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Abstract

As computers and technology continue to become more commonplace and essential to everyday life,

more data is captured, stored, and analyzed by a variety of institutions in government, education,

and the private sector. As this amount of data grows, so does the need for efficient methodologies

and tools used to store, retrieve, and transform the data. A common method used to store this

schemaless, semi-structured data is through the Extensible Markup Language, XML. In this way,

an XML document is viewed as a database. With this sizable amount of data stored in a common

format, one problem is how to efficiently query XML documents. While relational database man-

agement systems contain built-in query optimizers, no such framework exists for XML databases.

A multitude of document shapes, query shapes, index structures, and query techniques exist for

XML databases, but the implications of these choices and their effects on query processing have

not been investigated in a common framework. This dissertation identifies a set of representative

query techniques, document structures, and query styles for XML databases and provides a com-

mon framework for classifying the various query techniques, structures, and styles. We identify

two broad classifications of query techniques, native XML and non-native XML, and develop a

cost-based model for each technique that models query performance from an execution standpoint.

We also develop our own query technique, RDBQuery, as an extension and major enhancement to

a previously existing non-native XML query technique that leverages a relational database man-

agement system to efficiently process XML queries. To evaluate relative query performance, we

compare the techniques for various parameters that impact their performance, including query

shape and document shape/size, and the results are presented through a series of graphs. These

graphs and their underlying cost models are used to present an optimization framework for XML

queries, and this provides the essential foundation in development of an integrated cost-based XML

query optimizer.
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Chapter 1

Introduction

As computers and technology become more commonplace and essential to everyday life, more and

more data is captured, stored, and analyzed by a variety of institutions in government, education,

and the private sector. As this amount of available data grows, so does the need for efficient

methodologies and tools used to store, retrieve, and perform operations on the data. The relational

model was first proposed by Codd in 1970 [Cod70] as a way of describing data using only its

natural structure. Specifically, the natural structure of the data refers to the relations between

data elements. It is based on the notions of set theory and first order predicate logic and has, at its

core, the idea of a mathematical relation as the basic building block. Data in the relational model

must conform to a global schema (a description of the type or structure of the data). A relational

schema is typically developed by a database administrator before data is loaded into the system.

As the relational model gained popularity, it inspired many end-user database management

systems (DBMS) to be created using it as a theoretical backbone. Since relational algebra (the

mathematical notation used to manipulate relational data) can be complex, a higher-level query

language was developed to ease user interaction with the DBMS. The Structured Query Language

(SQL) was standardized by the American National Standards Institute (ANSI) and the Inter-

national Standards Organization (ISO) in 1986 [ANS86]. This version of SQL was revised and

expanded in 1992 and is commonly referred to as SQL-92. While SQL allows complex queries to

be written and executed, it does not optimize queries to improve performance and query return

times.

In order to improve query return time, commercial DBMS packages currently include query op-
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Figure 1.1: Traditional Query Optimization

timization techniques built-in to the software. These types of optimizations fall into two categories:

logical and physical (Figure 1.1). When a SQL query is presented to the database, the first step is

logical optimization. The high-level SQL query is converted to a corresponding relational algebra

tree. Transformations are then performed on the tree in order to optimize the query, i.e., reduce

the data retrieved and operated on. The goal of logical optimization is to rewrite the user query

into an equivalent form that is more efficient to execute. For example, Figure 1.2 shows the result

of logical optimization.

While Figure 1.2 shows a query tree, we can intuitively discuss the operations performed on

the query tree represented. Before logical optimization, the cross product (represented by the ×

symbol) of relations S and T is formed. Then a selection (σ) is performed on the data to retrieve

specific rows from the cross product. Finally, unwanted columns are projected out (π) and the

final answer set is given. Since the cross product matches every record in S with every record

in T , the resulting answer will be very large. In addition, the time needed to compute this large

cross product will be lengthy. The result of logical optimization (shown to the right of the arrow

in Figure 1.2) is an equivalent query tree that is faster to process. Assuming the selection (σ) has

some conditions that operate only on S and others that operate only on T , those conditions can

be pushed down the tree past the cross product. This will reduce the number of rows involved in

the cross product. In addition, the projection (π) can be moved past the cross product as well.

Columns in S and columns in T that are not required in the cross product can be removed before it
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Figure 1.2: Logical Optimization (Relational Algebra)

is computed. The cross product (×) and the remaining selections (σ) that operate on both S and

T are then converted into the join operation (shown in the figure by ⊲⊳). Finally, any remaining

unwanted columns are projected out (π) of the final answer.

The result of logical optimization is an equivalent query tree, and this tree is then passed on

for physical optimization. Physical optimization takes into account file organization and auxiliary

access and mechanisms. How the data is stored on disk and the indexes or other access methods

available to the database are crucial in retrieving the requested data quickly. A result of physical

optimization is shown in Figure 1.3. Each of the operators has been assigned an access procedure

based on the physical storage scenario.

For example, each of the operators from Figure 1.3 is assigned an access method (procedure).

Since an index (presumably a B+-tree index) is built on S, the optimizer uses this index for the

selection (σ). Since no index exists on T , the optimizer instead uses a hash function. If T is small,

a linear scan (used for the π operator) is sufficient to project out unwanted data. Other access

methods, determined by availability and cost to the system, are assigned to the remaining operators

accordingly. The DBMS is aware of the physical storage and auxiliary access methods available to

the system. Since there is always a cost to access the data on disk, choosing an efficient access plan

among all possible choices is referred to as cost-based optimization.

The relational model and associated optimization techniques are mature technologies. When

data is highly-structured and uses a well-defined schema, relational databases are an excellent choice

3



(linear scan)

(sort-merge)

(linear scan)

(hash)(index)

(sort)

S T

Figure 1.3: Physical Optimization (Relational Algebra)

for storing and accessing data. However, with the growth of the Internet in the past decade, new

ways of structuring and describing data have become available. One such data model, XML, is

discussed below. These new types of data present challenges for traditional query processing and

optimization techniques.

1.1 XML and OEM

Most data on the web is said to be semistructured or loosely-structured data as well as schemaless

or self-describing. In other words, unlike data in the relational model, there exists little or no

metadata [ABS00] separate from the data itself. The Extensible Markup Language (XML) is a

new standard for data exchange on the Internet and between different processing platforms. An

open-standard specification for XML is kept by the W3C [xml]. While XML is syntactically similar

to HTML, it does more than simply specify the appearance of text on a page. Data represented in

XML is self-describing, i.e., it contains embedded descriptive information, and generally does not

require an outside schema.

A brief example of an XML document is shown in Figure 1.4. Information is represented both

in the text and the tags around the text. The two main methods to represent data are as elements

or attributes. An example of an element if shown in line 3 of Figure 1.4. The element identifier is
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1 <FoodDrink>
2 <restaurant id=‘‘R001’’>
3 <name>Chili’s</name>
4 <phone>671-1102</phone>
5 <owner>G. Peppard</owner>
6 </restaurant>
7 <restaurant id=‘‘R002’’>
8 <name>Maggiano’s</name>
9 <owner>G. Peppard</owner>

10 <manager>Crowley</manager>
11 </restaurant>
12 <bar id=‘‘B001’’>
13 <name>Crowley</name>
14 <style>Irish</style>
15 </bar>
16 </FoodDrink>

Figure 1.4: XML Example

&1

Chili’s 671-1102 G. Peppard Maggiano’s Crowley Crowley Irish

FoodDrink

name

phone

owner owner
name

manager
name

style

restaurant id="R002"

bar id="B001"restaurant id="R001"

&2 &3 &4

&5 &6 &7 &8 &9 &10 &11

Figure 1.5: Corresponding OEM Representation
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name, and the corresponding element value is Chili’s. Information can also be represented as an

attribute of an element (as shown in line 2). The element restaurant has an attribute of R001.

The nesting of XML elements gives it a tree (or graph) structure, and this yields information about

hierarchical relationships (such as parent-child or ancestor-descendant) in the data.

While XML is robust and highly-adaptable (attributes, elements, and element tags can be

dynamically specified and defined by the user), it can be somewhat daunting to read and under-

stand. The Object Exchange Model (OEM) was proposed in 1995 [PGMW95], and it serves as a

diagrammatical representation for XML documents. Data represented in OEM is self-describing

and therefore does not require additional schema definitions. An object in OEM is defined as the

quadruple (label, oid, type, value). The variable label gives a character label to the object,

oid provides the object’s unique identifier, and type can be either an atomic value or complex. If

type is an atomic value, then the object is an atomic object and value is an atomic value of the

corresponding type. Otherwise, if type is complex, then the object is a complex object and value

is a list of object identifers (oids) [ABS00]. An OEM diagram that corresponds to the XML exam-

ple is shown in Figure 1.5. The OEM retains the simplicity of relational models but allows some of

the flexibility given by object-oriented models [CBB+97] for specifying nested objects. OEM is one

example of a graphical convention used to display an XML document. It is important because the

document has an inherent structure, data labels, and data that are readily visible to the reader. A

similar graphical construct will be used to illustrate examples shown in our work.

1.2 XPath and XQuery

The simplest type of query in XML is an XPath expression [xpa09]. XPath expressions resem-

ble the UNIX directory structure with some extensions. The slash (/) and double-slash (//) re-

tain their UNIX interpretations (parent-child and ancestor-descendent relationship, respectively),

and the text in brackets ([ ]) acts as a filter on the data to be returned. Examples in this re-

search are specified in XPath expressions. An example of a simple XPath expression is given by

/FoodDrink/Restaurant[owner=’G.Peppard’] and corresponds to the XML document shown in

Figure 1.4. This expression results in a positive match to two restaurant nodes, one with id equal

to R001 and the other with id equal to R002. The single slash represents a strict parent-child

relationship. The expression //[style=’Irish’] matches only one node, the bar node with id
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equal to B001. The double-slash represents an ancestor-descendant relationship. In this case, we

are only interested in nodes that, at some point in their list of descendants, has a style of Irish.

XQuery is a query language for XML designed to be broadly applicable across many types

of XML sources [xqu09]. Designed to meet the requirements identified by the World Wide Web

Consortium (W3C), XQuery operates on the logical structure of an XML document, and it has

both human-readable syntax and XML-based syntax. A grammar for XQuery is defined by the

W3C [xqu09]. While XQuery can successfully extract information from XML documents, there are

no built-in optimization techniques that relate to the relational optimization techniques discussed

earlier. The current version of XQuery (1.0) is an extension of XPath 2.0. For our purposes, XPath

expressions convey the necessary ideas and XQuery will not be used here.

1.3 Native and Non-Native Techniques

There currently exists two broad methodologies, native and non-native techniques, used to query

XML documents. Native techniques implement XML queries on XML documents. The original

document, while perhaps slightly transformed, maintains the inherent properties of an XML docu-

ment. This means that the document is tree shaped, has both depth and breadth, and is constructed

by linking individual nodes (elements) together. In contrast, non-native techniques transform the

original XML document into another format that is not XML. An example of a non-native tech-

nique is to take an XML document, flatten it, and store the contents in a relational database. Some

of these techniques allow standard XPath expressions to be executed over the transformed data,

but the underlying document is no longer an XML file.

1.4 Problem Statement

As a new and evolving model for representing semistructured data, XML presents new challenges

and options for query processing and cost-based optimization. A multitude of tree shapes, query

styles, query models, index styles, and index data structures exist for XML databases, but the

implications of these choices and their effects on query processing have not been investigated. The

problem of creating the framework and foundation for an effective cost-based optimizer that can

leverage various XML-related parameters has not been studied.
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1.5 Research Objectives

The general objective of this research is to investigate options for and develop the foundation

framework for a unified cost-based optimizer for XML query processing. Our work focuses on

the analyses of several representative query techniques and the comparisons between them. The

increasing volume of semistructured data available on the Internet and other areas makes such an

objective relevant and necessary. Specific objectives of this research related to this goal are as

follows.

1. It is necessary to identify and characterize a set of representative query styles, tree shapes

(database statistics), and index styles and structures. No common framework and terminology

exists for characterizing common representative XML queries that can be presented to a

document.

2. A representative set of query evaluation techniques are selected and analyzed. Each method

is formally measured as to its effectiveness in producing results to the query styles and tree

shapes mentioned above. A cost model for each technique is developed to aid in evaluation.

3. The results of the analyses above are presented in a series of graphs/plots to examine the

effects of individual parameters.

4. General conclusions and recommendations are proposed that address which algorithm best

performs given a particular query style and tree shape.

5. An optimization framework for XML queries is proposed.

1.6 Research Approach

After our representative set of query evaluation techniques are selected, we develop a cost model

for each technique that allows us to model its behavior mathematically. We utilize Wolfram Math-

ematica, a powerful software package that allows for complex equations and graphs, to study the

effect of each parameter in the individual query techniques. Native techniques are compared to each

other, and non-native techniques are similarly studied. The leading technique from each category is

then selected and compared, and a general recommendation about the technique that outperforms

the others in particular scenarios is made.
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1.7 Overview of Chapters

In Chapter 2, we discuss related work and techniques on which this research is based. Chapter 3

provides a detailed description of TwigStack [BKS02]. We analyze the TwigStack algorithm and

develop a cost model for the technique. In a similar fashion, we discuss Constraint Sequencing

[WM05] in Chapter 4. The encoding technique and potential problems with queries are presented,

and we create a cost model for this technique. Chapter 5 provides a detailed discussion about a non-

native XML query technique that stores XML data in relational databases. A leading technique,

SS-Join [SLFW05], is presented and a cost model developed. We also present our own algorithm,

RDBQuery, that uses the same underlying premise as SS-Join but utilizes the relational database

query optimizer to aid in efficient query processing. In Chapters 7 and 8, we present detailed

analyses of individual native and non-native techniques, respectively. Our experimental results

are discussed using graphs generated by our cost models. The native XML query techniques are

compared in Chapter 9. The native technique that outperformed the other technique is then

compared to RDBQuery in Chapter 10.
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Chapter 2

Related Work

This chapter discusses research literature regarding indexing and querying XML data. We begin

with a brief historical summary of indexing techniques, then identify a technique, TwigStack, that

out-performs the historical techniques. The chapter concludes with an overview of an alternative

technique, Constraint Sequencing, that encodes both the document and the query and performs

pattern matching to evaluate queries. TwigStack and Constraint Sequencing are studied in more

detail in later chapters.

2.1 Indexing Techniques

Indexing structures used in relational databases are well-known and highly efficient. Using these

indexing structures as a starting point for indexing XML documents, a natural evolution in the

features and efficiency of said indexes has occurred and will likely continue to develop. This section

starts by introducing a labeling scheme for nodes in a tree, presents preliminary index structures

(B+-tree and XR-tree) used for XML documents, moves on to more sophisticated and efficient

index methodologies (XB-tree, DataGuide, and ToXin).

2.1.1 Node Labeling

When constructing a B+-tree, XR-tree, or XB-tree index on an OEM structure, the nodes must

be labeled with a standard labeling scheme. Many labeling methods exist [HR05], but the most

common and widely-used is an extension to Dietz’s numbering scheme (tree traversal order [Die82])

10



called extended preorder traversal [LM01]. Using this labeling method, each node in the tree is

labeled with a pair of numbers <order,size>. This extension allows insertions to be made into

the tree without the need for global reordering. It maintains the original idea of Dietz’s scheme by

imposing three conditions on the values for order and size.

1. For a tree node y and its parent x, order(x) < order(y) and order(y)+ size(y) ≤ order(x)+

size(x). In other words, the interval [order(y), order(y)+size(y)] is contained in the interval

[order(x), order(x) + size(x)].

2. For two sibling nodes x and y, if x is the predecessor of y in preorder traversal, then order(x)+

size(x) < order(y).

3. For any node x,

size(x) ≥
∑

y

size(y)

for all y’s that are a direct child of x.

By using an arbitrarily large integer for size(x), future insertions into the structure can be made

without the need for global reordering. Using Figure 1.5 as a starting point and with size(x) = 100,

appropriate node labels are generated and shown in Figure 2.1. This set of labels is not the only

possible set of labels for the OEM tree. Other equally valid sets exist.

2.1.2 B+-, XR-, and XB-Trees

In relational database systems, the B+-tree (a variation of the B-tree) is used to implement a

dynamic multilevel index [EN00]. Offering advantages to indexed sequential files, a B+-tree does

not require reorganization of the entire file to maintain performance. In other words, the tree will

automatically reorganize itself with small, local changes when insertions and deletions occur. Due

to its hierarchical nature, the B+-tree was used in an algorithm for processing XML structural

joins [CVZT02]. Although structural joins are discussed in greater detail in a later chapter, it

is sufficient to mention that they require information about ancestors and descendants of a given

element (possibly through multiple levels). For this reason, an algorithm and index structure that

allows ancestors and descendants to be found and evaluated quickly will improve performance of

11
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Figure 2.1: OEM Representation with Intervals

structural joins. While it showed an improvement over a previous algorithm using R-trees for the

same purpose, the B+-tree was later improved upon to produce the XR-tree and later the XB-tree.

The XR-tree [JLWO03], known as the XML Region Tree, is a B+-tree that is built on the start

points of the element intervals. Designed for strictly nested XML data, this type of index structure

allows all ancestors and descendants for a given element to be identified with optimal worst case

disk input/output cost. The XR-tree outperforms the B+-tree for processing structural joins, but

it lacks the capability to handle highly recursive XML elements with the same efficiency [LLHC04].

The XB-tree was developed by Bruno et al. [BKS02] for use in processing holistic twig joins

(a specialized version of structural joins). The XB-tree combines the structural features of both

the B+-tree and the R-tree. It indexes the pre-assigned intervals of elements in the tree (similar

to a one-dimensional R-tree) and then constructs the index on the start points of the intervals

(similar to the standard B+-tree) [LLHC04]. The main difference is that the size portion of the

<order,size> label must be propagated up the index. A sample XB-tree formed using Figure 2.1 is

shown in Figure 2.2. The main advantage of the XB-tree is that it quickly processes requests to find

ancestors and descendants. A performance study [LLHC04] found that the XB-tree outperforms
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Figure 2.2: Sample XB-tree Using Figure 2.1

both the B+-tree and XR-tree for processing structural joins in XML documents.

2.1.3 DataGuide

Moving away from indexes based on traditional methodologies, DataGuides provide a visual way

to summarize information contained in an OEM source document. At its most basic level, a

DataGuide [GW97] is a concise, accurate, and convenient summary of the structure of an OEM

document (and therefore of an XML document as well). It describes every unique label path exactly

once, and a DataGuide does not contain any label path that is not in the source document. The

DataGuide itself is an OEM object, and this allows it to be accessed, stored, and updated using

already established techniques for OEM documents. In addition, multiple DataGuides can exist for

the same OEM source. A sample DataGuide for our OEM example (Figure 1.5) is shown in Figure

2.3. Referring to the original OEM object (Figure 1.5) and to the corresponding DataGuide, we

notice that the path for restauraunt is encoded only once (although it appears twice in the original

source).

A DataGuide can also serve as a path index [GW97]. The effectiveness of using a path index in

traditional object-oriented systems has been evaluated, but their use and effectiveness for indexing

XML documents on their own has not been addressed. The use of a DataGuide (serving as a path

index) as a portion of an index structure has been proposed and is discussed in the next section.
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Figure 2.3: A Sample DataGuide

2.1.4 ToXin

Developed within the ToX (Toronto XML Engine) project at the University of Toronto, ToXin

[RM01] seeks to exploit the overall path structure of an XML database in all stages of query

processing. The index consists of two different structures: the Value Index and the Path Index.

The latter index has two components, the index tree (a DataGuide) and a set of instance functions

(one for each edge in the index tree). These functions are used to identify parent-child relationships

between XML elements. The Value Index, as the name implies, stores XML nodes and values

corresponding to those nodes. A sample ToXin tree and associated tables is shown in Figure 2.4.

The node labels are taken from the OEM diagram in Chapter 1 (Figure 1.5). The IT boxes represent

instance tables, and the VT boxes represent value tables.

One limitation and potentially costly issue with ToXin is the redundancy of information. In

Figure 2.4, the information in VT1 and VT5 contain the same type of information (name values

for establishments), yet they are broken into separate tables and therefore must be indexed inde-

pendently. ToXin performs best on queries that yield large answer sets. While the effect is minimal

for our example, the impact for query processing when using a larger XML database that splits
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Figure 2.4: Sample ToXin Tree and Tables

early and contains similar types of information farther down the tree has not been investigated.

2.2 TwigStack

Bruno et al. [BKS02] present the concept of a twig query (referred to by the authors as a holistic

twig join) as an extension and improvement on previous index-only techniques such as ToXin.

TwigStack is also closely related to ViST [WPFY03] which was developed parallel to TwigStack

by different authors. TwigStack builds upon the ideas of PathSatck [BKS02]. PathStack was

developed to process linear (non-twig) queries only. Therefore, they cannot answer queries that

include branching. TwigStack utilizes a similar approach to query processing as PathStack but

increases the number of stacks to allow for twig queries. The TwigStack technique has been shown

to outperform other previous indexing methods such as Dataguide and ToXin [BKS02, JWLY03].

For that reason, we select it as a representative technique in this style of query processing. The

TwigStack algorithm and its performance is investigated in more detail in later chapters.
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2.3 Constraint Sequencing

Presented by Wang and Meng [WM05], Constraint Sequencing (referred to simply as sequencing)

takes an entirely different approach to encoding (building) the index from an XML or OEM source

document. With previous methods, the index was built sequentially, typically starting at the root

node and inserting/adding to the index until all information was encoded. Some of these methods

(such as ToXin and DataGuides) used multiple data structures to store the index. Sequencing

operates by encoding the entire tree at once. Using a linked list of linked lists as the underlying

data structure, an index is built that allows selection of an object or path by matching subsequences.

The encoded information can be easily represented by adding prefixes (termed a forward prefix)

to value nodes that encode their path along the tree. The labeling scheme utilized is similar to

that used in extended preorder traversal [LM01], but it uses a depth-first traversal of the tree to

assign the value order(x) to each node x. Constraint sequencing is shown to outperform previous

index approaches in most regards, but there is a problem when querying over a document that

contains identical sibling nodes. When present, these nodes slow query performance by a factor of

10 (reducing times from 10-60ms to 100-600ms). Other indexes (such as TwigStack) do not suffer

under the same conditions. The topic of Constraint Sequencing is investigated in more detail in

later chapters.
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Chapter 3

The TwigStack Method

Multiple techniques for analyzing XPath and XQuery expressions exist, but as was discussed in

Section 2.2, many of these historical techniques are out-performed by TwigStack. This chapter

provides a detailed discussion of the TwigStack approach by Bruno et al. [BKS02]. We also present

an applicable example of the TwigStack algorithm and analyze the complexity of the TwigStack

algorithm.

3.1 An Introductory Example

To better illustrate the advantages of the TwigStack approach, this section introduces a small

example that will be used throughout the explanation. Figure 3.1 shows the tree representation

of a sample XML document (a portion of a library database). A possible query over the data in

Figure 3.1 may be represented in XPath as the expression:

/Library//book[date = ‘1983’ AND publisher = ‘KIT Press’]

This expression corresponds to the twig query shown in Figure 3.2. A twig query refers to

a query with a structure that branches at some point. If a query is strictly linear and does not

branch, it is not considered to be a twig query. Solutions to the query involve books that have

a date of 1983 and a publisher of KIT Press. The only book node that satisfies these criteria is

indicated by node 7 in Figure 3.1.

For the purposes of brevity, the root node Library will be ignored for the remainder of the

example in this chapter. It does not participate in the bulk of twig query processing, and its
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( 1 , 1 0 : 1 0 , 5 ) ( 1 , 1 3 : 1 3 , 5 ) ( 1 , 1 6 : 1 6 , 5 ) ( 1 , 1 9 : 1 9 , 5 )

b o o k

t i t le d a t e
p u b l i s h e r

c o - a u t h o r

’Cars’ ’1983’ ’KIT Press’ ’Schultz’

f r o m

’NY’

( 1 , 5 : 7 , 3 )

( 1 , 6 : 6 , 4 )

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

5

t i t le

( 1 , 3 0 : 4 4 , 3 )

( 1 , 3 1 : 3 3 , 4 ) ( 1 , 3 4 : 3 6 , 4 ) ( 1 , 3 7 : 3 9 , 4 ) ( 1 , 4 0 : 4 3 , 4 )

( 1 , 3 5 : 3 5 , 5 ) ( 1 , 3 8 : 3 8 , 5 ) ( 1 , 4 1 : 4 1 , 5 )

b o o k

d a t e
p u b l i s h e r

’Law’ ’1986’ ’KIT Press’ ’Knight’

c o - a u t h o r

( 1 , 3 2 : 3 2 , 5 ) ( 1 , 4 2 : 4 2 , 5 )

’Long’
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2 9 3 0

n a m e

’Peppard’

( 1 , 2 4 : 2 6 , 3 )

( 1 , 2 5 : 2 5 , 4 )

f r o m

’NY’

( 1 , 2 7 : 2 9 , 3 )

( 1 , 2 8 : 2 8 , 4 )

1 7

1 8

1 9

2 0

Figure 3.1: Sample XML Tree Representation

Library

book

date publisher

’1983’ ’KIT Press’

Figure 3.2: Sample XML Twig Query
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elimination from the accompanying illustrations does not negate the validity of the examples.

3.2 Node Labeling

The TwigStack algorithm requires that the XML nodes be labeled. The labels represent a 3-tuple

of (DocID, LeftPos : RightPos, LevelNum) [BKS02]. DocID refers to the document identifier

and has been simplified for our example. The values for LeftPos and RightPos can be generated

by simply counting word numbers from the beginning of the document to the start and end of the

element. The LevelNum number represents the nesting depth of the element. It is important to

note that for leaf-level nodes, the RightPos value and LeftPos value are the same. This numbering

scheme is an extension of the preorder traversal method [LM01].

Information about the document’s structure, including ancestor-descendent and parent-child

relationships, is encoded in the node labels. If a node n2 is encoded as (D2, L2 : R2, N2) and is a

descendant of node n1 with encoding (D1, L1 : R1, N1), then the following must hold.

1. D1 = D2; the DocID of both nodes must be the same.

2. L1 < L2; the LeftPos (start) of the ancestor must be less than the LeftPos of the descendant.

3. R1 > R2; the RightPos (end) of the ancestor must be greater than the RightPos of the

descendant.

When encoding the more specific parent-child relationship, the additional condition N2 = N1+1 is

imposed on the nodes. Referring to the example shown in Figure 3.1, the node book with position

(1, 8 : 21, 3) is a descendant of the Library node with position (1, 1 : 46, 1). The node book with

position (1, 8 : 21, 3) is a child of author with position (1, 2 : 22, 2). One advantage of using such

a labeling technique is that checking for the general ancestor-descendent relationship is as simple

as checking for the more exacting parent-child relationship. It also allows for checking order and

structural proximity relationships [BKS02].

