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Abstract 

A Wireless Sensor Network (WSN) consists of a large number of sensor nodes dispersed over a 

target area for monitoring [1] and these sensing devices are interconnected in the form of an ad-

hoc network using wireless radios. A sensor node senses a physical parameter and transmits the 

same in a multi-hop fashion towards a single collector node known as the sink or Base Station 

(BS). At the sink, collected data from all the sensors is analyzed and appropriate action is taken. 

Again, most of the physical parameters obtained by the environmental sensors exhibit a property 

of spatial-correlation, i.e., smooth variation over space. This property of sensors can be exploited 

to remove redundant data sensed by neighboring sensors. This can be done by employing a fast 

and robust data aggregation protocol at intermediate sensors that combines its own sensed data 

with the data reported from its neighbors, before transmitting the final compressed packet to the 

BS. In this thesis, a tree-based aggregation scheme for WSNs, TREG (Tree-based Regression) 

[2] is implemented on wireless sensor motes and its effectiveness is evaluated. The experimental 

results obtained in the TinyOS [3] programming environment validate the results obtained 

previously from the software simulation. TREG builds a distributed spanning (aggregation) tree 

where each tree node performs multivariate polynomial regression and instead of raw data, 

transmits only the coefficients of a polynomial P, reducing the volume of data considerably. 

Since, computation consumes negligible energy as compared to data transmission [4], a primary 

objective of WSN programming is to conserve energy at each sensor through additional 

computation that could result in reduced radio communication. In TREG, some of the sensors 

only sense data and report them to their nearest tree nodes. Each of the tree nodes then 

implements an aggregation scheme in a distributed manner, thereby reducing the overall 

communication overhead as compared to a strictly centralized scheme. The sensor motes [5] 
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which are tree nodes, have been programmed to perform their own polynomial regression in 

nesC [6], a component-oriented variant of the C language, used by the TinyOS operating system. 

One of the main challenges in implementing a high level scheme in low level programs is the 

extremely resource constrained hardware of motes. The current generation of sensor mote 

typically has an 8-bit micro-controller, few KB of Program ROM and Data RAM respectively. 

Thus, any scheme must not overstretch the limited processing and memory storage of the mote 

hardware. Some of the main challenges encountered during the course of the implementation are 

detailed in this thesis. 
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Chapter 1 

Introduction 

1.1 Wireless Sensor Networks 

A Wireless Sensor Network (WSN) consists of a large number of sensor nodes dispersed 

over a target area for monitoring some specific physical parameters. A sensor node senses a 

physical parameter and transmits the same in a multi-hop fashion towards a single collector node 

in the network known as the sink or Base Station (BS). At the sink, collected data from all the 

sensors is analyzed and appropriate action is taken. Each sensor node consists of a sensor-board 

having multiple transducers for sensing various physical and environmental attributes. It also has 

a micro-controller to perform simple computations, on board memory (RAM and ROM), a radio 

transceiver to receive and transmit data and a battery to power all the functional units. Figure 1.1 

shows a typical wireless sensor network. WSNs are “data centric” in that data is requested from 

network nodes based on certain specific attributes such as “Give maximum acoustic data in the 

target area (50 ≤ x ≤ 90, 50 ≤ y ≤ 90) every 15 seconds “. 

Sensor Node

Sink Node

 

Figure 1.1: A Typical Wireless Sensor Network 
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1.2 Applications 

WSNs are useful in areas ranging from environmental, military to scientific research and as 

such can have innumerable applications. Some of the most important applications of WSNs 

include: 

1. Battlefield surveillance and tracking of enemy activities are the most common military 

applications of sensor networks, cited in the literature. Sensor nodes are likely to be 

deployed by a low-flying aircraft or an unmanned ground or aerial vehicle inside the 

enemy’s territory to remotely monitor activities on the ground [1]. 

2. Environmental applications may include the use of sensors to monitor the land fill and air 

quality [7]. Solid waste from household and non hazardous industrial waste such as sewer 

sludge are typically dumped in landfills where the organic constituents in them undergo 

degradation by fermentation and oxidation-reduction. These result in the release of harmful 

gases such as methane, carbon dioxide, nitrogen, sulfide compounds and ammonia that 

have an adverse impact on the environment as well as living organisms. The traditional 

method of landfill monitoring involves drilling a set of collection wells across the landfill 

and collection of gas samples in airtight bags which are analyzed off-site, a time consuming 

process indeed. With WSNs, a large number of sensor nodes can be placed all over the 

landfill, each of which might house different types of sensors depending on the type of 

pollutant anticipated in a given area. Then, in a cost effective manner and in real-time, the 

entire area of interest can be monitored continuously for the emission of harmful gases 

from the degrading waste materials.  

The Environment Observation and Forecasting System (EOFS) is a distributed system 

spanning large geographical areas and used to monitor, model and forecast various physical 
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processes like flooding, environmental pollution and so on. It usually consists of sensor 

stations, a distribution network and a central area for processing a large volume of data 

generated in such a system. The CORIE [8] system for the Columbia River (Oregon, USA) 

is a prototype of the EOFS, comprising of a real-time sensor network, a data management 

system and advanced numerical models. About thirteen stationary sensor nodes fixed to a 

pier are deployed across the Columbia River estuary while one mobile node drifts off-

shore. Sensor data are transmitted wirelessly toward on-shore stations and from there to a 

centralized server where a computationally intensive physical environment model analyzes 

the received data to guide vessel transportation. 

The Automated Local Evaluation in Real-Time (ALERT) [9] is a WSN developed by the 

National Weather Service in the 1970s and deployed across most of the western United 

States to provide real-time rainfall and water level information. The sensor nodes in the 

ALERT system are equipped with water level sensors, temperature sensors and wind 

sensors. Data is transmitted using line-of-sight communication to a BS where a flood 

forecasting model processes the data and issues an automatic warning, if necessary. 

3.  WSNs can be extremely useful in detecting a major disaster such as earthquake, volcanic 

eruption, fire and terrorist attack. For instance, volcanic activity prediction has not been 

perfected to date. However, significant progress has been made in recent decades in their 

prediction. Typically, volcanoes (even dormant ones) are monitored continuously (a very 

expensive process) for gas emissions (SO2) and thermal emissivity changes at the volcano's 

surface. WSNs can bring down the costs of monitoring significantly yet at the same time 

provide accurate data to enable effective study of volcanic activity. For example, using 

WSNs, it would be possible to obtain the temperature data at various locations of the 
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volcano’s surface and build heat flux maps based on the temperature gradients. The 

problem of sensor deployment would also be eased considerably since wireless sensors can 

be randomly dispersed over the target area and later re-aligned if necessary.  

4. The PODS [10] research project at the University of Hawaii has developed a WSN to 

investigate the reason behind the growing of endangered plant species only in certain parts 

of the wilderness. Sensor Nodes (SN) or Pods deployed in the Hawaii Volcanoes National 

Park, consist of a computer, radio transceiver, environmental sensors and occasionally a 

high resolution digital camera. The sensor data: (1) Weather data collected every ten 

minutes and (2) Image data collected once per hour, are relayed wirelessly to the Internet 

from where users can access the data remotely. 

5. Habitat monitoring represents yet another important class of WSN applications. WSNs let 

life sciences researchers to monitor plants and animals in their natural habitat in a non-

invasive manner. Severe human disturbance may, at the very least distort results by 

changing behavioral patterns or distributions, if not seriously reduce or even destroy 

sensitive populations by increasing stress, reducing breeding success, increasing predation, 

or causing a shift to unsuitable habitats [11]. A group of researchers at the University of 

California at Berkeley in collaboration with the Intel Research Laboratory developed and 

deployed a hierarchical WSN consisting of 32 Sensor Nodes (SNs) at Great Duck Island, 

Maine, in order to study the nesting habits of Leach’s Storm Petrel. The SNs have been 

placed both in and around the burrows of the nesting Leach’s Storm Petrel. The nodes 

inside the burrows are used to detect the presence / absence of petrel using infrared 

radiation, while the ones outside are used to measure general environmental data such as 

temperature, humidity, ambient light and so on. All these data are used in conjunction to 
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develop models to understand the preference for a particular nest site over others by the 

Storm Petrel. 

All of the aforementioned WSN applications suggest that large amounts of data get transferred 

through the sensor network towards the sink. In the next section, we shall look at some of the 

important characteristics of WSNs.   

1.3 Characteristics of Wireless Sensor Networks 

Traditionally, large collections of sensors connected by wires to a central monitoring system 

have been used extensively to measure and analyze physical data remotely. Advances in the 

design of low cost, low power hardware, coupled with availability of small sized batteries have 

led to the development of sensor devices with wireless communication capabilities called 

wireless sensor motes [12]. Wireless sensors have significant advantages as compared to their 

wired counterparts in that they can easily deployed (in many cases just dropped off a low flying 

unmanned aircraft) and are easier to maintain. 

Each wireless sensor node is powered by a set of batteries that have limited lifetimes. Depending 

on the application, however, rechargeable ones such as solar cells, may be used as well. But the 

vast majority of WSN applications would not have guaranteed exposure to the sun light. 

Therefore, SNs have to make use of the limited energy judiciously so as to maximize their 

lifetime, since in most cases, it would be extremely difficult to replace the batteries physically. 

