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Abstract

Deployment of an intelligent transportation systems (ITS) program such as a real-time
travel guidance system requires the good understanding of people’s travel choice process.
The whole travel choice process includes a series of choices including trip choice, destination
choice, mode choice, departure time choice and route choice. Traditionally, static travel
choice models or transportation network models have been developed to model the travel
choice process. However, the static models cannot provide the real time traffic volume and
travel time and cannot reflect the time-dependent variation of traffic in a road network. Thus
static travel choice models cannot model the dynamic process in travel choice. The dynamic
models can provide the real time link and path traffic volume and link and path travel time
and can model the dynamic process in travel choice. Dynamic models are also applicable to
long-term transportation planning. Unfortunately, the current studies on dynamic travel
choice/dynamic transportation network have limitations on either modeling method or
solution algorithm, which impede their application in practice.

In this dissertation, | have conducted a comprehensive study on dynamic travel choice
problems and have presented a series of variational inequality models and solution algorithms
to these problems. The problems that the dissertation addresses include deterministic dynamic
user optimal route choice problem (DUO), stochastic dynamic user optimal route choice
problem (SDUO), dynamic user optimal simultaneous departure time and route choice
problem (DUOSDTRC), combined mode split and dynamic user optimal simultaneous

departure time and route choice problem (MS DUOSDTRC), combined trip distribution and



dynamic user optimal simultaneous departure time and route choice problem (TD
DUOSDTRC), and combined trip distribution mode split and dynamic user optimal
simultaneous departure time and route choice problem (TD MS DUOSDTRC). The
innovative work is reflective of the successful modeling and development of corresponding
algorithms without time-space network expansion. As a result, simplified and potentially
efficient solution algorithms to the dynamic travel choice problems over a large-scaled
transportation network are developed. All the models and algorithms are validated by

numerical examples.
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Chapter 1: Introduction

1.1 Urban Transportation Network Analysis

Transportation network models or travel choice models can be classified into two
categories: static models and dynamic models. The dynamic models are the dynamic
generalization of their static counterparts.

The fundamental static model is User Equilibrium (UE) or User Optimal (UO) traffic
assignment model proposed by Beckmann (1956). The UE model adopts Wardrop’s first
principle (Wardrop, 1952), which states that at UE, all the used paths of an
Origin-Destination (O-D) pair have minimum travel cost and the travel times on all the
unused paths of the same O-D pair are equal to or more than the minimum travel cost of the
O-D pair. To consider the heterogenerity in drivers’ perception of travel time, Daganzo and
Sheffi (1977) proposed Stochastic User Equilibrium (SUE) traffic assignment model. At SUE,
no driver can improve his or her perceived travel time by unilaterally changing routes.
Another kind of model is System Optimal (SO) traffic assignment model. The SO model
adopts Wardrop’s second principle which states that at SO, the total travel time of all drivers
on a transportation network is minimum. UE and SUE are stable status of a transportation
network because they are consistent with drivers’ behavior in route choice. SO is an ideal
status of a transportation network from the systematic point of view. It is not a stable status
because such an ideal status does not comply with realistic drivers’ behaviors in route choice.

The UE model (Beckmann, 1956) was studied extensively by Dafermos and Sparrow



(1969). But it was not solved until 1975 when LeBlanc et al. (1975) provides an efficient
solution by applying Frank-Wolfe (F-W) algorithm with the minimum cost route algorithm.
To consider the asymmetric link interactions, variational inequality (VI) was used to
formulate transportation network problems and projection algorithm and diagonalization
algorithm can be used to solve the VI problem (Nagurney, 1993).

A whole travel choice process includes the following series of choices: whether to
make a trip (Trip Choice), where to go (Destination Choice), what mode to use (Mode
Choice), when to begin the trip (Departure Time Choice), which route to use (Route Choice).
Figure 1.1 shows the hierarchy of a travel choice process. To ensure the consistence of travel
choices at different stages, combined travel choice models are proposed in this dissertation. A
combined travel choice model incorporates route choice/traffic assignment with at least one
of the other stages including trip generation, trip distribution, mode split, and departure time.
Evans (1973, 1976) firstly formulated a model to combine trip distribution with traffic
assignment. Abdulaal and LeBlanc (1979), Florian (1977), LeBlanc and Farhangian (1981),
LeBlanc and Abdulaal (1982) studied models combing modal split and equilibrium
assignment models. Lam et al. (1992) studied the combined distribution-assignment of traffic.
Florian and Nguyen (1978), Friesz (1981), LeBlanc and Abdulaal (1982) studied combined
trip distribution modal split and trip assignment model. Safwat and Magnanti (1988)
developed combined trip generation, trip distribution, modal split, and trip assignment model.
Boyce et al. (1984) studied combined location, mode, and route-choice problem. Departure

time choice has been studied by Hendrickson (1981, 1984), Small (1982), etc. A



comprehensive account of static transportation network models is given by Sheffi (1985).
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Figure 1-1. A Hierarchy of Travel Choice Models

Static models assume vehicles move concurrently and find the equilibrium flow
volumes on each link or path. They are applicable to long-term transportation planning.
However, the resultant link volume of a static model may be several times more than the
capacity of a link, which is not consistent with actual situation. In addition, the static models
can not provide the real time traffic volume and travel time and cannot reflect the
time-dependent variation of traffic in a road network. Thus, the application of static models
on the operation of a transportation network is limited. On the contrary, the dynamic models
can provide the real time link and path traffic volumes and link and path travel times, which
are necessary inputs for any travel guidance systems. Thus, dynamic transportation network

models are useful in managing the real time operation or assessing the performance of a



transportation system, whereas static transportation network models are the foundation of
their dynamic counterparts. Many dynamic models assume similar structures to their static
counterparts in both model forms and solution algorithms on the time-space network (The
time-space network will be explained in Chapter 4). Dynamic models are also applicable to
long-term transportation planning, though the study of their application on transportation
planning is still limited (one of the reasons for this is the lack of an efficient solution
algorithm for dynamic transportation network models).

All the static transportation network models have their dynamic counterparts. Dynamic
transportation network models incorporate dynamic travel choice problems such as traveler’s
trip choice, destination choice, mode choice, departure time/arrival time choice and route

choice. A detailed review of dynamic transportation network models is given in Chapter 2.

1.2 Travel Time Choice Research Problems
Different models on dynamic transportation networks can be formulated based on the
following fundamental travel choice problems:
1) The actual/instantaneous travel time of each driver of the same O-D pair departing at the
same time is equal and minimum;
2) The perceived actual travel time of each driver of the same O-D pair departing at the

same time is equal and minimum;



3) Drivers of the same O-D pair choose departure time and route such that the
actual/generalized travel time of each driver of the same O-D pair departing at any time is
equal and minimum;

4) Same as 3), but consider the change of mode split of an O-D pair with the change of
travel cost of the O-D pair;

5) Same as 3), but consider the change of trip distribution among O-D pairs with the change
of travel cost of O-D pairs;

6) Same as 3), but consider the change of trip distribution among O-D pairs with the change
of travel cost of O-D pairs and the change of mode split of an O-D pair with the change of

travel cost of the O-D pair.

Problem 1) is ideal/ instantaneous Dynamic User Optimal (DUO) route choice problem
or ideal/instantaneous dynamic user optimal traffic assignment problem. It can be further
described in more detail as follows: given time-dependent O-D demand of each O-D pair,
determine the flow pattern on the network such that for each O-D pair at each instant of time,
the actual travel times experienced by travelers departing at the same time are equal and
minimal (this state is called ideal or predictive user optimal state), or for any departure flow
from a decision node to a destination node at each instant of time, the instantaneous travel
times of all possible routes with the same O-D are equal to the minimal instantaneous route
travel time ( this state is called reactive or instantaneous user optimal state) (Ran, 1996b).

Problem 2) is Stochastic Dynamic User Optimal (SDUO) route choice problem. It



differs from DUO in that the perceived actual travel times experienced by travelers departing
at the same time are considered.

Problem 3 is Dynamic User Optimal Simultaneous Departure Time and Route Choice
(DUOSDTRC) problem. It extends the DUO route choice problem in one respect: both
departure time and route over a road network must be chosen. Each departure time choice is
based on the actual minimum O-D travel times at each departure time. In a DUOSDTRC
problem, the total O-D demand is given while the time-dependent O-D demand is a variable
that needs to be solved for. At equilibrium, the actual travel cost of vehicles departing at any
time through any used path is equal and minimum and no traveler can reduce his travel cost
by unilaterally changing his departure time and route choice combination (Lim, et al., 2005).
Any departure flow pattern different from the equilibrium pattern will incur more travel cost
for some travelers.

Problem 4), 5) and 6) assume the transportation network consists of a transit network
and an auto/road network. Problem 4) is Combined Mode Split and Dynamic User Optimal
Simultaneous Departure Time and Route Choice (MS DUOSDTRC) Problem. It extends the
DUOSDTRC problem in one respect: transportation mode, departure time and route over a
road network must be chosen. In MS DUOSDTRC problem, the total O-D demand includes
demands of transit and passenger car and is given, while the share of each mode needs to be
solved. At equilibrium of MS DUOSDTRC, the same travel cost should be incurred for all
passenger car drivers of the same O-D pair departing at all time, and should be equal to the

transformed O-D travel cost of the transit of the same O-D pair.



Problem 5) is Combined Trip Distribution and Dynamic User Optimal Simultaneous
Departure Time and Route Choice (TD DUOSDTRC) Problem. It extends the DUOSDTRC
problem with additional consideration where the destination, departure time and route over a
road network must be chosen. In TD DUOSDTRC problem, the trip generation of each origin
and trip attraction of each destination is given and fixed, while the total demand of each O-D
pair needs to be estimated. At equilibrium, not only the conditions for DUOSDTRC are
satisfied, the consistency of trip distribution and dynamic travel impedance among zones are
also guaranteed.

Problem 6) is Combined Trip Distribution Mode Split and Dynamic User Optimal
Simultaneous Departure Time and Route Choice (TD MS DUOSDTRC) Problem. It extends
the DUOSDTRC route choice model by assuming that the destination, mode, departure time
and route over a road network must be chosen. In TD MS DUOSDTRC problem, the trip
generation of each origin and trip attraction of each destination is given and fixed, while the
demand of each mode of each O-D pair needs to be solved for. At equilibrium of TD MS
DUOSDTRC, the same cost should be incurred for all passenger car drivers of the same O-D
pair departing at all time, and should be equal to the transformed O-D cost of the transit of
the same O-D pair, and the consistency of trip distribution and dynamic travel impedance
among zones are guaranteed.

Different methods have been used in modeling DUO, SDUO, and DUOSDTRC
problems. They include simulation-based method, mathematical programming, optimal

control, and variational inequality. The literature review of this research covers more details



about these models. The variational inequality (V1) method overcomes the drawbacks of the
other methods and has been identified a useful tool to model dynamic transportation network
problem. The application of VI in modeling dynamic transportation networks has been
studied extensively since the early ninetieth (e.g., Friesz et al., 1993; Wie et al., 1995; Ran
and Boyce, 1996b; Ran et al., 1996a; Chen and Hsueh, 1998; Bellei et al., 2006; Boyce et al.,
2001; Bliemer et al, 2000; Ran et al, 2002a,b; Akamatsu, 2001; Han, 2004; etc.). A
comprehensive account of VI formulation and diagonalization algorithm for dynamic
transportation network problems was reviewed by Ran and Boyce (1996b).

The VI formulation (model) of dynamic transportation network problems can be
link-based or route-based, with variables defined based on links in link-based formulation
and on routes in route-based formulation. Correspondingly, solution algorithm for a VI model
can be link-based or route-based. If an algorithm requires enumeration of all the paths for all
O-D pairs, it is obvious a lousy, time-consuming work, and of course not efficiently
applicable to a large-scaled network because the number of paths is huge on the large
network and the huge amount of computation times will be required to find the optimal
solution using modern computers. Path enumeration can be avoided for an algorithm by
adopting the technique of column generation, which will be explained in chapter 4. The
link-based and route-based formulations/algorithms are actually consistent. By recording the
dynamic shortest paths and the corresponding path flows in any iteration of the calculation, a
link-based algorithm is enabled to identify the path flows. Because of the link-path incidence

relationship in the time-space network, link flows can be obtained based on the path flows



and a route-based algorithm can also obtain link flows. In the dynamic case, the link flows
refer to link inflow and link outflow. The link flows can be O-D based inflow and outflow or
total inflow and outflow (the sum of all O-D based inflow and outflow). Only path flows and
O-D based link inflow and outflow are useful in a general multi-origin-multi-destination
transportation network.

The analysis of a dynamic transportation network model on a time-space network
makes the traffic dynamic process on a transportation network easier to understand. A
time-space network is the network combining original network and time dimension. When
solving a VI model, the time period has to be discretized into short time intervals.
Consequently, the size of the time-space network will be thousands of times bigger than the
original physical network. The solution process will be very complicated and time-consuming
if a solution algorithm is performed over time-space network. Thus the solution algorithm
that needs time-space network expansion is not efficient for a large size transportation
network. A solution algorithm that avoids time-space network expansion is appealing because
it will be much more efficient and benefit the implementation of a real-time traveler
information system.

Define departure horizon as the time period when there is a departure flow from any
origin entering the network. Define assigning horizon as the time period from starting time to
the time point when the last vehicle in the network reach its destination. In reality, only
departure horizon is known. Assigning horizon is to be found by solving a VI model. Thus, a

solution algorithm should be able to treat departure horizon freely without constraint on



assigning horizon.

It can be concluded that an algorithm for solving a dynamic transportation network VI
model should 1) be able to find the time-dependent path flows or O-D based link
inflow/outflow without path enumeration 2) not be performed on a time-space network 3) be
able to treat departure horizon freely without constrain on assigning horizon. Unfortunately,
an algorithm satisfying the above conditions is still lack though different models and
algorithms on dynamic transportation networks have been studied for decades.

Plenty of research on dynamic simultaneous departure time and route choice
(DUOSDTRC) models has been reported (e.g., Hendrickson and Plank, 1984; Palma et al.,
1983; Ben-Akiva et al., 1986; Mahmassani and Herman, 1984; Mahmassani and Chang, 1987,
Zijpp et al, 2002; Szeto and Lo, 2004; Yang and Meng, 1998). Unfortunately, such models are
either limited to solving departure time choice problems on simple networks, or not efficient
for larger networks. Research on DUOSDTRC also includes Janson (1992). However their
research is more applicable for long-term transportation planning, rather than dynamic traffic
analysis (Huang and Lam, 2002). Among other researches, some do not provide a solution
algorithm (Friesz et al., 1993); some provide a heuristic algorithm only (Huang and Lam,
2002; Bernstein et al., 1993); some require path enumeration (Lim, 2005; Ran et al. , 1996b);
others need to be performed on time-space network (Ran et al., 1996b). Chapter 3 also covers
the detailed review on DUOSDTRC problem. My literature review indicates that there is still
no promising analytical solution algorithm for DUOSDTRC model.

Research on combined dynamic travel choice models includes Stathopoulos (2003) and

10



Bellei et al (2006). In Stathopoulos (2003)’s study, dynamic user optimal assignment is used
in the estimation of travel demand and departure time choice is not considered. Bellei et al.
(2006) presented a mixed discrete/continuous nested Logit dynamic demand model with five
choice levels including generation, destination, mode, departure time and path choices.
Unfortunately, these methods require path enumeration and no solution really that satisfies

the combined dynamic travel choice conditions have been shown.

1.3 Objective/Contribution

The objective of this study is to develop new solution algorithms that have potential to
solve VI-based dynamic transportation network models in a simplified and even efficient way.
The associated dynamic transportation network models for such an improvement include
DUO, SDUO, DUOSDTRC, MS DUOSDTRC, TD DUOSDTRC, and TD MS DUOSDTRC.
One of the major advantages of the new algorithms are with the following capabilities to 1)
find out the time-dependent path flows and O-D based link inflow/outflow without path
enumeration; 2) need no time-space expansion of the network; and 3) treat departure horizon
freely. Thus, they theoretically sound to be efficient and applicable for implementation in a
general multiple origin-destination transportation network.

The main contribution of this study includes the following:
® New diagonalization/relaxation algorithms based on Frank-Wolf (F-W) and Gradient

Projection (GP) algorithm for solving DUO model are proposed.

® A link-based VI SDUO model is proposed. New relaxation with MSA algorithm for

11



solving it is proposed.
® An efficient analytical relaxation with GP algorithm for DUOSDTRC model is proposed.
® A MS DUOSDTRC model and its solution algorithm are proposed.
® ATD DUOSDTRC model and its solution algorithm are proposed.
® ATD MS DUOSDTRC model and its solution algorithm are proposed.
® A VI DUO model integrated with signal timing system (DUOST) and its solution

algorithm are proposed.

1.4 Dissertation Outline

The remaining part of the dissertation is organized as follows.

Chapter 2 provides a detailed review of the current models and algorithms for dynamic
transportation network problems including DUO, SDUO, DUOSDTRC, and other combined
dynamic travel choice problems.

Chapter 3 briefly summaries network flow constraints, First-In-First-Out constraints,
definition of travel time, etc. It also introduces some traffic flow models which are useful in
determining link travel times.

Chapters 4 through 8 are reflective of innovative components addressed in my research.
In Chapter 4, both link-based and route-based relaxation with F-W algorithms are proposed
for the models. Numerical examples showing the application of the new algorithms are
exhibited.

In Chapter 5, a new link-based VI formulation of stochastic dynamic user optimal route

choice problem and a link-base relaxation with MSA algorithm is proposed for it. A
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route-base relaxation with MSA algorithm is also proposed. Numerical examples showing the
application of the new model and the algorithms are exhibited.

In Chapter 6, a route-based relaxation with GP algorithms is proposed for the DUO
model. Then, DUOSDTRC and its VI formulation are introduced. Finally, an analytical
relaxation with GP algorithm is proposed for the DUOSDTRC model. Numerical examples
showing the application of the new algorithms are also exhibited.

In Chapter 7, three combined dynamic travel choice models and their solution
algorithms are proposed. The models considered include combined MS DUOSDTRC, TD
DUOSDTRC, and TD MS DUOSDTRC. Analytical solution algorithms for them are
presented in detail. Numerical examples showing the application of the algorithms are given.

Chapter 8 covers two problems: DUOIM and DUOST. VI formulations of the two
problems are given. A relaxation with GP algorithm for each model is presented. A numerical
example showing the application of the algorithm is exhibited.

Chapter 9 concludes the dissertation and presents the potential future research

direction.
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Chapter 2: Literature Review on Transportation Network

Modeling

This chapter summarizes the literature reviews on dynamic transportation network
models/dynamic travel choice models and their solution algorithms. The focus is on the
problems as stated in Chapter 1. Section 1 presents the review results on deterministic
Dynamic Traffic Assignment (DTA) problems. Section 2 covers stochastic DTA problems.
Section 3 covers Dynamic User Optimal Simultaneous Departure Time and Route Choice
problems (DSDTRC). And Section 4 discuss other combined dynamic travel choice problems

such as combined Trip Distribution/Mode/Departure Time/Route Choice problems.

2.1 Deterministic Dynamic Traffic Assignment (DTA)

Models and algorithms for Dynamic Traffic Assignment (DTA) problems (which
include dynamic user optimal traffic assignment/route choice and dynamic system optimal
traffic assignment) are the basis for developing models and algorithms for other combined
dynamic travel choice problems. The approaches used to model DTA in the past literature
can be classified into two types: simulation-based approach and analytical approach. The
analytical approach includes mathematical programming, optimal control, and variational

inequality.
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2.1.1 Simulation-based DTA Models

In simulation-based DTA models, a traffic simulator is used to replicate the complex
traffic flow dynamics and vehicle/driver’s movement/characteristics are simulated. Given the
substantial computational burden associated with the use of a simulator, the choice of
granularity (macroscopic, microscopic or mesoscopic) has significant implications for the
real-time computational tractability of simulation-based models. An example of the
simulation-based approach is the model of Jayakrishnan and Mahmassani et al. (1994), which
embraces an assignment module and a mesoscopic traffic simulator called DYNASMART.
Ben-Akiva et al. (1997) also proposed DynaMIT as a dynamic traffic assignment system to
estimate and predict in real-time current and future traffic conditions. Li et al (2000)
introduce an internet-based GIS system that integrates data and models into one framework
using traffic simulator RouteSim, which is a mesoscopic model based on cell transmission
(Daganzo, 1994) for traffic propagation.

Based on DYNASMART-X, Chiu and Mahmassani (2002, 2003) studied the hybrid
dynamic traffic assignment (HDTA) which considers the interplay between a centralized
DTA (CDTA) model and a decentralized DTA (DDTA) capability. Lu et al. (2006) studied
the bicriterion dynamic user equilibrium (BDUE) problem that allows for heterogeneous
users with different value-of-time (VOT) preferences. Shayti et al. (2007) conducted a
vehicle-based simulation study to improve upon the performance of the MSA heuristic for
UE and SO DTA problems on large congested networks models. The simulation method can

also be used to evaluate the impacts of traffic incidents and to model incident management
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strategies and relevant intelligent transportation system (ITS) technologies (Sisiopiku et al.,
2007), and to evaluate network performance under various schemes for the design and
operation of high-occupancy toll (HOT) lanes (Abdelghany et al., 2000). Other research on
simulation-based DTA include Peeta (2003, 2006a, 2006b), Ghali and Smith (1995), Smith et
al. (1995), Tong and Wong (2000), Wang et al. (2001), Varia and Dhingra (2004a,b), Mahut
et al. (2004, 2008), Sisiopiku et al. (2007), Hu et al. (2008), Wen et al. (2008), etc.

The simulation-based model usually lacks a sound mathematical background, the
resulting solution property is heuristic, and the convergence of the solution procedure is not
guaranteed (Ran, 2002b). The constraints of the problem are not strictly followed for a
simulation-based algorithm. Considerable computational times and complexities inevitably
occur in the simulation process. The solvable network scale of the simulation-based DTA

model is limited (Ran, 2002b). For these reasons, analytical approach is adopted in this study.

2.1.2 Mathematical Programming

HO (1980) presented a linear optimization approach to the dynamic traffic assignment
model problem. JANSON (19914, b) presented a bi-level nonlinear optimization formulation
of the dynamic user equilibrium assignment problem (DUE) for urban road networks with
multiple trip origins and destinations. GHALI and SMITH (1995) developed a model for the
dynamic system optimum traffic assignment. The model is approximate and is applicable to
networks with many origin-destination pairs and many bottlenecks. Jayakrishnan et al. (1994)

extended Janson’s method (1991) and presented a dynamic traffic assignment model with
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traffic-flow relationships based on a bi-level optimization framework. They also presented a
heuristic solution algorithm which resembles a Stackelberg leader-follower problem.
Drissikaitouni (1992) expressed dynamic traffic assignment problem as a static traffic
assignment problem over a temporal expansion of the base network and presented a solution
algorithm for it over the Static Temporal Expanded Network (STEN).

Akamatsu (2000) studied a type of capacity paradox on one-to-many network and
many-to-one to network for dynamic equilibrium assignment. Li et al. (2000) proposed a
solution algorithm for the linear programming model for DTA by applying the
Dantzig-Wolfe decomposition scheme. The algorithm solves a minimum-cost-flow problem
as the sub-problem and a restricted optimization as the master. Akamatsu et al. (2003) studied
the Braess paradox in the dynamic case on a more general network and gave a
graph-theoretic interpretation of the condition for the paradox to occur. Golani et al. (2004)
proposed an algorithm for solving the user optimal dynamic traffic assignment problem with
multiple destinations. The algorithm selects a destination for equilibration, fixes the paths of
the vehicles assigned to the other destinations, and finds an optimal dynamic traffic
assignment for the destination of interest. The spatial path set obtained for this destination is
then fixed, and another destination is relaxed. The process is repeated iteratively among the
destinations. The approach is a heuristic for finding the multiple-destination user optimal path
set. Waller and Ziliaskopoulos (2006) introduced a polynomial combinatorial optimization
algorithm for the dynamic user optimal problem. The approach is applicable to single

destination networks. Laval (2007) studied the user optimum dynamic traffic assignment in
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the same network and presented a simplified graphical solution method. Yang et al. (2007)
proposed a linear programming model for a novel steepest-descent dynamic toll scheme that
minimizes the total system cost at each day. Durlin et al. (2008) presents a dynamic network
loading (DNL) model that can be used both for Dynamic Traffic Assignment (DTA) and for
an accurate description of traffic. Ramadurai et al. (2006) explored the existence of
equilibrium solutions in single bottleneck models with homogenous travelers having same
preferred arrival times from both theoretical and experimental frameworks.

The limitation of mathematical programming DTA (either DUO or DSO) formulation is
lack of clear understanding of solution properties for realistic problem scenarios
(Ziliaskopoulos et al., 2002). Since an equivalent mathematical model exists only when the
Jacobian of a mapping is symmetric, which does not hold in a general case for a DUO
problem, an equivalent mathematical model for DUO problem does not always exist. None of
above studies showed the validation of their model and algorithm. For this reason, | did not

formulate DUO and other problems using mathematical programming.

2.1.3 Optimal Control

SMITH (1984) studied the stability of a dynamic model of traffic assignment using
Lyapunov method. Friesz et al. (1989) proposed a link-based optimal control formulations for
both the SO and UE with single destination. Ran and Shimazaki use the optimal control
approach to develop a link-based SO (1989a) and UE (1989b) for an urban transportation

network with multiple origins and destinations. Wie (1990) extends the UE model to include
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elastic time-varying travel demand. Ran et al. (1993) use the optimal control approach to
obtain a convex model for the instantaneous UE DTA. Ran et al. (1993) proposed two
instantaneous DUO traffic assignment models for a congested transportation network using
the optimal control theory approach. Wie and Friesz (1994) developed an augumented
Lagrangian method for solving dynamic traffic assignment models formulated as optimal
control problems. The algorithm obviates the need for path enumeration and exploits the
natural decomposition of the traffic assignment problem by time period. Boyce et al. (1995)
presented a methodology to solve the problem using the Frank-Wolfe algorithm over an
expanded time-space network representation. Gartner et al. (1998) presented a framework to
integrate dynamic traffic assignment with real-time traffic adaptive control system. Peeta et al.
(2003) explored stability issues for operational route guidance control strategies for vehicular
traffic networks equipped with advanced information systems, and develops a general
procedure for the stability analysis of the associated dynamic traffic assignment (DTA)
problems.

The optimal control model has some drawbacks (Boyce et al., 2001), including: a) if
the exit flow function is concave, it is not possible to establish an optimal control model of
the dynamic User Optimal traffic assignment problem with multiple origin-destination (O-D)
pairs; b) if the initial flow is zero, it causes unrealistic flow propagation. For this reason,

optimal control is not considered in this study.

19



2.1.4 Variational Inequality

To remedy the limitations of mathematical programming and optimal control theory in
the DTA (DUO or DSO) context, variational inequality (V1) formulations is introduced to
model dynamic traffic assignment problems. VI problem is a generalization of constrained
optimization problems, complementarity problems, and fixed point problems. It can tackle
the problem when the Jacobian of a mapping is asymmetric, as is the case for DUO problem.
An equivalent VI model for DUO problem always exists.

Smith (1995) introduced a smooth day-to-day dynamic user-equilibrium assignment VI
model in which the day-to-day stability of the route-swapping process is considered in a
continuous setting. Wei et al. (1995) formulated the dynamic network user equilibrium
problem as a variational inequality problem in discrete time in terms of unit path cost
functions and presented a heuristic algorithm to solve the model. To avoid path enumeration,
the Frank-Wolfe algorithm was used to generate the set of paths that has competitive travel
times in a congested network. Ran and Boyce (1996a) proposed a link-based discretized VI
formulation for the ideal DUO problem with fixed departure times. In the paper, the traffic
network constraints and link-based DUO route choice conditions are presented. The necessity
and sufficiency of the VI is proved. Ran and Boyce (1996b) proved that the F-W algorithm is
appropriate to solve the dynamic traffic assignment problem if a time-space network is
considered. Chen and Hsueh (1998) proposed a link-based VI formulation for the UE DTA
problem and presented a nested diagonalization algorithm for the model. In Chen et al. (1998),

the dynamic traffic control problem and the dynamic traffic assignment problem are
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integrated as a noncooperative game between a traffic authority and highway users to find a
mutually consistent dynamic system optimal signal setting and dynamic User Optimal traffic
flow. The combined control-assignment problem is formulated as a one-level Cournot game,
a bi-level Stackelberg game, and a Monopoly game.

Bliemer et al. (2000) proposed a quasi-variational inequality multiple-user-class
macroscopic dynamic traffic assignment model to deal with various asymmetries such as
intra-user-class interaction and interspatial and intertemporal asymmetries. A nested modified
projection method requiring path enumeration is proposed to solve the assignment problem.
Ran et al. (2002a) proposed an analytical dynamic traffic assignment model with the
extended capability of performing rolling horizon implementation. The model is formulated
as a link-based variational inequality and can be solved efficiently to convergence by a
relaxation /diagonalization algorithm. Akamatsu ( 2001 ) presents an efficient algorithm for
solving nonlinear complementarity formulation of the dynamic user equilibrium (DUE)
traffic assignment. The algorithm is capable of dealing with very large-scale networks with a
one-to-many origin-destination (O-D) pattern. Ran et al. (2002b) presented an algorithm for
solving the dynamic traffic assignment/route choice problem without time-space network
expansion but it cannot find the time-dependent path flows. Lo et al. (2002) developed a
cell-based nonlinear complementarity formulation of ideal dynamic DUO traffic assignment
(DTA). The formulation was transformed as an equivalent optimizationl program by defining
an appropriate gap function.

Liu et al. (2003) considered the uncertain factors in the subjective recognition of travel
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times by travelers and proposed a fuzzy dynamic traffic assignment model. A fuzzy shortest
path algorithm is used to find the group of fuzzy shortest paths and to assign traffic to each of
them by using C-logit method. Hamdouch et al. (2004) proposed a VI model of dynamic
traffic assignment where strategic choices are an integral part of user behaviour. Han et al.
(2004) developed a descent direction of the merit function for co-coercive variational
inequality (VI) problems and implemented the solution method for traffic assignment
problems with nonadditive route costs. Jang et al. (2005) proposed a discrete ideal dynamic
user optimal (DUO) route choice model using a route-based variational inequality approach
and presented a projection-based approach to solve the model which aviated path
enumeration by using column generation. One of the drawbacks with the model is the link
propagation is too complicated and difficult to implement. Bellei et al. (2005) formulated
within-day dynamic traffic assignment as a fixed-point problem and solved the problem
through the Bather’s method. In the solution process, an implicit path enumeration network
loading procedure is used as an extension of Dial’s algorithm. Kim and Jayakrishnan (2006)
studied dynamic traffic assignment based on arrival time-based O-D demand. Mahut et al.
(2008) formulated dynamic traffic assignment model as a time discrete variational inequality
problem used MSA and a gradient-like method to solve the model. Ramadurai et al. (2008)
developed a linear complementarity formulation for the single bottleneck model.

It was concluded in Chapter 1 that an efficient algorithm for solving a DUO model
should 1) be able to find the time-dependent path flows or O-D based link inflow/outflow

without path enumeration 2) not be performed on a time-space network 3) be able to treat
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departure horizon freely without constrain on assigning horizon. Unfortunately, none of the
above algorithms satisfy the three conditions. The study presents new algorithms, termed as
Relaxation with Frank-Wolfe (F-W) and Relaxation with Gradient Projection (GP), for both
link-based and route-based VI DUO model. Our new algorithms satisfy the three conditions

and are efficient for DUO problems in a large size transportation network.

2.2 Stochastic Dynamic Traffic Assignment (SDTA)

Ben-Akiva et al. (1986) extended the stochastic model of Palma et al. (1983) to a
within and between days dynamic version. Cascetta and Cantarella (1991) also developed
within day and between-days dynamic assignment with a stochastic process. Ran and Boyce
(1996b) proposed route-based VI formulation dynamic stochastic models. Two popular route
choice functions including logit route choice function and probit route choice function are
analyzed in the study. He et al. (2000) proposed a new approach to calibrate and validate a
dynamic traffic assignment (DTA) model. The paper derives the likelihood functions for
estimating dynamic route choice and actual flow propagation by presenting approximate joint
probability distribution functions of the temporal link traffic flows on a network. Sawaya et al.
(2000) proposed a multistage stochastic mathematical model with recourse to compute and
disseminate real-time traffic control actions, which account for system uncertainties such as
demand variation and incident severity. Ran (2002b) presented an algorithm for stochastic
dynamic user optimal route choice problem without 3-D time-space expansion of the

network.

23



Liu et al. (2002) presented a variational inequality DTA model over a stochastic
network. The model captures the travelers’ decision making among discrete choices in a
probabilistic and uncertain environment, in which both probabilistic travel times and random
perception errors that are specific to individual travelers are considered. A solution algorithm
was proposed by combining a relaxation approach, stochastic network loading, and the MSA.
Barbara et al. (2006) formulated a stochastic equilibrium to address two types of uncertainty
in travelers daily commutes: uncertainty in the actual travel time due to random link capacity
degradations and perception variations in their travel time budget due to imperfect traffic
information. Peeta et al. (2006) proposed a stochastic quasi-gradient (SQG) based algorithm
to solve the off-line stochastic dynamic traffic assignment (DTA) problem that explicitly
incorporates randomness in O-D demand, as part of a hybrid DTA deployment framework for
real-time operations. The problem is formulated as a stochastic programming DTA model
with multiple user classes. A simulation-based SQG method is proposed to solve the problem.
In Barceld et al. (2006), a stochastic heuristic dynamic assignment algorithm is proposed in
the case of a microscopic simulation using AIMSUN, a route-based microscopic simulator.
The k-shortest paths of each OD pair is calculated at each iteration and the C-logit route
choice model is used to determined the path-dependent flow rates on the paths in the network.
Balijepalli et al. (2007) presents a doubly dynamic simulation assignment model which
involves specifying a day-to-day route choice model as a discrete time stochastic process,
combining a between-day driver learing and adjusting model with a continuous time,

within-day dynamic network loading. Li et al. (2007) presented a dynamic user equilibrium

24



model considering how cognitive map of transportation network’s configuration shapes the
state of equilibrium traffic flow. The equilibrium is formulated as an equivalent nonlinear
complementarily problem and a heuristic route/time-swapping approach is adapted to solve
the problem.

Since none of the existing algorithms for stochastic dynamic user optimal traffic
assignment (SDUOQ) satisfy the three conditions aforementioned, | present in this study new
algorithms, termed as Relaxation with MSA (method of successive average), for both
link-based and route-based VI DUO model. In addition, | also present a new link-based VI
SDUO model. Our algorithms satisfy the three conditions and are efficient for large size

transportation network.

2.3 Dynamic User Optimal Simultaneous Departure Time and Route Choice
problem (DUOSDTRC)

Hendrickson and Plank (1984) developed work trip scheduling models. In their study,
mode and departure time choices are treated as a simultaneous interactive decision based
upon maximization of individual traveler’s utility or satisfaction with each alternative mode
and departure time combination. The probability of an individual selecting each
mode/departure time alternative is assumed to be of the logit form. Palma et al. (1983)
developed a model to predict the pattern of traffic volumes and travel times during a peak
period at a single bottleneck. In the model, a trip maker can shift his/her trip forward or

backward in time to avoid a long delay. Ben-Akiva et al. (1986) developed a dynamic model

25



of peak period traffic congestion that considers a limited number of bottlenecks. The model
predicts the temporal distribution of traffic volumes with an elastic demand model. In
response to changes in the traffic conditions travelers can switch to a different mode, divert to
an alternate route, or shift the trip forward or backward in time to avoid a long delay.
Mahmassani et al. (1984) analyzed the time-dependent departure pattern arising in an
idealized situation of a pool of commuters going from a single origin to a single destination
along one or two routes under user equilibrium conditions. Mahmassani et al. (1987)
introduced a boundedly rational user equilibrium (BRUE) at a single bottleneck, with
particular reference to the departure time decision problem. Unfortunately, the above models
are limited to solving departure time choice problems for simple networks.

Friesz et al. (1993) first formulated a continuous time, infinite-dimensional VI model
for the departure time/route choice problem but did not provide solution to the model. Wie et
al. (1995) presented a discretized VI formulation for the simultaneous route/departure
equilibrium problem and presented a heuristic algorithm whose convergence was not
established. Yang et al. (1998) presented a model for departure time, route choice and
congestion toll in a queuing network with elastic demand. The departure time and route
choice of commuters and the optimal variable tolls of bottlenecks were determined jointly by
solving a system optimization problem over the space-time expanded network (STEN).

Janson (1992) formulated a user-equilibrium traffic assignment model with variable
departure times and scheduled arrival times. Bernstein et al. (1993) formulated the

simultaneous route and departure time choice (SRD) equilibrium problem as a variational
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control problem. A path-swapping process and a heuristic procedure for solving the SRD
problem were presented in the paper. However, such models adopt long time intervals and are
more applicable for long-term transportation planning, rather than dynamic traffic analysis.
Ran et al. (1996a, 1996b) presented a link-based variational inequality formulation of
simultaneous departure time and route choice problem. The equivalence of the formulation to
the link-based DUO departure time/route choice conditions was proved. A diagonalization
algorithm is presented to solve the model over time-space expansion network. Chen and
Hsueh (1998) and Chen et al. (2001) also presented link-based formulations of simultaneous
departure time and route choice problem. Huang and Lam (2002) presented a simultaneous
path-based route and departure (SRD) time choice equilibrium assignment problem in
network with queues. The problem is modeled on discrete-time basis variational inequality
and formulated as an equivalent ‘zero-extreme value’ minimization problem. They also
presented a heuristic algorithm which based on a route/time-swapping process for the
problem. The solution needs path enumeration. Szeto and Lo (2004) developed a cell-based
formulation for the simultaneous ideal dynamic user optimal route and departure time choice
problem with elastic demands through a variational inequality problem. The cell transmission
model (CTM) was used to model link propogation and link travel time. A descent method was
adopted to solve the variational inequality problem. However, the method is not ideal for
large network. Lim and Heydecker (2005) investigated a logit-based combined departure time
and dynamic stochastic user equilibrium assignment problem and presented a solution

algorithm to solve the problem which required path enumeration within a reasonable path set.
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MUN (2006) presented a route-based combined model of dynamic route and departure time
choice using variational inequality approach. He showed that solving the model was
equivalent to solving systems of simultaneous non-linear equations and also proposed a
Newton-type algorithm for solving the model. Zhou et al. (2007) described the development
of a dynamic trip micro-assignment and (meso) simulation system that incorporates
individual trip maker choices of travel mode, departure time and route in multimodal urban
transportation networks. A variational inequality model and a heuristic procedure are
developed to describe and solve the stochastic time dependent traffic user equilibrium
problem. Zhang et al. (2007) investigated some new dynamic phenomena of Braess’s paradox
considering simultaneous departure time and route choices in transportation networks.

Our literature review indicates that there is still no analytical solution algorithm for
dynamic user optimal simultaneous departure time and route choice (DUOSDTRC) model
and all the existing algorithms need some heuristic process. In addition, none of the existing
algorithms for DUOSDTRC satisfy the three conditions aforementioned. In our study, |
present an efficient analytical algorithm, called Relaxation with Gradient Projection
algorithm, for the route-based VI DUOSDTRC model. Our algorithm satisfies the three
conditions and are efficient for large size transportation network. It is also the first analytical

solution algorithm for VI DUOSDTRC model.

2.4 Other Combined Travel Choice Models

Stathopoulos (2003) described a methodology for analyzing the evolution of travel
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demand pattern within different timescales in the long run in general dynamic transportation
networks. The estimation process uses as input a maximum-entropy (adjusted)
time-dependent O-D trip matrix, whose estimation is based on a set of link traffic counts, and
the corresponding (adjusted) dynamic user optimal path travel costs, as obtained from a
suitable dynamic network assignment procedure. Bellei et al. (2006) presented a mixed
discrete/continuous nested Logit dynamic demand model with five choice levels including
generation, destination, mode, departure time and path choices. The logit type models are
adopted to model each of the five choice levels. A continuous version of the logit model is
adopted for departure time choice, thus not requiring to enumerate explicitly the desired
departure time intervals. The dynamic traffic assignment model is formulated through a fixed
point problem and solved through an efficient implicit path MSA algorithm. The study
provides a modeling framework for the simulation of elastic demand in the context of
within-day dynamic traffic assignment. However, the model requires path enumeration from
each node to all destinations and is not applicable to large network. And it did not provide an
example showing the solution really satisfy the dynamic travel choice conditions. Research
on combined dynamic travel choice models includes Stathopoulos (2003) and Bellei et al.
(2006). In Stathopoulos (2003), dynamic user optimal assignment is used in the estimation of
travel demand and departure time choice is not considered. Bellei et al. (2006) presented a
mixed discrete/continuous nested Logit dynamic demand model with five choice levels
including generation, destination, mode, departure time and path choices. Unfortunately, their

method requires path enumeration and they did not show the solution really satisfy the
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combined dynamic travel choice conditions.

In this study, | present new models on problem 4), 5), and 6) stated in Chapter 1, or
combined mode split and dynamic user optimal simultaneous departure time and route choice
(MS DUOSDTRC) problem, Combined trip distribution and dynamic user optimal
simultaneous departure time and route choice (TD DUOSDTRC) problem, and combined trip
distribution mode split and dynamic user optimal simultaneous departure time and route
choice (TD MS DUOSDTRC) problem. I present an efficient algorithm for each model. The
algorithms satisfy the three conditions aforementioned and are efficient for problems on a

large size transportation network.
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Chapter 3: Current Theories for Network Flow Constraints

and Determining Link/Path Travel Times

This chapter provides other fundamentals about current theories and assumptions about
transportation network flow constraints for dynamic transportation models, as well as models
for determining link and path travel times. The content of this chapter is tended to provide
more critical prerequisites or basics for understanding of innovative work in my research

which will be described in Chapters 4 through 8.