In Figure 3.1, we also give the nodes a unique label separate from the start/end positions. This

label is shown in the node. For example, the node book with position (1, 8 : 21, 3) can also be

referenced using the single number 7 (shown inside the node). This is a convention we use for

clarity throughout the remainder of this chapter. It is equally valid to represent nodes using just

their start positions.
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3.3 Stack Encoding

The TwigStack algorithm, as its name implies, uses a stack as its underlying data structure. A twig

pattern (also known as a query twig pattern) is represented by q. Note that any twig pattern q can

contain one or more sub-patterns, denoted by q′. The root of a twig pattern is denoted as qroot,

but a shorthand notation is to refer to both the root of a twig pattern and the pattern itself by

q1. By using the node labeling technique in Chapter 3.2, operations such as children(q), which

returns the set of nodes that are children of q, and subtreeNodes(q), which returns q and all of

its descendants, can be easily implemented. Similarly, the operation parent(q) returns the parent

of q.

Associated with each twig pattern q is a stream Tq. This stream consists of the positional

representation of nodes that match the node predicate at q [BKS02]. In other words, Tq contains

all nodes, along with their descendants, that satisfy the twig pattern at node q. Nodes in Tq are

sorted according to their DocID and LeftPos values. Two important stream operations are nextL

and nextR, which return the LeftPos and RightPos of the next element in Tq.

Finally, each node q is associated with a stack Sq. Each item in the stack consists of the

pair (position(Tq), pointer to Sparent(q)). The function position(Tq represents the positional

representation of a node from Tq. Traditional stack operations (empty, pop, and push) as well as

the additional operations topL and topR are available. The last two operations return the LeftPos

and RightPos, respectively, of the top element in the stack Sq. In any given twig pattern, there

will exist one or more stacks. In the general case, a twig pattern containing k nodes q requires k

stacks Sq.

3.4 Algorithm

As originally presented by Bruno et al. [BKS02], the TwigStack algorithm operates in two phases.

The first phase of the algorithm discovers individual solutions for the various arms (sections) of

the twig pattern. The second phase takes these individual solutions and merges them together to

compute the final set of answers to the query twig pattern.

1The notation presented here is a clarification of the notation presented by Bruno et al. [BKS02]. This notation
creates a unified terminology and set of definitions that are consistent with the TwigStack algorithm.

20



1 Input: a query, q
2 Output: a collection of stacks that contain nodes that satisfy the query
3

4 Algorithm TwigStack(q)
5 // Phase 1
6 while ¬end(q)
7 qact ← getNext(q)
8 if (¬isRoot(qact))
9 cleanStack(Sparent(qact)), nextL(qact))

10 if (isRoot(qact) ∨ ¬empty(Sparent(qact)))
11 cleanStack(qact, nextL(qact))
12 moveStreamToStack(Tqact

, Sqact
, top(Sparent(qact)))

13 if (isLeaf(qact))
14 showSolutionsWithBlocking(Sqact

,1)
15 pop(Sqact

)
16 else advance(Tqact

)
17

18 // Phase 2
19 mergeAllPathSolutions()
20

21 Function getNext(q)
22 if (isLeaf(q)) return q
23 for qi ∈ children(q)
24 ni ← getNext(qi)
25 if (ni 6= qi) return ni
26 nmin = minargni

nextL(Tni
)

27 nmax = maxargni
nextL(Tni

)
28 while (nextR(Tq) < nextL(Tnmax

))
29 advance(Tq)
30 if (nextL(Tq) < nextL(Tnmin

)) return q
31 else return nmin
32

33 Procedure cleanStack(S, actL)
34 while (¬empty(S) ∧ (topR(S) < actL))
35 pop(S)

Figure 3.3: TwigStack Algorithm

3.4.1 Phase 1 - Individual Solutions

The most important part of the first phase is the getNext function. This function call guarantees

that an individual solution can be merged with at least one other individual solution to produce an

intermediate result that is not larger than the final answer to the twig query. In essence, getNext

functions as a look-ahead routine. For every node hq, getNext ensures that it has a descendent

node hqi in each of the streams Tqi for all qi ∈ children(q). Since getNext is called recursively,

every node hqi also satisfies this property. In addition, a call to getNext ensures that a node hqi

has a subtwig solution to the query but its parent, parent(hqi), does not have a subtwig solution.

A subtwig (also known in the more general sense as a subtree) solution exists if the root-to-leaf

path rooted at hq forms a partial solution to the query q [GC07].

Assume that the TwigStack algorithm is called using the query shown in Figure 3.2 on the

XML database shown in Figure 3.1. The first phase computes the individual root-to-leaf paths of
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the twig query. Figure 3.4 shows the progress of TwigStack during Phase 1. In Figure 3.4(a), the

twig of the query shown in Figure 3.2 corresponding to the left-hand path is shown completed.

The arrows between the individual stacks denote parent/child relationships between the elements

in the stacks. Since there is only one node that matches to 1983, there can be at most one node

pushed onto both S1983 and Sdate. Figure 3.4(b) shows the stacks after the right-hand path of the

same query is executed. Note that there are two nodes that correspond to the value KIT Press

and two nodes that satisfy to parent relationship for these nodes. For that reason, nodes 13 and

27 are pushed onto stack SKITPress and their respective parent nodes, 12 and 26, are pushed onto

stack Spublisher.

1983
S

date
S

publisherKIT Press
S

book
S11 10

S

(a) Date Twig Completed

1983
S

date
S

publisherKIT Press
S

book
S11 10

S

2627

1213

(b) Publisher Twig Completed

Figure 3.4: Stacks During TwigStack Execution

Figure 3.4 shows the result of the TwigStack algorithm before pushing the node of interest,

book, onto the stack Sbook. Recall that the purpose of getNext is to ensure that there exist a

root-to-leaf path that satisfies the twig query. Before a book node can be pushed onto Sbook, it

must hold that it has a child node with a date equal to 1983 and a child node with a publisher

equal to KIT Press. Referring back to Figure 3.1, the only candidates for pushed nodes are 7 and

21. Node 7 can be pushed onto Sbook since it satisfies both child requirements. However, node 21

only satisfies one of the twig paths. Therefore, node 7 is the only book node pushed onto Sbook,

and this is shown in Figure 3.5.

Since the other nodes in stacks SKITPress and Spublisher do not participate in a solution to the

twig query, they are removed from the stacks via the function cleanStack shown in Figure 3.3 on

line 8. The dashed line in Figure 3.5 shows the partial path that is cleaned from the stacks.
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1983
S

date
S

publisherKIT Press
S

book
S11 10

S

2627

7

1213

Figure 3.5: Stacks Before Cleaning

3.4.2 Phase 2 - Merge Individual Solutions

The second phase of the TwigStack algorithm requires all of the individual solutions in the first

phase to be joined together. This can be accomplished in linear time with respect to the sum

of the input (solutions to individual paths created in the first phase) and output (final answer)

sizes [BKS02]. This phase is shown by the function mergeAllPathSolutions() in Figure 3.3. In

essence, this function performs a union between all of the individual path solutions. Since this

requires linear time with respect to the input and output, the effect on the overall complexity is

minimal.

3.5 Algorithm Analysis

In order to build a concise yet fully applicable analysis of the complexity of TwigStack, it is necessary

to make a few observations about its operation. Although the authors [BKS02] never state as such,

the TwigStack algorithm can be viewed as a simple look-ahead function. Referring back to Figure

3.5, before a node is pushed onto Qbook, it must have a child in the stream Tdate. This child must,

in turn, have a child in the stream T1983. This type of look-ahead continues until the leaf level of

the query is reached, and it is completed for every twig in the query. The stream Tq contains all of

the nodes that correspond to the condition q. For example, stream Tpublisher contains the nodes 12

and 26. They are ordered according to their left (start) positions, 15 and 37, respectively. Similar

streams exist for all nodes in the XML document. Therefore, the complexity and scalability of

the TwigStack algorithm must at least partially depend on the length of these streams. For the

analysis, we are able to separate the two phases of TwigStack and focus on them separately.
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The first part of the TwigStack analysis focuses around phase 1. The majority of this phase

is dominated by the recursive calls to getNext shown on line 21 of Figure 3.3. We observe that

on line 20, the function getNext is called inside a loop that iterates through all of the children of

a given node. For this reason, the breadth of a query at a given point is important. If there are

more children, then more iterations of the loop will be required and more recursive calls to getNext

will be performed. For the purpose of analysis, we define a new parameter called local breadth

and denote it by ψ. The term ψx refers to the breadth of the children of node x. To see a simple

example, refer to Figure 3.1. The value of ψLibrary is 2, since it has two children nodes. Similarly,

the value of ψbook is 4 for both book nodes.

Analyzing the TwigStack algorithm for a single iteration on node x while focusing on the first

phase and the getNext function yields the equation

∑

i∈children(x)

|Ti|. (3.1)

The summation is the result of the multiple executions of getNext and its included loop on line

25 of Figure 3.3. Since getNext will eventually return a single leaf node (line 19), expansion of the

recursion results in a simple summation of the lengths of the streams Ti for all children of x. In the

worst-case scenario, the algorithm would need to look through all of the nodes in all of the streams

Ti to find that there are no nodes that match the required criterion (to be a child of a node in the

partial solution). In other words, the worst-case is realized when there is no solution to a particular

twig path of the query. The summation is over all the children of node x, but this is simply the

local breadth around the node. We rewrite Equation 3.1 to take into account local breadth as

∑

ψx

|Ti|. (3.2)

The other major component of phase 1 is stack cleaning (lines 6 and 8 of Figure 3.3). The same

worst-case scenario applies applies here. The algorithm must remove all partial root-to-leaf paths

that do not contribute to a final solution. Since a node is not pushed onto its corresponding stack

unless a correct partial path has already been established, the worst that would occur is for every

node in the stack parent(x) to be popped. This is illustrated by the first condition of the loop on

line 31. Taking this into account, we add that to Equation 3.2 to obtain

24



∑

ψx

|Ti|+ |Sparent(x)|. (3.3)

Equation 3.3 represents a single iteration of phase 1. As shown on lines 3 and 13, we must iterate

over all nodes in the query q. This adds an additional summation to Equation 3.3 and results in

∑

x∈q

(
∑

ψx

|Ti|+ |Sparent(x)|). (3.4)

Nothing can be pulled out of the summation in equation 3.4 since ψx represents the local breadth

at each node x in q.

Phase 2 of the TwigStack algorithm requires all of the individual root-to-leaf paths be joined to-

gether to produce the final twig results. For our example shown in Figure 3.2 and the corresponding

stacks shown in Figure 3.5, there is only one solution, node 7, to the query. If we are only interested

in the book nodes that satisfy the query /Library//book[date = ‘1983’ AND publisher = ‘KIT

Press’], then solution output is as simple as iterating through the length of the stack Sbook. All

that needs to be done is pop each node from Sbook. This is a linear operation based on the size of

the stack. Adding this to Equation 3.4 gives the final complexity for TwigStack as

∑

x∈q

(
∑

ψx

|Ti|+ |Sparent(x)|) + |Sroot|. (3.5)

The size of Sroot is determined by the number of nodes pushed onto the root stack. For our example,

the size of Sbook is 1.

3.6 Summary

In this chapter, we discussed the TwigStack query technique as developed by Bruno et al. [BKS02].

In the original work, the authors present their algorithm and experimental results of its execution.

We use that algorithm to build the cost model presented in Equation 3.5. That cost model is

utilized in Chapter 7 when we perform a detailed analysis of the performance of TwigStack across

its various parameters. In Chapter 4, we discuss another native XML query technique, Constraint

Sequencing, and develop a cost model that illustrates its behavior.
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Chapter 4

Constraint Sequencing

This chapter expands on the topic of the Constraint Sequencing of tree structures used for XML

query processing. The work cited in this chapter is taken fromWang and Meng [WM05]. This chap-

ter summarizes the work, presents an applicable example of the Constraint Sequencing algorithm,

and formally analyzes the complexity of the Constraint Sequencing algorithm.

4.1 Overview

In processing XML twig queries, the most expensive operation is the join. In the relational database

model, the join operation is used to connect two or more relations (tables) for the purpose of

forming a new relation with the attributes of both relations. When using XML, the expensive

join operation is referred to as a structural join. As the name implies, a structural join is used to

connect or otherwise relate two or more sections of an XML tree. While other techniques seek to

address efficient ways to index the XML tree to provide for efficient structural joins, Constraint

Sequencing seeks to avoid these expensive join operations during query processing. Constraint

Sequencing transforms the XML tree and associated queries into sequences and answers queries

across the data via subsequencing matching.

4.2 Encoding the Tree

In order to facilitate the matching of subsequences, an XML tree must be encoded or otherwise

labeled. The notation used by Wang [WM05] is a technology adopted from ViST [WPFY03]. In
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Figure 4.1: Tree Structure and Representation

this scheme, each element and attribute in an XML document is given a designator. For example,

in Figure 4.1, the names Print, Mag, Book, Author, and Pub (abbreviated R, M, B, A, and P,

respectively) are the designators. At the leaf level, the attributes are denoted by using a single

designator derived from a hash function. For the example shown, the attribute values v0, v1, v2,

and v3 represent xml, Cincinnati, NewYork, and Petrelli, respectively.

With the notation established, a simple path such as /Print/Magazine[Published=Cincinnati]

is represented by <R,M,P,v1>. Using this notation, the goal of Constraint Sequencing is to include

as much structural information as possible in the node encoding. This is done to make the actual

sequencing easier and increase flexibility.

4.2.1 Sequencing

When there are no identical sibiling nodes in a tree, the sequencing (representation) of the tree is

trivial. The tree in Figure 4.1(a) can be constructed directly from the encoded nodes:

<R,Rv0,RM,RB,RMP,RBP,RMPv1,RMPv2>.

This is known as a path-based approach to node encoding. It is important to note that the order of

the encoded nodes, for Figure 4.1(a), is irrelevant. The nodes could be reordered into any sequence

and still produce the same figure. In other words, the full root-to-node path is encoded as part of

each node and this is now referred to as the encoded node. However, if we consider Figure 4.1(b)
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and Figure 4.1(c), we observe that there are two identical sibling nodes B under node R. Therefore,

the two trees, although structurally different, result in the same sequenced representation:

<R,Rv0,RB,RB,RBP,RBA,RBPv1,RBAv3>.

This shows that, in the presence of identical sibling nodes, simple path-based encoding is insuf-

ficient. In these cases, constraints must be used to eliminate the ambiguity.

4.2.2 Root-to-Node Constraint

The idea of imposing a constraint on the sequence allows freedom to order the nodes arbitrarily

while still producing a unique tree structure. In the case of Wang and Meng [WM05], the constraint

is two-fold. The first part of the constraint enforces the inherent ancestor-descendent relationship

in the tree. Assuming that a tree T consists of a sequence of path-encoded nodes < p1, . . . , pn >,

allow f(pi, pj) to be true if node pi is an ancestor of node pj. The second part of the constraint

states that ∀pj ∈ T and ∀t ⊂ pj, there exists one and only one pi ∈ T such that f(pi, pj) is true

and pi = t [WM05]. In other words, for each path-encoded node in a tree, there is only one other

path-encoded node that is its ancestor and contains the same path information (t) as the node in

question. The authors refer to this as constraint f .

Assuming the tree has no identical sibling nodes, as shown in Figure 4.1(a), then the constraint

f1(pi, pj) ≡ pi ⊂ pj holds [WM05]. It is important to note that constraint f1 holds only if there are

no identical sibling nodes. In this case, each path-encoded node pi is unique. If identical sibling

nodes exist, as in Figure 4.1(b) and (c), then a forward prefix is required to eliminate ambiguity.

4.2.3 Forward Prefix Constraint

In the presence of identical sibling nodes, a method of unambiguously determining the path of a

given node is required. A valid sequence for Figure 4.1(b) is given as:

<R,Rv0,RB,RBP,RBPv1,RB,RBA,RBAv3>

The first RB represents a portion of the path to RBPv1, but the second RB does not. This

introduces an additional constraint to f1. Formally, if T =< p1, . . . , pn >, then pk ⊂ pi is a forward

prefix of pi if ∀pj = pk, i < k < j and 6 ∃pj = pk, k < j < i [WM05]. In other words, the constraint
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Table 4.1: Constraint Sequences for Figure 4.1(b)

<R,Rv0,RB,RB,RBP,RBPv1,RBA,RBAv3>

<R,RB,Rv0,RB,RBP,RBPv1,RBA,RBAv3>

<R,RB,RBP,Rv0,RBPv1,RBA,RBAv3,RB>

· · ·

now relies on the order of the path-encoded nodes to determine ancestry relationships. This still

allows arbitrary ordering of nodes in a sequence. Table 4.1 gives other valid sequences for Figure

4.1(b).

The technique used for generating such a sequence is controlled not only by a constraint f2 but

also by a user strategy g. One such user strategy defined by Wang and Meng is to first select the

root node then repeatedly invoke a method to select a node whose parent node has already been

selected [WM05]. If there are identical sibling nodes, a sibling of an already selected node x must

not be selected until all descendants of x have been added to the sequence.

4.3 Querying a Sequence

After a sequence is generated, it can be successfully matched to another sequence using subsequence

matching. For the purposes of this research, this subsequence matching is referred to as querying

a sequence for a match (or simply querying). When performing a query, two problems unique to

Constraint Sequencing, false alarms and false dismissals, must be handled properly.

4.3.1 False Alarms and False Dismissals

The ability to match a query (Q) to a document (D) via Constraint Sequencing depends on the

constraint match. The correctness of the constraint match is diminished by false alarms and false

dismissals. False alarms provide spurious results while false dismissals remove results that are valid

[WM05].

Figure 4.2(a) and Figure 4.2(b) represent different tree structures. A näıve subsequence would

find a match between Q and D since Q ⊆ D. Without using the constraint match, the sequence

<R,RB,RBP,RBA>, representing Q, is successfully located in D. This means that the query would be

successful even though the document structure does not reflect equivalence. While this problem is

not unique to Constraint Sequencing, other methods, such as ViST [WPFY03] and PRIX [RM04],

29



Print

Book Book

AuthorPub

(a) D : <R,RB,RBP,RB,RBA>

Print

Book

AuthorPub

(b) Q : <R,RB,RBP,RBA>

Figure 4.2: False Alarm Triggered by Identical Sibling Nodes

solve this problem with expensive join operations. One of the underlying goals of Constraint

Sequencing is to avoid such expensive operations.

Print

Book Book

AuthorPub

(a) D1

Print

Book Book

PubAuthor

(b) D2

Figure 4.3: False Dismissal Triggered by Tree Isomorphisms

In addition to false alarms, sequencing matching is subject to the problem of false dismissals.

Unlike false alarms, false dismissals result from tree isomorphisms such as the mirror images shown

in Figure 4.3. Based on the forward prefix technique discussed in Section 4.2.3, the same data (a

document in this case) could be encoded as Figure 4.3(a) or Figure 4.3(b), documents D1 and D2,

respectively. If a query is run on D1 and the query is in a form written for D2, the match will be

dismissed.

While the false dismissal problem is trivial to solve, the false alarm problem requires more

processing and the addition of a constraint. The following section discusses the constraint match

and its improvements upon the näıve sequence match.
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D: R RB RBP RB RBA

Q: R RB RBP RBA

Figure 4.4: Sequence Match

4.3.2 Performing A Constraint Match

The näıve subsequence match is insufficient in the presence of identical sibling nodes. Specifically,

their occurrence allows for false alarms and dismissals when running a query over a document.

The false dismissal problem is trivial to solve. Assuming we have a query Q and a document

D, simply allow Q to be run over D and all of its isomorphisms. The results from these queries

are saved and then unioned together to produce the final result [WM05]. Unlike other techniques

[RM04, WPFY03] that require join operations to solve the false alarm problem, sequencing can

handle the problem directly if a constraint match is introduced [WM05].

Figure 4.4 shows a document D and query Q. This figure is analogous to the information

presented in Figure 4.2. A match between D and Q is represented by a solid line. Wang and Meng

[WM05] add a function m(·) that maps an item in Q to its matched item in D. Given a match

m(·) between Q and D, which is based on constraint f , it is considered to be a constraint match is

the following criteria are satisfied:

1. m(a) = b⇒ a = b, and

2. f(a, b)⇔ f(m(a),m(b))

Recall from Section 4.2.2 that constraint f embodies the ancestor-descendent relationship of two

items (nodes or elements) in a document or query. The näıve subsequence match only guarantees

that m(a) = b. This is shown by the solid lines in Figure 4.4. The second criterion, f(a, b) ⇔

f(m(a),m(b)) is violated in Figure 4.4, and this is shown by the dotted lines. In Q, node RB is an

ancestor of node RBA. This can also be seen in Figure 4.2(b). However, in D, the matched nodes for
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RB and RBA do not embody an ancestor-descendent relationship. In other words, m(RB) is not an

ancestor of m(RBA). Since this violates the second criterion of a constraint match, the false alarm

is avoided. If there are no identical sibling nodes in the document, then the second condition is

implied by the first. Without identical sibling nodes, the relative positions of the items are uniquely

defined by their respective paths.

4.4 Algorithm Analysis

In order to perform a constraint sequence match, an index must first be constructed. After the

sequences are inserted, a widely adopted [BKS02, CVZT02, SLFW05] XML labeling scheme is

implemented [LM01] that assigns each node n a pair of integers (n⊢, n⊣). The value of n⊢, also

known as n’s serial number, is derived from a depth-first traversal of the index tree (assigning 0

to the root node). The value of n⊣ is the largest serial number of n’s descendants. For example,

in Figure 3.1, the pair of integers that correspond to the first author node (shown on the left) is

(2,22). The first number refers to the number of the node itself while the second number tells us

that the highest numbered node that is a descendant of that author node has a serial number of

22. Given two nodes p and q, this allows us to determine if p is q’s descendent if p⊢ ∈ (q⊢, q⊣].

After the nodes are numbered, horizontal path links are created for each unique path that

appears in the sequences [WM05]. In the absence of identical sibling nodes, these links appear to

be strictly horizontal throughout the index. This means that they do not traverse a single sequence

(branch of the tree) down to any depth. In this case, node labels that belong to a single link are

organized in ascending order of their serial number n⊢ [WM05]. Figure 4.5 illustrates what happens

to a single link, RB, in the presence of identical sibling nodes. Note that the link begins to traverse

the sequence in a depth-wise fashion and then continues to the next branch of the index (sequence).

For multiple identical sibling nodes in a single sequence, the path link would continue down the

same sequence to an undetermined depth.

Wang and Meng [WM05] note that these horizontal links can be implemented via an efficient

structure that supports binary search. Thus, Constraint Sequencing is dominated by the process of

finding a subsequence match and not by the creation of an index. The algorithm, shown in Figure

4.6, is adapted from the algorithm presented by Wang and Meng [WM05]. The analysis is divided

into three main components, (1) binary search, (2) searching for identical sibling nodes, and (3)
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Figure 4.5: Path Links with Identical Sibling Nodes

recursively searching.

4.4.1 Search for Nodes in Range

A binary search is performed on line 14 of Figure 4.6. In order to find nodes in the range [vs, vm],

two binary searches are performed to find the upper- and lower-bounds of the range. Two binary

searches are required since we must first search for vs and then perform another search for vm. This

gives us the position of nodes vs and vm and we can then iterate through all nodes inclusive of this

range. The nodes in the range are then iterated through sequentially. The time to search through

the list I is given as

2(2 log2 |I|). (4.1)

The term |I| refers to the size of the horizontal list of node pi. To keep this term consistent with

other analyses, allow this to represent the branching factor of the XML index. Substituting this in

Equation 4.1, we arrive at

4 log2(b) (4.2)
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1 Input: a query Q
2 Output: docs ∈ D that contain query structure Q
3

4 Let Q ← < p1, . . . , pi, . . . >
5 Let r ← root node of index tree
6

7 search(r, 0, {})
8

9 Function search(v, i, isn)
10 if i < |Q|
11 i ← i + 1
12 I ← horizontal link of pi
13

14 Perform binary search in I to find nodes ∈ [vs, vm]
15

16 for each r ∈ I where ID(r) ∈ [vs, vm]
17 if 6 ∃ x ∈ isn such that x sibling-covers r then
18 if r embeds identical siblings
19 isn ← isn ∪ r
20 search(r, i, isn)
21 else
22 output L[vs . . . vm] document ID lists of node v
23 and all nodes under v

Figure 4.6: Subsequence Matching Algorithm

Disregarding constants, the complexity log2(b) is to be expected from a binary search. Once the

binary search is complete, the list I must be searched for identical sibling nodes.

4.4.2 Search for Identical Sibling Nodes

The time required to perform a search over the list I of identical sibling nodes is tied to the number

of items in the list. In the best possible case, there are no identical sibling nodes and the complexity

is trivial. A more interesting result is found by analyzing the worst and average cases for this step.

Much like the original search, a binary search is performed on the list that contains previously

matched identical sibling nodes. Line 17 of Figure 4.6 is where the binary search is performed. If

a node r is found that embeds (contains) identical sibling node, then it is added to the list isn. If

the node is already in the list, it ignores it and proceeds to the next iteration. In the worst case

scenario, the search will need to look at every item in the list isn, denoted as |isn| in Equation 4.4.

|isn|(2(2 log2 |isn|)) (4.3)

4|isn| × log2(|isn|) (4.4)

Substituting s for the size of the identical sibling node list, we arrive at Equation 4.5.
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4s × log2(s) (4.5)

Equation 4.5 only represents a single iteration of the recursive search function. On line 20 of

Figure 4.6, the search function is recursively called with the parameters r, i, and isn. Note that

i = |Q| is the base condition for the search algorithm, and the search function will be called a total

of |r| times. The term |r| refers to the number of nodes r ∈ I that satisfy the necessary condition

ID(r) ∈ [vs, vm]. Taking into account the recursion of the search, Equation 4.2 and Equation 4.5

can be combined to give Equation 4.7.

|r| × (4 log2(b) + 4s log2(s)) (4.6)

4|r| × (log2(b) + s log2(s)) (4.7)

Upon examining Figure 4.6 and Figure 4.5 and assuming that there may be multiple identical

sibling nodes in any given sequence, the size of r could continue to expand. In the worst case, r

approaches the depth of the tree (sequence). Given that fact, Equation 4.7 can be rewritten as

4m× (log2(b) + s log2(s)) (4.8)

where m is the depth or length of the sequence.

The total complexity for a subsequence match that takes into account the constraint f to

sufficiently accommodate identical sibling nodes and produce correct results is given by Equation

4.9.

