
UNIVERSITY OF CINCINNATI

Date:___________________

I, ___,
hereby submit this work as part of the requirements for the degree of:

in:

It is entitled:

This work and its defense approved by:

Chair: _______________________________

Novel Methodologies for Efficient Networks-on-Chip
implementation on Reconfigurable Devices

A Dissertation submitted to the

Division of Research and Advanced Studies
of the University of Cincinnati

in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in the Department of
Electrical and Computer Engineering

of the College of Engineering

November 2007

by

Balasubramanian Sethuraman

Bachelor of Engineering (B.E.) in Computer Science & Engineering
Sri Venkateswara College of Engineering

University of Madras, Chennai, Tamil Nadu, India
2002

Thesis Advisor and Committee Chair: Dr. Ranga Vemuri

Abstract

International Technology Roadmap for Semiconductors (ITRS) project the latest
trend moving towards a system-level and platform-based design, involving large percent-
age of design reuse. Different Intellectual Property (IP) cores, including processor and
memory, are interconnected to build a typical System-on-Chip (SoC) architectures. Larger
SoC designs dictate the data communication to happen over the global interconnects. At
45 nm and below, interconnects have profound impact on the performance (and power),
due to increased delays and cross-coupling from multiple sources. Hence, attaining timing
closure with reasonable performance and low power is increasingly becoming impractical.
Also, the traditional bus based interconnection architectures present synchronization night-
mare in a heterogenous System-on-Chip environment. At system level, the performance of
the shared-bus start to deteriorate with increased number of cores.

Networks-on-chip (NoC) has been proposed as a new design paradigm to solve
the communication and performance bottlenecks in the modern System-on-Chip designs.
Unlike the shared-bus approach, the central idea in an NoC is to implement interconnection
of various IP cores using on-chip packet-switched networks.

Due to reduced development costs and shorter design cycles and Time-To-Market,
reconfigurable devices, especially, the FPGAs are increasingly being used in low/medium
volume applications in place of their ASIC counterparts. Due to the scalability issues
present in the use of shared-bus, NoC is gaining attention in the latest FPGA-based SoCs.
In spite of the advantages, being a typical shared network, an NoC suffers from bottlenecks
involving hop latency, congestion, bandwidth violations and increased area. .

In this thesis, we innovate and implement novelty to realize efficient Networks-on-
Chip using commercial Xilinx FPGAs. We present tangible solutions for the issues that
plague the efficient Networks-on-Chip implementation on the reconfigurable fabric.

First, we concentrate this area overhead issue, the solutions to which actually re-
sulted in many-fold advantages. Area is at a premium on an FPGA and therefore, the
communication network should be as small as possible. The on-chip micro network area
can be reduced by: (1) Using a simple router without sacrificing on the performance, and
(2) Reducing the number of routers. Implementing the first idea, we develop a light weight
parallel router (LiPaR), with multiple optimizations that resulted in a significant reduction
logic area usage.

The highlight of this dissertation remains in the translation of the second idea with
the proposition of a novel router design that can handle multiple logic cores simultaneously,
without any performance penalty. The new Multi Local Port Router (MLPR) provided
many-fold advantages including reduction in area, power, transit time & congestion, and
most importantly, bandwidth optimization, resulting in an efficient and high performance
NoC design. Essentially, the MLPR is a marriage between switch-based and router-based
interconnection network.

A NoC system comprising MLPRs represents a complex design environment and
hence, generation of an efficient Network-on-Chip configuration is a great challenge. We
present an exhaustive-search based optiMap algorithm (finding optimal solutions) and a
heuristic based fast mapping cMap algorithm. The results portray a dramatic reduction in
the latency as well as the number of packets flowing in the NoC mesh.

All the ports of an MLPR have the same mesh co-ordinate, thus, providing an oppor-
tunity to multicast to all the cores attached to the same MLPR, exploiting which we present
a modified router architecture called Multi2 Router. Utilizing the multicast capability, we
present an energy-efficient NoC configuration generation approach (µMap), targeting data
packet traffic reduction in the network.

