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Abstract

Operational Modal Analysis (OMA) is a technique that characterizes a structure/system
on the basis of output responses only. It is an emerging field in structural dynamics and
has been applied to complex structures that are often difficult to analyze using traditional
Experimental Modal Analysis (EMA) techniques. However, the unavailability of input
force information, in the case of OMA, makes the overall process significantly more
complex as it affects every stage of modal analysis including data acquisition, data
processing, parameter estimation, etc. Factors such as these have been responsible for
the lack of frequency domain OMA algorithms, inconsistent damping estimation, etc.

This research provides useful insights into the OMA techniques by in-depth exploration
of the various assumptions under which OMA works and suggests some new signal
processing approaches and algorithms to aid in modal parameter estimation using OMA
techniques. The dissertation starts with a general literature review of OMA which is
followed by presentation of the Unified Matrix Polynomial Approach (UMPA) to the OMA
problem. In subsequent chapters, a frequency domain, lower order algorithm and a
spatial domain algorithm are presented. Next, new signal processing techniques like
Blind Source Separation / Independent Component Analysis (BSS/ICA) are adapted for
OMA purposes. The performance of these algorithms is verified by conducting studies
on analytical and experimental systems. Intense analytical studies are conducted to
understand the effect of the violation of OMA assumptions on OMA modal parameter
estimation, especially in view of inconsistent damping estimation. The algorithms
developed in this dissertation are then applied to two newly built cable-stayed bridges for
assessing their performance in real-life situations. Finally, the research conclusions are

presented and recommendations for the future research in this area are given.






Acknowledgements

“Teachers mold the lives that they influence and the lessons learned from the

teachers remain with their students throughout life”.

| dedicate this work to Prof. B.C. Nakra, my guru at Indian Institute of Technology, Delhi.
Thanks a lot Sir for being my inspiration and for initiating the desire to work in the area of
vibrations and structural dynamics.

The time spent at SDRL is very memorable and | will treasure the associations formed
here all my life. | would like to thank my advisor, Dr. Allemang, for not only providing the
technical expertise but also the personal support during the course of this work. Dear
Sir, it's been a pleasure and privilege to be your student. There is so much to learn from
you and four years are not sufficient for that. | hope future will continue to provide me
with opportunities to interact and learn more from you.

| would also like to express my gratitude to Dr. Brown and Dr. Phillips for their time,
constructive advice and guidance. | will always cherish talking to them, be it on any
technical issue or their interesting observations on anything under the sun. | would also
like to acknowledge Dr. Helmicki and others at UCII for providing me support and
opportunity for the work at US Grant and MRC bridges.

Big thanks to the whole Cincy Friends group (my family away from India). You people
mean a lot to me, great friends are hard to come by and | know how lucky | am to have
you all as someone to fall back on in times of need. Thanks a lot for all that you have
done for me (and you have done a lot). A word of thanks won’t be complete without the
mention of the delicious food and the never ending, fun-filled discussions, | have had on

numerous occasions at your places; | never felt like missing my family and home.

il



| would like to thank all my friends from my days at BIT and IIT for being the constant
source of motivation and happiness; Mitesh, Shirish, Lavish, Tushar, Abhishek,
Shashvat, Sanket, Alok, Rishi, Anshul, Naved and the whole Vibrant 2K gang. | also
extend my thanks to my good friends at SDRL and University of Cincinnati, Amit
Sharma, Jassi Paaji, Raghav, Hemant, Sushant, Shrikant, Goutham and Ananta,
Balakumar, Balaji, Wancheng, Steve, Ray, Matt, Dave and several others. The twice-a-
day coffee break at TUC with you guys was as much a part of the research as battling
with cables and data acquisition.

| thank my parents and my lovely sister, Arpan, for giving me all the support, love and
encouragement and for being my strength throughout my life. | know this means to you
just as much as it means to me. If there’s a sense of achievement attached to the
completion of this work | undertook, its essence lies in the happiness that it has brought
for you. | would also like to thank all my relatives for their love and care and their words
of encouragement.

Finally, a word of special thanks to Ekta, | would not have even dreamt of this, but for
you. Thanks for instilling that self-confidence in me and, in many a ways, making it all

possible. | hope you are doing fine and having best of time and life ©

Be kind, my friend.

Hold on, in times of pain and strife;

Until death comes, all is life....

(A Little Night Music, Ruskin Bond)

v



Contents

Abstract
Acknowledgements
List of Figures

List of Tables
Symbols Used

Abbreviations Used

1. Introduction
1.1 Operational Modal Analysis
1.2 Motivation and Problem Definition
1.3  Research Goals and Contributions

1.4  Thesis Outline

2, Literature Survey
2.1 OMA Algorithms
2.1.1 Time Domain Algorithms
2.1.2 Spatial Domain Algorithms
2.1.3 Frequency Domain Algorithms
2.1.4 Maximum Likelihood (ML) Estimator Based Algorithms

2.2 Issues with OMA

2.3 OMA Applications

ix

Xviii

XXii

Xxvi

12

14

15
15
22
25
27

28

31



24

Unified Matrix Polynomial Approach for Operational Modal Analysis

3.1

3.2

3.3

3.4

3.5

Conclusions

Modal Parameter Estimation and UMPA

OMA Basics and Associated Signal Processing
UMPA Formulation of OMA Algorithms

3.3.1 Time Domain Algorithms

3.3.2 Frequency Domain Algorithms

3.3.3 Spatial Domain Algorithms

Case Study: Lightly Damped Circular Plate

Conclusions

UMPA-LOFD: A Low Order Frequency Domain Algorithm for OMA

4.1

4.2

4.3

4.4

4.5

UMPA-LOFD

Numerical Conditioning Issues and Generalized Frequency
Case Studies: UMPA-LOFD Performance

4.3.1 Analytical 15 Degrees of Freedom System

4.3.2 Lightly Damped Circular Plate

Case Studies: Effect of Complex Z Mapping on UMPA-LOFD

4.4.1 Analytical 15 Degrees of Freedom System
4.4.2 Lightly Damped Circular Plate

Conclusions

vi

33

35
36
43
49
50
52
54
55

56

58
60
61
65
65
73
79
79
83

86



OMA-EMIF: A Spatial Domain OMA Algorithm

5.1

5.2

5.3

54

5.5

CMIF and FDD/eFDD

OMA-EMIF: Enhanced Mode Indicator Function for OMA
Singular Value Percentage Contribution (SVPC) Plot
Experimental Validation

5.4.1 15 DOF Analytical System
5.4.2 Lightly Damped Circular Plate
5.4.3 H-Frame Structure

Conclusions

Application of ICA/BSS Techniques to OMA

6.1

6.2

6.3

6.4

Independent Component Analysis

6.1.1 ICA/BSS Algorithms

ICA and BSS in Vibrations

6.2.1 ICA/BSS Techniques for Operational Modal Analysis
Analytical 15 Degree of Freedom System

Conclusions

Damping Estimation Using OMA Techniques

7.1

7.2

Analytical 5 DOF System
Cyclic Averaging
7.2.1  Cyclic Averaging Theory

7.2.2 Effect of Cyclic Averaging

7.2.3 Effect of More RMS Averages (Use of Longer Time Histories)

Vil

88

89

91

94

95
95
101
107

111

113
114
115
120
121
123

130

131

132

135

136
138

142



7.3  Correlated Input Forces and OMA Parameter Estimation 148

7.4  Conclusions 159

8. Application to Civil Structures 162
8.1  US Grant Cable-Stayed Bridge 162

8.1.1 Design of Experiments 164

8.1.2 Final Superstructure Test: Test Set-Up and Data Acquisition 170

8.1.3 Operational Modal Analysis 173

8.2 Maumee River Crossing Cable-Stayed Bridge 183

8.2.1 OMA Test Set-Up 184

8.2.2 Operational Modal Analysis 186

8.3  Conclusions 190

9. Conclusions and Recommendations for Future Work 191
9.1  Summary and Conclusions 191

9.2 Recommendations for Future Work 194

References 198

viil



List of Figures

Figure No.
1.1

1.2

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

Title

Experimental Modal Analysis

Operational Modal Analysis

Auto-correlation function of a typical output response

Generation of positive power spectrum from output
time responses

Experimental set up for the lightly damped circular
plate

Analytical 15 Degree of Freedom System

Auto power spectrum and positive power spectrum
for the first degree of freedom (15 DOF analytical
system)

Complex Mode Indicator Function (CMIF) based on
power spectrum (15 DOF analytical system)

Complex Mode Indicator Function (CMIF) based on
positive power spectrum (15 DOF analytical system)

Consistency diagram for Polyreference Time Domain
(PTD) algorithm (15 DOF analytical system)

X

Page No.

45

47

55

66

67

67

68

70



4.6

4.7

4.8

4.9

4.10

4.11

412

4.13

414

4.15

4.16

417

Consistency diagram for Eigensystem Realization
Algorithm (ERA) (15 DOF analytical system)

Consistency diagram for Low Order Frequency
Domain (UMPA-LOFD) algorithm (15 DOF analytical
system)

Consistency diagram for Rational Fraction Polynomial
(RFP) algorithm (15 DOF analytical system)

Consistency diagram for Low Order Frequency
Domain (UMPA-LOFD) algorithm based on complete
power spectrum (Analytical system)

Experimental set up for the lightly damped circular
plate

CMIF plot based on complete power spectrums
obtained when plate is excited sufficiently over its
surface

Consistency diagram for Polyreference Time Domain
(PTD) algorithm (Circular plate)

Consistency diagram for Eigensystem Realization
Algorithm (ERA) algorithm (Circular plate)

Consistency diagram for Lower Order Frequency
Domain (UMPA-LOFD) algorithm (Circular plate)

Consistency diagram for Rational Fraction Polynomial
(RFP) algorithm (Circular plate)

MAC plot for UMPA-LOFD algorithm (Circular plate)

Selected mode shapes of the circular plate

71

71

72

72

73

74

75

76

76

77

78

78



4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

5.1

5.2

5.3

5.4

Consistency diagram for Rational Fraction Polynomial
(RFP) algorithm (Analytical system)

Consistency diagram for Rational Fraction Polynomial
(RFP-z) algorithm (Analytical system)

Consistency diagram for Low Order Frequency
Domain (UMPA-LOFD) algorithm (Analytical system)

Consistency diagram for UMPA-LOFD with algorithm
Complex Z mapping (Analytical system)

Consistency diagram for Rational Fraction Polynomial
(RFP) algorithm (Circular plate)

Consistency diagram for RFP-z algorithm (Circular
plate)

Consistency diagram for UMPA-LOFD algorithm
(Circular plate)

Consistency diagram for UMPA-LOFD with algorithm
Complex Z mapping (Circular plate)

eFDD estimation of modal frequency and damping

Analytical 15 DOF system

CMIF of spatially well excited 15 DOF analytical

system

CMIF of analytical system excited at three locations
(Cross-Power based)

xi

81

82

82

83

84

85

85

86

91

96

96

98



5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

CMIF of analytical system excited at three locations
(FRF based)

SVPC plot for spatially insufficient excitation case
(Analytical system)

Experimental set up for the lightly damped circular
plate

CMIF of circular plate excited over the entire surface

(Spatially well excited)

SVPC plot for circular plate (Spatially well excited)

CMIF of circular plate based on FRFs

CMIF of circular plate excited over one quarter of the

surface

SVPC plot for circular plate excited in one quarter

CMIF of circular plate excited at two points

SVPC plot for circular plate excited at two points

H-Frame structure

CMIF of the spatially well excited H-Frame structure

xii

99

100

101

102

103

103

104

104

105

105

108

108



5.17

5.18

5.19

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

SVPC plot for spatially well excited H-Frame

CMIF of the H-Frame structure excited at two
locations

SVPC plot for H-Frame excited at two points

Analytical 15 degree of freedom system

Power spectrum of modal coordinate responses
obtained using AMUSE

Power spectrum of modal coordinate responses
obtained using SOBI

Power spectrum of modal coordinate responses
obtained using FOBI

Power spectrum of modal coordinate responses

obtained using JADE

MAC comparison plot - AMUSE / SOBI

MAC comparison plot - AMUSE / OMA-EMIF

MAC comparison plot - AMUSE / True Modes

MAC comparison plot - True Modes / OMA-EMIF

xiil

109

109

110

125

125

126

126

127

128

128

129

129



7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

712

Input force power spectra comparison (5 DOF
analytical system)

Virtual forces (Principal components of the force
power spectra matrix)

Theoretical frequency response functions (5 DOF
analytical system)

Effect of cyclic averaging (Power spectrum
comparison 1-1)

Effect of cyclic averaging (Power spectrum
comparison 1-2)

Effect of cyclic averaging (Percentage error in modal
frequency estimates)

Effect of cyclic averaging (Percentage error in modal
damping estimates)

Effect of longer time histories N¢c = 5 (Percentage
error in modal frequency estimates)

Effect of longer time histories N¢c = 5 (Percentage
error in modal damping estimates)

Effect of longer time histories N¢c = 10 (Percentage
error in modal frequency estimates)

Effect of longer time histories Nc = 10 (Percentage
error in modal damping estimates)

Effect of correlated input forces Case A (Percentage
error in modal frequency estimates)

X1V

133

134

134

139

139

141

142

144

144

146

147

152



7.13

7.14

7.15

7.16

717

7.18

8.1

8.2

8.3

8.4

8.5

8.6

Effect of correlated input forces Case A (Percentage
error in modal damping estimates)

Comparison of auto and cross power spectrum of
input forces (Case B)

Virtual forces (Case B)

Effect of correlated input forces Case B (Percentage
error in modal frequency estimates)

Effect of correlated input forces Case B (Percentage
error in modal damping estimates)

Effect of correlated input forces Case C (Percentage
error in modal damping estimates)

US Grant Cable-Stayed Bridge

Typical plan and elevation of the US Grant Bridge

Response comparison measured using a capacitive
and a piezoelectric accelerometer

Comparative bridge response in X, Y and Z directions
(US Grant Bridge)

Sensor layout for first preliminary test (US Grant
Bridge)

Sensor layout for second preliminary test (US Grant
Bridge)

XV

152

153

154

156

156

159

163

164

166

167

168

169



8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

Sensor layout for final superstructure test (US Grant
Bridge)

OMA test with van excitation along with ambient
sources (Second dataset)

Typical auto-power spectrum of a measured
response

Typical Short Time Fourier Transform (STFT) plot of
response data for a chosen location

CMIF plot of second dataset (Final superstructure test

of the US Grant Bridge)

Mode shapes (OMA vs. FEM) (US Grant Bridge)

MAC plot between the various modes obtained using

OMA of the US Grant Bridge

AutoMAC for RFP-z estimates (US Grant Bridge)

AutoMAC for PTD estimates (US Grant Bridge)

Maumee River Crossing Bridge, Toledo, OH

OMA Test Set-Up Layout for the MRC Bridge

Typical accelerometer set up for the MRC Bridge
OMA test

XVi

171

172

174

174

175

176

177

181

181

183

185

185



8.19

8.20

8.21

8.22

Autopower spectrum of individual channels (MRC
Bridge)

Complex Mode Indicator Function Plot (MRC Bridge)
AutoMAC plot for the various modes obtained by

OMA of the MRC Bridge

Mode shapes (MRC Bridge)

xvil

186

186

188

189






List of Tables

Table No.
3.1

3.2

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

Title

UMPA representations of various EMA algorithms

Modal parameters estimated using various UMPA
formulated OMA algorithms

UMPA-LOFD modal parameter comparison for 15 DOF
analytical system

UMPA-LOFD modal parameter comparison for lightly
damped circular plate

Effect of complex Z mapping - Modal parameter
comparison for 15 DOF analytical system

Effect of complex Z mapping - Modal parameter
comparison for lightly damped circular plate

Comparison of true modes and OMA-EMIF modes for
15 DOF analytical system

FRF and Gxx based results comparison for spatially
insufficient excitation case

Modal parameters estimated using OMA-EMIF for
lightly damped circular plate

Modal parameters estimated using OMA-EMIF for the
H-Frame structure

xviil

Page No.

42

56

75

79

84

97

100

106

110



6.1

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

Comparison of modal parameter estimates using ICA
techniques and OMA-EMIF

Modal frequencies and damping of the 15 DOF
analytical system

Modal Matrix of the 15 DOF analytical system

Effect of cyclic averaging (Nc = 0, RMS Averages =
3997)

Effect of cyclic averaging (Nc = 5, RMS Averages =
797)

Effect of cyclic averaging (Nc = 10, RMS Averages =
397)

Effect of longer time histories (Nc = 5, Time points =
102400, RMS Averages = 77)

Effect of longer time histories (Nc = 5, Time points =
1024000, RMS Averages = 797)

Effect of longer time histories (Nc = 5, Time points =
1536000, RMS Averages = 1197)

Effect of longer time histories (Nc = 10, Time points =
102400, RMS Averages = 37)

Effect of longer time histories (Nc = 10, Time points =
1024000, RMS Averages = 397)

Effect of longer time histories (Nc = 10, Time points =
1536000, RMS Averages = 597)

X1X

127

132

133

140

140

140

143

143

143

145

145

145



712

7.13

7.14

7.15

7.16

717

7.18

7.19

7.20

7.21

7.22

7.23

Damping estimation by frequency domain OMA
algorithms utilizing PPS (Nc = 5, RMS Averages = 797)

Damping estimation by frequency domain OMA
algorithms utilizing PPS (N¢c = 10, RMS Averages =
397)

Hgen - Effect of Correlated Forces (Case A)

(H*H")gen - Effect of Correlated Forces (Case A)

(H*GFF giag*H™)cen - Effect of Correlated Forces (Case
A)

(H*GFF gomp*H™)gen - Effect of Correlated Forces (Case
A)

Gxx - Effect of Correlated Forces (Case A)
(H*GFF giag*H™)cen - Effect of Correlated Forces (Case

B)

(H*GFF gomp*H™)gen - Effect of Correlated Forces (Case
B)

Gxx - Effect of Correlated Forces (Case B)

Hgen - Effect of Correlated Forces (Case C)

(H*H")gen - Effect of Correlated Forces (Case C)

XX

147

148

150

150

150

151

151

154

154

155

157

157



7.24

7.25

7.26

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

(H*GFF giag*H™)cen - Effect of Correlated Forces (Case
C)

(H*GFF gomp*H™)gen - Effect of Correlated Forces (Case
C)

Gxx - Effect of Correlated Forces (Case C)

Results of the finite element analysis of the US Grant
Bridge

Sensor locations on the US Grant Bridge (Second
Preliminary Test)

Sensor locations on the US Grant Bridge (Final
Superstructure Test)

Estimated modal parameters for the US Grant Bridge
using OMA-EMIF

Comparison of FEM and OMA modes for the US Grant
Bridge

Cross MAC between OMA and FEM Bending Modes
for the US Grant Bridge

Comparison between RFP-z, PTD and OMA-EMIF
estimates for the US Grant Bridge

Cross MAC comparison between various OMA
algorithms for the US Grant Bridge

Estimated modal parameters for MRC Bridge using
OMA-EMIF

XX1

158

158

158

165

169

171

175

179

179

180

182

187



Symbols Used

{x(1)}, {X(w)}, {X(s)} Measured response vector in time, frequency and Laplace

[H(w)]

{f®)}, {F(w)}, {F(2)}

Wk

[Gxx(w)]

[Grr(w)]

[1]

Rpaks Spak

{x«}

domain

Frequency response function matrix

Input force vector in time, frequency and Z domain
Mode shape for the k™ mode,

Also used for modal filter vector

Modal scaling factor for the k™ mode

Modal frequency for the k™ mode

Hermitian of a matrix

Output response power spectra matrix

Input force power spectra matrix

Identity matrix

Mathematical residues for a particular response location p
and reference location g for the k™ mode

Complex conjugate

Measured output vector in a state-space model

xxil



{u}

{y«}

[A]

[B]

[C]

[D]

{w,}

{v.}

[R], Rxx(t)

No

N;

U(wx)

V(wx)

Measured input vector in a state-space model
Discrete state vector in a state-space model
State transition matrix in a state-space model,
Also used for Mixing matrix

Input matrix in a state-space model

Output matrix in a state-space model that describes how
the internal state is being transferred by means of output
measurements {y}.

Also used for companion matrix

Direct transimission matrix in a state-space model
Process noise vector in a state-space model
Measurement noise vector in a state-space model
Eigenvector matrix, Mode shape matrix

Block Hankel matrix of output response correlation /
covariance data, and Output response correlation data
Number of outputs

Number of inputs

Left singular matrix at any frequency wy

Right singular matrix at any frequency wx

xxiii



2(wx), [S]
[L]

[Q]

[A]

Ok, B

[aw], [B]
M], [C], [K]

h(t)

{‘//physicaz }

{l//enhanced }

Singular value matrix at any frequency wy

Modal participation factor matrix

Diagonal scaling factor matrix

Diagonal matrix with system poles

Denominator and Numerator polynomial coefficients of the

common-denominator model

Denominator and Numerator matrix polynomial coefficients

of the UMPA model

Mass, damping and stiffness matrices

Impulse response function

Output response positive power spectrum

Hilbert transform of a matrix

Biased FRF

Modal order

Enhanced positive power spectra matrix

Eigenvectors of the original physical system

Eigenvectors of the enhanced system

XX1V



s(t) Source signal

Nr Modal coordinates corresponding to r'" mode

T Observation time period

Af Frequency resolution

Nc Number of cyclic averages

)_c(t) Averaged time history

Ck Fourier coefficients of the averaged time history

Ux Uy U; Rx Ry R;  Modal participation factors in translational and rotational
directions

XXV



Abbreviations Used

FEA Finite element analysis

EMA Experimental modal analysis

OMA Operational modal analysis

FRF Frequency response function

UMPA Unified matrix polynomial approach

RFP Rational fraction polynomial algorithm

EMIF Enhanced mode indicator function

CMIF Complex mode indicator function

FDD Frequency domain decomposition

eFDD Enhanced frequency domain decomposition
OMA-EMIF Enhanced mode indicator function algorithm for OMA
SVPC Singular value percentage contribution plot

BSS Blind source separation

XXV



ICA

RMS

MRC

SDOF

PP

NEXT

LSCE

ITD

PTD

ERA

PEM

\Y

ARMA

MIMO

SSI-COV

Independent component analysis

Root mean square averaging

Maumee River Crossing bridge

Single degree of freedom

Peak picking method

Natural excitation technique

Least square complex exponential algorithm

Ibrahim time domain algorithm

Polyreference time domain algorithm

Eigensystem realization algorithm

Prediction error method

Instrument variable method

Auto-Regressive Moving Average

Multiple input multiple output

Covariance driven stochastic subspace iteration algorithm

XXVvii



SVD Singular value decomposition

IRF Impulse response function

PC Principal component

CVA Canonical variant analysis

UPC Unweighted principal component

BR Balanced realization algorithm

SSI-DATA Data driven stochastic subspace iteration algorithm
FFT Fast Fourier Transform

LSCF Least square complex frequency algorithm

ML Maximum likelihood estimator

pLSCE Polyreference least square complex exponential algorithm
IMAC International modal analysis conference

IOMAC International operational modal analysis conference
ISMA International seminar on modal analysis

pdf Probability density function

XxXviil



ARX AutoRegressive model with eXogenous inputs

CEA Complex exponential algorithm

PFD Polyreference frequency domain algorithm

MRITD Multiple Reference Ibrahim Time Domain

PPS Positive power spectrum

SISO Single input single output

SIMO Single input multiple output

pLSCF Polyreference least square complex frequency

UMPA-LOFD UMPA based lower order frequency domain algorithm for
OMA

DOF Degrees of freedom

RFP-z Rational fractional polynomial algorithm in z domain
(PolyMAX)

MAC Modal assurance criterion

ePPS Enhanced positive power spectrum

eFRF Enhanced frequency response functions

BSE Blind signal extraction

XX1X



MBD

SOBI

FOBI

JADE

AMUSE

PCA

HOS

SOS

EVD

JAD

NU

SU

Sul

ND

SD

Mulitichannel blind deconvolution

Second order blind identification algorithm

Fourth order blind identification algorithm

Joint approximate diagonalization of eigen matrices

algorithm

Algorithm for multiple unknown signals extraction

Principal component analysis

Higher order statistics

Second order statistics

Eigenvalue decomposition

Joint approximate diagonalization

North upstream

South upstream

South upstream inner girder

North downstream

South downstream

XXX



STFT Short time Fourier transform

XXX1









Chapter One

Introduction

1.1 Operational Modal Analysis

In today’s world, lots of emphasis is laid on designing safe and reliable engineering
structures. Introduction of improved materials has also made it imperative for these
structures to be light and yet capable of withstanding heavy loads while in operation.
These requirements make it important for the design community to understand the
dynamic characteristics of structures while designing them for safety, reliability and
quality points of view.

Dynamic characterization of structures is of significant importance in a wide variety of
industries including aerospace, automotive, rotating machinery, civil structures such as
buildings and bridges, etc. Generally, the dynamic behavior of structures is
characterized in terms of their modal parameters (modal frequencies, modal damping
and scaled mode shapes). Availability of technologies like Finite Element Analysis (FEA)
has aided in this regard however there are serious limitations which restrict the use of
these techniques to complex, real life structures. These problems arise on account of the
inability of FEA to correctly model structural properties like damping, nonlinearity,
boundary conditions, etc. Thus these methodologies are complemented by experiments

for accurately determining the dynamic characteristics of the structure.



Experimental Modal Analysis (EMA) is a popular technique for determining the modal
parameters of a structure. The extracted modal parameters are then used for formulating
a mathematical model that is representative of the system/structure dynamics. This
model is called the modal model. The term experimental modal analysis involves both
the data acquisition stage (Modal Testing) and subsequent analysis to come up with the
modal model (Modal Parameter Estimation). EMA results are used for a variety of
applications such as troubleshooting dynamics related problems, correlating and
updating finite element model, simulation and prediction of structural modifications, to
analyze sensitivity of modal parameters to system physical parameter changes
(Sensitivity analysis), force identification, structural damage detection and health
monitoring, active vibration control, etc. EMA is a relatively well understood technique
and is well described in a number of texts [Ewins, 2000; Maia, Silva et al., 1997;
Allemang, 1999; Heylen et al., 1995; He, Fu, 2001].

Experimental modal analysis (Figure 1.1) involves exciting the structure by means of
known forces (either using shakers or impact hammers) and measuring the response to
these forces over the structure (usually by means of accelerometers). The
system/structure is then characterized (estimation of unknown modal parameters) on the

basis of both the known input forces and output responses.

System / Structure
Input Force y uctu Output Response

Modal Parameters Unknown
Known Known

Figure 1.1 Experimental Modal Analysis
Over the last ten years researchers across the globe have worked on various techniques
that utilize only the output response data to determine the modal parameters (Figure

1.2). To distinguish these techniques from traditional frequency response function (FRF)



based experimental modal analysis (EMA), the response data based modal parameter
identification process became popular as Operational Modal Analysis (OMA) or Output-
Only modal analysis. One of the prime motives for researchers to shift from the
traditional and more established experimental modal analysis to operational modal
analysis is the problems faced while studying and characterizing large, complex systems
such as civil structures like bridges, buildings, etc and simulating exact operating
conditions (such as those encountered by vehicles on road). It is not only difficult but
sometimes impossible to provide sufficient artificial forced excitation to such huge
structures. Even under circumstances when it's possible to excite the structure
artificially, the associated costs are often too high to be justified. Thus, difficulties
involved in exciting the structure sufficiently and simulating the operational conditions
proves to be a major setback in application of traditional EMA techniques that require the

structure to be excited by a known artificial force.

?

[ |
System / Structure
Input Force y Output Response
Modal Parameters Unknown
Unknown Known

Figure 1.2 Operational Modal Analysis

To understand the OMA identification process further, the input-output model of Figure
1.1 can be expressed mathematically. If {X(w)} is the measured response or the output
and {F(w)} is the input force, the relationship between them in terms of frequency

response function (FRF) [H(w)] is given as follows [Bendat, Piersol, 1986]:



¥ (o)i=[H()lF (o) 1.1)

This equation forms the basis of Experimental Modal Analysis where the frequency
response functions [H(w)] are formed from the measured input forces {F(w)} and output
responses {X(w)}. The FRFs contains all the necessary information required to obtain
the modal parameters that characterize a system. This can be observed by expressing

the frequency response functions in terms of modal parameters as
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Eq. (1.2) shows the frequency response function H(w) for a particular input location q
and output location p being expressed in terms of the modal parameters; mode shape y,
modal scaling factor Q and modal frequency A. This model is referred to as the modal
model. The goal of EMA modal parameter estimation is to extract this modal model from
the measured FRF data.

Now Eq. (1.1) can be written as

()" = {Fl)f[H ()" 1.3)

Multiplying Eq. (1.1) and Eq. (1.3)

(@x (@) =[H(@F(@}HF ()" [H(o)]"

or with averaging,

(G (@)]=[H(@)] (G (@)] [H(@)]" 1.4)



where [Gxx(w)] is the output response power spectra matrix and [Ge(w)] is the input
force power spectra matrix.

