0,T ;L2(0,1))

+ ‖(φ,~h)‖Xs,T

)
. (4.7)

Proof. When s = 0 the solution is established from the results proven in chapter three.

In addition (4.7) follows from the linear estimates presented in chapter three. The remainder

of the proof focuses on s = 3. The other cases follow from interpolation. Given that we have

the solution u for s = 0, let v = ut. Then v solves vt + vxxx = ft, v(x, 0) = f(x, 0)− φ′′′(x),

B1v = h′1(t), B2v = h′2(t), B3v = h′3(t).
(4.8)
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Applying (4.7) for v gives

‖ut‖Y0,T
= ‖v‖Y0,T

≤ C
(
‖f‖W 1,1(0,T ;L2(0,1)) + ‖(φ,~h)‖X3,T

)
.

Note that

uxxx = f − ut,

and for s = 3, we have f ∈ W 1,1(0, T ;L2(0, 1)) with u, ut ∈ Y0,t. It then follows for s = 3,

‖u‖Y3,T
≤ C

(
‖f‖W 1,1(0,T ;L2(0,1)) + ‖(φ,~h)‖X3,T

)
.

�

Next the well-posedness of the nonlinear IBVP (4.1) is established. First it is shown that

the IBVP (4.1) is locally well-posed in the space Hs(0, 1) for 0 ≤ s ≤ 3.

Theorem 4.3. Assume one of the conditions of (3.3) is satisfied. Let T > 0 , 0 ≤ s ≤ 3

and η > 0 be given. There exists T ∗ ∈ (0, T ] such that for any s−compatible (φ,~h) ∈ Xs,T

with

‖(φ,~h)‖Xs,T
≤ η,

the IBVP (4.1) admits a unique solution u ∈ Ys,T ∗. Moreover the solution depends Lipschitz

continuously on (ψ,~h) in the corresponding spaces.

Proof. Let (φ,~h) ∈ Xs,T be as given and rewrite (4.1) as
ut + uxxx = −ux − uux,

u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t)

Let r > 0 and 0 < θ ≤ max{1, T} be constants to be determined. Set

Sθ,r = {v ∈ Ys,θ | ‖v‖Ys,θ
≤ r, }
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Well-Posedness

which is a bounded closed convex subset of Ys,θ. Define a map Γ on Sθ,r by

u = Γ(v)

where using the results from chapter three we have u being the unique solution of
ut + uxxx = −vx − vvx,

u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t)

for v ∈ Sθ,r. According to Lemma (4.2), for any v ∈ Sθ,r, we have

‖Γ(v)‖Ys,θ
≤ C0‖(φ,~h)‖Xs,T

+ C‖(v + 1)vx‖W
s
3 ,1(0,θ;L2(0,1))

then using Lemma (4.1), and given ‖(φ,~h)‖Xs,T
≤ η with 0 < θ ≤ max{1, T}

‖Γ(v)‖Ys,θ
≤ C0η + C‖(v + 1)vx‖W

s
3 ,1(0,θ;L2(0,1))

≤ C0η + C(θ
1
2 + θ

1
3 )‖v + 1‖Ys,θ

‖v‖Ys,θ

≤ C0η + C1θ
1
3‖v‖Ys,θ

(‖v‖Ys,θ
+ 1)

For given 0 < α < 1, choose r > 0 and 0 < θ ≤ 1 such that

r = 2C0η and C1θ
1
3 (r + 1) ≤ 1

2
α (4.9)

then for any v ∈ Sθ,r

‖Γ(v)‖Ys,θ
≤ C0‖(φ,~h)‖X3,T

+ C1θ
1
3‖v‖Ys,θ

(‖v‖Ys,θ
+ 1)

≤ r

2
+ C1θ

1
3 r(r + 1)

≤ r

2
+
r

2
= r
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Therefore Γ : Sθ,r → Sθ,r. Recall that

u = Γ(v) = W0(t)φ(x) + [Wb(t)~h](x) +

θ∫
0

W0(t− τ)[(v + 1)vx]dτ

. Then using Lemma (4.1), 0 < θ ≤ max{1, T} and for any u, v ∈ Sθ,r;