Thus, besides the use of low power hardware, energy saving schemes must be an integral part of 

the WSN system architecture. We elaborate more on this aspect in the next chapter. 

Another interesting aspect of WSN applications involving the sensing of environmental 

parameters such as temperature, pressure and humidity is the nature of the sensed data itself. 

Most environmental data have been found to vary gradually and continuously over space and 
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time. This phenomenon is referred to as the spatial-temporal correlation of the sensed data.  

Specifically, any WSN would have to have a high SN density in order to obtain good coverage of 

the area being sensed. This implies that sensors are likely to be relatively close to each other, 

thereby reporting data values with very high degree of correlation to the sink. This is called 

spatial correlation. The degree of correlation between reported values also depends on the 

proximity of the sensors to each other. 

In a WSN, successive environmental data values reported by the same sensor also tend to exhibit 

a high degree of correlation. This property of the data values is referred to as Temporal 

Correlation, meaning correlation over time and is observed mostly with environmental data like 

temperature, humidity etc. The difference between the maximum and minimum temperatures on 

a typical day is fairly small and as such, the temperature varies between these two extremes 

gradually over a 24 hour period. Hence, each successive temperature value reported by an 

individual sensor is likely to be the same for a number of rounds of reporting, before any 

noticeable difference in values is observed. 

Spatial-Temporal correlation in the sensed data values can be exploited in order to develop WSN 

solutions that not only reduce the volume of network traffic but also result in better power 

efficiency. 

1.4 Overview of the thesis 

In this thesis we have implemented TREG [2], a tree-based aggregation scheme, on wireless 

sensor motes and evaluated its effectiveness using experimental results. TREG builds a 

distributed spanning (aggregation) tree where each tree node performs multivariate polynomial 

regression and instead of raw data, transmits only the coefficients of a polynomial P, reducing 
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the volume of data considerably. We have implemented TREG in TinyOS 2.0 [3]. Since, 

computation requires much lower energy consumption as compared to wireless transmission [4], 

a primary objective of WSN programming is to save energy of each sensor through increased 

computation at the expense of reduced radio communication. In TREG, some of the sensors only 

sense data and report them to their nearest tree nodes. Each of the tree nodes then performs the 

aggregation scheme in a distributed manner, thereby reducing the overall communication 

overhead as compared to a strictly centralized scheme. We have programmed the sensor motes 

[5] which are tree nodes to perform their own polynomial regression in nesC [6], a component-

oriented variant of the C language, used by the TinyOS operating system. One of the main 

challenges in implementing such high level schemes in low level programs is the extremely 

resource constrained hardware of motes. The current generation of sensor mote typically has an 

8-bit micro-controller, few KB of Program ROM and Data RAM respectively. Thus, any scheme 

must not overstretch the limited resources of the mote hardware. Some of the main challenges 

encountered during the course of our implementation are discussed later in this thesis.  

1.5 Thesis Organization 

This thesis is organized in the following manner. In chapter 2, we discuss the need for Data 

aggregation in WSNs and elaborate on different kinds of possible aggregations. We also discuss 

some existing work in the implementation of such schemes on sensor motes. Chapter 3 explains 

the TREG scheme of data aggregation in detail. In Chapter 4, the hardware and software 

environment used for the implementation of TREG are discussed. In Chapter 5, we explain the 

implementation of TREG on the MICAz motes and discuss the challenges faced during the 

course of the implementation. In Chapter 6, we present the results that we have obtained from the 
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experiments performed on the sensor motes. In Chapter 7, we conclude the thesis and discuss 

some of the work that we would like to take up in the future.  
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Chapter 2 

Data Aggregation in Wireless Sensor Networks 

Application of WSNs is being explored in a wide range of sectors. Amongst their most common 

applications is the sensing of some environmental parameter such as temperature, pressure, 

humidity and so on. Typically in such applications, a large number of SNs are strewn over the 

target area, resulting in the SNs being in close proximity to each other. In such deployments, it is 

observed that neighboring SNs report data values with a high degree of correlation. For instance, 

in the case of temperature, most of the time, SNs close to each other tend to report identical 

temperature readings. This is referred to as the spatial correlation of data. The other kind of 

correlation that is observed in sensed environmental data is the temporal correlation of data 

where the successive data values are found to be identical. With respect to WSNs, this implies 

that successive data values reported by the same SN are the same most of the time. This is 

mostly observed in environmental monitoring applications where the sensed parameter varies 

slowly and by a small amount between its minimum and maximum values. 

The spatial and temporal correlations of the WSN data can be exploited favorably for the 

development of efficient communication protocols for the WSN paradigm. Sensor data 

correlations can be used effectively so as to avoid redundant data transmissions. This will also 

lead to the reduction of overall energy consumption in WSN. In-Network Processing or Data 

Aggregation schemes are the most popular ways of using the correlations in sensor data in order 

to develop schemes for WSNs that have significant advantages over traditional ways of data 

transfer in WSNs. 
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2.1 Network Routing Models 

In general WSN routing protocols fall into two main categories [13]: 

a) Address-centric Protocol (AC) 

b) Data-centric Protocol (DC) 

 

(BS) (BS) 

Figure 2.1: AC versus DC routing [13] 

 

2.1.1 Address-centric (AC) Protocols 

In AC protocols [13], the sink initially sends out a query through the network requesting some 

data. The SNs that have the desired data, respond by sending packets containing the same 

towards the BS. Each source sends its data independent of the other sources along the shortest 

path. This is also referred to as end-to-end routing. A sample scenario in a typical AC protocol is  
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illustrated in Figure 2.1 (a). As can be seen from the figure, both Sources 1 and 2 have data to be 

sent to the sink. However, each source sends the data independent of the other, resulting in two 

separate routing paths taken by the respective packets. The packet from Source 1 goes through 

node A while that from Source 2 goes through nodes C and B before reaching the sink. 

2.1.2 Data-centric (DC) Protocols 

In DC protocols [13], as in the case with the AC approach, the sink sends a query requesting 

some data initially and SNs having the same, respond with reply packets that are sent towards the 

sink. However, instead of simply forwarding the packet, the intermediate nodes along the path 

towards the sink access its contents and consolidate the data received from multiple sources.  

Figure 2.1.2 (b) illustrates the DC approach to routing packets in WSNs. The packets from 

Sources 1 and 2 are aggregated at node B and a consolidated packet is sent to the sink. This 

aggregated packet consists of data resulting from the manipulation of the original data received 

from the two sources. It is evident from the figure that using the DC approach results in fewer 

packet transmissions than the AC approach, thereby resulting in significant energy savings in the 

SNs.  

2.2 Data Aggregation 

Data aggregation is a form of in-network processing that reduces the amount of data transferred 

over a WSN by increasing the amount of processing / computation performed in the network by 

the SNs. Simple functions such as MAX, MIN, AVG and so on are computed by the 

intermediate nodes based on the data received. Thus, at each intermediate node, the amount of 

outgoing data is considerably lower than the amount inputted. Several studies have concluded 

11 
 



that the energy consumed in doing computation is significantly lower than that consumed in 

wireless transmission. In [14], the authors state that transmitting 1 Kb of data to a distance of 100 

m consumes the same amount of energy as executing 300 million instructions on a general 

purpose processor with a modest computing device rate of 100 million instructions per second 

(MIPS). Thus, although the computational overhead on the SN itself increases dramatically as a 

result of data aggregation, the amount of data transmitted decreases considerably and 

consequently substantial savings in the energy consumption by the SNs is observed.  

2.3 The need for Data Aggregation 

Typically, WSNs are used to remotely monitor a target area that’s otherwise not easily 

accessible. In such situations, deployment necessitates randomly dropping sensors from low 

flying un-manned aerial vehicles. Thus, in order to cover the entire area uniformly, a large 

number of SNs are deployed. This implies that the SNs are in close proximity to each other. In 

environmental monitoring applications, it is usually observed that the physical parameter sensed 

by sensors close to each other are identical. This property, referred to as spatial correlation, 

results in a high volume of redundant traffic through the network. By reducing the amount of 

redundant data transferred across the WSN towards the sink, we can not only reduce the network 

traffic but also conserve energy of the SNs. This is crucial for the WSN to become a viable 

alternative to the wired ones. Generally, SNs derive their power from on-board non-rechargeable 

batteries and as such, cannot be resurrected once their batteries die out since they are typically 

deployed in inaccessible or hazardous environments. The only alternative then is to replace them 

with other SNs - an expensive exercise. Thus, it is imperative that the SN be operational as long 

as possible. This can be accomplished through the use of energy efficient schemes that maximize 
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WSN lifetime. 

Spatial and Temporal correlations result in the generation of a lot of redundant network traffic, 

carrying identical data. Data aggregation schemes exploit these correlations in the sensed data 

from neighboring nodes and successive data values from the same node respectively in order to 

send only the essential information. At the sink, the original data can be regenerated using the 

received data.  

2.4 Sensor Data Representation Using Regression  

Sensor nodes in the WSN typically generate a large amount of data. Extracting all of this data 

from the network to the BS would incur a lot of communication that drains the limited resources 

available in the sensors. Thus, approaches that reduce network communication, while still 

retaining the structure in the data would substantially extend network lifetime [15].  