3.1 Network Flow Constraints
The network flow constraints for dynamic transportation network models are briefly
introduced in this section.

Inflow conservation equation:

dus(t)=u,(t) va (3.1)

rsp

(3.1) states that the number of vehicles entering link aat time t is the sum of vehicles
entering link a overroute ppassing link a with origin rand destination sattimet .

Similarly, the following hold for v, (t) andx,(t):

dvE(t)=v,(t) va (3.2)

rsp

dxE(t)=x,0t) va (3.3)

rsp

The link state equation is
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i =ul(t)-vi(t) Vvaprs (3.4)

The number of vehicles on link a can be stated as
xo (t)=x2 (O)+£ uZ (@)-vE(0)do vaprs (3.5)

Node flow conservation constraint is

Zv Zu Y j#r,s;p.r,s (3.6)

aeB aeA

where A(j) is the set of links after jand B(j) is the set of links before j. Similarly, the

following node constraints hold for origin r and destination s

> Zu =f"(t) Vr=zs;s. (3.7)
aeAr p
> Zv e"(t) vrs=r. (3.8)

aeB

where frs(t) is the flow departing from origin rtoward destination s at time t and
e"(t) is the flows arriving destination s from origin r attime t .
Flow propagation constraint is
up(t)=ve(t+z,(t) vaprs (3.9)
(3.9) states that the inflow rate ul(t) at t equals the exit flow rate v{ (t+7,(t)) after the
link travel time ,(t).
Assume the flow rate in each time interval is constant, then,

U,(k)=U,(k-1)+u,(k) Vvak (3.10)
where u,(k) is inflow into link a during intervalk , U, (k) and U,(k-1) are the
cumulative number of vehicles entering link aat the end of intervalk and interval k -1

Similarly,

V. (k)=V,(k-1)+v,(k) Vak (3.11)
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where v, (k) is exit flow from link a during intervalk, V, (k) and V,(k—-1) are the
cumulative number of vehicles exiting link aat the end of intervalk and interval k —1. Let
7,(k) be actual travel time over link a for flows entering link a at timek, then flow
entering link a attime k will exitlink a attime intervalk +,(k), so the following flow
propagation holds:
u,(k)=v,(k+z,(k)) Vvak (3.12)

The above flow propagation is different from Huang and Lam’s study (2002). In their
study, u,(k) and v, (k) is taken as inflow rate and exit flow rate on link aat intervalk,
which has length & . The flows entering link aat interval k-1 leave the link before the end
of interval k -1+7,(k—1) by the departure ratev, (k —1+,(k —1)). The flow propagation
in their study says flows entering at interval k will leave the link during
[k —1+7,(k-1),k +7,(k)] by the departure ratev,(k +z,(k)). It is argued that this flow
propagation confuses departure rate v, () atinterval k+z,(k) ([k +z,(k)th interval) with
departure rate v,(-) during interval [k —1+7,(k-1),k +z,(k)]. These two intervals are
generally not the same. The length of [k —1+7,(k-1)k+z,(k)] is z,(k)-7,(k-1)+1.
If 7,(k)-7,(k-1)+1=5 , then interval [k—1+7,(k—1)k+7,(k)] is exactly the
[k +7,(k)lh interval. Otherwise, they are different. This means
u,(k)=v,(k+z,(k)fz,(k)-7,(k =1)+1] does not always hold as in Huang and Lam (2002).

With flow propagation constraint (3.12), exit flow v and link volume x can be

expressed by inflow u as follows:

v,(t)= ;ua(k)ﬁ: (k) (3.13)
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where

20-f5 oot @19
and

X, (t)= ;ua(k)a‘: (k) (3.15)
where

1, k<tk+r,(k)>t

. (3.16)
0, otherwise

3100~

Equation (3.13) states that the exit flows of link aat time interval t are equal to the sum of
flows entering link aat time interval k (k <t) and exiting link a at time interval t
[k+7, (k)=t]. Equation (3.15) states that the flows on link a at time interval t are equal
to those flows entering link a before time interval t and exiting link aafter time interval
t.

Another constraint is termed as causality, which states that the travel behaviour of
vehicles is affected by some of the vehicles already on the link at the time of entry, but not by

any future entering vehicles.

3.2 First-In-First-Out Constraints (FIFO)
Link FIFO states that vehicles entering link a at time texit link a earlier than
vehicles entering link a at timet+ At . It reads (Ran and Boyce, 1996):
t+7,(t) <t+At+z,(t+At) (3.17)

or, if 7,(t) is differentiable,
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z,(t)>-1 (3.18)

Path FIFO states vehicles entering path p at time texit path p earlier than vehicles
entering path p attimet+ At . It reads (Lo and Szeto, 2002):

t+nr(t)<t+At+pl(t+At), VrspeP” (3.19)

OD FIFO states that vehicles entering the actual minimum path between origin r and
destination s at time t reach destination s earlier than vehicles entering the actual
minimum path at timet + At . It reads

t+7°(t)<t+At+z°(t+At), Vvr,s (3.20)
It can be shown that if the link FIFO hold then the path FIFO also hold.

When time period [0,T] is discretized into small time increments, each increments

being an unit of time, then the following flow propagation constraints hold.

In general case, it follows that

Sul(i)=ve(k) vk, pars (3.21)

i+7,(i)=k
When FIFO condition holds, it follows that

dup(i)=vp(k) vk, pars (3.22)

0 -1
1" <I<I

where i°and i'are the minimum and maximum of increments such that the following hold
i+7,(i)=k (3.23)
When strongly FIFO (SFIFO) holds, it follows that

up(i)=ve(i+7,(i) vaprs (3.24)

ap
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3.3 Link Capacity and Outflow Capacity
Maximal number of vehicles on a link is
x, () <1.e,, Va (3.25)
wherel, is the length of link aand e, is the maximal traffic density.
Maximal exit flow from a link is
v, (t)<v Va (3.26)

am

wherev, is the exit flow capacity of link a.

3.4 Link Travel Time Models

3.4.1 Speed-density Function Models
The speed-density function model to be introduced includes Greenshield’s model,
Triangle model, Trapezoid model, Greenberg model, and Underwood model.  The following
relation of volume q (veh/hr), speed s(m/hr) and density k (veh/m) holds for speed-density
models:
q=ks (3.27)
Greenshileds’s model has been long used since it was published in 1935. The model

reads

k
S=5; [1—k—] (3.28)

j

where sis speed (m/hr), kis density (veh/m), sis free flow speed (m/hr), k;is jam

density (veh/m). Figure 3.1 shows the speed-density curve and flow density curve for
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Greenshield model.
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Figure 3-1 Speed-density curve and flow density curve for Greenshield model

Greenshields’ model has been retained in the Highway Capacity Manual till 1994.
However, it has been observed (Highway Capacity Manual 1994) that speed keeps constant
until density reaches certain threshold and then drops quickly. The following model reflects

this observation

S k <Kk,
i PSS S (3.29)
k k;
1 1)
where « :(k——k—J Model (3.29) is named Triangle model because its volume-density
c R

curve is triangle-shaped. Figure 3.2 shows the speed-density curve and flow density curve for

Triangle model.
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Figure 3-2 Speed-density curve and flow density curve for Triangle model

The Triangle model is a special case of Trapezoid model defined as follows:
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Figure 3.3 shows the speed-density curve and flow density curve for Trapezoid model.
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Figure 3-3 Speed-density curve and flow density curve for Trapezoid model
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When traffic is congested, the following Greenberg model can be used:

k.
s=s, In(—‘j (3.31)
k
where s, is optimal speed (m/hr) corresponding to the maximum volume, k; is jam density

(veh/m). Figure 3.4 Speed-density curve and flow density curve for Greenberg model.
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Figure 3-4 Speed-density curve and flow density curve for Greenberg model

When traffic is light, the following Underwood model can be used:
s=5,e (3.32)
where K, is optimal density corresponding to the maximum volume, s is free flow speed

(m/hr). Figure 3.5 shows the speed-density curve and flow-density curve for Underwood

model.
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Figure 3-5 Speed-density curve and flow-density curve for Underwood model

3.4.2 Bottleneck Model

In bottleneck-type models, vehicles move at the free flow speed before arriving at the
exit node where they join the queue if vehicles ahead are queued and exit the link otherwise.
The original bottleneck model (Vickrey, W., 1969) assumes that vehicles do not take physical

space and is also known as point-queue (PQ) model. It is stated as follows:

dx, (t) :{ 0 if x, (t)=0and U_(t—fo)< ¢ (3.33)
dt u(t-z,)-C otherwise
v(t)={u(t_70) it x,(t)=0andu(t-z,)<C (3.34)
C otherwise
7(t) =1, +X,(t+7,)/C (3.35)

where u(t)is the entry rate at time t, v(t)is the exit rate at time t, x,(t)is the total number
of vehicles queued at the exit node, z,is the free flow travel time, Cis the bottleneck

capacity.
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3.4.3 Exit-flow Model or Outflow Model
The exit-flow model assumes that the link exit flow rate at any time is a function of
current link volume. It is first used by Merchant and Nemhauser (1978) and later on by Carey

(1986, 1987), Frieze et al. (1989) and Wei et al. (1995). It is stated as follows:

S _ -y (3.36)
v(t)=g.(x(t) (3:37)

g. (x(t) < x(t)
(3.38)

where g, (x(t)) is a nondecreasing and concave function of current link volume.

In Merchant and Nemhauser (1978), the follow exit function is used:

X, 0<x<50
X)= 3.39
0.00={3 Fr 339

In Wie et al. (1995), the following exit function is used:

9. (x(t)) = Q(t)X2 —exp(- x(t)/x)) (3.40)
whereQ(t) is capacity at time t; and Xis the product of Q(t) and time increment At.
Because outflow models do not explicitly define the travel times on the link, travel time is
usually calculated by using the flow propagation function.

Study on exit-flow model can also be found in Careya (2004).

3.4.4 Delay-function Model

Delay-function model (also known as whole link model) assumes that the traverse time
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experienced by vehicles entering a link at time t is a function of the number of vehicles on
the link at timet. The travel time for any path can be explicitly expressed in recursive form
with the delay-function-based link models, which brings considerable tractability in the

formulation, analysis and solution of DUE problems. Delay-function model reads

) _ -y (341)
7(t) = 9, (x(t)) (3.42)
u(t)

v(t+z(t)) =

70 (3.43)

Equation is derived from the following equation under FIFO constraint:
J:Ou(a)ﬁa) = f:(t)v(a)ﬁa) (3.44)

Nie and Zhang (2005) studied the delay-function-based link models and found that (1)
the linear delay function, the only proven FIFO consistent delay function, substantially
overestimates link travel time due to the so-called double-counting effect (2) the piece-wise
linear delay function, an improvement over the linear delay function in reducing
double-counting, does not always respect FIFO.

Some whole-link travel time models assume that the travel time from the beginning to
the end of a link of the network can be expressed as an increasing function of the whole-link
variables such as link inflows, outflows or link volume (the number of vehicles on the link) at
each time point. For example, Ran and Boyce (1996, 1997) have used more general nonlinear
whole-link travel time function. It is the sum of two components: (i) a flow-dependent cruise
time which depends on inflow and on the number of vehicles in the link; and (ii) a queuing

delay which depends on the outflows and the number of vehicles in the link. Study on whole
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link model can also be found in Careya (2002, 2003).

3.4.5 Hydrodynamic Models
The hydrodynamic model is also known as LWR model because it was first presented
in Lighthill & Whitham (1955) and Richards (1956). Hydrodynamic models take traffic as

continuous fluid represented by volume (q), speed (s), and density (k). The fundamental

hypothesis of the theory is that at any point of the road the traffic volume Y is a function of
the density k , or
a(x,t)=k(xt)*s(x,t)=a(k(xt)) (3.45)
The movement of traffic on uniform road segment is decided by the following flow
conservation equation:

oq ok
=+ = =g(xt 3.46
ax+at 9(x.t) (3.46)

where x is space, tis time, g(x,t)is exit function of the segment. The equation can also be

written as

. Kk . 0
4=+ =0let) g=2 (347)

When g(x,t)=0, the flow conservation equation becomes:

o,k

+ 22 = 3.48
ox ot ( )
Or
.ok ok . g
—+—=0, g=— 3.49
q ox ot q ok ( )

(3.48) and (3.49) states that the quantity in a small element of length changes at a rate equal

to the difference between the inflow and outflow. Model (3.49) was presented by Lighthill
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and Whitham (1955) and Richards (1956) separately so it was called LWR model.
The LWR model assumes the existence of an equilibrium speed-density relationship
s=s,(k), (3.50)
where s, is equilibrium speed. The equilibrium condition is defined as (Zhang, 1998)
3—2 =0 (3.51)
Given initial value of k(x,0)=f(x) and an equilibrium speed-density relationship
(3.48), the solution of flow conservation equation (3.47) is
k(x,t)=f(x=a'(f(x)k) (352)
where g'= dq/dk , thus one knows traffic status anywhere at any time.
Figure 3.6 and Figure 3.7 show an example of the characteristics and the surface of
Hydrodynamic model, respectively. In the example, Greenshield model (3.28) is used, where

free flow speed s; =45 m/hr, jam density k; =200 veh/m. 3-mile long road and 15 minutes is

considered. The initial density k(x,0)=100+10x, where x is distance (mile).

Distance (mile)

Time (hour)

Figure 3-6 Characteristics of Hydrodynamic model in the example
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Figure 3-7 Density surface of Hydrodynamic model in the example

3.4.6 Cell Transmission Model

Daganzo (1994, 1995) presented Cell Transmission model (CTM) based on LWR
model by assuming a trapezoid-shaped volume and density diagram. The CTM adopting the
following relationship between traffic volume g and densityk :

q = minis, k,Q,W(kj —k)f (3.53)
where s;,Q,W,k,k; denote free-flow speed, inflow capacity (or maximum allowable inflow),
backward shock wave, density, and jam density, respectively. By dividing road into uniform
segsments and time into intervals, the CTM uses the following recursive equations to

approximate the solution of LWR:

nj(w+1):nj(a))+qj(a))_qj+1(a)) (3.54)
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4, (@)= min n,-1<w),o,-(w){v—f[w,-(w)—n,.(w)] (3.55)

where the subscript jrefers to cell j, and j+1and j—1 represents the cell downstream
(upstream) of j. The variablesn; (@), q; (), N, (w)denote the number of vehicles, the actual
inflow, and the maximum number of vehicles that can be held in cell jat time @,
respectively.

Table 3.1 shows the solution of an example of Cell Transmission model. Figure 3.8

shows the surface of the density of the example. In the example, an isosceles trapezoid

flow-density model is used with k=55 vehicle unit per distance unit, s, =1 distance unit

per time tick,Q =55, N =k; =160.

Table 3-1 Numerical results of the example

A
42 43 44 45 46 47 48 62 63 64 65 66 67 68 60 70
43 4 £5® 62 63 64 65 66 67 68 69 70
44 45 6) 62 63 64 65 66 67 68 69 70
45 46 6 62 63 64 65 66 67 68 69 70
. 46 47 6 62 63 64 65 66 67 68 60 70
Time | .. g . 6 62 63 64 65 66 67 68 69 70
(Tick) 5o 60 61 62 63 64 65 66 67 68 60 70
so| 60| 61 62 63 64 65 66 67 68 69 70
so| 60| 61 62 63 64 65 66 67 68 69 70
so| 60| 61 62 63 64 65 66 67 68 69 70
so| 60| 61 62 63 64 65 66 67 68 69 70
so| 60| 61 62 63 64 65 66 67 68 69 70
so| 60| 61 62 63 64 65 66 67 68 69 70
so| 60| 61 62 63 64 65 66 67 68 69 70

Distance (unit distance)

Hydrodynamic model and cell transmission model have the advantage of offering

plausible descriptions of flow, including the propagation of congestion, whereas it has the
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disadvantage of being both analytically and computationally demanding. NIE and ZHANG
(2005) studied four link models—the linear delay-function (DF) model, the MN model, the
PQ model and the CTM model. Using the CTM model as a benchmark, they found that the
PQ model behaves identically as the CTM model; the DF model, however, was found to
systematically overestimate link traversal times, and the EF model was found to overestimate
link traversal times when inflow rate decreases suddenly but underestimates link traversal

times when inflow rate increases suddenly.

Density (vehicle unit/unit distance)

Time (tick) 0 o

Distance (unit distance)

Figure 3-8 Density surface of Cell Transmission model in the example

3.5 Path Travel Times
There are two types of time-dependent path travel time: naive path travel time and

recursive path travel time.
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3.5.1 Naive Path Travel Time
In Naive path travel time, the travel time required to traverse path
p:{al,az,---,am}for vehicles entering the network at timet, is calculated using the
following formula:
s O=7, O+7, O)++7, () (3.56)

where z, (t)is travel time on link aat time t.

3.5.2 Recursive Path Travel Time

In recursive path travel time, the travel time required to traverse path
p:{al,az,---,am}for vehicles entering the network at timet, is calculated using the
following recursive formula:
neM)=1, ©+7, [t+o, O)++z, [+, O+ -+, (tre, ©)++7, (1) (3.57a)

For simplicity, letz, =z, (t), 7, =7, (t+7, (t)), etc, (3.57a) can be rewritten as

7y (0= 7. ()55 (1) (3.57h)

aep I>k
where sz, (I) is equal to 1, if the flow on path pof pair (r,s) entering the network at

interval k arrives link aat interval I; otherwise, 0. The following equations hold (Huang

and Lam, 2002).

5t (1)= 1 if k+r, +7, +--+7, =1 (3.582)
w00 otherwise :
and
>0 ()=1 VpeP,reRseSkek (3.580)

1>k
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Chapter 4: Concepts and New Algorithm for Ideal Dynamic User
Optimal Route Choice (DUO) Problem

In this chapter, the ideal dynamic user optimal (DUO) route choice problem is studied.
At DUO state, the actual travel times experienced by travelers of the same O-D pair departing
at the same time are equal and minimal. Some basic definitions are given in Section 4.1.
Section 4.2 presents the link-based variation inequality DUO model and development of its
algorithm. Section 4.3 presents the route-based variation inequality DUO model and

development of its algorithm.

4. 1 Some Definitions

Some definitions are given as follows:
Departure Horizon: The time period in which there are vehicles departing from an origin
and entering the network. Denote it as [O,TO]. All departing flow rate from any origins is zero
afterT,.
Assigning Horizon: The time point at which the last vehicle entering the network reaches its
destination. Denote itasT .[0,T] is the whole analysis time period.
Time Increment: The length of the time interval used to partition[0,T,] and[0,T]. Denote it
asAt. Each time increment is a unit of time. The kth time interval isk .

LetK = [T/At], = argmin{i > T/At,ie Z}, where Z is the set of natural number. Similarly,
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letK, =[T,/At], .
Time-Space Network: The network with time dimension, showing the network state at each
time interval k .

Figure 4.2 shows an example of time-space network with 4 time interval for the 3-link

network in Figure 4.1. x(a,k) is the number of vehicles on link aat interval k.

1

Figure 4-1 A 3-link network.

Figure 4-2 Time-space network with 4 time intervals for the 3-link network

4.2 Link-based Variational Inequality (V1) DUO Model

4.2.1 Link-based VI Formulation of DUO
Assume the network is empty att =0, and only travel demands departing within the

departure horizon are considered. The link-based DUO continuous VI model can be

expressed as
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[ (2)u)-u ®)dt>0 (4.1a)
where © e RN we RPN N, |Al, and [RxS|are the cardinalities of the
set nodes, links and O-D pairs, etc. (a,b)=a'b,

or in expanded form as

jOT <ZZQ§* (tfurft+ 2™ t)]-uft+ 2 (t)]}>dt >0 (4.1b)

rs a

where
Q¥ ()= 2" )+ 7, [t + 2™ (O)]+ 2 ft+ 27 ()] - 2 (t), a={i, j) (4.1c)

This formulation is equivalent to the following link-based DUO route choice conditions:

Q™ ({t)=0 va=(ij)r,s; (4.2a)
ut+ 2Ok M)=0 va=(j)rs (4.2b)
ult+ 2™ ()= 0va=(j)r,s; (4.2¢)

The above formulation and conditions comes from Ran and Boyce (1996b) with some
modification. In Ran and Boyce (1996b), the link cost term is defined as

QP (t)= 2" )+ 7, t+ 2™ ()] - 27 (¢) (4.3)
which is different from (4.1c).

(4.2a) states that if time-space link a[t+7r”*(t)] is on the minimal actual route
(dynamic shortest path) from origin rto destination s at timet,ij*(t):O; otherwise,
Q™ (t)> 0. (4.2b) states that if time-space link at+ 7" (t)] is on the minimal actual route
from origin rto destination sat timet, or ifQ™ (t)=0,u™[t+ 7™ (t)|> 0; otherwise, or if

Q™ (t)>0, u™[t+z™(t)]=0. (4.2c) is nonnegative condition for inflow.

Below proving traffic status satisfying (4.1) is in a DUO status or equivalent to (4.2a),
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(4.2b), (4.2¢).

Proof:

(i) Necessity. By (4.2a) and (4.2c), >0, w20, this implies (Q,u)>0. By (4.2b),
(Q,u7)=0.Thus, (Q(t)u(t)-u"(t))>0 holds. Integrating it over[0,T], we have (4.1).
(i) Sufficiency. (4.2a) and (4.2c) hold by definition. Let the optimal solution of (4.1) beu™.

To prove (4.2b) holds foru”, we first find a feasible solution w®such that (4.2b) holds,

or<§,ﬁ®>=0. Suppose (4.2b) does not hold foru®, we have <§,ﬁ*>>0. We further
has(Q,u® -u") <0, or JOT (Q(t)u®(t)-u"(t))dt <0. This contradicts (4.1). Thus (4.2b)

holds foru”.

4.2.2 Solution Algorithms for Link-based VI DUO Model

Discrete Link-based VI DUO Model

To solve the DUO problem, the continuous VI formulation is discretized with each
time interval being time increment. The estimated actual travel time on each time-space link
ais a multiple of the time increment and is fixed at each time increment, i.e.,
7,(k)=i if (i-05)At<r,(k)<(i+0.5)At (4.4)
whereiis an integer and 0<i <K, Atis time increment.. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the time increment smaller (Ran and Boyce, 1996b).

The link-based DUO discrete-time VI formulation is
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(Q(k)u(k)-u"(k)) >0

or in expanded form as

>y 3oz sk 0o k)0

i a
whereQ e Ry e @, and
0F (k)= 2" () 7, e+ 2 ()] 22 e 27 ()] -2 (k)= . )
O is the feasible region defined by the following constraints:
Path flow conservation constraint:

Zf“ =f"(k) Vk,r,s

Link inflow conservation constraint:

Z u( ) Yak
4.8)
Link outflow conservation constraint:
Zvrs ) Vak
4.9

Node flow conservation constraint:

ZV“ = Yufk) Vijzrs;rs;k
)

aeB(j aeA(j

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraint:
uf(k)=vi(k+z,(k)) Vva,r,sk

The link state equation:

x,(k+1)=x,(k)+u,(k)-v,(k) Va,k
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(4.5b)

(4.6)

4.7)

(4.10)

(4.11)

(4.12a)



or
x,(k+1)=x (k)+u,(k+1)-v,(k+1) Va,k (4.12b)
(4.12a) is forward formula, (4.12b) is backward formula.

Path-link flow incidence constraint;

ut(n)= ZZ% frkpla van (4.13)

rs p k=1

where §%" e {0,1}is defined as:

rsa

if traffic departing origin r at any time interval k
1 heading for destination s on path p arrivesat link a

O = (4.14)
during the nth time interval.
0 otherwise
Nonnegative constraint:
frk)=0,uf(k)=0, Vk,r,sa,p (4.15)

With flow propagation constrain (4.11), exit flow v(t) and link volume x,(t) can

be expressed by inflow u;® as follows (Ran, 2002b; Chen, 1998):

v (t)= 2us (k)oy. (k) (4.16)
where
045 st @
and
X, (t)= ;gu:(k)é‘:--(k) (4.18)
where

1, k<tk+r,(k)>t

. (4.19)
0, otherwise

5:..(t)={
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Relaxation

At each relaxation, it is to temporarily fix (Ran and Boyce, 1996b; Ran, 2002b): 1)
Actual travel time r,(k) in the link flow propagation constraints as 7,(k) and
corresponding actual route travel time 77 (k) as 7,°(k); 2) Actual travel time (k) in the
VI cost term Q(k) as z,[k+7"(k)| and 3) Minimal travel times z"(k)as z" (k).
78+ 79(k)as 7 [k +77(k)] and z*(k) as 7" (k)for each link and each origin and
destination. At each relaxation, a time-space network is implicitly formed with fixed link
flow propagation constraints and fixed actual route travel time.
Via relaxation, the VI cost term becomes

QF(k)=7"(K)+ 7, [x, [k + 7" ()] + 75 [k + 79 (k)] 7 (k) (4.20)
Optimization Problem

An optimization problem which is equivalent to the discrete VI under relaxation can

thus be formulated, as follows:

minZ =izz{f(“”"(”) 7, ¢ Jk+ 7(K oo+ u(k + 7 ()" () + 7k +7z”(k))—7z“(k)]} (4.21)

k=L rs a

The gradient of (4.21) is shown to be

oz

TR 7(K)+ ok + 77 () + 75 (k + 79(k))- 7 () (4.22)

(4.21) is equivalent to the cost term of discrete VI (4.5b) under relaxation. This indicates the
above optimization program is equivalent to the discrete VI (4.5).

By using (4.18), we have
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)+ 2K =3 S ur K)ok + 7 (k)] (4.233)

1, k<tk+r,(k)=t

where 5% (t) = :
0, otherwise

Letting k., = min {k| andk, = max{}, (4.23a) can be expressed as
t

ax (0 o5 (11

xk+z' k)= > Sur(k) (4.23b)
k=Kpmin s
(4.23b) can be rewritten as
X[+ 70 (k)] = u(k+ 77 () + S us(k + 77 (k))+ kzsz_l ur (k) (4.23¢)
rs£rs k=Kpmin s
K =K pax —1 _
Letting X *(k+7" (k)= S ur (k + 7" (k))+ S ur(k), (4.23¢) can be
rs=rs K=Kmin TS
rewritten as
X[k + 77 (k)] = ul (k + 77 (k))+ X 2 (k + 7" (k) (4.23d)
Substitute (4.23d) into (4.21), we have
mirz =§§Z{J: AT e )+ Xl +;z“(k)))+;z“(k)+7ziS(k+ﬂfi(k))—;sz(k)}1a)} (4.24)
u k=l rs a

Since all cross effects (cross link, cross time interval, cross O-D) are fixed in each relaxation,
ur (k + 7" (k)) is the only variable for each summation term of (4.21) and (4.24).

At each relaxation, the VI formulation of DUO problem was transformed into a series
of static user equilibrium traffic assignment problems over the time-space network of the
relaxation, which can be solved by Frank-Wolfe algorithm. Call the relaxation as outer
iteration and solving static user equilibrium traffic assignment problems over the time-space

network of the relaxation as inner iteration.
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At the mth iteration of the inner iteration (Frank-Wolfe algorithm), the descending
direction of nonlinear programming (4.21) can be found by solving the following linear
program:

min Z=h"v,z™ (4.25)
in® , where his subproblem variable, VUZ(”‘) is gradient of Z with respect to uevaluated at
u™,

(4.25) s equivalent to:

min 7 = izz‘[tf(m)(k)hf (k+ 7" (k)] (4.26)

k=1 rs a

in® , where
(m) ) ) ) i
t;s(m)(k)zaT;(i(JruTﬁ)(k))=7r”(k)+ra[xgm)(k+7z”(k))]+7r‘s(k+7r”(k))—7zrs(k) (4.27)

(4.27) can be decomposed by origin-destination pair. The resulting subproblem for O-D

pair rs is:
~ KO .
min Z = 3= Oh(k + 77 (k) (4.28)
k=1 a
in®.

(4.28) can be further decomposed by each O-D flow f *(k),k =1,---, K,. The resulting
subproblem for O-D flow f (k) is:
min 7 = Za:[tf(m)(k)h;s (k+ 7" (k)] (4.29)
in®.
(4.29) can be viewed as a shortest path problem over the time-space network of the

relaxation. The minimum of (4.29) is found by assigning f " (k)to the actual minimum cost
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route (dynamic shortest path) of O-D pair rs at time intervalk . The cost of each time-space
link is defined as (4.27). The shortest path for (4.27) can be found on the original network,
with the time interval for each link recorded on the original network to track the shortest path
on time-space network. As an example, Figure 4.3 shows how to record time interval on the

original network for demand f**(1).

W1+ 7]

k=1

[t:° (1)

Figure 4-3 An example of recording time intervals on original network.

Cost term (4.27) contains the fixed actual travel time 7z"(k) and 7 *(k + z"(k)) at each
relaxation for every linka = (i, j),vrse RxS,k =1,---,K,. They are dynamic shortest path
on time-space network. Section (4.2.3) describes an efficient algorithm to find dynamic
shortest paths on the original network based on time-space link travel times.

Notice the difference between cost term (4.27) andz, |k + 7" (k)|. 1f u(k +7"(k))
does not contribute toz, (k + 7" (k)), the shortest paths based on (4.27) andz,|k + 7" (k)| are
the same. To see this, let p, = {pisk,---, pr“;,fk} be the set of the actual minimum cost route
of O-D pair rs at time intervalk at the mth iteration of the inner iteration, where N, is
the number of the actual minimum cost route of p, . Consider the path cost of
any ply € Py, 1 =1 Ny, with pl =(a,--a,), where a, =i, j,)--a, =(i., j;) are

sequential links on route p/, , I is the number of links on route P - The path cost of p,,

|
rsk

(denote it asc,,, ) is the sum of all the cost of time-space links on the path, or
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e = O +ra1[k+77’i1(k)]+77115(k+77”1*(k))—7?rs(k)+

7 (k)+ 7, [k+ 2 (K)]+ 702 (k+ 7% (k) - 7 (k) +
...... + (4.30a)

7 (k) + 7, k7 )]+ 0 —7°(K)

Ifpl, = (al,m,af) is the same path as the minimum route (with path costz"(k)) under the

relaxation, then we have

7% (k) + 72k + 7% (k)= 7 (k)

4.30b
7 (k) + 70k + 79 (k)= 77 () o

(4.16a) reduces to
cly = 7, k2 (K)]rr, ez (k) +e, [+ ()] -7"(k)=0 (4.31)

rsk

Since ¢!, >0and 7" (k)is fixed at each relaxation, equation (4.31) implies p.., is also the
minimum cost route if cost term 7, [k + 7" (k)] is used.

However, if u?(k + 7" (k))contributes tor, (k + 7" (k)), the shortest paths based on (4.27)
and ra[k +7?”(k)] are not necessarily the same. To see this, now let p, = {pﬂsk,m, pr’:;k} be
the actual minimum cost route of O-D pair rs at time intervalk at the mth iteration of the
inner iteration  based on cost term rlk+z"(k)] . For any pl, epy
with pl =(a,--a;) , a =0y j.)-a =(i-,j;) , its path cost based on cost
termz, |k + 7" (k)] is

it = 2 D0 ber 2 ), B b 2, D27 0)

Its path cost based on cost term (4.27) is
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Che = O +ra1[x£m)(k+77“1(k))]+7?j15(k+7?”1(k))—77“(k)+

rsk "

72 (k) + 7 Xk + 2% (k)] + 702 (k + 7% (k) - 77 (k) +

ay

7 (k) + 7, X+ 7 )+ 0o -7

Because p, =(al,-~~,af) may not be the same path as the minimum route (with path
cost " (k)) under the relaxation, (4.30b) do not necessarily hold, and the shortest paths based
on (4.27) and, [k + 7" (k)] are not necessarily the same.

The step size along the descending direction can be decided by solving the following

one-dimensional search problem:

. Ko (141 (k+;rri(k)) s i i —is i s
minz :;ZZ{J: [z, X1o(k+ 2" (K)))+ 7(k)+ 7k + Z(K)) -7 (k)}ja)} (4.32)
After the optimal step size «"is found, the solution at the inner iteration can be
updated as
u™(n) = u™(n)+ " [ (n)-uF"V(n)]  va,r,s,n=1-- K (4.33)
Algorithm

According to above rational analysis, a new algorithm for solving the ideal DUO route
choice model is developed and summarized as follows.

Step 0: Outer Initialization.

Computek,,,, = max{;zrS } where 7" is the static minimum travel time of O-Drs.
vrs

SetK' =Ky +C [k |, - Set7”(k)=17,[0], vae A, k=1--K'. Find an initial feasible

max

solution [u,f(o)(k)]. Set outer iteration counter| =0. Set an outer iteration
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convergence criteriong,, .

Step 1: Relaxation.

Step 1.0: Find a new estimation of actual link travel times: 7' (k) = z, [x ()], find

féf')(k) VaeA, k=1---,K' , where * denotes the solution obtained from the most recent

inner iteration or from outer initialization. Find5*"(t)and 55"(t).

Step 1.1: Findz"(k), 7" (k), and 7" (k + 7" (k)) by using dynamic shortest path algorithm,

VrseRxS,ae Ak=1--K,.

Step 2: Inner Iteration

Step 2.0: Inner Initialization. Compute and reset the inner initial feasible solution to be

consistent with the flow propagation constrain at the current relaxation. Set an inner iteration

counterm =1( or a convergence criteriong;, ).

Step 2.1: Update. Compute 7™ (k). Update Q"™ (k) by equation (4.27).

Step 2.2: Direction Finding. Based on ﬁf(”‘)(k), search for shortest routes for all OD pairs
over the physical network without time-space expansions. Perform an
all-or-nothing assignment following the link flow propagation constrain, yielding
subproblem solution

he™(k + 77 (k)).

Step 2.3: Line Search. Solve the one-dimensional search problem (4.32) using a line search
procedure such as the bisection method and find the optimal step size o™ .

Step 2. 4: Move. Find a new solution u™™%(k) by (4.33).

Step 2. 5: Convergence Test for Inner Iteration.
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)

(1) 0]
If \/ZKZ(UgmH)(k)—Ugm)(k))/szugm)(k) M(k) >&, setm=m+1, go to Step 2.1;

a k
otherwise, setG"" (k) = u™™(k), 2" (k) = x!™*(k), go to Step 3.

Step 3: Convergence Test for Outer Iteration. If7(k)= 7™ (k), stop. The current

solution u”(k), v®(k), x=(k) is in a near optimal state; otherwise, set

I=1+1 and goto

Step 1.
In the above algorithm, G*" (k) %")(k) are solutions at outer iterationl. 7" (k)is the

a

estimation of link travel time at outer iteration I. 7."(k)is the floored link travel time.

a

u™™(k) andx™(k) are solutions at inner iteration m. z\™(k)is the estimation of link
travel time based on them.

The length of the initial assignment horizon does not affect the solution as long as it is
sufficiently long. But if it is too long, some time-space link may never be used and storage of
them is wasted. Depending on the congestion of the network, C may be set as 2 or 3, etc. All
inflow of the time-space link is zero and the corresponding link travel time is free flow travel
time unless the link is assigned flow. The initial feasible solution in outer initialization can be
found by performing all-or-nothing assignment on the dynamic shortest path based on free
flow link cost for all OD pairs.

At each relaxation, a time-space network is implicitly formed. The algorithm then
performs F-W iteration on the time-space network. Thes*")(t), s*"(t)and K" at the Ith

relaxation are calculated using the solution ("' (k)at the (I-1)th relaxation. Notice the

solution ™' (k) atthe (I—1)th outer iteration cannot be used as the initial solution in the
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inner iteration of the Ith relaxation unless 5:, (t)and 5: (t)at the two relaxations are exactly
the same (which indicates the implicit time-space networks of the two relaxations are the
same). If5%(t) ands* (t)at the two relaxations are different, the solution G7'*(k) at the
(I -1)th outer iteration is not a feasible solution in the inner iteration of the Ith relaxation. A
procedure to reset the initial feasible solution for the inner iteration at each relaxation is
needed to make the initial feasible solution consistent with the current flow propagation. In
inner iterations, the shortest paths with link cost term ﬁf(k)can be found by dynamic
shortest path algorithm. Or they can be found by static shortest path algorithm with arrival
time interval for each link recorded on the original network as shown in Figure 4.3.

When performing all-or-nothing assignment for f " (k) k=1---,K,, the assigned value
should be h(k + 7" (k)) instead of h(k). As an example, Figure 4.4 shows how f"(i)
should be assigned on the time-space network. The corresponding links are highlighted as
thick black. The assigned volumes resulting from f™(i) are h(Li), h(2,i), and
h(3,i+7(2,i)).

Since any route on the time-space network corresponds to a unique route on the
original physical network, the assignment of any time-dependent demand f“(i) can also be
performed on the original network if arrival time interval for the link is recorded. Figure 4.5
shows how f"(i) should be assigned on the original network for the 3-link network. The
same method is used to assign all time dependent demand f"(i), Vr,s,i on the original

network.
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(3,i+1(2,i))

k=i+1(2,i) I >

h(3,i+1(2,1))

h(L,i)

Figure 4-5 Assigned volumes on the original network.

The number of inner iterations at each relaxation can also be pre-specified. The
departure horizon is the same for all relaxations. The assignment horizon and the time-space
network are fixed at each relaxation but may change from relaxation to relaxation. The
assignment horizon and time-space network will finally tend to be fixed. A necessary
condition of the convergence of the algorithm is that the time-space network remains the
same at successive relaxations. As explained above, the solution of DUO does not need to
expand the physical network. The introduction of time-space network is for better explaining
and understanding the solution process.

The actual assignment horizon at the end of the solution isK =K, +Kk,,,., where

Kpoe = Mmax {z°(k)}. When FIFO condition holds, departure horizon [0,K,] and

M vrs,k=1,-K,
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assignment horizon [0,K] have the following relationship under DUO status: K =K, + 7,
where 7=sup{z®(K,), v r,s}, 7°(K,) is the minimal actual route travel time from origin

rto destination s attime K,.

4.2.3 Dynamic Shortest-Path Algorithm
Let G = (V, A) be a directed network with node set V and arc set A. Any link ae A is

indexed by (vi,vj ), or a= Vv, ,where v; and v; are the ‘from node’ and ‘to node’. Denote
link a=v,v, at time interval kasa(k)orv,v;(k), node v attime interval kasv(k), the travel
time on linkv,v; at time interval kas t(vivj, ) k=1,---,K.t'(vivj,k)is its floored value.
Denote by ﬂvi(t) the minimum travel time to destination s departing node v, at time t.
The optimality condition of minimum travel times are defined by the following functional

form:

z, (t)= {rginvjeA(vi) t(ViVj ’t)+ 7Ty, (t +t(vivj ’t)’\\lll j:

When the FIFO condition is valid, the label-correcting algorithm can be generalized to
solve the time-dependent minimum paths (dynamic shortest paths) problem with the same
time complexity as the static shortest paths problem. Below we introduce an algorithm to find
the dynamic shortest path without time-space network. In order to describe our algorithm, the
following denotations are introduced.

Denote O(N)=[N,V —N], whereN(# ¢)cV , and

[NV -N]={a=vyv,lacAv, e N,v, eV - Nj
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Further denote O(n)=[n,V —=N],¥ ne N, where
[V -N]={a=nv,|acAv, eV -N}
Denote N={neN|O(n)=¢}. LetLT ={neN|O(n)=¢}, or LT=N-N
Accordingly, an algorithm to find the dynamic shortest path between any node r and s at

timek, has been developed and is described as follows:

Step 0: Initialization.
Set 1;=0, I7=k,, l;=00, 1>=00,p,=0,V k,v=T.
SetLT® ={r} and N©={r}.
Step 1: Set N©@={r}, choose rv, € O(N®) such that
t(rv,, ko )=min {t(rv', k, )| rv'e O(N @)}
Label Il =t(rv,,k,), 17 =k, +t(rv;,k,), p, =r.
SetNW={r,v,} and LTY=N®_N®.  I1f NU=vor O(N¥)=¢

orv, =s, stop; otherwise, go to Step 2.

Step 2:
Step 2.1: Search among LT and choosev,v, ., € O(N®') such that
I 2

I +t(vi0vk+l, io): min{li1 +t(ViV',|i2)| Vv'e O(N (k))}

|2

2 2 5 2
io)’ I = 1o +t(\/ioVk+1’|

Label I, =15 +t{(V,oV,,, 2), Pt = Vio.-
Step 2.2: Set N*“¥={r,v,,---,v.,v, ,}.Set LT* =N N2 1f NED=y or
O(N®%)=4 orv,,, =s, stop; otherwise, go to Step 2.1

The above shortest path algorithm is the forward label-correcting method. It finds the

dynamic shortest path from a given origin r attime k,to any other nodes in the network. A
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travel cost t(vivj : k) is associated with each link a=v;v; atk . Each node v has three labels:

I}, 12and p,. IF is the minimum cost from the origin node rto node v along the

\

shortest path at k,. 12 is the time interval when one departing node r at k, and traveling

\

along the shortest path reaches node v. p, is the node just preceding node v along the
shortest path. A sequence list is used to help keep track of the nodes. The list includes all the

nodes that have yet to be examined as well as the nodes requiring further examination.