Eq. (1.4) forms the basis of Operational Modal Analysis. Since the input force is not
measured in the case of OMA, the OMA procedure only works under certain
assumptions. Two key assumptions in this regard are

1. The nature of the input force is assumed to be random, broadband and
smooth. This means that the input power spectra is constant and has no
poles or zeroes in the frequency range of interest.

2. The forcing is further assumed to be uniformly distributed spatially (i.e.
number of inputs N; approaching number of outputs N,, considering the
response is being measured all over the structure).

Since [Grr(w)] is constant, [Gxx(w)] can be expressed in terms of frequency response

functions as

(G (@)] o [H (@) ]H ()] 1.5)

The partial fraction model of Gxx for a particular response location p and reference

location q is given by
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and can be more conveniently written as [Peeters, Auweraer, 2005]
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where S, , and S;qk are redefined to incorporate (-1).

Note that A is the pole and Ry and S,y are the kth mathematical residues. These
residues are different from the residue obtained using a frequency response function
based partial fraction model since they do not contain the modal scaling factor (as no

force is measured). The form of Eq. (1.6c) clearly indicates that the roots that will be
found from the power spectrum data will be 4, , 4, , — A, and — 1, for each model order 1

to N.

1.2 Motivation and Problem Definition

Due to its usefulness in situations where application of EMA techniques is not possible
or is difficult, OMA has found application in a number of areas including large civil
structures such as bridges, stadiums, high rise buildings etc, automotive and aerospace
industry etc.

Operational modal analysis possesses several advantages. Since the OMA tests are
performed in-situ, they are expected to better represent the real world systems in
comparison to the laboratory based EMA tests. The environmental effects of, for
example mass loading or aero-elastic interaction, etc on system behavior can be taken
into account while performing in-operation tests. Since OMA is an output-only technique,
the cost involved in providing artificial excitation is avoided. Further, OMA tests are also
better suited for the continuous monitoring of large structures [Peeters, 2000].

However, OMA techniques are still evolving and there are number of issues which

remain to be understood more completely. Despite all the above stated advantages,



OMA suffers from serious limitations on account of unavailability of input force
measurement. Normally system identification techniques are based on the knowledge of
both the input and the output. In structural dynamics, the lack of input force information
in OMA methods means that the mode shapes are unscaled. The modal scaling factor is
an important modal parameter which is required in addition to modal frequency, damping
and mode shape for completion of the modal model. This becomes necessary for further
use of modal parameters for procedures such as modal updating, etc.

Yet another limitation of OMA is the assumption about the nature of the input force. In
OMA it is assumed that the input force is random white noise. This assumption though
applicable in many a situations (wind and rain on a bridge) is not always true. Presence
of harmonic input ends up appearing as a peak in the output response power spectra
and is difficult to distinguish from the genuine modes of the structure especially when
signal to noise ratio is not very high (which is often the case in OMA).

This dissertation focuses on the following issues associated with OMA methods which
define the problem and scope of the dissertation and also underlines the motivation for
this work.

1. The primary data on which the OMA parameter estimation algorithms work is
output power spectra (Gxx) (or correlation functions in time domain). This affects
the modal analysis process considerably including the data acquisition, data
processing and parameter estimation stages. In OMA, the forcing is ambient or
natural and hence is not under control. Thus it is very possible that these forces
are not able to excite all the modes of interest. There can also be cases where
forcing is not sufficient, hence resulting in low signal-to-noise ratio. This means
that in comparison to EMA, OMA requires much more data processing which

creates a need for better data processing techniques [Chauhan et al., 2006].



2. Power spectra contain the same information twice in terms of, positive and
negative modes (see Eq. 1.6c). In other words, the order of power spectrum is
twice that of frequency response functions (this is further explored in Chapter 3).
This makes the parameter estimation in the case of OMA more complex in
comparison to EMA, especially for the frequency domain algorithms as higher
order and presence of duplicate information in terms of negative modes affect the
numerical conditioning aspects of frequency domain algorithms [Chauhan et al.,
2006].

3. The second assumption stated in the previous section concerns the spatial
distribution of input forcing excitation and states that the excitation is considered
to be distributed uniformly all over the structure. In other words the structure is
excited completely in spatial sense. However, this assumption is not true for
several conventional EMA situations where excitation might be localized in
nature [Chauhan et al., 2008].

4. It has also been noticed that damping values are often over estimated using
OMA techniques [Chauhan, Phillips, Allemang, 2008]. The opinions on this
aspect of OMA are widely varying and no consensus or definite answers are

available.

1.3 Research Goals and Contributions

The issues stated in the previous section and, additionally, the algorithmic aspects of the
modal parameter estimation stage of OMA form the basis of the research goals which
are listed as follows

1. Development of frequency domain parameter estimation algorithms and

associated signal processing techniques for OMA,



2. Understand the effect of spatial distribution of excitation on OMA and how
they affect the performance of OMA spatial domain algorithms,

3. Accurate estimation of damping using OMA techniques,

4. Extend Unified Matrix Polynomial Approach [Allemang, Brown, Fladung,
1994; Allemang, Brown, 1998; Allemang, Phillips, 2004] concept to OMA for
the purpose of utilizing the advantages of UMPA for better understanding
and development of various parameter estimation algorithms,

5. Use of advanced techniques such as Independent Component Analysis
and other methods based on Higher Order Statistics [Hyvarinen, Karhunen,
Oja, 2001; Chichoki, Amari, 2002] for the purpose of Operational Modal
Analysis, and

6. Application of OMA techniques to real life structures (Cable-stayed
bridges).

With respect to these goals, the significant contributions of the research work carried out
towards the field of OMA are

e The Unified Matrix Polynomial Approach is extended to OMA. The UMPA
concept is recognized as a very good methodology for understanding and
developing various modal analysis algorithms. In light of various differences with
conventional input measurement based EMA and assumptions that are made in
the case of OMA, the UMPA concept is extended to OMA. Emphasis is placed on
understanding the basic difference between traditional Experimental Modal
Analysis and output-only Operational Modal Analysis, the various assumptions
made in the case of OMA and how the fundamental data (correlation functions
and power spectrums) should be used in order to utilize the UMPA model for the
purpose of parameter estimation in the case of OMA. It is revealed that

understanding the underlying basic polynomial model not only helps in theoretical



development of various algorithms but also provides a common framework which
makes it much easier and simpler to understand these algorithms. [Chauhan et
al., 2007]

As stated in the previous section, the lack of frequency domain algorithms in the
field of Operational Modal Analysis can be attributed to numerical conditioning
problems associated with them. In this research this aspect is studied in detail
and reasons for poor numerical conditions in case of OMA are identified. A signal
processing technique based on multiplying the power spectrum with a step
function and utilizing only its positive lags portion is suggested to overcome the
higher order of the power spectrums. A low order frequency domain algorithm
based on the UMPA formulation was proposed and shown to have good
numerical conditioning properties in comparison to high order frequency domain
algorithms such as Rational Fraction Polynomial (RFP). [Chauhan et al., 2006].

A new spatial domain OMA algorithm based on the previously introduced
Enhanced Mode Indicator Function (EMIF) [Fladung, Phillips, Brown, 1997;
Fladung, 2001; Allemang, Brown, 2006], is developed. This algorithm, referred as
OMA-EMIF algorithm, is an alternative to the popular OMA algorithm, Frequency
Domain Decomposition and enhanced Frequency Domain Decomposition
(FDD/eFDD) and works entirely in the frequency domain. One of the major
advantages of estimating the modes in the frequency domain is the ability to
utilize the residuals which helps in improving the results by taking into account
the contribution of the out-of-band modes. The algorithm is shown to give good
results by implementing it on analytical and experimental systems. [Chauhan et
al., 2006]

Critical issues and limitations associated with the application of spatial domain

algorithms to the OMA framework under different excitation scenarios are
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studied. It is shown how the ability of Complex Mode indicator Function (CMIF)
based methods is limited when the system is not adequately excited spatially.
Though such problems are not encountered while analyzing structures such as
bridges and buildings (where forcing is more uniform), in situations like
automobiles on the road having narrow band point excitations (such as engine
unbalance or other rotating unbalance), this can be a major problem as the
resulting CMIF plot might not indicate the modes correctly. A tool based on
contribution of singular values to total variance, Singular Value Percentage
Contribution (SVPC) plot, is devised which helps in determining whether the
system is being excited locally or spatially uniformly. This tool makes it possible
to use the CMIF plot even in cases where the system is not spatially well excited.
[Chauhan et al., 2006]

Emerging concepts of Independent Component Analysis (ICA) and Blind Source
Separation (BSS) are utilized for the purpose of OMA. Four popular ICA / BSS
techniques are evaluated for their performance on an analytical system. It is
shown how these techniques can be utilized for output-only modal parameter
estimation purposes by relating them to the concepts of modal filtering and the
modal expansion theorem. These algorithms are found to be relatively simple
and less time consuming. [Chauhan et al., 2007]

Issues related to the estimation of damping using OMA techniques are studied in
more depth. By means of this study, it is shown how it is considerably difficult to
get good, leakage free estimates of the power spectrums in comparison to the
FRFs. It is further shown that cyclic averaging together with RMS averaging
deals with leakage much more effectively in comparison to regular RMS signal
processing that involves overlapping and windowing. It is noted that damping

estimates are affected if the most basic OMA assumption (input forces being

11



random and uncorrelated) is not entirely true. The error in damping estimates is
shown to be considerably increased if the input forces are not entirely
uncorrelated. The results of this study indicate that for accurate estimation of
damping, it is necessary to have good estimates (leakage free) of the output
response power spectrum and that the input forces should be as uncorrelated as
possible. While the first issue can be improved by using signal processing
techniques like cyclic averaging, the second factor is often beyond one’s control,
especially in real-life scenarios. [Chauhan et al., 2008]

e Suggested OMA algorithms have been applied to complex real life structures like
cable-stay bridges. This not only helped in evaluating the performance of these
algorithms to practical scenarios but also provided valuable insight into designing
and executing OMA tests of such huge and complex structures. [Chauhan, Saini

et al., 2007, Chauhan, Saini et al., 2008]

1.4 Dissertation Outline

The research work presented in the dissertation is organized in the following manner
Chapter One introduces the dissertation. The motivation and merits of the dissertation
are listed in this chapter along with a brief outline of how the dissertation is organized.
Chapter Two gives a comprehensive literature survey about OMA. It aims at providing
the reader with the state of art about the various aspects of OMA including the need and
development of the field of OMA, OMA algorithms, advantages and limitations of OMA
and its application to various real life structures.

Chapter Three deals with Unified Matrix Polynomial Approach (UMPA) and its extension
to OMA in this chapter. Various OMA algorithms developed using UMPA methodology
are applied to an analytical system to show how UMPA can help in understanding and

developing various algorithms.
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In Chapter Four a frequency domain OMA algorithm is developed and is shown to
perform satisfactorily by means of application to an analytical and an experimental
(Circular plate) structure. The performance of this algorithm is also compared with its z-
domain variant.

Chapter Five presents a spatial domain algorithm, OMA-EMIF. This algorithm is an
alternative to the popular OMA algorithm FDD-eFDD and is based on reformulation of
the EMIF algorithm. It also explores the issues related to application of spatial domain
OMA algorithms in light of OMA assumptions.

Chapter Six focuses on utilizing advance signal processing techniques like Independent
Component Analysis and Blind Source Separation for the purpose of OMA.

Chapter Seven emphasizes on exploring and deeper understanding of the OMA
assumptions. The effect of violation of these assumptions on OMA parameter estimation
process is studied. Signal processing techniques such as use of cyclic averaging,
positive power spectrum and difficulties associated with use of frequency domain
algorithms is also illustrated. This chapter also includes the work related to damping
estimation using OMA algorithms.

Chapter Eight discusses the results of application of OMA algorithms to the US Grant
and MRC cable stayed bridges, thus highlighting the performance of these algorithms in
real life situations.

Chapter Nine concludes the thesis with the recapitulation of the salient points of the

research and recommendations for the future work in the field of OMA.
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Chapter Two

Literature Survey

It was in the 1990’s that researchers started to work in the field that later developed into
Operational Modal Analysis (OMA). As the work progressed, it came to be referred by
several other names including Output-Only Modal Analysis, Ambient Modal Analysis and
Natural Input Modal Analysis. The need for OMA was first realized by the civil
engineering community due to the problems faced while studying and characterizing
complex systems such as bridges, buildings, stadiums, offshore platforms, etc. Such
structures were not only complex but also huge in size and thus finding dynamic
properties of these structures using conventional Experimental Modal Analysis
techniques posed several difficulties. Conventional EMA requires artificial excitation to
excite the structure in order to obtain the modal parameters by means of measured
output responses to the known input excitation forces. However, due to the immense
size of civil structures it is often difficult and sometimes even impossible to excite these
structures artificially. Even under circumstances when it's possible to excite the structure
artificially, the associated costs are too high to be justified. Thus difficulties involved in
exciting the structure sufficiently and simulating the operational conditions proves to be a
major setback in application of traditional EMA techniques that require the structure to
be excited by a known artificial force. This need initiated the work in the area of OMA
with the objective of developing techniques that will enable engineers to find dynamic

characteristics of a structure without the need to measure the input excitation forces.

14



Subsequently, other applications of OMA also emerged in traditional modal analysis
areas of automotive, aerospace and other mechanical industries. These included
applications where the modal parameters are required to be obtained in-situ. Simulating
actual loading conditions artificially still remains a challenge and thus OMA, which can
be performed in-situ, provided an alternative.

This chapter reviews the relevant literature available in the area of OMA including a
survey of various OMA algorithms (Section 2.1), OMA application case studies (Section
2.2) and the work that has been carried out to identify and overcome the limitations of

OMA (Section 2.3).

2.1 OMA Algorithms

Most OMA algorithms are essentially extensions of the traditional EMA algorithms. In

this section the most common and popularly used OMA sections are reviewed.

2.1.1 Time Domain Algorithms

SDOF Peak Picking (PP) Method

The earliest OMA algorithms utilized the classical single degree of freedom based peak
picking method [Allemang, 1999; Phillips, Allemang, 1996; Heylen et al., 1995], a simple
technique that can be applied fairly successfully to modes that are well separated and
have low damping. In EMA, this method identifies the modal frequencies as the peaks of
an FRF plot. The damping ratios are obtained using the half-power bandwidth method
and mode shapes are identified as the value of the frequency response function for all
the response points at the modal frequency.

This method is extended to OMA by applying it to output response power spectrum

instead of frequency response functions [Felber, 1993; Bendat, Piersol, 1993]. However,
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this method does not work for situations where modes are not well separated and
damping is moderate to heavy. Thus identification of closely spaced modes is not
possible using this method. Insufficient frequency resolution can also hamper the

effectiveness of this method.

NEXT — Natural Excitation Technique and Other Similar Algorithms
The utilization of Autoregressive Moving Average (ARMA) procedure for estimating
modal parameters using response data only was first suggested in 1970s [Gersch, Luo,
1972; Gersch, Fouth, 1974; Pandit, 1977; Pandit, Suzuki, 1979]. These methods
assumed input force to be white random and the technique was applied to estimate the
characteristics of the buildings excited by wind forces.

However, it was not till early 1990s that researchers started taking note of these output
response only based techniques. The Natural Excitation Technique (NEXT) [James,
Carne, Lauffer, 1995] emerged during this time and was developed while modal testing
the vertical-axis wind turbines and is one of the earliest OMA algorithms. The basis of
the NEXT algorithm is the auto and cross-correlation functions calculated between the
measured output response time histories. This method then uses the traditional EMA
time domain modal parameter estimation algorithms such as Least Square Complex
Exponential (LSCE) [Brown et al., 1979], Ibrahim Time Domain (ITD) [Ibrahim, Mikulcik,
1977; Fukuzono, 1986] or their multiple input multiple output (MIMO) equivalents;
Polyreference Time Domain (PTD) [Vold, Kundrat, et al., 1982; Vold, Rocklin, 1982] and
Eigensystem Realization Algorithm (ERA) [Juang, Pappa, 1985; Longman, Juang,
1989].

Theoretical basis of NEXT is that the correlation functions between output responses to a

random white-noise input can be expressed as the sum of decaying sinusoids which
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have same characteristics as the impulse response function, thus possessing the same

modal parameters information.

Prediction Error Method (PEM) and Instrument Variable (IV) Method

These algorithms utilized the Auto-Regressive Moving Average (ARMA) model for
identifying modal parameters. Ljung [Ljung, 1999] described a Prediction-Error method
(PEM) approach in which the modal parameters are obtained by minimizing the
prediction error. This algorithm results in a highly nonlinear optimization problem due to
which its utility is severely affected. The algorithm is sensitive to initial values, is
computationally intensive, convergence not guaranteed; all of which makes it unsuitable
for OMA purposes, especially for analyzing large structures. A MIMO version of this
algorithm, PEM-ARMAYV (Vector ARMA), was proposed by Andersen (Andersen, 1997).
The nonlinear nature of the ARMA based PEM arises due to the MA polynomial
coefficients. For the purpose of modal parameters though, only AR polynomial
coefficients are needed. The Instrument Variable (IV) method [Peeters, De Roeck, 2001]
uses this approach for system parameter identification purposes, thus avoiding the
limitations of PEM. The IV method thus utilizes an AR model based on output
covariance. It is to be noted that IV method yields equations similar to NExT and PTD,
though it is derived in a different manner. As is the case with PTD, the model order in
these algorithms is typically over specified and the spurious (mathematical) modes are
filtered using tools such as stabilization diagrams [Allemang, 1999; Maia, Silva et al.,

1997; Heylen et al., 1995 ].
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State-Space Model Based Approaches
The OMA algorithms developed using the state-space approach can be further classified

as either covariance-driven (realization based) and data-driven methods (subspace

based).

Covariance-driven Stochastic Realization-based algorithms (SSI-COV)
Covariance driven stochastic realization based algorithms derive inspiration from the
classical realization theory as explained by Ho and Kalman [Ho, Kalman, 1966]. The
deterministic system realization method was subsequently refined by use of Singular
Value Decomposition (SVD) to reduce the effect of noise [Zeiger, McEwen, 1974; Kung,
1974]. The eigensystem realization algorithm (ERA) [Juang, Pappa, 1985; Longman,
Juang, 1989; Juang, 1994] belongs to this category of algorithms and is a popular EMA
algorithm.

The discrete-time deterministic state-space model is given as

{J’k+1 } = [A]{yk }+ [B]{”k }
et =y t+ DN, }

2.1)

where {xy} is the measured output vector, {u.} is the measured input vector and {yi} is the
discrete state vector. [A] is the state transition matrix describing the dynamics of the
system (in terms of its eigenvalues), [B] is the input matrix, [C] is the output matrix that
describes how the internal state is being transferred by means of output measurements

{y«} and [D] is the direct transmission matrix.
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This model can be extended to discrete time combined deterministic-stochastic state

space model by including the stochastic noise terms, the process noise {w, | and the
measurement noise {vk } as shown in Eq. (2.2).

et = [l b+ [Bluy o+, }

g =[Cly j+ DN, j+ v,

2.2)

For stochastic or the output-only case, the above state space model can be used without

including the terms involving measured input vector {us}. The stochastic noise terms,

{wk} and {vk}, are considered zero mean, white noise vectors. Thus a discrete time

stochastic state space model is given as

{yk+1 } = [A]{yk }"' {Wk }
e =[Chy b+ v}

2.3)

As mentioned earlier, the dynamics of the system is described by the eigenvalues and

eigenvectors of [A] which can be obtained by its eigenvalue decomposition,

l4]=[@] [A] [o]” 2.4)

System modes A, can be obtained by transforming the discrete eigenvalues z, (Diagonal

values of [A]) into continuous eigenvalues A; and the mode shape are obtained from the
observed part of the eigenvectors [(D] It should be noted that the mode shapes cannot
be scaled as the input force information is not available.

z, =e"™, 1 =0, +jo, :éln(z,) 2.5)

r
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The covariance driven stochastic realization algorithm involves the formation of block-
Hankel matrix [R] with correlation data (or covariance data as for a zero mean process
covariance is equal to correlation) instead of impulse response functions (IRF) as in
case of traditional EMA algorithms like ERA. The Hankel matrix can then be
decomposed in the similar manner as explained by Ho and Kalman. This is shown in

[Akaike, 1974; Aoki, 1987].
[R]=[c] [4"'] [6] 2.6)

where [G] is the output covariance matrix of the next state

[Gl=Ely,., ] 27)

Formulation of OMA algorithms based on this model is shown in several papers
including [Beveniste, Fuchs, 1985; Hermans, Van der Auweraer, 1999; Peeters, 2000;
Peeters, De Roeck, 2001]. The SSI-COV algorithm is generally implemented in three
different methods:

1). Principal Component (PC) method

2). Canonical Variant Analysis (CVA) method

3). Unweighted Principal Component (UPC) method

All these methods differ in the way the covariance Hankel matrix [R] is weighted before
applying the Singular Value Decomposition (SVD) procedure to them. The UPC method

is also called the Balanced Realization (BR) method and is equivalent of the popular
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EMA algorithm, ERA. The implementation of these methods can be found in [Arun,
Kung, 1990; Van Overschee, De Moor, 1996]. It is observed that in practical scenarios
all three implementations have similar accuracy in terms of identified modal parameters

[Peeters, De Roeck, 2001; Zhang, Brincker, Andersen, 2005].

Data-driven Stochastic Realization-based algorithms (SSI-DATA)

SSI-DATA [Van Overschee, De Moor, 1996; Peeters, De Roeck, 1999; Zhang, Brincker,
Andersen, 2005] algorithm involves projecting the row space of the future outputs into
row space of the past outputs by means of QR decomposition of the data Hankel matrix.
This step is different from the SSI-COV method as, in this case, the data reduction is
achieved by means of QR decomposition step rather than the covariance calculation
step, as is the case with SSI-COV method. Finally the system parameters are obtained
by performing an SVD of the projection matrix. In this case as well, one has the option of
implementing the algorithm using PC, CVA or UPC methods as discussed previously.
The SSI-DATA algorithm works directly on the raw output response time histories
instead of covariance data as in case of SSI-COV. In case of SSI-DATA, the data
reduction is obtained in terms of a projection matrix computed by projecting the row
space of the future outputs on row space of the past outputs, unlike SSI-COV where this
data reduction is obtained by means of calculating covariance functions. This data
reduction step is done by using QR decomposition. This is followed by application of
SVD to the computed projection matrix to obtain its Kalman filter state. Finally least
square approach is used to get the modal parameters. This algorithm is numerically
more robust as it uses a square root algorithm, where as in SSI-COV matrices are
squared in order to find covariance functions. It also avoids the leakage effect and other
issues associated with calculation of covariance. The SSI-DATA method can also yield

prediction errors and modal contributions which is not always the case with SSI-COV.
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The computation times are however more in comparison, as covariance functions in
case of SSI-COV can also be computed by inverse Fourier transforming power spectra

which can be computed using faster discrete Fourier transform techniques.

2.1.2 Spatial Domain Algorithms

Spatial domain algorithms in OMA derive inspiration from the popular EMA algorithm,
Complex Mode Indicator Function (CMIF) [Shih, Tsuei et al., 1989; Phillips, Allemang,
Fladung, 1998; Allemang, Brown, 2006]. CMIF involves a frequency by frequency

singular value decomposition of the frequency response function matrix.

[H (a)k )]NGXN, = [U(a)k )]NaxNi [Z(a)k )]Nl-xNi [V(a)k )]zixN, 2.8)

where

N, is number of outputs,

N;is number of inputs,

H(wy) is the FRF matrix at any frequency wy,

U(wy) is the left singular matrix at any frequency wy, which is a unitary matrix,
V(wy) is the right singular matrix at any frequency wy, which is also a unitary matrix,

> (wy) is the singular value matrix at any frequency wy, which is a diagonal matrix.

The frequency response function matrix is commonly expressed in matrix form as

[H(w)]NaxN, = [CD]Nosz,,, []a)[l]_ [A]];vmxzzvm [L]2Nm><Ni 2.9)

where

N2, is number of modes being identified,

22



[®] is mode shape matrix,
[L] = [Q][®]' is modal participation factor matrix,
[Q] is the diagonal scaling factor matrix,

[]is the diagonal matrix with system poles.

Thus the SVD of the FRF matrix as given by Eq. (2.8) corresponds to its modal model as
represented by Eq. (2.9). The procedure for estimating the modal parameters using this
technique involves the realization that local maximum in a CMIF plot occurs near
resonance and thus gives an estimate of the location of the system pole on the
frequency line. In general, the response of a system at any given frequency is linear
combination of the modal vectors. However, at the resonance, the response is primarily
due to the modal vector corresponding to that mode. The estimate of the mode shape or
the modal vector corresponding to this mode is given by the left singular vector
associated with the peak singular value (generally the highest) at that frequency.

It should be noted that unlike other EMA algorithms that estimate modal frequency and
damping in the first stage and the mode shapes later, the CMIF method does the
reverse. It estimates the mode shapes in the first stage and, though it gives an estimate
of the modal frequency, for more accurate estimates of the modal frequency and
damping (which is not estimated in the first step), the CMIF routine is followed by the
enhanced FRF based approach, referred commonly as Enhanced Mode Indicator
Function (EMIF) [Allemang, 1980; Fladung, Philips, Brown, 1997; Phillips, Allemang,

Fladung, 1998; Fladung, 2001; Allemang, Brown, 2006].
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Frequency Domain Decomposition (FDD) and enhanced Frequency
Domain Decomposition (eFDD)

As explained in Chapter 1, under certain assumptions about the input excitation forces,
the output response power spectra [Gxx] is proportional to multiplication of the FRF
matrix with its hermitian [H][H]". Eq. (1.6-c) is recalled here to reiterate that the power
spectrum matrix contains all the necessary information pertaining to the modal
parameters, under these assumptions.

S
G = pak pak pak rat
pq(a)) Z ; _lk+ja)—/7,z+j0)—(_/1k)+ja)_(_ﬂ“2)

N R R’ S*
k=

1 J@

Frequency Domain Decomposition [Brincker, Zhang, Andersen, 2000] and enhanced
Frequency Domain Decomposition algorithm [Brincker, Ventura, Andersen, 2000] are
one of the most popular OMA algorithms. They are similar in principle to the CMIF
algorithm. The Frequency Domain Decomposition technique also involves the singular
value decomposition (SVD), but it applies the SVD on the output response power
spectra matrix, instead of the FRF matrix. Thus at any particular frequency wy the

singular value decomposition of [Gxx] results in

(G (@ )]=[U]STV T 2.10)

where [S] is the singular value diagonal matrix and [U], [V] are singular vector matrices
which are orthogonal. For the case where the where all response locations are
considered as references to form the square [Gxx] matrix, [U] and [V] are theoretically
equal. The singular vectors near a resonance are good estimates of the mode shapes

and the modal frequency is obtained by the simple, single degree of freedom peak-
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picking method [Phillips, Allemang, 1996; Brincker, Zhang, Andersen, 2000; Gade,
Moller et al., 2005].

FDD algorithm gives the frequency and mode shapes but for damping estimation (and
also for more accurate estimation of modal frequency) one has to utilize the eFDD
algorithm. In the eFDD algorithm [Brincker, Ventura, Andersen, 2000; Gade, Moller et
al., 2005], power spectra of a SDOF system is identified around a peak of resonance (A
peak in the SVD plot). A user defined Modal Assurance Criterion (MAC) [Allemang,
1980; Heylen, Lammens, Sas, 1995] rejection level is set to compare the singular
vectors around the peak and corresponding singular values are retained as those
belonging to the SDOF power spectrum. This SDOF power spectrum is transformed
back to the time domain by inverse FFT. The natural frequency and damping are then
estimated for this SDOF system by determining zero crossing time and logarithmic

decrement methods respectively.

2.1.3 Frequency Domain Algorithms

PolyMAX — Polyreference LSCF Algorithm

The use of frequency domain algorithms for OMA purposes is not very common due to
the numerical conditioning issues as discussed briefly in Chapter 1. The PolyMAX
algorithm [Verboven, 2002; Guillaume, Verboven et al.,, 2003; Peeters, Van der
Auweraer et al., 2004; Peeters, Van der Auweraer, 2005] is perhaps the only
commercially available frequency domain OMA algorithm. This algorithm is the
polyreference variant of the Least Square Complex Exponential algorithm in frequency
domain.

The PolyMAX algorithm is based upon to the historical Rational Fractional Polynomial

(RFP) [Richardson, Formenti, 1982] algorithm. The RFP algorithm uses the rational
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fraction form of the FRF, which for a particular output location p and excitation location g

is given by Eq. (2.11)

H,(0)= = =0 2.11)

The rational fraction form of the frequency response function is also referred to as the
Common-Denominator model. To obtain the system modes or poles, one has to utilize
the FRF data as per the model in Eq. (2.11) and then solve for the roots of the
denominator characteristic polynomial after finding the polynomial coefficients a,. The
roots of the numerator characteristic polynomial gives the zeros of transfer function
which can be used to estimate the residues (Note that the estimation of zeros is not
necessary from modal analysis point of view, though both poles and zeros are needed to
characterize the dynamics of a system represented by the transfer function as in case of
electrical networks). This algorithm can also be extended to the MIMO case by including
the measurements corresponding to other input points. This follows from the
understanding that since the system characteristics do not depend on the measurement
locations but are inherent in the system poles (roots of the denominator polynomial), the
characteristic polynomial for all the measurements should be the same. This generally
results in more equations than unknowns and thus a least squared based solution is
used to obtain the polynomial coefficients. The same equations also happen to be the
basis of the PolyMAX method [Guillaume, Verboven et al., 2003]. In the mentioned
reference, the model is referred to as the Right-Matrix Fraction model which is
essentially the same model as that used for RFP algorithm. The key difference between

the PolyMAX and the RFP method is that the PolyMAX method uses z-domain mapping
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to improve the numerical conditioning, i.e. formulation of the problem is done in the
discrete time model instead of a continuous time model as is the case with RFP which
uses a different form of generalized frequency mapping [Peeters, Van der Auweraer et

al., 2004]. This is explained further in Chapter 4.