‖Γ(u)− Γ(v)‖Ys,θ
= ‖

θ∫
0

W0(t− τ)[(u+ 1)ux − (v + 1)vx]dτ‖Ys,θ

≤ C‖(u+ 1)ux − (v + 1)vx‖W
s
3 ,1(0,θ;L2(0,1))

≤ C
(
‖(u+ 1)(u− v)x‖W

s
3 ,1(0,θ;L2(0,1))

+ ‖(u− v)vx‖W
s
3 ,1(0,θ;L2(0,1))

)
≤ C1θ

1
3 (‖u‖Ys,θ

+ ‖v‖Ys,θ
+ 1)‖u− v‖Ys,θ

≤ 2C1θ
1
3 (1 + r)‖u− v‖Ys,θ

≤ α‖(u− v)‖Ys,θ
.

Therefore the map Γ is a contraction mapping on Sθ,r. Its fixed point u = Γ(u) is the desired

solution. �

Next consider the following linearized IBVP associated to (4.1). ut + ux + (a(x, t)u)x + uxxx = f, u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t)
(4.10)

where a(x, t) is a given function.

Proposition 4.4. Let T > 0 and 0 ≤ s ≤ 3 be given and assume that a ∈ Ys,T and

that one of the conditions of (3.3) is satisfied. Then for any s−compatible (φ,~h) ∈ Xs,T

and f ∈ W s
3
,1(0, T ;L2(0, 1)), the IBVP (4.10) admits a unique solution u ∈ Ys,T . Moreover,

there exists a constant C > 0 depending only on T and ‖a‖Ys,T
such that

‖u‖Y0,T
≤ C

(
‖(φ,~h)‖Xs,T

+ ‖f‖
W

s
3 ,1(0,T ;Hs(0,1))

)
.

72
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Proof. For given (φ,~h) and f , rewrite (4.10) as


ut + uxxx = f − ux − (au)x,

u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t)

As in the proof of Theorem (4.3), consider the map

u = Γ(v)

for any v ∈ Ys,θ where 0 < θ ≤ max{1, T} and u is the unique solution of


ut + uxxx = f − vx − (av)x,

u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t)

Its norm in the space Ys,θ is estimated by

‖Γ(v)‖Ys,θ
≤ C(‖f − vx − (av)x‖W

s
3 ,1(0,θ;L2(0,1))

+ ‖(φ,~h)‖Xs,T
)

≤ C(‖f‖
W

s
3 ,1(0,θ;L2(0,1))

+ ‖(1 + a)vx‖W
s
3 ,1(0,θ;L2(0,1))

+ ‖axv‖W
s
3 ,1(0,θ;L2(0,1))

+ ‖(φ,~h)‖Xs,T
)

≤ C0(‖(φ,~h)‖Xs,T
+ ‖f‖

W
s
3 ,1(0,T ;L2(0,1))

) + C(θ
1
2 + θ

1
3 )(‖1 + a‖Ys,T

+ ‖a‖Ys,T
)‖v‖Ys,θ

≤ C0(‖(φ,~h)‖Xs,T
+ ‖f‖

W
s
3 ,1(0,T ;L2(0,1))

) + C1θ
1
3 (2‖a‖Ys,T

+ 1)‖v‖Ys,θ

≤ C0(‖(φ,~h)‖Xs,T
+ ‖f‖

W
s
3 ,1(0,T ;L2(0,1))

) + 2C1θ
1
3 (‖a‖Ys,T

+ 1)‖v‖Ys,θ

where we have used Lemma (4.1). Thus, if r and θ are chosen such that for 0 < α < 1

r = 2C0(‖(φ,~h)‖Xs,T
+ ‖f‖

W
s
3 ,1(0,T ;L2(0,1))

), C1θ
1
3 (‖a‖Ys,T

+ 1) =
1

2
α (4.11)

then for any v, u ∈ Sr,θ in the space Ys,θ,

‖Γ(v)‖Ys,θ
≤ r

2
+
r

2
= r
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and as in the previous proof

