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Abstract

Innovative Approaches to Spectrum Selection, Sensing, and Sharing in

Cognitive Radio Networks

In a cognitive radio network (CRN), bands of a spectrum are shared by licensed (primary)

and unlicensed (secondary) users in that preferential order. It is generally recognized that

the spectral occupancy by primary users exhibit dynamical spatial and temporal properties.

In the open literature, there exist no accurate time-varying model representing the spectrum

occupancy that the wireless researchers could employ for evaluating new algorithms and

techniques designed for dynamic spectrum access (DSA). We use statistical characteristics

from actual radio frequency measurements, obtain first- and second-order parameters, and

define a statistical spectrum occupancy model based on a combination of several different

probability density functions (PDFs).

One of the fundamental issues in analyzing spectrum occupancy is to characterize it in

terms of probabilities and study probabilistic distributions over the spectrum. To reduce

computational complexity of the exact distribution of total number of free bands, we resort

to efficient approximation techniques. Furthermore, we characterize free bands into five

different types based on the occupancy of its adjacent bands. The probability distribution

of total number of each type of bands is therefore determined. Two corresponding algo-

rithms are effectively developed to compute the distributions, and our extensive simulation

results show the effectiveness of the proposed analytical model.

Design of an efficient spectrum sensing scheme is a challenging task, especially when false

alarms and misdetections are present. The status of the band is to be monitored over a num-

ber of consecutive time periods, with each time period being of a specific time interval. The

status of the sub-band at any time point is either free or busy. We proved that the status

of the band over time evolves randomly, following a Markov chain. The cognitive radio

assesses the band, whether or not it is free, and the assessment is prone to errors. The errors

are modeled probabilistically and the entire edifice is brought under a hidden Markov chain

model in predicting the true status of the band.
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After spectrum sensing, our research direction is on spectrum sharing using cooperative

communication. We discuss allocation strategies of unused bands among the cognitive

users. We introduce a cooperative N-person Game among the N cognitive users in a CRN

and then identify strategies that help achieve Nash equilibrium. When licensed users arrive

in any of those sub-bands involved in unlicensed user communication, the affected cogni-

tive users in those bands remove them out of the N-person game and assess their optional

strategies with the licensed users using the 2-person game approach for coexistence with

the licensed users. In the sequel of spectrum sharing, we present three novel priority-based

spectrum allocation techniques for enabling dynamic spectrum access (DSA) networks em-

ploying non-contiguous orthogonal frequency division multiplexing (NC-OFDM) trans-

mission.

The allocation of bandwidth to unlicensed users, without significantly increasing the inter-

ference on the existing licensed users, is a challenge for Ultra Wideband (UWB) networks.

We propose a novel Rake Optimization and Power Aware Scheduling (ROPAS) architec-

ture for UWB networks as multipath diversity in UWB communication encourages us to

use a Rake receiver.
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Chapter 1

Introduction

The generation of mobile communication started with the advent of Analog Mobile

Phone System back in the 1980’s. These first generation phones were based on the cellular

communication (using macro cells) and analog cellular technology. It took another decade

(around 1991) for the transition into the second generation which supports digital voice,

messaging and data services using macro, micro and pico cellular concepts. By 2001, the

third generation mobile devices hit the market with enhanced data communication services

and for the first time started supporting both narrowband and wideband multimedia ser-

vices.

With a rapid growth of wireless and mobile communication as well as wide acceptance

of the third generation mobile communication and beyond, integration and intercommuni-

cation of existing and future networks is not a far-sighted envision. In recent years, differ-

ent types of networks, like self-organizing ah hoc networks, wireless mesh networks, etc.

have rapidly evolved and exhibited much prospects in the wireless networking arena. The

ubiquitous, seamless access between second and third generation mobile communication,

broadband wireless access schemes, as well as inter-operation among the self organizing

networks encouraged the market to have a common terminal for different network entities.

To support universal access along with user satisfaction in terms of content, quality of ser-

vice (QoS), and cost, reconfigurable software radio (SR) [1]- [2], or its practical form,

software defined radio (SDR) terminals are indispensable. The need for additional band-

width for different wireless technologies has further increased the search for new spectrum
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Second Generation 
Phones: 1990-91

Third Generation 
Phones: 2001

Re-configurable 
Software Defined 

Radio

Advances in signal processing  and 
technology impacts size reduction of 

devices       

Figure 1.1: Advancement of technology and signal processing leading towards re-

configurable SDRs.

and SDR is expected to provide a reasonable solution without any need to search for addi-

tional spectrum. The gradual transition from the first generation cellular communication to

the advent of re-configurable terminals and base stations is depicted in Figure 1.1.

The central idea of implementing reconfigurable network and terminal equipments is

to make international roaming services easy between different radio access networking

standards, diversification of applications and provide flexibility in switching between ap-

propriate radio access schemes. This intercommunication between multitude of networking

standards leads to the so called heterogeneous networks.

Before discussing depth of research topics, a brief introduction about the evolution of

SR from SDR is presented. Digital signal processing in any or all of the flexible functional

blocks as shown in Figure 1.2 defines the characteristics of a radio. Some of the versions

of the radios are defined for better appreciation of the evolution of SR from SDR based on

Figure 1.2.

SDR: It is defined as a radio where the digitization is performed at the baseband stage,

downstream from the receive antenna. This digitization is performed after the wideband

filtering at the radio frequency (RF) section, low noise amplification and passband filtering

at the intermediate frequency (IF) stage and down conversion of the signal to baseband



4

���
�����	

�
�
���������

�����
���������

�
�
���������

�
�
���������

�����
���������

�����
���������

�

���������

�
�������������������
������� 

��������

�������

!��
�������

��������
����

���������

��!
�������

�
�
���������

�
�
���������

�
�
���������

������������������������

�"�!������ !�����
���������

��#
������

Figure 1.2: Evolution of Software Defined Radio.

frequency. The reverse operations are valid for the transmit digitization.

Digital radio: It is defined as a radio where digitization of signal is performed at any

functional block between the antenna and the input/output (I/O) device as shown in Fig-

ure 1.2. A digital radio is not necessarily an SDR, if the signal processing after the A/D

converter block is performed by a special purpose, application-specific integrated circuit

(ASIC).

SR: It is defined as a modified version of SDR where the digitization of signal moves

from the baseband processing section to the IF and RF sections. This transition is possi-

ble in future with the development of faster signal processors, memory chips as well as

advancement in signal processing technology.

Adaptive Intelligent Software Radio (AI-SR) [1]- [2]: It is defined as a radio which

is capable of all functionalities in a SR as well as can adapt to its operational environment

for enhanced spectral efficiency and improved spectrum management.

The technological evolution of AI-SR from SDR is illustrated in Figure 1.3. As is

evident, the transition from SDR to SR is possible with the advent of efficient signal pro-

cessing techniques in conjunction with adept faster memory chips and signal processors

technologies. This enables digitization of a radio to move from the baseband signal section

all the way to IF and RF sections, making SR as a reality. Intelligent network algorithms
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SDR CR SR+ + Faster
Signal processors

Figure 1.3: Technological evolution from SDR to AI-SR.

need to be plugged in for such possible transition from SR to AI-SR, which in turn will

result in a higher spectral efficiency in a heterogeneous network environment.

The following are the two aspects of software functionality that may be incorporated

into a radio:

• Software processing of the transmitted or received signal; and

• Software control which implies intelligent adaptation of radio parameters with re-

spect to its environment.

Software signal processing is performed by a SDR since their operating frequencies and

waveforms are controlled by using various software. Switching between modulations and

protocols simply requires running different code by a special architecture called Cognitive

Radio (CR) [3], [4]. Hence, a CR adds intelligence into an SDR. The term “intelligence”

(also called intellect) is described in Wikipedia as “an umbrella term used to describe a

property of the mind that encompasses many related abilities, such as the capacities to rea-

son, to plan, to solve problems, to think abstractly, to comprehend ideas, to use language,

and to learn. In some cases, intelligence may include traits such as creativity, personal-

ity, character, knowledge, or wisdom”. In our context, we do not include the traits while

referring to intelligent software control in a CR.
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1.1 Motivation

Traditional research work in the domain of cognitive radio focuses on designing effi-

cient and accurate spectrum sensing techniques as well as defining algorithms for better

spectrum sharing of licensed spectrum among the SUs. Currently, there does not exist

an accurate time-varying spectrum occupancy model for dynamic spectrum access (DSA)

that could be used by wireless researchers in evaluating new algorithms and techniques de-

signed. Chapter 2 primarily covers the representation of a spectrum occupancy model by

probabilistic distribution functions. To validate this model, a qualitative analysis is made

with respect to the real-time measurements obtained from the paging and television bands.

These measurements are recently taken while conducting experiments at the Worcester

Polytechnic Institute, MA. The innovative spectrum occupancy model accomplishes spec-

trum occupancy analysis, one of the important functions of CR as indicated in Figure 1.4.

A plethora of measurement data on spectrum occupancy is readily available while very

little has been undertaken to exploit the information retrieved from these measurements in

designing efficient spectrum sensing techniques. The probabilistic analysis carried out in

Chapter 3 provides valuable qualitative and quantitative information about the spectrum

occupancy. This information is useful in selecting an appropriate section of the spectrum

before proceeding with spectrum sensing techniques. This procedure is proposed a term

called spectrum selection in this dissertation. This is the second vital function of CR shown

in Figure 1.4.

The adaptive spectrum sensing as one of the CR function shown in Figure 1.4 implies

that the spectrum sensing is performed selectively using a-priori data information obtained

from a reliable source. Existing spectrum sensing techniques primarily focus on reducing

the persisting probability of mis-detection (PMD) and probability of false alarm (PFA).

PMD is defined as the probability of failure in detecting an occupied sub-band and PFA is

defined as the probability of detecting a section of a spectrum as occupied while is actu-

ally free. From the network layer perspective, a spectrum sensing technique should also be

capable of retrieving the appropriate spectrum within minimum time duration. The word

“appropriate” accommodates those sections of a spectrum which satisfies the number of

requesting applications and their associated QoS. This leads to a time and spectral effi-
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Figure 1.4: Various functionalities of a CR.

cient spectrum sensing. Existing research work assumes the prevalence of Markov chain in

spectrum occupancy by licensed primary users. The work presented in this dissertation is

essentially the first initiative in proving such an existence in Chapter 4. Real-time measure-

ments in the paging band have been used in the process of validation. Later in the chapter,

a time and spectral efficient sensing technique has been developed by using concepts from

the Hidden Markov models.

Once the spectrum is sensed and idle sub-bands detected, the final function of a CR

shown in Figure 1.4, is to allocate these sub-bands among the requesting unlicensed sec-

ondary users. This approach refers to spectrum sharing. The problem of spectrum alloca-

tion is dealt with in this dissertation in three different scenarios: (i) Cooperative communi-

cation is studied in CR networks while achieving maximum channel capacity using game

theoretic and Nash equilibrium strategies in Chapter 5, (ii) Scheduling of sub-bands using

a multiple access scheme namely, non-contiguous orthogonal frequency division multiple

access (NC-OFDMA) in Chapter 6, and (iii) Cross-layer architectural design with multi-

objective optimization of sub-band and power allocation in Chapter 7.

1.2 Organization of the Thesis

The rest of the thesis is organized into six chapters as follows:
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1.2.1 Chapter 2: A Framework for Statistical Wireless Spectrum Oc-

cupancy Modeling

In this chapter, a novel spectrum occupancy model is designed in order to accurately

generate both the temporal and frequency behavior of various wireless transmissions. Us-

ing statistical characteristics from actual radio frequency measurements, first- and second-

order parameters are obtained and employed in a statistical spectrum occupancy model

based on a combination of several different probability density functions (PDFs). In order

to assess the accuracy of the model, output characteristics of proposed spectrum occupancy

model are compared with actual radio frequency measurements.

1.2.2 Chapter 3: Probabilistic Approach to Spectrum Occupancy

In a cognitive radio network, sub-bands of a spectrum are shared by licensed (primary)

and unlicensed (secondary) users in that preferential order. It is generally recognized that

the spectral occupancy by primary users exhibit dynamic spatial and temporal properties

and hence it is a fundamental issue to characterize the spectrum occupancy in terms of

probability. With the sub-band free probabilities being available, an analytical model is

proposed for spectrum occupancy in a cognitive network. To reduce the computational

complexity of the actual distribution of total number of free sub-bands, we resort to efficient

approximation techniques. Furthermore, we characterize free sub-bands into five different

types, based on the occupancy of its adjacent sub-bands. The probability distribution of

total number of each type of sub-bands is then determined. Two corresponding algorithms

are effectively developed to compute different distributions and extensive simulation results

show usefulness of the proposed probabilistic approach.

1.2.3 Chapter 4: Hidden Markov Model in Spectrum Sensing

Design of an efficient spectrum sensing scheme is a challenging task, especially when

false alarms and mis-detections are present. The status of the sub-band is to be monitored

over a sequence of consecutive time periods to determine if at any time point it is either

free or busy. The status of the sub-band over time is proved to evolve randomly, following
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a Markov chain. The cognitive radio assesses the sub-band, whether or not it is free, and

the assessment is prone to errors. The errors are modeled probabilistically and the entire

edifice is brought under a hidden Markov chain model in predicting the actual sub-band oc-

cupancy. Efficiency of our prediction method in identifying the true states of the sub-band

is substantiated using simulations where Viterbi and Expectation Maximization algorithms

are carried our for reducing the computational complexity.

1.2.4 Chapter 5: Game Theoretic Approach in Spectrum Sharing

In this chapter, we make a unique endeavor in computing channel capacity enhance-

ment of licensed spectrum when the cognitive unlicensed users coexist with the licensed

users using cooperative communication. We illustrate the probabilistic variations of idle

durations, also called white spaces, and their dependence on the location of primary users.

Then, we focus on the central idea of increasing the channel capacity by utilizing the white

spaces for unlicensed users by allowing them to coexist within strict spectral power limits.

We discuss strategies for allocating white spaces among the cognitive secondary users and

seek to optimize the spectrum capacity. We introduce two cooperative N-person games

among the N cognitive users in a Cognitive Radio Network (CRN) and then identify strate-

gies that help achieve Nash equilibria. When licensed users arrive in any of those sub-bands

currently being used by unlincensed users, they need to remove them out of the N-person

game and assess their optional strategies with the licensed users using the 2-person game

approach for coexistence.

1.2.5 Chapter 6: Priority-based Spectrum Allocation in Cognitive Ra-

dio Networks Employing NC-OFDM Transmission

In this chapter, we present three novel priority-based spectrum allocation techniques

for enabling dynamic spectrum access (DSA) networks employing non-contiguous orthog-

onal frequency division multiplexing (NC-OFDM) transmission. The proposed techniques

employs the novel results obtained from the spectrum occupancy statistics, illustrated in

Chapter 2, in deciding the priorities for the spectrum allocations. Each sub-band in the tar-
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get operating spectrum is prioritized based on its bit error rate (BER) support and number

of unoccupied blocks. Our proposed techniques assign multiple blocks of these unoccu-

pied wireless spectrum to secondary users by prioritizing based on their BER and delay

requirements. Specifically, the proposed techniques assign blocks of spectrum possessing

adequate aggregate bandwidth sufficient for supporting intended wireless data service over

the communication link. Moreover, since several portions of the wireless spectrum may be

heavily attenuated due to frequency-selective fading resulting from multipath propagation,

communication links requiring high error robustness are assigned frequency bands located

further away from these attenuated regions of spectrum. Consequently, the proposed spec-

trum allocation techniques aim at accommodating communication links supporting several

different wireless services with dissimilar performance requirements.

1.2.6 Chapter 7: Cross-Layer Architecture for Joint Power and Link

Optimization

The allocation of bandwidth to unlicensed users, without significantly increasing the

interference on the existing licensed users, is a challenge for Ultra Wideband (UWB) net-

works. This chapter presents a novel Rake Optimization and Power Aware Scheduling

(ROPAS) architecture for UWB networks. Since UWB communication is rich in multi-

path effects, a Rake receiver is used for path diversity. We develope an optimized Rake

receiver by reducing the computation complexity in terms of the number of multiplications

and additions needed for the weight assigned to each finger of the Rake receiver. Our work

employs CR for dynamic channel allocation to requesting users while limiting the average

transmit power in each sub-band. A dynamic channel allocation is achieved by a CR-based

cross-layer design between the PHY and Medium Access Control (MAC) layers. Addition-

ally, the maximum number of parallel transmissions within a frame interval is formulated as

an optimization problem, based on distance between a transmitter-receiver pair, BER, and

the frequency of request by a particular application. Moreover, the optimization problem

improvises a differentiation technique by incorporating priority levels among requesting

users. This provides fairness and higher throughput among services with varying power

constraint and data rates required for a UWB network.
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1.2.7 Chapter 8: Conclusions and Future Work

This chapter summarizes the salient features and achievements of the proposed schemes

and algorithms and points out directions for future research.
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Chapter 2

A Framework for Statistical Wireless

Spectrum Occupancy Modeling

2.1 Introduction

With the advent of high bandwidth multimedia applications and the growing demand

for ubiquitous information network access for mobile wireless devices, enhancing the effi-

ciency of wireless spectrum utilization is essential for addressing the scarcity of available

transmission bandwidth.

Results from spectrum occupancy measurement studies show that wireless spectrum is

generally under-utilized in both the frequency and temporal domains [5]- [9]. Temporal and

spatial variations of the usage by primary users (PUs) and opportunistic spectrum sharing

Figure 2.1: Snapshot of spectrum utilization (700-800 MHz) over an 18 hour period in

Hoboken, New Jersey [4]. The shaded regions indicate primary user access while the white

spaces imply no primary user activity.
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is illustrated in Figure 2.1 which shows spectral usage of the 700-800 MHz bandwidth in

Hoboken, New Jersey over a period of 18 hours (10:00 pm till 4:00 pm of the next day). As

we can see from the figure, bands 705-709 MHz, 722-728 MHz, 746-758 MHz and 795-800

MHz are used spontaneously over the duration of the experiment. Sparse use of the bands

735 MHz, around 770 MHz and 782-790 MHz can be noticed during certain duration of

the experiment. A more interesting fact about the white spaces detected in bands 710-720

MHz, 742-746 MHz, 760-770 MHz and 778-782 MHz is that they are never utilized for

the entire duration of the experiment. The vital role of CR comes into play in the detection

of such white spaces and in the opportunistic allocation among requesting users in varying

time and space depicted by the colored rectangular time slots in Figure 2.1. This in turn,

increases the spectral efficiency and the channel capacity.

To alleviate the spectrum scarcity problem, Mitola [3] first presented the concept of a

CR, which could employ SDR technology to perform a wide variety of advanced commu-

nications and networking functions, including the sensing of unoccupied frequency sub-

bands (i.e., channels) for usage via secondary wireless access. This operation, known as

DSA, is designed to enhance the utilization of existing spectral resources.

The fundamental concept behind DSA [3], [4] is that the licensed and secondary users

(SUs) are allowed to coexist in the same frequency spectrum. The PUs maintain exclu-

sive rights to their licensed spectrum. The SUs are required to sense spectrum usage and

opportunistically utilize unoccupied bands while simultaneously respecting the rights of

the incumbent primary transmissions. To obtain an estimate about the spectrum utilization

by the PUs, spectrum occupancy measurement campaigns have been conducted [5]- [9].

However, the infrastructure and equipment needed to collect this data can be prohibitively

expensive and not accessible by the majority of the wireless research community.

Nevertheless, there is a need for an accurate time-varying spectrum occupancy model

to assess new DSA approaches and algorithms. As variations in the spectrum occupancy

is unique to specific frequency band, geographical location, and time periods, a method is

required that combines these characteristics into a comprehensive model. In [10], a unique

probabilistic analysis of the spectrum occupancy has been performed using both Poisson

and Poisson-normal approximations. The Markov chain and semi-Markov chain represen-

tation of spectrum occupancy by Gibson et al. [11] and Geirhofer et al. [12] possess serious



14

limitations for those bands with incessant occupancy by the PUs, e.g., the frequency hop-

ping sequences employed in the cellular frequency bands. Conversely, Poisson process

emulation of the spectrum utilization [13–15] can be regarded as a positive step for the

design of an accurate spectrum occupancy model. This idea can be further enhanced by

incorporating the following unique characteristics: (i) center frequency selection by each

primary user in its licensed band, and (ii) bandwidth occupied by primary users during each

of their transmission durations.

In this chapter, we propose a novel time-varying statistical model for spectrum oc-

cupancy that uses actual wireless frequency measurements. The fundamental difference

between our proposed model with respect to existing work is the realistic emulation of

PU’s occupancy in different sub-bands. To the best of our knowledge, there exists no other

technique that combines all these parameters into a single model. The attributes of our

proposed spectrum occupancy model are as follows:

• Utilization and idle periods are governed by two independent Poisson processes, an

approach similar to [13];

• Transmission power during an utilization period is emulated by a Gaussian distri-

bution with mean and standard deviation computed from real time measurements;

and

• An inference from the real-time measurements is that the PU selects a different center

frequency in each of its utilization period. A uniform distribution, governed by the

mean and standard deviation of the corresponding Gaussian distribution, is employed

to select the operating frequency during each utilization period.

The rest of this chapter is organized as follows: Section 2.2 presents collection of actual

data in the paging band. Section 2.3 discusses our proposed spectrum occupancy model.

Section 2.4 presents the idea of M/M/1 queuing model representation of the spectrum oc-

cupancy. Section 2.5 develops our proposed occupancy model and validates it using the

measurements obtained in Section 2.2. Finally, concluding remarks are made in Section

2.6.
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2.2 Real-time Data Measurements

To validate our proposed spectrum occupancy model, we have collected real-time data

from both the paging band in Worcester, MA, USA as well as actual transmissions gen-

erated by several Universal Software Radio Peripheral (USRP) transceivers within a con-

trolled laboratory environment in the industrial, scientific, and medical band (2.4 - 2.5

GHz). The details of both the conducted experiments are provided in the following two

subsections.

2.2.1 USRP Measurements

In the ISM band (2.4 - 2.5 GHz), the transmit power values are collected from two US-

RPs operating at a close proximity. The measurements have been performed at Wireless

Innovation Laboratory, Worcester Polytechnic Institute (WPI). The experimental setup con-

sisted of an Advanced Technical Materials 07-18-440-NF horn antenna with a frequency

range of 0.7 − 18 GHz, an Agilent CSA series N1996A spectrum analyzer (100 kHz - 3

GHz) with a low-noise amplifier, and a laptop installed with the SQUIRREL (Spectrum

Query Utility Interface for Real-time Radio Electromagnetics) software tool for facilitating

the collection of real-time data.

SQUIRREL is a software package developed at WPI by the Wireless Innovation Lab-

oratory that provides an efficient way of communicating with the spectrum analyzer via

a simple graphical user interface. The graphical user interface accepts details such as

the center frequency, the span around the center frequency and the resolution bandwidth.

SQUIRREL communicates with the spectrum analyzer using TCL (Tool Command Lan-

guage) over TCP/IP. After the “sweep” action is performed by the spectrum analyzer, the

data points are returned to the GUI in a comma spaced value format. In its current format,

the GUI and the server are written in JAVA and can be deployed on a variety of operating

systems and computers.

The experimental setup is used to collect the transmit power from the USRPs. We

employed two USRPs which generate two sine waves in the ISM band, which are assumed

to simulate the characteristics of the PU’s signals which appear in the licensed bands. The
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Figure 2.2: Measured power spectrum obtained in the paging band (928-968 MHz). The

measurement setup was located at Global Positioning System (GPS) latitude 42◦16
′
24.94

′′

N and longitude 71◦48
′
35.29

′′
W. During the measurement campaign, 500 scans or sweeps

were conducted between 3:31 - 4:30 PM with frequency resolution of 20 KHz.

center frequencies at which the sine waves are transmitted are 2.44 GHz and 2.46 GHz.

The ON and OFF times of the licensed user signal transmission are set as uniform random

variables.

2.2.2 Paging-band Measurements

In addition to using the data generated by the USRPs for validating our proposed model,

we have also collected real-time data in the paging band (928-948 MHz). The measurement

setup was located at the Global Positioning System latitude 42◦16
′
24.94

′′
N and longitude

71◦48
′
35.29

′′
W. During the measurement campaign, 500 scans or sweeps were conducted

between 3:31 - 4:30 PM over the entire paging band. The frequency resolution was set to

20 KHz while the duration for each time sweep is 1.68 seconds. The power distribution

over the entire paging band is shown in Figures 2.2 and 2.3. The received power spectrum

obtained from our real time measurements in the paging band is shown in Figure 2.2. The x-

axis represents the frequencies constituting the paging band, y-axis the time sweeps ranging

from 1 to 500, and z-axis the received power (in dBm) measured at every instant of time.

It is evident from Figure 2.2 that the noise floor is at around −110 dBm. Distinct primary

user paging signal is identified near frequencies 929.5 MHz till 929.95 MHz, 937.4 MHz
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Figure 2.3: Measured power spectrum obtained in the paging band (928-968 MHz). The

measurement setup was located at Global Positioning System (GPS) latitude 42◦16
′
24.94

′′

N and longitude 71◦48
′
35.29

′′
W. During the measurement campaign, 1500 scans or sweeps

were conducted between 3:31 - 7:30 PM with frequency resolution of 5 KHz.

till 938.5 MHz, and 946.2 MHz. The maximum received signal power over the entire

period of our experiment is recorded to be −45.6885 dBm. The minimum received signal

power is −130.6880 dBm. Similar power spectrum values are also obtained from the USRP

measurement set-up over 500 time sweeps. Further, for better statistical evaluation, a large

sample space of power measurements were collected over the paging band 928-968 MHz

for 1500 time sweeps and is shown in Figure 2.3.

2.3 Proposed Spectrum Occupancy Model

The spectrum occupancy by the PUs is known to possess dynamic temporal and spatial

characteristics. In this chapter, we develop a novel spectrum occupancy model based on the

real-time data from the measurement detailed in Section 2.2. In fact, the major contribution

of our chapter lies in validating our proposed spectrum occupancy model in predicting the

arrival rate of PUs in the operating spectrum. Our proposed model is significantly different

from the previously mentioned Markov chain modeling of spectrum occupancy. In Markov

chain modeling [11] - [12], the current state of spectrum occupancy is assumed to depend

on its previous state. In our research, no such assumption is considered. Moreover, in our
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paper, the assumption of Poisson distribution is on the arrival rates of PUs and the expo-

nential distribution of idle durations. The advantage of our proposition is the flexibility of

our approach over the Markov chain approach in such sections of the radio frequency spec-

trum where the property of Markov chain is not appropriate. The other advantage of our

proposed model over the Markov chain assumption is with respect to memory constraints.

Different sections of the spectrum may have varying transitional matrices and initial prob-

abilities, unless steady-state probabilities have been defined. These parameters, defining

the Markov chain, needs to be stored for efficient Markov chain estimation of spectrum

occupancy. Such memory constraints are not essential for our spectrum occupancy model

design.

2.3.1 Statistical Analysis of Spectrum Occupancy

Let the set of N sub-bands is represented by SB = 1, 2, · · · ,N. At this point, we assume

that each sub-band is licensed to one and only one PU. The utilization of the ith licensed

sub-band SBi by the ith PU is modeled as a Poisson process, with arrival rate λi, where i

= 1, 2, · · · ,N. The entity λi, i = 1, 2, · · · ,N is extracted from the real time measurements

of Section 2.2. A single duration of utilization of the ith sub-band by a PU is denoted by

tON(i). Similarly, an idle duration of the ith sub-band is denoted by tOFF(i). If the number

of utilization times for an SBi is k with arrival rate λi, then the probability of having k

utilization periods during the experiment conducted can be expressed as [16]:

f (k, λi) =
λk

i e
−λi

k!
, i = 1, 2, · · · ,N. (2.1)

Hence, the duration between two utilization periods, i.e., the inter-arrival rate of the ith

PU, i = 1, 2, · · · ,N, follows an exponential distribution. The probability density function

of tOFF(i) for the ith sub-band can be expressed as:

f (tOFF(i); λi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λie
−λitOFF(i), tOFF(i) ≥ 0

0, tOFF(i) < 0.

(2.2)
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Similarly, the probability density function of tON(i) for the ith sub-band can be expressed

as:

f (tON(i); λi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λie
−λitON(i), tON(i) ≥ 0

0, tON(i) < 0.

(2.3)

The central idea of exploiting the Poisson and exponential distributions is to track the

arrival rate of PUs for each sub-band, as well as their departure over the duration of the

simulation. This can further assist SUs to perform spectrum sensing only on the detected

ON times of the sub-bands and judiciously use the sub-bands during the OFF times. It is

intuitive that higher values of OFF time enhances the chances of SUs using those sub-bands

for longer duration of time. An additional feature has been incorporated in our simulation.

Each time a PU arrives (i.e., its ON time), it selects an operating frequency different from

the frequency in its previous ON time.

Assuming that the power distribution of a PU in its sub-band follows a Gaussian dis-

tribution, the peak at which a transmission is detected gives us its operating frequency.

Ideally, the operating frequency of a transmission in a sub-band is at the center of the band,

i.e., the mean operating frequency, with variance indicating the extent of the distribution.

The PDF of the operating frequency fi is expressed as [16]:

f ( fi) =
1√

2πσ2
i

e
− ( f−µi)2

2σ2
i . (2.4)

In real time, it has been observed that the operating frequency fi of an ith PU transmis-

sion deviates from its ideal frequency for most of the times, though it ranges between its

mean operating frequency µi and its variance σ2
i of its Gaussian distribution. Hence, in

our model, the entity fi for an ith PU transmission is chosen from a uniform distribution

governed by the values of µi and σ2
i . Theoretically a PU can assume a frequency that is

equally allowable within a band. Wireless spectrum measurements in the paging band in-

dicate that PU frequency allocations are usually discretized on the number of frequencies

allocated. Hence, the spectrum occupancy can be governed by an uniform distribution. The
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probability density function for the ith operating frequency fi can be expressed as [16]:

f ( fi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
√
σ2

i

, for µi −
√
σ2

i ≤ fi ≤ µi +

√
σ2

i

0, otherwise.

(2.5)

2.3.2 Proposed Spectrum Occupancy Model Implementation

The implementation of our spectrum occupancy model can be illustrated as follows.

The basic input to our model are the statistical parameters extracted from our experiments

conducted on the USRP measurement system. These parameters are namely, λi for the

inter-arrival rate of each PU occupancy, λ
′

i for the inter-arrival rate of the non-occupancy

of PUs, the mean µi and the variance σ2
i of the ith PU, i = 1, 2, · · · ,N. The output obtained

from our model are the transmission times tON(i) and tOFF(i), i = 1, 2, · · · ,N. Thus the inputs

and outputs of the algorithm can be described in the following two steps.

1. Input: Set of λ1, · · · , λN , set of λ
′

1
, · · · , λ′N , µ1, · · · , µN , and σ2

1
, · · · , σ2

N .

2. Output: tON(i), tOFF(i), i = 1, 2, · · · ,N.

Next, our model generates M (equal to 1000) PUs arriving into the spectrum, assuming

that each PU is licensed to a distinct sub-band, different from other (M − 1) PUs. This is

to replicate the 1000 frequencies considered in our real-time measurements as well as the

USRP measurements. We assume that each PU is licensed to a distinct sub-band, different

from any other PU. The counters C1 and C2 keeps track of the overall simulation (valida-

tion) time and tON(i), respectively. Also, the algorithm ensures that the model time does not

exceed the validation time (herein taken to be 250 units, similar to the last 250 time sweeps

under validation). Once the operating frequency fi is selected using Eq. (2.5), the ith PU

starts with its transmission bursts for a time duration tON(i), deduced from the exponential

distribution with mean λ
′

i as in Eq. (2.3), derived from the Poisson process of its OFF times.

The vector PUtransmit[freqi,C2] stores binary values with a “1” implying presence of a PU

and a “0” its absence as in line 12 for the duration tON(i). The vector PUtransmit[freqi,C2]

is assigned 1 to indicate occupancy of the ith sub-band with the transmission burst time

denoted by L. Finally, the counter C1 is increased to C1 + C2 taking into account its trans-

mission time. This is illustrated from Line 3 to Line 15. The “for” loop in Line 8 iterates
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for the ON time duration.

3. Generate 1000 PUs at time t arriving in their respective sub-bands

4. for i = 1 to M do

5. Initialize counters C1 and C2 to 0

6. while C1 ≤ 250 do

7. Select the operating frequency freqi using Eq. (2.5)

8. for tON(i) = 1 to L

9. if C1 + tON(i) < time then

10. C2 = C1+ tON(i)

11. ith PU activates tON(i), i ∈ set of arrived PUs

12. PUtransmit[freqi,C2] = 1

13. end if

14. end for

15. C1 = C1 + C2

Then, we define the idle times for each PU. This is critical as these slots of time are

viewed as white spaces for opportunistic sharing by the SUs. The entity tOFF(i) is derived

from Eq. (2.3) and Eq. (2.1) similar to that of tON(i). The variable tOFF(i) is the time duration

derived from the inter-arrival rate λi in Line 16. The variable tOFF(i) is the duration from

the end of ON time C1 till (C1 + tOFF). During the time duration C1 to tOFF(i), the vector

PUtransmit[freqi,C2] is assigned 0 to imply the idle time in the ith sub-band. During the time

duration C1 to tOFF(i), the vector PUtransmit[freqi,C2] is assigned 0 to imply the idle time

in the ith sub-band. The counter C1 is incremented by tOFF(i). This process is iterated until

the end of the validation time. The model thus generates the tON(i)’s and tOFF(i)’s during

the entire validation time for ith PU. At the end of this procedure, the spectrum occupancy

model generates the tON(i)’s and tOFF(i)’s for all users arrived during the validation time.

This is summarized by Lines 16 to 22. The “for” loop in line 17 iterates only for the OFF

time duration.

16. Generate tOFF(i) based on λi using Eq. (2.1) and exponential distribution using Eq.

(2.3)

17. for t2 = C1 to TOFF(i) do

18. PUtransmit[freqi, t2] = 0
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Figure 2.4: Queuing model representation of sub-band utilization by the BS.

19. C1 = C1 + tOFF(i)

20. end for

21. end while

22. end for

Hence, the model computes the tON(i) and tOFF(i) for each ith PU over the validation time of

250 units. The bandwidth utilization during a specific time unit over all 1000 frequencies

or by a specific frequency over 250 time units are now computed using the output from

our model. In the following section, we validate our model output with respect to the data

collected from the paging band as well as the ISM band using the USRP transceivers.

2.4 M/M/1 Queuing Model Representation of Spectrum

Occupancy

In an M/M/1 queuing model [17], the first M represents distribution of arrival processes,

the second M represents the service time of each of the queued processes and 1 represents

a single server. In this queuing model, arrival of processes are assumed to be Poisson

distributed and service times to be exponentially distributed. The processes are arranged in

a first-come-first-serve queue.

Utilization of a sub-band in the target spectrum by SUs can be modeled by an M/M/1

queue. The server in such a scenario is a centralized base station (BS), which maintains the
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queue of arriving SUs and allocates idle durations in a sub-band to waiting SUs. The arrival

of SUs into a queue is assumed to be Poisson distributed with arrival rate λ. The average

service time Ts is the time required to serve an average SU. Hence, the BS utilization is

Ub = λTs. Sub-band utilization by a PU and SUs in a sub-band is illustrated in Figure 2.4.