2.1.4 Maximum Likelihood (ML) Estimator Based Algorithms

In addition to above mentioned algorithms, most of which utilize a least squares
approach to estimate the modal parameters, researchers have also tried to utilize
Maximum Likelihood (ML) estimator based optimization technique to estimate the modal
parameters [Scoukens, Pintelon, 1991; Pintelon, Guillaume et al., 1994].

This algorithm involves estimation of the same model as represented by Eq. (2.11) by

Gauss-Newton optimization of the negative log-likelihood function given as

Ny

i

2.12)

. 2
o lifo)- (o)
ZML (‘9) - ; P Var{H 0i (a)f )}

where 8 are the coefficients of the polynomial (ax and B«), N, and N; are number of
outputs and inputs and H(w) is the measured FRF. However, for more robust and faster
implementation, a logarithmic estimator, as shown in Eq. (2.13) is minimized instead of

the above mentioned function [Guillaume, Verboven, Vanlanduit, 1998].

2.13)
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The ML estimator approach is extended to OMA in similar manner as other popular EMA
algorithms by applying the method to response power spectrum data instead of FRFs
[Hermans, Van der Auweraer, Guillaume, 1998].

Since the ML estimator algorithm uses an optimization scheme, it is iterative and
requires a good starting values. It is interesting to note that a least squares approach as
in RFP or PolyMAX is used to get good initial values and it is observed that these values
are themselves good estimates of the modal parameters and further iterations doesn’t
result in any considerable improvement [Verboven, 2002; Zhang, Brincker, Andersen,

2005].

2.2 Issues with OMA

The very assumptions that make the OMA procedure possible are also the cause of its
limitations. The unavailability of input excitation force information leads to hindrances at
various modal analysis stages which are interrelated. These issues are briefly listed in
the following points.

1. Data Acquisition: Since the excitation force to the structure is provided by natural
means, quality of acquired data now depends on uncontrolled factors. For
example, while analyzing a building, it is important to have sufficient excitation
being provided by natural sources like the wind in order to get a good signal-to-
noise ratio. In addition to this, longer time histories are required in order to
compute better and more accurate estimates of the response power spectrums
(or correlation in time domain), in comparison to that required for computing
FRFs as in EMA. This aspect will be discussed further in Chapter 7. Yet another
aspect of dependence on natural excitation is that one can’t be sure whether all

the modes of interest are being excited or not. This is also the basis of the
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second assumption listed in Chapter 1, which states that the excitation should be
spatially complete, which will ensure that it excites all the modes of interest.

2. Data Processing: Output power spectrum has twice the order of a FRF and
contains the same system related information twice, in slightly different form. In
order to estimate the modal parameters accurately, special data processing
techniques, such as calculation of positive power spectrum (Chapter 3), is
needed to make modal parameter estimation algorithms work satisfactorily.

3. Parameter Estimation: Issues associated with output power spectra as
mentioned in the previous point also make the parameter estimation process
more complicated. Further, unavailability of input excitation forces means that the
obtained mode shapes are not scaled.

These issues also affect the application of modal parameters for other purposes such as
sensitivity analysis, structural modification, modal updating, force identification, structural
health monitoring, etc. as these require a complete modal model which is not obtained
using OMA (the scaling factor cannot be directly determined). This problem also makes
it difficult to analyze huge structures such as a bridge because the number of sensors
available are often limited and a number of different setups are required to analyze the
structure completely. This causes a problem while stitching the mode shapes, obtained
from the various setups, together since it is very possible that excitation levels are
different while acquiring data for various setups. In absence of the force information
there is no simple way to normalize the mode shapes.

The scaling factor needed for completing the modal model can be obtained by
employing a mass change method [Parloo, Verboven, et al., 2002; Brincker, Andersen,
2003; Aenlle, Brincker, Canteli, 2005]. These methods are based on the fact that if a
small mass modification is made in such a manner that the mode shape practically

remains the same but natural frequency of the system changes only slightly. These
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methods are simple but tedious. Sometimes, it is required to perform several mass
changes to obtain good estimates. This is called the extrapolation approach. Also,
theoretically if mass changes are distributed in such a manner that the resulting mass
change matrix is proportional to original mass matrix of the system, then the error in
scaling factor is diminished. However, this is not practically possible and thus estimated
scaling factors tend to be error prone. Thus, in cases where scaling factor estimation is
must, conventional FRF based Experimental Modal Analysis techniques are preferred.
Yet another major issue with application of OMA to systems with rotating and
reciprocating parts is how to distinguish between the system modes and the harmonic
excitation. The prime assumption on which OMA works states that the input excitation
force is considered random and thus the input power spectra is broadband and smooth.
This means that the input power spectra is constant and has no poles or zeroes in the
frequency range of interest. This is however not true for systems with rotating and
reciprocating parts. The presence of harmonic excitation is common in systems like
ventilation systems, turbines, generators, and several automotive and aerospace
applications, and thus, in such systems, the excitation is a combination of random
stochastic excitation and harmonic excitation. The detection of harmonic components is
not only difficult, as there aren’t any straight forward ways to distinguish them from
system modes, but also important from the point of view of bias errors that they might
introduce in the estimated modal parameters.
The following are some of the ways to distinguish between the structural modes and the
harmonic response content:
1. One of the simple ways to distinguish between a structural mode and harmonic
excitation is that modes appearing due to harmonic excitation will have very low
(near zero) damping (though this might not be true if the frequency is not

constant) [Jacobsen, 2006]. A method was suggested by Mohanty and Rixen to
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distinguish the harmonic excitation but it required that the frequency of harmonic
excitation is known apriori. This information might be available in few cases but
that might not always be the case and thus this significantly reduces the
effectiveness of this method [Mohanty, Rixen, 2004].

2. Yet another way of detecting harmonics is based on the fact that the probability
distribution function (PDF) of a harmonic response is different from that of a
stochastic structural response [Brincker, Andersen, Moller, 2000]. The PDF of a
harmonic response is a distribution having two peaks where as that of a
structural response due to stochastic excitation is a Gaussian distribution having
single peak. This method is, however, not very successful if frequency of the
harmonic excitation is close to a structural mode as in such a scenario the pdf

will be a combination of the two unique PDF shapes.

2.3 OMA Applications

As stated earlier, the problems encountered during attempts at EMA of large complex
structures such as buildings, stadiums and bridges that caused OMA to be developed.
Thus civil structures were the first applications to which the OMA techniques were
applied. Civil structures still remain the most popular OMA application area. In current
literature, there are several real life cases of application of OMA techniques to civil
structures for parameter estimation. The Swiss Z24 highway bridge was tested
considerably and data was collected under various excitation scenarios including under
ambient conditions. Several OMA parameter estimation methods were applied and
evaluated for comparison and performance basis. These methods included from
simplest peak picking to more involved SSI and polyreference LSCE methods. The
methods yielded comparable modal parameters [Andersen, Brincker, Peeters et al.,

1999]. In a follow up to this paper, the performance of OMA techniques was compared
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with EMA methods. This study provided insights to various OMA methods from a
practical application point of view and the results showed that SSI method gave the most
complete and consistent modal parameters. It was also suggested that if the structure
has low natural frequencies, below 1 Hz, then they are best excited by ambient sources
or by drop weight excitation. In such cases use of a shaker might not be advantageous.
Further, the high frequency modes are not always well excited by ambient sources.
Importantly, if continuous health monitoring is one of the intended purposes then only
ambient excitation can be used [Peeters, Ventura, 2003].

Ambient vibration based studies were conducted on the Heritage Court Tower 2 in
Vancouver, Canada. Several papers were presented in the proceedings of International
Modal Analysis Conference (IMAC) in 2000 in relation to this study. The summarized
results of this study are presented by Horyna and Ventura [Horyna, Ventura, 2000]. As
with Z24 bridge study, this study also concludes that there is a good agreement between
results obtained through the various techniques and, though SSI is bit more elaborate
procedure, it results in consistent estimation of modal parameters.

OMA algorithms have been very popular in application to civil engineering structures,
since, they have found application in automotive and aerospace applications as well.
FDD and SSI algorithms were applied to a car body subjected to engine excitation
[Brincker, Andersen, Moller, 2000] and also to a diesel engine [Moller, Brincker,
Andersen, 2000]. In [Hermans, Van der Auweraer, 1999] pLSCE and CVA and BR
variants of SSI-COV algorithm were applied to rear suspension system of a passenger
car to identify the modal parameters. The operational data in this case was collected by
running the vehicle on a rough asphalt road at a speed on 50 km/hour. The main
purpose of this study was to identify the source of a booming interior noise at around 80
Hz. With the help of OMA tests, the first bending mode of the rear suspension twist

beam was identified around 70-80 Hz which was the potential cause of the problem. The

32



study suggested that the mode was more easily identified by CVA and BR algorithms in
comparison to pLSCE.

This paper also presents a case study where OMA is applied to flight flutter test data.
The aim of the study was to find out the robustness and suitability of these techniques to
non-stationary conditions as those encountered in flight flutter testing. In this example
the SSI-COV also methods gave better results than the pLSCE results. In yet another
study, flight flutter data was analyzed using least squares time and frequency domain
algorithms as well as maximum likelihood based approach [Vecchio, Peeters, Van der
Auweraer, 2002]. It was observed that time domain LSCE does not perform as well as
the other methods.

The performance of subspace based OMA methods was evaluated for time varying
structures by applying these methods to Ariane 5 launcher [Goursat, basseville et al.,
2001]. The data was collected over the commercial flight of the space launcher under
unknown natural excitation. It was observed that, more important than the varying nature
of the structure, it is the location and number of the sensors that poses more challenges

while analyzing such a complex structure.

2.4 Conclusions

This chapter provides the theoretical background and past research carried out in the
area of the Operational Modal Analysis, thus laying the foundation for the work to be
presented in the coming chapters. Various popular OMA algorithms have been
discussed in terms of their development and limitations. The major issues associated
with OMA have been highlighted and significant OMA case studies in the various
application areas have been listed. OMA is still a growing area and has shown
tremendous promise as a useful tool for analyzing structural dynamics related problems.

OMA research studies are presented frequently at the International Modal Analysis
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Conference (IMAC) and at the International Seminar on Modal Analysis (ISMA) and
more details on the state-of-art research in OMA can be obtained in the proceedings of
these conferences. Recently a new conference, International Operational Modal
Analysis Conference (IOMAC), dedicated to the field of OMA has started. This
conference is organized once in every two years and was organized for the first time in

2005. This is another excellent source for OMA related research.
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Chapter Three

Unified Matrix Polynomial Approach
for Operational Modal Analysis

One of the significant contributions of the Unified Matrix Polynomial Approach (UMPA)
[Allemang, Brown, Fladung, 1994; Allemang, Brown, 1998; Allemang, Phillips, 2004]
concept to the field of the experimental modal analysis (EMA) was to present the various
modal parameter estimation algorithms using a consistent mathematical formulation.
This approach not only helped in better understanding of the underlying similarities and
differences of the various algorithms, it also a provided a common framework to develop
these same algorithms which over the years had been developed in isolation.

The basic difference between the OMA based modal parameter estimation algorithms
and the more common EMA parameter estimation algorithms is the fundamental data
used. While EMA based algorithms use frequency response functions or impulse
response functions (normalized input-output functions in the frequency or time domain),
OMA based algorithms use output response power spectrum or correlation functions.
With so many obvious advantages both in terms of developing or understanding the
various parameter estimation algorithms and also in understanding the overall parameter
estimation process, it is very relevant to extend the concept of UMPA to Operational
Modal Analysis. This forms the motivation of this chapter where a unified matrix
polynomial approach based formulation is reviewed for various OMA algorithms. Section

3.1 discusses the general modal parameter estimation process and introduces the
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UMPA model. In Section 3.2, basics of OMA are discussed and UMPA is extended to
OMA framework. Section 3.3 provides the UMPA based mathematical equations of the
various time, frequency and spatial domain algorithms and finally a simple case study is

provided to show the effectiveness of the UMPA methodology in OMA domain.

3.1 Modal Parameter Estimation and UMPA

The matrix equation of motion for a general multi degree of freedom system is given by

(v o)+ [CRao)+ (K o)} = L (o)} 3.1)

where:

[M] is mass matrix,

[C] is damping matrix,

[K] is stiffness matrix,

{x(t)} is response vector and

{f(t)} is force vector.

The above equation represents the physical M-C-K model of the system. It is a second
order differential equation that can be solved either in time, frequency or Laplace
domain. This second order model can be converted into higher order model to handle
the case where spatial information is truncated to a size smaller than the number of
eigenvalues in the measured data. One way to develop this concept is to obtain the
characteristic equation by Laplace transforming Eq. (3.1).

Thus

[p1s? +[cls+ [k Jfox (5)} = {7 (s)} 3.2)
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and the characteristic equation becomes

[p]s? +[Cls+[x]=0 3.3)

The partitioned form of above equation can be written as

[Mll] [MIZ] T [Mlm] [Cll] [Clz] T [Clm]

[le] [Mzz] - [Mzm]sz 4 [CZI] [sz] - [sz]s i

[Mml] [Mm2] T [Mmm [le] [sz] T [Cmm

K] [€:] - [K,] >
K] K] - ] g

[Kml] [sz] - [Kmm

This equation can be expanded to a higher order matrix polynomial and put in a generic

form as

[azm]szm +[a2m_l]s2m—l Tt +[ao]20 3.9)

Note that size of [a] is same as the size of the portioned sub matrices and each [a]

matrix involves a matrix product and summation of several [Mij]’ [C,-,] and [Kij] sub

matrices.
The higher order equation Eq. (3.5) has the same eigenvalues as the original second
order differential equation Eq. (3.1). The general matrix polynomial formulation of the

differential equations in the time, frequency and Laplace domain is given by
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Time Domain (Continuous)
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The above described matrix coefficient polynomial forms a good basis to understand the
common characteristics of different modal parameter estimation algorithms.

To understand the model further, Eq. (3.7) is considered. This is the historically used
polynomial model for frequency response function (H(w)). If p and g are response and

excitation degree of freedoms respectively, Eq. (3.7) can be written as

. n . . 0
Hpq(a)i): . = Ry RE . \0 3.9)
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This can be rewritten as

H V= p ] — k=0
(@) £ ) ‘ 3.10)

or for a general multiple input, multiple output case

o] o)) £y 1] 1 511

k=0 k=

The size of coefficient matrices is normally N. X N, or N, X N _for [a,Jand N, X N_or N_X
N, for [B,] where N, and N are number of input and output degrees of freedom

respectively .

This general model corresponds to an AutoRegressive — Moving Average (ARMA(n,m))
model developed from a set of discrete time equations in the time domain. The model,
more appropriately, is an AutoRegressive with eXogenous inputs (ARX(n,m)) model.
The general matrix polynomial model concept recognizes that both time and frequency
domain models generate functionally similar matrix polynomial models. This model
which describes both domains is thus termed as Unified Matrix Polynomial Approach
(UMPA) [Allemang, Brown, Fladung, 1994; Allemang, Brown, 1998; Allemang, Phillips,

2004]. Note that Eq. (3.11) can be repeated at many frequencies (wj) until the system is

sufficiently over determined.
Parallel to above formulation, a time domain model can be developed. For a general

multiple input, multiple output case, from Eq. (3.6a)
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For impulse response or free decay data the above equation will reduce to

> la, Jalr,., )f=0 3.13)

m
k=0

as forcing can be assumed to be zero for all times greater that zero. Note that h(f) is
impulse response function.
The characteristic matrix polynomial equation, for the time and frequency domain are

given by Eq. (3.14) and Eq. (3.15) respectively.

| [a,] =" +a, ] 2" e, ] 2" +[e, ] |=0 3.14)

‘ [am] Sm +[am—1] Sm71+[am72] Sm’2+ _____ +[a0] ‘:0 315)

Once the matrix coefficients [a] are found, the modal parameters can be obtained in a
number of ways, the most common being the companion matrix approach. Eq. (3.16)

shows one of the ways in which the companion matrix [C] can be formulated.
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[C]: 3.16)

The roots of the characteristic equation can be obtained by using the companion matrix

to solve the eigenvalue problem, as in Eq. (3.17).

[Clix}=alrkx} 3.17)

It is important to note that the eigenvectors are of length model order m multiplied by the
matrix coefficient size, N; or N,. The useful portion of the eigenvector is of the length of
the coefficient matrix, i.e. N; or N, and is repeated in the eigenvector m+17 times, each
repetition being multiplied by integer power of the associated modal frequency. This can

be understood more easily through Eq. (3.18).
2w,

o =1 . 3.18)

The Unified Matrix Polynomial Approach as explained above provides common
framework to most commonly used modal parameter estimation algorithms. This unified

perspective provides for easy understanding of the various algorithms such as Complex
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Exponential Algorithm (CEA) [Spitznogle, 1971; Brown Allemang, et al., 1979], Least
Squares Complex Exponential (LSCE) [Brown Allemang, et al., 1979], Ibrahim Time
Domain (ITD) [Ibrahim, Mikulcik, 1977; Pappa, 1982], Polyreference Time Domain (PTD)
[Vold, Kundrat, et al.,, 1982; Vold, Rocklin, 1982], Polyreference Frequency Domain
(PFD) [Zhang, Kanda et al., 1984; Lembregts, Leuridan et al., 1986; Lembregts,
Leuridan, Van Brussel, 1989], Eigensystem Realization Algorithm (ERA) [Juang, Pappa,
1985; Longman, Juang, 1989], Multiple Reference Ibrahim Time Domain (MRITD)
[Fukuzono, 1986], Rational Fractional Polynomial (RFP) [Richardson, Formenti, 1982]
etc. which over the years have been developed in isolation. Table 3.1 shows how
various commercial modal parameter estimation algorithms fit into UMPA framework.
Thus UMPA model helps in understanding the similarities, differences and numerical
characteristics of the various modal parameter estimation algorithms by providing a
common mathematical structure. [Allemang, Brown, Fladung, 1994; Allemang, Brown,
1998; Allemang, Phillips, 2004] provide more insights and details of the modal parameter
estimation using the unified matrix polynomial approach.

The goal of modal parameter estimation is to obtain the modal model of the system
which is defined in terms of complex valued modal frequencies (A;), modal vectors ({y,})
and modal scaling (modal mass or modal A). However, in case of OMA the modal
scaling is not estimated due to lack of input force data. Thus the mode shapes are

unscaled mode shapes.

Table 3.1 - UMPA representations of various EMA algorithms

High Order Low Order Zero Order
Time Domain PTD, LSCE, CEA ITD, ERA, -
MRITD
Frequency Domain RFP, PolyMAX, AF PFD -
POLY, Orthogonal
Polynomial
Spatial Domain - - CMIF
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3.2 OMA Basics and Associated Signal Processing

To reformulate UMPA equations in OMA framework, the Eq. (1.4) is reconsidered.

[GXX (a))] = [H (a))] [GFF (w)] [H (a))]H

where [Gxx(w)] is the output response power spectra and [Gee(w)] is the input force
power spectra.
Recalling that in case of OMA the input force spectrum is assumed to be constant, it is

easy to note that the output response power spectra [Gxx(w)] is proportional to the

product [H(w)][H(w)]H and the order of output response power spectrum is twice that of
frequency response functions. Since [Grr(w)] is constant, [Gxx(w)] can be expressed in

terms of frequency response functions as

(G (@)] o= [H (@)1 [H (@)

In terms of the UMPA model of [H(w)] this can be expanded as

S o) | [ Sl 1er |
Gy (@,)=] 2 x| &0 3.19)
[, J o) [, J o)

Further, since (n < m), a partial fraction form of the modal model can be formed for the
output power spectrum which was shown in Chapter 1 by Eq. (1.6-c). This partial fraction

model for a particular response location p and reference location q is given by
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pak__ 3.20)

where S, and S;qk are redefined to incorporate (-1).

Note that A, is the pole and R,y and S,q are the k" mathematical residues. These
residues are different from the residue obtained using a frequency response function
based partial fraction model since they do not contain modal scaling factor (as no force

is measured). The form of Eq. (20-c) clearly indicates that the roots that will be found
from the power spectrum data will be 4,, 4, , — 4, and — A, for each model order 7 to N.

To formulate a unified matrix polynomial approach for Operational Modal Analysis, Eq.
(3.19) can be rewritten as

S0 le]] Guto=[ S ot 5] 11 521

k=0 k=

Note that the power spectrum UMPA model is twice the order of the FRF based UMPA
model. Further, the coefficient matrices a” and 8°, contains the same system parameter
related information twice. This explains Eqgs. (3.20-c) which shows that power spectrum
data contains the positive and negative poles.

The presence of negative poles can also be explained by means of correlation functions,
which are time domain equivalent of power spectrums. Figure 3.1 shows auto-correlation
function of a typical structural response obtained when the structure is randomly excited.
The correlation function is a symmetric function. Further, the positive lags give rise to the
decaying exponential portion of the correlation function and the negative lags results in

the growing exponential portion. There is essentially the same information in both the

44



decaying and growing exponential portions of the correlation function. This again
explains the presence of the positive (stable) and negative (unstable) poles as indicated
by Eq. (3.20-c) through the use of power spectrums. The positive and negative poles are
obtained from the decaying exponential and growing exponential portion of the

correlation function respectively.

¥ 10 Caorrelation Function
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Figure 3.1 — Auto-correlation function of a typical output response

The high order of the power spectrum based model in comparison to FRF based model
causes various disadvantages which makes it more difficult for the frequency domain
based algorithms to give good results as they inherently suffer from numerical
conditioning problems [Peeters, Van Der Auweraer et al., 2004; Phillips, Allemang, 2004,
Chauhan, Martell, et al., 2006]. This problem is not as severe in the case of time domain
algorithms. Most time domain OMA methods use information from the positive lag part of

the correlation functions only and thus estimate only the stable poles. Thus in case of
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time domain based methods the numerical problems resulting due to higher order of

power spectrum matrix can be avoided.

Positive Power Spectrum (PPS)
This problem of dealing with the higher order model and presence of positive and
negative poles forms the basis of the positive power spectrum which is defined in the

frequency domain by the following equation.

G (0) =3 e R .22

N R R’
o jo-4, jo-2,

The positive power spectrum is calculated by first inverse Fourier transforming the power
spectrum to obtain the circular correlation functions and then removing the negative lag
portion of the correlation function. This is equivalent to multiplying the correlation
function with the unit step function in the time domain. The resultant function is then
Fourier transformed back to obtain the positive power spectrum. Figure 3.2 illustrates the
process of obtaining the positive power spectrum from the output response data. The
advantage of positive power spectrum is that it has the same order as the frequency
response functions and also contains all the necessary system information (poles and
vectors). Thus UMPA equations can now be applied to positive power spectrum data to
perform operational modal analysis of the given system.

The UMPA equivalent equations of Egs. (3.12) and (3.13) for the operational modal
analysis can thus be written in terms of positive power spectrum Gxx* (in frequency

domain) and Correlation function Rxx (in time domain) as

n
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Note that only positive lags of the correlation function are used for the above formulation.

In the next section the various algorithms in terms of their UMPA formulation are

described.

Time History to
Positive Power Spectrum

e |

Figure 3.2 — Generation of positive power spectrum from output time
responses

Hilbert Transform Technique

In [Agneni, Brincker, Coppotelli, 2004; Agneni, Coppotelli, 2006] a method based on
Hilbert Transform technique is suggested to achieve an estimate of biased FRFs that
serve the same purpose as PPS in terms of avoiding the numerical conditioning issues
associated with power spectra while applying the frequency domain OMA algorithms.
The autopower spectrum Gxx(w) for a response point p due to input excitation force at

the point p can be written by modifying Eq. (1.4) as
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where Grr(w) is input force spectra and Hpp(w) is driving point FRF at point p. Thus the

magnitude of H,,(w) can be obtained as

|, (0] === 3.26)

It should be noted that since the input force is considered random, the power spectrum
will be constant, smooth in the frequency range of interest, which means that the Ger(w)

term will only influence the estimation of H,,(w) by scaling it with an unknown term

GFF(a)). Hyp(w) is however a complex quantity and for its complete estimation, one
needs to estimate the phase, which can be obtained by means of the Hilbert Transform.
This is possible because of the fact that the output responses are causal in nature.

phase(H o (a))) = —H[ln‘H o (a))u 3.27)

or

phase(H , (0))= —%H[ln(GXX (@))] 3.28)

Thus the biased driving point FRF, I:Ipp (a)) can be expressed in terms of the response

power spectrum Gxx(w) as

— (G ()]

I:Ipp (0)) = GXX (a)) e 329)

i
K
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where K = GFF(a)). The other FRFs (biased estimate) can be obtained by means of
the following relationship between non-driving point FRF ﬁpq (a)) output response cross

power spectrum [Gxx(w)],; and the driving point biased FRF I:Ipp(a)) as calculated

earlier.

; Gy, v, (@)

a,,(o)= ﬁ“ - 3.30)
" GFqu (Ct) pr ((0) -

The UMPA equations can now be modeled on I:I(a)) just like correlation and power

spectrum based models of Eq. (3.23) and (3.24).

Recently a Cepstrum based signal processing approach was also suggested to obtain
modal parameters from output responses [Hanson, Randall, et al., 2007]. This approach
is developed for systems excited by at least one cyclostationary (A signal whose
statistical properties vary cyclically with time) input with a unique cyclic frequency, which

limits the performance of the approach in very low-frequency region.

3.3 UMPA Formulation of OMA Algorithms

Before discussing the various algorithms, it is important to note that in the case of
Operational Modal Analysis only output responses are measured, thus the measured
data does not have any typical reference location as is typical of traditional experimental
modal analysis where reference locations are often the degrees of freedom where input
force is provided. In other words there’s no such thing as a driving point FRF in case of
OMA. However, for the purpose of parameter estimation, certain response locations are
chosen as reference locations. These locations are chosen keeping the same

considerations as those while choosing the driving point FRFs, i.e. reference locations
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should be the degrees of freedom which excite most modes (or in case of OMA the
locations from where most modes can be observed, node points should be avoided,
etc.). Unlike the EMA case, though, the reference locations for the OMA case do not
mean that an independent excitation has been applied at these degrees of freedom.
Therefore, the independent information associated with the reference in the EMA case
does not extend to the OMA case. In the discussion that follows, N, refers to the
response locations chosen as reference locations and N, refers to the output response
locations. Also the starting equation in case of time domain algorithms is Eq. (3.24) and

in case of frequency domain algorithms is Eq. (3.23).

3.3.1 Time Domain Algorithms

Higher Order UMPA Model

Typically higher order UMPA algorithms utilize more temporal information in comparison
to the spatial information. In case of OMA this essentially translates to the number of
response locations being comparatively much higher than the number of reference
responses, i.e. N, >> N,r. The matrix coefficients in this case have the dimension N, X
Ner. Further, if m is model order, the total number of system modes that will be estimated
by the model is mN,.s which is much higher than the required 2N modes of the system.
Since N, is a small number, typically 2 or 3, the order m has to be high; thus such
algorithms are referred to as high order algorithms. The basic equation for this algorithm

is given as

(R, (0]
[R..(0,,)]

[[0{1 ] [0!2 ] _____ [am ]]N,,q,.me,(,ﬂ _ = _[Rxx (ti+0 )] N, %N, 3.31)

[Rxx (ti+m )] mN XN,
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Note that the above equation utilizes zero order coefficient [ag] normalization. Similar
equations can be developed by normalizing other coefficients to come up with different
set of solutions. This normalization is very important with respect to where the unwanted
poles, associated with the noise in the data, are found [Allemang, 1999]. This aspect of
the coefficient normalization affects all model solutions (high and low order, time and
frequency domain). Every solution will comprise of mN,¢ number of modes out of which
2N will be genuine system modes and rest will be computational modes. One of the
ways to filter out these computational modes is to compare the solution obtained by
normalizing various coefficients. The true modes of the system will be retained in each
solution but computational modes will differ and can thus be filtered. Once the coefficient
matrices are obtained, the roots of the matrix characteristic equation can be found as the
eigenvalues of the associated companion matrix. As mentioned earlier, while working
with correlation functions, care should be taken to utilize only the positive lag portion of
the correlation function.

The popular Polyreference Time Domain (PTD) [Vold, Kundrat, et al., 1982; Vold,
Rocklin, 1982] algorithm is a multi-input, multi-output version of a high order UMPA
model based algorithm. Similarly, the Complex Exponential [Spitznogle, 1971]and Least
Squares Complex Exponential algorithms [Brown Allemang, et al., 1979] are SISO and

SIMO versions of this model.

