
UNIVERSITY OF CINCINNATI

Date:___________________

I, ___,
hereby submit this work as part of the requirements for the degree of:

in:

It is entitled:

This work and its defense approved by:

Chair: _______________________________

An Efficient and Secure Overlay Network for General
Peer-to-Peer Systems

by

Honghao Wang

M.S. Institute of Software, Chinese Academy of Sciences 2000
B.S. Huazhong University of Science and Technology 1997

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science and Engineering

in the

Department of Electrical and Computer Engineering and Computer Science

of the
College of Engineering

of the

University of Cincinnati, Ohio

Committee:
Professor Yiming Hu, Chair
Professor Dharma P Agrawal

Professor Carla Purdy
Professor Karen Tomko

Professor Lin Liu

Winter 2008

Abstract

Currently, Peer-to-Peer overlays can be classified into two main categories: unstructured

and structured ones. Unstructured overlays are simple, robust, and powerful in keyword

search. Structured ones can scale to very large systems in terms of node number and

geography, and guarantee to locate an object within O(LogN) hops. However, both of them

face difficulties in efficiency and security of overlays. For unstructured ones, the efficiency

problem presented is poor scalability. For structured ones, it is long routing latency and

enormous overhead on handling system churn. Moreover, both of them are vulnerable to

malicious attacks.

Peer-to-Peer overlays belong to application-level network. To a great extension,

overlay network designs ignore physical characteristics. As the result, their structures are

far from underlying physical network or the distribution pattern of overlay peers. These

inconsistencies induce system common operations costly, such as routing and lookup. On

the other hand, most peers are assumed to have uniform resources and similar behaviors.

Thus, Peer-to-Peer protocols were designed to be symmetric. However, in the realistic

environment, peers’ resources and behaviors are highly skewed. Symmetric protocols ac-

tually compromise system performance. Frequently joining and leaving of peers generates

enormous traffic. The significant fraction of peers with high latency/low bandwidth links in-

crease lookup latency. Moreover, under the environment without mutual trust, Peer-to-Peer

systems are very vulnerable for varied attacks because they lack a practical authentication

mechanism.

From a different perspective, this dissertation proposes to construct a highly effi-

cient and secure Peer-to-Peer overlay based on the physical network structure of the Inter-

net and network locality of overlay peers. By naturally integrating different network-aware

i

techniques into the Peer-to-Peer overlay, a novel SNSA (Scalable Network Structure Aware)

technique has been developed. It can provide accurate information of network locality of

overlay peers and sufficient physical network structure of the Internet. Based on the valu-

able information, a unique Peer-to-Peer overlay, which can reflect network structure and

locality of overlay peers, is constructed. Also, peers are assigned different roles by their

resources and behaviors. Minor capable peers are involved in overlay core operations, such

as routing and lookup. Major normal ones are organized into highly dependable teams,

and assigned usual tasks, such as storing objects. Not only can this overlay support both

structured and unstructured systems, but also the systems are highly efficient in routing

and consuming much less bandwidth.

As the observation that every peer must subject to the network configuration and

administration imposed by ISPs, we propose to identify each peer by its physical network

characteristic, net-print. Based on the SNSA technique and the net-print, a distributed au-

thentication and secure routing mechanisms are developed under Peer-to-Peer environment.

Beware of the fact that every overlay network maintains its own network proximity

system. This dissertation proposes to build a common layer to provide such information

for all overlays. By deeply analyzing requirements of current overlays, three kinds of prim-

itives are designed to provide valued knowledge of physical network and overlay peers. Not

only dose this method save network resource by eliminating duplicated probes, but it also

provides an efficient way to share information between overlays.

ii

Keywords—Peer-to-Peer, Overlay Network, Overlay Routing, Overlay Structure,

Distributed Hash Table (DHT), Network Topology, Network Aware, Network Locality, Net-

work Proximity, Network Security, Secure Routing, System Churn

iii

Dedication

To my parents and dear wife,

to all people I love.

v

Acknowledgments

I would like to thank my advisor Dr. Yiming Hu who provided constant guid-

ance and support to explore new areas of Peer-to-Peer. During my whole PhD study, he

has always instilled in me innumerable lessons and insights on the academic research and

professional developments.

I would also like to extend my sincere appreciation to my committee members,

Dr. Dharma Agrawal, Dr. Carla Purdy, Dr. Karen Tomko, and Dr. Lin Liu, for reviewing

previous draft of this dissertation and providing many valuable comments that improve the

presentation and contents of this dissertation.

Last but not the least, I would like to express my earnest gratitude to my parents

for their love and support. From the bottom of my heart, my thanks go to my dear wife

Lin Jiang, who is always my most precious one to share the life with. Your love, support

and help are indispensable. Thanks to my daughter Sophia for joy, happiness and big smile

she brings to me.

vi

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Peer-to-Peer Systems . 1

1.1.1 Unstructured P2P Systems . 2
1.1.2 Structured P2P Systems . 3

1.2 Inconsistencies Behind P2P Overlays . 6
1.2.1 Structure Inconsistency . 6
1.2.2 Responsibility Inconsistency . 8

1.3 Solutions to Inconsistencies . 10
1.4 Security Issues . 12

2 Network Structure and Related Techniques 15
2.1 The Structure of the Internet . 16
2.2 Network Aware Techniques . 17

2.2.1 Limitations of RTTs based Techniques 19
2.3 A Scalable Network Structure Aware Technique for P2P Overlays 20

3 Overlay Building 24
3.1 Network Locality under P2P Environment 24
3.2 Notion of the Overlay . 25
3.3 To Build the Overlay . 27
3.4 Membership Management . 29
3.5 Node Joining and Leaving . 30
3.6 Summary . 31

4 Designs of Structured and Unstructured P2P Systems 32
4.1 Structured P2P System Design . 32

4.1.1 Routing . 34
4.1.2 Maintenance . 35
4.1.3 The Sizes of Groups and Teams . 36

vii

4.1.4 System Overhead Analysis . 37
4.2 Unstructured P2P System Design . 39

5 Secure Routing for the Structured Design 41
5.1 A Better Identifier . 43
5.2 Secure Routing . 45
5.3 Some Discussions . 47

6 A Common Overlay Network Under-layer 49
6.1 Overlay Network Layers . 49
6.2 A Common Overlay Network Under-layer 51
6.3 Requirements of Different Overlay Networks 52

6.3.1 Structured P2P Overlays . 52
6.3.2 Unstructured P2P Overlays . 54
6.3.3 End System Multicast . 55

6.4 Design of the Common Under-layer . 56
6.4.1 Network Related Primitives . 56
6.4.2 Overlay Peer Related Primitives . 57

7 Evaluation 60
7.1 Experiments for the Structured Design . 60

7.1.1 Experimental Setup . 60
7.1.2 Experimental Results . 62

7.2 Experiments for the Unstructured Design 67
7.2.1 Experimental Setups . 67
7.2.2 Experimental Results . 69

8 Conclusions and Future Work 72
8.1 Conclusions . 72
8.2 Future Work . 73

8.2.1 A Hybrid P2P System . 73
8.2.2 Other Security Issues for P2P Systems 74

Bibliography 75

viii

List of Figures

2.1 Autonomous Systems of the Internet. Adapted from [1]. 15

3.1 Building the system overlay closely matching Internet topology 26

6.1 Layers of overlay network . 50
6.2 A common overlay network under-layer . 51

7.1 Overview of comparison between different structured P2P systems 62
7.2 Stretch comparisons, under different system churn rates and distributions . 63
7.3 Request failure rate comparisons, under different system churn rates and

node distributions . 64
7.4 Bandwidth (mean and 5 to 95 percentiles) consumed by different protocols

and roles, under system churn with Zipf distribution. The datum of our
overlay is shifted right 0.3 to make figure clear. 65

7.5 Link stresses put by different protocols to the Internet back bone, under
different system churn rates and node distributions. The left one is for Chord
protocol, the right one is for network based one. 66

7.6 Expanding ring search for unstructured design. Shown is the search success
ratio of different search range under various replication factors. 69

7.7 Keywords search for the unstructured P2P design. Shown is the search suc-
cess rate of different search range under various replication factors. The sys-
tem has 10,000 nodes, which distributed in 100 ASs, and the average team
size is 10. 71

ix

List of Tables

2.1 Example of BGP routing table entry . 18

4.1 Bandwidth consumed by different roles and operations. * is the ratio to DSL
or calble modem connection with 3Mb downlink and 384Kb uplink 38

7.1 Gnutella-like node capacity distributions . 67

x

Chapter 1

Introduction

1.1 Peer-to-Peer Systems

The last few years have seen a tremendous increase in the interest and research

activities of Peer-to-Peer (P2P) overlays. While P2P research covers a wide spectrum of

topics, such as routing/lookup, security, file systems, load-balancing, etc, one of the most

fundamental research topics is how to provide an efficient and secure lookup service in a

large-scale network which is completely distributed and decentralized.

The primary goal of the P2P system is to harness and aggregate the slack re-

sources(e.g., bandwidth, storage and CPU) on each peer to build large-scale distributed ap-

plications, such as wide-area file sharing, distributed web cache, and distributed file/storage

systems. Generally, P2P systems can be categorized into two major architectures: unstruc-

tured and structured. The first architecture is recognized as the first generation of P2P

systems, while the second one is recognized as the second generation.

1

1.1.1 Unstructured P2P Systems

For unstructured P2P systems, such as Gnutella [2] and KaZaA [3], their overlay

topology can be viewed as a random graph where each node randomly chooses some nodes

as neighbor nodes. Gnutella is a typical example of the unstructured P2P network. In

Gnutella, the peers form an overlay network by forging point-to-point connections with a

set of neighbors, and each one maintains the state of its neighbors. To deal with peer joins

and departures, Gnutella uses ping and pong messages to maintain the overlay network.

To locate a document, a peer initiates a controlled flooding by sending a query to

all of its neighbors. Upon receiving a query, the peer checks if any locally stored documents

match the query. If so, the peer sends a query response back towards the query originator.

Whether or not a document match is found, the peer continues to flood the query until the

TTL (time-to-live) reaches 0. Upon receiving a query response, the query originator may

initiate a file download directly from the peer which gives the query response.

Although the overlay structure is disordered, it is simple to construct and robust in

face of major disasters. It can keep peers highly connected even when a large amount of peers

suddenly leave the overlay. When performing searches on arbitrary overlays, it is hard to be

efficient. The flooding mechanism is currently used for unstructured search. Although such

mechanism can make the query reach most of its host within several forwards, it involves

most of peers per query and generates a large amount of duplicate messages, which is far

from efficient and causes a scalability problem.

Based on the proprietary Fasttrack [3] technology that uses a special supernodes

design, KaZaA becomes popular. Those supernodes always have higher network bandwidth

and connect with hundreds of peers, which make them good collectors to cache published

information of neighbors. Queries are first routed to supernodes. Normally, queries for

prevalent objects, such as popular music files, can be quickly solved by accessing several

2

supernodes. Although those supernodes may become hot points or bottlenecks, they im-

prove searching efficiency and scalability compared with original unstructured designs. The

similar technique is also adopted by the Gnutella2 [4], which is the next generation of

Gnutella.

1.1.2 Structured P2P Systems

Although unstructured P2P systems are simple, robust and able to locate popu-

lar objects, they face difficulties in scalability and locating rare objects. Structured P2P

systems based on distributed hash tables (DHTs) have recently attracted tremendous atten-

tion from research communities. The representative systems include Chord [5], Pastry [6],

Tapestry [7] and CAN [8].

DHTs belong to content-addressable overlay networks. Each node within the net-

work is assigned an ID, which normally is produced by the hashing of its IP address or

public key. Also, each document (or piece of content) has a key, produced by the hashing of

its name or content. One node manages a range of keys. Compared with unstructured sys-

tems, DHTs have strict overlay topology and data placement. Each node’s ID determines

a node’s position in the overlay and the document’s key determines which node to store

a document. The storage and retrieval of a document is essentially a process of mapping

from the document’s key to a node’s ID.

Within an N-node DHT, each node maintains a routing table with node IDs of

other O(logN) nodes and their associated IP addresses. Because the routing table is dis-

tributed over nodes, the DHT can resolve all lookups via O(logN) messages to other nodes.

For fault-tolerance, documents are stored at multiple nodes in the overlay. DHTs are par-

ticularly attractive for the construction of a variety of decentralized services due to their

scalability, availability, fault-tolerance and self-organization. DHTs can scale to a large num-

ber of nodes (say, millions of nodes) due to their O(logN) routing table size on each node

3

and O(logN) messages during a lookup. They can achieve availability and faulty-tolerance

through data replication and routing link redundancy.

Two representatives of DHTs, Chord and Pastry, will be briefly introduced.

Chord

Chord maps a 160-bit key to a set of IP addresses on the nodes responsible for the

key. It uses consistent hashing, which has several good properties [5]. With high probability,

the hash function not only balances load over nodes, but also moves a minimum load to

maintain a balanced load when an N th node joins or leaves the system, i.e., only an O(1/N)

fraction of the keys and their associated documents.

Chord uses a 160-bit circular ID space where each node has a 160-bit ID. The s

nodes whose IDs immediately follow a key are considered responsible for that key: they are

the key’s successors. To provide reliable lookup even if half of the nodes fail in a 216 node

network, the number of successors, s, is 16 in the Chord implementation. The ID space in

Chord wraps around such that zero immediately follows 216-1.

The base Chord lookup algorithm works as follows. Each Chord node (say x)

maintains a routing table, which includes a finger table and a successor list. The finger

table consists of the IP addresses and IDs of nodes which follow the Chord node x at

power-of-two distances in the identifier space (i.e., 1
2 , 1

4 , 1
8 , ...). The successor list refers to

x’s immediate successors. When a node issues a lookup with a key k, it consults a sequence

of other nodes, asking each in turn which node to talk to next. Each node in this sequence

answers with the node from its finger table whose ID most immediately precedes k. By

O(logN) consultations, the originating node will find the key k’s predecessor node, and

then it requests the predecessor node for its successor list, which is the result of the lookup.

Please refer to [5] for more details of Chord.

4

Pastry

Pastry node IDs are assigned randomly with uniform distribution from a circular

128-bit ID space [6]. It supports the lookup(key) operation which maps a 128-bit key to the

node whose ID is numerically closest to the key. Both node IDs and keys can be thought

of as a sequence of digits in base 2b.

Each node maintains a routing table and a leaf set. A node’s routing table is made

up of log2bN rows with 2b-1 columns each (b is a configuration parameter with a typical

value of 4). The 2b-1 columns at row r each contain the IP address of the node whose ID

shares the present node’s ID in the first r digits, but whose r +1th digit has one of the 2b-1

possible values other than the r + 1th digit in the present node’s ID.

Pastry’s routing algorithm is a prefix-based lookup. Given a message with a key k,

a node seeks to forward the message to a node in the routing table whose ID shares with the

key a prefix that is at least one digit (or b bits) longer than the prefix that the key shares

with the present node’s ID. If no such node can be found, the message is forwarded to a

node whose ID shares a prefix with the key as long as the present node, but is numerically

closer to the key than the present node’s ID. If no appropriate node exists in either the

routing table or leaf set, then the present node or its immediate neighbor is the message’s

final destination. Please refer to [6] for more detail of Pastry.

Although DHT-based systems guarantee to solve a request within O(LogN) hops,

it dose not mean the routing/lookup is efficient. A previous study [9] has shown that

a significant fraction of peers could be connected over high latency/low bandwidth links,

such as dialup. Thus, the presence of even one such slow logical hop on a logarithmically

long path is likely. This increases the overall cost of the routing. Furthermore, routing

performance will be worse under system churn. As mentioned by Rhea et al. in [10], for

1,000 nodes system under modest churn rate, 23 minutes of each node’s median session time

5

(many researches have recorded most of session times are less than 5 minutes), a Pastry

system (FreePastry) has failed to complete 70% requests. Although almost all lookups

in a Chord network have been completed, the latency increased more than 20 times. In

order to handle system churn, Bamboo [11] has been proposed. Each node was designed to

periodically detect its neighbors within the routing table and share its leaf set with logical

nearby nodes. However, the overhead of such maintenance was substantial. The bandwidth

consumed under its default period was 1.8kps per node, which would generate 7.5 times

more traffic than the unstructured Gnutella system [12].

