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Abstract 
 
 
Operational Modal Analysis (OMA) is a technique that characterizes a structure/system 

on the basis of output responses only. It is an emerging field in structural dynamics and 

has been applied to complex structures that are often difficult to analyze using traditional 

Experimental Modal Analysis (EMA) techniques. However, the unavailability of input 

force information, in the case of OMA, makes the overall process significantly more 

complex as it affects every stage of modal analysis including data acquisition, data 

processing, parameter estimation, etc. Factors such as these have been responsible for 

the lack of frequency domain OMA algorithms, inconsistent damping estimation, etc.  

This research provides useful insights into the OMA techniques by in-depth exploration 

of the various assumptions under which OMA works and suggests some new signal 

processing approaches and algorithms to aid in modal parameter estimation using OMA 

techniques. The dissertation starts with a general literature review of OMA which is 

followed by presentation of the Unified Matrix Polynomial Approach (UMPA) to the OMA 

problem. In subsequent chapters, a frequency domain, lower order algorithm and a 

spatial domain algorithm are presented. Next, new signal processing techniques like 

Blind Source Separation / Independent Component Analysis (BSS/ICA) are adapted for 

OMA purposes. The performance of these algorithms is verified by conducting studies 

on analytical and experimental systems. Intense analytical studies are conducted to 

understand the effect of the violation of OMA assumptions on OMA modal parameter 

estimation, especially in view of inconsistent damping estimation. The algorithms 

developed in this dissertation are then applied to two newly built cable-stayed bridges for 

assessing their performance in real-life situations. Finally, the research conclusions are 

presented and recommendations for the future research in this area are given. 
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Chapter One 
 
 
 

Introduction 
 
 
 
 
1.1 Operational Modal Analysis 
 
In today’s world, lots of emphasis is laid on designing safe and reliable engineering 

structures. Introduction of improved materials has also made it imperative for these 

structures to be light and yet capable of withstanding heavy loads while in operation. 

These requirements make it important for the design community to understand the 

dynamic characteristics of structures while designing them for safety, reliability and 

quality points of view.  

Dynamic characterization of structures is of significant importance in a wide variety of 

industries including aerospace, automotive, rotating machinery, civil structures such as 

buildings and bridges, etc. Generally, the dynamic behavior of structures is 

characterized in terms of their modal parameters (modal frequencies, modal damping 

and scaled mode shapes). Availability of technologies like Finite Element Analysis (FEA) 

has aided in this regard however there are serious limitations which restrict the use of 

these techniques to complex, real life structures. These problems arise on account of the 

inability of FEA to correctly model structural properties like damping, nonlinearity, 

boundary conditions, etc. Thus these methodologies are complemented by experiments 

for accurately determining the dynamic characteristics of the structure. 
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Experimental Modal Analysis (EMA) is a popular technique for determining the modal 

parameters of a structure. The extracted modal parameters are then used for formulating 

a mathematical model that is representative of the system/structure dynamics. This 

model is called the modal model. The term experimental modal analysis involves both 

the data acquisition stage (Modal Testing) and subsequent analysis to come up with the 

modal model (Modal Parameter Estimation). EMA results are used for a variety of 

applications such as troubleshooting dynamics related problems, correlating and 

updating finite element model, simulation and prediction of structural modifications, to 

analyze sensitivity of modal parameters to system physical parameter changes 

(Sensitivity analysis), force identification, structural damage detection and health 

monitoring, active vibration control, etc. EMA is a relatively well understood technique 

and is well described in a number of texts [Ewins, 2000; Maia, Silva et al., 1997; 

Allemang, 1999; Heylen et al., 1995; He, Fu, 2001]. 

Experimental modal analysis (Figure 1.1) involves exciting the structure by means of 

known forces (either using shakers or impact hammers) and measuring the response to 

these forces over the structure (usually by means of accelerometers). The 

system/structure is then characterized (estimation of unknown modal parameters) on the 

basis of both the known input forces and output responses. 

 

 
 

Figure 1.1 Experimental Modal Analysis 
 

Over the last ten years researchers across the globe have worked on various techniques 

that utilize only the output response data to determine the modal parameters (Figure 

1.2). To distinguish these techniques from traditional frequency response function (FRF) 
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based experimental modal analysis (EMA), the response data based modal parameter 

identification process became popular as Operational Modal Analysis (OMA) or Output-

Only modal analysis. One of the prime motives for researchers to shift from the 

traditional and more established experimental modal analysis to operational modal 

analysis is the problems faced while studying and characterizing large, complex systems 

such as civil structures like bridges, buildings, etc and simulating exact operating 

conditions (such as those encountered by vehicles on road). It is not only difficult but 

sometimes impossible to provide sufficient artificial forced excitation to such huge 

structures. Even under circumstances when it’s possible to excite the structure 

artificially, the associated costs are often too high to be justified. Thus, difficulties 

involved in exciting the structure sufficiently and simulating the operational conditions 

proves to be a major setback in application of traditional EMA techniques that require the 

structure to be excited by a known artificial force.  

 
 

Figure 1.2 Operational Modal Analysis 
 
 
To understand the OMA identification process further, the input-output model of Figure 

1.1 can be expressed mathematically. If {X(ω)} is the measured response or the output 

and {F(ω)} is the input force, the relationship between them in terms of frequency 

response function (FRF) [H(ω)] is given as follows [Bendat, Piersol, 1986]: 
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( ){ } ( )[ ] ( ){ }ωωω FHX =  1.1) 

 

This equation forms the basis of Experimental Modal Analysis where the frequency 

response functions [H(ω)] are formed from the measured input forces {F(ω)} and output 

responses {X(ω)}. The FRFs contains all the necessary information required to obtain 

the modal parameters that characterize a system. This can be observed by expressing 

the frequency response functions in terms of modal parameters as 
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Eq. (1.2) shows the frequency response function H(ω) for a particular input location q 

and output location p being expressed in terms of the modal parameters; mode shape ψ, 

modal scaling factor Q and modal frequency λ. This model is referred to as the modal 

model. The goal of EMA modal parameter estimation is to extract this modal model from 

the measured FRF data. 

Now Eq. (1.1) can be written as 

( ){ } ( ){ } ( )[ ]HHH HFX ωωω =  1.3) 

 

Multiplying Eq. (1.1) and Eq. (1.3) 

( ){ } ( ){ } ( )[ ] ( ){ } ( ){ } ( )[ ]HHH HFFHXX ωωωωωω =  
 

 

or with averaging, 

( )[ ] ( )[ ] ( )[ ] ( )[ ]HFFXX HGHG ωωωω =  
1.4) 
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where [GXX(ω)] is the output response power spectra matrix and [GFF(ω)] is the input 

force power spectra matrix. 

Eq. (1.4) forms the basis of Operational Modal Analysis. Since the input force is not 

measured in the case of OMA, the OMA procedure only works under certain 

assumptions. Two key assumptions in this regard are  

1. The nature of the input force is assumed to be random, broadband and 

smooth. This means that the input power spectra is constant and has no 

poles or zeroes in the frequency range of interest.  

2. The forcing is further assumed to be uniformly distributed spatially (i.e. 

number of inputs Ni approaching number of outputs No, considering the 

response is being measured all over the structure). 

Since [GFF(ω)] is constant, [GXX(ω)] can be expressed in terms of frequency response 

functions as 

( )[ ] ( )[ ][ ] ( )[ ]HXX HIHG ωωω ∝  1.5) 

 

The partial fraction model of GXX for a particular response location p and reference 

location q is given by 
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and can be more conveniently written as [Peeters, Auweraer, 2005]  
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where pqkS  and ∗
pqkS are redefined to incorporate (-1). 

Note that λk is the pole and Rpqk and Spqk are the kth mathematical residues. These 

residues are different from the residue obtained using a frequency response function 

based partial fraction model since they do not contain the modal scaling factor (as no 

force is measured). The form of Eq. (1.6c) clearly indicates that the roots that will be 

found from the power spectrum data will be kλ , ∗
kλ , kλ−  and ∗− kλ  for each model order 1 

to N. 

 
1.2 Motivation and Problem Definition 
 
Due to its usefulness in situations where application of EMA techniques is not possible 

or is difficult, OMA has found application in a number of areas including large civil 

structures such as bridges, stadiums, high rise buildings etc, automotive and aerospace 

industry etc.  

Operational modal analysis possesses several advantages. Since the OMA tests are 

performed in-situ, they are expected to better represent the real world systems in 

comparison to the laboratory based EMA tests. The environmental effects of, for 

example mass loading or aero-elastic interaction, etc on system behavior can be taken 

into account while performing in-operation tests. Since OMA is an output-only technique, 

the cost involved in providing artificial excitation is avoided. Further, OMA tests are also 

better suited for the continuous monitoring of large structures [Peeters, 2000]. 

However, OMA techniques are still evolving and there are number of issues which 

remain to be understood more completely. Despite all the above stated advantages, 
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OMA suffers from serious limitations on account of unavailability of input force 

measurement. Normally system identification techniques are based on the knowledge of 

both the input and the output. In structural dynamics, the lack of input force information 

in OMA methods means that the mode shapes are unscaled. The modal scaling factor is 

an important modal parameter which is required in addition to modal frequency, damping 

and mode shape for completion of the modal model. This becomes necessary for further 

use of modal parameters for procedures such as modal updating, etc. 

Yet another limitation of OMA is the assumption about the nature of the input force. In 

OMA it is assumed that the input force is random white noise. This assumption though 

applicable in many a situations (wind and rain on a bridge) is not always true. Presence 

of harmonic input ends up appearing as a peak in the output response power spectra 

and is difficult to distinguish from the genuine modes of the structure especially when 

signal to noise ratio is not very high (which is often the case in OMA). 

This dissertation focuses on the following issues associated with OMA methods which 

define the problem and scope of the dissertation and also underlines the motivation for 

this work. 

1. The primary data on which the OMA parameter estimation algorithms work is 

output power spectra (GXX) (or correlation functions in time domain). This affects 

the modal analysis process considerably including the data acquisition, data 

processing and parameter estimation stages. In OMA, the forcing is ambient or 

natural and hence is not under control. Thus it is very possible that these forces 

are not able to excite all the modes of interest. There can also be cases where 

forcing is not sufficient, hence resulting in low signal-to-noise ratio. This means 

that in comparison to EMA, OMA requires much more data processing which 

creates a need for better data processing techniques [Chauhan et al., 2006].  
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2. Power spectra contain the same information twice in terms of, positive and 

negative modes (see Eq. 1.6c). In other words, the order of power spectrum is 

twice that of frequency response functions (this is further explored in Chapter 3). 

This makes the parameter estimation in the case of OMA more complex in 

comparison to EMA, especially for the frequency domain algorithms as higher 

order and presence of duplicate information in terms of negative modes affect the 

numerical conditioning aspects of frequency domain algorithms [Chauhan et al., 

2006].  

3. The second assumption stated in the previous section concerns the spatial 

distribution of input forcing excitation and states that the excitation is considered 

to be distributed uniformly all over the structure. In other words the structure is 

excited completely in spatial sense. However, this assumption is not true for 

several conventional EMA situations where excitation might be localized in 

nature [Chauhan et al., 2006].  

4. It has also been noticed that damping values are often over estimated using 

OMA techniques [Chauhan, Phillips, Allemang, 2008]. The opinions on this 

aspect of OMA are widely varying and no consensus or definite answers are 

available. 

 
1.3 Research Goals and Contributions 
 
The issues stated in the previous section and, additionally, the algorithmic aspects of the 

modal parameter estimation stage of OMA form the basis of the research goals which 

are listed as follows 

1. Development of frequency domain parameter estimation algorithms and 

associated signal processing techniques for OMA, 
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2. Understand the effect of spatial distribution of excitation on OMA and how 

they affect the performance of OMA spatial domain algorithms, 

3. Accurate estimation of damping using OMA techniques, 

4. Extend Unified Matrix Polynomial Approach [Allemang, Brown, Fladung, 

1994; Allemang, Brown, 1998; Allemang, Phillips, 2004] concept to OMA for 

the purpose of utilizing the advantages of UMPA for better understanding 

and development of various parameter estimation algorithms, 

5. Use of advanced techniques such as Independent Component Analysis 

and other methods based on Higher Order Statistics [Hyvarinen, Karhunen, 

Oja, 2001; Chichoki, Amari, 2002] for the purpose of Operational Modal 

Analysis, and 

6. Application of OMA techniques to real life structures (Cable-stayed 

bridges). 

With respect to these goals, the significant contributions of the research work carried out 

towards the field of OMA are 

• The Unified Matrix Polynomial Approach is extended to OMA. The UMPA 

concept is recognized as a very good methodology for understanding and 

developing various modal analysis algorithms. In light of various differences with 

conventional input measurement based EMA and assumptions that are made in 

the case of OMA, the UMPA concept is extended to OMA. Emphasis is placed on 

understanding the basic difference between traditional Experimental Modal 

Analysis and output-only Operational Modal Analysis, the various assumptions 

made in the case of OMA and how the fundamental data (correlation functions 

and power spectrums) should be used in order to utilize the UMPA model for the 

purpose of parameter estimation in the case of OMA. It is revealed that 

understanding the underlying basic polynomial model not only helps in theoretical 
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development of various algorithms but also provides a common framework which 

makes it much easier and simpler to understand these algorithms. [Chauhan et 

al., 2007] 

• As stated in the previous section, the lack of frequency domain algorithms in the 

field of Operational Modal Analysis can be attributed to numerical conditioning 

problems associated with them. In this research this aspect is studied in detail 

and reasons for poor numerical conditions in case of OMA are identified. A signal 

processing technique based on multiplying the power spectrum with a step 

function and utilizing only its positive lags portion is suggested to overcome the 

higher order of the power spectrums. A low order frequency domain algorithm 

based on the UMPA formulation was proposed and shown to have good 

numerical conditioning properties in comparison to high order frequency domain 

algorithms such as Rational Fraction Polynomial (RFP). [Chauhan et al., 2006].  

• A new spatial domain OMA algorithm based on the previously introduced 

Enhanced Mode Indicator Function (EMIF) [Fladung, Phillips, Brown, 1997; 

Fladung, 2001; Allemang, Brown, 2006], is developed. This algorithm, referred as 

OMA-EMIF algorithm, is an alternative to the popular OMA algorithm, Frequency 

Domain Decomposition and enhanced Frequency Domain Decomposition 

(FDD/eFDD) and works entirely in the frequency domain. One of the major 

advantages of estimating the modes in the frequency domain is the ability to 

utilize the residuals which helps in improving the results by taking into account 

the contribution of the out-of-band modes. The algorithm is shown to give good 

results by implementing it on analytical and experimental systems. [Chauhan et 

al., 2006] 

• Critical issues and limitations associated with the application of spatial domain 

algorithms to the OMA framework under different excitation scenarios are 
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studied. It is shown how the ability of Complex Mode indicator Function (CMIF) 

based methods is limited when the system is not adequately excited spatially. 

Though such problems are not encountered while analyzing structures such as 

bridges and buildings (where forcing is more uniform), in situations like 

automobiles on the road having narrow band point excitations (such as engine 

unbalance or other rotating unbalance), this can be a major problem as the 

resulting CMIF plot might not indicate the modes correctly. A tool based on 

contribution of singular values to total variance, Singular Value Percentage 

Contribution (SVPC) plot, is devised which helps in determining whether the 

system is being excited locally or spatially uniformly. This tool makes it possible 

to use the CMIF plot even in cases where the system is not spatially well excited. 

[Chauhan et al., 2006] 

• Emerging concepts of Independent Component Analysis (ICA) and Blind Source 

Separation (BSS) are utilized for the purpose of OMA. Four popular ICA / BSS 

techniques are evaluated for their performance on an analytical system. It is 

shown how these techniques can be utilized for output-only modal parameter 

estimation purposes by relating them to the concepts of modal filtering and the 

modal expansion theorem. These algorithms are found to be relatively simple 

and less time consuming. [Chauhan et al., 2007] 

• Issues related to the estimation of damping using OMA techniques are studied in 

more depth. By means of this study, it is shown how it is considerably difficult to 

get good, leakage free estimates of the power spectrums in comparison to the 

FRFs. It is further shown that cyclic averaging together with RMS averaging 

deals with leakage much more effectively in comparison to regular RMS signal 

processing that involves overlapping and windowing. It is noted that damping 

estimates are affected if the most basic OMA assumption (input forces being 



 12

random and uncorrelated) is not entirely true. The error in damping estimates is 

shown to be considerably increased if the input forces are not entirely 

uncorrelated. The results of this study indicate that for accurate estimation of 

damping, it is necessary to have good estimates (leakage free) of the output 

response power spectrum and that the input forces should be as uncorrelated as 

possible. While the first issue can be improved by using signal processing 

techniques like cyclic averaging, the second factor is often beyond one’s control, 

especially in real-life scenarios. [Chauhan et al., 2008] 

• Suggested OMA algorithms have been applied to complex real life structures like 

cable-stay bridges. This not only helped in evaluating the performance of these 

algorithms to practical scenarios but also provided valuable insight into designing 

and executing OMA tests of such huge and complex structures. [Chauhan, Saini 

et al., 2007, Chauhan, Saini et al., 2008] 

 
1.4 Dissertation Outline 
 
The research work presented in the dissertation is organized in the following manner 

Chapter One introduces the dissertation. The motivation and merits of the dissertation 

are listed in this chapter along with a brief outline of how the dissertation is organized.  

Chapter Two gives a comprehensive literature survey about OMA. It aims at providing 

the reader with the state of art about the various aspects of OMA including the need and 

development of the field of OMA, OMA algorithms, advantages and limitations of OMA 

and its application to various real life structures. 

Chapter Three deals with Unified Matrix Polynomial Approach (UMPA) and its extension 

to OMA in this chapter. Various OMA algorithms developed using UMPA methodology 

are applied to an analytical system to show how UMPA can help in understanding and 

developing various algorithms. 
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In Chapter Four a frequency domain OMA algorithm is developed and is shown to 

perform satisfactorily by means of application to an analytical and an experimental 

(Circular plate) structure. The performance of this algorithm is also compared with its z-

domain variant. 

Chapter Five presents a spatial domain algorithm, OMA-EMIF. This algorithm is an 

alternative to the popular OMA algorithm FDD-eFDD and is based on reformulation of 

the EMIF algorithm. It also explores the issues related to application of spatial domain 

OMA algorithms in light of OMA assumptions. 

Chapter Six focuses on utilizing advance signal processing techniques like Independent 

Component Analysis and Blind Source Separation for the purpose of OMA. 

Chapter Seven emphasizes on exploring and deeper understanding of the OMA 

assumptions. The effect of violation of these assumptions on OMA parameter estimation 

process is studied. Signal processing techniques such as use of cyclic averaging, 

positive power spectrum and difficulties associated with use of frequency domain 

algorithms is also illustrated. This chapter also includes the work related to damping 

estimation using OMA algorithms.  

Chapter Eight discusses the results of application of OMA algorithms to the US Grant 

and MRC cable stayed bridges, thus highlighting the performance of these algorithms in 

real life situations. 

Chapter Nine concludes the thesis with the recapitulation of the salient points of the 

research and recommendations for the future work in the field of OMA. 
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Chapter Two 
 
 
 

Literature Survey 
 
 
 
It was in the 1990’s that researchers started to work in the field that later developed into 

Operational Modal Analysis (OMA). As the work progressed, it came to be referred by 

several other names including Output-Only Modal Analysis, Ambient Modal Analysis and 

Natural Input Modal Analysis. The need for OMA was first realized by the civil 

engineering community due to the problems faced while studying and characterizing 

complex systems such as bridges, buildings, stadiums, offshore platforms, etc. Such 

structures were not only complex but also huge in size and thus finding dynamic 

properties of these structures using conventional Experimental Modal Analysis 

techniques posed several difficulties. Conventional EMA requires artificial excitation to 

excite the structure in order to obtain the modal parameters by means of measured 

output responses to the known input excitation forces. However, due to the immense 

size of civil structures it is often difficult and sometimes even impossible to excite these 

structures artificially. Even under circumstances when it’s possible to excite the structure 

artificially, the associated costs are too high to be justified. Thus difficulties involved in 

exciting the structure sufficiently and simulating the operational conditions proves to be a 

major setback in application of traditional EMA techniques that require the structure to 

be excited by a known artificial force. This need initiated the work in the area of OMA 

with the objective of developing techniques that will enable engineers to find dynamic 

characteristics of a structure without the need to measure the input excitation forces. 
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Subsequently, other applications of OMA also emerged in traditional modal analysis 

areas of automotive, aerospace and other mechanical industries. These included 

applications where the modal parameters are required to be obtained in-situ. Simulating 

actual loading conditions artificially still remains a challenge and thus OMA, which can 

be performed in-situ, provided an alternative.  

This chapter reviews the relevant literature available in the area of OMA including a 

survey of various OMA algorithms (Section 2.1), OMA application case studies (Section 

2.2) and the work that has been carried out to identify and overcome the limitations of 

OMA (Section 2.3). 

 
2.1 OMA Algorithms 
 
Most OMA algorithms are essentially extensions of the traditional EMA algorithms. In 

this section the most common and popularly used OMA sections are reviewed. 

 
2.1.1 Time Domain Algorithms 
 
SDOF Peak Picking (PP) Method 
 
The earliest OMA algorithms utilized the classical single degree of freedom based peak 

picking method [Allemang, 1999; Phillips, Allemang, 1996; Heylen et al., 1995], a simple 

technique that can be applied fairly successfully to modes that are well separated and 

have low damping. In EMA, this method identifies the modal frequencies as the peaks of 

an FRF plot. The damping ratios are obtained using the half-power bandwidth method 

and mode shapes are identified as the value of the frequency response function for all 

the response points at the modal frequency.  

This method is extended to OMA by applying it to output response power spectrum 

instead of frequency response functions [Felber, 1993; Bendat, Piersol, 1993]. However, 
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this method does not work for situations where modes are not well separated and 

damping is moderate to heavy. Thus identification of closely spaced modes is not 

possible using this method. Insufficient frequency resolution can also hamper the 

effectiveness of this method. 

 
NExT – Natural Excitation Technique and Other Similar Algorithms 
 
The utilization of Autoregressive Moving Average (ARMA) procedure for estimating 

modal parameters using response data only was first suggested in 1970s [Gersch, Luo, 

1972; Gersch, Fouth, 1974; Pandit, 1977; Pandit, Suzuki, 1979]. These methods 

assumed input force to be white random and the technique was applied to estimate the 

characteristics of the buildings excited by wind forces. 

 However, it was not till early 1990s that researchers started taking note of these output 

response only based techniques. The Natural Excitation Technique (NExT) [James, 

Carne, Lauffer, 1995] emerged during this time and was developed while modal testing 

the vertical-axis wind turbines and is one of the earliest OMA algorithms. The basis of 

the NExT algorithm is the auto and cross-correlation functions calculated between the 

measured output response time histories. This method then uses the traditional EMA 

time domain modal parameter estimation algorithms such as Least Square Complex 

Exponential (LSCE) [Brown et al., 1979], Ibrahim Time Domain (ITD) [Ibrahim, Mikulcik, 

1977; Fukuzono, 1986] or their multiple input multiple output (MIMO) equivalents;  

Polyreference Time Domain (PTD) [Vold, Kundrat, et al., 1982; Vold, Rocklin, 1982] and 

Eigensystem Realization Algorithm (ERA) [Juang, Pappa, 1985; Longman, Juang, 

1989]. 

Theoretical basis of NExT is that the correlation functions between output responses to a 

random white-noise input can be expressed as the sum of decaying sinusoids which 
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have same characteristics as the impulse response function, thus possessing the same 

modal parameters information. 

 
Prediction Error Method (PEM) and Instrument Variable (IV) Method 
 
These algorithms utilized the Auto-Regressive Moving Average (ARMA) model for 

identifying modal parameters. Ljung [Ljung, 1999] described a Prediction-Error method 

(PEM) approach in which the modal parameters are obtained by minimizing the 

prediction error. This algorithm results in a highly nonlinear optimization problem due to 

which its utility is severely affected. The algorithm is sensitive to initial values, is 

computationally intensive, convergence not guaranteed; all of which makes it unsuitable 

for OMA purposes, especially for analyzing large structures. A MIMO version of this 

algorithm, PEM-ARMAV (Vector ARMA), was proposed by Andersen (Andersen, 1997). 

The nonlinear nature of the ARMA based PEM arises due to the MA polynomial 

coefficients. For the purpose of modal parameters though, only AR polynomial 

coefficients are needed. The Instrument Variable (IV) method [Peeters, De Roeck, 2001] 

uses this approach for system parameter identification purposes, thus avoiding the 

limitations of PEM. The IV method thus utilizes an AR model based on output 

covariance. It is to be noted that IV method yields equations similar to NExT and PTD, 

though it is derived in a different manner. As is the case with PTD, the model order in 

these algorithms is typically over specified and the spurious (mathematical) modes are 

filtered using tools such as stabilization diagrams [Allemang, 1999; Maia, Silva et al., 

1997; Heylen et al., 1995 ].  
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State-Space Model Based Approaches 
 
The OMA algorithms developed using the state-space approach can be further classified 

as either covariance-driven (realization based) and data-driven methods (subspace 

based).  

 
Covariance-driven Stochastic Realization-based algorithms (SSI-COV) 
 
Covariance driven stochastic realization based algorithms derive inspiration from the 

classical realization theory as explained by Ho and Kalman [Ho, Kalman, 1966]. The 

deterministic system realization method was subsequently refined by use of Singular 

Value Decomposition (SVD) to reduce the effect of noise [Zeiger, McEwen, 1974; Kung, 

1974]. The eigensystem realization algorithm (ERA) [Juang, Pappa, 1985; Longman, 

Juang, 1989; Juang, 1994] belongs to this category of algorithms and is a popular EMA 

algorithm. 

The discrete-time deterministic state-space model is given as  

{ } [ ]{ } [ ]{ }kkk uByAy +=+1  

{ } [ ]{ } [ ]{ }kkk uDyCx +=  

2.1) 

 

where {xk} is the measured output vector, {uk} is the measured input vector and {yk} is the 

discrete state vector. [A] is the state transition matrix describing the dynamics of the 

system (in terms of its eigenvalues), [B] is the input matrix, [C] is the output matrix that 

describes how the internal state is being transferred by means of output measurements 

{yk} and [D] is the direct transmission matrix.  



 19

This model can be extended to discrete time combined deterministic-stochastic state 

space model by including the stochastic noise terms, the process noise { }kw  and the 

measurement noise { }kv , as shown in Eq. (2.2). 