Instead of extracting all of the data generated in the WSN, if a model of the data is created and 

only the model coefficients are transmitted, the communication overhead can be significantly 

reduced. Regression is one of the many ways of modeling sensor data. In regression, a sensor 

typically measures a physical attribute (which can be considered a function of time) fሺtሻ. Thus, it 

collects a set of data values  fሺtଵሻ, … , fሺt୫ሻ at times t1, ..., tm. Suppose, we now have a set of ‘k’ 

basis functions H = (h1, h2,…, hk) and would like to fit these ‘k’ functions to the sensed data 

values. We thus have the following: 

መ݂ሺݐሻ ൌ  ∑ ሻ௜ݐ௜݄௜ሺݓ  ൎ ݂ሺݐሻ  

where መ݂ሺݐሻ is an approximation of  ݂ሺݐሻ and ݓ ൌ ሺݓଵ, … ,  ௞ሻ are the coefficients of the basisݓ

functions. 
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If the number of coefficients is far smaller than the number of sensed data values i.e. (k « m) 

then the coefficient vector becomes a compressed representation of the sensed values [15]. Then, 

rather than sending the data values explicitly, we could instead send the coefficients and thereby 

reduce the amount of data that is to be transmitted across the network.   

2.5 Related Work 

Although several schemes for programming and data aggregation in WSNs have been proposed 

in literature, few actually provide experimental validation and performance evaluation. 

In the work proposed by Welsh et al. [16], WSNs are programmed using abstract regions – “a 

family of spatial operators that capture local communication within regions of the network which 

may be defined in terms of radio connectivity, geographic location, or other properties of nodes.” 

Abstract Regions provide a programming model that supports various operators that allow nodes 

to query the state of neighboring nodes and perform efficient aggregation, compression and 

summarization of local data. Our work, instead, focuses on programming sensor nodes for 

aggregating spatially correlated attribute values. We assume that underlying mechanisms are 

present that create a Query Tree (QT) of nodes that perform in-network processing of data [2]. 

Each node in the QT performs polynomial regression based on its own reported readings and the 

coefficients obtained from its children.  

iHEED [17] integrates node clustering with tree based aggregation and routing. Cluster heads 

(CHs) form an overlay network for data forwarding while other nodes only report data to the 

cluster heads. However, periodic re-clustering of the network is performed to select nodes with 

higher residual energy. This incurs significant overhead in cluster maintenance and routing. 

Simple operators such as AVG, MAX, SUM and COUNT are considered to study the impact of 
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data aggregation in conjunction with the node clustering in increasing the network lifetime. 

However, such a process of data aggregation fails to retain the inherent property of sensor data 

such as spatial-temporal correlations present in environmental and climactic data. Using TREG, 

we have implemented a data compression method with sensor motes without significant loss of 

accuracy. It can be integrated with any existing tree based query processing scheme for WSNs. 

 Distributed Kernel Regression [15] uses a kernel function to fit temporally correlated sensor 

measurements at different time intervals. Since the readings are also spatially correlated, a node 

also approximates its readings with that of its neighbors. But, to accomplish this, every pair of 

neighboring nodes needs to exchange messages which can involve substantial communication 

overhead. On the other hand, each tree node in TREG only sends a constant number of 

coefficients to their parent. In this way, the root in our scheme has a final set of coefficients and 

the information about the entire approximated region. Thus, the message overhead involved 

when packet exchange occurs on the motes based on TREG is significantly lower. 
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Chapter 3 

Tree Based Polynomial Regression to Represent Sensor Data 

3.1 Introduction 

In this chapter, we discuss the Tree Based Polynomial Regression (TREG) [2] scheme that has 

been implemented on the wireless sensor motes and evaluated in this dissertation. The TREG 

scheme is a way of representing the sensor data in transit across the WSN towards the sink so as 

to reduce the amount of data transferred. In doing so, many significant advantages over the 

simple multi-hop data forwarding scheme are also realized, making it an attractive alternative to 

the same. We elaborate on these issues later in this chapter. 

3.2 The TREG scheme 

Sensed parameters which are typically physical attributes, exhibit a gradual and continuous 

variation over 2D Euclidean space [2]. In the real world, it is observed that physical attribute 

values and location are highly correlated and therefore sensors in close proximity [18], sensing 

physical attributes too exhibit similar property. The correlation in the sensed data is exploited by 

the TREG to aggregate the attribute values obtained from ‘nearby’ sensors. As a result, the 

underlying redundancy in the sensor data values reported by multiple sensors close to each other 

is eliminated thereby reducing the number and / or the size of the packet transmissions in the 

network. This leads to significant savings in the energy consumption by the sensor motes and 

consequently increased mote lifetimes. 

The TREG data representation scheme begins with the creation of multiple attribute-based trees  
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[2] also referred to as query trees or QTs over the WSN. The creation of binary trees leaves the 

WSN with two types of sensor nodes with specific roles, as follows: 

a) Sensing Nodes 

The sensing or non-tree nodes essentially sense the physical attribute and report the value to the 

nearest tree node. These nodes do not perform any computation. The data may be transmitted to 

the tree nodes in a multi-hop fashion, following the shortest path.  

b) Tree Nodes 

The tree nodes do not sense any data and are used for storage and performing the regression 

computation. Every tree node has a number of non-tree sensing nodes reporting to it. Once it 

receives data from each of the non-tree nodes, the tree node performs multi-variate polynomial 

regression to calculate the regression coefficients. 

Once the tree construction phase is over, the non-tree sensing nodes periodically sense attribute 

values and report the same to the nearest tree nodes. Each tree node waits to hear from all of the 

nodes reporting to it and then performs the polynomial regression operation to compute the 

regression coefficients that are passed on to the parent node in the tree instead of the actual 

attribute values reported by sensing nodes. The tree nodes at next higher level combine the 

coefficients obtained from their children tree nodes as well as the attribute values received from 

the sensing nodes reporting to it for computing their own set of regression coefficients.  This 

process is repeated at each tree node and stops at the root of the QT. The root has a final set of 

coefficients that approximates the entire region. The root responds to any query received for 

attribute value at any point in the approximated region using the final set of coefficients 

computed. 
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3.3 Background 

This section gives an overview of our network model. For completeness of the text a description 

of the aggregation tree used in the TREG scheme [2] and a background of the polynomial 

function is provided.  

3.3.1 The TREG Network Model 

A data aggregation tree (also called Query Tree or QT) is constructed over the WSN [2]. Let 

there be n nodes in the network. The QT consists of t nodes called tree nodes. The other nodes 

are referred to as non-tree (NT) nodes. Each NT node senses its environmental parameter(s) and 

reports it to its nearest tree node. The QT is well spread over the entire WSN so that t tree nodes 

are uniformly distributed over the network. This ensures that the attribute readings sent by NT 

nodes to the upward tree node incur a smaller hop count, thereby indirectly increasing the overall 

lifetime of the NT nodes. Recall that NT nodes only sense attributes while the QT is for storage 

only. The tree nodes solely perform data aggregation and do not do any sensing of data. 

Figure 3.1: Network Model of a Query Tree (QT) 
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3.3.2 Polynomial Function 

A QT is constructed over the network for data aggregation. The QT is denoted by the graph 

ொ்ܩ  ൌ  ሺ ொ்ܸ,  ொ் is the set of edges joining the treeܧ ொ்ሻ where ொ்ܸ is the set of tree nodes andܧ

nodes. Each NT node periodically senses data and reports its reading to its nearest tree node. 

Since, attribute (say z) in a spatially correlated region is a function of sensor location denoted by 

the ሺݔ, ൌ ݖ ,.ሻ coordinates, z is dependent on both the independent variables x and y, i.eݕ

 ݂ሺݔ, ଵݖ ,ሻ. Thusݕ ൌ  ቀ൫ ଵ݂ሺݔଵ, ,ଵሻ൯ݕ ,ଵݔ  ଵ is the attributeݖ ଵቁ is one such attribute tuple whereݕ

value sensed by a node at location ሺݔଵ,  ଵሻ. Node i of a QT creates a function approximationݕ

௜݂ሺݔ௜,  ௜ሻ from the data reported to it by its nearest NT nodes. Each tree node then performsݕ

polynomial regression of the dataset ൫ݔ, ,ݕ ݂ሺݔ,  ሻ൯(constructed from multiple such NT nodesݕ

reporting to it).  

The polynomial function (i.e., P) has the following general form: 

ܲ ൌ ݂ሺ݈ܿ݋ଵ, ,ଶܿ݋݈ … , ௡௦ሻܿ݋݈ ൌ ଴ߚ  ൅  ෍ ௞ܿ݋௞݈ߚ

௠

௞ୀଵ

 

where, β0, β1… βk are the coefficients of the polynomial of degree m and ݂ሺ݈ܿ݋ଵ, ,ଶܿ݋݈ … ,  ௡௦ሻܿ݋݈

gives the set of attributes sensed at locations loc1 = (X1, Y1),…,locns = (Xns, Yns) (where ns is the 

number of NT nodes reporting to each tree node) and ns >> m.  