In initialization, the algorithm sets alll}and|’to infinity and all p,to zero. And place the

2 _
C=

origin noderon the sequence list with label I7=0, 1> =k,. Each iteration starts with the
selection of a node v; from the sequence list for examination. All nodes,v;, that can be
reach from v, by traversing only a single link are tested in the examination process. If the

minimum path to v; through v, at IVZi is shorter than the previous path to v, then IjJ and

I\ are updated. In other words, if 1, +tlvv 12

ivjrly

) < Ivlj , then the current shortest path form the
origin node to v; can be improved by going through node v;. To reflect this change, the
label list is updated by setting I, :=1, +t(vivj,lv2i), 17 =13 +t'(vivj,lvzl), the predecessor list
is updated by setting Py, =V and the sequence list is updated by adding v;to it. Once all
the nodes v; (that can be reached from v;) are tested, the examination of node v; is
complete and it is deleted from the sequence list. The algorithm terminates when the
sequence list is empty. The dynamic shortest path from the origin at k,to any other node can

be found by tracing the predecessor list back to the origin node. The corresponding time

interval for each node v on the shortest path is given by 12.
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4.2.4 A Numerical Example

Example 4.1

An example is presented below to validate the above model and algorithm. The configuration
of the network is shown in Figure 4.6. In the network, each link is assumed as an one-lane
street with a length of 0.5 mi. The free flow speed is assumed to be 25 mile/hour. The
following linear travel time function is wused to enforce FIFO condition:
7.(k)=L,/s; +0.3-x,(k), where L,is the length of linka,s, is free flow speed, z,(k)is
link travel time on link aat time k, x,(k)is number of vehicles on link a at time k.
Four O-D pairs are considered. Five 20 s departure time intervals are specified. The OD
flows are 10 vehicle units per time interval. The O-D pairs and the time-dependent O-D
demand are shown in Table 4.1. In this example, the departure horizon is 5 time increments,

and the time increment is 20 seconds.

Table 4-1 O-D pairs and time-dependent O-D demand for example 4.1

O-D Departure time interval k
1 2 3 4 5
1-9 10 10 10 10 10
9-1 10 10 10 10 10
3-7 10 10 10 10 10
7-3 10 10 10 10 10

The program of the algorithm was run on a computer with 1.5 GHz frequency
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processor. The inner iteration (F-W algorithm) convergence test method was set as a

prespecified number n. The outer iteration (Relaxation) convergence test method was set as
max{ (k) -z (K)[Jae Ak =1, K]

where| z")(k)- 7 (k)| is the actual travel time difference of link a at time k between

successive relaxations. The operation of the program is shown in Table 4.2.

Table 4-2 Convergence criterion and computation time for Example 4.1

Inner iteration

convergence criterion

Outer iteration

convergence criterion

Total relaxations

Total computation

time (minute)

n=4

0.002

25.8

The assignment horizon K is found to be 21 time increments. Table 4.3a shows the output of
u®(k). Table 4.3b shows the output ofv"(k). Table 4.3c shows the output ofu, (k). Table
4.3d shows the output of v, (k). Table 4.3e shows the output of x, (k). Table 4.3f shows the

output of 7, (k). Table 4.3g shows the output of f*(k), cf(k) on each path and the arrival

time interval for each link on a path. For conciseness, only Table 4.3g is attached to this

dissertation.

Table 4-3 The resultant path flow and path travel time for example 4.1

Path O |D |k | Path Path | Links on Arrival time for each link

number flow time

the path on the path

This table is appendix 1 of this thesis.
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Figure 4-6 Simulation network for example 4.1

The following examples are taken to verify that the solution satisfy the constraints and
the dynamic User Optimal conditions.
Path flow conservation constraint (4.7):
f20)=12@Q)+ f,°Q)+ ,°@Q)+ £,°@Q)+ Q)+ 2 Q)
=3.4424+1.865+3.1786+1.1275+0.2891+0.0974
=10
Link inflow conservation constraint (4.8):
ug'(10)+u;*(10)=2.1353+2.1353=4.2706=u, (10)
Link outflow conservation constraint (4.9):
vi'(14)+ v (14)=2.1353+2.1353=4.2706=v, (14)

Node flow conservation constraint (4.10):

= > v, (k 8)+V,, (8)+V,,(8)=4.7216+0+5.2784=10
acB(6) aeB(6)
uP (k)= u,(k)=uy,(8)+uy,(8)+u,(8)=3.3945+3.1047+3.5008=10
acA(6) acA(6)

Link flow propagation constraint (4.11):
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ug'(10)=v"(10+ 7,(10)) = v*(14)=2.1353
ug*(10)=v,*(10 + 7, (10))=v,*(14)=2.1353
Where 7,(10)=1.2428 minutes. For a time increment of 20 seconds, 7,(10)=4.
The link state equation (4.12b):
%(10)= X,(9)+u,4 (10) - v, (10)= 4.3082 + 4.2706 —0=8.5788
The actual travel times on the used paths from origin 1 toward destination 9 departing
at time increment 1 are as follows:
¢’()=
75 (1) + 7350+ 7 (1) + o5 (L+ 7 (1) + T (1+ 75 (1)) + 700 (L4 75 (1) + T (14 7o (D)) + a1+ 7 (1) + 75 1+ 75 (2)))
=74(1)+ 75 (5) + 7,5(9) + 7,, (13)
=1.2232+1.2171+1.2171+1.2242
= 4.8816 minutes
Similarly,
c°(1) = 4.8816 minutes, c;’(1)=4.8888 minutes, c;’(1)=4.8841 minutes,
ci’(1)=4.878 minutes, c’(1)=4.8871 minutes, c}’(1)=4.8798 minutes
They are nearly equal.
As can be checked in the same way, all the solution output satisfies the constraints and
the dynamic user optimal conditions. This verifies the rationale of the above model and

solution algorithm.
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4.3 Route-based Variational Inequality (V1) DUO Model
In this section, a route-based VI formulation of DUO is introduced. A route-based
algorithm is proposed to solve the model. A numerical example showing the application of

the algorithm is presented.

4.3.1 Route-based VI Formulation of DUO Model
The route-time-based DUO route choice conditions can be expressed as (Ran and

Boyce, 1996b):

ny'(t)-z~({t)20 Vp=prs (4.34a)
el ) -2~ )]=0  vp=prs; (4.34b)
fo(t)20 Vp=prs; (4.34c)

The asterisk in the above equations denotes that the flow variables are the optimal solutions

under the travel-time-based ideal DUO state.

rs*

o (t) is no less than the minimal

(4.34a) states that any actual route travel time 7

actual route (dynamic shortest path) ﬂrs*(t) from origin rto destination sat timet. (4.34b)

states that if an actual route travel time »(t) equalsz™(t), f,*(t)>0; otherwise, if an

actual route travel time 77" (t) is larger than z"'(t), f*(t)=0.
(4.34c¢) is nonnegative condition for path flow.

Assume the network is empty att =0, and only travel demands departing within the

departure horizon are considered. Our route-based DUO continuous VI model is given as

[ (I ®)-= ()£ @)at > 0 (4.352)

0
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Or in expanded form, as

f, <ZZ[77£S*(t OF [ 0)- 17 ]>dt>0 (4.35b)

s p

Below proving traffic status satisfying (4.35) is in a DUO status or equivalent to
(4.34a), (4.34b), (4.34c).
Proof:
()  Necessity. By (4.34a) and (4.34c),[n’ (t)- =" (t)|2 0, f >0, this implies
(In"@®) -7 @)} £(t)) > 0. By (4.34b), ([ (t) - =" (®)} £ (t)) = 0. Thus,
<[1|*(t)—n*(t)],f(t)—f*(t)> >0 holds. Integrating it over[0,T], we have (4.35).
(ii)  Sufficiency. (4.34a) and (4.34c) hold by definition. Let the optimal solution of (4.35)
bef”. To prove (4.34b) holds forf*, we first find a feasible solution f®such that (4.24b)
holds, or <[n*(t)—n*(t)],f®(t)>:0 . Suppose (4.34b) does not hold for f*, we
have ([n'(t)-="(®)}1°(t)) >0 . We further have ([n’(t)-="(®)[F*@)-f®))<0 . or

J'OT <[n*(t ol )], [f®( ]>dt < 0. This contradicts (4.35). Thus (4.44b) holds forf".

4.3.2 Solution Algorithms for Route-based VI DUO Model

To solve the DUO problem, the continuous VI formulation is discretized with each
time interval being the assignment increment. The estimated actual travel time on each link
ais a multiple of the time increment and is fixed at each time increment, i.e.
7,(k)=i if (i-05)At<r,(k)<(i+0.5)At (4.36)

whereiis an integer and 0<i <K, Atis time increment. This round-off method is used
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only in the flow propagation constraints. The round-off error can be made as small as desired

by making the assignment increment smaller.
The route-based DUO discrete-time VI formulation is
(I ()= ()} )£ (k)) = 0

Or in expanded form, as

ZZi[ﬂ{f* (K)- 7 ()] £2 (<)~ £ (k)] 2 0

rs p k=1

whereq, f e RI7* |

o (k)=n(k)+ 7, [k +77;("1)(k)] Yp=prii=12,-s;

p=(r12,-,i--s), xe®
O is the feasible region defined by the following constraints:

Path flow conservation constraint:

dfrk)=f7(k) vkrs

p

Link inflow conservation constraint:

dur(k)=u,(k) vak
Link outflow conservation constraint:

dvi(k)=v,(k) vak

TS

Node flow conservation constraint:

Z\)/f(k)z ZL)J;S(k) vV j=rs;rs;k

aeB(j acA(j

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraint:

u*k)=v:(k+z,(k)) Va,r,sk

a
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(4.37b)

(4.37¢)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)



The link state equation:
x,(k+1)=x,(k)+u,(k)-v,(k) Va,k (4.43a)
or
X, (k+1)=x,(k)+u,(k+1)-v,(k+1) Va,k (4.43b)
(4.12a) is forward formula, (4.12b) is backward formula.

Path-link flow incidence constraint:

Ko
ur()=>>> frkpx Vva,n (4.44)

rs p k=1

where 5% e {0,1}is defined as:

rsa

if traffic departing origin r atany timeinterval k
1 heading for destination s on path p arrivesat link a

SN = (4.45)
during the nth time interval.
0 otherwise
Nonnegative constraint:
frk)=0,ul(k)=0, Vk,r,s,a,p (4.46)

Relaxation

At each relaxation, we temporarily fix 1) Actual travel time ra(k) in the link flow
propagation constraints as 7,(k); 2) Actual travel time z,(k) as r,|[k+z"(k)| and 3)
Minimal travel times z"(k) as z"(k)for each origin and destination. At each relaxation, the
time-space network is fixed with fixed link flow propagation constraints.

Via relaxation, the VI cost term becomes

ne(k)-z"(k) (4.47a)
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where

K0
7y k)= 7)ok (4.47D)
k=1 a
=z, (k)+ 7, (k+7, (k) 4t 7, (k+7770 (k) (4.47¢)
where p = (al,az, ------ aﬁ), a,is the link number of path p of O-D pair rsattime k.and,

if traffic departing origin r at any time interval k
1 heading for destination s on path p arrivesat

link aduring the nth time interval.
0 otherwise

S pkn _ (4.48)

Optimization Problem
An optimization problem which is equivalent to the discrete VI under relaxation can

thus be formulated, as follows:

minz = 35751 oplaaty)-7*(0kio} (4.49)

k=l rs p
in®.
where f* denotes the path flow vector f without component f*.

The gradient of (4.49) is

aZ rs —Is
RO (k)-7"(k) (4.50)

(4.50) is equivalent to the cost term of discrete VI (4.37b) under relaxation. This indicates the
above optimization program is equivalent to the discrete VI (4.37).

By (4.47b), we have

ni (k)
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S—

:ral(u;fp(k);f;5)+ra ( azp(k+r )fs
e, urite ), (k7 (b )4z, (k7m0 Gouz i)

where uz, ( _”(k)) ( )is the inflow on link aat time interval ( _”(k)) resultant

from f°(k), a =(,}j).
Since all cross effects (cross path, cross time interval, cross O-D) are fixed in each

relaxation, fprs(k) is the only variable for each summation term of (4.49). At each relaxation,
the VI formulation of DUO problem was transformed into a series of static user equilibrium
traffic assignment problems over the time-space network of the relaxation, which can be
solved by Frank-Wolfe algorithm. Call the relaxation as outer iteration and solving static user
equilibrium traffic assignment problems over the time-space network of the relaxation as
inner iteration.

At the mth iteration of the inner iteration (Frank-Wolfe algorithm), the descending
direction of nonlinear programming (4.49) can be found by solving the following linear
program:

min Z=g'v,z™ (4.51)

in® . where g is subproblem variable, ng(m) is gradient of Z with respect tof evaluated at

£,
Program (4.31)is equivalent to:
min Z = ZZZ[t'S(m g7 (k)| (4.52)
ket s
in®, where
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()= azg(m)) _r-7(K) (4.53)

Program (4.52) can be decomposed by origin-destination pair. The resulting

subproblem for O-D pair rs is:

man ZZ[trsm gr ] (4.54)

k=L p
in®.

Program (4.54) can be further decomposed by each O-D flow f " (k) k=1---,K,.The
resulting subproblem for O-D flow (k) is:

min Z = Zp;[t;f(m)(k)g s (k)] (4.55)
in® .

Program (4.55) can be viewed as a shortest path problem over the time-space network
of the relaxation. The minimum of (4.55) is found by assigning " (k)to the actual
minimum cost route (dynamic shortest path) of O-D pair rs at time intervalk .

The step size along the descending direction can be found by solving the following

one-dimensional search problem:

minz =3 S ) o) (459

k=1 rs p

—Is

Since 7 (k)is fixed for each O-D pair at each relaxation, it can be dropped from (4.56), the

resultant problem is

minz =SS F (7 e (@57

k=1 rs p

By using (4.51), (4.57) can be rewritten as
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minZ = zzz{j (e {zf (n; a);fgs)(f,‘;g”}da)} (4.58)

k=1 rs p a=a
where p = (al,az, ------ af), and

a5

>z, (n; ity )ér‘;;“

=r, (aoitr) ez, (k+ 2, (aiff )+ -+ 7, (k7o O bwrty)  (459)
In solving (4.56), it is not necessary to enumerate all the paths of each O-D pair on the
network. With the technique of column generation, (4.56) can be solved on the path set P™
defined by
pm = pmypm (4.60)
where P™ Vs the path set at the (m 1)th iteration, P ™ is the path set composed of dynamic
shortest paths of each O-D pair at the mth iteration. PWis defined asP".
After the optimal step size «"is found, the solution at the inner iteration can be
updated as
£ () = £ 5 (k) + @™ [g=™ (k) - 5™ (k)] Vp,r,sk =1, K, (4.61)
Algorithm
The algorithm for solving the ideal route-based DUO route choice model is
summarized as follows.
Step 0: Outer Initialization.

Computek ., :rr\lax{zrs}, where 7z"is the static minimum travel time of O-Drs. Set
rs

K =K,+C-[k Set7”(k)=r,[0], YaeA k=1--,K'. Find an initial feasible

max ]+ )
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solution [fprs(‘))(k)]. Set outer iteration counterl =0. Set an outer iteration convergence
criterione,, .

Step 1: Relaxation.

Find a new estimation of actual link travel times:70)(k)=r,|x:(k)], find 7"(k) Vae A,
k=1---,K' , where * denotes the solution obtained from the most recent inner iteration or
from outer initialization. Find 5%")(t)and 55")(t).

Step 2: Inner Iteration

Step 2.0: Inner Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an inner iteration
counterm =1( or a convergence criteriong;, ).

Step 2.1: Direction Finding. Based onz™ (k), search for dynamic shortest routes for all OD
pairs without time-space expansions. Perform an all-or-nothing assignment following the link
flow propagation constrain, yielding sub-problem solution g [f(m)(k).

Step 2.2: Line Search. Solve the one-dimensional search problem (4.56) using a line search
procedure such as the bisection method and find the optimal step size ™ .

Step 2. 3: Move. Find a new solution ™% (k) by (4.61).

p

Step 2. 4: Convergence Test for Inner Iteration.

Ko Ko
If \/ZZ(f;fs(m+l)(k)—fprs(m)(k)) > frM(k) >e, setm=m+1, go to Step 2.1;
rs k rs k

otherwise, set f,*"(k)= f ™ (k), 2" (k)= x™*(k), go to Step 3.

' a

Step 3: Convergence Test for Outer Iteration. If7(k)= 7" (k), stop. The current

Solution u®(k), v=(k), x(k) isin anear optimal state; otherwise, set 1 =1+1 and go to

a a
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Step 1.

4.3.3 A Numerical Example
Example 4.2
An example is presented below to validate the above model and algorithm. The problem is
the same as in Example 4.1. The program of the algorithm was run on a computer with
1.5GHz frequency processor. The inner iteration (F-W algorithm) convergence test method
was set as a prespecified numbern. The outer iteration (Relaxation) convergence test method
was set as

max{ z) (k)= V(K)[Jae Ak =1 K|
where| 7" (k)—-z*(k)| is the actual travel time difference of link a at time k between

successive relaxations. The operation of the program is shown in Table 4.4.

Table 4-4 Convergence criterion and computation time for example 4.2

Inner iteration Outer iteration Total relaxations Total computation
convergence criterion | convergence criterion time (minute)
n=4 0.002 8 26.4

Table 4-5 The resultant path flow and path travel time for example 4.2

Path O | D| k | Path Path Links on Arrival time for each link

number flow | time | the path on the path

This table is appendix 2 of this thesis.
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The assignment horizon K is found to be 21 time increments. Table 4.5a shows the output
of u’(k). Table 4.5b shows the output of v'*(k ). Table 4.5c shows the output ofu, (k). Table
4.5d shows the output of v, (k). Table 4.5e shows the output of x, (k). Table 4.5f shows the
output of 7, (k). Table 4.5g shows the output of f *(k), c”(k), links on each path and the
arrival time interval for each link on a path. For conciseness, only Table 4.5g is attached to
this dissertation.

The following examples are taken to verify that the solution satisfy the constraints and
the dynamic User Optimal conditions.
Path flow conservation constraint (4.38):
f2Q)= Q)+ f,°Q)+ Q)+ £,°Q)
=3.3372+1.7504+3.2694+1.643
=10
Link inflow conservation constraint (4.39):
ug*(10)+u;*(10)=1.7504+1.7504=3.5008= u, (10)
Link outflow conservation constraint (4.40):
ve'(14)+v,* (14)=1.7504+1.7504=3.5008=v, (14)

Node flow conservation constraint (4.41):

Zv =V, (8)+V,, (8)+V,,(8) =4.9802+0+5.0198=10

acB(6) acB(6)

ul (k)= >u,(k)=uy,(8)+u,(8)+u,(8)=3.2694+3.3934+3.3372=10

acA(6) acA(6)

Link flow propagation constraint (4.42):

ut(10)=v*(10 + 7, (10)) = v¢* (14) =1.7504
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Ug?(10)=v(10 + 7, (10))=v*(14)=1.7504
Where 7,(10)=1.2349 minutes. For a time increment of 20 seconds, 7,(10)=4.
The link state equation (4.43Db):
X5 (10)=%;(9)+u,4 (10)— v,(10)= 3.5008 + 3.5008 - 0= 7.0016
The actual travel times on the used paths from origin 1 toward destination 9 departing
at time increment 1 are as follows:
¢’'(1)=
75 (1) + 7,5 (1+ 7 (1)) + 7551+ 75 (1) + 751+ 75 1) + 7, (14+ 7 (1) + T 1+ 7 (1)) + T (L4 7 (1) + 751+ 75(2)))
=75(1)+7,5(5)+ 7,5(9) + 7, (13)
=1.2248+1.2166+1.2166+1.2248
= 4.8828 minutes
Similarly, c}’(1)=4.8852 minutes, ci’(1)=4.8831 minutes, c}’(1)=4.8821 minutes.
They are nearly equal.
As can be checked in the same way, all the solution output satisfies the constraints and
the dynamic user optimal conditions. This verifies the rationale of the above model and

solution algorithm.
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Chapter 5: Stochastic Dynamic User Optimal Route Choice
(SDUO) Problem

In this chapter, the stochastic dynamic user optimal (SDUO) route choice problem is
studied. At SDUO state, the perceived travel times experienced by travelers of the same O-D
pair departing at the same time are equal and minimal. The randomness on dynamic
transportation networks are given in Section 5.1. Section 5.2 presents the link-based variation
inequality SDUO model and development of the algorithm. Section 5.3 presents the

route-based variation inequality SDUO model and development of the algorithm.

5.1 Randomness on Dynamic Transportation Networks

The deterministic dynamic user optimal route choice model assumes that dynamic route
guidance systems are deployed and all drivers have perfect information of the network traffic
conditions and choose their routes based on dynamic route guidance information. However,
some drivers may not rely on the information provided by the route guidance system to
choose their route. Furthermore, drivers without navigation systems do not have perfect
information on the road network and must use their own experience and perception of the
current traffic conditions to make travel decisions (Ran and Boyce, 1996b). To model
dynamic route choice under imperfect information, stochastic dynamic route choice models is

proposed. A stochastic dynamic user optimal (SDUO) route choice model is a stochastic
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generalization of ideal deterministic DUO route choice model.

The randomness in dynamic transportation networks may include:
1) randomness in traveler’s perceptions of travel times

Because of the perception error of each driver and the difference in the perception
among drivers, there is variation in drivers’ perceptions of travel time of a route. The
perceived travel time is a random variable with a certain probability distribution among the
population of drivers. Drivers make decision on route choice based on the perceived travel
times and choose their perceived actual minimal routes, which are not necessarily the real
actual minimal routes.
2) randomness of time-dependent origin-destination demand

The variation of O-D demand may arise due to the errors in the estimation and
forecasting of O-D demand. The day-to-day variation of O-D demands may be another
stochastic factor.
3) randomness of link traffic flow and link travel times

In reality, link capacity, link traffic flow and link travel time may be affected by random
factors such as the degradation of a link’s capacity due to double parking or vehicle’s
breakdown or road accidents. The road networks thus have random link traffic flow and
random link travel time. Such networks are also called stochastic network.

In this study, only the randomness in traveler’s perceptions of travel times is included.
When the drivers’ perception error on route travel time follows Gumbel distribution, a

logit-type model can be formulated. When the drivers’ perception error on route travel time
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follows Multinomial normal distribution, a probit-type model can be formulated. Since the
logit-type route choice model has the limitation of 11D, only probit-type route choice model is
considered in this study.
Define the satisfaction function as follows (Sheffi, 1985; Ran, 2002b):
S"(t)= E[mpinc[f (t)} vr,s, p (5.1)
where C{f(t) is the perceived actual travel time of route p of O-D pair rs at timet that a
traveler derives from a set of route travel times. The satisfaction function S™(t) captures the

expected minimum travel time of route p of O-D pair rs at timet. Its partial derivative with

respect to the mean actual travel time for route p of O-D pair rs for flows departing from

rs

p (t) equals the proportion of flows of O-D pair rs that follow route p

origin r at timet, »

attime t:
aS"(t)
—L=P"(t); Vr,s,p (5.2)
ong(t) °

The SDUO route choice condition is defined as:

fro(t)=f (t)Pr(t); vr,s,p (5.3)

It states that the departure flows from r to s on route p at timetequals the total

departure flows from r to sat timettimes the proportion of flows of O-D pair rs using

route p attimet.

5.2 Link-based Variational Inequality (V1) SDUO Model

In this section, a link-based VI formulation of SDUO is proposed. The relaxation
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method is used to solve it. At each relaxation, a link-based nonlinear program is constructed.

A solution algorithm which avoids time-space network expansion is proposed.

5.2.1 Link-based VI Formulation of SDUO
Assume the mean actual link travel time 7, (t) increases with link inflowu®(t), or

dr,(t
du;’ ()

~—

>0; YaeA,r,S (5.4)

Define a cost term F.*(t) for each link a corresponding O-D rsas follows:

draﬁ)
du’(t (5:5)

FeM)=|ur@)-[ (@)X Py (b lido
p

~~—

where

if traffic departing origin r at time o
1 heading for destination s on path p (5.6)

arrivesat link a at time t
0 otherwise

5 pot __

rsa

Below showing the SDUO route choice condition (5.3) holds if and only if Fa“(t):o,
VaeA,r,s.

Proof: Given F°(t)=0, Vae A,r,s.Sincedr,(t)/du’(t)> 0, it follows that
uE(t)= [ (@)Y P 0P do (5.72)
p
Or

wEt)=Y [ (0P ()52 do (5.7b)

p

Since
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ur (1) =Y [ 17 (0P itde (5.8)

p

Thus we have:
S| (b do= Z [[ (0P ()52 dw (5.9a)
p

or

fr)=f=)Pr(t) (5.9b)

This is SDUO condition. So F*(t)=0, Vae A, r,s contains the SDUO route choice

conditions (5.3). Similarly, we can show SDUO route choice conditions (5.3) implies
F(t)=0, VaeA,r,s.

Assume the network is empty att =0, and only travel demands departing within the

departure horizon are considered. The link-based SDUO continuous VI model can be

expressed as

IOT (F*(t).u(t)-u"(t))dt >0 (5.10a)

* ‘RXS‘X‘A‘
whereF™ € R,

L w e RIFSHA IN|, |Al, and |Rx S|are the cardinalities of the set nodes,
links and O-D pairs, etc. Asterisk means the optimal inflow at SDUO state.

(5.10a) can be written in the expanded form as:

[ S Furt)-ur Opt=o (5.10b)

s p
Theorem: The dynamic traffic flow pattern satisfying network constraint set (chapter 4) is an
ideal SDUO route choice state if and only if it satisfies the variational inequality problem
(5.10).

Proof: The following proof is similar to the procedure as in Nagurney (1993). If F(u*(t)): 0,
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F(u*(t)): Fa(u*(t)),m]T then inequality (5.10) holds with equality. Conversely, if u’(t)
satisfies (5.10), letu(t) = u"(t)— F, (u’ (t)), which implies that
Pl @) (- Flu@)ee 2o,

or —LT “F(u*(t)]‘zdt >0, therefore, F(u’ (t))

0.

5.2.2 Solution Algorithm for Link-based VI SDUO Model

Discrete Link-based VI SDUO Model

To solve the SDUO problem, the continuous VI formulation is discretized with each
time interval being time increment. The estimated actual travel time on each time-space link
ais a multiple of the time increment and is fixed at each time increment, i.e.,

7.(k)=i if (i-05)At<z,(k)<(i+0.5)At (5.11)

whereiis an integer and 0<i <K, Atis time increment.. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the time increment smaller (Ran and Boyce, 1996b).

The link-based SDUO discrete-time VI formulation is

(F*(k)u(k)—u"(k)) =0 (5.12a)

or in expanded form as

iZZ Fofer 2 (Ofuss e+ 2 ()] -usfk+ 2™ ()} = 0 (5.12b)

k=1 rs a

where F e RIPMA 4 c @ and
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el s o a0 1Pzl |90

l

k2" (k)]

in®. a=(i,j). ©is the feasible region defined by the following constraints:
Path flow conservation constraint:

Zf“ =f"(k) Vk,r,s

Link inflow conservation constraint:

;u{f(k)z u,(k) vak

Link outflow conservation constraint;
Zvrs ) Vak

Node flow conservation constraint:

Zvrs = Yurk) Vj=rsrsik

aeB(j aeA(j)

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraint:

ub(k)=vi(k+z,(k)) Va,r,sk
The link state equation:
X, (k+1)=x,(k)+u,(k)-v,(k) Vva,k
or
x,(k+1)=x,(k)+u,(k+1)-v,(k+1) Va,k

(5.18a) is forward formula, (5.18b) is backward formula.

Path-link flow incidence constraint:

=Y T kb van

rs p k=1

90

(5.12c)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18a)

(5.18h)

(5.19)



where 5™ e {0,1}is defined as:

rsa

if traffic departing origin r at any timeinterval k
1 heading for destination s on path p arrivesat link a (5.20)

during the nth time interval.
0 otherwise

é‘pkn _

rsa

Nonnegative constraint:
fr(k)=0,ul(k)=0, Vkr,s,a,p (5.21)
Relaxation
At each relaxation, | temporarily fix (Ran and Boyce, 1996b): 1) Actual travel time
7, (k) in the link flow propagation constraints as 7, (k) and corresponding actual route travel
time 77(k) as 77°(k); 2)Actual travel time in the VI cost term F** (k) as 7, |k + 7" (k)]
and 3) Minimal travel times 7" (k) as 7"*(k) for each link and each origin. Via relaxation,

the auxiliary VI cost term for each link aat each time interval n becomes

rs* _ rs* _ rs rs pkn dra(n)
R ()= 2 ()X £ (E Py (o2 (G 522

Optimization Problem

A nonlinear program which is equivalent to the discrete VI under relaxation can thus be

formulated, as follows:

min z(u)=§lz[— o (k)s™(k)+z, -z, (5.23a)

k=1 rs

where
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z,= Zzz (k+ 7K, (k+2'(K)) (5.23b)

k=l rs a

z,- ZZZ{J: I (o Xl 7K )a)} (5.23¢)

k=1 rs a

S™(k) is satisfaction function defined as (5.1).

Next, | demonstrate that the gradient of the objective function is equivalent to auxiliary

cost term of the VI, i.e.,

V.Z(u)=F (5.24)
whereF =[---, F, (k),---].

The derivative of the first term with respect to u'*(n)can be calculated as follows:

as™(cr) ey (k)

d CkB e )] = - ® a
au—(n){_z;f (5l (u)]}_ z;f (k); oct (k) au’*(n) (5.259)

where n=k+7" (k) and

as”(er)_pn

oo () - Py (k) (5.25b)
acrs (k) pkn | _ dTa (n) pkn
8ua (n) |:Z z 5"53 :| dU,;S (n) 5rsa (525C)

[ZZf“ kﬁ“} Zf“ ZP“ ((’;))5 (5.25d)

The derivative of the last term in the objective function is

4 _ 7 dr -(n)
&, =z k+7" .
A [k 7'(K) (5.27)

The derivative of the objective function of the nonlinear program with respect to
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us (n) can be given by combining equation (5.25d), (5.26), (5.27), as follows,

a

GZ(u) _ rs* _ rs s pkn dTa(n)
o)~ | 4 -2 R T [ (5.28)

(5.28) is equivalent to the cost term of discrete VI (5.12b) under relaxation. This indicates the
optimization program (5.23) is equivalent to the discrete VI (5.12).

At each relaxation, the VI formulation of SDUO problem was transformed into a series
of static stochastic user equilibrium traffic assignment problems over the time-space network
of the relaxation, which can be solved by Method of Successive Average (MSA). Call the
relaxation as outer iteration and solving static stochastic user equilibrium traffic assignment
problems over the time-space network of the relaxation as inner iteration.

The negative gradient of the objective function (5.23) can be written as

d=-vZ(u)= {Zk: P (kA" ) - u}vu‘r (5.29a)

where P (k) = (---,P™(k),---) is the route choice probability for O-D rs at time k , A" is the

p

time-space link path incidence matrix with element 5°".

rsa

Dropping VT from (5.29a), we obtain a simpler direction as follows

d= [z; (P (k)A®) —u} (5.29b)

It is easy to show thatVZ(u)-(d)" <0, so (5.29b) is a descent direction of the objective
function.

The component of d (5.29b) is

d (k)= f k)P (K)o —ug(n) (5.29)
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Let ye(k)=>" (k)P (ko (5.30)

k p

ycan be obtained by performing probit-based stochastic network loading on the original

network without time-space network expansion.

The probit-based stochastic network loading procedure is developed as follows:
Step 1: Initialization. Set |:=1
Step 2: Sampling. Sample 7\"(k) from 7,(k)~ N(z,(k) pz,(k)) for each link aat time
interval k .
Step 3: All-or-nothing assignment. Find dynamic shortest path of OD pair r—sat time
interval k based on {r" ()}, assign {f™(k)} to the dynamic shortest path. This step yields the
set of link flowsY," (k).
Step 4: Flow averaging. Let yg')(k) = [(I —1)y£"1)(k)+Ya(')(k)]/l , Va,k.

Step 5: Stopping test

(8) Let o(k)= \/ﬁi;[ﬂfm)(k)— VWP vak

or
0= [0~ 51160) 02021 e
(b) 1f max o (k)/ ") (k)} < &, stop. The solution is{y(k)}. Otherwise, set 1:=1+1
and go to Step 2.

At the mth iteration of the inner iteration (MSA), the descending direction of nonlinear

programming (5.23) can be found by performing the above probit-based stochastic network
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loading.
The step size along the descending direction is simplyl/m. The solution at the inner
iteration can be updated as
u™ 3 (n)=u™(n)+( m)[y,f(”‘)(n)— u:““)(n)] va,r,s,n (5.31)
Algorithm
Based on the rational analysis as described above, the algorithm for solving the ideal
SDUO route choice model (5.12) is developed and summarized as follows.

Step 0: Outer Initialization.

Compute k., =max{7zrs}, where 7" is the static minimum travel time of O-Drs. Set
vrs

K =Ky +C-[Kpp ), - Setz®(k)=7,[0], vae A, k=1.--,K'. Find an initial
feasible
solution [u;5<°>(k)]. Set outer iteration counter| = 0. Set an outer iteration convergence

criterioneg,,, .

Step 1: Relaxation.

Find a new estimation of actual link travel times: 70(k)=r,|x:(k)], find 7z"(k)
Vae A k=1---,K'" , where * denotes the solution obtained from the most
recent inner iteration or

from outer initialization. Find 55" (t)and 55"(t).

Step 2: Inner Iteration

Step 2.0: Inner Initialization. Compute and reset the inner initial feasible solution to be
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consistent with the flow propagation constrain at the current relaxation. Set an inner iteration

counterm =1( or a convergence criteriong;, ).

Step 2.1: Direction Finding. Perform probit-based stochastic network loading without
time-space network, yielding subproblem solution yf(m)(k).

Step 2. 2: Move. Find a new solution u™*™%(k) by (5.31).

Step 2. 3: Convergence Test for Inner Iteration.

If \/ZZ(US(M)(‘()—Uf(m)(k)) > >urM(k) >e,setm=m+1, goto Step 2.1,;
rs k rs k

otherwise, setG"" (k) = u™™(k), 2" (k) = x!™*(k), go to Step 3.
Step 3: Convergence Test for Outer Iteration. If7\"(k)= 7™ (k), stop. The current
Solution u(k), v©(k), x®(k) is in a near optimal state; otherwise, set

I=1+1 and goto

Step 1.

5.2.3 A Numerical Example
Example 5.1

An example is presented below to validate the above model and algorithm. The
configuration of the network is shown in Figure 5.1. In the network, each link is assumed as
an one-lane street with a length of 0.5 mi. The free flow speed is assumed to be 25 mile/hour.

The following linear travel time function is used to enforce FIFO condition:

7,(k)=L,/s; +0.3-x,(k), where L,is the length of linka,s, is free flow speed, z,(k)is
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link travel time on link aat time k, x,(k)is number of vehicles on link a attime k. Four
O-D pairs are considered. Five 20 s departure time intervals are specified. The OD flows are
10 vehicle units per time interval. The O-D pairs and the time-dependent O-D demand are
shown in Table 5.1. In this example, the departure horizon is 5 time increments, and the time

increment is 20 seconds.

Table 5-1 O-D pairs and time-dependent O-D demand for example 5.1

O-D Departure time interval k
1 2 3 4 5
1-9 10 10 10 10 10
9-1 10 10 10 10 10
3-7 10 10 10 10 10
7-3 10 10 10 10 10

The program of the algorithm was run on a computer with 1.5GHz frequency processor.
The inner iteration (MSA algorithm) convergence test method was set as a pre-specified
number m. The outer iteration (Relaxation) convergence test method was set as
max{z"(k)- (k) [Jae Ak =1, K}
where| z{"(k)-z!*(k)| is the actual travel time difference of link a at time k between

successive relaxations. The operation of the program is shown in Table 5.2.
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Table 5-2 Convergence criterion and computation time for Example 5.1

Inner iteration

convergence criterion

Outer iteration

convergence criterion

Total relaxations

Total computation

time (minute)

m=12

0.02

16

43.8

The assignment horizon K is found to be 21 time increments. Table 5.3a shows the
output of u’*(k). Table 5.3b shows the output of v’ (k ). Table 5.3c shows the output of u, (k).
Table 5.3d shows the output of v, (k). Table 5.3e shows the output of x, (k). Table 5.3 shows

the output of 7, (k) . Table 5.3g shows the output of f*(k), ci(k), links on each path and the

arrival time interval for each link on a path. For conciseness, only Table 5.3g is attached to

this dissertation.

p

Table 5-3 The resultant path flow and path travel time for example 5.1

Path O |D

number

k | Path Path

flow time

Links on

the path

Arrival time for each link

on the path

This table is appendix 2 of this thesis.
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Figure 5-1 Simulation network for Example 5.1

We take the following examples to verify that the solution satisfy the constraints and
the dynamic User Optimal conditions.
Path flow conservation constraint (5.13):
£2(2)=12(2)+ £,°(2)+ £,°(2)+ £,°2(2)+ £22(2) + £°(2)
=1.8182+2.7273+1.8182+0.9091+1.8182+0.9091
=10
Link inflow conservation constraint (5.14):
u(10)+u*(10)=0.9091+1.8182=2.7273=u,(10)
Link outflow conservation constraint (5.15):
vi'(14)+v(14)=0.9091+1.8182=2.7273=v, (14)

Node flow conservation constraint (5.16):

DVEQ)= D v, (9) =V4(9)+ vy, (9)+Vy(9) =5.4545+0+4.5455=10
u

acB(6) : aeB(6)

(9
Dul(9)= D u,(9)=u,(9)+u,(9)+uy(9)=2.7273+3.6364+3.6364=10
)

acA(6) acA(6

Link flow propagation constraint (5.17):
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ug'(10)=v" (10 + 7,(10)) = v* (14) =0.9091
U2 (10)=v,*(10 + 7, (10))=v,*(14)=1.8182
Where 7,(10)=1.2499 minutes. For a time increment of 20 seconds, 7,(10)=4.
The link state equation (5.18b):
X (10)= X,(9) +u,4 (10) - v, (10)= 7.2727 +2.7273 - 0= 10.0000
The actual travel times on the fifth used path from origin 1 toward destination 9
departing at time increment 1 are as follows:
()=
7o (V) + 7351+ 7, (1) + 75 (L4 7 (1) + 7y (L 7 (1)) + 70 (14 7 (1) + 7 (L 75 (1)) + 7oL+ 7, (1) + T (14 7, (1))
=75 (1)+ 7,5 (5)+ 7,5(9) + 7, (13)
=1.2317+1.2090+1.2090+1.2226
= 4.8723 minutes
Similarly, we have c;°(1)=4.9041 minutes, c}’(1)=4.9041 minutes, ci’(1)=4.8814
minutes, c}’(1)=4.8814 minutes, c;’(1)=4.8859 minutes. They are quite close but not equal.
They are roughly normally distributed, which is consistent with SDUO condition.
As can be checked in the same way, all the solution output satisfies the constraints and
the dynamic stochastic user optimal conditions. This verifies the rationale of the above model

and solution algorithm.

5.3 Route-based Variational Inequality (V1) SDUO Model

In this section, a route-based VI formulation of SDUO is proposed. The relaxation
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method is used to solve it. At each relaxation, a route-based nonlinear program is constructed.

A solution algorithm which avoids time-space network expansion is proposed.

5.3.1 Route -based VI Formulation of SDUO
Assume the mean actual link travel time z,(t) increases with link inflowu’(t), or the

mean actual route travel time 7°(t) increases with route departure flows as shown in the

following:
OIT;(t)>0; VaeAr,s (5.32a)
dug’ (t)
Or
ons(t
77;'5()>0; VIS, p (5.32b)
of *(t)

Define a cost term F (t) for each route pand OD pair O-D rs as follows (Ran and

Boyce, 1996bh):

E2 )= (1)~ (P (t))%:é:; 0 Vs, p (5.33)

p
Sincedn*(t)/of °(t) > 0, the above equality states the SDUO route choice condition (5.3).
Below we show (5.3) holds if and only if F*(t)=0, Vvr,s,p.
Proof: Given F*(t)=0, Vae A,r,s.Sincedn(t)/of *(t)>0, it follows that
fro(t)- fo(t)Pr(t)=0 (5.34)

This is SDUO condition. So Fprs(t)zo, Vvr,s, p contains the SDUO route choice conditions

(5.3). Similarly, we can show SDUO route choice conditions (5.3) implies F;S(t):o,
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vr,s, p.
Assume the network is empty att =0, and only travel demands departing within the
departure horizon are considered. The route-based SDUO continuous VI model can be

expressed as

(R0, F()-F(t))dt =0 (5.35a)
N )

where F” eiR‘f‘, feER‘f‘, |P| is the cardinality of the set path, etc. Asterisk means the

optimal inflow at SDUO state, or in the expanded form as:
T rs* rs rs*
[ X3 F=0lf0- = Oht=o0 (5.35b)
s p

Theorem: The dynamic traffic flow pattern satisfying network constraint set (chapter4) is an
ideal SDUO route choice state if and only if it satisfies the variational inequality problem
(5.35).

Proof: The following proof is similar to the procedure as in Nagurney (1993). If F(u*(t))z 0,
F(u*(t))z Fa(u(t))]T then inequality (5.35) holds with equality. Conversely, if u*(t)

satisfies (5.35), letu(t) = u"(t)— F, (u’ (t)), which implies that

a

[ F ) - Fl @)t zo,

or — LT “F(u"(t)]‘2 dt >0, therefore, F(u’ (t))=0.