‖Γ(u)− Γ(v)‖Ys,θ
= ‖

θ∫
0

W0(t− τ)[(f + ux + (au)x)− (f + vx + (av)x)]dτ‖Ys,θ

≤ C
(
‖(a+ 1)(u− v)x‖W

s
3 ,1(0,θ;L2(0,1))

+ ‖ax(u− v)‖
W

s
3 ,1(0,θ;L2(0,1))

)
≤ C1θ

1
3

(
2‖a‖Ys,θ

+ 1
)
‖u− v‖Ys,θ

≤ α‖(u− v)‖Ys,θ
.

with α = C1θ
1
3 (2‖a‖Ys,T

+ 1) < 1. That is to say, Γ is a contraction mapping from

Sr,θ to Sr,θ if r and θ are chosen according to (4.11). Its fixed point u ∈ Sr,θ solves the

IBVP (4.10) in the time interval [0, θ]. Note that θ depends only on ‖a‖Ys,T
(In fact, θ =

max{1,
(

1
2C1(‖a‖Ys,T

+1)

)3

}). By the standard extension argument, the solution u can be

extended to the time interval [0, T ] such that u ∈ Ys,T . The proof is complete. �

Theorem (4.3) can be extended to the case where s > 3 for the IBVP (4.1).

Theorem 4.5. Assume one of the conditions of (3.3) is satisfied. Let T > 0 , s > 3 and

η > 0 be given. There exists T ∗ ∈ (0, T ] such that for any s−compatible (φ,~h) ∈ Xs,T with

‖(φ,~h)‖X3,T
≤ η,

the IBVP (4.1) admits a unique solution u ∈ Ys,T ∗. Moreover the solution depends Lipschitz

continuously on (ψ,~h) in the corresponding spaces.

Remark 4.6. : In the above theorem, the length of the time interval (0, T ∗) depends only

on ‖(φ,~h)‖X3,T
instead of ‖(φ,~h)‖Xs,T

.

Proof. Consider the case 3 < s ≤ 6. The others can be proved similarly. First of all,

according to Theorem (4.3), the IBVP (4.1) admits a unique solution u ∈ Y3,T ∗ . We just

need to prove this solution u also belong to the space Ys,T ∗ . To see that, let v = ut. Then v
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solves the following linearized IBVP
vt + vx + (a(x, t)v)x + vxxx = 0,

v(x, 0) = φ1(x),

B1v = h
(1)
1 (t), B2v = h

(1)
2 (t), B3v = h

(1)
3 (t)

where a(x, t) = u(x, t) ∈ Y3,T ∗ and

φ1 ∈ Hs−3(0, 1), h
(1)
1 , h

(1)
2 ∈ H

s−2
3 (0, T ∗), h

(1)
3 ∈ H

s−3
3 (0, T ∗).

It thus follows from Proposition (4.4) that

v = ut ∈ Ys−3,T ∗

and therefore

u ∈ Ys,T ∗

since

uxxx = −ut − ux − uux.

�
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CHAPTER 5

Conclusions

The focus of this dissertation has been the the nonhomogeneous IBVP of the KdV

equation posed on the finite interval (0, 1)

 ut + ux + uux + uxxx = 0, u(x, 0) = φ(x),

B1u = h1(t), B2u = h2(t), B3u = h3(t)
(5.1)

for its well-posedness in the space Hs(0, 1) with initial data φ ∈ Hs(0, 1) and the boundary

value data

~h ∈ H
s+1
3

loc (R+)×H
s+1
3

loc (R+)×H
s
3
loc(R

+).

After establishing the global Kato smoothing property for the associated linear problem,

the IBVP (5.1) is shown to be locally well-posed in the space Hs(0, 1) for any s ≥ 0 via the

contraction mapping principle. In particular, the life span (0, T ∗) of the solution depends

only on the norm of auxiliary data (φ,~h) in the space Xs,T when 0 ≤ s ≤ 3, but in the space

X3,T when s > 3. The results from this research have improved the earlier works of Bubnov

[20], [21] and Colin and Ghidaglia [23] and have extended the local well-posednes results of

Bona, Sun and Zhang in [8] for the KdV equation posed on a finite domain with Dirichlet

boundary conditions to the IBVP (5.1) where a class of general boundary conditions are

imposed. There are still many problems left open for further study.