Each child node sends two components to its parent: the information of polynomial (P), and the 

corresponding approximated area information as {Xmin, Ymin, Xmax, Ymax} shown in Fig. 3.1. In 

order to specify the area represented by a polynomial, we use these four parameters Xmin, Ymin, 

Xmax, and Ymax to represent a rectangular area as denoted by the rectangle in Fig. 3.1. The four 
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parameters denote the four extreme ends of the two-dimensional area, spanning all the NT nodes 

reporting to one of the tree nodes. Of all these NT nodes, the node having minimum x-coordinate 

defines xmin and the one with maximum x-coordinate defines xmax and similarly for ymin and ymax. 

Parent nodes at each level regenerate values of the sensed attribute by using the received P and 

the range. These data values are then combined with a node’s own reported readings to calculate 

the new set of coefficients that will be passed to the next higher level. Thus, nodes at each level 

use P (obtained from their children) to improve the approximation function, f(x,y) and this 

procedure continues till the root is reached. After the data aggregation process is complete, the 

root has the final polynomial, P, approximating the data sensed over the entire network region, 

with a percentage error less than 6% [2]. Again, by sending only coefficients and the area 

approximated, the software simulation shows a Compression Ratio of 0.5 [2], over the case of 

each tree node simply transmitting Tns packets. Apart from achieving high accuracy and 

Compression Ratio, it is possible to know the attribute value at any location in the aggregated 

network, even if there may not be any sensor at that location thereby proving the usefulness of 

the scheme even in a sparse network. 

Let us consider an example where approximately 22 sensors report data to its tree node, i.e., ns = 

22. We consider the case of quadratic polynomial, i.e., m = 2. The previous work [2] shows that 

these coefficients of a polynomial of degree 2 can accurately capture the raw data from up to 40 

sensors. With drastic increase in ns, m can be increased, still saving a lot of data from being 

transmitted. Let tree node B in Fig. 3.1 receive the sensed data, (Xi, Yi, f(Xi, Yi)) from each of its 

neighboring NT node, i (denoted by the squares in Fig. 3.1). B performs regression on this data-

set and creates polynomial with coefficients (β0, β1…β8). It also computes the four parameters 

Xmin, Ymin, Xmax, and Ymax, i.e. the rectangular sensed area that is approximated by this polynomial. 
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It then sends the coefficients and the four parameters to its parent node A. A regenerates random 

locations (x,y) using the four parameters and generates the corresponding f(x,y) using B’s 

coefficients. It then appends this dataset of the form (x,y,f(x,y)) to the dataset it forms from the 

readings sent by its neighboring non-tree nodes. A performs polynomial regression on this 

combined data-set to generate a new set of coefficients. It then computes the four parameters 

from the x-y locations of non-tree nodes reporting to it. It combines this area with the area 

approximated by B, creating a new set of Xmin, Ymin, Xmax, and Ymax. Then A sends its calculated 

(β0, β1,… β8) and Xmin, Ymin, Xmax, and Ymax to its parent. This process continues until the root 

computes the final polynomial. Using this polynomial, the root can get the attribute value at any 

point in the region spanned by the tree, as long as the location information is known to the root. 

These values can be obtained by choosing suitable x and y coordinates and substituting them 

back in P.   

Reporting data through the aggregation process should be much more efficient in terms of the 

bandwidth and the latency, than sending individual data bits corresponding to a specific 

geographical co-ordinate.  

3.4  TREG Advantages 

TREG is a sensor data representation scheme for WSNs that builds multiple attribute-based trees 

using multi-variate polynomial regression and function approximation to eliminate redundant 

data transmissions. Every tree node only sends the regression coefficients and the boundary of 

the region approximated by it to its parent. Thus, the size of the packet that the tree node sends is 

always fixed, irrespective of the number of input data. Also, queries regarding the attribute value 

at any point in the approximated region (even those areas devoid of sensor nodes) can be replied 
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by the root itself, using the final set of computed coefficients and the coordinate values, instead 

of having to flood the entire region with a query packet. The scheme is scalable since the size of 

the data is constant and accuracy increases with increasing density. In summary, the primary 

advantages of this scheme are as follows: 

• Attribute value can be obtained even in regions devoid of sensor nodes with a fair degree of 

accuracy. 

• Value at any part of the approximated region can be obtained simply by querying the root node 

instead of flooding the regions, thereby reducing the number of packet transmission leading to 

significant savings in mote’s energy consumption and increased lifetime of the WSN. 

• Packet size transmitted by any tree node is fixed making the scheme extremely scalable. 

In the following section, we summarize an earlier work [2], involving the software simulation of 

the TREG scheme. 

3.5 Software Simulation Results 

Below is a summary of the results that have been presented in [2]: 

• A steady fall in the mean error and percentage error for synthetic data is observed as the depth 

of the query tree increases is observed. 

• The percentage error varies up to a maximum value of 5.64 for a tree depth of 4. 

 • The authors present the percentage error for a total of 381 readings in the form of a graph that 

shows the number of readings falling in various error levels. This error distribution is found to be 

of a steadily decreasing nature. 
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• For a tree of depth 4, a majority of the error values fall in the range 0.0 % to 1.68 %.and the 

maximum error 5.64% is observed. 

• The compression ratio, as defined by the authors, is about 0.02. The authors further suggest that 

the decreasing nature of the ratio with increase in the tree depth is due to further reduction in the 

output data at greater depths. 

• For different depths of the QT, the size of the data packet transmitted by the root to the sink is 

constant when data compression is performed by all the nodes of the QT. The data packet size is 

independent of the number of nodes in the approximated region. 
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Chapter 4 

Mote Programming 

This chapter describes the hardware and software environment used for the implementation of 

TREG. We also discuss some of the challenges faced in working with such an environment. 

4.1 Mote Hardware 

 

Figure 4.1: MPR2400 (MICAz) block diagram and Photo with standard antenna. [19] 

4.1.1 The MICAz Sensor Mote 

In our deployments, we have used UC Berkeley motes as sensor nodes. Specifically, we have 

made use of the crossbow MICAz mote (Fig. 4.1), which has a 2.4GHz, IEEE 802.15.4 (ZigBee) 

compliant radio [5]. Like the other members of the MICA family, the MICAz has an 8 bit Atmel 
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ATmega 128L (~8 MHz) processor. It has 128 KB program memory, 4 KB data memory and 

512 KB non-volatile memory. The radio is a Chipcon CC2420 wideband transceiver employing 

OQPSK (“offset quadrature phase shift keying”) with half sine pulse shaping [19]. The 802.15.4 

radio includes a DSSS (digital direct sequence spread spectrum) baseband modem providing a 

spreading gain of 9 dB [19], an effective data rate up to 250 Kbps [19] and AES-128 based 

hardware security. The RF transmission power is programmable from 0 dBm (1 mW) to –25dBm 

[19]. Lower transmission power reduces interference and decreases the radio power consumption 

from 17.5 mA at the full power to 8.5 mA at the lowest power. The radio transmission range 

varies from 75m to 100m outdoors and 20m to 30m indoors [5]. A pair of AA batteries and a DC 

boost converter provide a stable voltage source, though other renewable energy sources can be 

used as well. 

The MICAz mote also comes with a 51-pin expansion connector that can connect to various 

sensor boards, containing temperature and photo sensors, sensors to measure humidity and 

pressure, along with accelerometers, magnetometers and microphones. Table 4.1 provides a 

summary of the essential specifications supplied by crossbow in the MICAz data sheet. 

4.1.2 MIB510 Serial Interface Board 

The MIB510 [19] (Fig. 4.2) is a multi-purpose interface board that is used with the MICA family 

of sensor motes. It provides an interface for a RS-232 Mote serial port that is used to program the 

MICAz. It can also be used to supply power to the devices through an external power adapter 

option. The MIB510 has an on-board in-system processor (ISP)—an Atmega16L located at 

U14—that is used to program the Motes. Fig. 4.2 shows the top view of the MIB510CA series of 

mote interface boards and identifies the main components. 
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Table 4.1: Summary of the MPR2400 (MICAz) Specifications [5] 

Processor/Radio Board    MPR2400CA  Remarks 

Processor Performance        

Program Flash Memory   128K bytes     

Measurement (Serial) Flash   512K bytes   > 100,000 Measurements  

Configuration EEPROM   4K bytes     

Serial Communications   UART   0‐3V transmission levels  

Analog to Digital Converter   10 bit ADC   8 channel, 0‐3V input  

Other Interfaces   Digital I/O,I2C,SPI     

Current Draw   8 mA   Active mode  

   < 15 µA   Sleep mode  

Electromechanical        

Battery   2X AA batteries   Attached pack  

External Power   2.7 V ‐ 3.3 V   Molex connector provided  

User Interface   3 LEDs   Red, green and yellow  

Size (in)   2.25 x 1.25 x 0.25   Excluding battery pack 

 (mm)   58 x 32 x 7   Excluding battery pack  

Weight (oz)   0.7  Excluding batteries 

 (grams)   18  Excluding batteries  

Expansion Connector   51‐pin   All major I/O signals  

RF Transceiver        

Frequency band1   2400 MHz to 2483.5 MHz  
ISM band, programmable in 1 
MHz steps  

Transmit (TX) data rate   250 kbps     

RF power   ‐24 dBm to 0 dBm     

Receive Sensitivity   ‐90 dBm (min), ‐94 dBm (typ)     

Adjacent channel rejection   47 dB   + 5 MHz channel spacing  

   38 dB   ‐ 5 MHz channel spacing  

Outdoor Range   75 m to 100 m   1/2 wave dipole antenna, LOS 

Indoor Range   20 m to 30 m   1/2 wave dipole antenna  

Current Draw   19.7 mA   Receive mode  

   11 mA   TX, ‐10 dBm  

   14 mA   TX, ‐5 dBm  

   17.4 mA   TX, 0 dBm  

   20 µA   Idle mode, voltage regular on  
Sleep mode, voltage regulator 
off  

   1 µA  

26 
 



 

Figure 4.2: MIB510CA board. [19] 

The Code is downloaded to the ISP through the RS-232 serial port, which then programs the 

code into the mote. The ISP and Mote share the same serial port. The ISP runs at a fixed baud 

rate of 115.2 kbaud [19]. The ISP continually monitors incoming serial packets for a special 

multi-byte pattern. Once this pattern is detected, it disables the Mote’s serial RX and TX, and 

then takes control of the serial port. 