5.3.2 Solution Algorithm for Route-based VI SDUO Model
Discrete Route-based VI SDUO Model

To solve the SDUO problem, the continuous VI formulation is discretized with each
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time interval being time increment. The estimated actual travel time on each time-space link
ais a multiple of the time increment and is fixed at each time increment, i.e.,
7,(k)=i if (i-05)At<r,(k)<(i+0.5)At (5.36)
whereiis an integer and 0<i <K, Atis time increment.. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the time increment smaller (Ran and Boyce, 1996b).
The link-based SDUOQ discrete-time VI formulation is
(F* (k)£ (k)—£"(k)) = 0 (5.37a)

or in expanded form as

ZZZF“*[k]{ = (k)- 7 (k)= 0 (5.37b)

k=1 rs

where F e RI”* fe®, and

0=l - P I 5570

p

in®. a= (i, j). ©is the feasible region defined by the following constraints:

Path flow conservation constraint;

Zf“ k)= f"(k) vk,r,s (5.38)

Link inflow conservation constraint;

dur(k)=u,(k) vak (5.39)

Link outflow conservation constraint:

>vi(k)=v,(k) vak (5.40)

Node flow conservation constraint:
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Svik)= Yurk) Vij=rsrsik (5.41)
)

aeB(j acA(j)

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraint:

ufk)=v:(k+z,(k)) Va,r,sk (5.42)
The link state equation:

X, (k+1)=x,(k)+u,(k)-v,(k) Vva,k (5.43a)
or

x,(k+1)=x_(k)+u,(k+1)-v,(k+1) Va,k (5.43b)

(5.43a) is forward formula, (5.43b) is backward formula.

Path-link flow incidence constraint:

ut(n)= ZZ% frkprs van (5.44)

rs p k=1

where 5" e {0,1}is defined as:

rsa

if traffic departing origin r atany timeinterval k

SO — 1 heading for destination s on path p arrivesat link a (5.45)

during the nth time interval.
0 otherwise

Nonnegative constraint:

fr(k)=0,uf(k)=0, Vk,r,sap (5.46)

Relaxation

At each relaxation, we temporarily fix (Ran and Boyce, 1996b): 1)Actual travel time

z, (k) in the link flow propagation constraints as 7, (k) and corresponding actual route travel
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time (k) as 7,°(k);2)Actual travel time in the VI cost term F,* (k) as 7,|k +7™ (k)]
and 3)Minimal travel times 7™ (k) as 7" (k) for each link and each origin. Via relaxation,

the auxiliary VI cost term for each link p at each time interval k becomes

0= [1700- 0Py I 5473

p

At each relaxation, the time-space network is fixed with fixed link flow propagation
constraints.

At each relaxation, we have

Ko
7y (k)= z(n)oiy (5.47b)
k=1 a
=z, (k)+ 7, (k+7, (k) 4t 7, (k+7770 (k) (5.47¢)
where p = (al,az, ------ aﬁ), a,is the link number of path p of O-D pair rsattime k.and,

if traffic departing origin r at any time interval k

S _ 1 heading for destination s on path p arrives at (5.48)

link aduring the nth time interval.
0 otherwise

Optimization Problem
An optimization problem which is equivalent to the discrete VI under relaxation can

thus be formulated, as follows:

min 2 =Z°Z{—ffs<k>8f5<k>+zff(k)n:f[ff(k):ff]—zf‘”nf(w:ff)dw} (5.49)

k=1 rs

in®, where f denotes the path flow vector f without component f°.
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The gradient of (5.49) is

oz s 0Se (k) omp (k) W 0nik)
e Wagpiao g
= [fp“(k)—f“(k)Pf(k)]ZfE((:)) (5.50)

(5.50) is equivalent to the cost term of discrete VI (5.37b) under relaxation. This indicates the
above optimization program is equivalent to the discrete VI (5.37). Since all cross effects are
fixed in each relaxation, f (k) is the only variable for each summation term of (5.49).

At each relaxation, the VI formulation of DUO problem was transformed into a series of
static stochastic user equilibrium traffic assignment problems over the time-space network of
the relaxation, which can be solved by Method of Successive Average (MSA). Call the
relaxation as outer iteration and solving static stochastic user equilibrium traffic assignment
problems over the time-space network of the relaxation as inner iteration.

The negative gradient of the objective function (5.49) can be written as

d=-VZ(f)=[Af-P-f]V 7 (5.51a)
Where
Af = diag(--, Af®(k),---), Af™(k)=diag(f®(k),--, £*(k)), P=(--,P™(K)],
Pe (k)= (-, P (k))
Dropping V,n from (5.51a), we obtain a simpler direction as follows
d=Af-P-f (5.51b)
It is easy to show thatVZ(u)-(d)" <0, so (5.51b) is a descent direction of the objective

function.
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The component of d (5.51b) is
de(k)=f"(k)P=(k)- (k) (5.51c)
Let
gy (k)= f (k)P (k) (5.52)
g can be obtained by performing route-based probit-based stochastic network loading on the
original network without time-space network expansion.

The route-based probit-based stochastic network loading procedure is similar to
link-based probit-based stochastic network loading procedure except in Step 3 and Step 4. In
Step 3, path rowsG{f(')(k) is yielded. In Step 4, the path flow is averaged according to the
following equation

95" (k) =[0-Dg "M )+ 65 (k) (5.53)
where g~"(k) is path flow.

At the mthiteration of the inner iteration (MSA), the descending direction of nonlinear
programming (5.49) can be found by performing the route-based probit-based stochastic
network loading.

In solving (5.49), it is not necessary to enumerate all the paths of each O-D pair on the
network. With the technique of column generation, (5.49) can be solved on the path set P™
defined by

pm = pmypm (5.54)
where P™ Vs the path set at the (m —1)th iteration, P ™ is the path set composed of dynamic

shortest paths of each O-D pair at the mth iteration. P“ is defined asP™.
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The step size along the descending direction is simplyl/m. The solution at the inner
iteration can be updated as
fEmD(k) = £ 2 (k) + @/m)gE™ (k) - £5™ (k)] va,r,s,n (5.55)
Solution Algorithm
Based on above rational analysis, an algorithm for solving the ideal SDUO route choice
model (5.37) has been developed and is summarized as follows.

Step 0: Outer Initialization.

ComputeK .., :max{fz“}, where 7" is the static minimum travel time of O-Drs. Set
vrs

K =Ky +C-[kpul, - Set7?(k)=7,[0], VaeA k=1--,K'. Find an initial feasible

max
solution [fprs(")(k)]. Set outer iteration counterl =0. Set an outer iteration convergence
criteriong,, .

Step 1: Relaxation.

Find a new estimation of actual link travel times:70(k)=r,|x:(k)], find 7"(k) vae A,
k=1---,K" , where * denotes the solution obtained from the most recent inner iteration or
from outer initialization. Find 55" (t)and 55"(t).

Step 2: Inner Iteration

Step 2.0: Inner Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an inner iteration

counterm =1( or a convergence criteriong;, ).

Step 2.1: Direction Finding. Perform probit-based stochastic network loading without
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time-space network, yielding subproblem solution g [f(m)(k).

Step 2. 2: Move. Find a new solution f ™% (k) by (5.55).

p

Step 2. 3: Convergence Test for Inner Iteration.

If \/ZZ(“:(M)(k)—Uf(m)(k)) > > ufm(k) >, setm=m+1, go to Step 2.1,;
sk rs k

otherwise, setG"" (k) = u™™(k), 2" (k) = x!™*(k), go to Step 3.
Step 3: Convergence Test for Outer Iteration. If fg')(k); fg"l)(k), stop. The current
solution f°(k), ul(k), vi(k), xZ(k) is in a near optimal state; otherwise, set | =1+1

a a a

and go to Step 1.

5.3.3 A Numerical Example
Example 5.2

An example is presented below to validate the above model and algorithm. The
configuration of the network is shown in Figure 5.1. In the network, each link is assumed as a
one-lane street with a length of 0.5 mi. The free flow speed is assumed to be 25 mile/hour.
The following linear travel time function is used to enforce FIFO
condition: 7, (k)= L, /s, +0.3-x,(k), where L,is the length of linka,s, is free flow speed,
7, (k)is link travel time on link aattime k, x,(k)is number of vehicles on link a at time
k. Four O-D pairs are considered. Five 20 s departure time intervals are specified. The OD
flows are 10 vehicle units per time interval. The O-D pairs and the time-dependent O-D

demand are shown in Table 5.1. In this example, the departure horizon is 5 time increments,
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and the time increment is 20 seconds.
The program of the algorithm was run on a computer with 1.5GHz frequency processor.
The inner iteration (MSA algorithm) convergence test method was set as a pre-specified
number m. The outer iteration (Relaxation) convergence test method was set as
max{ " (k)- 70V (k)|jae Ak =1, K}
where| z)(k)- 7 (k)| is the actual travel time difference of link a at time k between

successive relaxations. The operation of the program is shown in Table 5.4.

Table 5-4 Convergence criterion and computation time for Example 5.2

Inner iteration

convergence criterion

Outer iteration

convergence criterion

Total relaxations

Total computation

time (minute)

m=12

0.02

19

45.6

The assignment horizon K is found to be 21 time increments. Table 5.5a shows the
output of u’(k). Table 5.5b shows the output of v’ (k ). Table 5.5¢ shows the output ofu, (k).
Table 5.5d shows the output of v, (k). Table 5.5¢ shows the output of x, (k). Table 5.5f shows

the output of 7, (k) . Table 5.5g shows the output of f*(k), ci(k), links on each path and the

p

arrival time interval for each link on a path. For conciseness, only Table 5.5g is attached to

this dissertation.

Table 5-5 The resultant path flow and path travel time for example 5.2

Path O |D |k | Path Path | Links on Arrival time for each link

number flow | time on the path

the path

This table is appendix 4 of this thesis.
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We take the following examples to verify that the solution satisfy the constraints and
the dynamic User Optimal conditions.
Path flow conservation constraint (5.38):
£2(2)=1°(2)+ £,°(2)+ £;°(2)+ £,°(2)+ £2°(2)+ °(2)
=3.6364+0.9091+1.8182+1.8182+0+1.8182
=10
Link inflow conservation constraint (5.39):
u(10)+u*(10)=1.8182+2.7273=4.5455=u, (10)
Link outflow conservation constraint (5.40):
ve'(14)+v,*(14)=1.8182+2.7273=4.5455=v,(14)

Node flow conservation constraint (5.41):

acB(6)

Dul(9)= D u,(9)=u,(9)+u,(9)+u,(9)=0.9091+5.4545+1.8182=8.1819
)

acA(6) acA(6

9)= D v,(9) =v4(9)+vy,(9)+v,(9) =4.5455+0+3.6364=8.1819
(9

2V
acB(6)
u

Link flow propagation constraint (5.42):
u(10)=v;*(10+ 7,(10))=v;* (14)=1.8182
Ug?(10)=v* (10 + 7,(10))=v¢*(14)=2.7273
Where 7,(10)=1.2499 minutes. For a time increment of 20 seconds, 7,(10)=4.
The link state equation (5.43b):
X (10)=X,(9)+ U, (10) - v, (10)= 5.4545+4.5455 — 0 = 10.0000
The actual travel times on the fifth used path from origin 1 toward destination 9

departing at time increment 1 are as follows:
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¢’(1)=
7o (1) + 75 (1+ 75 (1) + 05 1+ 7 (1) + 7 (1+ 75 (1) + 70 (L4 7 (1) + T (L4 75 (1) + 7o (L4 75 (1) + 751+ 75 1))
=75(1)+ 7,5 (5)+ 7,5(9) + 7, (13)
=1.2317+1.2135+1.2135+1.2226
= 4.895 minutes

Similarly, we have c}’(1)=4.8905 minutes, c}’(1)=4.9359 minutes, c}’(1)=4.8405
minutes, c’(1)=4.9132 minutes, c;’(1)=4.9132 minutes. They are quite close but not equal.
They are roughly normally distributed, which is consistent with SDUO condition.

As can be checked in the same way, all the solution output satisfies the constraints and
the dynamic stochastic user optimal conditions. This verifies the rationale of the above model

and solution algorithm.
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Chapter 6: Dynamic User Optimal Simultaneous Departure Time

and Route Choice (DUOSDTRC) Problem

Generally an arrival time interval is required for work trips. Road users may choose
alternative routes or shift their departure time to avoid congestion and arrive at work on time.
The dynamic user optimal simultaneous departure time and route choice problem
(DUOSDTRC) extends the DUO route choice model in one respect: both departure time and
route over a road network must be chosen. Each departure time choice is based on actual
minimum origin-destination travel times at each departure time. Any change in departure
times alters the time-dependent O-D pattern in the network, so route and departure time
decisions of other travelers will be affected.

There are two main differences between DUO problem and DUOSDTRC problem.
First, the time-dependent O-D demand is given for DUO problem, while it is a variable needs
to be solved for in DUOSDTRC problem. Second, different costs can be incurred for drivers
of the same O-D pair departing at different times in DUO problem, while the same cost
should be incurred for all drivers of the same O-D pair departing at all time in DUOSDTRC
problem.

This chapter presents a relaxation with gradient projection algorithm for solving a
route-based dynamic User Optimal simultaneous departure time and route choice model

(DUOSDTRC) for a general network with multiple origin-destination pairs. Section 6.1
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introduces a relaxation with gradient projection algorithm for the DUO model, which is an
important stage in constructing relaxation with gradient projection algorithm for
DUOSDTRC model. Section 6.2 introduces disutility function or schedule delay function,
generalized time-dependent path travel cost, and additional network constraints for
DUOSDTRC problem. Section 6.3 presents the route-based DUOSDTRC model and
development of the relaxation with gradient projection algorithm for solving the above model.

A numerical example showing the application of the algorithm is exhibited.

6.1 Relaxation with Gradient Projection Algorithm for DUO

6.1.1 Relaxation-Gradient Projection Algorithm for DUO
In this section, we present a relaxation algorithm to solve the route-based VI
formulation of dynamic user optimal (DUO) problem. The discrete VI formulation DUO is
given as
(In*(0)-=" ()} (k)1 (k)) 2 0 (6.1a)

in® . Or in expanded form, as

ZZ%[’?? (k)-= If P (k)£ ( ] >0 (6.1b)

rs p k=1
in® , wheren, f e "
77 (K) =7V (K)+ 7, [k + 7 VK)] ¥ p=porii=12,s;

pz(r,l,zy...,i,...s),
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© is the feasible region defined by constraints by (3.38) --- (3.46).

Relaxation

At each relaxation, we temporarily fix: 1) Actual travel time ra(k)in the link flow
propgation constraints as 7,(k); 2) Actual travel time |k + 7" (k)| as r,[k +7z"(k)] and
3)Minimal travel timesz"(k) as 7"(k)for each origin and destination. At each relaxation,
the time-space network is fixed with fixed link flow propagation constraints.

Via relaxation, the VI cost term becomes

7y (k)-7z"(k) (6.23)
where
Ko
7y (k)= ;Zalfa(n)@‘éi” (6.2b)
=7, (K)+, (k+7, () + -+, (k+7,77 ) (6.2)
where p = (al,az, ~~~~~ aﬁ), a,is the link number of path p of O-D pair rsattime k.and,

if traffic departing origin r atany timeinterval k

SPn 1 heading for destination s on path p arrives at (6.3)
- link aduring the nth time interval.
0 otherwise

Optimization Problem

An optimization problem which is equivalent to the discrete VI under relaxation can

thus be formulated, as follows:

minZ = EZZ{LW) (et ?)—ﬂ“(k)]dw} (6.4)

k=l rs p
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in®, where fdenotes the path flow vector f without component f*. @ is the feasible set
defined by (4.38) --- (4.46).
Since ﬁrs(k)is fixed for each O-D pair at each relaxation, it can be dropped from (6.4),

the resultant problem is

minZ = iZZ{ IO f‘gs(k)n{f (@£ ;s)da)} (6.5)

k=l rs p
in®.

The gradient of (6.5) is

At each relaxation, the VI formulation of DUO problem was transformed into a series
of static user equilibrium traffic assignment problems over the time-space network of the
relaxation, which can be solved by Gradient Projection algorithm. Call the relaxation as outer
iteration and solving static user equilibrium traffic assignment problems over the time-space
network of the relaxation as inner iteration.

The gradient projection (GP) algorithm for UE problem is given by Jayakrishnan et al.
(1994), which is generalized to solve the series of UE problem on the implicit time-space
network as described below.

The formulation of the algorithm focuses on the time-dependent traffic demand

constraints:

> f2(k)= (k) (6.7)

pe Pé

where P is the set of paths (with positive flow) between origin r and destination s at time
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intervals k.

If we express the shortest-path flows f; ,in terms of other path flows

fog=1"K)- X frk) (6.8)

pepy
p#Prs (k)

The optimization problem (6.5) at ® can be restated as
min Z(7) 6.9)
at ©. Ois the feasible set defined by (4.39) --- (4.46). Z is the new objective function, and
f is the set of non-shortest-path flows between all of the O-D pairs at any departure time
intervals k.
The gradient of the objective function written in terms of the non-shortest-path

variables can be found using

oz _ oz &z
of *(k) ofo(k) ofy

where peP.and p=p,(k) (6.10)

which results from the definition of Z. Each component of the gradient vector is the

difference between the first derivative lengths of a path and the corresponding shortest path
and the first derivative lengths are simply the dynamic path cost at that flow solution.

The second derivative is simply the sum of the second derivative lengths of the links on
either path p or path p, (k) but not on both. Once the second derivatives of Z with respect
to each path flow are calculated, the inverse of Hessian matrix each second derivative gives
an approximate quasi-Newton step size for updating each path flow.

It is better to keep «" a constant (i.e., ¢"=«, Vn). It can be shown that given any

starting set of path flows there exists an & such that if « € (0,&) the sequence generated
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by this algorithm converges to the optimum (), provided that the link-cost functions are

convex. Our experience shows that « equal to 0.5 achieves a very good convergence rate.

Algorithm
According to the above rational analysis, the algorithm for solving the ideal
route-based DUO route choice model is developed and summarized as follows.

Step 0: Outer Initialization.

Compute Kk, :n'\lax{ﬂ“}, where 7" is the static minimum travel time of O-Drs. Set
rs

K =K, +C-[k,].. Setz®”(k)=7,[0], vaecA k=1--,K'. Find an initial feasible

).
solution [fprs(‘))(k)]. Set outer iteration counterl =0. Set an outer iteration convergence
criterioneg,,, .

Step 1: Relaxation.

Find a new estimation of actual link travel times:7)(k)=1z, [x:(k)], find 7"(k)vVae A,
k=1---,K" , where * denotes the solution obtained from the most recent inner iteration or
from outer initialization. Find 5*")(t)and 55")(t).

Step 2: Inner Iteration

Step 2.0: Inner Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an inner iteration
counterm=1.

In the first relaxation, set 7\ (k) equal to free flow travel timez,(0),V a, k=1,..., K. and

perform all-or-nothing assignments. This yields initial path flows f(l'j (k),v rs, k=1,...,K,.
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In other relaxations, reset the most inner iteration solution to be consistent with the flow

propagation constrain at the current relaxation, and set them as initial path

flows f5(k),V r,s, k=1,...,K,, at current relaxation (Initialize the path set Pgwith the

shortest path for each O-D pair rs at time k).
Step 2.1: Update. Set 7!™(k)equal toz™[x("(k)]. Update the first derivative lengths

d ™ (k)(i.e., path cost at current flow) of all of the paths in P, ¥ r,s.

rs?

Step 2.2: Direction finding. Find the shortest-path p'™(k)from each origin r to each
destination s at k on the basis of z{" (k). If different from all the paths in the existing path set

in P

rs?

(no need for path comparison here; just compare d;f(m)(k), add it to in P and record

d o . If not tag the shortest among the paths in P¥ ind o)

rs

Step 2.3: Move. Set the new path flows.

f rm ) (k) = ma{o, fprs(m)(k)—sgs(m) (k)( ;S(m)(k)—dﬁgﬂ,(k)) v rspeP, p=pm(k) (6.11)
where
o™ (k) )
a V P 6.12
Zalzk: 8X£m k Pers ( )

a and k denotes time-space links that are on either p or ﬁﬁsm)(k), but not on both, and «" is
a scalar step-size modifier.
Also,

fp:Hl)_ frs Zfrsmﬂ k Vpe rs,pi prs ( ) (613)

pEPrs
P#Prs (k)

Assign the flows on the trees and find the link flowsu m+l)(k).

Step 2.4: Convergence Test for Inner Iteration.
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Ko Ko
If \/ZZ(ff(m”)(k)—fprs(m)(k)) > frmk) >e, setm=m+1, go to Step 2.1;
k rs k

otherwise, set f,*"(k)= f ™ (k), *"(k) = x"*(k), go to Step 3.
Step 3: Convergence Test for Outer Iteration. If7(k)= 7™ (k), stop. The current
solution u(k), v®(k), x®(k) isin a near optimal state; otherwise, set | =1+1 and go to

Step 1.

6.1.2 A Numerical Example
Example 6.1

An example is presented below to validate the algorithm. The problem is the same as in
Example 4.1. The program of the algorithm was run on a computer with 1.5GHz frequency
processor. The inner iteration (GP algorithm) convergence test method was set as a
prespecified number n. The outer iteration (Relaxation) convergence test method was set as

max{ 7 (k) -V (k)|[ae Ak =1-,K}

where| z"(k)- 7" (k)| is the actual travel time difference of link a at time k between

successive relaxations. The operation of the program is shown in Table 6.1.

Table 6-1 Convergence criterion and computation time for Example 6.1

Inner iteration

convergence criterion

Outer iteration

convergence criterion

Total relaxations

Total computation

time (minute)

n=4

0.0002

3.1
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The assignment horizon K is found to be 21 time increments. Table 6.2a shows the
output of u’(k). Table 6.2b shows the output of v'* (k). Table 6.2c shows the output ofu, (k).
Table 6.2d shows the output of v, (k). Table 6.2e shows the output of x, (k). Table 6.2f shows

the output of 7, (k) . Table 6.2g shows the output of f*(k), cF*(k), links on each path and the

arrival time interval for each link on a path. For conciseness, only Table 6.2g is attached to

this dissertation.

Table 6-2 The resultant path flow and path travel time for example 6.1

Path O |D| k | Path Path Links on Arrival time for each link

number flow | time | the path on the path

This table is appendix 6 of this thesis.

We take the following examples to verify that the solution satisfy the constraints and
the dynamic User Optimal conditions.

Path flow conservation constraint is automatically satisfied:
f2Q)= Q)+ f,°@Q)+ Q)+ £,°Q)

=3.3333+1.6667+3.3333+1.6667

=10

Link inflow conservation constraint (4.39):

ug'(10)+u;*(10)=1.6666+1.6666=3.3332=u,(10)
Link outflow conservation constraint (4.40):

vi'(14)+ v (14)=1.6666+1.6666=3.3332=v, (14)
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Node flow conservation constraint (4.41):

dvE(k)= > v, (k) =va(8)+Vvy,(8)+V,(8)=5.0002+0+4.9998=10

acB(6) acB(6)
Sur(k)= > u,(k)=uy(8)+uy,(8)+uy(8)=3.3334+3.3337+3.3329=10
acA(6) acA(6)

Link flow propagation constraint (4.42):
ut(10)=v;*(10+ 7,(10))=v;* (14)=1.6666
Ug®(10)=v*(10 + 7,(10))=v*(14)=1.6666
where 7,(10)=1.2332 minutes. For a time increment of 20 seconds, 7,(10)=4.
The link state equation (4.43b):
% (10)=X,(9) + U, (10) - v, (10)= 3.3333+3.3332 - 0 = 6.6665
The actual travel times on the used paths from origin 1 toward destination 9 departing
at time increment 1 are as follows:
¢’(1)=
75 (1) + 7351+ 7 (1) + 705 (L+ 7 (1) + g (1+ 75 (D) + 700 (L4 75 (1) + s (14 T (1)) + T (L4 7 (1) + 75 1+ 75 (2)))
=7, (1)+ 7,5 (5)+ 7,5(9) + 7, (13)
=1.2249+1.2166+1.2166+1.2249
= 4.8829 minutes
Similarly, we have c}’(1)=4.8829 minutes, c’(1)=4.8829 minutes, c;’(1)=4.8829
minutes.
They are nearly equal.
As can be checked in the same way, all the solution output satisfies the constraints and

the dynamic user optimal conditions. This verifies the validity of the solution algorithm.
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6.2 Generalized Path Travel Cost and Additional Network Constraints for

DUOSDTRC problem

6.2.1 Disutility Function or Schedule Delay Function

A disutility function or schedule delay function based on departure times is defined for
travelers departing from origin r to destination s on route p at time t. The disutility function is
weight sum of waiting time at the origin, driving time during the journey, and utility and
disutility for early arrival or late arrivals (Ran and Boyce, 1996b).

We assume that travelers going to the same destination s have the same desired
arrival times, expressed as the desired arrival time interval [, —A_, T, + A |, where T and A,
are desired arrival time and indifference interval of arrival time for travelers going to
destinations . If early arrival is not encouraged, Travelers arrive at destination s earlier than
[t~S - AS] incurs early arrival disutility/penalty. If early arrival is encouraged, Travelers arrive
at destination s earlier than [t: —AS] incurs early arrival utility/bonus. Travelers arrive at
destination s later than [f; +As] incurs disutility/late penalty since later arrival should not
be encouraged.

Different disutility function/schedule delay function were defined in previous studies
(Bernstein et al., 1993; Wie et al. , 1995; Ran and Boyce, 1996b). A popularly used piecewise

linear schedule delay function (Hendrickson and Kocur, 1981; Bernstein et al., 1993; Yang

and Meng, 1998) is adopted in this study, which is as follows:
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pll-a)-t+z0)] it T-a>ter()
(t)= 0 it [t 7o) <A,
Blt+z=0)-(E+a,)] if T+A, <t+x"(t)

(6.14)

The schedule delay function is shown in Figure 6.1.
We assume the unit cost of late arrival is higher than the cost of unit travel time and the
cost of unit travel time is again higher than the unit cost of early arrival, then the following

relationship hold:

ps>a,>p, >0 (6.15)
A
Early Desired Late
Unit arrival arrival arrival
schedule

delay

.—A t t+A Arrival time

Figure 6-1 An example of disutility function

6.2.2 Generalized Time-dependent Path Travel Cost

The generalized time-dependent path travel cost for route p between O-D pair rs
for flows departing origin rattime t is defined as
S(t)=ne(t)+c,(t+ 72 () vr.s pt (6.16)
where ry{f(t) is actual travel time for route p between O-D pair rs for flows departing
origin rat time t, c(t) is the schedule delay cost for travelers arriving destination

S att.
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Let (Y,Z,9) be a measure space, and let F:Y — R be a function defined on

Y and with real values, then the essential infimum of F on Y is defined by

essinf F =supfb e R : %({y: F(y)<b})=0}
and

po(t)=essinf g (t):te[0,T]  wr,s
The generalized cost between OD pair rs attime t is defined as
¢°(t)=min {p=(t): pe P,

The minimum generalized cost between OD pair rsduring period [0,T] is defined as

Z" =min {Ap's(t): pe Prs}

6.2.3 Additional Network Constraints

In addition to the network constraints for the DUO problem, the DUOSDTRC problem
requires the following additional network constraints

q" = J'OT f " (w)dw vr,s (6.17)

(6.17) states that the integral, or the sum in the discrete case, of the time-dependent O-D
demand f"(t) of O-D pair rs over time period [0,T] equals demand q", where q"is
the number of vehicles to depart from origin r to destination s during time period[0,T]. If
the vector q = (---,qrs,---)is set as the fixed travel demand vector, the problem is dynamic
User Optimal simultaneous departure time and route choice with fixed demand. Otherwise, if

q- is

q® = Drs(fr,fm) or T = Dr‘sl(q“) vr,s (6.18)

min
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where D () is the demand function of OD pair rs and D;(-) is the inverse of demand
function of OD pair, the problem is dynamic User Optimal simultaneous departure time and
route choice with elastic demand (Yang and Meng, 1998; Szeto and Lo, 2004). In this study,
the dynamic User Optimal simultaneous departure time and route choice with fixed demand

is studied.

6.3 Route-based Variational Inequality (VI) DUOSDTRC Model

6.3.1 DUOSDTRC Conditions
The dynamic User Optimal simultaneous departure time and route choice condition can

be written as

ny'(t)-z~({t)=0 ¥ oprs; (6.19a)
Oy ©)-7=0)]=0 vprs (6.19h)
7% () -7 20V 1,5; (6.19¢)
fe ™) -25]=0 Vs (6.19d)

fret)=0 Vopr,s;
(6.19¢)

fo(t)=0V r,s; (6.19f)
where the asterisk denotes that the travel disutility is computed using DUOSDTRC
time-dependent demand and route flows.

The dynamic User Optimal departure time and route choice conditions require that for
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each O-D pair rs at any time t, if there is a positive departure flow f* (t) > 0 over route p, the
disutility ¢,§5*(t) for route p must equal the minimal rs disutility z over time t.
Furthermore, if the departure flow f > (t) over route p equal O at time t, the disutility ¢ (t)
over route p at time t must be greater than or equal to the minimal rs disutility z= . In other
words, at equilibrium, the actual travel cost of vehicles departing at any time through any
used path is equal and minimum and no traveler can reduce his travel cost by unilaterally
changing his departure time and route choice combination (Lim et al., 2005). Any departure
flow pattern different from the equilibrium pattern will incur more travel cost for some

travelers.

6.3.2 Route-based VI Formulation of DUOSDTRC Model

Assume the network is empty att =0, and only travel demands departing within the
departure horizon are considered. The route-based DUOSDTRC continuous VI model can be
expressed as

[ .0 -1 ) + (= @.[f0) - @ pr =0 (6.20a)

or in expanded form as

{<Z;n [f’s — £t ]> <27z’5 [ f’s()]>}dt20 (6.20b)

Below we prove traffic status satisfying (6.20) is in a DUO status or equivalent to
(6.19).

Proof:
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Since at equilibrium 7" (t) is the same for all flows departing origin r toward destination s at
timetand 7" isthe same for all flows departing origin r toward destination s, we have
[} {x" @) [r0)- 1))t = 0 (6.21a)
And
T w
[ (e [ -1 @)t =0 (6.21b)
Thus, variational inequality (6.20a) and (6.20b) are equivalent to the following variational
inequality
.
[ @) -2 O} -1 ) + ([ ©) -2 Q- T O =0 (6.22)

or in expanded form as

b {@;[ﬂf(t)—ﬂ“'(t)]-[fp“ -f7(t ]> <Z[7f“ )-n [ (t)—f's*(t)]->}dtzo (6.22b)

It is only needed to prove traffic status satisfying (6.22) is in a DUOSDTRC status or
equivalent to (6.19).
(ili)  Necessity. By (6.19a) and (6.19¢),[n’ (t)— =" (t)|= 0, > 0, this implies
(In"@®)-=" @)} ()2 0. By (6.19b), ([n"(t)-="(t)}£"(t))=0.

Thus, we have

(In°@)-= @} re) -1 @) > 0 (6.23a)
Similarly, by (6.19¢) and (6.19f), [x" (t)~ ), |> 0. > 0, this implies ([x"(t) -y, ] F(t))> 0.
By (6.19d), ([n"(t)-ny,, | F*())=0
Thus, we have

([ ()~ ) [f(t)- )]> >0 (6.23b)

Sum up (6.23a) and (6.23b) and integrating it over [0,T |, we have (6.22).
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(iv) Sufficiency. (6.19a), (6.19c), (6.19¢), and (6.19f) hold by definition. Let the optimal
solution of (6.22) bef* and f*. To prove (6.19b) holds forf* and (6.19d) holds forf*, we
first find a feasible solution f® and f® such that (6.19b) and (6.19d) hold,
or{[n” (t)-n"(©)} £°(¢)) = 0and ([n" (t) - ;. | £ (¢)) = 0.
Suppose (6.19b) does not hold forf™, we have<[1|*(t)—n*(t)],f*(t)> > 0. It follows that
(In@)-= @} @)-1 @) <o (6.24a)
Furthermore, we need to consider two cases: 1) (6.19d) holds forf*; 2) (6.19d) does not hold
forf".
In case 1), we have<[n*(t)— nfmnlf*(t)> =0. It follows that
([ @) o0~ () =0 (6.24b)
Sum up (6.24a) and (6.24b) and integrate the result over[O,T], it follows that
[ (I @) -7 O} -1 O + ([ ©)- 0 ) [Fo 0 - F ) <0 (6.24c)
which contradicts (6.22). Thus (6.19b) holds forf~.

In case 2), we have <[n*(t)—n}“nm ]f'(t)> > 0. It follows that
([ @) ) [Fo@)-F @) <0 (6.24d)
Sum up (6.24a) and (6.24d) and integrate the result over[0,T], we again have (6.24c). Thus

(6.19b) holds forf™.

Similarly, suppose (6.19d) does not hold forf*, we have<[1r*(t)—nfnin ]f(t)> >0. It follows
that
([ @) -m O~ ) <0 (6.25a)

Furthermore, we need to consider two cases: 1) (6.19b) holds forf*; 2) (6.19b) does not hold

129



forf”.
In case 1), we have<[n*(t)— n*(t)],f*(t)> =0. It follows that
(I @)-= @} @)-1 @) =0 (6.25b)
Sum up (6.25a) and (6.25b) and integrate the result over[O,T], we have (6.24c), which
contradicts (6.22). Thus (6.19d) holds forf".
In case 2), we have<[n*(t)— n*(t)],f*(t)> > 0. It follows that
(In@)-= @} w)-1 @) <o (6.25¢)

Sum up (6.25a) and (6.25c) and integrate the result over[O,T], we have (6.24c), which

contradicts (6.22). Thus (6.19d) holds forf".

6.3.3 Solution Algorithms for Route-based VI DUOSDTRC Model

To solve the DUOSDTRC problem, the continuous VI formulation is discretized with
each time interval being the assignment increment. The estimated actual travel time on each
link ais a multiple of the time increment and is fixed at each time increment, i.e.

7,(k)=i if (i-0.5)At <7, (k)< (i+0.5)At (6.26)

whereiis an integer and 0<i <K, Atis time increment. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the assignment increment smaller.

The route-based DUOSDTRC discrete-time VI formulation is

(i1 )+ (n i) >0 (6.27a)

wheren e R fe R el Pl and |Rx S|are the cardinalities of the path
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set and O-D pairs, etc., or in expanded form as

ST 017 b 0010

rs k=1

in® . O s the feasible region defined by the following constraints:

O-D demand conservation constraints:

Ko
> (k)=q" vr,s
k=1

Path flow conservation constraints:

Zf’s = f*(k) vk,r,s

Link inflow conservation constraints:
Sul(k)=u,(k) vak
rs
Link outflow conservation constraints:
a

g‘vf (k)=v,(k) va,k

Node flow conservation constraints:

zvrS = Yur(k) Vj=rsrsik

aeB(j acA(j)

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraints:
uf(k)=vi(k+z,(k)) va,r,sk
The link state equations:
X, (k+1)=x,(k)+u,(k)-v,(k) Vva,k
or

X, (k+1)=x,(k)+u,(k+1)-v,(k+1) Va,k
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(6.27b)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34a)

(6.34b)



(6.34a) is forward formula, (6.34b) is backward formula.

Path-link flow incidence constraints:

ut(n)= Zzi frkpr van (6.35)

rs p k=1

where 5% e {0,1}is defined as:

rsa

if traffic departing origin r at any time interval k

5o _ 1 heading for destination s on path p arrivesat link a (6.36)

during the nth time interval.
0 otherwise

Nonnegative constraints:
f*(k)=0, f*(k)=0,uf(k)=0, Vk,r,sap (6.37)
Relaxation
At each relaxation, we temporarily fix: 1) Actual travel time ra(k)in the link flow
propagation constraints asz, (k); 2) Actual travel time z,[k+ 7" (k)| as z,[k + 7" (k)]. At
each relaxation, the time-space network is fixed with fixed link flow propagation constraints
and fixed time dependent O-D demand.

Via relaxation, the VI cost term becomes 7 (k) and z"™(k), where

KO
np(k)=2.> 7)o (6.382)
k=1 a
=z, ()7, (k+7, (k) 4+ 7, (k+7.70 (k) (6.38b)
where p = (al,az, ------ aﬁ), a,is the link number of path p of O-D pair rsattime k, and
7°(k)= mpin{ (k)= (k)+c,(k+7°(K))} vr,sk (6.38c)
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Optimization Problem
An optimization problem which is equivalent to the discrete VI under relaxation can

thus be formulated, as follows:

r‘rf1f| nZ= iZ{ZESS(k) My (a); f> )daH—J: " " (a); fr )da)} (6.39)
' p

k=1 rs
in®, where f;°denotes the path flow vector f without component f*(k), f"denotes the

path flow vector f without component f * (k).

The gradient of (6.39) is

0z s

) =17 (k) (6.40a)
oz rs

o) 7"(k) (6.40b)

(6.40) is equivalent to the cost term of discrete VI (6.27b) under relaxation. This indicates the

above optimization program is equivalent to the discrete VI (6.27). Since all cross effects are

fixed in each relaxation, f*(k) and f (k) are the only variables for each summation term

of (6.39).

Program (6.39) can be solved by gradient projection (GP) algorithm (Jayakrishnan et al,
1994). The formulation of the GP algorithm focuses on the time-dependent traffic demand
constraints

S k)= 17(k) vkr,s (6.41)

peRs

where P is the set of paths (with positive flow) between origin r and destination s at time

intervals k, and O-D demand constraints:
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Ko

> fe(k)=q" vr,s (6.42)

k=1

If we express the shortest-path flows f; ,in terms of other path flows

o= 7= 270 Vkrs (6.43)
peprs

PPy (k)

and the shortest generalized time-dependent O-D demand f " (the time-dependent O-D

min

demand corresponding to 7z ) in terms of other time-dependent O-D demands

min

min

Ko
foo o =q" - > (k) vr,s (6.44)
£ () 18

The optimization problem (6.5) at ® can be restated as
min 7 (E, a (6.45)

at®. O is the feasible set defined by (6.29) --- (6.37). where Z is the new objective function,
f is the set of non-shortest-path flows between all of the O-D pairs at any departure time
intervals k, and % is the set of non-shortest generalized time-dependent O-D demand of all
the O-D pairs.

The gradient of the objective function written in terms of the non-shortest-path
variables can be found using

oz oz

oz
= where peP.and p=p,(k) (6.46)
of r(k) of (k) of

p p

which results from the definition of Z. Each component of the gradient vector is the
difference between the first derivative lengths of a path and the corresponding shortest path
and the first derivative lengths are simply the dynamic path cost at that flow solution.

The gradient of the objective function written in terms of the non-shortest-demand
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variables can be found using

oz _ oz @z
of*(k) of"(k) of"

(6.47)

which results from the definition of Z. Each component of the gradient vector is the
difference between the average generalized path cost of the shortest paths of a non-shortest
generalized time-dependent O-D demand of a O-D pair and the average generalized path cost
of the shortest paths of the shortest generalized time-dependent O-D demand of the O-D pair.

The second derivative with respect to f (k) is simply the sum of the second derivative
lengths of the links on either path p or path p(k), but not on both. The second derivative
with respect to f rS(k) is the sum of the second derivative lengths of the links on either
shortest paths of a non-shortest generalized time-dependent O-D demand of a O-D pair
f(k)or shortest paths of a shortest generalized time-dependent O-D demand f " of the
O-D pair, but not on both.

Once the second derivatives of Z with respect to each path flow fprs(k) and
time-dependent O-D demand f (k) are calculated, the inverse of each second derivative
gives an approximate quasi-Newton step size for updating each path flows and
time-dependent O-D demand.

It is better to keep «" a constant (i.e., ¢"=«a, Vn). It can be shown that given any

starting set of path flows there exists an & such that if « <(0,) the sequence generated
by this algorithm converges to the optimum point, provided that the link-cost functions are

convex. Our experience shows that « equal to 0.5 achieves a very good convergence rate.

135



Algorithm
Based on the above rational analysis, the algorithm for solving the ideal route-based
DUOSDTRC model is developed and summarized as follows.

Step 0: Outer Initialization.

Set an initial feasible solution of[f rS(‘))(k)]. Computek,,, = rr\lalx{;z’S } where 7" is the static

minimum travel time of O-Drs. SetK =K, +C [k, |, . Setz®(k)=17,[0], Yae A
k=1,---,K". Set outer iteration counter L = 0. Set an outer iteration convergence

criterion g, .

Step 1: Middle Initialization.

Find an initial feasible solution[ff(“(k)]. Set middle iteration counterl =0. Set an middle
iteration convergence criterione,, -

Step 2: Relaxation.

Find a new estimation of actual link travel times: 7)(k) =1z, [x:(k)], find 7"(k) vVae A,
k=1---,K' , where * denotes the solution obtained from the most recent inner iteration or
from middle initialization. Find 55" (t)and 5" (t).

Step 3: Inner Iteration

Step 3.0: Inner Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an inner iteration
counterm=1.

In the first relaxation, set 7" (k) equal to free flow travel timez,(0),V a, k=1,..., K. and

perform all-or-nothing assignments. This yields initial path flows f({j (k),v rs, k=1,...,K,.
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In other relaxations, reset the most inner iteration solution to be consistent with the flow
propagation constrain at the current relaxation, and set them as initial path
flows f5(k),V r,s, k=1,...,K,, at current relaxation (Initialize the path set Pgwith the
shortest path for each O-D pair rs at time k).