4|q| ×m× (log2(b) + s log2(s)) (4.9)

Equation 4.9 combines Equation 4.8 and the size of the possible sequence. In this case, the

size of the sequence is represented by the size of the query, |q|. As mentioned earlier, the worst

case scenario for this technique occurs when there are many identical sibling nodes. In this case,

Equation 4.9 performs like a standard depth-first search and degrades to O(bm). This is a dramatic

shift from the complexity of Equation 4.9 that is essentially logarithmic in nature. As the number
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of identical sibling nodes increases, performance of the sequencing algorithm degrades into a depth-

first search.

4
∑

x∈q

(mseqx × sx log2(sx) +mdocx × log2(bx)) (4.10)

Equation 4.10 shows a more general form of Equation 4.9. If the worst case does not occur, then

the sequencing algorithm need not execute across the entire document m. Equation 4.10 introduces

parameters mseq and mdoc which represent the length of the document required to answer the query

q and the total length of the document respectively. In the case where mseq = mdoc, then Equation

4.10 becomes Equation 4.9 and represents the worst case performance of Constraint Sequencing.

The summation is introduced since various iterations of the algorithm may have different values

for mcs. The subscript x on both mseq and mdoc denotes the specific values for the two terms for

a given node x in query q.

4.5 Summary

In this chapter, we discussed the Constraint Sequencing method for querying XML documents as

developed by Wang and Meng [WM05]. In the original work, the authors present their algorithm

and experimental results of its execution. We use that algorithm to build the cost model presented

in Equation 4.9 and the general case model in Equation 4.10. Those models are used in Chapter

7 when we perform a detailed analysis of Constraint Sequencing across all of its parameters. In

Chapter 5, we switch our focus to non-native query techniques and discuss the SS-Join algorithm.
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Chapter 5

Querying Ordered XML Data Using

Relational Databases

In contrast to native techniques used for querying XML documents, several techniques leverage

existing relational database management systems and their associated tools to store and query

XML documents using the relational model. This chapter discusses one such solution by Shui et al.

[SLFW05], presents an applicable example of the algorithm, and formally analyzes the complexity

of the solution. It also discusses the limitations of that solution and provides motivation for a new

alternative method (presented in Chapter 6) that builds upon the work by Shui et al. [SLFW05].

5.1 Overview

Using a relational database (RDB) to store and query XML documents presents a set of challenges.

An XML document is inherently hierarchical, and using the relational model requires reducing

hierarchy or otherwise flattening a document into tables. In addition, both of the prevailing XML

query techniques, XPath and XQuery, require the XML document to be ordered. With the rela-

tional model, there exists no inherent order within the individual tables. While an order may be

enforced at the time of query execution, this order does not persist inside of the database. Previous

work by Tatarinov et al. [TVB+02] introduces shredding and proposes multiple encoding schemes

to accomplish the shredding task. Once the XML document has been translated to relational tables,

the problem of executing structural joins surfaces. Research by Shui et al. [SLFW05] introduces
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two structural join algorithms that operate without the need of the RDB index. The next section

introduces the concept of XML document shredding and various encoding schemes and discusses

the necessary task of maintaining document order.

5.2 Storing XML Data in an RDB

In order to store an XML document in an RDB, the document must be flattened to some extent.

The end result of such a translation is a table or multiple tables that not only maintain leaf-level

information of the original document but also capture the hierarchical structure of the document.

This structure must be preserved in order to execute a structural join. It is sufficient to visualize

this table as a large list where each entry (sometimes referred to as a record or tuple) corresponds

to a single node (internal or leaf) of the XML document. Each entry tuple must have information

that refers back to its parent and to any children nodes. This requires the XML document to be

encoded in a manner that allows this parent/child relationship to be extracted from the structure

and given a numerical value. Research by Tatarinov et al. [TVB+02] proposes three such encoding

schemes: global, local, and Dewey order.

5.2.1 Encoding Schemes

The three encoding schemes proposed by Tatarinov et al. [TVB+02] are global order, local or-

der, and Dewey order. Each of the encoding schemes has their own methodology, strengths, and

weaknesses.

Global order assigns each node a number that represents its absolute position in the document.

For example, a depth-first or breadth-first traversal of the XML document results in a global

encoding. This value could be easily computed using the byte offset between a node’s opening

tag and the beginning of the document. A potential problem with global order is the insertion

of new nodes in the middle of the XML document. When this occurs, many nodes may need to

be relabeled if they have a higher encoding number than the newly inserted node. In shredding,

a node encoded using global order would appear as the tuple Edge(id,parent id,end,path,value) in

the Edge table. The id column is the numerical value of the node and also serves as the primary

key while the parent id column is the numerical value of the parent node. The parent id column is

also a foreign key that refers back to the primary key, id, of the Edge relation. The last descendent
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node is stored as end, and the path to the represented node is stored in the path column. This

column holds the entire root-to-node path for the represented tuple/node, and this gives us the

ability to answer parent/child XPath expressions with a simple selection operation. To save space,

a separate Path relation can be created to store unique paths and an identifier. The Path table is

typically small since it only stores unique root-to-node paths. In other words, multiple children of

the same parent would reference the same path id in the Path table. Since the algorithm presented

by Shui et al. [SLFW05] does not use the RDB index, it also does not utilize the Path relation since

this would necessitate index hits for the joins. The final column, value, contains the text value of

text nodes (where appropriate). Performance studies show that global ordering results in the best

query performance [TVB+02]. Since our focus is on query optimization, this encoding scheme is

favored over the others.

Local (sometimes called sibling) order assigns each node a number that represents its position

relative to its siblings. For example, if a parent node is encoded as value 1, its three children

nodes would be encoded as 1, 2, and 3. Similarly, the children of node 2 would be encoded as

1, 2, and so on. An advantage of local order over global order is the low overhead created by

updates, including new insertions. Where global order has to renumber every node after a newly

inserted node, local order only needs to update the following sibling nodes of a newly inserted node.

However, experimental results show that local order has the worst query performance [TVB+02]

out of all three techniques. Since our focus is on query optimization and processing, we eliminate

this encoding scheme from consideration.

The final encoding scheme, known as Dewey order, is a combination of the global and local

ordering techniques and is based on the Dewey Decimal Classification system. Each node is assigned

a numerical vector that represents its root-to-node path. Each component of the path represents

the local order for that particular node. In terms of query performance, Dewey ordering is similar

to that of global order. In addition, it requires fewer updates than global order when an insertion is

performed. The main disadvantage of the Dewey ordering technique is that it does not allow fixed

sizes for node IDs [SLFW05, TVB+02]. The sorting algorithm proposed by Shui et al. [SLFW05]

operates on the IDs (keys) of the nodes. Lacking a fixed size, the sorting algorithm will not have

a constant time operator for node comparison.
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5.2.2 Shredding Example

A sample XML tree is shown in Figure 3.1. The values inside the nodes represent a global encoding

of the tree using a depth-first strategy. This document can be converted into a flattened relation

using the shredding technique proposed by Tatarinov et al. [TVB+02].

As stated in the previous section, a reduction of repeated values can be achieved by separating

the path column into a separate relation. However, for the purposes of the algorithm and illustration,

the full root-to-node path is left in the Edge table. In addition, we utilize the start/end (also known

as start/stop) positions of the nodes shown in Figure 3.1 when we discuss shredding. The values

inside the nodes (used for clarity in Chapter 3) can be ignored.

One of the complications with the shredding technique is maintaining the order of an XML

document when a new node is inserted. Proper document order must be maintained in order to

use the proposed structural join algorithm. The next section discusses this issue and presents an

efficient solution to the problem as developed by Shui et al. [SLFW05].

5.2.3 Maintaining Document Order

Once the XML document has been shredded into a relation or multiple relations if using a separate

Path table, the structural join algorithm discussed in Section 5.3 is utilized to answer XPath queries.

However, if the XML document is altered by adding a new node, the document must be analyzed

to determine if relabeling is required. Recall from Section 5.2.1 that when a global encoding scheme

is used, an insertion at any point has the potential requirement that all nodes with an ID higher

than the new node be relabeled. Two algorithms, XRU-Insert and XRU-Relabel, are presented by

Shui [SLFW05] that accomplish relabeling in O(log2(n)), where n is the size of the database.

The algorithm XRU-Insert assumes there is always a gap of at least 1 between the encoding

of the nodes adjacent to the newly inserted node. If this is the case, the new node can simply

be inserted without the need to relabel any of the other nodes. If this is not the case, XRU-

Insert calls XRU-Relabel which completes the task of reassigning node IDs. It accomplishes the

relabeling by maintaining two relational cursors that point to the previous node and next node in

document order. As the algorithm advances, the two cursors step outwards from the new node.

This step mirrors a simple linear traversal. It terminates when the the previous cursor points to

an ancestor node that has a density less than T−i where i is the distance between the two cursors
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id parent id end path value

1 null 46 / Library

2 1 22 /Library author

3 2 5 /Library/author name

4 3 4 /Library/author/name Knight

5 2 7 /Library/author from

6 5 6 /Library/author/from NY

8 2 21 /Library/author book

9 8 11 /Library/author/book title

10 9 10 /Library/author/book/title Cars

12 8 14 /Library/author/book date

13 12 13 /Library/author/book/date 1983

15 8 17 /Library/author/book publisher

16 15 16 /Library/author/book/publisher KIT Press

18 8 20 /Library/author/book co-author

19 18 19 /Library/author/book/co-author Schultz

23 1 45 /Library author

24 23 26 /Library/author name

25 24 25 /Library/author/name Peppard

27 23 29 /Library/author from

28 27 28 /Library/author/from NY

30 23 44 /Library/author book

31 30 33 /Library/author/book title

32 31 32 /Library/author/book/title Law

34 30 36 /Library/author/book date

35 34 35 /Library/author/book/date 1986

37 30 39 /Library/author/book publisher

38 37 38 /Library/author/book/publisher KIT Press

40 30 43 /Library/author/book co-author

41 40 41 /Library/author/book/co-author Knight

42 40 42 /Library/author/book/co-author Long

Table 5.1: Shredding of Figure 3.1 into Edge Relation
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and T is a threshold defined by the user. In other words, the cursors continue to move outwards

from the new node in opposing directions through the Edge table. They terminate the move when

reach a suitable distance apart (where the suitable parameter, T , is defined by the user), and then

only nodes within that range need be relabeled. Previous research [BCD+02] suggests values for

T that produce good practical results. The purpose of using the relational cursors is to avoid a

potentially costly SQL statement1. Each time the statement is executed, a complete index scan

of the id attribute is required [SLFW05]. The index-free method provided by the cursors allows

for operation of XRU-Relabel in-memory without the need to scan an index. This concept of not

using a relational index will be used again in the next section.

5.3 Structural Join for Relational Databases

The structural join algorithm developed by Shui et al. [SLFW05] is divided into four parts: SS

Descendant Join, SS Ancestor Join, Skip Descendants, and Skip Ancestors. The authors inten-

tionally divided the algorithm into two complementary parts representing the ancestor nodes and

descendant nodes of a query result. Since only one part (either ancestor or descendant) is typically

required for a given query, this allows faster query processing since only half the amount of work

is being performed. In the cases where both components are required, it is sufficient to run both

parts of the algorithm to achieve the necessary result. For the purposes of analysis, only two of the

four components, SS Descendant Join and Skip Descendants, will be presented in their entirety.

The other two components, SS Ancestor Join and Skip Ancestors, are similar to their descendant

counterparts in complexity and execution. For simplicity, the entire algorithm is referred to as

SS-Join.

5.3.1 The Structural Join Algorithms

The algorithms presented by Shui et al. [SLFW05] require the use of three XPath order-based axes:

preceding, following, and descendant [xpa09]. The preceding axis contains all nodes, excluding

ancestor nodes, that occur before a specified context node, and the following axis contains all

nodes, excluding descendent nodes, that occur after a specified context node. The descendant axis

contains all nodes that are descendants of a specified node. The ancestor axis is the complement

1The SQL query is given as: SELECT count(id) from global where id between low and high.
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axis member nodes

preceding [3, 6]

following [23, 42]

ancestor [1, 2]

descendant [9, 19]

Table 5.2: XPath Axes Examples Using Figure 3.1 and Node 8 as the Context Node

to the descendant axis with respect to a particular node. It contains all nodes that are ancestors

of a specified node. These axes represent a concept in XPath and XML documents. Using Figure

3.1 as a reference, we present some examples of the various axes used. Selecting node 8 as the

context node, Table 5.2 represents the various axes with respect to the context node. The notation

for member nodes indicates a range, inclusive of the start and stop points, that belong to the given

axis.

The SS Descendant Join algorithm is replicated in Figure 5.1. For the purposes of this algorithm,

the nodes aNode and dNode can be interpreted as structures that have member elements. The

member element start refers to the id column in the Edge table while the end element refers to

the corresponding end column. The idea of the algorithm is to maintain a current ancestor node,

cNode and progressively check descendant nodes against this ancestor node searching for matches.

Lines 15 through 17 perform checks to determine if the current ancestor node (cNode) should be

removed. It is removed (set to null) if it still contains the next aNode or the next dNode. If

aNode.start < dNode.start (line 18), then aNode is either an ancestor of dNode or appears before

dNode in its preceding axis. If cNode is not set, then aNode becomes cNode on line 20. The

function skipAncestors (line 23) uses index-free skipping through the Edge relation to skip past

(dismiss) all ancestor nodes that are in the preceding axis of the current dNode. This function

returns either null or an ancestor of dNode. Note that if aPos ≥ aSize (line 21), then the

algorithm has reached the final ancestor node in the list of ancestor nodes, so the current ancestor

node is set to null. This causes skipAncestors to return null as well. If dNode is a descendant

of cNode, then dNode is appended to the output (result) list (lines 25 and 26). The function

skipDescendants (line 30) is called if dNode is in the preceding axis of the current aNode. To be

in this axis, the following conditions must hold - aNode 6= null, aNode.start ≥ dNode.start, and

dPos < dSize. The function returns the next descendant node that is either in the descendant
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1 aSize: size of ancestor nodes (list)
2 dSize: size of descendant nodes (list)
3 aPos: current position of aNode (ancestor node)
4 dPos: current position of dNode (descendant node)
5

6 Input: two nodes, aNode and dNode
7 Output: list that contains dNodes that satisfy the query, output
8

9 dPos ← 0, aPos ← 0, cNode ← null
10

11 if(aNode = null or dNode = null) then
12 return
13

14 while((dPos ≤ dSize) and (aPos ≤ aSize)) do
15 if(cNode 6= null and aNode.start > cNode.start and
16 dNode.start > aNode.end) then
17 cNode ← null
18 else if (aNode 6= null and aNode.start < dNode.start) then
19 if(cNode = null) then
20 cNode ← aNode
21 if(aPos ≥ aSize) then
22 aNode ← null
23 aNode ← skipAncestors(aNode, dNode)
24 else
25 if(cNode 6= null) then
26 append(dNode, output)
27 if((dNode ← fetchNext(cursorD)) = null) then
28 break
29 else if (dPos < dSize and aNode 6= null) then
30 dNode ← skipDescendants(aNode, dNode)
31 else
32 if(aNode.start > dNode.start) then
33 break
34 else
35 if(aNode.contains(dNode)) then
36 append(dNode, output)
37 dNode ← fetchNext(cursorD)
38 if(dNode = null) then
39 break
40 end while

Figure 5.1: SS Descendant Join Algorithm
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1 Input: two nodes, aNode and dNode
2 Output: next descendant node that is either a descendant of aNode
3 or in the following axis of aNode
4

5 if(dNode.start ≥ aNode.start) then
6 if(dPos ≥ dSize) then
7 dPos ← dPos + 1
8 return dNode
9

10 if((dNode ← fetchNext(cursorD)) = null) then
11 return null
12 else if(dNode.start ≥ aNode.start) then
13 return dNode
14

15 r ← ⌈log(dSize - dPos)/log(2)⌉
16

17 for(i ← 0, g ← 1; i < r and dPos < dSize;
18 i ← i + 1) do
19 g ← g × 2
20 if(g + dPos > dSize) then
21 g ← dSize - dPos
22

23 moveCursor(cursorD, FORWARD, g - 1)
24 dNode ← fetchNext(cursorD)
25

26 if(dNode.start ≥ aNode.start) then
27 break
28 else
29 dPos ← dPos + (g - 1)
30 end for
31

32 return binarySearchDescendant(dPos, dPos + g, aNode)

Figure 5.2: Skip Descendants Algorithm

axis of in the following axis of aNode.

5.3.2 Index-Free Skipping

Before the algorithm analysis is presented, it is necessary to briefly discuss the skipDescendants

and skipAncestors functions. The algorithm for skipDescendants is shown in Figure 5.2, and both

algorithms were developed by Shui et al. [SLFW05]. The skipDescendants and skipAncestors

algorithms, collectively known as the skipping algorithms, are similar in their purpose and scope,

and the discussion and analysis of the skipDescendants algorithm subsumes the analysis of the

skipAncestors algorithm.

The overall goal of the skipping algorithms is to eliminate the need for index lookups during

execution. This serves to avoid the overhead of maintaining external indices. Another benefit of

the skipping algorithms is the ability to perform fast structural join processing without any a priori

knowledge of the node distribution [HBG+03, SLFW05]. Line 23 of Figure 5.2 illustrates that the

skipDescendants function uses the relational database cursor to skip through tuples. The cursor

is moved forward by an exponentially increasing amount (1, 2, 4, 8, and so on). If the matching
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nodes are close to each other in the Edge relation, the next match is achieved within a few skips.

The exponentially increasing skip factor allows a large amount of potentially unmatched nodes to

be discounted quickly and in few iterations. If the target node (node that satisfies the next match)

is skipped, then a binary search is performed min and max to find the target node. The value min

represents the last cursor position before the over-skip while max is the cursor position after the

over-skip occurred [SLFW05]. The search space for the binary search (called on line 32 of Figure

5.2) is 2k − 2k−1, where k represents the iteration number of the skip as an exponent of 2. In

short, the skipDescendants function serves to bypass all potential descendant nodes that are in

the preceding axis of a given ancestor node and skip to descendent nodes in the following axis

or descendant axis. This allows us to discount any node that cannot satisfy the XPath query and

prevents it from being added to the output list. The skipAncestors function features a similar

methodology and approach, and it also uses the relational cursor to achieve index-free skipping. It

bypasses all potential ancestor nodes that are in the preceding axis of a given descendant node.

The next section presents a complexity analysis of the SS-Join algorithm. This algorithm

includes the SS Descendant Join, SS Ancestor Join, Skip Descendants, and Skip Ancestors functions.

5.4 SS-Join Algorithm Analysis

The algorithm analysis begins by examining the Skip Descendants (Figure 5.2) portion, referred

to as skipDescendants. Apart from a few trivial checks (lines 5 through 13), the majority of the

function is contained in a single for loop (lines 17 through 30). It is important to note that the

functions moveCursor (line 14) and fetchNext (lines 5 and 15) are a linear move through the

relation and occur without the use of an index. Since they occur in constant time, their effects on

the overall performance can be dismissed. The for loop is bounded by the value |r|. The time to

execute this loop is given as

|⌈log(dSize − dPos)/ log(2)⌉|. (5.1)

Using logarithm rules, Equation 5.1 reduces to

log2(dSize − dPos), (5.2)
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and this value is represented as |r|. The time required for the binary search (line 32) is on the order

O(log2(g)), where g is the current skipping increment. Line 11 shows that g increases by a factor

of 2. Since the search space is between dPos and dPos + g, the maximum size of g is 2k − 2k−1.

There is no guarantee that this binary search will not be required for each iteration, so the worst

case of skipDescendants becomes

|r| × log2(g) (5.3)

|rd| × log2(g) (5.4)

The subscript in Equation 5.4 denotes this value of |r| as that coming from the skipDescendant

function. Through a similar analysis, the complexity of the skipAncestors function evaluates

to a nearly identical expression represented by Equation 5.5. In this case, |ra| = |⌈log(aSize −

aPos)/ log(2)⌉|.

|ra| × log2(g) (5.5)

Since both the SS Descendant Join and SS Ancestor Join algorithms use both skipDescendants

and skipAncestors, their representations can be combined as

|rd| × log2(g) + |ra| × log2(g) (5.6)

By substituting in the search space value for g and performing some factoring, Equation 5.6 becomes

the following

log2(g)×(|rd|+ |ra|) (5.7)

(log2(g))×(log2(dSize − dPos)) + log2(aSize− aPos) (5.8)

(log2(g)/ log
2
2(2))×(log2(dSize − dPos) + log2(aSize − aPos)) (5.9)

log2(g)×(log2(dSize − dPos) + log2(aSize − aPos) (5.10)
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Upon closer inspection, the terms dPos and aPos simply represent the position of the descendant

and ancestor cursors, respectively, within the Edge relation. At the first iteration of skipDescendants

and skipAncestors, it is possible that both dPos and aPos are relatively small. By minimizing

their impact, Equation 5.10 reduces to

log2(g)× (log2(dSize) + log2(aSize)). (5.11)

Finally, substituting the maximum value of g into Equation 5.11 yields the final result of

log2(2
k − 2k−1)× (log2(dSize) + log2(aSize)). (5.12)

The analysis of the SS Descendant Join (Figure 5.1) and SS Ancestor Join is simpler than

the skipping functions. Using Figure 5.1 as a reference, note that the majority of the algorithm

(lines 4 through 29) are contained in a single while loop. This loop is bounded by the sizes of

the descendant and ancestor nodes, represented as |dSize| × |aSize|. A similar observation of SS

Ancestor Join shows that this is bounded by the same value, thereby multiplying our final result

by a constant factor of 2. Combining this observation with Equation 5.12, the final complexity is

given as

2× |dSize| × |aSize|×(log2(2
k − 2k−1)× (log2(dSize) + log2(aSize))) (5.13)

2|dSize||aSize|(log2(2
k − 2k−1)× (log2(dSize) + log2(aSize))) (5.14)

In order to make sense of Equation 5.14 and compare it with native XML query techniques, it

needs to be put into the same context and framework as the original XML document. The depth

of the tree is reflected by the values dSize and aSize. A deeper tree has a higher frequency of

descendent nodes, and this inflates both of the size values. To understand where the breadth of the

tree factors into the analysis, we must revisit the process of shredding discussed in Section 5.2.1.

Since the Edge relation holds the nodes (as individual tuples) in document order, the distance

between sibling nodes reflects part of the tree’s breadth. Referring back to Table 5.1, note that

node 7 and node 21 each appear four times in the parentid column. This suggests that these nodes

have multiple descendants that are siblings with each other. In fact, an observation of the original
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XML document shown in Figure 3.1 confirms that the tree has a larger local breadth around nodes

7 and 21 than elsewhere in the tree. These sibling nodes represent potential answers to XPath

queries, and the skipping functions will skip to the sibling nodes in an attempt to produce a correct

result. Therefore, the breadth of the original XML tree is reflected by the amount of skipping that

is required, and this impacts the value g. By substituting in the maximum search space 2k − 2k−1

for g, we observe that the breadth is reflected by the value k in Equation 5.14.

While Equation 5.14 represents a worst case execution of SS-Join. Using Equation 5.10, we can

slightly modify this worst case scenario to allow for a more general case. Equation 5.15 allows for

the case where the ancestor and descendant node positions are not zero.

2|dSize||aSize| × (log2(2
k − 2k−1)× (log2(dSize − dPos) + log2(aSize − aPos))) (5.15)

This more general form of the SS-Join algorithm will be used in subsequent chapters that compare

the performance of SS-Join to other query algorithms. Much like with Constraint Sequencing, the

worst case scenario, Equation 5.14, is sufficient to observe the effects of the various parameters of

SS-Join and how they interact with other SS-Join parameters.

5.5 Limitations of SS-Join

While SS-Join presents an alternative to native XML query techniques, it suffers from several

limitations that preclude a complete comparison with native techniques such as TwigStack and

Constraint Sequencing. One such limitation is the inability to process queries greater than length

two. SS-Join must operate on two nodes, aNode and dNode, and it returns a list of nodes that

satisfy the ancestor/descendant query. In order to process a query greater than length two, multiple

executions of the SS-Join algorithm must be utilized. The main SS-Join algorithm is separated into

two sections, SS Descendant Join and SS Ancestor Join, but these two components must be used

in conjunction to return results similar to TwigStack and Constraint Sequencing. SS-Join is also

unable to answer queries on documents that contain nested recursive nodes (an issue similar to the

identical sibling node problem in Constraint Sequencing), and it treats ancestor/descendant queries

the same as parent/child queries. All of these limitations are noted by Shui et al. [SLFW05]. These
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limitations serve as a catalyst for our own algorithm, RDBQuery, that seeks to improve on the SS-

Join algorithm and address its limitations. Chapter 6 presents the RDBQuery algorithm along

with an analysis of its performance.
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Chapter 6

A New XML Query Technique,

RDBQuery

The work presented by Shui et al. [SLFW05] is different from the techniques presented in Chapters

3 and 4 because it is non-native. It also does not utilize the relational cursor and therefore does not

rely on the RDBMS to perform selection operations. We propose an alternative technique named

RDBQuery that makes full use of available RDBMS commercial systems to perform efficient queries

across XML data stored in a relational database. Unlike the other techniques discussed in Chapters

3, 4, and 5, our technique has the ability to not operate solely in memory and utilizes the RDBMS to

perform selections. For that reason, the cost analysis needs to consider additional parameters such

as blocking factor, selectivity, and selection cardinality. In this section, we present the algorithm

RDBQuery, explain its improvements over the existing technique, and create a cost model for its

execution.

6.1 Overview

Using the XML document shown in Figure 3.1, we proceed to shred the XML document into the

Edge relation shown in Table 5.1. By using the global encoding scheme discussed in Section 5.2.1,

we observe that the ancestor/descendant relationship can be determined by simply looking for

appropriate descendant nodes that fall within the range (id,end). In other words, if a node’s id

value in the Edge table falls in the range between ancestor’s id and end values, then that node
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Figure 6.1: XML Document with Recursive Nodes

must be a descendant of that same ancestor. For a parent/child relationship, the type of query is

simpler. In order to find a node a that is a child of node b, we simply need to run a selection query

across the Edge table that selects tuples having a parent id equal to the id of node b, the parent

node.

Similar to the work presented by Shui et al. [SLFW05], RDBQuery operates in the presence

of ancestor/descendant and parent/child edges. In contrast to their work, our RDBQuery also

performs with the presence of recursive nodes in the original XML document. Figure 6.1 shows a

portion of an XML document with recursive nodes. The two nodes labeled a represent different

and unique items; one a node is a descendant of a separate a node, and there is another node b in

between the two hierarchically. In the algorithm presented by Shui et al. and discussed in Section

5.3.1, all four queries shown in Figure 6.2 would be positively matched to the XML document

shown in Figure 6.1. While three of the queries exist in the document, Figure 6.2(d) should not

return a result when queried against Figure 6.1. Our RDBQuery algorithm solves this problem and

will correctly ignore false results created by recursive nodes.