{ } [ ]{ } [ ]{ } { }kkkk wuByAy ++=+1  

{ } [ ]{ } [ ]{ } { }kkkk vuDyCx ++=  

2.2) 

 

For stochastic or the output-only case, the above state space model can be used without 

including the terms involving measured input vector {uk}. The stochastic noise terms, 

{ }kw  and { }kv , are considered zero mean, white noise vectors. Thus a discrete time 

stochastic state space model is given as 

{ } [ ]{ } { }kkk wyAy +=+1  

{ } [ ]{ } { }kkk vyCx +=  

2.3) 

 

As mentioned earlier, the dynamics of the system is described by the eigenvalues and 

eigenvectors of [A] which can be obtained by its eigenvalue decomposition, 

[ ] [ ] [ ] [ ] 1−ΦΛΦ=A  2.4) 

 

System modes λr can be obtained by transforming the discrete eigenvalues zr (Diagonal 

values of [Λ]) into continuous eigenvalues λr and the mode shape are obtained from the 

observed part of the eigenvectors [ ]Φ . It should be noted that the mode shapes cannot 

be scaled as the input force information is not available. 
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{ } [ ]{ }rr C φψ =  

 

The covariance driven stochastic realization algorithm involves the formation of block-

Hankel matrix [R] with correlation data (or covariance data as for a zero mean process 

covariance is equal to correlation) instead of impulse response functions (IRF) as in 

case of traditional EMA algorithms like ERA. The Hankel matrix can then be 

decomposed in the similar manner as explained by Ho and Kalman. This is shown in 

[Akaike, 1974; Aoki, 1987].  

  

[ ] [ ] [ ] [ ]GACR i 1−=  2.6) 

 

where [G] is the output covariance matrix of the next state  

[ ] [ ]Tkk xyG 1+= E  2.7) 

 

Formulation of OMA algorithms based on this model is shown in several papers 

including [Beveniste, Fuchs, 1985; Hermans, Van der Auweraer, 1999; Peeters, 2000; 

Peeters, De Roeck, 2001]. The SSI-COV algorithm is generally implemented in three 

different methods:  

1). Principal Component (PC) method 

2). Canonical Variant Analysis (CVA) method 

3). Unweighted Principal Component (UPC) method 

 

All these methods differ in the way the covariance Hankel matrix [R] is weighted before 

applying the Singular Value Decomposition (SVD) procedure to them. The UPC method 

is also called the Balanced Realization (BR) method and is equivalent of the popular 
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EMA algorithm, ERA. The implementation of these methods can be found in [Arun, 

Kung, 1990; Van Overschee, De Moor, 1996]. It is observed that in practical scenarios 

all three implementations have similar accuracy in terms of identified modal parameters 

[Peeters, De Roeck, 2001; Zhang, Brincker, Andersen, 2005]. 

 
Data-driven Stochastic Realization-based algorithms (SSI-DATA) 
 
SSI-DATA [Van Overschee, De Moor, 1996; Peeters, De Roeck, 1999; Zhang, Brincker, 

Andersen, 2005] algorithm involves projecting the row space of the future outputs into 

row space of the past outputs by means of QR decomposition of the data Hankel matrix. 

This step is different from the SSI-COV method as, in this case, the data reduction is 

achieved by means of QR decomposition step rather than the covariance calculation 

step, as is the case with SSI-COV method. Finally the system parameters are obtained 

by performing an SVD of the projection matrix. In this case as well, one has the option of 

implementing the algorithm using PC, CVA or UPC methods as discussed previously. 

The SSI-DATA algorithm works directly on the raw output response time histories 

instead of covariance data as in case of SSI-COV. In case of SSI-DATA, the data 

reduction is obtained in terms of a projection matrix computed by projecting the row 

space of the future outputs on row space of the past outputs, unlike SSI-COV where this 

data reduction is obtained by means of calculating covariance functions. This data 

reduction step is done by using QR decomposition. This is followed by application of 

SVD to the computed projection matrix to obtain its Kalman filter state. Finally least 

square approach is used to get the modal parameters.  This algorithm is numerically 

more robust as it uses a square root algorithm, where as in SSI-COV matrices are 

squared in order to find covariance functions. It also avoids the leakage effect and other 

issues associated with calculation of covariance. The SSI-DATA method can also yield 

prediction errors and modal contributions which is not always the case with SSI-COV. 
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The computation times are however more in comparison, as covariance functions in 

case of SSI-COV can also be computed by inverse Fourier transforming power spectra 

which can be computed using faster discrete Fourier transform techniques.  

 
2.1.2 Spatial Domain Algorithms 
 
Spatial domain algorithms in OMA derive inspiration from the popular EMA algorithm, 

Complex Mode Indicator Function (CMIF) [Shih, Tsuei et al., 1989; Phillips, Allemang, 

Fladung, 1998; Allemang, Brown, 2006]. CMIF involves a frequency by frequency 

singular value decomposition of the frequency response function matrix. 

( )[ ] ( )[ ] ( )[ ] ( )[ ]H NNkNNkNNkNNk iiiiioio
VUH ×××× ∑= ωωωω  2.8) 

 

where 

No is number of outputs, 

Ni is number of inputs, 

H(ωk) is the FRF matrix at any frequency ωk, 

U(ωk) is the left singular matrix at any frequency ωk, which is a unitary matrix, 

V(ωk) is the right singular matrix at any frequency ωk, which is also a unitary matrix, 

Σ(ωk) is the singular value matrix at any frequency ωk, which is a diagonal matrix. 

 

The frequency response function matrix is commonly expressed in matrix form as  

( )[ ] [ ] [ ] [ ][ ] [ ]
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where 

N2m is number of modes being identified, 
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[Φ] is mode shape matrix, 

[L] = [Q][Φ]t is modal participation factor matrix, 

[Q] is the diagonal scaling factor matrix, 

[Λ] is the diagonal matrix with system poles. 

 

Thus the SVD of the FRF matrix as given by Eq. (2.8) corresponds to its modal model as 

represented by Eq. (2.9). The procedure for estimating the modal parameters using this 

technique involves the realization that local maximum in a CMIF plot occurs near 

resonance and thus gives an estimate of the location of the system pole on the 

frequency line. In general, the response of a system at any given frequency is linear 

combination of the modal vectors. However, at the resonance, the response is primarily 

due to the modal vector corresponding to that mode. The estimate of the mode shape or 

the modal vector corresponding to this mode is given by the left singular vector 

associated with the peak singular value (generally the highest) at that frequency.  

It should be noted that unlike other EMA algorithms that estimate modal frequency and 

damping in the first stage and the mode shapes later, the CMIF method does the 

reverse. It estimates the mode shapes in the first stage and, though it gives an estimate 

of the modal frequency, for more accurate estimates of the modal frequency and 

damping (which is not estimated in the first step), the CMIF routine is followed by the 

enhanced FRF based approach, referred commonly as Enhanced Mode Indicator 

Function (EMIF) [Allemang, 1980; Fladung, Philips, Brown, 1997; Phillips, Allemang, 

Fladung, 1998; Fladung, 2001; Allemang, Brown, 2006].  
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Frequency Domain Decomposition (FDD) and enhanced Frequency 
Domain Decomposition (eFDD) 
 
As explained in Chapter 1, under certain assumptions about the input excitation forces, 

the output response power spectra [GXX]  is proportional to multiplication of the FRF 

matrix with its hermitian [H][H]H. Eq. (1.6-c) is recalled here to reiterate that the power 

spectrum matrix contains all the necessary information pertaining to the modal 

parameters, under these assumptions. 
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Frequency Domain Decomposition [Brincker, Zhang, Andersen, 2000] and enhanced 

Frequency Domain Decomposition algorithm [Brincker, Ventura, Andersen, 2000] are 

one of the most popular OMA algorithms. They are similar in principle to the CMIF 

algorithm. The Frequency Domain Decomposition technique also involves the singular 

value decomposition (SVD), but it applies the SVD on the output response power 

spectra matrix, instead of the FRF matrix. Thus at any particular frequency ωk the 

singular value decomposition of [GXX] results in 

( )[ ] [ ][ ][ ]HkXX VSUG =ω  2.10)

 

where [S] is the singular value diagonal matrix and [U], [V] are singular vector matrices 

which are orthogonal. For the case where the where all response locations are 

considered as references to form the square [GXX] matrix, [U] and [V] are theoretically 

equal. The singular vectors near a resonance are good estimates of the mode shapes 

and the modal frequency is obtained by the simple, single degree of freedom peak-



 25

picking method [Phillips, Allemang, 1996; Brincker, Zhang, Andersen, 2000; Gade, 

Moller et al., 2005]. 

FDD algorithm gives the frequency and mode shapes but for damping estimation (and 

also for more accurate estimation of modal frequency) one has to utilize the eFDD 

algorithm. In the eFDD algorithm [Brincker, Ventura, Andersen, 2000; Gade, Moller et 

al., 2005], power spectra of a SDOF system is identified around a peak of resonance (A 

peak in the SVD plot). A user defined Modal Assurance Criterion (MAC) [Allemang, 

1980; Heylen, Lammens, Sas, 1995] rejection level is set to compare the singular 

vectors around the peak and corresponding singular values are retained as those 

belonging to the SDOF power spectrum. This SDOF power spectrum is transformed 

back to the time domain by inverse FFT. The natural frequency and damping are then 

estimated for this SDOF system by determining zero crossing time and logarithmic 

decrement methods respectively.  

 
2.1.3 Frequency Domain Algorithms 
 
PolyMAX – Polyreference LSCF Algorithm 
 
The use of frequency domain algorithms for OMA purposes is not very common due to 

the numerical conditioning issues as discussed briefly in Chapter 1. The PolyMAX 

algorithm [Verboven, 2002; Guillaume, Verboven et al., 2003; Peeters, Van der 

Auweraer et al., 2004; Peeters, Van der Auweraer, 2005] is perhaps the only 

commercially available frequency domain OMA algorithm. This algorithm is the 

polyreference variant of the Least Square Complex Exponential algorithm in frequency 

domain.  

The PolyMAX algorithm is based upon to the historical Rational Fractional Polynomial 

(RFP) [Richardson, Formenti, 1982] algorithm. The RFP algorithm uses the rational 
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fraction form of the FRF, which for a particular output location p and excitation location q 

is given by Eq. (2.11) 
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The rational fraction form of the frequency response function is also referred to as the 

Common-Denominator model. To obtain the system modes or poles, one has to utilize 

the FRF data as per the model in Eq. (2.11) and then solve for the roots of the 

denominator characteristic polynomial after finding the polynomial coefficients αk. The 

roots of the numerator characteristic polynomial gives the zeros of transfer function 

which can be used to estimate the residues (Note that the estimation of zeros is not 

necessary from modal analysis point of view, though both poles and zeros are needed to 

characterize the dynamics of a system represented by the transfer function as in case of 

electrical networks). This algorithm can also be extended to the MIMO case by including 

the measurements corresponding to other input points. This follows from the 

understanding that since the system characteristics do not depend on the measurement 

locations but are inherent in the system poles (roots of the denominator polynomial), the 

characteristic polynomial for all the measurements should be the same. This generally 

results in more equations than unknowns and thus a least squared based solution is 

used to obtain the polynomial coefficients. The same equations also happen to be the 

basis of the PolyMAX method [Guillaume, Verboven et al., 2003]. In the mentioned 

reference, the model is referred to as the Right-Matrix Fraction model which is 

essentially the same model as that used for RFP algorithm. The key difference between 

the PolyMAX and the RFP method is that the PolyMAX method uses z-domain mapping 
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to improve the numerical conditioning, i.e. formulation of the problem is done in the 

discrete time model instead of a continuous time model as is the case with RFP which 

uses a different form of generalized frequency mapping [Peeters, Van der Auweraer et 

al., 2004]. This is explained further in Chapter 4.  

 
2.1.4 Maximum Likelihood (ML) Estimator Based Algorithms 
 
In addition to above mentioned algorithms, most of which utilize a least squares 

approach to estimate the modal parameters, researchers have also tried to utilize 

Maximum Likelihood (ML) estimator based optimization technique to estimate the modal 

parameters [Scoukens, Pintelon, 1991; Pintelon, Guillaume et al., 1994].  

This algorithm involves estimation of the same model as represented by Eq. (2.11) by 

Gauss-Newton optimization of the negative log-likelihood function given as  
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where θ are the coefficients of the polynomial (αk and βk), No and Ni are number of 

outputs and inputs and H(ω) is the measured FRF. However, for more robust and faster 

implementation, a logarithmic estimator, as shown in Eq. (2.13) is minimized instead of 

the above mentioned function [Guillaume, Verboven, Vanlanduit, 1998]. 
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The ML estimator approach is extended to OMA in similar manner as other popular EMA 

algorithms by applying the method to response power spectrum data instead of FRFs 

[Hermans, Van der Auweraer, Guillaume, 1998].  

Since the ML estimator algorithm uses an optimization scheme, it is iterative and 

requires a good starting values. It is interesting to note that a least squares approach as 

in RFP or PolyMAX is used to get good initial values and it is observed that these values 

are themselves good estimates of the modal parameters and further iterations doesn’t 

result in any considerable improvement [Verboven, 2002; Zhang, Brincker, Andersen, 

2005]. 

 
2.2 Issues with OMA 
 
The very assumptions that make the OMA procedure possible are also the cause of its 

limitations. The unavailability of input excitation force information leads to hindrances at 

various modal analysis stages which are interrelated. These issues are briefly listed in 

the following points. 

1. Data Acquisition: Since the excitation force to the structure is provided by natural 

means, quality of acquired data now depends on uncontrolled factors. For 

example, while analyzing a building, it is important to have sufficient excitation 

being provided by natural sources like the wind in order to get a good signal-to-

noise ratio. In addition to this, longer time histories are required in order to 

compute better and more accurate estimates of the response power spectrums 

(or correlation in time domain), in comparison to that required for computing 

FRFs as in EMA. This aspect will be discussed further in Chapter 7. Yet another 

aspect of dependence on natural excitation is that one can’t be sure whether all 

the modes of interest are being excited or not. This is also the basis of the 
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second assumption listed in Chapter 1, which states that the excitation should be 

spatially complete, which will ensure that it excites all the modes of interest. 

2. Data Processing: Output power spectrum has twice the order of a FRF and 

contains the same system related information twice, in slightly different form. In 

order to estimate the modal parameters accurately, special data processing 

techniques, such as calculation of positive power spectrum (Chapter 3), is 

needed to make modal parameter estimation algorithms work satisfactorily.  

3. Parameter Estimation: Issues associated with output power spectra as 

mentioned in the previous point also make the parameter estimation process 

more complicated. Further, unavailability of input excitation forces means that the 

obtained mode shapes are not scaled.  

These issues also affect the application of modal parameters for other purposes such as 

sensitivity analysis, structural modification, modal updating, force identification, structural 

health monitoring, etc. as these require a complete modal model which is not obtained 

using OMA (the scaling factor cannot be directly determined). This problem also makes 

it difficult to analyze huge structures such as a bridge because the number of sensors 

available are often limited and a number of different setups are required to analyze the 

structure completely. This causes a problem while stitching the mode shapes, obtained 

from the various setups, together since it is very possible that excitation levels are 

different while acquiring data for various setups. In absence of the force information 

there is no simple way to normalize the mode shapes.  

The scaling factor needed for completing the modal model can be obtained by 

employing a mass change method [Parloo, Verboven, et al., 2002; Brincker, Andersen, 

2003; Aenlle, Brincker, Canteli, 2005]. These methods are based on the fact that if a 

small mass modification is made in such a manner that the mode shape practically 

remains the same but natural frequency of the system changes only slightly. These 
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methods are simple but tedious. Sometimes, it is required to perform several mass 

changes to obtain good estimates. This is called the extrapolation approach. Also, 

theoretically if mass changes are distributed in such a manner that the resulting mass 

change matrix is proportional to original mass matrix of the system, then the error in 

scaling factor is diminished. However, this is not practically possible and thus estimated 

scaling factors tend to be error prone. Thus, in cases where scaling factor estimation is 

must, conventional FRF based Experimental Modal Analysis techniques are preferred. 

Yet another major issue with application of OMA to systems with rotating and 

reciprocating parts is how to distinguish between the system modes and the harmonic 

excitation. The prime assumption on which OMA works states that the input excitation 

force is considered random and thus the input power spectra is broadband and smooth. 

This means that the input power spectra is constant and has no poles or zeroes in the 

frequency range of interest. This is however not true for systems with rotating and 

reciprocating parts. The presence of harmonic excitation is common in systems like 

ventilation systems, turbines, generators, and several automotive and aerospace 

applications, and thus, in such systems, the excitation is a combination of random 

stochastic excitation and harmonic excitation. The detection of harmonic components is 

not only difficult, as there aren’t any straight forward ways to distinguish them from 

system modes, but also important from the point of view of bias errors that they might 

introduce in the estimated modal parameters. 

The following are some of the ways to distinguish between the structural modes and the 

harmonic response content: 

1. One of the simple ways to distinguish between a structural mode and harmonic 

excitation is that modes appearing due to harmonic excitation will have very low 

(near zero) damping (though this might not be true if the frequency is not 

constant) [Jacobsen, 2006]. A method was suggested by Mohanty and Rixen to 
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distinguish the harmonic excitation but it required that the frequency of harmonic 

excitation is known apriori. This information might be available in few cases but 

that might not always be the case and thus this significantly reduces the 

effectiveness of this method [Mohanty, Rixen, 2004].  

2. Yet another way of detecting harmonics is based on the fact that the probability 

distribution function (PDF) of a harmonic response is different from that of a 

stochastic structural response [Brincker, Andersen, Moller, 2000]. The PDF of a 

harmonic response is a distribution having two peaks where as that of a 

structural response due to stochastic excitation is a Gaussian distribution having 

single peak. This method is, however, not very successful if frequency of the 

harmonic excitation is close to a structural mode as in such a scenario the pdf 

will be a combination of the two unique PDF shapes. 

 
2.3 OMA Applications 
 
As stated earlier, the problems encountered during attempts at EMA of large complex 

structures such as buildings, stadiums and bridges that caused OMA to be developed. 

Thus civil structures were the first applications to which the OMA techniques were 

applied. Civil structures still remain the most popular OMA application area. In current 

literature, there are several real life cases of application of OMA techniques to civil 

structures for parameter estimation. The Swiss Z24 highway bridge was tested 

considerably and data was collected under various excitation scenarios including under 

ambient conditions. Several OMA parameter estimation methods were applied and 

evaluated for comparison and performance basis. These methods included from 

simplest peak picking to more involved SSI and polyreference LSCE methods. The 

methods yielded comparable modal parameters [Andersen, Brincker, Peeters et al., 

1999]. In a follow up to this paper, the performance of OMA techniques was compared 



 32

with EMA methods. This study provided insights to various OMA methods from a 

practical application point of view and the results showed that SSI method gave the most 

complete and consistent modal parameters. It was also suggested that if the structure 

has low natural frequencies, below 1 Hz, then they are best excited by ambient sources 

or by drop weight excitation. In such cases use of a shaker might not be advantageous. 

Further, the high frequency modes are not always well excited by ambient sources. 

Importantly, if continuous health monitoring is one of the intended purposes then only 

ambient excitation can be used [Peeters, Ventura, 2003]. 

Ambient vibration based studies were conducted on the Heritage Court Tower 2 in 

Vancouver, Canada. Several papers were presented in the proceedings of International 

Modal Analysis Conference (IMAC) in 2000 in relation to this study. The summarized 

results of this study are presented by Horyna and Ventura [Horyna, Ventura, 2000]. As 

with Z24 bridge study, this study also concludes that there is a good agreement between 

results obtained through the various techniques and, though SSI is bit more elaborate 

procedure, it results in consistent estimation of modal parameters. 

OMA algorithms have been very popular in application to civil engineering structures, 

since, they have found application in automotive and aerospace applications as well. 

FDD and SSI algorithms were applied to a car body subjected to engine excitation 

[Brincker, Andersen, Moller, 2000] and also to a diesel engine [Moller, Brincker, 

Andersen, 2000]. In [Hermans, Van der Auweraer, 1999] pLSCE and CVA and BR 

variants of SSI-COV algorithm were applied to rear suspension system of a passenger 

car to identify the modal parameters. The operational data in this case was collected by 

running the vehicle on a rough asphalt road at a speed on 50 km/hour. The main 

purpose of this study was to identify the source of a booming interior noise at around 80 

Hz. With the help of OMA tests, the first bending mode of the rear suspension twist 

beam was identified around 70-80 Hz which was the potential cause of the problem. The 



 33

study suggested that the mode was more easily identified by CVA and BR algorithms in 

comparison to pLSCE.  

This paper also presents a case study where OMA is applied to flight flutter test data. 

The aim of the study was to find out the robustness and suitability of these techniques to 

non-stationary conditions as those encountered in flight flutter testing. In this example 

the SSI-COV also methods gave better results than the pLSCE results. In yet another 

study, flight flutter data was analyzed using least squares time and frequency domain 

algorithms as well as maximum likelihood based approach [Vecchio, Peeters, Van der 

Auweraer, 2002]. It was observed that time domain LSCE does not perform as well as 

the other methods. 

The performance of subspace based OMA methods was evaluated for time varying 

structures by applying these methods to Ariane 5 launcher [Goursat, basseville et al., 

2001]. The data was collected over the commercial flight of the space launcher under 

unknown natural excitation. It was observed that, more important than the varying nature 

of the structure, it is the location and number of the sensors that poses more challenges 

while analyzing such a complex structure. 

 
2.4 Conclusions 
 
This chapter provides the theoretical background and past research carried out in the 

area of the Operational Modal Analysis, thus laying the foundation for the work to be 

presented in the coming chapters. Various popular OMA algorithms have been 

discussed in terms of their development and limitations. The major issues associated 

with OMA have been highlighted and significant OMA case studies in the various 

application areas have been listed. OMA is still a growing area and has shown 

tremendous promise as a useful tool for analyzing structural dynamics related problems. 

OMA research studies are presented frequently at the International Modal Analysis 
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Conference (IMAC) and at the International Seminar on Modal Analysis (ISMA) and 

more details on the state-of-art research in OMA can be obtained in the proceedings of 

these conferences. Recently a new conference, International Operational Modal 

Analysis Conference (IOMAC), dedicated to the field of OMA has started. This 

conference is organized once in every two years and was organized for the first time in 

2005. This is another excellent source for OMA related research.  
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Chapter Three 
 
 
 

Unified Matrix Polynomial Approach 
for Operational Modal Analysis 
 
 
 
One of the significant contributions of the Unified Matrix Polynomial Approach (UMPA) 

[Allemang, Brown, Fladung, 1994; Allemang, Brown, 1998; Allemang, Phillips, 2004] 

concept to the field of the experimental modal analysis (EMA) was to present the various 

modal parameter estimation algorithms using a consistent mathematical formulation. 

This approach not only helped in better understanding of the underlying similarities and 

differences of the various algorithms, it also a provided a common framework to develop 

these same algorithms which over the years had been developed in isolation. 

The basic difference between the OMA based modal parameter estimation algorithms 

and the more common EMA parameter estimation algorithms is the fundamental data 

used. While EMA based algorithms use frequency response functions or impulse 

response functions (normalized input-output functions in the frequency or time domain), 

OMA based algorithms use output response power spectrum or correlation functions.  

With so many obvious advantages both in terms of developing or understanding the 

various parameter estimation algorithms and also in understanding the overall parameter 

estimation process, it is very relevant to extend the concept of UMPA to Operational 

Modal Analysis. This forms the motivation of this chapter where a unified matrix 

polynomial approach based formulation is reviewed for various OMA algorithms. Section 

3.1 discusses the general modal parameter estimation process and introduces the 
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UMPA model. In Section 3.2, basics of OMA are discussed and UMPA is extended to 

OMA framework. Section 3.3 provides the UMPA based mathematical equations of the 

various time, frequency and spatial domain algorithms and finally a simple case study is 

provided to show the effectiveness of the UMPA methodology in OMA domain. 

 
3.1 Modal Parameter Estimation and UMPA 
 
The matrix equation of motion for a general multi degree of freedom system is given by  

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }tftxKtxCtxM =++ &&&  3.1) 

 

where:  

[M] is mass matrix, 

[C] is damping matrix, 

[K] is stiffness matrix, 

{x(t)} is response vector and 

{f(t)} is force vector. 

The above equation represents the physical M-C-K model of the system. It is a second 

order differential equation that can be solved either in time, frequency or Laplace 

domain. This second order model can be converted into higher order model to handle 

the case where spatial information is truncated to a size smaller than the number of 

eigenvalues in the measured data. One way to develop this concept is to obtain the 

characteristic equation by Laplace transforming Eq. (3.1). 

Thus  
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and the characteristic equation becomes 
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The partitioned form of above equation can be written as 
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This equation can be expanded to a higher order matrix polynomial and put in a generic 

form as  
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Note that size of [α] is same as the size of the portioned sub matrices and each [α] 

matrix involves a matrix product and summation of several [Mij], [Cij] and [Kij] sub 

matrices. 

The higher order equation Eq. (3.5) has the same eigenvalues as the original second 

order differential equation Eq. (3.1). The general matrix polynomial formulation of the 

differential equations in the time, frequency and Laplace domain is given by 
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Time Domain (Continuous) 
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Time Domain (Discrete) 
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Frequency Domain 
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Laplace Domain 
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The above described matrix coefficient polynomial forms a good basis to understand the 

common characteristics of different modal parameter estimation algorithms. 

To understand the model further, Eq. (3.7) is considered. This is the historically used 

polynomial model for frequency response function (H(ω)). If p and q are response and 

excitation degree of freedoms respectively, Eq. (3.7) can be written as 
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This can be rewritten as  
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or for a general multiple input, multiple output case 
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The size of coefficient matrices is normally Ni X Ni or No X No for [αk] and Ni X No or No X 

Ni for [βk] where Ni and No are number of input and output degrees of freedom 

respectively .  

This general model corresponds to an AutoRegressive – Moving Average (ARMA(n,m)) 

model developed from a set of discrete time equations in the time domain. The model, 

more appropriately, is an AutoRegressive with eXogenous inputs (ARX(n,m)) model. 

The general matrix polynomial model concept recognizes that both time and frequency 

domain models generate functionally similar matrix polynomial models. This model 

which describes both domains is thus termed as Unified Matrix Polynomial Approach 

(UMPA) [Allemang, Brown, Fladung, 1994; Allemang, Brown, 1998; Allemang, Phillips, 

2004]. Note that Eq. (3.11) can be repeated at many frequencies (ωi) until the system is 

sufficiently over determined. 

Parallel to above formulation, a time domain model can be developed. For a general 

multiple input, multiple output case, from Eq. (3.6a) 
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For impulse response or free decay data the above equation will reduce to  
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as forcing can be assumed to be zero for all times greater that zero. Note that h(t) is 

impulse response function. 

The characteristic matrix polynomial equation, for the time and frequency domain are 

given by Eq. (3.14) and Eq. (3.15) respectively. 
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Once the matrix coefficients [α] are found, the modal parameters can be obtained in a 

number of ways, the most common being the companion matrix approach. Eq. (3.16) 

shows one of the ways in which the companion matrix [C] can be formulated. 
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The roots of the characteristic equation can be obtained by using the companion matrix 

to solve the eigenvalue problem, as in Eq. (3.17). 