Lower Order UMPA Model

Lower order algorithms use more spatial information in comparison to temporal
information. The matrix coefficients a have a dimension 2N, X 2N, (or N, X N,) and
model order m is 1 (or 2). Thus, the total number of modes obtained through the

algorithm is 2N, which is more than the required 2N number of system modes. Ibrahim
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Time Domain (ITD) [Ibrahim, Mikulcik, 1977; Pappa, 1982], Eigensystem Realization
Algorithm (ERA) [Juang, Pappa, 1985; Longman, Juang, 1989] and Multiple Reference
Time Domain (MRITD) [Fukuzono, 1986] algorithms belong to this category of UMPA
formulation. In the OMA domain, this lower order UMPA formulation is equivalent to the
Stochastic Subspace Identification (SSI) algorithm [Hermans, Van der Auweraer, 1999;
Peeters, 2000] that uses a state space model based on output response correlation
functions. The process of obtaining the modes once the coefficient matrices have been
found is same as explained in previous section. Eq. (3.32) shows the zero order

coefficient [ag] normalization with m = 1.
[R..(2.)] [R..(¢0)]
I P I 0.2
NN [Rxx(ti+2 )] 2N, %N, [Rxx(ti-H )] 2N, XN, )

3.3.2 Frequency Domain Algorithms
Higher Order UMPA Model

The frequency domain equivalent of higher order time domain algorithms can be
formulated using the UMPA model in the following manner as the time domain algorithm.

This formulation utilizes the positive power spectrum data rather than power spectrum.

(s, |61 (@)]
(s, (G (@,)]
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Note that in Eq. (3.33) the zero order coefficient [a,] is normalized and this equation can

be repeated for other frequencies. This model is the UMPA equivalent of the Rational
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Fraction Polynomial (RFP) (s; = jw;) [Richardson, Formenti, 1982] and polyreference

— €jX[UiXAt )

least square complex frequency (PLSCF or PolyMAX) (s, =z, [Guillaume,

Verboven et al., 2003; Peeters, Van der Auweraer et al., 2004; Peeters, Van der
Auweraer, 2005] algorithms. One of the disadvantages of high order frequency domain
algorithms like RFP is that these algorithms involve power polynomials with increasing
powers of the frequency. These matrices have Van der Monde form and suffer from poor
numerical conditioning problems for wide frequency range and high orders. This
obviously hinders the modal parameter estimation process. Along with limiting the
frequency range and reducing the order of the model, normalizing the frequency range
and using orthogonal polynomials are some of the methods to reduce this ill-conditioning
problem [Phillips, Allemang, 2004]. The polyreference least square complex frequency
(PolyMAX) algorithm proposed the use of complex z mapping and has been shown to
have much superior numerical conditioning than other prevalent RFP methods. These
aspects are discussed further in Chapter 4 while discussing the formulation of a low-

order frequency domain OMA algorithm.

Lower Order UMPA Model

Lower order, frequency domain algorithms are basically UMPA based models that
generate first or second order matrix coefficient polynomials. In Chapter 4 the UMPA-
LOFD algorithm [23] is proposed for OMA which is a second order (m=2) UMPA model
based algorithm. It is shown that the UMPA-LOFD algorithm has good numerical
characteristics in comparison to high order frequency domain algorithm. The matrix
coefficients in this case have N, X N, dimensions and thus the total number of modes
found is 2N,. Similar to high order frequency domain algorithms this basic equation can

be repeated for several frequencies and the matrix polynomial coefficients can be
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obtained using either [a,] or [a ] normalization The normalized zero order coefficient [ay]

version of this algorithm is shown below
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3.3.3 Spatial Domain Algorithms

Spatial domain algorithms like the Complex Mode Indicator Function (CMIF) [Shih, Tsuei
et al., 1989; Phillips, Allemang, Fladung, 1998; Allemang, Brown, 2006] and its
extension Enhanced Mode Indicator Function (EMIF) [Fladung, Philips, Brown, 1997;
Phillips, Allemang, Fladung, 1998; Fladung, 2001] can be treated as a special case of
the UMPA model where coefficient matrix has an order zero (m = 0). These algorithms
rely only on spatial information and essentially neglect temporal information (spatial
information is compared between different temporal solutions). These algorithms utilize
the singular value decomposition of the frequency response function matrix at each
frequency line to estimate the modal parameters of the system (See Chapter 2, section
2.1.2 for details). The Frequency Domain Decomposition (FDD) [Brincker, Zhang,
Andersen, 2000] technique is an extension of CMIF technique in the operational modal
analysis domain. This technique performs the singular value decomposition on the
power spectrum matrix instead of frequency response function matrix. The FDD
technique is followed by enhanced Frequency Domain Decomposition (eFDD) [Brincker,
Ventura, Andersen, 2000; Gade, Moller et al., 2005] technique to estimate the damping
and complete the parameter estimation procedure. In Chapter 5, an alternative to eFDD
algorithm is proposed which extends the EMIF algorithm to operational modal analysis

[Chauhan, Martel et al., 2006]. This algorithm differs from the eFDD approach in the
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sense that the parameter estimation is carried out in the frequency domain unlike eFDD

where the parameter estimation is done in the time domain.

3.4 Case Study: Lightly Damped Circular Plate

Having developed various OMA algorithms using the UMPA formulation, these
algorithms are now applied to a simple lightly damped circular plate. A circular plate, due
to its peculiar geometry, is a good experimental structure to test these algorithms as a lot
of closely spaced modes are present. The plate is excited randomly all over its surface
by means of an impact hammer. A total of 30 accelerometers are placed over the plate
to measure the output response (Figure 3.3).

The modal parameters obtained using various OMA algorithms are shown in the Table
3.2. The modal parameters obtained using the various UMPA formulated OMA
algorithms show very good agreement. The purpose of this case study is not to
comment on the performance of the individual algorithms but the fact these algorithms
can be developed very easily if the underlying unified concept is understood. UMPA

methodology aid greatly in this regard and this underlines its utility and effectiveness.

1 = -

Figure 3.3: Experimental set up for the lightly damped circular plate
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Table 3.2: Modal parameters estimated using various UMPA formulated
OMA algorithms

System mades
using EMA

UMPA Higher
Order Time
Domain (PTD)

UMPA Lower Ordler
Time Domain (ERA)

UMPA Higher
Ordler Frequency
Domain (RFP or

PLSCE)

UMPA Lower Orler
Frequency Domain
(PFD or LOFD)

UMPA Higher Ordler
Frequency Domain
with complex z
mapping (RFP-z or

UMPA Lower
Order Frequency
Domain with
complex z
mapping (PFD-z or

UMPA Zero Order
Spatial Domain
{CVIF-EMIF)

PobMAX) LOFD 7

Damy
0.258
0.185
0312
0412
0.147
0.243
0116
0214
0137
0.084
0174
018
0.176
0313
0.209

Freq
56,591
57194
96577
13210
13265
119582
220951
man
3200
3529497
3h5 508
374 hh4
377 568
12414
486,801

Damyp
0611
0.632
0.636
0.351
0.304
0.302
041
0.252
0.12
0.152
0.224
0.73
0.239
0.245
0.2

Freq

56439
5719
46571
131702
132,539
219094
121075
230 545
232101
31,214
355,303
T34
37649
411,168
48472

Damp
0.611
0.619
0.631
0.338
0.31
0.3
0.37
0.26
0.2
0.144
0.222
0.1
0.242
0.238
0.2

Freq
56 436
571497
36 A6
131.705
132,601
218,082
121188
230,553
232085
34118
335,283
373,381
7013
411138
484 627

Damy
0.663
0.664
0.638
0.353
0.312
0.249
0.367
0.257
0.247
0.151
0.21
0.7
0.236
0.241
0.241

Freq
56 462
5714
96 B
131847
132743
18.373
111,35
230,855
132391
21,69
355,78
373041
377408
11728
485,408

Damy
0612
0621
.36
0.342
0.285
0.3
0.364
0.256
0.215
0147
0.21%
0.268
0.236
0.241
0.219

Freq
56478
571483
46 A5
131.83
13276
19375
121,358
230,851
132384
351 677
05773
373033
377404
NI
485,405

Damp
0.762
0.717
0.637
0.348
0.302
0.303
0,366
0.257
0.2
0.151
0.21%
0.271
0.236
0.241
0.219

Freq
56504
5704
46 B2
13184
132723
119,364
1 344
230 856
1324
351,715
355 401
373036
377 406
173
485,397

Damy
0578
(.66
0526
0,364
0.337
0.242
0,359
0.264
0.18
0.138
0.207
0,269
0.735
0.244
0.225

Freq
56542
57152
46 653
131 841
132735
219368
PYARY,
230843
13241
351,716
355 801
373882
377 448
11734
485,425

Damyp
0671
064
0547
0,359
0313
0319
0,283
0.279
0.144
0.161
0232
0478
0.243
0.252
0.224

Freq
56 461
5711
46 fifid
131 86
13278
1937
N6
230 86
321
35169
3578
7382
1A
173
48538

3.5 Conclusions

In this Chapter, the concept of Unified Matrix Polynomial Approach (UMPA) is extended
to Operational Modal Analysis. It is shown how various time, frequency and spatial
domain OMA algorithms can be formulated using the UMPA model. Emphasis is placed
on understanding the basic difference between traditional Experimental Modal Analysis
and output-only Operational Modal Analysis, the various assumptions made in the case
of OMA and how the fundamental data (correlation functions and power spectrums)
should be used in order to utilize the UMPA model for the purpose of parameter
estimation in the case of OMA. It is revealed that understanding the underlying basic
polynomial model not only helps in theoretical development of various algorithms but
also provides a common framework which makes it much easier and simpler to

understand these algorithms. It is important to reiterate that assumptions concerning the
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nature of the assumed excitation (smooth and broadband in frequency, spatially well

distributed, etc.) are critical to the success of OMA methods.
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Chapter Four

UMPA-LOFD: A Low Order Frequency
Domain Algorithm for OMA

Most of the algorithms for Operational Modal Analysis work in the time domain and there
are very few frequency domain based algorithms. Only FDD and eFDD can be classified
as frequency domain algorithms though they too are essentially spatial domain
algorithms. One of the reasons for the lack of frequency domain algorithms in OMA
framework can be attributed to poor numerical conditioning problems associated with
them. Traditional higher order algorithms like Rational Fraction Polynomial (RFP)
[Richardson, Formenti, 1982] have been known to suffer from this problem of poor
numerical characteristics. Limiting the frequency range, reducing the order of the model,
normalizing the frequency range and using orthogonal polynomials are some of the
methods used in the past to reduce this ill-conditioning problem in traditional
experimental modal analysis set up. However estimating modal parameters in the
frequency domain using output-only response data still remains a challenge as the
numerical conditioning problem is much more severe in the case of OMA since the order
of the power spectrum based model used in OMA is twice that of the frequency
response function based model used in EMA. Recently, a new method called
Polyreference Least Squares Complex Frequency (PolyMAX) [Guillaume, Verboven et
al., 2003; Peeters, Van der Auweraer et al., 2004] was proposed that builds upon the

classical least squares complex frequency domain estimator by using a complex Z
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mapping (or trigonometric orthogonalization) to improve numerical conditioning. Along
with implementing this method in traditional FRF based experimental modal analysis
framework, it was also extended to operational modal analysis [Peeters, Van der
Auweraer, 2005].

In this chapter the Unified Matrix Polynomial Approach (UMPA) [Allemang, Brown, 1998;
Allemang, Phillips, 2004], as discussed in previous chapter, is utilized for developing a
low order frequency domain algorithm (UMPA-LOFD) suited for the output response
based OMA framework. The algorithm is applied to an analytical 15 degree of freedom
system and also a lightly damped circular plate. It is shown to have better numerical
characteristics than high order frequency domain algorithms and the results are
comparable to time domain based OMA algorithms. Additionally, complex Z mapping is
used with a low order frequency domain algorithm for the purpose of operational modal
analysis and its performance is evaluated and compared with the low order frequency
domain algorithm (UMPA-LOFD) which does not use the complex Z mapping. The
complex Z mapping was first used in the polyreference least squares complex frequency
(PolyMAX) algorithm and demonstrated another method that gives better numerical
characteristics with high order frequency domain based methods. The concept is applied
successfully not only to other traditional, frequency domain experimental modal analysis
methods but also in the field of operational modal analysis. Thus it is worth exploring if
complex Z mapping improves the low order algorithm in the same manner as the high

order frequency domain algorithm.
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4.1 UMPA-LOFD

The UMPA equivalent equations for the operational modal analysis were shown in
Chapter 3, Eq. (3.23) and (3.24). These equations are in terms of positive power

spectrum Gxx" (in frequency domain) and correlation function Rxy (in time domain).

n
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Lower order, frequency domain algorithms are basically UMPA based models that
generate first or second order matrix coefficient polynomials. To estimate a large number
of system poles using a low order algorithm, the long dimension of the PPS matrix
(positive power spectra are the primary data on which the algorithm operate) N, X N;,
must be at least as large as the number of positive modal frequencies desired. The
UMPA-LOFD algorithm can be developed by substituting model order m=2 in the

multiple input, multiple output PPS model of Eq. (4.1).

lejo ) +lew i)+l ]| G (@)]=181j@)+15] 43)

This basic equation can be repeated for several frequencies and the matrix polynomial

coefficients can be obtained using either [a,] or [a ] normalization.
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Once the matrix polynomial coefficients are obtained, a companion matrix can be formed
(as shown in Chapter 3) and eigenvalue decomposition can be applied to estimate the

modal parameters i.e. modal frequencies and modal vectors.

4.2 Numerical Conditioning Issues and Generalized
Frequency

As discussed previously, frequency domain modal parameter estimation algorithms
suffer from poor numerical conditioning characteristics. The data matrix used for
estimating the matrix coefficients in the case of frequency domain algorithms are of the
Van der Monde form (Eq. (4.6)) and involve power polynomials which are functions of
increasing powers of frequency. This data matrix has a high condition number and is ill-
conditioned especially for wide frequency range and high orders if the polynomial. The
Condition Number is measure of the sensitivity of the solution of linear equations to
errors, or noise in the data. Condition Number is essentially the ratio of the largest
singular value to the smallest singular value of the data matrix. For good numerical

conditioning the Condition Number should be close to unity.
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Following are some of the ways to overcome the numerical issues with frequency

domain algorithms [Allemang, Phillips, 2004]:

Minimizing the frequency range of the data

This means that while estimating the modal parameters, the algorithm fits the
data only within a limited frequency range.

Minimizing the order of the model

This is essentially what lower order algorithms do. By restricting to a low order
the power to which the polynomial is raised is not high and thus the numerical
issues can be avoided.

Normalizing the frequency range of the data

Use of orthogonal polynomials

Complex Z mapping

Normalization, use of orthogonal polynomials and complex Z mapping methods map the

data to a new generalized frequency without alteration in order to reducing the numerical

conditioning issues. This concept where the data in the frequency range is mapped to a

different frequency mapping is called Generalized Frequency.

1. Normalized Frequency

In this method the frequency range is mapped between (-1, 1) in the following

manner
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S; =j * (wI/ wmax) 47)

This mapping results in comparatively better numerical conditioning in comparison to
the original mapping where frequency range was between (-Wmax, Wmax). After
estimation of modal parameters, the correct modal frequencies can be obtained by
multiplying them with wmax.

2. Orthogonal Polynomials

The numerical issues associated with frequency domain algorithms can be also be
reduced by converting the power polynomial series into an equivalent orthogonal
polynomial series by using the relationship in Eq. (4.8). Some of the commonly used
orthogonal polynomials are the Forsythe Polynomials [Richardson, Formenti, 1982]
and the Chebychev Polynomials [Vold, 1986; Shih, 1989]. The orthogonal polynomial

series can be obtained in following manner.

Z(Si)kak = Zpk(si)7/k 4.8)
k=0 k=0
Py(s,)=1.0 4.9)
P (s;)= P/ (s;) 4.10)
RHl(Si) = anSiPn(Si)_an,kPk(Si) 411)
k=0

Difference between the various orthogonal polynomials is due to the different
weighting coefficients used to generate them and also the range over which they are

orthogonal. The Forsythe polynomials are orthogonal over (-2, 2) where as
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Chebychev polynomials are orthogonal over (-1, 1). In the orthogonal polynomial
approach, the original unknown matrix coefficients a, are replaced by y, and these
are then utilized for find the roots of the equation by forming a companion matrix as

explained in the previous chapter. It should be noted that in this case the solution of

the modal parameters is found using the following equation.

[c]+ ] {xj=2 ] ix) 4.12)

[W.] and [W,] are the weighting matrices which differ depending on the orthogonal
polynomial used.

3. Complex Z Mapping

The major motivation behind the development of the polyreference least squares
complex frequency (PolyMAX) algorithm was to overcome the numerical problems
inherent with the high order, RFP frequency domain algorithms [Phillips, Allemang,
2004; Allemang, Phillips, 2004]. The polyreference least squares complex frequency
(PolyMAX) algorithm is essentially RFP algorithm with complex Z mapping and will
subsequently be referred to in a generic sense as the RFP-Z algorithm. The RFP-Z
algorithm replaces the mathematically cumbersome orthogonal polynomial method
by a trigonometric mapping function (complex Z mapping) [Peeters, Van der
Auweraer et al., 2004; Allemang, Phillips, 2004].

The generalized frequency in case of UMPA-LOFD algorithm is just the normalized

power polynomial given by Eq. (4.7)

Si =j * (wI/ wmax)
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Thus the generalized frequency variable is bounded by (-1, 1). The complex Z

mapping on the other hand is given by

g = Z[ — ejxnx(a),-/a)max) — ejxa)xAt 4.13)
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Using this mapping the positive and negative frequency ranges are mapped to the
positive and negative unit circles in the complex plane respectively. This yields a real
part of mapping functions which are cosine terms and an imaginary part which are
sine terms. Since sine and cosine functions are mathematically orthogonal, the

numerical conditioning of this mapping function is quite good.

4.3 Case Studies: UMPA-LOFD Performance
4.3.1 Analytical 15 Degrees of Freedom System

An analytical 15 degree of freedom system as shown in Figure 4.1 is considered. To
simulate a near perfect operational modal analysis situation, the system is excited by a
white random uncorrelated input at all 15 degrees of freedom. Power spectrums are
calculated using the correlogram method [Stoica, Moses, 1997; Oppenheim, Schafer,
1989; Kay, 1988]. As explained before, the power spectrums are converted back to time
domain to obtain the correlation functions. The positive lags portion of the correlations is
retained while zeroing the negative lags portion and then it is Fourier transformed back

to frequency domain to obtain the positive power spectrums.
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Local Modes

Figure 4.1: Analytical 15 Degree of Freedom System

Figure 4.2 shows the auto power spectrum and positive power spectrum for the degree

of freedom number 1 or driving point 1 (GXX” and GXX11+). A complex mode indicator

function (CMIF) plot based on power spectrums as shown in Figure 4.3 indicates clearly
the presence of all 15 modes including a repeated mode around 53.3 Hz. It is noted that
a similar plot based on positive power spectrum does not yield satisfactory results and
thus positive power spectra cannot be used for the indication of modes using CMIF
method (Figure 4.4). Further it has been observed that in the case of insufficient spatial
excitation, the resulting CMIF does not give proper indication of the number of modes in
the system. In such cases, spatial domain algorithms like FDD and eFDD which are
similar to CMIF are difficult to use [Chauhan, Martell et al, 2006 (a); Chauhan, Martell et

al, 2006 (c)]. This is further explained in Chapter 5.
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Figure 4.3: Complex Mode Indicator Function (CMIF) based on power
spectrum (15 DOF analytical system)
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Figure 4.4: Complex Mode Indicator Function (CMIF) based on positive
power spectrum (15 DOF analytical system)

Table 4.1 illustrates the modal parameters obtained using the low order frequency
domain algorithm. The results obtained are compared to the true modes of the system
and also with the results obtained using other time domain algorithms like ERA, PTD.
Note that though these algorithms are referred by the name through which they are
known popularly in the conventional frequency response function based experimental
modal analysis framework, in this study they are essentially operational modal analysis
algorithms i.e. working on output-only data. As noted in the previous section, most OMA
time domain algorithms estimate modal parameters based on positive lags of the
correlation functions and thus it does not make much difference whether positive power
spectrums or simply the power spectrums are used for parameter estimation purposes.
The results obtained using UMPA-LOFD algorithm compare very well with those
obtained by more established time domain methods. The comparison with true modes of

the system is also good though damping values are in error. However this behavior is
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also shown by time domain methods. Since the damping values are expressed in
percent critical, the variation is not very significant for this case.

The consistency diagrams obtained for the ERA and PTD algorithms and the
consistency diagrams for the UMPA-LOFD and RFP algorithm are shown in Figures 4.5-
4.8 Note that in case of RFP and UMPA-LOFD, positive power spectrums are used.
Except for RFP, the consistency diagrams obtained using other algorithms are very clear
and show good stability of the modes. Note that the diamonds (¢) in the consistency
diagram represent stable pole and vector. Thus UMPA-LOFD not only gives comparable
results to time domain methods, it provides a frequency domain alternative to modal
parameter estimation using output-only data. The poor quality of consistency diagram in
case of RFP is due to the numerical conditioning problems and renders the RFP method
useless for modal parameter estimation purposes. The advantage of processing the
positive power spectrums instead of power spectrums can also be seen in the
consistency diagrams. Figure 4.9 shows consistency diagram for UMPA-LOFD based on
processing regular power spectrums. It is very evident that using positive power
spectrums considerably improves the consistency diagram and aids in stabilizing system

modes.
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Table 4.1: UMPA-LOFD modal parameter comparison for 15 DOF analytical

:
or

Frequency (Hz)

system
True Modes UMPA-LOFD UMPA-ERA UMPA-PTD
(Low Order, (Low Order, (High Order,
Freq Domain) Time Domain) Time Domain)
Damp Freq Damp Freq Damp Freq Damp Freq
1.0042 | 15.985 | 2.338 15.963 | 2.286 | 15.904 | 2.261 15.917
1.9372 | 30.858 | 2.517 30.863 | 2.478 | 30.691 2.445 30.731
2.7347 | 43.6 3.043 43.680 | 3.059 | 43.435 | 3.022 43.451
2.9122 | 46.444 | 3.431 46.437 | 3.394 | 46.179 | 3.399 46.178
3.3375 | 63.317 | 3.932 53.209 | 3.634 | 53.015 | 3.682 52.992
3.3454 | 53.391 3.296 53.306 | 3.385 | 53.148 | 3.390 53.102
3.7145 | 59.413 | 4.430 59.116 | 4.075 | 59.058 | 3.998 59.087
3.858 | 61.624 | 4.180 61.133 | 4.373 | 61.055 | 4.469 60.923
4.2978 | 68.811 4.291 69.237 | 4.397 | 68.633 | 4.800 68.462
4.5925 | 73.63 4.812 73.253 | 4.963 | 73.264 | 4.753 73.576
2.6093 | 128.84 | 2.712 128.848 | 2.672 | 128.909 | 2.432 | 128.587
2.4548 | 136.55 | 2.563 136.547 | 2.419 | 136.637 | 2.531 | 136.254
2.3288 | 143.86 | 2.426 143.869 | 2.360 | 143.973 | 2.591 | 143.325
2221 1150.83 | 2.314 150.799 | 2.390 | 150.606 | 2.486 | 150.576
2122 | 15747 | 2.216 157.444 | 2155 | 157.510 | 2.573 | 157.123
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algorithm (15 DOF analytical system)
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4.3.2 Lightly Damped Circular Plate

Experimental studies are conducted on a lightly damped circular plate made of
aluminum. The experimental set up is shown in Figure 4.10. The plate is randomly
excited all across its surface using an impact hammer. Accelerometers are placed at 30
locations for measuring the output response. For comparing the results obtained using
operational modal analysis to those using experimental modal analysis, a separate
experiment is conducted where the plate is excited at two locations using an ergodic,
stationary, broad-band pure random signal. To measure the input excitation force, two
force transducers are also placed at the excitation points. In this configuration the plate
is excited only at two locations, thus the plate is not excited uniformly over its surface. In
other words, this is the case of insufficient excitation which is a typical (perfectly
acceptable) frequency response function based modal analysis test configuration but a

non-ideal operational modal analysis configuration.

) = A Z1 ¥

Figure 4.10: Experimental set up for the lightly damped circular plate

Figure 4.11 shows the CMIF plots based on power spectra when the plate is excited

completely over its surface thus abiding completely with the assumptions of OMA.
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Table 4.2 lists the modal parameters estimated using various algorithms including the
UMPA-LOFD algorithm. There’s a good agreement among the results from various
algorithms. Figures 4.12-4.15 show the consistency diagrams for the different
algorithms. As expected, the consistency diagram for UMPA-LOFD algorithm is very

clear and is also comparable to consistency diagrams of the time domain algorithms.

Complex Mode Indicator Function
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Figure 4.11: CMIF plot based on complete power spectrums obtained when
plate is excited sufficiently over its surface
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Table 4.2: UMPA-LOFD modal parameter comparison for lightly damped

circular plate

System Modes UMPA-LOFD UMPA-ERA UMPA-PTD
Using EMA (Low Order, (Low Order, (High Order,
Freq Domain) Time Domain) Time Domain)
Damp Freq Damp Freq Damp Freq Damp Freq
0.258 | 56.591 | 0.612 56.478 0.611 56.436 | 0.611 56.439
0.285 | 57.194 | 0.621 57.253 0.619 | 57.197 | 0.632 57.191
0.312 | 96.577 | 0.636 96.665 0.631 96.561 0.636 96.571
0.412 | 132.101 | 0.342 131.830 0.338 | 131.705 | 0.351 131.702
0.147 | 132.650 | 0.285 132.760 0.310 | 132.601 | 0.304 | 132.589
0.243 | 219.582 | 0.300 219.375 0.301 | 219.092 | 0.302 | 219.094
0.216 | 220.952 | 0.364 221.358 0.370 | 221.088 | 0.371 | 221.075
0.214 | 231.172 | 0.256 230.851 0.260 | 230.553 | 0.252 | 230.545
0.137 | 232.077 | 0.225 232.394 0.220 | 232.095 | 0.212 | 232.102
0.089 | 352.997 | 0.147 351.677 0.144 | 351.180 | 0.152 | 351.214
0.174 | 355.509 | 0.219 355.773 0.222 | 355.283 | 0.224 | 355.303
0.180 | 374.554 | 0.268 373.933 0.271 | 373.382 | 0.273 | 373.424
0.176 | 377.569 | 0.236 377.505 0.242 | 377.013 | 0.239 | 376.990
0.313 | 412.414 | 0.241 411.727 0.238 | 411.138 | 0.245 | 411.168
0.209 | 486.801 | 0.219 485.405 0.220 | 484.627 | 0.220 | 484.720
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Further the independence of the various estimated modes is checked by the means of
modal assurance criterion (MAC) [Allemang, 1980, Heylen, Lammens, Sas, 1995] plot
as shown in Figure 4.16. It is evident that all 15 modes, most of which are closely
spaced modes, are independent and represent different modes of the system. The mode
shapes obtained for the circular plate are shown in Figure 4.17. The mode shapes are of
a similar nature to the ones obtained through experimental modal analysis, except that

they are not scaled.
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Figure 4.16: MAC plot for UMPA-LOFD algorithm (Circular plate)
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Figure 4.17: Selected mode shapes of the circular plate
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4.4 Case Studies: Effect of Complex Z Mapping on
UMPA-LOFD

In this section, the previous two case studies are discussed in view of the effect of

complex Z mapping on both high and low order frequency domain Operational Modal

Analysis algorithms. In addition to analyzing the modal parameter estimates, consistency

diagrams are also studied to analyze the performance of the various algorithms.

4.4.1 Analytical 15 Degrees of Freedom System

The 15 degree of freedom system as shown in Figure 4.1 is considered again. The

modal parameter estimation process is carried out using RFP, RFP-Z, UMPA-LOFD and

its complex Z mapping variation.