1.2 Inconsistencies Behind P2P Overlays

Two obvious inconsistencies are the major reasons for above difficulties. The

first one is the structure inconsistency, which is between the regular overlay structure and

either the skewed distribution of overlay peers or the physical network structure of the

Internet. The second one is the responsibility inconsistency, which is between diverse re-

sources/behaviors of peers and their uniform responsibility.

1.2.1 Structure Inconsistency

Since P2P overlay is an application level network, network transparency masks

underlying network details. Current P2P protocols, to a great extent, ignore the underlying

physical network. As a result, an ideal overlay structure tends to be used. For example, a

ring is used in Chord, and trees are used in Pastry.

However, these structures neither identify the underlying network structure nor

match the distribution of peers. Previous research [1] has pointed out that the physical

structure of the Internet follows the power-law. That is to say some networks in the Internet

connect with many others, and most of networks connect with only very few ones. Moreover,

6

the distribution of the P2P overlay peers is far from uniform. Previous research [9] has

pointed out more than 40% of peers are located within the top ten Autonomous Systems

(ASes). As a result, the logical related nodes are normally far from each other physically

in both structured and unstructured P2P systems.

Due to the logical locality existing in any distributed application, a small fraction

of many host pairs in a system account for most end-to-end network traffic. In the P2P

environment, the peers with logical locality are structure related ones, such as the nodes

within neighboring table for unstructured protocols, and the ones within the routing table

for structured designs. Because of the mismatch between ideal overlay structure and both

distribution of peer and underlying physical network, the communication overhead among

logical related peers is substantial. Moreover, these communications are the most common

cases in the systems. They are always the atomic operations for all P2P functions, such

as routing and lookup. Thus, P2P systems are far from optimization due to the structure

inconsistency.

Being aware of this problem, many works have been done. For unstructured over-

lays, network proximity is used to optimize connections within the neighbors of a peer or

its neighbors’ neighbors by Liu, etc. [13]. For structured ones, network and geography

proximity are widely used to optimize overlay construction and selection of the next hop in

routing. While those works significantly improve performance, they have limitations. For

unstructured protocols, more than 50% of the neighbors of a peer could not be optimized,

as considerations of network disasters, such as partition, and deny of service by malicious

peers were around. For structured ones, the latest research [14] has pointed out that the

latency of the last few hops under Proximity Neighbor Selection (PNS) in a lookup still

approximated 1.5 times the average round trip time because of insufficient proximity to its

neighbors.

7

1.2.2 Responsibility Inconsistency

By assuming most of the peers in the P2P environment are uniform in resources

and behaviors, most of the P2P protocols are symmetric, which grants each node equal

responsibility. However, previous researches [12, 15, 9] have pointed out that the distri-

bution of recourses and behaviors of peers are highly skewed. For example, while 58% of

peers are connected with high speed connection techniques, such as DSL and cable modem,

31% of peers are still using dial-up. Although most of the peers have very low uptime or

permanently leave the system after staying several minutes, there are 10% and 18% nodes

with 90% uptime (availability) in Gnutella and Napster, respectively. Moreover, those 10%

or 18% nodes contribute about 90% of the total traffic. Although current P2P protocols

successfully integrate various peers into an overlay by consuming little resources at each

one, to grant each node equal responsibility by ignoring their differences may seriously

compromise efficiency and security of an overlay. For example, high latency/low bandwidth

nodes increase routing/lookup latency. Frequently joining and leaving of nodes multiply

maintenance overhead. Malicious ones threaten overlay security.

As a result, three types of peers are considered inappropriate to be involved in

overlay core operations, such as routing and lookup, especially for structured overlays. The

first one is transitory peers, which have short lifetime or low availability. A node’s lifetime is

the time between when it enters the overlay for the first time and when it leaves the overlay

permanently. A node’s session time is the elapsed time between when it joins the overlay

and when it subsequently leaves the overlay. The sum of a node’s session times divided by

its lifetime is defined as its uptime or called availability. The second is weak peers, which

connect with high latency/low bandwidth techniques, such as dial-up. The third kind is

malicious peers.

Since P2P overlays tend to grant each peer equal responsibility, the work of lookup

8

and storing objects are uniformly distributed among peers in order to balance system load.

In other words, the possibility of each peer being accessed (each node’s contribution to the

overlay) is not high. Thus, the initial overhead, such as building and updating routing

tables and moving datum, becomes substantial for transitory peers. Assuming a Chord

overlay with N nodes and K objects is stored, building the routing table of a joining node

will involve (logN + log2N) unit of traffic, which includes the joining lookup and building

the routing table from passing nodes; to notify related nodes updating their routing tables

costs log2N unit, which includes logN notice lookups; to move objects consumes K/N unit.

Thus, the overhead of a node’s joining Costinit is (logN + 2 log2N + K/N). Assuming

that the average node request rate is γ and lifetime is Tlife, the useful traffic Costuseful

is (logN γ Tlife). Assuming N is one million, γ is 0.1 requests per node per second and

K/N is 300, the Tlife should be at least 20 minutes to make Costuseful equal to Costinit.

Considering lots of nodes permanently leave the system after several minutes, setting up

datum in those may significantly increase the overhead of the whole overlay.

While the short lifetime nodes raise the overhead of overlays, the nodes with low

availability and high latency/low bandwidth links compromise system performance. We as-

sume a bound f on the fraction of nodes within the routing table that are unavailable. The

fraction of those nodes among the overlay is also considered f , since P2P protocols treat

each node equally. The average latency of each hop is L, and to timeout an unavailable node

costs 5L. The total latency for a lookup in Chord is (L (1−f)+5 L f) logN
1−f . Considering a rep-

resentative median availability of 30% of current P2P systems, the total latency is increased

12.7 times. The analysis is similar involving peers with high latency/low bandwidth links.

With 31% dial-up nodes included, the total latency is increased 2.2 times. Considering all

together, the total latency will be increased 20 to 30 times. It significantly impacts overlay

performance.

Although current P2P designs can tolerate some fault of nodes, the existence of

9

malicious nodes is a serious threat. For structured overlays, by controlling a bound of

node-IDs, malicious nodes can threaten overlay routing or even block/shade some target

nodes. While malicious nodes tend to be a little fraction, with the total number of nodes N

increasing, their infection can be amplified. A lookup may fail if any of the nodes along the

route are faulty; faulty nodes may simply drop the message, route the message to the wrong

place or pretend to be the key’s root. Therefore, the probability of a successfully lookup

when a fraction of f of the node is faulty is only (1 − f)logN . In order to affect 10% of the

routing/lookup, the f is 2.6% for an overlay with 104 nodes, but the number reduces to 1.7%

for 106 nodes. Moreover, malicious nodes can easily increase their number by presenting

multiple node-IDs, which is called a Sybil attack; or collaborate with each other, which

is called collusion. Actually, those attacks can seriously compromise structured overlays,

and have raised much research [16, 17, 18]. However, due to the complexity of the P2P

environment, many solutions are not satisfied, and some issues are still open, such as Sybil

attack and collusion of malicious nodes under dynamic IP environment. For unstructured

overlays, because malicious nodes normally have higher network bandwidth, longer uptime,

more powerful CPU and more disk space, they are always suitable neighbors/supernodes,

and have many more connections than normal ones. As a result, it is easier for them to

affect other nodes in the overlay.

1.3 Solutions to Inconsistencies

Our solution to deal with Structure Inconsistency is to build a P2P overlay by

exploiting the physical network structure of the Internet and the network locality of overlay

peers simultaneously1. Compared with current P2P designs and network-aware adapta-

tions, our solution has two major differences. Due to network transparency consideration,
1To our best knowledge, it is our first to propose building P2P overlays based on physical network

structure of the Internet and network locality of overlay peers.

10

current P2P designs employ top-down method, and use network-aware information as a sup-

plemental method. However, the bottom-up method is adopted in our overlay design. The

overlay structure of our design essentially bases itself on physical network of the Internet

and the locality of overlay peers. In another word, to a great extent, our overlay directly

reflects the physical network structure and the locality of overlay peers, while others use

network-aware information to improve their overlays. Secondly, current designs normally

exploit round-trip-time (RTT) to acquire network-aware information. While RTT is easy

to measure and suitable for a distributed environment, it has limitations such as stability

problem and insufficient ability to reflect network structure and locality. Based on our novel

Scalable Network Structure Aware (SNSA) technique, the physical network structure and

locality of peers are accurately acquired and naturally exploited to build the overlay. Based

on this overlay, which directly reflects network structure and locality of peers, characteris-

tics of the physical network, such as the power law of the Internet and major asymmetric

network connections, are naturally utilized, network locality of peers is exploited maximally,

and the common/atomic operations of systems are optimized.

Our solution to deal with responsibility inconsistency is to grant each peer a dif-

ferent responsibility related to its behavior and resource. Instead of involving all kinds of

nodes into overlay core operations, such as routing and lookup, only qualified nodes will be

assigned. The maintenance overhead of an overlay Costmaintn should be a direct proportion

function of the number of peers involved, N , and their changing frequency R. By excluding

transitory nodes, both N and R are significantly decreased. As a result, Costmaintn reduces

dramatically. Moreover, the lookup latency is decreased, since both the number of hops

and the latency of each hop are reduced.

Although normal and incompetent peers are not suitable to be involved in core

operations, their number is huge and their resources are valuable. However, to harness the

resources is not easy, since those nodes normally have lower availability and/or network

11

bandwidth. Thus, a highly dependable and efficient protocol is needed in order to exploit

their resources. Since routing operations are performed by core nodes, another major work

of P2P overlays is to store objects. Thus, we plan to exploit those nodes to form a highly

dependable storage. The erasure code technique becomes our solution. By striping an

object into coding blocks and distributing among nodes, erasure code can provide very

high dependability even when the dependability of each node is low. By configuring coding

parameters, an object can be rebuilt by retrieving any of n blocks from m nodes, in which n

is less than m. Erasure code not only archives dependability, but it also provides efficiency.

Major Internet connections of peers are either asymmetric ones, such as DSL and cable

modem, or dial-up one. Their common characteristic is that the uploading bandwidth is

normally 1/8 to 1/13 of the downloading one. Thus, to retrieve an object from many

nodes with the erasure coding technique is much more efficient. In summary, granting

nodes suitable works based on their behaviors and their resource significantly improves

dependability and efficiency of the whole overlay.

1.4 Security Issues

To provide secure routing for structured P2P systems in an open environment

without mutual trust is a huge challenge for all P2P systems. Firstly, the P2P overlay

intends to provide an open, free-willing and administration-free overlay, which encourages

all kinds of peers to cooperate together. Although it facilitates most normal nodes to

make contribution to others, it also facilitates malicious ones to undermine the overlay.

Malicious nodes can easily become a part of the overlay and commit sabotages without

being punished or even known. Secondly, the Internet is a heterogeneous network made

up of many networks of individual organizations/ISPs. Different organizations/ISPs have

different network configurations and policies, such as IP address settings (dynamic or static,

12

fake or genuine), Network Address Translation (NAT), and firewall policies. Thirdly, various

attacking methods from malicious nodes also increase the difficulty. Malicious nodes may

simply drop or corrupt messages as they pass, or deliver to another malicious node instead

of the legitimate replica root. Moreover, malicious ones may choose their node IDs by

themselves, or even obtain a large number of legitimate node IDs by applying many times

(Sybil attack) or by swapping IDs with complicities. All these reasons make P2P systems

very vulnerable for attacking.

Much research [16, 17, 18] has been done on secure routing and object stor-

age/retrieval. Since the routing is the basic operation for all the others, secure routing

is essential for a secure overlay. It guarantees that the replicas are initially placed on le-

gitimate replica roots, and that a lookup message reaches a replica if one exists. Similarly,

secure routing can be used to build other secure services. However, due to the complex-

ity of the P2P environment, many solutions are not satisfied, and some problems are still

open, such as the Sybil attack [17] and the collusion of malicious nodes under dynamic IP

environment.

As previous research [16] points out, the secure routing needs to solve three prob-

lems: securely assigning node IDs to peers, securely maintaining the routing tables, and

securely forwarding messages. Among the three, to securely assign node ID is fundamental

to the other two. To identify each principal (node) from the others is essential to securely

assign node IDs. The IP addresses are currently used as identifiers of nodes. However, the

IP address is not a good identifier under the P2P environment. More than 40% of nodes

do not have true IP addresses or change their IP addresses from time to time [19]. Also,

researches [16, 17] have even pointed out that Sybil attack and collusion among malicious

nodes are unavoidable under a environment with dynamic IP assignment, even though the

assignment of node IDs is delegated to a central, trusted authority (CA).

It seems impossible to identify each node from the others under the P2P environ-

13

ment, because of the administration-free P2P systems, varied network configuration of ISPs

and all kinds of attacking methods of malicious nodes. However, a trust administration

and authority does exist under such environment, and can be exploited to authenticate

overlay peers. It is the network configuration and administration provided by each ISP

or any organization. Although nodes may change their IDs or IPs, they can not change

the network configuration imposed by network administrators. By exploiting authority of

network configuration within our novel SNSA mechanism, a self-certificating identifier is

assigned to each node, and the node can be easily checked by others. Based on this self-

certificating mechanism, routing is guaranteed to be secure and malicious nodes can be

tracked or punished.

14

Chapter 2

Network Structure and Related

Techniques

In this chapter, the pros and cons of the Internet physical network structure and

different network-aware techniques are discussed. At last, we propose a novel Scalable

Network Structure Aware (SNSA) technique, which can provide sufficient information about

physical network structure and locality of P2P peers.

Router

Router

Router

Router

Router

Router

IBM CompatibleIBM Compatible

Router

Router

Router

Router

Router

Router

Router

AS 1

AS 2

AS 3

IBM Compatible

Router

Host

Rounter

AS

Figure 2.1: Autonomous Systems of the Internet. Adapted from [1].

15

2.1 The Structure of the Internet

It is well known that the Internet is made up of many Autonomous Systems (ASes).

An Autonomous System (AS) is a collection of IP networks that is controlled by a single

administration authority on behalf of an entity, such as a university, a business enterprise, or

an Internet service provider (ISP). Normally, a common Interior Gateway Protocol (IGP),

such as Routing Information Protocol (RIP) [20] and Open Shortest Path First (OSPF) [21],

is used for routers to route packets between networks within the AS. Some border routers

running Border Gateway Protocol (BGP) [22] connect the AS with its neighboring ones to

form the Internet, just as figure 2.1 shows. Hosts within an AS are normally geographically

close and connected by Local Area Network (LAN) or Metropolitan Area Network (MAN)

techniques. Also, the connection of those ASes represents the power-law. That is to say

the number of ASes, fd, which have d connections, is proportional to d to the power of a

constant θ: fd ∝ dθ, where θ is around -2.2. In particular, some core ASes connect lots of

normal ASes as well as other core ASes, while most ASes only have one or two connections.

The previous studies [23, 24] have shown that the structure of the Internet could be

classified into three levels, IP-level, router-level and AS-level, based on different granularity.

For IP-level, the granularity is too small to reflect the Internet structure. Also, it is almost

impossible to obtain such a level of topology for the sheer number of IP addresses and a

large number of machines leaving and joining at any given moment. The granularity of

router-level topology can reflect Internet structure in detail. The BGP routing table is the

most valuable resource to infer the Internet topology at this level. However, to acquire such

information requires either the privileged access to BGP border routers or a lot of probing.

Both of them are not a general way to applicant end users. As AS-level, the Internet has

an even clearer topology with many known characteristics, such as the power-law. Also,

many public services provide information such as the CIDR Report [25] and the IRR [26].

16

Although not as detailed as BGP routing tables, the information is publicly available and

easily obtained. The drawback of the AS-level topology is that it is too coarse to provide

detailed network structure inside, especially for large ASes.