Step 3.1: Update. Set 7™ (k)equal to (™ [x(" (k). Update the first derivative lengths

d ™ (k)(i.e., path cost at current flow) of all of the paths in P, ¥ r,s.

Step 3.2: Direction finding for[fprS (k)]. Find the shortest-path '™ (k) from each origin r to
each destination s at k on the basis ofz{™(k). If different from all the paths in the existing
path set in P¥, (no need for path comparison here; just compare d ;"(m)(k), add it to inP¥ and
record dagﬂ(k)' If not tag the shortest among the paths in P indﬁgﬂ)(k).

Step 3.3: Move for | * (k)|. Set the new path flows.

f ) = ma{o, - " (057 (0-d o )|V rs PRl p=PK)  (6.48)
p
Where
rs(m ﬁrgm) k
55 )(k)zzzk:ax(m((k))’v pePk (6.49)

a and k denotes time-space links that are on either p or ﬁg“)(k), but not on both, and «" is
a scalar step-size modifier.

Also,

fimd=fok)- D fmk) vrsk (6.50)
peP,’é
P#Prs (k)

Assign the flows on the trees and find the link flowsu™? (k).

Step 3.4: Convergence Test for Inner Iteration.
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If £ (k)2 £ EM(K), set FE0(k)= £ (k), R (k) = x™ (k), go to Step 4; otherwise,

setm=m+1, go to Step 3.1.

Step 4: Convergence Test for Middle Iteration. Iffg')(k) = ?g"l)(k), go to step 5; otherwise,

set 1 =1+1 and go to Step 2.

Step 5: Outer Iteration

Step 5.1: Direction finding for [f ™ (k)]. Find the average generalized path cost d"")(k)of

the shortest paths for all the time-dependent O-D demand. Tag the average

generalized path cost d,:fiﬁf) of the shortest paths of the shortest generalized
time-dependent O-D demand for all the O-D pairs.

Step 5.2: Move for [ * (k)| Set the new time-dependent O-D demand.

L
ffs<L+1)<k>=ma{°’ - -0 v rs R 15 68D
s
Where
or, (k)
s"U(k)= 2\ yrsk 6.52
k=22 5w —

a and k denotes time-space links on either shortest paths of the non-shortest generalized

time-dependent O-D demand f™(k) or shortest paths of the shortest generalized

rs
min

time-dependent O-D demand f " of the O-D pair, but not on both. «" is a scalar step-size

modifier.

Also,
f rs(L+l) _ qrs _ Z f fS(L+1)(k) Yr,s (6.53)

min
£ (k)= fin

Step 5.3: Convergence Test for Outer Iteration. If f (k)= f *"Y(k), stop; otherwise,
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set L=L+1 andgo to Step 1.

The flowchart of the solution algorithm is shown in Figure 6.2.
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Figure 6-2 Flowchart of the Solution Algorithm
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6.3.4 A Numerical Example
Example 6.2

An example is presented below to validate the above model and algorithm. The
configuration of the network is the same as Figure 4.6. In the network, each link is assumed
as a one-lane street with a length of 0.5 mi. The free flow speed is assumed to be 25
mile/hour. The following linear travel time function is used to enforce FIFO
condition: 7, (k)= L, /s, +0.3-x,(k), where L, is the length of linka,s, is free flow speed,
z.(k)is link travel time on link aattime k, x,(k)is number of vehicles on link a at time
k. Four O-D pairs are considered. The total O-D demand for each O-D pair is 50 vehicle
units. Five 20 s departure time intervals are specified. The initial time-dependent O-D
demand are 10 vehicle units per time interval. The O-D pairs and initial time-dependent O-D

demand are shown in Table 6.3.

Table 6-3 O-D pairs and initial time-dependent O-D demand for example 4.1

O-D Departure time interval k
1 2 3 4 5
1-9 10 10 10 10 10
9-1 10 10 10 10 10
3-7 10 10 10 10 10
7-3 10 10 10 10 10

We considered two cases: 1) the disutility function is not considered; 2) the disutility
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function is considered. At optimal point, the actual path travel time for all the path flows are
equal when the disutility function is not considered, while the generalized path travel time for
all the path flows are equal when the disutility function is considered.

The program of the algorithm was run on a computer with 1.5 GHz frequency processor.
The inner iteration convergence test method was set as a prespecified numbern. The middle
iteration convergence test method was set as max{z!)(k)- ! (k)|lae Ak =1--,K},
where| z)(k)- 7 (k)| is the actual travel time difference of link a at time k between
successive middle iterations. The outer iteration convergence test method was set as
max{ f " (k)—- =Y (k)|[rs e Rx S,k =1,---,K, }, where | f°O(Kk)— (k)| is the
difference of time-dependent O-D demand of O-D pair rsat time k between successive outer
iterations.

The operation of the program when disutility function is not considered is shown in
Table 6.4. The corresponding optimal time-dependent O-D demand is shown in Table 6.5.
The assignment horizon K is found to be 21 time increments. Table 6.6a shows the output of
u”(k). Table 6.6b shows the output of v’ (k). Table 6.6¢ shows the output of u, (k). Table
6.6d shows the output ofv, (k). Table 6.6e shows the output of x, (k). Table 6.6f shows the
output of 7, (k). Table 6.6g shows the output of f *(k), c7(k), links on each path and the

arrival time interval for each link on a path. For conciseness, only Table 6.6g is attached to

this dissertation.
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Table 6-4 Convergence criterion and computation time for Example (no disutility

function)
Ein Emid Eout Number of Total computation
Outer iterations | time (minute)
n=4 | 0.002 0.095 32 101

Table 6-5 Resultant time-dependent O-D demand (without disutility function)

O-D Departure time interval k
1 2 3 4 5
1-9 25.1083 1.2949 0 0 23.5967
9-1 25.1083 1.2949 0 0 23.5967
3-7 25.1083 1.2949 0 0 23.5967
7-3 25.1083 1.2949 0 0 23.5967

Table 6-6 The resultant path flow and path travel time for example 6.2

Path O | D| k | Path Path Links on Arrival time for each link

number flow | time | the path on the path

This table is appendix 7 of this thesis.

We take the following examples to verify that the solution satisfy the constraints and
conditions of DUOSDTRC.

O-D demand conservation constraints (6.28):

q°= 1)+ £°(2)+ £2(3)+ £**(4)+ £°(5)
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= 25.1083+1.2949+0+0+23.5967
=50
Path flow conservation constraint (6.29):
f91)=£°@Q)+ £,°Q)+ £,°@Q)+ £,°(1)
= 8.3774+4.1892+8.3627+4.179
=25.1083
£2°(2)=12(2)+ £,°(2)+ £°(2)+ £,°(2)
=0.3638+0.2152+0.4591+0.2568
=1.2949
Link inflow conservation constraint (6.30):
u*(10)+u*(10)=0.2152+0.2152=0.4305= u, (10)
Link outflow conservation constraint (6.31):
ve'(14)+v,*(14)=0.2152+0.2152=0.4305=v, (14)

Node flow conservation constraint (6.32):

vas Zv =V,(9)+V,,(9)+v,,(9) =11.7981+0+11.7986=23.5967
aeB aeB

Zu ( Z u, (k)= u,(9)+u,(9)+u,(9)=7.7337+7.8498+8.0132=23.5967
aeA aeA

Link flow propagation constraint (6.33):
ut(10)=v;*(10+ 7,(10))=v.* (14)=0.2152
ug*(10)=v,*(10 + 7, (10))=v;*(14)=0.2152
where 7,(10)=1.2439 minutes. For a time increment of 20 seconds, 7,(10)=4.

The link state equation (6.34b):
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X5(10) = %;(9) + U, (10) - v, (10)= 8.3785+0.4305 — 0 = 8.8089

The actual travel times on the used paths from origin 1 toward destination 9 departing
at time increment 1 are as follows:
c’(1)=
7o (1) + 75 (1+ 75 (1) + 705 (1 75 (1) + 7 (L+ 75 (1) + 70 (L4 7 (1) + T (L4 75 (1) + 7o (L4 75 (1) + 75 (1 + 75 (1))
=7,(1)+ 755 (5)+ 7,5(9) + 7, (13)
=1.2627+1.2418+1.2418+1.2627
= 5.009 minutes= 5.0 minutes
Similarly, we have ¢ (k)=5.0 minutes, V rsk. They are nearly equal, which is consistent
with the DUOSDTRC condition.

As can be checked in the same way, all the solution output satisfies the constraints and
conditions for DUOSDTRC problem. This verifies the rationale of the above model and
solution algorithm.

In the second case, we assume that the beginning of the departure horizon is time 0 and
define the parameters of the disutility function as t,= 370, A, =30, p, =0.5, §,=1,Vs.
The interval that incurs zero disutility is [340, 400] in seconds, or [5.6667, 6.6667] in minutes.
Vehicles arriving before 340 second or 5.6667 minute incur early arrival disutility. Vehicles
arriving after 400 second or 6.6667 minute incur late arrival disutility. The operation of the
program is shown in Table 6.7. The corresponding resultant time-dependent O-D demand is
shown in Table 6.8. The assignment horizon K is found to be 21 time increments. Table 6.9a

shows the output of u®(k). Table 6.9b shows the output ofv*(k). Table 6.9c shows the
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output of u, (k). Table 6.9d shows the output of v, (k). Table 6.9e shows the output of x, (k).
Table 6.9f shows the output of z, (k). Table 6.9g shows the output of f *(k),c(k), ¢5 (k).

links on each path and the arrival time interval for each link on a path. For conciseness, only

Table 6.9 is attached to this dissertation.

Table 6-7 Convergence criterion and computation time for Example (with disutility

function)
Ein Emid Eout Number of Total computation
Outer iterations | time (minute)
n=4 | 0.002 0.05 20 62

Table 6-8 Resultant time-dependent O-D demand (with disutility function)

O-D Departure time interval k
1 2 3 4 5
1-9 16.6399 28.2918 4.1235 0.9448 0
9-1 17.5245 27.6569 4.0812 0.7375 0
3-7 16.6399 28.2918 4.1235 0.9448 0
7-3 17.5245 27.6569 4.0812 0.7375 0

Table 6-9 The resultant path flow and path travel time for example 6.2

Path O |D |k |Path Path | Links on Arrival time for each link

number flow |time | the path on the path

This table is appendix 8 of this thesis.
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We take the following examples to verify that the solution satisfy the constraints and
conditions of DUOSDTRC.
O-D demand conservation constraints (6.28):
q= Q)+ £°(2)+ F°(3)+ £°(4)+ (5)
= 16.6399+28.2918+4.1235+0.9448+0
=50
Path flow conservation constraint (6.29):
f20)= Q)+ f,°@Q)+ ,°@Q)+ £,°@Q)+ £°@Q)+ £ Q)
=5.6186+2.5586+5.6217+2.561+0.2126+0.0675
=16.64
f29(2)=1,°(2)+ £,°(2)+ £,°(2)+ £,°(2)+ £°(2)+ £°(2)
=9.3766+4.6948+9.382+4.7102+0.1215+0.0068
=28.2919
Link inflow conservation constraint (6.30):
u(10)+u*(10)=4.6182+4.6182=9.2364=u, (10)
Link outflow conservation constraint (6.31):
v (14)+ v (14)=4.6182+4.6182=9.2364=Vv, (14)

Node flow conservation constraint (6.32):

zvfs Zv =V, (8)+v,, (8)+ v, (8) =0.4876+0+0.4072=0.8948

aeB aeB

Z u’( Z u, (k)= uy,(8)+u,,(8)+u,(8)=0.2417+0.3392+0.3139=0.8948
aEA aeA

Link flow propagation constraint (6.33):
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ug'(10)=v'(10+ 7,(10)) = v* (14) =4.6182
U (10)=v,*(10 + 7, (10))=v;*(14)=4.6182
where 7,(10)=1.2753 minutes. For a time increment of 20 seconds, 7,(10)=4.
The link state equation (6.34b):
% (10)= X,(9)+u,4 (10) - v, (10)= 5.8449+9.2364 — 0= 15.0813
The actual travel times on the used paths from origin 1 toward destination 9 departing
at time increment 1 are as follows:
¢’(1)=
75 (1) + 7351+ 7 (1) + 55 (L4 7 (1) + g (1+ 75 (1) + 700 (L4 75 (1) + T (14 75 (1)) + T (L4 7 (1) + 75 (1+ 75 (2)))
=7(1)+ 75 (5) + 7,5(9) + 7,, (13)
=1.2627+1.2418+1.2418+1.2627
=1.2411+1.2280+1.2280+1.2419
= 4.939 minutes
The arrival time for (1) is k-At/60+c;°(1)= 1*2—8 +4.939 < 5.6667
The early arrival disutility is

p, -[5.6667 —k - At/60—ci° (1)) = 0.5{5.6667 —1*% - 4.939} = 0.19717

The generalized path cost ¢° (1) = 4.939+0.19717 = 5.1361 minutes.
Similarly, the path cost for f°(2) is ¢}°(2)=5.174, the arrival time is
k-At/60+¢°(2)= 2*% +5.174 € [5.6667, 6.6667],
Since no disutility incurred, ¢°(2)=c°(2).

The arrival time for °(5) is
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k-At/60+c(5)= 5*2—3 +5.0772 = 6.7437 > 6.6667

The late arrival disutility is
B. -k - At/60+c2*(5)- 6.6667]=1-(6.7437 — 6.6667) = 0.0772
The generalized path cost ¢°(5)=5.0772+0.0772=5.1544
The generalized path costs for all the departure flows from the same O-D pair are
approximately equal, which is consistent with the DUOSDTRC condition.
As can be checked in the same way, all the solution output satisfies the constraints and
conditions for DUOSDTRC problem. This verifies the rationale of the above model and

solution algorithm.
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Chapter 7: NEW Combined Dynamic Travel Choice Models

When both transit and passenger cars are available, a shift of travelers from cars to
transit or from low-occupancy cars to high-occupancy cars may significantly decrease road
congestions and increase the efficiency of the overall transportation system. In order to
balance allocations to various departure times and different modes, an integrated model
including all elements (mode, departure time, and route choice) needs to be constructed.

Apart from choosing departure time to begin their trip and choosing alternative routes
toward their destinations, people may choose different transportation modes to travel. The
combined mode split and dynamic user optimal simultaneous departure time and route choice
problem (MS DUOSDTRC) extends the DUOSDTRC route choice model in one respect:
transportation mode, departure time and route over a road network must be chosen. For
simplicity it is assumed with two modes: transit and passenger car. In DUOSDTRC problem,
the total O-D demand of each O-D pair is in the mode of passenger car and is given. In MS
DUOSDTRC problem, the total O-D demand includes demands of transit and passenger car
and is given, while the share of each mode needs to be solved. Any change in the demand
share alters the time-dependent O-D pattern in the network, so route and departure time
decisions of other travelers will be affected. At equilibrium of MS DUOSDTRC, the same
travel cost should be incurred for all passenger car drivers of the same O-D pair departing at

all times, and should be equal to the transformed O-D travel cost of the transit of the same
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O-D pair.

When routes from an origin to a destination are congested, people may choose another
destination to fulfill their need. For example, if the routes to a shopping center are congested,
people may choose another shopping center as their destinations. In such case, the
distributions of trips change. The combined trip distribution and dynamic user optimal
simultaneous departure time and route choice problem (TD DUOSDTRC) extends the
DUOSDTRC route choice model in another respect: destination, departure time and route
over a road network must be chosen. In DUOSDTRC problem, the total O-D demand of each
O-D pair is given and fixed. In TD DUOSDTRC problem, the trip generation of each origin
and trip attraction of each destination is given and fixed, while the demand of each O-D pair
needs to be solved for. At equilibrium, not only the conditions for DUOSDTRC are satisfied,
the consistency of trip distribution and dynamic travel impedance among zones are also
guaranteed.

Based on the travel information provided, the available travel mode, and the congestion
level of the roads, people may choose different destinations, travel modes, departure times
and routes to fulfill their travel needs. The combined trip distribution mode split and dynamic
user optimal simultaneous departure time and route choice problem (TD MS DUOSDTRC)
extends the DUOSDTRC route choice model in two respects: destination, mode, departure
time and route over a road network must be chosen. In TD MS DUOSDTRC problem, the
trip generation of each origin and trip attraction of each destination is given and fixed, while

the demand of each mode of each O-D pair needs to be solved for. At equilibrium of TD MS
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DUOSDTRC, the same cost should be incurred for all passenger car drivers of the same O-D
pair departing at all time, and should equal the transformed O-D cost of the transit of the
same O-D pair, and the consistency of trip distribution and dynamic travel impedance among
zones are guaranteed.

This chapter presents a series of combined dynamic travel choice models and solution
algorithms for them for a general network with multiple origin-destination pairs. Section 7.1
presents a combined mode split and dynamic user optimal simultaneous departure time and
route choice model (MS DUOSDTRC) and its solution algorithm. Section 7.2 presents a
combined trip distribution and dynamic user optimal simultaneous departure time and route
choice model (TD DUOSDTRC) and its solution algorithm. Section 7.3 presents a combined
trip distribution mode split and dynamic user optimal simultaneous departure time and route
choice model (TD MS DUOSDTRC) and its solution algorithm. In each section, a numerical

example showing the application of the algorithm is exhibited.

7.1 Combined Mode Split and Dynamic User Optimal Simultaneous Departure
Time and Route Choice (MS DUOSDTRC) Problem

In this section, we present a combined mode split and dynamic user optimal
simultaneous departure time and route choice model (MS DUOSDTRC) for a general
transportation network. We assume that a given number of travelers are ready for departure
between each O-D pair at the beginning of each departure horizon. Travelers may choose

either transit or passenger car to travel. For simplicity we only consider the case in which the
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transportation network consists of a transit network (which can be some exclusive
routes/lanes for bus) and an auto network. We further assume the actual travel time on the
transit network is fixed. We do not consider the departure time and route choice problem on
transit network. Instead, we only consider the departure time and route choice problem on
auto network. At equilibrium, the same travel cost is incurred for all passenger car drivers of
the same O-D pair departing at all time, and equals the transformed O-D travel cost of the

transit of the same O-D pair.

7.1.1 MS DUOSDTRC Model

Chapter 7 has presented the detailed explanation of dynamic user optimal simultaneous
departure time and route choice problem (DUOSDTRC). To explain the combined mode split
and dynamic user optimal simultaneous departure time and route choice problem (MS

DUOSDTRC), we further introduce some denotations. For each O-D pairrs, let g" be the

total demand, " be the automobile demand and §" be the transit demand. Both " and

s

g"” are variables. Then the following O-D demand conservation equations hold:
q° =q"+4" Vvr,s (7.1)
Assume the share of transit demand is given by the following logit modal split

function:

1
1+ exp¢9(7zrS —7%“)

min

ATS _ =TS
=q

vr,s (7.2)

where 7.,

is the (general) travel cost incurred for all passenger car drivers of O-D pair
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rsdeparting at all time interval, 7"is the fixed travel impedance for transit, and & is
nonnegative parameters which has effect on the demand share of each mode.

Define the transformed O-D cost for transit as the inverse demand function of (12) as

follows.

W’S(w):%lnqrsw_w+7}rs (7.3)

W ™(-) is a function of §™. At equilibrium, the (general) travel cost 7z, incurred for all
passenger car of each O-D pair rsdeparting at all time interval over auto network should

equal the transformed O-D cost W™ over transit network. It follows that

W™ -z =0 V r,s; (7.4)

min

The dynamic User Optimal simultaneous departure time and route choice condition

over auto network can be written as

ny (t)-z™(t)=0 ¥ p,r.s; (7.5a)
el -2 @t)]=0 vprs (7.5b)
% t)-z >0 VY r,s; (7.5c)
to O™ ) -z ]=0 v s (7.5d)
fo(t)20 Vprs; (7.5¢)
fo(t)>0V r,s; (7.5f)

where the asterisk denotes that the travel disutility is computed using DUOSDTRC

time-dependent demand and route flows.

The combined mode split and dynamic user optimal simultaneous departure time and

route choice problem (MS DUOSDTRC) can be expressed as follows.
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Findq e RI™ £ e R*® and f e RI™* such that condition (7.1), (7.4), and (7.5) holds
simultaneously.
Conditions (7.5) is equivalent to the following variational inequality problem
T * * * r3 *
[ .0 -1 @) + (= @, [f0) - @) pr =0 (7.68)

or in expanded form as

T * * . «
L{<zzns ot 0-1; <t>]>+<zn“ elrew-r- <t>]->}dtzo (7.60)
rs p rs
Thus, the MS DUOSDTRC problem can be expressed as follows.

Findq e R™ £ e R*® and f e R/™* such that equation (7.1), (7.4), and variational

inequality (7.6) hold simultaneously.

7.1.2 Solution Algorithm for MS DUOSDTRC Model

To solve the MS DUOSDTRC problem, the continuous VI formulation is discretized
with each time interval being the assignment increment. The estimated actual travel time on
each link aisa multiple of the time increment and is fixed at each time increment, i.e.

7.(k)=i if (i-05)At<r,(k)<(i+0.5)At (7.7)

whereiis an integer and 0<i<K, Atis time increment. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the assignment increment smaller.

The MS DUOSDTRC problem is to find

[RxS| mIPIxKe  F _ qalRxSxKg
qeR, T, feR, T, feR]
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such that

0" =q"+G" Vr.s (7.8)

W™ -z =0 ¥ r,s; (7.9)
and

(e )+ (n i) >0 (7.10a)

or in expanded form as

ZZ{ZU (- [F 20— 1.7 (e (0)-[ (k) 1 (k ]} 0 (7.10b)

rs k=1

in® . O is the feasible region defined by the following constraints:

O-D demand conservation constraints:

Ko
> (k)=q" vr,s (7.12)

k=1

Path flow conservation constraints:

fos k)= f"(k) vk,r,s (7.12)
Link inflow conservation constraints:

Yurk)=u,(k) vak (7.13)
Link outflow conservation constraints:

zws ) Va,k (7.14)

Node flow conservation constraints:

ZvrS = Yurk) Vj=rsrsk (7.15)
aeB(j aeA(j)

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraints:
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rs

utk)=vo(k+z,(k)) Va,r,sk (7.16)
The link state equations:
X, (k+1)=x,(k)+u,(k)-v,(k) va,k (7.17a)
or
x,(k+1)=x,(k)+u,(k+1)-v,(k+1) Va,k (7.17b)
(6.344a) is forward formula, (6.34b) is backward formula.

Path-link flow incidence constraints:

Ko
uf(n)=>>>f kpx van (7.18)

rs p k=1

where §%" e {0,1}is defined as:

rsa

if traffic departing origin r at any time interval k

SPn 1 heading for destination s on path p arrivesat link a (7.19)
~ during the nth time interval.

0 otherwise

Nonnegative constraints:

f*(k)=0, f°(k)=0,ul(k)>0, Vk,r,s,ap (7.20)

Relaxation for VI Problem

At each relaxation, we temporarily fix: 1) Actual travel time ra(k)in the link flow
propagation constraints asz, (k); 2) Actual travel time z,[k+ 7" (k)| as z,[k + 7" (k). At
each relaxation, the time-space network is fixed with fixed link flow propagation constraints
and fixed time dependent O-D demand.

Via relaxation, the V1 cost term becomes 77 (k) andz"(k), where
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Ko

75 (k)= 7, (n)s (7.21a)

k=1 a
=z, (K)+z, (k+7, ())+ -+ 7, (k+7,70 () (7.21b)
where p = (al,az, ~~~~~~ aﬁ), a,is the link number of path p of O-D pair rsattime k, and
7% (k) = min{p™ (k)= 77 (k) +c, (k + 7 (K))} vr,s,k (7.21c)
p

Optimization Problem for VI problem
An optimization problem which is equivalent to the discrete VI under relaxation can

thus be formulated, as follows:

S ] o

p

Ko
minZ =22,

k=1 rs

in®, where f!°denotes the path flow vector f without component f°(k), f'"denotes the

path flow vector f without component f ™ (k).

Algorithm
The algorithm for solving the MS DUOSDTRC model is summarized as follows.
Step 0: Mode Split Initialization. Finding the static shortest paths over the auto network and
calculate the initial demand share qff) and q§g> based on (7.2). Set mode split

iteration counter M := 0. Set a mode split iteration convergence criterion &

mode *
Step 1: Departure Time Initialization.

Set an initial feasible solution of[f rS(‘))(k)]. Computek,,, = n@ax{;rrs}, where 7" is the static
rs

minimum travel time of O-Drs. SetK =K, +C-[k..].. Setz®(k)=7,[0], vaeA,

max
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k=1---,K'. Set departure time iteration counterL:=0. Set an departure time iteration
convergence criterion g, .

Step 2: DUO Initialization.

Find an initial feasible solution [fprs(o)(k)]. Set DUO iteration counter| := 0. Set DUO iteration
convergence criterion g, -

Step 3: Relaxation.

Find a new estimation of actual link travel times: 7"(k)=rz,[x:(k)|] , find
7W(k)vaeA k=1--,K' ,where * denotes the solution obtained from the most recent UE
iteration or from DUO initialization. Find 55" (t)and 55"(t).

Step 4: UE Iteration

Step 4.0: UE Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an UE iteration
counterm:=1.

In the first relaxation, set z\(k) equal to free flow travel timez,(0),V a, k=1,..., K. and
perform all-or-nothing assignments. This yields initial path flows fd; (k),v rs, k=1,...,K,.
In other relaxations, reset the most recent UE iteration solution to be consistent with the flow
propagation constrain at the current relaxation, and set them as initial path
flows f({j(k),v r,s, k=1,...,K,, at current relaxation (Initialize the path set PXwith the
shortest path for each O-D pair rs at time k).

Step 4.1: Update. Set 7("(k)equal toz[x"(k)|. Update the first derivative lengths

d ™ (k)(i.e., path cost at current flow) of all of the paths inP%, V r,s.
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Step 4.2: Direction finding for[fprS (k)]. Find the shortest-path '™ (k) from each origin r to
each destination s at k on the basis of z{™)(k). If different from all the paths in the existing
path set in P¥, (no need for path comparison here; just compare d ;"(m)(k), add itto inP¥ and
record dﬁﬁgﬂ(k)' If not tag the shortest among the paths in P% indﬁgg)(k)-

Step 4.3: Move for[fprS (k)] Set the new path flows.

rs

£ ) = ma{o, £ -2 [ () ~d o )| ¥ 15 pEPE PRI (7.29)

where

rsim az—gm)(k
sp( )(k)zggax m)(k),vpeprg (7.24)

~~—

a and k denotes time-space links that are on either p or ﬁg“)(k), but not on both, and «" is

a scalar step-size modifier.

Also,
fﬁ(:a(l)) _f" (k)— Z fprs(m+l)(k) vr,s, k (7.25)
peP,};
p=Pys (k)

Assign the flows on the trees and find the link flowsu ™ (k).

Step 4.4: Convergence Test for UE Iteration.

If £ (k) = oM (k), set f20(k) = 5™ (k), 2" (k) = x™*)(k), go to Step 5; otherwise,
setm=m+1, go to Step 4.1.

Step 5: Convergence Test for DUO Iteration. If7!)(k)= 7(k), go to step 6; otherwise,
set 1=1+1 and go to Step 3.

Step 6: Departure Time Iteration

Step 6.1: Direction finding for [f ™ (k)]. Find the average generalized path cost d"")(k)of
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the shortest paths for all the time-dependent O-D demand. Tag the average generalized path

cost d"of the shortest paths of the shortest generalized time-dependent O-D demand for
all the O-D pairs.

Step 6.2: Move for|f * (k)| Set the new time-dependent O-D demand.

L
f“(“”(k)=ma>{0, ffs(”(k)—rsff)(k)(d (k) —d=H) | v r,s, £ (k) £ (7.26)
S
Where
or, (k)
s*U(k)= 2 vr,sk 7.27
(k) ;;axa(k) (7.27)

a and k denotes time-space links on either shortest paths of the non-shortest generalized

time-dependent O-D demand f™(k) or shortest paths of the shortest generalized

time-dependent O-D demand f" of the O-D pair, but not on both. «" is a scalar step-size

modifier. Also,

fottt =g~ > fet(k) vr,s (7.28)

£1% (k) i

Step 6.3: Convergence Test for Departure Time Iteration. If f ") (k)= f *=Y(k), go to

Step 7; otherwise, set L:=L+1 and go to Step 2.

Step 7: Convergence Test for Mode Split Iteration. Calculate qi:") and dg\")based on

M +1)
S

d ., of most recent departure time iteration. IqusM) = q™ stop;orset M :=M +1 and go
to Step 1.

The flowchart of the solution algorithm is shown in Figure 7.1.
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Y

Move for §' (k)
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UE TIteration Init:ﬂization or Reset
Update + dr (k) <

Figure 7-1 Flowchart of the Solution Algorithm
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7.1.3 A Numerical Example

Example 7.1

Below we present an example to validate the above model and algorithm. The network
is show in Figure 7.2. Link 1, 2, 5, 6 are 0.75 mile one lane street. Link 3, 4, 7, 8, 9, 10 are

0.35 mile one lane street. The free flow speed is assumed to be 25 mile/hour. The following

linear travel time function is used to enforce FIFO condition: z,(k)=L, /s, +0.3-x,(k),
where L, is the length of linka,s, is free flow speed, z,(k)is link travel time on link aat
time k, x,(k)is number of vehicles on link a at time k. Six O-D pairs are considered.
The O-D pairs, total O-D demand for each O-D pair, and fixed O-D travel cost for transit are
shown in Table 7.1. Set #=0.1. Five 20 s departure time intervals are specified. For

simplicity we do not use disutility function, so all link and path costs are actual link and path

costs.
1
3| |4 5
2 = >\ 3 )= : > 4
N 10
Figure 7.2 Simulation network for Example 7.1
Table 7-1 O-D pairs, O-D demand, and fixed O-D travel cost for transit

O-D 1-2 14 2-1 2-4 4-1 4-2
g® 50 50 50 50 50 50
a° 5 5 5 5 5 5
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The program of the algorithm was run on a computer with 1.5 GHz frequency processor.
The UE iteration convergence test method was set as a prespecified number m. The DUO

iteration convergence test method was set as

Epuo = maxﬂ Tg')(k)—rg'_l)(kﬂ |a eAk=1--, K},

where| z)(k)- 7" (k)| is the actual travel time difference of link a at time k between

successive DUO iterations. The departure time iteration convergence test method was set as
E4ey = Max{ LK) £ I (K)[[rs e Rx S,k =1+, K, |,

where | f"")(k)— f*Y(k)| is the difference of time-dependent O-D demand of O-D pair

rs at time k between successive departure time iterations. The mode split iteration

convergence test method was set as

Emoge = Max] 4™ — g™ | rs e Rx S},

mode

M| s the difference of passenger car O-D demand of O-D pair rs

where |q"™ —q
between successive mode split iterations.

The operation of the program is shown in Table 7.2. The resultant O-D demand for
each mode and O-D travel impedance is shown in Table 7.3. The corresponding optimal
time-dependent O-D demand is shown in Table 7.4. The assignment horizon K is found to be
14 time increments. Table 7.5a shows the output ofu’(k). Table 7.5b shows the output
ofv(k). Table 7.5¢ shows the output ofu, (k). Table 7.5d shows the output ofv, (k). Table

7.5e shows the output of x, (k). Table 7.5f shows the output of z, (k). Table 7.5g shows the

output of f*(k),c?(k), links on each path and the arrival time interval for each link on a
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path. For conciseness, only Table 7.5g is attached to this dissertation.

Table 7-2 Convergence criterion and computation time for Example 7.1

Eye orm & dep € mode Mode Split iterations | Computation time

€puo

(minute)

0.01 0.1 0.01 3 38

Table 7-3 The resultant O-D demand for each mode and O-D travel impedance

0" o we
O-D
1-2 28.8043 1.9328 21.1957 1.9328
1-4 30.0372 0.9143 19.9628 0.9143
2-1 30.0248 0.9247 19.9752 0.9247
2-4 28.9601 1.8050 21.0399 1.8050
4-1 30.0179 0.9304 19.9821 0.9304
4-2 27.7318 2.8058 22.2682 2.8058
Table 7-4 Resultant time-dependent O-D demand
O-D Departure time interval k

1 2 3 4 5
1-2 21.9154 3.7810 2.1850 0.9218 0
1-4 12.7305 3.9368 2.2727 6.4509 4.6460
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2-1 14.5340 3.9080 1.7738 6.0916 3.7170

2-4 10.3225 3.8005 4.0613 5.0701 5.7050
4-1 15.6909 3.9392 2.2759 4.6597 3.4516
4-2 8.6144 4.5720 3.8735 5.7226 4.9480

Table 7-5 The resultant path flow and path travel time for example 7.1

Path O | D| k | Path Path Links on Arrival time for each link

number flow | time | the path on the path

This table is appendix 9 of this thesis.

We take the following examples to verify that the solution satisfy the constraints and
conditions of MS DUOSDTRC.
Total O-D demand conservation constraints (7.8):
q%2 = g + §'2=28.8043+21.1957=50
Mode O-D travel cost constraints (7.9):
2 =1.9328= W*¥

Mode O-D demand conservation constraints (7.11):
9= 2 Q)+ £12(2)+ £2(3)+ £2(4)+ £2(5)

=21.8315+3.8000+2.2151+0.9567+0

=28.8043

Path flow conservation constraint (7.12):

f*(4)=f*(4)+ f*(4) =1.1021+3.9687 = 5.0708
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Link inflow conservation constraint (7.13):
u2*(2)=3.8197=u,4(2)

Link outflow conservation constraint (7.14):
vZ*(5)=3.8197=v,(5)

Node flow conservation constraint (7.15):

> vE(5) Zv = v*(5) = v,(5) =3.8197

aeB(3) aeB(3
Z(:l)Jf Zu = u¥(5) = u,(5) =3.8197
acA(3 aEA

Link flow propagation constraint (7.16):
uZ(2)=v*(2+17,(2))=v*(5)=3.8197

where 7,(2) =0.9106 minutes. For a time increment of 20 seconds, 7,(2)=3.

The link state equation (7.17b):

X (5) = X5 (4)+ g (5)— v, (5)= 10.5865+3.5340-3.8197=10.3008

The actual travel times on the used paths from origin 2 toward destination 4 departing
at time increment 4 are as follows:

c*(4)= 7,(4)+ 7,(4+7,(4)=7,(4)+ r5(7)=0.9106+0.8751=1.7857 = 1. 8 minutes

Similarly, we have cfj‘ (k) =~ 1. 8 minutes, V p,k. They are nearly equal, which is
consistent with the DUOSDTRC condition.

In order to decrease the computation time of each departure time iteration, the
convergence criterion for departure time iteration is set as a relatively large value (&,,=0.1).
The resultant actual path travel times of the same O-D rsare approximately equal but not

exactly equal, and 7, is set as the average of them. If &, is sufficiently small, the actual
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path travel times of the same O-D rswill be exactly equal. In real implementation of the
algorithm, &, can be decreased when the mode split iteration is nearly convergent.

As can be checked in the same way, all the solution output satisfies the constraints and
conditions for MS DUOSDTRC problem. This verifies the rationale of the above model and

solution algorithm.

7.2 Combined Trip Distribution and Dynamic User Optimal Simultaneous
Departure Time and Route Choice (TD DUOSDTRC) Problem

In this section, we present a combined trip distribution and dynamic user optimal
simultaneous departure time and route choice model (TD DUOSDTRC) for a general
transportation network. We assume that the number of travelers to be departed from each
origin is given and fixed and the number of travelers to be attracted to each destination is also
given and fixed. The number of travelers from each origin to each destination (or the demand
of each O-D pair) is a function of the actual travel cost of the O-D pair and needs to be solved

for.

7.2.1 TD DUOSDTRC Model

LetO, be the trip generation in origin rand D,be the trip attraction in destinations.

Let " be the total demand of O-D pairrs. It follows that:

>q.=0, Vr (7.29)
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>d.=D, Vs (7.30)
Assume the total demand of O-D pairrs is given by the doubly constrained gravity
model defined by
0, = A B exp(— y;rrfm) vr,s; (7.31)
where 7. is the (general) travel cost incurred for all passenger car drivers of O-D pair
rsdeparting at all time interval.
The dynamic User Optimal simultaneous departure time and route choice condition

over auto network can be written as

ny(t)-7~t)=0 Vprs; (7.32a)
£ @)-==(t)]=0 ¥ pr.s; (7.32b)
% t)-z >0 VY r,s; (7.32c)

fo ™ )-z5]=0 v rs (7.32d)
fr)=0 Vopr,s; (7.32¢)
fet)>0V r,s; (7.32f)

where the asterisk denotes that the travel disutility is computed using DUOSDTRC
time-dependent demand and route flows.
Conditions (7.32) is equivalent to the following variational inequality problem

[ @01 @) + (0 ff) - £ @ e > 0 (7.330)

or in expanded form as

{<ZZU [f“ — 5t ]> <Zzz’s [ f's()]>}dtzo (7.33b)

s p

The combined trip distribution and dynamic user optimal simultaneous departure time
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and route choice problem (TD DUOSDTRC) can be expressed as follows.
Findg e R £ e RI*® and f e RI™*, such that equation (7.29), (7.30), (7.31), and

variational inequality (7.33) hold simultaneously.

7.2.2 Solution Algorithm for TD DUOSDTRC Model

To solve the TD DUOSDTRC problem, the continuous VI formulation is discretized
with each time interval being the assignment increment. The estimated actual travel time on
each link ais a multiple of the time increment and is fixed at each time increment, i.e.
z.(k)=i if (i-05)At<r,(k)<(i+0.5)At (7.34)
whereiis an integer and 0<i<K, Atis time increment. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the assignment increment smaller.

The TD DUOSDTRC problem is to find

— [RxS| pIPIxKe  F _ qalRxS|xK,
qeRT, feR T, feR,

such that
>a© =0, vr (7.35)
qufs =D, Vs (7.36)
q° =AB,expl-yz%,) Vs (7.37)
and
(i1 )+ (n [f-f) >0 (7.38a)

or in expanded form as
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rs k=1

in® . O is the feasible region defined by the following constraints:

O-D demand conservation constraints:

Ko
> k)=q"° vr,s
k=1

Path flow conservation constraints:

fos k)=f"(k) Vk,r,s

Link inflow conservation constraints:

g‘uf(k)z u,(k) vak

Link outflow conservation constraints:
ZV“ ) Va,k

Node flow conservation constraints:

ZvrS = Yurk) Vj=rsrsk

aeB(j aeA(j)

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraints:
uf(k)=vi(k+z,(k)) Vva,r,sk
The link state equations:
x,(k+1)=x,(k)+u,(k)-v,(k) Vva,k
or

X,(k +1)=x,(k)+u,(k+1)-v,(k+1) Va,k

(7.45a) is forward formula, (7.45b) is backward formula.
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Path-link flow incidence constraints:

ut(n)= zzg frkpr van (7.46)

rs p k=1

rsa

where 8"  {0,1}is defined as:

if traffic departing origin r atany timeinterval k

SPn 1 heading for destination s on path p arrivesat link a (7.47)
= during the nth time interval.

0 otherwise

Nonnegative constraints:

q°(k)=0,f*(k)=0, f°(k)=0,ur(k)=0, Vk,r,sa,p (7.48)

Relaxation for VI Problem
At each relaxation, we temporarily fix: 1) Actual travel time z,(k)in the link flow
propagation constraints asz, (k); 2) Actual travel time z,[k+z" (k)| as z,[k + 7" (k)]. At

each relaxation, the time-space network is fixed with fixed link flow propagation constraints
and fixed time dependent O-D demand.

Via relaxation, the VI cost term becomes (k) andz"(k), where

Ko
7y k)= 7)o (7.492)
k=1 a
=7, (k)+ T, (k + z_'al (k))+ T, (k + ﬁpra(ﬁfl) (k)) (7.49b)
where p = (al,az, ------ aﬁ), a,is the link number of path p of O-D pair rsattime k,and
7" (k)= min{p? (k)= (k) + ¢, (k + 7= (K))} wr,s,k (7.49c)
p

Optimization Problem for VI problem

An optimization problem which is equivalent to the discrete VI under relaxation can
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thus be formulated, as follows:

n;lfl nZ= iZ{ZLﬁS(k) My (a); f )da)JrJ;Jf " z" (aJ; e )da)} (7.50)
’ k=1 p

in® , where f°denotes the path flow vector f without component f °(k), f"denotes the

path flow vector f without component f (k).

Algorithm

The algorithm for solving the TD DUOSDTRC model is summarized as follows.
Step 0: Trip Distribution Initialization. Find shortest paths for each OD pair based on free
flow travel time. Solve doubly constrained gravity model (7.37) constrained by (7.35) and
(18.36) to get qr(f). Set trip distribution iteration counter D := 0. Set a trip distribution iteration
convergence criterion &, .
Step 1: Departure Time Initialization.
Set an initial feasible solution of[f rs(O)(k)]. Computek,,, = rr\lgsx{ﬂ“}, where 7" is the static
minimum travel time of O-Drs. SetK =K, +C-[k..].. Setz®(k)=7,[0], vaeA,
k=1---,K'. Set departure time iteration counterL:=0. Set an departure time iteration
convergence criterion &, .
Step 2: DUO Initialization.
Find an initial feasible solution[fp“(o)(k)J. Set DUOQ iteration counter| := 0. Set DUO iteration
convergence criterion gy, -
Step 3: Relaxation.