Conclusions

Problem 1: Is the IBVP (5.1) globally well-posed in the space Hs(0, 1) for any s ≥ 0?

As indicated in the work of Bona, Sun and Zhang [8], it suffices establish the following

a priori global estimate for solutions of the IBVP (5.1) with homogenous boundary data

(h1 = h2 = h3 ≡ 0) in the space L2(0, 1):

for any T > 0, there exists a constant CT such that

sup
0≤t≤T

‖u(·, t)‖L2(0,1) ≤ CT . (5.2)

To try and establish this we will consider an energy estimate and determine where dE(t)
dt

≤

0. Consider the differential equation (5.1) and multiply both sides of the by u and integrate

over (0, 1) with respect to x.

1∫
0

utudx = −
1∫

0

u2uxdx−
1∫

0

uuxdx−
1∫

0

uuxxxdx

Using integration by parts we find that

1

2

d

dt

1∫
0

u2dx = −1

3

1∫
0

(u3)xdx−
1

2

1∫
0

(u2)xdx−
1∫

0

uuxxxdx

= −1

3
u3
∣∣∣1
0
− 1

2
u2
∣∣∣1
0
− uxxu

∣∣∣1
0
+

1

2
u2

x

∣∣∣1
0

(5.3)

Consider the conditions placed on the parameters to establish local well-posedness,

namely,



(a) If α1β1ξ1 6= 0, then F1 ≥ 0, F2 ≥ 0

(b) If β1 6= 0, ξ1 6= 0, α1 = 0 then F2 ≥ 0, α2 = 0, α3 6= 0

(c) If β1 = 0, ξ1 6= 0, α1 6= 0, then F1 ≥ 0, F3 6= 0

(d) If β1 = 0, α1 6= 0, ξ1 = 0, then F1 ≥ 0, F3 6= 0

(5.4)
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where,

F1 =
α3

α1

− α2
2

2α2
1

, F2 =
β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2 and F3 = β2ξ2 − β3ξ1.

Consider case (a), where α1β1ξ1 6= 0. As in the proof of lemma (3.1) in chapter three,

the boundary conditions become

uxx(0) =
−α2

α1

ux(0)− α3

α1

u(0), uxx(1) = (
β2ξ2
β1ξ1

− β3

β1

)u(1), ux(1) =
−ξ2
ξ1

u(1)

using these in (5.3), along with the inequality (3.7) we find that

1

2

d

dt

1∫
0

u2dx = −1

3
u3(1) +

1

3
u3(0)− 1

2
u2(1) +

1

2
u2(0)−

(β2ξ2
β1ξ1

− β3

β1

)
u2(1)

− α2

α1

ux(0)u(0)− α3

α1

u2(0) +
ξ2

2

2ξ1
2u

2(1)− 1

2
ux

2(0)

= −1

3
u3(1) +

1

3
u3(0)−

(β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2 +

1

2

)
u2(1)− α2

α1

ux(0)u(0)

− α3

α1

u2(0)− 1

2
ux

2(0) +
1

2
u2(0)

≤ −1

3
u3(1) +

1

3
u3(0)−

(β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2 +

1

2

)
u2(1)−

(α3

α1

− α2
2

2α1
2
− 1

2

)
u2(0)

Recall that for (a), F1 ≥ 0, F2 ≥ 0. However to control the first two terms, −1
3
u3(1) +

1
3
u3(0), we need to further assume that u(0) = 0 and u(1) = 0. Then the boundary conditions

reduce to u(0) = 0, u(1) = 0, and ux(1) = 0.