[ ]{ } [ ]{ }XIXC λ=  3.17)

 

It is important to note that the eigenvectors are of length model order m multiplied by the 

matrix coefficient size, Ni or No. The useful portion of the eigenvector is of the length of 

the coefficient matrix, i.e. Ni or No and is repeated in the eigenvector m+1 times, each 

repetition being multiplied by integer power of the associated modal frequency. This can 

be understood more easily through Eq. (3.18). 
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The Unified Matrix Polynomial Approach as explained above provides common 

framework to most commonly used modal parameter estimation algorithms. This unified 

perspective provides for easy understanding of the various algorithms such as Complex 
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Exponential Algorithm (CEA) [Spitznogle, 1971; Brown Allemang, et al., 1979], Least 

Squares Complex Exponential (LSCE) [Brown Allemang, et al., 1979], Ibrahim Time 

Domain (ITD) [Ibrahim, Mikulcik, 1977; Pappa, 1982], Polyreference Time Domain (PTD) 

[Vold, Kundrat, et al., 1982; Vold, Rocklin, 1982], Polyreference Frequency Domain 

(PFD) [Zhang, Kanda et al., 1984; Lembregts, Leuridan et al., 1986; Lembregts, 

Leuridan, Van Brussel, 1989], Eigensystem Realization Algorithm (ERA) [Juang, Pappa, 

1985; Longman, Juang, 1989], Multiple Reference Ibrahim Time Domain (MRITD) 

[Fukuzono, 1986], Rational Fractional Polynomial (RFP) [Richardson, Formenti, 1982] 

etc. which over the years have been developed in isolation. Table 3.1 shows how 

various commercial modal parameter estimation algorithms fit into UMPA framework. 

Thus UMPA model helps in understanding the similarities, differences and numerical 

characteristics of the various modal parameter estimation algorithms by providing a 

common mathematical structure. [Allemang, Brown, Fladung, 1994; Allemang, Brown, 

1998; Allemang, Phillips, 2004] provide more insights and details of the modal parameter 

estimation using the unified matrix polynomial approach. 

The goal of modal parameter estimation is to obtain the modal model of the system 

which is defined in terms of complex valued modal frequencies (λr), modal vectors ({ψr}) 

and modal scaling (modal mass or modal A). However, in case of OMA the modal 

scaling is not estimated due to lack of input force data. Thus the mode shapes are 

unscaled mode shapes.  

 
Table 3.1 - UMPA representations of various EMA algorithms 

 High Order Low Order Zero Order 
Time Domain PTD, LSCE, CEA ITD, ERA, 

MRITD 
- 

Frequency Domain RFP, PolyMAX, AF 
POLY, Orthogonal 

Polynomial 

PFD - 

Spatial Domain - - CMIF 
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3.2 OMA Basics and Associated Signal Processing 
 
To reformulate UMPA equations in OMA framework, the Eq. (1.4) is reconsidered.  

( )[ ] ( )[ ] ( )[ ] ( )[ ]HFFXX HGHG ωωωω =   

 

where [GXX(ω)] is the output response power spectra and [GFF(ω)] is the input force 

power spectra. 

Recalling that in case of OMA the input force spectrum is assumed to be constant, it is 

easy to note that the output response power spectra [GXX(ω)] is proportional to the 

product [H(ω)][H(ω)]
H
 and the order of output response power spectrum is twice that of 

frequency response functions. Since [GFF(ω)] is constant, [GXX(ω)] can be expressed in 

terms of frequency response functions as 

( )[ ] ( )[ ][ ] ( )[ ]HXX HIHG ωωω ∝   

 

In terms of the UMPA model of [H(ω)] this can be expanded as 
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Further, since (n < m), a partial fraction form of the modal model can be formed for the 

output power spectrum which was shown in Chapter 1 by Eq. (1.6-c). This partial fraction 

model for a particular response location p and reference location q is given by 
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where pqkS  and ∗
pqkS are redefined to incorporate (-1). 

Note that λk is the pole and Rpqk and Spqk are the kth mathematical residues. These 

residues are different from the residue obtained using a frequency response function 

based partial fraction model since they do not contain modal scaling factor (as no force 

is measured). The form of Eq. (20-c) clearly indicates that the roots that will be found 

from the power spectrum data will be kλ , ∗
kλ , kλ−  and ∗− kλ  for each model order 1 to N. 

To formulate a unified matrix polynomial approach for Operational Modal Analysis, Eq. 

(3.19) can be rewritten as 
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Note that the power spectrum UMPA model is twice the order of the FRF based UMPA 

model. Further, the coefficient matrices α΄ and β΄, contains the same system parameter 

related information twice. This explains Eqs. (3.20-c) which shows that power spectrum 

data contains the positive and negative poles. 

The presence of negative poles can also be explained by means of correlation functions, 

which are time domain equivalent of power spectrums. Figure 3.1 shows auto-correlation 

function of a typical structural response obtained when the structure is randomly excited. 

The correlation function is a symmetric function. Further, the positive lags give rise to the 

decaying exponential portion of the correlation function and the negative lags results in 

the growing exponential portion. There is essentially the same information in both the 
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decaying and growing exponential portions of the correlation function. This again 

explains the presence of the positive (stable) and negative (unstable) poles as indicated 

by Eq. (3.20-c) through the use of power spectrums. The positive and negative poles are 

obtained from the decaying exponential and growing exponential portion of the 

correlation function respectively.  

 
Figure 3.1 – Auto-correlation function of a typical output response 

 
The high order of the power spectrum based model in comparison to FRF based model 

causes various disadvantages which makes it more difficult for the frequency domain 

based algorithms to give good results as they inherently suffer from numerical 

conditioning problems [Peeters, Van Der Auweraer et al., 2004; Phillips, Allemang, 2004, 

Chauhan, Martell, et al., 2006]. This problem is not as severe in the case of time domain 

algorithms. Most time domain OMA methods use information from the positive lag part of 

the correlation functions only and thus estimate only the stable poles. Thus in case of 



 46

time domain based methods the numerical problems resulting due to higher order of 

power spectrum matrix can be avoided. 

 
Positive Power Spectrum (PPS) 
 
This problem of dealing with the higher order model and presence of positive and 

negative poles forms the basis of the positive power spectrum which is defined in the 

frequency domain by the following equation. 
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The positive power spectrum is calculated by first inverse Fourier transforming the power 

spectrum to obtain the circular correlation functions and then removing the negative lag 

portion of the correlation function. This is equivalent to multiplying the correlation 

function with the unit step function in the time domain. The resultant function is then 

Fourier transformed back to obtain the positive power spectrum. Figure 3.2 illustrates the 

process of obtaining the positive power spectrum from the output response data. The 

advantage of positive power spectrum is that it has the same order as the frequency 

response functions and also contains all the necessary system information (poles and 

vectors). Thus UMPA equations can now be applied to positive power spectrum data to 

perform operational modal analysis of the given system. 

The UMPA equivalent equations of Eqs. (3.12) and (3.13) for the operational modal 

analysis can thus be written in terms of positive power spectrum GXX
+ (in frequency 

domain) and Correlation function RXX (in time domain) as  
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Note that only positive lags of the correlation function are used for the above formulation. 

In the next section the various algorithms in terms of their UMPA formulation are 

described.  

 
Figure 3.2 – Generation of positive power spectrum from output time 

responses 
 
Hilbert Transform Technique 
 
In [Agneni, Brincker, Coppotelli, 2004; Agneni, Coppotelli, 2006] a method based on 

Hilbert Transform technique is suggested to achieve an estimate of biased FRFs that 

serve the same purpose as PPS in terms of avoiding the numerical conditioning issues 

associated with power spectra while applying the frequency domain OMA algorithms. 

The autopower spectrum GXX(ω) for a response point p due to input excitation force at 

the point p can be written by modifying Eq. (1.4) as  
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( ) ( ) ( ) 2
ωωω ppFFXX HGG =  3.25)

 

where GFF(ω) is input force spectra and Hpp(ω) is driving point FRF at point p. Thus the 

magnitude of Hpp(ω) can be obtained as 
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It should be noted that since the input force is considered random, the power spectrum 

will be constant, smooth in the frequency range of interest, which means that the GFF(ω) 

term will only influence the estimation of Hpp(ω) by scaling it with an unknown term 

( )ωFFG . Hpp(ω) is however a complex quantity and for its complete estimation, one 

needs to estimate the phase, which can be obtained by means of the Hilbert Transform. 

This is possible because of the fact that the output responses are causal in nature. 

( )( ) ( )[ ]ωω pppp HHphase lnΗ−=  3.27)

or 
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Thus the biased driving point FRF, ( )ωppĤ , can be expressed in terms of the response 

power spectrum GXX(ω) as  
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where K = ( )ωFFG . The other FRFs (biased estimate) can be obtained by means of 

the following relationship between non-driving point FRF ( )ωpqĤ , output response cross 

power spectrum [GXX(ω)]pq and the driving point biased FRF ( )ωppĤ  as calculated 

earlier. 
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The UMPA equations can now be modeled on ( )ωĤ  just like correlation and power 

spectrum based models of Eq. (3.23) and (3.24). 

Recently a Cepstrum based signal processing approach was also suggested to obtain 

modal parameters from output responses [Hanson, Randall, et al., 2007]. This approach 

is developed for systems excited by at least one cyclostationary (A signal whose 

statistical properties vary cyclically with time) input with a unique cyclic frequency, which 

limits the performance of the approach in very low-frequency region. 

 
3.3 UMPA Formulation of OMA Algorithms 
 
Before discussing the various algorithms, it is important to note that in the case of 

Operational Modal Analysis only output responses are measured, thus the measured 

data does not have any typical reference location as is typical of traditional experimental 

modal analysis where reference locations are often the degrees of freedom where input 

force is provided. In other words there’s no such thing as a driving point FRF in case of 

OMA. However, for the purpose of parameter estimation, certain response locations are 

chosen as reference locations. These locations are chosen keeping the same 

considerations as those while choosing the driving point FRFs, i.e. reference locations 
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should be the degrees of freedom which excite most modes (or in case of OMA the 

locations from where most modes can be observed, node points should be avoided, 

etc.). Unlike the EMA case, though, the reference locations for the OMA case do not 

mean that an independent excitation has been applied at these degrees of freedom.  

Therefore, the independent information associated with the reference in the EMA case 

does not extend to the OMA case. In the discussion that follows, Nref refers to the 

response locations chosen as reference locations and No refers to the output response 

locations. Also the starting equation in case of time domain algorithms is Eq. (3.24) and 

in case of frequency domain algorithms is Eq. (3.23). 

 
3.3.1 Time Domain Algorithms 
 
Higher Order UMPA Model 
 
Typically higher order UMPA algorithms utilize more temporal information in comparison 

to the spatial information. In case of OMA this essentially translates to the number of 

response locations being comparatively much higher than the number of reference 

responses, i.e. No >> Nref. The matrix coefficients in this case have the dimension Nref X 

Nref. Further, if m is model order, the total number of system modes that will be estimated 

by the model is mNref which is much higher than the required 2N modes of the system. 

Since Nref is a small number, typically 2 or 3, the order m has to be high; thus such 

algorithms are referred to as high order algorithms. The basic equation for this algorithm 

is given as 
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Note that the above equation utilizes zero order coefficient [α0] normalization. Similar 

equations can be developed by normalizing other coefficients to come up with different 

set of solutions. This normalization is very important with respect to where the unwanted 

poles, associated with the noise in the data, are found [Allemang, 1999].  This aspect of 

the coefficient normalization affects all model solutions (high and low order, time and 

frequency domain). Every solution will comprise of mNref number of modes out of which 

2N will be genuine system modes and rest will be computational modes. One of the 

ways to filter out these computational modes is to compare the solution obtained by 

normalizing various coefficients. The true modes of the system will be retained in each 

solution but computational modes will differ and can thus be filtered. Once the coefficient 

matrices are obtained, the roots of the matrix characteristic equation can be found as the 

eigenvalues of the associated companion matrix. As mentioned earlier, while working 

with correlation functions, care should be taken to utilize only the positive lag portion of 

the correlation function. 

The popular Polyreference Time Domain (PTD) [Vold, Kundrat, et al., 1982; Vold, 

Rocklin, 1982] algorithm is a multi-input, multi-output version of a high order UMPA 

model based algorithm. Similarly, the Complex Exponential [Spitznogle, 1971]and Least 

Squares Complex Exponential algorithms [Brown Allemang, et al., 1979] are SISO and 

SIMO versions of this model. 

 
 
 
Lower Order UMPA Model 
 
Lower order algorithms use more spatial information in comparison to temporal 

information. The matrix coefficients α have a dimension 2No X 2No (or No X No) and 

model order m is 1 (or 2). Thus, the total number of modes obtained through the 

algorithm is 2No which is more than the required 2N number of system modes. Ibrahim 
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Time Domain (ITD) [Ibrahim, Mikulcik, 1977; Pappa, 1982], Eigensystem Realization 

Algorithm (ERA) [Juang, Pappa, 1985; Longman, Juang, 1989] and Multiple Reference 

Time Domain (MRITD) [Fukuzono, 1986] algorithms belong to this category of UMPA 

formulation. In the OMA domain, this lower order UMPA formulation is equivalent to the 

Stochastic Subspace Identification (SSI) algorithm [Hermans, Van der Auweraer, 1999; 

Peeters, 2000] that uses a state space model based on output response correlation 

functions. The process of obtaining the modes once the coefficient matrices have been 

found is same as explained in previous section. Eq. (3.32) shows the zero order 

coefficient [α0] normalization with m = 1. 
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3.3.2 Frequency Domain Algorithms 
 
Higher Order UMPA Model 
 
The frequency domain equivalent of higher order time domain algorithms can be 

formulated using the UMPA model in the following manner as the time domain algorithm. 

This formulation utilizes the positive power spectrum data rather than power spectrum. 

[ ] [ ] [ ] [ ] [ ] [ ][ ] ( )

( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) [ ]
( ) [ ]

( ) [ ] ( )

( ) ( )[ ]
oref

ooref

orefiref NNiXXi

NNnmN
n

i

i

i

iXX
m

i

iXXi

iXXi

NnmNNnm Gjs

Ijs

Ijs
Ijs

Gjs

Gjs
Gjs

×
+

×++

+

+

+

++× −=

































−
−−−

−
−

−−−

−−−−−− ω
ω

ω
ω

βββααα 0

1

2

1

2

1

12121

 

3.33)

 

Note that in Eq. (3.33) the zero order coefficient [α0] is normalized and this equation can 

be repeated for other frequencies. This model is the UMPA equivalent of the Rational 
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Fraction Polynomial (RFP) (si = jωi) [Richardson, Formenti, 1982] and polyreference 

least square complex frequency (PLSCF or PolyMAX) ( tj
ii

iezs ∆××== ω ) [Guillaume, 

Verboven et al., 2003; Peeters, Van der Auweraer et al., 2004; Peeters, Van der 

Auweraer, 2005] algorithms. One of the disadvantages of high order frequency domain 

algorithms like RFP is that these algorithms involve power polynomials with increasing 

powers of the frequency. These matrices have Van der Monde form and suffer from poor 

numerical conditioning problems for wide frequency range and high orders. This 

obviously hinders the modal parameter estimation process. Along with limiting the 

frequency range and reducing the order of the model, normalizing the frequency range 

and using orthogonal polynomials are some of the methods to reduce this ill-conditioning 

problem [Phillips, Allemang, 2004].  The polyreference least square complex frequency 

(PolyMAX) algorithm proposed the use of complex z mapping and has been shown to 

have much superior numerical conditioning than other prevalent RFP methods. These 

aspects are discussed further in Chapter 4 while discussing the formulation of a low-

order frequency domain OMA algorithm. 

 
 
 
Lower Order UMPA Model 
 
Lower order, frequency domain algorithms are basically UMPA based models that 

generate first or second order matrix coefficient polynomials. In Chapter 4 the UMPA-

LOFD algorithm [23] is proposed for OMA which is a second order (m=2) UMPA model 

based algorithm. It is shown that the UMPA-LOFD algorithm has good numerical 

characteristics in comparison to high order frequency domain algorithm. The matrix 

coefficients in this case have No X No dimensions and thus the total number of modes 

found is 2No. Similar to high order frequency domain algorithms this basic equation can 

be repeated for several frequencies and the matrix polynomial coefficients can be 
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obtained using either [α2] or [α0] normalization The normalized zero order coefficient [α0] 

version of this algorithm is shown below 
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3.3.3 Spatial Domain Algorithms 
 
Spatial domain algorithms like the Complex Mode Indicator Function (CMIF) [Shih, Tsuei 

et al., 1989; Phillips, Allemang, Fladung, 1998; Allemang, Brown, 2006] and its 

extension Enhanced Mode Indicator Function (EMIF) [Fladung, Philips, Brown, 1997; 

Phillips, Allemang, Fladung, 1998; Fladung, 2001] can be treated as a special case of 

the UMPA model where coefficient matrix has an order zero (m = 0). These algorithms 

rely only on spatial information and essentially neglect temporal information (spatial 

information is compared between different temporal solutions). These algorithms utilize 

the singular value decomposition of the frequency response function matrix at each 

frequency line to estimate the modal parameters of the system (See Chapter 2, section 

2.1.2 for details). The Frequency Domain Decomposition (FDD) [Brincker, Zhang, 

Andersen, 2000] technique is an extension of CMIF technique in the operational modal 

analysis domain. This technique performs the singular value decomposition on the 

power spectrum matrix instead of frequency response function matrix. The FDD 

technique is followed by enhanced Frequency Domain Decomposition (eFDD) [Brincker, 

Ventura, Andersen, 2000; Gade, Moller et al., 2005] technique to estimate the damping 

and complete the parameter estimation procedure. In Chapter 5, an alternative to eFDD 

algorithm is proposed which extends the EMIF algorithm to operational modal analysis 

[Chauhan, Martel et al., 2006]. This algorithm differs from the eFDD approach in the 
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sense that the parameter estimation is carried out in the frequency domain unlike eFDD 

where the parameter estimation is done in the time domain. 

 
3.4 Case Study: Lightly Damped Circular Plate 
 
Having developed various OMA algorithms using the UMPA formulation, these 

algorithms are now applied to a simple lightly damped circular plate. A circular plate, due 

to its peculiar geometry, is a good experimental structure to test these algorithms as a lot 

of closely spaced modes are present. The plate is excited randomly all over its surface 

by means of an impact hammer. A total of 30 accelerometers are placed over the plate 

to measure the output response (Figure 3.3). 

The modal parameters obtained using various OMA algorithms are shown in the Table 

3.2. The modal parameters obtained using the various UMPA formulated OMA 

algorithms show very good agreement. The purpose of this case study is not to 

comment on the performance of the individual algorithms but the fact these algorithms 

can be developed very easily if the underlying unified concept is understood. UMPA 

methodology aid greatly in this regard and this underlines its utility and effectiveness. 

 
Figure 3.3: Experimental set up for the lightly damped circular plate 
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Table 3.2: Modal parameters estimated using various UMPA formulated 
OMA algorithms 

 
 
 
3.5 Conclusions 
 
In this Chapter, the concept of Unified Matrix Polynomial Approach (UMPA) is extended 

to Operational Modal Analysis. It is shown how various time, frequency and spatial 

domain OMA algorithms can be formulated using the UMPA model. Emphasis is placed 

on understanding the basic difference between traditional Experimental Modal Analysis 

and output-only Operational Modal Analysis, the various assumptions made in the case 

of OMA and how the fundamental data (correlation functions and power spectrums) 

should be used in order to utilize the UMPA model for the purpose of parameter 

estimation in the case of OMA. It is revealed that understanding the underlying basic 

polynomial model not only helps in theoretical development of various algorithms but 

also provides a common framework which makes it much easier and simpler to 

understand these algorithms.  It is important to reiterate that assumptions concerning the 
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nature of the assumed excitation (smooth and broadband in frequency, spatially well 

distributed, etc.) are critical to the success of OMA methods. 
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Chapter Four 
 
 
 

UMPA-LOFD: A Low Order Frequency 
Domain Algorithm for OMA 
 
 
 
Most of the algorithms for Operational Modal Analysis work in the time domain and there 

are very few frequency domain based algorithms. Only FDD and eFDD can be classified 

as frequency domain algorithms though they too are essentially spatial domain 

algorithms. One of the reasons for the lack of frequency domain algorithms in OMA 

framework can be attributed to poor numerical conditioning problems associated with 

them. Traditional higher order algorithms like Rational Fraction Polynomial (RFP) 

[Richardson, Formenti, 1982] have been known to suffer from this problem of poor 

numerical characteristics. Limiting the frequency range, reducing the order of the model, 

normalizing the frequency range and using orthogonal polynomials are some of the 

methods used in the past to reduce this ill-conditioning problem in traditional 

experimental modal analysis set up. However estimating modal parameters in the 

frequency domain using output-only response data still remains a challenge as the 

numerical conditioning problem is much more severe in the case of OMA since the order 

of the power spectrum based model used in OMA is twice that of the frequency 

response function based model used in EMA. Recently, a new method called 

Polyreference Least Squares Complex Frequency (PolyMAX) [Guillaume, Verboven et 

al., 2003; Peeters, Van der Auweraer et al., 2004] was proposed that builds upon the 

classical least squares complex frequency domain estimator by using a complex Z 
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mapping (or trigonometric orthogonalization) to improve numerical conditioning. Along 

with implementing this method in traditional FRF based experimental modal analysis 

framework, it was also extended to operational modal analysis [Peeters, Van der 

Auweraer, 2005]. 

In this chapter the Unified Matrix Polynomial Approach (UMPA) [Allemang, Brown, 1998; 

Allemang, Phillips, 2004], as discussed in previous chapter, is utilized for developing a 

low order frequency domain algorithm (UMPA-LOFD) suited for the output response 

based OMA framework. The algorithm is applied to an analytical 15 degree of freedom 

system and also a lightly damped circular plate. It is shown to have better numerical 

characteristics than high order frequency domain algorithms and the results are 

comparable to time domain based OMA algorithms. Additionally, complex Z mapping is 

used with a low order frequency domain algorithm for the purpose of operational modal 

analysis and its performance is evaluated and compared with the low order frequency 

domain algorithm (UMPA-LOFD) which does not use the complex Z mapping. The 

complex Z mapping was first used in the polyreference least squares complex frequency 

(PolyMAX) algorithm and demonstrated another method that gives better numerical 

characteristics with high order frequency domain based methods. The concept is applied 

successfully not only to other traditional, frequency domain experimental modal analysis 

methods but also in the field of operational modal analysis. Thus it is worth exploring if 

complex Z mapping improves the low order algorithm in the same manner as the high 

order frequency domain algorithm. 
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4.1 UMPA-LOFD 
 
The UMPA equivalent equations for the operational modal analysis were shown in 

Chapter 3, Eq. (3.23) and (3.24). These equations are in terms of positive power 

spectrum GXX
+ (in frequency domain) and correlation function RXX (in time domain).  
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Lower order, frequency domain algorithms are basically UMPA based models that 

generate first or second order matrix coefficient polynomials. To estimate a large number 

of system poles using a low order algorithm, the long dimension of the PPS matrix 

(positive power spectra are the primary data on which the algorithm operate) No X Ni , 

must be at least as large as the number of positive modal frequencies desired. The 

UMPA-LOFD algorithm can be developed by substituting model order m=2 in the 

multiple input, multiple output PPS model of Eq. (4.1). 
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This basic equation can be repeated for several frequencies and the matrix polynomial 

coefficients can be obtained using either [α2] or [α0] normalization. 
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[α2] Normalization 
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[α0] Normalization 
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Once the matrix polynomial coefficients are obtained, a companion matrix can be formed 

(as shown in Chapter 3) and eigenvalue decomposition can be applied to estimate the 

modal parameters i.e. modal frequencies and modal vectors. 

 
4.2 Numerical Conditioning Issues and Generalized 
Frequency 
 
As discussed previously, frequency domain modal parameter estimation algorithms 

suffer from poor numerical conditioning characteristics. The data matrix used for 

estimating the matrix coefficients in the case of frequency domain algorithms are of the 

Van der Monde form (Eq. (4.6)) and involve power polynomials which are functions of 

increasing powers of frequency. This data matrix has a high condition number and is ill-

conditioned especially for wide frequency range and high orders if the polynomial. The 

Condition Number is measure of the sensitivity of the solution of linear equations to 

errors, or noise in the data. Condition Number is essentially the ratio of the largest 

singular value to the smallest singular value of the data matrix. For good numerical 

conditioning the Condition Number should be close to unity. 
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Following are some of the ways to overcome the numerical issues with frequency 

domain algorithms [Allemang, Phillips, 2004]: 

• Minimizing the frequency range of the data  

This means that while estimating the modal parameters, the algorithm fits the 

data only within a limited frequency range. 

• Minimizing the order of the model  

This is essentially what lower order algorithms do. By restricting to a low order 

the power to which the polynomial is raised is not high and thus the numerical 

issues can be avoided. 

• Normalizing the frequency range of the data 

• Use of orthogonal polynomials 

• Complex Z mapping 

Normalization, use of orthogonal polynomials and complex Z mapping methods map the 

data to a new generalized frequency without alteration in order to reducing the numerical 

conditioning issues. This concept where the data in the frequency range is mapped to a 

different frequency mapping is called Generalized Frequency. 

1. Normalized Frequency 
 

In this method the frequency range is mapped between (-1, 1) in the following 

manner 
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si = j * (ωi/ ωmax) 4.7) 

 

This mapping results in comparatively better numerical conditioning in comparison to 

the original mapping where frequency range was between (-ωmax, ωmax). After 

estimation of modal parameters, the correct modal frequencies can be obtained by 

multiplying them with ωmax.  

2. Orthogonal Polynomials 
 

The numerical issues associated with frequency domain algorithms can be also be 

reduced by converting the power polynomial series into an equivalent orthogonal 

polynomial series by using the relationship in Eq. (4.8). Some of the commonly used 

orthogonal polynomials are the Forsythe Polynomials [Richardson, Formenti, 1982] 

and the Chebychev Polynomials [Vold, 1986; Shih, 1989]. The orthogonal polynomial 

series can be obtained in following manner. 
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Difference between the various orthogonal polynomials is due to the different 

weighting coefficients used to generate them and also the range over which they are 

orthogonal. The Forsythe polynomials are orthogonal over (-2, 2) where as 
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Chebychev polynomials are orthogonal over (-1, 1). In the orthogonal polynomial 

approach, the original unknown matrix coefficients αk are replaced by γk and these 

are then utilized for find the roots of the equation by forming a companion matrix as 

explained in the previous chapter. It should be noted that in this case the solution of 

the modal parameters is found using the following equation. 

[ ] [ ][ ] { } [ ] { }XWXWC ab λ=+  4.12)

 

[Wa] and [Wb] are the weighting matrices which differ depending on the orthogonal 

polynomial used. 

3. Complex Z Mapping 
 

The major motivation behind the development of the polyreference least squares 

complex frequency (PolyMAX) algorithm was to overcome the numerical problems 

inherent with the high order, RFP frequency domain algorithms [Phillips, Allemang, 

2004; Allemang, Phillips, 2004]. The polyreference least squares complex frequency 

(PolyMAX) algorithm is essentially RFP algorithm with complex Z mapping and will 

subsequently be referred to in a generic sense as the RFP-Z algorithm. The RFP-Z 

algorithm replaces the mathematically cumbersome orthogonal polynomial method 

by a trigonometric mapping function (complex Z mapping) [Peeters, Van der 

Auweraer et al., 2004; Allemang, Phillips, 2004].  