In addition, RDBQuery can execute queries that SS-Join cannot. A severe limitation of SS-
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Figure 6.2: Query Styles Useful for RDBQuery

Join is that is can only process ancestor/descendant queries of length two (one ancestor and one

descendant) during one execution of the algorithm. This prevents SS-Join from executing twig

queries and queries longer than two nodes in length with a single pass. RDBQuery overcomes

these limitations by leveraging the RDBMS to perform two specific selection queries that allow it

to answer a query of arbitrary length and of an arbitrary shape.

6.2 RDBQuery Algorithm

The RDBQuery algorithm is shown in Algorithm 6.1. The algorithm works by accepting a query

q and recursively checking all descendants and children in the query against the XML document

to return a set of nodes that satisfy the query. The query in Figure 3.2 shows a twig query. For

our example, we allow the book node to be the node of interest. In other words, we would like

to execute the query shown over the XML document in Figure 3.1 and return all book nodes that

satisfy the query. Like the algorithm presented by Shui et al. [SLFW05], our algorithm returns

node 8 and does not include node 30 in the result set.

RDBQuery is divided into two main sections, a descendant case and a child case. The algorithm

begins by examining the root node of a query q. It uses the main loop on line 2 to iterate through

all edges that leave that node. In the case of an XML tree, all of the edges lead to a unique child

node or specify a descendant relationship. For each edge that leaves the node q, we determine if it

is a descendant edge or a child edge. This information, the classification of an edge as a child or
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Algorithm 6.1: RDBQuery

Input: A query, q
Output: A list of nodes that satisfy the query, output

qc ← root(qc);1

forall edge ∈ leavingEdges(qc) do2

if edge = desc then /* Next node is on descendant edge */3

qn ← nextNode(qc);4

results ← σvalue=qn.value∧id>qc.id∧end<qc.end(edge);5

if results = null then6

abort;7

else if qn is node of interest then8

RDBQuery(qn);9

append(qn, output);10

else11

RDBQuery(qn);12

end13

end14

if edge = child then /* Next node is on child edge */15

qn ← nextNode(qc);16

results ← σvalue=qn.value∧parent id=qc.id(edge);17

if results = null then abort;18

if qn is node of interest then19

RDBQuery(qn);20

append(qn, output);21

end22

if qn is a leaf node then23

return;24

else25

RDBQuery(qn);26

end27

end28

end29
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descendant edge, would take the form of metadata stored in conjunction with the query. If the edge

specifies a descendant relationship, the algorithm executes lines 3 through 13. Lines 15 through 27

are executed if the edge represents a child node. In the case of a descendant edge, the algorithm

looks ahead one node in the query and assigns it to qn. It then performs a selection operation

on line 5. The goal of this is to determine if there are any nodes in the RDB that can possibly

satisfy this ancestor-descendant relationship. If there are no results, the algorithm does not need

to continue; there cannot be any correct answers to the query. If the selection produces a result,

then there must be at least one tuple that represents a successful ancestor-descendant relationship

in the database. Using Figure 3.2 as an example, the RDBQuery algorithm would first look at the

Library node. Inspecting the only edge leaving the node reveals that it encapsulates a descendant

relationship. The next node, book, is assigned to qn, and the algorithm then performs the selection

on line 5. This selection operation includes three distinct checks:

1. Ensure that there is a value in the Edge table that matches the value of the node qn,

2. Ensure that the starting point, id, of possible nodes is greater than the id of the ancestor

node, qc, and

3. Ensure that the ending point, end, of possible nodes is less than the end of the ancestor node,

qc.

Continuing our example, this means that line 5 will return all book tuples that fall within the

range [1,46], inclusive. This results in two book nodes being returned, but only one, the node

corresponding to node 8, is of interest. In order to determine this, the algorithm needs to continue

its look-ahead feature and calls itself on line 10. This results in the next node, either date or

publisher, being inspected. We assume that date is selected, and the new value of qn becomes

date on line 16. The selection operation on line 17 confirms that a tuple exists that satisfies the

selection condition. In this case, since book and date have a parent-child relationship, the condition

requires that there 1) exists a node with the value date and 2) that the node must have a parent

book. Again, the algorithm returns two tuples that satisfy this condition, another level of recursion

occurs on line 25. This time, the value of qn is 1983, and we note that we have arrived at a leaf node

of the query. The selection on line 17 confirms that there exists at least one tuple that matches the

selection condition. For this case, we look for a node with value 1983 that has a parent matching
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a date node. We find only one node (node 11 in Figure 3.1) that satisfies this condition. Since this

is a leaf node, line 22 is executed and the recursion halts. Note that this process would also need

to be repeated for the right-hand side of the query in Figure 3.2. The execution and results are

similar to those discussed for the left-hand side.

The results of the algorithm are contained in output. A node of interest can be specified within

the query, and when this node is found and verified to have the appropriate children or descendants,

it is appended to output. If either selection returns no tuples, then the algorithm can abort. The

entirety of the query must be satisfied or else the document contains no results. In the next section,

we present an analysis of the complexity of our RDBQuery algorithm.

6.3 RDBQuery Algorithm Analysis

Unlike native techniques or the technique presented in Section 5.1, our RDBQuery algorithm uti-

lizes the built-in query optimizer of a relational database management system. Also unlike the

other techniques mentioned, RDBQuery does not require the entire document to be preloaded into

memory. For those reasons, it is necessary to consider disk access when performing a complexity

analysis on RDBQuery.

Using cost models provided Elmasri and Navathe [EN00], we first build equations that model

the selection queries on lines 5 and 15, σd and σc respectively, of Algorithm 6.1. The selection

condition of σd contains three parts:

1. an equality operation on a nonkey attribute (value = qn.value),

2. a comparison on a field with a primary index (id > qc.id), and

3. a comparison on a nonkey attribute (end < qc.end).

The first operation requires a cost of x+ ⌈(s/bfr)⌉, where x is the number of levels in the index, s

is the selection cardinality, and bfr is the blocking factor. The second comparison incurs a cost of

x+(b/2), where b represents the number of index blocks needed. The final comparison is the most

expensive of the three and costs x + (bI1/2) + (r/2). In this equation, bI1 represents the number

of first-level index blocks required while the r/2 parameter is related to selectivity. The value r/2

assumes half of the records are returned by the selection query. If we have a more accurate estimate
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of the number of records returned, then this parameter decreases by increasing the denominator.

Adding these three costs together and combining terms, we arrive at a cost for σd:

x+

⌈(

s

bfr

)⌉

+ x+
b

2
+ x+

bI1
2

+
r

2
(6.1)

3x+

⌈(

s

bfr

)⌉

+
b+ bI1

2
+
r

2
(6.2)

The s term refers to the selection cardinality. When the attribute is nonkey, the value of s becomes

r/d, where r is the number of records and d the number of distinct values [EN00]. Substituting

this into Equation 6.2, we arrive at

3x+

⌈(

r

d× bfr

)⌉

+
b+ bI1

2
+
r

2
(6.3)

Through a similar analysis, the cost of σc on line 15 of Algorithm 6.1 is given as

2x+

⌈(

r

d× bfr

)⌉

+
bI1
2

+
r

2
(6.4)

Note that σc requires only two selection conditions, an equality operation on a nonkey attribute

(value = qn.value) and an equality operation on a nonkey attribute (parent id = qc.id).

In addition to the cost of the selection operations, the RDBQuery algorithm also depends on

the distribution of descendant and child edges (nodes) in the query. We introduce the terms φd

and φc to denote the number of descendant and child nodes in the query, respectively. Combining

Equation 6.3 and Equation 6.4, we arrive at a total complexity of

φdσd + φcσc (6.5)

φd
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2
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2

]

(6.6)

Both values for r/2 are tuning parameters. As the selectivity decreases, the denominator will in-

crease thereby lowering the value of r/2 to r/3, r/4, and so on. It is not necessary to consider the

recursion of RDBQuery or the forall loop on line 7 of Algorithm 6.1. The effects of recursion
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and the for-all operator are subsumed by the parameters φd and φc. Since they represent the total

number of descendant and child edges, they effectively represent all iterations of the RDBQuery

algorithm. In the following chapters, the implications of the various parameters of all four tech-

niques discussed are examined. We also establish an experimental framework for the analysis of

each algorithm. Chapter 7 discusses TwigStack and Constraint Sequencing, the two native XML

query methods, and Chapter 8 discusses the two algorithms, SS-Join and our own RDBQuery, that

operate on XML data in a relational database.

6.4 Summary

In this chapter, we presented our original technique, RDBQuery, that queries XML documents using

a single relation created from shredded XML data. This relation is implemented using a traditional

relational database management system, and RDBQuery leverages the built-in methods and access

paths to retrieve data from the relation. Our technique improves upon SS-Join [SLFW05] in that

it allows for a query size larger than two nodes and enables us to answer twig queries. In Chapter

8, we investigate the performance of RDBQuery and SS-Join.
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Chapter 7

Analysis of Individual Native XML

Techniques

In previous chapters, we performed an algorithmic analysis on three existing techniques and a

new technique of our own. Two of the techniques are native to XML and two use a relational

database to store XML data. This chapter considers the two native XML techniques, TwigStack

and Constraint Sequencing, presents a framework for analyzing their behavior, and presents the

results of performance studies on the algorithms.

7.1 TwigStack

In Chapter 3, we present Equation 3.5, based on the work by Bruno et al. [BKS02], that represents

the number of operations required during the execution of a TwigStack query. For ease of reference,

this equation is repeated here as Equation 7.1. Table 7.1 presents the various parameters for the

TwigStack algorithm that are used in Equation 7.1. Chapter 3 illustrates, on a small example, the

salient parameters listed in the table.

∑

x∈q

(
∑

ψx

|Ti|+ |Sparent(x)|) + |Sroot|. (7.1)

Using the parameters in Table 7.1, we ran mathematical experiments to investigate the effects

of the various parameters on overall query performance. The results of those experiments are
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Parameter Name Represents

x Node Node in query q

q Query Query of length |q| (number of nodes in query)

ψx Local breadth All nodes i that are children of node x

Ti Stream of node i Nodes in XML document that correspond to node i

Sparent(x) Stack of parent(x) Size of stack that corresponds to the parent of node x

Sroot Stack of root node Size of stack that corresponds to the root node

Table 7.1: Parameters in the TwigStack Algorithm

discussed here with additional supporting material found in Appendix A. By observing the behavior

of TwigStack as given in Equation 7.1, we postulate the following about its performance:

1. As the size of streams Ti increases, performance will degrade.

2. The effect of Sroot will be minimal, if observed at all.

3. The four major contributing parameters will emerge as q, ψx, Ti, and Sparent(x).

4. Of the four major contributing parameters, the size of the stream Ti will affect query perfor-

mance the most with the local breadth ψx in second.

In addition, we make some general observations about XML documents that narrow the search

space for our study. Typically, XML documents increase in specificity as they are traversed from

the root node to leaf nodes. For this reason, stream sizes Ti tend to decrease as we approach the leaf

level. Consider an XML document for movies. While there may exist many movie nodes, there are

fewer comedy nodes and even fewer nodes for comedies produced in 2008. While all comedies belong

to the stream Tcomedy, not all comedies will belong to the stream of comedies produced in 2008.

Since the TwigStack relies on intermediate results, the ability to prune those intermediate results

efficiently is a key factor in its overall performance. The size of intermediate results is directly

related to the size of the individual stacks S, and much attention is devoted to the exploration of

the effect of the values of S in the following sections.

7.1.1 Effect of Ti

The size and behavior of the streams T of nodes in the query is of significant importance. This

term relates back to the original XML document over which the query is processed. As stream
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Figure 7.1: TwigStack, stream size decreasing by log2 n

size increases, TwigStack must do more work to search through the possible nodes and either push

them onto the appropriate stack, not push them onto the appropriate stack, or push them only

to later remove them if they do not contribute to a final result. We explore the effect of Ti and

make some conclusions about its impact on query performance. Figure 7.1 and Figure 7.2 show the

effect of decreasing the value of Ti by several factors. At the top of the figure, we note that this

experiment is for query sizes q from one to 20. Unless otherwise stated, it is assumed that query

sizes are discrete values in single-step increments. The rest of the TwigStack parameters are listed

accordingly. When an equality is shown, it is read as a static value for the given parameters. If a

parameter is allowed to assume a random value, that is noted by the capital letter R followed by

the range for random values (first observed in Figure 7.4). The x-axis of Figure 7.1 illustrates query

sizes (increasing from left to right) while the y-axis represents the number of operations required

by the TwigStack algorithm. If an arrow is shown (as in the legend), it is interpreted as an increase

or decrease in the value of the term. In Figure 7.1, we note that the stream sizes Ti are decreasing

by a logarithmic amount.

In both cases, as Ti decreases, query performance increases. In Figure 7.2, there is a significant
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Figure 7.2: TwigStack, stream size decreasing by constant factors

decrease from 175,203 operations to 124,203 operations, a 30% reduction, when the stream size is

changed from decreasing by a factor of two to decreasing by a factor of five. Notice that the gains

produced by a smaller Ti value do not continue indefinitely. When Ti was decreased by a factor of

1000 and 100,000, the results were similar to those produced by Ti decreasing by a factor of 100.

The same observation cannot be made when the value of Ti is strictly increasing as shown in Figure

7.3. For the same parameters, query performance quickly degrades when the size of Ti strictly

increases by a constant factor. This leads us to conclude that the effect of Ti is significant, but

there does exist a lower limit past which other factors of the algorithm overshadow the performance

gains by a small stream size. These observations are substantiated by Figures A.1 and A.2.

While most XML documents are regular in structure and tend to decrease in stream size from

root to leaf level, some documents do exhibit an erratic distribution of nodes at various levels. To

best approximate this behavior, we created XML documents that allow for random stream sizes in

various intervals running from 10 to 2000. A single run of TwigStack with this data is shown in

Figure A.3, and Figure 7.4 shows the results of this same technique averaged over 250 executions.

When stream sizes stay relatively low, between 10 and 100, TwigStack performance is relatively
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Figure 7.3: TwigStack, stream size increasing by constant factors

Figure 7.4: TwigStack, random stream sizes - 250 runs
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consistent. It is important to note the scale on the graph. While the bottom three lines may

appear similar, there is actually a 45% decrease in performance between the random execution

with a maximum of 20 (represented by the bottom line) and the execution with a maximum of 50

(red line). This can be observed in Figure A.4. However, the importance of Ti becomes apparent

when it is allowed to increase to a maximum of 1000 and 2000 nodes. These executions, represented

by the top two lines in Figure 7.4, demonstrate a substantial degradation in TwigStack performance

when stream sizes rise above low values. Figure A.5 shows similar behavior with a smaller query

size.

From the experiments that isolate Ti, we draw several important conclusions about the TwigStack

algorithm. The stream sizes have a beneficial impact on TwigStack query performance if the sizes

are low or decrease as TwigStack progresses through the query. This benefit does have a limit,

and the positive effects shown by smaller Ti values reaches a point of limiting returns. The same is

not true in the reverse case, when Ti is large or allowed to steadily increase. As streams increase

in size, operations necessary for query execution increase. In the case of random Ti values, query

performance falls somewhere between the case where Ti is increasing and where Ti is decreasing.

This is an expected result and corresponds to the effect of the inner summation in Equation 7.1.

7.1.2 Effect of Sparent(x)

As with the stream size, the size of the stacks TwigStack uses to build query results is an impor-

tant factor that governs overall query performance. As outlined in Chapter 3, TwigStack builds

intermediate results using multiple stacks, one stack for each node in the query. As nodes found

in the streams are matched, they are pushed onto the appropriate stack. As the stacks grow in

size, it takes additional operations to iterate through them to ensure that they represent a correct

answer to a given partial query. In a set of experiments similar to those in Section 7.1.1, we present

performance charts that isolate the Sparent(x) parameter. Figure 7.5 shows the effect of increasing

the stack size by a constant factor (2, 3, 4, and 5 times). These runs assume a starting case of

Sparent(1) = 3. A similar result shown in Figure A.6 is produced by a larger base case. It is clear

from the graph that the number of nodes pushed onto the individual stacks has a dramatic impact

on query performance. With a relatively low base case of Sparent(x) = 3, the number of TwigStack

operations quickly explodes for extremely small queries (less than four nodes in the query). Ex-
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Figure 7.5: TwigStack, stack size increasing by constant factors

ploring the effect of the bottom two lines, Figure 7.6 shows that, as query size increases, the effect

of the increasing stacks causes a dramatic degradation in the TwigStack algorithm. Figure 7.7

shows just the bottom line in Figure 7.6. Here it is clear that a strictly increasing value for stack

size (translated as more intermediate results) causes TwigStack to incur additional overhead in the

processing and potential pruning of the stacks. Three additional graphs shown in Figures A.7, A.8,

and 7.7 show similar results for a smaller base case of Sparent(x) = 1.

By comparing these results with the results of Ti strictly increasing, it appears that Sparent(x)

has a less profound effect on TwigStack performance than Ti. However, as was the case in Section

7.1.1, it is a rare case when an XML document and query would result in strictly increasing stacks

as nodes progress from root to leaf level. A more representative case can be shown by allowing the

stacks to assume random values, as shown in Figure 7.8. While this appears somewhat regular, a

graph with the same data run 250 times, Figure 7.9 shows a more regular pattern. While Figure

7.9 suggests that Sparent(x) has less effect on query performance than Ti, it is useful to allow

Sparent(x) to become as large as a possible value for Ti in Section 7.1.1. Figure 7.10 shows the

results of such an experiment after 250 runs (a single run is shown in Figure A.10). By examining

Figures 7.4, 7.9, and 7.10, we can conclude that a larger value for Ti produces a larger decrease in
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Figure 7.6: TwigStack, stack size increasing by constant factors (larger query)

Figure 7.7: TwigStack, stack size increasing by constant factor 2 (larger query)
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Figure 7.8: TwigStack, random stack size up to 10 - single run

Figure 7.9: TwigStack, random stack size up to 10 - 250 runs
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Figure 7.10: TwigStack, random stack size up to 1000 - 250 runs

query performance than larger values for Sparent(x). While Figure 7.10 shows that large values for

Sparent(x) can negatively impact TwigStack performance, for a typical query size of 20 the number

of operations is around 10,000 for a high Sparent(x) and approaches 30,000 for a similar value of

Ti. Equation 7.1 shows that the value for Sparent(x) is outside of the inner summation and is only

affected by the outer summation (over x). It stands to reason that the effect of Sparent(x) and Ti,

for similar values of each, has less impact on query performance than Ti. To further investigate

this, we performed a series of experiments that varied both Ti and Sparent(x) and show their results

on the same graph.

Figure 7.11 shows the effect of decreasing Ti while simultaneously increasing Sparent(x). The

area shaded in green represents Sparent(x) increasing by a factor of three while the area shaded in

blue represents the same parameter increasing by a factor of two. After a query size of eight (q = 8

on the x-axis), the negative effect of an increasing value of the stacks overtakes the benefits felt

by a decreasing stream size. This same effect is shown in Figure A.11 for a larger query. A more

accurate model allows both Ti and Sparent(x) to assume random values typical for a medium-sized

XML document. Figure A.12 shows a single run while Figure 7.12 shows the results after 250 runs

with random values for the two parameters. The upper lines correspond to higher values of Ti
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Figure 7.11: TwigStack, stream size decreasing and stack size increasing

Figure 7.12: TwigStack, random stream and stack sizes - 250 runs
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Figure 7.13: TwigStack, random stream and stack sizes (larger stacks) - 250 runs

and various values for Sparent(x) while the lower lines corresponds to lower Ti values with the same

Sparent(x) values. This graph reinforces the earlier observation that Sparent(x) has a smaller impact

on TwigStack performance than stream size. However, if we allow the two parameters to assume

similar values, as shown in Figure 7.13, the results become less clear. The darker region in the

center (between the diamond line and the green triangle line) represents the area where Sparent(x)

has a more substantial impact on query performance than Ti. In more general terms, if a TwigStack

query is performed over a relatively small document but results in a high number of intermediate

and final results, performance is determined by the number of results and not the document size.

However, in the case where fewer results are produced over a large document, performance is limited

by the stream size (Ti).

7.1.3 Effect of ψx

The parameter ψx (abbreviated as ψ for simplicity) reflects the breadth or fan-out of the XML

query by dictating the number of children for a given node x that the algorithm must process. In

other words, ψx represents the set of nodes that are children of node x. A larger ψ corresponds

to more children and, in turn, a higher fan-out at node x. Figure 7.14 illustrates the effect on
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Figure 7.14: TwigStack, query fan-out increasing

query performance if the number of children nodes is constant, resulting in a completely regular

query tree. The bottom line represents a baseline with ψ = 1, and this corresponds to a simple

query where there is no branching. As the tree is allowed to have more children, query performance

quickly degrades as TwigStack must perform the inner summation for each node that is a child

of the outer summation. In other words, the effect of a high fan-out is felt in both summations,

and this causes an explosion in the number of operations. By increasing ψ, TwigStack is forced to

look at additional streams for all children of a given node in order to assure they satisfy the partial

query before a query node is pushed onto the appropriate stack.

Since XML queries rarely result in such a regular tree structure, a more representative result

is found by allowing ψ to assume random values under certain constraints. A single run of such

an experiment is shown in Figure A.13, and a mean of 250 runs is shown in Figure 7.15 While

the results are less dramatic than those shown in Figure 7.14, they clearly show that TwigStack

performance is negatively impacted by more children in the query tree. This is what we expected

from the TwigStack algorithm. By increasing the value of ψ, the inner summation must iterate

through more streams in the original XML document.

In order to gauge the relative impact of ψ in relation to Ti and Sparent(x), we designed experi-
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Figure 7.15: TwigStack, random query fan-out - 250 runs

ments that varied both parameters and show the results on the same graph. Figure 7.16 shows the

effect of simultaneously decreasing Ti while increasing ψ. When the value of ψ remains low, the

effect of a decreasing Ti is minimal. This is shown by the two lines at the bottom of the shaded

region. They represent Ti decreasing by log2 32 while the value of ψ is increasing by factors of

two and three. However, when the number of children increase to a factor of three, the effect of

a decreasing stream size is observed more clearly. This is shown by the top two lines in Figure

7.16. This result is reinforced by the experimental results shown in Figure 7.17. This graph shows

the results of an experiment where Ti is strictly decreasing while ψ is allowed to assume random

values under various constraints. It shows a clear delineation between the queries with lower Ti

values (the bottom three lines) and the queries with higher Ti values (the upper three lines). The

decrease in stream size, which results in lower stream lengths, affects query performance more than

the fan-out of children nodes. Figure 7.18 shows the results of an experiment where both Ti and ψ

are randomly created and run 250 times. A single run is shown in Figure A.14. The area shaded

in green represents higher potential streams (randomly created from 10 to 100) across various ψ

values. The area shaded in blue represents lower stream sizes from 10 to 20. This graph shows two

important properties of the TwigStack algorithm. First, for typical XML documents and queries,
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Figure 7.16: TwigStack, stream size decreasing and query fan-out increasing

Figure 7.17: TwigStack, stream size decreasing and random query fan-out - 250 runs
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Figure 7.18: TwigStack, random stream sizes and query fan-out - 250 runs

increasing the stream size has a larger impact on query performance than increasing the number

of children. Second, for larger stream sizes, increasing the number of children has a larger negative

effect on query performance than by increasing the number of children with smaller stream sizes.

Figure 7.19 is more complicated in that it allows similar values for Ti and ψ and results in a higher

degree of fan-out. Similar to Figure 7.13, the dark shaded region represents where a higher stream

size with a lower number of children performs better than a lower stream size with a higher number

of children. In this area, queries with lower stream sizes and higher local breadth performs worse

than those with a higher stream size. Due to the nature of XML documents, the stream size of

a node will typically overtake the local breadth around a given node. While the local breadth

may become high, it represents only the children around a specific node. The stream of a node

represents all of the nodes of that type in the document.

The final experiment for TwigStack compares the effect of ψ to Sparent(x). A single run of an

experiment with random values for both parameters is shown in Figure A.15, and the mean of 250

runs is shown in Figure 7.20. The shaded slices represent runs with similar ψ values while the value

of Sparent(x) varies. For example, the bottom slice maintains ψ as a random value between two and

three while the potential values for Sparent(x) increase from a maximum of two to a maximum of ten.
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Figure 7.19: TwigStack, random stream sizes and query fan-out (larger fan-out range) - 250 runs

Since the local breadth (ψ) may overtake the amount of intermediate results, Figure 7.21 illustrates

the performance of TwigStack when local breadth overtakes the stack size. Similar to Figure 7.20,

lines that represent similar values for ψ group together and negate changes to Sparent(x). Even with

larger stack values, shown in Figure A.16, the higher local breadth drives the increase in TwigStack

operations.

7.1.4 Summary of Effects by TwigStack Parameters

The experimental results show that four parameters in Table 7.1 contribute to the overall perfor-

mance of the algorithm. First, the number of nodes involved in the query q affect the number of

TwigStack operations by increasing the outer summation of Equation 7.1. This effect is linear since

TwigStack must simply iterate through additional query nodes. All of the results presented show

that an increase in q always results in increased operations for TwigStack. Second, the effect of the

stream size Ti of a node i has the largest impact on query performance. With more nodes (data)

in the original XML document, the time necessary for TwigStack to iterate through the stream

Ti for each node in the query and all of its children nodes increases, and this effect is illustrated

by the inner summation of the algorithm. Third, the local breadth ψx around a particular node x

75



Figure 7.20: TwigStack, random query fan-out and stack sizes - 250 runs

Figure 7.21: TwigStack, random query fan-out and stack sizes (larger fan-out range) - 250 runs
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Parameter Name Represents

q Query Query of length |q|

m Document length Size of document that must be searched

b Branching factor Average amount of fan-out encountered in the document

s Identical sibling nodes Quantity of identical sibling nodes in the document

Table 7.2: Parameters in the Constraint Sequencing Algorithm

also significantly impacts query performance, and is second in that effect only to the stream size.

Fourth, the size of the stacks Sparent(x) also impact query performance but not to the degree that

Ti and ψx degrade performance. The final parameter, Sroot is not involved in any summation, and

its effects can be ignored when compared to the large contributions by the other parameters.

7.2 Constraint Sequencing

In Chapter 4, we present Equation 4.9, based on the work of Wang and Meng [WM05], that

represents the number of operations required during the execution of a constraint sequence query.

Table 7.2 presents the various parameters for the Constraint Sequencing algorithm that are used

in Equation 4.9. For ease of reference, this equation is repeated here as Equation 7.2. Chapter 4

illustrates, on a small example, the salient parameters listed in the table.