Find a new estimation of actual link travel times: 7!)(k) =z, [x’(k)], find 7"(k) vVae A,
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k=1---,K' , where * denotes the solution obtained from the most recent UE iteration or
from DUO initialization. Find 55")(t)and s5")(t).
Step 4: UE Iteration
Step 4.0: UE Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an UE iteration
counterm:=1.

In the first relaxation, set (k) equal to free flow travel timez,(0),v a, k=1,..., K.
and perform all-or-nothing assignments. This yields initial path flows f k), v r,s,
k=1,...,K,. In other relaxations, reset the most recent UE iteration solution to be consistent
with the flow propagation constrain at the current relaxation, and set them as initial path
flows f5(k),V r,s, k=1,...,K,, at current relaxation (Initialize the path set Pgwith the
shortest path for each O-D pair rs at time k).
Step 4.1: Update. Set 7™ (k)equal to 7™ [x(" (k)]. Update the first derivative lengths
d 5™ (k)(i.e., path cost at current flow) of all of the paths inP%, V r,s.
Step 4.2: Direction finding for | f *(k)]. Find the shortest-path ) (k)from each origin r to
each destination s at k on the basis ofrgm)(k). If different from all the paths in the existing
path set in P¥, (no need for path comparison here; just compare d {f(m)(k), add it to inP¥ and
record dﬁmk). If not tag the shortest among the paths in P* indﬁg“)(k)'
Step 4.3: Move for | (k)|. Set the new path flows.

n

£ ) = ma{o, 00~ @ (A7) )| v 15 PP D2 B (K (7.51)
p

Where
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oz k)

S Ls(m)(k) = sz: axa"‘)(k)

a

¥ pePt (7.52)

a and k denotes time-space links that are on either p or ﬁﬁsm)(k), but not on both, and «" is
a scalar step-size modifier.

Also,

faid = £o00)- 2 m0k)  vrsk (7.53)

Assign the flows on the trees and find the link flows u{™? (k).

Step 4.4: Convergence Test for UE Iteration.

If £ (k)= £ oM (k), set £ (k)= f ™D (k), k" (k)= x"(k), go to Step 5; otherwise,
p a p a

Pr a

setm=m+1, goto Step 4.1.

Step 5: Convergence Test for DUO Iteration. 1f7\" (k)= 7™ (k), go to step 6; otherwise,
set I =1+1 and go to Step 3.

Step 6: Departure Time Iteration

Step 6.1: Direction finding for|f *(k)]. Find the average generalized path cost d™“)(k)of
The shortest paths for all the time-dependent O-D demand. Tag the average generalized path
cost drfi(n”of the shortest paths of the shortest generalized time-dependent O-D demand for

all the O-D pairs.

Step 6.2: Move for[f " (k)] Set the new time-dependent O-D demand.

it (k)=ma{0, 900~ @) —di)) | s, £2(0) = £ (7.54)

Srs(L) (k) min min

where
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sfS(L>(k)=;zk:Z;a((:)) vr.s,k (7.55)

a and k denotes time-space links on either shortest paths of the non-shortest generalized

time-dependent O-D demand frs(k) or shortest paths of the shortest generalized

rs
min

time-dependent O-D demand f" of the O-D pair, but not on both. «" is a scalar step-size

modifier.

Also,

f rs(L+1) _ ql’S _ Z f r5('—“~)(k) Yr,s (756)

min
£ (k) i

Step 6.3: Convergence Test for Departure Time Iteration. If f *)(k) = f (k) go to
Step 7; otherwise, set L:=L+1 and go to Step 2.

Step 7: Solve doubly constrained gravity model (7.37) constrained by (7.35) and ( 8.36)

(D+1)

based on d ., of most recent departure time iteration to getq,

min

Step 8: Convergence Test for Trip Distribution Iteration. 1fq'® = q!°*), stop; or set

rs

D:=D+1 and go to Step 1.

The flowchart of the solution algorithm is shown in Figure 7.3.

176



Trip Distribution Initialization

v

Departure Time Initialization - Updated q°
DUO Initialization @ Updated f rs(k)_

v

DUO Iteration (Relaxation) -

v

UE Iteration Initialization or Reset

v

Update ( " (k) -

v

Direction finding for f (k)

v

Move for fprs (k)

UE Iteration Convergent?

DUO lIteration Convergent?

Direction finding for ¢ rs (k)

v

Move for ' (k)

Departure Time Iteration Convergent?

Solving doubly constraint gravity

Trip Distribution Iteration Convergent?

Output

Figure 7.3 Flowchart of the Solution Algorithm

177



7.2.3 A Numerical Example
Example 7.2

Below we present an example to validate the above model and algorithm. The network
is show in Figure 7.4. Link 1, 2, 5, 6 are 0.75 mile one lane street. Link 3, 4, 7, 8, 9, 10 are

0.35 mile one lane street. The free flow speed is assumed to be 25 mile/hour. The following

linear travel time function is used to enforce FIFO condition: z,(k)=L, /s, +0.3-x,(k),
where L, is the length of linka,s, is free flow speed, z,(k)is link travel time on link aat
time k, x,(k)is number of vehicles on link a at time k. Six O-D pairs are considered.
The trip generations of each origin and trip attraction of each destination are shown in Table
7.6. Set y=0.01 in equation (). Five 20 s departure time intervals are specified. For

simplicity we do not use disutility function, so all path costs are actual path costs.

»
!

Figure 7.4 Simulation network for Example 7.1

The program of the algorithm was run on a computer with 1.5 GHz frequency processor.
The UE iteration convergence test method was set as a prespecified number m. The DUO
iteration convergence test method was set as
Eouo = max{ 7 (K)- 7!V (k)|[ae Ak =1, K],

where| z{"(k)- 7" (k)| is the actual travel time difference of link a at time k between
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successive DUO iterations. The departure time iteration convergence test method was set as
Eqep = maxﬂ feO(k)- F = (k)[|rse Rx S,k =1,--, KO},

where | f"")(k)— f*Y(k)| is the difference of time-dependent O-D demand of O-D pair

rsat time k between successive departure time iterations. The trip distribution iteration

convergence test method was set as
Eyip = max{ ") —g" Y | rs e Rx s},

P+1) | js the difference of O-D demand of O-D pair rs between

where |g"® —qg"
successive trip distribution iterations.

The operation of the program is shown in Table 7.7. The Resultant g", A., B,,and

rs
min

z,.. are shown in Table 7.8. The corresponding optimal time-dependent O-D demand is
shown in Table 7.9. The assignment horizon K is found to be 14 time increments. Table 7.10a
shows the output ofu’*(k). Table 7.10b shows the output ofv'*(k). Table 7.10c shows the
output of u, (k). Table 7.10d shows the output of v, (k). Table 7.10e shows the output of x, (k).

Table 7.10f shows the output of 7, (k). Table 7.10g shows the output of f *(k),c:*(k), links

on each path and the arrival time interval for each link on a path. For conciseness, only Table

7.10g is attached to this dissertation.

Table 7-6 Trip generation of each origin and trip attraction of each destination

Origin/Destination 1 2 4
O, 110 100 90
D, 105 100 95
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Table 7-7 Convergence criterion and computation time for Example 7.2

Eue Orm | &pu0 Edep Erip Trip Distribution Computation time
iterations (minute)
m=4 0.01 0.1 0.001 |3 120

Table 7-8 Resultant q"°, A., B,,and 7, for Example 7.2

min

Destination A
Origin 1 2 4
0 58.3179 51.6821
1 59.5329
56.6819 0 43.3181
2 0.9970 1.8765 50.3416
48.3174 41.6826 0
4 42.8904
BS
1.1374 1.0000 0.8767

IS

Note: for each O-D pair, the upper value is O-D demand@"”, the lower value in the frame

rs

sy .

Table 7-9 Resultant time-dependent O-D demand

O-D Departure time interval k

1 2 3 4 5
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1-2 51.0196 5.6955 1.6028 0 0

1-4 22.1226 5.0224 1.4006 15.6977 7.4388
2-1 27.5240 5.5006 0.2833 18.7365 4.6374
2-4 17.3334 4.2211 4.6820 9.7373 7.3443
4-1 22.4335 4.1487 0.9010 17.3096 3.5246
4-2 11.7099 5.8088 5.0334 6.5872 12.5434

Table 7-10 The resultant path flow and path travel time for example 7.2

Path O |D| k | Path Path Links on Arrival time for each link

number flow | time | the path on the path

This table is appendix 10 of this thesis.

We take the following examples to verify that the solution satisfy the constraints and
conditions of TD DUOSDTRC.
Trip generation constraint (7.35):
O, =% +q"=58.3179+51.6821==110
Trip attraction constraint (7.36):
D,=q* +q" = 56.6819+48.3174=105
O-D demand equation (7.37):
7% = AB, exp(- 722, )=59.5329*1.0000* exp(— 0.01* 2.0764)=58.3179
O-D demand conservation constraints (7.39):

q?=f2(1)+ f(2)+ £*(3)=50.9542+5.7241+1.6396= 58.3179
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Path flow conservation constraint (7.40):
f2(5)=£,%(5)+ f,*(5) =6.6940+0.6525 = 7.3465
Link inflow conservation constraint (7.41):
2(2)=4.2424=u,4(2)
Link outflow conservation constraint (7.42):
vZ*(5)=4.2424=v,(5)

Node flow conservation constraint (7.43):

Zvrs ZV = v;'(5)

Vy(5) =4.2424

aeB(3) aeB(3
> uz(s) Zu = uX(5) = u,(5) =4.2424
acA(3) acA(3

Link flow propagation constraint (7.44):
uZ(2)=v*(2+17,(2))=v2(5)=4.2424

where 7,(2) =0.9478 minutes. For a time increment of 20 seconds, 7,(2)=3.

The link state equation (7.45b):

Xg (5)=%,(4)+ g (5)— v4(5)= 15.7071+6.6940-4.2424=18.1587

The actual travel times on the used paths from origin 2 toward destination 4 departing
at time increment 3 are as follows:

¢2(3) = 7,(3)+ 75 (3+7,(3)=r,(3) + 7,(7)=1.0215+0.8918=1.9133= 1. 9 minutes
Similarly, we have c2‘(k)=1. 9 minutes, Vpk. They are nearly equal, which is consistent
with the DUOSDTRC condition.

In order to decrease the computation time of each departure time iteration, the

convergence criterion for departure time iteration is set as a relatively large value (&,,=0.1).
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The resultant actual path travel times of the same O-D rsare approximately equal but not

rs

exactly equal, and 7, is set as the average of them. If ¢, is sufficiently small, the actual
path travel times of the same O-D rswill be exactly equal.
As can be checked in the same way, all the solution output satisfies the constraints and

conditions for TD DUOSDTRC problem. This verifies the rationale of the above model and

solution algorithm.

7.3 Combined Trip Distribution Mode Split and Dynamic User Optimal
Simultaneous Departure Time and Route Choice (TD MS DUOSDTRC)
Problem

In this section, we present a combined trip distribution mode split and dynamic user
optimal simultaneous departure time and route choice model (TD MS DUOSDTRC) and its
solution algorithm. The TD MS DUOSDTRC extends the DUOSDTRC route choice model
in two respects: destination, mode, departure time and route over a road network must be
chosen. In TD MS DUOSDTRC problem, the total demand and the demand of each mode of
each O-D pair need to be solved for. At equilibrium of TD MS DUOSDTRC, the same cost
should be incurred for all passenger car drivers of the same O-D pair departing at all time,

and should equal the transformed O-D cost of the transit of the same O-D pair.

7.3.1 TD MS DUOSDTRC Model

LetO, be the trip generation in origin rand D,be the trip attraction in destinations.
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Let 0" be the total demand of O-D pairrs. It follows that:

>.8,=0, Vr (7.57)

>ag.=D, Vs (7.58)

Assume the total demand of O-D pairrs is given by the doubly constrained gravity
model defined by

0. = A B, exp(— ;/;z,f;;) vr,s; (7.59)
where 7. is the (general) travel cost incurred for all passenger car drivers of O-D pair
rsdeparting at all time interval.

For each O-D pairrs, let g™ be the automobile demand and 4" be the transit
demand. Both g™ and §" are variables. Then the following O-D demand conservation
equations hold:

q°=q"+q" Vr,s (7.60)

Assume the share of transit demand is given by the logit modal split function defined
by (7.2). And define the transformed O-D cost for transit W ™ () as shown in (7.3). At
equilibrium, it holds that

rs* rs*
W 7T i

=0 Vrs; (7.61)
The dynamic user optimal simultaneous departure time and route choice condition over

auto network can be written as

ny'(t)-z~({t)=0 ¥ oprs; (7.62a)
= -7~ @t)]=0 vprs; (7.62b)
% (t)-z5 >0 VY r,s; (7.62c)
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fo )z 0)-z5]=0 v rs; (7.62d)
fe(t)=0 Voprs; (7.62e)
fo@t)>0V r,s; (7.62f)
where the asterisk denotes that the travel disutility is computed using DUOSDTRC
time-dependent demand and route flows.
Conditions (7.62) is equivalent to the following variational inequality problem

f, (' O.f0-1 @)+ (= @).[f)- 1V'*(t)]>}it >0 (7.63a)

or in expanded form as

E{<Zzn;s*(t).[ff —f,7 (¢ ]> <Zﬂ“ [frs ¥ (t ]>}dtzo (7.63b)

s p
The combined mode split and dynamic user optimal simultaneous departure time and

route choice problem (TD MS DUOSDTRC) can be expressed as follows.

Findq € R™* £ e R®® and T e R such that condition (7.57)-(7.61) and variational

inequality (7.63) hold simultaneously.

7.3.2 Solution Algorithm for TD MS DUOSDTRC Model

To solve the TD MS DUOSDTRC problem, the continuous VI formulation is
discretized with each time interval being the assignment increment. The estimated actual
travel time on each link ais a multiple of the time increment and is fixed at each time
increment, i.e.

7,(k)=i if (i-0.5)At<r,(k)<(i+0.5)At (7.64)

a
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whereiis an integer and 0<i <K, Atis time increment. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the assignment increment smaller.

The TD MS DUOSDTRC problem is to find

qe R feRP* o feRPK such that

20,=0, vr (7.65)
st,s =D, Vs (7.66)
0. = ABexpl-yrr) Vs (7.67)
q°=q"+q4" Vr,s (7.68)
W™ -z =0 Vs (7.69)
and
(w fi-t)+(n [F-1) 20 (7.70a)

or in expanded form as

ZZ{ZU (- [£700= £ () 2 (i)-[() - £ (k ]} 0 (7.70b)

rs k=1

in® . O is the feasible region defined by the following constraints:

O-D demand conservation constraints:

Ko
> (k)=q" vr,s (7.71)
k=1

Path flow conservation constraints:

Zfrs k)= f=(k) Vk,r,s (7.72)

Link inflow conservation constraints:
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>ul(k)=u,(k) vak (7.73)

rs

Link outflow conservation constraints:

dvi(k)=v,(k) vak (7.74)

Node flow conservation constraints:

dSvik)= dur(k) Vj=rsrs;k (7.75)
) )

aeB(j acA(j

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraints:

uf(k)=vS(k+z,(k)) Va,r,sk (7.76)

The link state equations:
X, (k+1)=x_ (k)+u,(k)-v (k) Vva,k (7.77a)
or
x,(k+1)=x,(k)+u,(k+1)-v,(k+1) Va,k (7.77b)
(7.77a) is forward formula, (7.77b) is backward formula.

Path-link flow incidence constraints:

uf(n):ZZi frkpr van (7.78)

rs p k=1

where §%" e {0,1}is defined as:

rsa

if traffic departing origin r at any timeinterval k
1 heading for destination s on path p arrivesat link a

S = (7.79)
during the nth time interval.
0 otherwise
Nonnegative constraints:
f*(k)=0, f°(k)=0,ul(k)=0, Vk,r,s,ap (7.80)
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Relaxation for VI Problem

At each relaxation, we temporarily fix: 1) Actual travel time z,(k)in the link flow
propagation constraints asz, (k); 2) Actual travel time z,[k+z" (k)| as z,[k + 7" (k). At
each relaxation, the time-space network is fixed with fixed link flow propagation constraints
and fixed time dependent O-D demand.

Via relaxation, the V1 cost term becomes 7" (k) and z"™(k), where

Ko
7y (k)= 7. (n)s%" (7.81a)
k=1 a
=1, (k) +7, (k+7, (k) + 7, (k+ 757 (k) (7.81b)
where p = (al,az, ------ aﬁ), a,is the link number of path p of O-D pair rsattime k, and
7" (k)= mpin{gzﬁ,;s (K):=n2(K)+c,(k+72K))} vr,sk (7.81c)

Optimization Problem for VI problem
An optimization problem which is equivalent to the discrete VI under relaxation can

thus be formulated, as follows:

”zénz=Kiz{zﬂ”““)n:f(w:f;%w+£“(”ﬂ“<w;f“)dw} (7.82)
' P

k=l rs
in®, where f°denotes the path flow vector f without component f°(k), f"denotes the

path flow vector f without component f (k).

Algorithm

The algorithm for solving the TD MS DUOSDTRC model is summarized as follows.
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Step 0: Trip Distribution Initialization. Find shortest paths for each OD pair based on free
flow travel time. Solve doubly constrained gravity model (7.67) constrained by (7.65) and
(8.66) to getqr(f). Set trip distribution iteration counter D := 0. Set a trip distribution iteration

convergence criterion &, -

Step 1: Mode Split Initialization. Finding the static shortest paths over the auto network and
calculate the initial demand share g and G based on (7.2). Set mode split iteration

counter M :=0. Set a mode split iteration convergence criterion &

mode *

Step 2: Departure Time Initialization.

Set an initial feasible solution of[f rs((J)(k)]. Computek,,, = n@ax{;r“s}, where 7" is the static

minimum travel time of O-Drs. SetK =K, +C-[k.]. . Set7?(k)=7,[0], VaeA
k=1---,K'. Set departure time iteration counterL :=0. Set an departure time iteration
convergence criterion g, .

Step 3: DUO Initialization.

Find an initial feasible solution [fprs(‘))(k)]. Set DUO iteration counterl := 0. Set DUO iteration
convergence criterion g, -

Step 4: Relaxation.

Find a new estimation of actual link travel times:70(k)=r,|x:(k)], find 7"(k) Vae A,
k=1---,K' , where * denotes the solution obtained from the most recent UE iteration or
from DUO initialization. Find 5*")(t)and 55')(t).

Step 5: UE Iteration

Step 5.0: UE Initialization. Compute and reset the inner initial feasible solution to be
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consistent with the flow propagation constrain at the current relaxation. Set an UE iteration
counterm:=1.

In the first relaxation, set z"(k) equal to free flow travel timer,(0),v a, k=1,..., K. and
perform all-or-nothing assignments. This yields initial path flows f (k),v rs, k=1,...,K,.
In other relaxations, reset the most recent UE iteration solution to be consistent with the flow
propagation constrain at the current relaxation, and set them as initial path
flows f({i(k),v r,s, k=1,...,K,, at current relaxation (Initialize the path set P,'gwith the
shortest path for each O-D pair rs at time k).

Step 5.1: Update. Set 7\™(k)equal toz™[x(™(k)]. Update the first derivative lengths
d ™ (k)(i.e., path cost at current flow) of all of the paths inP%, V r,s.

Step 5.2: Direction finding for[fprS (k)]. Find the shortest-path '™ (k) from each origin r to
each destination s at k on the basis ofrgm)(k). If different from all the paths in the existing
path set in P¥, (no need for path comparison here; just compare d ;"(m)(k), add it to inP¥ and
record d5§g>(k)- If not tag the shortest among the paths in P% indﬁ&m)(k).

Step 5.3: Move for[fprS (k)] Set the new path flows.

f;S<m+1><k>=ma{°' (0 i - || v rsperlipeplil) @89
p
Where
o™ (k)
rs(m) k)= a Y pk 7.84
0~ LT S e 7o

a and k denotes time-space links that are on either p or ﬁf;“)(k), but not on both, and «" is

a scalar step-size modifier.
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Also,

fimd = £75( Z fremi(k)  vr,s,k (7.85)

pEPrs
p#Prs (k)

Assign the flows on the trees and find the link flowsu{™? (k).

Step 5.4: Convergence Test for UE Iteration.

If £ (k) = oM (k), set £,20(k) = 5 (k), *1 (k) = x™*)(k), go to Step 6; otherwise,
setm=m+1, go to Step 5.1.

Step 6: Convergence Test for DUO Iteration. If7\" (k)= 7! (k), go to step 7; otherwise,

set I =1+1 and go to Step 4.

Step 7: Departure Time Iteration

Step 7.1: Direction finding for|f *(k)|. Find the average generalized path cost d™“)(k)of

the shortest paths for all the time-dependent O-D demand. Tag the average

rs(L)
min

generalized path cost d .-’ of the shortest paths of the shortest generalized

time-dependent O-D demand for all the O-D pairs.

Step 7.2: Move for | f *(k)|. Set the new time-dependent O-D demand.

L

ffS“*”(k):ma{O’f“(”(k)‘ rs(OE)(k)(d k) —di) | v s £ () £ (7.80)
S

where

07, (k)

vr,sk (7.87)

a and k denotes time-space links on either shortest paths of the non-shortest generalized

time-dependent O-D demand f”s(k) or shortest paths of the shortest generalized

time-dependent O-D demand f " of the O-D pair, but not on both. «" is a scalar step-size
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modifier.

Also,
f rs(L+1) _ qI‘S _ Z f rS(L+1)(k) vr,s (788)

min
£ (k) fin

Step 7.3: Convergence Test for Departure Time Iteration. If f *") (k)= f *Y(k), go to

Step 8; otherwise, set L:=L+1 and go to Step 3.
Step 8: Convergence Test for Mode Split Iteration. Calculate q) and 6™ based on

d’ of most recent departure time iteration. Ifq!™) = q*¥), go to Step 9; orset M =M +1

S

and go to Step 2.
Step 9: Solve doubly constrained gravity model (7.67) constrained by (7.65) and (7.66) based

on d,

of most recent departure time iteration in most recent mode split iteration to

(D+1)

getq

D+1)
s

Step 10: Convergence Test for Trip Distribution Iteration. IfqﬁsD); qﬁ , stop; or set

D:=D+1 andgo to Step 1.

The flowchart of the solution algorithm is shown in Figure 7.5.
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| Trip Distribution Initialization |

| Mode Split Initialization Updated g

| Departure Time Initialization |<—| Updated q" l—

| DUO Initialization |<_| Updated ffs(k)l_

| DUO Iteration (Relaxation) |<7

| UE Iteration Initialization or Reset |

v

| Update d ;5 (k ) -—
v

| Direction finding for f* (k) |

v

| Move for f°(k) |

UE Iteration Convergent?

DUO Iteration Convergent?

| Direction finding for ¢ rs (k) |

v

| Move for f' (k) |

Departure Time Iteration Convergent? No
Mode Split Iteration Convergent? No

Solving doubly constrained gravity
No

rip distribution Iteration Convergent?

Output

Figure 7.5 Flowchart of the Solution Algorithm
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7.3.3 A Numerical Example
Example 7.3

Below we present an example to validate the above model and algorithm. The network
is show in Figure 7.6. Link 1, 2, 5, 6 are 0.75 mile one lane street. Link 3, 4, 7, 8, 9, 10 are

0.35 mile one lane street. The free flow speed is assumed to be 25 mile/hour. The following

linear travel time function is used to enforce FIFO condition: z,(k)=L, /s, +0.3-x,(k),
where L, is the length of linka,s, is free flow speed, z,(k)is link travel time on link aat
time k, x,(k)is number of vehicles on link a at time k. Six O-D pairs are considered.
The O-D pairs and fixed O-D travel cost for transit are shown in Table 7.11. The trip
generation of each origin and trip attraction of each destination are shown in Table 7.12. Set
¢ =0.1 in mode split function (7.2).Set »=0.01 in equation (7.2). Five 20 s departure time
intervals are specified. For simplicity we do not use disutility function, so all link and path

costs are actual link and path costs.

»
!

Figure 7.6 Simulation network for Example 7.3

Table 7-11 O-D pairs and fixed O-D travel cost for transit

O-D 1-2 1-4 2-1 2-4 4-1 4-2
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Table 7-12 Trip generation of each origin and trip attraction of each destination

Origin/Destination 1 2 4
O, 110 100 90
D, 105 100 95

The program of the algorithm was run on a computer with 1.5 GHz frequency processor.
The UE iteration convergence test method was set as a prespecified number m. The DUO
iteration convergence test method was set as

Eouo = max| 70 (k)- 70V (k)|[ae Ak =1---,K},
where|7"(k)-z!"(k)| is the actual travel time difference of link a at time k between
successive DUO iterations. The departure time iteration convergence test method was set as
Eap = Max] O (k)= £V (k)| |rs e Rx S,k =1,---,K,

where | f*)(k)— f (k)| is the difference of time-dependent O-D demand of O-D pair
rs at time k between successive departure time iterations. The mode split iteration
convergence test method was set as

Emose = Max{ g™ — =M ||rs e Rx S},

mode

M) | js the difference of passenger car O-D demand of O-D pair rs

where |q"™) —q
between successive mode split iterations. The trip distribution iteration convergence test
method was set as

Euip = maxﬂ q"~® —g=®¥||rs e Rx S},

where |g™® —g~®¥| is the difference of O-D demand of O-D pair rs between

successive trip distribution iterations.
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The operation of the program is shown in Table 7.13. The Resultant @", A,, B,,and
7~ are shown in Table 7.14 .The resultant O-D demand for each mode and O-D travel
impedance is shown in Table 7.15. The corresponding optimal time-dependent O-D demand
is shown in Table 7.16. The assignment horizon K is found to be 14 time increments. Table
7.17a shows the output ofu’* (k). Table 7.17b shows the output of v'* (k). Table 7.17c shows
the output ofu, (k). Table 7.17d shows the output ofv, (k). Table 7.17e shows the output
of x_(k) . Table 7.17f shows the output of r,(k). Table 7.17g shows the output
of f,°(k),c5 (k). links on each path and the arrival time interval for each link on a path. For

p

conciseness, only Table 7.17g is attached to this dissertation.

Table 7-13 Convergence criterion and computation time for Example 7.3

Eue OrM | &puo E dep E mode Eip Trip Distribution | Computation time
iterations (minute)
m=4 0.01 0.1 0.01 0.001 |3 160

Table 7-14 Resultant ", A, B,,and 7, for Example 7.3

min

Destination A
Origin 1 2 4

0 58.3190 51.6810 59.4842
1 0.9168

56.6808 0 43.3192 50.2966
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Note: for each O-D pair, the upper value is O-D demand@", the lower value in the frame

IS

2 0.9278 1.7889
48.3185 41.6815 0 42.8738

4 0.9223

B 1.1374 0.9998 0.8768

rs
min *

Table 7-15 The resultant O-D demand for each mode and O-D travel impedance

q° 7 min §" w*
O-D
1-2 33.5654 1.9547 24.7536 1.9547
1-4 31.0440 0.9168 20.6370 0.9168
2-1 34.0323 0.9278 22.6485 0.9278
2-4 25.1075 1.7889 18.2117 1.7889
4-1 29.0179 0.9223 19.3006 0.9223
4-2 23.1273 2.7968 18.5542 2.7968
Table 7-16 Resultant time-dependent O-D demand on auto network
O-D Departure time interval k
1 2 3 4 5
1-2 25.5376 4.4060 2.5462 1.0742 0
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1-4 13.1572 4.0688 2.3489 6.6671 4.8017
2-1 14.9969 4.4137 2.5311 7.5389 4.5511
2-4 9.7100 3.2921 1.9012 4.4737 5.7301
4-1 14.0596 3.8073 2.1996 5.2461 3.7049
4-2 6.7213 3.6384 3.0365 5.0974 4.6328

Table 7-17 The resultant path flow and path travel time for example 7.3

Path O|D| k Path Path Links on Arrival time for each link

number flow | time | the path on the path

This table is appendix 11 of this thesis.

We take the following examples to verify that the solution satisfy the constraints and
conditions of TD MS DUOSDTRC.
Trip generation constraint (7.65):
0,=7" +§*=58.3190+51.6810==110
Trip attraction constraint (7.66):
D,=q% +q* = 56.6808+48.3185=105
O-D demand equation (7.67):
7% = AB, exp(— 7%, )=59.4842*0.9998* exp(— 0.01*1.9547)=58.3190
Total O-D demand conservation constraints (7.68):
q%2 = q*? + §'2=33.5654+24.7536=58.3190

Mode O-D travel cost constraints (7.69):
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72 =1.9547 = WY

mln

Mode O-D demand conservation constraints (7.71):
9= f2(L)+ F2(2)+ F2(3)+ 2(4)+ £ 2(5)
= 25.4398+4.4281+2.5812+1.1148+0
= 33.5654
Path flow conservation constraint (7.72):
f2(4)=f(4)+ £°(4) =4.4152+0.0548 = 4.4737
Link inflow conservation constraint (7.73):
uZ*(2)=3.3090=u,4(2)
Link outflow conservation constraint (7.74):
vZ*(5)=3.3090=v,(5)

Node flow conservation constraint (7.75):

>ve(s) Zv = v*(5) = v,(5) =3.3090

aeB(3) aeB(3
Zu“ = Y u,(5) = uy(5) = uy(5) =3.3090
acA(3 acA(3)

Link flow propagation constraint (7.76):
uZ*(2)=v2*(2+7,(2))=v2*(5)=3.3090
where 7,(2) =0.9050 minutes. For a time increment of 20 seconds, 7,(2)=3.
The link state equation (7.77b):
Xg(5)= X5 (4)+ Uy (5)— v, (5)= 9.6518+3.3496 — 3.3090 =9.6924
The actual travel times on the used paths from origin 2 toward destination 4 departing

at time increment 4 are as follows:
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c2*(4) = 7(4)+ 7,9(4+ 7, (4)) = 75(4) + 7,,(7)=0.8882+0.8882=1.7764 = 1. 8 minutes

Similarly, we have cf)“ (k) =~ 1. 8 minutes, V p,k. They are nearly equal, which is
consistent with the DUOSDTRC condition.

In order to decrease the computation time of each departure time iteration, the

convergence criterion for departure time iteration is set as a relatively large value (&,,=0.1).

The resultant actual path travel times of the same O-D rsare approximately equal but not

rs
min

exactly equal, and 7 ;. is set as the average of them. If ¢, is sufficiently small, the actual

path travel times of the same O-D rswill be exactly equal. In real implementation of the

algorithm, &, can be set high first and be decreased when the mode split iteration is nearly

convergent.
As can be checked in the same way, all the solution output satisfies the constraints and
conditions for TD MS DUOSDTRC problem. This verifies the rationale of the above model

and solution algorithm.
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Chapter 8: Some Applications of Dynamic User Optimal Route
Choice Model

In this chapter, the dynamic user optimal route choice problem with incident
management (DUOIM) and dynamic user optimal route choice problem integrated with
signal timing system (DUOST) are studied. Section 8.1 presents the DUOIM model and
development of its algorithm. Section 8.2 presents the DUOST model and development of its

algorithm.

8.1 Dynamic User Optimal Route Choice Problem with Incident Management
(DUOIM)

An incident is any nonrecurring event that impedes the flow of traffic. Traffic incidents
annually account for approximately sixty percent of the delay (in vehicle-hours) on our
highways in the country, causing disruption and reduction in road capacities (Sherali and
Subramanian, 1999). The objective of an incident traffic management methodology is to
determine an ideal traffic flow pattern that would minimize total network delay and
congestion ( system optimal) under the effect of traffic incidents or would minimize each
vehicle’s delay (user optimal) under the effect of traffic incidents. Different traffic control and
guidance devices such as variable message signs, traffic signals, ramp metering, or in-vehicle

devices are then employed to force the actual network traffic to be closer to this ideal traffic
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pattern. DTA is particularly appropriate for assessing the impacts of designed incident
scenarios, evaluating the effectiveness of candidate incident management plans, as well as the
impacts of different traffic operation and control strategies, for the analysis period.

Sawaya and Doan et al. (2000) presented a multistage stochastic mathematical model
with recourse to compute and disseminate time-dependent alternate routes around freeway
incidents. Sisiopiku et al. (2007) conducted simulation tests to use the DTA capabilities to
support decision making for incident management on the Birmingham regional network and
the Greater Chicago network using VISTA. Their study includes the impact of the duration of
incident presence, partial closure of the freeway (instead of full closure), the response of
individual drivers to the incidents, and the impact of the dissemination of incident
information. The study confirmed the availability of information on incident presence, along
with availability of alternative routes with residual capacity for rerouting of vehicles around
incident congested locations, could considerably assist in improving incident management
practices. Emphasizing the urgency of traffic incidents, Zografos partitioned the service-time
duration into four phases: detection time, dispatch time, response-vehicle travel-time, and
incident-clearance time (Zografos and Michalopoulos, 1993).

In this section, we study the dynamic User Optimal route choice problem when there
are incidents occurring on some links during the analysis period. If the location and the
lasting time [t,,T,]of an incident are known at the beginning of departure horizon, the
incident is predictable; otherwise, it is not predictable. Under predictable incidents, recourse

or reroute for vehicles is not needed, and the ideal User Optimal route choice flow pattern can
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be achieved on the network avoiding the links during the incident lasting time period. Under
unpredictable incidents, recourse or reroute for vehicles is needed, and the ideal User Optimal
route choice flow pattern can not necessarily be achieved on the network. An ideal of
multi-period routing procedure for unpredictable incidents is briefly presented by Ran and
Boyce (1996b). In this section, a discrete route-based ideal User Optimal route choice model
under predictable incidents is presented. A relaxation with gradient projection algorithm is

presented for the model. A numerical example is given.

8.1.1 Discrete Route-based Variational Inequality (VI) DUOIM Model

To present the discrete VI DUOIM Model, we discretize the time domain with each
time interval being the assignment increment. The estimated actual travel time on each link
ais a multiple of the time increment and is fixed at each time increment, i.e.
7,(k)=i if (i-05)At<r,(k)<(i+0.5)At (8.1)
whereiis an integer and 0<i <K, Atis time increment. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the assignment increment smaller.

Assume the network is empty atk =0, and only travel demands departing within the
departure horizon are considered. Assume an incident occurs on the entrance of link b at k;
and will be cleared atk, . The discrete route-based VI DUOIM Model is

(I ()= ()} 161 () >0 8.2

Or in expanded form, as
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S>3 -7 (160 17 k)= 0

rs p k=1

wheren, f € RI7

77 (k)= 70K+ 2,k + 7V K)] Vp=porii=12,,

p=(rL2,i-s), xe0®
O is the feasible region defined by the following constraints:
Path flow conservation constraint:
Zfrs =f"(k) Vk,r,s
Link inflow conservation constraint:
dur(k)=u,(k) vak
Link outflow conservation constraint;
ZV“ ) Vak

Node flow conservation constraint;

Svik)= Dul(k) Vij=rsrs;k

aeB(j) aeA(j)

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraint:
u(k)=vl(k+z,(k)) Vva,r,sk
The link state equation:
x,(k+1)=x,(k)+u,(k)-v,(k) Va,k
or

x,(k+1)=x,(k)+u,(k+1)-v,(k+1) Va,k

(8.8a) is forward formula, (8.8b) is backward formula.
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Path-link flow incidence constraint:

Ko
W)= S YN kb van

rs p k=1

where 8"  {0,1}is defined as:

rsa

if traffic departing origin r atany timeinterval k
1 heading for destination s on path p arrivesat link a

during the nth time interval.
0 otherwise

5Pkn _

rsa

Nonnegative constraint:
fr(k)>0,ul(k)=0, Vkr,s,a=b,p
ur(k)>0, vr,s,k=1--k,ork =k,,---,K

uP(k)=0, vr,s,k=k;,---,k,

(8.9)

(8.10)

(8.11a)
(8.11b)

(8.11c)

The difference between the discrete route-based VI DUOIM model and VI DUO is that

there is an extra constrain (8.11c) for VI DUOIM model.

8.1.2 Relaxation-Gradient Projection Algorithm for DUOIM

The relaxation with gradient projection algorithm for DUO can be modified to solve

the DUOIM model. At each relaxation, we temporarily fix: 1) Actual travel time ra(k)in the

link flow propagation constraints as 7,(k) ; 2) Actual travel time r,[k+7z"(k)| as

z,lk+7"(k)] and 3) Minimal travel times z*(k) as 7"(k)for each origin and destination.

At each relaxation, the time-space network excluding link b at from k, tok, is fixed with

fixed link flow propagation constraints.

An optimization problem which is equivalent to the discrete VI under relaxation can be
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formulated, as follows:

minZ = iZZ{Lf;s(k)n[f (a); f gs)da)} (8.12)

k=l rs p

in® . where fdenotes the path flow vector f without component f°. @ is the feasible set
defined by (8.3) --- (8.11).

At each relaxation, the VI formulation of DUOIM problem was transformed into a
series of static user equilibrium traffic assignment problems over the time-space network
excluding link b from k,; tok,, which can be solved by Gradient Projection algorithm.

The algorithm for solving the ideal route-based DUOIM route choice model is
summarized as follows.

Step 0: Outer Initialization.

Computek, . = n@gsx{ﬂ“ } where 7" is the static minimum travel time of O-Drs. Set

K =K, +C [k, ].. Set7?(k)=7,[0], va=b, k=1--K"

9k)=17,[0] vk=1--k, and 79k)=M, Yk=k,---.k,, ork=k,,---,K M is a
constant which is bigger enough. Find an initial feasible solution [fprs(")(k)]. Set outer iteration
counter| = 0. Set an outer iteration convergence criterion e, .

Step 1: Relaxation.

Find a new estimation of actual link travel times: 7)(k)=r,[x(k)], Ya=b, k=1---K",
#0(k)=7,[x;(k)} Yk =1, k;,0rk =k,, -, K, where * denotes the solution obtained from
the most recent inner iteration or from outer initialization. Set ?é')(k)z M, Vk =k, K,,
Find 55" (t)and X" (t).

Step 2: Inner Iteration
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Step 2.0: Inner Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an inner iteration
counterm=1.

In the first relaxation, set (k) equal to free flow travel timez,(0),va,va=b,
k=1---K. 7,(k)=7,[0] Vk=1---k,,ork=k,,---,K', and z,(k)=M, Vk=k, -k,
and perform all-or-nothing assignments. This yields initial path flows f({§(k),v r,s,
k=1,...,K,. In other relaxations, reset the most inner iteration solution to be consistent with
the flow propagation constrain at the current relaxation, and set them as initial path
flows f5(k),V r,s, k=1,...,K,, at current relaxation (Initialize the path set Pgwith the
shortest path for each O-D pair rs at time k).

Step 2.1: Update. Set 7™ (k)equal to (™ [x(" (k). Update the first derivative lengths

d ¥ (k) (i.e., path cost at current flow) of all of the paths inP%, V r,s.

Step 2.2: Direction finding. Find the shortest-path p'™(k)from each origin r to each
destination s at k on the basis ofrgm)(k). If different from all the paths in the existing path set
inPY, (no need for path comparison here; just compare d[f('“)(k), add it to in P! and record

dﬁ(m)(k). If not tag the shortest among the paths in P¥ in dﬁ(m)(k).

Step 2.3: Move. Set the new path flows.

f (k) = ma{o, 4 (k) - sffm) W (d ;S(m)(k)—dﬁgm,(k)) vrspeP, p=p”(k) (8.13)
p
Where
rsym afz';m) (k)
57 )(k)zzalzk:ax;’")(k)’v peP (8.14)
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a and k denotes time-space links that are on either p or p'™(k), but not on both, and a" is
a scalar step-size modifier.
Also,

fp:H—l) = f rs Z f rs( m+1 vp cP rs’ p = prs (k) (815)

pEPrs
P#Prs (k)

Assign the flows on the trees and find the link flowsu ™ (k).

Step 2. 4: Convergence Test for Inner Iteration.

Ko Ko
\/ZZ( (k) - £ (k) /ST 5 (k) >6, setm=m+1, go to Step 2.1;
k rs k

rs

otherwise, set f,*"(k)= f ™) (k), *"(k) = x™*)(k), go to Step 3.
Step 3: Convergence Test for Outer Iteration. If7\"(k)= 7™ (k), stop. The current
solution u(k), v®(k), x®(k) isin anear optimal state; otherwise, set 1 =1+1 and go to

a a

Step 1.

8.1.3 A Numerical Example

Example 8.1

An example is presented below to validate the above model and algorithms. The
configuration of the network is shown in Figure 8.1. In the network, each link is assumed as
an one-lane street with a length of 0.5 mi. The free flow speed is assumed to be 25 mile/hour.
The following linear travel time function is used to enforce FIFO condition:
7,(k)=L,/s; +0.3-x,(k), where L,is the length of linka,s, is free flow speed, z,(k)is

link travel time on link aattime k, x,(k)is number of vehicles on link a attime k. Four
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O-D pairs are considered. Five intervals of 20 seconds are specified. The OD flows are 10
vehicle units per time interval. The O-D pairs and the time-dependent O-D demand are
shown in Table 8.1. In this example, the departure horizon is 5 time increments, and the time
increment is 20 seconds. Assume an incident occurs at the entrance of link 11 at interval 9

and is cleared at interval 12.

Figure 8.1 Simulation Network with Incident for Example 8.1

Table 8-1 O-D pairs and time-dependent O-D demand for Example 8.1

O-D Departure time interval k
1 2 3 4 5)
1-9 10 10 10 10 10
9-1 10 10 10 10 10
3-7 10 10 10 10 10
7-3 10 10 10 10 10
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The program of the algorithm was run on a computer with 1.5GHz frequency processor.
The inner iteration (GP algorithm) convergence test method was set as a pre-specified
numbern . The outer iteration (Relaxation) convergence test method was set as
max{ (k)= !V (K)[Jae Ak =1, K]
where| z{"(k)-z!"*(k)| is the actual travel time difference of link a at time k between

successive relaxations. The operation of the program is shown in Table 8.2.