Consider the second case with β1 6= 0, ξ1 6= 0, α1 = 0. As before use the rewritten

boundary conditions which gives:

ux(0) = −α3

α2

u(0), uxx(1) =
(β2ξ2
β1ξ1

− β3

β1

)
u(1), ux(1) =

−ξ2
ξ1

u(1)

using these in (5.3), we have
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1

2

d

dt

1∫
0

u2dx = −1

3
u3(1) +

1

3
u3(0)−

(β2ξ2
β1ξ1

− β3

β1

− ξ2
2

2ξ1
2 +

1

2

)
u2(1)

uxx(0)u(0) +
(α3

α2

+
1

2

)
u2(0)

Using F2 ≥ 0, α2 = 0, α3 6= 0 from (b), we know that u(0) = 0. This still leaves the term

−1
3
u3(1). In order to control this term we will need to assume that u(1) = 0. This implies

then that ux(1) = 0, which leads us back to the reduced boundary conditions u(0) = 0,

u(1) = 0, and ux(1) = 0.

Lastly consider cases (c) and (d). Using the boundary conditions we have

uxx(0) =
−α2

α1

ux(0)− α3

α1

u(0), ux(1) = 0, u(1) = 0

using these in (5.3), along with the inequality (3.7) we find that

1

2

d

dt

1∫
0

u2dx ≤ 1

3
u3(0)−

(α3

α1

− α2
2

2α1
2
− 1

2

)
u2(0)

= −
(α3

α1

− α2
2

2α1
2
− 1

2
− 1

3
u(0)

)
u2(0)

As with previous cases we will have to assume that u(0) = 0.

Therefore, using this approach, dE(t)
dt

≤ 0 is available only in the case of the Dirichlet

boundary conditions

u(0, t) = 0, u(1, t) = 0, ux(1, t) = 0.

Problem 2: Is the IBVP (5.1) well-posed in the space Hs(0, 1) for some s < 0?

The IBVP (5.1) with the Dirichlet boundary conditions

u(0, t) = h1(t), u(1, t) = h2(t), ux(1, t) = h3(t)
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has been proved to be locally well-posed in the space Hs(0, 1) for any −1 < s < 0 [11]. It

will be interesting to see if this will hold for the IBVP with general boundary conditions

presented in this research.

One may also view the boundary value functions hj, j = 1, 2, 3 as control input and

study the IBVP (5.1) from control theory point of view as in [76].

Problem 3: Is the system (5.1) exactly controllable?

Control and stabilization of the KdV equation has been extensively studied in the past

two decades (an overall view of the subject is presented in [60]). The control question

posed here is given an initial state φ and a terminal state ψ in a certain space, is there an

appropriate control input f so that the equation (5.1) admits a solution u which equals φ

at time t = 0 and equals φ at time t = T? To be exactly controllable a control input f can

always be found to guide the system from any given initial state to any given terminal state.
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Introduction to Semigroup Theory

Semigroup theory can be applied to solve many time-dependent partial differential equations

as ordinary differential equations on a function space. This section contains a brief introduction

to the elements of semigroup theory from Pazy [58] used in chapter three.

Let X be a Banach space with norm ‖ · ‖,

Definition 5.1. A linear operator A with domain D(A) ⊆ X and range in the Banach

space Y , is called a closed operator if it has the property that whenever xn ⊆ D(A) satisfying

xn → x ∈ X and Axn → y ∈ Y , then x ∈ D(A) and Ax = y.

Definition 5.2. An operator (D(A), A) is closable if for every sequence xn ∈ A such

that xn → 0 we have either

(i) Axn → 0, or (ii) lim
n→0

Axn does not exist.

We can conclude that all bounded operators are closed as well as differential operators.

Definition 5.3. A linear operator A with domain D(A) ⊆ X is a densely defined operator

for the Banach space X if D(A) = X.

Definition 5.4. A linear operator A is dissipative if for every x ∈ D(A) there is

x∗ ∈ F (x) =
{
x∗ : x∗ ∈ X∗ and 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2

}
,

such that

Re〈Ax, x∗〉 ≤ 0,



Appendix

where F (x) ⊂ X∗.

Note that if the space is Hilbert, for the operator to be dissipative we need Re〈Ax, x〉 ≤ 0.

Definition 5.5. A one-parameter family T (t), 0 ≤ t ≤ ∞, of bounded linear operators

from X into X is a semigroup on X if

(i) T (0) = I, where I is the identity operator on X;

(ii) T (s+ t) = T (s)T (t) for every s, t ≥ 0 (the semigroup property).