4|q| ×m× (log2(b) + s log2(s)) (7.2)

Using the parameters in Table 7.2, we ran mathematical experiments to investigate the effects of

the various parameters on overall query performance. The results of those experiments are discussed

here with additional supporting material found in Appendix B. By observing the behavior of the

Constraint Sequencing algorithm as given in Equation 7.2, we postulate the following about its

behavior:

1. The effect of the branching factor b will be small when compared with the other parameters.

2. The three major contributing parameters will emerge as q, m, and s.

3. Of the three major contributing parameters, the document size m and number of identical

sibling nodes s will emerge as the factors that affect query performance the most.
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The same general observations we made about XML documents in Section 7.1 also apply to the

XML documents considered in this section. In addition, the parameter m is used to specify the

document that must be considered by Constraint Sequencing. Due to the two binary searches

performed that can significantly limit the search space in the document, m need not represent the

entire document (although this can be the case). For the Constraint Sequencing algorithm, only

the portion of the document that satisfies the two binary searches (Equation 4.2) factors into the

total number of required operations. For simplicity, we state m as document size, but it could

easily refer to just a portion of the document. For example, m = 5000 could represent the 5000

nodes of interest in a document of size 6000. It could also represent the entire document with a

size (length) of 5000. In either case, the effect on query performance is the same since Constraint

Sequencing ignores all nodes outside of a given range. In later chapters, we use Equation 4.10, a

more general form of the Constraint Sequencing model that does not assume a worst-case scenario,

to permit sequencing to operate over a set percentage of nodes in a document. Since this section is

only concerned with Constraint Sequencing and how the parameters affect query performance, it

is sufficient to assume a worst case scenario and use Equation 7.2 in lieu of the more general form.

7.2.1 Effect of m

The parameter m represents the size of the document over which Constraint Sequencing is executes.

Figure 7.22 shows the result of increasing document sizesm across a query of length 20. As expected,

as the document size grows, query performance degrades. Query performance is directly related

to the size of the document over which the query is performed. Equation 7.2 illustrates this by

multiplying the final result by m. As m increases, the number of operations Constraint Sequencing

must perform increases with a linear relationship. The parameter m is investigated further when

compared to the effect of the other parameters later in this chapter.

7.2.2 Effect of b

Branching factor is represented by b in Equation 7.2 and Table 7.2. Assuming a small document

size and low identical sibling nodes, we observe the effect of a static branching factor in Figure 7.23.

This experiment assumes a completely regular tree structure with constant branching factors shown

in the legend. As the branching factor increases, query performance slightly degrades. Another
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Figure 7.22: Constraint Sequencing, various document sizes

Figure 7.23: Constraint Sequencing, various branching factors
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Figure 7.24: Constraint Sequencing, random branching factor - 250 runs

experiment allows b to assume random values as may be encountered in a typical XML document.

Figure B.1 shows a single run with random data for b while Figure 7.24 shows an average after 250

runs with random data. The general trends of Figures 7.23 and 7.24 appear similar, but the scale

for the number of operations (y-axis) is dramatically smaller for the random data. As expected, a

completely regular tree has a high degree of fan-out compared with a tree that may have varying

degrees of fan-out around particular nodes. In addition, the document size of Figure 7.23 is 500

times larger than that of Figure 7.24.

From these graphs, we conclude that the branching factor of a document does have an impact

on query performance. However, even when the value of b is increased by a factor of 10 (Figure

7.23), this does not result in a corresponding linear increase in the number of operations. Rather,

the number of operations is increased by log2(b). The term is dominated by other parameters in

the algorithm. Figure 7.25 further emphasizes that document size m is a more dominate factor

in query performance than branching factor. The bottom region corresponds to small document

sizes while the larger region on the top represents larger document sizes. The degradation in query

performance caused by an increase in document size is larger than that caused by a higher branching

factor. However, as document sizes increase, the effect of fan-out has a larger impact.
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Figure 7.25: Constraint Sequencing, branching factor and document size high/low

7.2.3 Effect of s

In Section 4.4.2, the presence of identical sibling nodes (s) has a negative effect on the performance

of Constraint Sequencing. In the worst case, an abundance of identical sibling nodes forces the

Constraint Sequencing algorithm to perform like a depth-first search. In this section, we present

experiments that explore the effect of identical sibling nodes. To illustrate the concept of identical

sibling nodes, imagine an XML document that stores information about movies. One possible way

to structure this document is with multiple children nodes (all of the root node) that correspond

to the genre of the movie (comedy, action, and drama, for example). Instead of grouping every

comedic movie underneath a single comedy node, suppose we allow the comedy node to be repeated

for each movie. Then, at the level directly beneath the root node, we observe that there are many

identical nodes in that they all specify a comedy genre. If all of these nodes are on the same level,

they are siblings with each other (since they have the same parent). If they are the same node and

value, they are considered identical sibling nodes. For our experiments, the value of s represents

the total number of identical sibling nodes at each level in the original XML document.

Figure 7.26 shows the result of an experiment that fixed b and m and allows the number of

identical sibling nodes to increase from two to 64. For lower values of s (shown in more detail in
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Figure 7.26: Constraint Sequencing, occurrence of identical sibling nodes

Figure B.2), smaller query sizes q result in similar performance to larger query sizes. However,

when s increases, its effect is felt on larger queries. Figure B.3 shows a similar result but with a

lower branching factor. While this is an expected result, XML documents may not have a uniform

distribution of identical sibling nodes. We designed another set of experiments that explores the

effect of random values for s.

Figure 7.27 shows the results of Constraint Sequencing queries with random s values in the

ranges shown. A single run is shown in Figure B.4. The steep increase of the top line, corre-

sponding to random s values between 10 and 1000, eclipses the behavior of smaller values. Figures

7.28 and B.5 show the same results but with the top line removed. Using Figure 7.28, we can

make more accurate observations about the behavior of Constraint Sequencing in the presence of

identical sibling nodes. Even a small value for s quickly results in more operations performed by

the algorithm. We observe that documents that include identical sibling nodes incur a substantial

slowdown in their execution time. However, the bottom two lines still appear to track with each

other. Figures 7.29 and 7.30 isolate the two lowest lines shown in Figure 7.28. With a relatively

small query size of q < 5, both scenarios behave similarly. However, once the number of query

nodes passes five, the top line in Figure 7.29 starts to pull away from the bottom line. This leads us
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Figure 7.27: Constraint Sequencing, random identical sibling nodes (1000 max) - 250 runs

Figure 7.28: Constraint Sequencing, random identical sibling nodes (100 max) - 250 runs
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Figure 7.29: Constraint Sequencing, random identical sibling nodes (10 max) - 250 runs

to observe that the value of s is more significant in larger queries. To better illustrate this, Figure

7.30 shows the same ranges for s but with a maximum query size of q = 100. Here we observe that

as query size increases, overall query performance degrades more quickly with a higher number of

identical sibling nodes.

While we can observe the effect of s by itself, it is useful to design and run experiments that

permute s with the other Constraint Sequencing parameters shown in Table 7.2. Figures 7.31

and B.6 show the effect of varying the branching factor b by random intervals while maintaining

a constant value for s. An important observation from this graph is that query executions with

similar s values cluster together regardless of their branching factors. This leads us to the conclusion

that the effect of identical sibling nodes is higher than an increased branching factor, even when

the branching factor is much larger than the number of identical sibling nodes. Figure B.7 displays

similar results but with constant branching factor and sibling nodes values. When we allow both

b and s to assume random values, the results, shown in Figures B.8 and B.9, do not significantly

differ from those already discussed.

As further reinforcement to the observation that the presence of identical sibling nodes signif-

icantly degrades query performance, we observe the behavior shown in Figure 7.32. The blue line
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Figure 7.30: Constraint Sequencing, random identical sibling nodes (larger query) - 250 runs

Figure 7.31: Constraint Sequencing, random branching factor and constant identical sibling nodes
- 250 runs

85



Figure 7.32: Constraint Sequencing, random branching factor and identical sibling nodes (with
baseline) - 250 runs

on the bottom represents a baseline of s = 1 (constant). Note how an increase in s by four (not

a factor of four, but just four) results in more than double the amount of operations from the

baseline. This further substantiates our claim that s is a driving force when considering the query

performance of Constraint Sequencing.

When we compared s to the document sizem, we found that, for relatively small document sizes

(m < 10, 000), the document size produced a larger impact than the amount of identical sibling

nodes. Figure 7.33 illustrates this point. The lower cluster corresponds to smaller document sizes

(m = 250) while the upper cluster corresponds to a comparatively larger document size (m = 3000).

However, when document sizes grow large, an interesting effect is observed (shown in Figure 7.34).

While similar to Figure 7.33, of particular importance is the area shaded in yellow between the

lines corresponding to s = 6,m = 3000 and s = 3,m = 10, 000. In this area, a large document

(m = 1000) with a small amount of identical sibling nodes (s = 2) yields better query performance

than a small document with a large amount of identical sibling nodes. This reinforces our earlier

observation that, as document size grows, the effect of s is more pronounced. With larger XML

documents, the presence or absence of identical sibling nodes has a substantial impact on query
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Figure 7.33: Constraint Sequencing, various document sizes (small) and identical sibling nodes
(small)

performance.

7.2.4 Summary of Effects by Constraint Sequencing Parameters

The experimental results presented show that three parameters in Table 7.2 contribute to the overall

performance of the algorithm. First, the number of query nodes q directly affects the performance of

Constraint Sequencing in a linear manner. As query size grows, the number of operations required

by Constraint Sequencing to answer the query increase. All of the results presented show that an

increase in q always results in increased operations for Constraint Sequencing. Second, the effect

of the document size m is a major contributing factor. When the number of identical sibling nodes

is fixed, a larger document size results in an explosion of operations for Constraint Sequencing.

Third, the frequency (amount) of identical sibling nodes s is another major factor in Constraint

Sequencing. For smaller document sizes, the effect of an increased value for s is not as substantial as

the effect of the document size itself. However, for large XML documents, the number of identical

sibling nodes dramatically impacts query performance. In other words, as document size grows, the

additional operations incurred by the presence of identical sibling nodes increases by an amount
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Figure 7.34: Constraint Sequencing, various document sizes (large) and identical sibling nodes
(small)

that grows as s grows.

TwigStack and Constraint Sequencing represent two leading techniques for querying XML data

in its native form. In order to better analyze their performance and propose a framework for efficient

query processing, it is necessary to investigate non-native techniques as well. Chapter 8 presents

the results of performance studies, similar to those in this chapter, for the SS-Join algorithm and

our own technique, RDBQuery. Chapter 9 compares the two native techniques with each other,

and the native technique that outperforms the other is compared to RDBQuery in Chapter 10.
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Chapter 8

Analysis of Individual RDB

Techniques

In a method similar to the techniques used in Chapter 7, this chapter considers two non-native

techniques used to store and query XML data. Both techniques, SS-Join and RDBQuery, utilize

a relational database management system (RDBMS) to store XML data and perform queries. SS-

Join utilizes the relational cursor interface while RDBQuery uses standard relational operations,

specifically the selection (σ) operator.

8.1 SS-Join

In Chapter 5, we present Equation 5.14 and Equation 5.15 based on the work by Shui et al.

[SLFW05]. Table 8.1 presents the various parameters for the SS-Join algorithm that are used in

Equation 8.1. This equation is repeated from Chapter 5, Equation 5.15. Refer to Chapter 5 for

detailed explanations of the salient parameters listed in the table.

2|dSize||aSize| × (log2(2
k − 2k−1)× (log2(dSize − dPos) + log2(aSize− aPos))) (8.1)

Using the parameters in Table 8.1, we ran mathematical experiments to investigate the effects

of the various parameters on overall query performance. The results of those experiments are
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Parameter Name Represents

dSize Descendant list Quantity of nodes in descendant list

aSize Ancestor list Quantity of nodes in ancestor list

dPos Descendant cursor position Position of descendant cursor in relation

aPos Ancestor cursor position Position of ancestor cursor in relation

k Breadth parameter Used to define search space when skipping

Table 8.1: Parameters in the SS-Join Algorithm

discussed here with additional supporting material found in Appendix C. For some parameters,

we use Equation 5.14 which represents the worst case scenario for the algorithm. This allows us

to compare how parameters interact with each other with a simplified equation. However, when

necessary, we utilize the more general form shown in Equation 8.1. By observing the behavior of

SS-Join as given in the referenced equations, we postulate the following about its performance:

1. As the length of dSize and aSize increase, query performance will degrade.

2. The breadth parameter k will have a major impact on query performance since it controls

the amount of skipping through the Edge relation (table).

3. The cursor positions dPos and aPos will have less of an impact on query performance than

other parameters.

4. The relative sizes of dSize and aSize will affect the execution operations of SS-Join.

We make some general observations about XML documents that are shredded into RDB relations

to narrow the search space for our study. The number of entries in the Edge table corresponds to

the number of nodes in the XML document. In addition, we do not utilize the Path table that is

proposed as an extension to the SS-Join algorithm by Shui et al. [SLFW05]. We also assume a

constant (linear) time involved to move the relational cursor by a set amount g. Although SS-Join

is divided into two separate algorithms (an ancestor and descendant portion, as shown in Section

5.3.1), we present the results for both algorithms. The other techniques, both native and non-

native, consider the entire query and not the ancestor or descendant portion. For simplicity of

notation, we refer to SS-Join as the entire algorithm (both SS Ancestor Join and SS Descendant

Join).
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Figure 8.1: SS-Join, various descendant list sizes

8.1.1 Effect of aSize and dSize

The terms aSize and dSize refer to the size of the ancestor and descendant lists, respectively,

that are passed to the SS-Join algorithm shown in Figure 5.1. These lists control the space where

SS-Join must execute and search for answers to a given query. Our initial analysis focuses on a

single parameter, dSize, and allows aSize to assume arbitrary values. The results are identical

if the terms are reversed, and this behavior is observed in Equation 5.14. Figure 8.1 shows the

results of SS-Join when dSize is varied from 1 to 5000 with an increasing aSize of log2 n. We

follow the same labeling conventions as discussed in Section 7.1.1 for the graphs presented in this

chapter. Of particular importance is how quickly the number of operations increases for a small

value of aSize relative to dSize. Upon closer inspection, we observe that when aSize doubles, the

number of operations also roughly doubles. The same observation could be made if the roles of

dSize and aSize were reversed. For this experiment, the sizes of the two lists are intentionally

disparate. Figure C.1 illustrates similar results with larger sizes for both lists. In order to compare

with future experiments, note the scale on Figure C.1. SS-Join requires approximately 1.2×109

operations with aSize and dSize both equal to 5000. This also assumes that aPos and dPos are

zero, and it illustrates a worst case scenario for SS-Join with the given parameters.
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Figure 8.2: SS-Join, aPos/dPos increasing (small lists)

8.1.2 Effect of aPos and dPos

The moving cursors aPos and dPos are what allow SS-Join to skip past records that do not

contribute to the final answer of a given query. In the worst case (Equation 5.14), SS-Join is

unable to skip any records and both aPos and dPos are fixed at zero. Ignoring the effect of these

cursors diminishes the performance of SS-Join, so we designed experiments that study the effect of

moving the cursors throughout the two lists. As in Section 8.1.1, the results presented for aPos and

dPos mirror the results if the values of the terms were reversed. In other words, aPos and dPos

contribute the same amount and contribute in the same way to the overall complexity of SS-Join.

This section utilizes the general form of SS-Join shown in Equation 8.1. In Figure 8.2, we begin

with low sizes for the ancestor and descendant lists in order to observe a trend. As the position of

the cursor increases, the number of operations decrease. This is to be expected from the SS-Join

algorithm. If the aPos cursor is moved further down the list, SS-Join need not examine the records

in the list that occur before that cursor. This effectively narrows the search space for the algorithm.

In Section 5.3.2, this is termed index-free skipping by the authors [SLFW05]. The results shown

in Figure 8.2 mirror the results presented by Shui et al. in their original work [SLFW05], and this

helps to substantiate the validity of our SS-Join model.
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Figure 8.3: SS-Join, aPos/dPos increasing

While the results shown in Figure 8.2 build intuition about SS-Join and confidence in our model,

experiments with larger datasets are required to provide insight on how the algorithm performs in

practice. Initially, we allow the size of dSize and aSize to be the same. Figure 8.3 shows execution

of the SS-Join algorithm as we increase the cursors aPos and dPos by a constant factor (shown in

the legend). The x-axis shows the iteration of the cursor as it advances. For example, at aPos = 5

on the x-axis, the blue line has moved both aPos and dPos forward by a factor of two for five times.

Each iteration represents a doubling of the previous cursor position. Therefore, at position five,

the cursor aPos has increased from position 1 to position, or 2i−1 where i represents the iteration

number. In general, if a line is increasing by a constant factor, the increase at position i will be

f i−1 where f represents the factor. The behavior of the cursor is such that it cannot move past

the size of the list. The yellow line corresponds to a factor of six, so at i = 5, the cursor aPos is at

position 1296 in the list aSize. Since the cursor cannot advance past the size of the list, we force

the cursor to stop at a maximum position of the list size.

Upon initial inspection of Figure 8.3, it appears that increasing cursor positions has a dramatic

impact on query performance. What is more interesting is that there is a limit, indicated by the

yellow line parallel to the x-axis, to the benefits of an increased cursor position. The further SS-Join
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Figure 8.4: SS-Join, aPos/dPos increasing (lower maximum position)

is able to advance the cursor, the better the performance of the algorithm. Figure 8.4 shows the

results of a similar experiment, except the two cursors aPos and dPos were not allowed to advance

past the midpoint of the list size. The performance gain lines still trend in the same direction,

but the performance gains (reflected in the y-axis scale) are not as high. Figures C.2 and C.3 in

Appendix C illustrate similar behavior for SS-Join but with cursor positions that increase by a

constant amount rather than by a factor. As expected, gains in overall query performance are not

as pronounced for queries that move the cursors a shorter distance or at a slower rate.

As mentioned in the introduction to this chapter, the relative sizes of aSize and dSize play

an important role in the performance of SS-Join. If aSize = dSize = c, the algorithm takes

longer to execute than in the case where aSize + b = dSize − b = c. Larger values of b result in

increased performance gains for SS-Join. This behavior is shown in Figure 8.5. With aSize allowed

to be disproportionately large when compared with dSize, we observe a substantial performance

gain when compared with the values illustrated in Figure 8.3. Note that while the effects of aPos

and dPos remain similar to those previously observed, the y-axis scale is reduced by a factor

of 250 (from 9.0×108 to 3.5×106). A slightly less exaggerated example is shown in Figure C.4.

The performance gain is less that that shown in Figure 8.5, but there is a noticeable increase in
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Figure 8.5: SS-Join, aPos/dPos increasing (different size lists, high/low)

performance, especially as the cursors move through the lists.

We also explored the case where aPos and dPos increase in nonuniform (random) fashion. For

these cases, single runs of SS-Join are illustrated in Figures C.5, C.6, C.7, and C.8 in Appendix C.

Figure 8.6 shows the mean of 250 runs of the SS-Join algorithm with aPos and dPos increasing by

a random amount within the range shown in the legend. We note that, for larger increases in aPos

and dPos, query performance increases. The bottom blue line shows a performance improvement of

2.0×108 after 10 cursor iterations if both aPos and dPos advance somewhere in the range from one

to 5000. As we constrain the movement of the two cursors, the gains in query performance diminish.

This is illustrated by the upper lines. Note how they cluster together with little improvement in

SS-Join operations. Figure 8.7 demonstrates the increased performance gains as we continue to

advance the two relational cursors. Since this behavior is also shown in Figure 8.6, we limit further

analyses to a smaller number of cursor iterations to improve chart readability.

Figure 8.8 illustrates the effect of decreasing the range in which the cursors move. In this

experiment, we place a higher minimum movement limit on the cursor while simultaneously de-

creasing the maximum range. Note that it is almost identical to Figure 8.6. The potential benefit

of increasing the minimum advancement of the relational cursor is negated by taking the average
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Figure 8.6: SS-Join, random increases to aPos/dPos (large, identical ranges) - 250 runs

Figure 8.7: SS-Join, random increases (more iterations) to aPos/dPos (large, identical ranges) -
250 runs
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Figure 8.8: SS-Join, random increases to aPos/dPos (narrowing, identical ranges) - 250 runs

across 250 runs. While some benefit may be experienced in such a case, the potential performance

gains will average out over time as queries are processed. This is especially true of the database

is volatile, resulting in different advancements of both cursors as new data is added or existing

data removed. Figure 8.9 tells a similar story but with different parameters. In this experiment,

we fixed the range for aPos while increasing the range for dPos. Observe that when one range

is relatively small (as is that for aPos), increasing the range of the other cursor does not have a

significant impact on query performance. Figure 8.10 magnifies this result by decreasing the size

of the two lists, aSize and dSize, while fixing the range for aPos relatively low and increasing the

range for dPos. Observe the marginal performance gains exhibited by the top three lines. It is not

until we reach the case where dPos is allowed to advance from 80 to 990 (the bottom green line)

where we notice a steady increase in SS-Join performance. Figure 8.11 is simply an enlargement of

the interesting area from Figure 8.10. It is easier to observe the increased performance seen in the

case where the dPos cursor is allowed to advance over a larger range.
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Figure 8.9: SS-Join, random increases to aPos/dPos (one range fixed) - 250 runs

Figure 8.10: SS-Join, random increases to aPos/dPos (one range fixed small) - 250 runs
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Figure 8.11: SS-Join, random increases to aPos/dPos (one range fixed small) - 250 runs (Zoom)

8.1.3 Effect of k

One of the advantages of SS-Join over other algorithms is its ability to skip records that do not

contribute to the final solution. It accomplishes this by moving the cursors aPos and dPos through

the Edge table. As the algorithm continues to skip, the skipping amount will trend towards in-

creasing. The first skip will be smaller than the second skip if the second skip occurs directly after

the first. In the worst case, SS-Join moves the cursor past the data it needs. It then must perform

a binary search in the space 2k−2k−1. In the perfect case, the skip moves the cursor directly to the

record it needs. In that case, k is one, and the value for log2(2
1 − 20) becomes zero. This means

that, if we happen to move the cursor directly to the correct node, we only incur a single cursor

move (1 operation). This is not an interesting case since it always results in the same answer. In

this section, we explore the effects of over-skipping the intended node by various sizes of k. After

an XML document is shredded into a relation, it loses some of its native characteristics. While

depth is somewhat reflected by the number of records, the XML document is flattened and breadth

also factors into the size of the relation and number of records. For the purposes of our analysis,

we allow k to reflect the breadth of the original XML tree. Recall from Chapter 5 that k refers to

that amount of records that SS-Join skips to quickly move through the Edge table. The purpose
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Figure 8.12: SS-Join, skipping factor increasing (small lists)

of this is to skip all entries in the ancestor and descendant lists that do not contribute to the final

query result set. As a simple example, refer back to Figure 3.1 and consider a query that is only

interested in author nodes with a name of Peppard. The SS-Join algorithm could skip all of the

nodes that are in the ancestor list of node 23 since they do not contribute to the final result. By

skipping these nodes, we have moved across the breadth of the XML tree.

The size aSize and dSize play an important impact when examining the effect of k. When the

lists are small, as seen in Figure 8.12, as k increases, query performance significantly degrades. A

larger value of k means that SS-Join has over-skipped the intended record by a larger amount and

thus must search a larger set of records for the intended target. When k is eight, SS-Join must

search an area equal to 28− 28−1, or 128 nodes. Figure 8.12 assumes the SS-Join algorithm always

over-skips by the given value of k. Figure C.9 shows a similar explosion in the number of operations

performed by SS-Join with larger aSize and dSize values. It is important to note that, regardless

of the size of the two lists, increasing k has the same result. While the total number of operations

will increase with a larger aSize and dSize values, the behavior of Figures 8.12 and C.9 are the

same.

Figure 8.13 shows the results of varying the relational cursors aPos and dPos through the
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Figure 8.13: SS-Join, skipping factor and aPos/dPos increasing (small lists)

table for different values of k. Note that as the cursors progress through the lists, the effect of k

is diminished by varying amounts. Until the cursors reach half way through, there are nominal

gains in SS-Join performance. However, the jump from half way through the list to near the end

is dramatic (illustrated by the large green slice in the graph). When we consider the SS-Join

algorithm, this type of behavior is justified. As the relational cursors progress through to the end

of their respective lists, the algorithm is constrained from skipping in larger amounts. Therefore,

as dPos and aPos increase, SS-Join cannot move the cursors forward by the same amount as

when the algorithm initiated. Figures C.10, C.11, and C.12 in Appendix C demonstrate similar

behavior. When the relational cursors pass the halfway mark in their respective lists, SS-Join

begins to experience performance gains. These gains are marginally larger for increasing values of

k. As a final experiment, we allow both aSize and dSize to increase in size to 5000 each. Figure

8.14 shows the results of SS-Join for dPos progressing through the first half of the descendant list.

Of importance is the marginal performance improvements regardless of the descendant list cursor.

In Figure 8.15, dPos moves through the second (last) half of the descendant list. Compare these

results to those from the first half of the descendant list. Of particular importance is the large

performance gains experienced when dPos is close to the end of the list (close in value to dSize).
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Figure 8.14: SS-Join, skipping factor increasing, aPos fixed, dPos moving through first half of list

This mirrors our previous observations about the effect of the relational cursor position when k

increases.

8.1.4 Summary of Effects by SS-Join Parameters

The experimental results presented show that each of the parameters in Table 8.1 contribute to the

overall performance of the SS-Join algorithm. As the size of the two lists, ancestor and descendant,

grows, SS-Join must process more records (entries in the Edge table). Performance can further

degrade if the algorithm skips a large section of the table (reflected by a large k value) and must

backtrack and search inside that skipped region for the record of interest to continue processing.

With regard to the relational cursor positions aPos and dPos, our results consistently show that

larger cursor positions (where the cursor is in the last half of the list) result in performance gains

for SS-Join. The magnitude of these gains depends not only on the size of the list but also the

number of consecutive times we move the cursor through the list. If SS-Join is able to move the

cursor in increasing increments without over-skipping the necessary record, it can quickly process

a lengthy list. While the effects of the relational cursor positions are not as profound as the effects

of other parameters in the SS-Join algorithm, they still play a significant role in query performance
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Figure 8.15: SS-Join, skipping factor increasing, aPos fixed, dPos moving through second half of
list

and must be considered when analyzing SS-Join execution in all but the worst case.

8.2 RDBQuery

In Chapter 6, we present a new algorithm named RDBQuery to process XML data stored as a

shredded relation in a relational database. Equation 8.3 is the result of our algorithmic analysis

on RDBQuery (repeated for convenience from Equation 6.6), and Table 8.2 presents the various

parameters used in the equation. Chapter 6 illustrates the salient parameters in Table 8.2 on a

small example.