Table 4.3: Effect of complex Z mapping - Modal parameter comparison for
15 DOF analytical system

True Modes

UMPA-LOFD
(Low Order,
Frequency
Domain)

UMPA-LOFD
with Complex Z

Mapping

RFP
(High Order,
Frequency
Domain)

RFP-z
(High Order,
Complex Z

Mapping)

Damp | Freq

Damp | Freq

Damp Freq

Damp Freq

Damp Freq

1.0042 | 15.985

2.338 | 15.963

2.4028 | 15.9943

2.3531 | 15.9587

3.1379 | 15.976

1.9372 | 30.858

2.517 | 30.863

2.4530 | 30.8710

2.53 | 30.8519

2.8758 | 30.912

2.7347 | 43.6

3.043 | 43.680

2.9028 | 43.6425

2.9814 | 43.7026

2.9318 | 43.762

2.9122 | 46.444

3.431 | 46.437

3.3260 | 46.1123

3.4852 | 46.3877

3.3806 | 46.498

3.3375 | 63.317

3.932 | 53.209

3.5984 | 53.2767

3.5670 | 53.4123

3.0676 | 53.316

3.3454 | 53.391

3.296 | 53.306

3.3930 | 53.3452

3.3236 | 53.4890

3.5501 | 53.370

3.7145 | 59.413

4.430 | 59.116

3.9630 | 59.4063

4.1472 | 59.3597

3.7389 | 59.169

3.858 | 61.624

4.180 | 61.133

4.1202 | 61.2957

4.1735 | 61.4719

3.7502 | 61.240

4.2978 | 68.811

4.291 | 69.237

3.0884 | 68.9138

4.3943 | 68.9440

4.8688 | 68.612

4.5925 | 73.63

4.812 | 73.253

4.3108 | 72.5819

4.4734 | 73.2355

4.3604 | 73.220

2.6093 | 128.84

2.712 | 128.848

2.6453 | 128.8716

2.6415 | 128.9428

2.7789 | 128.965

2.4548 | 136.55

2.563 | 136.547

2.4747 | 136.5401

2.5578 | 136.5783

2.4850 | 136.684

2.3288 | 143.86

2.426 | 143.869

2.3172 | 143.8190

2.3947 | 143.8762

2.3207 | 143.919

2.221 | 150.83

2.314 | 150.799

2.1831 | 150.6178

2.2871 | 150.7683

2.2171 | 150.866

2.122 | 157 .47

2.216 | 157.444

2.3106 | 157.0458

2.2041 | 157.4022

2.1305 | 157.408
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Table 4.3 shows the modal parameters obtained by the four algorithms and the
corresponding consistency diagrams are shown in Figures 4.18-4.21. It is observed that
all the algorithms give good results though damping is over estimated for some of the
modes. The modal parameter estimation is subject to user experience and depends
significantly on parameters such as selected frequency range, choice of reference
responses and use of residuals to account for modes out of the frequency range of
interest, etc. It can be seen from Figure 4.18 that the higher order frequency domain
algorithm, RFP, does not yield a good consistency diagram. The consistency diagram
deteriorates severely as the order increases or a wide frequency range is chosen. This
can be attributed to the ill-conditioned matrices of the Van der Monde form. The poor
consistency diagram adds to the uncertainty of the obtained modal parameters and
requires significant user judgment. The application of complex Z mapping improves the
RFP-z consistency diagram significantly (Figure 4.19) thus underlining its significance
and contribution to the field of parameter estimation. The obtained consistency diagrams
are very clear and thus make it easy for the correct modes to be picked.

As shown previously, the numerical issues associated with the RFP algorithm are not
apparent in case of UMPA-LOFD algorithm. Unlike RFP which involves power
polynomials with increasing powers of the frequency resulting in ill-conditioned matrices,
the UMPA-LOFD algorithm being a low order algorithm does not run into these sorts of
numerical problems. The modal parameters estimated by UMPA-LOFD algorithm show
good agreement with the results obtained using other algorithms. Further the
consistency diagram (Figure 4.20) is very clear. One important thing to note with
application of UMPA-LOFD algorithm is that since it's a low order algorithm it requires
more spatial information than that required by RFP or RFP-Z.

Finally, complex Z mapping is applied to UMPA-LOFD to see if it results in any

significant improvement like in case of high order RFP algorithm. The obtained
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consistency diagram as shown in Figure 4.21 is very clear but does not provide any
prominent improvement over the UMPA-LOFD consistency diagram (Figure 4.20). It is
observed that unlike UMPA-LOFD, the complex Z mapping version is not able to pick
modes outside the selected frequency range of interest. It is also observed that the
complex Z mapping implementation of UMPA-LOFD cannot easily obtain the heavily
damped modes in the range 68-74 Hz. Overall it is observed, that complex Z mapping
when applied to UMPA-LOFD does not result in any significant advantage unlike its
application to the high order RFP algorithm. However no particular further judgment can
be made for this case, as both UMPA-LOFD and its complex Z mapping variation are

giving equally good results.
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Figure 4.18: Consistency diagram for Rational Fraction Polynomial (RFP)
algorithm (Analytical system)
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Figure 4.21: Consistency diagram for UMPA-LOFD with algorithm Complex
Z mapping (Analytical system)

4.4.2 Lightly Damped Circular Plate

The response data collected over the circular plate is analyzed using various algorithms
and the modal parameters are listed in Table 4.4. The estimated modal parameters
show good agreement with each other and also with the experimental modal analysis
based modal parameters. The consistency diagrams for the various algorithms for the
same frequency range are shown in Figures 4.22-4.25. It can be seen that the RFP-Z
gives a very clear consistency diagram. Application of complex Z mapping on UMPA-
LOFD algorithm also results in improving the consistency diagram but, as in the

analytical system, the effect is not as significant.
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Table 4.4: Effect of complex Z mapping - Modal parameter comparison for
lightly damped circular plate

EMA based
modal
parameters

UMPA-LOFD
(Low Order,
Frequency
Domain)

UMPA-LOFD
(Low Order,
Complex Z

Mapping)

RFP
(High Order,
Frequency
Domain)

RFP-z
(High Order,
Complex Z

Mapping)

Damp | Freq

Damp | Freq

Damp | Freq

Damp | Freq

Damp | Freq

0.258 | 56.591

0.612 | 56.478

0.578 | 56.542

0.663 | 56.462

0.762 | 56.504

0.285 | 57.194

0.621 | 57.253

0.66 | 57.252

0.669 | 57.214

0.717 | 57.24

0.312 | 96.577

0.636 | 96.665

0.626 | 96.653

0.638 | 96.663

0.637 | 96.662

0.412 | 132.101

0.342 | 131.83

0.369 | 131.842

0.353 | 131.847

0.349 | 131.84

0.147 | 132.65

0.285 | 132.76

0.337 | 132.735

0.312 | 132.743

0.302 | 132.723

0.243 | 219.582
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Figure 4.25: Consistency diagram for UMPA-LOFD with algorithm Complex
Z mapping (Circular plate)

4.5 Conclusions

Due to its good numerical conditioning properties, the UMPA-LOFD algorithm proposed
in this paper offers a frequency domain alternative in the field of operational modal
analysis. The problems associated with higher order frequency domain algorithms are
not encountered with the use of this algorithm and the obtained results compare well
with the established time domain based approaches. Case studies undertaken in the
paper, show that the modal parameters closely match the expected values and the
consistency diagram is of good quality. Further, the concept of utilizing the complex Z
mapping as in the polyreference least squares complex frequency (PolyMAX) algorithm,
or generically the RFP-Z algorithm, for the purpose of obtaining better numerical
characteristics for frequency domain algorithms is extended to UMPA-LOFD algorithm. It
is shown that complex Z mapping significantly improves the performance of the high

order frequency domain algorithms like RFP. The effect in the case of low order UMPA-
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LOFD is noticeable but not very prominent. However, with no apparent negative issues,
application of complex Z mapping to UMPA-LOFD can be considered as another
alternative for the purpose of modal parameter estimation using output-only data.
Further, this study should also be applied to real life systems which might throw some
more light on the effectiveness of complex Z mapping on UMPA-LOFD.

With diverse fields of application such as civil structures, automobile and aerospace
structures and complex rotating machinery falling in the domain of operational modal
analysis, the low order frequency domain algorithm with its promising results can be

considered as a good addition to the family of operational modal analysis algorithms.
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Chapter Five

OMA-EMIF: A Spatial Domain OMA
Algorithm

The Complex Mode Indicator Function (CMIF) is a popular spatial domain modal
parameter estimation technique that utilizes the singular value decomposition of the
frequency response function matrix for estimating the modal parameters of the system.
Due to several advantages like identification of closely spaced modes, this technique is
extremely popular for modal parameter estimation purposes. In recent times, the
Frequency Domain Decomposition (FDD) technique [Brincker, Zhang, Andersen, 2000]
extends the CMIF algorithm to the operational modal analysis framework. The FDD
technique works on the power spectrums unlike working on frequency response
functions as in conventional modal analysis. The FDD technique however suffers from a
limitation that one cannot estimate damping. Normally the FDD is followed by the
Enhanced Frequency Domain Decomposition (eFDD) [Brincker, Ventura, Andersen,
2000] to complete the overall parameter estimation procedure. eFDD is essentially a
single degree of freedom system identification approach that works in the time domain.
In this chapter an alternative to the eFDD, the previously introduced Enhanced Mode
Indicator Function (EMIF) [Fladung, Phillips, Brown, 1997; Fladung, 2001; Allemang,
Brown, 2006], is reviewed and extended to the operational modal analysis framework.
This algorithm differs from the eFDD in that the parameter estimation is carried out in the

frequency domain. Further the chapter analyzes the application of spatial domain
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algorithms to operational modal analysis framework in more detail. It discusses the
critical issues and limitations associated with the application of spatial domain algorithms
to the OMA framework under different excitation scenarios. It is shown in [Chauhan,
Martell et. al, 2005, Herlufsen, Gade, Moller, 2005; Gade, Moller et al., 2005] that spatial
domain algorithms suffer from some limitations when they are applied to conventional
EMA situations. When the system isn’t completely excited spatially, the resulting power
spectrum based singular value decomposition plots (or CMIF plots) differ significantly
from the FRF based CMIF and are often confusing. A simple tool, Singular Value
Percentage Contribution (SVPC) plot, is proposed to deal effectively with this problem.
This aspect is studied and explained with the help of an analytical 15 degree of freedom

system and experiments conducted on a circular plate and an H-Frame structure.

5.1 CMIF and FDD/eFDD

As previously stated, the FDD algorithm is inspired by the conventional CMIF algorithm.
CMIF involves a frequency by frequency singular value decomposition of the frequency
response function matrix [Shih, Tsuei, Allemang, Brown, 1989; Heylen, Lammens, Sas,

1997].

[H (a)k )]NUXN,. = [U(a)k )]NOXN, [Z(a)k )]NI-XN, [V(a)k )]x,xN, 5.1)

where

N, is number of outputs,

N;is number of inputs,

H(wy) is the FRF matrix at any frequency wy,

U(wy) is the left singular matrix at any frequency wy, which is a unitary matrix,

V(wy) is the right singular matrix at any frequency wy, which is also a unitary matrix,
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2(wy) is the singular value matrix at any frequency wy, which is a diagonal matrix.

As explained in Chapter 2, the Frequency Domain Decomposition technique involves the
singular value decomposition (SVD) of this output response power spectra matrix
frequency by frequency. Thus at any particular frequency wy the singular value

decomposition of Gxx results in

(G (@ )]=[U]STV T 5.2)

where [S] is the singular value diagonal matrix and [U], [V] are singular vector matrix
which are orthogonal. The singular vectors near a resonance are good estimates of the
mode shapes and the modal frequency is obtained by the simple single degree of
freedom peak-picking method. In this manner, the FDD algorithm gives an estimate of
the modal frequencies and the mode shapes and is followed by the enhanced
Frequency Domain Decomposition (eFDD) algorithm to determine the damping ()
associated with the mode, thus completing the modal parameter estimation process
(Figure 5.1).

In the eFDD algorithm, power spectra of a SDOF system is identified around a peak in
the SVD plot. A user defined Modal Assurance Criterion (MAC) rejection level is set to
compare the singular vectors around the peak and the corresponding singular values are
retained as those belonging to the SDOF power spectrum. This SDOF power spectrum
is transformed back to the time domain by an inverse FFT. The natural frequency and
damping are then estimated for this SDOF system by determining zero crossing times
and logarithmic decrement methods, respectively. Thus the parameter estimation in

case of eFDD algorithm is carried out in time domain.
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Figure 5.1 — eFDD estimation of modal frequency and damping

5.2 OMA-EMIF: Enhanced Mode Indicator Function
for OMA

The algorithm proposed in this chapter differs from the eFDD approach in the sense that
the modal frequency and damping estimation is carried out in the frequency domain.
This allows the use of residual terms to reduce the effects of out of band modes.
However, instead of processing the power spectrums, this algorithm utilizes positive

power spectrum which is mathematically represented as

n R R*
G (0)=Y L+t 5.3)
o Jjo—A, jo-4
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The EMIF algorithm [Fladung, Phillips, Brown, 1997; Fladung, 2001; Allemang, Brown,
2006] is reformulated here for use with positive power spectra. It involves the selection
of a frequency range containing a discrete number of frequencies N; and number of
modes N, to be identified in that range. The number of modes in the frequency band
cannot be greater than the number of singular values. When the frequency range to be
analyzed and the number of modes within the band have been chosen, the algorithm
uses the following process in the frequency domain to determine the modal parameters.

The first order model, frequency domain equivalent of the ERA method, is used to form

the augmented matrix [A] utilizing the cross-spectral matrix.

Gla) .. Gla) .. Gla) ... Gla) .. Gla) .. Gla,)

An SVD is then performed on the matrix [4,]. This calculation yields the left and right

hand singular vectors as well as the singular values.

[AO(a)i)]Nox(NiN,) :[U] [S] [V]H 5.5)

For the economical SVD, the size of [S] is the lesser dimension of (N,) or (NiNy). The
dominant right or left singular vectors {U} corresponding to the number of modes N, in
the frequency band are then used as modal filters to reduce the number of effective
positive power spectra. This creates an enhanced positive power spectrum (ePPS) in
the frequency band of interest that is similar to the enhanced frequency response

functions or eFRFs [Fladung, Phillips, Brown, 1997].

ePPS() = [G(0)]\, ., =[UTy, ., |G (@), >0
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This ePPS matrix is then used as the data matrix in a first order UMPA formulation. This

formulation may include N, residual terms [B,,] to account for out of band modes.

[(ja))[al]thNb + (ja))o [ao]zvhxzvb] [(T(a))]thNi = {Z_ (jo)" [;Bm (a) )]me,i} 5.7)

When rearranged, the equations yield the following when [a (] is set equal to [I].

+

[ja)C_?(a))]
] 8] - 1p.]-l6] ) 59
~[Geym

The equations yield the following when [a 4] is set equal to [/].

6] 1
o] 18] - B]=-letw)] 59)

It should be noted that in Eqn. (5.8) and (5.9) conjugate terms can be included. The
equations can then be reformulated in a second order form such that the solution also
includes conjugate poles. These equations can then be solved in a least square sense
for [a] and [B] matrices with either [a ] or [a o] assumed to equal [l]. The + sign in the
above equations represents Moore-Penrose pseudo inverse of a matrix.

The eigenvalues of the system can then be computed as the eigenvalues of the matrix
[ao] or the eigenvalues of the inverse of [a;]. The eigenvectors are the eigenvectors of
the enhanced system and therefore have little physical meaning. They must be

converted back to the original physical coordinates. This is performed by multiplying the
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eigenvectors from the enhanced system by the eigenvectors from the original physical

system.

_ H
{thysical}No vl [U :IND xN, {WEnhanced}Nb x1 5.10)

5.3 Singular Value Percentage Contribution (SVPC)
Plot

It is observed in case the of operational modal analysis that, when the system is
uniformly (completely) excited spatially, the resulting power spectra based CMIF plot
indicates the modes present in the system in the same manner as a FRF based CMIF
plot. However when the system is excited locally, in other words when the excitation is
insufficient spatially, the power spectrum based CMIF plot contains extra peaks at the
frequencies where modes are expected. The insufficient spatial excitation case for OMA
is typical of traditional FRF based experimental modal analysis. An analysis of the FRF
based CMIF plot for this case reveals that it is quite similar to the CMIF plot based on
power spectrums except that it does not have the extra peaks. Presence of more than
one peak around the same frequency in a FRF based CMIF plot usually indicates the
presence of a repeated or closely-spaced mode. However, in the case of power
spectrum based CMIF, the extra peaks may not be due to other modes but due to
insufficient excitation. Thus the presence of extra peaks in the power spectrum based
CMIF may act as an indicator of insufficient spatial excitation.

A method based on percentage contribution of singular values is devised to get around
this confusion caused by the presence of extra peaks. After singular value
decomposition of the Gxx matrix at every frequency, the percentage contribution of each
singular value to the total variance (Note that the singular values are a measure of

variance) can be plotted. The number of significant singular values can be found based
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on how many singular values are contributing to a large percentage of the total variance.
Any conclusion about the number of modes present in the system can now be made on
the basis of these significant singular values. This plot is referred to as Singular Value
Percentage Contribution plot or SVPC plot. As discussed earlier in this section, a FRF
based CMIF plot resembles the power spectrum based CMIF plot if only the significant
singular value curves are considered instead of all the singular value curves. Further, the
presence of a large number of significant singular values in the SVPC plot means that
the system is being excited spatially fairly well. On the other hand if only a few (two or
three) singular values are contributing to the total variance, it can be inferred that the
system is being excited more locally. In later sections, the utility of the SVPC tool is

shown through various examples

5.4 Experimental Validation

5.4.1 15 DOF ANALYTICAL SYSTEM

The fifteen degree-of-freedom analytical system shown in Figure 5.2 was excited by a
non-correlated random forcing function at each degree of freedom. The time domain
response at each degree-of-freedom was used to calculate the cross-spectral matrix
between all inputs and outputs. This cross-spectral matrix was then used to calculate
the Complex Mode Indicator Function for the system as shown in Figure 5.3. The CMIF
plot clearly indicates all the 15 modes present in the system and closely resembles the

CMIF plot obtained from a fully excited FRF based singular value decomposition.
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Figure 5.2: Analytical 15 DOF system
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Figure 5.3 — CMIF of spatially well excited 15 DOF analytical system
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Table 5.1 - Comparison of true modes and OMA-EMIF modes for 15 DOF
analytical system

True Modes Enhanced Mode
Indicator Function
(EMIF)
Damp Freq Damp Freq
1.0042 15.985 4.147 15.92
1.9372 30.858 3.163 30.87

2.7347 43.6 3.475 43.65
2.9122 46.444 3.688 46.69
3.3375 53.317 4.224 53.8
3.3454 53.391 4.857 53.9

3.7145 59.413 3.749 59.13
3.858 61.624 3.647 61.44
4.2978 68.811 4.038 68.29
4.5925 73.63 3.949 73.17
2.6093 128.84 2.51 128.46
2.4548 136.55 2.62 136.45
2.3288 143.86 2.459 143.91
2.221 150.83 2.299 150.9
2.122 157.47 1.773 157.86

Table 5.1 shows the comparison of true modes and the modal parameters obtained
using the EMIF algorithm. The modal parameters obtained using the proposed EMIF
algorithm are comparable to the true modes of the system which indicates that the
algorithm works well. The ability of the EMIF algorithm to identify closely spaced modes
and the possible inclusion of residuals makes it an attractive option for operational modal
analysis applications.

The system was next excited at limited locations, which is typical of traditional
experimental modal analysis where the system is excited by known input forces at a few
select locations. The CMIF plot for the case where the system is excited at three
locations is shown in Figure 5.4. It should be noted that the CMIF plot shown in Figure
5.5 based on frequency response functions for the same case of 3 point excitation
shows that it is quite similar to the CMIF plot based on power spectrums shown in Figure
5.4 (first three singular value curves) except that it does not have the extra peaks. It can

be observed that the CMIF plot (Figure 5.4) contains extra peaks at the frequencies
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where modes are expected. This makes it difficult to interpret the CMIF; whether the

peaks are indicating the presence of closely spaced modes or are just false indications

as in this case. This is more troublesome in real life situations where the acquired data

will not be as clear as in this analytical case.

10
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Figure 5.4 — CMIF of analytical system excited at three locations (Cross-
Power based)
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Figure 5.5 - CMIF of analytical system excited at three locations (FRF
based)
Figure 5.6 shows the Singular Value Percentage Contribution (SVPC) plot for the case
when the system is excited at only three points. It is very clear from this plot that out of
fifteen, there are only three significant singular values (3 curves). This means that only
three singular values are contributing toward the total variance, or in other words, the
system is not being uniformly excited spatially. As stated earlier, any system related
conclusion should now be made on the basis of the first three curves from which it can
be inferred that there are 13 modes present in the system. Table 5.2 presents the results
obtained using the frequency response function and output response power spectrum
data for this spatially insufficient excitation case. It should be noted that the EMIF
method, due to the inherent nature of enhancing the spectra using the singular vectors
does not extract the modal parameters for all modes even when using FRF based
methods. However, for all modes that were found, the results matched the true modes

quite well.
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Figure 5.6 - SVPC plot for spatially insufficient excitation case (Analytical
system)

Table 5.2 - FRF and Gxx based results comparison for spatially insufficient
excitation case

EMIF,Insufficient EMIF,Insufficient
Spatial Excitation Spatial Excitation

(EMA) (OMA)

Damp Freq Damp Freq
2.717 15.972 5.024 16.017
2.56 30.834 3.83 30.909
3.08 43.618 3.665 43.551
3.21 46.439 3.664 46.4
3.581 53.341 3.892 53.188
1.752 53.721 4.057 53.66
3.918 59.389 4.057 58.891
3.984 61.666 3.29 61.406
4.435 68.838 3.718 68.445
4.636 73.777 3.589 72.495
2.662 128.855 2.661| 128.602
2.509 136.559

2.388 143.874
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5.4.2 Lightly Damped Circular Plate

A lightly damped aluminum circular plate was instrumented with 30 accelerometers and
suspended by soft springs as shown in Figure 5.7. The plate was tested by three
excitation techniques. The first test case involved randomly impacting over the entire
surface of the plate, the second case involved impacting randomly over one quarter of
the surface area of the plate and the third case involved exciting the plate through the
use of electro-mechanical shakers at only two points on the structure. The excitation

signals for the third case were two uncorrelated random signals.

Figure 5.7 - Experimental set up for the lightly damped circular plate

The CMIF plot for the case where the plate was fully excited is shown in Figure 5.8. The
CMIF looks nearly identical to a CMIF obtained through a traditional modal analysis
utilizing Frequency Response Functions shown in Figure 5.10. The CMIF plots for other
two cases (quarter plate excitation and two point shaker excitation) are shown in Figure
5.11 and Figure 5.13. It is observed that when the plate is not uniformly excited spatially,
extra peaks begin to emerge in the CMIF plot. This effect, as explained with the
analytical system, tends to reduce the utility of CMIF plots as mode indicators. The more

localized the input forcing function, the more severe the effect on CMIF plot. The SVPC
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plots for the three cases (shown in Figures 5.9, 5.12 and 5.14) show that the number of
significant singular values decrease as the excitation becomes more and more local. As
explained earlier, for highly localized excitation, it is advisable to use only the significant

singular values in the CMIF plot as potential mode indicators.
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Figure 5.8 - CMIF of circular plate excited over the entire surface (Spatially
well excited)
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Figure 5.10 - CMIF of circular plate based on FRFs
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Figure 5.11 - CMIF of circular plate excited over one quarter of the surface
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Figure 5.12 - SVPC plot for circular plate excited in one quarter
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Figure 5.13 - CMIF of circular plate excited at two points
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Figure 5.14 - SVPC plot for circular plate excited at two points
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The results of the EMIF algorithm are shown in Table 5.3. The data used in this case

corresponds to the first case where the plate is excited over its entire surface. The

estimated modal parameters compare well with those obtained using the traditional FRF

experimental modal analysis.

Table 5.3 - Modal parameters estimated using OMA-EMIF for lightly damped
circular plate

Experimental Modal | Gxx Based EMIF
Analysis Estimation Estimation
Damp Freq Damp Freq
1.427 56.496 1.365 56.43
1.094 56.946 1.368 57.29
0.713 96.542 1.112 96.69
0.466 131.882 0.699 131.79
0.44 132.709 0.652 132.75
0.377 219.543 0.481 219.33
0.445 220.92 0.532 221.38
0.371 231.224 0.423 230.87
0.287 232.126 0.416 232.45
0.224 352.433 0.265 351.65
0.242 354.893 0.344 355.79
0.265 | 374.492 | 0.371 373.92
0.285 376.813 0.335 377.51
0.443 412.487 0.363 411.75
0.269 486.16 0.322 485.39
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5.4.3 H Frame Structure

The H-Shaped rectangular steel frame (H-Frame) shown in Figure 5.15 was excited first
by using two electro-mechanical shakers with a band limited random excitation signal at
two locations. The acceleration response at 58 locations was measured in the
frequency range of 0-625Hz. The H-Frame system was then excited by impacting
randomly over the entire structure. This excitation technique assured that the system
was spatially well excited. Again, the response at 58 locations was measured. The
cross-spectra between all output locations were calculated for both cases.

The cross-spectral matrix for the well excited case was then used to calculate the CMIF
plot shown in Figure 5.16. This CMIF closely resembles the CMIF that would be
calculated using a full FRF matrix for the same structure. However, when inspecting the
CMIF created from the system excited at only two locations, as shown in Figure 5.18, it
can be seen that it differs significantly from the previous example. The SVPC plots for
the two cases (Figure 5.17, 5.19) better illustrate the spatial distribution of the excitation
forces. As observed in the case of the analytical system and circular plate; the SVPC
plots clearly indicate when the H-frame is being excited spatially uniformly (Figure 5.17
indicates that there are a lot of significant singular values at most frequencies) and when
it is being excited locally (Figure 5.19 indicates that major contribution is from two

significant singular values only).
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Figure 5.16 - CMIF of the spatially well excited H-Frame structure
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Figure 5.17 - SVPC plot for spatially well excited H-Frame

Magnitude

AL L L AL

0 100

200

300
Frequency (Hz)

400

500

600
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Figure 5.19 - SVPC plot for H-Frame excited at two points

Table 5.4 - Modal parameters estimated using OMA-EMIF for the H-Frame
structure

Experimental Modal| Gxx Based EMIF
Analysis Estimation Estimation

Damp Freq Damp Freq

1.931 15.035 3.96 15.013
1.03 24174 4.48 24.267
0.856 36.112 0.013 35.747
0.79 55.729 1.413 55.734
0.411 76.165 1.127 75.879
0.253 151.349 0.119 150.408
0.353 157.83 0.695 157.588

0.422 166.828 0.755 166.463
1.038 185.888 1.838 184.269

0.187 186.671 0.442 186.252
1.023 201.716 1.26 201.314
0.578 294.066 0.542 293.686
0.484 305.472 0.606 305.334
0.108 404.394 0.195 404.226

0.159 413.021 0.247 412.697
0.129 419.93 0.222 419.744
0.339 461.706 0.429 461.039
0.124 478.475 0.291 477.607
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The effectiveness of the proposed EMIF algorithm is demonstrated again in Table 5.4 as

estimated modal parameters compare well with the corresponding EMA estimation.

5.5 Conclusions

In this chapter, a new approach for estimating modal parameters using the complex
mode indicator functions based on output-only response power spectrums is developed.
This technique, the Enhanced Mode Indicator Function, differs from the popular eFDD
technique as it estimates the modal parameters in the frequency domain. One of the
major advantages of estimating the modes in frequency domain is the ability to utilize
residuals which helps in improving the results by taking into account the contribution of
the out-of-band modes. The algorithm is shown to give good results by implementing it
on analytical and experimental systems. Additionally, unlike eFDD approach, more than
one mode can be estimated at a time.

Further, the second OMA assumption about the spatial distribution of the natural
excitation force is explored in more detail. It is shown how the ability of CMIF based
methods is limited when the system is not adequately excited spatially. Though such
problems are not encountered while analyzing structures such as bridges and buildings
(where forcing is uniform), in situations like automobiles on the road having narrow band
point excitations (such as engine unbalance or other rotating unbalance), this can be a
major problem as the resulting CMIF plot might not indicate the modes correctly. A tool
based on contribution of singular values to total variance, Singular Value Percentage
Contribution plot, is devised which helps in determining whether the system is being
excited locally or spatially uniformly. This tool makes it possible to use the CMIF plot

even in cases where the system is not spatially well excited.
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The EMIF algorithm and SVPC plots are shown to perform very well on analytical and
experimental systems, thus providing one more alternative of estimating modal

parameters through Operational Modal Analysis techniques.
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Chapter Six

Application of ICA/BSS Techniques to
OMA

Independent Component Analysis (ICA) / Blind Source Separation (BSS) is an emerging
research area in the field of signal processing. The goal of ICA / BSS techniques is to
identify statistically independent and non-Gaussian sources from a linear mixture of such
sources. It also extracts the unknown mixture matrix in the process. This Chapter
explores the possibilities of utilizing the concept of ICA and BSS for the purpose of
Operational Modal Analysis. Independent Component Analysis and other related
problems such as Blind Source Separation (BSS), Blind Signal Extraction (BSE) and
Multichannel Blind Deconvolution (MBD) share the same generalized blind signal
processing problem where the aim is to estimate the original source signal and
corresponding mixing matrix based only on the knowledge of mixed output signals.
There are several good resources that explain the concept of ICA, BSS and other
related problems including Cardoso, 1998; Lathauwer et al., 2000; Hyvarinen, Oja, 2000;
Hyvarinen et al., 2001; and Cichocki, Amari, 2002. ICA based methods have found
application in diverse areas such as biomedical signal analysis (EEG, MMG etc.),
speech enhancement, image processing, wireless communication, etc. ICA based
methods have also found application in structural dynamics related areas such as
damage detection and fault diagnosis [Poyhonen, Jover, Hyotyniemi, 2003; Zang,

Friswell, Imregun, 2004], rotating machinery vibration [Ypma, Pajunen, 1999] etc.
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Recently, it was [Kerschen, Poncelet, Golinval, 2006; Poncelet, Kerschen, Golinval,
2006] shown that ICA can also be used for parameter estimation purposes.