The generalized frequency in case of UMPA-LOFD algorithm is just the normalized 

power polynomial given by Eq. (4.7) 

si = j * (ωi / ωmax)  
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Thus the generalized frequency variable is bounded by (-1, 1). The complex Z 

mapping on the other hand is given by 

( ) tjj
ii eezs i ∆×××× === ωωωπ max/

 4.13)

( )max/ωωπ imjm
i

m
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Using this mapping the positive and negative frequency ranges are mapped to the 

positive and negative unit circles in the complex plane respectively. This yields a real 

part of mapping functions which are cosine terms and an imaginary part which are 

sine terms. Since sine and cosine functions are mathematically orthogonal, the 

numerical conditioning of this mapping function is quite good. 

 
4.3 Case Studies: UMPA-LOFD Performance 
 
4.3.1 Analytical 15 Degrees of Freedom System 
 
An analytical 15 degree of freedom system as shown in Figure 4.1 is considered. To 

simulate a near perfect operational modal analysis situation, the system is excited by a 

white random uncorrelated input at all 15 degrees of freedom.  Power spectrums are 

calculated using the correlogram method [Stoica, Moses, 1997; Oppenheim, Schafer, 

1989; Kay, 1988]. As explained before, the power spectrums are converted back to time 

domain to obtain the correlation functions. The positive lags portion of the correlations is 

retained while zeroing the negative lags portion and then it is Fourier transformed back 

to frequency domain to obtain the positive power spectrums. 
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Figure 4.1: Analytical 15 Degree of Freedom System 

 
Figure 4.2 shows the auto power spectrum and positive power spectrum for the degree 

of freedom number 1 or driving point 1 (GXX11
 and GXX11

+
). A complex mode indicator 

function (CMIF) plot based on power spectrums as shown in Figure 4.3 indicates clearly 

the presence of all 15 modes including a repeated mode around 53.3 Hz. It is noted that 

a similar plot based on positive power spectrum does not yield satisfactory results and 

thus positive power spectra cannot be used for the indication of modes using CMIF 

method (Figure 4.4). Further it has been observed that in the case of insufficient spatial 

excitation, the resulting CMIF does not give proper indication of the number of modes in 

the system. In such cases, spatial domain algorithms like FDD and eFDD which are 

similar to CMIF are difficult to use [Chauhan, Martell et al, 2006 (a); Chauhan, Martell et 

al, 2006 (c)]. This is further explained in Chapter 5. 
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Figure 4.2 – Auto power spectrum and positive power spectrum for the first 

degree of freedom (15 DOF analytical system) 
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Figure 4.3: Complex Mode Indicator Function (CMIF) based on power 

spectrum (15 DOF analytical system) 
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Figure 4.4: Complex Mode Indicator Function (CMIF) based on positive 

power spectrum (15 DOF analytical system) 
 
Table 4.1 illustrates the modal parameters obtained using the low order frequency 

domain algorithm. The results obtained are compared to the true modes of the system 

and also with the results obtained using other time domain algorithms like ERA, PTD. 

Note that though these algorithms are referred by the name through which they are 

known popularly in the conventional frequency response function based experimental 

modal analysis framework, in this study they are essentially operational modal analysis 

algorithms i.e. working on output-only data. As noted in the previous section, most OMA 

time domain algorithms estimate modal parameters based on positive lags of the 

correlation functions and thus it does not make much difference whether positive power 

spectrums or simply the power spectrums are used for parameter estimation purposes. 

The results obtained using UMPA-LOFD algorithm compare very well with those 

obtained by more established time domain methods. The comparison with true modes of 

the system is also good though damping values are in error. However this behavior is 
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also shown by time domain methods. Since the damping values are expressed in 

percent critical, the variation is not very significant for this case. 

The consistency diagrams obtained for the ERA and PTD algorithms and the 

consistency diagrams for the UMPA-LOFD and RFP algorithm are shown in Figures 4.5-

4.8 Note that in case of RFP and UMPA-LOFD, positive power spectrums are used. 

Except for RFP, the consistency diagrams obtained using other algorithms are very clear 

and show good stability of the modes. Note that the diamonds (◊) in the consistency 

diagram represent stable pole and vector. Thus UMPA-LOFD not only gives comparable 

results to time domain methods, it provides a frequency domain alternative to modal 

parameter estimation using output-only data. The poor quality of consistency diagram in 

case of RFP is due to the numerical conditioning problems and renders the RFP method 

useless for modal parameter estimation purposes. The advantage of processing the 

positive power spectrums instead of power spectrums can also be seen in the 

consistency diagrams. Figure 4.9 shows consistency diagram for UMPA-LOFD based on 

processing regular power spectrums. It is very evident that using positive power 

spectrums considerably improves the consistency diagram and aids in stabilizing system 

modes. 
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Table 4.1: UMPA-LOFD modal parameter comparison for 15 DOF analytical 
system 

True Modes UMPA-LOFD 
(Low Order,  

Freq Domain) 

UMPA-ERA 
(Low Order, 

Time Domain) 

UMPA-PTD  
(High Order, 

Time Domain) 
Damp Freq Damp Freq Damp Freq Damp Freq 
1.0042 15.985 2.338 15.963 2.286 15.904 2.261 15.917 
1.9372 30.858 2.517 30.863 2.478 30.691 2.445 30.731 
2.7347 43.6 3.043 43.680 3.059 43.435 3.022 43.451 
2.9122 46.444 3.431 46.437 3.394 46.179 3.399 46.178 
3.3375 53.317 3.932 53.209 3.634 53.015 3.682 52.992 
3.3454 53.391 3.296 53.306 3.385 53.148 3.390 53.102 
3.7145 59.413 4.430 59.116 4.075 59.058 3.998 59.087 
3.858 61.624 4.180 61.133 4.373 61.055 4.469 60.923 

4.2978 68.811 4.291 69.237 4.397 68.633 4.800 68.462 
4.5925 73.63 4.812 73.253 4.963 73.264 4.753 73.576 
2.6093 128.84 2.712 128.848 2.672 128.909 2.432 128.587 
2.4548 136.55 2.563 136.547 2.419 136.637 2.531 136.254 
2.3288 143.86 2.426 143.869 2.360 143.973 2.591 143.325 
2.221 150.83 2.314 150.799 2.390 150.606 2.486 150.576 
2.122 157.47 2.216 157.444 2.155 157.510 2.573 157.123 

 
 

 
Figure 4.5: Consistency diagram for Polyreference Time Domain (PTD) 

algorithm (15 DOF analytical system) 
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Figure 4.6: Consistency diagram for Eigensystem Realization Algorithm 

(ERA) (15 DOF analytical system) 
 

 
Figure 4.7: Consistency diagram for Low Order Frequency Domain (UMPA-

LOFD) algorithm (15 DOF analytical system) 
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Figure 4.8: Consistency diagram for Rational Fraction Polynomial (RFP) 

algorithm (15 DOF analytical system) 
 

 
Figure 4.9: Consistency diagram for Low Order Frequency Domain (UMPA-
LOFD) algorithm based on complete power spectrum (Analytical system) 

Frequency (Hz)
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4.3.2 Lightly Damped Circular Plate 
 
Experimental studies are conducted on a lightly damped circular plate made of 

aluminum. The experimental set up is shown in Figure 4.10. The plate is randomly 

excited all across its surface using an impact hammer. Accelerometers are placed at 30 

locations for measuring the output response. For comparing the results obtained using 

operational modal analysis to those using experimental modal analysis, a separate 

experiment is conducted where the plate is excited at two locations using an ergodic, 

stationary, broad-band pure random signal. To measure the input excitation force, two 

force transducers are also placed at the excitation points. In this configuration the plate 

is excited only at two locations, thus the plate is not excited uniformly over its surface. In 

other words, this is the case of insufficient excitation which is a typical (perfectly 

acceptable) frequency response function based modal analysis test configuration but a 

non-ideal operational modal analysis configuration. 

 
Figure 4.10: Experimental set up for the lightly damped circular plate 

 
Figure 4.11 shows the CMIF plots based on power spectra when the plate is excited 

completely over its surface thus abiding completely with the assumptions of OMA. 
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Table 4.2 lists the modal parameters estimated using various algorithms including the 

UMPA-LOFD algorithm. There’s a good agreement among the results from various 

algorithms. Figures 4.12-4.15 show the consistency diagrams for the different 

algorithms. As expected, the consistency diagram for UMPA-LOFD algorithm is very 

clear and is also comparable to consistency diagrams of the time domain algorithms. 

 

Frequency (Hz)Frequency (Hz)  
Figure 4.11: CMIF plot based on complete power spectrums obtained when 

plate is excited sufficiently over its surface 
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Table 4.2: UMPA-LOFD modal parameter comparison for lightly damped 
circular plate 

System Modes 
Using EMA 

UMPA-LOFD 
(Low Order,  

Freq Domain) 

UMPA-ERA 
(Low Order, 

Time Domain) 

UMPA-PTD  
(High Order, 

Time Domain) 
Damp Freq Damp Freq Damp Freq Damp Freq 
0.258 56.591 0.612 56.478 0.611 56.436    0.611 56.439    
0.285 57.194 0.621 57.253     0.619 57.197    0.632 57.191    
0.312 96.577 0.636 96.665     0.631 96.561    0.636 96.571    
0.412 132.101 0.342 131.830    0.338 131.705   0.351 131.702   
0.147 132.650 0.285 132.760    0.310 132.601   0.304 132.589   
0.243 219.582 0.300 219.375    0.301 219.092   0.302 219.094   
0.216 220.952 0.364 221.358    0.370 221.088   0.371 221.075   
0.214 231.172 0.256 230.851    0.260 230.553   0.252 230.545   
0.137 232.077 0.225 232.394    0.220 232.095   0.212 232.102   
0.089 352.997 0.147 351.677    0.144 351.180   0.152 351.214   
0.174 355.509 0.219 355.773    0.222 355.283   0.224 355.303   
0.180 374.554 0.268 373.933    0.271 373.382   0.273 373.424   
0.176 377.569 0.236 377.505    0.242 377.013   0.239 376.990   
0.313 412.414 0.241 411.727    0.238 411.138   0.245 411.168   
0.209 486.801 0.219 485.405    0.220 484.627   0.220 484.720   

 
 

 
Figure 4.12: Consistency diagram for Polyreference Time Domain (PTD) 

algorithm (Circular plate) 

Frequency (Hz)
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Figure 4.13: Consistency diagram for Eigensystem Realization Algorithm 
(ERA) algorithm (Circular plate) 

 

 
Figure 4.14: Consistency diagram for Lower Order Frequency Domain 

(UMPA-LOFD) algorithm (Circular plate) 

Frequency (Hz)

Frequency (Hz)
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Figure 4.15: Consistency diagram for Rational Fraction Polynomial (RFP) 

algorithm (Circular plate) 

 
Further the independence of the various estimated modes is checked by the means of 

modal assurance criterion (MAC) [Allemang, 1980, Heylen, Lammens, Sas, 1995] plot 

as shown in Figure 4.16. It is evident that all 15 modes, most of which are closely 

spaced modes, are independent and represent different modes of the system. The mode 

shapes obtained for the circular plate are shown in Figure 4.17. The mode shapes are of 

a similar nature to the ones obtained through experimental modal analysis, except that 

they are not scaled. 

 

Frequency (Hz)
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Figure 4.16: MAC plot for UMPA-LOFD algorithm (Circular plate) 

 
1st Mode (56.5 Hz) (1st Bending mode ) 3rd Mode (96.6 Hz) (1st Umbrella mode) 

4th Mode (131.8 Hz) (1st Torsion mode) 

 

12th Mode (373.9 Hz) (Torsion + Bending 
mode) 

Figure 4.17: Selected mode shapes of the circular plate 
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4.4 Case Studies: Effect of Complex Z Mapping on 
UMPA-LOFD 
 
In this section, the previous two case studies are discussed in view of the effect of 

complex Z mapping on both high and low order frequency domain Operational Modal 

Analysis algorithms. In addition to analyzing the modal parameter estimates, consistency 

diagrams are also studied to analyze the performance of the various algorithms. 

 
4.4.1 Analytical 15 Degrees of Freedom System 
 
The 15 degree of freedom system as shown in Figure 4.1 is considered again. The 

modal parameter estimation process is carried out using RFP, RFP-Z, UMPA-LOFD and 

its complex Z mapping variation. 

Table 4.3: Effect of complex Z mapping - Modal parameter comparison for 
15 DOF analytical system 

True Modes UMPA-LOFD 
(Low Order, 
Frequency 
Domain) 

UMPA-LOFD 
with Complex Z 

Mapping 

RFP 
(High Order, 
Frequency 
Domain) 

RFP-z 
(High Order, 
Complex Z 
Mapping) 

Damp Freq Damp Freq Damp Freq Damp Freq Damp Freq 
1.0042 15.985 2.338 15.963 2.4028 15.9943 2.3531 15.9587 3.1379 15.976 
1.9372 30.858 2.517 30.863 2.4530 30.8710 2.53 30.8519 2.8758 30.912 
2.7347 43.6 3.043 43.680 2.9028 43.6425 2.9814 43.7026 2.9318 43.762 
2.9122 46.444 3.431 46.437 3.3260 46.1123 3.4852 46.3877 3.3806 46.498 
3.3375 53.317 3.932 53.209 3.5984 53.2767 3.5670 53.4123 3.0676 53.316 
3.3454 53.391 3.296 53.306 3.3930 53.3452 3.3236 53.4890 3.5501 53.370 
3.7145 59.413 4.430 59.116 3.9630 59.4063 4.1472 59.3597 3.7389 59.169 
3.858 61.624 4.180 61.133 4.1202 61.2957 4.1735 61.4719 3.7502 61.240 
4.2978 68.811 4.291 69.237 3.0884 68.9138 4.3943 68.9440 4.8688 68.612 
4.5925 73.63 4.812 73.253 4.3108 72.5819 4.4734 73.2355 4.3604 73.220 
2.6093 128.84 2.712 128.848 2.6453 128.8716 2.6415 128.9428 2.7789 128.965
2.4548 136.55 2.563 136.547 2.4747 136.5401 2.5578 136.5783 2.4850 136.684
2.3288 143.86 2.426 143.869 2.3172 143.8190 2.3947 143.8762 2.3207 143.919
2.221 150.83 2.314 150.799 2.1831 150.6178 2.2871 150.7683 2.2171 150.866
2.122 157.47 2.216 157.444 2.3106 157.0458 2.2041 157.4022 2.1305 157.408
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Table 4.3 shows the modal parameters obtained by the four algorithms and the 

corresponding consistency diagrams are shown in Figures 4.18-4.21. It is observed that 

all the algorithms give good results though damping is over estimated for some of the 

modes. The modal parameter estimation is subject to user experience and depends 

significantly on parameters such as selected frequency range, choice of reference 

responses and use of residuals to account for modes out of the frequency range of 

interest, etc.  It can be seen from Figure 4.18 that the higher order frequency domain 

algorithm, RFP, does not yield a good consistency diagram. The consistency diagram 

deteriorates severely as the order increases or a wide frequency range is chosen. This 

can be attributed to the ill-conditioned matrices of the Van der Monde form. The poor 

consistency diagram adds to the uncertainty of the obtained modal parameters and 

requires significant user judgment. The application of complex Z mapping improves the 

RFP-z consistency diagram significantly (Figure 4.19) thus underlining its significance 

and contribution to the field of parameter estimation. The obtained consistency diagrams 

are very clear and thus make it easy for the correct modes to be picked. 

As shown previously, the numerical issues associated with the RFP algorithm are not 

apparent in case of UMPA-LOFD algorithm. Unlike RFP which involves power 

polynomials with increasing powers of the frequency resulting in ill-conditioned matrices, 

the UMPA-LOFD algorithm being a low order algorithm does not run into these sorts of 

numerical problems. The modal parameters estimated by UMPA-LOFD algorithm show 

good agreement with the results obtained using other algorithms. Further the 

consistency diagram (Figure 4.20) is very clear. One important thing to note with 

application of UMPA-LOFD algorithm is that since it’s a low order algorithm it requires 

more spatial information than that required by RFP or RFP-Z.  

Finally, complex Z mapping is applied to UMPA-LOFD to see if it results in any 

significant improvement like in case of high order RFP algorithm. The obtained 
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consistency diagram as shown in Figure 4.21 is very clear but does not provide any 

prominent improvement over the UMPA-LOFD consistency diagram (Figure 4.20). It is 

observed that unlike UMPA-LOFD, the complex Z mapping version is not able to pick 

modes outside the selected frequency range of interest. It is also observed that the 

complex Z mapping implementation of UMPA-LOFD cannot easily obtain the heavily 

damped modes in the range 68-74 Hz. Overall it is observed, that complex Z mapping 

when applied to UMPA-LOFD does not result in any significant advantage unlike its 

application to the high order RFP algorithm. However no particular further judgment can 

be made for this case, as both UMPA-LOFD and its complex Z mapping variation are 

giving equally good results. 

 
Figure 4.18: Consistency diagram for Rational Fraction Polynomial (RFP) 

algorithm (Analytical system) 
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Figure 4.19: Consistency diagram for Rational Fraction Polynomial (RFP-z) 

algorithm (Analytical system) 
 

 
Figure 4.20: Consistency diagram for Low Order Frequency Domain 

(UMPA-LOFD) algorithm (Analytical system) 
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Figure 4.21: Consistency diagram for UMPA-LOFD with algorithm Complex 

Z mapping (Analytical system) 
 
4.4.2 Lightly Damped Circular Plate 
 
The response data collected over the circular plate is analyzed using various algorithms 

and the modal parameters are listed in Table 4.4. The estimated modal parameters 

show good agreement with each other and also with the experimental modal analysis 

based modal parameters. The consistency diagrams for the various algorithms for the 

same frequency range are shown in Figures 4.22-4.25. It can be seen that the RFP-Z 

gives a very clear consistency diagram. Application of complex Z mapping on UMPA-

LOFD algorithm also results in improving the consistency diagram but, as in the 

analytical system, the effect is not as significant. 
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Table 4.4: Effect of complex Z mapping - Modal parameter comparison for 
lightly damped circular plate 

EMA based 
modal 

parameters 

UMPA-LOFD 
(Low Order, 
Frequency 
Domain) 

UMPA-LOFD 
(Low Order, 
Complex Z 
Mapping) 

RFP 
(High Order, 
Frequency 
Domain) 

RFP-z 
(High Order, 
Complex Z 
Mapping) 

Damp Freq Damp Freq Damp Freq Damp Freq Damp Freq 
0.258 56.591 0.612 56.478 0.578 56.542 0.663 56.462 0.762 56.504 
0.285 57.194 0.621 57.253 0.66 57.252 0.669 57.214 0.717 57.24 
0.312 96.577 0.636 96.665 0.626 96.653 0.638 96.663 0.637 96.662 
0.412 132.101 0.342 131.83 0.369 131.842 0.353 131.847 0.349 131.84 
0.147 132.65 0.285 132.76 0.337 132.735 0.312 132.743 0.302 132.723
0.243 219.582 0.3 219.375 0.292 219.368 0.299 219.373 0.303 219.365
0.216 220.952 0.364 221.358 0.359 221.342 0.367 221.35 0.366 221.344
0.214 231.172 0.256 230.851 0.265 230.843 0.257 230.855 0.257 230.856
0.137 232.077 0.225 232.394 0.218 232.421 0.227 232.391 0.221 232.4 
0.089 352.997 0.147 351.677 0.138 351.716 0.151 351.69 0.151 351.715
0.174 355.509 0.219 355.773 0.207 355.801 0.22 355.78 0.219 355.801
0.18 374.554 0.268 373.933 0.269 373.882 0.27 373.941 0.271 373.936
0.176 377.569 0.236 377.505 0.235 377.499 0.236 377.508 0.236 377.506
0.313 412.414 0.241 411.727 0.244 411.734 0.241 411.729 0.242 411.731
0.209 486.801 0.219 485.405 0.225 485.425 0.221 485.408 0.219 485.397

 

 
Figure 4.22: Consistency diagram for Rational Fraction Polynomial (RFP) 

algorithm (Circular plate) 
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Figure 4.23: Consistency diagram for RFP-z algorithm (Circular plate) 

 

 
Figure 4.24: Consistency diagram for UMPA-LOFD algorithm (Circular 

plate) 
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Figure 4.25: Consistency diagram for UMPA-LOFD with algorithm Complex 

Z mapping (Circular plate) 
 
4.5 Conclusions 
 
Due to its good numerical conditioning properties, the UMPA-LOFD algorithm proposed 

in this paper offers a frequency domain alternative in the field of operational modal 

analysis. The problems associated with higher order frequency domain algorithms are 

not encountered with the use of this algorithm and the obtained results compare well 

with the established time domain based approaches. Case studies undertaken in the 

paper, show that the modal parameters closely match the expected values and the 

consistency diagram is of good quality. Further, the concept of utilizing the complex Z 

mapping as in the polyreference least squares complex frequency (PolyMAX) algorithm, 

or generically the RFP-Z algorithm, for the purpose of obtaining better numerical 

characteristics for frequency domain algorithms is extended to UMPA-LOFD algorithm. It 

is shown that complex Z mapping significantly improves the performance of the high 

order frequency domain algorithms like RFP. The effect in the case of low order UMPA-
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LOFD is noticeable but not very prominent. However, with no apparent negative issues, 

application of complex Z mapping to UMPA-LOFD can be considered as another 

alternative for the purpose of modal parameter estimation using output-only data. 

Further, this study should also be applied to real life systems which might throw some 

more light on the effectiveness of complex Z mapping on UMPA-LOFD.  

With diverse fields of application such as civil structures, automobile and aerospace 

structures and complex rotating machinery falling in the domain of operational modal 

analysis, the low order frequency domain algorithm with its promising results can be 

considered as a good addition to the family of operational modal analysis algorithms.  
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Chapter Five 
 
 
 

OMA-EMIF: A Spatial Domain OMA 
Algorithm 
 
 
 
The Complex Mode Indicator Function (CMIF) is a popular spatial domain modal 

parameter estimation technique that utilizes the singular value decomposition of the 

frequency response function matrix for estimating the modal parameters of the system. 

Due to several advantages like identification of closely spaced modes, this technique is 

extremely popular for modal parameter estimation purposes. In recent times, the 

Frequency Domain Decomposition (FDD) technique [Brincker, Zhang, Andersen, 2000] 

extends the CMIF algorithm to the operational modal analysis framework. The FDD 

technique works on the power spectrums unlike working on frequency response 

functions as in conventional modal analysis. The FDD technique however suffers from a 

limitation that one cannot estimate damping. Normally the FDD is followed by the 

Enhanced Frequency Domain Decomposition (eFDD) [Brincker, Ventura, Andersen, 

2000] to complete the overall parameter estimation procedure. eFDD is essentially a 

single degree of freedom system identification approach that works in the time domain. 

In this chapter an alternative to the eFDD, the previously introduced Enhanced Mode 

Indicator Function (EMIF) [Fladung, Phillips, Brown, 1997; Fladung, 2001; Allemang, 

Brown, 2006], is reviewed and extended to the operational modal analysis framework.  

This algorithm differs from the eFDD in that the parameter estimation is carried out in the 

frequency domain. Further the chapter analyzes the application of spatial domain 
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algorithms to operational modal analysis framework in more detail. It discusses the 

critical issues and limitations associated with the application of spatial domain algorithms 

to the OMA framework under different excitation scenarios. It is shown in [Chauhan, 

Martell et. al, 2005, Herlufsen, Gade, Moller, 2005; Gade, Moller et al., 2005] that spatial 

domain algorithms suffer from some limitations when they are applied to conventional 

EMA situations. When the system isn’t completely excited spatially, the resulting power 

spectrum based singular value decomposition plots (or CMIF plots) differ significantly 

from the FRF based CMIF and are often confusing. A simple tool, Singular Value 

Percentage Contribution (SVPC) plot, is proposed to deal effectively with this problem. 

This aspect is studied and explained with the help of an analytical 15 degree of freedom 

system and experiments conducted on a circular plate and an H-Frame structure. 

 
5.1 CMIF and FDD/eFDD 
 
As previously stated, the FDD algorithm is inspired by the conventional CMIF algorithm. 

CMIF involves a frequency by frequency singular value decomposition of the frequency 

response function matrix [Shih, Tsuei, Allemang, Brown, 1989; Heylen, Lammens, Sas, 

1997]. 

( )[ ] ( )[ ] ( )[ ] ( )[ ]H NNkNNkNNkNNk iiiiioio
VUH ×××× ∑= ωωωω  5.1) 

 

where 

No is number of outputs, 

Ni is number of inputs, 

H(ωk) is the FRF matrix at any frequency ωk, 

U(ωk) is the left singular matrix at any frequency ωk, which is a unitary matrix, 

V(ωk) is the right singular matrix at any frequency ωk, which is also a unitary matrix, 
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Σ(ωk) is the singular value matrix at any frequency ωk, which is a diagonal matrix. 

As explained in Chapter 2, the Frequency Domain Decomposition technique involves the 

singular value decomposition (SVD) of this output response power spectra matrix 

frequency by frequency. Thus at any particular frequency ωk the singular value 

decomposition of GXX results in 

( )[ ] [ ][ ][ ]HkXX VSUG =ω  5.2) 

 

where [S] is the singular value diagonal matrix and [U], [V] are singular vector matrix 

which are orthogonal. The singular vectors near a resonance are good estimates of the 

mode shapes and the modal frequency is obtained by the simple single degree of 

freedom peak-picking method. In this manner, the FDD algorithm gives an estimate of 

the modal frequencies and the mode shapes and is followed by the enhanced 

Frequency Domain Decomposition (eFDD) algorithm to determine the damping (ζ) 

associated with the mode, thus completing the modal parameter estimation process 

(Figure 5.1).  

In the eFDD algorithm, power spectra of a SDOF system is identified around a peak in 

the SVD plot. A user defined Modal Assurance Criterion (MAC) rejection level is set to 

compare the singular vectors around the peak and the corresponding singular values are 

retained as those belonging to the SDOF power spectrum. This SDOF power spectrum 

is transformed back to the time domain by an inverse FFT. The natural frequency and 

damping are then estimated for this SDOF system by determining zero crossing times 

and logarithmic decrement methods, respectively. Thus the parameter estimation in 

case of eFDD algorithm is carried out in time domain. 
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Figure 5.1 – eFDD estimation of modal frequency and damping 

 
5.2 OMA-EMIF: Enhanced Mode Indicator Function 
for OMA 
 
The algorithm proposed in this chapter differs from the eFDD approach in the sense that 

the modal frequency and damping estimation is carried out in the frequency domain. 

This allows the use of residual terms to reduce the effects of out of band modes.  