φdσd + φcσc (8.2)

φd

[

3x+

⌈(

r

d× bfr

)⌉

+
b+ bI1

2
+
r

2

]

+ φc

[

2x+

⌈(

r

d× bfr

)⌉

+
bI1
2

+
r

2

]

(8.3)

Using the parameters in Table 8.2, we ran mathematical experiments to investigate the effects of

the parameters on overall query performance. The results of those experiments are discussed here
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Parameter Name Represents

φd Descendant edges Number of descendant edges in the query

φc Child edges Number of child edges in the query

r Records Number of records in relation

d Distinct values Number of distinct values in relation

x Index levels Number of levels in the index

bfr Blocking factor Number of records in a block

b Index blocks Number of index blocks needed

bI1 First level index blocks Number of first level index blocks needed

Table 8.2: Parameters in the RDBQuery Algorithm

with additional supporting material found in Appendix D. Before we began the experiments, we

made some general observations about the algorithm that allow us to significantly narrow our test

space. When compared to the other parameters, the effects of b and bI1 can be ignored, especially

for relations with any significant size. In addition, the blocking factor bfr typically remains constant

and can be excluded from the analysis. The term x that represents the number of index levels can

also be ignored. When compared to the effects of d, r, φd, and φc, it does not make a significant

enough contribution to query performance to necessitate a full study. One parameter that is not

listed in the table is the tuning parameter, also known as selectivity. In Equation 8.3, this is

represented by the value r/2. As the denominator of this term changes from two and increases to

other values, selectivity increases. The number of records RDBQuery selects from the Edge table

decreases as it becomes more selective. By observing the behavior of RDBQuery, we postulate the

following about its performance:

1. The effect of φd and φc will be similar if not the same.

2. Record size r will be the dominating parameter for the algorithm.

3. The number of distinct values d will have a significant impact up to a point.

4. The selectivity of records denoted by r/n will have a significant effect on query performance.

As selectivity increases (n increases), RDBQuery performance will also increase.

Since RDBQuery uses the same relational database setup as SS-Join, the same observations made in

Section 8.2 about XML documents that are shred into RDB relations also apply to this technique.
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Figure 8.16: RDBQuery, record size increasing

In this case, we assume that the XML document is appropriate shredded into a single relational

(the Edge table) as outlined in Section 5.2.1. In addition, the blocking factor bfr is calculated as

⌊B/Ri⌋ where B is the block size and Ri is the sum of V , the file size, and P , the block pointer

size [EN00].

8.2.1 Effect of r, φd, and φc

The term r refers to the size of the Edge table as represented by a single relation. As the number of

records increase, the time necessary for RDBQuery to execute also increases. Figure 8.16 illustrates

several runs of RDBQuery with various record sizes. Along the x-axis is the number of descendant

edges (φd), and the number of child edges (φc) remains fixed at five. The lines correspond to tables

with various number of records. As the number of records increases, the effect of increasing the

query size φd is increased in a linear fashion. A similar result is achieved with a smaller number of

records (Figure D.1). We also examine the case where there are no child nodes in the query, and

this result is shown in Figure D.2, and the same trend from Figure 8.16 is observed. We know from

the RDBQuery equation that the number of records will impact query performance, but we need

to know how much of a factor record size is when the number of query edges (ψd and ψc) vary.
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Figure 8.17: RDBQuery, descendant/child edges increasing

In order to better analyze the performance of RDBQuery, we designed an experiment that varies

the record size, number of descendant edges, and number of child edges. Figure 8.17 illustrates

the results of RDBQuery under these constraints. The larger shaded region that increases quickly

represents a record size of 4000 while the lower, thinner region represents a record size of 400. As

the number of edges in the query increase, the performance of RDBQuery degrades more quickly

with a larger record size. It is not immediately clear why this should be the case, but upon closer

inspection of the RDBQuery equation (Equation 8.3), we notice that the factor r/2 represents a

tuning parameter (selectivity) in the relation. In short, we are allowing RDBQuery to operate with

50% selectivity (a high selectivity ratio). This led us to design a series of experiments that vary

the selectivity parameter r/n and observe the impact on query performance.

To begin, we fixed the number of child edges and varied the selectivity from r/2 to r/16. Figure

8.18 shows that, as we increase the denominator from two to 16, selectivity increases (as r/n

decreases), and RDBQuery finds fewer records in the Edge table that satisfy the complex selection

statements shown in Algorithm 6.1, the RDBQuery algorithm. In other words, a value of r/2

represents a lower selectivity than r/16 since more records will be returned. The algorithm is being

less selective. When selectivity increases, an increase in the number of query edges results in a
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Figure 8.18: RDBQuery, selectivity increasing

smaller degradation in overall query performance. Compare the top line (blue, selectivity r/2) with

the bottom line (red, selectivity r/16). The top line increases more quickly than the bottom for

the same number of query edges. This is a factor of the selectivity.

A logical extension of this experiment is to allow the selectivity and number of all edges (φd

and φc) to vary. Figures D.3, D.4, D.5, and D.6 represent the intermediate steps necessary to

achieve the results shown in Figure 8.19. In this graph, we retain only the minimum and maximum

selectivity and φc values. We observe the same behavior as seen in Figure 8.18. The selectivity

r/n represents a larger contributing parameter to RDBQuery than the number of query edges. An

additional method to study the effect of selectivity on query performance is to fix the number of

query edges and vary the record size r. We allow selectivity to increase by a function r/n, where

n increases by a factor. Figure 8.20 shows the result of RDBQuery run with a varying amount

of records and φd = φc = 32. It is important to note that the greatest benefit to the algorithm

is when selectivity increases from a factor of two to a factor of three, denoted by the top lines,

respectively, in the graph. After that point, selectivity can increase by large amounts, but there

appears to be little additional benefit to the overall execution of the algorithm. This leads us to

conclude that, while selectivity is important for query performance, there is a point where higher
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Figure 8.19: RDBQuery, selectivity and descendant/child edges increasing (min/max values shown)

selectivity results in minimal performance gains. A similar result is shown in Figure D.7 but for a

smaller query size.

8.2.2 Effect of d

The term d reflects the number of distinct values in the Edge table for a shredded XML document.

As the number of distinct values increases, query performance should also increase. However, there

is a limit to those performance gains. As shown in Equation 8.3, d is involved in the term with r

and bfr. The term, given as
⌈(

r
d×bfr

)⌉

, states that as d increases, the value of the entire term will

decrease. The ceiling function will prove to dampen the benefits of d slightly.

We begin our study of the parameter d in Figure 8.21 by fixing both the number of query

edges (shown in the legend) and the selectivity (r/10). We notice an early drop in the number of

operations followed by a seeming leveling-out of the plot. However, upon further investigation, we

see that there is actually a slight decrease in the results. Figure 8.22 shows the same experiment

but with a smaller range of distinct values. Here we clearly note the sharp decline at the beginning

of the run and then a seemingly flat (constant) number of operations. The plots are actually slowly

decreasing, but the amount is too small to observe on the graph.
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Figure 8.20: RDBQuery, selectivity increasing by constant factors

Figure 8.21: RDBQuery, distinct values increasing (fixed selectivity)
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Figure 8.22: RDBQuery, distinct values increasing (fixed selectivity) - Zoom

Upon closer inspection of the term
⌈(

r
d×bfr

)⌉

, we note that the ceiling function combined with

the bfr causes it to quickly decline for small values of d but then see increasingly smaller changes

as d increases. Using the same values as in Figure 8.22, Table 8.3 presents the first 10 results of

that ceiling function with d values from one to 10. It is clear from the table that, as d increases,

the value of the ceiling function in RDBQuery decreases by smaller amounts. This explains the

sharp fall in Figure 8.22 followed by the seemingly level number of operations. Similar results are

shown in Figures D.8 and D.9. Of the two graphs, Figure D.9 shows results most similar to those

presented here with a constant selectivity size. In addition, Figure D.10 shows how RDBQuery

reacts with a number of distinct values from one to 50, which represents 0.25% of the total records

in the table. As d increases, RDBQuery performance increases. When all records are distinct, the

term that involves d becomes extremely small.

8.2.3 Summary of Effects by RDBQuery Parameters

The experimental results presented show that some parameters of RDBQuery listed in Table 8.2

contribute more to the overall performance of the algorithm than others. The two dominant factors

are the number of records r and the selectivity of the two selection operators used in the algorithm.
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Value for d
⌈(

r
d×bfr

)⌉

1 295

2 148

3 99

4 74

5 59

6 50

7 43

8 37

9 33

10 30

Table 8.3: Results of ceiling function in RDBQuery with d values from 1 to 10 (r = 20000, bfr= 68)

For a higher number of records, the algorithm must search a larger space for tuples that match the

selection conditions. In addition, RDBQuery suffers from the same performance issues as relational

databases. When selectivity is low (meaning that many results are returned), there is more work

required to answer a query. However, when selectivity is high, the benefits of using an optimized

RDB query processor are obvious. The number of distinct values d in the relation also contributes

to the query performance, but its effect is neglegable when compared to other parameters. The

most obvious parameters that impact RDBQuery performance are the number of child edges (φc)

and descendant edges (φd) in the query. More edges translate to more nodes, and a longer query

requires additional selection operations to be performed.

8.3 Overall Conclusions

While SS-Join and RDBQuery are both non-native approaches to query XML documents, they

differ in their ability to perform queries of different lengths and styles. As noted in Section 5.5,

SS-Join is only able to process a query of size two, does not perform on twig queries, is unable

to successfully execute on documents with recursive nodes, and does not differentiate between

ancestor/descendant queries and parent/child queries. These limitations make a true comparative

analysis between SS-Join and RDBQuery highly limited, and SS-Join does not compete on a similar

level as TwigStack, Constraint Sequencing, or RDBQuery. From the experiments presented in this

chapter, we observe some general scenarios where SS-Join can outperform RDBQuery. Figure
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8.2 illustrates the effect of increasing the ancestor and descendant positions in small lists. This

represents a document that is more wide than deep (has a higher degree of fan-out). In this case,

the number of ancestor nodes and descendant nodes are limited due to the limited/constrained

depth of the document. We observe a steep decrease in the number of operations for SS-Join in this

scenario. As we will demonstrate in Chapter 10, selectivity in the relational database is low for a

wide/similar document. Even with a low selectivity (Figure 8.18), we note that, from the number

of operations on the y-axis, SS-Join outperforms RDBQuery. For this reason, we include SS-Join

in our final framework presented in Chapter 11, but we dismiss the necessity of an exhaustive

comparison with RDBQuery.

In this chapter and Chapter 7, we presented a detailed analysis of the major contributing

factors for the SS-Join, RDBQuery, TwigStack, and Constraint Sequencing algorithms. In Chapter

9, we examine the two native techniques, TwigStack and Constraint Sequencing, together and

analyze their behavior for similar queries and XML documents. From these experiments, we select

a technique that proves to outperform the other in the majority of situations that use synthetic

data and real-world parameters and compare that technique with RDBQuery in Chapter 10.
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Chapter 9

Comparative Analysis of Native

Techniques

Now that we have identified the salient features from the four individual XML query processing

techniques, we now shift our focus to a comparative analysis between the two native techniques,

TwigStack and Constraint Sequencing. In this chapter, we present the results of experiments that

compare the performance of these two techniques when applied to similar scenarios. We investigate

the effects of querying over a deep XML tree with small fan-out, a shallow tree with a high degree

of fan-out, and a tree that lies somewhere between the two extremes (similar depth and breadth).

9.1 Overview

In the following experiments, we create small, synthetic datasets using Mathematica. This simplifies

the analysis and make performance numbers more readable. To ensure our methodology scales

appropriately when applied to a larger, more representative XML document, we utilize the DBLP

XML dataset [dbl09] when appropriate. Although XML documents can, in theory, appear in any

configuration, their practical shape skews towards a shallow tree with a large breadth (high degree

of fan-out). The XML Data Repository at the University of Washington [xml09] houses many

XML datasets, and all of them are more broad than deep. However, while an extremely broad tree

tends to be more common, we investigate other representative cases in the interest of generating a

complete framework and model. Tables 7.1 and 7.2 in Chapter 7 illustrate the various parameters
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used for TwigStack and Constraint Sequencing, respectively, throughout the analyses that follow.

For Constraint Sequencing, we introduce two variations of the term m. In previous chapters, m

referred to both the document size and the amount of the document that was sequenced (a worst

case scenario). In order to better compare with other techniques, m must be divided into two

separate parameters, mdoc and mseq. The value of mdoc is the size of the XML document while

the value of mseq refers to the portion of the document that is subjected to sequencing. Since the

value of mseq will always be less than (or in the worst case, equal to) the size of the document,

it is appropriate to view the size of mseq as a window into the document mdoc that is subject to

sequencing. Refer to Equation 4.10 in Chapter 4 for more detailed information about this behavior.

As a final overview note, when we state that an XML document or tree has a small breadth, this

refers to the low degree of fan-out in the document.

9.2 Deep Tree, Low Breadth (Deep)

We first present the case where an XML document is deep and has a small breadth. In TwigStack,

the rate at which Ti decreases represents the breadth of the document. If we force Ti to decrease

quickly, it means that there are few nodes that are in each stream Ti. To represent a deep tree in

Constraint Sequencing, we allow the branching factor b to remain low. The term ψx in TwigStack

refers to the local breadth of the query, not the breadth (fan-out) of the original XML document.

For that reason, we fix ψx and later investigate the effects of increasing this value. To increase

readability and simplify terminology, we allow the term deep to refer to a tree that is deep in terms

of node recursion (many levels) but low in breadth.

9.2.1 Experimental Results

Figure 9.1 illustrates the effect of various values for mseq in Constraint Sequencing. At the top of

the figure, we note that this experiment is for query sizes q from one to 50. Unless otherwise stated,

it is assumed that query sizes are discrete values in single-step increments. The second line refers to

the parameters used in Constraint Sequencing, and the third line lists parameters for TwigStack.

When an equality is shown, it is read as a static value for the given parameter. For example, the

values of b, s, and ψx are all static and equal two. If a parameter is allowed to assume a random

value, that is noted by the capital letter R followed by the range for the random values. In Figure

114



9.1, the value for Sparent(x) is allowed to assume a random value between two and five, inclusive.

Unless otherwise stated, all random data is the result of a mean of 250 executions. If an arrow is

shown, it is interpreted as an increase or decrease in the value of the term. In the legend of Figure

9.1, the value of mseq is shown with a downward facing arrow followed by a number. The second

legend entry means that the value of mseq is decreasing (denoted by the down arrow) by a constant

rate (denoted by the x ) of 1.1. In other words, for successive iterations of the Constraint Sequencing

algorithm, the value of mseq is decreased by 1.1 (10%). This same notation is used throughout this

chapter and the other comparative analyses in the following chapters. Figure 9.1 also demonstrates

how our query performance studies are visualized. Two techniques are represented, one on each

axis. In this case, TwigStack is on the x-axis while Constraint Sequencing is on the y-axis. The

line y = x that runs through the graph divides it into two triangle sections. The points represent

queries of various sizes, and smaller queries are closer to the origin. Points that fall above the

diagonal line represent queries that perform better for the technique on the x-axis while those that

fall below the line correspond to queries that perform better for the technique on the y-axis. In

Figure 9.1, since all points fall above the diagonal line, all queries perform better when run using

TwigStack.

In Figure 9.1, we observe the effect of varying mseq in Constraint Sequencing. This experiment

is run in the presence of few identical sibling nodes (s) and a low value for Sparent(x). As mseq

decreases more rapidly, the performance of Constraint Sequencing approaches the performance of

TwigStack. This is shown by the yellow and green lines that approach the dividing line. When

we increase the value of s by one (E.1), Constraint Sequencing demonstrates its expected behavior

with a decrease in performance. Similar results are shown in Figure E.2 when we allow Sparent(x)

to decrease by a factor of two. An interesting result is shown in Figure 9.2. When we decrease the

number of identical sibling nodes, query performance is not only similar for the various values of

mseq but is also the same for each technique. As we will observe later in the chapter, this is not the

case for a shallow tree with a higher breadth. We note that, as mseq decreases more quickly, the

performance of Constraint Sequencing relative to TwigStack improves. We choose a representative

behavior for mseq as decreasing by a factor of two for future experiments. Wang and Meng also

illustrate this behavior by their algorithm [WM05].

Since the behavior of the streams Ti are dictated by the shape of the XML document, only two
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Figure 9.2: CS, vary sequence size (low random Sparent(x), low s) - Deep
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Figure 9.3: TS, vary stack size (low s) - Deep

parameters from TwigStack, Sparent(x) and ψx, need be investigated. In addition, the branching

factor b and behavior ofmseq remain fixed, so the remaining parameter from Constraint Sequencing,

s, also requires analysis. Figure 9.3 illustrates the behaviors of TwigStack and Constraint Sequenc-

ing with various Sparent(x) behaviors. Similar results are shown in Figures E.3 and E.4. Without

many identical sibling nodes, Constraint Sequencing outperforms TwigStack for all behaviors of

Sparent(x) with all query sizes. Recall that the sizes of stacks in TwigStack reflect the number of

results generated by the algorithm before pruning. A lower value for Sparent(x), or a behavior that

decreases, models relatively few intermediate results. As the stack sizes increase, more and more

intermediate results are produced. This affects the outer summation of the TwigStack equation.

If use the same parameters in Figure 9.3 but increase the number of identical sibling nodes to

three, we see a dramatic shift in query performance as shown in Figure 9.4. With more identical

sibling nodes, performance of Constraint Sequencing degrades. Since identical sibling nodes do not

affect TwigStack, this pushes the performance for queries with a size less than 37 above the line.

Therefore, if there are identical sibling nodes, small to medium sized queries perform better with

TwigStack than Constraint Sequencing. However, all of this is still dependent on the behavior of

the stack sizes. If stack sizes steadily increase, performance quickly shifts in favor of Constraint
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Figure 9.4: TS, vary stack size (increased s) - Deep

Sequencing. If we allow the number of sibling nodes to fluctuate between two and 10, results are

pushed even further in favor of TwigStack (Figure E.5). If we continue the trend shown in this

figure by increasing the maximum query size to 200, we observe that at a query size of 155, per-

formance shifts in favor of Constraint Sequencing if the size of TwigStack stacks do not decrease

rapidly. This is illustrated in Figure 9.5. As a point of reference, if a value of q is shown on a graph

in a yellow box, this refers to the query length where the performance shifts in favor to the other

technique. This notation is used on future graphs when necessary. By continuing to increase the

number of identical sibling nodes, we shift performance in favor of TwigStack (Figure E.6).

For deep XML documents, the experiments above show that there is a distinct advantage to

using Constraint Sequencing, provided there are few or no identical sibling nodes. However, once the

number of identical sibling nodes begins to increase, the performance of smaller queries is better

when using TwigStack. These results correspond to the experimental results of the constraint

sequence authors illustrated in the original work [WM05].

The final parameter of interest, ψx, only affects the TwigStack algorithm. When we reference

the TwigStack equation (Equation 3.5), we note that ψx only directly affects the value of the

streams T . In order to model a deep tree with a shallow breadth, we must force the all streams Ti
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Figure 9.5: TS, vary stack size (random s, larger query) - Deep
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Figure 9.6: TS, vary stack size (increased s, high ψx) - Deep

to either be small or decrease rapidly. Therefore, all values of Ti will be small with respect to a tree

that has a higher degree of fan-out. The result is that the shape of the TwigStack query (reflected

by ψx) has little impact on query performance. This is validated by results shown in Figures 9.6 and

E.7. Figure 9.6 represents the same data shown in Figure 9.4 but with an increased value for ψx.

Note that the performance experienced little change. While the raw data that generated the two

graphs slightly differs (better performance is shown with a smaller ψx), this is not reflected in the

graph. In fact, query performance remains so similar that the shift in preference from TwigStack

to Constraint Sequencing remains at a query size of 37. Figure E.7 illustrates similar behavior and

corresponds to Figure E.3.

9.2.2 Conclusions

From the experimental results that show the relative performance of TwigStack and Constraint

Sequencing on deep trees, several important conclusions are drawn. First, in the absence of identical

sibling nodes, Constraint Sequencing outperforms TwigStack without regard to the size of the

stacks. Second, as the number of identical sibling nodes increases, better performance shifts to

TwigStack if the sizes of the stacks avoid being too large or consistently decrease. If stack sizes
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are extremely large or steadily increase, performance that favors TwigStack for small query sizes

quickly shifts to Constraint Sequencing. The number of identical sibling nodes is what ultimately

determines when and if performance shifts from TwigStack to Constraint Sequencing. Third, in

deep trees, the shape of the query used in TwigStack has a negligible affect on performance. As is

shown in the following section, this is not the case for a tree that is shallow in depth but large in

breadth.

9.3 Shallow Tree, High Breadth (Wide)

As a complete contrast to a deep tree with a small breadth, we now consider the opposite case

of an XML document that is shallow but extremely wide. For our purposes, the term wide refers

to a shallow tree with a high degree of fan-out (increased breadth) and is used to simplify our

terminology. To specify a wide tree, we force Ti to decrease slowly and increase the value of b to

reflect a larger branching factor. Similar to the previous section, we fix ψx to a low value and later

investigate the effects of a wider query shape for TwigStack.

9.3.1 Experimental Results

With a procedure similar to that in the previous section, we studied the performance of TwigStack

and Constraint Sequencing on an XML document that, while similar in size, is opposite in terms of

its shape. The analysis and presentation of graphs mirrors the previous section. When necessary,

comparisons are made to the results for deep trees. Figure 9.7 illustrates the effect of mseq when

varied over a wide tree. Immediately we observe that there is a dramatic shift in favor of TwigStack

when compared to Figure 9.1. Note that the parameter ψx remains two, and this signifies a

small breadth for the query q in TwigStack. If we increase that factor to 10 and run the same

experiment, we observe an equally dramatic shift in favor of Constraint Sequencing (Figure 9.8).

By further modification of ψx, we notice another shift as illustrated in Figure E.8. This leads us

to the conclusion that, while unimportant for deep trees, the shape of the query when performed

on a wide XML document has important consequences to query performance. Figure E.9 shows

how query performance continues to skew in favor of TwigStack, and this is to be expected with

a decreasing Sparent(x). Recall the interesting result shown in Figure 9.2 where TwigStack and

Constraint Sequencing performed equally. Figure 9.9 shows the results of the same experiment but
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Figure 9.7: CS, vary sequence size (low Sparent(x), low ψx) - Wide
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Figure 9.8: CS, vary sequence size (low Sparent(x), high ψx) - Wide
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Figure 9.9: CS, vary sequence size (low s, low ψx) - Wide

performed on a wide document. Note that query performance now trends in favor of TwigStack.

However, if we increase the breadth of the query by raising ψx, the reverse observation can be

made (Figure E.10). As a final experiment into the effect of mseq in wide documents, Figure E.11

shows that as the number identical sibling nodes increases, query performance favors TwigStack

over Constraint Sequencing.

As in Section 9.2, we fix mseq to decrease by a constant factor of two and investigate the

parameters Sparent(x), s, and ψx. In order to simulate a wide XML document, we force the streams

Ti to decrease at a much slower rate than in Section 9.2. In addition, we increase the branching

factor b to 10 as this allows Constraint Sequencing to be accurately compared to TwigStack. For
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Figure 9.10: TS, vary stack size (low s) - Wide

the time being, we fix ψx to a constant value of two. This is the same value used in the previous

section, and it allows us to compare our results and draw valid conclusions. Later in this section

we investigate the ramifications to query performance of an increased ψx value. Figure 9.10 shows

the results of queries over a wide document with a small number of identical sibling nodes. Figures

E.12 and E.13 in Appendix E illustrate similar behavior. When compared to Figure 9.3, we notice

a slight bump in TwigStack performance for small query sizes regardless of the Sparent(x) behavior.

However, unlike the results for deep trees, TwigStack performance degrades more quickly when

performance does shift back in favor of Constraint Sequencing. This occurs for queries greater

than 10 in length. Figure 9.11 illustrates the same experiment but with an increase to the number

of identical sibling nodes. We observe the same behavior as displayed in the case for deep XML

documents; as the number of identical sibling nodes increases, query performance shifts in favor

of TwigStack. In Figure 9.11, we note that for queries longer than 33 nodes (items), Constraint

Sequencing outperforms TwigStack. The effect of Sparent(x) is reflected more for decreasing values or

a random sampling. In cases where the stack sizes are strictly increasing, performance of TwigStack

performs similarly on both deep and wide XML documents. If we allow s to increase further, we

observe an increased shift towards TwigStack (Figure E.15). By increasing the maximum query
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Figure 9.11: TS, vary stack size (increased s) - Wide

size and isolating our view to where performance shifts in favor of Constraint Sequencing, we see

in Figure 9.12 that this performance shift occurs at query length 92 (for random Sparent(x) values)

and query length 101 (for consistently decreasing stack sizes). Contrast this to the results shown

in Figure 9.5. In the case for deep trees, query performance remains in favor of TwigStack for

longer query sizes (up to a length of 155), and, in the case of a consistently decreasing stack size,

performance never favors Constraint Sequencing. This illustrates that TwigStack is influenced

more by the breadth of an XML document than by its depth. A continued increase in s is shown

in Figure E.16. Query performance is heavily skewed in favor of TwigStack. Although the blue

and red lines eventually intersect the diagonal divider, this does not occur until the query length

exceeds 400 items.

In Figure 9.13, we allow the branching factor b to start high then quickly diminish to a low

value. This models a tree that has a high degree of fan-out at the first level (after the root node)

then becomes a deep tree with little or no fan-out. In this case, for small values of Sparent(x),

TwigStack outperforms Constraint Sequencing until the query length exceeds 12. However, when

stack sizes increase, Constraint Sequencing is favored over TwigStack for queries larger in size than

six. A similar result is shown in Figure E.14 but with an increase in the number of identical sibling
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Figure 9.13: TS, vary stack size (b high/low) - Wide

nodes. As expected, performance is shifted in favor of TwigStack.

As mentioned earlier, the effect of the query shape (not the XML document shape) has a

profound impact on TwigStack. By increasing the value of ψx, we force TwigStack to operate with

a query that has a high degree of fan-out. Figure 9.14 shows the effect of increasing the breadth

of the query. Since Constraint Sequencing does not have a term that reflects query breadth, it

remains unaffected by this change. This is similar to the way that TwigStack is unaffected by

identical sibling nodes. The results shown are dramatic and clearly indicate a strong bias towards

Constraint Sequencing. By increasing the number of identical sibling nodes to three (Figure E.17)

and then to a random value between two and 10 (Figure E.18), we continue to observe a clear

preference for Constraint Sequencing over TwigStack. Figure 9.15 illustrates the case for queries

that have fan-out (at various levels of the query) between two and 10. While query performance

appears to track as a similar value for both TwigStack and Constraint Sequencing for extremely

low query sizes, Constraint Sequencing quickly overtakes TwigStack in terms of performance for

low, fixed values of s.