As evident from the figure, the BS remains idle during the transmission durations by PUs

in their corresponding sub-bands. Hence, Ub = 0 in the shaded sections of the sub-band in

Figure 2.4. The queuing time Tq is expressed as:

Tq = Ti +
Ts

(1 − Ub)
, (2.6)

where Ti is the average idle duration of the BS and is expressed as:

Ti =

∑N−1
j=0 e

( 1
λ jOFF

)

N
, (2.7)

where N is the number of BS idle durations over a sub-band. One BS service duration is

located in between two idle durations. The average service duration Tavg is expressed as:

Tavg =

∑M−1
j=0 e

( 1
λ jON

)

M
, (2.8)

where M is the number of BS busy durations. The number of SUs served during one busy

duration is given by:

NS U =
Tavg

Ts

,

=

∑M−1
j=0 e

( 1
λ jON

)

MTs

. (2.9)

The SUs wait in the queue behind the queued SUs. The waiting time depends on two

reasons: (i) number of queued SUs waiting before the newly arrived SU and (ii) service

time of the SU by the base station. The probability of the total time (waiting in the queue

and being served by the BS) spent by an SU in the system is expressed as [17]:

Prob(time in system ≤ t) = 1 − exp(− t

Tq

) (2.10)

On the other hand, it will be interesting to study the time spent by an SU waiting in the

queue. The probability of the waiting time by an SU in a queue is expressed as [17]:

Prob(wait time ≤ t) = 1 − Ubexp

(
− (1 − Ub)t

Tq

)
(2.11)
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2.4.1 Case Study Using Real Time Measurements

In this section, we show the usefulness of M/M/1 queuing model with respect to the real

time measurements detailed in Section 2.2. We have arbitrarily chosen frequency 929.56

MHz for the illustration. In the context of PU transmission time or the BS idle time, we

have used four distinct threshold values (µ + σ, µ + 3σ, µ + 6σ, and µ + 10σ) to obtain

four average ON time duration as 4.55, 3.65, 2.13, and 1.16, respectively. The arrival of

SUs into the queue is assumed to be a Poisson distribution with inter-arrival rate λ = 0.25.

The average service time for each SU is assumed to be 2 seconds in accordance with the

duration for each time sweep of 1.68 seconds.

We now compute the parameters described in the previous section for frequency 929.56

MHz with threshold set to µ+3σ. Using Eq. (2.6), the queuing time Tq = 10.1320 seconds.

The arrival rate of the PUs λON is 0.1440 while the arrival rate of idle durations λOFF is

0.1480. The average ON time duration Ti using Eq. (2.7) is 6.1320 seconds. Using Eq.

(2.8), the average busy duration Tavg for a BS is 5.2214 seconds. During a Tavg of 5.2214

seconds, two SUs can be served.

The probability distribution of the total time in the system is evaluated using Eq. (2.10)

and shown in Figure 2.5. The average ON time durations are varied using different thresh-

old values for PU signal power detection. Higher the threshold value, lesser is the average

ON time duration. As seen from Figure 2.5, with very high probability, an SU has to wait

for substantial amount of time in the system before it can leave the system. Additionally,

decreasing average ON time duration increases the chances of finding an SU, even with

small waiting times.

The probability distribution of only waiting time in the system is studied using Eq.

(2.11) and shown in Figure 2.6. In contrast to the distribution of total waiting time, SUs

are found with very high probability even with low waiting times. Therefore, service time

for each SU plays a vital role since its presence substantially decreases the probability as is

shown in Figure 2.5.



25

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (wait and service) in system (s)

P
ro

b
a

b
il
it
y

avg. idle duration = 1.16

avg. idle duration = 2.13

avg. idle duration = 3.65

avg. idle duration = 4.55
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The average service time for each SU is assumed to be 2 s and arrival rate of SUs into the

queue is assumed to be 0.25.
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2.5 Performance Evaluation

In this section, we validate our proposed spectrum occupancy model using the results

obtained from the real-time measurements as well as the data from the USRP measure-

ments.

A cross-validation approach is used to prove the efficacy of our proposed spectrum

occupancy model. The validation is performed for two different threshold values required

for signal detection namely, (µ + σ) and (µ + 3σ). In each time sweep, we observe that

the received signal power over all the 1000 frequencies follows a Gaussian distribution

with µ and σ, distinct from other time sweeps. This implies that the threshold is computed

for every time sweep. During our spectrum measurements in the paging band, we have

observed the band for 500 time sweeps. In such a scenario, we used the first 250 (half of

the total time sweeps) to train our model and last 250 sweeps to validate our model based

on the percentage of ON time (for time slice validation) and the percentage of bandwidth

occupation (for frequency slice validation). The number “250” may not be substantial

for statistical problems. Therefore, we have performed another extensive measurement

campaign to collect signal power over 1500 time sweeps. Then, we use the first 1000 time

sweeps to train our model and the previously collected 500 time sweeps to validate our

model.

As explained in Section 2.3, the ON and OFF time durations for a single primary user

are governed by two exponential random variables. In other words, the inter-arrival rate

of ON times defines the mean value of the exponential random variable that defines an

idle duration. Similarly, the inter-arrival rate of OFF times defines the mean value of the

exponential random variable that defines an ON duration. The inter-arrival rates of ON

and OFF times over the first 250 time sweeps are extracted from the real-time measure-

ments. These values serve as the input to our model. We have addressed occupancy in

time and frequency domains. In other words, the parameters of interest are temporal oc-

cupancy for fixed frequency (percentage ON time) and frequency occupancy for fixed time

(percentage bandwidth occupied). Two cases of validation arise with respect to the last

250 time sweeps: (i) time slice validation: considering each frequency of bandwidth 20

KHz, compare the ON time, in percentage, between the real-time and model output and (ii)
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Figure 2.7: Comparison of CCDF plot against percentage ON time between model output

and real-time measurements with threshold set to (µ +σ) and (µ + 3σ). CCDF plot against

percentage ON time over 250 time sweeps. The training of our model is performed on the

first 250 time sweeps.

frequency slice validation: considering each time sweep, compare the ON time, in percent-

age, between the real-time and model output. The following two sub-sections explain the

validated results in details.

2.5.1 Time Slice Validation

As explained earlier, we consider an individual frequency of 20 KHz bandwidth and

compute the percentage of ON time out of 250 time sweeps. Then we repeat the same pro-

cess over all 1000 frequencies. We use the complementary cumulative distribution function

(CCDF) metric to validate our model. In general, the CCDF metric indicates the number

of times a random variable is above a given threshold. Figures 2.7, 2.8, and 2.9 compare

the CCDF ON time given by our model with respect to that obtained from the real-time

frequency measurements and USRP data, respectively. In Figure 2.7, the CCDF ON time

decreases monotonically with increasing percentage of ON time. As shown in Figure 2.7,

majority of the frequencies have ON time below 2% resulting in CCDF of 0.23 with thresh-

old set to (µ + σ). With a threshold set to (µ + 3σ), the CCDF is 0.1 and 0.12 for real-time

and model output, respectively. Another interesting point is that the CCDF ON times for a

threshold set to (µ + 3σ) are lower than that for threshold set to (µ + σ). This implies that
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Figure 2.8: Comparison of CCDF plot against percentage ON time between model output

and real-time measurements with threshold set to (µ +σ) and (µ + 3σ). CCDF plot against

percentage ON time over 500 time sweeps. The training of our model is performed on the

first 1000 time sweeps.

the threshold plays a critical role in signal detection where a low threshold may detect even

some thermal noise as a PU signal. The model output is observed to closely follow the

results obtained from the real-time measurements. This proves the efficacy of our spectrum

occupancy model design. For better statistical evaluation, we have validated our model

output over a sample space of 1500 time sweeps. Here, we have trained our model using

the measurements from the first 1000 time sweeps. Then, we validated our model using the

measurements from the last 500 time sweeps. The CCDF plots for both the thresholds are

shown in Figure 2.8.

Similar CCDF plots are also obtained in Figure 2.9 using the data collected from our

USRP measurement set-up using two different threshold values. For the threshold set to

(µ + σ), a staircase plot is observed with step size of 20%. With the threshold set to (µ +

3σ), minimal signal power is detected above 2%. Comparing Figures 2.7, 2.8, and 2.9, it

can be concluded that with threshold set to (µ + σ), there is a high probability of getting

considerable received signal energy in the ISM band, even with increasing percentage ON

time when compared to real-time measurements in the paging band. On the contrary, there

is a sharp decrease in the probability of received signal energy in the ISM band when

threshold value is increased to (µ + 3σ). Therefore, the choice of the threshold value plays
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Figure 2.9: Comparison of CCDF plot against percentage ON time between model output

and USRP measurements with threshold set to (µ + σ) and (µ + 3σ).

a critical role in the ISM band as compared to the paging band.

As shown in Figure 2.9, the results from the real-time measurements does not converge

that much for threshold value set to (µ + σ), but matches quite well for (µ + 3σ). Our pro-

posed model will not suit well for spread spectrum type signals where modulation schemes

perform below noise floor. However, our model is useful for spectra used for television

broadcasting, FM, and wireless Local Area Networks (LAN).

2.5.2 Frequency Slice Validation

In frequency slice validation, we consider an individual time sweep and compute the

percentage of frequencies out of 1000 of them are ON at that sweep. This value provides us

with the percentage bandwidth occupied for that time sweep. Similarly, the same process

is carried over all the 250 time sweeps. The validation is performed for two different

threshold values required for signal detection. Figures 2.10 and 2.10 give the scatter plot of

percentage bandwidth occupied for both our model output and the real-time measurements.

To better estimate the efficacy of our model design, we use “line of best fit” (LBF). We have

used the curve fitting tool in MATLAB to generate the LBF in each case. The linear model

polynomial is used for the LBF and is mathematically expressed as:

f (x) = p1x + p2, (2.12)
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Figure 2.10: Percentage of bandwidth occupied over 250 time sweeps. The variation in

bandwidth occupancy is studied using threshold values (µ + σ). This comparison is per-

formed using the real-time measurements.
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Figure 2.11: Percentage of bandwidth occupied over 250 time sweeps. The variation in

bandwidth occupancy is studied using threshold values (µ + 3σ). This comparison is per-

formed using the real-time measurements.
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Figure 2.12: Variation in total bandwidth occupied over the period of our experiment con-

ducted for threshold values ranging from µ + σ to µ + 10σ with n varying between 1 and

10 with step size of 0.5.

where p1 and p2 are the coefficients with 95% confidence bounds. In Figure 2.10, the coef-

ficients for the real-time measurements are computed to be p1 = −0.00102 and p2 = 7.699.

Similarly, the coefficients for our model are p1 = −0.003197 and p2 = 6.654. For Figure

2.11, coefficients for the real-time measurements are p1 = −0.0005798 and p2 = 2.47 while

that for our model are p1 = −0.00006259 and p2 = 2.227. As noted from Figure 2.10, our

model output deviates from the real-time measurements when the threshold for signal de-

tection is set to (µ + σ). On the contrary, in Figure 2.11, the LBF for our model overlaps

considerably to the LBF obtained from the real-time measurements when the threshold is

set to (µ + 3σ). Figure 2.12 has a critical connotation in the context of signal detection.

In this figure, we study the variation in the percentage of bandwidth occupancy while in-

creasing the threshold for signal detection. Higher threshold values reduce the chance of

detecting thermal noise as PU’s signal. On the contrary, for higher threshold values, weak

signals are not detected. This may have a serious concern resulting in inadmissible inter-

ference on the PU. Therefore, at threshold vale set to (µ + 10σ), only strong primary user

signals are detected, thereby resulting in a very low percentage of bandwidth occupancy

over the entire paging band of 20 MHz. The bandwidth utilization decreases sharply with

an increase in the threshold from (µ + σ) to (µ + 2σ) in case of USRP measurements when

compared to the real-time measurements. The output from our proposed model follows
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both the results obtained from the real-time and the USRP measurements. Once again, the

efficiency of our model is justified.

As shown in Figure 2.12, higher threshold values decreases the proportion of activity

in the paging band. In other words, percentage ON time and percentage of bandwidth

occupied decreases with increasing value of ‘n’. Interference metric can be a deciding

parameter for an appropriate selection of ‘n’. For higher sensitivity of PUs to interference,

a smaller value of ‘n’ is advisable. For robust communications by PUs, higher values of

‘n’ are permissible. The sensed environment and equipment are also deciding factors in the

selection of an appropriate value of ‘n’.

2.6 Conclusion

We have proposed a novel spectrum occupancy model to accurately generate both the

temporal and frequency behavior of various wireless transmissions. Using statistical char-

acteristics from actual radio frequency measurements, the first and second-order parameters

are obtained and employed in a statistical spectrum occupancy model based on a combina-

tion of several different probability density functions (PDFs). The output characteristics of

the proposed spectrum occupancy model are compared with spectrum measurements ob-

tained from the real-time frequency measurements in the paging band (928-948 MHz) as

well as data collected from the USRP measurement set-up.
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Chapter 3

Probabilistic Approach to Spectrum

Occupancy

3.1 Introduction

Spectral occupancy in the 446 MHz - 740 MHz bandwidth licensed to different tele-

vision broadcasting stations in Cincinnati, OH, USA are depicted in Figure 3.1. The ab-

breviations in Figure 3.1 stand for different television broadcasting stations. For example,

the frequency band 446 - 452 MHz is designated to The Cincinnati Post (WCPO-TV). The

spectrum utilization of the primary users is not uniform and provides different levels of

opportunity to the SUs. Certain portions of the spectrum are found to be highly utilized

(e.g., ≥ 75%) by PUs, while some other sections of the spectrum are scarcely used (≤ 5%)

or unused for a long period of time. For example, the band 446 MHz - 452 MHz is used by

the television stations for 24 hours a day, except for a certain duration of time. In contrast,

the band 506 MHz - 512 MHz has a request pending from “We’re Block Communications

Queen City (WBQC)”, which offers a high potential for the SUs.

The occupancy of sub-bands exhibits dynamic spatial and temporal property due to ran-

domness of access by the PUs. For example, the occupancy in a single sub-band at any time

instant can be determined by SUs in a cooperative manner [20] - [22] as opposed to being

determined individually by each user [23] - [26]. However, the instantaneous statistics of

sub-band occupancy in the entire spectrum over time is very difficult to determine due to
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Figure 3.1: Spectrum utilization (446-740 MHz) by television broadcasting in Cincinnati,

Ohio, USA

its time complexity. An instantaneous resource map is only available after the CRN has the

knowledge of the utilization of every sub-band in the entire spectrum. For this purpose, the

CRN has to instantly monitor and collect the spectrum occupancy data for all sub-bands

all the time. Additionally, larger is the bandwidth monitored or scanned, higher will be

the energy consumption for the SUs. McHenry et al. [5], [6] have monitored the spectrum

occupancy for different sub-bands at Chicago as well as at Vienna, Virginia. The results

show that the utilization of a sub-band can be small, moderate, or large, depending on the

traffic load at a given time. However, the instantaneous resource maps in the entire spec-

trum are still not available due to complexity of monitoring all the sub-bands over time.

Hence, instead of monitoring or sensing the entire spectrum, it is advisable to exploit the

historical data [9] to select a set of preferable sub-bands for further sensing.

Instead of a direct map of occupancy, we analyze the sub-band occupancy in terms of

the probability of capturing the dynamic spatial and temporal property. The probability of

each sub-band being free, can be determined individually, without simultaneously moni-

toring all other sub-bands, thereby significantly reducing the complexity. In particular, the

following two aspects are evaluated to reflect the sub-band availability for SUs:

• Total number of free sub-bands (Nf ree): At any given time instant, let Nf ree be the

total number of sub-bands that are not used by the PUs. The entity Nf ree indicates

how many SUs can simultaneously access the network. Nf ree also represents the

probability that a SU can transmit packets, given the total number of SUs. Finally,

the average and variance of Nf ree indicates spectrum utilization by PUs over a period

of time.
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• Occupancy of a free sub-band’s neighborhood: Given a free sub-band, the infor-

mation about adjacent sub-bands’ occupancy is critical in mitigating interference to

its adjacent PUs. If two neighboring sub-bands, i.e., (i − 1)st and (i + 1)st sub-bands

of an ith free sub-band, are occupied by PUs, the transmission power from the i-th

sub-band interferes with both its adjacent neighbors. Hence, to reduce inadmissible

interference, the transmission power in the i-th sub-band has to be restricted. If two

networks have the same number of free sub-bands, the network with higher number

of three contiguous free sub-bands can support a larger number of transmissions with

high power if we ignore other factors that affect the transmission power.

By taking advantage of the probability of a sub-band being free, we provide a statistical

estimation of Nf ree and of a free sub-band based on the occupancy of its immediate neigh-

bors. The probability distribution of Nf ree allows selection of preferable sections of the

spectrum for further sensing so that spectrum sensing is performed accordingly on those

selective sub-bands with high probabilities of being free. The importance of our research

is further emphasized by Wellens et al. [9], which stated that if the corresponding statis-

tical analysis is available, the adaptive spectrum sensing could improve the probability of

sensing by 70% over random spectrum sensing. In addition, given a free sub-band, knowl-

edge of occupancy of the adjacent sub-bands can enable efficient power management [25]

among requesting SUs. Thus, the allowable transmission power on a free sub-band can be

adjusted based on the occupancy of its adjacent sub-bands. Furthermore, the prioritized

allocation of sub-bands to SUs [27], [28] can be implemented in a way such that a high

priority SU is allocated a sub-band with higher transmission power when compared to a

low priority SU.

The traditional approach to estimate probability distribution of Nf ree is computationally

complex. Therefore, we use approximation theory to compute the distribution of Nf ree by

considering Nf ree as a sum of independent but not identically distributed Bernoulli random

variables. The distribution of Nf ree is computed by using Poisson and normal approxima-

tions. In order to analyze the occupancy of the neighborhood of free sub-bands, we define

five types of free sub-band (i.e., Type I − V sub-band) in terms of the occupancy of its two

adjacent sub-bands (having zero, one, or two free neighbors). To the best of our knowl-
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edge, this is the first work on probabilistic analysis of spectrum occupancy [10]. The main

contributions of this chapter are:

• Given the probability of a sub-band being free, we derive the probability distribution

of Nf ree in any spectrum range.

• We derive the probability distribution of the total number of free bands of a specific

type (i.e., Type I−V sub-band). A probabilistic recurrence relationship is established

to calculate probability distribution of the total number of these free bands types.

• The accuracy and efficiency of the proposed analytical models are verified by our

simulation results.

The rest of this chapter is organized as follows. Section 3.2 discusses the related work.

Section 3.3 illustrates the network model and formulates the problem. In Section 3.4,

we present the analytical model for probability distribution of Nf ree. In Section 3.5, we

characterize a free sub-band based on the occupancy of contiguous sub-bands. Section 3.6

discusses the implementation of algorithms and evaluates the accuracy and efficiency of

our analytical models. Section 3.7 concludes the chapter.

3.2 Related Work

In a CRN, study of spectrum occupancy involves three critical aspects: spectrum mea-

surement, spectrum sensing, and sub-band allocation. The first two aspects, in turn, facili-

tates the sub-band allocation for SUs.

The current research efforts mainly focus on spectrum sensing ( [20] - [22], [27],

and [29]) and sub-band allocation ( [23] - [26] and [28]). For example, Ganesan et al. [21]

proposed a cooperative spectrum sensing approach in a two-user cognitive network. This

approach has been further improved for multi-user cognitive networks [22], enhancing the

detection capability of cognitive radio users by exploiting the spatial diversity. Ganesan

et al. [29] then discussed a spectrum sensing technique for a base station-controlled cen-

tralized cognitive network. It allows some cognitive users to act as relays for occupancy

sensing of sub-bands while others transmit data in order to reduce average detection time.
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For efficient spectrum sensing, Tu et al. [27] exploit physical layer attributes of PU trans-

missions like existence of cyclic prefix or fundamental symbol rate of signals.

Allocation of free sub-bands involves many issues such as routing, traffic, and power

constraints. For example, based on spectrum stability, Deng et al. [24] present a method

of selecting a set of sub-bands for a pre-determined path between a source and a desti-

nation. Demestichas et al. [25] describe a joint allocation of spectrum and radio access

technologies using a learning and adaptation approach. The joint allocation models user

requirements like traffic intensity, mobility characteristics, and quality of service guaran-

tees. Wang et al. [26] discussed a graph theoretic approach for joint route and spectrum

selection. A time schedule improves the channel usage to ensure quality of service guar-

antees among the real-time applications. Chu et al. [28] jointly optimize the power, time

slots, and sub-carriers among the SUs in Orthogonal Frequency Division Multiple Access

(OFDMA) cognitive radio systems.

Spectrum measurement is critical to assess spectrum occupancy in the network. McHenry

et al. [5], [6] have experimentally monitored spectrum occupancy for different sub-bands at

multiple locations. They deploy a high dynamic range spectrum measurement system for

spectrum monitoring ranging from hours to days. Sanders et al. [7] use the Radio Spectrum

Measurement System to collect observations periodically on sub-bands in the 108 MHz to

10 GHz spectrum providing a vast trove of occupancy data. Roberson et al. [8] use passive

monitoring over the range of frequencies (30 MHz to 3 GHz) in order to categorize the de-

gree of utilization of the sub-bands into four different classes: (i) sub-bands seldom used,

(ii) sub-bands used during specific intervals of time, (iii) sub-bands infrequently used, and

(iv) sub-bands heavily used.

In contrast to these spectrum measurement approaches, our target is to perform proba-

bilistic analysis of sub-band occupancy. Luo et al. [23] assume an independent and identi-

cally distributed (i.i.d) model for the spectrum occupancy. This means that the occupancy

of sub-bands are statistically independent with constant probability of occupancy over the

entire spectrum. With this model, they developed some search strategies for the detection

of a free sub-band based on an average search time. However, this model using a constant

probability of occupancy does not reflect practical temporal and spatial variations in the

spectrum. In our model, we keep independence assumption while occupancy probabilities
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need not be constant for every sub-band. This model can be used to develop a searching

strategy for free sub-bands in a practical way. In addition, the model and the attendant

analysis can be utilized to define protocols for adaptive spectrum sensing [9], i.e., selecting

preferable sections of the spectrum for further sensing and allocation decisions.

3.3 System Model and Problem Formulation

In the following sub-sections, we describe the sub-band free probability model and

discuss its computational complexity. We pursue a normal approximation and scrutinize

the resultant approximation error.

3.3.1 Sub-band Free Probability Model

A cognitive radio divides an operational radio frequency spectrum into N non-overlapping

sub-bands. The set of sub-bands is denoted by Sub = {1, 2, . . . ,N} and we introduce a

generic term N-spectrum for such a collection of sub-bands. In particular, the Federal

Communications Commission (FCC) is currently considering 54− 72 MHz, 76− 88 MHz,

174 − 216 MHz, and 470 − 806 MHz spectra [30] for prospective spectrum sharing among

the cognitive radio users. As a television transmission requires a bandwidth of 6 MHz, the

above specified spectra effectively give a total of 68 sub-bands. Consequently, a typical

value of N can be less than or equal to 68. The spectral occupancy of N-spectrum exhibits

temporal and spatial characteristics. This means that if At ⊂ Sub is the subset of sub-bands

utilized at time instant t, the composition of At varies from one time instant to another. The

term ‘time instant’ in the context of cognitive radio can also mean a specific duration of

time. For example, Figure 3.2 shows the occupancy of N sub-bands at a given time t.

Let {x1, x2, · · · , xN} be the set of N random variables, where xi = 0 if ith sub-band is

occupied by a primary user and xi = 1 if it is free, i = 1, 2, · · · ,N. For example, the fourth

sub-band in Figure 3.2 is occupied and its status is expressed as x4 = 0. Similarly, the

status of the (i + 5)th sub-band in Figure 3.2 is depicted as x(i+5) = 1. The occupancy of

the ith sub-band at any given time instant is characterized by the probability pi of it being

free, and hereafter referred to as the sub-band free probability. Note that for a period, pi =
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Table 3.1: Notation

N Number of sub-bands in operating spectrum

S ub Set of sub-bands

xi Binary random variable to indicate occupancy of ith sub-band

pi ith sub-band free probability

At Subset of sub-bands occupied at time instant t

A Subset of free sub-bands in Sub

N f ree Total number of free sub-bands

Pr(N f ree = k) Exact probability of having k free sub-bands

ε(k) Approximation error

ε Overall approximation error

X Any discrete random variable

SX Essential support of X

θ Decision threshold of SX

PrNormal(N f ree = k) Probability of N f ree = k using normal approximation

N f ree Mean of the normal approximation

CN Variance of the normal approximation

Pth1 Threshold for segregating sub-bands with small pi’s

Pth2 Threshold for segregating sub-bands with large pi’s

Subsmall Set of sub-bands with 0 < pi ≤ Pth1

m Size of Subsmall

N f reesmall
Number of free sub-bands in Subsmall

Submod Set of sub-bands with Pth1 < pi < Pth2

n Size of Submod

N f reemod
Number of free sub-bands in Submod

Sublarge Set of sub-bands with pi ≥ Pth2

N f reelarge
Number of free sub-bands in Sublarge

λs Mean value of Poisson approximation of N f reesmall

Z Random variable with Poisson distribution

Xi ith Bernoulli random variable with pi

S Sum of all Xi

λl Mean value of Poisson approximation of N f reelarge

PrPoi−Normal(N f ree = k) Poisson-normal approximated probability of N f ree = k

Xi(N) Random variable for total number of Type i sub-bands
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i N1

Free sub-band
Sub-band with a 

primary user

x4 = 0 x(i+5) = 1

Sub = {1, 2, …, N}

Figure 3.2: Spectrum occupancy of N sub-bands by primary users at time instant t

Pr(xi = 1), which can be determined empirically by observing each sub-band in a spectrum

(for example as in [5] - [6] and [7] - [8]) at the same time instant. In the entire spectrum,

the sub-band occupancy is statistically independent, i.e., the arrival of a primary user in

one sub-band does not depend on the arrival of another primary user in any other sub-band

at the same time instant. Therefore, xi’s are modeled as independent Bernoulli random

variables. However, variables x1, x2, · · · , xN are not necessarily identically distributed, i.e.,

Pr(xi = 1) and Pr(x j = 1) are not necessarily the same. We further define a random variable

Nf ree to represent the total number of free sub-bands in the N-spectrum. In other words,

Nf ree is the sum of all N random variables xi’s, i.e., Nf ree =
∑N

i=1 xi. The possible values of

Nf ree are 0, 1, · · · ,N. Table 3.1 lists the most used notation whose meanings will be further

explained when they appear for the first time.

3.3.2 Probability Distribution of Nf ree

We start with the simple case where all pi’s are equal to p. In this case, x1, x2, · · · , xN

are i.i.d. Bernoulli random variables with Pr(xi = 1) = p. Then, Nf ree = x1 + x2, · · · + xN

∼ Binomial(N, p) with:

Pr(Nf ree = k) =

(
N

k

)
pk(1 − p)N−k, (3.1)

where k = 0, 1, 2, · · · ,N. Further, the mean is given by N p and the variance is N p(1 − p),

where (1 − p) = Pr(xi = 0).

The computation of the exact distribution of Nf ree becomes complex when pi’s are not

equal. If we define the complexity as the total number of multiplications and additions in
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Figure 3.3: Configuration of probabilities in a spectrum of (a) 16 sub-bands and (b) 30

sub-bands

Table 3.2: Comparison between Normal approximation and exact distribution with ε(k) for

16 sub-bands

Nf ree = k

8 9 10 11 12 13 14 15

Pr(Nf ree = k) 0.0008 0.0079 0.0468 0.1617 0.311 0.3028 0.1417 0.0267

PrNormal(Nf ree = k) 0.0069 0.0483 0.1715 0.3109 0.2881 0.1365 0.0330 0.0040

ε(k) 0.0061 0.0404 0.1247 0.1492 0.0229 0.1663 0.1087 0.0227

the computation, we have the following lemma.

Lemma 1 When pi’s are not equal, the complexity involved in computing Pr(Nf ree = k) in

an N-spectrum is given by:

[(
N

k

)
× N

]
− 1, (3.2)

where k = 0, 1, 2, · · · ,N.

Proof: Let A represent a generic symbol for any subset of Sub representing free sub-bands

and A
′

its complement. Then,

Pr(Nf ree = k) =
∑

A

⎛⎜⎜⎜⎜⎜⎝
∏
i∈A

pi

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∏
j∈A′

(1 − pj)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (3.3)

The summation is taken over all subsets A ⊂ Sub with cardinality of A = k. Each expres-

sion inside the summation symbol of Eq. (3.3) is a product of N terms and the summation
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Table 3.3: Comparison between Normal approximation and exact distribution with ε(k) for

30 sub-bands

N f ree = k

19 20 21 22 23 24 25 26 27

Pr(N f ree = k) 0.0004 0.0035 0.0199 0.0753 0.1876 0.2932 0.2664 0.1253 0.0262

PrNormal(N f ree = k) 0.0023 0.0178 0.0784 0.1996 0.2928 0.2478 0.121 0.0341 0.0055

ε(k) 0.0019 0.0143 0.0585 0.1243 0.1052 0.0454 0.1454 0.0912 0.0207

involves a total of
(

N

k

)
summands. Therefore, the computational complexity of Eq. (3.3) is

given by
((

N

k

)
× N

)
− 1. �

Lemma 1 illustrates that the computational complexity involved in the calculation of

the probability of Nf ree = k is extremely high. According to Lemma 1, the probability of

getting exactly 15 free sub-bands Pr(Nf ree = 15) in a 30-spectrum, for example, incurs
(

30

15

)

 155 million possible scenarios where 30 numbers need to be multiplied in each scenario.

As indicated, a typical value of N can even surge up to 68. As a result, the humongous

amount of computation becomes a memory constraint for the network. Furthermore, con-

sidering all probabilities of Nf ree = k, we have the following Corollary by using Lemma

1.

Corollary: The complexity involved in computing the distribution of Nf ree is given by:

N∑
k=0

[((
N

k

)
× N

)
− 1

]
= 2N × N − (N + 1). (3.4)

Eq. (3.4) represents the complexity in computing all probabilities of Nf ree = k, for

k = 0, 1, . . . ,N. According to our tests, the time taken on a Pentium IV machine with Intel

3.2 GHz processor and 512 Megabyte RAM to compute the exact distribution of Nf ree with

N = 30 is 2650.20 seconds.

3.3.3 Approximation with Normal Distribution

It is imperative to find an efficient way to significantly reduce the computational com-

plexity in calculating the distribution of Nf ree. One such approach is to use the approxima-
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tion theory as long as the accuracy could be maintained. We determine the error using the

following definition.

Definition 3.1 (Approximation error ε(k)): For any approximation, let Prapp(Nf ree = k)

represent the approximate value of Pr(Nf ree = k). For each k = 0, 1, 2, · · · ,N, let ε(k) be

expressed as:

ε(k) =| Pr(Nf ree = k) − Prapp(Nf ree = k) | . (3.5)

Let ε = max0≤k≤N ε(k) be the over-all approximation error under scrutiny. Eq. (3.5) indi-

cates that a distribution of Nf ree with smaller ε provides a better approximation of the exact

distribution.

For computational efficiency, we further define essential support of a probability distri-

bution. We choose a number 0 < θ < 1, typically very small.

Definition 3.2 (Essential support: SX): Let X be a discrete random variable. The

essential support, denoted by SX, is defined to be the set SX = {k; Pr(X = k) ≥ θ}.

The basic idea is to weed out events with a very small probability of occurrence and

without significantly affecting the approximation. When comparing how close Pr(Nf ree =

k) and Prapp(Nf ree = k) are, there is no need to make a comparison when Pr(Nf ree = k) < θ.

Pr(Nf ree = k) < θ is very small if θ is small enough. With this provision, we redefine

over-all approximation error to be

ε = maxk∈SN f ree
ε(k). (3.6)

We evaluate the normal approximation over the N-spectrum. In the context of proba-

bility distributions, Central Limit Theorem [31] provides a way for approximating compli-

cated distributions. Let N f ree =
∑N

i=1 pi be the mean and CN = Var(Nf ree) =
∑N

i=1 pi(1−pi) be

the variance of Nf ree. If N and CN are large, Nf ree can be approximated by Normal(N f ree,CN).

Since Nf ree is a discrete random variable and the normal distribution is continuous, the ap-

proximation is

Pr(Nf ree = k) ≈
∫ k+ 1

2

k− 1
2

1
√

2πCN

e
−
⎛⎜⎜⎜⎜⎜⎜⎝ (x−N f ree)

2

2CN

⎞⎟⎟⎟⎟⎟⎟⎠
dx

= PrNormal(Nf ree = k), (3.7)

where k = 0, 1, · · · ,N.
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We test the normal approximation by observing its computational overhead and the ap-

proximation error. For this purpose, we have considered two typical spectra of 16-spectrum

and 30-spectrum. For the spectrum with 16 sub-bands, the sub-band free probabilities pi’s

are randomly generated from the Beta(0.5, 0.2) distribution as shown in Figure 3.3(a). We

illustrate Beta distributions in the simulation part (Section 3.4). The exact distribution of

Nf ree is computed by using Eq. (3.3) and the normal approximation of Nf ree is computed

using Eq. (3.7). We use θ = 0.0004 and neglect Pr(Nf ree = k) < 0.0004. The exact

probabilities, approximate probabilities, and approximation errors for each k in SN f ree
are

provided in Table 3.2. In summary, the essential support SN f ree
= {8, 9, · · · , 15} and the

over-all approximation error ε is 0.1663 at Nf ree = 13. The computation time involved in

the normal approximation is 1.11 seconds while using the same hardware configuration as

in Section 3.3-B.

In the spectrum with 30 sub-bands, the probabilities pi’s are randomly generated from

the Beta(0.6, 0.1) distribution as shown in Figure 3.3(b). With θ = 0.0002, the essential

support SN f ree
= {19, 20, · · · , 28}. The exact probabilities, approximate probabilities, and

approximation errors for each k in SN f ree
are provided in Table 3.3. The over-all approxima-

tion error ε is 0.1454 at Nf ree = 25. Computation time involved in the normal approximation

is 1.14 seconds while using the same hardware configuration as in Section 3.3-B.

The experimental results show that the normal approximation is not acceptable in terms

of its accuracy, although the computational time is far less. The approximation errors in

both cases exhibit wide deviations between some exact probabilities and corresponding

normal approximations. Accuracy of normal approximation depends on the following:

• Generally, the approximation provided by the Central Limit Theorem has a very high

accuracy if all pi’s are equal or the variation among pi’s is very less.

• If pi’s vary widely, the approximation is good provided N and CN are large.

But in our scenarios, variation among pi’s is large. Furthermore, N and CN are not large

enough to mitigate variations present in pi’s. To improve the accuracy, we propose a way

of finding an approximate distribution of Nf ree by forging the Law of Rare Events, Very

High Frequency Events, and Moderate Events. The proposed approximation method also

achieves an enhanced efficiency in computing the distribution of Nf ree.
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3.4 Probability Distribution of Nf ree

As has been pointed out in Section 3.3, computation of exact distribution of Nf ree is

both complex and time-consuming. If the number of sub-bands is greater or equal to 45,

it is impossible to calculate the exact distribution. An easy way out of this computational

quagmire is to resort to normal approximation as discussed in Section 3.3 but the approx-

imation is of dubious value and unacceptable margin of error. In this section, we present

our approach to mitigate computational complexity by using the Poisson-normal approxi-

mation. As we discussed, pi for a sub-band, can be small, moderate, or large. For this, we

define a lower threshold Pth1 and an upper threshold Pth2, which alternatively can be written

as 0 < Pth1 < Pth2 < 1. All pi’s within the range 0 < pi ≤ Pth1 relate to sub-bands with

small sub-band free probabilities. For pi’s � Pth2, sub-bands are classified into a group with

large sub-band free probabilities. Otherwise, sub-bands within the range Pth1 < pi < Pth2

are categorized into a group with moderate sub-band free probabilities. With this, we have

the following definitions.