Table 8-2 Convergence criterion and computation time for Example 8.1

Inner iteration

convergence criterion

Outer iteration

convergence criterion

Total relaxations

Total computation

time (minute)

n=4

0.001

16

7.1

The assignment horizon K is found to be 21 time increments. Table 8.3a shows the
output of u’(k). Table 8.3b shows the output of v’ (k ). Table 8.3c shows the output ofu, (k).
Table 8.3d shows the output of v, (k). Table 8.3¢ shows the output of x, (k). Table 8.3f shows

the output of 7, (k) . Table 8.3g shows the output of f*(k), ci*(k), links on each path and the

arrival time interval for each link on a path. For conciseness, only Table 8.3g is attached to

this dissertation.

Table 8-3 The resultant path flow and path travel time for example 8.1

Path O | D| k | Path Path Links on Arrival time for each link

number flow | time

the path on the path

This table is appendix 11 of this thesis.
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We take the following examples to verify that the solution satisfy the constraints and
the dynamic User Optimal route choice with incident management conditions.

Path flow conservation constraint is automatically satisfied:

f20)=1°)+ £,°1)+ £20)+ £,°0)+ £°@Q)+ £°(1)
=3.4259+1.8491+3.2407+1.4787+0.0028+0.0028
=10

Link inflow conservation constraint (8.4):
u(10)+u*(10)=2.4076+1.4814=3.8890=u, (10)

Link outflow conservation constraint (8.5):
ve'(14)+v,*(14)=2.4076+1.4814=3.8890=v,(14)

Node flow conservation constraint (8.6):

DvE(K)= D v, (k) =vg(8)+vy,(8)+V,(8)=4.9073+0+4.9076=9.8149

acB(6) acB(6)

Sul(k)= > u,(k)=uy(8)+uy,(8)+uy(8)=3.4255+2.9630+3.4263= 9.8148
)

acA(6 acA(6)

Link flow propagation constraint (8.7):
ut(10)=v;*(10+ 7,(10))=v.* (14)=2.4076
Ug?(10)=v*(10 + 7, (10))=v;*(14)=1.4814
where 7,(10)=1.2388 minutes. For a time increment of 20 seconds, 7,(10)=4.
The link state equation (8.8b):
X5 (10)=X,(9)+ U, (10) - v, (10)= 3.8889+3.8889 0 = 7.7778
Incident constrain (8.11c):

us(k)=0, vr,s,k=9,---12
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The actual travel times on the used paths from origin 1 toward destination 9 departing
at time increment 1 are as follows:
¢’(1)=
7o)+ 735 (L4 75 (1)) + 75 (14 7 (1) + T (14 7 (D)) + 70 1+ 75 (1) + 7y (L4 75 (1)) + Top (L4 74 (1) + T (14 7 (2))
=75 (1)+ 75 (5) + 7,5(9) + 7,, (13)
=1.2244+1.2170+1.2170+1.2244
= 4.8829 minutes

Similarly, we have c¢}’(1)= c¢*(1)=c}’(1)= c2’(1) = ¢;°(1) = 4.8829 minutes. They are
nearly equal.

As can be checked in the same way, all the solution output satisfies the constraints and
the dynamic user optimal route choice with incident management conditions. This verifies the

validity of the solution algorithm.

8.2 Dynamic User Optimal Route Choice Problem Integrated with Signal
Timing System (DUOST)

Since most intersections are signalized, it is important to develop DUO model
integrated with signal timing system. Unfortunately, our literature view shows that study in
this field is still scarce. Sun et al. (2006) developed a bi-level programming formulation and
heuristic solution approach (HSA) for dynamic traffic signal optimization in etworks with
time dependent demand and stochastic route choice. In the bi-level programming model, the

upper level problem represents the decision-making behavior (signal control) of the system
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manager, while the user travel behavior is represented at the lower level. The HSA consists of
a Genetic Algorithm (GA) and a Cell Transmission Simulation (CTS) based Incremental
Logit Assignment (ILA) procedure. GA is used to seek the upper level signal control
variables. ILA is developed to find user optimal flow pattern at the lower level, and CTS is
implemented to propagate traffic and collect real-time traffic information. Varia and Dhingra
(2004) proposed a dynamic system optimal traffic assignment model for a congested urban
road network with a number of signalized intersections. A simulation-based approach is
employed for the case of multiple-origin-multiple-destination traffic flows. Genetic algorithm
is used to minimize the overall travel cost in the network with fixed signal timing and

optimization of signal timing.

In this section, we present a discrete route-based ideal User Optimal route choice
model integrated with signal timing system at under-saturated condition for a multiple origin
multiple destination road network. A relaxation with gradient projection algorithm is

presented for the model. A numerical example is given.

8.2.1 Discrete Route-based Variational Inequality (VI) DUOST Model
To present the discrete VI DUOST Model, we discretize the time domain with each
time interval being the assignment increment. The estimated actual travel time on each link

ais a multiple of the time increment and is fixed at each time increment, i.e.

z,(k)=i if (i-05)At<z,(k)<(i+0.5)At (8.16)
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whereiis an integer and 0<i <K, Atis time increment. This round-off method is used
only in the flow propagation constraints. The round-off error can be made as small as desired
by making the assignment increment smaller.

We define the incoming legs for each signalized intersection as the streets entering the
intersection. Figure 8.2 shows the incoming legs of the intersection and their network

denotation.

a |
(.

Figure 8.2 Incoming Legs of an Intersection and their Network Denotation

We assume the signal timing for all the signalized intersection are preset and fixed in
the analysis period. We consider the under-saturated situation, in which all vehicles queued
during red time and coming during green time of a cycle can pass the intersection in the same
cycle and no vehicle queued at the end of the cycle. We assume the cycle time, green time
and red time of all the signals are multiples of the time increment. For simplicity we assume a
cycle has two time increments: one for red time and another for green time. Refer to the

(th cycle of link a as the /th cycle of the signal of the intersection of which link a is an

214



incoming leg. Let q;(k)be the number of vehicles queued at the end of the red time
increment of link a. Let qg(k)be the number of vehicles joining the queue or entering the
intersection during the green time increment of link a.

We use the point-queue (PQ) model to evaluate the link travel time for its accuracy in
evaluating link travel time and its respect of First-In-First-Out (FIFO) condition. According
to Nie and Zhang (2005), PQ model is as accurate as Cell Transmission Model (CTM) in
evaluate link travel time. The latter is a finite approximation to hydrodynamic model and is a
benchmark in evaluating link travel time. Since PQ model is a linear model it respects FIFO
condition. Our point-queue model is stated as

[ n@+aen0)s, (e 0)<green
(O, e e O Oy ere .17

q,(t+7,(0)) is the total number of vehicles queued at the exit of link aat (t+z,(0)),
z,(0)is the free flow travel time, S, is the saturation flow rate for link a.
The point-queue model in discrete form is

alg={, OO, (e 0o o)

0)+At+q,(k+7,(0))/S,, (k+7,(0))ered

The equation for the inflow and the queue of link a can be expressed as

9 _
u,(k)={ % (ks i ©)). e+ a_(o)) = green (8.19)
q.(k +7,(0)), (t+7,(0))ered
The equation for the outflow and the queue of link a can be expressed as
r — _ [s} —
v, (k +7,(0) = q;(k+7,(0)-1)+a?(k +7,(0). (t+ a_(0)) € green ©.20)
0, (t+7,(0))e red

In under-saturated situation, we have

215



(k +7,(0)), (t+7,(0))egreen (8.21)

s 0
0)) (t+7.(0)) e red

Assume the network is empty atk =0, and only travel demands departing within the

q,(k +7,(0)= {q;(k +7,(0)-1)

departure horizon are considered. The discrete route-based VI DUOST Model is
(In"()-=" (] (k)£ (k)) > 0 (8.22a)

Or in expanded form, as

ZZi[ﬂ{f* ()-7 ()] t2(k)- 7 ()]> 0 (8.22b)

s kel
wheren, f e R |
o (k)=ni (k) + 7|k +77;“’1)(k)] Vp=prii=12,s;
p=(rL2,i-s), xe® (8.21c)
O is the feasible region defined by the following constraints:
Path flow conservation constraint:

fos k)= f"(k) vk,r,s (8.23)

Link inflow conservation constraint:

Zu“ ) Va,k (8.24)

Link outflow conservation constraint;

zws ) Vak (8.25)

Node flow conservation constraint:

ZvrS = Yurk) Vj=rsrsk (8.26)
aeB(j aeA(j)

where A(j) is the set of links after jand B(j) is the set of links before j .

Link flow propagation constraint:
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u®k)=v:(k+z,(k)) Va,r,sk

a

Inflow and queue equation

u, (k)= {qag (k+7,(0)). (t+7,(0))<green

q;(k+7,(0),  (t+7,(0))< red

Outflow and queue equation

0, (t+7,(0))e red

a

(o) [T O DO (0

Path-link flow incidence constraint:

Ko
W)=Y XY (kb van

rs p k=1

rsa

where §%" e {0,1}is defined as:

if traffic departing origin r atany timeinterval k
1 heading for destination s on path p arrivesat link a

during the nth time interval.
0 otherwise

§pkn —

rsa

Nonnegative constraint:

f=(k)>0,u®(k)>0, Vk,r,sa,p

p

8.2.2 Relaxation-Gradient Projection Algorithm for DUOST

The relaxation with gradient projection algorithm for DUO can be modified to solve
the DUOST model. At each relaxation, we temporarily fix: 1) Actual travel time z,(k)in the
link flow propagation constraints as 7,(k); 2) Actual travel time r,[k+7z"(k) as
z,lk+7"(k)]; and 3) Minimal travel times z"(k) as z"(k)for each origin and destination.

At each relaxation, the time-space network is fixed with fixed signal timing and fixed link
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flow propagation constraints.
An optimization problem which is equivalent to the discrete VI under relaxation can be

formulated, as follows:

minz = izz{ [ f,?)da)} (8.33)

k=1 rs p

in®, where fdenotes the path flow vector f without component f . © is the feasible set
defined by (8.23) --- (8.32).

At each relaxation, the VI formulation of DUOST problem was transformed into a
series of static user equilibrium traffic assignment problems over the time-space network with
fixed signal timing, which can be solved by Gradient Projection algorithm.

The algorithm for solving the ideal route-based DUOST route choice model is
summarized as follows.

Step 0: Outer Initialization.

Computek .., =rr\11§$x{zrs}, where 7" is the static minimum travel time of O-Drs. Set
K =Ky +C-[Kpe]. - Set7?(k)=17,[0] based on (8.18), Va, k=1--,K". Find an initial
feasible solution [ff“’(k)]. Set outer iteration counter | =0 . Set an outer iteration
convergence criterione,, .

Step 1: Relaxation.

Find a new estimation of actual link travel times: 7"(k)=r,[0:(k)], Va=b, k=1--K",
where * denotes the solution obtained from the most recent inner iteration or from outer
initialization. Find 55")(t)and 6% (t).

Step 2: Inner Iteration
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Step 2.0: Inner Initialization. Compute and reset the inner initial feasible solution to be
consistent with the flow propagation constrain at the current relaxation. Set an inner iteration
counterm =1.

In the first relaxation, set (k) equal to free flow travel timez,(0),Va,Va=h,
k=1---,K' , and perform all-or-nothing assignments. This yields initial path
flows f (k),V r,s, k=1,...,K,. In other relaxations, reset the most inner iteration solution
to be consistent with the flow propagation constrain at the current relaxation, and set them as
initial path flows f({i(k),v r,s, k=1,...,K,, at current relaxation (Initialize the path set
PXwith the shortest path for each O-D pair rs at time k).

Step 2.1: Update. Set 7\™(k)equal toz™[q(™(k)]. Update the first derivative lengths
d 5™ (k)(i.e., path cost at current flow) of all of the paths inP%, V r,s.

Step 2.2: Direction finding. Find the shortest-path p'™(k)from each origin r to each
destination s at k on the basis ofrg”‘)(k). If different from all the paths in the existing path set
inP%, (no need for path comparison here; just compare d{f(m)(k), add it to inP¥ and record

df(m)

5) If not tag the shortest among the paths in P¥ in dﬁ(m)(k

)

Step 2.3: Move. Set the new path flows.

fm) (k) = ma{o, f (k) sffm) o (d ;S<m)(k)—dﬁgm,(k)) vrspePp=pm(k) (8.34)
p
Where
ar!™ (k)
seM(k)= 2 /v pe P 8.35
k) Z; (k)" (6:39)

a and k denotes time-space links that are on either p or p'™(k), but not on both, and " is
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a scalar step-size modifier.
Also,

fori = (k)= 267" (k) vpePRip= (k) (8.36)
P!
PP (6)
Assign the flows on the trees and find the link flowsu ™ (k).

Step 2. 4: Convergence Test for Inner Iteration.

Ko Ko
If \/ZZ(fSS(m”)(k)—fp“(m)(k)) Y fE(k) >, setm=m+1, go to Step 2.1;
rs k rs k

otherwise, set " (k)= ™3 (k), 4% (k)= g™ (k), go to Step 3.
Step 3: Convergence Test for Outer Iteration. If 7" (k)= 7" (k), stop. The current

solution u”(k), v®(k), g2(k) isin a near optimal state; otherwise, set I =1+1 and go to

Step 1.

8.2.3 A Numerical Example
Example 8.2

An example is presented below to validate the above model and algorithms. The
configuration of the network is shown in Figure 8.3. In the network, each link is assumed as
an two-lane or one-lane street with a length of 0.5 mi. Links without signal timing include
link 1, 4, 6, 10, 15, 19, 21, and 24. All the other links have signal timing. Links whose signal
is red-green alternation from the 1st time increment include link 2, 3, 5, 9, 12, 13, 16, 20, 22,
and 23. Links whose signal is green-red alternation from the 1st time increment include link 7,

8, 11, 14, 17, and 18. Links whose saturation flow rate is 2 vehicle units/second include link 7,
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8, 11, 12, 13, 14, 17, and 18. All the other links have saturation flow rate of 4 vehicle
units/second. The free flow speed of all the links is assumed to be 25 mile/hour or 36.67
feet/second. We assume links without signal timing have constant link travel time
7,(k)=L,/s; +0.35At, where L,is the length of linka,s, is free flow speed, z,(k)is link
travel time on link aat time k. The link travel times on other links are
defined by equation (8.18), wherez,(0)=L, /s, .

Four O-D pairs are considered. Five 30 s departure time intervals are specified. The
OD flows are 10 vehicle units per time interval. The O-D pairs and the time-dependent O-D
demand are shown in Table 8.4. In this example, the departure horizon is 5 time increments,

and the time increment is 30 seconds.

Figure 8.3 Simulation Network with Signal Timing

221



Table 8-4 O-D pairs and time-dependent O-D demand for Example 8.2

O-D Departure time interval k
1 2 3 4 5)
1-9 10 10 10 10 10
9-1 10 10 10 10 10
3-7 10 10 10 10 10
7-3 10 10 10 10 10

The program of the algorithm was run on a computer with 1.5 GHz frequency
processor. The inner iteration (GP algorithm) convergence test method was set as a

pre-specified number n. The outer iteration (Relaxation) convergence test method was set as

maxﬁ r§'>(k)—7g-1>(k)| lae Ak=1-, K}

where|7"(k)-z!"(k)| is the actual travel time difference of link a at time k between

successive relaxations. The operation of the program is shown in Table 8.5.

Table 8-5 Convergence criterion and computation time for Example 8.2

Inner iteration

convergence criterion

Outer iteration

convergence criterion

Total relaxations

Total computation

time (minute)

n=4

0.000001

13

3.3

The assignment horizon K is found to be 21 time increments. Table 8.6a shows the
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output of u’*(k). Table 8.6b shows the output of v’ (k ). Table 8.6¢ shows the output of u, (k).
Table 8.6d shows the output of v, (k). Table 8.6e shows the output of g (k). Table 8.6f shows
the output ofq? (k). Table 8.6g shows the output of q,(k). Table 8.6hshows the output
ofz,(k). Table 8.6i shows the output of f *(k), c(k), links on each path and the arrival

time interval for each link on a path. For conciseness, only Table 8.6i is attached to this

dissertation.

Table 8-6 The resultant path flow and path travel time for example 8.2

Path O |D| k | Path Path Links on Arrival time for each link

number flow | time | the path on the path

This table is appendix 12 of this thesis.

The following examples are exhibited to verify that the solution satisfy the constraints
and the dynamic User Optimal route choice with signal timing conditions.
Path flow conservation constraint (8.23):
f2(2)=12(2)+ £,°(2)+ £,°(2)
=5.7435+1.3338+2.9227=10

Link inflow conservation constraint (8.24):
ug(9)+u;*(9)=6.8333+6.8333=13.6666=u,(9)

Link outflow conservation constraint (8.25):
vS'(13)+v.*(13)=6.8333+6.8333=13.6666=V, (13)

Node flow conservation constraint (8.26):
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Link flow propagation constraint (8.27):
ugt(9)=v"(9 +7,(9))=v:* (13)=6.8333
U (9)=v(9+7,(9))=v.*(13)=6.8333
where 7,(9)=1.7568 minutes. For a time increment of 30 seconds, 7,(10)=4.
Inflow and queue equation (8.28):
u,(4)=q;(7)=8.6662, for link 2, time 7 < red,
u,(5)=q¢(8)=5.0005, for link 2, time 8< green
Outflow and queue equation (8.29)
v,(7)=0, for link 2, time 7 < red
v,(8)=q:(7)+q?(8)=q,(8)=13.6667, for link 2, time 8 green
The actual travel times on the used paths from origin 1 toward destination 9 departing
at time increment 1 are as follows:
¢’(1)=
7,0+ 7,0+ 7,(0) + 7, 0+ 7 0) + 7, 0+ 7, () + 70 1+ 7, (1) + 7, (14 7, (1) + 7, L+ 7 (1) + 7, (L4 75,(D)
=7,(1)+7,(4)+ 7, (7)+ 7,,(12)
=1.2416+1.2832+1.7416+1.3749
= 5.6413 minutes
Similarly, we have c}’(1)=5.6413 minutes. They are equal.

As can be checked in the same way, all the solution output satisfies the constraints and
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the dynamic user optimal route choice with signal timing conditions. This verifies the validity

of the solution algorithm.
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Chapter 9: Conclusions and Future Research

9.1 Conclusions

In this dissertation, | have made a comprehensive study on dynamic travel choice
problems and have presented a series of variational inequality models and solution algorithms
for them. Problems covered include deterministic dynamic user optimal route (DUQO) choice
problem, stochastic dynamic user optimal route (SDUOC) choice problem, dynamic user
optimal simultaneous departure time and route choice (DUOSDTRC) problem, combined
mode split and dynamic user optimal simultaneous departure time and route choice (MS
DUOSDTRC) problem, combined trip distribution and dynamic user optimal simultaneous
departure time and route choice (TD DUOSDTRC) problem, and combined trip distribution
mode split and dynamic user optimal simultaneous departure time and route choice (TD MS
DUOSDTRC) problem, dynamic user optimal route choice with incident management
(DUOIM) problem, and dynamic user optimal route choice integrated with signal timing
(DUOST) system.

The ideal DUO model describes the ideal user optimal route choice under the
assumption of perfect routing information to roadway users. Combined dynamic travel choice
modeling is built on the basis of the DUO model. In this study, newly developed Relaxation
with F-W algorithms and Relaxation with GP algorithms are proposed for both the link-based
and route-based VI DUO models.

Due to incapability of providing perfect traffic information to road users at any time,
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stochastic factors are introduced in estimating drivers’ perceptions of their travel times, and
as a result, the SDUO model is introduced. In this study, a new link-based VI formulation of
stochastic dynamic user optimal route choice problem and a link-base relaxation with MSA
algorithm are developed. A route-base relaxation with MSA algorithm is also proposed.

In a real-world transportation system, alternative routes are available to the commuters,
and they may choose different departure times and alternative routes, depending on the times
of a day to avoid recurring congestions so as to arrive at destinations within the anticipated
time intervals. The DUOSDTRC is extended from the DUO route choice model under such
an additional assumption that both the departure time and route over a road network must be
chosen simultaneously. In this study, the DUOSDTRC problem and its VI formulation are
integrated. An analytical Relaxation with multilevel GP algorithm is proposed for the
DUOSDTRC model.

In addition to choosing departure time to begin their trip and choosing alternative
routes toward their destinations, people may choose different transportation modes to travel
when both transit and passenger car are available. The combined MS DUOSDTRC extends
the DUOSDTRC route choice model in one respect: transportation mode, departure time and
route must be chosen. When routes from an origin to a destination are congested, people may
choose another destination to fulfill their need. This will alter the trip distributions pattern.
The TD DUOSDTRC extends the DUOSDTRC route choice model in another respect:
destination, departure time and route must be chosen. Based on the travel information

provided, the available travel mode, and the congestion level of the road, people may choose
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different destination, travel mode, departure time and route to fulfill their travel need. The
combined TD MS DUOSDTRC extends the DUOSDTRC route choice model in two respects:
destination, mode, departure time and route must be chosen. In this study, these three
combined dynamic travel choice models and their solution algorithms are developed and the
validations of the model and algorithms are conducted through numerical examples.

The objective of an incident traffic management methodology is to determine an ideal
traffic flow pattern that would minimize total network delay and congestion ( system optimal)
under the effect of traffic incidents or would minimize each vehicle’s delay (user optimal)
under the effect of traffic incidents. The dynamic user optimal route choice with incident
management (DUOIM) accounts for the dynamic user optimal route choice problem under
the influence of the incidents. Since most intersections are signalized, it is important to
develop DUO model integrated with signal timing system (DUOST). In this study, the VI
formulations of both DUOIM and DUOST under unsaturated conditions are developed. A
relaxation with GP algorithm for each model is validated by numerical examples.

Through studies presented in the dissertation, all developed algorithms are proven to be
capable of overcoming the drawbacks of other existing algorithms with the following
functionalities to: (1) find the time-dependent path flows without path enumeration; 2) avoid

time-space network expansion; and 3) treat departure horizon freely.

9.2 Future Research

The potential future research is to consider the development of the models and solution

228



algorithms for combined location choice mode split and dynamic user optimal simultaneous
departure time and route choice problem (LC MS DUOSDTRC). The change of actual travel
impedance among zones may affect the residential or industrial location choice. The
combined LC MS DUOSDTRC extends the DUOSDTRC route choice model with the

assumption that location, mode, departure time and route must be chosen.
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Appendices

Appendix 1 Variational Inequality

Definition of Variational Inequality
Definition 1. Let F:Dc R" — R"be a vector-valued and continuous mapping on a
nonempty, closed and convex set. The variational inequality problem is to find a vector
x" € D such that

<F(x*),x—x*>20 VxeD 1)
where (a,b)=a'b
Theorem 1. Let F:D < R" — R"be a vector-valued and continuous differentiable mapping
on a nonempty , closed and convex set and the Jacobian matrix of F(x) is symmetric and
positive semidefinite. Then there exists a real-valued function Z(x) with VZ(x)= F(x)
such that the solution to variational inequality problem (1) is also the solution to the
optimization problem:

min g(x) 2)

st xeD

Existence and Uniqueness

Theorem 2. If Dis compact convex set and F(x) is continuous on D, the variational
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inequality problem has at least one solutionx”.
Theorem 3. Suppose F(x) is strictly monotone onD. Then, the solution is unique, if one
exists.
Theorem 4. Suppose F(x) is continuous differentiable on D and the Jacobian matrix of
F(x) is positive semidefinite (or positive definite), then F(x)is monotone (or strictly
monotone).
Theorem 5. Assume F(x) is continuous differentiable at somex. Then F(x) is locally
strictly (or strongly) monotone at x if the Jacobian matrix ofF(x), denoted as VF(X), is
positive definite, that is,

VVF(X)v > 0, VveR", v#0 (3a)
or strongly positive definite, that is,

VVF(X)V > a||v||2, forsome a>0,vveR" (3b)
Theorem 6. Suppose F(x) is continuous differentiable on D and the Jacobian matrix of
F(x) is strongly positive definite, then F(x)is strongly monotone.

Theorem 7. Suppose F(x) is strongly monotone onD. Then there exists precisely one

solution x" to the variational inequality (1)

Diagonalization/Relaxation Algorithm

Consider the variational inequality problem (1). If there exists a mapping f :

D x D — R"such that the following properties hold:

1. f(x,y)z F(x) VxeD
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2. Vf(x,y) is positive definite, and Vf (x,y) = Vf (x,y)".
where D x D is Cartesian product of D, V is gradient operator, then f(x,y) isa
gradient mapping and there exists a mapping Z: Dx D — R*such that the following holds:
f(xy)=v.Z(xy) @
Further, solving the variational inequality problem
<f(x(”),x("’1)),x—x(")> >0 VxeD (5)
is equivalent to solving the mathematical programming problem
min Z(x,x(”_l)) (6)
st xeD
where nis the iteration number.
The relaxation method for solving (1) is as follows:
Step 0: Initialization
Find a set of variables x© e D.Set n:=0
Step 1: Relaxation
Solve the mathematical problem:
min Z(x™,x"¥) 7)
st xeD
Step 2: Convergence test

If [x™ —x"|<z, & is stopping criterion, stop; otherwise set n:=n-+1,and go to Step 1.

Appendix 2: Output for Example 4.1
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Table 4.3g The resultant path flow and path travel time for example 4.1.

Path S k f prs (k) C;S (k) Links on the path Arrival time for each link
number on the path

1 9 1 3.4424 4.8816 5 15 23 24 1 5 9 13
2 9 1 1.865 4.8888 3 7 14 19 1 5 9 13
3 9 1 3.1786 4.8841 3 4 9 19 1 5 9 13
4 9 1 1.1275 4.878 5 13 17 24 1 5 9 13
5 9 1 0.2891 4.8871 3 7 17 24 1 5 9 13
6 9 1 0.0974 4.8798 5 13 14 19 1 5 9 13
7 9 2 3.4424 4.9728 5 15 23 24 2 6 10 14
8 9 2 1.865 4.9737 3 7 14 19 2 6 10 14
9 9 2 2.3457 4.9516 3 4 9 19 2 6 10 14
10 9 2 1.9793 49777 5 13 17 24 2 6 10 14
11 9 2 0.2703 4.9827 3 7 17 24 2 6 10 14
12 9 2 0.0974 4.9686 5 13 14 19 2 6 10 14
13 9 3 3.0312 5.0523 5 15 23 24 3 7 11 15
14 9 3 1.865 5.0622 3 7 14 19 3 7 11 15
15 9 3 3.1398 5.0339 3 4 9 19 3 7 11 15
16 9 3 1.9249 5.0657 5 13 17 24 3 7 11 15
17 9 3 0.039 5.0583 5 13 14 19 3 7 1 15
18 9 4 3.5008 5.1337 5 15 23 24 4 8 12 16
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19 2.1353 5.1539 3 7 14 19 12 16
20 3.1431 5.119 3 4 9 19 12 16
21 1.163 5.1395 5 13 17 24 12 16
22 0.0578 5.1392 5 13 14 19 12 16
23 3.5398 5.1328 5 15 23 24 13 17
24 1.865 5.1522 3 7 14 19 13 17
25 3.3945 5.122 3 4 9 19 13 17
26 1.1818 5.1352 5 13 17 24 13 17
27 0.0188 5.14 5 13 14 19 13 17
28 3.5398 4.8805 22 21 16 6 9 13
29 2.1541 4.8917 20 12 8 1 9 13
30 3.1786 4.8855 20 10 2 1 9 13
31 1.1275 4.8722 22 18 11 6 9 13
32 3.4424 4.97 22 21 16 6 10 14
33 2.1353 4.9793 20 12 8 1 10 14
34 2.3457 4.9545 20 10 2 1 10 14
35 2.0766 4.9664 22 18 11 6 10 14
36 3.0703 5.0495 22 21 16 6 11 15
37 1.865 5.0678 20 12 8 1 11 15
38 3.1398 5.0367 20 10 2 1 11 15
39 1.9249 5.0544 22 18 11 6 11 15
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40 3.4424 5.1308 22 21 16 6 12 16
41 1.8839 5.1559 20 12 8 1 12 16
42 3.3945 5.1244 20 10 2 1 12 16
43 1.2604 5.1297 22 18 11 6 12 16
44 0.0188 5.1438 22 18 8 1 12 16
45 3.4814 5.1315 22 21 16 6 13 17
46 1.865 5.1515 20 12 8 1 13 17
47 3.3945 5.1259 20 10 2 1 13 17
48 1.2402 5.1314 22 18 11 6 13 17
49 0.0188 5.1419 22 18 8 1 13 17
50 3.4424 4.8819 9 19 22 21 9 13
51 1.865 4.8888 2 7 11 15 9 13
52 3.1786 4.8841 2 1 5 15 9 13
53 1.1275 4.878 9 12 17 21 9 13
54 0.2891 4.8871 2 7 17 21 9 13
55 0.0974 4.8798 9 12 11 15 9 13
56 3.4424 4.9728 9 19 22 21 10 14
57 1.865 4.9737 2 7 11 15 10 14
58 2.3457 4.9516 2 1 5 15 10 14
59 1.9793 49777 9 12 17 21 10 14
60 0.2703 4.9827 2 7 17 21 10 14
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61 0.0974 4.9686 9 12 11 15 10 14
62 3.0312 5.0523 9 19 22 21 11 15
63 1.865 5.0622 2 7 11 15 11 15
64 3.1398 5.0339 2 1 5 15 11 15
65 1.9249 5.0657 9 12 17 21 11 15
66 0.039 5.0583 9 12 11 15 11 15
67 3.5008 5.1337 9 19 22 21 12 16
68 2.1353 5.1539 2 7 11 15 12 16
69 3.1431 5.119 2 1 5 15 12 16
70 1.163 5.1395 9 12 17 21 12 16
71 0.0578 5.1392 9 12 11 15 12 16
72 3.5398 5.1328 9 19 22 21 13 17
73 1.865 5.1522 2 7 11 15 13 17
74 3.3945 5.122 2 1 5 15 13 17
75 1.1818 5.1352 9 12 17 21 13 17
76 0.0188 5.14 9 12 11 15 13 17
7 3.5398 4.8805 23 24 20 10 9 13
78 2.1541 4.8917 16 13 8 4 9 13
79 3.1786 4.8855 16 6 3 4 9 13
80 1.1275 4.8722 23 18 14 10 9 13
81 3.4424 4.97 23 24 20 10 10 14
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82 2.1353 4.9793 16 13 8 4 10 14
83 2.3457 4.9545 16 6 3 4 10 14
84 2.0766 4.9664 23 18 14 10 10 14
85 3.0703 5.0495 23 24 20 10 11 15
86 1.865 5.0678 16 13 8 4 11 15
87 3.1398 5.0367 16 6 3 4 11 15
88 1.9249 5.0544 23 18 14 10 11 15
89 3.4424 5.1308 23 24 20 10 12 16
90 1.8839 5.1559 16 13 8 4 12 16
91 3.3945 5.1244 16 6 3 4 12 16
92 1.2604 5.1297 23 18 14 10 12 16
93 0.0188 5.1438 23 18 8 4 12 16
94 3.4814 5.1315 23 24 20 10 13 17
95 1.865 5.1515 16 13 8 4 13 17
96 3.3945 5.1259 16 6 3 4 13 17
97 1.2402 5.1314 23 18 14 10 13 17
98 0.0188 5.1419 23 18 8 4 13 17
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Appendix 3:  Output for Example 4.2

Table 4.5g The resultant path flow and path travel time for example 4.2.

Path f prs (k) C Fr)s (k) Links on the path Arrival time for

each link
number

on the path
1 3.3372 4.882 5 15 23 24 1 5 9 13
2 1.7504 4.8852 3 7 14 19 1 5 9 13
3 3.2694 4.8831 3 4 9 19 1 5 9 13
4 1.643 4.8821 5 13 17 24 1 5 9 13
5 3.3372 4.9644 5 15 23 24 2 6 10 14
6 1.7504 4.9708 3 7 14 19 2 6 10 14
7 3.2694 4.9666 3 4 9 19 2 6 10 14
8 1.643 4.9646 5 13 17 24 2 6 10 14
9 3.3372 5.0468 5 15 23 24 3 7 11 15
10 1.7504 5.0564 3 7 14 19 3 7 11 15
11 3.2694 5.0501 3 4 9 19 3 7 11 15
12 1.643 5.0472 5 13 17 24 3 7 11 15
13 3.3372 5.1292 5 15 23 24 4 8 12 16
14 1.7504 5.142 3 7 14 19 4 8 12 16
15 3.2694 5.1336 3 4 9 19 4 8 12 16
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16 1.643 5.1297 5 13 17 24 12 16
17 3.3372 5.1292 5 15 23 24 13 17
18 1.7504 5.142 3 7 14 19 13 17
19 3.2694 5.1336 3 4 9 19 13 17
20 1.643 5.1297 5 13 17 24 13 17
21 3.3372 4.882 22 21 16 6 9 13
22 1.7504 4.8852 20 12 8 1 9 13
23 3.2694 4.8831 20 10 2 1 9 13
24 1.643 4.8821 22 18 11 6 9 13
25 3.3372 4.9644 22 21 16 6 10 14
26 1.7504 4.9708 20 12 8 1 10 14
27 3.2694 4.9666 20 10 2 1 10 14
28 1.643 4.9646 22 18 11 6 10 14
29 3.3372 5.0468 22 21 16 6 1 15
30 1.7504 5.0564 20 12 8 1 1 15
31 3.2694 5.0501 20 10 2 1 1 15
32 1.643 5.0472 22 18 11 6 1 15
33 3.3372 5.1292 22 21 16 6 12 16
34 1.7504 5.142 20 12 8 1 12 16
35 3.2694 5.1336 20 10 2 1 12 16
36 1.643 5.1297 22 18 11 6 12 16
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37 3.3372 5.1292 22 21 16 6 13 17
38 1.7504 5.142 20 12 8 1 13 17
39 3.2694 5.1336 20 10 2 1 13 17
40 1.643 5.1297 22 18 11 6 13 17
41 3.3372 4.882 9 19 22 21 9 13
42 1.7504 4.8852 2 7 11 15 9 13
43 3.2694 4.8831 2 1 5 15 9 13
44 1.643 4.8821 9 12 17 21 9 13
45 3.3372 4.9644 9 19 22 21 10 14
46 1.7504 4.9708 2 7 11 15 10 14
47 3.2694 4.9666 2 1 5 15 10 14
48 1.643 4.9646 9 12 17 21 10 14
49 3.3372 5.0468 9 19 22 21 1 15
50 1.7504 5.0564 2 7 11 15 1 15
51 3.2694 5.0501 2 1 5 15 1 15
52 1.643 5.0472 9 12 17 21 1 15
53 3.3372 5.1292 9 19 22 21 12 16
54 1.7504 5.142 2 7 11 15 12 16
55 3.2694 5.1336 2 1 5 15 12 16
56 1.643 5.1297 9 12 17 21 12 16
57 3.3372 5.1292 9 19 22 21 13 17
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58 1.7504 5.142 2 7 11 15 13 17
59 3.2694 5.1336 2 1 5 15 13 17
60 1.643 5.1297 9 12 17 21 13 17
61 3.3372 4.882 23 24 20 10 9 13
62 1.7504 4.8852 16 13 8 4 9 13
63 3.2694 4.8831 16 6 3 4 9 13
64 1.643 4.8821 23 18 14 10 9 13
65 3.3372 4.9644 23 24 20 10 10 14
66 1.7504 4.9708 16 13 8 4 10 14
67 3.2694 4.9666 16 6 3 4 10 14
68 1.643 4.9646 23 18 14 10 10 14
69 3.3372 5.0468 23 24 20 10 1 15
70 1.7504 5.0564 16 13 8 4 1 15
71 3.2694 5.0501 16 6 3 4 1 15
72 1.643 5.0472 23 18 14 10 1 15
73 3.3372 5.1292 23 24 20 10 12 16
74 1.7504 5.142 16 13 8 4 12 16
75 3.2694 5.1336 16 6 3 4 12 16
76 1.643 5.1297 23 18 14 10 12 16
77 3.3372 5.1292 23 24 20 10 13 17
78 1.7504 5.142 16 13 8 4 13 17
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Appendix 4: Output for Example 5.1

Table 5.3g The resultant path flow and path travel time for example 5.1.