However, when the value of s is allowed to increase to a high, random range, there is a dramatic

shift back towards an increased performance of TwigStack over Constraint Sequencing. Figure 9.16
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Figure 9.15: TS, vary stack size (increased s, random ψx) - Wide

130



æ

æ

æ
æ
ææ
æææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ
ææææ

à

à

à
à
àà
ààà
àààà
àààà
àààà
àààà
àààà
àààà
àààà
àààà
àààà
àààà

ì

ì

ì
ì
ìì
ìììì
ìììì ì

ì ì ì ì

ò

ò

ò
ò
ò ò ò

0 500 000 1.0´106 1.5´106 2.0´106 2.5´106

TwigStack0

500 000

1.0´106

1.5´106

2.0´106

2.5´106

Constraint

Sequencing

Effect of Sparent HxL - Query Size q=@2,50D
mdoc=5000, mseq ¯ x2, b=10, s R@25,50D

Ti ¯ x1.05, Ψx R@1,5D, Sroot=3

ò Sparent HxL ­ x6

ì Sparent HxL ­ x2

à Sparent HxL R@10,2500D
æ Sparent HxL ¯ x2

Figure 9.16: TS, vary stack size (high random s, high ψx) - Wide

shows that, for queries less than a length of 39, TwigStack outperforms Constraint Sequencing. As

query size increases, TwigStack performance degrades while Constraint Sequencing performance

decreases slightly. This is because, with a query that exhibits a high degree of fan-out, TwigStack

must so more work in the inner summation across all ψx. For a deep tree, the relatively low fan-out

keeps this summation to a low number of iterations.

9.3.2 Conclusions

From the experimental results that show the relative performance of TwigStack and Constraint

Sequencing on wide trees, several important conclusions are drawn. First, in contrast to the cor-

responding case with deep trees, in the absence of identical sibling nodes, TwigStack outperforms

Constraint Sequencing for small query sizes with a low query fan-out (low ψx). Once the query

fan-out increases, Constraint Sequencing is the preferred method. Second, as was also shown for

deep trees, the presence of identical sibling nodes dramatically reduces the effectiveness of Con-

straint Sequencing. The query shape is important when using TwigStack, and a query with high

fan-out performs better using Constraint Sequencing unless the number of identical sibling nodes

are high. This leads us to conclude that, unlike the case for deep trees, the shape of the query
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Figure 9.17: TS, vary stack size in medium random range (low s) - Similar Depth/Breadth

plays an important role when considering wide XML documents.

9.4 Trees with Similar Depth and Breadth

The performance results presented above were achieved by running the same set of experiments on

XML documents that are very deep (Section 9.2) and very wide (Section 9.3). A subset of these

experiments was performed on XML documents that have similar depth and breadth. The majority

of the results are shown in Appendix F. As a whole, the results tend to slightly favor TwigStack

over Constraint Sequencing. Figure 9.17 illustrates performance of the two techniques using the

same experiment shown in Figures E.4 and E.13. While those figures showed a slight bias towards

Constraint Sequencing, the result of the same experiment performed on a tree with similar depth

and breadth gives a slight advantage to TwigStack for decreasing and relatively small stack sizes.

When the stack size is increased to a random range or strictly increases in size, performance shifts

back to Constraint Sequencing. Similar results, where TwigStack slightly outperforms Constraint

Sequencing when it previously did not, are displayed in the remaining figures in Appendix F. As

mentioned earlier in this chapter, the majority of available XML datasets have a much higher
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1 <inproceedings key="conf/icpr/Little00">
2 <author>James J. Little</author>
3 <title>Deforming Surface Features Lines in Intrinsic
4 Coordinates.</title>
5 <pages>1291-1294</pages>
6 <year>2000</year>
7 <booktitle>ICPR</booktitle>
8 <ee>http://computer.org/proceedings/icpr/0750/Volume%201/
9 07501291abs.htm</ee>

10 <url>db/conf/icpr/icpr2000-1.html#Little00</url>
11 </inproceedings>
12

13 <article key="tr/ibm/RJ1318">
14 <author>Raymond F. Boyce</author>
15 <author>Donald D. Chamberlin</author>
16 <title>Using a Structured English Query Language as a Data Definition
17 Facility.</title>
18 <journal>IBM Research Report</journal>
19 <volume>RJ1318</volume>
20 <month>December</month>
21 <year>1973</year>
22 <ee>db/labs/ibm/RJ1318.html</ee>
23 <cdrom>ibmTR/rj1318.pdf</cdrom>
24 </article>

Figure 9.18: Sample from DBLP XML Dataset

breadth than depth. For that reason, we place less emphasis on the results of the experiments on

XML documents that are equally deep and wide when making our conclusions.

9.5 DBPL XML Dataset

All of the previous experiments in this chapter were performed on a relatively small synthetic

dataset. To ensure that our equations scale correctly and our experiments continue to provide valid

results for a large XML document, we modeled the DBLP XML dataset in Mathematica [dbl09].

As of this writing, the DBLP dataset had 3,332,130 elements with an average depth of 2.90228

(maximum depth of 10). This corresponds to an extremely wide tree with relatively shallow depth.

A small sample of the XML document is shown in Figure 9.18. DBLP is a computer science

bibliography database, and two entries in the database are shown in the figure. We modeled this

dataset in Mathematica and performed the same experiments as described in Section 9.3 since this

is a wide XML document. The results of these experiments are contained in Appendix G, and the

results scale with the results shown and discussed in Section 9.3. When comparing these graphs

to those created using a smaller dataset, the difference is the scale of the number of operations

shown on the x- and y-axis. Figure G.13 shows the same experiment as that shown in Figure 9.12
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in Section 9.3. Note that the red line crosses the boundary between TwigStack and Constraint

Sequencing at almost the exact same length of q. The slight difference can be attributed to a slight

variation when compiling the random data used for the number of identical sibling nodes.

9.6 Overall Conclusions

A definitive answer of which technique, TwigStack or Constraint Sequencing, outperforms the other

in every situation is impossible to provide. Variables such as the number of intermediate results

(which influences the sizes of the stacks in TwigStack) and the number of identical sibling nodes

(which influences the performance of Constraint Sequencing) can change from one XML document

to another and are highly dependent on the overall design of the document. However, most XML

documents we surveyed represented a wide tree. We found one dataset, the Treebank project

from the University of Pennsylvania, that has an average depth of 7.87279 (maximum depth of 36)

and 2,437,666 elements [tre09], but this is still a tree with a high degree of fan-out. In addition,

such trees typically display a lack of identical sibling nodes, and this fact was also noted by Wang

and Meng [WM05]. The number of intermediate results produced by such trees tend to be large

[BKS02], and this results in larger stack sizes for TwigStack. For those reasons, we select Constraint

Sequencing as the technique that outperforms TwigStack for the majority of real-world cases. In

Chapter 10, we perform a similar set of experiments and analyses on Constraint Sequencing and

our algorithm that operates on XML data in a relational database, RDBQuery.
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Chapter 10

Comparative Analysis of Constraint

Sequencing and RDBQuery

In Chapter 9, we presented the results of a performance study between the two native XML query

techniques, TwigStack and Constraint Sequencing. From that data and from a time/operations

standpoint, we determined that Constraint Sequencing is the preferred technique for querying XML

documents in their native form. In this chapter, we present the results and observations of a similar

study, this time between Constraint Sequencing and our own technique, RDBQuery. We investigate

the effects of querying over a deep XML tree with small fan-out, a shallow tree (wide) with a high

degree of fan-out, and a tree the is in the middle of the two extremes.

10.1 Overview

Similar to the technique employed in Chapter 9, we used Mathematica to create small, synthetic

datasets. We also continue to follow the assumption that most real-world XML documents appear

as shallow trees with a high degree of fan-out. For our purposes, we label these trees as wide to

differentiate them from deep trees. Table 7.2 and Table 8.2 show the parameters for Constraint

Sequencing and RDBQuery, respectively. For the purposes of this comparison, we assume that

the indices, both primary and secondary, that are utilized by RDBQuery are in memory. This

allows us to compare RDBQuery on an equal basis with Constraint Sequencing. If the relational

database indices were not in memory, we would need to account for disk access. We leverage the
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information obtained from Chapter 7, Chapter 8, and Chapter 9 to further reduce the search space

for our experiments in this chapter. We observed that the presence of identical sibling nodes in

Constraint Sequencing significantly reduces the effectiveness of the technique, so this chapter omits

an in-depth analysis of the effects of the parameter s in Constraint Sequencing. For RDBQuery,

we noted that the number of distinct values d has little impact on query performance. Therefore,

it is unnecessary to perform detailed experiments that vary the number of distinct values. We fix

the number of distinct values to be 30% of the number of records in the majority of our test cases.

An increase in the number of distinct values will only improve the performance of RDBQuery.

10.2 Deep Tree, Low Breadth (Deep)

We first present the case where an XML document is deep and has a small breadth. In Constraint

Sequencing, we force the branching factor b to remain low. If we keep the number of total nodes

(length) of the document mdoc constant, this results in a deep tree. The methodology to force a

deep tree structure in RDBQuery is slightly more complex. Since the XML document is flattened

into a single relation (the Edge table), the internal structure of the document is lost. However, upon

close examination of the RDBQuery algorithm, we note that the selectivity of the two relational

queries helps determine the tree shape. With a deep tree, the two selections (lines 5 and 15 of

Algorithm 6.1) return more tuples as results. The selectivity of the descendant edge query (line 5)

is especially low, and a large number of tuples may be needed to satisfy the selection condition.

When we visualize a deep tree with limited breadth, this appears intuitive. Consider a node at

level two of an extremely deep tree. This node has more descendants than a similar node in a wide

tree. As was shown in Section 8.2.1, the performance of RDBQuery relies heavily on the selectivity

of the nodes in the query. If the selectivity is low, a larger number of results are returned and

performance degrades. In the opposite case, few results are returned and performance is improved.

While, in general, selectivity is lower for deep trees, we acknowledge the possibility that a particular

XML document may display high selectivity in this case. For that reason, we study the effects of

selectivity through the spectrum in both the deep and wide test cases. To conserve space, selectivity

is abbreviated as sel on our graphs. Unless otherwise noted, graphs that include random values

are the result of a mean of 250 executions. The terminology on the graphs is the same as that

used in Chapter 9. As a final note before we present our results, we use the term low selectivity to
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Figure 10.1: CS, vary sequence size (low selectivity) - Deep

describe a query that is not selective. In this case, a large number of tuples are returned from the

database. The percentage shown in the graphs next to the selectivity indicates how many records

are returned from the selection.

10.2.1 Experimental Results

Figure 10.1 illustrates the effect of various values for mseq in Constraint Sequencing when RDB-

Query is forced to have low selectivity. In keeping with our analyses for deep trees, the branching

factor b is constrained to a low range, and the number of identical sibling nodes s are also con-

strained. As the document that requires sequencing (mseq) decreases more rapidly, the performance

of Constraint Sequencing improves. For the two most aggressive mseq values, Constraint Sequenc-

ing outperforms RDBQuery until query length/size exceeds 18. As was the case in Chapter 9, we

select a representative behavior for mseq and run future experiments with this as a fixed parameter.

Similar results are shown in Figures H.1, H.2, and H.3, which illustrate the same experiment with

high selectivity and an increased number of identical sibling nodes. Of particular interest is the

case where s is extremely low (one at the most), and this is shown in Figure 10.2. When the num-

ber of identical sibling nodes is low, the effect of mseq can be ignored, and Constraint Sequencing
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Figure 10.2: CS, vary sequence size (low selectivity, decreased s) - Deep

outperforms RDBQuery for an increased query size (up to length 21). Due to the structure of a

deep tree, the possible number of identical sibling nodes is low. We limit most of our experiments

for deep trees to a low number of identical sibling nodes, but we do present some outlying cases

where a deep tree may have a large number of identical sibling nodes. In general, we conclude that

Constraint Sequencing outperforms RDBQuery for deep trees where mseq is decreasing quickly and

the selectivity encountered by RDBQuery is low. This is exactly the scenario expected from a

query over a deep XML document.

While the number of identical sibling nodes in a deep tree may be low, it is worthwhile to

investigate their impact on Constraint Sequencing to confirm our previous results in Chapters 7

and 9. Figure 10.3 shows results when the number of identical sibling nodes in constraint sequence

vary randomly in the range shown in the legend. For a low value of s, Constraint Sequencing

outperforms RDBQuery. With a slight increase in s, the opposite is true. Preference does shift

back to constraint sequence in the presence of one or two identical sibling nodes, but this does

not occur until the query length is greater than 50. Figure 10.4 illustrates the effect of increasing

selectivity in RDBQuery. When compared to Figure 10.3, we observe that the trend is the same,

but the overall results are shifted in favor of RDBQuery. The blue line, which completely favored
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Figure 10.3: CS, random identical sibling nodes (low selectivity) - Deep

Constraint Sequencing in Figure 10.3, now shifts to prefer RDBQuery for queries greater than 21 in

length. This is an expected result and displays the same trend as previously identified. Additional

results are shown in Figures H.4 and H.5 where the selectivity of RDBQuery is increased, and these

illustrate a continued shift in favor of RDBQuery as selectivity increases.

As mentioned at the opening of this chapter, the number of distinct values d encountered

by RDBQuery does not affect overall performance enough to warrant an in-depth study of this

parameter. To illustrate that claim, we present Figure 10.5. This experiment shows how query

performance changes in RDBQuery based on a changing percent of distinct tuples in the database.

Note that all seven trend lines overlap. This means that, regardless of the percentage of distinct

values, RDBQuery performs the same. Figures H.6 and H.7 display this same trend but in the

presence of more identical sibling nodes and an increased selectivity. Since we observe little if any

difference in performance given a wide range of distinct tuples, we return the number of distinct

values to a fixed 30% for the remainder of this section.

In Chapter 8, we observed that the number of descendant and child edges in an RDBQuery query

affect the performance of the technique. We also acknowledged that the selectivity encountered by

RDBQuery also affects query performance; a higher selectivity yields better performance and vice
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Figure 10.4: CS, random identical sibling nodes (increased low selectivity) - Deep
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Figure 10.5: RDBQuery, vary distinct values (low selectivity, low s) - Deep
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Figure 10.6: RDBQuery, query edge distribution (low selectivity) - Deep

versa. Our previous experiments in this chapter fixed the number of descendant and child edges to

be the same (φd = φc). We now present a series of experiments that vary the occurrence of these

edges while maintaining a constant selectivity. Figure 10.6 illustrates the change in RDBQuery

performance by altering the percentage of descendant and child edges, and Figure 10.7 shows the

same data but with some lines removed and in a closer view. As expected, Constraint Sequencing

outperforms RDBQuery in all cases.

By increasing the selectivity and running the same experiment, we note a shift of performance

to favor RDBQuery in Figure 10.8. While query size remains small (q < 15), performance of

RDBQuery is approximately equal to that of Constraint Sequencing. However, as query length

increases, performance shifts to favor RDBQuery. As query length increases, it becomes increasingly

closer to the depth of the original XML document (now represented in an Edge relation/table). This

means that there are continually fewer descendant nodes that could possibly satisfy the selection in

RDBQuery. If we were to continue this to the extreme, our query would be equal in length to the

depth of the document. As the algorithm progresses down the query tree, it must do less work when

executing the descendant selection. This allows each successive selection on the database to return

fewer results, and thus we observe the increased performance for RDBQuery, when compared with
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Figure 10.7: RDBQuery, query edge distribution (low selectivity) - Deep (Zoom)

Constraint Sequencing, as query length increases. Figures H.8 and H.9 in Appendix H demonstrate

this same trend but for increased selectivity and in the presence of more identical sibling nodes.

While the previous set of experiments show that selectivity and the distribution of descendant

and child edges factor into the performance of RDBQuery, they do not show the entire picture. For

completeness, we must now separate the selectivity of the descendant edges from that of the child

edges. Figures 10.9 and 10.10 show the effects of various descendant and child edge distributions.

In Figure 10.9, the selectivity of descendant edges is lower than that of child edges, and these

selectivity values are reversed in Figure 10.10. Our first observation is that the selectivity of the

descendant edges, sel(φd), impacts RDBQuery more than the selectivity of child edges, sel(φd).

Both graphs display a wedge shape, but that shape in Figure 10.9 widens to a greater extent than

the shape in Figure 10.10. In addition, we note that RDBQuery performance is better when the

number of descendant edges is low compared to the number of child edges. This effect is magnified

when selectivity for φd is lower than that for φc, and that is what the larger and smaller wedge slices

in the two figures tell us. Upon a closer examination of Figure 10.10, it should be noted that the

order of the five lines shown in the legend are flipped when compared to Figure 10.9. The topmost

line in Figure 10.10, which runs on top of the dividing line y = x, tells us that performance for
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Figure 10.8: RDBQuery, query edge distribution (increased low selectivity) - Deep

RDBQuery and Constraint Sequencing is similar with 100% child edges with the given selectivity

values. In Figure 10.9, we notice that the top line, which corresponds to 100% descendant edges,

is above the dividing line. This illustrates that, with a higher number of descendant edges and

a lower descendant selectivity, RDBQuery performs worse than Constraint Sequencing. In the

opposite case, where the number of child edges is 100% and they exhibit the same low selectivity,

RDBQuery performs as well as Constraint Sequencing but not better. Figures H.10, H.11, and

H.12 demonstrate the same trend with varying selectivity values for descendant and child edges.

10.2.2 Conclusions

From the experimental results that show the relative performance of Constraint Sequencing and

RDBQuery on deep trees, several important conclusions are drawn. First, in the absence of identical

sibling nodes, Constraint Sequencing outperforms RDBQuery for small query sizes when selectivity

is low. Like was the case in Chapter 9, an increase in identical sibling nodes shifts preference

from Constraint Sequencing to RDBQuery regardless of the selectivity. Second, selectivity is the

most important parameter when considering the performance of RDBQuery and comparing it to

competing techniques. In particular, the selectivity encountered by the descendant edge queries of
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Figure 10.9: RDBQuery, sel(φd) < sel(φc) (low selectivity) - Deep
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Figure 10.10: RDBQuery, sel(φd) > sel(φc) (low selectivity) - Deep
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RDBQuery plays the most important role in overall performance of the technique. As selectivity

increases, the performance of RDBQuery relative to Constraint Sequencing improves. While it is

impossible to group all deep XML trees into a single category, they typically have a low occurrence

of identical sibling nodes and reflect a low selectivity for small queries. For these reasons, Constraint

Sequencing is the preferred technique when running a small query over a deep XML document.

With results that mirror those in Chapter 9, we present similar experiments run on wide trees in

the next section.

10.3 Shallow Tree, High Breadth (Wide)

As a contrast to the experiments in the previous section, we now run similar experiments on a

wide tree. We use the term wide when referring to a tree with low depth (shallow) that has a high

degree of fan-out (high breadth). In Constraint Sequencing, we simulate a wide tree by increasing

the branching factor b. With RDBQuery, application of reasoning similar to that used in Section

10.2 tells us that a wide tree exhibits a higher potential selectivity for its nodes. When we consider

the shape of a wide tree, it is important to note that, for any given node, the number of descendant

nodes is typically less than the number of descendant nodes in a deep tree. This is a direct result

of the tree shape. However, to ensure completeness, we do investigate representative cases for

selectivity as it changes from high to low.

10.3.1 Experimental Results

In Figure 10.11, we investigate the effect of sequence length mseq in Constraint Sequencing. Note

that the branching factor b is increased from that used in Section 10.2 to reflect the increase fan-out

of the XML document. It is clear that RDBQuery outperforms Constraint Sequencing regardless

of sequence size. Figures H.13, H.14, H.15, and H.16 display a similar trend for various increases

and decreases in selectivity and identical sibling nodes. In general, the increase to the branching

factor b of Constraint Sequencing causes the technique to perform worse than RDBQuery even

when selectivity is low.

A more interesting case is shown in Figure 10.12. For this experiment, we force the branching

factor to be large for the first level under a root node and then decrease rapidly (within a single

level) to one. This results in an XML document where there is an explosion in breadth then the rest
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Figure 10.11: CS, vary sequence size (medium/high selectivity) - Wide

of the tree exhibits a deep structure with little increase in width. We note an immediate explosion

in the number of operations for Constraint Sequencing, then it quickly exhibits behavior shown for

deep trees. However, by the time this occurs (with a larger query size), RDBQuery substantially

outperforms Constraint Sequencing to the point where preference for sequencing cannot occur.

The same behavior is shown with a higher selectivity in Figure H.17. As we progress through our

analysis of wide trees, we continue to use the high/low terminology to refer to an XML document

that exhibits this type of structure. Our experimental results with mseq demonstrate the same

behavior observed for deep trees. As mseq decreases faster, Constraint Sequencing performance

improves, albeit to a lesser extent than seen in deep trees.

Due to the structure of a wide XML document, identical sibling nodes could occur with a

greater frequency and in a greater number than with a deep document. Figure 10.13 illustrates

the effect of identical sibling nodes on Constraint Sequencing when RDBQuery encounters low

selectivity. As expected, Constraint Sequencing performs better with lower s values, but at no

time does it outperform RDBQuery. Figures H.18, H.19, H.20, and H.21 in Appendix H exhibit a

similar behavior. Even when the branching factor is decreased (Figure H.21), RDBQuery continues

to outperform Constraint Sequencing on wider documents. When we allow b to start high then
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Figure 10.12: CS, vary sequence size (low selectivity, b high/low) - Wide

Figure 10.13: CS, random identical sibling nodes (low selectivity) - Wide
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Figure 10.14: CS, random identical sibling nodes (medium/high selectivity, b high/low) - Wide

quickly become low (equal to one), we observe the behavior shown in Figure 10.14. Note that by

the time the query size equals seven for a low s value, Constraint Sequencing performance improves

significantly. Similar behavior is shown in Figures H.22 and H.23. In Figure H.23, we observe that

performance will eventually switch to favor Constraint Sequencing over RDBQuery. This does not

happen until the query size exceeds 50. The overall trend in these graphs is that, as s increases,

Constraint Sequencing performance decreases. In addition, when it encounters an XML document

that exhibits a high fan-out followed by a deep structure, Constraint Sequencing performance does

improve but not at a rate high enough to overtake RDBQuery. As was the case for deep trees, the

number of distinct values d in RDBQuery has little impact on query performance. These graphs are

shown in Appendix H, Figures H.24, H.25, and H.26. The results show a preference for RDBQuery

in each case.

Since RDBQuery execution relies heavily on the number of descendant and child edges, we now

discuss the effect of their distribution to one other while maintaining a fixed selectivity. Figure

10.16 shows the effects of changing the distribution of φd and φc in RDBQuery by the amounts

shown in the legend. In contrast to Figure 10.6, we observe that query execution is better for

RDBQuery than Constraint Sequencing regardless of the edge distribution in the query. Figure
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Figure 10.15: RDBQuery, query edge distribution (low selectivity) - Wide

10.16 shows similar behavior and is comparable to Figure 10.8. Increasing the selectivity to a

medium/high range results in Figure 10.17. The shift towards the x-axis indicates that RDBQuery

performance increases (improves), while the absence of an upward turn in the lines indicate that

Constraint Sequencing continues to perform poorly in this situation.

When compared to similar experiments with deep trees, the distribution of descendant and child

nodes in a wide tree does not alter query performance to the same extent when selectivity is fixed.

Performance is skewed in favor of RDBQuery. Our next set of experiments separates selectivity for

the two types of edges, descendant and child.

Figure 10.18 illustrates the same experiment shown for deep trees in Figure 10.9. While the lines

trend together, they are pushed much closer to the x-axis and away from the central dividing line.

Even for low selectivity, RDBQuery outperforms Constraint Sequencing. The same trend is shown

in Figure H.27 but with a more narrow (lower fan-out) XML document. As mentioned earlier, an

interesting case presents itself when we have a tree that exhibits a high degree of fan-out at the first

level after the root node but then quickly reduces to a deep structure. In Figure 10.19. Notice the

initial jump from q = 2 to q = 6 for all lines. This illustrates the behavior of Constraint Sequencing

on an extremely wide document. After that point, performance quickly improves, and increases
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Figure 10.16: RDBQuery, query edge distribution (increased low selectivity) - Wide
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Figure 10.17: RDBQuery, query edge distribution (medium/high selectivity) - Wide
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Figure 10.18: RDBQuery, sel(φd) < sel(φc) (low selectivity) - Wide

to query size q result in less of an increase in the number of operations Constraint Sequencing

must perform. A similar trend is observed throughout the rest of these experiments. Figure 10.20

demonstrates the effects of an increase in selectivity of child edges (φc). The selectivities for φd and

φc are reversed in Figure H.28, and results are similar to those shown in Figure 10.18. A similar

plot for a lower value of b is shown in Figure H.29, and the case where b is high then immediately

low is shown in Figure 10.21. When b is allowed to be high/low as seen in Figure 10.21, we again

note the dramatic increase in Constraint Sequencing performance after q = 5. Observe that, as

selectivity increases, performance continues to shift towards the x-axis (in favor of RDBQuery over

Constraint Sequencing). Further examples of this trend are shown in Figures H.30, H.31, H.32,

and H.33 in Appendix H.

As a final test scenario, we allow b to take extreme opposite values. At the first level of the

document, the branching factor is such that 2/3 (66.6%) of the document nodes are a result of the

fan-out from the root node to the next level. After the second level, the document is strictly a deep

tree (b = 1). This gives us an extremely wide tree that, after its first level, behaves like a deep

tree. Figure 10.22 illustrates what happens when Constraint Sequencing and RDBQuery are run

over such a document. Note that, while Constraint Sequencing performance starts high (due to

151



æ
æ

æ
æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

à
à à

à
à
à à

à
à
à à

à
à
à à

à
à
à à

à
à
à à

à
à
à à

à
à
à à

à
à

ì

ì ì

ì ì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ìì

ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò

ô
ô

ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

0 50 000 100 000 150 000 200 000 250 000

Constraint

Sequencing
0

50 000

100 000

150 000

200 000

250 000

RDBQuery

Effect of Φd ,Φc and selectivityin RDBQuery - Query Size = @2,50D
mdoc=5000, mseq ¯ x2, b high�low, s R@0,1D

r=5000, d=1500, selHΦdL R@90,95D%, selHΦcL R@70,95D%

ô Φd = 0%, Φc = 100%

ò Φd = 25%, Φc = 75%

ì Φd = 50%, Φc = 50%

à Φd = 75%, Φc = 25%

æ Φd = 100%, Φc = 0%

Figure 10.19: RDBQuery, sel(φd) < sel(φc) (low selectivity, b high/low) - Wide
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Figure 10.20: RDBQuery, low sel(φd) < medium/high sel(φc) - Wide
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Figure 10.21: RDBQuery, low sel(φd) < medium/high sel(φc) (b high/low) - Wide

the high value of b at the first level of the XML document), it increases gradually from that point

on. Conversely, RDBQuery starts small and then increases in operations at a much faster rate

than Constraint Sequencing. As better seen in Figure 10.23, preference for Constraint Sequencing

occurs when query size exceeds a length of 12.