Which of the above is the best to provide network structure information for P2P

overlays? None of them seem perfect. The IP-level structure is too detailed and almost

impossible. To my best knowledge, such level topology of the Internet has not appeared.

Although router-level topology is very suitable to optimize large distributed applications,

such as the well known Andrew file system (AFS) from Carnegie Mellon University, not only

is it impossible for the whole Internet, but also it is overkill for most of the cases in P2P

environment. Previous researches [27, 12] have stated that the distribution of peers in the

real world is highly skewed. The nodes of the most popular P2P overlays are distributed in

4 to 5.5 thousand ASes, which is less than 1/3 of the total number of ASes in the Internet.

Moreover, the node density is far from uniform. About 40% nodes were distributed within

10 top ASes, and normally node density of an AS is around 50 to 200. The AS-level topology

provides a clear frame of the Internet and is easier for acquirement. However, it is too coarse

for top ASes to provide further information of nodes.

2.2 Network Aware Techniques

There are many methods and techniques to acquire network-aware information,

such as BGP routing tables [28, 29, 25, 26], ”traceroute” tools, widely used landmark tech-

niques [30, 31] and the network of physical springs [32]. In terms of provided information,

those techniques can be classified into two categories: genuine network structure and relative

network distance.

To provide genuine network structure information, BGP routing tables are the

most powerful. It can reveal an accurate Internet structure for routers and ASes in detail.

17

Network Next Hop Path

*8.0.0.0 245.35.236.4 0 2631 2 i

215.57.241.254 0 4548 6513 2 i

207.53.253.59 0 2738 3356 701 2 i

125.1.1.56 0 4444 386 2 i

173.28.240.90 0 2341 2 i

Table 2.1: Example of BGP routing table entry

As mentioned earlier, the Internet is formed by thousands of ASes with border routers

running BGP, which connect one AS with its physical neighbors. Two ASes are connected

when there is a direct BGP link between them. By exchanging information with other BGP

routers, each one forms a detailed routing table with AS paths to every existing AS. As a

result, BGP routing tables can provide real Internet topology in detail, as table 2.1 shows.

The advantages of BGP tables are obvious. However, they have their disadvantages. Firstly,

BGP routing tables are not easily obtained. Secondly, because BGP tables include lots of

routing related information, those tables are always too large and complex to be directly

used. Fortunately, public services, such as the CIDR Report [25] and the WHOIS service

from the Internet Routing Registry (IRR) [26], announce that information at AS-level.

Much valuable information, such as the AS number, connectivity and IP address range,

is listed in details. The CIDR Report even updates that information daily and provides

thorough analyses.

Also, ”traceroute” tools can provide router-level network topology. By sending

out probe packets with step-increasing TTLs and receiving ICMP error messages from

passing routers, those tools can expose the router-level path to the destination. However,

this method not only suffers from high overhead and long latency, but is also infeasible for

18

many cases because ICMP packets are normally prohibited by network administrators in

the firewalls due to security considerations.

By directly measuring RTTs between peers, landmark techniques and the Vivaldi

have benefits for no dependency on supporting the underlying networks or accessing cer-

tain severs. They can provide network coordinates to reflect each node’s relative network

distance in the Internet. Different from network topology techniques, which provide actual

structure information, they belong to network positioning ones, which always use RTTs

between one node and other famous or pre-selected hosts, called landmarks, to calculate

network coordinates. The Vivaldi also belongs to network positioning techniques, since it is

also based on RTTs. However, it handles them by the spring network model, which has the

ability to make the coordinates converge quickly and to predict relative distance between

peers. While the RTTs can be affected by many unpredictable factors, such as changes

of routing, link bandwidth and network traffic, those techniques are fully distributed and

self-dependent, which are especially suitable for the P2P environment.

2.2.1 Limitations of RTTs based Techniques

Due to the advantages of RTTs-based techniques mentioned above, current P2P

overlays always utilize relative distance among peers to optimize their overlay structures.

Varied techniques of Proximity Neighbors Selection(PNS) have been proposed for Pastry,

Tapestry and Chord. Although RTTs methods are suitable for P2P environment, lots of

important network information of peers, such as available bandwidth and connectivity, can

not be inferred from RTTs. For example, due to the instability of RTTs, current techniques

tend to use the minimum-wise method. Although the minimum value may reflect the

network distance between a pair of peers, its available bandwidth can not be estimated. It

is easy to understand that a pair of peers may have very short RTT time while just across

congesting routers. In addition, the peers with dial-up connections may have excellent

19

RTTs, but they are actually bottle necks. On the other hand, RTTs can not provide the

information of connectivity between peers, since two peers may stay within two nearby ASes

with firewall/Network Address Translation(NAT) traversal.

Actually, bandwidth and connectivity are crucial properties for P2P applications.

It is well known that P2P applications always consume lots of bandwidth. Previous re-

search [9, 12] has pointed out nearly one third of bandwidth of Internet back bones were

consumed by all kinds of P2P applications, and they are still increasing. Saving bandwidth

has become an important issue for P2P overlays. On the other hand, the connectivity of

peers is also important. Due to wide deployment of firewalls and NATs, connections be-

tween peers behind different firewalls are very difficult. That is to say a peer may have lots

of neighbors nearby (for short RTTs), but none of them is reachable.

With network structure information, properties of bandwidth and connectivity

between peers can be estimated or inferred easily. By checking the path between two peers,

their bandwidth can be estimated by the number and type of routers passing by. Normally,

fewer routers and fewer border routers (normally congesting) means more bandwidth. For

connectivity, nodes can be easily found out whether or not they are under the same firewall

by their AS/ISP residences. In addition, the network structure information is more stable

than RTTs based ones.

2.3 A Scalable Network Structure Aware Technique for P2P

Overlays

The information provided by network structure is more stable and more valuable

compared with RTTs methods. However, acquiring such information is not easy. In order

to get router-level Internet structure, either BGP routing tables or ”traceroute” tools are

needed. Neither of those two methods is feasible in a P2P environment. The former needs

20

the privileged access to BGP border routers, and the latter involves a huge overhead of

probing. Also, such detailed Internet structure is overkill for most of cases, as mentioned

earlier. Thus, a particular method is needed for nodes of P2P overlays to easily acquire

information of network structure.

Before determining the network-ware technique for a particular distributed ap-

plication, we need to understand what information is the most important. As analyzed

earlier, the essential network-aware information for P2P overlays should include bandwidth,

latency and connectivity between peers. It seems that only router-level network structure

information could satisfy these requirements. As mentioned earlier, such information is not

only impossible, but also overkill. However, we find that different levels of network structure

information can actually meet the requirements because of the highly skewed distribution of

overlay peers under P2P environment. For the top ASes, which include thousands of peers,

the router-level information is deserved. For midsized ASes, which host several hundreds

peers, the brief structure information is sufficient. For small ASes, which have tens nodes

or less, AS level information is considered enough.

Based on the observations, a novel method is proposed to provide sufficient net-

work structure and accurate network locality of overlay peers under P2P environment. The

basic idea of this method is to integrate various network-aware techniques based on different

situations of overlay peers. The AS is considered to provide the basic level for network struc-

ture and locality of peers. This is because the AS provides an administration/connectivity

border of peers within the Internet, and peers within the same intranet normally have more

available bandwidth and shorter latency compared with the ones crossing the Internet. Also,

acquiring such information is easy and simple. Based on public services, such as the CIDR

Report and IRR, the AS of a peer can be directly found out by its IP address, and the

overhead is trivial.

Since many ASes may include several hundreds of peers, the middle level informa-

21

tion with further network structure and locality within the AS is needed. The router-level

information is obviously overkill; thus, an adapted landmark technique is utilized to ex-

plore network structure within an AS. Ratnasamy et al. in [31] have proposed a technique

to provide each node with a landmark vector, which is an ordering of RTTs of a node to

landmarks. By a bin algorithm, locality nearby nodes can be classed into the same bin. Al-

though this technique shares the drawbacks with other RTT-based techniques as mentioned

earlier, deploying it within an AS successfully circumvents those difficulties. By avoiding

congesting border routers and changing routes, RTTs within the AS become much more

stable and a good criterion to estimate the available bandwidth between peers. By their

simulation in [31], 8 randomly selected landmarks, which can efficiently tell more than

1,000 nodes within a network, are considered enough to provide sufficient network locality

of peers within a midsized AS. The suitable candidates of landmarks could be previously

joined nodes or their default routers. Since all the traffic is happened within the AS, the

overhead of this method is low for both landmarks and peers.

For the top ASes, which have a very high density of nodes, even landmark vectors

may not be enough to distinguish their network locality. As a result, the router-level

network structure, high level, is needed. Instead of using ”traceroute” tool, a more efficient

technique, IP Record Route [33], is utilized. Instead of sending out many packets to discover

routers along the path, the IP Recode Route protocol can ascertain up to 9 routers by one

packet. Since all peers are within the same AS, recording 9 routers is sufficient for their

paths. This technique may only be performed within an AS, since it is prohibited by most

of the network administrators in the firewall. The overhead of this method is also not

high. Firstly, the probing method is highly efficient. One packet with the IP Record Route

protocol can detect all routers along the path. Secondly, the information can be highly

shared. Due to high node density, many peers may be within the same LAN; the network

structure information can be shared with others. Also, based on the known router-level

22

topology information, new peers can easily find and add their routers to known router

topology only by detecting nearby ones.

The three-level network structure hierarchy above forms a scalable abstract for a

highly skewed distribution of peers under a P2P environment. Not only does it provide

sufficient and accurate network structure and locality information of peers, but also the

overhead of this technique is low. The network-aware technique used for each level is

almost the exact one to satisfy the requirement. Also, all techniques are fully distributed

with little involvement of centralized services, which is especially important for the P2P

environment. This technique will be mentioned as SNSA technique for the short of Scalable

Network Structure Aware technique in the following chapters.

23

Chapter 3

Overlay Building

In this chapter, we will discuss in detail how to build a P2P overlay based on

network structure of the Internet and network locality of overlay peers.

3.1 Network Locality under P2P Environment

It is well known that exploiting network locality is crucial to improving the effi-

ciency of a distributed system. Traditionally, the network locality of nodes within a dis-

tributed application is defined as latencies between nodes. However, this definition needs

to be extended for P2P applications. Nodes for traditional distributed applications, such as

NFS and AFS, are normally within the same sub-network or Autonomous System, and based

on administrator-maintained servers. However, peers for P2P applications are globally dis-

tributed and based on end-user computers without privilege. As a result, the connectivity

between peers becomes a consideration because of wide deployment of firewall/NAT. More-

over, while nodes for traditional distributed applications are normally connected by LAN

techniques and generate traffic within the intra-network, peers for P2P applications utilize

all kinds of network connections (such as dial-up, cable modern/DSL and fast Ethernet)

24

and communicate with peers around the world. Not only does the difference of bandwidth

between peers need to been taken in account, but also the impact of the network traffic to

the whole Internet needs to be considered when building a P2P overlay.

Thus, we consider that, in addition to the latency, the network locality for P2P

environment should take both bandwidth and connectivity of peers into account. As analysis

in previous chapters stated, network locality information can only be acquired based on

network structure information. Thus, we argue that an efficient P2P overlay should be

based on network structure information, as well as network locality of peers.

3.2 Notion of the Overlay

In contrast to the current top-down designs of P2P overlays, we propose to use

bottom-up method. The P2P overlay is built based on the network structure of the Internet

and network locality of overlay peers. Compared with current designs, building an overlay

to reflect network structure and locality of peers has at least two advantages. Firstly, by

eliminating the inconsistencies between the overlay structure of systems and physical net-

work characteristics of overlay peers, the efficiency of P2P systems is highly improved. Due

to the theoretical approach, physical network characteristics of P2P overlay are ignored to

a great extent. Although the theoretical approach facilitates the implementation of over-

lay functions, such as the elegant routing in structured systems, it trades off the efficiency

of the whole system. Because of the structure inconsistency, logical neighbors tend to be

physically far from each other. Since logical neighboring peers obviously have much more

communication compared with others, common operations, such as routing, become costly.

The latest P2P designs try to take network-aware information into account; however, the

essential difference between regular system structure and the unique distribution of overlay

peers makes this effort difficult.

25

Secondly, exploiting network locality of peers can provide sufficient bandwidth and

full connectivity to make systems more powerful and dependable. The system churn is a

large challenge for P2P systems. Although both structured and unstructured overlays can

tolerate it to some extent, research [9, 12, 10] has pointed out that the churn in a practical

environment is very intense. Also, lots of Internet traffic is generated by operations to

maintain routing and neighboring tables for structured and unstructured systems. By fully

exploiting network locality, not only will most of maintenance traffic take place within

the intra-network instead of crossing the Internet, but also full connectivity between peers

makes it possible to deploy more powerful protocols to improve dependability and security

of systems. Many techniques, which are normally used in LAN, such as broadcast and

erasure coding, can be deployed because of sufficient bandwidth and connectivity within

the intra-network.

AS 200

AS 6

AS 701 AS with peers

AS without peers
link between

neighboring agents
BGP link between ASs

agents
leaders

Figure 3.1: Building the system overlay closely matching Internet topology

26

3.3 To Build the Overlay

In order to build a P2P overlay direct which directly reflects network structure

and locality of peers, we organize our overlay following the Internet structure. Actually,

the Internet itself is a nested P2P-like system. It is well known that the Internet is a

collection of many autonomous networks (ASes). Those networks link with some others

by WAN techniques and finally form a globally connected network, the Internet. At this

point, the Internet is a P2P system for AS. Also, within each network (AS), there are many

sub-networks, which are made up of many hosts connected by LAN/MAN techniques. That

is to say, an AS is made up of sub-network peers.

Similar to the structure of the Internet, all peers in our overlay will firstly be

divided into groups by their AS locus, as figure 3.1 shows. This information can be easily

found out by IP address of a peer, which is also the basic level of information provided

by the SNSA technique. Since the distribution of peers are highly skewed, partitioning

peers only by their AS locus is too coarse in many cases. Thus, we further divide nodes

within a group into teams, which are like the sub-networks within an AS. Based on the

node density of the AS, different techniques are utilized. By involving the middle level

SNSA technique mentioned earlier, the landmarks technique will be exploited for most

cases, which normally have hundreds of peers. By randomly selecting 8 landmarks, each

node can form its landmark vector by measuring RTTs from landmarks. By calculating

the relative distance from peers’ landmark vectors, physically nearby nodes will be grouped

into one team. For the AS with an even higher host density, the high level SNSA technique

is exploited to provide the router-level network structure. The nodes under the same router

will be clustered as a team, which actually follows the physical structure of sub-networks.

Some peers with high bandwidth and availability will be selected as agents to

connect with other agents and manage teams. Also, a leader will be elected to serve team-

27

mates and connect with agents. In fact, this group (agent)-team (leader) structure is also

the pattern of the physical network. For example, the Internet (P2P overlay) is made up

of ASes (groups), and each AS consists of many sub-networks (teams). The AS has some

border routers (agents), and each sub-network has its default router (leader). Normally,

agents will keep two tables, one for communicating with other groups and the other for

in-side teams. The leader will keep a list of its teammates, and connect with a nearby

agent, as figure 3.1 shows. Only agents and leaders are involved in core operations, such as

routing; other peers provide auxiliary works. The details of data structures and procedures

are subject to change for different system designs, which will be discussed in detail in next

chapter.

Basically, the nodes within one AS will be clustered into one group for the consid-

eration of network locality. If an AS is too large in node number, dimensionality or both,

the peers will be divided into several groups following the network locality. Also, for the

nodes in very small ASes, instead of forming their own group, they will join a physically

nearby group as teams.

It seems that our overlay introduces some server-like roles, such as agents and

leaders. Actually, we exploit widely existing server-like nodes within in P2P systems in-

stead of introducing them. Although P2P protocols try to grant nodes equal responsibility,

previous research [9, 12] has revealed that behaviors and resources of peers vary extremely,

and server-like nodes do exist. While most nodes have very short uptime, there are about

10% nodes with more than 90% uptime. Also, those 10% hosts also contribute about 90%

of the total traffic. Our simulations show server-like peers under a synthetical environment.