However, instead of processing the power spectrums, this algorithm utilizes positive 

power spectrum which is mathematically represented as 
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The EMIF algorithm [Fladung, Phillips, Brown, 1997; Fladung, 2001; Allemang, Brown, 

2006] is reformulated here for use with positive power spectra. It involves the selection 

of a frequency range containing a discrete number of frequencies Nf and number of 

modes Nb to be identified in that range. The number of modes in the frequency band 

cannot be greater than the number of singular values.  When the frequency range to be 

analyzed and the number of modes within the band have been chosen, the algorithm 

uses the following process in the frequency domain to determine the modal parameters.   

The first order model, frequency domain equivalent of the ERA method, is used to form 

the augmented matrix [A0] utilizing the cross-spectral matrix.  

[ ]
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )















=

+
+

+
++

+
++

+
++

+
++

ff

fff

fio

NipqNipqipq

NipipNiiNii

NNxN

GGG

GGGGGG
A

ωωω

ωωωωωω

KKKKKKK

MMMMMMMMMMM

KKKKK 1121211111

)(0  5.4) 

 

An SVD is then performed on the matrix ][ 0A .  This calculation yields the left and right 

hand singular vectors as well as the singular values. 

[ ] [ ] [ ] [ ]HNNNi VSUA
fio
=× )(0 )(ω  5.5) 

 

For the economical SVD, the size of [S] is the lesser dimension of (No) or (NiNf). The 

dominant right or left singular vectors {U} corresponding to the number of modes Nb in 

the frequency band are then used as modal filters to reduce the number of effective 

positive power spectra.  This creates an enhanced positive power spectrum (ePPS) in 

the frequency band of interest that is similar to the enhanced frequency response 

functions or eFRFs [Fladung, Phillips, Brown, 1997].   

( )[ ] ( )[ ]
ioobib NN

T
NNNN GUGePPS ×

+
×× == ωωω ][)(  5.6) 
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This ePPS matrix is then used as the data matrix in a first order UMPA formulation.  This 

formulation may include Nr residual terms [βm] to account for out of band modes. 
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When rearranged, the equations yield the following when [α 0] is set equal to [I]. 
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The equations yield the following when [α 1] is set equal to [I].  
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It should be noted that in Eqn. (5.8) and (5.9) conjugate terms can be included.  The 

equations can then be reformulated in a second order form such that the solution also 

includes conjugate poles. These equations can then be solved in a least square sense 

for [α] and [β] matrices with either [α 1] or [α 0] assumed to equal [I]. The + sign in the 

above equations represents Moore-Penrose pseudo inverse of a matrix. 

The eigenvalues of the system can then be computed as the eigenvalues of the matrix 

[α0] or the eigenvalues of the inverse of [α1].  The eigenvectors are the eigenvectors of 

the enhanced system and therefore have little physical meaning.  They must be 

converted back to the original physical coordinates.  This is performed by multiplying the 
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eigenvectors from the enhanced system by the eigenvectors from the original physical 

system. 

{ } [ ] { } 11 ×××
=

bboo NEnhancedNN
H

Nphysical U ψψ  5.10)

 
5.3 Singular Value Percentage Contribution (SVPC) 
Plot 
 
It is observed in case the of operational modal analysis that, when the system is 

uniformly (completely) excited spatially, the resulting power spectra based CMIF plot 

indicates the modes present in the system in the same manner as a FRF based CMIF 

plot. However when the system is excited locally, in other words when the excitation is 

insufficient spatially, the power spectrum based CMIF plot contains extra peaks at the 

frequencies where modes are expected. The insufficient spatial excitation case for OMA 

is typical of traditional FRF based experimental modal analysis. An analysis of the FRF 

based CMIF plot for this case reveals that it is quite similar to the CMIF plot based on 

power spectrums except that it does not have the extra peaks. Presence of more than 

one peak around the same frequency in a FRF based CMIF plot usually indicates the 

presence of a repeated or closely-spaced mode. However, in the case of power 

spectrum based CMIF, the extra peaks may not be due to other modes but due to 

insufficient excitation. Thus the presence of extra peaks in the power spectrum based 

CMIF may act as an indicator of insufficient spatial excitation. 

A method based on percentage contribution of singular values is devised to get around 

this confusion caused by the presence of extra peaks. After singular value 

decomposition of the GXX matrix at every frequency, the percentage contribution of each 

singular value to the total variance (Note that the singular values are a measure of 

variance) can be plotted. The number of significant singular values can be found based 
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on how many singular values are contributing to a large percentage of the total variance. 

Any conclusion about the number of modes present in the system can now be made on 

the basis of these significant singular values. This plot is referred to as Singular Value 

Percentage Contribution plot or SVPC plot. As discussed earlier in this section, a FRF 

based CMIF plot resembles the power spectrum based CMIF plot if only the significant 

singular value curves are considered instead of all the singular value curves. Further, the 

presence of a large number of significant singular values in the SVPC plot means that 

the system is being excited spatially fairly well. On the other hand if only a few (two or 

three) singular values are contributing to the total variance, it can be inferred that the 

system is being excited more locally. In later sections, the utility of the SVPC tool is 

shown through various examples 

 
5.4 Experimental Validation 
 
5.4.1 15 DOF ANALYTICAL SYSTEM 
 
The fifteen degree-of-freedom analytical system shown in Figure 5.2 was excited by a 

non-correlated random forcing function at each degree of freedom.  The time domain 

response at each degree-of-freedom was used to calculate the cross-spectral matrix 

between all inputs and outputs.  This cross-spectral matrix was then used to calculate 

the Complex Mode Indicator Function for the system as shown in Figure 5.3.  The CMIF 

plot clearly indicates all the 15 modes present in the system and closely resembles the 

CMIF plot obtained from a fully excited FRF based singular value decomposition. 
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Figure 5.2: Analytical 15 DOF system 

 
 

0 50 100 150 200 25010
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

M
ag

ni
tu

de

Frequency (Hz)  

Figure 5.3 – CMIF of spatially well excited 15 DOF analytical system 
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Table 5.1 - Comparison of true modes and OMA-EMIF modes for 15 DOF 
analytical system 

Damp Freq Damp Freq
1.0042 15.985 4.147 15.92
1.9372 30.858 3.163 30.87
2.7347 43.6 3.475 43.65
2.9122 46.444 3.688 46.69
3.3375 53.317 4.224 53.8
3.3454 53.391 4.857 53.9
3.7145 59.413 3.749 59.13
3.858 61.624 3.647 61.44

4.2978 68.811 4.038 68.29
4.5925 73.63 3.949 73.17
2.6093 128.84 2.51 128.46
2.4548 136.55 2.62 136.45
2.3288 143.86 2.459 143.91
2.221 150.83 2.299 150.9
2.122 157.47 1.773 157.86

True Modes Enhanced Mode 
Indicator Function 

(EMIF)

 
 
Table 5.1 shows the comparison of true modes and the modal parameters obtained 

using the EMIF algorithm. The modal parameters obtained using the proposed EMIF 

algorithm are comparable to the true modes of the system which indicates that the 

algorithm works well. The ability of the EMIF algorithm to identify closely spaced modes 

and the possible inclusion of residuals makes it an attractive option for operational modal 

analysis applications. 

The system was next excited at limited locations, which is typical of traditional 

experimental modal analysis where the system is excited by known input forces at a few 

select locations. The CMIF plot for the case where the system is excited at three 

locations is shown in Figure 5.4. It should be noted that the CMIF plot shown in Figure 

5.5 based on frequency response functions for the same case of 3 point excitation 

shows that it is quite similar to the CMIF plot based on power spectrums shown in Figure 

5.4  (first three singular value curves) except that it does not have the extra peaks. It can 

be observed that the CMIF plot (Figure 5.4) contains extra peaks at the frequencies 
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where modes are expected. This makes it difficult to interpret the CMIF; whether the 

peaks are indicating the presence of closely spaced modes or are just false indications 

as in this case. This is more troublesome in real life situations where the acquired data 

will not be as clear as in this analytical case. 
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Figure 5.4 – CMIF of analytical system excited at three locations (Cross-

Power based) 
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Figure 5.5 - CMIF of analytical system excited at three locations (FRF 

based) 
 

Figure 5.6 shows the Singular Value Percentage Contribution (SVPC) plot for the case 

when the system is excited at only three points. It is very clear from this plot that out of 

fifteen, there are only three significant singular values (3 curves). This means that only 

three singular values are contributing toward the total variance, or in other words, the 

system is not being uniformly excited spatially. As stated earlier, any system related 

conclusion should now be made on the basis of the first three curves from which it can 

be inferred that there are 13 modes present in the system. Table 5.2 presents the results 

obtained using the frequency response function and output response power spectrum 

data for this spatially insufficient excitation case.  It should be noted that the EMIF 

method, due to the inherent nature of enhancing the spectra using the singular vectors 

does not extract the modal parameters for all modes even when using FRF based 

methods.  However, for all modes that were found, the results matched the true modes 

quite well. 
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Figure 5.6 - SVPC plot for spatially insufficient excitation case (Analytical 

system) 
 

Table 5.2 - FRF and GXX based results comparison for spatially insufficient 
excitation case 

Damp Freq Damp Freq
2.717 15.972 5.024 16.017
2.56 30.834 3.83 30.909
3.08 43.618 3.665 43.551
3.21 46.439 3.664 46.4

3.581 53.341 3.892 53.188
1.752 53.721 4.057 53.66
3.918 59.389 4.057 58.891
3.984 61.666 3.29 61.406
4.435 68.838 3.718 68.445
4.636 73.777 3.589 72.495
2.662 128.855 2.661 128.602
2.509 136.559
2.388 143.874

EMIF,Insufficient 
Spatial Excitation 

(EMA)

EMIF,Insufficient 
Spatial Excitation 

(OMA)
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5.4.2 Lightly Damped Circular Plate 
 
A lightly damped aluminum circular plate was instrumented with 30 accelerometers and 

suspended by soft springs as shown in Figure 5.7.  The plate was tested by three 

excitation techniques.  The first test case involved randomly impacting over the entire 

surface of the plate, the second case involved impacting randomly over one quarter of 

the surface area of the plate and the third case involved exciting the plate through the 

use of electro-mechanical shakers at only two points on the structure.  The excitation 

signals for the third case were two uncorrelated random signals.   

 

 
Figure 5.7 - Experimental set up for the lightly damped circular plate 

 
The CMIF plot for the case where the plate was fully excited is shown in Figure 5.8. The 

CMIF looks nearly identical to a CMIF obtained through a traditional modal analysis 

utilizing Frequency Response Functions shown in Figure 5.10. The CMIF plots for other 

two cases (quarter plate excitation and two point shaker excitation) are shown in Figure 

5.11 and Figure 5.13. It is observed that when the plate is not uniformly excited spatially, 

extra peaks begin to emerge in the CMIF plot. This effect, as explained with the 

analytical system, tends to reduce the utility of CMIF plots as mode indicators. The more 

localized the input forcing function, the more severe the effect on CMIF plot. The SVPC 
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plots for the three cases (shown in Figures 5.9, 5.12 and 5.14) show that the number of 

significant singular values decrease as the excitation becomes more and more local. As 

explained earlier, for highly localized excitation, it is advisable to use only the significant 

singular values in the CMIF plot as potential mode indicators. 
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Figure 5.8 - CMIF of circular plate excited over the entire surface (Spatially 
well excited) 
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Figure 5.9 - SVPC plot for circular plate (Spatially well excited) 

 

100 200 300 400 500 600 700 800
10-1

100

101

102

103
Enhanced Mode Indicator Function

Frequency (Hz)

M
ag

ni
tu

de

 
Figure 5.10 - CMIF of circular plate based on FRFs 
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Figure 5.11 - CMIF of circular plate excited over one quarter of the surface 

 

 
Figure 5.12 - SVPC plot for circular plate excited in one quarter 
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Figure 5.13 - CMIF of circular plate excited at two points 

 

 
Figure 5.14 - SVPC plot for circular plate excited at two points 
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The results of the EMIF algorithm are shown in Table 5.3. The data used in this case 

corresponds to the first case where the plate is excited over its entire surface. The 

estimated modal parameters compare well with those obtained using the traditional FRF 

experimental modal analysis. 

Table 5.3 - Modal parameters estimated using OMA-EMIF for lightly damped 
circular plate 

Damp Freq Damp Freq

1.427 56.496 1.365 56.43
1.094 56.946 1.368 57.29
0.713 96.542 1.112 96.69
0.466 131.882 0.699 131.79
0.44 132.709 0.652 132.75

0.377 219.543 0.481 219.33
0.445 220.92 0.532 221.38
0.371 231.224 0.423 230.87
0.287 232.126 0.416 232.45
0.224 352.433 0.265 351.65
0.242 354.893 0.344 355.79
0.265 374.492 0.371 373.92
0.285 376.813 0.335 377.51
0.443 412.487 0.363 411.75
0.269 486.16 0.322 485.39

Experimental Modal 
Analysis Estimation

Gxx Based EMIF 
Estimation

 
 
 
 
 
 
 
 
 
 
 
 
 



 107

5.4.3 H Frame Structure 
 
The H-Shaped rectangular steel frame (H-Frame) shown in Figure 5.15 was excited first 

by using two electro-mechanical shakers with a band limited random excitation signal at 

two locations.  The acceleration response at 58 locations was measured in the 

frequency range of 0-625Hz.  The H-Frame system was then excited by impacting 

randomly over the entire structure.   This excitation technique assured that the system 

was spatially well excited.  Again, the response at 58 locations was measured.  The 

cross-spectra between all output locations were calculated for both cases. 

The cross-spectral matrix for the well excited case was then used to calculate the CMIF 

plot shown in Figure 5.16.  This CMIF closely resembles the CMIF that would be 

calculated using a full FRF matrix for the same structure.  However, when inspecting the 

CMIF created from the system excited at only two locations, as shown in Figure 5.18, it 

can be seen that it differs significantly from the previous example. The SVPC plots for 

the two cases (Figure 5.17, 5.19) better illustrate the spatial distribution of the excitation 

forces. As observed in the case of the analytical system and circular plate; the SVPC 

plots clearly indicate when the H-frame is being excited spatially uniformly (Figure 5.17 

indicates that there are a lot of significant singular values at most frequencies) and when 

it is being excited locally (Figure 5.19 indicates that major contribution is from two 

significant singular values only).  
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Figure 5.15 - H-Frame structure 
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Figure 5.16 - CMIF of the spatially well excited H-Frame structure 
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Figure 5.17 - SVPC plot for spatially well excited H-Frame 
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Figure 5.18 - CMIF of the H-Frame structure excited at two locations 
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Figure 5.19 - SVPC plot for H-Frame excited at two points 

 

Table 5.4 - Modal parameters estimated using OMA-EMIF for the H-Frame 
structure 

Damp Freq Damp Freq

1.931 15.035 3.96 15.013
1.03 24.174 4.48 24.267

0.856 36.112 0.013 35.747
0.79 55.729 1.413 55.734

0.411 76.165 1.127 75.879
0.253 151.349 0.119 150.408
0.353 157.83 0.695 157.588
0.422 166.828 0.755 166.463
1.038 185.888 1.838 184.269
0.187 186.671 0.442 186.252
1.023 201.716 1.26 201.314
0.578 294.066 0.542 293.686
0.484 305.472 0.606 305.334
0.108 404.394 0.195 404.226
0.159 413.021 0.247 412.697
0.129 419.93 0.222 419.744
0.339 461.706 0.429 461.039
0.124 478.475 0.291 477.607

Experimental Modal 
Analysis Estimation

Gxx Based EMIF 
Estimation
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The effectiveness of the proposed EMIF algorithm is demonstrated again in Table 5.4 as 

estimated modal parameters compare well with the corresponding EMA estimation. 

 
5.5 Conclusions 
 
In this chapter, a new approach for estimating modal parameters using the complex 

mode indicator functions based on output-only response power spectrums is developed. 

This technique, the Enhanced Mode Indicator Function, differs from the popular eFDD 

technique as it estimates the modal parameters in the frequency domain. One of the 

major advantages of estimating the modes in frequency domain is the ability to utilize 

residuals which helps in improving the results by taking into account the contribution of 

the out-of-band modes. The algorithm is shown to give good results by implementing it 

on analytical and experimental systems. Additionally, unlike eFDD approach, more than 

one mode can be estimated at a time.  

Further, the second OMA assumption about the spatial distribution of the natural 

excitation force is explored in more detail. It is shown how the ability of CMIF based 

methods is limited when the system is not adequately excited spatially. Though such 

problems are not encountered while analyzing structures such as bridges and buildings 

(where forcing is uniform), in situations like automobiles on the road having narrow band 

point excitations (such as engine unbalance or other rotating unbalance), this can be a 

major problem as the resulting CMIF plot might not indicate the modes correctly. A tool 

based on contribution of singular values to total variance, Singular Value Percentage 

Contribution plot, is devised which helps in determining whether the system is being 

excited locally or spatially uniformly. This tool makes it possible to use the CMIF plot 

even in cases where the system is not spatially well excited.  
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The EMIF algorithm and SVPC plots are shown to perform very well on analytical and 

experimental systems, thus providing one more alternative of estimating modal 

parameters through Operational Modal Analysis techniques. 
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Chapter Six 
 
 
 

Application of ICA/BSS Techniques to 
OMA 
 
 
 
Independent Component Analysis (ICA) / Blind Source Separation (BSS) is an emerging 

research area in the field of signal processing. The goal of ICA / BSS techniques is to 

identify statistically independent and non-Gaussian sources from a linear mixture of such 

sources. It also extracts the unknown mixture matrix in the process. This Chapter 

explores the possibilities of utilizing the concept of ICA and BSS for the purpose of 

Operational Modal Analysis. Independent Component Analysis and other related 

problems such as Blind Source Separation (BSS), Blind Signal Extraction (BSE) and 

Multichannel Blind Deconvolution (MBD) share the same generalized blind signal 

processing problem where the aim is to estimate the original source signal and 

corresponding mixing matrix based only on the knowledge of mixed output signals. 

There are several good resources that explain the concept of ICA, BSS and other 

related problems including Cardoso, 1998; Lathauwer et al., 2000; Hyvarinen, Oja, 2000; 

Hyvarinen et al., 2001; and Cichocki, Amari, 2002. ICA based methods have found 

application in diverse areas such as biomedical signal analysis (EEG, MMG etc.), 

speech enhancement, image processing, wireless communication, etc. ICA based 

methods have also found application in structural dynamics related areas such as 

damage detection and fault diagnosis [Poyhonen, Jover, Hyotyniemi, 2003; Zang, 

Friswell, Imregun, 2004], rotating machinery vibration [Ypma, Pajunen, 1999] etc. 
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Recently, it was [Kerschen, Poncelet, Golinval, 2006; Poncelet, Kerschen, Golinval, 

2006] shown that ICA can also be used for parameter estimation purposes. 

Four different ICA algorithms namely, AMUSE [Tong, Soon et al., 1990], Second Order 

Blind Identification (SOBI) [Belouchrani, Abed-Meraim et al., 1993], Joint Approximate 

Diagonalization (JADE) [Cardoso, Souloumiac, 1996] and Fourth Order Blind 

Identification (FOBI) [Cardoso, 1991; Nandi, Zarzoso, 1996], are used in this study by 

applying them on a 15 degrees-of-freedom analytical system. These algorithms differ 

from each other on the basis of the optimizing techniques implemented and by utilization 

of second or higher order statistics. The modal parameters estimated using these 

methods are compared with true system parameters and also with one of the 

Operational Modal Analysis techniques. 

 
6.1 Independent Component Analysis 
 
Independent Component Analysis (ICA) or Blind Source Separation (BSS) can be seen 

as an extension to Principal Component Analysis (PCA) which aims at recovering the 

source signals from a set of observed, instantaneous linear mixtures (response data) 

without any a priori knowledge of the mixing system.  

Mathematically, the ICA problem can be formulated as 

( ){ } [ ] ( ){ }tsAtx =  6.1) 

 

where x(t) is a column vector of m output observations representing an instantaneous 

linear mixture of source signals s(t) which is a column vector of n sources at time instant 

t. A is an m X n matrix referred to as “mixing system” or more commonly as the “mixing 

matrix”.  
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Although ICA and BSS techniques claim to identify both the source signals and the 

mixing matrices, they do so within certain indeterminacies that include arbitrary scaling, 

permutation and delay of estimated source signals. However, in spite of these limitations 

the waveform of the original signal is recovered and, in many applications, knowledge of 

source waveform is the most relevant information. 

The task of estimating both s and A, the two unknowns in the above mentioned problem 

requires certain assumptions to be made about the statistical properties of the sources 

si. ICA assumes that the sources si are statistically independent and that they have non-

Gaussian distribution. A detailed discussion of the subject of ICA is beyond the scope of 

this chapter; interested readers can refer to the sources mentioned previously for 

general introduction and details of the various aspects of ICA. In addition to these 

resources, readers can also refer to the special issue on ICA  and BSS published by 

Mechanical Systems and Signal Processing in 2005. 

 
6.1.1 ICA / BSS Algorithms 
 
A wide variety of ICA algorithms are available in the literature [Hyvarinen, Oja, 2000; 

Hyvarinen et al., 2001; and Cichocki, Amari, 2002]. These algorithms differ from each 

other on the basis of the choice of objective function and selected optimization scheme. 

Although the assumption about statistical independence requires the sources to be non-

Gaussian in order to utilize the higher-order statistics (HOS) based BSS methods, 

several second-order statistics (SOS) based techniques are also available. SOS 

methods exploit weaker conditions for separating the sources assuming that they have a 

temporal structure with different autocorrelation functions (or power spectra).  
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In this section, four ICA / BSS methodologies are briefly discussed. 

 
Algorithm for Multiple Unknown Signals Extraction (AMUSE) 
 
SOS based algorithms like AMUSE assume that: 

1. The mixing matrix A is of full column rank. 

2. Sources are spatially uncorrelated with different autocorrelation functions but are 

temporally correlated (colored) stochastic signals with zero-mean. 

3. Sources are stationary signals and / or second order non-stationary signals i.e. 

their variances are time varying. 

The AMUSE algorithm is outlined below: 

1. Estimate the covariance (mean removed correlation) matrix of the output 

observations  

( ) ( ) ( )∑
=

=
N

k

T
x kxkx

N
R

1

10ˆ  6.2) 

 

where ( )0ˆ
xR is the covariance matrix at zero time lag and N is the total number of 

time samples taken. 

2. Compute EVD (or SVD) of ( )0ˆ
xR  
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where Vs is m X n matrix of eigenvectors associated with n principal eigenvalues 

of Λs = diag{λ1, λ2, ….., λn} in descending order. Vn  is m X (m-n) matrix 

containing the (m-n) noise eigenvectors associated with noise eigenvalues Λn = 

diag{λn+1, λn+2, ….., λm}. The number of sources n are thus estimated based on 

the n most significant eigenvalues (or singular values in case of SVD). 
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3. Perform pre-whitening transformation 

( ) ( ) ( )kQxkxVkx T
ss =Λ= − 2

1

 
6.4) 

 

4. Estimate the covariance matrix of the vector ( )kx  for specific time lag other than 

p=0 (say p=1). Perform SVD on the estimated covariance matrix. 

( ) ( ) ( ) T
xxx
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6.5) 

 

5. The mixing matrix and source signals can now be estimated as 

xssx UVUQA 2
1ˆ Λ== +

 
6.6) 

( ) ( ) ( )kxUksky T
x== ˆ  6.7) 

 

AMUSE performs well for colored sources with different power spectra shapes which 

means that the eigenvalues of the time-delayed covariance matrix are distinct. The 

accuracy of AMUSE however deteriorates in presence of additive noise. 

 
Fourth Order Blind Identification Algorithm (FOBI) 
 
FOBI is an extension of the AMUSE algorithm which uses contracted quadricovariance 

matrices instead of covariance matrices. This technique is aimed at separating 

independent non-Gaussian source signals. The quadricovariance matrices are defined 

as  
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where ( ) ( ) ( ){ }kxkxER T
x =0  and E is an m X n freely chosen matrix called eigenmatrix 

(typically E = In or T
qqeeE = , where eq are vectors of some unitary matrix). 

The eigenvalue decomposition of the quadricovariance matrix is of the following form 

( ) T
x UUC EE Λ=  6.9) 

 

with ),,.........( 111 n
T
nn

T uuuudiag EEE λλ=Λ , ( ) { } { }224
4 3 iiii sEsEs −== κλ  is the kurtosis 

of the zero-mean ith source and ui is the i-th column of the orthogonal eigenvector matrix 

U. 

The main advantage of the FOBI algorithm is that it is insensitive to arbitrary Gaussian 

noise and that it allows the mixing system to be identified when sources are i.i.d. and 

mutually independent. However, it should be noted that quadricovariance matrices 

require many more time samples for correct estimates in comparison to covariance 

matrices. FOBI also has a restriction that it only works for sources having different 

kurtosis; thus it will not give good results in cases where sources have identical 

distributions. 

 
Second Order Blind Identification (SOBI) 
 
SOBI algorithm utilizes the joint diagonalization procedure [Cichoki, Amari, 2002; 

Cardoso, Souloumiac, 1996; Hori, 2000] unlike AMUSE and FOBI which use EVD / SVD 

techniques. SOBI works well for simple colored sources with distinct power spectra (or 
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distinct autocorrelation functions). Like AMUSE, it operates on time delayed covariance 

matrices. 

SOBI utilizes the pre-whitening transformation similar to that described in case of 

AMUSE. This is followed by estimation of set of covariance matrices for a preselected 

set of time lags (p1, p2, ….., pL) 

( ) ( ) ( ) ( ) T
ix

N

k
i

T
ix QpRQpkxkx

N
pR  ˆ  1   ˆ

1
∑
=

=−=  6.10)

 

Joint approximate diagonalization (JAD) is performed on the above matrices; 

( ) T
iix UUDpR = , to estimate the orthogonal matrix U that diagonalizes a set of 

covariance matrices. Several efficient algorithms are available for this purpose including 

Jacobi techniques, Alternating Least Squares, Parallel Factor Analysis etc. [Cardoso, 

Souloumiac, 1996; Hori, 2000]. Finally the sources and signals can be estimated using 

the same equations as explained earlier with AMUSE. 

It should be noted that Di(pi) is a diagonal matrix that has distinct diagonal entries. 

However, it is difficult to determine a priori a single time lag p at which the above 

criterion is satisfied. Joint diagonalizaton procedure avoids this difficulty by providing an 

optimum solution considering a number of time lags. 

 
Joint Approximate Diagonalization of Eigenmatrices (JADE) 
 
JADE [Cardoso, Souloumiac, 1993] can be considered as an extension of SOBI and 

FOBI algorithms. Like FOBI, JADE works on the contacted quadricovariance matrices 

but instead of employing EVD / SVD it jointly diagonalizes a set of such matrices just like 

SOBI. The aim of JADE is to estimate an orthogonal matrix U which diagonalizes a set 

of quadricovariance matrices. JADE is a mathematically intensive algorithm and the 
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complete explanation is beyond the scope of this chapter. Interested readers can refer 

the above mentioned references for more details. 