Definition 3.3 (Subsmall): This is a set of all sub-bands having 0 < pi ≤ Pth1. Let m be

the size of Subsmall and Nf reesmall
be the number of free sub-bands in Subsmall.

Definition 3.4 (Submod): This is a set of all sub-bands having Pth1 < pi < Pth2. Let n be

the size of Submod and Nf reemod
be the number of free sub-bands in Submod.

Definition 3.5 (Sublarge): This is a set of all sub-bands having pi � Pth2. The size of

Sublarge is (N − m − n). Let Nf reelarge
be the number of free sub-bands in Sublarge.

Note that Pth1 is typically close to zero and Pth2 is close to one. In order to find the distribu-

tion of Nf ree, we first compute the approximate distributions for each of Nf reesmall
, Nf reemod

,

and Nf reelarge
. Therefore, the distribution of Nf ree can be computed by using the relation:

Nf ree = Nf reesmall
+ Nf reemod

+ Nf reelarge
. (3.8)
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3.4.1 Approximate Distribution of Nf reesmall

The distribution of Nf reesmall
can be approximated by a Poisson distribution and the prob-

ability that there are k free sub-bands is:

Pr(Nf reesmall
= k) 
 λs

k e−λs

k!

= PrPoi(Nf reesmall
= k), (3.9)

where λs =
∑

i∈S ubsmall
pi. This approximation follows a so-called Law of Rare Events. We

have the following lemma that gives an upper bound of the approximation error.

Lemma 2 Let Z be a random variable that has a Poisson distribution with parameter λs.

We have:

| Pr(Nf reesmall
= k) − Pr(Z = k) | ≤ 1 − e−λs

λs

×
∑

i∈S ubsmall

p2
i

k = 0, 1, 2, . . . . (3.10)

Proof: We apply the Law of Rare Events [32] in proving this. Suppose that X1, . . . , Xs are

independent Bernoulli random variables with success probabilities p1, . . . , ps. If the pi’s

are small and λ =
∑s

1 pi is moderate in size, then the Law of Rare Events asserts that the

sum S =
∑s

1 Xi is also approximately Poisson distributed. More precisely, if Z is a Poisson

random variable with mean λ, then:

| Pr(S = k) − Pr(Z = k) | ≤ 1 − e−λ

λ
×

s∑
i=1

p2
i

k = 0, 1, 2, . . . . (3.11)

In our context, S = Nf reesmall
=

∑
i∈S ubsmall

xi and λ = λs. Therefore, Inequality (3.10) follows

from Inequality (3.11). �

Lemma 2 shows that the upper bound of approximation error depends on the magnitude of∑
i∈S ubsmall

pi. Note that 1−e−λ

λ
≤ 1. If pi is very small, p2

i gets much smaller. For example,

if N = 10, each pi ≤ 0.03, then
∑10

i=1 p2
i ≤ 0.009. The exact probability Pr(Nf reesmall

= k)

and Poisson probability Pr(Z = k) should agree in the first two decimal places. We have

observed that if sub-band free probabilities hover around 0.03, the approximation error is

less than 0.001. Therefore, in our analysis, we have taken Pth1 = 0.03 as the threshold value

for small sub-band free probability.
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3.4.2 Approximate Distribution of Nf reemod

The distribution of Nf reemod
in Submod can be approximated by a normal distribution and

the probability that there are k free sub-bands is:

Pr(Nf reemod
= k) 


∫ k+ 1
2

k− 1
2

1
√

2πCn

e
−
⎛⎜⎜⎜⎜⎜⎜⎝ (x−Nmod)

2

2Cn

⎞⎟⎟⎟⎟⎟⎟⎠
dx

= PrNormal(Nf reemod
= k), (3.12)

where n is the size of Submod, k = 0, 1, · · · , n, Nmod = E[Nf reemod
] =

∑
i∈S ubmod

pi, and Cn =∑
i∈S ubmod

pi (1 − pi) represents the variance of Nf reemod
.

The main difference between Eq. (3.12) and Eq. (3.7) is that the approximation of

Nf reemod
in Submod excludes those sub-bands having small or large probabilities of being

free.

3.4.3 Approximate Distribution of Nf reelarge

The approximation of the distribution of Nf reelarge
follows essentially the path set by

Nf reesmall
. Note that (1 − pi) is small for i ∈ Sublarge. Using the Law of Rare Events, the

distribution of Nf reelarge
can also be approximated by a Poisson distribution. The following

lemma facilitates computation of Nf reelarge
probability distribution.

Lemma 3 For k = 0, 1, · · · , (N − m − n), we have

Pr(Nf reelarge
= k) 


e−λl λ(N−m−n−k)

l

(N − m − n − k)!

= PrPoi(Nf reelarge
= k), (3.13)

where λl =
∑

i∈S ublarge
(1 − pi).

Proof: Let

U =
∑

i∈S ublarge

(1 − xi)

= (N − m − n) −
∑

i∈S ublarge

xi

= (N − m − n) − Nf reelarge
. (3.14)
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Note that (1 − xi) is a Bernoulli random variable with Pr(1 − xi = 1) = Pr(xi = 0) =

(1− pi), which is small for i ∈ Sublarge. By the Law of Rare Events, U approximately follows

a Poisson distribution with parameter λl. Consequently,

Pr(Nf reelarge
= k) = Pr((N − m − n − U) = k)

= Pr(U = (N − m − n − k)



e−λl λ(N−m−n−k)

l

(N − m − n − k)!
.

�

In the following lemma, we give an upper bound for the approximation error involved

in Lemma 3.

Lemma 4 Let Z be a random variable that has a Poisson distribution with parameter λl.

We have:

| Pr(Nf reelarge
= k) − Pr(Z = k) |≤ 1 − e−λl

λl

×
∑

i∈S ublarge

(1 − pi)
2, (3.15)

where k = 0, 1, 2, . . . .

Proof: This Lemma is analogous to Lemma 2 once we replace pi with (1− pi) and λs by λl.

�

3.4.4 Approximate Distribution of Nf ree

In this section, we illustrate a procedure for computing the distribution of Nf ree, Nf reemod
,

and Nf reelarge
. For better computational efficiency, only the essential supports, SN f reesmall

and

SN f reelarge
of Nf reesmall

and Nf reelarge
respectively, are used in the computation. In other words,

any probability less than θwill not be considered. From Eq. (3.8), we have Nf ree = Nf reesmall
+

Nf reemod
+ Nf reelarge

. As an illustration, we first consider two cases: Nf ree = 0 and Nf ree = 1.

The entity Nf ree = 0 means that there are no free sub-bands in the entire spectrum.

Equivalently, there are no free sub-bands in S ubsmall, S ubmod, or S ublarge. By Eqs. (3.8),

(3.9), (3.12) and (3.13):



49

Pr(Nf ree = 0)

= Pr(Nf reesmall
= 0,Nf reelarge

= 0,Nf reemod
= 0)

= Pr(Nf reesmall
= 0) Pr(Nf reelarge

= 0) Pr(Nf reemod
= 0)


 e−λs
e−λl λ(N−m−n)

l

(N − m − n)!
Pr(−1

2
< Nf reemod

<
1

2
)


 e−λs e−λl
(λl)

(N−m−n)

(N − m − n)!

∫ 1
2

− 1
2

N(Nmod,Cn)dx

= PrPoi−Normal(Nf ree = 0).

Similarly, Nf ree = 1 means that there is only one free sub-band in the spectrum of N

sub-bands. This free sub-band can be in one of S ubsmall, S ubmod, and S ublarge. By Eqs.

(3.8), (3.9), (3.12) and (3.13):

Pr(Nf ree = 1)

= Pr(Nf reesmall
= 1,Nf reelarge

= 0,Nf reemod
= 0) +

Pr(Nf reesmall
= 0,Nf reelarge

= 1,Nf reemod
= 0) +

Pr(Nf reesmall
= 0,Nf reelarge

= 0,Nf reemod
= 1)

= Pr(Nf reesmall
= 1) Pr(Nf reelarge

= 0) ×

Pr(−1

2
< Nf reemod

<
1

2
) +

Pr(Nf reesmall
= 0) Pr(Nf reelarge

= 1) ×

Pr(−1

2
< Nf reemod

<
1

2
) +

Pr(Nf reesmall
= 0) Pr(Nf reelarge

= 0) ×

Pr(
1

2
< Nf reemod

<
3

2
)



(
e−λs λs

) ⎛⎜⎜⎜⎜⎜⎝ e−λl λ(N−m−n)

l

(N − m − n)!

⎞⎟⎟⎟⎟⎟⎠
∫ 1

2

− 1
2

N(Nmod,Cn)dx +

(e−λs)

⎛⎜⎜⎜⎜⎜⎝ e−λl λ(N−m−n−1)

l

(N − m − n − 1)!

⎞⎟⎟⎟⎟⎟⎠
∫ 1

2

− 1
2

N(Nmod,Cn)dx +

(e−λs)

⎛⎜⎜⎜⎜⎜⎝ e−λl λ(N−m−n)

l

(N − m − n)!

⎞⎟⎟⎟⎟⎟⎠
∫ 3

2

1
2

N(Nmod,Cn)dx

= PrPoi−Normal(Nf ree = 1).
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Following the modus operandi in the illustration presented above, we now obtain a

general expression for the probability of k free sub-bands. Some k1 of these free sub-bands

could be in S ubsmall, k2 in S ubmod, and k3 in S ublarge with the provision that k1+ k2+ k3 = k.

Pr(Nf ree = k)

=
∑

Pr(Nf reesmall
= k1,Nf reemod

= k2,Nf reelarge
= k3)

=
∑

Pr(Nf reesmall
= k1) Pr(Nf reemod

= k2) Pr(Nf reelarge
= k3)


 PrPoi(Nf reesmall
= k1)PrNormal(Nf reemod

= k2) ×

PrPoi(Nf reelarge
= k3)

= PrPoi−Normal(Nf ree = k), (3.16)

where the summation is taken over all k1 ≥ 0, k2 ≥ 0, and k3 ≥ 0 with k1 + k2 + k3 = k.

By focusing on k1 ∈ SN f reesmall
and k3 ∈ SN f reelarge

in Eq. (3.16), the number of calculations

can be drastically reduced. In any practical situation, the sets SN f reesmall
and SN f reelarge

are

determined first, and then Eq. (3.16) is used in obtaining an approximate distribution of

Nf ree. The corresponding algorithm is presented in Section 3.6.

3.5 Neighborhood Occupancy of Free Sub-bands

In this section, we define certain types of free sub-bands based on the occupancy of their

adjacent sub-bands. Then, we compute the probability distribution of the total number of

each type sub-band.

3.5.1 Sub-band Types

Consider any interior free sub-band i, i.e., i � 1 and i � N. In this case, it has two

adjacent neighbors. Each adjacent neighbor is either occupied by a PU or is free. This

results in three different types of free sub-bands based on the number of free adjacent

neighbors. The number of possible free adjacent sub-bands is either 0, 1, or 2. The three

types are depicted in Figure 3.4 (b), (a), and (c), respectively. If the free sub-band is not
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Other sub-bandsOther sub-bands

Other sub-bandsOther sub-bands

Other sub-bandsOther sub-bands

Other sub-bands

Other sub-bands

Sub-band with a PU Free sub-band

(a)

(b)

(c)

(d)

(e)
(i-1)

(i-1)
(i+1)

1 N

Figure 3.4: Types of free sub-bands: (a) Type I, (b) Type II, (c) Type III, (d) Type IV, and

(e) Type V

interior, i.e., i = 1 or i = N, then two types are possible. Figures 3.4 (d) and (e) depict the

case i = N. The five types of free sub-bands are defined formally as below.

• Type I sub-band: It is a free sub-band i having a PU as the (i−1)st neighbor and a free

sub-band as the (i + 1)st neighbor, or vice versa, making three contiguous sub-bands

(i − 1)st, ith, and (i + 1)st as Occupied, Free, Free or Free, Free, Occupied as shown

in Figure 3.4(a). Let XI(N) be the random variable that represents the total number

of Type I sub-bands in the N-spectrum. Possible values of XI(N) are 0, 1, . . . ,N − 2.

• Type II sub-band: It is a free sub-band i with two PUs as (i−1)st and (i+1)st neigh-

bors as shown in Figure 3.4(b). Let XII(N) be the random variable that represents the

total number of Type II sub-bands in the N-spectrum. Possible values of XII(N) are

0, 1, . . . ,N − 2.

• Type III sub-band: It is a free sub-band i with two free sub-bands as (i − 1)st and

(i + 1)st neighbors, resulting in three contiguous free sub-bands as shown in Figure

3.4(c). Let XIII(N) be the random variable that represents the total number of Type

III sub-bands in the N-spectrum. Possible values of XIII(N) are 0, 1, . . . ,N − 2.

• Type IV sub-band: It is a free sub-band i at the left or right edge of the spectrum

with a free sub-band as its neighbor, resulting in two contiguous free sub-band on the
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Table 3.4: Boundary conditions for Type I, II, and III sub-bands for Xi(N) at N = 3

Xi(3) Probabilities of Types I, II, and III

Probability(TypeI) Probability(TypeII) Probability(TypeIII)

0 1 − (1 − p1)p2 p3 − p1 p2(1 − p3) 1 − (1 − p1)p2(1 − p3) 1 − p1 p2 p3

1 (1 − p1)p2 p3 + p1 p2(1 − p3) (1 − p1)p2(1 − p3) p1 p2 p3

edge of the spectrum as shown in Figure 3.4(d). Let XIV(N) be the random variable

that represents the total number of Type IV sub-bands in the N-spectrum. Possible

values of XIV(N) are 0, 1, and 2.

• Type V sub-band: It is a free sub-band i at the left or right edge of the spectrum with

a PU as its neighbor as shown in Figure 3.4(e). Let XV(N) be the random variable

that represents the total number of Type V sub-bands in the N-spectrum. Possible

values of XV(N) are 0, 1, and 2.

Following the above definitions, we determine the probability distribution of Xi(N) for

each type of sub-band. The recurrence relation enables us to develop an algorithm to com-

pute the probability distribution of Xi(N).

3.5.2 Probability Distribution of XI(N)

The approach described in Section 3.4 is not applicable to XI(N) since the probability of

a free sub-band also depends on its two neighbors. In view of this, we develop a recurrence

relation to compute XI(N).

Lemma 5 Let XI(m+1) be the total number of Type I sub-bands in the (m+1)-spectrum rep-

resented by {1, 2, · · · , (m+1)} with sub-band free probabilities p1, p2, · · · , p(m+1). Let XI(m)

be the total number of Type I sub-bands in the m-spectrum represented by {1, 2, · · · ,m} with

sub-band free probabilities p1, p2, · · · , pm. Then,

XI(m + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[XI(m) + 1] with probability pI(m)

XI(m) with probability (1 − pI(m)),

(3.17)
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Figure 3.5: (m + 1)-spectrum derived from m-spectrum for Type I sub-bands

where pI(m) = (1 − p(m−1)pm p(m+1) + p(m−1) pm(1 − p(m+1)), m = (N − 1), (N − 2), · · · , 3.

Proof: We focus on the status of occupancy in the sub-bands (m− 1),m, and (m+ 1). Each

of these sub-bands is either free or occupied, giving rise to 23 = 8 possibilities indicated

by the following three cases:

• Case I: Sub-bands (m − 1) and m are free, and sub-band (m + 1) is occupied as

depicted in Figure 3.5(b). This occurs with probability p(m−1) pm(1 − p(m+1)). Sub-

band m is at the edge of the m-spectrum and therefore it cannot be a Type I sub-band

in the spectrum. On the other hand, sub-band m is of Type I in the (m + 1)-spectrum.

Consequently, XI(m + 1) = XI(m) + 1;

• Case II: Sub-band (m − 1) is occupied and sub-bands m and (m + 1) are free as

shown in Figure 3.5(c). This occurs with probability (1 − p(m−1))pm p(m+1). Therefore,

XI(m + 1) = XI(m) + 1;

• Case III: It consists of the remaining six possibilities. In all such possibilities, XI(m+

1) = XI(m).

Consequently, XI(m+1) = XI(m)+1 with probability pI(m) and XI(m+1) = XI(m) with

probability 1 − pI(m). �

Lemma 5 enables us to compute the distribution of XI(m+1) once we know the distribu-

tion of XI(m) as detailed below. The possible values of XI(m) are 0, 1, 2, · · · , (m− 2). From
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Eq. (3.17), it is clear that the number of possible values of XI(m+1) are 0, 1, 2, · · · , (m−1).

A possible value of XI(m+1) is represented by r. For the computation of Pr (XI(m + 1) = r),

we identify three cases: 1 ≤ r ≤ (m − 2); r=0; and r=(m − 1). If 1 ≤ r ≤ (m − 2), the events

XI(m + 1)=r can arise from XI(m)=(r − 1) or XI(m)=r. Consequently, by Eq. (3.17),

Pr (XI(m + 1) = r)

= pI(m) × Pr (XI(m) = (r − 1)) + (1 − pI(m)) × Pr (XI(m) = r) . (3.18)

The event XI(m + 1)=0 can occur if and only if XI(m)=0. Therefore,

Pr (XI(m + 1) = 0) = (1 − pI(m)) × Pr(XI(m) = 0). (3.19)

Finally,

Pr(XI(m + 1) = (m − 1)) = pI(m) × Pr(XI(m) = (m − 2)). (3.20)

Thus, once we know the distribution of XI(m), the distribution of XI(m + 1) can be deter-

mined using Eqs. (3.18), (3.19), and (3.20).

The ultimate goal is to find the distribution of XI(N). For this, we need the distribution

of XI(3) which helps in finding the distribution of XI(4) using Eqs. (3.18), (3.19), and

(3.20). We continue this process until we reach XI(N). The distribution of XI(3) is given in

Table 3.4.

We further consider the special case that all pi’s are equal, i.e., pi = p. The following

theorem gives the exact distribution of the random variable XI(N).

Theorem 3.1: If all pi’s are equal, then XI(N) has Binomial
(
(N − 2), 2p2(1 − p)

)
.

Proof: The proof is by induction. If pi = p, the distribution of XI(3) is given by:

Pr(XI(3) = 0) = 1 − 2p2(1 − p)

Pr(XI(3) = 1) = 2p2(1 − p).

Therefore, XI(3) follows Binomial
(
1, 2p2(1 − p)

)
. By using Lemma 5, the recurrence

relation of XI(4) in terms of XI(3) is given by:

XI(4) = XI(3) + 1 with probability 2p2(1 − p)

= XI(3) with probability 1 − 2p2(1 − p).
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The distribution of XI(4) is given by:

Pr(XI(4) = 0) =
[
1 − 2p2(1 − p)

]2

Pr(XI(4) = 1) = 2
[
1 − 2p2(1 − p)

]
2p2(1 − p)

Pr(XI(4) = 2) =
[
2p2(1 − p)

]2

.

It is clear that XI(4) follows the Binomial
(
2, 2p2(1 − p)

)
.

Suppose 5 ≤ n ≤ N−1 and the inductive hypothesis that XI(n) ∼ Binomial
(
(n − 2), 2p2(1 − p)

)
is true. We prove that XI(n+1) ∼ Binomial

(
(n − 1), 2p2(1 − p)

)
. The Binomial distribution

of XI(n) is given by:

Pr(XI(n) = 0) =
[
1 − 2p2(1 − p)

](n−2)

Pr(XI(n) = 1) =

(
(n − 2)

1

)
2p2(1 − p) ×

[
1 − 2p2(1 − p)

](n−3)

· · · = · · ·

Pr(XI(n) = (n − 2)) =
[
2p2(1 − p)

](n−2)

.

From Lemma 5, we have:

XI(n + 1) = XI(n) + 1 with probability 2p2(1 − p)

= XI(n) with probability 1 − 2p2(1 − p).

Possible values of XI(n+ 1) are 0, 1, · · · , (n− 2), (n− 1). The probabilities for each of these

values are computed separately as follows:

Pr(XI(n + 1) = 0)

= Pr(XI(n) = 0) ×
[
1 − 2p2(1 − p)

]
=

[
1 − 2p2(1 − p)

](n−2)

×
[
1 − 2p2(1 − p)

]
=

[
1 − 2p2(1 − p)

](n−1)

.
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For 1 ≤ r ≤ (n − 2), we have:

Pr(XI(n + 1) = r)

= Pr(XI(n) = r) ×
[
1 − 2p2(1 − p)

]
+

Pr(XI(n) = (r − 1)) ×
[
2p2(1 − p)

]

=

(
(n − 2)

r

) (
2p2(1 − p)

)r
×

(
1 − 2p2(1 − p)

)(n−2−r)

×

(1 − 2p2(1 − p)) +

(
(n − 2)

(r − 1)

) (
2p2(1 − p)

)(r−1)

×
(
1 − 2p2(1 − p)

)(n−2−r+1)

×
(
2p2(1 − p)

)
=

(
2p2(1 − p)

)r
×

(
1 − 2p2(1 − p)

)(n−1−r)

×[(
(n − 2)

r

)
+

(
(n − 2)

(r − 1)

)]

=

(
(n − 1)

r

)
× (2p2(1 − p))r ×

(
1 − 2p2(1 − p)

)(n−1−r)

.

(3.21)

Now, the probability of having (n − 1) Type I sub-bands is expressed as:

Pr(XI(n + 1) = (n − 1))

= Pr(XI(n) = (n − 2)) ×
[
2p2(1 − p)

]
=

[
2p2(1 − p)

](n−1)

. (3.22)

From these probabilities, it is evident that XI(n + 1) ∼ Binomial
(
(n − 1), 2p2(1 − p)

)
. �

3.5.3 Probability Distribution of XII(N)

As evident from the analysis performed for Type I sub-bands, we develop a similar

recurrence relation for computing total number of Type II sub-bands. The methodology is

similar to that of Type I.

Lemma 6 Let XII(m+ 1) be the total number of Type II sub-bands in the (m+ 1)-spectrum

represented by {1, 2, · · · , (m + 1)} with sub-band free probabilities p1, p2, · · · , p(m+1). Let
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XII(m) be the total number of Type II sub-bands in the m-spectrum represented by {1, 2, · · · ,m}
with sub-band free probabilities p1, p2, · · · , pm. Then,

XII(m + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[XII(m) + 1] with probability pII(m)

XII(m) with probability (1 − pII(m)),

(3.23)

where pII(m) = (1 − p(m−1)pm(1 − p(m+1)), m = (N − 1), (N − 2), · · · , 3.

A proof can be given similar to the one given in Lemma 5. The boundary condition

which gives the distribution of XII(3) is provided in Table 3.4. This distribution can be

used to obtain the distribution of XII(N).

Theorem 3.2: If all pi’s are equal, i.e., pi = p, then XII(N) has Binomial
(
(N − 2), p(1 − p)2

)
.

�

3.5.4 Probability Distribution of XIII(N)

The recurrence relation for computing the total number of sub-bands of Type III is given

by the following lemma.

Lemma 7 Let XIII(m+1) be the total number of Type III sub-bands in the (m+1)-spectrum

represented by (1, 2, · · · , (m + 1)) with sub-band free probabilities p1, p2, · · · , p(m+1). Let

XIII(m) be the total number of Type III sub-bands in the m-spectrum represented by {1, 2, · · · ,m}
with sub-band free probabilities p1, p2, · · · , pm. Then,

XIII(m + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[XIII(m) + 1] with probability pIII(m)

XIII(m) with probability (1 − pIII(m)),

(3.24)

where pIII(m) = p(m−1 pm p(m+1), m = (N − 1), (N − 2), · · · , 3.

The proof is omitted. The boundary condition which gives the distribution of XIII(3) is

provided in Table 3.4. This distribution is used to obtain the distribution of XIII(N).

Theorem 3.3: If all pi are equal, i.e., pi = p, XIII(N) has Binomial
(
(N − 2), p3

)
. �
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3.5.5 Probability Distribution of XIV(N)

As every spectrum has two edges, the number of Type IV sub-bands is 0, 1, or 2. The

probability distribution of the number of Type IV sub-bands is given by:

P(XIV(N) = 0) = 1 − P(XIV(N) = 1) − P(XIV(N) = 2)

P(XIV(N) = 1) = p1 p2[pN−1(1 − pN) + (1 − pN−1)pN +

(1 − pN−1)(1 − pN)] + pN−1 pN[(1 − p1)p2 +

p1(1 − p2) + (1 − p1)(1 − p2)].

P(XIV(N) = 2) = p1 p2 pN−1 pN . (3.25)

The distribution of XIV(N) under the following special case is evident.

Theorem 3.4: If p1 = p2 = p(N−1) = pN = p, then the distribution of XIV(N) is given by:

Pr(XIV(N = 0)) = 1 − 2p2 + p4

Pr(XIV(N = 1)) = 4p3(1 − p) + 2p2(1 − p)2

Pr(XIV(N = 2)) = p4,

with E[XIV(N)] = 2p2. �

3.5.6 Probability Distribution of XV(N)

The probability distribution of the number of Type V sub-bands is given by:

P(XV(N) = 0) = 1 − P(XV(N) = 1) − P(XV(N) = 2)

P(XV(N) = 1) = p1(1 − p2)[pN−1 pN + pN−1(1 − pN) +

(1 − pN−1)(1 − pN)] + (1 − pN−1)pN[p1 p2 +

(1 − p1)p2 + (1 − p1)(1 − p2)].

P(XV(N) = 2) = p1(1 − p2)(1 − pN−1)pN . (3.26)

Theorem 3.5. If p1 = p2 = p(N−1) = pN = p, then the distribution of XV(N) is given by:

Pr(XV(N = 0)) = 1 − p(1 − p)(p2 − p + 2)

Pr(XV(N = 1)) = 2p(1 − p)(p2 − p + 1)

Pr(XV(N = 2)) = p2(1 − p)2,
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with E[XIV(N)] = 2p(1 − p). �

Corollary: If all pi’s are equal, i.e., pi = p, then the expected value of the total number

of free sub-bands is the sum of the expected values of all types of sub-bands, i.e.,

E[Nf ree] = N p

= E[XI(N)] + E[XII(N)] + E[XIII(N)] + E[XIV(N)] + E[XV(N)]. (3.27)

Proof: Any free sub-band has to be one and only one of Type I, Type II, Type III, Type IV,

and Type V sub-bands. Therefore,

Nf ree = XI(N) + XII(N) + XIII(N) + XIV(N) + XV(N). (3.28)

Hence the result follows. �

Comments: For the validity of Eq. (3.27), the assumption that all pi’s are equal is

not essential. In the general case, E[Nf ree] =
∑N

i=1 pi. However, E[XI(N)], E[XII(N)], and

E[XIII(N)] do not have any compact formulae.

3.6 Implementation and Performance Evaluation

In this section, we present algorithms to compute the distribution of Nf ree and that of

the total number of Type I sub-bands. This is followed by a comparative study of the exact

distribution, normal, and Poisson-normal approximations under three different scenarios.

We further analyze probability distributions of the total number of each type of sub-bands.

Finally, properties of the distributions are studied.

In the following two sub-sections, we develop algorithms to compute the distributions

of Nf ree and XI(N). For clarification, we use Pr(Nf ree = k) to represent the exact probability

of Nf ree = k obtained by using Eq. (3.3). The entity PrNormal(Nf ree = k) is the probability

of Nf ree = k following a normal approximation and computed by using Eq. (3.7). Fur-

thermore, PrPoi−Normal(Nf ree = k) is the probability of Nf ree = k using a Poisson-normal

approximation as given by Eq. (3.16).
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3.6.1 Algorithm for Probability Distribution of Nf ree

The rationale of Poisson-normal approximation of Nf ree distribution is explained in

Section 3.4 and Algorithm 1 is its implementation. The basic input of this Algorithm is

a given set of sub-band free probabilities p1, · · · , pN (Line 1) and the output is a set of

probabilities P[0], P[1], · · · , P[N] (Line 2), where P[k] = PrPoi−Normal(Nf ree = k). These

discrete probabilities P[0], P[1], · · · , P[N] give the probability distribution of Nf ree = k.

The probabilities pi’s are classified into three groups S ubsmall, S ubmod, and S ublarge

(Line 4), based on the lower and upper thresholds (i.e., Pth1 and Pth2) as discussed in Sec-

tion 3.4. The probabilities PrPoi(Nf reesmall
= i)’s and PrPoi(Nf reelarge

= i)’s are calculated

separately using Eqs. (3.9) and (3.13), respectively. The essential supports SN f reesmall
and

SN f reelarge
of these distributions are created (Line 4) according to Definition 2 and θ = 0.001.

In Algorithm 2, for reduced time complexity, only probabilities stemming from es-

sential support SN f reesmall
and SN f reelarge

are considered. Two counters Csmall and Clarge are

allocated to register values of essential supports (Lines 3 and 5). The variable k keeps

track of all possible values of Nf ree (Line 6). Since values between PrPoi(Nf reelarge
= 0) to

PrPoi(Nf reelarge
= Clarge − 1) are less than θ, k from 0 to (Clarge − 1) are neglected by setting

them as zero. For the same reason, the algorithm only considers values of k1 from 1 to

Csmall (Line 8) and k3 from Clarge to N (Line 9).

Lines 6−17 facilitate Algorithm 2 to compute Pr[C f ree] for all possible combinations of

free sub-bands in S ubsmall, S ubmod, and S ublarge. Each combination satisfies the constraint

of k1 + k2 + k3 = C f ree. In particular, C f ree tracks all possible combinations of k1, k2, and k3

to yield a value of Nf ree as given in Eq. (3.16). P[k] is initialized to zero for every iteration

of k (Line 7). Then, the algorithm in Lines 8− 16 accommodates all possible combinations

of Nf reesmall
= k1, Nf reemod

= k2, and Nf reelarge
= k3 that sum up to Nf ree = k. Line 10 ensures

non-negative values of Nf reemod
= k2. Line 12 computes PrNormal(Nf reemod

= k2) using Eq.

(3.12). Now the probability Pr(C f ree) is obtained by multiplying the marginal probabilities

of Nf reesmall
= k1, Nf reemod

= k2, and Nf reelarge
= k3 (Line 13). Each possible combination

increments C f ree by one (Line 14).

At the end of ith iteration (Lines 18-20), for all possible combinations of m ranging from

1 to C f ree, computed values Pr(m) are added as in Eq. (3.16). This finally generates P[k]
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1: Input: Set of sub-band free probabilities p1, · · · , pN

2: Output: Probabilities P[0], P[1], · · · ,P[N]

3: Initialization: Csmall = 0, Clarge = 0, and C f ree = 0

4: Classify and compute PrPoi(Nf reesmall
= i) and PrPoi(Nf reelarge

= i) using Eqs. (3.9)

and (3.13)

5: Counters Csmall and Clarge updated with essential supports of SN f reesmall
and SN f reelarge

6: for k = Clarge to N do

7: P[k] = 0.0

8: for k1 = 1 to Csmall do

9: for k3 = Clarge to N do

10: if (k − k1 − k3) ≥ 0 then

11: k2=(k − k1 − k3)

12: PrNormal[k2] is then computed using Eq. (3.12)

13: Pr[C f ree] is computed using the term

inside the summation symbol of Eq. (3.16)

14: C f ree = C f ree + 1

15: end if

16: end for

17: end for

18: for m = 1 to C f ree do

19: Add Pr[m] as depicted in Eq. (3.16) for each

value of m to obtain P[k]

20: end for

21: end for

Algorithm 1: Computation of distribution of Nf ree using Poisson-normal approxima-

tion

for Nf ree = k. The above process is repeated for possible values of k ranging from Clarge to

N so that for every k ∈ [0,N] P[k] is computed sequentially.
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1: Input: Set of sub-band free probabilities p1, · · · , pN

2: Output: Probability of number of Type I free

sub-bands P[XI(3 : N)]

3: Initialization: P[XI(3 : (N − 2))] = 0

4: Compute P[XI(3) = 0] and P[XI(3) = 1] using

expressions for Type I in Table IV

5: for i = 4 to N do

6: P[XI(i) = 0] is computed using Eq. (3.19)

7: P[XI(i) = (i − 2)] is computed using Eq. (3.20)

8: for j = 1 to (i − 3) do

9: P[XI(i) = j] is computed using Eq. (3.18)

10: end for

11: end for
Algorithm 2: Computation of the probability distribution of XI(N) in a spectrum of

N sub-bands

3.6.2 Algorithm for Probability Distribution of XI(N)

Computation of distribution of total number of free sub-bands of Type I is explained

in Algorithm 2. The input is still the set of sub-band free probabilities p1, · · · , pN (Line

1). The algorithm computes the probabilities P[XI(i) = j], j = 0, 1, · · · , (i − 2) and i

= 3, 4, 5, · · · ,N (Line 2). The boundary condition is the distribution of XI(3), which is

separately computed in Line 4 following the Table 3.4. Now, we use the recurrence relation

given by Eq. (3.17) to compute the distributions of XI(4), · · · , XI(N) (Lines 5-11). The

computations are carried out in two stages. First, for any value 4 ≤ i ≤ N, compute

Pr[XI(i) = 0] and Pr[XI(i) = (i− 2)] using Eqs. (3.19) and (3.20), respectively (Lines 6-7).

Second, compute Pr[XI(i) = j], 1 ≤ j ≤ (i − 3), i.e., using Eq. (3.18) (Lines 8-10). Similar

algorithms are developed to deal with distributions of XII(N) and XIII(N). Due to space

limitations, details are not presented here.
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3.6.3 Simulation Configuration

For simulation purpose, a Beta distribution is used to generate pi’s, i = 1, 2, · · · ,N. The

probability density function of a Beta distribution has two parameters α > 0 and β > 0 and

is given by:

f (x;α, β) =
1

B(α, β)
xα−1(1 − x)β−1, 0 < x < 1, (3.29)

where B(α, β) is the Beta function defined as:

B(α, β) =

∫ 1

0

tα−1(1 − t)β−1dt. (3.30)

The entity B(α, β) is a normalization constant to ensure that the function in Eq. (3.29)

integrates to unity. Any continuous probability distribution on (0, 1) can reasonably be

approximated by a Beta distribution [33]. This is the main reason we have chosen Beta

distribution for randomly generating a set of sub-band free probabilities. By varying the

values of the parameters α and β, we have generated three sets of probabilities.

As discussed earlier, a television transmission typically occupies a bandwidth of 6 MHz

in the licensed bands. In view of this, the bandwidth of each sub-band is considered to be

6MHz. In the simulation, pi’s are generated under the following three scenarios:

• Scenario-1: This scenario mimics the spectrum bandwidth 710 − 806MHz that can

be divided into N=16 sub-bands. A set of pi’s as 16 sub-band free probabilities is

generated from Beta(0.5, 0.2) distribution. The output of the distribution has one

small, six large, and nine moderate pi’s as shown in Figure 3.3(a).

• Scenario-2: This scenario mimics the spectrum bandwidth 628 − 806MHz that can

be divided into N=30 sub-bands. A set of pi’s as 30 sub-band free probabilities is

generated from Beta(0.5, 0.5) distribution. The output of the distribution has five

small, five large, and 20 moderate pi’s.

• Scenario-3: This scenario mimics the spectrum bandwidth 470 − 650MHz that can

be divided into N=30 sub-bands. For simulation, a different Beta distribution is

used to create an imbalance between small and large sub-band free probabilities,
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Figure 3.6: Exact distribution of Nf ree and its normal and Poisson-normal approximations

for 16 sub-bands with 1 small and 6 large sub-band free probabilities

unlike Scenario-2. A set of pi’s as 30 sub-band free probabilities is generated from

Beta(0.6, 0.1) distribution. The output of the distribution has two small, 16 large, and

12 moderate pi’s as shown in Figure 3.3(b).