Our simulations of Chord have also showed there were 5% server-like nodes, which had

much longer uptime and higher reference number, even under the random distribution of

node ID and life time.

While leaders and agents consume more resources than normal ones, our exper-

28

iments and analysis, which is discussed later, show that not only is the efficiency of the

whole system highly improved, but also the extra work for leaders and agents is not a bur-

den for modern computers. By excluding transitory and weak peers out of core operations,

system efficiency and availability are highly improved. Not only is each step during routing

much quicker and more reliable, but also the total number of steps decreases. Also, the

maintenance overhead of the overlay is highly reduced. Moreover, by carefully adjusting

overlay parameters, such as group size Gsz and team size Tsz, the extra overhead of agents

and leaders can be controlled, which is detailed discussed in chapter 4.

3.4 Membership Management

Under P2P environment, not only is each node’s leaving and failure unpredictable,

but also the whole overlay is highly dynamic. Since each node can arbitrarily join and leave

the system without any restriction, the frequency of nodes joining and leaving is very high.

Although agents and leaders are considered to be more dependable than normal nodes, they

are not well-maintained servers. They can fail or arbitrarily leave the system. The leaving

of agents and leaders will not impact the overlay much. A nearby node can quickly replace

the leaving agent or leader, as the one sends out its leaving message. Also, the overhead

is trivial, which just involves meta-data copying within the intra-network. However, the

situation of crash is different. Although crash of the node is not considered a common case,

it should be quickly detected and recovered. A modified Ring protocol [34] is used in our

overlay to monitor agents and leaders. All leaders will form a ring as in AS 701 shown

in figure 3.1. Every second each one will send a keep-alive message to its successor and

predecessor. Although this protocol is simple, it is efficient enough to detect one or more

than one failures. For example, within a ring of four leaders, A, B, C and D, assuming

leader C is dead, leader B and D will know within one second and report to agents. Even

29

if leader B and C are failed at the same time, leader A and D will report to agents. The

same method is also used between agents. For management of teammates, the leader can

monitor their changes during their normal communications. However, in order to accurately

distinguish each peer’s behavior for candidates of leaders and agents, each peer is designed

to send either a query or a keep live message to its leader periodically, which is discussed

in the next chapter.

3.5 Node Joining and Leaving

When a node joins the system for the first time, its AS number can be determined

by its IP address through our SNSA technique. By any node within the overlay, the joining

request can be forwarded to one agent within the AS of the new node. Either by the middle

level or high level information of the SNSA technique, the node’s network locality can be

determined. Then, the node is assigned to an appropriate team. The overhead of the joining

is minimal, since only the leader updates some book-keeping information.

When a team is too populous, it will split into two teams based on network locality.

If the joining node is the first one in that AS, the requirement will be forwarded to an agent

in the group nearby. The node will initially become a normal node within that group, called

mother group, instead of forming a new one. When the number of nodes is sufficient for a

group, agents will be selected and an individual new group is born. The mother group will

announce the new one to all others.

The leaving or failure of normal nodes is automatically tolerated by the team. If

nodes keep leaving a team, the team will disappear. The remainder will join a nearby team.

The situation will be similar for a group’s disappearing. If a leader or agent is leaving, a

new one will be selected, and the meta-data will be quickly rebuilt or copied.

30

3.6 Summary

The above is a general P2P overlay based on the physical network and locality

of overlay peers. By cooperating with addition data structures and operations, it can be

constructed to distributed systems with different purposes. In the following chapter, we will

discuss how to enhance the overlay to support structured and unstructured P2P systems.

31

Chapter 4

Designs of Structured and

Unstructured P2P Systems

Based on the overlay mentioned in last chapter, different data structures and

operations can be loaded to support different applications. In this chapter, we will discuss

how to exploit the overlay to implement highly efficient structured and unstructured P2P

systems.

4.1 Structured P2P System Design

The essential feature of structured P2P systems is to map each object to a certain

place. The keys to implement this feature are two parts: ID mapping mechanism and

ID-based routing.

For the ID mapping mechanism, by assigning each object and node a unique ID,

current designs map each object to a node whose ID has a unique relationship with the

object ID. For example, each object is mapped to the node with the closest ID in Pastry,

and to the closest predecessor in Chord. For our system, a similar ID mechanism is exploited.

32

Each object in our system has a 128-bit ID, which can be generated by a basic hash function

such as SHA-1 [35] like Chord and Pastry. Different from current designs, only groups and

teams have IDs. Following our group-team structure, two-level ID and mapping mechanism

are built. For group level, each group is assigned a 32bits ID as its group ID. Since valid

Internet AS number is from 1 to 64511 and there are only about 17,000 active ones currently,

we believe 32bits ID is enough for groups. For team level, each team also has a 32bits ID.

Given a 128bits object ID, the first 32 bits decides which group it belongs to, and the second

32 bits determine the exact team it will be located within the group. In other words, each

group will charge the objects with the first 32bits falling in the range between its group ID

and the next one, which is similar with the mapping of Chord. Also, the mapping is similar

for teams within the group.

For the ID-based routing, by keeping a routing table with O(LogN) entries in

each node, current designs (DHTs) guarantee to deliver a message to the destination within

O(LogN) hops with N the total number of nodes in the system. However, due to the varied

resources and behaviors of nods, DHT designs face many difficulties in routing efficiency and

high overhead under system churn. Also, some research [36] points out that the DHT may

only get benefits for the overlay with more than 107 nodes. Actually, the largest deployed

P2P system has no more than two millions nodes [12]. As a result, we plan to directly

utilize the Internet IP routing, instead of building a new overlay routing. Following our

two-level mapping mechanism, delivering a message will be made up of two straightforward

steps. The message will be sent to its target group, and then be forwarded to its destination

team. Further details will be discussed in the next section.

The team is the basic unit to store objects. At least two copies are kept within

a team for improved dependability. One copy is kept in the leader to respond to queries

quickly. The other is striped into blocks by n erasure code technique and stored among

teammates. Major nodes with asymmetric network connections, such as DSL and cable

33

modem, make this scheme especially efficient. Previous research [37, 14] has pointed out

that erasure code technique can not only significantly improve availability and reliability

of objects under P2P environment, but also reduce bandwidth consumption for updating

objects. The only drawback of erasure code within DHTs is the read latency [14]. However,

our overlay successfully solves this problem. Since most of the nodes are connected with

asymmetric network connections, reading from nearby nodes is evidently faster than reading

from one. This is also useful to quickly recover datum for new leaders or agents when the

old one is leaving.

4.1.1 Routing

Instead of involving many transitory and weak nodes in routing, only agents and

leaders will be exploited. Three agents per group are considered enough to provide sufficient

service without loading their hosts. Detailed analysis will be given in later section. Also,

one leader and a backup will be selected in each team. The leader keeps a link with the

nearest agent. Other nodes periodically report to their leader. Their behaviors are recorded

by the leader for team health and candidates of agents and leaders in the future.

The agent is the key role for overlay routing. As mentioned earlier, since a two-

level mapping/routing mechanism is used in our overlay, two tables are kept in agents for

routing. One records every group’s ID and their agents’ information, called the routing

table. This table is maintained in each agent, and cached by leaders to route messages for

normal nodes. The other one is only kept in agents. It records every team’s ID and leader’s

information within the group, called the delivering table. The routing procedure is made

up of three steps and involves two hops. First, when a node wants to lookup an object, it

simply drops a message to its leader. Second, by checking the first 32 bits of object ID in

the routing table, the destination group can be found. Then the leader directly forwards

the message to one agent within the destination group. Third, when the agent receives the

34

message, it uses the second 32bits to find the response team in the delivering table, and

send the message to the responsible leader. Compared with current designs, the efficiency

of routing is highly improved. For the number of hops, while the average hops to route a

message in current structured systems is around 6, ours is two. Actually, one more hop

means one more overhead of both network communication and process. For the routing

latency, ours is near the ideal one, while the result of current designs is far from the ideal

one. This is discussed in chapter 7 in detail.

4.1.2 Maintenance

Although agents and leaders are considered to have higher availability than normal

nodes, they are not well-maintained servers. Their failings and leavings are monitored by

the modified ring protocol [34], which is mentioned in the last chapter.

For the membership management of normal nodes, the leader can monitor their

changes through query messages. However, in order to accurately distinguish each node’s

behavior for candidates of leaders and agents, each node is designed to send either a query

or a keep live message to its leader every 30 seconds. Normally, the node with the longest

session time will be become a backup of its leader. When an agent crashes, one leader will

be upgraded to the agent. Since the leader also keeps the routing table, only the delivering

table will be copied. When a leader crashes, the backup one will replace it. A copy of stored

objects can be quickly rebuilt from teammates by the erasure code technique. Also, the

latency of each teammate will be recorded by the leader to monitor the changes of physical

network structure.

Since the routing table is the key for overlay routing, keeping it up to date is

critically important for the correctness of overlay routing. Also the overhead of this main-

tenance should be low; otherwise, both performance and scalability of the overlay will be

affected. Thus, our overlay is designed to integrate such works into the common operation,

35

lookup. When the leaders send out messages, latest information of changed agents will be

appended to outgoing messages, and reach the agent in the target group. The agent then

filters out those updates, and notifies the other two agents of the keep-alive messages by the

ring protocol. After that, those updates are further piggybacked with query messages to

leaders. In order to save bandwidth, the agent keeps an updating table for leaders, which

records updated information, and only the useful update information will be forwarded.

When routing tables within leaders have been updated, the information can be further sent

out to more groups. This gossip-style piggyback mechanism is efficient and robust. It is

well known that with high probability, all groups will be informed within O(LogN) steps

in which N is the number of groups. Our experiments also prove it. Even under a highly

dynamic environment, our overlay keeps a very high success rate, which will be shown in

Chapter 7.

4.1.3 The Sizes of Groups and Teams

Although to group nodes based on the AS provides a clear overlay structure,

previous research [12] has shown that the distribution of node density is highly skewed.

The number of nodes within an AS, Gsize, varies from tens of thousands to several. Simply

organizing nodes within one AS to a group may involve serious load balance problems. For

consideration of fairness, we would like to keep Gsize for each group almost the same. Thus,

instead of forming an independent group, an AS with a small number of nodes will join

a physical nearby group. Also, the AS with a large number of nodes will be divided into

several groups.

Also, it is important to keep extra works for agents small; otherwise, users will

avoid becoming agents. Since the network bandwidth is the most valuable resource for

nodes, we restrict the extra bandwidth used by agents not to exceed 1% and 5% for download

and upload, respectively. We assume the request rate of each node is γ and the number

36

of bytes for each message is M . By assuming three agents per group, the bandwidth for

an agent to forward messages is Gsize·γ·M
3 for both up and down directions. Considering

a typical DSL or cable modem connection with 3Mb downlink and 384Kb uplink, and

assuming that γ is 1 request per node per second and M is 20 bytes, the Gsize should be

the MIN(563, 360), in which 563 is the limit of download and 360 is the one of upload.

Excluding forwarding messages, the ring protocol and piggyback technique also consume

the upload bandwidth. Thus, a suitable Gsize should be around 300 for the limitation of

upload. Actually, this is a modest estimation. Because the upload traffic of agents is only

happening within the intra-net and the bandwidth limitation is controlled for the Internet

traffic by ISPs on border routers, the actual upload bandwidth for agent is much higher

than the limitation value for the intra-net.

The number of nodes within a team, Tsize, is also a very important parameter for

the overhead of leaders, dependability and efficiency of teams. Compared with the agent,

the consumed bandwidth of the leader is relatively small. Thus, the bandwidth is not a

major consideration for leaders. Although the availability of the erasure code technique is

very high, it is seriously compromised by the frequent joining and leaving of nodes. Previous

research [9] has shown that the average uptime of nodes is about 30% to 40%. In order to

exploit asymmetric connections to quickly retrieve datum among teammates, the leader is

considered to connect with at least 8 nodes at any time. Thus, the suitable Tsize should be

around 20 to 30.

4.1.4 System Overhead Analysis

For real world systems, nodes are distributed into 4 to 5.5 thousand ASes and the

number of nodes is from 200,000 to one million. Assuming Gsz is 200, the number of the

group is about 5,000. Thus, the size of the routing table with all groups and their agents’

information is about 60KB, and the size of delivering table with 15 teams is about 0.2kB.

37

System Agents (Bps) Leaders (Bps) Nodes (Bps)

Functions Downlink Uplink Downlink Uplink Downlink Uplink

Lookups 1333 1333 400 400 20 20

Member 20 20 27 20 0 0.33

Piggyback 844 264 44 240 0 0

Total 2197 (0.58%*) 1617 (3.36%*) 471 (0.13%*) 660 (1.4%*) 10 10.33

Table 4.1: Bandwidth consumed by different roles and operations. * is the ratio to DSL or
calble modem connection with 3Mb downlink and 384Kb uplink

They are obviously not a burden for modern computers.

Previous research [10, 38] has pointed out that nodes’ joining and leaving under the

P2P environment can be modeled by a Poisson process. Thus, an event rate λ corresponds

to a median inter-event period of ln 2λ. Therefore a churn rate of λ that corresponds to a

median node session time of N nodes within a network is the following:

tmed = N ln 2/λ (4.1)

Considering an overlay similar with a real world one, which has 106 nodes distributed in

5,000 groups with 3 agents per group and the median session time of 15 minutes per agent,

the churn rate of the 15,000 agents is 11 per second by Formula 4.1. Thus, the bandwidth

for one agent to deliver the information to another agent is 44Bps, and to deliver to the

5 nearest leaders is 220Bps. By assuming an average of 20 nodes per team, 200 nodes a

group, an average query rate of 1 per node/second, piggybacking three agents each time

and 20 bytes per message, Table 4.1 shows the break down of the consumed bandwidth of

all roles and functions of the system. As the table shows, our system can easily scale to a

system with more than a million of peers.

38

4.2 Unstructured P2P System Design

The unstructured P2P systems can be further classed into three styles. One is the

pure P2P one, in which peers act as clients and servers equally, such as Gnutella. Another

is the hybrid one, which has a central server to keep information of peers and responds

to requests, such as Napster. The third is a mixture of above two, such as KaZaA and

Gnuetella2. The supernode technique is widely used in the mixed-style P2P systems. Those

supernodes highly improve both scalability and query performance of unstructured P2P

systems. Currently, KaZaA is the largest deployed P2P system.

For the unstructured P2P system based on our overlay, agents and leaders will

naturally act as supernodes. The leader will index shared files of teammates, and report

to the agent. In order to prevent the blind flooding in Gnutella, a technique called Query

Hash Table (QHT) is introduced in Gnutella2. A QHT is a table of 2N bits, where each bit

represents a unique word-hash value. When a searchable plain-text word is contained in a

node’s content, the related bit is marked. Actually, the QHT provides enough information

to know with certainty that a particular node (and possibly its descendants) will not be

able to provide any matching objects for a given query. Normally the N is 20, which has

more than one million possible word hash values. The uncompressed QHT is 128KB in size.

Our system will adopt this technique to facilitate the query operation. Each leader will

periodically collect QHTs from teammates. After combining those tables into a team-level

QHT, the leader will send it to the nearest agent. The agent will keep the QHT of each

team, and also form a group-level QHT by combining them together.

Due to the power law of the Internet, some ASes are hub-like. They always connect

hundreds of ASes. By the Internet AS-level topology provided by the CIDR, we also find

that those hub-like ASes are highly connected with each other. The average AS path length

among the top 30 hub ASes is 1.47. Actually, the Internet topology presents a small world

39

effect. Every AS can reach at least one of the hub ASes within the AS path length of four,

and the diameter of the Internet is less than 10 at AS-level. This characteristic can be

further exploited to organize groups in our overlay. That is to say, the groups around a

certain hub AS can be organized into an area. The group within the central position of

the area will become the hub group. The agents within the area will send their group-level

QHTs to the hub group. After joining those QHTs to an area-level one, the agent of the

hub group will share it with other hub groups. The technique to share one’s index with

neighbors is called host cache, which is widely used by unstructured P2P systems to improve

the efficiency of the search process.

Instead of blind flooding, the search procedure follows the expanding ring model.