 
6.2 ICA and BSS in Vibrations 
 
Due to the tremendous potential of ICA / BSS techniques, it is not a surprise that the 

research community in the area of vibrations have also started looking at utilizing the 

techniques for a variety of purposes. In [Ypma, Pajunen, 1999], second order ICA 

techniques were utilized for rotating machinery vibration analysis. ICA of vibration 

signals was also used for fault diagnosis of an induction motor [Poyhonen, Jover, 

Hyotyniemi, 2003]. ICA was used along with Artificial Neural Network (ANN) for data 

reduction purposes while detecting structural damage [Zang, Friswell, Imregun, 2004]. 

However in spite of their tremendous potential, use of ICA and BSS techniques in 

vibration and related areas has been slow in comparison to some of the other areas. 

Antoni has discussed the issues associated with application of ICA / BSS techniques for 

vibration signals in detail [Antoni, 2005]. One of the major issues with the application of 

ICA / BSS techniques to vibrations, particularly structural identification related 

applications, is the fact that vibrating systems are dynamic or convolutive in nature as 

opposed to static (instantaneous linear) mixtures for which the ICA / BSS theory is 

originally designed. One obvious way to tackle the convolutive mixtures is to deal with 

them in the frequency domain as convolution in the time domain is equivalent to 

multiplication in the frequency domain. However, there are two other problems which are 

inherent to ICA / BSS techniques; 1) scaling of sources and 2) the order in which they 

are identified, often referred as ‘permutation problem’. This is the same problem 

encountered in estimating partial coherence and/or conditioned partial coherence over 

20 years ago with respect to partially dependent sources in acoustics (general MIMO 

problem) and in multiple input excitation problems in structural dynamics (MIMO-FRF 
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estimation).  In the case of frequency domain ICA / BSS, these two problems become 

much more severe as they now become a function of each frequency bin. Frequency 

domain ICA / BSS is a topic of ongoing research efforts [Smaragdis, 1998; Dapena, 

Serviere, 2001; Rahbar, Reilly, 2001; Joho, Rahbar, 2002]. Most of these algorithms 

were based on the fact that convolved mixing in the time domain corresponds to 

instantaneous mixing in the frequency domain. The work done in this aspect deals with 

handling of the scaling and permutation problems. However, no significant success has 

been achieved so far in this aspect and research is still going on. 

 
6.2.1 ICA / BSS Techniques for Operational Modal Analysis 
 
Operational Modal Analysis is an emerging technique in the field of modal analysis 

where dynamic characteristics of a system are identified based only on the output 

responses. Since, by definition, ICA / BSS techniques work only on system outputs to 

identify either the sources or the system (mixing matrix) without any a priori (or very little) 

information about them, it is logical to believe that these techniques can also be used for 

OMA purposes. Recently, it was shown how ICA / BSS techniques can be utilized for the 

purpose of modal analysis [Kerschen, Poncelet, Golinval, 2006; Poncelet, Kerschen, 

Golinval, 2006; Randall, Holley, 2006].  

The basic fundamentals behind the application of ICA / BSS techniques to modal 

analysis goes back to the concept of the expansion theorem [Meirovitch, 1967] and 

modal filters [Shelly, 1991; Shelly, Allemang, 1992; Shelly, Allemang et al., 1993]. 

According to the expansion theorem, the response of a distributed parameter structure 

can be expressed as  
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where Φr are the modal vectors weighted by the modal coordinates ηr. For real systems, 

however, the response of the system can be represented as a finite sum of modal 

vectors weighted by the modal coordinates. To obtain a particular modal coordinate ηi 

from response vector x, a modal filter vector ψi is required such that 
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Thus the modal filter performs a coordinate transformation from physical to modal 

coordinates. Multiplying the system response x with modal filter matrix ΨT results in 

uncoupling of the system response into single degree of freedom (SDOF) modal 

coordinate responses (η). 

In order for ψi to exist, the associated modal vector Φi must be linearly independent with 

respect to all other modal vectors [Shelly, 1991]. This is also the reason why ICA / BSS 
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based techniques can be utilized for the purpose of decomposing the output system 

response into a product of modal vectors and corresponding modal coordinate 

responses. Also, a modal filter vector is unique if and only if the number of sensors used 

for the modal filter implementation is equal to or greater than the number of linearly 

independent modal vectors contributing to the system response.  

In the past, SDOF modal coordinate responses have been obtained by utilizing modal 

filters calculated using FRF based data. The ICA / BSS based techniques differ from this 

approach in the sense that they directly work on output system response to obtain the 

modal coordinate responses (η). This approach is similar to that in [Kerschen, Poncelet, 

Golinval, 2006; Poncelet, Kerschen, Golinval, 2006] where modal coordinates are 

treated as virtual sources. 

In the following section, four different ICA algorithms as described in Section 6.1.1 are 

applied to a 15 degrees of freedom system. 

 

6.3 Analytical 15 Degree of Freedom System 
 
 
Figure 6.1 shows the 15 degree of freedom system which was previously introduced in 

Chapter 4. The system is excited at all 15 degrees of freedom by means of a white 

random uncorrelated set of inputs. The chosen system has some closely spaced modes 

(around 53 Hz), some modes that are lightly damped, other modes that are moderately 

damped and also some local modes that are well separated from each other. This 

makes it a good system to investigate the various ICA / BSS algorithms described in 

Section 6.1.1. 

Figure 6.2-6.5 show the plot of the auto-power spectrums of the modal coordinate 

responses (η) obtained using various algorithms. The Second Order Statistics (SOS) 
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based algorithms, AMUSE and SOBI, uncouple the system response into SDOF modal 

coordinate responses. However, both Higher Order Statistics (HOS) based methods, 

JADE and FOBI, fail to successfully separate the response into corresponding modal 

coordinate response. Possible reasons for the inferior behavior of the HOS based 

methods can be that quadricovariance matrices are not correctly estimated and also the 

fact that SOS based methods better exploit the temporal coherence (uniqueness of 

autopower spectra) of various modal coordinate responses. 

Modal parameters obtained using the SDOF response based on AMUSE and SOBI are 

listed in Table 6.1 and are compared with true analytical modes of the system and also 

with the results obtained using OMA-EMIF algorithm which was described in Chapter 5. 

Though the frequency estimates using AMUSE and SOBI are close to the true modes in 

comparison to the OMA-EMIF algorithm, damping is overestimated for all the modes. 

However, overall results are satisfactory. Further, Figures 6.6-6.9 show, the modal 

assurance criterion (MAC) plots for comparing the modal vectors obtained using various 

methods. The modal vectors obtained using AMUSE and SOBI are in good agreement 

with each other. However the MAC values are not that high when modal vectors 

obtained using AMUSE are compared with true modes or OMA-EMIF results. The high 

MAC values for true and OMA-EMIF modal vectors indicate that the OMA-EMIF method 

is able to extract the modal vectors of the system better in comparison to the ICA 

techniques.  

Note that using AMUSE or SOBI, the modes are obtained in a random order. Also, the 

repeated modes around 53.3 Hz have interchanged when estimated using OMA-EMIF 

algorithm.  



 125

 
Figure 6.1: Analytical 15 degree of freedom system 

 
 

 
Figure 6.2: Power spectrum of modal coordinate responses obtained using 

AMUSE 
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Figure 6.3: Power spectrum of modal coordinate responses obtained using 

SOBI 
 

 
Figure 6.4: Power spectrum of modal coordinate responses obtained using 

FOBI 
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Figure 6.5: Power spectrum of modal coordinate responses obtained using 

JADE 
 

Table 6.1: Comparison of modal parameter estimates using ICA techniques 
and OMA-EMIF 

True Modes OMA-EMIF 
 

ICA - AMUSE ICA - SOBI 

Damp Freq Damp Freq Damp Freq Damp Freq 
1.0042 15.985 3.3289 15.9857 2.1133 15.9774 2.2314 15.9806 
1.9372 30.858 2.8564 30.8619 2.4042 30.8709 2.4123 30.8725 
2.7347 43.6 3.2718 43.6932 3.1196 43.6511 3.1441 43.6543 
2.9122 46.444 3.6481 46.5883 3.4458 46.4035 3.4787 46.4059 
3.3375 53.317 4.0763  53.7487 3.7103 53.3869 3.8181 53.4067 
3.3454 53.391 4.7860 53.7683 3.5785 53.4237 3.6199 53.4271 
3.7145 59.413 3.6833 59.1164 4.1244 59.4877 4.2735 59.5196 
3.858 61.624 3.6157 61.3713 4.3618 61.6476 4.4495 61.6577 
4.2978 68.811 4.1523 68.2375 4.5887 68.9075 4.7218 68.9299 
4.5925 73.63 4.4249 73.1519 4.8149 73.7923 4.9619 73.8233 
2.6093 128.84 2.6146 128.5604 2.710 128.9026 2.7803 128.9105
2.4548 136.55 2.6030 136.4652 2.5743 136.6159 2.6264 136.6253
2.3288 143.86 2.4513 143.8957 2.4323 143.9370 2.4734 143.9487
2.221 150.83 2.3207 150.8782 2.3162 150.9051 2.3589 150.9175
2.122 157.47 2.0669 157.7820 2.2087 157.54 2.2391 157.5533

 



 128

 
Figure 6.6: MAC comparison plot - AMUSE / SOBI 

 

 
Figure 6.7: MAC comparison plot - AMUSE / OMA-EMIF 
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Figure 6.8: MAC comparison plot - AMUSE / True Modes 

 

 
Figure 6.9: MAC comparison plot - True Modes / OMA-EMIF 
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6.4 Conclusions 
 
Four popular ICA / BSS techniques are discussed along with an introduction to the 

general concept of independent component analysis (ICA) and blind source separation 

(BSS). These techniques can be related to the concept of modal filtering and the modal 

expansion theorem in order to utilize them for output-only modal parameter estimation. 

The studies conducted on an analytical system reveal that second order statistics based 

ICA / BSS algorithms give better results in comparison to the higher order statistics 

based algorithms. Though ICA / BSS based results are not as good as general OMA 

algorithms based results, it is still an interesting area to explore considering the simplicity 

of the method and its ability to extract all modal parameters (modal frequencies and 

mode shapes) in one step. These algorithms are comparatively less time consuming and 

do not require use of such tools as consistency diagrams.  
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Chapter Seven 
 
 
 

Damping Estimation Using OMA 
Techniques 
 
 
 
Due to the unavailability of input force information in OMA, certain assumptions are 

made when applying these techniques for modal parameter estimation. These 

assumptions are primarily about the nature of the input forces which are considered to 

be random and uncorrelated. Further, the forcing functions are assumed to be uniformly 

distributed in a spatial sense. For accurate estimates of the modal parameters, it is 

crucial that these assumptions be as true as possible. Further, the power spectra 

(analogous to FRFs in EMA) should be estimated accurately and free from random and 

bias errors for accurate modal parameter estimation. Several signal processing 

techniques such as the Welch periodogram, correlogram etc. [Kay, 1988; Oppenheim, 

Schafer, 1989; Stoica, Moses, 1997] are available that are commonly used for 

computing the power spectra.  

This Chapter focuses on the damping estimation from OMA techniques, which has been 

a contentious issue with no accepted rationale. It has been observed that even though 

modal frequencies are well estimated using Operational Modal Analysis (OMA) 

techniques, damping estimation is not as accurate and often the errors are significant 

[Avitable, 2006]. This Chapter attempts to identify the causes for the damping inaccuracy 

and assess the currently available signal processing techniques for correcting this 
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problem. Thus, emphasis is laid on studying the OMA procedure, data processing and 

modal parameter estimation with respect to proper damping estimation. 

An analytical 5 Degree of Freedom system used for this study is described in the next 

section. This is followed by the theoretical background on Cyclic Averaging as this signal 

processing is shown to reduce leakage errors resulting in better estimates for damping in 

FRF applications. Finally, the effects of Cyclic Averaging and partially correlated forces 

on damping estimation are discussed by means of observed results. 

 
7.1 Analytical 5 DOF System 
 
A simple 5 degree of freedom with following [M], [C] and [K] matrices is used in this 

study. 























=

500000
0450000
003000
0003500
0000250

M  























−
−−

−−
−−

−

=

27070000
7019012000
01203202000
00200450250
0002503250

C  























−−
−−

−−
−

×=

150000000
800014500650000
065001250060000
006000110005000
00050009000

1000K  

Table 7.1 and 7.2 show the frequency, damping and modal matrix of the system 

Table 7.1: Modal frequencies and damping of the 15 DOF analytical system 
Frequency Damping (% Critical) 

12.5263 1.1486 
22.083 1.0589 
34.8635 2.172 
88.5238 0.4872 

104.7787 0.8473 



 133

 
Table 7.2: Modal Matrix of the 15 DOF analytical system 

Freq/DOF 12.52 Hz 22.08 Hz 34.86 Hz 88.52 Hz 104.77 Hz 
1 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 
2 1.489 + 

0.038i 
0.837 + 
0.064i 

-0.601 + 
0.045i 

-13.655 + 
0.591i 

-19.855 + 
0.717i 

3 1.360 + 
0.046i 

-0.238 + 
0.029i 

-0.249 + 
0.013i 

220.441 - 
11.856i 

464.647 - 
19.555i 

4 1.201 + 
0.051i 

-1.209 - 
0.006i 

0.132 - 
0.016i 

121.877 - 
4.464i 

-17.659 + 
0.872i 

5 0.654 + 
0.027i 

-0.689 - 
0.004i 

0.084 - 
0.010i 

-2079.587 + 
68.451i 

21.140 - 
1.517i 

 
The system is excited by means of a white random uncorrelated set of inputs at all 5 

degrees of freedom. Figure 7.1 shows typical auto-power (1-1) and cross-power (1-2) 

spectra of the input forces. It can be observed that the forces are not entirely 

uncorrelated as the cross-power spectrum is only one order less in magnitude in 

comparison to the auto-power spectrum. That the forces are uncorrelated is also shown 

by means of the virtual forces (or the principal components of the force power spectra 

matrix) in Figure 7.2. 

 
Figure 7.1: Input force power spectra comparison (5 DOF analytical system) 
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Figure 7.2: Virtual forces  

 
The magnitude of the theoretical driving point frequency response functions are shown 

in Figure 7.3. It can be seen from the FRFs that, from an observability point of view, 

some of the system degrees of freedom are on the node lines of some of the modes and 

thus all the modes cannot be observed from any single reference degree of freedom. 

 
Figure 7.3: Theoretical frequency response functions (5 DOF analytical 

system) 
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The next section discusses the Cyclic Averaging signal processing technique and how 

its application to the observed time responses results in power spectra with reduced 

leakage. In subsequent sections, it is shown how this approach gives more accurate 

estimates of modal frequency and damping, in comparison to other more commonly 

used signal processing approaches. 

 
7.2 Cyclic Averaging 
 
One major difference between EMA and OMA is that, whereas frequency response 

functions (FRFs) are the primary data in EMA, in OMA the primary data is output power 

spectra. For estimating FRFs, input/output auto and cross spectra are required 

(depending on the estimation algorithm). It is worth noting that the FRF is assumed to be 

unique but the same is not true for the power spectra unless the input is stationary and a 

sufficiently large number of averages is taken. This is not a cause of concern in EMA as 

the desired data is FRF, not the power spectra used to estimate the FRF. However, in 

OMA, it can lead to several issues resulting in estimated power spectra being 

contaminated by noise due to random and bias errors.  

For the above stated reasons, in general, better estimation of the power spectra require 

longer time histories in comparison (so as to have a greater number of averages to 

reduce the random errors). The bias errors, such as leakage, are however not reduced 

by averaging. Use of overlapping weighting functions (windowing) along with averaging 

is one of the most common methods of reducing leakage error. 

The use of cyclic averaging, along with asynchronous or synchronous averaging 

[Allemang, 1999], is a powerful technique for reducing the leakage, as well as, random 

errors. Cyclic averaging reduces the leakage bias error by digitally filtering the data to 

eliminate the frequency information that cannot be described by the FFT (only integer 

multiples of ∆f are retained) completely prior to the application of FFT. 
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7.2.1 Cyclic Averaging Theory  
 
The cyclic averaging [Allemang, 1980; Allemang, Phillips, 1996; Phillips, Allemang et al., 

1998; Fladung, Zucker et al., 1999; Phillips, Zucker et al., 1999] is a special case of 

linear averaging where the digitization is coherent between cyclic averages. In the 

frequency domain, this is equivalent to a digital comb filter with passbands at frequency 

increments that are integer multiples of the ∆f ; thus resulting in attenuation between the 

passbands. 

The Fourier transform of an output time history x(t) is given by 
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Fourier transform of the same time history shifted by amount t0 is  

( ) ( )∫
+∞

∞−

−− += dtettxeX tjtj ωωω 0
0  7.2) 

 

or 

( ) ( )∫
+∞

∞−

−−
+= dtettxeX tjt

T
nj ω

π

ω 0

2
0

 7.3) 

 

where 
T

n πω 2
=  with n as an integer, since each frequency in the spectra is assumed to 

be an integer multiple of the fundamental frequency ∆f = 1/T. In Eqn. (7.3) it is worth 

noting that the correction for the cases where t0 = N T where N is an integer, will be a 

unit magnitude with zero phase. Thus, if the time histories that are being averaged occur 
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at a time shift that is an integer multiple of the observation period T, then the correction 

due to the time shift does not affect the frequency domain characteristics of the 

averaged result. The averaged time history is given by 

( ) ( )∑
−

=

=
1

0

1 CN

i
i

C

tx
N

tx  7.4) 

 

where NC is number of cyclic averages. When x(t) is continuous over the time period 

NCT, the Fourier coefficients of the averaged time history are  

( )∫ −=
T

tj
k dtetx
T

C k

0

1 ω
 7.5) 

or 

( )∫ ∑ −
−

=

=
T

tj
N

i
i

C
k dtetx

TN
C k

C

0

1

0

1 ω
 7.6) 

 

and finally 

( )∫ −=
TN

tj

C
k

C

k dtetx
TN

C
0

1 ω
 7.7) 

 

It is clear from the above equation that the Fourier coefficients of the cyclic averaged 

history, spaced at ∆f = 1/T, are the same Fourier coefficients as those from the original 

time history, spaced at ∆f = 1/NCT. The Fourier coefficients of a cyclic averaged time 

history are 1/NC times those of original history. Note that the conditions of the Parseval’s 
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theorem are not preserved by cyclic averaging since the frequency information, not 

related to the harmonics of ∆f = 1/T, is removed [Hsu, 1970].  

 
7.2.2 Effect of Cyclic Averaging 
 
Three cases of different signal processing (No Cyclic Averages, 5 Cyclic Averages and 

10 Cyclic Averages) are considered here. All these cases differ in terms of the number of 

cyclic averaging but the total measured time is constant (Total measured time is 

approximately equal to Nc Χ Block Size Χ (1 - Fractional Overlap) Χ Nrms). Other 

parameters such as block size, type of window, etc are same in all the cases. These 

constant parameters are as follows 

Block Size:   1024 

Window:   Hanning 

Overlap:   75% 

Typical auto and cross power spectra plots obtained using the three signal processing 

approaches are shown in Figures 7.4 and 7.5. When the cyclic averaging is not used the 

power spectrums seem clearer in comparison to the cases where the cyclic averaging is 

used. This is because of the fact that, since the same total time history is processed 

using the three approaches, the number of RMS averages is greater for the case where 

cyclic averaging is not used than the ones where it is.  
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Figure 7.4: Effect of cyclic averaging (Power spectrum comparison 1-1) 

 
 

 
Figure 7.5: Effect of cyclic averaging (Power spectrum comparison 1-2) 
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Table 7.3:  Effect of cyclic averaging (NC = 0, RMS Averages = 3997) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5276 0.0104 1.5377 33.8760 
22.0843 0.0059 1.2344 16.5738 
34.8662 0.0077 2.2036 1.4549 
88.5231 -0.0008 0.5117 5.0287 
104.7830 0.0041 0.8457 -0.1888 

 
 

Table 7.4: Effect of cyclic averaging (NC = 5, RMS Averages = 797) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5074 -0.1509 1.0523 -8.3841 
22.0709 -0.0548 1.0978 3.6736 
34.8606 -0.0083 2.1464 -1.1786 
88.5253 0.0017 0.4872 0.0000 
104.7815 0.0027 0.8322 -1.7821 

Table 7.5: Effect of cyclic averaging (NC = 10, RMS Averages = 397) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5122 -0.1126 1.0257 -10.7000 
22.0746 -0.0380 1.1150 5.2980 
34.8624 -0.0032 2.1071 -2.9880 
88.5269 0.0035 0.4846 -0.5337 
104.7805 0.0017 0.8316 -1.8529 

 
 
As indicated in Tables 7.3-7.5 and Figure 7.6, the error in modal frequency estimates 

with or without the use of cyclic averages is not very significant and for all the five modes 

the frequency is estimated fairly well. However, the same is not true for the damping 

estimates.  

With no cyclic averaging, the error in damping estimates is significantly higher, 

especially for the first and second modes (indicated by the grayed cells). Further, the 

damping is over-estimated in most cases. This error drops down with the use of cyclic 

averaging. With 5 cyclic averages, except for the first mode, the error drops down below 
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5% and even for the first mode it is -8% which is significantly lower than the 33% when 

no cyclic averaging is done. The effect is considerable in other modes as well.  

Increasing the number of cyclic averages to 10 doesn’t improve the overall results. In 

fact, it either gives as good or comparatively inferior results to the case where 5 cyclic 

averages are used. This can be attributed to the reduced number of RMS averages in 

the case of 10 cyclic averages in comparison to the 5 cyclic averaging case. One 

additional thing to note is that cyclic averaging tends to underestimate the damping 

values in contrast to the case with no cyclic averages where the values were significantly 

overestimated. In this study, the total time is limited to yield a representative 

measurement comparison. Increasing the number of RMS averages should improve the 

results in Tables 7.4 and 7.5. This is explained in the next case. 
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Figure 7.6: Effect of cyclic averaging (Percentage error in modal frequency 

estimates) 
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Figure 7.7: Effect of cyclic averaging (Percentage error in modal damping 

estimates) 

7.2.3 Effect of More RMS Averages (Use of Longer Time 
Histories) 
 
This study tries to determine if an increased number of RMS averages is collected using 

the same number of cyclic averages results in improving the modal parameter estimates 

or not. Two cases, 5 cyclic averages and 10 cyclic averages are considered and in each 

case three time histories of different lengths (having different numbers of time sample 

points) are processed using the same signal processing parameters which are as follows 

Case A 
 
Block Size:   1024 

Window:   Hanning 

Overlap:  75% 

Cyclic Averages: 5 
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Table 7.6: Effect of longer time histories (NC = 5, Time points = 102400, RMS 
Averages = 77) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5158 -0.0838 0.9918 -13.6514 
22.0887 0.0258 1.1360 7.2811 
34.8606 -0.0083 2.1915 0.8978 
88.5225 -0.0015 0.4867 -0.1026 
104.7702 -0.0081 0.8386 -1.0268 

 
Table 7.7: Effect of longer time histories (NC = 5, Time points = 1024000, 

RMS Averages = 797) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5074 -0.1509 1.0523 -8.3841 
22.0709 -0.0548 1.0978 3.6736 
34.8606 -0.0083 2.1464 -1.1786 
88.5253 0.0017 0.4872 0.0000 
104.7815 0.0027 0.8322 -1.7821 

 
Table 7.8: Effect of longer time histories (NC = 5, Time points = 1536000, 

RMS Averages = 1197) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5159 -0.0830 0.9834 -14.3827 
22.0733 -0.0439 1.0482 -1.0105 
34.8590 -0.0129 2.1842 0.5617 
88.5241 0.0003 0.4866 -0.1232 
104.7826 0.0037 0.8372 -1.1920 

 
As seen earlier, in this study as well, the frequencies are fairly well estimated. The error 

in estimation is within ± 0.1 % in all cases. The damping estimates are still not this 

accurate and there isn’t a definite trend when a longer time history (more overall 

averages) is used. Though overall the results do improve as longer time histories are 

used, unexpectedly the damping estimate for the first mode, or the first two modes, 

deteriorates.  
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Percentage Error in Modal Frequency Estimates
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Figure 7.8: Effect of longer time histories NC = 5 (Percentage error in modal 

frequency estimates)  
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Figure 7.9: Effect of longer time histories NC = 5 (Percentage error in modal 

damping estimates) 
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Case B 
 
Block Size:   1024 

Window:   Hanning 

Overlap:  75% 

Cyclic Averages: 10 

 
Table 7.9: Effect of longer time histories (NC = 10, Time points = 102400, 

RMS Averages = 37) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5165 -0.0782 1.0064 -12.3803 
22.0855 0.0113 1.0599 0.0944 
34.8015 -0.1778 2.2803 4.9862 
88.5226 -0.0014 0.4763 -2.2373 
104.7938 0.0144 0.8103 -4.3668 

 
Table 7.10: Effect of longer time histories (NC = 10, Time points = 1024000, 

RMS Averages = 397) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5122 -0.1126 1.0257 -10.7000 
22.0746 -0.0380 1.1150 5.2980 
34.8624 -0.0032 2.1071 -2.9880 
88.5269 0.0035 0.4846 -0.5337 
104.7805 0.0017 0.8316 -1.8529 

 
Table 7.11: Effect of longer time histories (NC = 10, Time points = 1536000, 

RMS Averages = 597) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5149 -0.0910 0.9834 -14.3827 
22.0722 -0.0489 1.0458 -1.2371 
34.8685 0.0143 2.1748 0.1289 
88.5241 0.0003 0.4858 -0.2874 
104.7838 0.0049 0.8363 -1.2982 

 
Tables 7.9-7.11 indicate the error in frequency and damping estimates for 10 cyclic 

averaging case. Except for the first mode, longer time histories when processed using 
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10 cyclic averages tend to reduce errors in damping estimates (Figure 7.11). When only 

37 RMS averages are taken, the damping estimates are more erroneous (highlighted in 

orange in Table 7.9). The error is reduced subsequently when more RMS averages are 

taken due to longer time histories. The damping estimate for the second mode does 

deteriorate in one dataset (Table 7.10) but it also starts to approach the true value for 

597 RMS averages dataset (Table 7.11), for which damping is correctly estimated for 

most modes. Modal frequencies are fairly well estimated in all datasets (Figure 7.10). 
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Figure 7.10: Effect of longer time histories NC = 10 (Percentage error in 

modal frequency estimates) 
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Figure 7.11: Effect of longer time histories NC = 10 (Percentage error in 

modal damping estimates) 
It should be noted that in these studies PTD, a time domain algorithm, is used for 

parameter identification purposes. Similar results are obtained if frequency domain 

algorithms, which operate on the positive power spectra (PPS), are used. This is shown 

in Tables 7.12 and 7.13 which indicate similar results as those obtained in Tables 7.4 

and 7.5.  