As discussed in Section 3.4, for computation of approximate distribution of Nf ree, we

take pth1 = 0.03 and pth2 = 0.97 as the lower threshold and upper threshold values, respec-

tively. Algorithm 1 is implemented on each scenario. In the following two sub-sections,

we compare the exact distribution of Nf ree with its normal and Poisson-normal approxima-

tions in terms of approximation error and computation efficiency. We then discuss about

the distributions of Xi(N)’s wherein Algorithm 2 is implemented on each scenario.

3.6.4 Distribution of Nf ree

The exact distribution of Nf ree and its normal and Poisson-normal approximations under

Scenario-1 are plotted in Figure 3.6. In a similar way, Figure 3.7 deals with Scenarios-2 and

3. As can be seen from the figures, the normal approximation deviates substantially from

the exact distribution. The over-all approximation errors ε’s are 0.1663, 0.0602, and 0.1454

for Scenarios-1, 2, and 3, respectively. It seems that ε for Scenario-2 is much lower than

the other two. This is because the sub-band free probabilities are balanced, i.e., having the

same number of small and large sub-band free probabilities. On the other hand, Poisson-

normal approximation follows the exact distribution closely. The over-all approximation
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Figure 3.7: Exact distribution of Nf ree and its normal and Poisson-normal approximations

for 30 sub-bands with (a) 5 small and 5 large sub-band free probabilities and (b) 2 small

and 16 large sub-band free probabilities

errors ε’s are 0.0236, 0.0019 and 0.0181 for Scenarios-1, 2, and 3, respectively.

As seen from Figure 3.7(a), the normal approximation achieves a modal probability

0.2033 at N = 14. On the other hand, both the exact and Poisson-Normal approximation

achieve respective modal probabilities of 0.2046 and 0.2034 at N = 15. In addition, the

essential support SN f ree
of the Poisson-Normal approximation is {8, · · · , 22} which closely

follows the essential support {7, · · · , 22} of the exact distribution. In contrast, the essential

support of the normal approximation is {6, · · · , 21}.
From Figure 3.7(b), the modal probabilities for the exact distribution and its Poisson-

normal approximation are 0.2932 and 0.2933, respectively achieved at k = 24. As seen from

the figures, all distributions are more or less symmetric so far as their essential support is

concerned. The location of the distributions on its essential support depends of its set of

large sub-band free probabilities.

3.6.5 Computational Efficiency

Table 3.5 shows the computational efficiency in calculating the exact distribution of

Nf ree and its normal and Poisson-normal approximations. It is evident that the normal
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Table 3.5: Computational efficiency comparison among the exact distribution and its nor-

mal and Poisson-normal approximations

N Computational time (seconds)

Exact Normal Poisson − Normal

16 1435.14 1.11 4.08

30 2650.20 1.14 4.17

approximation is highly efficient in computing the distribution of Nf ree when compared to

the exact distribution. However, the normal approximation suffers from a higher over-all

approximation error. The computation of PrPoi−Normal(Nf ree) achieves a high accuracy and

is still considered as time efficient.

3.6.6 Probability Distribution of Xi(N)

Analytical model of the types of sub-bands based on its neighbors is described in Sec-

tion 3.5. In this sub-section, we obtain simulation results for the distributions of Xi(N), i =

I, II, III. The distribution of XIV(N) and XV(N) are not included since each of them takes

only three values, namely 0, 1, and 2 and their distributions have no significant contribution

to our probabilistic analysis.

The distributions of Xi(N) depend on the spatial and temporal variations of the sub-

band occupancy by the PUs and as well as the magnitude of sub-band free probabilities.

For example, the distribution of XI(N) for Type I sub-bands based on p1, p2, · · · , pN is

different from the distribution of XI(N) when p1, p2, · · · , pN are permuted. On the other

hand, the distribution of Nf ree is invariant under permutations.

Figure 3.8 illustrates the distributions of Nf ree, XI(N), XII(N), and XIII(N) for Scenario-

1 with N = 16. This scenario has an imbalance in the cardinalities of Subsmall and Sublarge.

Figure 3.9 compares the distribution of Xi(N)’s with that of Nf ree under Scenario-2, in

which Subsmall and Subsmall have the same cardinalities. Finally, Figure 3.10 deals with

Scenario-3 with an imbalance in the cardinality of Subsmall and Subsmall. The distributions

of Nf ree, XI(N), XII(N), and XIII(N) reflect the temporal and spatial occupancy of sub-bands

in each scenario.

From Figure 3.8, we observe specific features about distribution of Nf ree and Xi(N)’s.
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A Type III sub-band is more likely than a Type I or Type II sub-band. The mode of Nf ree is

12 and that of XI(N), XII(N), XIII(N) are 6, 4, and 1, respectively.

We compare some of the properties of the distributions under Scenarios-2 and 3, in

view of the fact that they have the same number of sub-bands, i.e., N = 30. The mean,

mode, variance, and essential support of their distributions are summarized in Table 3.6

and Table 3.7. The numbers of small pi’s and large pi’s have an impact on the modes of the

distributions. In the balanced case of 5 small and 5 large pis (i.e., Scenario-2), the mode is

15, which is located at the center of the range of the distribution of Nf ree. In the unbalanced

case of 2 small and 16 large pi’s (i.e., Scenario-3), the mode of Nf ree distribution is 24. On

the other hand, the distributions of Xi(N)’s depend on the order of the probabilities of Type

i sub-band and its neighbors.

The analysis indicates the extent of proliferation of sub-bands of each type. If we

compare the results of distribution in Figures 3.9 and 3.10, the spectrum associated with

Figure 3.10 is preferable. This conclusion is based on the following observations:

• Number of free sub-bands (Nf ree): The mode of Nf ree distribution from Figure 3.10,

namely 24, is much larger than the mode (i.e., 15) of Nf ree distribution from Figure

3.9. A SU is more likely to get a higher number of free sub-bands from the spectrum

of Figure 3.10.

• Number of Type III sub-bands: A Type III sub-band is preferable to Type I or Type

II sub-band. The spectrum of Figure 3.10 gives a mode of 14 for the distribution of

XIII(N) where as the mode is 2 for the underlying spectrum of Figure 3.9. Therefore,

the spectrum of Figure 3.10 is preferable in terms of Type III sub-bands.

• Number of Type II sub-bands: A Type II sub-band is the least preferable since both

the neighbors are occupied by PUs. The mode of distribution of XII(N) for the spec-

trum depicted in Figure 3.10 is zero where as the mode in Figure 3.9 is 2. In this

respect, the spectrum of Figure 3.10 is again preferable.

Hence, this preferential selection of one N-spectrum over the other can help in adaptive

spectrum sensing, i.e., selecting a set of preferred sub-bands for further sensing.
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Table 3.6: Probability distribution of Nf ree and Xi(N) depicted in Figure 3.9

Number of free sub-bands Probability Distribution

Mode and modal prob. Mean Variance Support

Nf ree 15 (P = 0.2034) 14.8189 3.8205 7 - 22

XI(N) 9 (P = 0.2710) 7.0424 3.6821 3 - 16

XII(N) 2 (P = 0.2739) 2.6001 1.9035 0 - 8

XIII(N) 2 (P = 0.3065) 2.1762 1.6750 0 - 8

XIV(N) 2 (P = 0.6206) 1.3860 0.2501 0 - 2

XV(N) 0 (P = 0.6831) 0.3200 0.2239 0 - 2

Table 3.7: Probability distribution of Nf ree and Xi(N) depicted in Figure 3.10

Number of free sub-bands Probability Distribution

Mode and modal prob. Mean Variance Support

Nf ree 24 (P = 0.2933) 24.1801 2.1900 19 - 29

XI(N) 8 (P = 0.2271) 8.1872 3.8169 2 - 15

XII(N) 0 (P = 0.8711) 0.1348 6.1286 0 - 3

XIII(N) 14 (P = 0.2058) 13.6783 9.3174 7 - 21

XIV(N) 2 (P = 0.5885) 1.5831 0.2539 0 - 2

XV(N) 0 (P = 0.9997) 0.4169 0.2539 0 - 2
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Figure 3.8: Comparison of probability distributions of Nf ree and Xi(N), i = I, II, III in a

spectrum of 16 sub-bands
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spectrum of 30 sub-bands with 5 small and 5 large sub-band free probabilities
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Figure 3.10: Comparison of probability distributions of Nf ree and Xi(N), i = I, II, III in a

spectrum of 30 sub-bands with 2 small and 16 large sub-band free probabilities

Table 3.8: [Mean ± r ∗ S D] intervals and probability of intervals

No. of free sub-bands Mean and mean ± SD

Mean [Mean ± σ], (p) [Mean ± 2 ∗ σ], (p) [Mean ± 3 ∗ σ], (p)

N f ree 24.1801 [22, 25], (0.8185) [21, 27], (0.9907) [19 - 28], (0.9989)

XI(N) 8.1872 [6, 10], (0.8433) [4, 12], (0.9875) [2, 14], (0.9987)

XII(N) 0.1348 [0, 0], (0.8711) [0, 1], (0.9943) [0, 2], (0.9999)

XIII(N) 13.6783 [10, 16], (0.8691) [7, 19], (0.9881) [4, 22], (0.9991)
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Table 3.9: Probability distribution of Nf ree and Xi(N)

Number of free sub-bands Equal probability p = 0.857

Mode and modal prob. Mean Variance Support

Nf ree 26 (P = 0.2034) 25.7100 3.6765 18 - 30

XI(N) 6 (P = 0.1736) 5.8523 4.6434 0 - 15

XII(N) 0 (P = 0.6095) 0.4899 0.4808 0 - 5

XIII(N) 18 (P = 0.2073) 17.6203 6.5298 6 - 21

XIV(N) 2 (P = 0.5394) 1.4689 0.3901 0 - 2

XV(N) 0 (P = 0.7699) 0.2451 0.2151 0 - 2

3.6.7 Statistical Analysis of XI(N)

Since the spectrum associated with Scenario-3 is preferable to the one under Scenario-

2, we make an in-depth statistical analysis of the former spectrum. Note that this spectrum

has 2 small and 16 large sub-band free probabilities. The distributions of Nf ree and Xi(N),

i = I, II, III are shown in Figure 3.10. It seems that the distributions are nearly normal.

To assess their normality, we calculate [mean ± i ∗ S D], the probability mass of interval

[mean± i∗S D], i = 1, 2, 3 for each of these distributions, where S D represents the standard

deviation. These results are detailed in Table 3.8. If normality prevails, the probability

masses carried by the intervals [mean ± i ∗ S D], i = 1, 2, 3 are approximately 67%, 95%,

and 99.9%, respectively.

Determination of the distribution of free sub-bands helps cognitive radio users to assess

the range of numbers of free sub-bands with high probability which are available during

spectrum sensing. The following are some of the highlights:

• Nf ree: The number of free sub-bands could be any number in the interval [21, · · · , 27]

with more than 99% probability.

• XI(N): The number of free sub-bands could be any number in the interval [6, · · · , 10]

with probability close to 85%.

• XII(N): A type II sub-band is very unlikely, i.e., around (87)%.
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Table 3.10: Binomial distribution of Nf ree and Xi(N)

Number of free sub-bands Equal probability p = 0.857

Mode Mean Variance

Nf ree 26 25.7100 3.6765

XI(N) 6 5.8815 4.6461

XII(N) 0 0.4907 0.4821

XIII(N) 18 17.6238 6.5310

XIV(N) 2 1.4689 0.3901

XV(N) 0 0.2451 0.2151

• XIII(N): The number of free sub-bands is any number within the interval [10, · · · , 16]

with (87)% probability.

• The distributions of free sub-bands of any type and any specific type are not nor-

mal. The actual distributions are narrower around the mean value than the normal

distribution.

3.6.8 Special Case (pi = p j)

We use the algorithms developed for the special case of p1, p2, · · · , p30 equal to the

mean of Beta (0.6, 0.1), as used in Scenario-3, i.e., pi = 0.857. The mean, mode and

variance of distributions of Nf ree and Xi(N) stemming from our algorithms are depicted

in Table 3.9. We have also shown in Section 3.5 that the distribution of each Xi(N) is

Binomial. Of course, the probability distribution of Nf ree is Binomial. For any Binomial

distribution, formulae for its mode, mean and variance are available. These values are

presented in Table 3.10. We see that the results of Table 3.9 match with those of Table

3.10, reflecting correctness of our algorithms.



72

3.7 Conclusion

In this chapter, we have done a probabilistic analysis of free and contiguous sub-bands

in a cognitive radio network. The critical entity in our analysis is the distribution of total

number of free sub-bands. As we have shown, the computation of the exact distribution

of the total number of free sub-bands (i.e., Nf ree) is prohibitively time-consuming and an

approach for efficient approximation is presented and analyzed. We label this approach

as Poisson-normal approximation and the execution time is reasonable as indicated by the

simulation. In addition, we focus on the analysis of contiguous sub-bands in characterizing

five different types of free sub-bands. An algorithm is developed to compute the distribution

of total number of sub-bands of each type. Once the probability distributions have been

computed, we outline ways of selecting preferable section of the target spectrum.
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Chapter 4

Hidden Markov Model in Spectrum

Sensing

4.1 Introduction

Spectrum selection, proposed in the previous chapter, selects preferable sections of

the spectrum for further sensing and detecting idle sub-bands. Sensing techniques exploit

the information provided by the statistical analysis of historical data collected on such

preferable sections of the spectrum.

The sub-band occupancy at any time instant can be considered as a state, which can

be either free (unoccupied by a PU) or busy (occupied by a PU). The states of a sub-band

are monitored over L consecutive time periods, where each time period is of a given time

interval. Existing research [34]- [38] assume existence of a Markov chain, representing

utilization of each sub-band by a PU over L time periods. However, to our best knowl-

edge, this fundamental assumption has never been validated while ought to be done for

each frequency band of interest. Further, the constituents of a Markov chain, namely, ini-

tial probability and transition matrix need to be estimated and then utilized in analytical

modeling. In this chapter, we validate existence of a Markov chain by collecting real-time

measurements [39] in the paging spectrum (928-948 MHz). While in this chapter, we focus

on the paging spectrum, the same methodology can be applied to any other spectrum band.

Since the true states (occupancy by PUs in reality) of a sub-band are never known (i.e.,
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hidden) to the CR, the authors of [34]- [37] have extended their idea of improvising the

Hidden Markov model (HMM) for the spectrum sensing. One of the critical parameters of

HMM is the set of emission probabilities [40], i.e., emission of an alphabet out of a set of

alphabets by a hidden state. The authors have used well-known algorithms to predict the set

of emission probabilities. In this chapter, we exploit a novel idea of defining the emission

probabilities. Additionally, given the parameters of the HMM and error probabilities, ob-

taining the likelihood solution is faced with computational complexities. In this chapter, we

use the Viterbi algorithm to reduce complexity. We assess the effectiveness of our method

in predicting the true states of the sub-band by performing extensive simulations. The code

for the Viterbi algorithm is developed and its usefulness is checked using simulations.

There are two possible cases. The first option is to deal with the situation when the

parameters of the Hidden Markov model and error probabilities are known. Obtaining the

likelihood solution is faced with computational difficulties which we overcome using the

Viterbi algorithm. We assess the effectiveness of our method in predicting the true states

of the sub-band by performing extensive simulations [41]. The second alternative is to

deal with the situation when the parameters of Markov chain and the error probabilities are

unknown. We employ Expectation-Maximization (EM) algorithm to estimate these param-

eters. A code for executing both the Viterbi algorithm and EM algorithm are provided and

their usefulness is checked using simulations.

The rest of the chapter is organized as follows. Section 4.2 talks about the issues already

dealt with in spectrum sensing and detection. Section 4.3 presents the system model using

Markov Chain. Section 4.4 validates the assumption of Markov chain in spectrum occu-

pancy by licensed users. Section 4.5 deals with the estimation of Hidden Markov Model

parameters in probabilistic spectrum sensing. Section 4.6 deals with the underlying con-

cepts of Viterbi algorithm and Expectation-Maximization algorithm required in predicting

the path of the Hidden Markov Chain. Section 4.7 deals with the significance of Hidden

Markov Models in probabilistic spectrum sensing. Section 4.8 evaluates our application of

Hidden Markov Model approach for CR spectrum sensing in a Cognitive Radio Network

(CRN) through simulation results. Finally, Section 4.9 draws the conclusion.
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4.2 Related Work on Spectrum Sensing

In this section, we describe various avenues of work taken in the area of spectrum sens-

ing, a primary role performed by a CR in the licensed bands. The work in [42] deals with

an eigenvalue based sensing algorithm and employs a decision process approach based

on the maximum and the minimum Eigen values for transformed covariance matrix ob-

tained by sampling and filtering the received signal. The simulation results [42] indicate

minimal signal-to-noise ratio (SNR), much below than the probability of false alarm and

mis-detection. But, the algorithm accuracy in a real scenario, has never been dealt with.

Fast Fourier Transform (FFT)-based pilot sensing algorithm discussed in [43] detects pi-

lot signal in ATSC Vestigial Sideband (VSB) television signals. Varying length FFTs are

utilized based on limiting the sensing period in a chosen sensing window. The squared

FFT output is compared with a predetermined threshold value that relates to the desired

probability of false alarm. The concept of a Frequency-Phase Locked Loop (FPLL) is in-

troduced in [44] where the convergence of the results in two frequency tracking blocks are

compared, even at lower SNR values of the ATSC VSB television signal. Numerous signal

processing techniques have been used in [45]- [48]. Spectral correlation method [45] is

used to compare the spectral components of the received signal with the pre-stored values

of spectral information for NTSC or DTV signals. If the value of the received spectral

component is higher than the predetermined value, this method declares the presence of a

NTSC or a DTV signal. Similar technique is used in [45] to detect wireless microphones

as the PUs. The cyclostationary feature of the ATSC television signals has been exploited

in [46] since this feature distinctly identifies desired signal from noise as Gaussian noise

does not possess this characteristic. The authors in [46] used spectrum sensing techniques

in detecting peaks of the cyclic spectrum in the received signal to decide the presence of

the ATSC signals. Finally, the authors in [47] and [48] use similar concepts of computing

covariance matrix and maximum and minimum Eigenvalues to detect the ATSC television

signals as well as wireless microphones.

In [45]- [48], instead of focusing on the percentage accuracy of detection by a CR, the

authors focus on the efficiency of their spectrum sensing algorithms based on the parame-

ters like sensing period and the sensitivity of incumbent detection at lowest possible SNR
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values. Our research work focuses on the following aspects of spectrum sensing:

• Adapt the Viterbi algorithm to find the likelihood solution to the prediction of true states

problem with the knowledge of the probability of false alarm and mis-detection and com-

pute the percentage prediction accuracy in sub-band availability sensing and detection of

PUs

• The authors in [38] assume Markovian model while considering the scenario of avail-

ability of PUs in a certain sub-band. Any Markov model requires a-priori knowledge of

the initial probability distribution of states and all possible transitions. In the worst case,

these parameter values may be unknown to the CR. We have addressed the estimation prob-

lem using the Expectation-Maximization algorithm and evaluate the efficiency of the EM

algorithm by estimating the unknown parameters needed for the Markovian model.

4.3 System Model and Problem Formulation

The configuration of our proposed spectrum sensing model for a specific sub-band is

shown in Figure 4.1. The same model can be applied for several sub-bands in an operating

spectrum. Power measurements are collected for a sub-band over regular time intervals

(in seconds) spanning an observation period (typically, hundreds of seconds). These mea-

surements transformed into binary occupancy data Y serve as the historic data for offline

reference by the CR as shown in Figure 4.1. Based on retrieved measurements, CR is

trained to perform a validation check to ensure Markovian property of spectrum occupancy

by PUs over time for the sub-band under consideration. If the sub-band occupancy follows

a Markov chain, associated parameters are estimated. Simultaneously, the CR also senses

the spectrum, using any of the existing spectrum sensing techniques [42] - [48], for PU

occupancy and passes this information X to the HMM block. With this information under

the purview of HMM, the Viterbi algorithm generates the predicted results. This predicted

output X
′
, as well as the output X generated by the CR, can now be compared with the

actual PU occupancy Y to scutinize the efficiency of our proposed prediction mechanism.

The details of each block is illustrated in the following sections.

We define an observation period τ = {1, 2, · · · ,T }, where each i in τ represents the ith
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Figure 4.1: The system model implemented for enhanced spectrum sensing.

sensing duration. We also define a sequence Y = {y1, · · · , yT }, which represents the true

states of the sub-band in the corresponding time periods. The entity yi=1 if the sub-band is

free at the ith time instant and yi=0 otherwise. The CR output generated by a sensing mech-

anism is represented by a sequence X = {x1, · · · , xT } of sensed states in the corresponding

time periods. The entity xi = 1 if the state of the sub-band is sensed to be free at the ith

sensing slot and xi = 0 otherwise. The sequence X represents the prediction of the true state

sequence Y = {y1, · · · , yT }.

In practice, the true state sequence Y is unobservable. Collecting real-time measure-

ments is laborious, time-consuming and expensive. Hence, various sensing mechanisms

[42] - [48] have been proposed to monitor the utilization of a sub-band. The results of

these sensing mechanisms gives rise to the sensed sequence X as described earlier. The

readings provided by the sensing mechanisms are prone to errors of order of about 10%,

namely the mis-detections and false-alarms [38]. More formally, the error probabilities are

expressed as Pr(xi = 1|yi = 0) for the probability of mis-detection and Pr(xi = 0|yi = 1) for

the probability of false-alarm. Our research work is an endeavor of enhancing the sensing

accuracy of any sensed state sequence X obtained from a sensing mechanism under the

assumption that the true state vector Y and predictor X are governed by a Hidden Markov

model.
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4.4 Markov Chain Modeling of True States and its Vali-

dation

The sub-band occupancy by a PU in any time slot is not predictable and thus taken to

be random. As an example, Wyglinski et al. [10] monitored the paging band with center

frequencies at 929.04 MHz and 929.56 MHz over 500 consecutive time slots using two

patch antennas and the power patterns shown in Figure 4.2(a) and (b) are observed on a

spectrum analyzer. If the power ≥ −70 dBm, it signifies that the sub-band is used by its PU

and power below −70 dBm implies that the sub-bad is free.

The sequence Y is modeled as a Markov chain, which is characterized by an initial dis-

tribution π = (p0, p1) and one-step transition matrix P = (pi j)(2×2), i, j ∈ S . More formally,

Y = y1, y2, · · · , yT is a Markov chain with state space S = {0, 1}, the distribution of y1 is π

and

Pr(yn = j|y1 = i1, · · · , yn−2 = in−2, yn−1 = i

= Pr(yn = j|yn−1 = i),

= pi j. (4.1)

for every i1, i2, · · · , in−2, i, j ∈ S and 2 ≥ n ≤ T .

These stipulations gives the joint distribution of y1, y2, · · · , yT and is expressed as:

Pr(y1 = i1, y2 = i2, · · · , yT = iT ) = pi1 pi1i2 pi2i3 · · · piT−1iT (4.2)

for all i1, i2, · · · , iT ∈ S .

4.4.1 Markov Chain Assumption Validation

Previous research works have considered that the spectrum occupancy by the PUs fol-

lows a Markov chain model. This assumption is substantiated with results obtained from

the real-time measurements while experiments have been conducted on the paging band

(928 MHz to 948 MHz) as shown in Figure 4.2. The details of the measurement set-up is

in Section 2.2.
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(b) Power pattern observed on a paging band with center fre-

quency 929.56 MHz.

Figure 4.2: Power measurements obtained from paging bands over 500 time periods.
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Table 4.1: Statistical parameters of Estimation

Freq. (MHz) Estimation Statistics (%)

Min Max I Quartile III Quartile Mean

929.04 89 100 95 97 95.7230

929.06 83 98 90 93 91.2740

929.08 84 98 90 93 91.2090

929.10 83 97 90 93 91.2660

929.56 91 99 95 97 95.8170

To show that the Markov chain model fits well with the PU occupancy, we followed a

cross-validation technique. First, we defined a hard threshold of −70 dBm for the power

values obtained from the experiment. Now for each observation period, ranging from 1 to

500, we decided whether the power value is higher (state is 0) or lower (state is 1) than the

defined threshold. Once we have the states over the observation period of 500 durations, we

extract the probabilities required to obtain the transition matrix of the Markov chain using

the first 400 readings. Now, we would estimate the remaining 100 states using the transition

matrix parameter. Since we conducted the experiment for one day, the initial distribution

of the paging bands are not available. Hence, we assumed that out of the 100 readings, the

first reading, i.e., the 401th power measurement is known to us. With this information, and

the extracted transition matrix from the previous 400 readings, we estimated the remaining

99 states for each paging band. The statistical parameters of our estimation are provided in

Table 4.1. The histogram plots of estimation for two frequency bands are shown in Figure

4.3 over 1000 iterations.

4.5 HMM Parameter Estimation

The key idea in this chapter is to introduce a HMM in representing the evolution of

occupancy/non-occupancy of a sub-band by its PU over time and measurements of the CR.

In this section, we outline the basic operational system of an HMM and then bring the

model under the purview of CR.
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Figure 4.3: Estimation accuracy of our Markov chain model over paging bands for 99

observation periods performed over 1000 iterations.
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Figure 4.4: Hidden Markov model representation in spectrum sensing

An HMM is composed of two stochastic processes Y1,Y2, · · · and X1, X2, · · · with the

following properties.

1. The process Y1,Y2, · · · is a Markov chain with finite state space S, π defined in the pre-

vious section.

2. The process X1, X2, · · · takes values in the alphabet space A = {1, 2, · · · ,m}. The con-

ditional distribution of X1, X2, · · · , Xn|Y1,Y2, · · · ,Yn is governed by an emission matrix E =

(e j(i))m×k, which has the following properties:

In the context of spectrum sensing, the true states Y of sub-band occupancy are never

observable and are needed to be sensed using different sensing techniques. Hence, the

Markov chain, constituting the true sequence Y , is hidden and the name for this type of

model is hidden Markov model [40], [49]. A HMM is a stochastic process created by two

interrelated probabilistic functions. One of these functions is the above mentioned Markov

chain with a finite number of states. The other is a set of random functions, referred to

as the alphabet, wherein each function generates a symbol related to a state in the Markov

chain.

The general concept of HMM is illustrated in Figure 4.4. A system over discrete time

1, 2, 3, · · · is moving stochastically from one state to another with states from a defined
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state space S . Let Yn be the state in which the system is in at time n. The process is

assumed to be Markovian. The evolution of the sequence Y1,Y2, · · · is hidden. However,

the hidden sequence can be represented by a sequence of symbols from the alphabet Ω

= {0, 1, 2, · · · ,N}. A state k can produce a symbol b from a distribution over all possible

symbols b = 0, 1, · · · ,N and its probability can be represented as:

ek(b) = Pr(Xn = b|Yn = k). (4.3)

These probabilities are known as emission probabilities as shown in Figure 4.4. The system

in state i can emit any one of the symbols from the alphabet with the following distribution:

S tate o f the system : i, i = 0, 1, 2, · · · ,M

Alphabet : 0 1 2 · · · N

Emission probability : ei(0) ei(1) ei(2) · · · ei(N).

Let Xn be the emitted symbol by the system at time n. The process X1, X2, · · · is inde-

pendent with each Xn taking values 0, 1, 2, · · · ,N with the following distribution:

Pr(Xn = b|Yn = i) = ei(b),

b = 0, 1, 2, · · · ,N, and

i = 0, 1, 2, · · · ,M.

The process X1, X2, · · · is observable. Based on the observed process, the hidden sequence

can be estimated, either by finding the most likely one, or alternatively by using a-posteriori

distributions over states [40].

The output of spectrum sensing is now formulated on the basis of the generic HMM

defined above. The hidden sequence is the sub-band occupancy sequence Y = Y1, · · · ,YT ,

the observed sequence X1, · · · , XT is the sequence of decisions generated by the sensing

technique used by a SU. In the spectrum sensing HMM, the challenge lies in framing

emission probabilities which has precise correlation with output of any spectrum sensing

technique. Once the emission probabilities are computed, maximum likelihood approach

[40] can be adopted to estimate the hidden sequence Y .

Our research work emphasize on the following steps:
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• Develop emission probabilities;

• Correlate these probabilities with a spectrum sensing technique; and

• Estimate the hidden sequence Y using maximum likelihood approach.

Once the sensed sequence is obtained from a sensing technique, the maximum likeli-

hood approach calculates probabilities of all possible sub-band occupancy sequences, i.e.,

the joint occurrence of the sensed sequence and the occupancy sequence. This joint oc-

currence of both the sequences is interpreted as the joint distribution of the two sequences.

The maximum likelihood approach consists of the following procedure:

• Step 1: Compute the joint distribution of the sensed sequence x = X1 = x1, X2 =

x2, · · · , XT = xT and a possible sub-band occupancy sequence y = Y1 = y1,Y2 =

y2, · · · ,YT = yT ;

• Step 2: Compute joint distributions for all possible sub-band occupancy sequences;

and

• Step 3: Find the distribution which gives the maximum probability and the corre-

sponding sub-band occupancy sequence is the estimate of the true sub-band occu-

pancy.

We define P(x; y) as the the joint distribution of the sequence x generated by the spec-

trum sensing technique and the occupancy sequence y. The joint distribution can be written

as:

Pr(x; y)

= Pr(x1, x2, · · · , xT ; y1, y2, · · · , yT )

= Pr(getting the data x under the path y)

= [Pr(Y1 = y1)Pr(X1 = x1|Y1 = y1)] ×

[Pr(Y2 = y2|Y1 = y1)Pr(X2 = x2|Y2 = y2)] ×

[Pr(Y3 = y3|Y2 = y2)Pr(X3 = x3|Y3 = y3)] × · · ·

[Pr(YT = yT |YT−1 = yT−1)Pr(XT = xT |YT = yT )].

(4.4)
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Using notations for transition probability and emission probability defined in Eqs. (4.1)

and (4.2), Eq. (4.4) can be further written as:

Pr(x; y)

= [py1
ey1

(x1)] × [ay1y2
ey2

(x2)] × · · · × [ayT−1yT eyT (xT )].

= py1
× ΠTi=1ayiyi+1

eyi
(xi). (4.5)

Eq. (4.5) shows that the probability P(x; y) can be computed if the initial distribution,

transition matrix, and emission probabilities are known. The occupancy sequence Y1 =

y∗
1
,Y2 = y∗

2
, · · · ,YT = y∗T , which maximizes P(x; y) over all paths y, is the path y∗ we seek.

The predicted path y∗ = (y∗
1
, y∗

2
, · · · , y∗T ) is called the maximum likelihood sequence.

For a given data x, the likelihood prediction of the underlying path of the Hidden

Markov chain requires computation of the joint probability P(x; y) for every possible path y

of length T . Even for moderate values of T , the set of all possible paths is astronomically

large. For example, if T = 100 and M = 1, the number of paths is 2100, which is incom-

prehensible to handle. The computational complexity of the likelihood approach involves

2T × (2T ) multiplications. Computation time required to find the maximum likelihood

sequence on a Intel 3.2 GHz processor with 1GB RAM is 21.303348 seconds for T = 10,

86.221069 seconds for T = 12, and 373.666768 seconds for T = 14 for 10, 000 iterations.

4.6 Viterbi Algorithm and the Expectation Maximization

Algorithm

4.6.1 Viterbi-based Sensing Algorithm

Viterbi-based sending algorithm is developed that uses a dynamic programming to find

the optimal path, exploiting the structure of the relationship between various P(x; y)s. The

basic idea is to successively compute P(x; y) for L = 1, 2, 3, · · · .
Step 1: Initialization:

L = 1,

Data : x1,
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Compute vi(1) = pi × ei(x1),

ptr1(i) = i, i = 0, 1, 2, · · · ,M.

• Step 2: Recursion:

L = 2,

Data : x1, x2.

Determine the optimal path y = (y1, y2) with y2 = 0. For this, compute the following:

P(x1, x2; 0, 0) = [p0 × e0(x1)][a00 × e0(x2)]

P(x1, x2; 1, 0) = [p1 × e1(x1)][a10 × e0(x2)]

· · · · · · · · ·

P(x1, x2; M, 0) = [pM × eM(x1)][aM0 × e0(x2)].

For the optimal y = (y1, 0), we compute:

v0(2) = max {P(x1, x2; i, 0) : 0 ≤ i ≤ M}

= e0(x2) max {piei(x1)ai0 : 0 ≤ i ≤ M}

= e0(x2) max {vi(1)ai0 : 0 ≤ i ≤ M}.

ptr2(0) = argmax {vi(1)ai0 : 0 ≤ i ≤ M}.

For the optimal path y = (y1, y2) with y2 = j, compute the following:

v j(2) = e j(x2) max{vi(1)ai j : 0 ≤ i ≤ M} and

ptr2( j) = argmax {vi(1)ai j : 0 ≤ i ≤ M}, j = 0, 1, 2, · · · ,M.

• Step 3:

L = 3

Data : x1, x2, x3.

Compute

v j(3) = e j(x3) max{v j(2)ai j : 0 ≤ i ≤ M} and

ptr3( j) = argmax{v j(2)ai j : 0 ≤ i ≤ M}, j = 0, 1, 2, · · · ,M.
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Continue the same computations for (L − 1)-th step. Finally the L-th step is executed as

follows:

• Step L

Data : x1, x2, · · · , xL

Compute

v j(L) = e j(xL) max{vi(L − 1)ai j : 0 ≤ i ≤ M} and

ptrL( j) = argmax{vi(L − 1)ai j : 0 ≤ i ≤ M}, j = 0, 1, 2, · · · ,M.

• Termination step:

For the optimal path y∗ = (y∗
1
, y∗

2
, · · · , y∗L), calculate:

P(x; y) = max{v j(L) : 0 ≤ j ≤ M},

y∗L = argmax{v j(L) : 0 ≤ j ≤ M},

y∗L−1 = ptrL(y∗L),

y∗L−2 = ptrL−1(y∗L−1),

· · · · · ·

y∗1 = ptr2(y∗2).

4.6.2 Expectation Maximization Algorithm

When the initial distribution, transition matrix, and emission probabilities are known,

Viterbi algorithm can be employed to determine the optimal (likelihood) hidden path. Now,

we consider the case when the underlying parameter values are unknown. The only infor-

mation we have is the data x = (x1, x2, · · · , xL). Following the paradigm of EM algorithm,

we outline a method for estimating the unknown parameters. For a general exposition on

EM algorithm, see [50].

• Step 1:

Initial guesses

Initial distribution : p(1) = (p
(1)

0
, p(1)

1
, · · · , p(1)

M )

Transition matrix : P(1) = (a
(1)

i j )
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Simulate the Markov chain to get a path y
(1)

1
, y(1)

2
, · · · , y(1)

L of length L.

• Step 2: Estimate the emission probabilities using the data and the simulated path as

follows:

e
(1)

i (k) =
# {1 ≤ s ≤ L, 1 ≤ r ≤ L : xs = k, y(1)

r = i}
# {1 ≤ r ≤ L : y

(1)
r = i}

,

k = 0, 1, 2, · · · ,N,

i = 0, 1, 2, · · · ,M.

Since ei(k) is the conditional probability of emitting Letter k, given that the system is in

State i, we count how many times the State i has occured along the path (y
(1)

1
, y(1)

2
, · · · , y(1)

L ).

Among these tagged i’s, we count how many times the Letter k occurs in the data x1, x2, · · · , xL.

The ratio of these two counts is an estimate of ei(k).

• Step 3: Use the Viterbi algorithm to determine the optimal path y(2) = (y
(2)

1
, y(2)

2
, · · · , y(2)

L )

using p(1), P(1) and e
(1)

i (k)s.