For example, when a node wants to do a search, the request will firstly expand to the team

by querying the leader, and then enlarge to the group by the agent. If the result is still

unsatisfied, the request will be forwarded to the hub agent and swell to the area. After that,

the request can be further sent to hub agents of nearby areas and finally spread through the

whole system. During this procedure, the QHTs are utilized to quickly locate related nodes

and reduce unnecessary forwarding. Moreover, the host cache will be exploited to further

improve the efficiency of the search. For example, each leader can cache other teams’ QHTs

within the same group, and the agents can get other groups within the area. As the result,

when a request reaches a leader, it essentially expands to the whole group, and to the area

as it comes to an agent.

Of course, the above is a brief design for unstructured systems. The latest tech-

niques mentioned in [39], such as topology adaptation, flow control, and random walk search,

can be adopted and can take benefits from our overlay and the SNSA technique.

Most of the work within this chapter was published in [40]. Part of it was published

in [41, 42]

40

Chapter 5

Secure Routing for the Structured

Design

In order to fully utilize the potential of P2P systems, structured P2P overlays

must be able to tolerate the open Internet environment where mutually distrusting parties

with conflicting interests are allowed to join. Structured overlays must be robust to a

variety of security attacks, including the case where a fraction of the participating nodes act

maliciously. Such nodes may misroute, corrupt, or drop passing messages and information.

Additionally, they may attempt to assume the identity of other nodes and corrupt or delete

objects they are supposed to store on behalf of the system.

However, due to the notion of administration-free for P2P overlays, varied network

configurations of ISPs and all kinds of attacking methods of malicious nodes, it is a huge

challenge to guarantee security under a P2P environment. Many research [16, 17, 18, 43]

has been done on object storage/retrieval and especially secure routing, since it is essential

for all the other operations. It guarantees that the replicas are initially placed on legitimate

replica roots and that a lookup message reaches a replica if one exists. Moreover, secure

routing can be used to build other secure services, such as maintaining file metadata and

41

user quotas in a distributed storage utility.

Two levels of communication are involved with the routing operation of a P2P

overlay. One is at network-level, where nodes communicate directly through an underlying

physical network, such as TCP/IP. The other is at overlay-level, where messages are routed

through the overlay using P2P protocols, such as Chord and Pastry. Many techniques have

been developed to prevent adversaries from observing or modifying network-level commu-

nications. In this dissertation, we only address security issues at overlay-level.

As Castro, et al mentioned [16], the secure routing is needed to solve three prob-

lems: securely assigning node IDs to peers, securely maintaining the routing tables, and

securely forwarding messages. Although many solutions have been proposed, they have

their difficulties or limitations. For securely assigning node IDs to peers, in order to prevent

attackers from choosing node IDs, the current solution is to delegate this problem to a

central, trusted authority (CAs). They sign a certificate for each node ID, which binds a

random node ID to the public key that speaks for its principle and an IP address. However,

this solution is not practical because more than 40% of peers either do not have true IP

address or change their IP addresses from time to time [19]. In order to prevent attackers

from easily obtaining a large number of legitimate IDs (Sybil attack), the current solution is

to charge money for each certificate. However, this solution may thwart users’ enthusiasm.

Moreover, as previous research [17] has pointed out, in P2P systems where IP addresses are

allowed to change dynamically, node ID swapping and Sybil attacks may be unavoidable.

For securely maintaining the routing tables, the current solution is to impose strong con-

straints on node IDs in routing table entries instead of proximity neighbor selection (PNS).

This solution reduces the possibility of malicious nodes within the routing table. Not only

does it impact system performance, but it is also a conservative method to prevent thing

from going worse. Otherwise, a small fraction of malicious nodes may control a large num-

ber of peers under PNS. For securely forwarding messages, current solutions are to detect

42

faults and use diverse routes. The detection of faults is based on the assumption that the

density of node IDs per unit in the ID space is uniform. However, it may not hold in the real

world. Also, the diverse routes involve two or three times the overhead for each message

routing.

In summary, due to the complexity of the P2P environment, current solutions are

either impractical or not strong enough or involving too much overhead. Moreover, the

issues about Sybil and node ID swapping attacks under a dynamic IP environment are still

open.

5.1 A Better Identifier

Identifying each principal (node) from the others is an essential issue for the secu-

rity of all systems. However, this is a really challenge under a P2P environment. Current

P2P overlays normally identify nodes by their IP addresses. It is obviously not a good

identifier. Due to varied network configurations from ISPs and connection techniques from

users, more than 40% peers do not have a true IP address or change their IP address from

time to time.

Based on the observation that each peer must subject to the network configuration

and administration imposed by ISPs, we propose to identify each node by its physical

network characteristic, called net-print, instead of the mutable IP address. The net-print

is a set of information of the node’s physical network characteristic, such as RTTs to some

hosts, its external IP and setting of its default router, which are imposed by their ISPs.

Those characteristics can be naturally detected by our SNSA technique mentioned in the

previous chapter. Two reasons make the detection accurate and efficient. Since the nodes

are organized by network locality, they are normally within the same AS and are physically

close to each other. First, the detection of RTTs will be more accurate and more efficient

43

compared with global landmark detections. Second, many powerful network protocols,

such as ICMP and ARP, which are normally prohibited by network administrator in the

firewall for security considerations, can be exploited to provide more detailed information

of physical network configurations, such as a node’s Media Access Control (MAC) address,

intra-network IP and its default router settings. That valuable information can locate a

peer to the sub-network level or even switcher level.

In order to cooperate with our SNSA technique, the net-print of a node includes

AS number/IP range, landmark vector within the AS, MAC and the default router IP of the

node. The procedure to collect the net-print of a node is as follows. As a new one wants to

join the overlay, it must have an introducer. By contacting an introducer outside the AS, the

AS number/IP range of the new one can be found out from its external IP address. Then the

joining message is forwarded to one agent within the AS. Before the new node joins a team,

the agent will require it to report its landmark vector by measuring the RTTs to several

routers. At the same time, the agent will randomly select some nodes, called detectors,

within the sub-network of those routers to measure the RTT to the new node. Instead of

directly using the vector claimed by the node, a net-print vector is formed by the RTTs from

detectors. By comparing the two vectors, the cheating of a node can be easily detected. For

the AS with very high node density, more accurate locating information may be needed.

Since all those nodes are within the same intra-net, a node’s default router IP address can

be found by an ICMP packet with the routing record option from any other node. Because

the IP addresses and policies of routers are charged by network administrators, not only

peers can not change them, but also any violation of those policies make peers disconnected

from the network. By the Address Resolution Protocol (ARP), the MAC address of a peer

can be discovered. With the support of Simple Network Management Protocol (SNMP),

we can even locate the switch of each peer.

Actually, the net-print itself is self-certifying. That is to say it can be directly

44

verified by others. For example, one node M wants to pretend to be another node A, and

even know the net-print information of A; however, other nodes can easily verify M by

comparing the claimed net-print and directly measured one. Moreover, it can be used to

thwart the most difficult issues about P2P security, Sybil attack and node ID swapping

attack (or collusion of malicious nodes, in another word). With the help of the net-print,

the node ID swapping attack across ASes is impossible, since it can be easily detected from

the mismatch between the external IP address and the AS number. Also, the collusion

within the same AS is very difficult, since landmark vectors and a default router IP can

detect it. Although, the malicious nodes under the same sub-network may still collude with

each other, the net-print efficiently locks them within a small network scope and restricts

the number of colluded ones. For the Sybil attack, though the malicious node may pretend

to be different nodes under a sub-network, not only the number of faked peers is restricted,

but they can also be identified by challenging those nodes to solve a unique computational

puzzle concurrently.

5.2 Secure Routing

Based on the better identifier, net-print, we will discuss secure routing issues of

our structured P2P design in detail. The overlay network runs on a set of N nodes that

form an overlay using the protocol described in the previous section. We assume a bound f

(0 < f < 0.5) on a fraction of nodes for every role, such as agents and leaders, that may be

faulty. In the following paragraphs, we will discuss the three key issues to implement secure

routing: securely assigning node IDs to nodes, securely maintaining the routing tables, and

securely forwarding messages.

First, securely assigning node IDs to nodes is discussed. Due to the self-certifying

characteristic of the net-print, collusion and Sybil attack are almost impossible in our sys-

45

tem. Also, the effect of regular malicious nodes is very little, since they only store parts of

objects and their failures are tolerated by the erasure code. Although previous research [16]

has pointed out that giving the P2P overlay a public key infrastructure is important for

system security, to give each node a certificate is obviously not necessary in our system. In-

stead, only the agents will be granted a certificate by a trusted certification authority (CA),

which binds a public key to its net-print instead of its IP address. Besides the normal

properties of net-print mentioned earlier, the net-print for agents also includes its current

interior IP, exterior IP and port for routing service. Even though the agent is under an ISP

using DHCP or NAT, that information can identify it during its service time. Those public

keys will be spread to all agents and updated with the changes of agents. The leader’s

certificate can be granted by any agent within that group. It includes interior, exterior IP

and team ID.

Second, we discuss how to securely maintain the routing table. As mentioned

earlier, the maintenance of routing tables in agents is based on the piggybacked information

within the messages. In order to make this procedure secure, we exploit the redundancy

and electric signature techniques together. The detailed procedure is as follows. When an

agent filters out the updated information from an incoming message, it will firstly check

the certificate of the message and then share the information with the other two agents

by the ring protocol. Due to the gossip-style mechanism of updating agents, the update

information about one agent can be received from different resources. Thus, those updates

will be inconsistent if a node tries to forge it. If no conflict is detected, this update will

be accepted by all agents, and delivered to leaders. Also, this updated information will be

further piggybacked in outgoing messages by leaders.

Third, based on the above discussion, the procedure of forwarding messages se-

curely in our system is straightforward. When a node requires its leader to route a message,

it will first check the leader’s certificate and then send the message. Then, the leader will

46

randomly choose one agent within the destination group to drop the message with its cer-

tificate. As the destination agent receives the message, it will check the IP and port number

with the certificate to make sure it comes from the expected leader. Then it signs the mes-

sage and forwards it to the responsible destination leader. Finally, the destination leader

will send back the result with its certificate. Normally, the node can safely use the infor-

mation. If the result is found out to be incorrect, the node can provide the message to

an agent. By tracking the message, the faulty node can be found out, since the leader for

the required result may itself be faulty. The replica will be reached by the key generated

by the hash function initialized with another seed, which is similar to the technique used

in CFS [44]. Instead of just tolerating faulty nodes like current designs, those nodes will

be exposed. Any node can report a suspect faulty leader or agent to its agent with the

evidence of the result of redundant routing or the tracking back message. If that node is

continually impeached by different nodes, the agent will consider it fault and keep it in a

black list.

5.3 Some Discussions

Although malicious nodes do not have many chances to interfere with our system

under the security routing above, we still need to prevent the accumulation of malicious

agents and leaders. Since many malicious nodes may have more powerful CPUs and longer

session times, they may be good candidates for management positions. The solution to this

is to limit the term of every leader and agent. A maximum period Pmax will be imposed

for every lead and agent. When the maximum period is reached, a new one will be elected

to replace it. Since a leader’s certificate may just be issued by an expiring agent, the public

key for each agent will be kept for another Pmax as the grace period. After that, the public

key will be deleted. A previous agent may be selected to be an agent again and a new

47

certificate will be issued. The Pmax should not be too long; 24 hours could be a modest

value.

In addition to limiting the maximum term of leaders and agents, our overlay can

even eject the misbehaving nodes. As mentioned earlier, agents will keep a black list for

malicious agents and leaders. If a malicious agent or leader is on the black lists of two or

more agents of one group, they may accuse that node jointly. They will send an appeal with

their signatures to an agent in that group. Then, the term of that node will be reduced.

The more appeals received, the more quickly the node will be ejected. Finally, a new leader

or agent will be selected to replace the malicious one, and its certificate will be revoked. As

the result, that node will be isolated by the others. All nodes will stop sending messages to

that node and ignoring messages from it.

Most of the work within this chapter was published in [45, 46].

48

Chapter 6

A Common Overlay Network

Under-layer

Although our network-based overlay network can be developed into highly efficient

and secure structured and unstructured P2P systems, it is no a panacea. More P2P systems

and other overlay networks will keep emerging. New requirements and features will be

proposed. However, among changes of overlay networks, routing is their essential issue.

Optimizing overlay routing is difficult. Deeply understanding overlay network is necessary

to solve the problem.

6.1 Overlay Network Layers

Depending on different responsibilities, the Internet can be modeled into four

layers: Link, Network, Transport and Application. An overlay network is a computer

network which is built on top of another network. Nodes in the overlay can be thought of

as being connected by virtual or logical links, each of which corresponds to a path, perhaps

through many physical links, in the underlying network. P2P systems are overlay networks

49

running on top of the Internet.

Link

Network

Transport

Application

Link

Network

Transport

Application

Internet Layers Overlay Layers

Figure 6.1: Layers of overlay network

The four layers model is essential for every network since the four layers are basic

components for a working network. Based on their different responsibilities, overlay net-

works can also be divided into four layers. As figure 6.1 shows, the Link layer (bottom-most)

of an overlay network includes all three bottom layers of network. This is because overlay

network is connected by a logical link provided by network transport protocols, such as TCP

or UDP, and those services also involve Network and Link layers. The Network layer of

overlay network belongs to the Application layer of the Internet. Based on virtual connec-

tions provided by the Internet, overlay networks form their own network layer. With their

particular routing protocols, such as Chord [5], Pastry [6], Gnutella [2], and KaZaA [3], the

overlay network provides routing service, creating logical paths for transmitting data from

node to node. The other two layers of overlay network are straight forward. The Transport

provides a flow of data between two hosts for the application layer above. The application

layer handles the details of the particular application. Both of those layers are also parts of

the Application layer of the Internet.

50

6.2 A Common Overlay Network Under-layer

Since most of layers of the overlay networks belong to an application layer of the

Internet, they ignore the underlying physical network. Thus, their routing is always sub-

optimized. Chord in its original design, for instance, does not consider network proximity

at all. As a result, its protocol for maintaining the overlay network is very light-weight, but

messages may travel arbitrarily long distances in the Internet in each routing hop.

Because of the importance of network proximity, each overlay network developed

its own technique to acquire network-aware information, such as RTTs and widely used

landmark techniques as mentioned earller. In fact, the Network layer of overlay network is

made up of two sub-layers. As figure 6.2 shows, the upper sub-layer called routing layer will

be in charge of overlay network routing, and the lower one, with the name network-proximity

layer, will provide network-aware information for above routing layer.

RTTs Topology

DHT

Common Overlay Under-layer

Mesh ESM

DHT

Landmark

Mesh ESM
Routing

(upper sub-layer)

Network proximity
(lower sub-layer)

Routing
(upper sub-layer)

Network proximity
(lower sub-layer)

Overlay Network Layer

Figure 6.2: A common overlay network under-layer

Currently, each overlay network maintains its own network proximity system, such

as landmark system for structured DHTs designs, RTTs networks for unstructured meshes

or network-topology discovery for End-System Multicast (ESM) [47]. Although those tech-

niques differ in details, they share the same network probe methods. For example, similar

51

ping methods are used to measure RTTs between peers within landmark systems, and vari-

ant traceroute tools are exploited for network topology. As a result, the same probe is

preformed by different systems. Not only does the current pattern waste a lot of network

resources, but it also generates a considerable amount of traffic due to the large number of

peers. Thus, we proposed to build a common overlay network under-layer to provide net-

work proximity information for all above overlay networks, just as figure 6.2 shows. That is

to say, all overlay networks, no matter their different routing and application protocols, will

build on a common under-layer, which includes all peers of different overlays and provides

them network-aware information as requirements. The overlay technique in chapter 3 will

be utilized to manage all peers. Also, the SNSA technique in chapter 2 will be exploited

by providing network proximity information. As a result, not only will this common under-

layer save network resources and reduce overlay overhead [48], but it will also provide more

accurate network-aware information compared to any single overlay network.