The ISP processor is connected to two LEDs, a green LED labeled “SP PWR” (at D3) [19] and a 

red LED labeled “ISP” (at D5) [19]. The SP PWR (green) is used to indicate the power state of 

the MIB510 [19]. If the ISP (red) LED is on, the MIB510 has control of the serial port [19]. It 

also blinks once when the RESET (SW1) button is pushed and released. 

 
4.2 Mote Software 

The MICAz motes used in the experiments are powered by TinyOS [3], an open source operating 

system designed specifically for resource constrained WSNs. TinyOS is a component based, 

event driven OS written in nesC. Its various system components provide services such as basic 
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communication, power management, task scheduling, clock and timers, I/O and on-board 

EEPROM access to user applications. TinyOS does not have any blocking operations. 

Operations with long latency are split-phase, i.e., operation request and completion are distinct. 

Command completion is signaled using events. The following is a summary of the essential 

features of TinyOS: 

• It has a very small footprint (just 400bytes). This is crucial since on-board memory 

available in the motes is typically just a few kilo bytes. 

• TinyOS supports an event-driven architecture – the lower layer sends events to the higher 

layer. Thus there is very low overhead due to the absence of busy-wait cycles 

• There is no kernel or process management in TinyOS. Virtual memory (VM) is another 

important OS concept that has been left out of current implementations, though few 

projects are trying to implement a mechanism for VM. 

• It follows a component based model. System consists of components of an application 

and TinyOS base components. Components consist of Commands, Events, and Tasks. 

• Commands are requests for actions from lower level components. Events are generated 

due to some hardware interrupt and provide a means for lower components to signal 

higher level ones. Tasks are operations that may take several clock cycles to complete. 

Once invoked, they run to completion and cannot be preempted by other tasks or 

interrupts. The Task scheduling follows a FIFO sequence. 

• All memory is statically allocated to the program at compile time itself. This is critical to 

ensure that the program memory requirement does not exceed the available system 

memory. 
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We program the motes using the nesC language. nesC is an extension to the C language that 

supports the structure and event based concurrency model of TinyOS. The nesC compiler 

combines components from the TinyOS system libraries and user applications into a single 

executable file that runs on the mote hardware. 

4.3 Challenges 

Although TREG is based on a very simple concept of polynomial regression, its implementation 

posed many challenges due to an extreme resource limitation of the mote platform. A 

comparison between a typical present day desktop personal computer and the MICAz sensor 

mote reveals how constrained, the resources on the mote platform are as compared to a PC. A 

typical modern day PC consists of a dual-core 64 bit processor with speeds in the range of 2.0 – 

3.0 GHz, few Gigabytes (8.0 GB MAX) of RAM and several Gigabytes (~250 GB) of secondary 

storage. On the other hand, the current generation of sensor mote typically has an 8-bit micro-

controller, few kilobytes of Program ROM (~128 Kb) and Data RAM (~4 Kb) respectively. This 

leads to many practical difficulties when working with sensor motes. We enlist some of the 

major problems that we faced in our work using the wireless sensor motes’ hardware and 

software platform. 

Firstly, the TREG algorithm involves a number of successive Matrix Operations (some involving 

floating point operations) and a final Gaussian Elimination step to compute the set of 

coefficients. Since floating-point operations are not supported by the 8 bit Atmel processor, they 

have to be done entirely in software. This definitely impacted the performance since such 

operations have been shown to be faster in the hardware than in the software. As the mote 

hardware becomes more powerful day by day, we expect them to support floating point opera- 
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tions sometime in the near future. 

Secondly, the TREG implementation requires the existence of an aggregation tree in which 

nodes periodically compute a set of coefficients, based on data received from their children and 

pass them on to their parent which repeats the process. This means that the parent-child links 

thus established, must be fairly stable to ensure that successive packets from a given child are 

passed to the same parent most of the time. TinyOS 1.x does not have any explicit tree based 

routing support though it does support a multi-hop routing engine to forward packets from leaf 

nodes to the sink. In multi-hop routing, packets from source to the same destination may travel 

along different routes during any given session. This renders such a scheme ineffective for our 

purpose. On the other hand, TinyOS 2.x implements a default tree routing algorithm using the 

collection component to build collection trees. The collection component of TinyOS 2.x provides 

interfaces that enable an intermediate node to intercept a packet that it is supposed to forward 

and process the contents. For our work, we have assumed a two phase operation where sensing 

nodes first discover the closest tree nodes to forward data packets. Also, the aggregating nodes 

organize themselves into a tree rooted at a node attached to the workstation acting as the BS. 

Thirdly, TinyOS does not support dynamic memory allocation. This means that all data 

structures need to be allocated a fixed amount of memory beforehand. The allocated size should 

be such that the performance of the algorithm remains satisfactory, yet at the same time not to 

exceed the 4 KB data memory available to the application. For our experiments, we required 2-D 

arrays to be defined to represent matrices. The maximum dimensions of any matrix that we used 

are (12x4) where 12 is the number of samples and 4 is the number of coefficients computed by 

TREG. Our attempt at implementing a quadratic polynomial with 9 coefficients failed since the 

program data memory exceeded currently available data memory (4KB) on the MICAz motes. 
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Since TinyOS currently does not support any form of virtual memory, it is impossible to make 

use of the on-board flash memory for storing the program data not fitting in the RAM. 

Finally, no drivers are currently available in TinyOS 2.x for the MTS/MDA series of sensor 

boards from crossbow. Because of this reason, we have been unable to physically record 

temperature data. Instead, we have programmed the sensor motes with carefully selected data set 

that adheres to the spatial correlation requirement. Since the focus of our study is on the 

computation rather the nature of the sensed data itself, we feel that this would have no bearing on 

the outcome of our scheme. The study of the effectiveness of the algorithm viz. time correlation 

among the data samples has been left as future work since that would be impossible without the 

availability of sensor board drivers. It may be noted that only minor changes, involving the 

inclusion of the Read interface and wiring it up to the corresponding interface provided by a 

system component that gets the thermistor readings, would be necessary. Also, since the values 

returned by the ADC are 16 bit integers, an appropriate conversion routine such as crossbow’s 

“xconvert.c” will be required to convert the values returned by the ADC into floating point 

temperature values. 
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Chapter 5 

TREG Scheme Implementation 

In this chapter, we discuss a detailed the implementation of the TREG algorithm on the MICAz 

sensor motes using the TinyOS / nesC programming environment. We start with a mathematical 

discussion of the TREG algorithm provided in [2] and then proceed to describe the nesC 

implementation. 

5.1 Mathematical Model [2] 

Each tree node stores the attribute value sent by each of the nearest NT sensor nodes. It may be 

recalled that the NT nodes only sense attributes while the QT is for storage only. Since the 

measured attribute varies with respect to the space in a continuous manner, the values stored at 

the tree node can be considered as function values having two inputs, x and y. Since attribute 

(say z) in a spatially correlated region, is a function of sensor location which can be denoted by 

the (x, y) co-ordinates, therefore z is dependent on both the independent variables, x and y, i.e., z 

= f(x, y). Thus, ݖଵ ൌ ሺሺ ଵ݂ሺݔଵ, ,ଵሻݕ ,ଵݔ  ଵሻ is one such attribute tuple where z1 is the attribute valueݕ

sensed by a node at location (x1, y1). Node ‘i' of the QT creates a function approximation fi(x, y) 

from the data reported to it by its nearest NT nodes.  

A polynomial equation is generated with three input variables (z = f(x, y), x, y) for all the data 

points in one particular node of QT using multivariate polynomial regression [20]. A general 

multi-linear regression model is as follows [20]: 

ݖ ൌ ݂ሺݔଵ, ,ଶݔ ڮ , ௠ሻݔ ൌ  ܽ଴ ൅ ∑ ܽ௞ݔ௞
௠
௞ୀଵ  ,    (5.1)    
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where x1, x2,…, xm are the independent variables called predictors of the model and z is the 

dependent variable. The observations are sampled periodically and the observed values of the 

variable ‘z’ are used at the particular levels of xk to estimate ‘a’. ‘z’ is the n-element vector of 

observed values and ‘a’ is the (m+1)×1 vector estimate of ‘a’. 