• Step 4: Using the path y(2), estimate the initial distribution p(2) = (p
(2)

0
, p(2)

1
, · · · , p(2)

M ) and

the transition matrix P(2) = (a
(2)

i j ).

Addendum:

The estimation proceeds in the standard way. More specifically,

p
(2)

i =
#{1 ≤ r ≤ L : y

(2)
r = i}

L
, i = 0, 1, 2, · · · ,M, and

a
(2)

i j =
Number o f one − step transitions y

(2)
r = i and y

(2)

r+1
= j

Number o f one − step transitions y
(2)
r = i and y

(2)

r+1
= s, 0 ≤ s ≤ M

,

f or i = 0, 1, 2, · · · ,M and j = 0, 1, 2, · · · ,M. (4.6)

• Step 5: Using the path y(2) and data x, estimate the emission probabilities e
(2)

i (k)s as in

Step 2.

• Step 6: Use the Viterbi algorithm to determine the optimal path y(3) = (y
(3)

1
, y(3)

2
, · · · , y(3)

L )

using p(2), P(2) and e
(2)

i (k)s.

Steps 4, 5, and 6 are repeated until each absolute difference of corresponding estimate

≤ 0.0001. The final set of parameter values are the desired estimates.
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4.7 Hidden Markov Model in Spectrum Sensing

Spectrum sensing is a vital part of the dynamic spectrum access needed by the CR users.

The SUs need to sense whether a particular sub-band is free for its communication or is

currently being used by a PU. The possible states can be either a used sub-band (considered

as 0 in our model) or a free sub-band (considered as 1 in our model). The general notation

used in Section 4.3, M is 1. These states are monitored for a finite duration of time (24

hours), at intervals of 15 minutes. The transition of states between two adjacent intervals

are assumed to be stochastically dependent. To be specific, we assume one-step memory

model, also known as the Markov model, i.e., the current state of the sub-band is dependent

only on the previous state and not on the other earlier states.

Now, to utilize the Markov model in spectrum sensing, we need two sets of parameters:

(i) initial distribution, and (ii) transition matrix for all possible states. These two sets are

not usually available in the context of CRN, but can be determined by adopting a learning

process over an extensive time period. In this work, we study variations in the prediction

accuracy of sensing when these two sets of parameters are changed.

Design of the emission probability matrix required for the hidden Markov model is

more intriguing and demands the knowledge of the 802.22 standard [51]. The Dynamic

Frequency Selection model imposed by the Federal Communications Commission (FCC)

in the 5 GHz band [51], the probability of detection (1 − δ) is 90% when the PUs are

either wireless phones or TV broadcasting. From the sensing perspective, this implies that

the State 0 is detected correctly (State 0) for 90% of the time. Hence, the probability

of mis-detection δ is only 10%. Similarly, the probability of false alarm ε is 10% for

both wireless microphone and TV user incumbents (PUs in our context). Again, from the

sensing perspective, the SUs can make an erroneous decision of a free sub-band (State 1)

being declared as used by a PU (State 0). Now, we need to analyze their significance in

terms of emission probability discussed in the previous section.

In the terminology of a Hidden Markov model, the letter space is Ω = {0, 1} = S . The

emission probabilities now acquire special significance.

e0(0) = Pr(Cognitive radio identi f ies the state to be 0 | True state is 0)
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Table 4.2: Emission Probability for Spectrum Sensing

Observed States True States

0 1

0 (1 − δ) = 0.9 ε = 0.1

1 δ = 0.1 (1 − ε) = 0.9

= 1 − δ;

e0(1) = Pr(Cognitive radio identi f ies the state to be 1 | True state is 0)

= δ;

e1(0) = Pr(Cognitive radio identi f ies the state to be 0 | True state is 1)

= ε;

e0(0) = Pr(Cognitive radio identi f ies the state to be 0 | True state is 0)

= 1 − ε. (4.7)

Here, the true state represents the actual scenario which is never known to a SU and an

observed state depicts the sensed or detected scenario by a SU. As per the 802.22 standard,

SU is supposed to sense the presence of a PU in the sub-band with 90% efficiency. This can

be interpreted as the emission probability e0(0) of State 0 (the observed state = 0) when the

PU is using the sub-band (true state = 0) is 0.9. Therefore, the emission probability e0(1)

of State 1 (observed state = 1) when the true state is 0 is 0.1. Again, based on the 802.22

standard, the emission probability e1(1) of State 1 when the true state is 1 is 0.9. It is better

explained in Table 4.1 below, with the true states run across the top row and the observed

states are indicated in the left-most column.

With the initial distribution, transition matrix and the emission probability matrix, we

can apply the Viterbi algorithm to predict the actual scenario of the availability of a par-

ticular sub-band over time and study the percentage accuracy in spectrum sensing. The

additional information needed for the Viterbi algorithm by the SU is the observed sequence

which is detected or sensed sequence of the availability of the sub-band over time. The

percentage accuracy of the Viterbi algorithm is examined in the next section.
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Expectation Maximization Problem

Known value: Detected sequence (X1 …, X100) by a SU 

Step 1: Initial guess:                                          

Initial distribution: p0 and p1;

Transition matrix: P = a(i, j);

Simulate Markov chain to obtain a path, y1…y100.

Step 2: Estimate emission probabilities ei(0), ei(1) 

Using detected sequence and simulated path in Step 1.

Step 3: Apply Viterbi algorithm:           

Compute optimal path, Y = (Y1, …, Y100) using

initial guesses and ei(0) and ei(1).

Step 4: Using Y, estimate p0, p1 and P.

Step 5:Using Y and sensed sequence, estimate e(0) and e(1).

Step 6: Use these estimates as initial guesses.

Repeat steps 2, 3, 4 and 5.

Step 7: Checking condition: Difference between estimates 

and initial guess <= 0.0001, end computations.

These final estimates are the likelihood estimates of 

Expectation-Maximization algorithm

Figure 4.5: Expectation-maximization algorithm for estimating parameter values

However, the initial distribution, transition matrix and the emission probability ma-

trix are not known in practice. The sensed sub-band availability sequence by the SU is

the only information available. In such a case, we can apply the EM algorithm within the

sensed sub-band sequence by estimating the initial distribution, transition matrix and emis-

sion probability matrix. A detailed general description of the EM algorithm was given in

Section 4.4. The EM algorithm for estimation tailored to our needs is explained in Figure

4.5.

4.8 Validation and Simulation Results

In this section, we conduct some empirical studies of percentage accuracy of the Viterbi

algorithm. The specifications are:

We have considered three cases to substantiate our validation and percentage accuracy of

the Viterbi algorithm.
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Case I:

Transition matrix P =

⎛⎜⎜⎜⎜⎜⎜⎝ 0.3 0.7

0.2 0.8

⎞⎟⎟⎟⎟⎟⎟⎠ .
Case II:

Transition matrix P =

⎛⎜⎜⎜⎜⎜⎜⎝ 0.4 0.6

0.6 0.4

⎞⎟⎟⎟⎟⎟⎟⎠ .
Case III:

Transition matrix P =

⎛⎜⎜⎜⎜⎜⎜⎝ 0.5 0.5

0.5 0.5

⎞⎟⎟⎟⎟⎟⎟⎠ .
The initial distribution for each case is determined by the following steady-state equa-

tion:

(p0, p1) × P = (p0, p1),

p0 + p1 = 1. (4.8)

Emission probability matrix is specified in Table 4.2.

We have simulated the Viterbi algorithm under two different scenarios:

Scenario 1 : δ = 0.05 and (1 − ε) = 0.95, 0.9, 0.85 and 0.8, and

Scenario 2 : ε = 0.05 and (1 − δ) = 0.95, 0.9, 0.85 and 0.8.

In the simulation work under each case, the initial distribution and transition matrix are

fixed.

• Step 1 : Using the initial distribution and transition matrix, simulate the Markov chain of

length L = 100, leading to a path y1, y2, · · · , y100.

• Step 2 : Under each scenario for each choice of ε and δ, generate data x1, x2, · · · , x100

using the simulated path y1, y2, · · · , y100.

• Step 3 : Apply the Viterbi algorithm detailed in Section 4.4 to the data x1, x2, · · · , x100 to

predict the underlying path as y∗
1
, y∗

2
, · · · , y∗

100
.

• Step 4 : Calculate prediction accuracy (PA) by:

PA =
#{1 ≤ i ≤ 100 : y∗i = yi}

100
× 100. (4.9)

Repeat Step 1 to 4 for 10,000 times. The histogram of these PA percentages are as

shown in Figure 4.6 (Scenario 1) and Figure 4.7 (Scenario 2) and also for different cases
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Figure 4.6: Frequency distribution of prediction accuracy percentage of the Viterbi algo-

rithm with mis-detection probability (Pmd) δ = 0.05 and false alarm probability (Pfa) ε
specified in the inset of each histogram (Case I, Scenario 1)

shown in Figure 4.8 and Figure 4.9. The corresponding normal approximation curves are

given in Figure 4.10 and Figure 4.11.

Under scenario 1 shown in Figure 4.6 ( δ = 0.05 and ε = 0.05, 0.1, 0.15, 0.20), the

prediction accuracy decreases as ε is increased. The standard deviation (Std) of accuracy

is more or less stable around 5.0. For the chosen initial distribution and transition matrix,

there will be high propensity of true state being 1 in the path generated by the Markov chain

and transitions 0 to 1 and 1 to 1 are much more common. If the false alarm (reading 1 as

0) probability increases, the accuracy also decreases.

Under scenario 2 shown in Figure 4.7 (ε = 0.05 and δ = 0.05, 0.1, 0.15, 0.2), the pre-

diction accuracy is more or less stable around 76% and the standard deviation of accuracy

is also stable around 4.98. It is less frequent to have the State 0 in the path generated by

the Markov chain and the percentage mis-readings (reading 0 as 1) do remain stable. The

histograms are well-approximated by the normal curves shown in Figures 4.10 and 4.11.

The Central Limit Theorem seems to be playing a major role in this situation.
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Figure 4.7: Frequency distribution of prediction accuracy percentage of the Viterbi algo-

rithm with ε = 0.05 and δ specified in the inset of each histogram (Case I, Scenario 2)
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Figure 4.8: Frequency distribution of prediction accuracy percentage of the Viterbi algo-

rithm with ε = 0.05 and δ specified in the inset of each histogram (Case II, Scenario 2)
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Figure 4.9: Frequency distribution of prediction accuracy percentage of the Viterbi algo-

rithm with ε = 0.05 and δ specified in the inset of each histogram (Case III, Scenario 2)

The prediction accuracy depends on the underlying initial distribution and transition

matrix. In practice, these are unknown. One can estimate these entities if one observes

the availability of the sub-band over a long stretch of time. One can use the EM algorithm

developed in this work for estimation.

In order to assess how well the EM algorithm recaptures the underlying initial distri-

bution, the transition matrix and the emission probabilities, we have performed extensive

simulations. Initial distribution (p0, p1) and transition matrix P are taken to be the same as

those described in the simulation work on the Viterbi algorithm for Case I. For emission

probability matrix (EP), take δ = 0.05 and ε = 0.1. Using these specifications, gener-

ate data x1, x2, · · · , x100 of length 100 as explained for the simulations. We use these data

to estimate the underlying parameter values. For utilizing the EM algorithm, we need a

preliminary guess of the initial distribution and transition matrix. We enlisted below the

preliminary guesses (p0, p1, and P) and final estimates ( p̃0, p̃1, P̃, and ẼP).

We can compare the final estimates with true values of the set of parameters given in
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Figure 4.10: Normal approximation of the Viterbi algorithm for Case I with δ = 0.05 and ε
specified in the inset
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Figure 4.11: Normal approximation of the Viterbi algorithm for Case I with ε = 0.05 and δ
specified in the inset
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Case I. As one can see from the list, the accuracy of estimates depends on the initial guess.

If the initial guess do not differ markedly from the true values, the initial distribution can

be well estimated to the actual values (p0 = 0.223 and p1 = 0.777). One of the important

inference from the estimates of emission probability is that δ is well estimated by the Set

I guesses of parameters and this estimation degrades as we move down to guesses in Set

V. Additionally, ε is well estimated by the set of parameter in Set V and this estimation

degrades as we move up to the guesses made in Set I.

Par. Set: (p0, p1), P, ( p̃0, p̃1), P̃, ẼP

S etI : (0.4, 0.6),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.4 0.6

0.6 0.4

⎞⎟⎟⎟⎟⎟⎟⎠ , (0.28, 0.72),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.3704 0.6296

0.2361 0.7639

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝ 0.9524 0.1519

0.0476 0.8481

⎞⎟⎟⎟⎟⎟⎟⎠ .

S etII : (0.5, 0.5),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.5 0.5

0.5 0.5

⎞⎟⎟⎟⎟⎟⎟⎠ , (0.26, 0.74),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.2308 0.7692

0.2740 0.7260

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝ 0.9467 0.1350

0.0533 0.8650

⎞⎟⎟⎟⎟⎟⎟⎠ .

S etIII : (0.6, 0.4),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.6 0.4

0.4 0.6

⎞⎟⎟⎟⎟⎟⎟⎠ , (0.26, 0.74),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.2727 0.7273

0.2208 0.7792

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝ 0.9331 0.1294

0.0669 0.8706

⎞⎟⎟⎟⎟⎟⎟⎠ .

S etIV : (0.7, 0.3),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.7 0.3

0.3 0.7

⎞⎟⎟⎟⎟⎟⎟⎠ , (0.25, 0.75),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.32 0.68

0.2297 0.7703

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝ 0.9286 0.1244

0.0714 0.8756

⎞⎟⎟⎟⎟⎟⎟⎠ .

S etV : (0.8, 0.2),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.8 0.2

0.2 0.8

⎞⎟⎟⎟⎟⎟⎟⎠ , (0.26, 0.74),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.3077 0.6923

0.2466 0.7534

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝ 0.9175 0.1125

0.0825 0.8875

⎞⎟⎟⎟⎟⎟⎟⎠ .

S etVI : (0.6, 0.4),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.5 0.5

0.5 0.5

⎞⎟⎟⎟⎟⎟⎟⎠ , (0.24, 0.76),

⎛⎜⎜⎜⎜⎜⎜⎝ 0.3043 0.6957

0.2237 0.7763

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝ 0.9389 0.1241

0.0611 0.8759

⎞⎟⎟⎟⎟⎟⎟⎠ .

Using each of the set of estimates in the list, we applied the Viterbi algorithm to predict

the hidden states and compared them with the states generated by the true Markov chain
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Table 4.3: Estimation accuracy for the EM algorithm

Par. Set Estimated values

Mean Std

Set 1 75.3904 5.3619

Set 2 75.4020 5.3882

Set 3 75.4738 5.3390

Set 4 75.3695 5.3411

and emission probabilities for prediction accuracy. The results are shown in Table 4.3.

These estimated mean percentage accuracy and Std approaches quite close to the actual

mean value (79.70) and actual Std (5.03) as also indicated in Figure 4.8. This validates the

efficiency of the EM algorithm and we can conclude that the cognitive radio is capable of

generating the set of unknown parameters and detect the availability of PUs in a sub-band

with 75.5% prediction accuracy. We must remember that these values were computed in

presence of the probability of false alarm and mis-detection.

4.9 Conclusion

One of the primary tasks of the cognitive radio is to sense whether or not a particular

sub-band is free for a SU and true state determination of the sub-band (1 = Free; 0 = Not

free) is the main objective. An incorrect reading of the true state could occur. The goal

is to predict the true state of the sub-band given its reading. We treat this problem by the

probability theory. We assume that the true states of the sub-band follows a Markov model.

The true path of the states is hidden to the SU. The only data available to the SU are the

readings of the states by the cognitive radio. In this chapter, we use the likelihood method

for prediction of true states. The computational complexity that arises is solved by using

the Viterbi algorithm. If the underlying parameter values are unknown, we have developed

an Expectation-Maximization algorithm for estimation.
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Chapter 5

Game Theoretic Approach in Spectrum

Sharing

5.1 Introduction

Dynamic spectrum sharing [53], [54] depends upon detection and location of the PUs

that implies information about the radio environment and the transmission power measure-

ment for each channel in an operating spectrum. Coexistence of PUs and SUs leads to

the following conflict problems: (i) Limitation on the transmission power in each channel

for minimum interference to coexisting PUs, and (ii) Certain signal-to-noise ratio (SNR)

required for data transmission of SUs without substantial performance degradation. Coop-

eration [54] among SUs has proved to be beneficial in solving such contradictory interests.

Such cooperation can be achieved with the application of well-known concepts of Game

Theory [55], [56].

Existing research work on Game theory [57], [58] have focused on transmission power

allocation on available channels. Since the SUs coexist with the PUs in an operating spec-

trum, mere consideration of transmission power limits on a channel may not be sufficient.

The presence of PUs in adjacent channels demand reduced signal power transmission on

an available channel for minimum adjacent channel interference. Hence, the occupancy

of the neighboring channels is a critical parameter for improved spectrum sharing. Some

other research work [59] - [69] have developed pricing and utility functions in a multiple
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buyers (SUs in the context of CR) and multiple sellers (PUs) environment. The basic as-

sumption is that the PUs communicate with the SUs before spectrum allocation. Here, we

do not make such assumption and develop a Game theoretic strategy among the SUs only.

Therefore, there is no communication between the PUs and SUs.

In this chapter, we have addressed major shortcomings found in existing research by

developing enhanced Game theoretic strategies for improved spectrum allocation. In our

research work, the basic framework considered is that an operating spectrum is divided into

sub-bands or channels. These channels, when not in use by the PUs, are allocated to SUs for

enhanced spectrum efficiency. We contribute the following unique features in the spectrum

sharing: (i) Classify the quality of a channel into five different types, depending upon the

occupancy of its neighboring channels; (ii) Develop a multi-objective function optimization

problem leading to a Game theoretic perspective [55], [56] among cooperative N cognitive

users in order to allocate channels to these users, (iii) Define reward functions to determine

Nash equilibrium strategy, (iv) Define idle durations and transmission rate for each channel

during which the SUs are permitted to transmit, and (v) Develop a Game theoretic strategy

to allocate single channel to each user, while taking the transmission rate and idle durations

into account in defining the reward functions. In addition, we have considered parameters

such as idle duration and transmission time in the context of spectrum sharing. The simple

idea behind this approach is that each channel supports its own data transmission rates

based on perceived channel conditions and multipath characteristics. During a specific time

instant if the idle duration of a particular channel is less than the total transmission time

required by the SU, then the channel is not allocated to this particular SU. We show that

the spectrum allocation method that does not consider such aspects may lead to inefficient

spectrum utilization.

The rest of the chapter is organized as follows. Section 5.2 presents a brief overview

of existing research works in the area of spectrum sharing and application of Game Theory

in CRN. Section 5.3 deals with the system model and the basic components used in our

proposed spectrum sharing strategy. Next, Section 5.4 presents the proposal on channel

capacity optimization and then develop the Game theoretic approach of allocating multiple

channels to each SU in a CRN. Section 5.5 focuses on another Game theoretic spectrum

sharing strategy of allocating a single channel to each SU while using spectrum sensing
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information. The experimental results are discussed in Section 5.6. A 2-person game

theoretic approach is dealt with in Section 5.7 for possible coexistence of PUs and SUs in

the same spectrum. Finally, Section 5.8 includes the conclusion.

5.2 Related Work

Spectrum sensing is key for effective spectrum management as it enables SUs to detect

PUs in the operating channels. The authors in [51] discuss spectrum sensing techniques

which involves an integrated sharing of information between the PHY and MAC layers in

the CRN. Detection of primary receivers [62] is achieved by sensing the leakage power

emitted by their local oscillators. Spectrum sensing and detection of PU occupancy eventu-

ally provides us with the information of idle durations, i.e. intervals of time when the PUs

do not (or are not likely to) use their corresponding channels. To the author’s knowledge,

existing cooperative communication techniques have not considered this aspect in spectrum

sharing.

Cooperative algorithms for smart antenna communications [63] have also been used

in reducing the time for detecting the presence of PUs. Once the spectrum is sensed and

detected as white space, spectrum sharing among the SUs is triggered. The rate optimiza-

tion approach [64] opts for maximizing the global channel capacity within specific power

constraints in each band. But, the main obstacle for SUs in sharing the spectral bands with

PUs is the transmission power limits on each channel, which rely on the probabilistic dis-

tribution of PUs in the entire spectrum. For example, SU on an available channel with two

PUs operating on the adjacent channels should transmit at lower signal power than on a

channel wherein both adjacent channels are vacant.

In [65], the authors use a well-known relay techniques among the cognitive radios op-

erating in the same frequency band. The central concept used here is that one SU transmits

information to the second SU in a time slot and in the next time slot, the second SU for-

wards the data packets to the desired destination. Therefore, two time slots are required to

transmit the same information. In addition, in any two time slots only one SU listens to

the other SU and transmits this user’s information instead of its own information, resulting
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in lower spectral inefficiency. The authors in [66] assign conflict free spectrum based on

required user throughput, while maximizing the total system capacity. However, there is

no discussion on the specific condition imposed on each SU and about the variations of the

spectrum assignment based on the location of the PUs.

The two switch channel model [53] for capacity analysis introduces communication

opportunities for two switches, modeling the transmitter and the receiver. The white spaces

detected by the transmitter and the receiver may not be identical since they have different

sensing ranges. The channel capacity is analyzed in a distributed nature based on correlated

detection between the transmitter and the receiver and the dynamic use by the PUs. The

two switch channel model investigates the capacity issue while opportunistically sharing

multiple frequency slots, also called “frequency coding”, and by sharing different time

slots within a single frequency interval, also called “temporal coding”.

The throughput analysis discussed in [67] and applied in [53] considers two different

scenarios: (1) overlay models where the PUs and the SUs transmit within the same fre-

quency band and (2) interweave models where the SUs operate in an unused channel. A

significant improvement is shown in the throughput of SU transmissions in the overlay

model as compared to the interweave model. However, an important disadvantage of the

overlay model is that the information on PU transmission activity may not be always avail-

able at the SU. Another interesting work on capacity analysis [68] discusses the possibility

of PU and SU coexistence and derives a mathematical model for the channel capacity en-

hancement. Though the authors stress on the experimental analysis, they do not quantify

the degree of capacity improvements. Also, even though the interference detection and

the tolerance level in used bands as well as coexistence using Carrier Interferometry mul-

ticarrier approach are described, no scheme is proposed for the implementation of such

multicarrier approach in PU bands.
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Figure 5.1: Distribution of PUs and SUs in one particular cell

5.3 Spectrum Model and Basic Components of Spectrum

Sharing

Our proposed spectrum sharing model consists of M PUs denoted by PU1, PU2, · · · , PUM

located in specific channels represented as Ch1,Ch2, · · · ,ChM. Each channel is licensed to

a single PU, as is the case of television band where the television transmitters are further

away from each other to avoid interference. This framework is also valid for multiple PUs

licensed to a particular channel as is done in the case of cellular communications. There

are N SUs denoted as S U1, S U2, · · · , S UN . In the example of Figure 5.1, M = 5 and N =

3. In our model, the location of an S Ui determines its associated available channels. For

example, as shown in Figure 5.1, since the S U1 is within the interference range of PU1,

Ch1 is not available for S U1. On the contrary, Ch1 is available to S U2 as it is outside the

interference range of PU1.

The objective of our spectrum sharing approach is to allocate multiple available chan-

nels to an S Ui based on two factors: (i) The number of packets S Ui need to transmit and

(ii) The transmission rate of each Chi. Below we define the components forming the core

of our proposed spectrum sharing strategy.

Availability matrix: For any SU, the channels that are free to use, can be indicated by a
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column vector. More specifically, for S U j, let (δ1 j, δ2 j, . . . , δM j)
T be the availability vector,

where

δi j = 1 i f Chi is f ree f or S U j,

= 0, otherwise. (5.1)

We stack all these column vectors into a matrix ∆ = (δi j) of order M × N and call this

an “Availability matrix.” The column vectors of ∆ are indexed by the SUs and the channels

that are available could vary from SU to SU.

The components of this matrix can be interpreted in both the settings of a single PU

or multiple PUs licensed to a single channel. In case of a single PU in one channel, if the

ith channel is not utilized by the PUi, then Chi is available to SUs and δi j = 1 for all j =

1, 2, . . . ,N. In case of multiple PUs in Chi, δi j = 1 if none of the PUs is using Chi at that

time instant. If any one of the PUs is using Chi, δi j = 0.

Interference matrix: It is a matrix Ω = (ωi j) of order N × N, where

ωi j = 1 i f S Ui and S U j are in inter f erence range,

= 0, otherwise. (5.2)

By convention, ωii = 0 for all i; i.e., we do not consider self-interference in our work.

In practical terms, every SU is aware of the spectrum with M channels and availability of

the same. In other words, S Ui computes its availability vector, which is the ith column of ∆.

Again, S Ui calculates the interference vector, which is the ith row of Ω. At this point, we

assume that each SU communicates its availability and interference vectors to all other SUs

competing for available licensed channels, using multi-hop communication. Upon receipt

of the vectors, each SU puts together both availability and interference matrices.

Idle duration: Spectrum measurements indicate that channels in the entire radio fre-

quency spectrum remain unused for substantial amount of time as depicted in Figure 2.1.

Before a channel Chi, i ∈ 1, 2, · · · ,M, is allocated to an SU, it is critical to have the knowl-

edge of those instances during which Chi is unused by PUi licensed to it. These durations

for any channel are known as idle durations. In our research work [39], we have developed

and validated our spectrum occupancy model, which detects idle durations in the paging
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band (928-948 MHz). For each channel in the spectrum, we assume that the idle periods

for each Chi are communicated to each SU. Let Ii denote the idle period of channel Chi (in

seconds), i = 1, 2, · · · ,M. As per our knowledge, this parameter is generally ignored in the

spectrum sharing schemes though is vital in this context.

Transmission rate: Let ri denote the transmission rate (in bits per seconds) supported

by Chi, i = 1, 2, · · · ,M. This parameter has a vital connotation to the spectrum sharing.

During any given time period, if the transmission time (ratio of the number of packets of

S Ui to be transmitted (in bits) to the transmission rate ri) is greater than Ii, then Chi is not

allocated to S Ui.

Allocation matrix: Essentially, an allocation matrix is a summary of allocated channels

to all SUs subjected to the availability and interference constraints. A channel may be

allocated to a SU only if the channel is available to the SU. A channel may be allocated to

two or more SUs if there is no interference among the SUs. Formally, an allocation matrix

is a matrix Λ = (λi j) of order M × N with the following properties:

(i)

λi j = 1 i f Chi is allocated to SUj,

= 0, otherwise,

i = 1, 2, . . . ,M and j = 1, 2, . . . ,N. (5.3)

(ii) λi j = 0 if δi j = 0, i.e., Chi is not allocated to S U j if the channel is not available to the

SU.

(iii) λi j + λik ≤ 1 if ω jk = 1, i.e., if S U j and S Uk are with in their interference range.

A comment is in order on (iii). If the Chi is available to both S U j and S Uk and ω jk = 1,

then the following allocations are feasible:

(a) λi j = 0 and λik = 0, i.e., the Chi is not allocated;

(b) λi j = 1 and λik = 0, i.e., Chi is allocated to only S U j; or

(c) λi j = 0 and λik = 1, i.e., the Chi channel is allocated to only S Uk.

To illustrate these properties, we include an example. Let us take the same availability

matrix and interference matrix for the distribution shown in Figure 5.1 and then some of
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the possible allocation matrices are:

Λ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 1 0

1 0 0

0 1 1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

0 0 1

1 1 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Λ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 1 0

0 0 1

1 1 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 1 0

1 0 0

0 1 1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Maximal Allocation matrices: Let A be the collection of all allocation matrices. The

set A is finite. We introduce a partial order on A. Let Λ = (λi j) and Π = (πi j) ∈ A. We

say that Λ ≤ Π if λi j ≤ πi j for all i and j. This implies that if Chi is allocated to S U j as

per the allocation matrix Λ, then the channel remains allocated to the SU as per Π too. The

relation ≤ here is a partial order but not a linear order since it is possible that two allocation

matrices Λ and Π may not be comparable as per the order ≤. This is true in our example

above where Λ1 and Λ2 are not comparable according to the order ≤. The following con-

cept is useful to weed out potential allocation matrices which are inefficient.

Definition: A matrix Λ ∈ A is said to be maximal if Π ∈ A and Λ ≤ Π implies that Λ = Π.

It is now trivial to prove that given any Λ in A, there exists a maximal Λ∗ in A such

that Λ ≤ Λ∗. We will refer to our example for this assertion. The allocation matrices Λ3

and Λ4 ∈ A. Note that Λ3 is not maximal but Λ2 is. Also, Λ3 ≤ Λ2. Similarly, Λ4 is not

maximal but Λ1 is. Also, Λ4 ≤ Λ1.

Any maximal matrix Λ has an appealing property: Each channel is allocated to a max-

imum number of SUs subject to the interference constraints. If a channel is available to

only one SU, it is allocated to the SU. From now on, A is used for the set of all maximal

allocation matrices.

We now provide an upper bound for the total number of maximal allocation matrices.

Let Ki be the sum of all entries in the i − th row of ∆, i = 1, 2, . . . ,M. The entity Ki is the
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total number of SUs to whom the i − th channel is available. If Ki = 0, then the ith channel

is being used by a PU and is not available to any SU. Any allocation matrix has to have

(0, 0, . . . , 0) in the ith row perforce. Assume, Ki > 0. When filling up the i-th row of a

maximal matrix, we have only at most Ki choices. In one extreme case of interferences,

ω jk = 0 for all j and k and every channel is allocated to every SU to whom it is available.

In this case, the i-th row can be filled only one way. Another extreme case of interference

is ω jk = 1 for all j � k. In this case, each channel can be given to only one SU. It means

that the i-th row of any maximal allocation matrix can have only one entry equal to 1 and

the rest zero. Consequently, the i-th row can be filled in Ki different ways.

We now illustrate the cases where the ith row of any maximal allocation matrix is filled

out for any Ω other than the cases considered above. Assume, without loss of generality,

that the ith row of ∆ is of the form (1, 1, . . . , 1, 0, 0, . . . , 0), where the first Ki entries are each

equal to one. In other words, the ith channel is not available to S UKi+1, S UKi+2, . . . , S UN .

Now, we consider the first row (0, ω12, ω13, . . . , ω1N) of Ω. The maximal allocation of

channels stemming out is (1, 1 − ω12, 1 − ω13, . . . , 1 − ω1Ki
, 0, 0, . . . , 0). In this allocation,

S U1 is allocated the ith channel and other SUs from S U2 to S UKi
depending upon their

corresponding interferences with S U1. Considering the second row (ω21, 0, ω23, . . . , ω2N)

of Ω, the maximal allocation is given by (1 − ω21, 1, 1 − ω23, . . . , 1 − ω2Ki
, 0, 0, . . . , 0).

Proceeding in the same way till S UKi
, the ith row of the allocation matrix is filled by any

one of the following Ki rows:

(1, 1 − ω12, 1 − ω13, . . . , 1 − ω1Ki
, 0, 0, . . . , 0)

(1 − ω21, 1, 1 − ω23, . . . , 1 − ω2Ki
, 0, 0, . . . , 0)

. . .

. . .

(1 − ωKi1, 1 − ωKi2, . . . , 1, 0, 0, . . . , 0). (5.4)

However, there may be some duplications among the rows. Again, some rows may not be

feasible as illustrated in the following case study. Let Li be the total number of distinct

rows among the above after excluding infeasible ones. Note that Li ≤ Ki. We have the

following results:
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Theorem 5.1: The total number of maximal allocation matrices ≤∏M
i=1,Ki�0 Ki.

Theorem 5.2: The exact number of maximal allocation matrices is
∏M

i=1,Ki�0 Li.

We will walk through our example with Ω defined as:

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and the availability matrix ∆ to illustrate the results.

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 1 1

1 0 1

1 1 1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

K1 = 0

K2 = 3

K3 = 2

K4 = 3

K5 = 1.

The number of maximal allocation matrices is ≤ 3 × 2 × 3 × 1, i.e. ≤ 18. Forming all

possible allocation matrices as per (5.4):

Row number o f ∆ Row vector and L − value

1 (000) −,

2 (110) 1,

(111) In f easible,

(011) 1 => 1 + 1 = 2,

3 (100) 1,

(001) 1 => 1 + 1 = 2,

4 (110) 1,

(111) In f easible,

(011) 1 => 1 + 1 = 2,

5 (010) 1. (5.5)

The number of maximal allocation matrices is (2 × 2 × 2 × 1) = 8. This validates Theorem
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5.2. The matrices are enumerated below for the completeness of the text.

Λ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 1 0

1 0 0

1 1 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 1 0

1 0 0

0 1 1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Λ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 1 0

0 0 1

1 1 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 1 0

0 0 1

0 1 1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Λ5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

1 0 0

1 1 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

1 0 0

0 1 1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Λ7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

0 0 1

1 1 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

0 0 1

0 1 1

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5.6)

Quality of a channel: In practice, some free channels are preferred over others for

an SU. For example, a free band in between two bands with PUs is less preferred than

a free band with adjacent unused bands. Each SU has a spectral mask on the maximum

transmission power admissible in each channel. Therefore, this results in a low signal-to-

noise-ratio (SNR). This compels us to delve into the different configurations of the free

bands with adjacent PUs while focussing on a specific free channel, Chi. The channels

are assumed to be orthogonal to each other. This assumption enables us to consider that
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Free channel

Channel with PU

Type I configuration

Type II configuration

Type III configuration

Type IV configuration

Type V configuration

Figure 5.2: Type classifications of various configurations of free channels

adjacent channels do not interfere.

The five different configurations discussed in our research work are shown in Figure

5.2.

(i) Type I configuration: A free band Chi with one PU as (i − 1)-th neighbor and one free

band as the (i + 1)-th neighbor and vice versa as shown in Figure 5.2.

(ii) Type II configuration: A free band Chi with two PUs as (i−1)-th and (i+1)-th neighbors

as shown in Figure 5.2.

(iii) Type III configuration: A free band Chi with two free bands as (i − 1)-th and (i + 1)-th

neighbors as shown in Figure 5.2.

(iv) Type IV configuration: A free band at the left or right edge of the entire operating

spectrum with a free channel as its neighbor as shown in Figure 5.2.

(v) Type V configuration: A free band at the left or right edge of the entire spectrum with

PU as its neighbor as shown in Figure 5.2.

SNR: Allowable transmission signal energy Eb on an available channel depends on its

adjacent neighbors, categorized as five Types in our research work. For example, an avail-

able channel with two PUs as neighbors, i.e., Type II, will have smaller Eb than any other

Types of configurations (Type I, III, IV and V). Since the SUs have been allowed to un-
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licensed use of any channel imposing minimum interference to PUs, a SU on a Type II

channel will have restricted transmission power as compared to channels of other types

with one PU or a free band as neighbors. Formally,

EbTypeII
< EbTypeI

< EbTypeV
< EbTypeIV

< EbTypeIII
.

Consequently,

S NRTypeIII > S NRTypeIV > S NRTypeV

> S NRTypeI > S NRTypeII . (5.7)

Suppose Chi is allocated to S U j. Here, it needs to be pointed out that the type of

channel allocated to an SU depends on the availability matrix ∆. We now introduce the

SNR matrix Σ(Λ) = σi j of order M × N, where,

σi j = 0, i f δi j = 0,

= S NRTypeK , i f Chi allocated as per Λ to

S U j is o f Type K. (5.8)

Using the SNR matrix, the admissible transmission power for each SU can be obtained

under a prescribed allocation matrix Λ.