Table 7.12: Damping estimation by frequency domain OMA algorithms 
utilizing PPS (NC = 5, RMS Averages = 797) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5216 -0.0375 1.0560 -8.0620 
22.0709 -0.0548 1.0890 2.8426 
34.8603 -0.0092 2.1411 -1.4227 
88.5253 0.0017 0.4867 -0.1026 
104.7805 0.0017 0.8370 -1.2156 
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Table 7.13: Damping estimation by frequency domain OMA algorithms 
utilizing PPS (NC = 10, RMS Averages = 397) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5111 -0.1213 0.9909 -13.7298 
22.0727 -0.0466 1.1126 5.0713 
34.8622 -0.0037 2.1077 -2.9604 
88.5261 0.0026 0.4850 -0.4516 
104.7821 0.0032 0.8366 -1.2628 

 
The RFP-z frequency domain algorithm is used for this study and PPS are obtained from 

the 1,024,000 sample points of time history using 1024 block size, Hanning window and 

75% overlap as signal processing parameters, i.e. same as those used for the time 

domain algorithms. It should be noted that the frequency resolution is reduced by half 

while calculating the PPS. This is because of the fact that the negative lag portion of the 

correlation is removed and only positive lags are considered. Thus the Fourier transform 

is applied only to the number of points equal to half the initial block size while converting 

positive lags portion of the correlation to PPS. This results in doubling ∆f or reducing the 

frequency resolution. 

 
7.3 Correlated Input Forces and OMA Parameter 
Estimation 
 
 
Intrinsic to operational modal analysis are the two assumptions concerning the nature of 

input forces acting on the system. These assumptions are [17] 

1. Input forces acting on the system are random, uncorrelated and broadband in 

nature, and 

2. Input forces are uniformly distributed in a spatial sense. 

( )[ ] ( )[ ] ( )[ ] ( )[ ]HFFXX HGHG ωωωω =  7.8) 
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Equation 7.8 forms the key to all OMA related parameter estimation. As per the first 

assumption, the output response power spectra [GXX(ω)] is proportional to the product 

[H(ω)][H(ω)]H if and only if the input force power spectra matrix [GFF(ω)] is diagonal or in 

other words, the input forces acting on the system are uncorrelated and uncoupled. 

In this section, the efforts are concentrated on exploring this assumption of uncorrelation 

by means of the 5 degree of freedom system explained earlier and how it affects the 

modal parameters, specially damping. 

As is earlier shown in Figure 7.1, the input forces that excite the system are not entirely 

uncorrelated. The methodology used for this purpose involves performing modal 

parameter estimation on various kinds of data utilizing the same time history. These 

different datasets are 

1. Generated Frequency Response Functions (HGen), 

2. Generated FRF multiplied by its Hermitian (GFF = [I]) (H*HH)Gen, 

3. (H*GFFdiag*HH)Gen This dataset represents output response power spectra 

formulated as per Equation 7.8 with the condition that GFF is diagonal i.e. it only 

contains auto power terms and cross power terms are zero. This is the ideal case 

where assumption 1 is completely true. 

4. (H*GFF*HH)Gen This dataset represents output response power spectra 

formulated as per Equation 7.8 with the complete GFF matrix i.e. containing both 

the diagonal and off-diagonal terms (both auto and cross-power terms). 

5. GXX The output response power spectrum computed from the response time 

histories. This is theoretically similar to the (H*GFF*HH)Gen . 
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These datasets for the following case are analyzed first 

Case A 
 
Block Size:   1024 

Window:   Hanning 

Overlap:  50% 

Cyclic Averages: 10 

Table 7.14: HGen - Effect of Correlated Forces (Case A) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5235 -0.0224 1.1494 0.0697 
22.0834 0.0018 1.0700 1.0483 
34.8632 -0.0009 2.1718 -0.0092 
88.5238 0.0000 0.4886 0.2874 
104.7823 0.0034 0.8415 -0.6845 

 
Table 7.15: (H*HH)Gen - Effect of Correlated Forces (Case A) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5189 -0.0591 1.1470 -0.1393 
22.0735 -0.0430 1.0441 -1.3977 
34.8849 0.0614 2.1643 -0.3545 
88.5254 0.0018 0.4869 -0.0616 
104.7797 0.0010 0.8394 -0.9324 

 
Table 7.16: (H*GFFdiag*HH)Gen - Effect of Correlated Forces (Case A) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5144 -0.0950 1.1427 -0.5137 
22.0789 -0.0186 1.0768 1.6904 
34.8717 0.0235 2.1841 0.5571 
88.5402 0.0185 0.4882 0.2053 
104.7853 0.0063 0.8400 -0.8616 
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Table 7.17: (H*GFFcomp*HH)Gen - Effect of Correlated Forces (Case A) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5174 -0.0711 1.0739 -6.5036 
22.0905 0.0340 1.0497 -0.8688 
34.8420 -0.0617 2.4006 10.5249 
88.5232 -0.0007 0.4956 1.7241 
104.7852 0.0062 0.8395 -0.9206 

 
Table 7.18: GXX - Effect of Correlated Forces (Case A) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5157 -0.0846 1.0090 -12.1539 
22.0913 0.0376 1.0825 2.2287 
34.8580 -0.0158 2.3750 9.3462 
88.5315 0.0087 0.4877 0.1026 
104.7711 -0.0073 0.8167 -3.6115 

 
This study produces some very interesting results. The frequency is well estimated in all 

the datasets (Figure 7.12) and does not seem to be affected by the presence of cross 

power force spectra terms (off-diagonal terms due to the partially correlated nature of the 

forces). The damping estimates, as indicated in Tables 7.17, 7.18, and Figure 7.13, are 

however severely affected, especially the first and the third mode. Dataset 1 (Generated 

FRFs) expectedly gives good results. Dataset 2 is the ideal OMA case, where the first 

assumption is completely valid and the GFF matrix is an identity. For this dataset as well 

as Dataset 3, where GFF is not an identity but is uncoupled, the estimates are still good 

and fairly accurate within the error limits. But as more realistic datasets are considered, 

like those in Datasets 4 and 5, where the input forces are more likely to be correlated to 

a certain degree and the OMA assumptions are not strictly met, it is observed that some 

damping estimates are seriously affected and are not as accurate as the other three 

datasets. 
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Figure 7.12: Effect of correlated input forces Case A (Percentage error in 

modal frequency estimates) 
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Figure 7.13: Effect of correlated input forces Case A (Percentage error in 

modal damping estimates) 
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Case B 
 
To investigate this further, the system is now exited by means of partially correlated 

forces. The forces used to excite the system in Case A are mixed in the following 

manner to make them partially correlated. 

F1 = FA + .1FB + .1FC + .1FD + .1FE 

F2 = .1FA + FB + .1FC + .1FD + .1FE 

F3 = .1FA + .1FB + FC + .1FD + .1FE 

F4 = .1FA + .1FB + .1FC + FD + .1FE 

F4 = .1FA + .1FB + .1FC + .1FD + FE 

Figure 7.14 and Figure 7.15 shows that unlike the previous case, due to the correlated 

nature of the input forces, the auto (1-1) and cross (1-2) power terms of the input force 

power spectrum matrix are of the same order and that there are only two principal virtual 

forces. The signal processing in this case is similar to that used previously.  

 
Figure 7.14: Comparison of auto and cross power spectrum of input forces 

(Case B) 
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Figure 7.15: Virtual forces (Case B) 

 

Table 7.19: (H*GFFdiag*HH)Gen - Effect of Correlated Forces (Case B) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5037 -0.1804 1.1325 -1.4017 
22.0817 -0.0059 1.0896 2.8992 
34.8862 0.0651 2.1611 -0.5018 
88.5358 0.0136 0.4882 0.2053 
104.8028 0.0230 0.8182 -3.4344 

 
Table 7.20: (H*GFFcomp*HH)Gen - Effect of Correlated Forces (Case B) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5221 -0.0335 1.0759 -6.3294 
22.0867 0.0168 1.0492 -0.9160 
34.8439 -0.0562 2.4063 10.7873 
88.5399 0.0182 0.4895 0.4721 
104.7890 0.0098 0.8243 -2.7145 
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Table 7.21: GXX - Effect of Correlated Forces (Case B) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5113 -0.1197 1.0355 -9.8468 
22.0896 0.0299 1.0744 1.4638 
34.8272 -0.1041 2.3749 9.3416 
88.5261 0.0026 0.4815 -1.1700 
104.7860 0.0070 0.8287 -2.1952 

 
As was noted in Case A, the damping estimates suffer significantly as the conditions 

deviate from those listed in the first assumption, i.e. as the forces become correlated, the 

damping estimates become more error prone. This is shown in Figure 7.17 (and Tables 

7.19-7.21). Dataset 1, in which only the diagonal terms of the input force power 

spectrum matrix are considered, results in accurate frequency and damping estimates 

but when the off-diagonal terms accounting for the potential correlation between the 

forces are included (as in Datasets 2 and 3), the damping estimates deteriorate though 

the frequency estimates are still good. 

These two cases suggest that the violation of the assumption that the forces are random 

and uncorrelated results in affecting the damping estimation adversely and errors can be 

significant depending on the extent to which the forces are correlated. 
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Figure 7.16: Effect of correlated input forces Case B (Percentage error in 

modal frequency estimates) 
 

Percentage Error in Modal Damping Estimation

-15

-10

-5

0

5

10

15

1 2 3 4 5

Mode Number

E
rr

or
 in

 %

(H*GFFdiag*H')Gen

(H*GFF*H')

Output Response
Spectra GXX

 
Figure 7.17: Effect of correlated input forces Case B (Percentage error in 

modal damping estimates) 
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Finally, one more test case is considered to verify that damping estimates are affected 

not only by the degree of correlation among input forces but also due to the leakage 

error which can be reduced by cyclic averaging based signal processing. 

 
Case C 
 
In this scenario, the datasets as described before are generated for the case where no 

cyclic averaging is done. Note that the output time histories used for this purpose are the 

same as those considered for Case A. The signal processing parameters in this case 

are as follows 

Block Size:   1024 

Window:   Hanning 

Overlap:  50% 

Cyclic Averages: None 

 

Table 7.22: HGen - Effect of Correlated Forces (Case C) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.4988 -0.2195 1.1999 4.4663 
22.0828 -0.0009 1.2311 16.2622 
34.8691 0.0161 2.2081 1.6621 
88.5232 -0.0007 0.4962 1.8473 
104.7866 0.0075 0.8776 3.5761 

 
 

Table 7.23: (H*HH)Gen - Effect of Correlated Forces (Case C) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5315 0.0415 1.7204 49.7823 
22.0780 -0.0226 1.3046 23.2033 
34.8658 0.0066 2.2378 3.0295 
88.5148 -0.0102 0.5325 9.2980 
104.7896 0.0104 0.8654 2.1362 
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Table 7.24: (H*GFFdiag*HH)Gen - Effect of Correlated Forces (Case C) 
Frequency % Error Damping (% 

Critical) 
% Error 

12.5307 0.0351 1.7207 49.8085 
22.0792 -0.0172 1.2765 20.5496 
34.8602 -0.0095 2.2363 2.9604 
88.5216 -0.0025 0.5304 8.8670 
104.7893 0.0101 0.8735 3.0922 

 
Table 7.25: (H*GFFcomp*HH)Gen - Effect of Correlated Forces (Case C) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5320 0.0455 1.7651 53.6740 
22.0889 0.0267 1.3253 25.1582 
34.8683 0.0138 2.2297 2.6565 
88.4946 -0.0330 0.4791 -1.6626 
104.7894 0.0102 0.8717 2.8797 

 
Table 7.26: GXX - Effect of Correlated Forces (Case C) 

Frequency % Error Damping (% 
Critical) 

% Error 

12.5341 0.0623 1.5241 32.6920 
22.0986 0.0706 1.2697 19.9075 
34.8583 -0.0149 2.1987 1.2293 
88.5182 -0.0063 0.5180 6.3218 
104.7836 0.0047 0.8604 1.5461 

 
Green cells in Tables 7.22-7.26 indicate the instances where the error in damping 

estimate is more than 5%. Figure 7.18 shows that this error is very high (above 20% for 

some modes) and is present even in datasets where the assumption of uncorrelated 

forces is completely observed (Datasets 2 and 3). On the other hand frequency 

estimates are accurate as seen in previous cases. Thus, it can be inferred that damping 

estimation is affected mainly by leakage and correlation between the input forces. 

Whereas the first can be reduced, to some extent, by proper signal processing, having a 

control on the second factor is not so easy. This is true particularly for typical OMA 
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situations like bridges, buildings, vehicle on road, etc where test engineers have no 

control over the forcing conditions which are usually ambient in nature. 

In relation to the leakage related issues, it has been shown that the use of cyclic 

averaging results in a more leakage free estimation of the power spectrums that in 

comparison help produce more reliable damping estimates. 
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Figure 7.18: Effect of correlated input forces Case C (Percentage error in 

modal damping estimates) 
 
 
7.4 Conclusions 
 
This Chapter emphasizes the need to understand the OMA process by conducting more 

intensive studies regarding the factors that influence the estimated modal parameters 

including damping. This makes it important to understand the signal processing 

techniques for the correct estimation of modal parameters. Further, the situations where 

OMA assumptions do not hold true should also be explored for complete understanding 
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of the limitations of OMA. The work presented in this Chapter is inspired by the above 

need.  

This Chapter shows how it is very difficult to get good leakage free estimates of the 

power spectrums in comparison to the FRFs and how cyclic averaging together with 

RMS averaging, windowing and overlapping is an effective way of dealing with leakage 

in comparison to more common RMS signal processing that involves only windowing 

and overlapping. The cyclic averaging technique is not always used in the estimation of 

FRFs, partially because one is often able to attain good estimate of FRFs even without 

its use. However, its use in OMA results in considerable improvement and thus this 

methods need to be explored more with respect to OMA related applications. 

Yet another interesting observation made in this Chapter regards the effect of the 

violation of the basic OMA assumption (input forces being random and uncorrelated) on 

the modal parameters. It is shown how, in such situations, the error in damping 

estimates is considerably increased. It is also important to point out that the frequency 

estimates are well estimated in most cases, even when the power spectrums suffer from 

bias errors and when input forces are not completely uncorrelated. 

As per this study it will be a fair conclusion to say that for accurate estimation of 

damping, it is necessary to have good estimates (leakage free) of the output response 

power spectrum and that the input forces be as uncorrelated as possible. Importantly, 

while the first issue can be improved by using signal processing techniques like cyclic 

averaging, the second factor is often beyond one’s control, especially in real-life 

scenarios. 

The interesting results shown by this study makes it even more important to conduct 

similar studies on more practical and experimental systems and also explore various 

other cases such as the effect of uneven forcing functions, better estimation of positive 

power spectrum for the application of frequency domain OMA algorithms, etc. for a more 
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through understanding of Operational Modal Analysis. This is essential to develop a 

better understanding of the OMA procedure which will help immensely when applying 

these techniques to practical real-life situations. 
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Chapter Eight 
 
 
 

Application to Civil Structures 
 
 
 
Civil Structures, especially bridges, are one of the major OMA application areas 

including dynamic characterization, damage detection, condition assessment, etc 

[Peeters, Ventura, 2003; Cunha, Caetano, 2005]. This Chapter presents the OMA 

related studies carried out on two cable stayed bridges in the State of Ohio, USA. The 

two bridges, the US Grant Cable-stayed Bridge in Portsmouth and the Maumee River 

Crossing Bridge in Toledo, are recently built bridges and the Chapter discusses the 

results of the OMA techniques applied to data collected on these bridges. This Chapter 

focuses on various aspects of operational modal tests that were conducted on the 

bridges; design of the tests, collection of ambient deck vibration data, parameter 

estimation techniques used, validation of results and the comparison with the finite 

element model based predictions. 

 
8.1 US Grant Cable-Stayed Bridge 
 
The US Grant Bridge is one of three cable-stayed bridges being proposed to be built in 

the State of Ohio, and is constructed across the Ohio River at Portsmouth, OH. The 

bridge was completed and opened to public in October, 2006. It is a three-span cable-

stayed bridge with main span of 875 ft and side spans of 350 ft and 457.1 ft at the 

Kentucky and Ohio ends respectively (Figure 8.1). The typical elevation and plan of the 

bridge is shown in Figure 8.2. The bridge deck has a total width of 70.25 ft, with center to 
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center spacing of 65 ft between the longitudinal girders. This bridge has a modified-fan 

system, and the deck system consists of precast post-tensioned concrete deck slab 

supported on two longitudinal steel girders, interconnected by an array of cross-beams 

and steel stringer beams. The bridge has a pair of single towers from which the inclined 

cables are stretched out to support the longitudinal girders. The cross beams are 

uniformly spaced along the length of the bridge at a typical distance of 25 ft, with the 

cables attached at each alternate cross-beam location. The cables are tensioned such 

that sag effects are minimal and the cables behave more or less like a taut piano string. 

Additionally, the cables are connected together by intermittent ties to prevent excessive 

vibrations during operating conditions, as shown in Figure 8.2. 

 

 
Figure 8.1 – US Grant Cable-Stayed Bridge 
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Figure 8.2 - Typical plan and elevation of the US Grant Bridge 

 
 
8.1.1 Design of Experiments 
 
A finite element model of the bridge was made and predictions of the modal frequencies 

and mode shapes along with the mass (modal) participation factor were made from this 

model. The results of this FEM study are used to design the OMA experiments. Details 

of this study are discussed in [Saini, 2007; Chauhan, Saini et al., 2007]. 

Table 8.1 lists the computed frequencies of vibration from the finite element analysis for 

the first 19 modes along-with their mode description and modal participation factors. 

Looking at the relative modal participation factors, it can be observed that the bending 

modes are more significant than torsion modes in terms of their effect on the overall 

response. Therefore, the bending modes were used to design the operational modal 

analysis tests and for detailed comparison as is explained in the later sections. 
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Table 8.1: Results of the finite element analysis of the US Grant Bridge 
Modal Participation Factors (%) Frequency 

(Hz.) 
Mode 

Description UX UY UZ RX RY RZ 
0.2936 Bending-1 0.297 0.000 1.427 0.000 0.025 0.000
0.3443 Tower Sway 0.000 13.22 0.000 63.59 0.000 14.33
0.3842 Tower AntiSway 0.000 4.040 0.000 15.89 0.000 0.066
0.4827 Bending-2 0.318 0.000 5.586 0.000 10.14 0.000
0.6786 Torsion-1 0.000 0.025 0.000 1.678 0.000 0.017
0.7052 Bending-3 0.076 0.000 21.67 0.000 31.35 0.000
0.7971 Torsion-2 0.000 0.806 0.000 0.054 0.000 0.822
0.8150 Bending-4 0.182 0.000 4.624 0.000 0.448 0.000
0.8391 Torsion-3 0.000 0.703 0.000 0.001 0.000 2.593
0.9230 Bending-5 0.160 0.000 12.97 0.000 6.900 0.000
0.9511 Torsion-4 0.000 0.131 0.000 0.002 0.000 0.059
1.0201 Torsion-5 0.000 1.385 0.000 0.031 0.000 0.811
1.0855 Bending-6 0.369 0.000 1.771 0.000 1.141 0.000
1.1678 Torsion-6 0.000 0.321 0.000 0.043 0.000 0.410
1.1749 Bending-7 0.194 0.000 0.015 0.000 1.196 0.000
1.2571 Torsion-7 0.000 0.049 0.000 0.008 0.000 0.397
1.4233 Bending-8 1.247 0.000 0.902 0.000 0.583 0.000
1.5113 Torsion-8 0.011 0.023 0.000 0.031 0.000 0.021
1.5122 Bending-9 44.36 0.000 0.000 0.000 0.042 0.000

 
Before carrying out the final superstructure test, a series of smaller tests were conducted 

with an aim to establish a certain degree of confidence in the testing procedure, data 

acquisition and subsequent data processing methodologies. 

The initial tests focused on ascertaining the accuracy of one type of sensors 

(piezoelectric accelerometers) with respect to another type of sensors (capacitive 

accelerometers). The capacitive accelerometers as per specifications behaved better in 

the low frequency range (below 2 Hz) in comparison to piezoelectric accelerometers. 

Since the number of capacitive accelerometers was limited, in order to conduct a 

superstructure test that will yield satisfactory results, it was imperative to use the 

piezoelectric sensors and thus it was also necessary to establish their behavior and 

consistency in the low frequency range. The tests revealed that both the piezoelectric 

and capacitive accelerometers behaved comparably except for extremely low 
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frequencies below 1 Hz (Figure 8.3). This was confirmed based on analyzing the data 

collected over various sensor locations and also at different times.  

 
Figure 8.3 – Response comparison measured using a capacitive and a 

piezoelectric accelerometer 
 
Based on the studies conducted using the finite element model, it was observed that the 

bridge movement is significant in vertical direction (Z direction) (refer to Figure 8.5). 

Further, the FE model based studies also revealed that the only significant motion 

across the bridge (Y direction) was predominantly the tower motion and the deck’s 

dominant motion was mainly in the vertical direction. This was also validated by means 

of the preliminary small scale modal tests where accelerometers were placed in all three 

directions; vertical (Z direction), along the length of the bridge (X direction) and across 

the bridge (Y direction). Figure 8.4 shows that the signal in Z direction is indeed much 

higher in comparison to that in X and Y directions. This was verified for various sensor 

locations and, though the bridge movement is always subject to weather conditions and 
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specific location, it can still be noted, based on FE model and preliminary 

experimentation, that, from the modal analysis point of view, Z direction modes are most 

important.  

 
Figure 8.4 – Comparative bridge response in X, Y and Z directions (US 

Grant Bridge) 
 
Apart from the above mentioned objectives, these tests were also utilized for finalizing 

the test set up and data acquisition requirements for the final OMA test. The first 

preliminary test that was conducted had sensors placed at eight locations (Figure 8.5) on 

the upstream side of the bridge in the mid span around the centre of the bridge. The two 

sensor lines along the length of the bridge were chosen to correspond with the inner and 

outer girder lines on the upstream side. Note that location 12 in Figure 8.5 is at stay 

cable 15 SUI (South, Upstream, Inner girder) and the distance between the individual 

sensors along the length of the bridge is 50 feet. On analyzing the data collected in this 

test, it was observed that due to lack of spatial resolution (only a subsection of the bridge 
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is instrumented and at a very few locations), very few modes are clearly identified. Not 

many torsional modes were identified due to the fact that only one side of the bridge was 

instrumented and due to selecting locations where torsional modes don’t show much 

activity.  

 
Figure 8.5 – Sensor layout for first preliminary test (US Grant Bridge) 

 
The first preliminary test was followed by a second preliminary test which was designed 

in view of the findings of the first test. Figure 8.6 shows the layout of the sensors for this 

test. The test was again restricted to the upstream side of the bridge but sensors were 

placed at 18 locations and the bridge length instrumented in this case was more than the 

previous case. Table 8.2 lists down the bridge locations corresponding to the labels in 

Figure 8.6. This test revealed a much clear picture and better estimation of modes in 

comparison to the previous preliminary test. However, there were still certain 

uncertainties regarding the validity of the modes chosen. Though this set up helped in 

identifying some of the torsional modes, their identification was still not as obvious as the 

Y 

Z

X 
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bending modes. Further, since the bridge excitation depended solely on ambient 

sources, some of the modes which were clearly visible in the previous test were not that 

dominant in this case and vice versa. 

 
Figure 8.6 – Sensor layout for second preliminary test (US Grant Bridge) 

 
Table 8.2 – Sensor locations on the US Grant Bridge (Second Preliminary 

Test) (NU – North, Upstream, SU – South Upstream) 
Sensor 
Label Location on Bridge Sensor 

Label Location on Bridge 

11 Cable 10 NU Outer Girder 21 Cable 10 NU Inner Girder 
12 Cable 11 NU Outer Girder 22 Cable 11 NU Inner Girder 
13 Cable 12 NU Outer Girder 23 Cable 12 NU Inner Girder 
14 Cable 13 NU Outer Girder 24 Cable 13 NU Inner Girder 
15 Cable 14 NU Outer Girder 25 Cable 14 NU Inner Girder 
16 Cable 15 NU Outer Girder 26 Cable 15 NU Inner Girder 
17 Cable 16 NU Outer Girder 27 Cable 16 NU Inner Girder 
18 Central Span Outer Girder 28 Central Span Inner Girder 
19 Cable 16 SU Outer Girder 29 Cable 16 SU Inner Girder 

Z 

X Y 
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8.1.2 Final Superstructure Test: Test Set-Up and Data 
Acquisition 
The main purpose that the two preliminary tests served was to help in designing the final 

superstructure test. While doing the set up for the final test, the findings from the 

previous tests were considered and it was decided to instrument both the upstream and 

downstream sides of the bridge. Thus, there were three lines of sensors running along 

the length of the bridge; along the outer and inner girder on the upstream side (as in the 

preliminary tests) and along the outer girder on the downstream side. As in the case of 

the second mini test, the sensors were placed at cable locations starting from 10 S to 16 

N including the sensor at the central span (thus 9 sensors per sensor line along the 

length of the bridge). Further in addition to these 27 sensors, 4 more sensors were 

placed at the locations corresponding to cable stays 5 N and 5 S at the outer girders on 

the upstream and downstream side, at the side spans. The purpose of putting these 

extra sensors was to help in distinguishing the modes which might have appeared 

similar in the central span with the difference being more apparent in the side spans. 

Figure 8.9 shows the layout of the sensors and their corresponding locations are 

explained in Table 8.3. 
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Figure 8.7 – Sensor layout for final superstructure test (US Grant Bridge) 

 
 
Table 8.3 - Sensor locations on the US Grant Bridge (Final Superstructure 

Test) 
Sensor 
Label 

Location on 
Bridge 

Sensor 
Label 

Location on 
Bridge 

Sensor 
Label 

Location on 
Bridge 

1 Cable 5 NU 
Outer Girder   21 Cable 5 ND 

Outer Girder 

2 Cable 10 NU 
Outer Girder 12 Cable 10 NU 

Inner Girder 22 Cable 10 ND 
Outer Girder 

3 Cable 11 NU 
Outer Girder 13 Cable 11 NU 

Inner Girder 23 Cable 11 ND 
Outer Girder 

4 Cable 12 NU 
Outer Girder 14 Cable 12 NU 

Inner Girder 24 Cable 12 ND 
Outer Girder 

5 Cable 13 NU 
Outer Girder 15 Cable 13 NU 

Inner Girder 25 Cable 13 ND 
Outer Girder 

6 Cable 14 NU 
Outer Girder 16 Cable 14 NU 

Inner Girder 26 Cable 14 ND 
Outer Girder 

7 Cable 15 NU 
Outer Girder 17 Cable 15 NU 

Inner Girder 27 Cable 15 ND 
Outer Girder 
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8 Cable 16 NU 
Outer Girder 18 Cable 16 NU 

Inner Girder 28 Cable 16 ND 
Outer Girder 

9 Central Span 
Outer Girder 19 Central Span 

Inner Girder 29 Central Span 
Outer Girder 

10 Cable 16 SU 
Outer Girder 20 Cable 16 SU 

Inner Girder 30 Cable 16 SD 
Outer Girder 

11 Cable 5 SU 
Outer Girder   31 Cable 5 SD 

Outer Girder 
 
A total of two datasets were collected. The data acquisition parameters were set as 

following 

Sampling rate     40 Hz 

Frequency Range    0 – 15 Hz 

Test Duration (First dataset)   60 Min 

Test Duration (Second dataset)  10 Min 

The bridge was not yet opened for public and thus the only sources exciting the bridge 

were ambient wind (primarily) and river water flow. For the second dataset, a van was 

driven on downstream side of the bridge during the full 10 min duration of the test 

(Figure 8.10). PCB 393A03 accelerometers used for the purpose of measuring the 

vibration signals and VXI DAC Express for data acquisition. 