Four different ICA algorithms namely, AMUSE [Tong, Soon et al., 1990], Second Order
Blind Identification (SOBI) [Belouchrani, Abed-Meraim et al., 1993], Joint Approximate
Diagonalization (JADE) [Cardoso, Souloumiac, 1996] and Fourth Order Blind
Identification (FOBI) [Cardoso, 1991; Nandi, Zarzoso, 1996], are used in this study by
applying them on a 15 degrees-of-freedom analytical system. These algorithms differ
from each other on the basis of the optimizing techniques implemented and by utilization
of second or higher order statistics. The modal parameters estimated using these
methods are compared with true system parameters and also with one of the

Operational Modal Analysis techniques.

6.1 Independent Component Analysis

Independent Component Analysis (ICA) or Blind Source Separation (BSS) can be seen
as an extension to Principal Component Analysis (PCA) which aims at recovering the
source signals from a set of observed, instantaneous linear mixtures (response data)
without any a priori knowledge of the mixing system.

Mathematically, the ICA problem can be formulated as

txle)y =l alis (o)} 6.1)

where x(t) is a column vector of m output observations representing an instantaneous
linear mixture of source signals s(t) which is a column vector of n sources at time instant
t. Ais an m X n matrix referred to as “mixing system” or more commonly as the “mixing

matrix”.
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Although ICA and BSS techniques claim to identify both the source signals and the
mixing matrices, they do so within certain indeterminacies that include arbitrary scaling,
permutation and delay of estimated source signals. However, in spite of these limitations
the waveform of the original signal is recovered and, in many applications, knowledge of
source waveform is the most relevant information.

The task of estimating both s and A, the two unknowns in the above mentioned problem
requires certain assumptions to be made about the statistical properties of the sources
s.. ICA assumes that the sources s; are statistically independent and that they have non-
Gaussian distribution. A detailed discussion of the subject of ICA is beyond the scope of
this chapter; interested readers can refer to the sources mentioned previously for
general introduction and details of the various aspects of ICA. In addition to these
resources, readers can also refer to the special issue on ICA and BSS published by

Mechanical Systems and Signal Processing in 2005.

6.1.1 ICA / BSS Algorithms

A wide variety of ICA algorithms are available in the literature [Hyvarinen, Oja, 2000;
Hyvarinen et al., 2001; and Cichocki, Amari, 2002]. These algorithms differ from each
other on the basis of the choice of objective function and selected optimization scheme.
Although the assumption about statistical independence requires the sources to be non-
Gaussian in order to utilize the higher-order statistics (HOS) based BSS methods,
several second-order statistics (SOS) based techniques are also available. SOS
methods exploit weaker conditions for separating the sources assuming that they have a

temporal structure with different autocorrelation functions (or power spectra).
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In this section, four ICA / BSS methodologies are briefly discussed.

Algorithm for Multiple Unknown Signals Extraction (AMUSE)

SOS based algorithms like AMUSE assume that:

1.

2.

The mixing matrix A is of full column rank.

Sources are spatially uncorrelated with different autocorrelation functions but are
temporally correlated (colored) stochastic signals with zero-mean.

Sources are stationary signals and / or second order non-stationary signals i.e.

their variances are time varying.

The AMUSE algorithm is outlined below:

1.

Estimate the covariance (mean removed correlation) matrix of the output

observations

R (0)=—"x(k)x" (k) 6.2)

where ﬁx (O)is the covariance matrix at zero time lag and N is the total number of
time samples taken.

Compute EVD (or SVD) of R_(0)

l’éx (O) = Ux zx I/xT = VxAxVxT = VSAJVST + VNANV]\? 63)

where V; is m X n matrix of eigenvectors associated with n principal eigenvalues
of Ns = diag{M, A, ..... , A} in descending order. V, is m X (m-n) matrix
containing the (m-n) noise eigenvectors associated with noise eigenvalues A, =
diag{Ai+1, Ans2, ----., Am}. The number of sources n are thus estimated based on

the n most significant eigenvalues (or singular values in case of SVD).
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3. Perform pre-whitening transformation

(k)= A72V 7 x(k) = Ox(k) 6.4)

4. Estimate the covariance matrix of the vector ’_C(k) for specific time lag other than

p=0 (say p=1). Perform SVD on the estimated covariance matrix.

N
= zf ¥ (k-p)=UZ. V] 6.5)
=1

2|~

5. The mixing matrix and source signals can now be estimated as

A= Q'U; = VSA?U} 6.6)

y(k)=5(k)=UTx(k) 6.7)

AMUSE performs well for colored sources with different power spectra shapes which
means that the eigenvalues of the time-delayed covariance matrix are distinct. The

accuracy of AMUSE however deteriorates in presence of additive noise.

Fourth Order Blind Identification Algorithm (FOBI)

FOBI is an extension of the AMUSE algorithm which uses contracted quadricovariance
matrices instead of covariance matrices. This technique is aimed at separating
independent non-Gaussian source signals. The quadricovariance matrices are defined

as
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C

(E)=C, ¥ (k) Ex{k) (k)" (1)

X

= £ (k) EX(0)5(k)%" (k)| R (0)E R, (0)~+{E R (0)) R, (0)~ R, (0) E" R.(0)

6.8)

where R; (O)z E{)?(k))_cT(k)} and E is an m X n freely chosen matrix called eigenmatrix

(typically E=1,0or E = eqe;, where eq are vectors of some unitary matrix).

The eigenvalue decomposition of the quadricovariance matrix is of the following form

C.(E)=UAU" 6.9)

with A, = diag(Au! Etyseeeeeeeos A But), A = k,(s,) = Efs! |-3E{s?} is the kurtosis
of the zero-mean i source and u;is the i-th column of the orthogonal eigenvector matrix
U.

The main advantage of the FOBI algorithm is that it is insensitive to arbitrary Gaussian
noise and that it allows the mixing system to be identified when sources are i.i.d. and
mutually independent. However, it should be noted that quadricovariance matrices
require many more time samples for correct estimates in comparison to covariance
matrices. FOBI also has a restriction that it only works for sources having different

kurtosis; thus it will not give good results in cases where sources have identical

distributions.

Second Order Blind Identification (SOBI)

SOBI algorithm utilizes the joint diagonalization procedure [Cichoki, Amari, 2002;
Cardoso, Souloumiac, 1996; Hori, 2000] unlike AMUSE and FOBI which use EVD / SVD

techniques. SOBI works well for simple colored sources with distinct power spectra (or
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distinct autocorrelation functions). Like AMUSE, it operates on time delayed covariance
matrices.

SOBI utilizes the pre-whitening transformation similar to that described in case of
AMUSE. This is followed by estimation of set of covariance matrices for a preselected

set of time lags (p+, p2, ..., PL)

ZN:f(k)fT(k—piFQ&(pi)QT 6.10)

Joint approximate diagonalization (JAD) is performed on the above matrices;
R;(p,.):UD,.UT, to estimate the orthogonal matrix U that diagonalizes a set of

covariance matrices. Several efficient algorithms are available for this purpose including
Jacobi techniques, Alternating Least Squares, Parallel Factor Analysis etc. [Cardoso,
Souloumiac, 1996; Hori, 2000]. Finally the sources and signals can be estimated using
the same equations as explained earlier with AMUSE.

It should be noted that Di(p;) is a diagonal matrix that has distinct diagonal entries.
However, it is difficult to determine a priori a single time lag p at which the above
criterion is satisfied. Joint diagonalizaton procedure avoids this difficulty by providing an

optimum solution considering a number of time lags.

Joint Approximate Diagonalization of Eigenmatrices (JADE)

JADE [Cardoso, Souloumiac, 1993] can be considered as an extension of SOBI and
FOBI algorithms. Like FOBI, JADE works on the contacted quadricovariance matrices
but instead of employing EVD / SVD it jointly diagonalizes a set of such matrices just like
SOBI. The aim of JADE is to estimate an orthogonal matrix U which diagonalizes a set

of quadricovariance matrices. JADE is a mathematically intensive algorithm and the
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complete explanation is beyond the scope of this chapter. Interested readers can refer

the above mentioned references for more details.

6.2 ICA and BSS in Vibrations

Due to the tremendous potential of ICA / BSS techniques, it is not a surprise that the
research community in the area of vibrations have also started looking at utilizing the
techniques for a variety of purposes. In [Ypma, Pajunen, 1999], second order ICA
techniques were utilized for rotating machinery vibration analysis. ICA of vibration
signals was also used for fault diagnosis of an induction motor [Poyhonen, Jover,
Hyotyniemi, 2003]. ICA was used along with Artificial Neural Network (ANN) for data
reduction purposes while detecting structural damage [Zang, Friswell, Imregun, 2004].
However in spite of their tremendous potential, use of ICA and BSS techniques in
vibration and related areas has been slow in comparison to some of the other areas.
Antoni has discussed the issues associated with application of ICA / BSS techniques for
vibration signals in detail [Antoni, 2005]. One of the major issues with the application of
ICA / BSS techniques to vibrations, particularly structural identification related
applications, is the fact that vibrating systems are dynamic or convolutive in nature as
opposed to static (instantaneous linear) mixtures for which the ICA / BSS theory is
originally designed. One obvious way to tackle the convolutive mixtures is to deal with
them in the frequency domain as convolution in the time domain is equivalent to
multiplication in the frequency domain. However, there are two other problems which are
inherent to ICA / BSS techniques; 1) scaling of sources and 2) the order in which they
are identified, often referred as ‘permutation problem’. This is the same problem
encountered in estimating partial coherence and/or conditioned partial coherence over
20 years ago with respect to partially dependent sources in acoustics (general MIMO

problem) and in multiple input excitation problems in structural dynamics (MIMO-FRF
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estimation). In the case of frequency domain ICA / BSS, these two problems become
much more severe as they now become a function of each frequency bin. Frequency
domain ICA / BSS is a topic of ongoing research efforts [Smaragdis, 1998; Dapena,
Serviere, 2001; Rahbar, Reilly, 2001; Joho, Rahbar, 2002]. Most of these algorithms
were based on the fact that convolved mixing in the time domain corresponds to
instantaneous mixing in the frequency domain. The work done in this aspect deals with
handling of the scaling and permutation problems. However, no significant success has

been achieved so far in this aspect and research is still going on.

6.2.1 ICA / BSS Techniques for Operational Modal Analysis

Operational Modal Analysis is an emerging technique in the field of modal analysis
where dynamic characteristics of a system are identified based only on the output
responses. Since, by definition, ICA / BSS techniques work only on system outputs to
identify either the sources or the system (mixing matrix) without any a priori (or very little)
information about them, it is logical to believe that these techniques can also be used for
OMA purposes. Recently, it was shown how ICA / BSS techniques can be utilized for the
purpose of modal analysis [Kerschen, Poncelet, Golinval, 2006; Poncelet, Kerschen,
Golinval, 2006; Randall, Holley, 20086].

The basic fundamentals behind the application of ICA / BSS techniques to modal
analysis goes back to the concept of the expansion theorem [Meirovitch, 1967] and
modal filters [Shelly, 1991; Shelly, Allemang, 1992; Shelly, Allemang et al., 1993].
According to the expansion theorem, the response of a distributed parameter structure

can be expressed as

()= 2 8,11, ()} 6.11)
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where @, are the modal vectors weighted by the modal coordinates n,. For real systems,
however, the response of the system can be represented as a finite sum of modal
vectors weighted by the modal coordinates. To obtain a particular modal coordinate n;

from response vector x, a modal filter vector y;is required such that

{'//i}T{¢i}:O: Jor i#j 6.12)
and
W g =0, for i=j 6.13)
so that
v @)=t 2l Jn, 0} 6.14)
or

AR 6.15)

Thus the modal filter performs a coordinate transformation from physical to modal
coordinates. Multiplying the system response x with modal filter matrix %" results in
uncoupling of the system response into single degree of freedom (SDOF) modal
coordinate responses ().

In order for w;to exist, the associated modal vector ®; must be linearly independent with

respect to all other modal vectors [Shelly, 1991]. This is also the reason why ICA / BSS
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based techniques can be utilized for the purpose of decomposing the output system
response into a product of modal vectors and corresponding modal coordinate
responses. Also, a modal filter vector is unique if and only if the number of sensors used
for the modal filter implementation is equal to or greater than the number of linearly
independent modal vectors contributing to the system response.

In the past, SDOF modal coordinate responses have been obtained by utilizing modal
filters calculated using FRF based data. The ICA / BSS based techniques differ from this
approach in the sense that they directly work on output system response to obtain the
modal coordinate responses (n). This approach is similar to that in [Kerschen, Poncelet,
Golinval, 2006; Poncelet, Kerschen, Golinval, 2006] where modal coordinates are
treated as virtual sources.

In the following section, four different ICA algorithms as described in Section 6.1.1 are

applied to a 15 degrees of freedom system.

6.3 Analytical 15 Degree of Freedom System

Figure 6.1 shows the 15 degree of freedom system which was previously introduced in
Chapter 4. The system is excited at all 15 degrees of freedom by means of a white
random uncorrelated set of inputs. The chosen system has some closely spaced modes
(around 53 Hz), some modes that are lightly damped, other modes that are moderately
damped and also some local modes that are well separated from each other. This
makes it a good system to investigate the various ICA / BSS algorithms described in
Section 6.1.1.

Figure 6.2-6.5 show the plot of the auto-power spectrums of the modal coordinate

responses (n) obtained using various algorithms. The Second Order Statistics (SOS)
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based algorithms, AMUSE and SOBI, uncouple the system response into SDOF modal
coordinate responses. However, both Higher Order Statistics (HOS) based methods,
JADE and FOBI, fail to successfully separate the response into corresponding modal
coordinate response. Possible reasons for the inferior behavior of the HOS based
methods can be that quadricovariance matrices are not correctly estimated and also the
fact that SOS based methods better exploit the temporal coherence (uniqueness of
autopower spectra) of various modal coordinate responses.

Modal parameters obtained using the SDOF response based on AMUSE and SOBI are
listed in Table 6.1 and are compared with true analytical modes of the system and also
with the results obtained using OMA-EMIF algorithm which was described in Chapter 5.
Though the frequency estimates using AMUSE and SOBI are close to the true modes in
comparison to the OMA-EMIF algorithm, damping is overestimated for all the modes.
However, overall results are satisfactory. Further, Figures 6.6-6.9 show, the modal
assurance criterion (MAC) plots for comparing the modal vectors obtained using various
methods. The modal vectors obtained using AMUSE and SOBI are in good agreement
with each other. However the MAC values are not that high when modal vectors
obtained using AMUSE are compared with true modes or OMA-EMIF results. The high
MAC values for true and OMA-EMIF modal vectors indicate that the OMA-EMIF method
is able to extract the modal vectors of the system better in comparison to the ICA
techniques.

Note that using AMUSE or SOBI, the modes are obtained in a random order. Also, the
repeated modes around 53.3 Hz have interchanged when estimated using OMA-EMIF

algorithm.
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Local Modes

Figure 6.1: Analytical 15 degree of freedom system
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Figure 6.2: Power spectrum of modal coordinate responses obtained using
AMUSE
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Figure 6.3: Power spectrum of modal coordinate responses obtained using
SOBI
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Figure 6.4: Power spectrum of modal coordinate responses obtained using
FOBI
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Figure 6.5: Power spectrum of modal coordinate responses obtained using
JADE

Table 6.1: Comparison of modal parameter estimates using ICA techniques
and OMA-EMIF

True Modes OMA-EMIF ICA - AMUSE ICA - SOBI

Damp | Freq | Damp Freq Damp Freq Damp Freq
1.0042 | 15.985 | 3.3289 | 15.9857 | 2.1133 | 15.9774 | 2.2314 | 15.9806
1.9372 | 30.858 | 2.8564 | 30.8619 | 2.4042 | 30.8709 | 2.4123 | 30.8725
2.7347 | 43.6 |3.2718 143.6932 | 3.1196 | 43.6511 | 3.1441 | 43.6543
2.9122 | 46.444 | 3.6481 | 46.5883 | 3.4458 | 46.4035 | 3.4787 | 46.4059
3.3375 | 53.317 | 4.0763 | 53.7487 | 3.7103 | 53.3869 | 3.8181 | 53.4067
3.3454 | 53.391 | 4.7860 | 53.7683 | 3.5785 | 53.4237 | 3.6199 | 53.4271
3.7145 1 59.413 | 3.6833 | 59.1164 | 4.1244 | 59.4877 | 4.2735 | 59.5196
3.858 | 61.624 | 3.6157 | 61.3713 | 4.3618 | 61.6476 | 4.4495 | 61.6577
4.2978 | 68.811 | 4.1523 | 68.2375 | 4.5887 | 68.9075 | 4.7218 | 68.9299
45925 | 73.63 | 4.4249 | 73.1519 |4.8149 | 73.7923 | 4.9619 | 73.8233
2.6093 | 128.84 | 2.6146 | 128.5604 | 2.710 | 128.9026 | 2.7803 | 128.9105
2.4548 | 136.55 | 2.6030 | 136.4652 | 2.5743 | 136.6159 | 2.6264 | 136.6253
2.3288 | 143.86 | 2.4513 | 143.8957 | 2.4323 | 143.9370 | 2.4734 | 143.9487
2.221 | 150.83 | 2.3207 | 150.8782 | 2.3162 | 150.9051 | 2.3589 | 150.9175
2122 | 157.47 | 2.0669 | 157.7820 | 2.2087 | 157.54 | 2.2391 | 157.5533

127



S0BI

MAC Plat AMUSE vs SOBI

AMUSE
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Figure 6.7: MAC comparison plot - AMUSE / OMA-EMIF
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Figure 6.8: MAC comparison plot - AMUSE / True Modes
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Figure 6.9: MAC comparison plot - True Modes / OMA-EMIF
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6.4 Conclusions

Four popular ICA / BSS techniques are discussed along with an introduction to the
general concept of independent component analysis (ICA) and blind source separation
(BSS). These techniques can be related to the concept of modal filtering and the modal
expansion theorem in order to utilize them for output-only modal parameter estimation.
The studies conducted on an analytical system reveal that second order statistics based
ICA / BSS algorithms give better results in comparison to the higher order statistics
based algorithms. Though ICA / BSS based results are not as good as general OMA
algorithms based results, it is still an interesting area to explore considering the simplicity
of the method and its ability to extract all modal parameters (modal frequencies and
mode shapes) in one step. These algorithms are comparatively less time consuming and

do not require use of such tools as consistency diagrams.
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Chapter Seven

Damping Estimation Using OMA
Technigues

Due to the unavailability of input force information in OMA, certain assumptions are
made when applying these techniques for modal parameter estimation. These
assumptions are primarily about the nature of the input forces which are considered to
be random and uncorrelated. Further, the forcing functions are assumed to be uniformly
distributed in a spatial sense. For accurate estimates of the modal parameters, it is
crucial that these assumptions be as true as possible. Further, the power spectra
(analogous to FRFs in EMA) should be estimated accurately and free from random and
bias errors for accurate modal parameter estimation. Several signal processing
techniques such as the Welch periodogram, correlogram etc. [Kay, 1988; Oppenheim,
Schafer, 1989; Stoica, Moses, 1997] are available that are commonly used for
computing the power spectra.

This Chapter focuses on the damping estimation from OMA techniques, which has been
a contentious issue with no accepted rationale. It has been observed that even though
modal frequencies are well estimated using Operational Modal Analysis (OMA)
techniques, damping estimation is not as accurate and often the errors are significant
[Avitable, 2006]. This Chapter attempts to identify the causes for the damping inaccuracy

and assess the currently available signal processing techniques for correcting this
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problem. Thus, emphasis is laid on studying the OMA procedure, data processing and

modal parameter estimation with respect to proper damping estimation.

An analytical 5 Degree of Freedom system used for this study is described in the next

section. This is followed by the theoretical background on Cyclic Averaging as this signal

processing is shown to reduce leakage errors resulting in better estimates for damping in

FRF applications. Finally, the effects of Cyclic Averaging and partially correlated forces

on damping estimation are discussed by means of observed results.

7.1 Analytical 5 DOF System

A simple 5 degree of freedom with following [M], [C] and [K] matrices is used in this

study.
(250 0 0 0
0 350 0 0
M= 0 0 30 0
0 0 0 45
0 0 0 0
[ 9000 —5000
—-5000 11000
K=1000x| 0  —6000
0 0
0 0

Table 7.1 and 7.2 show the frequency, damping and modal matrix of the system

0
-6000
12500
-6500
0

3250
-250
C=| 0
0
0

0

0
-6500
14500

0

—-250
450
—-200
0
0

0

0

0
—-8000

15000 |

0
—-200
320
-120
0

0
0
-120
190
=70

=70
270

Table 7.1: Modal frequencies and damping of the 15 DOF analytical system

Frequency Damping (% Critical)
12.5263 1.1486
22.083 1.0589
34.8635 2172
88.5238 0.4872
104.7787 0.8473
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Table 7.2: Modal Matrix of the 15 DOF analytical system

Freq/DOF | 12.52 Hz 22.08 Hz 34.86 Hz 88.52 Hz 104.77 Hz
1 1+0i 1+0i 1+0i 1+0i 1+0i
2 1.489 + 0.837 + -0.601 + -13.655 + -19.855 +
0.038i 0.064i 0.045i 0.591i 0.717i
3 1.360 + -0.238 + -0.249 + 220.441 - 464.647 -
0.046i 0.029i 0.013i 11.856i 19.555i
4 1.201 + -1.209 - 0.132 - 121.877 - -17.659 +
0.051i 0.006i 0.016i 4.464i 0.872i
5 0.654 + -0.689 - 0.084 - -2079.587 + 21.140 -
0.027i 0.004i 0.010i 68.451i 1.517i

The system is excited by means of a white random uncorrelated set of inputs at all 5

degrees of freedom. Figure 7.1 shows typical auto-power (1-1) and cross-power (1-2)

spectra of the input forces. It can be observed that the forces are not entirely

uncorrelated as the cross-power spectrum is only one order less in magnitude in

comparison to the auto-power spectrum. That the forces are uncorrelated is also shown

by means of the virtual forces (or the principal components of the force power spectra

matrix) in Figure 7.2.

Force Power Spectra

1 |
20 40

I I
100 120

140

Figure 7.1: Input force power spectra comparison (5 DOF analytical system)
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y Wirtual Forces (Principal Components of Force Power Spectra)
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Figure 7.2: Virtual forces

The magnitude of the theoretical driving point frequency response functions are shown
in Figure 7.3. It can be seen from the FRFs that, from an observability point of view,
some of the system degrees of freedom are on the node lines of some of the modes and

thus all the modes cannot be observed from any single reference degree of freedom.

Frequency Responss Function

Magnitude

|
i 20 a0 1] 80 100 120 140
Frequency

Figure 7.3: Theoretical frequency response functions (5 DOF analytical
system)
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The next section discusses the Cyclic Averaging signal processing technique and how
its application to the observed time responses results in power spectra with reduced
leakage. In subsequent sections, it is shown how this approach gives more accurate
estimates of modal frequency and damping, in comparison to other more commonly

used signal processing approaches.

7.2 Cyclic Averaging

One major difference between EMA and OMA is that, whereas frequency response
functions (FRFs) are the primary data in EMA, in OMA the primary data is output power
spectra. For estimating FRFs, input/output auto and cross spectra are required
(depending on the estimation algorithm). It is worth noting that the FRF is assumed to be
unique but the same is not true for the power spectra unless the input is stationary and a
sufficiently large number of averages is taken. This is not a cause of concern in EMA as
the desired data is FRF, not the power spectra used to estimate the FRF. However, in
OMA, it can lead to several issues resulting in estimated power spectra being
contaminated by noise due to random and bias errors.

For the above stated reasons, in general, better estimation of the power spectra require
longer time histories in comparison (so as to have a greater number of averages to
reduce the random errors). The bias errors, such as leakage, are however not reduced
by averaging. Use of overlapping weighting functions (windowing) along with averaging
is one of the most common methods of reducing leakage error.

The use of cyclic averaging, along with asynchronous or synchronous averaging
[Allemang, 1999], is a powerful technique for reducing the leakage, as well as, random
errors. Cyclic averaging reduces the leakage bias error by digitally filtering the data to
eliminate the frequency information that cannot be described by the FFT (only integer

multiples of Af are retained) completely prior to the application of FFT.
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7.2.1 Cyclic Averaging Theory

The cyclic averaging [Allemang, 1980; Allemang, Phillips, 1996; Phillips, Allemang et al.,
1998; Fladung, Zucker et al., 1999; Phillips, Zucker et al., 1999] is a special case of
linear averaging where the digitization is coherent between cyclic averages. In the
frequency domain, this is equivalent to a digital comb filter with passbands at frequency
increments that are integer multiples of the Af; thus resulting in attenuation between the
passbands.

The Fourier transform of an output time history x(t) is given by
~+00
X(w)= Ix(t) e’ dt 7.1)

Fourier transform of the same time history shifted by amount t, is

~+00

X(@) e’ = [x(t+t,) e’™dt 7.2)
or
—-jn 2—” 1 0 .
X(@) e " 7" = [x(t+1,) e dt 7.3)

2 . . . . .
where @ = n?ﬂ with n as an integer, since each frequency in the spectra is assumed to

be an integer multiple of the fundamental frequency Af = 1/T. In Egn. (7.3) it is worth
noting that the correction for the cases where t, = N T where N is an integer, will be a

unit magnitude with zero phase. Thus, if the time histories that are being averaged occur
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at a time shift that is an integer multiple of the observation period T, then the correction
due to the time shift does not affect the frequency domain characteristics of the

averaged result. The averaged time history is given by

1 Nc—1

x\t)=——) x;\t 7.4)
(0=~ 2%0)

where N¢ is number of cyclic averages. When x(f) is continuous over the time period

NcT, the Fourier coefficients of the averaged time history are

1T

C, :?l x(r) e’™dt 7.5)
or
1 TNC—I )
C, =—— , otd :
A NCT!)‘ > x(t) e ™ dt 7.6)
and finally
1 N.T '
C, “N.T Ox(t) e/ dt 7.7)

It is clear from the above equation that the Fourier coefficients of the cyclic averaged
history, spaced at Af = 1/T, are the same Fourier coefficients as those from the original
time history, spaced at Af = 1/NcT. The Fourier coefficients of a cyclic averaged time

history are 1/N¢ times those of original history. Note that the conditions of the Parseval’s
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theorem are not preserved by cyclic averaging since the frequency information, not

related to the harmonics of Af = 1/T, is removed [Hsu, 1970].

7.2.2 Effect of Cyclic Averaging

Three cases of different signal processing (No Cyclic Averages, 5 Cyclic Averages and
10 Cyclic Averages) are considered here. All these cases differ in terms of the number of
cyclic averaging but the total measured time is constant (Total measured time is
approximately equal to N, X Block Size X (1 - Fractional Overlap) X Nps). Other
parameters such as block size, type of window, etc are same in all the cases. These

constant parameters are as follows

Block Size: 1024
Window: Hanning
Overlap: 75%

Typical auto and cross power spectra plots obtained using the three signal processing
approaches are shown in Figures 7.4 and 7.5. When the cyclic averaging is not used the
power spectrums seem clearer in comparison to the cases where the cyclic averaging is
used. This is because of the fact that, since the same total time history is processed
using the three approaches, the number of RMS averages is greater for the case where

cyclic averaging is not used than the ones where it is.
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Figure 7.4: Effect of cyclic averaging (Power spectrum comparison 1-1)
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Figure 7.5: Effect of cyclic averaging (Power spectrum comparison 1-2)
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Table 7.3: Effect of cyclic averaging (N¢c = 0, RMS Averages = 3997)

Frequency % Error Damping (%
Critical)
12.5276 0.0104 1.5377
22.0843 0.0059 1.2344
34.8662 0.0077 2.2036
88.5231 -0.0008 0.5117
104.7830 0.0041 0.8457

% Error

-0.1888

Table 7.4: Effect of cyclic averaging (Nc = 5, RMS Averages = 797)

Frequency % Error Damping (% % Error
Critical)
12.5074 -0.1509 1.0523 | -8.3841 |
22.0709 -0.0548 1.0978 3.6736
34.8606 -0.0083 2.1464 -1.1786
88.5253 0.0017 0.4872 0.0000
104.7815 0.0027 0.8322 -1.7821
Table 7.5: Effect of cyclic averaging (N¢c = 10, RMS Averages = 397)
Frequency % Error Damping (% % Error
Critical)
12.5122 -0.1126 1.0257
22.0746 -0.0380 1.1150
34.8624 -0.0032 2.1071 -2.9880
88.5269 0.0035 0.4846 -0.5337
104.7805 0.0017 0.8316 -1.8529

As indicated in Tables 7.3-7.5 and Figure 7.6, the error in modal frequency estimates

with or without the use of cyclic averages is not very significant and for all the five modes

the frequency is estimated fairly well. However, the same is not true for the damping

estimates.

With no cyclic averaging, the error in damping estimates is significantly higher,

especially for the first and second modes (indicated by the grayed cells). Further, the

damping is over-estimated in most cases. This error drops down with the use of cyclic

averaging. With 5 cyclic averages, except for the first mode, the error drops down below
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5% and even for the first mode it is -8% which is significantly lower than the 33% when
no cyclic averaging is done. The effect is considerable in other modes as well.