5.4 Channel Capacity Optimization and Game Theoretic

Formulation

In this section, we initially formulate the channel capacity maximization problem in

spectrum sharing among the SUs as multi-objective optimization. Lacking any unique so-

lution which could satisfy all SUs, we have pursued two options: the first one is translating

the problem into a single-objective optimization problem and the other is the game theory.
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5.4.1 Channel Capacity Optimization

The basic problem is to choose an allocation matrix which is maximum. We need

an objective function. One natural objective function is based on the SNR. For a given

allocation matrix Λ = λi j, we define total SNR (TSNR) by:

TS NR(Λ) =

M∑
i=1

N∑
j=1

λi jσi j. (5.9)

Higher TSNR is an indication of high quality transmission. The goal is to find Λ for

which TS NR(Λ) is maximum. It is evident that it suffices to maximize TS NR(Λ) over all

maximal allocation matrices. This is a discrete optimization problem since the set of all

maximal allocation matrices is finite. We have developed an algorithm to compute the Λ

with its corresponding maximum TS NR(Λ). The inputs to the algorithm are ∆, Ω, and the

SNR matrix Σ.

Using the SNR matrix, one can obtain admissible transmission power for each SU under

a prescribed allocation matrix Λ. Let us express the total admissible SNR of S U j in the

operating spectrum under the allocation matrix by Rj(Λ). Hence, Rj(Λ) can be expressed

as:

Rj(Λ) =

M∑
i=1

λi jσi j(Λ), j = 1, 2, . . . ,N. (5.10)

The number Rj(Λ) is the sum of all admissible SNRs from the channels allocated to

S U j. Mathematically, it is the inner product of the jth column of the allocation matrix Λ

and jth column of the SNR matrix Σ(Λ).

The goal now is to maximize the channel capacity over the set A of all allocation

matrices. Since the entries of the SNR matrix are non-negative, it follows from:

Λ,Π ∈ A,Λ ≤ Π => Rj(Λ) ≤ Rj(Π) f or all j. (5.11)

5.4.2 Optimization, Game Theory, and Nash Equilibrium

In this section, we formulate a general optimization problem in which every S U j is

attempting to maximize his total admissible SNR, Rj. As an illustration, for the example
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in (5.6), S U1 can opt for Λ1 since he is allocated three channels maximizing his SNR.

On the other hand, S U3 can opt for Λ8 to maximize his own SNR. There is no universal

allocation matrix Λ at which Rj(Λ) is maximum for every S U j. To resolve such competing

choices, we introduce game theoretic ideas into the problem and explore existence of Nash

equilibrium. We formulate the problem in general game theoretic terminology.

The basic components of a perfect information Game Theory [56] are: a set of N

players; the strategy set of each player; and reward function of each player for the joint

strategy adopted by all the players in the game. Let Ai be the strategy set of Player i,

i = 1, 2, . . . ,N. Let gi be the reward function of Player i, i = 1, 2, . . . ,N, i.e., if Player 1

chooses A1 ∈ A1, Player 2 chooses A2 ∈ A2 and so on till Player N chooses AN ∈ AN ,

gi(A1, A2, . . . , Ai, . . . , AN) is the reward obtained by Player i. In fact, gi is a real-valued

function from the Cartesian product space A1 × A2 × . . . × AN . The perfect information

qualification refers to the paradigm that each player knows all the strategy sets and reward

functions.

At the basic level, the goal for each player is to maximize his reward function. The

problem is then considered to be under the realm of multi-objective function optimization.

The objective is to find strategies A∗i ∈ Ai, i = 1, 2, . . . ,N, such that

gi(A
∗
1, A

∗
2, . . . , A

∗
N) = max gi(A1, A2, . . . , AN), (5.12)

where the maximum is taken over all A1 ∈ A1, A2 ∈ A2, . . . , AN ∈ AN , and the solution

(A∗
1
, A∗

2
, . . . , A∗N) is the same for each i = 1, 2, . . . ,N. If the strategies A∗i ∈ Ai exist, adopt-

ing these strategies is optimal for every player. However, realistically, such universal set

A∗
1
, A∗

2
, . . . , A∗N may not exist. Two options are now possible. One option is to maximize

g1 + g2 + . . . + gN , or some function of g1, g2, . . . , gN , over the setA1 × . . . ×AN . In such a

case, this problem falls under the realm of traditional optimization. Typically, it is feasible

to find A∗
1
∈ A1, . . ., A∗N ∈ AN such that

g1(A∗1, A
∗
2, . . . , A

∗
N) + g2(A∗1, A

∗
2, . . . , A

∗
N)

+ . . . + gN(A∗1, A
∗
2, . . . , A

∗
N) =

max (g1 + g2 + . . . + gN)(A1, A2, . . . , AN), (5.13)

where the maximum is taken over all A1 ∈ A1, A2 ∈ A2, . . . , AN ∈ AN .
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Another option is to search for a Nash equilibrium. A choice (A∗
1
, A∗

2
, . . . , A∗N) ∈ A1 ×

. . . ×AN is said to be a Nash equilibrium if gi(A
∗
1
, A∗

2
, . . . , A∗

(i−1)
, A∗i , A

∗
(i+1)
, . . . , A∗N) ≥

gi(A
∗
1
, A∗

2
, . . . , A∗

(i−1)
, Ai, A

∗
(i+1)
, . . . , A∗N), for all Ai ∈ Ai and i = 1, 2, . . . ,N. In other words,

a Nash equilibrium strategy means that if Player i (i = 1, 2, . . . ,N) does not use A∗i and all

other players use their A∗js then the reward for Player i is at most gi(A
∗
1
, A∗

2
, . . . , A∗i , . . . , A

∗
N).

Note that if we maximize gi overA1 ×A2 ×AN using a greedy algorithm, for each i, there

may not be a common solution (A∗
1
, A∗

2
, . . . , A∗N) for all the players.

In our context, the players are the SUs. The strategy set for player i isA, the collection

of all maximal allocation matrices as described in Section III. The development of reward

functions gi’s requires some tact. If each SU chooses the same allocation matrix Λ, there is

no conflict and the reward for S U j is given by:

gj(Λ,Λ, . . . ,Λ) = Rj(Λ) =

M∑
i=1

λi jσi j(Λ). (5.14)

If SUs choose different allocation matrices, there is certainly a conflict of interests. Sup-

pose Λ j = (a
( j)
rs ) ∈ A is the allocation matrix chosen by S U j, j = 1, 2, . . . ,N, a compromise

allocation matrix is given by:

Λ = (ars) = Λ1 ∧ Λ2 ∧ . . . ∧ ΛN , (5.15)

where ∧ is the minimum operator, i.e., the (r, s)th entry of Λ is given by:

ars = min {(a( j)
rs ) : 1 ≤ j ≤ N}. (5.16)

It is clear that Λ is an allocation matrix, i.e., Λ ∈ A. All SUs agree upon the allocations

indicated by Λ. We now define the reward function of S U j by:

gj(Λ1,Λ2, . . . ,ΛN) = Rj(Λ) =

M∑
i=1

ai jσi j(Λ), (5.17)

where j = 1, 2, . . . ,N. It must be emphasized that Λ1 ∨ Λ2 ∨ . . . ∨ ΛN is not an allocation

matrix if at least two of the Λi’s are distinct, where ∨ represents the maximum operator. As

a matter of fact, Λ1 ∨Λ2 ∨ . . . ∨ΛN is an allocation matrix if and only if all Λi’s are equal.
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Free channelChannel with PU

Figure 5.3: Free channel configurations for (a) S U1 and (b) S U2

For this game, we have several Nash equilibria. This is stated in the following theorem.

Theorem 5.3: Fix any Λ ∈ A. Then (Λ,Λ, . . . ,Λ) is a Nash equilibrium.

Proof: Let Λ
′

be any member ofA. Observe that (Λ ∧ Λ′) ≤ Λ. Consequently,

gj(Λ,Λ, . . . ,Λ) = Rj(Λ)

≥ Rj(Λ ∧ Λ
′
)

≥ gj(Λ,Λ, . . . ,Λ,Λ
′
,Λ, . . . ,Λ), (5.18)

where Λ
′

is in the jth position and j = 1, 2, . . . ,N. Hence, (Λ,Λ, . . . ,Λ) is a Nash equilib-

rium.

Note that the number of Nash equilibria is equal to the cardinality ofA.

In practical terms, once ∆ and Ω are available to each SU, he can work out all maximal

allocation matrices and reward functions.

Since this is a “perfect information” game, every SU is capable of determining the options

and the attendant solutions with respect to all other SUs. Using a single objective func-

tion optimization approach, there may not be a universal agreement (sum, product, or any

other way) in combining the reward functions. In the game theoretic approach, if there is

a unique Nash equilibrium, the players pursue the solution offered by the equilibrium. If

there are several equilibria, the players need to cooperate in resolving the choices. These

issues are further illustrated in the context of the following case study.

5.4.3 Case Study

We illustrate the details of our N-person game using the example as shown in Figure

5.3 with two SUs. As we see from Figure 5.3, only five channels are considered for both
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S U1 and S U2. Ch-bands 1, 3, and 5 are available to S U1 which are of Types V, II, and V,

respectively. Ch-bands 1, 2, 4, and 5 are available to S U2 which are of Types IV, I, I, and

IV, respectively. Hence with reference to (5.1), (5.2) and (5.8), the “Availability matrix, ∆”,

the “Interference matrix, Ω” and the “SNR matrix, Σ” for S U1 and S U2 can be expressed

as follows:

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

0 1

1 0

0 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ω =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

As a prelude to the development of σi j’s in (5.7) and (5.8), we have considered the follow-

ing values of S NR for various types of free channels. For illustration:

S NR = 0, f or a channel not f ree,

1, f or Type II channel,

2, f or Type I channel,

3, f or TypeV channel,

4, f or Type IV channel, and

5, f or Type III channel. (5.19)

Now, we list the maximal allocation matrices of these two players, S U1 and S U2, as fol-

lows:

Λ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

1 0

0 1

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

1 0

0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Λ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1

1 0

0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1

1 0

0 1

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using our optimization approach, we compute the maximum channel capacity. Using

(5.10), we write the following admissible SNR for S U1 as: R1(Λ1) = 4, R1(Λ2) = 7, R1(Λ3)

= 4, and R1(Λ4) = 1. Similarly, for S U2, the admissible SNRs are: R2(Λ1) = 8, R1(Λ2) = 4,

R1(Λ3) = 8, and R1(Λ4) = 12. Hence, TS NR(Λ) can be written as:

TS NR(Λ1) = 12,

TS NR(Λ2) = 11,

TS NR(Λ3) = 12,

TS NR(Λ4) = 13. (5.20)

Now, the two SUs could have conflicting interests, with different allocation strategies

selected by each one of them so as to maximize their individual benefits. This can be

resolved using (5.16) and computed as follows:

Λ1 ∧ Λ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

1 0

0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ1 ∧ Λ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 1

1 0

0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Λ1 ∧ Λ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 1

1 0

0 1

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ2 ∧ Λ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 1

1 0

0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Table 5.1: Reward table to achieve Nash Equilibria

A for SU 1 A for SU 2

Λ1 Λ2 Λ3 Λ4

Λ1 4, 8 4, 4 1, 4 1, 8

Λ2 4, 4 7, 4 4, 4 1, 4

Λ3 1, 4 4, 4 4, 8 1, 8

Λ4 1, 8 1, 4 1, 8 1, 12

Λ2 ∧ Λ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 1

1 0

0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Λ3 ∧ Λ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1

1 0

0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, we calculate the reward functions for all the allocation strategies shown in Table

5.1.

Table 5.1 provides all the ingredients of the proposed game. The strategy set is A =

{Λ1,Λ2,Λ3,Λ4}. Note that

maxB,C∈A g1(B,C) = g1(A2, A2) = 7,

and

maxB,C∈A g2(B,C) = g2(A4, A4) = 12.

There is no universal (Λ∗
1
,Λ∗

2
) at which both g1 and g2 are maximum. If we combine g1

and g2 additively, the total channel capacity TS NR(Λ) is maximized at (Λ4,Λ4) following

(5.20). If g1 and g2 are combined in a different way, an optimal solution can be simi-

larly worked out. For example, if the reward functions are combined using multiplication,

(Λ1,Λ1) and (Λ3,Λ3) are the solutions to the optimization problem. However, combining

the reward functions may not be acceptable to some of the SUs. In such a case, exploring

the existence of a Nash equilibrium is a natural pursuit. We observe that there are four

Nash equilibria: (Λ1,Λ1), (Λ2,Λ2), (Λ3,Λ3), and (Λ4,Λ4). If SUs plan to pursue a Nash
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equilibrium, they need to work out a choice collaboratively. As in Table 5.1, the choice

(Λ4,Λ4) not only is a Nash equilibrium, but also maximizes the SNR. The main goal of this

section is to present a chain of ideas that can be pursued in problems of the type character-

ized above. In some problems with a different formulation of reward functions, pursuing

the chain of ideas presented above can be illuminating and rewarding as we will see later.

In the next section, we revisit the optimization problem by considering additional crit-

ical parameters like idle period and transmission time. To the best of our knowledge, this

is the first work to take these spectrum sensing parameters into account for improved spec-

trum sharing.

5.5 Game Theoretic Perspective using Spectrum Sensing

Parameters

A natural strategy set for a SU is to allocate all channels available to itself. Let Ai denote

the collection of channels free for S Ui, i = 1, 2, · · · ,N. Therefore, in this section, instead

of multiple channels as discussed in the previous section, we focus on allocating a single

channel. In this spectrum allocation game, we consider the presence of a central controller,

a base station, who is in control of taking all the decisions and imposing restrictions on the

players.

To accomplish this, we initially assume idle durations I1, I2, · · · , IM of the M channels

and their respective transmission rates ri, i = 1, 2, · · · ,M, are known. These parameters

can be estimated using accurate spectrum occupancy model design discussed in [39]. In

addition, a threshold time τ is set to prevent an SU, with a smaller number of packets, to

opt for a channel with a larger idle duration. If an SU with small transmission time selects

a channel with large Ii, then the SU is penalized with half the signal energy allowed on the

channel.

For simplicity of notation, let the channels be numbered serially from 1 to M. Suppose

S U1 chooses i1, S U2 i2, · · · , S UN iN . The choices of channels now is a vector (i1, i2, · · · , iN).

We propose the following reward function gj for S U j.

Case I: If S U j’s choice, namely i j is the same as that of S Uk and ω jk = 1 (i.e., they are
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within their interference range), then S U j cannot use i j. Consequently,

gj(i1, i2, · · · , iN) = 0. (5.21)

Case II: Suppose S U j can use i j. The transmission time t j required is the ratio of S U j’s

number of data packets to ri j
. Two cases may arise:

Case II.1: If Ii j
− t j ≥ 0, S U j can transmit the data on channel i j. Now if Ii j

− t j ≤ τ, S U j is

allowed to transmit on i j with its allowable signal power limits. In such a case, reward for

S U j is given by:

gj(i1, i2, · · · , iN) = t j(eb)i j
, (5.22)

where (eb)i j
is the signal energy on the ith channel for the jth SU.

Case II.2: If the idle time is substantially larger than the required transmission time, i.e.,

Ii j
− t j > τ, then S U j is punished to transmit with half the allowable signal energy limited

to i j. The reward for S U j is written as:

gj(i1, i2, · · · , iN) = 0.5t j(eb)i j
. (5.23)

Case III: If Ii j
− t j < 0, S U j does not prefer to use the channel since it wastes time and

incurs latency in shifting its data transmission to another channel due to an incoming PU.

The reward for this case is gj(i1, i2, · · · , iN) = 0.

Now, we incorporate all these scenarios in the following expression:

gj(i1, i2, · · · , iN) = [t j(eb)i j
I(0 ≤ Ii j

− t j ≤ τ) +

0.5t j(eb)i j
I(Ii j
− t j > τ)], i j � ik,

= [t j(eb)i j
I(0 ≤ Ii j

− t j ≤ τ) +

0.5t j(eb)i j
I(Ii j
− t j > τ)] ×

N∏
k=1

(1 − ω jk), i j = ik. (5.24)

5.5.1 Case Study

With the reward functions in place, we now explore the existence of Nash equilibrium

for this Game. In order to do that, we utilize real-time spectrum measurement data obtained
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from the experiment conducted on the paging channels (928-948 MHz) over 500 sweeps

[39]. The details of the experiment and instruments used are described in Section 2.2. Each

sweep duration is of 1.68 seconds. The 10 channels under considerations are in the range

of 929-929.18 MHz with resolution bandwidth of 20 KHz. We have randomly selected the

84th sweep and determined ∆, idle durations Idur, and the transmission rates ri (in Kbps) of

these channels as:

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

1 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Idur =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.04

3.36

10.08

3.36

1.68

1.68
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16.80
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10.08

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ri =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As in the Game described in the previous section, we consider two SUs, namely, SU 1

and SU 2 with 24, 000 and 2, 000 transmission packets, respectively. The type of each of the

10 channels are determined based on the occupancy of their adjacent users. As described

in Section III, these channels are of Types 1, 2, 3, 4, or 5. Additionally, an used channel is

regarded as Type 0. Based on the ri’s and the number of transmission packets of SU 1 and

SU 2, the transmission times Ttrans are given by:
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TypeCh =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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3

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ttrans =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0469 0.0039

0.0938 0.0078

0.0313 0.0026

0.0938 0.0078

0.0469 0.0039

0.0313 0.0026

0.0938 0.0078

0.0313 0.0026

0.0938 0.0078

0.0469 0.0039

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The threshold τ in Eq. 5.24 is set to 1.6722, which is the minimum value for SU 2 to be

allocated one channel without being penalized. Thus, based on Eq. 5.24, the rewards are

calculated using the above matrices. The signal energy eb is computed based on 5.7 and the

values assigned for our Game theoretic strategy are as follows:

eb = 0, f or unavailable channel,

1, f or Type II,

1.5, f or TypeV,

2, f or Type I,

2.5, f or Type IV, and

3, f or Type III. (5.25)

Referring to the reward table, we have neglected the rewards for the g21 and g22. The

reason for this is that the second channel, i.e., 929.12 MHz, is used by a PU and the reward

for using this channel is always 0. From Tables 5.2, 5.3, and according to Eq. (5.13),

the single objective function optimization also achieves a maximum at g71, g72 with total

reward of 0.3040. As observed from Tables 5.2 and 5.3, a unique Nash equilibrium is also

achieved at g71, g72 with rewards (0.2814, 0.0234). This implies that the seventh channel,

i.e., 929.14 MHz, is allocated to both SU 1 and 2 for maximum signal power on this channel

during the 84th sweep. Additionally, the difference Idur−Ttrans for the seventh channel is the
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Table 5.2: Reward table to achieve Nash Equilibria with 10 strategies for S U1 and 6 for

S U2

S U1 S U2

g12 g32 g42 g52 g62 g72

g11 0.035,0.003 0.035,0.001 0.035,0.012 0.035,0.006 0.035,0.004 0.035,0.023

g31 0.016,0.003 0.016,0.001 0.016,0.012 0.016,0.006 0.016,0.004 0.016,0.023

g41 0.140,0.003 0.140,0.001 0.140,0.012 0.140,0.006 0.140,0.004 0.140,0.023

g51 0.140,0.003 0.140,0.001 0.140,0.012 0.140,0.006 0.140,0.004 0.140,0.023

g61 0.095,0.003 0.095,0.001 0.095,0.012 0.095,0.006 0.095,0.004 0.095,0.023

g71 0.281,0.003 0.281,0.001 0.281,0.012 0.281,0.006 0.281,0.004 0.281,0.023

g81 0.016,0.003 0.016,0.001 0.016,0.012 0.016,0.006 0.016,0.004 0.016,0.023

g91 0.141,0.003 0.141,0.001 0.141,0.012 0.141,0.006 0.141,0.004 0.141,0.023

g101 0.070,0.003 0.070,0.001 0.070,0.012 0.070,0.006 0.070,0.004 0.070,0.023

Table 5.3: Reward table to achieve Nash Equilibria with 10 strategies for S U1 and remain-

ing 3 for S U2

S U1 S U2

g82 g92 g102

g11 0.035,0.004 0.035,0.012 0.035,0.006

g31 0.016,0.004 0.016,0.012 0.016,0.006

g41 0.140,0.004 0.140,0.012 0.140,0.006

g51 0.140,0.004 0.140,0.012 0.140,0.006

g61 0.095,0.004 0.095,0.012 0.095,0.006

g71 0.281,0.004 0.281,0.012 0.281,0.006

g81 0.016,0.004 0.016,0.012 0.016,0.006

g91 0.141,0.004 0.141,0.012 0.141,0.006

g101 0.070,0.004 0.070,0.012 0.070,0.006
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least (1.5862, 1.6722 seconds) among all the other channels. For better appreciation, higher

differences (Idur − Ttrans) are noticed for 3rd, 8th, and 10th channels with (10.0487, 10.0774

seconds), (16.7687, 16.7974 seconds), and (10.0331, 10.0761 seconds), respectively.

5.6 Experimental Results

In this section, we provide some important observations deduced from the proposed

Game theoretic strategies. For our first game theoretic model, the reward function to

achieve maximum channel capacity depends on the quality of available channels and the

SNR admissible on them. For our second strategy, the reward function depends on a

number of parameters: (i) Idle duration of each channel at any specific time instant, (ii)

Transmission time for the allocated SU in each available channel, and (iii) Signal energy

admissible on each channel depending upon its quality. The reward functions, based on

the parameters laid above, are computed using the real-time spectrum measurement data

taken on the paging channels (928-948 MHz) over 500 sweeps each of duration 1.68 sec-

onds [39]. These extensive measurements have been performed by the Wireless Innovation

Laboratory of Worcester Polytechnic Institute.

Figure 5.4 refers to the transmission power (dBm) received by the antenna used in the

experimental set-up on 10 channels ranging from 928.8 MHz to 929 MHz. The average

received power is −115 dBm over the range of frequencies between 928 MHz and 928.9

MHz over all 500 sweeps. Increased received power of around −100 dBm are noticed on

the channel 928.95 MHz to 929 MHz over almost all 500 sweeps. This figure indicates

that the paging band was partially used by the PUs during the time the experiment was

conducted.

Figure 5.5 refers to the transmission power (dBm) received by the antenna used in the

experimental set-up on 10 channels ranging from 929 MHz to 929.2 MHz. A substantial

amount of received power around −65 dBm is observed on the channel 929.1 MHz to

929.16 MHz for all 500 sweeps. It is clear from this figure that the PUs use this channel

929.1 MHz to 929.16 MHz during the measurement campaign.

The idle durations are shown in Figure 5.6 over 10 idle intervals in both channels (928.8
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Figure 5.4: Transmission power variation over 10 frequency slots, i.e., 928.8 MHz to 929

MHz.

928.95
929

929.05
929.1

929.15
929.2

0

200

400

600
−140

−120

−100

−80

−60

−40

Frequency (MHz)Time sweeps

P
o
w

e
r 

(d
B

m
)

Figure 5.5: Transmission power variation over 10 frequency slots, i.e., 929 MHz to 929.20

MHz.
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Figure 5.6: Idle durations over 10 consecutive idle intervals in both paging bands, i.e.,

928.8 MHz to 929 MHz and 929 MHz to 929.20 MHz.

MHz to 929 MHz and 929 MHz to 929.20 MHz). Since there is no definitive method to

comprehend PU’s occupancy, we have used traditional energy detection method to predict

PU occupancy. The threshold is set to −108.5 dBm. If the received power on a channel

during any time sweep is above this threshold, a binary variable PUocc, designated for PU

occupancy, is set to 0, i.e., used channel. Otherwise, it is 1, i.e., unused channel. Hence, K

consecutive time sweeps with PUocc = 0 is defined as one idle duration of duration K. In

Figure 5.6, we consider 10 such idle durations. As shown in Figure 5.6, the magnitude of

each idle duration in channel 929 MHz-929.20 MHz is higher than in other channel 928.8

MHz-929 MHz.

Using the categorization presented in Figure 5.2, we have also computed the Types of

the paging channels, i.e., 928.8 MHz to 929 MHz and 929 MHz to 929.20 MHz and this

is shown in Figure 5.7. As noticed from the figure, there is a larger number of Type III

channels in 929 MHz to 929.20 MHz paging spectrum as compared to 928.8 MHz to 929

MHz. As discussed earlier, Type III channel are the most suitable for SUs and higher signal

energy is allowed in these channels compared to other types.

The intention of Figure 5.8 is to prove the significance of quality of channels in spec-

trum allocation. The results shown in Figure 5.7 are utilized for obtaining results in Figure

5.8 where in we have considered five sets of PU occupancy configurations during time
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Figure 5.7: Quality of channels over sweeps 80 to 100 based on their neighboring channels

considered for both paging bands, i.e., 928.8 MHz to 929 MHz and 929 MHz to 929.20

MHz.

sweeps 80-100. The x-axis refers to the 20 sweeps. As explained in Section III, PU occu-

pancy during each configuration results in varying types of channels (Types I, II, III, IV, and

V). Based on the values of SNR matrix in Eq. 5.19, the rewards are computed for a single

SU using Eq. 5.17 for all its possible maximal allocation matrices. The top figure in Figure

5.8 refers to 10 channels, i.e., 928.8-929 MHz and the one below refers to 929-929.2 MHz.

As observed, higher SNR is obtained in paging channels 929-929.2 MHz with a maximum

of 44 units of SNR. The maximum SNR obtained in channels 928.8-929 MHz is 33 units.

The reason for higher SNR values are due to the larger number of Type III channels in the

paging band 929-929.2 MHz during the 20 sweeps.

Figure 5.9 demonstrates the significance of additional parameters like idle durations and

transmission times in spectrum sharing. The results of Figure 5.6 are utilized for obtaining

results in Figure 5.9. We have considered five sets of PU occupancy configurations as

described above. The signal energy allowed on each channel are obtained from Eq. 5.25.

The x-axis refers to the 20 sweeps namely, 80-100 sweeps. The reward functions are now

calculated on the basis of Eq. 5.24 for two different SUs with 24, 000 and 2, 000 data

packets. The threshold is set to 1.6722, as explained earlier. As mentioned in Section

5.5, the Game theoretic strategy allocates a single channel to an SU, as opposed to our
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Figure 5.8: SNR computations based on our reward function defined in Eq. 5.17 for both

paging bands, i.e., 928.8 MHz to 929 MHz and 929 MHz to 929.20 MHz.

first spectrum sharing strategy. Hence, the SNR values obtained are much less than that

obtained in Figure 5.8. Additionally, since we have introduced a penalty for selection of a

channel with a larger idle duration as compared to an SU’s transmission time, that explains

the substantial reduction in SNR as compared to that in Figure 5.8. The top of Figure 5.9

is for SU with 24, 000 packets and the one below for SU with 2, 000 packets. The SNR’s

for the second SU is an order less than the SU with higher number of data packets because

of small transmission times (an integral part of our defined reward function).

5.7 2-Person Game Formulation for Coexistence of PUs

and SUs

In this section, we focus on a single SU. Suppose the SU is using a particular free

sub-band. Technically, it can entertain any amount of transmission power. However, the

prospect of a PU entering the sub-band at any time is real. If the SU uses power greater

than the FCC’s spectral mask for the TV spectrum, it has to leave the sub-band the moment

the PU enters, thus incurring a loss of power. For simplicity, assume the SU entertains the

following three options whenever the sub-band is free to use:

a1 : Use the sub-band at transmission power < FCC spectral mask.
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Figure 5.9: SNR computations for SU 1 and SU 2 based on their utility functions defined

in Eq. 5.24 for paging bands 929 MHz to 929.20 MHz.

a2 : Use the sub-band at transmission power comparable to FCC’s spectral mask.

a3 : Use the sub-band at the transmission power higher than the FCC’s specified spectral

mask for the TV spectrum.

Now, assume that the PU which owns the sub-band, arrives in the sub-band presently

used by the SU, creating a conflict. Technically, the SU has to stop using the sub-band. On

the other hand, the PU can entertain one of the following two options:

b1 : Allow the SU share the sub-band.

b2 : Do not allow the SU share the sub-band.

With this information in place, we now formulate the pay-off functions for the PU and

the SU.

Pay − o f f f unction o f S U:

g1(a1, b1) = Gain in SU transmission power in the allocated sub-band, a positive value.

g1(a2, b1) = Gain in SU transmission power in the allocated sub-band, a positive value.

g1(a3, b1) = Loss in SU transmission power for leaving the allocated sub-band, a negative

value.

g1(a1, b2) = Loss in SU transmission power for not allowing SU in the allocated sub-band,

a negative value.

g1(a2, b2) = Loss in SU transmission power for not allowing SU in the allocated sub-band,
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Table 5.4: Pay-off table to achieve Nash Equilibria

S U PU

b1 b2

a1 0.17 × 10−5, 0.371 × 10−3 −0.17 × 10−5, 0.37 × 10−3

a2 0.37 × 10−5, 0.373 × 10−3 −0.37 × 10−5, 0.37 × 10−3

a3 −0.67 × 10−5, 0.37 × 10−3 −0.67 × 10−5, 0.37 × 10−3

a negative value.

g1(a3, b2) = Loss in SU transmission power for not allowing SU in the allocated sub-band,

a negative value.

Pay − o f f f unction o f PU:

g2(a1, b1) = Gain in total signal power (S U + PU) in the allocated sub-band, a positive

value.

g2(a2, b1) = Gain in total signal power (S U + PU) in the allocated sub-band, a positive

value.

g2(a3, b1) = Loss in total signal power (only PU) in allocated sub-band, a positive value.

g2(a1, b2) = Loss in total signal power (only PU) in allocated sub-band, a positive value.

g2(a2, b2) = Loss in total signal power (only PU) in allocated sub-band, a positive value.

g2(a3, b2) = Loss in total signal power (only PU) in allocated sub-band, a positive value.

We illustrate identification of the Nash equilibrium using a simple example with admis-

sible transmission power limits of 0.37×10−5 mW/5MHz (i.e., 100 MHz of TV spectrum is

divided into 20 sub-bands, each of 5 MHz with spectral mask of −61.3dBm/MHz in each

sub-band [4]). The transmission power for the PU is taken to be −41.3dBm/MHz which is

equivalent to 0.370 × 10−3 mW/5MHz.

From the pay-off functions defines in Table 5.4, we can identify (a2, b1) strategy as

a unique Nash equilibrium. This implies that the SU wants to optimize its transmission

power closer to the admissible power constraint of 0.37×10−5 while the PU accommodates

the SU to achieve higher signal power which in turn, increases the channel capacity.

In some situations, a free sub-band is used by two or more SUs when the PU, which

owns the channel, enters the sub-band. In such scenarios, the other SU(s) can initiate the
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2-person Game with the PU as discussed above. But, the PU informs the initiating SU(s)

about the ongoing communication of an existing SU in the same sub-band. This resolves

the serious problem we posed before: While a SU coexists with a PU restricting itself

within the admissible power limit, how can the other SU(s) be informed about the existing

SU’s communication in the same sub-band? The lack of this information can encourage

a new SU to initiate communication within admissible power limits in the same sub-band

of a PU. This additional power from the new SU can prove to be detrimental as it can

create inadmissible interference to the PU, thereby violating the FCC’s spectral mask for

coexistence in the same sub-band.

A game theoretic paradigm can be developed to resolve conflicts between the PU and

the SU(s) which could form a coalition analogous to the above 2-person Game. Details are

planned as a future work.

5.8 Conclusion

Two game theoretic strategies have been proposed to achieve maximum channel capac-

ity. Initially, a free channel has been classified uniquely as one of the five types depending

on its neighboring channels. We have shown that the type of available channel has definite

impact on the SNR. In our first spectrum allocation strategy, multiple available channels

are allocated to SUs, subjected to availability and interference constraints. Maximal allo-

cation matrices are then characterized. Optimization of channel capacity over all maximal

allocation matrices are discussed. To resolve conflicts due to allocation matrices by SUs,

a Game theoretic ideas is introduced and Nash equilibria are identified. Further, we have

identified a unique Nash equilibrium allocation for the SUs that can maximize the channel

capacity. Next, we have developed a second Game to allocate a single channel to each SU,

as opposed to our first strategy. In such a scenario, we have developed reward functions

based on idle duration of each available channel, transmission time for an allocable SU,

and the signal energy limited to each channel. Finally, we have provided extensive simu-

lation results on the game theoretic approached proposed. It would be interesting to study

the dependence of variable transmission power requirements of SUs and the corresponding
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interference imposed on the PUs in adjacent channels.

To resolve conflict between SU and PU, a two-person game is introduced and Nash

equilibrium is identified. It would be interesting to develop a computational algorithm to

enumerate all possible maximal allocation matrices for a given availability matrix and the

interference matrix. This will be pursued as our future research work. Additionally, the

probability of detecting a free sub-band in the entire TV spectrum changes over time. So,

our future work will focus on the probabilistic characterization of the distribution of free

sub-bands with temporal and spatial variations of the locations of the PUs in the entire TV

spectrum.
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Chapter 6

Priority-based Spectrum Allocation for

Cognitive Radio Networks Employing

NC-OFDM Transmission

6.1 Introduction

For higher spectral efficiency, multiple access techniques can be employed such that

multiple SUs can transmit data on the same section of the spectrum. Le and Hossain [69]

employed code division multiple access (CDMA) technique while allocating resources in

spectrum sharing among the SUs satisfying their quality of service (QoS) constraints for

the BER. The interference imposed on the PUs is also taken into account in their proposed

spectrum allocation technique. Orthogonal frequency division multiplexing (OFDM) [70]

is known for its spectral efficiency. Additionally, OFDM converts a high data rate serial

signal stream into several parallel low rate symbol streams transmitted in parallel over mul-

tiple number of sub-carriers. These sub-carriers possess narrow bandwidth in comparison

to the original transmission data, which means that a frequency selective fading channel is

effectively transformed into a collection of approximately flat fading sub-channels. Attar

et al. [71] proposed resource allocation among several SUs in an OFDM-based network

with the intention of increasing the system throughput while limiting interference to the

PUs. The optimization problem in [71] can be challenging when considering the spec-
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trum occupancy characteristics of the PUs. Spectrum pooling [72], a concept where data is

transmitted only on active or unoccupied sections of an operating spectrum, can be imple-

mented using OFDM. To support co-existence, the SUs need to use modulation techniques

to transmit data on only smaller idle sections of the spectrum. Qu et al. [73] studied the

performance of multi-carrier CDMA-based cognitive networks with the joint allocation of

frequency and power among the SUs while ensuring limited interference on the PUs. Prior

to the joint allocation strategy, the subcarrier availability has been computed using multita-

per spectrum estimation, and channel states using linear minimum mean square estimation.

These a-priori knowledge about spectrum utilization made their study much more interest-

ing and realistic in the context of cognitive radio networks. Zhang and Liang [74] utilized

multiple antennas at the SU terminals to exploit spatial multiplexing in order to maximize

the system throughput.

Although efficient resource allocation strategies have been proposed in the open liter-

ature, there are a series of issues that need to be considered in the context of CRNs per-

forming dynamic spectrum access: (i) Prioritize SUs based on their varying performance

requirement metrics such as BER and delay constrains, (ii) Prioritize sub-bands based on

their BER support and fraction of unoccupied bandwidth, and (iii) Utilize information of

spectrum occupancy statistics in designing dynamic and truly opportunistic spectrum shar-

ing approach. Consequently, spectrum measurements [5,8] are critically important in order

to characterize the degree of utilization of the available sub-bands.

In this chapter, we propose three priority-based spectrum allocation techniques for en-

abling dynamic spectrum access by the SUs in licensed spectrum. The proposed tech-

niques use critical a-priori information, i.e., spectrum occupancy statistics [75] in decid-

ing the priorities of the spectrum allocations. Furthermore, the proposed techniques are

specifically designed for a variant of OFDM transmission, namely non-contiguous OFDM

(NC-OFDM) [75], in order to enable efficient spectrum sharing among prioritized SUs.