 
Figure 8.8 –OMA test with van excitation along with ambient sources 

(Second dataset) 
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8.1.3 Operational Modal Analysis 
The data collected was processed to obtain the power spectrums using the Cyclic 

Averaging approach as explained in Chapter Seven, a block size of 4096 was used 

along with Hanning window, thus a frequency resolution of 0.0098 Hz was obtained. The 

number of cyclic averages and overlap were chosen as 3 and 75% respectively.  A 

typical auto-power spectrum is shown in Figure 8.11. Before carrying out the modal 

parameter estimation process, Short Time Fourier Transform (STFT) [Qian, 2002] plots 

were used to check the consistency of the data collected from the various sensors. A 

typical STFT plot is shown in Figure 8.12. Data collected from various sensors was 

observed to be consistent except for a few channels where either the data has to be 

multiplied by a calibration factor or certain portions of the data were inconsistent needed 

to be cleared. Further while analyzing the two datasets, it was observed that driving the 

van over the bridge resulted in better signal-to-noise ratio in comparison to the case 

when bridge is excited only by means of natural sources (wind) only. 

The Complex Mode Indicator Plot (CMIF) plot based on power spectrum data for the 

second dataset is shown in Figure 8.13. CMIF is an excellent tool that gives an idea 

about the number of modes present in the frequency range of interest (which in this case 

is 0-3 Hz).  
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Figure 8.9 – Typical auto-power spectrum of a measured response  

 
 

 
Figure 8.10 – Typical Short Time Fourier Transform (STFT) plot of response 

data for a chosen location 
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Figure 8.13 – CMIF plot of second dataset (Final superstructure test of the 

US Grant Bridge) 
The parameter estimation process was carried out using the OMA-EMIF algorithm 

explained in Chapter 5. The estimated parameters are listed in Table 8.4 and some of 

the mode shapes and the corresponding finite element mode shapes are shown in 

Figure 8.14.  

Table 8.4 - Estimated modal parameters for the US Grant Bridge using 
OMA-EMIF 

Frequency (Hz) Damping (% 
Critical) Description 

0.4966 1.3182 Vertical 
0.6982 1.8078 Vertical 
0.7418 1.8808 Torsion 
0.8424 2.1355 Vertical 
0.8995 1.1372 Vertical 
0.9296 1.2494 Torsion 
1.1259 1.2018 Torsion 
1.1414 0.8501 Vertical 
1.2068 1.0884 Vertical 
1.4107 0.9113 Torsion 
1.4444 0.9153 Torsional (Probably KY Sidespan) 
1.5177 1.4354 Vertical 
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0.4966 Hz (2nd Bending mode ) 

 

0.483 Hz (2nd Bending mode ) 

 
0.6982 Hz (3rd Bending mode) 0.705 Hz (3rd Bending mode) 

0.8995 Hz (5th Bending mode ) 0.923 Hz (5th Bending mode ) 

 
Figure 8.12 – Mode shapes (OMA vs. FEM) (US Grant Bridge) 

A comparison of the selected modes among themselves is also done using the Modal 

Assurance Criterion and the MAC plot is shown in Figure 8.15. The MAC plot shows that 

most modes are fairly independent of each other, however as per the MAC plot modes 

at 1.1414 and 1.2068 Hz and the torsion modes at 0.742 and 0.929 Hz (shown in green 

and orange in Table 3) appear to be similar though these are well separated in 

frequency. One of the reasons for this is likely to be an observability problem. These 
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modes are similar in mid span, where most of the sensors were instrumented, but the 

mode shapes are likely to be different in the side spans. But since only mid span is 

instrumented sufficiently in a spatial sense, it might not be possible to differentiate 

between these modes. 

 
Figure 8.13 – MAC plot between the various modes obtained using OMA of 

the US Grant Bridge 

Table 8.5 shows the comparison of the FE model based prediction of bridge modes with 

the experimentally obtained modes. Table 8.6 shows the MAC values for these modes 

obtained using the FE model and experimentally. Only the modes having large modal 

participation factor based on finite element analysis (as indicated in Table 8.5) are 

considered for MAC comparison. Table 8.5 shows that most of the bending modes are 

comparing well with the finite element prediction within error limits. The torsional 

response of the bridge didn’t match well as compared to the bending response. This is 
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due to the fact that the girder stiffness correction in the finite element model was directed 

at correcting the flexural response due to the relative importance of bending modes 

compared to torsion modes. This stiffness correction is accurate for minimizing the 

differences in the bridge bending modes, but since the girders and deck are still modeled 

at the same horizontal plane, the differences in the torsion behavior are not corrected. 

Note that the experimentally obtained 1st bending mode, as indicated in the table, is 

obtained from the second preliminary test. This mode was not observed in the final 

superstructure test perhaps because of the low signal-to-noise ratio. This can be 

considered as one of the shortcomings of the operational modal analysis as mode 

observability depends considerably on favorable ambient conditions.  
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Table 8.5 - Comparison of FEM and OMA modes for the US Grant Bridge 
FEM Modes OMA Modes 

Description Remarks Freq 
Modal 

participation 
Factor (Z 

Dir.) 
Freq Descr. 

Bending-1 Center span + OH span 0.2936 1.4270 0.31 B 
Tower Sway  0.3443 0.0000 - - 

Tower Anti Sway  0.3842 0.0000 - - 
Bending-2 All spans 0.4827 5.5860 0.4966 B 

Deck Lateral Center span 0.5942 0.0000 - - 

Torsion-1 Center span + small torsion 
in end spans 0.6786 0.0000 0.7418 T 

Bending-3 All spans 0.7052 21.6690 0.6982 B 

Torsion-2 Center span + OH span + small 
torsion in KY span 0.7971 0.0000 - - 

Bending-4 KY span + Center span + 
small bending in OH span 0.8150 4.6240 0.8424 B 

Torsion-3 Center span + small torsion in 
end spans 0.8391 0.0000 - - 

Bending-5 Center span + small bending 
in end spans 0.9230 12.9690 0.8995 B 

    0.9296 T 

Torsion-4 KY span + Center span + small 
torsion in OH span 0.9511 0.0000   

Torsion-5 Center span + KY span + small 
torsion in OH span 1.0201 0.0000   

    1.1259 T 

Bending-6 OH span + Center span + 
small bending in KY span 1.0855 1.7710 1.1414 B 

Torsion-6 OH span + small torsion in 
center span and KY span 1.1678 0.0000   

Bending-7 All spans 1.1749 0.0150 1.2068 B 
Torsion-7 All spans 1.2571 0.0000   

    1.4107 T 
    1.4444 T 

Bending-8 All spans 1.4233 0.9020 1.5177 B 
  
 
 

Table 8.6: Cross MAC between OMA and FEM Bending Modes for the US 
Grant Bridge 

FEM (Hz) OMA (Hz) MAC 
0.483 0.497 0.88 
0.704 0.698 0.91 
0.815 0.842 0.60 
0.924 0.899 0.84 
1.087 1.141 0.69 
1.178 1.207 0.89 
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Additionally, a time domain (PTD) and a frequency domain (RFP-z) OMA algorithm are 

also applied to the collected data, in order to compare their performance with the OMA-

EMIF algorithm. As mentioned in Chapter 3, Polyreference Time Domain (PTD) and 

Rational Fraction Polynomial in z Domain (RFP-z) algorithms are high order algorithms, 

PTD being a time domain where RFP-z being a frequency domain algorithm. RFP-z is 

similar to the POLYMAX algorithm. Details of these algorithms are discussed in Chapter 

3. Table 8.7 lists frequency and damping estimates obtained using the two algorithms 

along with the estimates of OMA-EMIF algorithm. 

Table 8.7 – Comparison between RFP-z, PTD and OMA-EMIF estimates for 
the US Grant Bridge 

RFP-z PTD OMA-EMIF 
Frequency Damping Frequency Damping Frequency Damping 

0.315 3.940 0.322 4.156 - - 
- - - - 0.4966 1.3182 

0.697 1.617 0.694 1.468 0.6982 1.8078 
0.741 1.242 0.736 1.238 0.7418 1.8808 
0.841 2.147 0.834 1.425 0.8424 2.1355 
0.917 1.860 - - 0.8995 1.1372 
0.932 1.219 0.925 0.997 0.9296 1.2494 
1.098 1.410 - - 1.1259 1.2018 
1.140 1.504 1.127 1.211 1.1414 0.8501 
1.207 0.983 1.198 0.687 1.2068 1.0884 
1.413 0.780 1.402 0.868 1.4107 0.9113 
1.447 0.897 1.435 0.855 1.4444 0.9153 
1.516 1.386 1.502 1.341 1.5177 1.4354 

 

Both algorithms were able to estimate the mode around 0.315 Hz which was not 

estimated by OMA-EMIF algorithm. Further, PTD was not able to identify two modes 

(highlighted in the table) which were estimated by RFP-z and OMA-EMIF algorithms. 

The 0.49 Hz mode that was estimated by OMA-EMIF algorithm is not estimated by either 

PTD or RFP-z. 

The MAC plots for PTD and RFP-z are shown in Figures 8.16, 8.17. As seen earlier with 

OMA-EMIF MAC, some modes do appear to be similar, however most of the estimated 
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modes are independent. 

 
Figure 8.14: MAC for RFP-z estimates (US Grant Bridge) 

 
 

 
Figure 8.15: MAC for PTD estimates (US Grant Bridge) 
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In Table 8.8, the Cross MAC values between the various modes estimated by the three 

algorithms are presented. Some modes (highlighted in the table) have low Cross MAC 

values or are not identified by some algorithms, indicating that the estimation of these 

modes is not consistent through the various algorithms. However, most of the bending 

modes (except for the 0.89 Hz mode) were identified satisfactorily. It should again be 

noted that emphasis was placed, while designing the OMA experiment to observe these 

modes which were found to have high mass participation factor as per the finite element 

study. 

Table 8.8 - Cross MAC comparison between various OMA algorithms for 
the US Grant Bridge 

Frequency OMA-EMIF/RFP-z OMA-EMIF/PTD RFP-z/PTD 
0.31 - - 0.169 
0.49 - - - 
0.69 0.756 0.686 0.903 
0.74 0.644 0.789 0.850 
0.84 0.117 0.279 0.816 
0.89 0.012 - - 
0.93 0.988 0.985 .0979 
1.12 0.324 - - 
1.14 0.645 0.876 0.687 
1.20 0.999 0.998 0.999 
1.41 0.486 0.606 0.756 
1.44 0.597 0.732 0.841 
1.51 0.980 0.986 0.997 
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8.2 Maumee River Crossing Cable-Stayed Bridge 
 
The MRC Bridge or the Veterans’ Glass City Skyway Bridge (Figure 8.18), as it is now 

called, is a single pylon cable-stayed bridge in Toledo, Ohio over the Maumee river on 

Interstate 280 on the eastern edge of Toledo downtown. The bridge replaces the Craig 

Memorial Bridge which was one of the last remaining drawbridges on the US interstate 

highways. The bridge opened to public in June, 2007. 

The bridge has symmetric spans of length 612.5 ft (Figure 8.19) and the decking system 

consists of concrete box segments. The pylon consists of a unique cradle system which 

allows the cable to pass through the pylon continuously and terminating at the deck 

level. Thus instead of having 20 cables each on both sides of the pylon, there are only 

20 cables in total which pass from one side of the bridge to the other through the pylon. 

The cables consist of 6 inch steel strands which are epoxy coated. Additionally, the 

stays are supported by mechanical dampers near the anchorage to take care of any 

wind or traffic induced vibrations. 

 
Figure 8.16: Maumee River Crossing Bridge, Toledo, OH 
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8.2.1 OMA Test Set-Up 
 
Figure 8.19 shows the test set-up layout. The sensor grid used for the test is much 

coarser in comparison to the one used for the US Grant Bridge and thus it is expected 

that some of the modes might appear to be similar (poor observability). A total of 10 

sensors are used, 5 on each side of the parapet. The sensor lines extend from the back 

span side to the front span side with 8 sensors on one side of the pylon and 2 on the 

other as indicated in Figure 8.19. The sensor line extends 500m from Cable 14B on the 

back span to 6A on the front span. Note that notations A and B are for front and back 

spans respectively. Figure 8.20 shows one of the accelerometers glued on the bridge 

superstructure.  

The data acquisition parameters for the test were set as following 

Sampling rate    40 Hz 

Frequency Range   0 – 15 Hz 

Test Duration    20 Min 

The bridge was partially opened to public and one lane of traffic was open during the 

test.  
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Figure 8.17: OMA Test Set-Up Layout for the MRC Bridge 

 

 
Figure 8.18: Typical accelerometer set up for the MRC Bridge OMA test 
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8.2.2 Operational Modal Analysis 
The data was processed using the Cyclic Averaging approach to obtain the power 

spectrums. A block size of 2048 was used along with 3 cyclic averages, Hanning 

window, and 90% overlap. The autopower plot of individual channels is shown in Figure 

8.21. The plot indicates the presence of at least 6 modes below 1.4 Hz frequency range. 

 
Figure 8.19: Autopower spectrum of individual channels (MRC Bridge) 

 

 
Figure 8.20: Complex Mode Indicator Function Plot (MRC Bridge) 
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The CMIF plot (Figure 8.22) indicates the presence of two close modes around 1 Hz  in 

addition to the modes indicated by the Autopower plot. 

The results of the OMA-EMIF algorithm based modal parameter estimation are listed in 

Table 8.9. The MAC plot (Figure 8.23) confirms that due to lack of sufficient spatial 

resolution (coarse sensor grid) some of the mode shapes appear to be similar even 

though they are well separated in terms of modal frequency. This is likely due to the fact 

that sensor layout doesn’t account for lateral modes and cable vibration modes. 

Table 8.9 - Estimated modal parameters for MRC Bridge using OMA-EMIF 

Frequency (Hz) Damping (% 
Critical) Description 

0.4332 2.6295 Vertical 
0.6442 3.5498 Vertical 
0.7083 1.8311 Vertical 
0.9849 1.4854 Torsional 
0.9919 1.5223 Torsional 
1.1915 1.7819 Vertical 
1.3116 1.7276 Vertical 
1.5147 1.9206 Vertical 
1.6041 1.3371 Vertical 
1.6984 1.2087 Vertical 
1.8439 1.1041 Torsional 
1.9508 1.8700 Torsional 
2.0530 1.3031 Torsional 
2.0873 0.6938 Vertical + Torsional 
2.2991 1.6992 Vertical 
2.4198 1.6646 Vertical 
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Figure 8.21: AutoMAC plot for the various modes obtained by OMA of the 

MRC Bridge 
 
The green cells in Table 8.9 indicate the modes which are not well observed. These 

modes also appear to be similar to other modes as indicated by the MAC plot. The fact 

that these modes do not show up when other OMA parameter estimation algorithms are 

applied to the same data also provide little confidence in these modes. However this 

limitation is not on part of the algorithm but the test set up and resulting data and this 

problem can be attributed to several factors including instrumenting only a section of the 

bridge resulting in insufficient spatial resolution, a limited sensor grid, mounting the 

sensors in only the vertical direction thus not accounting for lateral motion of the bridge, 

tower sway and cable vibrations. Thus just like EMA, the need for proper test design is 

utmost for getting good estimates of the modal parameters. 
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Since the results of the FE analysis for this bridge were not available, a comparison on 

the lines of US Grant bridge was not possible. However, a preliminary test with a smaller 

sensor layout (only 5 sensors) was conducted and the result of the final test matched 

well with that test. The mode shapes of the few selected modes are shown in Figure 

8.24. Most of the modes are fairly real normal modes. 

 
0.4332 Hz (Bending mode) 0.7083 Hz (Bending mode) 

0.9849 Hz (Bending mode) 0.9919 Hz (Bending mode) 

1.3116 Hz (Bending mode) 1.9508 Hz (Bending mode) 

Figure 8.22 – Mode shapes (MRC Bridge) 
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8.3 Conclusions 
 
The OMA-EMIF algorithm developed in Chapter 5 is applied to two cable-stayed bridges 

and is shown to work satisfactorily in both the cases. In the case of the US Grant Bridge, 

the results of the OMA-EMIF algorithm are found to be similar to those obtained using 

other OMA algorithms like PTD and RFP-z as well as the finite element model based 

study.  

It is observed that an important aspect of applying these techniques to real-life structures 

is careful planning and design of the tests. This is also an important step in traditional 

experimental modal analysis. Finite element models and smaller preliminary tests are of 

considerable use in this regard. They provide useful apriori information that can be of 

much help while testing such large structures, especially in view of limitations on sensors 

and cabling. As is shown in the case of the US Grant Bridge, the importance of 

designing the final test in this manner comes from the fact that the chosen set up is 

optimum for the intended purpose which helps in reducing set up time, instrumentation 

and sensor requirement etc. 

In the future, the estimated modal parameters can be used for a variety of purposes. FE 

model updating is one such area where based on the experimentally observed modal 

parameters, the FE model is updated to correctly simulate the dynamic behavior of the 

structure. The modal parameters can also be used for damage detection and structural 

health monitoring purposes. Since the tests are conducted before the bridge is opened 

for service, the attained modal parameters can act as base line and similar modal tests 

can be conducted in the future. The modal parameters can be compared with these 

base line parameters to determine if the bridge dynamics have changed or not. 

 



 



 191

Chapter Nine 
 
 
 

Conclusions and Recommendations 
for Future Work 
 
 
 
9.1 Summary and Conclusions 
 
Despite being a relatively new field, Operational Modal Analysis has shown a lot of 

promise especially in situations difficult handle using traditional Experimental Modal 

Analysis techniques. Due to this, OMA techniques have generated a growing interest in 

the research community and are gaining popularity with time. However, the field is still in 

its developmental stage and efforts are needed towards understanding its advantages 

and limitations in more detail. 

The main focus of this dissertation was the modal parameter estimation for OMA and the 

signal processing techniques needed for the same. The work presented in this 

dissertation contributes to the field of OMA in two aspects;  

1. development of new and illustration of existing, parameter estimation techniques 

for OMA together with associated signal processing techniques, 

2. assessment of conditions where the OMA parameter estimation process will work 

satisfactorily and where it will struggle, thus providing useful insights to the 

application of OMA techniques. 

It can be concluded, on the basis of the research work carried out in this dissertation, 

that: 
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• The Unified Matrix Polynomial Approach (UMPA) is a powerful concept for 

formulating various OMA algorithms like SSI, PolyMAX, etc. which have 

otherwise been developed in isolation. UMPA provides a common mathematical 

framework which aids in better understanding of the various algorithms, their 

similarities and differences, advantages and limitations. The concept can further 

be utilized for developing other algorithms such as low order frequency and Z 

domain variants as presented in Chapter Four.  

• The Positive Power Spectrum (PPS) is an effective signal processing technique 

for dealing with the numerical conditioning problems emerging due to the fact 

that the power spectrum has twice the order of frequency response functions and 

contains the same modal parameters related information twice. In this regard 

PPS helps great deal in making parameter estimation OMA frequency domain 

algorithms a reality.  

• The UMPA-LOFD and its variant that uses complex Z mapping are useful 

additions to the existing OMA algorithms. These algorithms are frequency 

domain OMA algorithms based on the PPS. These algorithms utilize low model 

order thus avoiding numerical conditioning issues associated with higher order 

algorithms such as the RFP. The parameter estimation results of these 

algorithms are comparable to the existing OMA algorithms. 

• By utilizing the OMA-EMIF, a spatial domain algorithm developed as a part of this 

research, it is possible to estimate multiple modes at a time, unlike the 

FDD/eFDD approach that estimates one mode at a time. It is also possible to 

utilize the residual terms to account for the effect of out-of-band modes while 

using the OMA-EMIF, as this algorithm works in frequency domain. 
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• The performance of any and all OMA algorithms, including the FDD, deteriorates 

if the assumption of complete uniform spatial excitation is violated. In such 

situations, the power spectrum based CMIF (or FDD) plots contain spurious 

peaks which can be confused as the system modes especially in case of poor 

signal-to-noise ratio; conditions that are very common in real life. A simple but 

useful tool, Singular value Percentage Contribution (SVPC) plot, can deal with 

such situations by providing means to interpret the CMIF plots in situations of 

insufficient spatial excitation. 

• New signal processing approaches like Independent Component Analysis and 

Blind Source Separation (ICA/BSS) can be exploited to obtain modal parameters 

without requiring the knowledge of the excitation forces by utilizing the concepts 

of modal filters and modal expansion. The fact that these techniques do not 

require the use of consistency or stabilization diagrams, makes them an 

interesting option for OMA purposes. 

• Though modal frequency estimation remains unaffected, estimation of the modal  

damping is affected greatly if leakage errors are present in the computed output 

response power spectra, which are comparatively more difficult to estimate than 

the frequency response functions. Cyclic Averaging is a powerful signal 

processing technique which should be used along with RMS averaging, 

windowing and overlapping for reducing the effects of leakage and hence 

improving the accuracy of damping estimates.  

• The accuracy of damping estimates is also affected in situations where the basic 

OMA assumption that excitation forces should be random, uncorrelated and 

broadband in spectrum is violated. Unlike the leakage related problems that can 

be dealt with, up to a certain extent, by using techniques like Cyclic Averaging, 
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the nature of natural excitation is beyond one’s control and thus difficult to deal 

with in real life situations. 

• The OMA-EMIF algorithm works satisfactorily when applied to complex, real-life 

structures such as the two cable-stayed bridges, the US Grant Bridge and the 

Maumee River Crossing Bridge, tested as a part of this research. The study also 

underlines the importance of proper designing of the OMA tests before carrying 

out the final superstructure test. The FE modeling and series of smaller 

preliminary tests vastly help in this regard by optimizing the final tests.  

 
9.2 Recommendations for Future Work 
 
As a researcher, one constantly seeks to push the boundaries in order to solve problems 

that are complex and difficult to solve by using existing methodologies. Operational 

Modal Analysis, as an application technique, developed due to researchers pushing 

beyond the known realms of Experimental Modal Analysis. The aim was to understand 

the dynamics of complex structures which do not lend themselves readily to EMA 

techniques. In the past ten years, the field of OMA has progressed from being an 

interesting concept on a researcher’s table to a commercially available technique. In this 

current scenario, the challenges for the future are governed by the need to strengthen 

the field of OMA by having a sound and deep understanding necessary for its correct 

implementation and at the same time also aimed at widening of its scope. This means 

future research has to focus on both the deeper and finer issues such as accurate 

damping estimation, as well as the broader issues for e.g. utilizing OMA techniques for 

related application such as active vibration control etc. 

The damping issue explored in Chapter Seven of the dissertation is one area which 

needs to be explored further to understand completely the reasons why damping 
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estimation is with OMA techniques is not as accurate. In Chapter Seven, cyclic 

averaging was suggested as one of the methods to overcome leakage related errors that 

affect the damping estimates. Future research should concentrate on finding signal 

processing techniques that should aid in more accurate estimation of damping. BSS / 

ICA based techniques might be one such option as these techniques differ from the 

more common parameter estimation approaches. In this dissertation, mostly power 

spectrum data was obtained using the Welch Periodogram approach and occasionally 

with Cyclic Averaging. It will be interesting to see how damping estimates are affected if 

correlogram approach is used instead. The Cyclic Averaging approach needs to be 

explored further in more details. It will also be insightful to understand how various kinds 

of windows, overlapping and zero padding, etc. affect the damping estimation. 

Structural health monitoring and damage detection are two important fields in the area of 

structural dynamics and future research should involve the exploitation of the OMA 

algorithms presented in this research for these purposes. These techniques can be used 

for continuous monitoring of big civil structures such as bridges, buildings etc. as they 

utilize natural excitation which is not required to be measured. OMA techniques lend 

themselves more easily for continuous monitoring purposes in comparison to 

Experimental Modal Analysis which requires the measurement of the force exciting the 

structure. Thus, the OMA based approach could not only be a more feasible but also a 

comparatively less costly option. An ICA/BSS based approach as documented in 

Chapter Six could be very effective as this method yields mode shapes and modal 

frequencies in one step. This needs to be explored further to find out how sensitive this 

approach is to small local damages in the structure. 

OMA is still a developing area and scope of improved parameter estimation algorithms 

continue to exist. In this regard, the idea of frequency domain ICA algorithm for OMA, as 

introduced in Chapter Six, needs to be explored in more detail. An OMA model is similar 
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to a BSS/ICA model in frequency domain. However, such a model exists for each 

frequency bin and the order of the identified sources isn’t same in various frequency 

bins. Thus a permutation error is introduced which is difficult to overcome, thus making 

frequency domain BSS/ICA based OMA algorithm much more challenging to develop. 

Future research in application of BSS/ICA techniques to OMA should involve 

development of the frequency domain approach as well as application of these 

algorithms to practical real life structures.  

The concept of modal filters in the past has been used for applications involving active 

vibration control of structures, flight flutter testing, etc. BSS/ICA techniques are based on 

the concept of modal filters and directly uncouple the system responses into SDOF 

modal coordinate responses. Thus these techniques lend themselves naturally to these 

applications and this very aspect of these techniques makes them very attractive future 

research area. 

Similarly, researchers across the globe are working on utilizing signal processing 

techniques other than computing power spectra or correlation functions for the purpose 

of OMA. Some of these attempts include utilization of transmissibility functions 

[Devriendt, Guillaume et al., 2007], cyclostationarity and cepstrum analysis [Hanson, 

Randall, et al., 2007] etc. Most of these methods are still in primitive stages and it will be 

interesting to how they compare with more established OMA algorithms while testing 

real structures. It will also be important to note whether these methods yield more 

accurate damping estimates as they utilize different signal processing approach. 

Finally, the ultimate challenges for Operational Modal Analysis are those very ones that 

are associated with Experimental Modal Analysis as well. Having achieved a level of 

comfort while dealing with the problems that categorizes as linear, time-invariant 

systems; the future research needs to push further and explore systems that are 



 197

nonlinear and time variant; systems that are often so complex that behavior cannot be 

sufficiently explained with the range of EMA/OMA assumptions. 

Just like EMA, most of the OMA algorithms use stabilization diagrams as a part of modal 

parameter estimation process to find out true modes of the system from the 

mathematical modes. Often the user chooses one of the estimates amongst the 

stabilized modes as the system mode and this makes the whole selection process based 

very much on the user judgment. A statistical tool based on minimum distance (such as 

Euclidian or Mahalanobis distance from the target) can be developed to aid this selection 

process. This process can involve algorithms such as k-nearest neighbor (for example, 

to the mean) etc. in order to identify the parameter closet to the mean of its various 

estimates. The same process can also be applied to EMA algorithms. 
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