Applying least-square criterion, it is necessary to minimize the squared error, i.e. 

ሺܽሻܨ ൌ ሺܺܽ െ .ሻ்ݖ ሺܺܽ െ  ሻ       (5.2)ݖ

where 

X ൌ  ൮

1 xଵଵ xଶଵ ڮ x୫ଵ
1 xଵଶ xଶଶ ڮ x୫ଶ

ڭ ڭ
xଵ୬

ڭ
xଶ୬

ڰ
ڮ

ڭ
x୫୬

൲     (5.3) 
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ڭ
ڭ

ݖ
ቍ .  (5.4)       , ܭ

௡

and,   ܽ ൌ  ቌ

ܽଵ
ڭ
ڭ

ܽ௠

ቍ .  (5.5)       . ܭ

For minimization, partial differentiation of F(a) with respect to ‘a’ must be equated to zero. 

that is, ׏௔. ሺܽሻܨ ൌ .௔׏  ሺܺܽ െ .ሻ்ݖ ሺܺܽ െ ሻݖ ൌ 0 . 

Again, 

ሺܺܽ െ .ሻ்ݖ ሺܺܽ െ ሻݖ ൌ  ሺ׏௔. ሺܺܽ െ .ሻ்ሻݖ ሺܺܽ െ ሻݖ ൅ ሺ׏௔. ሺܺܽ െ .ሻ்ሻݖ ሺܺܽ െ  , ሻݖ

ൌ 2்ܺሺܺܽ െ  . ሻݖ
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ൌ 2்ܺܺܽ െ ݖ2்ܺ ൌ 0 

Thus, the normal equation obtained is as: 

்ܺܺܽ ൌ  (5.6)       . ݖ்ܺ 

The system has a solution if XTX is not singular, i.e. it has an inverse. Therefore, multiplying 

both sides of Equation (5.6) by (XTX)-1, we get ܽ ൌ  ሺ்ܺܺሻିଵ. .where ሺ்ܺܺሻିଵ ,ݖ்ܺ ்ܺ is 

called the (Moore–Penrose) pseudo-inverse of the matrix X and is a generalization of the inverse 

X-1.  

Using polynomial regression of this model, we get the following equations analogous to 

Equations (5.3) – (5.5). Here, ‘x’ and ‘y’ are the independent variables. 
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൲ .  (5.7) 

For estimating β, a unique inverse of X should exist, i.e., XTX must be of full rank (m+1) [23], 

given that β is a (m+1) × 1 vector. In other words, n » (m + 1) and no column of X can be 

expressed as weighted linear combination of any set of other columns are necessary conditions.  

Here, ‘n’ is the number sensor locations whose readings are fitted to a polynomial. For each tree 

node performing regression, n = ns: 

݂ሺݔ, ሻݕ ൌ ଴ߚ   ൅ ଶݕଶߚ ൅ ݕଵߚ   ൅ ݔଷߚ  ൅ ߚସݕݔ ൅ ߚହݕݔଶ ൅ ଶݔ଺ߚ  ൅ ݕଶݔ଻ߚ  ൅  ଶ .      (5.8)ݕଶݔ଼ߚ 

Equation (5.8) can also be written as  

݂ሺݔ, ሻݕ ൌ  ∑ ௜ߚ
௜ୀ଼,௝ୀଽ
௜ୀ଴,௝ୀଵ .  ௝ ,     (5.9)׎
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where ׎ଵ ൌ 1, ڮ , ଽ׎ ൌ .ଶݔ   . ଶݕ

Again, each tree node creates the matrix, Am (from the readings reported by the ‘n’ NT nodes) 

for calculating the polynomial. Am is a square matrix of size 9×9. 

The (i-j)th element of 

௠ܣ ൌ  ∑ ,௟ݔ௜ሺ׎ .௟ሻݕ ,௟ݔ௝ሺ׎ ௟ሻ௡ೞݕ
௟ୀଵ  ,     (5.10) 

where i = j . 

At any instant, each tree node has the tuples, ሺݔଵ, ,ଵݕ ଵሻݖ … ሺݔ௡ೞ, ,௡ೞݕ  ௡ೞሻ corresponding to theݖ

‘ns’ sensing nodes. Each tree node creates the matrix F with these tuples. F is a matrix of size, 

9×9 where the ith element, 

௜ܨ ൌ  ∑ .௟ݖ ,௟ݔ௜ሺ׎ ௟ሻ௡ೞݕ
௟ୀଵ , where ׎ଵ ൌ 1, … , ଽ׎ ൌ .ଶݔ   ଶ   (5.11)ݕ

At each tree node, ߚ଴, ,ଵߚ … ,  :are calculated from Equation (11) ଼ߚ

ߚ ൌ ௠ܣ 
ିଵ  ൈ  (5.12)        ܨ

Equations (5.7), (5.10)–(5.12) together constitute the method of Gaussian elimination [21] for 

solving equation and computing inverse of a matrix. We explain the Gaussian elimination 

method of solving a system of linear equations in the next section. 

When ‘ߚ’, obtained from Equation (5.12), is used with a given location (x, y), we solve z = f(x, 

y) to retrieve the attribute value at a node location (x, y). f(x, y) is the final function available at 

the root of the QT. 

Each tree node uses Equation (5.12) to generate the coefficients and sends this set to its parent.  
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Nodes at each level regenerate values of the sensed attribute by using these coefficients obtained 

from their children. These data values are then combined with a node’s own reported readings to 

calculate the new set of coefficients that will be passed to the next higher level. 

5.2 Gaussian Elimination Step in Polynomial Regression 

In linear algebra, the Gaussian elimination is an algorithm for determining the solutions of a 

system of linear equations [22]. It consists of two parts, (a) forward elimination and (b) 

backward elimination. 

(a) Forward Elimination (FE): reduces a given system to either triangular or echelon form. If 

the result of FE is a degenerate equation with no solution, then the system has no 

solution. 

(b) Backward Elimination (BE): uses back-substitution to find the solution of the linear 

system. 

Example: Consider the following system of equations [22] 

   . 

In Matrix form we can write the above system as follows: 

  , 

Step 1: Eliminate ݔଵ in the lines ܮଶ and ܮଷ: 
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  , 

Step 2: Eliminate ݔଶ in lineܮଷ: 

  , 

Step 3: By BE we solve the linear system to get the solution vector ݔ: 

  . 

Gaussian elimination on an n × n matrix requires approximately 2n3 / 3 operations. 

5.3 nesC Regression Algorithm 

Our implementation divides the sensor network into two types of nodes namely Sensing nodes 

and TREG nodes. The Sensing nodes periodically sample ADC readings and pass them to their 

closest tree (TREG) node. The TREG nodes are for storage only and perform the polynomial 

regression over the region approximated by them. 

Each of the sensing nodes runs the “SensorTregAppC.nc” application to periodically send its X 

and Y coordinates and a floating point value from a carefully chosen temperature data set that 

satisfies the spatial correlation requirement. As and when drivers for the MDA 300 sensorboard 

become available, the motes can be programmed to sample the ADC thermister reading and send 

it to the closest tree (TREG) node. Each of the tree nodes runs the “TregAppC.nc” application  
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which implements the TREG polynomial regression algorithm. 

In our implementation, we assume that the tree nodes can have both sensing nodes as well as 

children tree (TREG) nodes. The basic program logic flow is as follows: 

1. Each tree node waits until it hears from either one of the sensing nodes or its children nodes.  

2. Upon receiving such a packet, it starts a one-shot timer for 30 – 45 seconds to allow all the 

nodes reporting to it to send their packets. It also maintains a counter to count the number of 

packets received from the sensing nodes (spktcount) and the tree nodes (tpktcount) respectively. 

The counter is incremented each time a packet is received successfully.  

3. As soon as the timer fires, the node checks the “tpktcount” variable to see if any TREG 

packets have been received. If no TREG packets have been received, then it proceeds to compute 

coefficients directly by posting the “computeCoefficientsTask()”. 

Table 5.1: computeCoefficientsTask() 

scount ← Number of Sensor Packets received. 

XTX ← Product Matrix of XT and X 

XTZ ← Product Matrix of XT and Z 

01:   computeCoefficientsTask() { 

02: MatrixInit(XTX); //Initialize the matrix XTX[4][4] to 0.0   

03: MatrixInit(XTZ);  //Initialize the matrix XTZ[4][1] to 0.0   

04: TransposeCalc(X, XT, scount);  //Compute the Transpose XT of X 

05: Matrix_Mult(XT, X, XTX, 4, scount); //Compute the product of XT & X 

06: Matrix_Mult(XT, Z, XTZ, 1, scount); //Compute the product of XT & Z 

07: Gaussian (4, XTX, XTZ, B); //Compute the Beta Vector using Gaussian Elimination. 