Path r f prs (k) C;S (k) Links on the path Arrival time for each link
number on the path

1 1 2.7273 4.9041 5 13 17 24 1 5 9 13
2 1 0 4.9041 3 7 17 24 1 5 9 13
3 1 1.8182 4.8814 5 13 14 19 1 5 9 13
4 1 0.9091 4.8814 3 7 14 19 1 5 9 13
5 1 1.8182 4.8723 5 15 23 24 1 5 9 13
6 1 2.7273 4.8859 3 4 9 19 1 5 9 13
7 1 1.8182 4.9223 5 15 23 24 2 6 10 14
8 1 2.7273 5.0268 3 7 17 24 2 6 10 14
9 1 1.8182 4.995 3 4 9 19 2 6 10 14
10 1 0.9091 4.9905 5 13 17 24 2 6 10 14
11 1 1.8182 4.9905 3 7 14 19 2 6 10 14
12 1 0.9091 4.9541 5 13 14 19 2 6 10 14
13 1 3.6364 5.0677 3 4 9 19 3 7 11 15
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14 2.7273 5.0041 5 15 23 24 11 15
15 0.9091 5.095 5 13 17 24 11 15
16 0.9091 5.0859 3 7 14 19 11 15
17 0.9091 5.1268 3 7 17 24 11 15
18 0.9091 5.0541 5 13 14 19 11 15
19 0 5.1677 3 7 14 19 12 16
20 0.9091 5.1859 5 13 17 24 12 16
21 0.9091 5.145 5 13 14 19 12 16
22 2.7273 5.095 5 15 23 24 12 16
23 3.6364 5.1405 3 4 9 19 12 16
24 1.8182 5.2087 3 7 17 24 12 16
25 0 5.1723 5 13 17 24 13 17
26 3.6364 5.1041 5 15 23 24 13 17
27 1.8182 5.1223 3 4 9 19 13 17
28 1.8182 5.1859 3 7 14 19 13 17
29 1.8182 5.1905 3 7 17 24 13 17
30 0.9091 5.1677 5 13 14 19 13 17
31 1.8182 4.8677 20 10 2 1 9 13
32 0.9091 4.895 20 12 11 6 9 13
33 1.8182 4.8677 22 21 16 6 9 13
34 0.9091 4.8996 22 18 11 6 9 13
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35 2.7273 4.9087 22 18 8 9 13
36 1.8182 4.9041 20 12 8 9 13
37 0 4.9996 20 12 11 10 14
38 3.6364 4.9496 22 21 16 10 14
39 0.9091 5.0087 22 18 8 10 14
40 0 4.995 20 12 8 10 14
41 0.9091 5.0132 22 18 11 10 14
42 4.5455 4.9496 20 10 2 10 14
43 2.7273 5.0268 20 10 2 11 15
44 0.9091 5.0905 22 18 8 11 15
45 2.7273 5.0268 22 21 16 11 15
46 0 5.0905 20 12 11 11 15
47 0.9091 5.1041 22 18 11 11 15
48 2.7273 5.0768 20 12 8 11 15
49 0.9091 5.1587 22 18 8 12 16
50 1.8182 5.1359 22 21 16 12 16
51 0 5.1677 20 12 11 12 16
52 4.5455 5.1087 20 10 2 12 16
53 1.8182 5.1768 22 18 11 12 16
54 0.9091 5.1496 20 12 8 12 16
55 2.7273 5.1087 20 10 2 13 17
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56 2.7273 5.1268 22 21 16 6 13 17
57 0.9091 5.1859 20 12 11 6 13 17
58 0.9091 5.1814 20 12 8 1 13 17
59 1.8182 5.1677 22 18 11 6 13 17
60 0.9091 5.1632 22 18 8 1 13 17
61 1.8182 4.8814 9 19 22 21 9 13
62 1.8182 4.8723 2 1 5 15 9 13
63 0.9091 4.8996 2 7 17 21 9 13
64 2.7273 49132 9 12 17 21 9 13
65 2.7273 4.8859 2 7 11 15 9 13
66 0 4.8996 9 12 11 15 9 13
67 1.8182 5.0041 9 12 11 15 10 14
68 1.8182 4.945 2 1 5 15 10 14
69 0.9091 4.9359 9 19 22 21 10 14
70 1.8182 5.0132 9 12 17 21 10 14
71 2.7273 5.0132 2 7 17 21 10 14
72 0.9091 5.0041 2 7 11 15 10 14
73 0.9091 5.0814 2 7 11 15 11 15
74 4.5455 4.9996 2 1 5 15 11 15
75 0.9091 5.1223 9 12 17 21 11 15
76 2.7273 5.045 9 19 22 21 11 15
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77 0 5.0814 9 12 11 15 11 15
78 0.9091 5.1223 2 7 17 21 11 15
79 0.9091 5.1632 2 7 11 15 12 16
80 2.7273 5.1314 9 19 22 21 12 16
81 0.9091 5.1632 9 12 11 15 12 16
82 2.7273 5.0768 2 1 5 15 12 16
83 1.8182 5.1996 2 7 17 21 12 16
84 0.9091 5.1996 9 12 17 21 12 16
85 0 5.1814 2 7 17 21 13 17
86 3.6364 5.0768 9 19 22 21 13 17
87 0.9091 5.1723 9 12 17 21 13 17
88 0.9091 5.1905 9 12 11 15 13 17
89 1.8182 5.1996 2 7 11 15 13 17
90 2.7273 5.1223 2 1 5 15 13 17
91 3.6364 4.8723 16 6 3 4 9 13
92 2.7273 4.8905 23 24 20 10 9 13
93 1.8182 4.895 16 13 8 4 9 13
94 0 4.895 23 18 14 10 9 13
95 0.9091 4.9041 23 18 8 4 9 13
96 0.9091 4.8859 16 13 14 10 9 13
97 3.6364 4.9496 23 24 20 10 10 14
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98 0.9091 4.9632 16 13 14 10 10 14
99 2.7273 4.9587 16 6 3 4 10 14
100 0.9091 4.9768 23 18 14 10 10 14
101 1.8182 5.0087 23 18 8 4 10 14
102 0 4.995 16 13 8 4 10 14
103 3.6364 5.0359 23 24 20 10 11 15
104 0 5.0905 23 18 8 4 11 15
105 2.7273 5.0268 16 6 3 4 11 15
106 0 5.0677 16 13 14 10 11 15
107 0.9091 5.0723 16 13 8 4 11 15
108 2.7273 5.0859 23 18 14 10 11 15
109 0.9091 5.1541 23 18 8 4 12 16
110 0.9091 5.1632 16 13 14 10 12 16
111 3.6364 5.1041 16 6 3 4 12 16
112 1.8182 5.1223 23 24 20 10 12 16
113 1.8182 5.1587 23 18 14 10 12 16
114 0.9091 5.1587 16 13 8 4 12 16
115 4.5455 5.1223 16 6 3 4 13 17
116 0.9091 5.1041 23 24 20 10 13 17
117 0.9091 5.1587 23 18 8 4 13 17
118 0 5.1587 23 18 14 10 13 17
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119 1.8182 5.1768 16 13 8 4 5 9 13 17
120 1.8182 5.1768 16 13 14 10 5 9 13 17
Appendix 5:  Output for Example 5.2

Table 5.5g The resultant path flow and path travel time for example 5.2.
Path f prs (k) C:)S (k) Links on the path Avrrival time for each link
number on the path
1 2.7273 4.895 5 15 23 24 1 5 9 13
2 1.8182 4.8905 3 7 14 19 1 5 9 13
3 1.8182 49359 5 13 17 24 1 5 9 13
4 1.8182 4.8405 3 4 9 19 1 5 9 13
5 1.8182 49132 5 13 14 19 1 5 9 13
6 0 49132 3 7 17 24 1 5 9 13
7 3.6364 4.9541 3 4 9 19 2 6 10 14
8 0.9091 5.0132 3 7 14 19 2 6 10 14
9 1.8182 4.945 5 15 23 24 2 6 10 14
10 1.8182 4.9905 5 13 14 19 2 6 10 14
1 0 4.995 5 13 17 24 2 6 10 14
12 1.8182 5.0177 3 7 17 24 2 6 10 14

262




13 0 5.0814 5 13 17 24 11 15
14 1.8182 5.0996 3 7 17 24 11 15
15 3.6364 4.995 5 15 23 24 11 15
16 0.9091 5.095 5 13 14 19 11 15
17 1.8182 5.0587 3 4 9 19 11 15
18 1.8182 5.1132 3 7 14 19 11 15
19 0.9091 5.1587 5 13 14 19 12 16
20 0.9091 5.1905 3 7 14 19 12 16
21 2.7273 5.0905 5 15 23 24 12 16
22 3.6364 5.145 3 4 9 19 12 16
23 0.9091 5.1496 5 13 17 24 12 16
24 0.9091 5.1814 3 7 17 24 12 16
25 0 5.1723 3 7 17 24 13 17
26 3.6364 5.0587 5 15 23 24 13 17
27 4.5455 5.1859 3 4 9 19 13 17
28 0.9091 5.1132 5 13 17 24 13 17
29 0.9091 5.1359 5 13 14 19 13 17
30 0 5.195 3 7 14 19 13 17
31 1.8182 4.8768 22 18 11 6 9 13
32 1.8182 4.8905 20 10 2 1 9 13
33 2.7273 4.8814 22 21 16 6 9 13
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34 1.8182 4.8859 20 12 8 9 13
35 0.9091 4.8859 20 12 11 9 13
36 0.9091 4.8768 22 18 8 9 13
37 3.6364 4.9723 22 21 16 10 14
38 2.7273 4.9541 20 10 2 10 14
39 0.9091 4.9768 22 18 8 10 14
40 0.9091 4.9814 22 18 11 10 14
41 0.9091 4.9768 20 12 11 10 14
42 0.9091 4.9723 20 12 8 10 14
43 4.5455 5.045 20 10 2 11 15
44 0.9091 5.0632 22 18 8 11 15
45 3.6364 5.0359 22 21 16 11 15
46 0.9091 5.0859 20 12 11 11 15
47 0 5.0859 22 18 11 11 15
48 0 5.0632 20 12 8 11 15
49 0 5.1587 20 12 8 12 16
50 1.8182 5.1132 22 21 16 12 16
51 2.7273 5.1814 20 12 11 12 16
52 4.5455 5.1223 20 10 2 12 16
53 0.9091 5.1587 22 18 8 12 16
54 0 5.1814 22 18 11 12 16
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55 0.9091 5.0996 20 10 2 1 13 17
56 1.8182 5.2041 22 18 11 6 13 17
57 0.9091 5.1632 22 18 8 1 13 17
58 1.8182 5.1587 20 12 8 1 13 17
59 3.6364 5.1268 22 21 16 6 13 17
60 0.9091 5.1996 20 12 11 6 13 17
61 2.7273 4.8632 2 1 5 15 9 13
62 1.8182 4.8859 9 12 11 15 9 13
63 1.8182 4.8905 9 19 22 21 9 13
64 1.8182 4.9087 2 7 17 21 9 13
65 0.9091 4.8905 2 7 11 15 9 13
66 0.9091 4.9041 9 12 17 21 9 13
67 1.8182 4.9496 2 1 5 15 10 14
68 1.8182 4.9814 9 12 17 21 10 14
69 0 5.0132 2 7 17 21 10 14
70 0 4.9723 9 12 11 15 10 14
71 4.5455 4.9587 9 19 22 21 10 14
72 1.8182 5.0041 2 7 11 15 10 14
73 0.9091 5.0814 9 12 17 21 11 15
74 2.7273 5.0496 9 19 22 21 11 15
75 2.7273 5.0223 2 1 5 15 11 15
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76 1.8182 5.0905 2 7 11 15 11 15
7 0.9091 5.0723 9 12 11 15 11 15
78 0.9091 5.0996 2 7 17 21 11 15
79 0.9091 5.1632 9 12 11 15 12 16
80 2.7273 5.1314 9 19 22 21 12 16
81 4.5455 5.1132 2 1 5 15 12 16
82 1.8182 5.1768 2 7 17 21 12 16
83 0 5.1859 2 7 11 15 12 16
84 0 5.1541 9 12 17 21 12 16
85 1.8182 5.1723 2 7 17 21 13 17
86 3.6364 5.1041 2 1 5 15 13 17
87 1.8182 5.1768 9 12 11 15 13 17
88 1.8182 5.1314 9 19 22 21 13 17
89 0.9091 5.1723 9 12 17 21 13 17
90 0 5.1768 2 7 11 15 13 17
91 0.9091 4.8632 23 18 8 4 9 13
92 3.6364 4.8859 23 24 20 10 9 13
93 1.8182 4.8587 16 6 3 4 9 13
94 0.9091 4.9314 16 13 14 10 9 13
95 1.8182 4.8905 16 13 8 4 9 13
96 0.9091 4.9041 23 18 14 10 9 13
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97 0 5.0132 23 18 14 10 10 14
98 3.6364 4.9268 16 6 3 4 10 14
99 0 4.9632 16 13 8 4 10 14
100 2.7273 4.9677 23 18 8 4 10 14
101 0.9091 5.0087 16 13 14 10 10 14
102 2.7273 4.9723 23 24 20 10 10 14
103 5.4545 5.0677 23 24 20 10 11 15
104 3.6364 4.9768 16 6 3 4 11 15
105 0 5.0314 16 13 8 4 11 15
106 0 5.1405 23 18 14 10 11 15
107 0 5.1041 16 13 14 10 11 15
108 0.9091 5.0677 23 18 8 4 11 15
109 0.9091 5.1223 16 13 8 4 12 16
110 0.9091 5.1405 23 24 20 10 12 16
111 1.8182 5.1768 23 18 8 4 12 16
112 0.9091 5.2177 23 18 14 10 12 16
113 1.8182 5.1632 16 13 14 10 12 16
114 3.6364 5.0587 16 6 3 4 12 16
115 1.8182 5.1996 23 18 14 10 13 17
116 3.6364 5.0768 16 6 3 4 13 17
117 1.8182 5.1405 23 24 20 10 13 17
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118 7 1.8182 5.1177 16 13 14 10 5 9 13 17
119 7 0.9091 5.2041 23 18 8 4 5 9 13 17
120 7 0 5.1223 16 13 8 4 5 9 13 17

Appendix 6: Output for Example 6.1

Table 6.2g The resultant path flow and path travel time for example 6.1.

Arrival time for
rs rs .

Path f 0 (k) Cp (k) Links on the path

each link
number

on the path
1 3.3333 4.8829 5 15 23 24 1 5 9 13
2 1.6667 4.8829 3 7 14 19 1 5 9 13
3 3.3333 4.8829 3 4 9 19 1 5 9 13
4 1.6667 4.8829 5 13 17 24 1 5 9 13
5 3.3333 4.9662 5 15 23 24 2 6 10 14
6 1.6666 4.9662 3 7 14 19 2 6 10 14
7 3.3334 4.9662 3 4 9 19 2 6 10 14
8 1.6667 4.9662 5 13 17 24 2 6 10 14
9 3.3336 5.0496 5 15 23 24 3 7 11 15
10 1.6668 5.0496 3 7 14 19 3 7 11 15
11 3.3331 5.0496 3 4 9 19 3 7 11 15
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12 1.6665 5.0496 5 13 17 24 11 15
13 3.3329 5.1329 5 15 23 24 12 16
14 1.6665 5.1329 3 7 14 19 12 16
15 3.3334 5.1329 3 4 9 19 12 16
16 1.6672 5.1329 5 13 17 24 12 16
17 3.3329 5.1329 5 15 23 24 13 17
18 1.6683 5.1329 3 7 14 19 13 17
19 1.6656 5.1329 5 13 17 24 13 17
20 3.3333 5.1329 3 4 9 19 13 17
21 3.3333 4.8829 22 21 16 6 9 13
22 1.6667 4.8829 20 12 8 1 9 13
23 3.3333 4.8829 20 10 2 1 9 13
24 1.6667 4.8829 22 18 11 6 9 13
25 3.3333 4.9662 22 21 16 6 10 14
26 1.6666 4.9662 20 12 8 1 10 14
27 3.3334 4.9662 20 10 2 1 10 14
28 1.6667 4.9662 22 18 11 6 10 14
29 3.3336 5.0496 22 21 16 6 11 15
30 1.6668 5.0496 20 12 8 1 11 15
31 3.3331 5.0496 20 10 2 1 11 15
32 1.6665 5.0496 22 18 11 6 11 15
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33 3.3329 5.1329 22 21 16 6 12 16
34 1.6665 5.1329 20 12 8 1 12 16
35 3.3334 5.1329 20 10 2 1 12 16
36 1.6672 5.1329 22 18 11 6 12 16
37 3.3329 5.1329 22 21 16 6 13 17
38 1.6683 5.1329 20 12 8 1 13 17
39 1.6656 5.1329 22 18 11 6 13 17
40 3.3333 5.1329 20 10 2 1 13 17
41 3.3333 4.8829 9 19 22 21 9 13
42 1.6667 4.8829 2 7 11 15 9 13
43 3.3333 4.8829 2 1 5 15 9 13
44 1.6667 4.8829 9 12 17 21 9 13
45 3.3333 4.9662 9 19 22 21 10 14
46 1.6666 4.9662 2 7 11 15 10 14
47 3.3334 4.9662 2 1 5 15 10 14
48 1.6667 4.9662 9 12 17 21 10 14
49 3.3336 5.0496 9 19 22 21 11 15
50 1.6668 5.0496 2 7 11 15 11 15
51 3.3331 5.0496 2 1 5 15 11 15
52 1.6665 5.0496 9 12 17 21 11 15
53 3.3329 5.1329 9 19 22 21 12 16
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54 1.6665 5.1329 2 7 11 15 12 16
55 3.3334 5.1329 2 1 5 15 12 16
56 1.6672 5.1329 9 12 17 21 12 16
57 3.3329 5.1329 9 19 22 21 13 17
58 1.6683 5.1329 2 7 11 15 13 17
59 1.6656 5.1329 9 12 17 21 13 17
60 3.3333 5.1329 2 1 5 15 13 17
61 3.3333 4.8829 23 24 20 10 9 13
62 1.6667 4.8829 16 13 8 4 9 13
63 3.3333 4.8829 16 6 3 4 9 13
64 1.6667 4.8829 23 18 14 10 9 13
65 3.3333 4.9662 23 24 20 10 10 14
66 1.6666 4.9662 16 13 8 4 10 14
67 3.3334 4.9662 16 6 3 4 10 14
68 1.6667 4.9662 23 18 14 10 10 14
69 3.3336 5.0496 23 24 20 10 11 15
70 1.6668 5.0496 16 13 8 4 11 15
71 3.3331 5.0496 16 6 3 4 11 15
72 1.6665 5.0496 23 18 14 10 11 15
73 3.3329 5.1329 23 24 20 10 12 16
74 1.6665 5.1329 16 13 8 4 12 16
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75 7 3 4 3.3334 5.1329 16 6 3 4 4 8 12 16
76 7 3 4 1.6672 5.1329 23 18 14 10 4 8 12 16
7 7 3 5 3.3329 5.1329 23 24 20 10 5 9 13 17
78 7 3 5 1.6683 5.1329 16 13 8 4 5 9 13 17
79 7 3 5 1.6656 5.1329 23 18 14 10 5 9 13 17
80 7 3 5 3.3333 5.1329 16 6 3 4 5 9 13 17

Appendix 7:  Output for Example 6.2

Table 6.6g The resultant path flow and path travel time for example 6.2 (no disutility

function)
Arrival time for
rs rs .

Path r s k f p (k) Cp (k) Links on the path

each link
number

on the path
1 1 9 1 8.3774 5.0091 5 15 23 24 1 5 9 13
2 1 9 1 4.1892 5.0086 3 7 14 19 1 5 9 13
3 1 9 1 8.3627 5.0086 3 4 9 19 1 5 9 13
4 1 9 1 4.179 5.0089 5 13 17 24 1 5 9 13
5 1 9 2 0.3638 5.0195 5 15 23 24 2 6 10 14
6 1 9 2 0.2152 5.0182 3 7 14 19 2 6 10 14
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7 0.4591 5.02 3 4 9 19 10 14
8 0.2568 5.0204 5 13 17 24 10 14
9 0 5.0195 5 15 23 24 11 15
10 0 5.0182 3 7 14 19 11 15
11 0 5.02 3 4 9 19 11 15
12 0 5.0204 5 13 17 24 11 15
13 0 5.0195 5 15 23 24 12 16
14 0 5.0182 3 7 14 19 12 16
15 0 5.02 3 4 9 19 12 16
16 0 5.0204 5 13 17 24 12 16
17 8.0132 5.0096 5 15 23 24 13 17
18 4.0649 5.0048 3 7 14 19 13 17
19 7.7337 5.0055 3 4 9 19 13 17
20 3.7849 5.0069 5 13 17 24 13 17
21 8.3774 5.0091 22 21 16 6 9 13
22 4.1892 5.0086 20 12 8 1 9 13
23 8.3627 5.0086 20 10 2 1 9 13
24 4.179 5.0089 22 18 11 6 9 13
25 0.3638 5.0195 22 21 16 6 10 14
26 0.2152 5.0182 20 12 8 1 10 14
27 0.4591 5.02 20 10 2 1 10 14
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28 0.2568 5.0204 22 18 11 6 10 14
29 0 5.0195 22 21 16 6 11 15
30 0 5.0182 20 12 8 1 11 15
31 0 5.02 20 10 2 1 11 15
32 0 5.0204 22 18 11 6 11 15
33 0 5.0195 22 21 16 6 12 16
34 0 5.0182 20 12 8 1 12 16
35 0 5.02 20 10 2 1 12 16
36 0 5.0204 22 18 11 6 12 16
37 8.0132 5.0096 22 21 16 6 13 17
38 4.0649 5.0048 20 12 8 1 13 17
39 7.7337 5.0055 20 10 2 1 13 17
40 3.7849 5.0069 22 18 11 6 13 17
41 8.3774 5.0091 9 19 22 21 9 13
42 4.1892 5.0086 2 7 11 15 9 13
43 8.3627 5.0086 2 1 5 15 9 13
44 4.179 5.0089 9 12 17 21 9 13
45 0.3638 5.0195 9 19 22 21 10 14
46 0.2152 5.0182 2 7 11 15 10 14
47 0.4591 5.02 2 1 5 15 10 14
48 0.2568 5.0204 9 12 17 21 10 14
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49 0 5.0195 9 19 22 21 11 15
50 0 5.0182 2 7 11 15 11 15
51 0 5.02 2 1 5 15 11 15
52 0 5.0204 9 12 17 21 11 15
53 0 5.0195 9 19 22 21 12 16
54 0 5.0182 2 7 11 15 12 16
55 0 5.02 2 1 5 15 12 16
56 0 5.0204 9 12 17 21 12 16
57 8.0132 5.0096 9 19 22 21 13 17
58 4.0649 5.0048 2 7 11 15 13 17
59 7.7337 5.0055 2 1 5 15 13 17
60 3.7849 5.0069 9 12 17 21 13 17
61 8.3774 5.0091 23 24 20 10 9 13
62 4.1892 5.0086 16 13 8 4 9 13
63 8.3627 5.0086 16 6 3 4 9 13
64 4.179 5.0089 23 18 14 10 9 13
65 0.3638 5.0195 23 24 20 10 10 14
66 0.2152 5.0182 16 13 8 4 10 14
67 0.4591 5.02 16 6 3 4 10 14
68 0.2568 5.0204 23 18 14 10 10 14
69 0 5.0195 23 24 20 10 11 15
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70 3 0 5.0182 16 13 8 4 3 7 11 15
71 3 0 5.02 16 6 3 4 3 7 11 15
72 3 0 5.0204 23 18 14 10 3 7 11 15
73 4 0 5.0195 23 24 20 10 4 8 12 16
74 4 0 5.0182 16 13 8 4 4 8 12 16
75 4 0 5.02 16 6 3 4 4 8 12 16
76 4 0 5.0204 23 18 14 10 4 8 12 16
77 5 8.0132 5.0096 23 24 20 10 5 9 13 17
78 5 4.0649 5.0048 16 13 8 4 5 9 13 17
79 5 7.7337 5.0055 16 6 3 4 5 9 13 17
80 5 3.7849 5.0069 23 18 14 10 5 9 13 17

Table 6.9g The resultant path flow, path travel time, and generalized path cost for

example 6.2 (with disutility function).

Arrival time for
rs rs rs .
Path f b (k) Cp (k) 0 (k) Links on the path
each link
number
on the path
1 5.6186 4.9389 5.1361 5 15 23 24 1 5 13
2 2.5586 4,939 5.1361 3 7 14 19 1 5 13
3 5.6217 4.939 5.1362 3 4 9 19 1 5 13

276




4 2.561 4.9389 5.1361 13 17 24 9 13
5 0.2126 4.939 5.1362 7 17 24 9 13
6 0.0675 4.9389 5.1361 13 14 19 9 13
7 9.3766 5.174 5.174 15 23 24 10 14
8 4.6948 5.1741 5.1741 7 14 19 10 14
9 9.382 5.1743 5.1743 4 9 19 10 14
10 4.7102 5.1742 5.1742 13 17 24 10 14
11 0.1215 5.1742 5.1742 13 14 19 10 14
12 0.0068 5.1741 5.1741 7 17 24 10 14
13 1.3709 5.2085 5.2085 15 23 24 11 15
14 0.6626 5.2084 5.2084 7 14 19 11 15
15 1.3671 5.2086 5.2086 4 9 19 11 15
16 0.67 5.2087 5.2087 13 17 24 11 15
17 0.0203 5.2089 5.2089 7 17 24 11 15
18 0.0326 5.2083 5.2083 13 14 19 11 15
19 0.3139 5.2166 5.2166 15 23 24 12 16
20 0.1165 5.2159 5.2159 7 14 19 12 16
21 0.2976 5.2163 5.2163 4 9 19 12 16
22 0.1107 5.2159 5.2159 13 17 24 12 16
23 0.063 5.2161 5.2161 13 14 19 12 16
24 0.0431 5.2157 5.2157 7 17 24 12 16
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25 0 5.0772 5.1544 5 15 23 24 13 17
26 0 5.0765 5.153 3 7 14 19 13 17
27 0 5.0769 5.1537 3 4 9 19 13 17
28 0 5.0766 5.1531 5 13 17 24 13 17
29 0 5.0768 5.1536 5 13 14 19 13 17
30 0 5.0763 5.1525 3 7 17 24 13 17
31 5.7671 4.9449 5.1391 22 21 16 6 9 13
32 2.7356 4.9448 5.1391 20 12 8 1 9 13
33 5.7682 4.9449 5.1391 20 10 2 1 9 13
34 2.733 4.9449 5.1391 22 18 11 6 9 13
35 0.3338 4.9448 5.1391 20 12 11 6 9 13
36 0.1868 4.9449 5.1391 22 18 8 1 9 13
37 9.2659 5.176 5.176 22 21 16 6 10 14
38 45125 5.1755 5.1755 20 12 8 1 10 14
39 9.2721 5.1759 5.1759 20 10 2 1 10 14
40 4.5006 5.1762 5.1762 22 18 11 6 10 14
41 0.1057 5.1759 5.1759 22 18 8 1 10 14
42 1.3378 521 521 22 21 16 6 11 15
43 0.7097 5.2092 5.2092 20 12 8 1 11 15
44 1.3462 5.2097 5.2097 20 10 2 1 11 15
45 0.6875 5.2106 5.2106 22 18 11 6 11 15
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46 0 5.21 5.21 22 18 8 1 11 15
47 0 5.2098 5.2098 20 12 11 6 11 15
48 0.2438 5.2167 5.2167 22 21 16 6 12 16
49 0.1655 5.2144 5.2144 20 12 8 1 12 16
50 0.2417 5.2159 5.2159 20 10 2 1 12 16
51 0.0866 5.2174 5.2174 22 18 11 6 12 16
52 0 5.2156 5.2156 22 18 8 1 12 16
53 0 5.0714 5.1428 22 21 16 6 13 17
54 0 5.0691 5.1383 20 12 8 1 13 17
55 0 5.0706 5.1413 20 10 2 1 13 17
56 0 5.0721 5.1442 22 18 11 6 13 17
57 5.6186 4.9389 5.1361 9 19 22 21 9 13
58 2.5586 4.939 5.1361 2 7 11 15 9 13
59 5.6217 4.939 5.1362 2 1 5 15 9 13
60 2.561 4.9389 5.1361 9 12 17 21 9 13
61 0.2126 4.939 5.1362 2 7 17 21 9 13
62 0.0675 4.9389 5.1361 9 12 11 15 9 13
63 9.3766 5.174 5.174 9 19 22 21 10 14
64 4.6948 5.1741 5.1741 2 7 11 15 10 14
65 9.382 5.1743 5.1743 2 1 5 15 10 14
66 4.7102 5.1742 5.1742 9 12 17 21 10 14
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67 0.1215 5.1742 5.1742 9 12 11 15 10 14
68 0.0068 5.1741 5.1741 2 7 17 21 10 14
69 1.3709 5.2085 5.2085 9 19 22 21 11 15
70 0.6626 5.2084 5.2084 2 7 11 15 11 15
71 1.3671 5.2086 5.2086 2 1 5 15 11 15
72 0.67 5.2087 5.2087 9 12 17 21 11 15
73 0.0203 5.2089 5.2089 2 7 17 21 11 15
74 0.0326 5.2083 5.2083 9 12 11 15 11 15
75 0.3139 5.2166 5.2166 9 19 22 21 12 16
76 0.1165 5.2159 5.2159 2 7 11 15 12 16
7 0.2976 5.2163 5.2163 2 1 5 15 12 16
78 0.1107 5.2159 5.2159 9 12 17 21 12 16
79 0.063 5.2161 5.2161 9 12 11 15 12 16
80 0.0431 5.2157 5.2157 2 7 17 21 12 16
81 0 5.0772 5.1544 9 19 22 21 13 17
82 0 5.0765 5.153 2 7 11 15 13 17
83 0 5.0769 5.1537 2 1 5 15 13 17
84 0 5.0766 5.1531 9 12 17 21 13 17
85 0 5.0768 5.1536 9 12 11 15 13 17
86 0 5.0763 5.1525 2 7 17 21 13 17
87 5.7671 4.9449 5.1391 23 24 20 10 9 13

280




88 2.7356 4.9448 5.1391 16 13 8 4 9 13
89 5.7682 4.9449 5.1391 16 6 3 4 9 13
90 2.733 4.9449 5.1391 23 18 14 10 9 13
91 0.3338 4.9448 5.1391 16 13 14 10 9 13
92 0.1868 4.9449 5.1391 23 18 8 4 9 13
93 9.2659 5.176 5.176 23 24 20 10 10 14
94 45125 5.1755 5.1755 16 13 8 4 10 14
95 9.2721 5.1759 5.1759 16 6 3 4 10 14
96 4.5006 5.1762 5.1762 23 18 14 10 10 14
97 0.1057 5.1759 5.1759 23 18 8 4 10 14
98 1.3378 5.21 5.21 23 24 20 10 11 15
99 0.7097 5.2092 5.2092 16 13 8 4 11 15
100 1.3462 5.2097 5.2097 16 6 3 4 11 15
101 0.6875 5.2106 5.2106 23 18 14 10 11 15
102 0 5.21 5.21 23 18 8 4 11 15
103 0 5.2098 5.2098 16 13 14 10 11 15
104 0.2438 5.2167 5.2167 23 24 20 10 12 16
105 0.1655 5.2144 5.2144 16 13 8 4 12 16
106 0.2417 5.2159 5.2159 16 6 3 4 12 16
107 0.0866 5.2174 5.2174 23 18 14 10 12 16
108 0 5.2156 5.2156 23 18 8 4 12 16
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109 7 3 5.0714 5.1428 23 24 20 10 5 13 17
110 7 3 5.0691 5.1383 16 13 8 4 5 13 17
111 7 3 5.0706 5.1413 16 6 3 4 5 13 17
112 7 3 5.0721 5.1442 23 18 14 10 5 13 17

Appendix 8: Output for Example 7.1

Table 7.5g The resultant path flow and path travel time for example 7.1.

Path f prs (k) C;s (k) link on the path ArrivaTI fime for

each link

on the path
number
1 21.8315 1.9090 1 0 1 0
2 3.8000 1.9280 1 0 2 0
3 22151 1.9391 1 0 3 0
4 0.9567 1.9439 1 0 4 0
5 0 1.9439 1 0 5 0
6 12.7309 0.9036 5 0 1 0
7 3.9570 0.9234 5 0 2 0
8 2.3044 0.9349 5 0 3 0
9 6.3952 0.9032 5 0 4 0
10 4.6495 0.9067 5 0 5 0

282




11

14.5360

0.9126

12

3.9296

0.9323

13

1.8108

0.9477

14

6.0213

0.9106

15

3.7266

0.9203

16

10.3226

1.7831

10

17

3.8197

1.8213

10

18

2.7981

1.8493

10

19

1.2798

1.8493

20

1.1021

1.7857

21

3.9687

1.7857

10

22

3.5340

1.7829

10

23

2.1343

1.7828

24

15.6912

0.9184

25

3.9592

0.9382

26

2.3075

0.9497

27

4.5983

0.9181

28

3.4612

0.9277

29

8.6188

2.7259

30

4.5845

2.7718

31

3.8924

2.8107
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32 4 2 4 0.9095 2.7767 9 7 4 10

33 4 2 4 4.7767 2.7767 6 1 4 7
34 4 2 5 2.5417 2.7792 9 7 5 1
35 4 2 5 2.4070 2.7793 6 1 5 8

Appendix 9: Output for Example 7.2

Table 7.5g The resultant path flow and path travel time for example 7.2.

Path ] S ) f prs (k) C;s (k) link on the path Arrive?I time for

each link

on the path
number
1 1 2 1 50.9542 2.0546 1 0 1 0
2 1 2 2 5.7241 2.0832 1 0 2 0
3 1 2 3 1.6396 2.0914 1 0 3 0
4 1 2 4 0 2.0914 1 0 4 0
5 1 2 5 0 2.0914 1 0 5 0
6 1 4 1 22.1227 0.9505 5 0 1 0
7 1 4 2 5.0477 0.9758 5 0 2 0
8 1 4 3 1.4331 0.9829 5 0 3 0
9 1 4 4 15.6278 0.9505 5 0 4 0
10 1 4 5 7.4508 0.9625 5 0 5 0
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11 27.5245 0.9775 0 0
12 5.5288 1.0052 0 0
13 0.3278 1.0215 0 0
14 18.6368 0.9770 0 0
15 4.6640 1.0036 0 0
16 17.3336 1.8532 10 4
17 4.2424 1.8956 10 5
18 1.7712 1.9133 10 6
19 2.9309 1.9133 5 7
20 9.6935 1.8369 10 7
21 6.6940 1.8614 10 8
22 0.6525 1.8615 5 9
23 22.4341 0.9521 0 0
24 4.1702 0.9729 0 0
25 0.9271 0.9776 0 0
26 17.2186 0.9515 0 0
27 3.5675 0.9944 0 0
28 11.7157 2.7569 7 7
29 5.8245 2.8152 7 8
30 5.0560 2.8657 7 9
31 6.6075 2.8732 7 10
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32 4 2 5 3.2918 2.8770 9 7 5 11

33 4 2 5 9.1872 2.8770 6 1 5 8

Appendix 10: Output for Example 7.3

Table 7.17g The resultant path flow and path travel time for example 7.3.

Path r s k f JS (k) C:)S (k) link on the path Arriva'tl time for

each link

on the path
number
1 1 2 1 25.4398 1.9270 1 0 1 0
2 1 2 2 4.4281 1.9492 1 0 2 0
3 1 2 3 2.5812 1.9621 1 0 3 0
4 1 2 4 1.1148 1.9677 1 0 4 0
5 1 2 5 0 1.9677 1 0 5 0
6 1 4 1 13.1576 0.9057 5 0 1 0
7 1 4 2 4.0896 0.9262 5 0 2 0
8 1 4 3 2.3817 0.9381 5 0 3 0
9 1 4 4 6.6096 0.9053 5 0 4 0
10 1 4 5 4.8053 0.9089 5 0 5 0
11 2 1 1 14.9995 0.9149 2 0 1 0
12 2 1 2 4.4385 0.9371 2 0 2 0
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13 2.5688 0.9500 0 0
14 7.4614 0.9123 0 0
15 4.5636 0.9249 0 0
16 9.7103 1.7770 10 4
17 3.3090 1.8100 10 5
18 1.9276 1.8293 10 6
19 4.4152 1.7764 10 7
20 0.0548 1.7764 5 7
21 3.3496 1.7768 10 8
22 2.3806 1.7768 5 8
23 13.9979 0.9099 0 0
24 3.8265 0.9290 0 0
25 2.2298 0.9402 0 0
26 5.2461 0.9100 0 0
27 3.7171 0.9221 0 0
28 6.7284 2.7070 7 7
29 3.6524 2.7436 7 8
30 3.0557 2.7741 7 9
31 2.3488 2.7640 7 10
32 2.7075 2.7640 1 7
33 2.5401 2.7667 1 8
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34

2.0933

2.7666

11

Appendix 11: Output for Example 8.1

Table 8.3g The resultant path flow and path travel time for Example 8.1.

oath f prs (k) CLS (k) Links on the path ArrivaTI time for

each link

on the path
number
1 3.4259 4.8829 5 15 23 24 1 5 9 13
2 1.8491 4.8829 3 7 14 19 1 5 9 13
3 3.2407 4.8829 3 4 9 19 1 5 9 13
4 1.4787 4.8829 5 13 17 24 1 5 9 13
5 0.0028 4.8829 3 7 17 24 1 5 9 13
6 0.0028 4.8829 5 13 14 19 1 5 9 13
7 3.4258 4.9662 5 15 23 24 2 6 10 14
8 1.8518 4.9662 3 7 14 19 2 6 10 14
9 3.2408 4.9662 3 4 9 19 2 6 10 14
10 1.4816 4.9662 5 13 17 24 2 6 10 14
11 3.4262 5.0496 5 15 23 24 3 7 11 15
12 1.8418 5.0496 3 7 14 19 3 7 11 15
13 3.2406 5.0496 3 4 9 19 3 7 11 15
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14 1.4708 5.0496 5 13 17 24 11 15
15 0.0103 5.0496 5 13 14 19 11 15
16 0.0103 5.0496 3 7 17 24 11 15
17 3.4256 5.1329 5 15 23 24 12 16
18 1.8518 5.1329 3 7 14 19 12 16
19 3.2407 5.1329 3 4 9 19 12 16
20 1.4819 5.1329 5 13 17 24 12 16
21 0 5.1329 3 7 17 24 12 16
22 3.1741 5.1339 5 15 23 24 13 17
23 0.9394 5.1339 3 7 14 19 13 17
24 1.9726 5.1339 5 13 17 24 13 17
25 3.6899 5.1339 3 4 9 19 13 17
26 0.2113 5.1339 5 13 14 19 13 17
27 0.0127 5.1339 3 7 17 24 13 17
28 4.1667 4.8875 22 21 16 6 9 13
29 1.4814 4.8875 20 12 8 1 9 13
30 3.4259 4.8875 20 10 2 1 9 13
31 0.9259 4.8875 22 18 8 1 9 13
32 4.1667 4.9755 22 21 16 6 10 14
33 1.4818 4.9755 20 12 8 1 10 14
34 3.4257 4.9755 20 10 2 1 10 14
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35 0.9258 4.9755 22 18 8 1 10 14
36 4.1667 5.0635 22 21 16 6 11 15
37 1.4809 5.0635 20 12 8 1 11 15
38 3.4263 5.0635 20 10 2 1 11 15
39 0.9261 5.0635 22 18 8 1 11 15
40 4.1667 5.1514 22 21 16 6 12 16
41 1.4821 5.1514 20 12 8 1 12 16
42 3.4255 5.1514 20 10 2 1 12 16
43 0.9257 5.1514 22 18 8 1 12 16
44 0.7143 5.1309 22 21 16 6 13 17
45 2.3811 5.1309 20 12 11 6 13 17
46 4.1264 5.1309 22 18 11 6 13 17
47 0 5.1369 20 12 8 1 13 17
48 2.7781 5.1309 20 10 2 1 13 17
49 3.4259 4.8875 9 19 22 21 9 13
50 4.1667 4.8875 2 1 5 15 9 13
51 0.9259 4.8875 2 7 17 21 9 13
52 1.4815 4.8875 9 12 17 21 9 13
53 3.4261 4.9755 9 19 22 21 10 14
54 4.1667 4.9755 2 1 5 15 10 14
55 0.926 4.9755 2 7 17 21 10 14
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56 1.4812 4.9755 9 12 17 21 10 14
57 3.4256 5.0634 9 19 22 21 11 15
58 4.1667 5.0635 2 1 5 15 11 15
59 1.4821 5.0635 9 12 17 21 11 15
60 0.9256 5.0635 2 7 17 21 11 15
61 3.4263 5.1514 9 19 22 21 12 16
62 4.1668 5.1514 2 1 5 15 12 16
63 1.4809 5.1514 9 12 17 21 12 16
64 0.926 5.1514 2 7 17 21 12 16
65 2.7781 5.1309 9 19 22 21 13 17
66 4.1276 5.1309 2 7 11 15 13 17
67 2.3803 5.1309 9 12 11 15 13 17
68 0.714 5.1309 2 1 5 15 13 17
69 3.2407 4.8829 23 24 20 10 9 13
70 1.4815 4.8829 16 13 8 4 9 13
71 3.4259 4.8829 16 6 3 4 9 13
72 1.8518 4.8829 23 18 14 10 9 13
73 3.2407 4.9662 23 24 20 10 10 14
74 1.4702 4.9662 16 13 8 4 10 14
75 3.426 4.9662 16 6 3 4 10 14
76 1.8408 4.9662 23 18 14 10 10 14
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77 7 3 2 0.0112 4.9662 23 18 8 4 10 14
78 7 3 2 0.0111 4.9662 16 13 14 10 10 14
79 7 3 3 3.2408 5.0496 23 24 20 10 11 15
80 7 3 3 1.4819 5.0496 16 13 8 4 11 15
81 7 3 3 3.4257 5.0496 16 6 3 4 11 15
82 7 3 3 1.8516 5.0496 23 18 14 10 11 15
83 7 3 4 3.2413 5.1329 23 24 20 10 12 16
84 7 3 4 1.4758 5.1329 16 13 8 4 12 16
85 7 3 4 3.4264 5.1329 16 6 3 4 12 16
86 7 3 4 1.8463 5.1329 23 18 14 10 12 16
87 7 3 4 0.0051 5.1329 23 18 8 4 12 16
88 7 3 4 0.005 5.1329 16 13 14 10 12 16
89 7 3 5 3.6894 5.1339 23 24 20 10 13 17
90 7 3 5 1.9855 5.1339 16 13 8 4 13 17
91 7 3 5 0.9539 5.1339 23 18 14 10 13 17
92 7 3 5 3.1744 5.1339 16 6 3 4 13 17
93 7 3 5 0.1968 5.1339 16 13 14 10 13 17
94 7 3 5 0 5.1339 23 18 8 4 13 17
Appendix 12: Output for Example 8.2
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Table 8.6i The resultant path flow and path travel time for Example 8.2.

path f prs (k) C;S (k) Links on the path Arrivafl time for
each link
on the path

number

1 5 5.6412 3 7 17 24 1 4 7 11
2 5 5.6412 3 7 14 19 1 4 7 11
3 5.7435 6.1815 3 7 17 24 2 6 9 13
4 1.3338 6.1815 5 15 23 24 2 6 10 14
5 2.9227 6.1815 3 7 14 19 2 6 9 13
6 1.0898 5.7023 3 7 17 24 3 6 9 13
7 4.9995 5.7023 5 15 23 24 3 6 10 14
8 3.9107 5.7023 3 7 14 19 3 6 9 13
9 5.7435 6.1815 3 7 17 24 4 8 11 15
10 1.3338 6.1815 5 15 23 24 4 8 12 16
11 2.9227 6.1815 3 7 14 19 4 8 11 15
12 1.0898 5.7023 3 7 17 24 5 8 11 15
13 4.9995 5.7023 5 15 23 24 5 8 12 16
14 3.9107 5.7023 3 7 14 19 5 8 11 15
15 5 5.6412 22 18 11 6 1 4 7 11
16 5 5.6412 22 18 8 1 1 4 7 11
17 4.8651 6.1815 22 18 11 6 2 6 9 13
18 1.3333 6.1815 20 10 2 1 2 6 10 14
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19 3.8015 6.1815 22 18 8 1 9 13
20 1.9682 5.7023 22 18 11 6 9 13
21 5 5.7023 20 10 2 1 10 14
22 3.0318 5.7023 22 18 8 1 9 13
23 4.8651 6.1815 22 18 11 6 11 15
24 1.3333 6.1815 20 10 2 1 12 16
25 3.8015 6.1815 22 18 8 1 11 15
26 1.9682 5.7023 22 18 11 6 11 15
27 5 5.7023 20 10 2 1 12 16
28 3.0318 5.7023 22 18 8 1 11 15
29 5 5.6412 2 7 17 21 7 11
30 5 5.6412 2 7 11 15 7 11
31 5.7435 6.1815 2 7 17 21 9 13
32 1.3338 6.1815 9 19 22 21 10 14
33 2.9227 6.1815 2 7 11 15 9 13
34 1.0898 5.7023 2 7 17 21 9 13
35 4.9995 5.7023 9 19 22 21 10 14
36 3.9107 5.7023 2 7 11 15 9 13
37 5.7435 6.1815 2 7 17 21 11 15
38 1.3338 6.1815 9 19 22 21 12 16
39 2.9227 6.1815 2 7 11 15 11 15
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40 1.0898 5.7023 2 7 17 21 11 15
41 4.9995 5.7023 9 19 22 21 12 16
42 3.9107 5.7023 2 7 11 15 11 15
43 5 5.6412 23 18 14 10 7 11
44 5 5.6412 23 18 8 4 7 11
45 4.8651 6.1815 23 18 14 10 9 13
46 1.3333 6.1815 16 6 3 4 10 14
47 3.8015 6.1815 23 18 8 4 9 13
48 1.9682 5.7023 23 18 14 10 9 13
49 5 5.7023 16 6 3 4 10 14
50 3.0318 5.7023 23 18 8 4 9 13
51 4.8651 6.1815 23 18 14 10 11 15
52 1.3333 6.1815 16 6 3 4 12 16
53 3.8015 6.1815 23 18 8 4 11 15
54 1.9682 5.7023 23 18 14 10 11 15
55 5 5.7023 16 6 3 4 12 16
56 3.0318 5.7023 23 18 8 4 11 15
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