Increasing the number of cyclic averages to 10 doesn’t improve the overall results. In
fact, it either gives as good or comparatively inferior results to the case where 5 cyclic
averages are used. This can be attributed to the reduced number of RMS averages in
the case of 10 cyclic averages in comparison to the 5 cyclic averaging case. One
additional thing to note is that cyclic averaging tends to underestimate the damping
values in contrast to the case with no cyclic averages where the values were significantly
overestimated. In this study, the total time is limited to yield a representative
measurement comparison. Increasing the number of RMS averages should improve the

results in Tables 7.4 and 7.5. This is explained in the next case.

Percentage Error in Modal Frequency
Estimates
0.05
0 @ 0 Cyclic Awverages
NS 3 4 5
E -0.05 1 m 5 Cyclic Averages
£ 01
w 0 10 Cyclic
-0.15 4 Awverages
-0.2
Mode Number

Figure 7.6: Effect of cyclic averaging (Percentage error in modal frequency
estimates)
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Figure 7.7: Effect of cyclic averaging (Percentage error in modal damping
estimates)

7.2.3 Effect of More RMS Averages (Use of Longer Time
Histories)

This study tries to determine if an increased number of RMS averages is collected using
the same number of cyclic averages results in improving the modal parameter estimates
or not. Two cases, 5 cyclic averages and 10 cyclic averages are considered and in each
case three time histories of different lengths (having different numbers of time sample

points) are processed using the same signal processing parameters which are as follows

Case A

Block Size: 1024
Window: Hanning
Overlap: 75%

Cyclic Averages: 5
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Table 7.6: Effect of longer time histories (Nc = 5, Time points = 102400, RMS
Averages = 77)

Frequency % Error Damping (% % Error
Critical)
12.5158 -0.0838 0.9918
22.0887 0.0258 1.1360
34.8606 -0.0083 2.1915 0.8978
88.5225 -0.0015 0.4867 -0.1026
104.7702 -0.0081 0.8386 -1.0268

Table 7.7: Effect of longer time histories (Nc = 5, Time points = 1024000,
RMS Averages = 797)

Frequency % Error Damping (% % Error
Critical)
12.5074 -0.1509 1.0523 | -8.3841 |
22.0709 -0.0548 1.0978 3.6736
34.8606 -0.0083 2.1464 -1.1786
88.5253 0.0017 0.4872 0.0000
104.7815 0.0027 0.8322 -1.7821

Table 7.8: Effect of longer time histories (Nc = 5, Time points = 1536000,
RMS Averages = 1197)

Frequency % Error Damping (% % Error
Critical)
12.5159 -0.0830 0.9834 | -14.3827 |
22.0733 -0.0439 1.0482 -1.0105
34.8590 -0.0129 2.1842 0.5617
88.5241 0.0003 0.4866 -0.1232
104.7826 0.0037 0.8372 -1.1920

As seen earlier, in this study as well, the frequencies are fairly well estimated. The error
in estimation is within + 0.1 % in all cases. The damping estimates are still not this
accurate and there isn't a definite trend when a longer time history (more overall
averages) is used. Though overall the results do improve as longer time histories are

used, unexpectedly the damping estimate for the first mode, or the first two modes,

deteriorates.
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Figure 7.8: Effect of longer time histories N¢c = 5 (Percentage error in modal
frequency estimates)
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Figure 7.9: Effect of longer time histories N¢c = 5 (Percentage error in modal
damping estimates)
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Case B

Block Size: 1024
Window: Hanning
Overlap: 75%

Cyclic Averages: 10

Table 7.9: Effect of longer time histories (Nc = 10, Time points = 102400,
RMS Averages = 37)

Frequency % Error Damping (% % Error
Critical)
12.5165 -0.0782 1.0064 -12.3803
22.0855 0.0113 1.0599 0.0944
34.8015 -0.1778 2.2803 4.9862
88.5226 -0.0014 0.4763 -2.2373
104.7938 0.0144 0.8103 -4.3668

Table 7.10: Effect of longer time histories (Nc = 10, Time points = 1024000,
RMS Averages = 397)

Frequency % Error Damping (% % Error
Critical)
12.5122 -0.1126 1.0257 _
22.0746 -0.0380 1.1150
34.8624 -0.0032 2.1071 -2.9880
88.5269 0.0035 0.4846 -0.56337
104.7805 0.0017 0.8316 -1.8529

Table 7.11: Effect of longer time histories (Nc = 10, Time points = 1536000,
RMS Averages = 597)

Frequency % Error Damping (% % Error
Critical)
12.5149 -0.0910 0.9834 | -14.3827 |
22.0722 -0.0489 1.0458 -1.2371
34.8685 0.0143 2.1748 0.1289
88.5241 0.0003 0.4858 -0.2874
104.7838 0.0049 0.8363 -1.2982

Tables 7.9-7.11 indicate the error in frequency and damping estimates for 10 cyclic

averaging case. Except for the first mode, longer time histories when processed using
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10 cyclic averages tend to reduce errors in damping estimates (Figure 7.11). When only
37 RMS averages are taken, the damping estimates are more erroneous (highlighted in
orange in Table 7.9). The error is reduced subsequently when more RMS averages are
taken due to longer time histories. The damping estimate for the second mode does
deteriorate in one dataset (Table 7.10) but it also starts to approach the true value for
597 RMS averages dataset (Table 7.11), for which damping is correctly estimated for

most modes. Modal frequencies are fairly well estimated in all datasets (Figure 7.10).

Percentage Error in Modal Frequency
Estimates
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i 0.05 - 3 4 ° @ 37 RMS Awerages
'g m 397 RMS Averages
IE 0.1 0597 RMS Awerages
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Figure 7.10: Effect of longer time histories Nc = 10 (Percentage error in
modal frequency estimates)
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Figure 7.11: Effect of longer time histories Nc = 10 (Percentage error in
modal damping estimates)

It should be noted that in these studies PTD, a time domain algorithm, is used for

parameter identification purposes. Similar results are obtained if frequency domain

algorithms, which operate on the positive power spectra (PPS), are used. This is shown

in Tables 7.12 and 7.13 which indicate similar results as those obtained in Tables 7.4

and 7.5.

Table 7.12: Damping estimation by frequency domain OMA algorithms
utilizing PPS (Nc = 5, RMS Averages = 797)

Frequency % Error Damping (% % Error
Critical)
12.5216 -0.0375 1.0560 | -8.0620 |
22.0709 -0.0548 1.0890 2.8426
34.8603 -0.0092 2.1411 -1.4227
88.5253 0.0017 0.4867 -0.1026
104.7805 0.0017 0.8370 -1.2156
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Table 7.13: Damping estimation by frequency domain OMA algorithms
utilizing PPS (Nc = 10, RMS Averages = 397)

Frequency % Error Damping (% % Error
Critical)
12.5111 -0.1213 0.9909 | 137298 |
22.0727 -0.0466 1.1126 5.0713
34.8622 -0.0037 2.1077 -2.9604
88.5261 0.0026 0.4850 -0.4516
104.7821 0.0032 0.8366 -1.2628

The RFP-z frequency domain algorithm is used for this study and PPS are obtained from
the 1,024,000 sample points of time history using 1024 block size, Hanning window and
75% overlap as signal processing parameters, i.e. same as those used for the time
domain algorithms. It should be noted that the frequency resolution is reduced by half
while calculating the PPS. This is because of the fact that the negative lag portion of the
correlation is removed and only positive lags are considered. Thus the Fourier transform
is applied only to the number of points equal to half the initial block size while converting
positive lags portion of the correlation to PPS. This results in doubling Af or reducing the

frequency resolution.

7.3 Correlated Input Forces and OMA Parameter
Estimation

Intrinsic to operational modal analysis are the two assumptions concerning the nature of
input forces acting on the system. These assumptions are [17]
1. Input forces acting on the system are random, uncorrelated and broadband in
nature, and

2. Input forces are uniformly distributed in a spatial sense.

(G (@)]=[H(@)] (G (@)] [H(@)]" 7.8)
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Equation 7.8 forms the key to all OMA related parameter estimation. As per the first
assumption, the output response power spectra [Gxx(w)] is proportional to the product
[H(w)][H(w)]" if and only if the input force power spectra matrix [Gee(w)] is diagonal or in
other words, the input forces acting on the system are uncorrelated and uncoupled.

In this section, the efforts are concentrated on exploring this assumption of uncorrelation
by means of the 5 degree of freedom system explained earlier and how it affects the
modal parameters, specially damping.

As is earlier shown in Figure 7.1, the input forces that excite the system are not entirely
uncorrelated. The methodology used for this purpose involves performing modal
parameter estimation on various kinds of data utilizing the same time history. These
different datasets are

1. Generated Frequency Response Functions (Hgep),

2. Generated FRF multiplied by its Hermitian (G = [1]) (H*H")en,

3. (H*GFFd,-ag*H"' Gen This dataset represents output response power spectra
formulated as per Equation 7.8 with the condition that Gge is diagonal i.e. it only
contains auto power terms and cross power terms are zero. This is the ideal case
where assumption 1 is completely true.

4. (H*GFF*H")ge, This dataset represents output response power spectra
formulated as per Equation 7.8 with the complete Ggr matrix i.e. containing both
the diagonal and off-diagonal terms (both auto and cross-power terms).

5. Gxx The output response power spectrum computed from the response time

histories. This is theoretically similar to the (H*GFF*H")gen .
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These datasets for the following case are analyzed first

Case A

Block Size: 1024
Window: Hanning
Overlap: 50%

Cyclic Averages: 10

Table 7.14: Hgen - Effect of Correlated Forces (Case A)

Frequency % Error Damping (% % Error
Critical)

12.5235 -0.0224 1.1494 0.0697

22.0834 0.0018 1.0700 1.0483

34.8632 -0.0009 2.1718 -0.0092

88.5238 0.0000 0.4886 0.2874

104.7823 0.0034 0.8415 -0.6845

Table 7.15: (H*H")cen - Effect of Correlated Forces (Case A)

Frequency % Error Damping (% % Error
Critical)

12.5189 -0.0591 1.1470 -0.1393

22.0735 -0.0430 1.0441 -1.3977

34.8849 0.0614 2.1643 -0.3545

88.5254 0.0018 0.4869 -0.0616

104.7797 0.0010 0.8394 -0.9324

Table 7.16: (H*GFF giag*H")cen - Effect of Correlated Forces (Case A)

Frequency % Error Damping (% % Error
Critical)
12.5144 -0.0950 1.1427 -0.5137
22.0789 -0.0186 1.0768 1.6904
34.8717 0.0235 2.1841 0.5571
88.5402 0.0185 0.4882 0.2053
104.7853 0.0063 0.8400 -0.8616
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Table 7.17: (H*GFFcor.,,:,*H"')Gen - Effect of Correlated Forces (Case A)

Frequency % Error Damping (% % Error
Critical)
12.5174 -0.0711 1.0739
22.0905 0.0340 1.0497
34.8420 -0.0617 2.4006
88.5232 -0.0007 0.4956 1.7241
104.7852 0.0062 0.8395 -0.9206

Table 7.18: Gxx - Effect of Correlated Forces (Case A)

Frequency % Error Damping (% % Error
Critical)
12.5157 -0.0846 1.0090
22.0913 0.0376 1.0825
34.8580 -0.0158 2.3750
88.5315 0.0087 0.4877 0.1026
104.7711 -0.0073 0.8167 -3.6115

This study produces some very interesting results. The frequency is well estimated in all
the datasets (Figure 7.12) and does not seem to be affected by the presence of cross
power force spectra terms (off-diagonal terms due to the partially correlated nature of the
forces). The damping estimates, as indicated in Tables 7.17, 7.18, and Figure 7.13, are
however severely affected, especially the first and the third mode. Dataset 1 (Generated
FRFs) expectedly gives good results. Dataset 2 is the ideal OMA case, where the first
assumption is completely valid and the Gge matrix is an identity. For this dataset as well
as Dataset 3, where Ggr is not an identity but is uncoupled, the estimates are still good
and fairly accurate within the error limits. But as more realistic datasets are considered,
like those in Datasets 4 and 5, where the input forces are more likely to be correlated to
a certain degree and the OMA assumptions are not strictly met, it is observed that some
damping estimates are seriously affected and are not as accurate as the other three

datasets.
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Figure 7.12: Effect of correlated input forces Case A (Percentage error in
modal frequency estimates)
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Figure 7.13: Effect of correlated input forces Case A (Percentage error in
modal damping estimates)
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Case B

To investigate this further, the system is now exited by means of partially correlated

forces. The forces used to excite the system in Case A are mixed in the following

manner to make them partially correlated.

Fi=Fa+ 1Fg+ AFc+ AFp+ .1Fe

Fo = 1Fr + Fg+ .1Fc+ AFp + .1Fg

AFa+ AFg+ Fo+ 1Fp+ 1Fe

Fs
Fs=.1Fr + .1Fg+ A1Fc+ Fp+ .1Fg

Fs=1Fpa+ AFg+ AFc+ 1Fp+ Fg

Figure 7.14 and Figure 7.15 shows that unlike the previous case, due to the correlated

nature of the input forces, the auto (1-1) and cross (1-2) power terms of the input force

power spectrum matrix are of the same order and that there are only two principal virtual

forces. The signal processing in this case is similar to that used previously.

Magnitude

Comparison of Auto and Cross Power Spectrum of Input Forces
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Figure 7.14: Comparison of auto and cross power spectrum of input forces

(Case B)
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140

Figure 7.15: Virtual forces (Case B)

Table 7.19: (H*GFFgiag*H")gen - Effect of Correlated Forces (Case B)

Frequency % Error Damping (% % Error
Critical)

12.5037 -0.1804 1.1325 -1.4017

22.0817 -0.0059 1.0896 2.8992

34.8862 0.0651 2.1611 -0.5018

88.5358 0.0136 0.4882 0.2053

104.8028 0.0230 0.8182 -3.4344

Table 7.20: (H*GFFcor.,,:,*H"')Gen - Effect of Correlated Forces (Case B)

Frequency % Error Damping (% % Error
Critical)
12.5221 -0.0335 1.0759
22.0867 0.0168 1.0492
34.8439 -0.0562 2.4063
88.5399 0.0182 0.4895 0.4721
104.7890 0.0098 0.8243 -2.7145
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Table 7.21: Gxx - Effect of Correlated Forces (Case B)
Frequency % Error Damping (% % Error
Critical)
12.5113 -0.1197 1.0355
22.0896 0.0299 1.0744
34.8272 -0.1041 2.3749
88.5261 0.0026 0.4815 -1.1700
104.7860 0.0070 0.8287 -2.1952

As was noted in Case A, the damping estimates suffer significantly as the conditions

deviate from those listed in the first assumption, i.e. as the forces become correlated, the

damping estimates become more error prone. This is shown in Figure 7.17 (and Tables

7.19-7.21). Dataset 1, in which only the diagonal terms of the input force power

spectrum matrix are considered, results in accurate frequency and damping estimates

but when the off-diagonal terms accounting for the potential correlation between the

forces are included (as in Datasets 2 and 3), the damping estimates deteriorate though

the frequency estimates are still good.

These two cases suggest that the violation of the assumption that the forces are random

and uncorrelated results in affecting the damping estimation adversely and errors can be

significant depending on the extent to which the forces are correlated.
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Figure 7.16: Effect of correlated input forces Case B (Percentage error in
modal frequency estimates)
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Figure 7.17: Effect of correlated input forces Case B (Percentage error in
modal damping estimates)
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Finally, one more test case is considered to verify that damping estimates are affected
not only by the degree of correlation among input forces but also due to the leakage

error which can be reduced by cyclic averaging based signal processing.

Case C

In this scenario, the datasets as described before are generated for the case where no
cyclic averaging is done. Note that the output time histories used for this purpose are the
same as those considered for Case A. The signal processing parameters in this case

are as follows

Block Size: 1024
Window: Hanning
Overlap: 50%
Cyclic Averages: None

Table 7.22: Hg.n, - Effect of Correlated Forces (Case C)

Frequency % Error Damping (% % Error
Critical)
12.4988 -0.2195 1.1999 4.4663
22.0828 -0.0009 1.2311
34.8691 0.0161 2.2081 1.6621
88.5232 -0.0007 0.4962 1.8473
104.7866 0.0075 0.8776 3.5761

Table 7.23: (H*H")g.n - Effect of Correlated Forces (Case C)

Frequency % Error Damping (% % Error
Critical)
12.5315 0.0415 1.7204
22.0780 -0.0226 1.3046
34.8658 0.0066 2.2378
88.5148 -0.0102 0.5325
104.7896 0.0104 0.8654 2.1362
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Table 7.24: (H*GFFgiag*H")gen - Effect of Correlated Forces (Case C)

Frequency % Error Damping (%
Critical)
12.5307 0.0351 1.7207
22.0792 -0.0172 1.2765
34.8602 -0.0095 2.2363
88.5216 -0.0025 0.5304
104.7893 0.0101 0.8735

% Error

3.0922

Table 7.25: (H*GFFcor.,,E,*H"')Gen - Effect of Correlated Forces (Case C)

Frequency % Error Damping (% % Error
Critical)
12.5320 0.0455 1.7651
22.0889 0.0267 1.3253
34.8683 0.0138 2.2297 2.6565
88.4946 -0.0330 0.4791 -1.6626
104.7894 0.0102 0.8717 2.8797

Table 7.26: Gxx - Effect of Correlated Forces (Case C)

Frequency % Error Damping (%
Critical)
12.5341 0.0623 1.5241
22.0986 0.0706 1.2697
34.8583 -0.0149 2.1987
88.5182 -0.0063 0.5180
104.7836 0.0047 0.8604

% Error

1.5461

Green cells in Tables 7.22-7.26 indicate the instances where the error in damping

estimate is more than 5%. Figure 7.18 shows that this error is very high (above 20% for

some modes) and is present even in datasets where the assumption of uncorrelated

forces is completely observed (Datasets 2 and 3). On the other hand frequency

estimates are accurate as seen in previous cases. Thus, it can be inferred that damping

estimation is affected mainly by leakage and correlation between the input forces.

Whereas the first can be reduced, to some extent, by proper signal processing, having a

control on the second factor is not so easy. This is true particularly for typical OMA
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situations like bridges, buildings, vehicle on road, etc where test engineers have no
control over the forcing conditions which are usually ambient in nature.

In relation to the leakage related issues, it has been shown that the use of cyclic
averaging results in a more leakage free estimation of the power spectrums that in

comparison help produce more reliable damping estimates.

Percentage Error in Modal Damping Estimates
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Figure 7.18: Effect of correlated input forces Case C (Percentage error in
modal damping estimates)

7.4 Conclusions

This Chapter emphasizes the need to understand the OMA process by conducting more
intensive studies regarding the factors that influence the estimated modal parameters
including damping. This makes it important to understand the signal processing
techniques for the correct estimation of modal parameters. Further, the situations where

OMA assumptions do not hold true should also be explored for complete understanding
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of the limitations of OMA. The work presented in this Chapter is inspired by the above
need.

This Chapter shows how it is very difficult to get good leakage free estimates of the
power spectrums in comparison to the FRFs and how cyclic averaging together with
RMS averaging, windowing and overlapping is an effective way of dealing with leakage
in comparison to more common RMS signal processing that involves only windowing
and overlapping. The cyclic averaging technique is not always used in the estimation of
FRFs, partially because one is often able to attain good estimate of FRFs even without
its use. However, its use in OMA results in considerable improvement and thus this
methods need to be explored more with respect to OMA related applications.

Yet another interesting observation made in this Chapter regards the effect of the
violation of the basic OMA assumption (input forces being random and uncorrelated) on
the modal parameters. It is shown how, in such situations, the error in damping
estimates is considerably increased. It is also important to point out that the frequency
estimates are well estimated in most cases, even when the power spectrums suffer from
bias errors and when input forces are not completely uncorrelated.

As per this study it will be a fair conclusion to say that for accurate estimation of
damping, it is necessary to have good estimates (leakage free) of the output response
power spectrum and that the input forces be as uncorrelated as possible. Importantly,
while the first issue can be improved by using signal processing techniques like cyclic
averaging, the second factor is often beyond one’s control, especially in real-life
scenarios.

The interesting results shown by this study makes it even more important to conduct
similar studies on more practical and experimental systems and also explore various
other cases such as the effect of uneven forcing functions, better estimation of positive

power spectrum for the application of frequency domain OMA algorithms, etc. for a more
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through understanding of Operational Modal Analysis. This is essential to develop a
better understanding of the OMA procedure which will help immensely when applying

these techniques to practical real-life situations.
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Chapter Eight

Application to Civil Structures

Civil Structures, especially bridges, are one of the major OMA application areas
including dynamic characterization, damage detection, condition assessment, etc
[Peeters, Ventura, 2003; Cunha, Caetano, 2005]. This Chapter presents the OMA
related studies carried out on two cable stayed bridges in the State of Ohio, USA. The
two bridges, the US Grant Cable-stayed Bridge in Portsmouth and the Maumee River
Crossing Bridge in Toledo, are recently built bridges and the Chapter discusses the
results of the OMA techniques applied to data collected on these bridges. This Chapter
focuses on various aspects of operational modal tests that were conducted on the
bridges; design of the tests, collection of ambient deck vibration data, parameter
estimation techniques used, validation of results and the comparison with the finite

element model based predictions.

8.1 US Grant Cable-Stayed Bridge

The US Grant Bridge is one of three cable-stayed bridges being proposed to be built in
the State of Ohio, and is constructed across the Ohio River at Portsmouth, OH. The
bridge was completed and opened to public in October, 2006. It is a three-span cable-
stayed bridge with main span of 875 ft and side spans of 350 ft and 457.1 ft at the
Kentucky and Ohio ends respectively (Figure 8.1). The typical elevation and plan of the

bridge is shown in Figure 8.2. The bridge deck has a total width of 70.25 ft, with center to
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center spacing of 65 ft between the longitudinal girders. This bridge has a modified-fan
system, and the deck system consists of precast post-tensioned concrete deck slab
supported on two longitudinal steel girders, interconnected by an array of cross-beams
and steel stringer beams. The bridge has a pair of single towers from which the inclined
cables are stretched out to support the longitudinal girders. The cross beams are
uniformly spaced along the length of the bridge at a typical distance of 25 ft, with the
cables attached at each alternate cross-beam location. The cables are tensioned such
that sag effects are minimal and the cables behave more or less like a taut piano string.
Additionally, the cables are connected together by intermittent ties to prevent excessive

vibrations during operating conditions, as shown in Figure 8.2.

Figure 8.1 — US Grant Cable-Stayed Bridge
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Figure 8.2 - Typical plan and elevation of the US Grant Bridge

8.1.1 Design of Experiments

A finite element model of the bridge was made and predictions of the modal frequencies
and mode shapes along with the mass (modal) participation factor were made from this
model. The results of this FEM study are used to design the OMA experiments. Details
of this study are discussed in [Saini, 2007; Chauhan, Saini et al., 2007].

Table 8.1 lists the computed frequencies of vibration from the finite element analysis for
the first 19 modes along-with their mode description and modal participation factors.
Looking at the relative modal participation factors, it can be observed that the bending
modes are more significant than torsion modes in terms of their effect on the overall
response. Therefore, the bending modes were used to design the operational modal

analysis tests and for detailed comparison as is explained in the later sections.
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Table 8.1: Results of the finite element analysis of the US Grant Bridge

Frequency Mode Modal Participation Factors (%)
(Hz.) Description UX uy uz RX RY RZ
0.2936 Bending-1 0.297 | 0.000 | 1.427 | 0.000 | 0.025 | 0.000
0.3443 Tower Sway | 0.000 | 13.22 | 0.000 | 63.59 | 0.000 | 14.33
0.3842 Tower AntiSway | 0.000 | 4.040 | 0.000 | 15.89 | 0.000 | 0.066

|

0.6786 | Torsion-1 | 0.000 | 0.025 | 0.000 | 1.678 | 0.000 | 0.017
|

0.7971 . Torsion-2 | 0.000 | 0.806 | 0.000 | 0.054 | 0.000 | 0.822
|

0.8391 . Torsion-3 | 0.000 | 0.703 | 0.000 | 0.001 | 0.000 | 2.593
|

0.9511 Torsion-4 0.000 | 0.131 | 0.000 | 0.002 | 0.000 | 0.059
1.0201 Torsion-5 0.000 | 1.385 | 0.000 | 0.031 | 0.000 | 0.811
1.0855 Bending-6 0.369 | 0.000 [ 1.771 | 0.000 | 1.141 | 0.000
1.1678 Torsion-6 0.000 | 0.321 | 0.000 | 0.043 | 0.000 | 0.410
1.1749 Bending-7 0.194 | 0.000 | 0.015 | 0.000 | 1.196 | 0.000
1.2571 Torsion-7 0.000 | 0.049 | 0.000 | 0.008 | 0.000 | 0.397
1.4233 Bending-8 1.247 | 0.000 | 0.902 | 0.000 | 0.583 | 0.000
1.5113 Torsion-8 0.011 | 0.023 | 0.000 | 0.031 | 0.000 | 0.021
1.5122 Bending-9 44.36 | 0.000 | 0.000 | 0.000 | 0.042 | 0.000

Before carrying out the final superstructure test, a series of smaller tests were conducted
with an aim to establish a certain degree of confidence in the testing procedure, data
acquisition and subsequent data processing methodologies.

The initial tests focused on ascertaining the accuracy of one type of sensors
(piezoelectric accelerometers) with respect to another type of sensors (capacitive
accelerometers). The capacitive accelerometers as per specifications behaved better in
the low frequency range (below 2 Hz) in comparison to piezoelectric accelerometers.
Since the number of capacitive accelerometers was limited, in order to conduct a
superstructure test that will yield satisfactory results, it was imperative to use the
piezoelectric sensors and thus it was also necessary to establish their behavior and
consistency in the low frequency range. The tests revealed that both the piezoelectric

and capacitive accelerometers behaved comparably except for extremely low
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frequencies below 1 Hz (Figure 8.3). This was confirmed based on analyzing the data

collected over various sensor locations and also at different times.

: Dataset 1 Girder 2 (Stay 15 MUY Z Direction
1 E T T T T T T T

Cap
g Piezo | 7

10 | | | | | | | | |
1] ] 4 b g 10 12 14 16 18 20

Freguency

Figure 8.3 — Response comparison measured using a capacitive and a
piezoelectric accelerometer

Based on the studies conducted using the finite element model, it was observed that the
bridge movement is significant in vertical direction (Z direction) (refer to Figure 8.5).
Further, the FE model based studies also revealed that the only significant motion
across the bridge (Y direction) was predominantly the tower motion and the deck’s
dominant motion was mainly in the vertical direction. This was also validated by means
of the preliminary small scale modal tests where accelerometers were placed in all three
directions; vertical (Z direction), along the length of the bridge (X direction) and across
the bridge (Y direction). Figure 8.4 shows that the signal in Z direction is indeed much
higher in comparison to that in X and Y directions. This was verified for various sensor

locations and, though the bridge movement is always subject to weather conditions and
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specific location, it can still be noted, based on FE model and preliminary
experimentation, that, from the modal analysis point of view, Z direction modes are most

important.

Capacitive Accelerometer Girder 1 (Stay 15 NU
T

10 T T T T T T T

—71] ]

Freguency

Figure 8.4 — Comparative bridge response in X, Y and Z directions (US
Grant Bridge)

Apart from the above mentioned objectives, these tests were also utilized for finalizing
the test set up and data acquisition requirements for the final OMA test. The first
preliminary test that was conducted had sensors placed at eight locations (Figure 8.5) on
the upstream side of the bridge in the mid span around the centre of the bridge. The two
sensor lines along the length of the bridge were chosen to correspond with the inner and
outer girder lines on the upstream side. Note that location 12 in Figure 8.5 is at stay
cable 15 SUI (South, Upstream, Inner girder) and the distance between the individual
sensors along the length of the bridge is 50 feet. On analyzing the data collected in this

test, it was observed that due to lack of spatial resolution (only a subsection of the bridge

167



is instrumented and at a very few locations), very few modes are clearly identified. Not
many torsional modes were identified due to the fact that only one side of the bridge was
instrumented and due to selecting locations where torsional modes don’t show much

activity.

Figure 8.5 — Sensor layout for first preliminary test (US Grant Bridge)

The first preliminary test was followed by a second preliminary test which was designed
in view of the findings of the first test. Figure 8.6 shows the layout of the sensors for this
test. The test was again restricted to the upstream side of the bridge but sensors were
placed at 18 locations and the bridge length instrumented in this case was more than the
previous case. Table 8.2 lists down the bridge locations corresponding to the labels in
Figure 8.6. This test revealed a much clear picture and better estimation of modes in
comparison to the previous preliminary test. However, there were still certain
uncertainties regarding the validity of the modes chosen. Though this set up helped in

identifying some of the torsional modes, their identification was still not as obvious as the
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bending modes. Further, since the bridge excitation depended solely on ambient

sources, some of the modes which were clearly visible in the previous test were not that

dominant in this case and vice versa.