A semigroup T (t), 0 ≤ t ≤ ∞ of bounded linear operators is a uniformly continuous

semigroup if

lim
t→0

||T (t)− I|| = 0. (5.5)

From the definition, we can conclude that if T (t) is a uniformly continuous semigroup of

bounded linear operators, then

lim
x→t

||T (x)− T (t)|| = 0. (5.6)

The linear operator A defined by

D(A) =

{
x ∈ X : lim

t→0

T (t)x− x

t
exists

}
,

Ax = lim
t→0

T (t)x− x

t
=
d+T (t)x

dt
|t=0 ,

(5.7)

is called the infinitesimal generator of the semigroup T (t), and D(A) is the domain of

the operator A.

Definition 5.6. A semigroup T (t), of bounded linear operators on X is strongly continuous

semigroup of bounded operators if

lim
t→0

T (t)x = x, (5.8)

for every x ∈ X.
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A strongly continuous semigroup of bounded linear operators on X will be called a

semigroup of class C0 or a C0 semigroup.

Theorem 5.7. Let T (t) be a C0 semigroup. There exist constants ω ≥ 0 and M ≥ 1

such that

‖T (t)‖ ≤Meωt for 0 ≤ t <∞ (5.9)

If ω = 0, T (t) is uniformly bounded and if moreover M = 1 it is called a C0 semigroup

of contractions. In other words if ||T (t)x|| ≤ ||x|| that is, ||T (t)|| ≤ 1 for each t ≥ 0, then T

is called a C0 contraction semigroup.

Now we recall that if A is a linear, not necessarily bounded, operator in X, the resolvent

set ρ(A) of A is the set of all complex numbers λ for which λI − A is invertible,that is,

(λI − A)−1 is a bounded operator in X. The family R(λ : A) = (λI − A)−1, λ ∈ ρ(A), of

bounded linear operators is called the resolvent of A.

The following theorem is known as Hille–Yosida’s theorem.

Theorem 5.8. A linear (unbounded) operator A is the infinitesimal generator of a C0

semigroup of contractions T (t), t ≥ 0, if and only if

(i) A is closed and D(A) = X;

(ii) the resolvent set ρ(A) of A contains R+ and for every λ > 0,

||R(λ : A)|| ≤ 1

λ
. (5.10)

As a consequence of this theorem we obtain the following corollary:

Corollary 5.9. A linear operator A is the infinitesimal generator of a C0 semigroup

satisfying ||T (t)|| ≤ ewt if and only if

(i) A is closed and D(A) = X;

(ii) the resolvent set ρ(A) of A contains the ray {λ : Imλ = 0, λ > w} and for every λ > 0,

||R(λ : A)|| ≤ 1

λ− w
. (5.11)
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The Lumer-Phillips theorem and its corollary are used in considering the associated linear

problem for the IBVP.

Theorem 5.10. Let A be a linear operator with dense domain D(A) in X.

(i) If A is dissipative and there is a λ0 > 0 such that the range, R(λ0I−A), of λ0I−A

is X, then A is the infinitesimal generator of a C0 semigroup of contractions on X.

(ii) If A is the infinitesimal generator of a C0 semigroup of contractions on X then

R(λI − A) = X for all λ > 0 and A is dissipative. Moreover, for every x ∈ D(A)

and every x∗ ∈ F (x), Re
〈
Ax, x∗

〉
≤ 0.

As a result we have the following corollary:

Corollary 5.11. Let A be a densely defined closed operator. If both A and A∗ are

dissipative, then A is the infinitesimal generator of a C0 semigroup of contractions on X.

The previous results allows us to prove the following theorem especially useful in the

research presented.

Theorem 5.12. Let A be a closed densely defined linear operator. The initial value

problem 
du(t)

dt
= Au(t) + f(t), t > 0,

u(t0) = x, x ∈ X
(5.12)

with f ∈ C(R+, X) has a unique solution u(t), which is continuously differentiable on

[0,∞), for every initial value x ∈ D(A) if and only if A is the infinitesimal generator of a

C0 semigroup T (t).
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