6.3 Requirements of Different Overlay Networks

Before describing the common under-layer in detail, requirements of different over-

lay networks must be investigated.

6.3.1 Structured P2P Overlays

Currently, three major topology-aware routing techniques have been exploited by

structured P2P systems: proximity routing, topology based node ID assignment, and prox-

imity neighbor selection [49].

With proximity routing, the overlay is constructed without regard for the physical

network topology. The technique exploits the fact that when a message is routed, there are

potentially several possible next hop neighbors that are closer to the message’s key in the

52

ID space. The idea is to select, among the possible next hops, the one that is closest in

the physical network or one that represents a good compromise between progress in the ID

space and proximity. The technique has been used in Chord and CAN. In order to support

this, the network proximity sub-layer showed in figure 6.2 should provide estimation of

latency between host and several possible next hops.

Topology-based node ID assignment attempts to map the overlay’s logical ID space

on the physical network so neighboring peers in the ID space will be close in the physical

network. The technique has been successfully used in CAN, and has achieved low delay

stretch results [50]. The notion of this technique is similar to the construction of our

overlay mentioned earlier. To fully support this technique, not only the topology of the

physical network is needed, but also the node density within each network unit is required.

Otherwise, the constructed overlay would destroy the uniform population of the ID space,

causing load balancing problems.

Proximity neighbor selection, also constructs a topology-aware overlay. However,

instead of biasing the node ID assignment, it chooses routing table entries to refer to the

topologically nearest among all nodes with a node ID in the desired portion of the ID space.

The success of this technique depends on the degree of freedom an overlay protocol has in

choosing routing table entries without affecting the expected number of routing hops. In

prefix-based protocols, such as Tapestry and Pastry, the upper levels of the routing table

allow great freedom in this choice, with lower levels leaving exponentially less of a choice.

As a result, the expected delay of the first hop is very low; it increases exponentially with

each hop, and the delay of the final hop dominates. Although, this technique seems different

from the proximity routing, they essentially exploit the same network-aware information:

estimation of latency between peers. The difference is that proximity routing uses latency

information to select next routing hop, while proximity neighbor selection uses latency to

construct routing tables.

53

6.3.2 Unstructured P2P Overlays

In general, three types of approaches have been proposed to improve search effi-

ciency in unstructured P2P systems: forwarding-based, cache-based, and overlay optimiza-

tion.

In forwarding-based approaches, instead of relaying the query messages to all its

logical neighbors except the incoming peer, a peer selects a subset of its neighbors to relay

the query. Each peer maintains some statistical information based on metrics, such as the

number of results returned or the latency of the connection. A peer selects a subset of the

neighbors, such as neighbors that have low latency, to send its query [51, 52]. For support

of this kind of techniques, estimated latency between peers should be enough.

The cache-based approaches include data index caching and content caching. For

example, KaZaA utilizes cooperative superpeers, each of which is an index server of a subset

of peers. Queries are intended to forward to the nearest superpeers for quick solution.

Essentially, this technique needs a network-proximity layer to provide latency information

to its neighbors.

The third approach is based on overlay topology optimization [53, 54]. Studies [27]

have shown that only 2 to 5 percent of Gnutella connections link peers within a single

AS. However, more than 40 percent of all Gnutella peers are located within the top 10

ASes. This means that most Gnutella-generated traffic crosses AS borders. Because of the

seriousness of topology mismatching, authors in [53, 54] proposed to use partial network-

topology information to improve unstructured overlays. In order to reduce network traffic,

they tend to favor peers within given router-hops, say two, and to cut crossing borders

links. Those techniques need local router-level network topology information.

54

6.3.3 End System Multicast

End system multicast, Narada, is proposed in [47], which first constructs a rich

connected graph on which to further construct shortest path spanning trees. Each tree is

rooted at the corresponding source using well-known routing algorithms. To build and im-

prove this kind of overlay network, not only the global Internet topology but also estimated

network bandwidth between peers is needed.

Beyond all requirements above, some other issues are also crucial to overlay net-

works. The first one is membership of peers. Since peers within overlay networks tend

to join and leave very frequently, the availability of peers is crucial for overlay routing.

Connecting a failed peer will considerably increase routing latency and involve penalty in

replacing the failed one in the routing table.

The second issue is the NAT traversal problem. Due to wide deployment of firewalls

and NATs, connections between peers behind different firewalls are difficult. That is to

say a peer may have lots of neighboring peers, but few of them are reachable. Many

techniques exist, such as Simple Traversal of UDP over NATs(STUN) [55] and Traversal

Using Relay NAT(TURN), but no technique works in every situation since NAT behavior

is not standardized. Many techniques require a public server on a well-known globally-

reachable IP address. Some methods use the server only when establishing the connection

(such as STUN), while others are based on relaying all the data through it (such as TURN).

As a result, to attain a peer’s network connectivity information and find a public server for

connection is vital for overlay routing.

The last one is security. Each peer is an important component of its overlay.

Forged peers will significantly undermine the whole structure. The Sybil attack is one kind

of such a threat, in which an attacker subverts a P2P network by creating a large number

of pseudonymous entities, using them to gain a disproportionately large influence. Thus,

55

the overlay should have a mechanism to provide basic identification service of peers.

6.4 Design of the Common Under-layer

Although different overlays have their specific requirements, they can generally

be categorized into two classes. One class is physical network related information, such as

network topology information or latency estimation of given node. The other one is overlay

peers related information, such as peer’s availability, bandwidth or connectivity.

6.4.1 Network Related Primitives

Two major kinds of information are required for physical network. The most fre-

quently used one is latency estimation, which includes several varieties, such as finding

the nearest neighbors to a peer or the latency between given peers. The other one is net-

work topology. Different overlays may require network topology information at a specified

resolution and scope. Thus, we propose two primitives for common under-layer to support:

1. For network topology primitive, it should provide a graph of known network connec-

tivity at specified resolution, such as ASes, or routers, and scope, such as the Internet,

some AS, or everything within a radius of N hops.

2. For latency primitive, it should report network facts between a pair of peers according

to a specified metric, such as AS hops, router hops, or measured latency.

In order to support topology primitives at AS resolution and scope, the common

under-lay should keep an AS-level Internet topology graph. As chapter 2 mentioned, the

Internet has a very clear topology graph at this level, and many public services provide

that information, such as the CIDR Report [25] and the IRR [26]. However, to provide

the Internet topology at the router-level is not easy. It needs either the privileged access

56

to BGP border routers or a huge amount of probing. Not only is neither of these methods

an appropriate way for overlay network, but also router-level topology is overkill in most of

time. Since all overlay peers are organized by our overlay technique mentioned in chapter 3,

our SNSA technique in chapter 2 can be naturally exploited to provide scalable router-level

topology for the upper layer. That is to say, for top ASes, the detailed router-level topology

will be measured and kept. For middle ones, instead of full router-level topology, team-level

will be provided. For small ones, only AS-level topology will be presented.

For latency primitive, topology information will be used to give the estimated la-

tency at metric of AS and router hops. For latency metric, instead of periodically measuring

RTTs to every peer, only router-level latency will be maintained. However, the number of

probes is also very large even at router-level. In order to keep the cost to a minimum,

RTTs will not be measured by common under-layer. Routing operations performed by

overlay networks provide ample RTTs samples for all peers. By collecting the information,

common under-lay can provide an accurate latency between the local router and all other

routers. Also, this technique can be extended to supply latency between any pair of peers.

For example, peer X wants to know the latency from A to B. By contacting the leader of

A, X can get the most recently measured latency from A to B. Not only does this method

eliminate duplicate probes, but it also makes all overlays cooperate together.

6.4.2 Overlay Peer Related Primitives

Beyond network related information, the common under-layer should also provide

peer related information for an overlay network. Due to deployment on the open Internet

environment, distribution of peers’ resources and behaviors is highly skewed. Thus, the

common overlay should provide the three kinds of information for overlay networks, namely

resource, behavior, and security.

As analyzed in chapter 1, not every peer is suitable to grant regular responsibility

57

of the overlay, such as routing. Thus, some peer related information, such as availability,

network connection type and so on, is crucial for overlay network. Security is also an

important issue for overlays.

Two major kinds of information are required for physical network. The most fre-

quently used one is latency estimation, which includes several varieties, such as finding

nearest neighbors to a peer or the latency between given peers. The other one is net-

work topology. Different overlays may require network topology information at a specified

resolution and scope. Thus, we propose two primitives for common under-layer to support:

1. For peer resource primitive, it should provide a peer’s basic resource information,

for example CPU, memory, storage usage, network connection type(such as dial-up,

DSL/cable modem and so on), and connectivity property.

2. For behavior primitive, it should report a peer’s availability information. Both overlay(ID-

based) and network(IP-based) availability of a peer need to be measured and reported,

since a peer may run several overlay instances at the same time or just inconsecutively

run some of them.

3. For security primitive, it should provide the ability to verify a peer’s ID or IP, and

ID-IP pair. That information is crucial to detect Sybil and ID swapping attacks.

In order to support resource and behavior primitives, each peer is designed to send

a heartbeat message, which includes the name of overlay protocol, overlay ID, network, CPU

and memory usage information, to its team leader. By this simple mechanism, the common

under-layer can collect a peer’s resource information and measure its availability at the same

time. The connectivity can be checked with the help of leaders within a nearby AS. For

security primitive, the techniques mentioned in chapter 5 can be exploited. For example,

the net-print can be easily used to verify the ID-IP pair of a peer.

58

Part of the work within the chapter was published in [46].

59

Chapter 7

Evaluation

In this chapter, we evaluate our designs by simulation with the genuine Internet

AS-level topology and latency and compare the results with current designs.

7.1 Experiments for the Structured Design

7.1.1 Experimental Setup

The genuine Internet latency used in our simulation was from the King method [56],

which measured the network latencies of more than 1,700 DNS servers. The AS-level topol-

ogy graph was from the CIDR Report [25]. By mapping each DNS server used in King to

its AS, a 1701 nodes (ASes) graph with network latency and topology has been built. The

average round trip delay between nodes pairs is 168ms, and the average AS path length

is 2.97 hops. The p2psim [57] was used to simulate the Chord protocol with Proximity

Neighbor Selection (PNS). A similar simulator of our overlay is developed under Java. All

experiments were performed in a Dell Dimension PC with one 2.8GHz Pentium IV processor

and 1.2GB RAM.

In order to make our experiments close to the deployment environment, the density

60

and distribution of nodes of real P2P overlay were needed. Recent research [12] has shown

that the average nodes within one AS are 200 and 60 for KaZaA and Gnutella, respectively.

Also the distribution is highly skewed and exhibits heavy tails, which can be approximated

by Zipf’s distribution. Thus, we use the Zipf distribution in our experiments. The average

node density in our experiments is chosen to be 100 per AS, which is between the value of

KaZaA and Gnutella. The system is modeled to have 10,000 nodes, which spread over 100

ASes under the Zipf distribution. These ASes are carefully selected from the original 1701

ones to keep the similar average latency and AS path length. For the Zipf distribution, the

largest AS has 1,000 nodes and the smallest one has 36 nodes. Also, the uniform distribution

has been simulated as the comparison.

We used the metrics of lookup latency stretch and failure rate to compare the

performance of different overlays, and we used the bandwidth per node and link stress to

evaluate their overhead. In the simulation, each node alternately crashed and re-joined the

network; the interval between successive events for each was exponentially distributed with

a mean time from 15 minutes to 1 hour. Each time a node joined, it was treated as a new

one. Each node issues lookups for random keys at intervals exponentially distributed with a

mean of 10 seconds. The p2psim was configured with a successors number of 16, base of 16

and refreshing intervals of 1 minute for both successors and fingers. This is a modest config-

uration without favoring either request successful rate or consumed bandwidth, according

to the research of Li et al. [57]. For the simulation of our overlay, each group is configured to

have 3 agents, the average group size is 9 teams, the average team size is 12 nodes, and each

message can piggyback up to 3 agents’ IP addresses. The size of a message is counted as 20

bytes (for packet overhead) plus 4 bytes for each IP address or node identifier mentioned in

the message. When an agent leaves the overlay, the leader with the longest session time in

the group will be upgraded to become an agent, and its backup will the leader of the team.

All simulations ran 4 hours of simulated time, and statistics were collected only during the

61

last two hours.

0

0.5

1

1.5

2

2.5

3

3.5

Unifrom Zipf

St
re

tc
h

Chord ChordProx Pastry PastryProx Ours

Figure 7.1: Overview of comparison between different structured P2P systems

7.1.2 Experimental Results

As a comparison between our system and others, we have compared with two

other popular systems, Pastry and Chord, and their latest network proximity variations.

As figure 7.1 shows, compared with the original version, the network proximity variations of

both Chord and Pastry get significantly improved on their network latency stretch, which

is defined at the ratio of overlay routing latency and the Internet routing one. The latency

stretches reduce from 2.5 to about 1.5, which proves that to building the overlay close to

the physical network is a promising way to optimize overlay systems. Also, as the figure

indicates, all results under Zipf distraction are slightly better than uniform ones. This

exhibits the potential of network locality of overlay peers. By fully exploiting physical

network structure and network locality of overlay peers, our design is very close to the ideal

result.

Figure 7.2 shows the result of the comparison of the lookup latency stretches of

the two systems under churns. The extent of system churn is showed on the x-axis, which

62

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 10 20 30 40 50 60

S
t
r
e
t
c
h

Node Mean Life Time(minutes)

Chord Zipf
Chord Unif

Ours Zipf
Ours Unif

Figure 7.2: Stretch comparisons, under different system churn rates and distributions

is represented as the mean time of node life time. The shorter the mean life time, the more

dynamic the system is. The stretch is the ratio between the latency of the overlay routing

and the ideal Internet one. All protocols time out individual messages after an interval

of three times the round-trip time to the target node, and the message is considered a

failure. The stretches calculated in Figure 7.2 include both successe and failures. As the

figure reveals, the stretches of Chord protocol increase quickly with the extent of churn;

however, our overlay is not very sensitive. By exploiting more network locality from the

skewed distributions of overlay peers, the stretches of Chord under Zipf are significantly

better than the uniform ones. However, they are far from our system. By fully exploiting

the physical network structure and the locality of peers, the stretches of our overlay are

nearly the ideal ones. The results under the uniform are slightly better than the Zipf ones,

since they do not involve communication across different ASes.

Figure 7.3 presents the request failure rate of different protocols under various

environments. Because the symmetric protocol tries to involve every node into the routing

operation, transitory nodes significantly compromise the performance. As figure 7.3 shows,

the system churn is a significant impact to current structured P2P systems like Chord.

63

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60

R
e
q
u
e
s
t

F
a
i
l
u
r
e

R
a
t
e

Node Mean Life Time(minutes)

Chord Zipf
Chord Unif

Ours Zipf
Ours Unif

Figure 7.3: Request failure rate comparisons, under different system churn rates and node
distributions

Although the Chord with PNS can make a little benefit from the skewed distribution of

nodes, its failure rate rapidly raises to more than 5% under a mean node life time of

15 minutes. For our overlay, since only more stable nodes are assigned core operations,

most of the requests are successfully delivered even under highly dynamical environments.

Moreover, the gossip-style piggyback mechanism has proved to be very efficient to update

information of agents. As a result, the failure rate is no more than 0.3% even under mean

node life time of 15 minutes. Since the failure rates of our overlay are much better than

the ones of Chord under all environments, we argue that granting equal responsibility to

highly diverse resources and behaviors nodes may be a significant impact to the overlay.

Paradoxically, an asymmetric protocol may be more appropriate for P2P applications.

Figure 7.4 shows the consumed bandwidth of nodes by different protocols and roles

under Zipf distribution. The results of uniform are ignored for similarity. As an asymmetric

protocol, the bandwidth of agents and the whole overlay are illustrated at the same time. As

the figure reveals, frequent joining and leaving of nodes brings significant overhead to Chord

overlay, while our overlay is not sensitive with those nodes. Moreover, even under symmetric

protocol, the bandwidth consumed by each node varies largely because of randomly assigned

64

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60

L
i
v
e

N
o
d
e

B
W
(
b
y
t
e
/
n
o
d
e
/
s
)

Node Mean Life Time(minutes)

Chord
Chord 5p-95p

Ours(agent)
Ours(agent) 5p-95p

Ours(mean)

Figure 7.4: Bandwidth (mean and 5 to 95 percentiles) consumed by different protocols and
roles, under system churn with Zipf distribution. The datum of our overlay is shifted right
0.3 to make figure clear.

node IDs and diverse session times. As the figure shows, the consumed bandwidth of agents

in our overlay is significantly larger than the average value of symmetric overlay, like Chord.