By itself, this is a substantial result and a potential limitation of RDBQuery. However, note

that the number of identical sibling nodes in Figures 10.22 and 10.23 is extremely low (randomly

generated between zero and one). If an XML document exhibits this type of explosive behavior at

the root node, there is the potential for a large number of identical sibling nodes to exist as a result.

In Figure 10.24, we increase the number of identical sibling nodes to a maximum of 10 and observe

the dramatic shift in Constraint Sequencing performance. The plot only shows results up through

q = 50, so to notice an increase in performance from RDBQuery to Constraint Sequencing, the

query size would need exceed this amount. Since the performance of RDBQuery remains unaffected

by identical sibling nodes, preference for RDBQuery over Constraint Sequencing persists.
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Figure 10.22: RDBQuery, low sel(φd) < low sel(φc) (b extreme high/low) - Wide
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Figure 10.24: RDBQuery, low sel(φd) < low sel(φc) (b extreme high/low, increased s) - Wide

10.3.2 Conclusions

From our experimental results that show the performance of Constraint Sequencing and RDBQuery

on wide trees, several important conclusions are made. First, the presence of identical sibling nodes

continues to be a stumbling block for Constraint Sequencing that can drastically affect query per-

formance. When s increases by a small amount, the ramifications for Constraint Sequencing are

substantial. Second, when querying across a wide XML document, RDBQuery outperforms Con-

straint Sequencing for at least smaller queries. Unless the tree exhibits an extreme branching

followed by an immediate switch to an increase in depth only, RDBQuery is preferred over Con-

straint Sequencing. If, on the other hand, a large query needs to be executed on this same type

of tree, Constraint Sequencing outperforms RDBQuery unless the XML document exhibits a slight

increase in the number of identical sibling nodes. In that case, RDBQuery, unaffected by identical

sibling nodes, performs the query with a smaller number of operations.
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10.4 Trees with Similar Depth and Breadth

The performance results presented above were achieved by running a similar set of experiments on

XML documents that are relatively deep (Section 10.2) and wide (Section 10.3). As we progressed

throughout those sections, some results, such as those with medium selectivity for RDBQuery,

partially model a tree that has a similar depth and breadth. To complete our analysis, we perform

a small subset of these same experiments on XML documents that have similar depth and breadth.

The majority of these results are shown in Appendix I. As a whole, these results favor RDBQuery

over Constraint Sequencing, and the experimental results fall between the results for deep trees

and those for wide trees. In other words, while query performance is skewed in favor of RDBQuery,

the results are closer to the dividing line y = x than those for wide trees.

10.5 DBLP XML Dataset

All of the previous experiments in this chapter were performed on a relatively small synthetic

dataset. As in Chapter 9, we utilized the same model of the DBLP dataset [dbl09] in Mathematica.

As shown in Section 9.5, Constraint Sequencing scales appropriately when performed on a larger

dataset. The same is asserted for RDBQuery. Appendix J contains the results of a limited subset

of the experiments found in Section 10.3. While some slight variation may exist in the data,

especially in the exact spot where lines cross the y = x dividing line, this can be attributed to

minute differences when compiling the random data used for the number of identical sibling nodes,

selectivity, and branching factor. The results illustrated throughout Appendix J show that our cost

model scales appropriately for larger datasets.

10.6 Overall Conclusions

As was the case in Section 9.6, a definitive answer on if Constraint Sequencing outperforms RD-

BQuery in all cases is impossible to answer. As we observed, neither technique is preferred in all

scenarios with all XML documents. The parameter that detracts the most from Constraint Se-

quencing’s performance, s, can vary widely depending on a specific XML document. Likewise, the

selectivity of tuples in the Edge table, used by RDBQuery, can be difficult to estimate. However,

we observed that RDBQuery outperforms Constraint Sequencing in most cases, and it performs
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substantially better than Constraint Sequencing on wide XML documents. When Constraint Se-

quencing is preferred, the margin by which it outperforms RDBQuery is small. This is shown by

the graphs in Section 10.2. Also, RDBQuery is shown to scale equal to or better than Constraint

Sequencing in most cases, the exception to this being when an XML document exhibits an extreme

shift from a high degree of fan-out to no fan-out whatsoever. If we permit the prevalence of wide

XML documents over deep XML documents in use as of this writing to influence our decision, RD-

BQuery is a better choice over Constraint Sequencing. However, to use this technique the structure

of the original XML document is lost when it is shred into the Edge table. The original document

can be reconstructed from the Edge table, but this requires additional processing not considered in

our analyses. Typically, when the XML document is shred, the original document is no longer up-

dated and otherwise maintained. We also encounter the necessary overhead of a relational database

management system. However, the clear dominance of RDBQuery over Constraint Sequencing in

the vast majority of test cases presented allows us to choose it as the technique that outperforms

Constraint Sequencing.

With our cost models and analyses complete, we present our conclusions and a framework for

selecting an optimal XML query technique in Chapter 11. At the end of that same chapter, we

discuss future work and open questions.

157



Chapter 11

Conclusions and Future Work

In this chapter, we summarize our observations and results from Chapters 7 through 10 as a

framework for cost-based query optimization. We also discuss areas of future work and opportunities

for further investigation.

11.1 Conclusions

The cost models we developed for TwigStack [BKS02], Constraint Sequencing [WM05], SS-Join

[SLFW05], and our own technique, RDBQuery, allowed us to create and execute an extensive

performance study across all parameters of each technique. In order to develop those models, we

unified the techniques with a previously absent common terminology. The results of our study are

visualized in Figure 11.1 as a decision framework graph. This framework allows us to arrive at

an optimal XML query technique (shown at the bottom of the figure) by making decisions about

features of the XML document, XML query, and/or shredded relation (in the case of non-native

techniques). In Figure 11.1, nodes (with the exception of the bottom row) represent aspects upon

which a decision is made. Directed lines leaving those nodes are labeled with an answer that either

leads to another decision or a query technique. The nodes shown at the bottom of the figure (with

no outgoing arcs) represent the four XML query techniques studied in this dissertation. As we

discuss the decision graph, we use the terms top and bottom to refer to the appropriate areas of the

graph when visualized in its current form (as shown). In addition, the term user refers to a human

user or an automated system based on the framework. We continue to use the terms wide and deep
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Figure 11.1: XML Cost-based Optimization Framework
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to describe trees/documents that have a high degree of fan-out and little fan-out, respectively. The

term similar is used to describe a structure that is similarly deep and broad. At the top of Figure

11.1, the user is presented with a choice of techniques. If they prefer or need a native technique

(TwigStack and Constraint Sequencing) or non-native technique (SS-Join and RDBQuery), they

proceed down the appropriate path. If they have no preference, the user proceeds down the center.

Each of these choices is discussed in their own section.

11.1.1 Non-Native Preference

If the user prefers a non-native technique, they are then asked if they will run ancestor/descendant

queries exclusively. If this is the case, then SS-Join is preferred over RDBQuery for wide/similar

document shapes. The justification for this is found in the analysis of RDB techniques found in

Chapter 8. If the user wishes to perform any other type of queries, such as a twig query, then

RDBQuery must be used since SS-Join does not support these types of queries. Then, as discussed

in Chapter 8, SS-Join is preferred over RDBQuery when the size of the ancestor and descendant

lists are small. This is reflected in by a wide or similar document shape. For deep document

structures, RDBQuery is preferred over SS-Join, regardless of the type of query performed.

11.1.2 Native Preference

The path to the right from the Style node illustrates the necessary process if the user prefers a native

query technique. As shown in Chapters 7 and 9, Constraint Sequencing outperforms TwigStack

in the absence of identical sibling nodes. Constraint Sequencing also is preferred if there exists

a very low amount of these sibling nodes. A hard number is difficult to specify, but the number

of identical sibling nodes should represent less than 1% of the total nodes in the document. If

more identical sibling nodes exist, then we must consider the shape of the document. For deep

and similar documents, TwigStack is the preferred method. In the case of wide documents, the

shape of the query is important in the determination of a preferred query method. For queries

that exhibit very low fan-out, TwigStack outperforms Constraint Sequencing. This is illustrated

by the experiments shown in Section 9.3. To be considered very low, the average fan-out of a query

should be less than three. In the case of a simple twig query, the fan-out averages less than two, so

TwigStack would be preferred. If the query fan-out increases, Constraint Sequencing outperforms
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TwigStack.

11.1.3 No User Preference

The center path is selected when the user presents no preference to query technique style (native

or non-native). The result of this decision is the selection of either RDBQuery or Constraint

Sequencing as the preferred query technique. The options along this path are supported by the

experiments shown in Chapter 10. As expected, if the number of identical sibling nodes are medium

or high, RDBQuery is preferred over Constraint Sequencing. The same rough guide of no more

than 1% of the total nodes as identical sibling nodes can be applied in this case. If there are

few or no identical sibling nodes, then we must examine the document shape. If the document

is wide or similar, RDBQuery is preferred. However, there is an important special case for when

the document exhibits an extreme high/low structure. As an example, if a document has an

extremely high fan-out after the root node but then scales back to no fan-out, the document would

be classified as extreme high/low. If this accurately describes the original document, then we must

examine the average query length. If it is short (less than 15 nodes in length), then RDBQuery

outperforms Constraint Sequencing. Conversely, long queries favor Constraint Sequencing. The

extreme high/low case could also be modeled as a special case of the wide/similar document shape,

but for clarity we allow it to have its own path. For a deep document, we need to know something

about the selectivity in the relational database. Recall from Section 10.2 that if selectivity is low,

RDBQuery returns larger results and performance shifts in favor of Constraint Sequencing. If

selectivity will be medium or high, then RDBQuery performs as well as Constraint Sequencing and

will outperform it as selectivity increases.

11.1.4 Contributions

The decision framework shown in Figure 11.1 serves as a visual representation of our unique contri-

butions in this dissertation. We began by performing a literature survey for applicable XML query

techniques. After the search, we classified the techniques according to their style of operation

and selected a representative technique from the two main categories, native and non-native, that

performed as well as or better other techniques in the area. All of the techniques we surveyed ex-

hibited different terminology and were not compared to other representative techniques from other
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areas. We provided a unifying terminology for comparing XML query techniques and developed a

mathematical cost model for each. In the process, we noted the limitations of the representative

relational database technique, SS-Join, and used this as motivation to create our own technique,

RDBQuery, that leverages some of the ideas in SS-Join and builds upon them.

We used our four cost models to conduct a performance study of each individual technique across

all of its salient parameters. During this process, we noted factors that significantly impact query

performance and used those to determine which technique from each area outperformed the other.

For the non-native techniques, we selected RDBQuery since it does not suffer from the query style

limitations that SS-Join has. We then employed a similar technique to compare the representative

native technique, Constraint Sequencing, to the representative non-native technique, RDBQuery.

Using all of our results, we created a framework for cost-based optimization and presented the

results as a framework that a user, human or machine, could employ. Our framework is based on

322 experiments created and executed in Mathematica, and 270 of those unique experiments are

included in this dissertation.

11.2 Future Work

An immediate area for future work is to implement RDBQuery and test the technique with real

data that has not been mathematically modeled. This would allow us to further verify the validity

of our experimental results. This not only requires a significant amount of coding to implement,

but decisions would need to be made regarding the relational database management system used

and how to include descendant/child edge information within the query. One possible solution

would use something similar to a graphical query designer found in most commercial relational

database packages to construct the query. The user could then specify a descendant or child edge

when creating the query.

We focus our efforts on query execution and the number of operations required to perform the

XML query. Another consideration is one of space requirements for each of the four techniques

presented here. In TwigStack, we would require space to hold the entire XML document, a similar

amount of space to hold the streams T that act as an index into the document for similar nodes,

a small amount of space to hold the query, and space for the stacks. The space necessary for the

stacks would depend on the number of results, both final and intermediate, returned by TwigStack.
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For a larger result set, more space would be required since the stacks would be larger. In Constraint

Sequencing, we require space for the XML document, a small amount of space for the query itself,

and space for an index that is used for identical sibling nodes. The space required for the sibling node

index could be small if the index was implemented using an efficient structure such as a B+-tree.

From our rough estimates, Constraint Sequencing appears to require less space than TwigStack,

and this is substantiated by the original authors of the work [WM05]. For the non-native techniques

SS-Join and RDBQuery, space for the relational database is required. This could be potentially

large (at least as large as the number of nodes in the document). Both techniques would also require

a small amount of space to hold the query. Since SS-Join does not make use of the RDB index,

it is not required for this technique. However, it may be difficult to locate a commercial RDBMS

package that allows indexing as an option to turn off. RDBQuery requires these indices and makes

frequent use of them. In a study similar to that presented in this dissertation, cost models for

space requirements could be formulated and a similar performance study completed. The results of

that study, combined with our own results, would provide a finer granularity of decision-making in

selecting the appropriate XML query technique. Once an appropriate space cost-model framework

is established, it could be used in conjunction with our results to create a tool that fully automates

XML query technique selection.

An additional area for future work considers the impact of database updates (modifications

to the original XML document). As the techniques exist in their current form, TwigStack and

Constraint Sequencing do not provide an efficient method for updating (relabeling) the XML doc-

ument. In both cases, the entire document would need to be relabeled if a sufficient amount of

new nodes were inserted. The two non-native techniques, SS-Join and RDBQuery, allow for an

efficient (O(log2(n))) relabeling technique [SLFW05] that need not relabel the entire Edge table.

One possible direction for future work would be to investigate if this relabeling technique could be

extended to native XML documents.
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Appendix A

TwigStack Graphs
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Figure A.1: TwigStack, stream size increasing by constant factors, low base case

Figure A.2: TwigStack, stream size increasing by constant factors, high base case
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Figure A.3: TwigStack, random stream sizes - single run

Figure A.4: TwigStack, small random stream sizes - 250 runs
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Figure A.5: TwigStack, random stream sizes (smaller query) - 250 runs

Figure A.6: TwigStack, stack size increasing by constant factors (Sparent(1) = 200)
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Figure A.7: TwigStack, stack size increasing by constant factors (Sparent(1) = 1)

Figure A.8: TwigStack, stack size increasing by constant factors (Sparent(1) = 1, medium query)
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Figure A.9: TwigStack, stack size increasing by constant factors (Sparent(1) = 1, larger query)

Figure A.10: TwigStack, random stack size up to 1000 - single run
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Figure A.11: TwigStack, stream size decreasing and stack size increasing (larger query)

Figure A.12: TwigStack, random stream and stack sizes - single run
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Figure A.13: TwigStack, random query fan-out - single run

Figure A.14: TwigStack, random stream sizes and query fan-out - single run
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Figure A.15: TwigStack, random query fan-out and stack sizes - single run

Figure A.16: TwigStack, random query fan-out and stack sizes (larger stacks) - 250 runs
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Appendix B

Constraint Sequencing Graphs
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Figure B.1: Constraint Sequencing, random branching factor - 250 runs

Figure B.2: Constraint Sequencing, identical sibling nodes increasing
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Figure B.3: Constraint Sequencing, identical sibling nodes increasing (smaller branching factor)

Figure B.4: Constraint Sequencing, identical sibling nodes increasing (1000 max) - single run
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Figure B.5: Constraint Sequencing, identical sibling nodes increasing (100 max) - single run

Figure B.6: Constraint Sequencing, random branching factor and constant identical sibling nodes
- single run
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Figure B.7: Constraint Sequencing, various branching factors and identical sibling nodes

Figure B.8: Constraint Sequencing, random branching factor and identical sibling nodes (larger
range) - single run
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Figure B.9: Constraint Sequencing, random branching factor and identical sibling nodes (larger
range) - 250 runs
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Appendix C

SS-Join Graphs
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Figure C.1: SS-Join, various descendant list sizes (larger range)

Figure C.2: SS-Join, aPos/dPos increasing (larger lists)
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Figure C.3: SS-Join, dPos increasing by various amounts, aPos increasing by fixed amount

Figure C.4: SS-Join, aPos/dPos increasing (different size lists)
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Figure C.5: SS-Join, random increases to aPos/dPos (large, identical ranges) - single run

Figure C.6: SS-Join, random increases to aPos/dPos (narrowing, identical ranges) - single run
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Figure C.7: SS-Join, random increases to aPos/dPos (one range fixed) - single run

Figure C.8: SS-Join, random increases to aPos/dPos (one range fixed small) - single run
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Figure C.9: SS-Join, skipping factor increasing (large lists)

Figure C.10: SS-Join, skipping factor increasing (aPos fixed at 32, small lists)
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Figure C.11: SS-Join, skipping factor increasing (aPos fixed at 50, small lists)

Figure C.12: SS-Join, skipping factor increasing (aPos fixed at 10, small lists)
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Appendix D

RDBQuery Graphs
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Figure D.1: RDBQuery, record size increasing (small record range)

Figure D.2: RDBQuery, record size increasing(no child edges)
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Figure D.3: RDBQuery, selectivity and descendant/child edges increasing (all values shown)

Figure D.4: RDBQuery, selectivity and descendant/child edges increasing(smaller query, all values
shown)
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Figure D.5: RDBQuery, selectivity and descendant/child edges increasing(smaller query, partial
values shown)

Figure D.6: RDBQuery, selectivity and descendant/child edges increasing (smaller query, min/max
values shown)
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Figure D.7: RDBQuery, selectivity increasing by constant factors (smaller query)

Figure D.8: RDBQuery, distinct values and selectivity increasing
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Figure D.9: RDBQuery, small range of distinct values and selectivity increasing

Figure D.10: RDBQuery, medium range of distinct values and selectivity increasing
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Appendix E

Native Comparison Graphs
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Figure E.3: TS, vary stack size in small random range (low s) - Deep

Figure E.4: TS, vary stack size in medium random range (low s) - Deep
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Figure E.5: TS, vary stack size in medium random range (random s) - Deep
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Figure E.6: TS, vary stack size in medium random range (large random s) - Deep
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Figure E.7: TS, vary stack size in small random range (low s, high ψx) - Deep
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Figure E.8: CS, vary sequence size (low random Sparent(x), random ψx) - Wide
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Figure E.9: CS, vary sequence size (decreasing Sparent(x)) - Wide
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Figure E.10: CS, vary sequence size (low s, high ψx) - Wide
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Figure E.11: CS, vary sequence size (low random Sparent(x), increased s) - Wide
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Figure E.12: TS, vary stack size in small random range (low s) - Wide
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Figure E.13: TS, vary stack size in medium random range (low s) - Wide
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Figure E.14: TS, vary stack size (b high/low, increased s) - Wide

Figure E.15: TS, vary stack size in medium random range (random s) - Wide
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Figure E.16: TS, vary stack size in medium random range (high random s) - Wide

209



Figure E.17: TS, vary stack size (increased s, high ψx) - Wide
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Figure E.18: TS, vary stack size (low random s, high ψx) - Wide
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Appendix F

Native Comparison Graphs (Similar

Depth and Breadth)
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Figure F.1: TS, vary stack size in small random range (low s) - Similar Depth/Breadth

Figure F.2: TS, vary stack size (low s) - Similar Depth/Breadth
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Figure F.3: TS, vary stack size (increased s) - Similar Depth/Breadth

Figure F.4: TS, vary stack size in medium random range (random s) - Similar Depth/Breadth

213



æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
ì

ì
ì

ò
ò
ò
ò

ò
ò

0 100 000 200 000 300 000 400 000 500 000
TwigStack0

100 000

200 000

300 000

400 000

500 000

Constraint

Sequencing

Effect of Sparent HxL - Query Size q=@2,50D
mdoc=5000, mseq ¯ x2, b=5, s=1

Ti ¯ x2, Ψx R@1,5D, Sroot=3

ò Sparent HxL ­ x6

ì Sparent HxL ­ x2

à Sparent HxL R@1,5D
æ Sparent HxL ¯ x2

Figure F.5: TS, vary stack size in small random range (low s, high ψx) - Similar Depth/Breadth

Figure F.6: TS, vary stack size (increased s, high ψx) - Similar Depth/Breadth
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Figure F.7: TS, vary stack size (low random s, high ψx) - Similar Depth/Breadth
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Appendix G

Native Comparison Graphs (DBLP

XML Dataset)
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Figure G.1: CS, vary sequence size (low random Sparent(x), low ψx) - DBLP
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Figure G.2: CS, vary sequence size (low random Sparent(x), high ψx) - DBLP
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Figure G.3: CS, vary sequence size (low random Sparent(x), random ψx) - DBLP
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Figure G.4: CS, vary sequence size (decreasing Sparent(x)) - DBLP
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Figure G.5: CS, vary sequence size (low s, low ψx) - DBLP
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Figure G.6: CS, vary sequence size (low s, high ψx) - DBLP
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Figure G.7: CS, vary sequence size (increased s) - DBLP
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Figure G.8: TS, vary stack size in small random range (low s) - DBLP
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Figure G.9: TS, vary stack size in medium random range (low s) - DBLP
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Figure G.10: TS, vary stack size (low s) - DBLP
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Figure G.12: TS, vary stack size in medium random range (random s) - DBLP
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Figure G.16: TS, vary stack size (increased s, high ψx) - DBLP
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Appendix H

CS/RDBQuery Comparison Graphs
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Figure H.1: CS, vary sequence size (low selectivity range) - Deep

Figure H.2: CS, vary sequence size (medium selectivity) - Deep
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Figure H.3: CS, vary sequence size (low selectivity, increased s) - Deep

Figure H.4: CS, random identical sibling nodes (medium/low selectivity) - Deep
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Figure H.5: CS, random identical sibling nodes (medium/high selectivity) - Deep
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Figure H.7: RDBQuery, vary distinct values (increased selectivity, low s) - Deep
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Figure H.9: RDBQuery, query edge distribution (high selectivity, high s) - Deep
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Figure H.10: RDBQuery, low sel(φd) < medium/high sel(φc) - Deep
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Figure H.11: RDBQuery, low sel(φd) < high sel(φc) - Deep
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Figure H.12: RDBQuery, medium/low sel(φd) < medium/high sel(φc) - Deep
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Figure H.13: CS, vary sequence size (medium selectivity) - Wide

Figure H.14: CS, vary sequence size (low selectivity) - Wide
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Figure H.15: CS, vary sequence size (medium selectivity, decreased s) - Wide

Figure H.16: CS, vary sequence size (low selectivity, increased s) - Wide
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Figure H.17: CS, vary sequence size (high selectivity, b high/low) - Wide

Figure H.18: CS, random identical sibling nodes (increased low selectivity) - Wide
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Figure H.19: CS, random identical sibling nodes (medium/low selectivity) - Wide

Figure H.20: CS, random identical sibling nodes (medium/high selectivity) - Wide
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Figure H.21: CS, random identical sibling nodes (medium/high selectivity, decreased b) - Wide

Figure H.22: CS, random identical sibling nodes (medium/low selectivity, b high/low) - Wide

241



Figure H.23: CS, random identical sibling nodes (low selectivity, b high/low) - Wide
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Figure H.24: RDBQuery, vary distinct values (low selectivity, low s) - Wide
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Figure H.25: RDBQuery, vary distinct values (low selectivity, high s) - Wide
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Figure H.26: RDBQuery, vary distinct values (decreased low selectivity, low s) - Wide

243



æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

à
à à

à
à
à à

à
à
à à

à
à
à à

à
à
à à

à
à
à à

à
à
à à

ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ì ì

ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ò
ò
ò ò

ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

0 50 000 100 000 150 000 200 000 250 000

Constraint

Sequencing
0

50 000

100 000

150 000

200 000

250 000

RDBQuery

Effect of Φd ,Φc and selectivityin RDBQuery - Query Size = @2,50D
mdoc=5000, mseq ¯ x2, b R@1,10D, s R@0,1D

r=5000, d=1500, selHΦdL R@90,95D%, selHΦcL R@70,95D%

ô Φd = 0%, Φc = 100%

ò Φd = 25%, Φc = 75%

ì Φd = 50%, Φc = 50%

à Φd = 75%, Φc = 25%

æ Φd = 100%, Φc = 0%

Figure H.27: RDBQuery, sel(φd) < sel(φc) (low selectivity, b decreased) - Wide
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Figure H.28: RDBQuery, sel(φd) > sel(φc) (low selectivity) - Wide
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Figure H.29: RDBQuery, low sel(φd) < medium/high sel(φc) (b decreased) - Wide
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Figure H.30: RDBQuery, low sel(φd) < high sel(φc) - Wide
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Figure H.31: RDBQuery, low sel(φd) < high sel(φc) (b decreased) - Wide
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Figure H.32: RDBQuery, low sel(φd) < high sel(φc) b high/low) - Wide
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Figure H.33: RDBQuery, high sel(φd) < high sel(φc) - Wide
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Appendix I

CS/RDBQuery Comparison Graphs

(Similar Depth and Breadth)
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Figure I.1: RDBQuery, sel(φd < sel(φc) (low selectivity) - Similar Depth/Breadth
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Figure I.2: RDBQuery, sel(φd > sel(φc) (low selectivity) - Similar Depth/Breadth
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Figure I.3: RDBQuery, low sel(φd) < medium/high sel(φc) - Similar Depth/Breadth
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Figure I.4: RDBQuery, low sel(φd) < high sel(φc) - Similar Depth/Breadth
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Figure I.5: RDBQuery, medium/low sel(φd) < medium/high sel(φc) - Similar Depth/Breadth
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Figure I.6: RDBQuery, high sel(φd) < high sel(φc) - Similar Depth/Breadth

251



Appendix J

CS/RDBQuery Comparison Graphs

(DBLP XML Dataset)
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Figure J.1: CS, vary sequence size (medium/high selectivity) - DBLP

Figure J.2: CS, vary sequence size (low selectivity, b high/low) - DBLP
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Figure J.3: CS, identical sibling nodes increasing (low selectivity) - DBLP

Figure J.4: CS, identical sibling nodes increasing (medium/high selectivity, b high/low) - DBLP
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Figure J.5: CS, identical sibling nodes increasing (low selectivity, b high/low) - DBLP
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Figure J.6: RDBQuery, vary distinct values (low selectivity) - DBLP
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Figure J.7: RDBQuery, query edge distribution (low selectivity) - DBLP
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Figure J.8: RDBQuery, query edge distribution (medium/high selectivity) - DBLP
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Figure J.9: RDBQuery, sel(φd) < sel(φc) (low selectivity) - DBLP
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Figure J.10: RDBQuery, sel(φd) < sel(φc) (low selectivity, decreased b) - DBLP
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Figure J.11: RDBQuery, sel(φd) < sel(φc) (low selectivity, b high/low) - DBLP
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Figure J.12: RDBQuery, low sel(φd) < medium/high sel(φc) (b high/low) - DBLP
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Figure J.13: RDBQuery, low sel(φd) < low sel(φc) (b extreme high/low) - DBLP
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Figure J.14: RDBQuery, low sel(φd) < low sel(φc) (b extreme high/low) - DBLP (Zoom)
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Figure J.15: RDBQuery, low sel(φd) < low sel(φc) (b extreme high/low, increased s) - DBLP
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