08:   } 
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The pseudo code for the “computeCoefficientsTask()” reveals a sequence of Matrix operations 

and a final Gaussian Elimination step to compute the coefficients. The Matrix X is an (n x 4) 

matrix, each of whose rows has the elements 1, x, y and (x.y). Matrix Z is an (n x 1) matrix 

comprising of attribute values corresponding to the x, y values of Matrix X. ‘n' is the number of 

samples that are available for the computation. In our experiments, we have taken n = 20. We 

first find the Transpose XT of matrix X followed by the matrix products XTX and XTZ. XTX has 

dimensions (4x4) while XTZ is a (4x1) matrix. The two matrices thus obtained are input to the 

Gaussian Elimination Step (Gaussian) which outputs the Beta vector of coefficients. The generic 

Gaussian Elimination algorithm is of the order of O(n3). However, since the TREG algorithm 

inputs matrices with ‘n’ at most equal to 9, this should not be a problem. In our experiments we 

have set n = 4 as described above. 

Each TREG node then passes to its parent, this beta vector of coefficients along with the (xmin, 

ymin) and (xmax, ymax) values taken over all the sensing nodes in the sub-tree under the current 

parent that collects reports from tree nodes. 

However, if any TREG packet have been received (tpktcount > 0) then the 

“regenerateAttributeValuesTask()” is first posted to regenerate attribute values for each TREG 

packet received based on the (xmin, ymin), (xmax, ymax) and the Beta vector of coefficients. The 

pseudo code for the “regenerateAttributeValuesTask()” is shown in Fig. 5.4.  We define N as the 

number of values to be regenerated for each received TREG packet. It is obtained by dividing the 

difference of 20 and spktcount by tpktcount (line 06). 

Table 5.2: regenerateAttributeValuesTask() 

01:  20<- max no. of rows of matrix X  

02:  spktcount <- No. of SensorPkts received 
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03:  tpktcount <- No. of TregPkts received 

04:  N <- No. of values to be regenerated for each received TregPkt 

05:   

06:  N = (int)((20 - spktcount) / tpktcount); 

07:  regenerateAttributeValuesTask()  { 

08:     Repeat for each received TregPkt { 

09:       tempX = xmin_coord; 

10:       tempY = ymin_coord; 

11: xinc = (int)(( xmax_coord - xmin_coord) / N);  //Compute the X coordinate increment 

12:      yinc = (int)((ymax_coord - ymin_coord) / N);    //Compute the Y coordinate increment 

13:      rcount = 1; //Initialize the regeneration counter. 

14:      Repeat { 

15:       //Create a new SensorPkt record  

16:       //Append it to the existing list of SensorPkt records 

17:         newsensorpkt.x_coord = tempX; 

18:         newsensorpkt.y_coord = tempY; 

19:   newsensorpkt.data= (beta[0] * 1) + (beta[1] * tempX) + (beta[2] * tempY) + 
(beta[3]*tempX*tempY); //Regenerate the Z values 

20:   spktcount = spktcount + 1; //Increment spktcount for each sensor record regenerated. 

21:   tempX = tempX + xinc; //Get the next X value 

22:   tempY = tempY + yinc; //Get the next Y value 

23:   rcount = rcount + 1; 

24:     } while ((tempX < xmax_coord) and (tempY < ymax_coord)) and (rcount <= N)) 

25:     } 

26: //Once we've regenerated Z values we can read sensor log to regenerate coefficients. 

27:     post computeCoefficientsTask(); 

28: } //End task regenerateAttributeValuesTask() 
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For each TREG packet we regenerate N values in the following manner: 

We calculate the fixed increments (xinc and yinc) in X and Y values as shown in lines 14 and 17 

respectively. We then start regenerating attribute values starting at (xmin, ymin) using the 

formula ܼ ൌ ሾ0ሿ.1ܤ ൅ .ሾ1ሿܤ ܺ ൅ .ሾ2ሿܤ ܻ ൅ .ሾ3ሿܤ ܺ. ܻ. New X and Y values are obtained by 

adding the increments calculated previously to the current X and Y values. Each pair of X and Y 

values thus obtained is used to calculate the corresponding attribute value (line 19). As shown by 

the lines 14 thru 24 of the pseudo code, we do this while ensuring that we do not exceed the 

number N of regenerations per TREG packet. We also ensure that the boundary conditions are 

included so as to cover the entire region and improve the accuracy of the scheme. The worst case 

occurs when no SENSOR Packets have been received and hence all values need to be 

regenerated before computation.  

The worst case complexity depends on the number of TREG packets received and the number of 

values to be regenerated. Since any given TREG node has a fixed number of children and the 

number of values to be regenerated is fixed, the complexity is of the order O(n) where n is equal 

to the number of TREG packets received.  

The regenerated X, Y and attribute values are appended to the data structure that holds the values 

obtained from the received SENSOR Packets. At each tree node, this procedure is repeated in a 

distributed manner for each TREG packet that has been received. Once we have generated values 

for each TREG packet, we proceed to compute the coefficients as explained above till the root is 

reached. The root computes the final set of coefficients for the entire region in a similar fashion 

as other tree nodes and passes them over the serial port to the workstation at the other end. With 

the final set of coefficients and the (Xmin, Ymin) and (Xmax, Ymax) values we can obtain approx- 
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-imated temperature value at any point in the region. 
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Chapter 6 

Performance Evaluation 

In this chapter, we present experimental results of TREG implementation on MICAz motes. Our 

results essentially corroborate the simulation results presented in the earlier work [2]. 

Additionally, we also show that the energy consumption of the entire system is considerably 

lower as compared to a simple tree based data forwarding scheme.  In evaluating TREG we 

consider:  

(1) The accuracy of approximation of the sensed parameter,  

(2) The comparison of computational delay to the transmission delay,  

(3) The overall system energy consumption, and  

(4) Compression ratio. 

Fig. 6.1 shows the network topology used for performing the experiments using a tree of depth 2. 

The sensors deployed over a 400m x 400m region are assumed to be our target area for 

monitoring. A temperature variation in the range 29○ - 34○ C is assumed over the region as 

shown in the figure. Such a large temperature variation can be considered to be realistic for a 

highly unstable region. The accuracy of our scheme would increase if a smaller variation in the 

value of the sensed parameter is present. As can be seen in the diagram, we had some tree 

(TREG) nodes and sensing nodes – a minimum of 5 nodes reporting to each of the leaf nodes and 

others reporting their values to the non-leaf nodes including the root. The root itself is connected 

to a workstation using the serial port. After performing the polynomial regression over the entire  
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Figure 6.1: Network topology for tree depth = 2 and 48 nodes 

region, the root sends the final set of coefficients along with the boundary of the region over the 

serial port. The experiments have been conducted at the University of Cincinnati using 56 

MICAz motes. Although, a larger number of motes would have enabled us to cover more cases, 

we believe that we have nevertheless been able to show the effectiveness of the scheme on a 

reasonable size sensor network test bed. The locations of the sensors have been pre-determined 

based on a topology map similar to the one shown in Fig. 6.1 and the values have been 

hardcoded in the program. Again, the sensors currently do not sense the physical attribute 

because of the lack of sensor board drivers. Instead, they have been programmed to return a 

constant value selected from a dataset consisting of spatially correlated data samples. 
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6.1 Accuracy 

In order to evaluate the accuracy of the scheme, we first conducted experiments on the sensor 

test bed using trees of depth 1, 2 and 3. Then, we chose a random set of 50 data points from our 

network topology map. Using the coefficients obtained at the end of the experiments for each, 

case we generate the temperature values using the polynomial explained earlier in this document. 

These are then compared with the actual values as obtained from the contour map to determine 

the accuracy. Fig. 6.2 shows the results for a tree of depth 1. We considered 3 cases – when the  

27

28

29

30

31

32

33

34

35

1 11 21 31 41

Te
m
pe

ra
tu
re
 (c
el
si
us
)

Test Data Set

Accuracy (Depth = 1)

Actual

16 Nodes

32 Nodes

48 Nodes

 

Figure 6.2: Accuracy for tree depth = 1 

number of nodes in the network is 16, 32 and 48 respectively. As can be seen from the figure, all 

three curves closely follow the actual curve most of the time. Thus, we can see that to a large 

extent, the polynomial has indeed managed to capture the temperature distribution in the network 

successfully. We also find that the 3 curves also follow fairly closely to each other. 
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Figure 6.3: Accuracy for tree depth = 2 
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Figure 6.4: Accuracy for tree depth = 3 
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This is because the increase in the number of motes in the network from 16 to 48 does not 

increase the network density significantly. Since, accuracy in our case is directly proportional to 

network density, we find no major improvement in the accuracy by a small increase in the 

number of motes. 

Figs. 6.3 and 6.4 show the same curves for trees of depths 2 and 3 respectively. In both, the 

cases, we find that the curves of regenerated temperature values diverge from the actual curve to 

some extent. This is as expected since the network size increases with increasing the tree depth.  

However, the nodes of nodes remain the same in our experiments (32 or 48 nodes). Therefore, 

the network density decreases in these two cases, thereby resulting with poor accuracy. 

6.2 Percentage Error 
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The Percentage Error is calculated ass, 

 ൈ 100ቁ, ܧ ൌ ቀ|௭ି௭ҧ|
௭

where ‘z’ is the actual attribute value and ‘ݖҧ’ is the computed value of the attribute. 

Fig. 6.5 shows the variation of percentage error for various tree depths. Similar to the simulation 

results presented in [2], we find that the majority of the points where the approximate is 

calculated fall in the lower half of the graph. A steady decrease in the number of readings falling 

in higher error ranges is also evident from the graph. The maximum percentage error was 

10.49% for depth 1, 9.78% for depth = 2 and 12.27% for depth = 3. 