However, the top 5% nodes of Chord consume more or about the same close bandwidth as

the agents, while the agents are only about 3% of our overlay. Furthermore, the average

bandwidth in our overlay is less than one-fifth of the Chord. The rising of agent bandwidth

with the falling of the churn is caused by the increased successful requests since more queries

are solved.

P2P overlays are notorious for generating large amounts of Internet traffic. While

the bandwidth of each node indicates the traffic per node, the traffic of the whole overlay can

not be reflected. By mapping each node to its exact AS and finding out the paths between

them, we can evaluate the traffic impact to the Internet back bones. By recording each link

used by every message, the link stress can be calculated. Figure 7.5 shows the link stresses

of different protocols under various environments. Both the total overlay link stress and the

lookup (useful) one are shown. As the figure for Chord illustrates, system churn significantly

increases P2P traffic to the Internet. Moreover, it reveals that the Chord overlay is not

efficient. The useful (lookup) traffic is about 40% of the total traffic, and this ratio is

65

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60

L
i
n
k

S
t
r
e
s
s
(
B
p
s
/
l
i
n
k
)

Node Mean Life Time(minutes)

Chord Zipf(lookup)
Chord Zipf(total)

Chord Unif(lookup)
Chord Unif(total)

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60

L
i
n
k

S
t
r
e
s
s
(
B
p
s
/
l
i
n
k
)

Node Mean Life Time(minutes)

NetBased Zipf(lookup)
NetBased Zipf(total)

NetBased Unif(lookup)
NetBased Unif(total)

Figure 7.5: Link stresses put by different protocols to the Internet back bone, under different
system churn rates and node distributions. The left one is for Chord protocol, the right one
is for network based one.

independent of churn rates. On the contrary, our overlay is much more efficient. The useful

part is more than 80% of the total one, and it keeps rising with the decreasing of the churn

rate. Also, this experiment proves that network locality is very important for P2P overlays.

As the figure for Chord shows, by exploiting the network locality under Zipf distribution,

the traffic is 20% less than the one under uniform distribution. Moreover, by fully exploiting

network locality of overlay nodes under our overlay, most of the communications happens

within one AS or between nearby ones, only the necessary messages will be send out. As a

result, lots of Internet backbone traffic is saved, and the total traffic of our overlay is less

than one-tenth of Chord.

66

Node capacity Percentage of nodes

5 20%

50 45%

500 30%

5000 4.9%

50000 0.1%

Table 7.1: Gnutella-like node capacity distributions

7.2 Experiments for the Unstructured Design

7.2.1 Experimental Setups

The scalability is a serious problem for Gnutella-like unstructured P2P systems.

When faced with a high aggregate query rate, Gnutella nodes quickly become overloaded

and the system ceases to function satisfactorily. Furthermore, this problem gets worse as

the size of the system increases. Based on prior research[58, 51, 9], Chawathe et al. [39]

have proposed the Gia network, which tried to make Gnutella-like P2P systems scalable

by topology adaptation, active flow control, one-hop replication, and biased random walks.

Moreover, they provided an important experimental method to study scalability of unstruc-

tured systems. Our experiments adopt this method and use similar simulation parameters

for comparison.

Like Chawathe’s work, our simulation imposes capacity constraints on each of the

nodes to capture the effect of the query load on the system. Each node n is assigned a

capacity Cn, which represents the number of messages that can be processed per unit time.

We adopt the same capacity distribution with Chawathe, which has five levels as shown in

Table 7.1. Also, each node n is assigned a query generation rate qn, which is the number

67

of queries that node n generates per unit time. Of course, query rate qn of each node is

bounded by its capacity Cn. Queries are modeled to search for specific keywords. Each

keyword maps to a set of files, which is randomly replicated on nodes. All files associated

with the specific keyword are potential answers for a query with the keyword. The term

replication factor is used to refer to the fraction of nodes at which answers to queries reside.

A 10,000 nodes system has been simulated. The nodes are distributed in 100

groups. A team is set to have 10 nodes, and a group has 10 teams. The nearby ten groups

form an area. The nodes with maximum capacity among the area become hub agents.

Also, the maximum capacity nodes become the agents of a group and the leader of a team,

respectively. As the search method of an expanding ring, each node will try to solve the

query at a larger scope than the previous one. The normal searching sequence is from

regular node to a leader, then to an agent, to a hub agent, next to nearby hub agents, and

finally to all groups. When a leader is overloaded, the node can send the query directly to

its agent. A penalty of three times RTT will be added to time out an overloaded hop.

We look at three aspects of the system’s performance as a function of the offered

load: the success rate measured as the fraction of the queries that successfully locate the

desired files, the hop count as the number of hops to reach the requested files, and the latency

as the time taken by a query from start to finish. The system is simulated under varying

replication factors and query rates. The number of responses for a query is set to be one, and

the TTL is 10. The experiments for multiple responses are not performed, since previous

research [39] has shown that the performance of a query for k responses at a replication

factor of r is equivalent to that of a query for a single response at a correspondingly lower

replication factor of r/k.

68

0%

20%

40%

60%

80%

100%

0.1% 0.5% 1.0% 2.0% 3.0% 4.0% 5.0%
Replication Factor

Su
cc

es
s R

at
e

Local Team Local Group Nearby Groups Nearby Hub Groups Globe

Figure 7.6: Expanding ring search for unstructured design. Shown is the search success
ratio of different search range under various replication factors.

7.2.2 Experimental Results

Figure 7.6 presents the impact of the expanding ring search of our unstructured

design. Our expanding ring method guarantees that search area increases with hop. The

search area(success rate) is exponential with hops/messages. As the figure shows, the area

covered by local team(1 hop/message) is proportion-like, which means power is equal to

one. The area curve is quadratic for local group(2 hops/message), and cubic for nearby

groups(3 hops/message). Compared with a classical unstructured system such as Gnutella,

its query can reach an exponential number of hosts with hops. However, not only are quite a

few of the hosts duplicated, but also the flooding method generates an exponential number

of messages, which involves a serious problem of scalability.

Figure 7.7 shows the results of success rate, hop-count and latency under increasing

query load. Similar to the results of the Gia network, we notice a knee point in the curves

beyond which the success rate drops sharply and latency increases rapidly in each figure.

The hop-count holds steady until the knee point and then decreases. This is because hop-

count is measured only for successful queries. Under an increasing load, queries tend to be

69

solved by nodes within a few hops from the originator. The Collapse Point (CP) is defined

by the per node query rate at the knee, beyond which the success rate drops blew 90%.

This metric reflects the total system capacity. The Hop-count before collapse (CP-HC) is

the average hop-count prior to collapse. The latency is not retained as a metric since it is

effectively captured by the collapse point. Compared with the Gia network, our system is

slightly better in both CP and CP-HC, especially for a lower replication factor. The CP

of our system under 0.1% replication factor is 20, while that of the Gia network is 7. The

major result of this is that our system has a much lower CP-HC. The CP-HC of our system

is 3.48, while the one of Gias’ is more than 15.

Ideally, we expect a system to archive a high success rate while maintaining a low

hop-count and delay. In fact, the key to archive this is to lower the hop-count of queries,

or, in other words, to quickly find the answers. In order to quickly find the answers, current

unstructured search protocols [39, 9] tend to exploit the hierarchy of capacity and shared

contents of peers. Queries are deliberately led to the nodes with a higher capacity and/or

more content in order to get results faster. Although those protocols significantly improve

system performance compared with original flooding protocol, they have their limitations.

Due to random connections among peers, the circular forwarding is unavoidable. A query

may arrive at a certain node more than once, which increases hop-count and wastes recourse.

Although those protocols ensure to expand search scope hop by hop, the expanding scope

is overlapped since two high degree nodes likely connect the same portion of nodes. By

avoiding the problems above, the expanding ring protocol of our system successfully archives

a high success rate with a low hop-count.

70

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000

S
u
c
c
e
s
s

r
a
t
e

Queries per second

0.1% replication
0.5% replication

 2

 2.5

 3

 3.5

 4

 0.1 1 10 100 1000

H
o
p

c
o
u
n
t
(
s
u
c
c
e
s
s
f
u
l

q
u
e
r
i
e
s
)

Queries per second

0.1% replication
0.5% replication

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0.1 1 10 100 1000

L
a
t
e
n
c
y
(
m
s
)

Queries per second

0.1% replication
0.5% replication

Figure 7.7: Keywords search for the unstructured P2P design. Shown is the search success
rate of different search range under various replication factors. The system has 10,000
nodes, which distributed in 100 ASs, and the average team size is 10.

71

Chapter 8

Conclusions and Future Work

8.1 Conclusions

From a different perspective, this dissertation proposes a new approach to building

a highly efficient and secure P2P overlay by fully exploiting the physical network structure

of the Internet and the network locality of overlay peers. In addition to the network la-

tency between peers, a traditional measurement for network locality of distributed systems,

two other important network properties, bandwidth and connectivity between peers, are

introduced to the network locality of P2P systems. Moreover, a novel SNSA technique

has been developed to efficiently discover and exploit the network locality of overlay peers.

Based on the network locality, a unique P2P overlay, which can support both structured

and unstructured systems, is constructed. Based on the observation that every peer must

subject to the network configuration and administration imposed by ISPs, a novel identifier,

net-print, is proposed to identify each peer under a P2P environment. Based on the SNSA

technique and the net-print, a distributed authentication and secure routing mechanisms

are developed under a P2P environment. Beware of the importance of network proximity.

Each overlay network developed its own technique to acquire network-aware information.

72

As a result, the same probe is preformed by different systems. This pattern not only wastes

a lot of network resources, but it also generates considered traffic due to the large number

of peers. A common overlay network under-layer to provide network proximity information

for all above overlay networks is proposed.

By fully exploiting the physical network structure of the Internet and the network

locality of overlay peers, many difficulties faced by current P2P systems, such as the scal-

ability and searching overhead problems for unstructured ones, and efficiency and security

problems for structured ones, are better solved in our design. We believe that makeing full

use of the physical network structure of the Internet and the network locality of overlay

peers is a promotion way toward P2P and other large-scale distributed applications.

8.2 Future Work

8.2.1 A Hybrid P2P System

Although our structured and unstructured P2P systems are based on the same

overlay structure, there are still two different systems. In fact, both of them have their

advantages and disadvantages. For structured P2P systems, by exploiting elaborate overlay

structure and DHT routing, they are more scalable, and highly efficient and accurate with

locating objects within a very large system. For unstructured ones, based on randomly

connected overlay and gossip-style routing, they are simple and friendly on keyword search,

lower maintenance overhead, and robust facing system churn or even network disaster.

Based on our unique overlay structure, which fully exploits the network structure of

the Internet and the network locality of overlay peers, a hybrid P2P system with advantages

of both structured and unstructured ones can be built in the future. The search methods

of the structured and the unstructured ones are perfect supplements to each other. For

well-duplicated objects, such as popular music, unstructured-style search can be used. In

73

addition, for unpopular objects, structured-style search can be exploited. While regular

overlay structure for structured systems can facilitate overlay functions, such as routing

and lookup, the randomly connected structure of unstructured systems is very robust under

system churn or even network disaster. Thus, we expect to make our hybrid system more

efficient and robust by exploiting the characteristics of both regular structures and random

ones.

8.2.2 Other Security Issues for P2P Systems

In chapter 5, we discuss securing the routing of our structured P2P system. Al-

though secure routing is not a serious problem for unstructured P2P systems, they still face

many other secure problems under P2P environment. Some examples of frequent attacks in

P2P systems could be: malware in the P2P system itself, poisoning/polluting attacks (pro-

vide files whose advertised description and actual content are different), denial of service

attacks (which will make the network or certain parts of it break completely, or only run

very slowly), the insertion of viruses to carried data, defection attacks/free riding (users

that make use of the network without contributing resources to it), identity attacks, or

spamming.

Based on the accurate physical network information provided by the SNSA tech-

nique, the net-print is self-certifying, and can be exploited to build a fully distributed

authentication mechanism under the environment without mutual trust. Based on this

distributed authentication mechanism, each node can be identified. Although the identifi-

cation of nodes can not directly thwart most attacks, it is helpful in establishing a trusted

reputation system within a P2P system. By recording, warning, or even punishing faulty

nodes, it will be more and more difficult for malicious attacks to occur.

74

Bibliography

[1] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-law Relationships

of the Internet Topology,” in Proceedings of the 1999 conference on appli-

cations, technologies, architectures, and protocols for computer communications

of SIGCOMM’99, Cambridge, MA, 1999, pp. 251–262. [Online]. Available:

citeseer.nj.nec.com/faloutsos99powerlaw.html

[2] Gnutella, “Gnutella hosts,” http://www.gnutellahosts.com.

[3] KaZaA, “KaZaA Media Desktop,” http://www.kazaa.com.

[4] Gnutella2, “Gnutella2 Developer’ Network,” http://www.gnutella2.com.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A

scalable peer-to-peer lookup service for internet applications,” in Proceedings of the

2001 conference on applications, technologies, architectures, and protocols for com-

puter communications (SIGCOMM), San Diego, CA, 2001, pp. 149–160.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-

cation and routing for large-scale peer-to-peer systems,” in Proceedings of

the 18th IFIP/ACM International Conference on Distributed Systems Plat-

forms (Middleware), Heidelberg, Germany, Nov. 2001. [Online]. Available:

http://www.research.microsoft.com/ antr/PAST/pastry.pdf

75

[7] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for

fault-tolerant wide-area location and routing,” UC Berkeley, Tech. Rep. UCB/CSD-

01-1141, Apr. 2001. [Online]. Available: citeseer.nj.nec.com/zhao01tapestry.html

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content

Addressable Network,” in Proceedings of the 2001 conference on applications, tech-

nologies, architectures, and protocols for computer communications (SIGCOMM), San

Diego, CA, 2001. [Online]. Available: citeseer.nj.nec.com/ratnasamy01scalable.html

[9] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A Measurement Study of Peer-to-Peer

File Sharing Systems,” in Proceedings of Multimedia Computing and Networking 2002

(MMCN ’02), San Jose, CA, January 2002.

[10] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a DHT,” in

Proceedings of the USENIX Annual Technical Conference, 2004.

[11] ——, “Handling churn in a dht,” University of California, Berkeley, Tech. Rep.

UCB//CSD-03-1299, December 2003.

[12] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic Across Large Networks,” in In

Proc. ACM SIGCOMM Internet Measurement Workshop, Marseille, France, Nov.

2002., 2002.

[13] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-Aware Topology Matching

in P2P Systems,” in Proceedings of the 23st Annual Joint Conference of the IEEE

Computer and Communications Society (INFOCOM-04), 2004.

[14] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris, “Design-

ing a DHT for low latency and high throughput,” in USENIX First Symposium on

Nerworked Systems Design and Implementation (NSDI’04), Mar. 2004.

76

[15] R. Bhagwan, S. Savage, and G. M. Voelker, “Understanding Availability,” in Pro-

ceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),

Berkeley, CA, 2003.

[16] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, “Secure routing

for structured peer-to-peer overlay networks,” in Proceedings of 5th Symposium on

Operating Systems Design and Implementation (OSDI’02), Boston, MA, Dec 2002.

[17] J. R. Douceur, “The Sybil Attack,” in Proceedings of the 1st International Workshop

on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, 2002.

[18] E. Sit and R. Morris, “Security Considerations for Peer-to-Peer Distributed Hash

Tables,” in Proceedings of the 1st International Workshop on Peer-to-Peer Systems

(IPTPS ’02), Cambridge, MA, 2002.