Specifically, it allows usage of idle non-contiguous sections of sub-bands by de-activating

sub-carriers in sections of sub-bands that are occupied by the PUs. Our proposed strategies

depend on two priority metrics:

• NC-OFDM sub-carriers and BER support in each sub-band to define preferred sub-
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bands; and

• Priorities among applications generated from the SUs based on BER and delay re-

quirements. 1

The proposed spectrum allocation schemes can be divided into two categories: (i) allo-

cation of a single SU in each sub-band, and (ii) allocation of multiple SUs in each sub-band.

Under the first category, two allocation strategies are proposed namely, (i) First Available

First Allocate (FAFA), which employs the traditional OFDM approach without the knowl-

edge of active and inactive sub-carriers, and (ii) Best Available Selective Allocate (BASA),

which utilizes the information of the NC-OFDM active sub-carriers and BER information

for each sub-band to allocate a sub-band to a single SU satisfying its request. Unlike the

first category, the second category introduces Best Available Multiple Allocate (BAMA), a

multiple access scheme using non-contiguous orthogonal frequency division multiple ac-

cess (NC-OFDMA), a technique that works on the same principle of NC-OFDM while

supporting multiple access on its non-contiguous sub-carriers.

The rest of the chapter is organized as follows. Section 6.2 briefs the spectrum occu-

pancy model which facilitates our priority scheduling algorithms. Section 6.3 gives detailed

description of the three proposed algorithms. Section 6.4 describes the implementation of

the algorithms and compares their performance using bandwidth utilization and achieved

throughput. Finally, Section 6.5 draws several conclusions.

6.2 System Model

Cognitive radios are capable of spectrum sensing, which is essential in order for the

SUs to avoid interference with the PUs. Real-time spectrum measurements coupled with

the spectrum occupancy statistics are critical for spectrum sharing. Our research exploits

the spectrum utilization information of the PUs in allocating spectrum among the SUs.

The central idea is to allocate preferred sub-bands in a prioritized order of SUs’ requests.

1For example, a real-time application can sustain delay less than or equal to 40 ms with BER requirement

of 10−7, while a typical high quality audio application can sustain a maximum of 200 ms delay over a channel

with BER of 10−5 [76].
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Preference of a sub-band depends on the experienced channel conditions as well as the

number of unoccupied frequencies. Idle durations also play a vital role in deciding the

priority of a sub-band. For example, spectrum blocks with longer mean idle times are

assigned to requests with longer transmission durations. Moreover, attenuation profiles

can be utilized to assign frequency bands with less attenuation to communication links

requiring high error robustness.

In this chapter, we consider a wireless network with a cognitive radio base station and

several queued applications. In Figure 6.1, the SUs generate M applications represented by

the order iapp = 1, 2, · · · ,M. The users are within one-hop transmission range of the base

station. Each request is received at the base station, which assigns a priority value based

on the BER and delay requirements of user iapp. The cognitive base station also detects the

unoccupied blocks in N sub-bands of an operating spectrum. Each sub-band is represented

by jsb = 1, 2, · · · ,N. Based on the size of the detected block in a sub-band, the base station

computes the number of active sub-carriers (P − m) in sub-band jsb, where m represents

the number of occupied or inactive sub-carriers in an NC-OFDM symbol of total P sub-

carriers. This process is iterated over all sub-bands 1, 2, · · · ,N in the target spectrum of

operation.

The base station also computes the BER supported by sub-band jsb while taking fading

channel coefficients into consideration. As shown in Figure 6.1, the base station maintains

a priority table of BER and the number of active sub-carrier values of all sub-bands. This

Figure 6.1: Schematic diagram of the system model used for proposed priority scheduling

techniques among SUs.
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database needs to be updated over time, using the PU occupancy statistics obtained from

the spectrum occupancy model. As a result, the base station maps a suitable sub-band jsb

to a request iapp, based on its priority derived from its BER and the delay requirements. The

channel allocation table maintains recent allocation status performed by the base station to

satisfy requests generated from M SUs. Note that an application is queued if no sub-band

can be scheduled to satisfy its requirements.

6.2.1 Wireless Multicarrier Transmission Format

Let the bandwidth assigned for an NC-OFDM symbol with P sub-carriers be denoted by

BW [Hz]. Hence, the bandwidth for a single sub-carrier of NC-OFDM is (BW/P) [Hz]. The

effective bandwidth BWeff for data transmission in an NC-OFDM system, with m inactive

sub-carriers, is expressed as:

BWeff = BW −
(

BW

P

)
m = BW

[
1 − m

P

]
. (6.1)

Therefore, the effective capacity Ceff of an NC-OFDM symbol is:

Ceff = BWeff log (1 + γ)

= BW

[
1 − m

P

]
log (1 + γ)

=

(
1 − m

P

)
BW log (1 + γ)

=

(
1 − m

P

)
C, (6.2)

where C is the Shannon capacity of the NC-OFDM system, and γ is the signal-to-noise

ratio of the NC-OFDM symbol. Observe that 0 ≤ m
P
≤ 1, for m = 0, · · · , P. Eq. (6.2)

implies that the fraction m/P plays a decisive role in defining the effective capacity. In

other words, for a fixed value of P, smaller value of m, i.e., few inactive sub-carriers in

a block of sub-bands, yields a higher Ceff as compared to higher values of m. This idea

leads to the core concept of our unique spectrum allocation strategy using NC-OFDM. The

following section describes our proposed approaches in details taking the model illustrated

in Figure 6.1 into consideration.
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6.3 Proposed Priority-based Spectrum Allocation Techniques

Our proposed priority allocation techniques are specifically designed for NC-OFDM-

based wireless links that can support dynamic spectrum access. Suppose that each NC-

OFDM symbol consists of P narrow-band sub-carriers divided over a fixed bandwidth BW.

This bandwidth can span across a definite number of sub-bands in the spectrum considered.

Hence, it is essential to have the knowledge of the following:

• PU occupancy in the sub-bands to compute idle durations; and

• Bandwidth occupied by each PU in these sub-bands to compute number of inactive

NC-OFDM sub-carriers.

Once this information is available, the cognitive base station can then decide on the

number of sub-carriers to be made inactive. Suppose that the ith PU occupies a bandwidth

BWi in sub-band isb = 0, 1, · · · ,N. The number of NC-OFDM sub-carriers in sub-band isb

is
BWi

BW/P
. Hence, the number of inactive sub-carriers m can be expressed as:

m =

N∑
i=1

BWi

(
P

BW

)
. (6.3)

If we assume that all the PUs occupy the same bandwidth BWequal in their respective sub-

bands, then Eq. (6.3) can be re-written as:

m = (NP)

(
BWequal

BW

)
. (6.4)

Consequently, the cognitive node can compute the effective capacity Ceff by substituting

value of m in Eq. (6.2) as:

Ceff =

(
1 − N

BWequal

BW

)
C. (6.5)

Given this framework for performing prioritized spectrum allocation in NC-OFDM-

based wireless networks, we now proceed with three allocation techniques.
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Figure 6.2: Flow diagram of the proposed FAFA approach.

6.3.1 First Available First Allocate (FAFA) Spectrum Allocation Ap-

proach

In this scheme, the cognitive base station constructs a priority queue based on the arrival

time of each application into the queue. This strategy follows the spectrum pooling tech-

nique illustrated in [72]. FAFA selects the first application from the queue and allocates the

first available sub-band that satisfies the BER requirement of the application. The scheme

follows the same strategy for the subsequent sub-bands. This type of spectrum allocation

does not compare BER requirements of other applications in the queue before allocating a

sub-band to its requesting application. A situation can arrive when an application with BER

requirement of 10−2 is allocated a sub-band which supports BER of 10−4 or above. In such

a case, an error sensitive application may suffer at the cost of the error-prone application

due to lack of sub-bands with better BER support. As is evident, this scheme gives a lower

bound of performance and serves as the base case for comparison with other two proposed

schemes.

The flow diagram of FAFA is depicted in Figure 6.2. On receiving M requests from

the SUs, the base station prioritizes an ith request, for i = 1, 2, · · · ,M, into a queue on the

basis of its arrival time. It also computes the BER support of the jth sub-band, BERsb( j),

and its number of inactive sub-carriers m of NC-OFDM symbol, msb( j), computed using
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Figure 6.3: Flow diagram of the proposed BASA approach.

Eq. (6.3), for j = 1, 2, . . . ,N. For convenience, we define two vectors, alloc chnj and

alloc appi to keep track of the channel numbers assigned and the indices of SUs which

have been allocated sub-bands for their requests, respectively. Now for every user i, the

base station performs a search for a suitable sub-band out of the N sub-bands. The decision

block ensures that an allocated jth sub-band is never allocated again to a requesting SU (i.e.,

alloc chnj == 0) as well as that a ith SU is never allocated two or more sub-bands at the

same time instant (i.e., alloc appi == 0). After this decision, a sub-band is allocated only

after checking that the BERsb( j) is better or equal to the ith SU’s requested BER, BERi.

In the final stage of Figure 6.2, once a channel is allocated, the status of jth sub-band and

ith SU request are set appropriately to prevent duplicate allocation of sub-bands and user

requests (i.e., alloc chnj == 1 and alloc appi == 1). This process is iterated over all the M

requests.

6.3.2 Best Available Selective Allocate (BASA) Spectrum Allocation

Approach

In this approach, the cognitive base station constructs a priority queue based on the joint

requirement of BER and delay requirements. It is important to notice that all applications
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share a common relation between BER and delay requirements. All real time applica-

tions (implying better BER performance), such as streaming media, video conference, and

online video games, are delay sensitive. Hence, they can sustain only a minimum transmis-

sion delay (< 40 ms). Similarly, all non-real time applications, such as data applications,

are robust against fading channel and hence can be served on sub-bands with lower BER

performance. Additionally, these non-real time applications can sustain delays in the order

of 200 to 400 ms. This priority allocation scheme does not consider throughput in assigning

priorities along with BER and delay constraints. The reason for this consideration is that

there are many typical applications. For example, applications from public safety require

less bandwidth and better BER performance. Similarly, there are applications, such as high

quality audio requiring 940 kb/s throughput and BER of 10−5, that demand higher band-

width while simultaneously robust against fading channels. Therefore, to maintain fairness

among the requesting applications, priorities are defined based on only the delay and the

BER constraints.

In BASA, the cognitive base station allocates the best available sub-band that satisfies

the selective requirement of a SU. This selective allocation is based on the prioritized BER

and delay requirements and as well as the throughput, i.e., bandwidth demand. Intuitively

speaking, the BASA definitely performs better than FAFA with respect to throughput max-

imization and bandwidth utilization. The performance results in Section 6.4 illustrate our

assertion.

The potential of NC-OFDM is emphasized in the BASA scheme. It has already been

proved [75] that higher number of active sub-carriers in NC-OFDM results in better BER

performance. In BASA, we exactly utilize this valuable information wherein the base sta-

tion computes the number of non-contiguous active sub-carriers in each sub-band. This

information is also critical to calculate the throughput supported by each sub-band. With

this information available, the base station allocates the best sub-band that satisfies not

only the user prioritized BER and delay requirements but also has the maximum number

of active sub-carriers to support throughput requirement desired by the SU applications.

The flow diagram of BASA is depicted in Figure 6.3. On receiving M requests from

the SUs, the base station prioritizes ith request, i = 1, 2, . . . ,M, into a queue on the basis of

its BER and sustainable delay requirements. It also computes the BER support BERsb( j)
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Figure 6.4: Flow diagram of the proposed BAMA approach.

and the number of inactive sub-carriers of NC-OFDM symbol msb( j) for each jth sub-

band using Eq. (6.3), j = 1, 2, . . . ,N. The two vectors, alloc chnj and alloc appi are as

defined for FAFA, respectively. Similar decision, as described in FAFA, is performed in

the first decision block. The improvement in BASA over FAFA evolves from the following

decision blocks. Those sub-bands with BER support BERsb( j) equal to or one order better

than the requested BER BERi of the ith SU are stored. Out of these stored sub-bands, a

sub-band with the highest number of active sub-carriers (i.e., minimum msb( j)) is allocated

as illustrated in Figure 6.3. Finally, the status of the jth sub-band and ith SU request are set

appropriately to prevent duplicate allocation of sub-bands and user requests (i.e., alloc chnj

== 1 and alloc appi == 1). This process is iterated over all the M requests.
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6.3.3 Best Available Multiple Allocate (BAMA) Spectrum Allocation

Approach

This multiple access technique using NC-OFDMA has an initial operation similar to

that of BASA described above. BAMA performs its priority allocation in two stages as

follows:

• First stage: Scheduling of prioritized requests to selective sub-bands similar to BASA;

and

• Second stage: Detects un-allocated user requests and schedules them to previously

allocated sub-bands, which satisfies the BER and throughput requirements. This

feature is unique of NC-OFDMA. This differentiates BAMA from the other two

proposed schemes.

Hence, the flow diagram in Figure 6.3 also applies for the execution of the first stage in

BAMA. The operations involved in the second stage is illustrated in Figure 6.4. For each

ith SU request in the priority queue, the cognitive base station checks the ith index of the

vector alloc appi. If it detects a zero value, it interprets an un-allocated request. For each

un-allocated request in the priority queue, it searches and stores sub-bands with equal or

one order lower in magnitude of BER support (i.e., BERsb( j) == BERi or BERsb( j) ==

BERi × 10 in Figure 6.4). The reasons for including a checking condition for a sub-band

with lower order BER are as follows:

• Possibility of absence of a sub-band, even during the first stage of operation, with

equal order of BER support BERsb( j) as that of BERi; or

• Possibility of consuming all the sub-bands of equal order of BER support as that of

BERi during the first stage of execution of BAMA, to requests higher in priority than

this un-allocated user request.

Thus, instead of queuing the packet for the next time instant, the base station makes an

attempt to allocate the waiting request to a sub-band, only if, its BER support is of equal or

with one order lower in magnitude as that of the BER requirement of the requesting user.
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In the final stage, the base station allocates previously allocated sub-band with maximum

number of remaining un-allocated active sub-carriers (i.e., maximum rem act subcar j).

This supports the name of our priority allocation scheme since the base station allocates

the best (i.e., the sub-band with maximum number of un-allocated active sub-carriers) to

an un-allocated user request. The reason for selecting the best sub-band is to make sure that

this allocation poses limited interference to the PU occupying this sub-band. Consequently,

the larger the number of active sub-carriers, either contiguous or non-contiguous, the better

the BER performance [75] and better interference mitigation the system and network will

possess.

The unique characteristic of BAMA is that it allows flexibility to the user requests with

variations in throughput requirements. The priorities are defined based on the BER and

the delay requirements of the users’ requests. Now, for user with lower throughput but a

higher BER constraint will be treated with the same priority as that of an user request with

a higher throughput and a similar BER requirement. This allows fairness among the users

from the perspective of throughput constraints.

6.4 Simulation Results

In this section, the performance is evaluated for each of the three proposed schemes

namely, FAFA, BASA, and BAMA. The schemes are evaluated in terms of bandwidth uti-

lization and throughput achieved for equal number of SUs requests arriving at the base

station. The allocation efficiency is evaluated in terms of the number of un-allocated re-

quests per allocation time slot.

We have collected real-time data in the paging band (928-948 MHz) located at latitude

42◦16
′
24.94

′′
N and longitude 71◦48

′
35.29

′′
W. During the measurement campaign, 500

scans or sweeps have been conducted between 3:31 - 4:30 PM over the entire paging band.

The frequency resolution was set to 20 KHz. Using a pre-defined threshold of −68.7 dBm

(µ + 6σ, where µ and σ are the mean and standard deviation of the power distribution over

the entire paging band during any time sweep), it has been observed that a maximum of

17 PU signal were detected. This enables us to compute the active and inactive blocks in
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Figure 6.5: Proportion of active sub-carriers for NC-OFDM for all sub-bands for ten time

instants.

each sub-band over the entire paging band. Using Eq. (6.4), the number of inactive or

unoccupied NC-OFDM sub-carriers for each sub-band are then obtained.

6.4.1 Computation of Priority Metrics from Real-time Measurements

The study is conducted on a spectrum bandwidth of 20 MHz with the sub-bands of 20

KHz bandwidth. As mentioned above, PU signal are detected in only 17 sub-bands out of

the total of 1000 sub-bands in the entire paging band. The simulation is performed over

a stretch of 10 time sweeps, spanning over 1000 ms. Each allocation slot is of 100 ms

duration. Hence, there are 10 allocation slots over the time sweeps considered. Within a al-

location period, we assume that the PU occupancy status remains unchanged once they have

started using their respective sub-bands. This assumption is valid since allowing changes

in PU occupancy within a allocation period would change the parameters (i.e., number of

inactive sub-carriers m as well as the active sub-carriers (P − m)) utilized in our allocation

policy. For our simulation, the term “active sub-carriers” gives a total of all contiguous and

non-contiguous sub-carriers in a sub-band. Each NC-OFDM symbol is implemented with

256 sub-carriers. The reason we chose a lower value of the number of sub-carriers is to

have reduced impact of peak-to-average-power ratio, an impairment for OFDM systems,

on the licensed spectrum users.

One of the critical parameters for our spectrum priority allocation is the number of

active sub-carriers (P − m) in each sub-band of the simulated spectrum. Figure 6.5 refers
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to (P − m) for each of the 17 sub-bands during a simulation period of 1000 ms. Therefore,

as shown in Figure 6.5, during the first time instant sub-bands 1, 3, 7 - 9, and 16 have idle

bandwidth equivalent to 256 active sub-carriers, indicating that these sub-bands are idle for

that time duration. From the context of the SUs, these sub-bands are preferred to other sub-

bands, which are occupied by PUs. Sub-band 13 is the least preferred during the first time

instant since it has 34 active sub-carriers. Over the entire simulation duration, it is noted

that sub-bands 1, 3, 7 - 9, and 16 have the maximum number of active sub-carriers, i.e., 256

sub-carriers over all 10 time instants. Sub-band 5 has least number of active sub-carriers,

i.e., a total of 912 over all the 10 instants. This suggests that sub-band 5 is heavily used by

a PU during the entire simulation duration.

Other important parameter for our spectrum priority allocation is the BER supported

by each sub-band. Figure 6.6 refers to this parameter for each of the 17 sub-bands during a

simulation period of 1000 ms, consisting of 10 instants each of 100 ms allocation duration.

Figure 6.6(a) presents the results obtained on first 12 sub-bands during each of the 10

instants of time while Figure 6.6(b) for the rest of 5 sub-bands. During the first time instant,

the maximum BER support achieved is of the order of 0.0092 on sub-bands 6, 10, 12, 14,

and 15 while in the second instant, sub-bands 9, 10, 11, and 15 can support BER of the

order of 0.00028, i.e., 2.8 × 10−4.

6.4.2 Comparative Analysis of Proposed Algorithms

Combining information retrieved from Figure 6.5 and Figure 6.6, it is concluded that

higher priority application requests with BER of the order of 0.001 are queued during the

first time instant because of unavailability of suitable sub-bands. On the contrary, during the

second time instant, sub-band 9 is best preferred with 256 active sub-carriers and BER sup-

port of 0.00028. Since FAFA and BASA allocation schemes allocate one SU per sub-band,

only one higher priority request will be served on sub-band 9 while other higher priority

requests have to be queued. The BAMA scheme, being a multiple access scheme, will

allocate sub-band 9 to its capacity of 256 active sub-carriers to a number of high priority

SU requests. This explicitly explains higher bandwidth and better throughput performance

of BAMA over FAFA and BASA.
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10 instants of time.
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(b) BER support of 7 sub-bands, 11 to 17, during each

of the 10 instants of time.

Figure 6.6: BER of all the sub-bands in the spectrum for all ten time instants of our

simulation.
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Figure 6.7: Comparison between FAFA, BASA and BAMA schemes for the number of

un-allocated requests per time instant for increasing PU occupancy.
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Figure 6.8: Comparison between FAFA, BASA and BAMA schemes for the number of

un-allocated requests per time instant for increasing SU requests.
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The above conclusion is further emphasized by Figures 6.7 and 6.8 where the simula-

tion is conducted over 1000 iterations, with each iteration involving a complete scenario of

PU occupancy over a period of 1000 ms. Again, 10 allocation slots are divided into 100

ms each within the PU occupancy interval of 1000 ms. In Figure 6.7, the x-axis represents

the increasing number of PU occupancy from 1 to 17 while the y-axis refers to the number

of requests un-allocated during each allocation slot. In Figure 6.8, the x-axis plots the in-

creasing number of application requests from 10 to 100 at the base station while the y-axis

refers to the number of requests un-allocated during each allocation slot. Figures 6.7 and

6.8 indicate that the allocation performance degrades for FAFA and BASA for increasing

PU occupancy or SU requests while BAMA performs the best with its NC-OFDMA ap-

proach, supporting multiple users on each of the sub-bands. Figure 6.8 considers a total

of 106 requests generated at the base station when 13 out of 17 sub-bands were occupied

by PUs. As seen, almost 830000, i.e., 83% of the requests were un-allocated by FAFA

and BASA while only 280219, i.e., 28.02% requests were unallocated by BAMA. We have

similar plots for increasing number of PUs when the applications requests are fixed to a

specific number.

One of the critical parameters of performance evaluation is the bandwidth utilization.

Figure 6.9 refers to the bandwidth utilization of BASA and BAMA for increasing number

of SU requests, considering 10, 20, 50, and 100 applications generated at the base station.

The aggregate bandwidth utilization is the sum of bandwidth scheduled to all the allocated

requests during one simulation duration of 1000 ms. For 1000 iterations, the time instant

on the x-axis refers to each one of 1000 ms time durations. The y-axis plots the aggregate

bandwidth for each instant of 1000 ms. For clarity of information and better appreciation,

the figure is plotted only for the duration of 300 to 600 ms, instead of from 1 to 1000 ms.

As seen from Figure 6.9(a) there is no improvement in bandwidth utilization in BASA,

even when the SU requests increase from 50 to 100. The aggregate bandwidth achieved

for 100 user requests is around 50 MHz over a period of 1000 ms and on average 5 MHz

over a allocation slot of 100 ms. On the contrary, BAMA achieves a bandwidth utilization

of 180 MHz over a period of 1000 ms for 100 users and therefore, clearly outperforms

BASA with respect to bandwidth utilization. The other measure of performance evaluation

is throughput achieved by a priority allocation scheme. Figure 6.10 presents the aggregate
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(a) Bandwidth utilization of the FAFA scheme with increasing

number of SU requests.
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(b) Bandwidth utilization of the BASA scheme with increasing

number of SU requests.
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Figure 6.9: Aggregate bandwidth utilization in BASA, and BAMA schemes for varying

number of SU requests.
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(a) Throughput of the FAFA scheme with increasing number of

SU requests.
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(b) Throughput of the BASA scheme with increasing number of

SU requests.
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Figure 6.10: Aggregate throughput achieved in BAMA scheme for varying number of SU

requests.
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Figure 6.11: Average throughput comparison of FAFA, BASA, and BAMA

throughput for BAMA for increasing number of SU requests, considering 10, 20, 50, and

100 applications generated at the base station. The aggregate throughput is the sum of

throughput requirements of all the allocated requests during one simulation duration of

1000 ms. For 1000 iterations, the time instant on the x-axis refers to each one of 1000 ms

time durations. The y-axis plots the aggregate throughput for each instant of 1000 ms. For

clarity of information, the figure is plotted only for the duration of 300 to 600 ms, instead of

from 1 to 1000 ms. With increasing number of SU requests, there is an increasing value of

aggregate throughput. We also have similar results for FAFA and BASA spectrum priority

allocation schemes, but BAMA outperforms both the schemes substantially.

To test the three schemes, we added power constraint. The power constraint is set such

that bands occupied by PUs are allowed transmission power for SU to only -60 dB. The

SUs are assigned transmission power level randomly such that there is a chance of 20%

that the secondary user does not have enough transmission power to establish successful

connection. This setting is to simulate the case with selective channel fading. Figure 6.11

shows the average performance of the three schemes over 50 simulations. With trans-

mission power constraint, FAFA and BASA suffer great performance degradation, while

BAMA still has the same performance.

In the result, the performance of FAFA and BASA are almost the same and their perfor-

mance curves overlap in Figure 6.11, which means the first available band is almost always

the best available band. This is because in TV broadcasting channels, primary users either
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occupy the channel almost entirely or not at all. Thus, first available allocation scheme is

the same as best available allocation scheme in single allocation cases.

6.5 Conclusion

In this chapter, we have developed three unique spectrum allocation techniques to sat-

isfy requests generated from prioritized secondary users (SUs). First, we have extracted

PU occupancy statistics from real time measurements collected in the paging band (928-

948 MHz). Second, priorities have been assigned to SU requests based on their bit error

rate (BER) and delay requirements. Since several portions of the wireless spectrum may

be heavily attenuated due to frequency-selective fading resulting from multipath propa-

gation, BER support on each sub-band are separately computed. Additionally, to assign

aggregate bandwidth to requesting users, we have exploited the concept of non-contiguous

orthogonal frequency division multiplexing (NC-OFDM) to compute the number of active

sub-carriers (contiguous as well as non-contiguous) in each sub-band of the entire paging

band. Finally, we have presented and compared three novel priority allocation schemes

based on bandwidth utilization and achieved throughput.
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Chapter 7

Cross-layer Architecture for Joint Power

and Link Allocation

7.1 Introduction

Ultra Wideband (UWB) [77] techniques are used extensively for higher data rates over

short transmission ranges, especially for multimedia traffic. UWB spans over a 7.5 GHz

(3.1-10.6 GHz) bandwidth at a power level near the noise floor. However, the UWB trans-

missions can increase the noise floor and introduce interference to adjacent channels. This

may result in substantial performance degradation to existing users. To avoid such unde-

sirable situations, Federal Communications Commission (FCC) defined the spectral mask

of -41.3 dBm/MHz for the UWB transmissions in certain overlapping bands. For example,

the radar and satellite systems span over a bandwidth of 1.6 GHz (3.1 - 4.7 GHz). There-

fore, power control mechanisms and reduction of channel interference are important design

issues in an UWB receiver.

UWB communications are rich in multipath effects. In this chapter, we make an ef-

fort in utilizing Rake filtering and Power aware Scheduling (ROPAS) architecture to ex-

ploit effects of the multipath channels. In our ROPAS design, the unique multi-objective

Rake optimization ensures minimal bit error rate (BER) for the receiving applications while

strategically selecting an optimal number of multipaths among many possible propagation

paths. The joint optimization helps in reducing the computation complexity at the Rake
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receiver while minimizing interference for enhanced estimation of transmitted bits.

Design of the MAC layer for the UWB network is significantly different from the tradi-

tional multihop ad hoc networks. The reason for this difference in the design is due to the

transmission power restrictions imposed by the FCC on such UWB signals in the licensed

bands. The MAC layer protocol design should possess the salient features: (i) Minimize

power consumption due to communications to reduce interference on the licensed users,

and (ii) Fair and efficient sharing of resources between the communicating devices.

Power aware MAC layer, with minimum interference can now be efficiently devel-

oped when information can be exchanged with the PHY layer before allocating links to the

data traffic. This exactly is the central idea of our ROPAS architecture. In this chapter,

we take advantage of cross-layer design between the PHY and MAC layers for CR aided

dynamic channel assignment with the use of UWB technology. However, the CR-based

dynamic channel assignment can not be achieved in a straightforward manner and involves

inter-related issues such as “free” (i.e., idle) channel detection, interference measurement,

multipath selection, and power control. For example, the interference and channel fading

characteristics have to be considered from the PHY layer so that the data frames can be

transmitted with less interference. Furthermore, transmission power control over the links

is performed by the MAC layer, with an objective of limiting power while satisfying the

packet transmission requirement (e.g., delay, distance). Thus, the cross-layer sharing of in-

formation between these two layers is indispensable, especially for CR-based mobile nodes

in a dynamic network, since the channel conditions vary randomly with different mobility

patterns. At the same time, the cross layer based power control and link scheduling strat-

egy in ROPAS helps the CR in imposing a limit on the transmit power for each frame

interval. The CR uses increased transmission power for delay sensitive traffic to reach the

destination in the minimum number of hops and hence, minimum delays, while employing

reduced transmission power for delay tolerant services.

In our cross layer design and simulation, we have chosen the UWB (3.1-10.6 GHz) for

link allocation and for traffic communication purposes due to its high data rate on each

sub-channel of 528 MHz bandwidth [77]. The main contributions of this chapter [78] are

as follows:
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• We present a multi-objective optimization problem for the Rake receiver to reduce

computational complexity,

• We present a cross-layer multi-objective optimization design for dynamic frequency

selection with optimal transmission powers allocated to each subframe, an optimal

partition of a licensed sub-band, and

• We discuss the cross-layer design of the CR-based priority based scheduling while

supporting the maximum number of parallel transmissions within a frame interval.

The rest of this chapter is organized as follows. Section 7.2 deals with the previous work

on dynamic channel allocation strategies. Our proposed algorithm, ROPAS is described in

Section 7.3. Section 7.4 illustrates the optimal power allocation strategy based on distance

and priority differentiations. Simulation results are discussed in Section 7.5 followed by

the conclusion in Section 7.6.

7.2 Related Work

Dynamic channel allocation in mobile networks has been addressed by previous works

in myriad ways. The distributed, fault-tolerant allocation [79] depends much on the channel

usage information by the interfering neighbors of a requesting user, which can be used to

compute the best channel allocation. This strategy involves a high message complexity due

to exchange of channel usage information of all its one-hop neighbors. The other research

on dynamic channel allocation [80] is based on a mutual exclusion between the “request”

and “reject” messages for allocating a group of channels. But, this strategy suffers from

the problem of fairness among requesting users, with additional limitation of exchange of

“request” and “reject” messages. An improved version of the channel allocation is dis-

cussed in [81] where the channel allocation is based on the ratio of the serviced data rate to

the required data rate. Additionally, the power distribution algorithm in this research work

“adjusts” the average transmit power of the channel based on the received signal-to-noise

ratio per user. But, this allocation strategy may give rise to a serious problem: Assume

a channel is allocated to a loss-sensitive application and the channel suffers from deep
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fading while their power distribution strategy decides to decrease (“adjust”) the average

transmit power on this channel. This will result in loss of the entire transmission due to

poor channel conditions and cause a dramatic performance degradation. Our proposed

ROPAS cross-layer architecture has a novel solution to this problem. Scheduled links are

allocated power by the CR based on the retrieved information about the channel conditions

from the physical layer.

The design of efficient MAC layer protocol with lower power consumption and strict

computational complexity is a persisting research challenge. The authors in [82] have dealt

with this issue of interference using the margin based power allocation scheme that main-

tains power constraint along with an exclusive region based scheduling. But, this work

suffers from an inherent problem of centralized decisions taken by a centralized controller

for power allocation and slot allocation. Therefore, the system becomes much more com-

plex with an increase in the number of UWB devices, resulting in heavy overhead due to

sharing of varying number of users with a centralized controller. The location based MAC

layer protocol and routing [83] depends on the distance information to achieve low power

levels and increased lifetime and improved network performance. Saving of power in each

UWB device is achieved by using a sleep interval when the devices are not participating

in active transmissions. Again, this provides a trade-off between the power constraints and

the network latency when our main focus is for power constrained protocol design. The

application of CR [84] deals with the network layer perspective in UWB-based networks.

The routing decisions are made on the basis of a cognitive cost function that takes care

of important issues like synchronization, end-to-end delays and coexistence with licensed

PUs. Our proposed architecture deals with a cross-layer MAC optimization protocol where

the CR in each UWB device upon allocation of channels to its applications decides about

the imposed power constraints. Additionally, proportional fairness is achieved by a unique

priority scheduling performed by the CR.
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7.3 The ROPAS Architecture

In our proposed ROPAS architecture, the two essential ingredients are the cross-layer

design and the multi-objective optimization principles.

Cross-layer design: The motivation behind a cross-layer design is three-fold [85]. First,

sharing of information across layers aims to solve problems created by wireless links. For

example, the misinterpretation of a wireless error by a TCP sender to be an indication of

network congestion. Second, the cross-layer design attempts to exploit the fundamental

characteristics of wireless medium like channel variations due to fading, at higher layers.

This particular attribute is a potential candidate, especially for CRNs, in developing adap-

tive protocol stack to adapt dynamically to changes in network conditions. Finally, the

cross-layer design can take advantage of the new modalities like node cooperation, multi-

packet reception, and cognitive radio [85] offered by wireless medium. This is not viable in

traditional layered architecture. Recent research on cross-layer design [86]- [87] showed a

substantial improvement in the routing efficiency, throughput, fairness and delay variance

among different applications. Physical layer information exchange [88] with the MAC and

network layer has also exhibited a superior network performance.

Especially, cross-layer design seems to be an essential component in cognitive networks

since it not only provides network functionalities to various applications, but also adapts to

their needs, prevailing network traffic conditions as well as the wireless medium.

Multi-objective Optimization: Optimization problems [89] are generally formulated us-

ing a single-objective function complying with a series of constraints. A single-objective

optimization problem is expressed as:

Optimize [minimize/maximize] f (x) (7.1)

subject to Y(x) = 0

Z(x) ≤ 0.

In the above problem, f (x) is the optimization function and x is an independent variable.

It may be noted that x can also represent a vector of independent variables. The functions

Y(x) and Z(x) are the constraints of the model. But, in real life, problems can be complex
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Figure 7.1: Cross-layer design of the ROPAS architecture

enough to optimize more than one objective function. This gives rise to the evolution of

multi-objective optimization [90]. A multi-objective optimization problem is expressed as:

Optimize [minimize/maximize] f (x) = f1(x), f1(x), . . . , fn(x) (7.2)

subject to Y(x) = 0

Z(x) ≤ 0.

Here, f (x) is a set of n functions jointly optimized with constraints functions Y(x) and Z(x).

In our research, we made an effort in utilizing multi-objective optimization techniques

in the CR-based cross layer design which involves the MAC and PHY layers.

The ROPAS architecture is shown in Figure 7.1 and the entire protocol is described

in several steps (i.e. marked by the numbers). In the proposed ROPAS, in addition to

traditional CR modules in the PHY and MAC layers, several functional modules are in-

cluded in order to improve the collaboration between the PHY and MAC functionalities as

shown in Figure 7.1. All the central decisions are taken by the CR Manager (CRM) which

also has the capability of interaction between different modules. The other two modules
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in the MAC layer are responsible for an efficient dynamic channel allocation among mo-

bile nodes with limiting power constraints. The Channel Scanner (CS) divides the entire

UWB into smaller sub-bands and scans these sub-bands in periodic intervals for possible

“free” (not used by licensed users) channels. The next module is called the Power-aware

Scheduler (PAS) which aims at a multi-objective joint power control and link schedul-

ing of data frames. Additionally, it also performs the hybrid queuing strategy to achieve

fairness among requesting applications. The three modules at the bottom of Figure 7.1

are associated with the PHY layer of each node in the network. One of the modules

is the Interference Measurement (IM) which measures the interfering power sensed in

each sub-band due to users in adjacent sub-bands. The PAS works with the IM to limit

the transmission power in any particular sub-band within the permissible limits (- 41.3

dBm/MHz [77] or 0.039 mW/528 MHz for UWB communications). The Rake Optimiza-

tion Module (ROM) deals with the PHY layer Rake receiver. This multi-objective opti-

mization computes a minimal number of Rakes or fingers needed by the Rake receiver for

maximum signal power and hence maximum signal-to-noise ratio (SNR) at minimal BER.

The Channel Estimation Block (CEB) estimates the fading condition of the channel as

well as the channel error rates. The CEB shares the cross-layer information with the CRM

to select the best link (in terms of fading and error rate) for data transmission among the

adjacent one hop neighbors.