Figure 8.6 — Sensor layout for second preliminary test (US Grant Bridge)

Table 8.2 — Sensor locations on the US Grant Bridge (Second Preliminary
Test) (NU — North, Upstream, SU — South Upstream)

Sfan;;r Location on Bridge Sf:;;r Location on Bridge
11 Cable 10 NU Outer Girder 21 Cable 10 NU Inner Girder
12 Cable 11 NU Outer Girder 22 Cable 11 NU Inner Girder
13 Cable 12 NU Outer Girder 23 Cable 12 NU Inner Girder
14 Cable 13 NU Outer Girder 24 Cable 13 NU Inner Girder
15 Cable 14 NU Outer Girder 25 Cable 14 NU Inner Girder
16 Cable 15 NU Outer Girder 26 Cable 15 NU Inner Girder
17 Cable 16 NU Outer Girder 27 Cable 16 NU Inner Girder
18 Central Span Outer Girder 28 Central Span Inner Girder
19 Cable 16 SU Outer Girder 29 Cable 16 SU Inner Girder
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8.1.2 Final Superstructure Test: Test Set-Up and Data
Acquisition
The main purpose that the two preliminary tests served was to help in designing the final

superstructure test. While doing the set up for the final test, the findings from the
previous tests were considered and it was decided to instrument both the upstream and
downstream sides of the bridge. Thus, there were three lines of sensors running along
the length of the bridge; along the outer and inner girder on the upstream side (as in the
preliminary tests) and along the outer girder on the downstream side. As in the case of
the second mini test, the sensors were placed at cable locations starting from 10 S to 16
N including the sensor at the central span (thus 9 sensors per sensor line along the
length of the bridge). Further in addition to these 27 sensors, 4 more sensors were
placed at the locations corresponding to cable stays 5 N and 5 S at the outer girders on
the upstream and downstream side, at the side spans. The purpose of putting these
extra sensors was to help in distinguishing the modes which might have appeared
similar in the central span with the difference being more apparent in the side spans.
Figure 8.9 shows the layout of the sensors and their corresponding locations are

explained in Table 8.3.
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Figure 8.7 — Sensor layout for final superstructure test (US Grant Bridge)

Table 8.3 - Sensor locations on the US Grant Bridge (Final Superstructure

Test)
Sensor Location on Sensor | Location on | Sensor Location on
Label Bridge Label Bridge Label Bridge

1 Cable 5 NU o1 Cable 5 ND
Outer Girder Outer Girder

2 Cable 10 NU 12 Cable 10 NU 29 Cable 10 ND
Outer Girder Inner Girder Outer Girder

3 Cable 11 NU 13 Cable 11 NU 23 Cable 11 ND
Outer Girder Inner Girder Outer Girder

4 Cable 12 NU 14 Cable 12 NU o4 Cable 12 ND
Outer Girder Inner Girder Outer Girder

5 Cable 13 NU 15 Cable 13 NU o5 Cable 13 ND
Outer Girder Inner Girder Outer Girder

6 Cable 14 NU 16 Cable 14 NU 26 Cable 14 ND
Outer Girder Inner Girder Outer Girder

v Cable 15 NU 17 Cable 15 NU 27 Cable 15 ND
Outer Girder Inner Girder Outer Girder
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8 Cable 16 NU 18 Cable 16 NU 8 Cable 16 ND
Outer Girder Inner Girder Outer Girder
9 Central Span 19 Central Span 29 Central Span
Outer Girder Inner Girder Outer Girder
10 Cable 16 SU 20 Cable 16 SU 30 Cable 16 SD
Outer Girder Inner Girder Outer Girder
11 Cable 5 SU 31 Cable 5 SD
Outer Girder Outer Girder

A total of two datasets were collected. The data acquisition parameters were set as

following

Sampling rate 40 Hz
Frequency Range 0-15Hz
Test Duration (First dataset) 60 Min
Test Duration (Second dataset) 10 Min

The bridge was not yet opened for public and thus the only sources exciting the bridge
were ambient wind (primarily) and river water flow. For the second dataset, a van was
driven on downstream side of the bridge during the full 10 min duration of the test
(Figure 8.10). PCB 393A03 accelerometers used for the purpose of measuring the

vibration signals and VXI DAC Express for data acquisition.

Figure 8.8 —OMA test with an excitation along with ambient sources
(Second dataset)
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8.1.3 Operational Modal Analysis

The data collected was processed to obtain the power spectrums using the Cyclic
Averaging approach as explained in Chapter Seven, a block size of 4096 was used
along with Hanning window, thus a frequency resolution of 0.0098 Hz was obtained. The
number of cyclic averages and overlap were chosen as 3 and 75% respectively. A
typical auto-power spectrum is shown in Figure 8.11. Before carrying out the modal
parameter estimation process, Short Time Fourier Transform (STFT) [Qian, 2002] plots
were used to check the consistency of the data collected from the various sensors. A
typical STFT plot is shown in Figure 8.12. Data collected from various sensors was
observed to be consistent except for a few channels where either the data has to be
multiplied by a calibration factor or certain portions of the data were inconsistent needed
to be cleared. Further while analyzing the two datasets, it was observed that driving the
van over the bridge resulted in better signal-to-noise ratio in comparison to the case
when bridge is excited only by means of natural sources (wind) only.

The Complex Mode Indicator Plot (CMIF) plot based on power spectrum data for the
second dataset is shown in Figure 8.13. CMIF is an excellent tool that gives an idea
about the number of modes present in the frequency range of interest (which in this case

is 0-3 Hz).
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Figure 8.9 — Typical auto-power spectrum of a measured response
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Figure 8.10 — Typical Short Time Fourier Transform (STFT) plot of response

data for a chosen location
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Figure 8.13 — CMIF plot of second dataset (Final superstructure test of the
US Grant Bridge)

The parameter estimation process was carried out using the OMA-EMIF algorithm
explained in Chapter 5. The estimated parameters are listed in Table 8.4 and some of
the mode shapes and the corresponding finite element mode shapes are shown in

Figure 8.14.

Table 8.4 - Estimated modal parameters for the US Grant Bridge using

OMA-EMIF
H o,

Frequency (Hz) Dag iF’:iI:agl)( o Description
0.4966 1.3182 Vertical
0.6982 1.8078 Vertical
0.7418 1.8808 Torsion
0.8424 2.1355 Vertical
0.8995 1.1372 Vertical
0.9296 1.2494 Torsion
1.1259 1.2018 Torsion
1.1414 0.8501 Vertical
1.4444 0.9153 Torsional (Probably KY Sidespan)
1.5177 1.4354 Vertical




0.4966 Hz (2" Bending mode )

0.483 Hz (2" Bending mode )
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Figure 8.12 — Mode shapes (OMA vs. FEM) (US Grant Bridge)

A comparison of the selected modes among themselves is also done using the Modal

Assurance Criterion and the MAC plot is shown in Figure 8.15. The MAC plot shows that

most modes are fairly independent of each other, however as per the MAC plot modes

at 1.1414 and 1.2068 Hz and the torsion modes at 0.742 and 0.929 Hz (shown in green

and orange in Table 3) appear to be similar though these are well separated in

frequency. One of the reasons for this is likely to be an observability problem. These
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modes are similar in mid span, where most of the sensors were instrumented, but the
mode shapes are likely to be different in the side spans. But since only mid span is
instrumented sufficiently in a spatial sense, it might not be possible to differentiate

between these modes.

Modal Assurance Criteran

151775

1.44447

1.41073

1.20686

1.14142

1.12892
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OMA-EMIF Modes

0.899543
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0598264

0.496554

0496554 0B98264 0741843 0842432 0899543 0529652 112592 114142 120686 1.41073 1.44447 151775
OMA-EMIF Modes

Figure 8.13 — MAC plot between the various modes obtained using OMA of

the US Grant Bridge

Table 8.5 shows the comparison of the FE model based prediction of bridge modes with
the experimentally obtained modes. Table 8.6 shows the MAC values for these modes
obtained using the FE model and experimentally. Only the modes having large modal
participation factor based on finite element analysis (as indicated in Table 8.5) are
considered for MAC comparison. Table 8.5 shows that most of the bending modes are
comparing well with the finite element prediction within error limits. The torsional

response of the bridge didn’t match well as compared to the bending response. This is
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due to the fact that the girder stiffness correction in the finite element model was directed
at correcting the flexural response due to the relative importance of bending modes
compared to torsion modes. This stiffness correction is accurate for minimizing the
differences in the bridge bending modes, but since the girders and deck are still modeled
at the same horizontal plane, the differences in the torsion behavior are not corrected.
Note that the experimentally obtained 1st bending mode, as indicated in the table, is
obtained from the second preliminary test. This mode was not observed in the final
superstructure test perhaps because of the low signal-to-noise ratio. This can be
considered as one of the shortcomings of the operational modal analysis as mode

observability depends considerably on favorable ambient conditions.
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Table 8.5 - Comparison of FEM and OMA modes for the US Grant Bridge

FEM Modes OMA Modes
Modal
A participation
Description Remarks Freq Factor (Z Freq Descr.
Dir.)
Bending-1 Center span + OH span 0.2936 1.4270 0.31 B
Tower Sway 0.3443 0.0000 - -
Tower Anti Sway 0.3842 0.0000 - -
Bending-2 All spans 0.4827 5.5860 0.4966 B
Deck Lateral Center span 0.5942 0.0000 - -
Torsion-1 Center span + small torsion |  g7g6 | 00000 | 0.7418 | T
in end spans
Bending-3 All spans 0.7052 21.6690 0.6982 B
Torsion-2 Center span + OH span +small | 7971 | g 0000 . .
torsion in KY span
Bending-4 KY span + Center span + | o g150 | 46940 | 08424 | B
small bending in OH span
Torsion-3 Center span + small torsion in 0.8391 0.0000 i )
end spans
Bending-5 | Ceénterspan+smallbending | 5550 | 159690 | 0.8995
in end spans
0.9296 T
Torsion-4 | KY'span *Center span +small | 49541 | ¢ 000
torsion in OH span
Torsion-5 Center span + KY span +small | 4 o541 | 0000
torsion in OH span
1.1259 T
. OH span + Center span +
Bending-6 small bending in KY span 1.0855 1.7710 1.1414
Torsion-6 OH span + small torsionin | 4 4478 | g 000
center span and KY span
Bending-7 All spans 1.1749 0.0150 1.2068 B
Torsion-7 All spans 1.2571 0.0000
1.4107 T
1.4444 T
Bending-8 All spans 1.4233 0.9020 1.5177 B

Table 8.6: Cross MAC between OMA and FEM Bending Modes for the US

Grant Bridge
FEM (Hz)| OMA (Hz)| MAC
0.483 0.497 0.88
0.704 0.698 0.91
0.815 0.842 0.60
0.924 0.899 0.84
1.087 1.141 0.69
1.178 1.207 0.89
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Additionally, a time domain (PTD) and a frequency domain (RFP-z) OMA algorithm are
also applied to the collected data, in order to compare their performance with the OMA-
EMIF algorithm. As mentioned in Chapter 3, Polyreference Time Domain (PTD) and
Rational Fraction Polynomial in z Domain (RFP-z) algorithms are high order algorithms,
PTD being a time domain where RFP-z being a frequency domain algorithm. RFP-z is
similar to the POLYMAX algorithm. Details of these algorithms are discussed in Chapter
3. Table 8.7 lists frequency and damping estimates obtained using the two algorithms

along with the estimates of OMA-EMIF algorithm.

Table 8.7 — Comparison between RFP-z, PTD and OMA-EMIF estimates for
the US Grant Bridge

RFP-z PTD OMA-EMIF
Frequency | Damping | Frequency | Damping | Frequency | Damping
0.315 3.940 0.322 4.156 - -

- - - - 0.4966 1.3182
0.697 1.617 0.694 1.468 0.6982 1.8078
0.741 1.242 0.736 1.238 0.7418 1.8808
0.841 2.147 0.834 1.425 0.8424 2.1355
0.917 1.860 - - 0.8995 1.1372
0.932 1.219 0.925 0.997 0.9296 1.2494
1.098 1.410 - - 1.1259 1.2018
1.140 1.504 1.127 1.211 1.1414 0.8501
1.207 0.983 1.198 0.687 1.2068 1.0884
1.413 0.780 1.402 0.868 1.4107 0.9113
1.447 0.897 1.435 0.855 1.4444 0.9153
1.516 1.386 1.502 1.341 1.5177 1.4354

Both algorithms were able to estimate the mode around 0.315 Hz which was not
estimated by OMA-EMIF algorithm. Further, PTD was not able to identify two modes
(highlighted in the table) which were estimated by RFP-z and OMA-EMIF algorithms.
The 0.49 Hz mode that was estimated by OMA-EMIF algorithm is not estimated by either
PTD or RFP-z.

The MAC plots for PTD and RFP-z are shown in Figures 8.16, 8.17. As seen earlier with

OMA-EMIF MAC, some modes do appear to be similar, however most of the estimated
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modes are independent.

Wode Frequency, Hz

1.1
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Figure 8.14: MAC for RFP-z estimates (US Grant Bridge)

Mode Frequency, Hz

1.20

113

082

Auto-MAC of Comparison File

032 063 074 0a3 082 113 120 140 143 1.50
MWode Frequency, Hz

Figure 8.15: MAC for PTD estimates (US Grant Bridge)
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In Table 8.8, the Cross MAC values between the various modes estimated by the three
algorithms are presented. Some modes (highlighted in the table) have low Cross MAC
values or are not identified by some algorithms, indicating that the estimation of these
modes is not consistent through the various algorithms. However, most of the bending
modes (except for the 0.89 Hz mode) were identified satisfactorily. It should again be
noted that emphasis was placed, while designing the OMA experiment to observe these
modes which were found to have high mass participation factor as per the finite element

study.

Table 8.8 - Cross MAC comparison between various OMA algorithms for
the US Grant Bridge

Frequency OMA-EMIF/RFP-z | OMA-EMIF/PTD RFP-z/PTD
0.69 0.756 0.686 0.903
0.74 0.644 0.789 0.850

1.14 0.645 0.876 0.687
1.20 0.999 0.998 0.999
1.41 0.486 0.606 0.756
1.44 0.597 0.732 0.841
1.51 0.980 0.986 0.997
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8.2 Maumee River Crossing Cable-Stayed Bridge

The MRC Bridge or the Veterans’ Glass City Skyway Bridge (Figure 8.18), as it is now
called, is a single pylon cable-stayed bridge in Toledo, Ohio over the Maumee river on
Interstate 280 on the eastern edge of Toledo downtown. The bridge replaces the Craig
Memorial Bridge which was one of the last remaining drawbridges on the US interstate
highways. The bridge opened to public in June, 2007.

The bridge has symmetric spans of length 612.5 ft (Figure 8.19) and the decking system
consists of concrete box segments. The pylon consists of a unique cradle system which
allows the cable to pass through the pylon continuously and terminating at the deck
level. Thus instead of having 20 cables each on both sides of the pylon, there are only
20 cables in total which pass from one side of the bridge to the other through the pylon.
The cables consist of 6 inch steel strands which are epoxy coated. Additionally, the
stays are supported by mechanical dampers near the anchorage to take care of any

wind or traffic induced vibrations.

Figure 8.16: Maumee River Crossing Bridge, Toledo, OH
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8.2.1 OMA Test Set-Up

Figure 8.19 shows the test set-up layout. The sensor grid used for the test is much
coarser in comparison to the one used for the US Grant Bridge and thus it is expected
that some of the modes might appear to be similar (poor observability). A total of 10
sensors are used, 5 on each side of the parapet. The sensor lines extend from the back
span side to the front span side with 8 sensors on one side of the pylon and 2 on the
other as indicated in Figure 8.19. The sensor line extends 500m from Cable 14B on the
back span to 6A on the front span. Note that notations A and B are for front and back
spans respectively. Figure 8.20 shows one of the accelerometers glued on the bridge
superstructure.

The data acquisition parameters for the test were set as following

Sampling rate 40 Hz
Frequency Range 0-15Hz
Test Duration 20 Min

The bridge was partially opened to public and one lane of traffic was open during the

test.
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Figure 8.17: OMA Test Set-Up Layout for the MRC Bridge

Figure 8.18: Typical accelerometer set up for the MRC Bridge OMA test
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8.2.2 Operational Modal Analysis

The data was processed using the Cyclic Averaging approach to obtain the power
spectrums. A block size of 2048 was used along with 3 cyclic averages, Hanning
window, and 90% overlap. The autopower plot of individual channels is shown in Figure

8.21. The plot indicates the presence of at least 6 modes below 1.4 Hz frequency range.

Butn Spectum of indiadusl Channals

1 I
az a4 0% o8 1 12 14 16 e 2 22

Figure 8.19: Autopower spectrum of individual channels (MRC Bridge)

CMF Frat
i - T T T T T T

Figure 8.20: Complex Mode Indicator Function Plot (MRC Bridge)
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The CMIF plot (Figure 8.22) indicates the presence of two close modes around 1 Hz in
addition to the modes indicated by the Autopower plot.

The results of the OMA-EMIF algorithm based modal parameter estimation are listed in
Table 8.9. The MAC plot (Figure 8.23) confirms that due to lack of sufficient spatial
resolution (coarse sensor grid) some of the mode shapes appear to be similar even
though they are well separated in terms of modal frequency. This is likely due to the fact

that sensor layout doesn’t account for lateral modes and cable vibration modes.

Table 8.9 - Estimated modal parameters for MRC Bridge using OMA-EMIF

Frequency (Hz) Dag: ﬁ;:gl)(% Description
0.4332 2.6295 Vertical
0.6442 3.5498 Vertical
0.7083 1.8311 Vertical
0.9849 1.4854 Torsional
0.9919 1.5223 Torsional
1.1915 1.7819 Vertical
1.3116 1.7276 Vertical

1.9508 1.8700 Torsional
2.0530 1.3031 Torsional
2.0873 0.6938 Vertical + Torsional
2.2991 1.6992 Vertical
2.4198 1.6646 Vertical
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Figure 8.21: AutoMAC plot for the various modes obtained by OMA of the
MRC Bridge

The green cells in Table 8.9 indicate the modes which are not well observed. These
modes also appear to be similar to other modes as indicated by the MAC plot. The fact
that these modes do not show up when other OMA parameter estimation algorithms are
applied to the same data also provide little confidence in these modes. However this
limitation is not on part of the algorithm but the test set up and resulting data and this
problem can be attributed to several factors including instrumenting only a section of the
bridge resulting in insufficient spatial resolution, a limited sensor grid, mounting the
sensors in only the vertical direction thus not accounting for lateral motion of the bridge,
tower sway and cable vibrations. Thus just like EMA, the need for proper test design is

utmost for getting good estimates of the modal parameters.
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Since the results of the FE analysis for this bridge were not available, a comparison on
the lines of US Grant bridge was not possible. However, a preliminary test with a smaller
sensor layout (only 5 sensors) was conducted and the result of the final test matched
well with that test. The mode shapes of the few selected modes are shown in Figure

8.24. Most of the modes are fairly real normal modes.

0.4332 Hz (Bending mode) 0.7083 Hz (Bending mode)

0.9849 Hz (Bending mode) 0 9919 Hz (Bending mode)
1.3116 Hz (Bending mode) 1.9508 Hz (Bending mode)

=

Figure 8.22 — Mode shapes (MRC Bridge)
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8.3 Conclusions

The OMA-EMIF algorithm developed in Chapter 5 is applied to two cable-stayed bridges
and is shown to work satisfactorily in both the cases. In the case of the US Grant Bridge,
the results of the OMA-EMIF algorithm are found to be similar to those obtained using
other OMA algorithms like PTD and RFP-z as well as the finite element model based
study.

It is observed that an important aspect of applying these techniques to real-life structures
is careful planning and design of the tests. This is also an important step in traditional
experimental modal analysis. Finite element models and smaller preliminary tests are of
considerable use in this regard. They provide useful apriori information that can be of
much help while testing such large structures, especially in view of limitations on sensors
and cabling. As is shown in the case of the US Grant Bridge, the importance of
designing the final test in this manner comes from the fact that the chosen set up is
optimum for the intended purpose which helps in reducing set up time, instrumentation
and sensor requirement etc.

In the future, the estimated modal parameters can be used for a variety of purposes. FE
model updating is one such area where based on the experimentally observed modal
parameters, the FE model is updated to correctly simulate the dynamic behavior of the
structure. The modal parameters can also be used for damage detection and structural
health monitoring purposes. Since the tests are conducted before the bridge is opened
for service, the attained modal parameters can act as base line and similar modal tests
can be conducted in the future. The modal parameters can be compared with these

base line parameters to determine if the bridge dynamics have changed or not.
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Chapter Nine

Conclusions and Recommendations
for Future Work

9.1 Summary and Conclusions

Despite being a relatively new field, Operational Modal Analysis has shown a lot of
promise especially in situations difficult handle using traditional Experimental Modal
Analysis techniques. Due to this, OMA techniques have generated a growing interest in
the research community and are gaining popularity with time. However, the field is still in
its developmental stage and efforts are needed towards understanding its advantages
and limitations in more detail.

The main focus of this dissertation was the modal parameter estimation for OMA and the
signal processing techniques needed for the same. The work presented in this
dissertation contributes to the field of OMA in two aspects;

1. development of new and illustration of existing, parameter estimation techniques
for OMA together with associated signal processing techniques,

2. assessment of conditions where the OMA parameter estimation process will work
satisfactorily and where it will struggle, thus providing useful insights to the
application of OMA techniques.

It can be concluded, on the basis of the research work carried out in this dissertation,

that:
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The Unified Matrix Polynomial Approach (UMPA) is a powerful concept for
formulating various OMA algorithms like SSI, PolyMAX, etc. which have
otherwise been developed in isolation. UMPA provides a common mathematical
framework which aids in better understanding of the various algorithms, their
similarities and differences, advantages and limitations. The concept can further
be utilized for developing other algorithms such as low order frequency and Z
domain variants as presented in Chapter Four.

The Positive Power Spectrum (PPS) is an effective signal processing technique
for dealing with the numerical conditioning problems emerging due to the fact
that the power spectrum has twice the order of frequency response functions and
contains the same modal parameters related information twice. In this regard
PPS helps great deal in making parameter estimation OMA frequency domain
algorithms a reality.

The UMPA-LOFD and its variant that uses complex Z mapping are useful
additions to the existing OMA algorithms. These algorithms are frequency
domain OMA algorithms based on the PPS. These algorithms utilize low model
order thus avoiding numerical conditioning issues associated with higher order
algorithms such as the RFP. The parameter estimation results of these
algorithms are comparable to the existing OMA algorithms.

By utilizing the OMA-EMIF, a spatial domain algorithm developed as a part of this
research, it is possible to estimate multiple modes at a time, unlike the
FDD/eFDD approach that estimates one mode at a time. It is also possible to
utilize the residual terms to account for the effect of out-of-band modes while

using the OMA-EMIF, as this algorithm works in frequency domain.
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The performance of any and all OMA algorithms, including the FDD, deteriorates
if the assumption of complete uniform spatial excitation is violated. In such
situations, the power spectrum based CMIF (or FDD) plots contain spurious
peaks which can be confused as the system modes especially in case of poor
signal-to-noise ratio; conditions that are very common in real life. A simple but
useful tool, Singular value Percentage Contribution (SVPC) plot, can deal with
such situations by providing means to interpret the CMIF plots in situations of
insufficient spatial excitation.

New signal processing approaches like Independent Component Analysis and
Blind Source Separation (ICA/BSS) can be exploited to obtain modal parameters
without requiring the knowledge of the excitation forces by utilizing the concepts
of modal filters and modal expansion. The fact that these techniques do not
require the use of consistency or stabilization diagrams, makes them an
interesting option for OMA purposes.

Though modal frequency estimation remains unaffected, estimation of the modal
damping is affected greatly if leakage errors are present in the computed output
response power spectra, which are comparatively more difficult to estimate than
the frequency response functions. Cyclic Averaging is a powerful signal
processing technique which should be used along with RMS averaging,
windowing and overlapping for reducing the effects of leakage and hence
improving the accuracy of damping estimates.

The accuracy of damping estimates is also affected in situations where the basic
OMA assumption that excitation forces should be random, uncorrelated and
broadband in spectrum is violated. Unlike the leakage related problems that can

be dealt with, up to a certain extent, by using techniques like Cyclic Averaging,
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the nature of natural excitation is beyond one’s control and thus difficult to deal
with in real life situations.

e The OMA-EMIF algorithm works satisfactorily when applied to complex, real-life
structures such as the two cable-stayed bridges, the US Grant Bridge and the
Maumee River Crossing Bridge, tested as a part of this research. The study also
underlines the importance of proper designing of the OMA tests before carrying
out the final superstructure test. The FE modeling and series of smaller

preliminary tests vastly help in this regard by optimizing the final tests.

9.2 Recommendations for Future Work

As a researcher, one constantly seeks to push the boundaries in order to solve problems
that are complex and difficult to solve by using existing methodologies. Operational
Modal Analysis, as an application technique, developed due to researchers pushing
beyond the known realms of Experimental Modal Analysis. The aim was to understand
the dynamics of complex structures which do not lend themselves readily to EMA
techniques. In the past ten years, the field of OMA has progressed from being an
interesting concept on a researcher’s table to a commercially available technique. In this
current scenario, the challenges for the future are governed by the need to strengthen
the field of OMA by having a sound and deep understanding necessary for its correct
implementation and at the same time also aimed at widening of its scope. This means
future research has to focus on both the deeper and finer issues such as accurate
damping estimation, as well as the broader issues for e.g. utilizing OMA techniques for
related application such as active vibration control etc.

The damping issue explored in Chapter Seven of the dissertation is one area which

needs to be explored further to understand completely the reasons why damping
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estimation is with OMA techniques is not as accurate. In Chapter Seven, cyclic
averaging was suggested as one of the methods to overcome leakage related errors that
affect the damping estimates. Future research should concentrate on finding signal
processing techniques that should aid in more accurate estimation of damping. BSS /
ICA based techniques might be one such option as these techniques differ from the
more common parameter estimation approaches. In this dissertation, mostly power
spectrum data was obtained using the Welch Periodogram approach and occasionally
with Cyclic Averaging. It will be interesting to see how damping estimates are affected if
correlogram approach is used instead. The Cyclic Averaging approach needs to be
explored further in more details. It will also be insightful to understand how various kinds
of windows, overlapping and zero padding, etc. affect the damping estimation.

Structural health monitoring and damage detection are two important fields in the area of
structural dynamics and future research should involve the exploitation of the OMA
algorithms presented in this research for these purposes. These techniques can be used
for continuous monitoring of big civil structures such as bridges, buildings etc. as they
utilize natural excitation which is not required to be measured. OMA techniques lend
themselves more easily for continuous monitoring purposes in comparison to
Experimental Modal Analysis which requires the measurement of the force exciting the
structure. Thus, the OMA based approach could not only be a more feasible but also a
comparatively less costly option. An ICA/BSS based approach as documented in
Chapter Six could be very effective as this method yields mode shapes and modal
frequencies in one step. This needs to be explored further to find out how sensitive this
approach is to small local damages in the structure.

OMA is still a developing area and scope of improved parameter estimation algorithms
continue to exist. In this regard, the idea of frequency domain ICA algorithm for OMA, as

introduced in Chapter Six, needs to be explored in more detail. An OMA model is similar
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to a BSS/ICA model in frequency domain. However, such a model exists for each
frequency bin and the order of the identified sources isn’t same in various frequency
bins. Thus a permutation error is introduced which is difficult to overcome, thus making
frequency domain BSS/ICA based OMA algorithm much more challenging to develop.
Future research in application of BSS/ICA techniqgues to OMA should involve
development of the frequency domain approach as well as application of these
algorithms to practical real life structures.

The concept of modal filters in the past has been used for applications involving active
vibration control of structures, flight flutter testing, etc. BSS/ICA techniques are based on
the concept of modal filters and directly uncouple the system responses into SDOF
modal coordinate responses. Thus these techniques lend themselves naturally to these
applications and this very aspect of these techniques makes them very attractive future
research area.

Similarly, researchers across the globe are working on utilizing signal processing
techniques other than computing power spectra or correlation functions for the purpose
of OMA. Some of these attempts include utilization of transmissibility functions
[Devriendt, Guillaume et al., 2007], cyclostationarity and cepstrum analysis [Hanson,
Randall, et al., 2007] etc. Most of these methods are still in primitive stages and it will be
interesting to how they compare with more established OMA algorithms while testing
real structures. It will also be important to note whether these methods yield more
accurate damping estimates as they utilize different signal processing approach.

Finally, the ultimate challenges for Operational Modal Analysis are those very ones that
are associated with Experimental Modal Analysis as well. Having achieved a level of
comfort while dealing with the problems that categorizes as linear, time-invariant

systems; the future research needs to push further and explore systems that are
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nonlinear and time variant; systems that are often so complex that behavior cannot be
sufficiently explained with the range of EMA/OMA assumptions.

Just like EMA, most of the OMA algorithms use stabilization diagrams as a part of modal
parameter estimation process to find out true modes of the system from the
mathematical modes. Often the user chooses one of the estimates amongst the
stabilized modes as the system mode and this makes the whole selection process based
very much on the user judgment. A statistical tool based on minimum distance (such as
Euclidian or Mahalanobis distance from the target) can be developed to aid this selection
process. This process can involve algorithms such as k-nearest neighbor (for example,
to the mean) etc. in order to identify the parameter closet to the mean of its various

estimates. The same process can also be applied to EMA algorithms.
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