[19] M. Yang, Z. Zhang, X. Li, and Y. Dai, “An Empirical Study of Free-Riding Behavior in

the Maze P2P File-Sharing System,” in Proceedings of the 2nd International Workshop

on Peer-to-Peer Systems (IPTPS’05), 2005.

[20] RFC2453, “Routing Information Protocol (RIP) Version 2,”

http://www.ietf.org/rfc/rfc2453.txt.

[21] RFC2328, “Open Shortest Path First (OSPF) Version 2,”

http://www.ietf.org/rfc/rfc2328.txt.

[22] RFC1771, “A Border Gateway Protocol 4 (BGP-4),”

http://www.ietf.org/rfc/rfc1771.txt.

[23] H. Chang, S. Jamin, and W. Willinger, “Inferring AS-level Internet topology from

router-level path traces,” in Proceeding of SPIE ITCom 2001, Denver, CO, August

2001. [Online]. Available: citeseer.nj.nec.com/chang01inferring.html

77

[24] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger, “The Ori-

gin of Power-Laws in Internet Topologies Revisited,” in Proceedings of the 21st Annual

Joint Conference of the IEEE Computer and Communications Society (INFOCOM-

02), vol. 2, Piscataway, NJ, June 23–27 2002, pp. 608–617.

[25] CIDR-Report, “The CIDR Report,” http://www.cidr-report.org.

[26] M. Network, “Internet Routing Registry,” http://www.irr.net.

[27] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella network:

Properties of large-scale Peer-to-Peer systems and implications for system design,”

IEEE Internet Computing Journal, vol. 6, no. 1, 2002. [Online]. Available:

citeseer.nj.nec.com/ripeanu02mapping.html

[28] Routeviews.org, “Route Views Archive,” http://www.routeviews.org.

[29] Traceroute.org, “Public Route Server List,” http://www.traceroute.org.

[30] Z. Xu, C. Tang, and Z. Zhang, “Building topology-aware overlays using global soft-

state,” in Proceeding of the 23nd Internatinal Conference on Distributed Computing

System(ICDCS03), 2003. [Online]. Available: citeseer.nj.nec.com/xu03building.html

[31] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-Aware Overlay

Construction and Server Selection,” in Proceedings of the 21st Annual Joint Confer-

ence of the IEEE Computer and Communications Society (INFOCOM-02), 6 2002.

[32] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris, “Vivaldi: A Decentralized

Network Coordinate System,” in Proceedings of the 2004 conference on applications,

technologies, architectures, and protocols for computer communications (SIGCOMM),

2004.

78

[33] RFC791, “Internet Protocol DARPA Internet Program Protocol Specification,”

http://www.ietf.org/rfc/rfc0791.txt.

[34] L. M., A. S., and F. A., “A Efficient Algorithms to Implement Unreliable Failure

Detectors in Parially Synchronous Systems,” in Proceedings of the 13th Symposium

on Distributed Computing (DISC’99), Bratislava, Slovaquia, 1999.

[35] F. 180-1, “Secure Hash Standard,” U.S. Department of Commerce/NIST, National

Technical Information Service, Apr. 1995.

[36] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient Routing for Peer-to-Peer Overlays,”

in First Symposium on Networked Systems Design and Implementation (NSDI), San

Francisco, CA, Mar. 2004.

[37] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs. Replication: A Quanti-

tative Comparison,” in Proceedings of the 1st International Workshop on Peer-to-Peer

Systems (IPTPS’02), 2002.

[38] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the Evolution of Peer-

to-Peer Systems,” in Proceedings of ACM PODC, July 2002.

[39] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Making

Gnutella-like P2P Systems Scalable,” in Proceedings of the 2003 conference on appli-

cations, technologies, architectures, and protocols for computer communications (SIG-

COMM), 2003.

[40] H. Wang, Y. Zhu, and Y. Hu, “To Unify Structured and Unstructured P2P Systems,”

in Proceeding of the 19th International Parallel and Distributed Processing Symposium

(IPDPS05), Denver, Colorado, April 2005.

79

[41] Y. Zhu, H. Wang, and Y. Hu, “Integrating semantics-based access mechanisms with

p2p file systems,” in Peer-to-Peer Computing, 2003.

[42] ——, “A super-peer based lookup in structured peer-to-peer systems,” in ISCA PDCS,

2003, pp. 465–470.

[43] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard: defending against

sybil attacks via social networks,” in SIGCOMM, 2006, pp. 267–278.

[44] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stocia, “Wide-area Cooper-

ative Storage with CFS,” in Proceedings of ACM SOSP’01, Oct. 2001.

[45] H. Wang, Y. Zhu, and Y. Hu, “An efficient and secure peer-to-peer overlay network,”

in Proceeding of the 30th IEEE Conference on Local Computer Networks (LCN), 2005.

[46] H. Wang and Y. Hu, “Building a peer-to-peer overlay for efficient routing and low

maintenance,” in EUC Workshops, 2005, pp. 766–775.

[47] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,” in SIGMET-

RICS, 2000, pp. 1–12.

[48] A. Nakao, L. L. Peterson, and A. C. Bavier, “A routing underlay for overlay networks,”

in SIGCOMM, 2003, pp. 11–18.

[49] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Topology-aware

routing in structured Peer-to-Peer overlay networks,” Microsoft Research,

One Microsoft Way, Redmond, Tech. Rep. 82, 2002. [Online]. Available:

citeseer.nj.nec.com/castro02topologyaware.html

[50] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, “Topologically-aware overlay

construction and server selection,” in INFOCOM, 2002.

80

[51] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication in Unstruc-

tured Peer-to-Peer Networks,” in Proceedings of 16th ACM International Conference

on Supercomputing (ICS-02), New York, NY, June 2002.

[52] Z. Zhuang, Y. Liu, L. Xiao, and L. M. Ni, “Hybrid periodical flooding in unstructured

peer-to-peer networks,” in ICPP, 2003, pp. 171–178.

[53] Y. Liu, X. Liu, L. Xiao, L. M. Ni, , and X. Zhang, “Location-Aware Topology Match-

ing in P2P Systems,” in Proceedings of the 23st Annual Joint Conference of the IEEE

Computer and Communications Society (INFOCOM’04), 6 2004.

[54] G. S. Manku, M. Naor, and U. Wieder, “Know thy neighbor’s neighbor: the power of

lookahead in randomized p2p networks,” in STOC, 2004, pp. 54–63.

[55] RFC3489, “STUN - Simple Traversal of User Datagram Protocol (UDP) Through

Network Address Translators (NATs),” http://www.ietf.org/rfc/rfc3489.txt.

[56] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating Latency between Ar-

bitrary Internet End Hosts,” in Proceedings of the SIGCOMM Internet Measurement

Workshop (IMW 2002), Marseille, France, November 2002.

[57] J. Li, J. Stribling, R. Morris, M. Kaashoek, and T. Gil, “A performance vs. cost

framework for evaluating DHT design tradeoffs under churn,” in Proceedings of 24th

IEEE INFOCOM, March 2005.

[58] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in Power-

law Networks,” in Pyhsical Review E 64, 2001.

[59] M. Freedman and D. Mazieres, “Sloppy hashing and self-organizing clusters,” in

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),

Berkeley, CA, 2003. [Online]. Available: citeseer.nj.nec.com/freedman03sloppy.html

81

[60] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz, “Brocade: Landmark

routing on overlay networks,” in Proceedings of the 1st International Workshop

on Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, 2002. [Online]. Available:

citeseer.nj.nec.com/zhao02brocade.html

[61] “AS Graph Data Sets,” http://topology.eecs.umich.edu/data.html.

[62] B. Huffaker, M. Fomenkov, D. J. Plummer, D. Moore, and k claffy, “Distance Metrics

in the Internet,” in IEEE International Telecommunications Symposium(ITS) 2002,

2002.

[63] B. Krishnamurthy, J. Wang, and Y. Xie, “Early Measurements of a Cluster-based

Architecture for P2P Systems,” in ACM SIGCOMM Internet Measurement

Workshop (San Francisco, Nov. 2001), San Francisco, CA, 2001. [Online]. Available:

citeseer.nj.nec.com/krishnamurthy01early.html

[64] IRR, “List of Routing Registies,” http://www.irr.net/docs/list.html.

[65] “GT-ITM,” www.cc.gatech.edu/projects/gtitm.

[66] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Observations on the Dynamic

Evolution of Peer-to-Peer Networks,” in Proceedings of IPTPS 2001, 2001. [Online].

Available: citeseer.nj.nec.com/article/liben-nowell01observations.html

[67] RFC1772, “Application of the Border Gateway Protocol in the Internet,”

http://www.ietf.org/rfc/rfc1772.txt.

[68] RFC2365, “Administratively Scoped IP Multicast,”

http://www.ietf.org/rfc/rfc2365.txt.

[69] RFC1112, “Internet Group Management Protocol,”

http://www.ietf.org/rfc/rfc1112.txt.

82

[70] RFC2236, “Internet Group Management Protocol, Version 2,”

http://www.ietf.org/rfc/rfc2236.txt.

[71] “Chord Simulator,” http://www.pdos.lcs.mit.edu/cgi-

bin/cvsweb.cgi/sfsnet/simulator/.

[72] Z. Xu and Y. Hu, “SBARC:A Supernode Based Peer-to-Peer File Sharing Sys-

tem,” in Proceedings of the 8th IEEE Symposium on Computers and Communications

(ISCC’2003), kemer - Antalya, Turkey, June 2003, pp. 1053–1058.

[73] L. Garces-Erice, K. W. Ross, E. W. Biersack, P. A. Felber, and G. Urvoy-Keller,

“Topology-centric look-up service,” in Proceedings of COST264 Fifth International

Workshop on Networked Group Communications (NGC), Munich, Germany, 2003.

[Online]. Available: citeseer.nj.nec.com/564384.html

[74] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, I. van der Wijk, M. van

Steen, and A. S. Tanenbaum, “The Globe distribution network,” in Proceedings of

the USENIX Annual Technical Conference, 2000, pp. 141–152. [Online]. Available:

citeseer.nj.nec.com/bakker00globe.html

[75] B. Krishnamurthy and J. Wang, “On network-aware clustering of web clients,”

in Proceedings of the 2000 conference on applications, technologies, rchitectures,

and protocols for computer communications SIGCOMM, 2000, pp. 97–110. [Online].

Available: citeseer.nj.nec.com/krishnamurthy00networkaware.html

[76] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Topology-aware

routing in structured peer-to-peer overlay networks,” Microsoft Research, One

Microsoft Way, Redmond, Tech. Rep. 82, 2002. [Online]. Available: cite-

seer.nj.nec.com/castro02topologyaware.html

83

[77] ——, “Exploiting network proximity in Peer-to-Peer overlay networks,” in Interna-

tional Workshop on Future Directions in Distributed Computing (FuDiCo), 2002.

[78] G. Ballintijn, M. van Steen, and A. S. Tanenbaum, “Exploiting location awareness

for scalable location-independent object IDs,” in Proceedings of Fifth Annual ASCI

Conference, Heijen, The Netherlands, June 1999, pp. 321–328. [Online]. Available:

citeseer.nj.nec.com/ballintijn99exploiting.html

[79] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Proximity Neighbor Selection

in Tree-based Structured Peer-to-peer Overlays,” in International Workshp on Future

Directions in Distributed Computing (FuDiCo), 2002.

[80] L. Zhou and R. van Renesse, “P6P: A Peer-to-Peer Approach to Internet Infras-

tructure,” in Proceedings of the 3rd International Workshop on Peer-to-Peer Systems

(IPTPS’04), 2004.

[81] A. Gupta, B. Liskov, and R. Rodrigues, “One Hop Lookups for Peer-to-Peer Over-

lays,” in USENIX Annual Conference Workshop on Hot Topics in Operaring Sys-

tems(HotOS 2003), 5 2003.

[82] ——, “Efficient Routing for Peer-to-Peer Overlays,” in USENIX First Symposium on

Nerworked Systems Design and Implementation (NSDI’04), Mar. 2004.

[83] L. Gao, “On inferring autonomous system relationships in the Internet,” IEEE/ACM

Transactions on Network, vol. 9, no. 6, pp. 733–745, Dec 2001.

[84] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy, “An Anal-

ysis of Internet Content Delivery Systems,” in Proceedings of the 5th Symposium on

Operating Systems Design and Implementation(OSDI02), Boston, MA, 2002.

84

[85] Y. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-Aware Topology Matching in P2P

Systems,” in Proceedings of the 23st Annual Joint Conference of the IEEE Computer

and Communications Society (INFOCOM-04), Hong Kong, China, 2004.

[86] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, “A Distributed Approach to Solving

Overlay Mismatching Problem,” in Proceeding of the 24nd Internatinal Conference

on Distributed Computing System(ICDCS04), Tokyo, Japn, March 2004.

[87] Y. Liu, L. Xiao, and L. M. Ni, “Building a Scalable Bipartite P2P Overlay Network,”

in Proceeding of the 18th International Parallel and Distributed Processing Symposium

(IPDPS04), Santa Fe, New Mexico, April 2004.

[88] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a Common

API for Structured Peer-to-Peer Overlays,” in Proceedings of the 2nd International

Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA, 2003.

[89] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris, “Practical, distributed

network coordinates,” in Proceedings of Second Workshop on Hot Topics in Net-

works(HotNets03), Nov 2003.

[90] T. E. Ng and H. Zhang, “A Network Positioning System for the Internet,” in Pro-

ceedings of the USENIX Annual Technical Conference, Boston, MA, June 2004.

[91] R. Siamwalla, R. Sharma, and S. Keshav, “Discovering Internet Topology,”

www.cs.cornell.edu/skeshav/papers/discovery.pdf.

[92] Z. Xu, M. Mahalingam, and M. Karlsson, “Turning Heterogeneity into an Advantage

in Overlay Routing,” in Proceedings of the 22st Annual Joint Conference of the IEEE

Computer and Communications Society (INFOCOM-03), 2003.

85

[93] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, and N. McKe-

own, “Scaling internet routers using optics,” in Proceedings of the 2003 conference on

applications, technologies, architectures, and protocols for computer communications

(SIGCOMM03), 2003.

[94] A. T. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structured Superpeers: Leverag-

ing Heterogeneity to Provide Constant-Time Lookup,” in IEEE Workshop on Internet

Applications, 2003.

[95] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse, “Kelips: Building

an Efficient and Stable P2P DHT Through Increased Memory and Background Over-

head,” in Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

(IPTPS’03), Berkeley, CA, 2003.

[96] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “HiScamp: self-organizing hier-

archical membership protocol,” in Proceedings of the 10th European ACM SIGOPS

workshop, Sept. 2002.

[97] J. Chu, K. Labonte, and B. N. Levine, “Availability and Locality Measurements of

Peer-To-Peer File Systems,” in Proceedings of ITCom: Scalability and Traffic Control

in IP Networks, July 2003.

[98] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan,

“Measurement, Modeling, and Analysis of a Peer-to-Peer File Sharing Workload,” in

Proceedings of ACM SOSP, Oct. 2003.

[99] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth: Measurement Method-

ology, Dynamics, and Relation with TCP Throughput,” in Proceedings of the 2002

conference on applications, technologies, architectures, and protocols for computer

communications (SIGCOMM), Feb. 2002.

86

[100] R. M. and T. F., “Group membership failure dectection: a simple protocol and its

probabilistic analysis,” Distributed Systems Engineering, vol. 6, no. 3, pp. 95–102,

1999.

[101] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. L. Peterson, and R. Wang, “Overlay

mesh construction using interleaved spanning trees,” in INFOCOM, 2004.

87

	DATE: Jan 25, 2008
	NAME: Honghao Wang
	DEGREE: Doctorate of Philosophy
	DEPT: Computer Science and Engineering
	TITLE1: An Efficient and Secure Overlay Network for General Peer-to-Peer
	TITLE2: Systems
	TITLE3:
	TITLE4:
	CHAIR: Dr. Yiming Hu
	COMM2: Dr. Dharma Agrawal
	COMM3: Dr. Carla Purdy
	COMM4: Dr. Karen Tomko
	COMM5: Dr. Lin Liu