Our proposed architecture addresses these two issues: the dynamic channel allocation

for the transmitting applications and the Rake optimization for receiving processes. The

Rake optimization is a pure PHY layer issue and utilizes the interference power informa-

tion from the IM to optimize the number of propagation paths selected for minimal BER.

For dynamic channel allocation, let us consider an example to get a better understanding of

our cross-layer design of ROPAS. Seven steps are involved in the entire channel allocation

process:

• Step 1: An application arrives at the CRM with its link request and the delay con-

straint. The CRM refers to the CS for possible “free” channels.

• Step 2: The CS with ready reference to the IM module for probable interference

power, detects the “free” channels. It is noted that the IM module is located in the
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PHY layer.

• Step 3: Upon the response from the IM, the CS sends the detected free channels with

their respective identifications to the CRM. Therefore, the CRM has the complete

information about the free channels for the requesting applications.

• Step 4: The CRM requests the PAS module for transmit power limits on each of

these “free” channels. The CRM also sends information about the delay constraints

for the requesting application.

• Step 5: The PAS refers to the IM for signal-to-interference and noise ratio needed

for joint power control and link scheduling; the PAS module divides the MAC layer

frames into subframes (based on delay constraints of the requesting applications)

and assigns a group of links to each subframe. The module also allocates a group of

transmit powers based on the delay constraints.

• Step 6: The PAS sends the information to the CRM about the frame interval, fraction

of each subframe and probable group of transmit power allocation to each subframe.

• Step 7: Finally, the CRM checks with the CEB for probable error rates and fading

conditions based on the information received from the PAS module. Then, the CRM

allocates the power constrained links to the frames determined by the PAS.

It can be seen from these steps that for a power constrained link, an appropriate collabora-

tion between different modules enables the data transmission in an optimal manner in terms

of current channel and link status (i.e., delay constraint of the requesting user, utilization of

the channel with power constraints, and the interference of link). The collaboration consid-

ers two critical issues in the subframe transmission: Channel characteristics for dynamic

channel allocation and the transmission power for reducing the interference. In the follow-

ing subsections, we describe each module in detail and illustrate the interactions between

these modules.
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7.3.1 Rake Optimization Module

In this subsection, we discuss the Rake optimization, which is an enhanced module in

the PHY layer shown in Figure 7.1. We employ a multi-objective optimization strategy for

an optimal selection of multipaths out of the several possible propagation paths.

Since UWB communications are rich in multipath effects, Rake receivers are used to

accumulate significant energy from multipath components in UWB networks. It consists

of a bank of correlators or fingers where each finger is synchronized to a multipath com-

ponent. The output of each finger is coherently combined using different techniques like

Maximal Ratio Combining (MRC) [91], Minimum Mean Square Error, etc.

The complexity in computing the Rake receiver output involves two parts: (i) Multipli-

cations of {N × M} matrix with {M × N} matrix gives O(MN2) [91] and (ii) Additions of

the two matrices of similar dimensions, resulting in a complexity of O((M − 1)N2), where

M and N denote the number of correlators and the weights assigned to each correlator re-

spectively. Our idea of developing an optimized Rake receiver stems from the intention

of reducing the computation complexity in terms of the number of multiplications and ad-

ditions needed for the weight derivation attached to each finger of the Rake receiver. We

have chosen MRC Rake receiver for its lower computation complexity as compared to other

Rake receivers.

To illustrate our assertion, we assume that the i-th received signal at time instant t is

ri(t). The output of the Rake receiver yi(t) for the i-th received signal with R fingers or

correlators can be given by:

yi(t) = γ
T ×

R−1∑
j=0

ri(t − δ j), (7.3)

where γ = [γ0, · · · , γR−1]T are the weights associated with each finger, T is the transpose

operation and δ j is the delay associated with j-th correlator of the Rake receiver to capture

the multipath signal from its predefined delayed path. Now, the computation complexity

depends on the number of fingers used and their corresponding finger weights. In order

to reduce the computation complexity, we can strategically select an optimal number of

fingers out of many multipaths in UWB communications. If the value of M and N can be

reduced, then the computation complexity can be reduced to a great extent. Hence, the
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basic idea of our optimal selection of a few fingers is to reduce M and the corresponding

reduction in N.

Let K = {1, 2, · · · , k, · · · ,K} be the set of all multipaths. The energy-to-noise ratio

(ENRk) in k-th multipath can be written as [77]:

ENRk =
Pk × τc

N0 ×W × σT

, (7.4)

where Pk is the average power received in the k-th multipath, τc is the coherence bandwidth

of the UWB channel, N0 is the one-sided power spectral density of the background Additive

White Gaussian Noise (AWGN), W is the signal bandwidth andσT is the standard deviation

of the AWGN noise within the symbol duration T .

The Rake optimization is to strategically select only a few of the multipaths out of all

the possible ones. The reason behind this is two fold: (i) Received signal energy from

each and every multipath may not improve the total desired signal energy at the Rake

receiver, and (ii) Delayed multipaths may suffer from severe fading or may have been

corrupted due to channel interference, thereby resulting in increased BER. The idea is to

optimize the number of multipaths chosen so as to maximize the ENRk for the k-th path.

On the other hand, the optimization needs to minimize the overall system BER, which

implies minimization of the overall bit energy Eb. Therefore, it becomes a multi-objective

optimization.

The multi-objective function in multipath k with power Pk
i for the i-th UWB receiver in

the presence of interfering U nodes can be represented as:

max

⎛⎜⎜⎜⎜⎜⎝ Pk
i∑U−1

j=0, j�i Pk
j

⎞⎟⎟⎟⎟⎟⎠ , k ∈ K. (7.5)

Then, maximizing Eq. (7.5) for all k ∈ K.

min

(
Eb

N0

)
= min

⎛⎜⎜⎜⎜⎜⎜⎝
K−1∑
k=0

Pk
i +

U−1∑
j=0, j�i

K−1∑
k=0

Pk
j

⎞⎟⎟⎟⎟⎟⎟⎠

= min

⎛⎜⎜⎜⎜⎜⎝
K−1∑
k=0

Pk

⎞⎟⎟⎟⎟⎟⎠ over all theusers.

(7.6)
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Next, let φ = {1, 2, · · · , k′ , · · · ,K ′ } be a selection from K i.e., φ ⊂ K. Hence, our goal is

to choose a subset φ that maximizes the power given in the first objective while maintaining

a low BER. Therefore, K
′
is the optimized number of paths in the set of paths φ and K is the

number of multipaths in the set of possible propagation paths. Therefore, the optimization

problem with two maximizing functions f0(k) and f1(k
′
) can be rewritten as:

max f0(k) =
Pk

i∑U−1
j=0, j�i Pk

j

, k = 0, · · · ,K − 1,

max f1(k
′
) =

K
′−1∑

l=0

Pl. (7.7)

To solve this multi-objective functions, we can either create Pareto-optimal charts [92]

and select the best solution from the same or combine them as done here. In fact, an-

other approach is to select a set of real values λi which refers to the multiplier for the i-th

maximizing objective function, f0(i). Hence, our new objective function L(φ) becomes:

L(φ) = f1(k
′
) −

K
′−1∑

i=0

λi × f0(i). (7.8)

This is still a combinatorial optimization problem. To reduce it to a linear Integer

Programming (IP) [92], we introduce a set of variables Xi defined as:

Xi = 1, i f multipath is selected and,

= 0, i f multipath is not selected.

Therefore, the problem in Eq. (7.8) can be reformulated over the set X (constitutes

individual X′i s) as:

L(X) = X × f1(k
′
) −

K
′−1∑

i=0

λi × f0(i)

=

K
′−1∑

i=0

⎡⎢⎢⎢⎢⎢⎣Xi × Pl − λi

Xi × Pi
j∑

l� j Pi
l

⎤⎥⎥⎥⎥⎥⎦ ,
sub ject to Xi ∈ [0, 1]. (7.9)

It is easy to see that this is a linear IP problem and can be easily addressed using a stan-

dard solver like the Branch-and-Bound method. We have used GLPK [93] (version 4.10)
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Figure 7.2: Pseudo code for the Rake multi-objective optimization

for solving this multi-objective optimization problem.

Our implementation of the IP and the pseudo-code is shown in Figure 7.2. First, we

declare a variable, Power[i][ j] which represents the power received by the Rake receiver

from the i-th multipath carrying information of the j-th user. The entity Power[i][1] is the

power received by the desired UWB Rake receiver ( j = 1) from the i-th multipath. This

implies that Power[i][ j] with j � 1 is the received interference power from i-th multipath.

We have also declared the multiplier, λi (i.e., λ[i] in Figure 7.2) and the binary variable,

Xi (i.e., Xi or x[i] in Figure 7.2) for our joint optimization. The transmission power con-

straint on each multipath for UWB communication is limited to 0.039 mW. Therefore, for

any correlator, we impose a power constraint of 0.039 mW as any multipath with higher

power values may be corrupted due to interference. With this underlying logic for our opti-

mization problem, we solve Eq. (7.9) for the optimal selection of paths as shown in Figure

7.2.
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7.3.2 Interference Measurement (IM)

The IM is another module in the PHY layer involved in Steps 2 and 5 as shown in

Figure 7.1. This module is needed to calculate the signal-to-interference noise ratio (SINR)

which estimates the ratio of power due to the allocated link to power due to other adjacent

interfering links at a soft-decision variable. Let us assume that M information bearing

symbols, S k(1), · · · , S k(M) independently and identically distributed (i.i.d) are chosen from

a finite set with zero mean. The mean E[S k(m)] and variance, E[| S k(m) |2] for the k-th link

are defined as:

E[S k(m)] = 0, and

E[| S k(m) |2] = Pk,

1 ≤ m ≤ M, 1 ≤ k ≤ L, (7.10)

where, Pk represents the signal power on the k-th link.

Then, the expected value of SINR at the k-th link among L links is given by:

S INRk(P) =
Gk × Pk∑L

l=1 Pl ×Gk,l + σ
2
k

,

=
Pk∑L

l=1 Pl ×
(

Gk,l

Gk

)
+
σ2

k

Gk

,

1 ≤ k ≤ L, (7.11)

where Pk ≥ 0 is the transmitted power on link k. We further define the transmit power

vector, P as:

P = (P1, · · · , PL) ∈ �L
+, (7.12)

where P is also referred to as the power allocation vector. The first term in the denomi-

nator of Eq.(7.11) gives us the interference power in the k-th sub-band prior to link’s data

transmission. This interference is called the interference temperature caused by concurrent

communications in adjacent channels. This value is exchanged with the PAS module for

link allocation. Gk ≥ 0 is the path gain on the allocated link k and depends on the channel

allocation and the state of the wireless channel. Gk,l ≥ 0, l � k is the path gain between

the link l and link k. Therefore, if the transmit power on link l is Pl , then the expected
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Sub-band with PU

Free sub-band with less interference power

Free sub-band with high interference power

Figure 7.3: Channel assignment based on the “free” channels detected by the IM in the

UWB (3.1-10.6 GHz)

interference on link k � l is PlGk,l. Additionally, if Gk,l = 0, then the link k is said to be or-

thogonal to link l. Again, Gk,k ≥ 0 represents the self and inter-symbol interference which

occurs due to the time dispersive nature of the wireless channel. σ2
k > 0 is the Gaussian

noise variance at the output of link, k.

7.3.3 Channel Estimation Block (CEB)

The CEB module is involved in Step 7 of our cross-layer dynamic channel allocation

strategy. The minimum mean square estimation (MMSE) [94] algorithm runs at the CEB

to determine existing channel conditions between the network nodes within their commu-

nicating ranges. The CEB also gets an estimate of the error rate due to existing channel

conditions. These estimates are calculated in short durations to take care of changing topol-

ogy/routes caused by mobility of the nodes. The CRM refers to these estimates for the re-

questing service and assigns the link out of a possible multiple set of selected links chosen

by the PAS module. For example, the CRM would decide to assign links with channel error

rate 10−3 (rapid fading characteristics) to frames of a speech telephony application and will

assign a link with channel error rate 10−5 (slow fading characteristics) to frames of a video

telephony application.
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7.3.4 Channel Scanner

The Channel Scanner is involved in Steps 1, 2, and 3 of our channel allocation strategy

shown in Figure 7.1. The CR divides the UWB into narrow sub-bands or channels of

bandwidth 528 MHz [77]. CR scans each of these sub-bands and detects them as “free

channels” based on the “interference temperature” obtained from Eq. (7.11). These “free

channels” can be assigned for its own data transmission or for forwarding traffic of its one

hop neighbors. The CR detects the “free” channels with the help of the IM and stores them

in a “free channel pool” as shown in Figure 7.3.

7.3.5 Power Aware Scheduling

The CR divides a MAC layer frame into smaller synchronized subframe intervals, as-

signs a set of links to each subframe, and allocates transmitting power to each of the set

of links. This process is done by the PAS module, which is involved is Steps 4, 5, and

6 as shown in Figure 7.1. Let us assume a finite frame interval F and each subframe in-

terval to be S F, a perfect multiple n of F. Thus, we have a set of subframe intervals

χ = {1, 2, · · · , n}. Again, the PAS module divides the entire sub-band of N links of 528

MHz into smaller subsets M of bands or links of bandwidth (528/n) such that M × n = N

as illustrated in Figure 7.4.

We consider that any one of these subsets M can be allocated to each subframe based

on the power constraint. We also assume that A = {S Fi : i ∈ χ} be a system of subsets of F

with: ⋃
i∈χ

S Fi = F and ∀i∈χS Fi

⋂
S F j = 0, i � j. (7.13)

Eq. (7.13) indicates that a frame is divided into disjoint subframes within the frame

interval. One additional point to note is that F can also represent a frame and correspond-

ingly, S F is a subframe of F. Let ξ represents the real function that denotes the fraction of

frame occupied by the subframe, ξ : A→ [0, 1] such that

∀i∈χξ(S Fi) ≥ 0, ξ(0) = 0, and

ξ(
⋃
i∈χ

S Fi) =
∑
i∈χ
ξ(S Fi) = ξ(F) = 1. (7.14)
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BW = 528/n MHz 
= M MHz BW = 528 MHz

Figure 7.4: Sub-band division into multiple frmaes in Power Aware Scheduling illustrated

in UWB

Here ξ(S Fi) denotes the i-th fraction of the frame with interval S F. We have also

related ξ(S Fi) with the frequency of allocation of the power vector P(S Fi) to the links

allocated to i-th subframe. ξ(S Fi) = 0 implies that the power vector P(S Fi) is not utilized

by the links for that subframe.

Now, for each link within a set M, l ∈ M, we associate a set function Pl : A → �+ (a

positive real space). Let us define a power vector P as the set of possible transmit powers

which satisfy P = (P1, · · · , Pl) : A → �L
+. If we define φ(S INRk(P(S Fi))) as the average

data rate for link k in the subframe with S INRk(P(S Fi)) defined as in Eq. (7.11), then the

expected data rate τk(P, ξ) can be written as:

τk(p, ξ) =
∑
i∈ξ
ξ(S Fi)φ(S INRk(P(S Fi))). (7.15)

Now, with the above expected data rate and SINR, we define the joint power control

and link scheduling strategy as: With given values of A and F, ξ decides the length of

each subframe and based upon the subframe interval, assigns a group of links to each

subframe. This is similar to frequency division multiplexing, where the entire bandwidth is

divided into frequency slots. Therefore, link scheduling can be modeled as a function of ξ.

Now power scheduling relates to allocating transmit power to the links in each subframe.

Therefore, the joint power control and link scheduling can be mathematically defined as:

• Choosing ξ : A→ [0, 1] while satisfying Eq. (7.14) and

• Determining P : A→�L
+.

The CR computes the joint power control and link scheduling in two different ways for two

different traffic patterns:
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Delay Sensitive Traffic: For delay sensitive packets (e.g., delay less than 100 ms), higher

power vector needs to be assigned to each subframe which results in higher transmit power

within each frame interval. Therefore, the joint strategy tries to minimize the value of ξ

fraction of each subframe and maximize the power vector in each subframe. In other words,

it maximizes the transmit power in each link. The joint optimization can be expressed as:

min ξ

max

M∑
k=1

Pk, k = 1, 2, · · · ,M,

such that ∑
i∈χ

P(S Fi)ξ(S Fi) +

n∑
i=1

M∑
k=1

L∑
l=1

ξ(S Fi)PlGk,l ≤ 0.039. (7.16)

Delay Tolerant Traffic: Similarly, the strategy for delay tolerant packets (e.g., delay greater

than 100 ms) is to maximize the value of ξ while re-using the links with higher frequency).

As we mentioned earlier, the value ξ has a direct correlation with the frequency of using a

certain power vector. Since we use larger subframes, the transmit power has to be limited

in each subframe in this case. This joint optimization can be written as:

max ξ

min

M∑
k=1

Pk, k = 1, 2, · · · ,M, (7.17)

with constraint defined as in Eq. (7.16).

Here, L is the total number of links in the entire UWB. This optimization is solved in

a similar way as computed by a Rake Optimization. Choice of ξ also plays a vital role in

the power control. Higher value of ξ implies higher subframe duration (rather less number

of subframes), and higher frequency of usage of power vector, P(S Fi) for links used in i-th

subframe (since ξ(S Fi) relates to the frequency of allocation of power vector P(S Fi) in i-th

subframe). Thus, Eq. (7.16) limits the transmit power dissipated over the frame duration.

On the other hand, lower values of ξ implies lower frequencies of utilization of a certain

power vector and encourages the use of higher transmit powers with the allocated links in

each subframe. In addition, we can further define priority according to the requirement

of given applications. To illustrate this point, the CR can use smaller values of ξ for real
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time traffic (i.e., delay sensitive) which encourage higher values of transmit power in each

subframe. Thus, it increases the transmission range of each UWB node while reducing the

number of hops to its destination, thus results in minimum transmission delay. Again, the

non-real time applications (i.e., delay tolerant) can be assigned higher values of ξ to use

lower transmit power in each subframe, resulting in decreased transmission range.

7.4 Priority Based Scheduling

In this sub-section, we formulate the optimization problem for joint power control and

link scheduling for different application originating from one UWB node or from other

competing nodes. We know that higher spectral efficiency can be achieved with increasing

parallel transmissions in minimum number of time slots per frame. Thus, we concentrate

our attention in scheduling the maximum number of parallel transmissions in minimum

number of time slots which is defined by a variable NP where NPi, j represents the ith bit

of the jth user application. The other aspect of our constrained optimization would be to

restrict the multi-access interference (MAI) within the FCC’s permissible limits.

max NPi, j

s.t.
Pi,k∑M−1

p=0,p�k Pi,p

∑N−1
l=0 cl

pck
p + σ

2
k

≥ S NRth,

(7.18)

where σ2
k is the additive White Gaussian noise power S NRth is the minimum SNR for trans-

mission power in a particular slot. If the SNR of a user is higher than the S NRth, the signal

can be received successfully. Otherwise, the transmission fails. The signal power for the ith

bit for the kth user is represented by Pi,k and that for the pth interfering users is represented

by Pi,p. The lth chip of the spreading sequences for the pth and kth users are denoted by

cl
p and ck

p respectively. The cross-correlation of two different spreading sequences is not

negligible. Hence, this term is added in the interference term of Eq. (7.18). The first term

in the denominator of the expression for the constraint represent the MAI from (M − 1)

users.

Now, the signal power for an application is defined in our work as a function of chan-
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nel conditions, priority level in the queue, and the distance between the transmitting UWB

node and the receiving node.

According to the FCC’s restriction on transmission power, the maximum transmitting

range can be 10m [77]. Again, near-far interference is a persisting issue in case of Code

Division Multiple Access (CDMA) systems. To reduce the near-far interference, the trans-

mitter requires less power if the receiver is close by and more power for a receiving node

far away from it. We represent the distance variable between the ith transmitter and jth

receiver by di, j. So, if the distance between a transmitting node and receiving node is less

than di, j, the transmission power level is reduced by half its current value. If greater than

di, j, the existing power level is increased twice its current transmission power level.

Next, we consider the channel conditions. This gives rise to the cross-layer sharing of

information between the MAC and PHY layers. In our research, we have considered the

BER as the measure of the channel conditions. The BER value is evaluated by the CEB

and shared with the BER. For BER values in the order of 10−3 or higher, the channel is

considered to be poor and data from the low priority queue will be preferred. For BER

smaller than this value, data from a higher priority queue is preferred or data is transmitted

at higher power levels and can also support higher data rates.

Finally, we consider the priority queue operated by the CR. This module is depicted in

the CRM module of Figure 7.1. Priority is decided based on the data rate requested by an

application or higher transmit power requests, which in turn requires lower BER (< 10−3).

Now, based on these demands, the CR maintains 2 queues, one with higher priority (P = 2)

and the other with low priority (P = 1). The unique feature added to our priority queuing

strategy is the frequency of requests by the same application. If irrespective of its priority

level, the same application requests for channel assignment more than once, the signal

power is reduced by the value of its corresponding frequency of request. This is done to

achieve fairness among the requesting applications.

Now, the signal power Pi, j for the jth user application in the ith slot is proportional

to the priority of an application, BER and the distance between the transmitter-receiver

pair. Additionally, Pi, j is inversely related to the frequency of request of an application.
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Therefore, the expression for the Pi, j can be expressed as:

Pi, j = K
P × 10

γ
j × dj,k

f
, (7.19)

where, γ is the positive exponent of the BER, K is the proportionality constant, dj,k is the

distance between the jth transmitter and the kth receiver. Here, f represents the frequency

of the requesting application.

The constraint in Eq. (7.18) can now be expressed as:

K × P × 10
γ
j × dj,k

f × IP j

≥ S NRth, (7.20)

which can be re-written for interference power IP j as:

K × P × 10
γ
j × dj,k

f × S NRth

≥ IP j. (7.21)

7.5 Simulation Results

In this part, we study the performance of our proposed optimal power allocation with

the scheduling performed by the CR. The simulation is done using software models written

in C++. This optimal priority based scheduling is simulated using the GLPK [93] tool. The

UWB is divided into 15 sub-channels, each of 528 MHz bandwidth. The IM computes the

SINR in each sub-channel and based on the joint power control and link scheduling policy,

links are assigned to different slots within frame duration of 0.5 ms. The proportional

constant is considered to be 10−18 [82] and the SNR threshold is taken to be 10dB. The

maximum transmission power is set to 10−13 W. The channel is assumed to have Gaussian

noise power of 10−20 W. The performance of our proposed optimization architecture is

evaluated from three aspects:

• Optimal number of correlators needed by a Rake receiver to improve the overall

system BER.

• Power limits in different subframe intervals within a frame interval when joint power

control and link scheduling is used in our ROPAS design.

• Optimal value of slot assignment and its variations with improvements in BER val-

ues.
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Figure 7.5: (a) Values of Lagrange multiplier’s, λ
′

i s for all 10 paths and (b) Strategic selec-

tion of propagation paths based on BER values by our optimization algorithm when path

P1 is already selected

7.5.1 Multi-objective Rake Optimization

The simulation results in the PHY layer for multi-objective optimization for Rake re-

ceivers are discussed in three phases:

• Selection of values, λ′i s,

• Strategic selection of multipaths by CR-equipped optimal Rake receiver, and

• Joint optimization achieved using the GLPK tool with the selected multipaths and as

well as achieving desirable BER values.

Selection of λ′i s: The UWB signal experiences multipath fading. Depending upon the

channel delay profile, the signal energy reaching the receiver via certain multipaths with

considerable delay but are still resolvable, can still be selected by the S-Rake. But, a smaller

value of λ may select path 1 but may exclude path 9 or 10 since it does not maximize the

second term in Eq. (7.9). The values of λ′i s for different multipaths for its selection by the

S-Rake are detailed in Figure 7.5(a).

Strategic selection of multipaths: The optimization algorithm selects path P1 with

assigned value of λi. The BER achieved through our simulation is 2.34 × 10−3. This

result validates our optimization algorithm as we know that the first multipath component
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Figure 7.6: Strategic selection of paths for optimal BER

will always be the strongest path with most of the received signal power. Again, with the

selection of the Lagrange multipliers for all 10 multipaths, all the 10 propagation paths are

selected by our algorithm, but the BER achieved is 3.82 × 10−2. The degradation in BER

is due to the addition of all the remaining 9 paths with the strongest first multipath. This

result validates the fact that all the multipaths do not carry adequate signal power, but also

MAI power introduced in multiple access based UWB networks. The predominance of the

MAI power in certain paths leads to such increased BER. These results help us to check the

correctness of our optimization algorithm by varying the values of the Lagrange multipliers

λ
′

i s of Figure 7.5(a). When path 10 is chosen along with path 1, BER is 1.6 × 10−2.

Now, if we carefully look at Figure 7.5(b), we see that paths 2, 3, 4 and 8 can be chosen

along with path 1 for a better BER performance.

Let us see how it can be achieved by varying the values of the Lagrange multipliers

λ
′

i s. The strategic selection of the selective multipaths by the S-Rake is demonstrated in

Figure 7.6. Therefore, the optimization algorithm computes a combination of paths 1, 3,

4, and 8 as the final optimal path selection which maximizes the desired signal power over

the MAI power and as well as minimizes the BER. This observation is supported by our

simulation results obtained with the GLPK tool in Figure 7.7 by increasing iterations for

the path selection.

Joint optimization for acceptable BER: Initial value of Path 1 is stored in a database

that results in a BER of 2.34 × 10−3. We have chosen the reference BER of 2.54 × 10−3,

a stringent value closer to the BER of the strongest path, Path 1 to obtain better results.

Therefore, the optimization algorithm now runs with the dual constraints of BER < 2.54 ×
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Figure 7.7: Reduction of BER with increase in iteration of path selection

10−3 as well as Xi ∈ [0, 1]. Figure 7.6 explains the lists of path selections and the optimized

path selection. Figure 7.7 shows the next strategic selection is Path P3 with BER of 1.79 ×
10−3 (refer to Figure 7.5(b)). Now, it can choose either Path 2 or 4 to satisfy the constraint

of BER. Finally, it selects Path 4 in the third iteration with BER of 1.9 × 10−3. The final

selection with BER constraint is Path 8 with BER of 1.75 × 10−3, supporting the assertion

that addition of selective paths results in minimal BER. Additional iterations lead to the

paths that do not satisfy the constraint, thereby terminating the optimization algorithm after

the fifth iteration.

7.5.2 Power Aware Scheduling in ROPAS

The simulation for the joint power control and link scheduling provides informative

results concerned with the varying applications and different delay constraints. Figure 7.8

describes the scenario for four subframe intervals in one frame interval with ξ = 0.5. The

unit value of ξ also implies that the lower frequency of using a particular power vector,

P(S Fi) for a group of links, l ∈ L assigned to the i-th subframe. As shown in Figure

7.8, magnitudes of the sum of power vectors assigned (with frequency, ξ = 1) by our

optimization strategy to 4 subframes are 0.02mW, 0.01mW, 0.005mW, and 0.002mW. This

also satisfies the constraint imposed by Eq. (7.16) where P = 0.037 mW (the admissible

spectral mask in UWB communications = 0.039 mW). This suggests that a smaller value
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Figure 7.8: Magnitude of power vectors allocated in each subframe with unit frame interval

of ξ is suitable for a real-time traffic. Higher power allocation (e.g., 0.02 mW, 0.01 mW)

during the frame interval results in increased transmission range such that the nodes can

reach the destination nodes in a smaller number of hops.

Figure 7.9 shows the scenario with 2 subframes with ξ = 1. Higher value of ξ indicates

higher frequency of allocation of certain power vector, P(S Fi) for the i-th subframe. As

shown in Figure 7.9, the magnitudes of power vectors allocated to 2 subframes are 0.01 mW

(frequency =3) and 0.001 mW (frequency =7), much smaller in magnitude as compared to

the scenario with ξ = 0.5. This indicates that higher values of ξ are suitable for delay

tolerant non-real-time applications.

7.5.3 Priority based Joint link and Power Scheduling

Figure 7.10 depicts an important aspect of our optimization algorithm. Two applica-

tions, App. 1 and App. 3, have been enqueued twice for the service requests. Thus,

according to Eq. (7.19), power assigned to these applications have been reduced for their

second requests. This shows a unique design of our priority protocol. Additionally, since

the power level for each of the slots assigned by the CR is quite high, it could accommodate

only 6 slots in a frame. This is in tune with Eq. (7.21).

Figure 7.11 gives us an estimate of the scheduling algorithm performed by the CR

based on the power constraints and the MAI observed at each node. As in Eq. (7.20), we

observe that the signal power increases with improvement in BER values. So, increased

power is assigned to each application with improvement in BER from 0.1 to 0.0001. This

has a negative impact on the number of slots per frame. Higher signal power increases MAI
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among the transmitting nodes, which in turn, restricts the number of parallel transmissions.

Higher number of parallel transmissions (15 for BER of 0.1 as shown in Figure 7.11) is

possible at higher values of BER which gradually decreases with improvement in the BER

values. The power allocations for the six slots assigned for BER of 0.0001 are also shown

in Figure 7.10.

7.6 Conclusion

In this chapter, we have proposed a novel cross-layer based ROPAS architecture appli-

cable for mobile UWB networks. The Rake optimization in our ROPAS receiver achieves

minimal BER with an optimal selection of correlators in the MRC-based Rake receiver. The

optimization also reduces the computation complexity by reducing the number of fingers

selected for signal estimation and their corresponding weight coefficients. The CR-based

cross-layer optimization of joint power control and link scheduling has been simulated in

each mobile UWB node. Our proposed optimization algorithm is capable of allocating

“free” channel bandwidth dynamically to requesting application within power constraints

in finite frame intervals. Additionally, non-real time and real-time applications are differen-

tiated by designing a novel queuing strategy in ROPAS, which provides fairness and higher

throughput among services with varying delay constraints in a mobile UWB network. The

optimal division of a frame into slots is computed to support maximum number of par-

allel transmissions with dependence on parameters like the distance between transmitter-

receiver pair and BER values. Finally, fairness among applications is taken care of while

allocating power to each slot based on the frequency of request of a requesting application.
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Figure 7.10: Power allocations for each application request in 6 time slots
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Chapter 8

Conclusions and Future Work

Cognitive Radios are expected to play an important role in enhancing the spectrum

efficiency without adding any new frequency spectrum to the wireless communications.

In this dissertation, we have outlined numerous results obtained in different chapters. We

summarize our results as follows.

In Chapter 2, we have proposed a novel spectrum occupancy model to accurately gen-

erate both the temporal and frequency behavior of various wireless transmissions. Using

statistical characteristics from actual radio frequency measurements, first and second-order

parameters are obtained and employed in a statistical spectrum occupancy model based

on a combination of several different probability density functions (PDFs). The output

characteristics of the proposed spectrum occupancy model are compared with spectrum

measurements obtained from the USRP measurement system.

In Chapter 3, we have conducted a probabilistic analysis of free and contiguous sub-

bands in the cognitive radio network. The critical entity in our analysis is the distribution of

total number of free sub-bands. As we have shown, the computation of the exact distribu-

tion of the total number of free sub-bands (i.e., Nf ree) is prohibitively time-consuming and

thus an efficient approximation approach is presented and analyzed. We labeled this novel

approach as a Poisson-normal approximation and the time taken to execute this method

is reasonable as indicated by the simulation. In addition, we focused on the analysis of

contiguous sub-bands of a free sub-band, characterizing five different types of free sub-
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bands. An algorithm is developed to compute the distribution of total number of sub-bands

of each type. Exploiting probability distributions computed, we have outlined ways of se-

lecting preferable sections of a spectrum for further sensing.

In Chapter 4, we have employed hidden Markov model to improve the decisions ob-

tained from existing spectrum sensing techniques. The decisions obtained from the spec-

trum sensing approach are referred to as the observed sequence while the actual sub-band

occupancy (true states) by a PU is unknown or in other words, hidden to a SU. The goal

is to predict the true states of a sub-band given its observed sequence. We treat this prob-

lem by the probability theory. We assume that the sequence of true states of a sub-band

follows a Markov model. In this chapter, we use the likelihood method for prediction of

the true sequence for each sub-band. The computational complexity that arises is solved

by using the Viterbi algorithm. If the underlying parameter values of the Markov chain are

unknown, an Expectation-Maximization algorithm has been developed for the estimation

of true sequences.

In any spectrum with M sub-bands, a sub-band can become free at an instant of time

with probability p and is assumed to be constant with respect to the sub-bands. A free sub-

band can be classified as one of the five types depending on who the neighbors of the free

sub-band are. In Chapter 5, we have calculated the expected number of free sub-bands of

each type. The type of free sub-band has impact on SINR. The free sub-bands can be allo-

cated to the SUs subject to availability and interference constraints in many different ways.

Maximal allocation matrices are characterized. Optimization of channel capacity over all

maximal allocation matrices is discussed. To resolve conflicts that arise on preference of

allocation matrices by SUs, game theoretic ideas are introduced in this chapter and Nash

equilibria identified. Further, we have identified a unique Nash equilibrium allocation for

the SUs that can optimize the channel capacity.

In Chapter 6, we have proposed a novel cross-layer based ROPAS architecture appli-

cable for mobile UWB networks. The Rake optimization in our ROPAS receiver achieves

minimal BER with an optimal selection of correlators in the MRC-based Rake receiver. The
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optimization also reduces the computation complexity by reducing the number of fingers

selected for signal estimation and their corresponding weight coefficients. The CR-based

cross-layer optimization of joint power control and link scheduling has been simulated in

each mobile UWB node. Our proposed optimization algorithm is capable of allocating

“free” channel bandwidth dynamically to requesting application within power constraints

in finite frame intervals. Additionally, non-real time and real-time applications are differen-

tiated by designing a novel queuing strategy in ROPAS which provides fairness and higher

throughput among services with varying delay constraints in a mobile UWB network. The

optimal division of a frame into slots is computed to support maximum number of par-

allel transmissions with dependence on parameters like the distance between transmitter-

receiver pair and BER values. Finally, fairness among applications is taken care of while

allocating power to each slot based on the frequency of request of a requesting application.

8.0.1 Future Work

The following are the proposed work that will be pursued for completion of this Ph.D.

dissertation.

Adaptive Spectrum Sensing

Adaptive spectrum sensing deals with spectrum sensing while exploiting the informa-

tion available from the spectrum occupancy statistics. In Chapter 3, we have made an

extensive probabilistic analysis of spectrum occupancy as well as the quality of a free sub-

band with respect to its adjoining neighbors. In Chapter 4, we have utilized the hidden

Markov model to estimate the real-time spectrum occupancy by the PUs. We can com-

bine results from our probabilistic analysis into the hidden Markov model for enhancing

the spectrum sensing efficiency. The central idea of our proposed work will be reduction

in sensing time by utilizing the analysis carried out in Chapter 3. This type of spectrum

sensing is known as adaptive spectrum sensing.
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Queuing model definition in Spectrum Occupancy Analysis

We have designed and validated a spectrum occupancy model in Chapter 2 based on

different probabilistic distributions. The time slots tON and tOFF represents the duration of

time occupied by the PU and a set of SUs, respectively in each sub-band. We can represent

such a sequence of tON and tOFF in a sub-band as two M/M/1 queues for the PU and SUs,

respectively, where M stands for the exponential distribution of inter-arrival rate of the

users, where the arrival rate is governed by Poisson distribution. The main focus of our

future work could be to study the average waiting time for the SUs in each sub-band. This

information can serve as a historical data to the CR. Based on the average waiting time

for each sub-band, the CR may allocate the real-time applications to those sub-bands with

minimum waiting time.

There are many other open problems in the CRN area and it would be interesting to

work on some of these challenging issues.
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