6.3 Computational Vs Transmission Overhead 

We measure the computational overhead in terms of the time taken to perform the computation 

in the motes. Since there is no in built mechanism to obtain the computation time, we start a 

program timer as soon as the task to compute the coefficients or to regenerate attribute values is 

posted depending on the reception of TREG Packets and stop the timer once the coefficients 

have been computed.  

To calculate the time it takes for a packet to be transmitted from a sensing node to the root of the 

tree, we measure the time it takes for a packet sent by a sensing node to reach the root of the tree. 

This time is measured by simply making the intermediate nodes to forward the packet received 

from a sensing node, instead of performing any computation.  

Fig. 6.6 shows the variation of both computation time and transmission time with increase in tree 
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depth. It’s evident from the figure that the transmission time per packet increases much more 

than the increase in the computation time with increasing tree depth. 
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Figure 6.6: Variation of Computation/Transmission times with tree depth 

The computation time using TREG is independent of the number of sensing nodes. Thus, for the 

same tree height, the system computation time remains constant, even if the number of sensing 

nodes increases. However, with increasing tree depth, the number of tree nodes increases. 

Consequently, the system performs more computation as shown by the small increase in the 

computation time. On the other hand, the total system time for transmission increases 

significantly with an increase in the number of sensing nodes. This is shown in Fig. 6.7 for a tree 

of depth = 1, where it can be seen that the system time for computation remains constant when 

the number of sensing nodes increases from 16 to 48 while the net system time for transmission 

increases significantly. 
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Figure 6.7: Variation of Computation/Transmission times with number of sensing nodes 

 

6.4 Total Energy Consumption 

The total system energy consumption is defined as the sum of all the energies consumed by the 

nodes of the network in one round of experimentation. This includes the energy used up by the 

sensing nodes in transmitting the SENSOR Packets (16 bytes), the energy consumed in the tree 

nodes to receive the SENSOR Packets, perform the computation as well as the energy consumed 

in transmitting the TREG Packets (32 bytes) to their parents.  

We compare the total energy consumed in the network using TREG with that for a simple data 

packet forwarding scheme. As can be seen from Fig. 6.8, the energy consumed in the network 

with data aggregation using TREG is less than that consumed without any data aggregation. It is 

also evident from the graph that with increase in the number of nodes in the network, the energy 
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Figure 6.8: Variation of energy consumption with increasing number of nodes 

consumed grows much more in the simple packet forwarding case than in the one using TREG. 

It can thus be seen that using a data aggregation scheme such as TREG, can indeed lead to 

increased lifetime of sensors, which is a fundamental challenge in WSNs. 

 

6.5 Compression Ratio (CR) 

The CR in our scheme is defined as the ratio of the sum over all edges of number of bytes 

transmitted on an edge after compression over the number of input bytes on an edge. Fig. 6.9 

shows the variation of compression ratio with depth of the aggregation tree. The graph, as 

expected, suggests that the CR decreases with depth, since the degree of reduction is better at a 

larger depth. The average CR obtained in our experiments is 0.29. 
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6.6 Linear versus Quadratic Regression Polynomial 

The linear polynomial used thus far in the experiments consists of four coefficients. We also 

wanted to study the effect of the use of a higher degree polynomial on the motes with respect to 

energy consumption as well as the performance of TREG. However, since the memory 

requirements of the program using a quadratic polynomial with nine coefficients exceeded the 

available memory on the motes itself, we could not proceed with the experiments. Instead we ran 

our program on a desktop personal computer in order to compare the results of regression 

obtained using a quadratic polynomial viz. those obtained using a linear one. In this section we 

compare the accuracy of the regression polynomials and their effect on the percentage error of 

the approximated values. 
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Figure 6.10: Accuracy using Linear (4 coefficients) and Quadratic (9 coefficients) polynomials. 

Fig. 6.10 above shows the actual and approximated curves obtained by regenerating attribute 

values for the 50 random points selected as described earlier. It is clearly evident from the graph 

that the curve of approximated values using a quadratic polynomial follows the actual curve 

more closely than the one obtained using a linear polynomial. This implies that more coefficients 

are required in order to capture the correlation in the sample data set chosen. In general, higher 

the degree of correlation of the data set is easier it is to capture it with a polynomial of lower 

degree. The authors in [2] suggest that a polynomial equation of second degree (quadratic) is 

sufficient to capture the non-linearity of the measured data set accurately. Increasing the degree 

further results in no improvement in the accuracy (percentage error of 6.0% is reduced to 5.9%) 

but increases the computational complexity of the regression at each node and the overhead in 

sending the increased number of coefficients (27 for a cubic polynomial).  
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Figure 6.11: Percentage error using Linear (4 coefficients) and Quadratic (9 coefficients) polynomials. 

The increase in the accuracy is also evident from the percentage error of the regenerated attribute 

values as shown in the Fig. 6.11. We can see that a greater number of samples now fall in the 0.0 

to 2.0 % error range and the maximum percentage error is reduced as well. The maximum 

percentage error in the quadratic polynomial case was found to be 6.42% as compared to 10.49% 

in the linear case implying that the correlation in the data set was captured better by the higher 

degree polynomial. 

A comparison of the energy consumption in the motes due to the use of the two polynomials 

should provide a better indication of the trade-off involved between increased accuracy and 

energy consumption. This would be feasible once the on-board memory available is large enough 

to hold our application and is thus left as future work. 
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The results presented thus far in this thesis have been based on experiments conducted on the 

more popular MICAz mote hardware platform from Crossbow. However, it has been observed 

that the program when ported to the Moteiv tmote-sky mote platform overcomes many of the 

limitations of the MICAz implementation. 

The tmote-sky [24] is an ultra low power IEEE 802.15.4 compliant wireless sensor module 

manufactured by Moteiv (now Sentilla). Some of the key features of the platform are as follows: 

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver 

• Interoperability with other IEEE 802.15.4 devices 

• 8MHz 16 bit Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash) 

• Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller 

• Integrated onboard antenna with 50m range indoors / 125m range outdoors 

• Integrated Humidity, Temperature, and Light sensors 

• Ultra low current consumption 

• Fast wakeup from sleep (< 6μs) 

• Hardware link-layer encryption and authentication 

• Programming and data collection via USB 

• 16-pin expansion support and optional SMA antenna connector  

The preliminary results obtained by running the TREG application on the tmote-sky motes 

indicate that the on board sensors are fully supported by TinyOS 2.x and the memory available is 

adequate to hold all the data structures required to perform the polynomial regression using a 

degree 2 polynomial. These two factors severely constrained the implementation on the MICAz 

as mentioned earlier in this thesis.  
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At the time of writing this thesis, the number of tmote-sky motes available was not sufficient to 

perform any experiments. Since, the tmote-sky platform opens up a plethora of possible 

experiments including experiments to evaluate the performance of the algorithm with respect to 

temporal correlation in addition to spatial correlation in a real world environment, it is best left 

as future work to ensure cogency and completeness.     
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

WSNs have recently become one of the most actively researched topics in both academia and 

industry. Researchers all over the world are conceiving new applications almost every day, from 

battle field surveillance to environmental monitoring. Most of these applications involve the 

transfer of large amounts data across the network towards the sink. SNs are small battery 

powered devices and typically deployed at places that are not easily accessible. Thus, once their 

battery runs out, these SNs have to be discarded and replaced with new ones – a very undesirable 

and expensive procedure. It’s therefore imperative to maximize SN lifetimes. In-Network 

Processing or Data Aggregation is amongst the most popular techniques for improving SN 

lifetime. In this thesis, we have implemented TREG, one of many promising data aggregation 

schemes, on wireless sensor motes and evaluated its effectiveness using experimental results. 

TREG exploits spatial correlation in the sensed environmental data to reduce the amount of data 

transmitted up the tree towards the root. The approximating polynomial regression function also 

enables the root to compute the value of the physical parameter at any point in the network, 

without actually querying the network. This, in addition to the in-network processing, leads to 

much lower network traffic by way of reduced transmissions and re-transmissions, resulting in 

significant savings in the energy consumed by the SNs. System energy savings result in 

increased SN lifetimes, thereby bringing down the overall WSN maintenance costs. Our results 

as presented in the previous chapter essentially validate the simulation results provided in the 

previous work [2]. In addition, we have shown that the total energy consumption in a system 
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running the TREG application is much lower than that based on a simple multi hop data 

forwarding scheme.  

7.2 Future Work 

Our attempt at an implementation using a quadratic polynomial (9 coefficients) failed since the 

memory requirements of the program exceeded the available memory (4 KB) on the MICAz 

motes. We would like to leave this as future work when on board memory is sufficiently large 

enough to store our program. We would also like to test TREG with real environmental data for 

validating the effectiveness with respect to temporally correlated samples as well. This would be 

feasible once drivers for the MDA 300 sensorboard are available. 

Also, as mentioned at the end of the previous chapter, the tmote-sky mote platform overcomes 

many of the limitations of the currently more popular MICAz mote hardware and hence opens up 

a plethora of possible future experiments to exhaustively evaluate the performance of the TREG 

application in a real world deployment.   
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