Optimization for performance, latency or area constraints favor addition of more
ports onto a single router. But, after extensive experimentation, we find a point of dimin-
ishing returns with regard to the power efficiency in using larger MLPRs. In addition to
the average power increase, we observe the occurrences of several IR drop violations with
increased port count, thus presenting a tradeoff between performance and power efficiency.

Task graphs in modern SoCs are not static in nature and the variations in the inter-
communication patterns and bandwidth requirements need to taken into consideration dur-
ing NoC architecture generation. Hence, we present technique to estimate the Minimum
BandWidth Guarantee (MBWG) required for a given topology and extend to find the NoC
architecture minimizing the MBWG, thereby, helping prevent surprises in terms of band-
width violations.

In summary, the dissertation presents novel and efficient router designs, supported
by the NoC architecture generation algorithms. Despite having an FPGA bias, the ideas
proposed in this research are equally applicable to ASICs, thus, improving and taking for-
ward an efficient NoC design flow.

To

My Dearest Parents

&

My Mentors

Acknowledgements

“If we knew what it was we were doing, it would not be called research,
would it?”

“We can’t solve problems by using the same kind of thinking we used when
we created them.”

“Imagination is more important than knowledge. For knowledge is limited
to all we now know and understand, while imagination embraces the entire
world, and all there ever will be to know and understand.”

– Albert Einstein (1879-1955)

First and foremost, I thank the God Almighty for instilling the necessary strength
and confidence in me to face the strides in life. The various stages that transpired in my life,
helping me what I am today, make me truly believe in the existence of the supreme being. I
am grateful and indebted to my parents for their support and encouragement, assisting my
way up in the intellectual ladder.

I wish to thank the members of my dissertation committee Dr. Ranga Vemuri, Dr.
Harold Carter, Dr. Wen-Ben Jone, Dr. Karen Tomko and Dr. Karam Chatha (Arizona
State University). I would like to acknowledge the support of Ohio Board of Regents PhD
Enhancement Program.

My heartfelt and sincere thanks to my advisor Dr. Ranga Vemuri, whose constant
support and guidance gave a proper shape to my education at University of Cincinnati. He
is truly an exceptional teacher in the field of Computer Engineering, with a unsurpassing
teaching style that always kept together the attention of all his students. I really cherish
the various moments of his courses, including the late-nights for the projects of Physical
VLSI Design and VLSI Design Automation courses. I got to experience first-hand how it
feels like to complete a project under tight time constraints under him. Above all, I greatly
admire his stress on the academic integrity and the perfection of work. I really enjoyed the
many lighter moments that I shared with him both in and around UC.

I had never been so open and candid with a professor as I had been with Dr. Wen-
Ben Jone, who was more of a friend to me! The fun-filled interactions that I had with
Dr. Jone throughout my stay at UC will always be close to my heart. During the various
quarters that I served as his teaching assistant, apart from his encouraging comments, the
level of importance that he gave to my thoughts with regard to the course conduct as well as
the grading, really inspired me a lot! I wish to express my wholehearted gratitude towards
Dr. Jone for nominating and assisting me in winning the Outstanding Student Services

Award at ECECS department, which eventually helped me in receiving the Outstanding
International Student Award. I am thankful to Dr. Carter for his unflinching support during
my tenure as the president of the Graduate Student Association of the ECECS department,
which greatly helped to fetch the award for the ECECS GSA.

Being part of and working at DDEL (Digital Design Environments Laboratory)
was a pleasant, a fun-filled and a memorable experience, transforming DDEL my second
home! I fondly recall the discussions and interactions that I had over the years with my
peers at DDEL. The rapport that I had with my fellow DDELites (Shubhankar, Vijay, An-
gan, Prasun, Priyanka, Srividhya, Almitra, Balaji, Suman, Jawad, Harish, . . .) will be
unforgettable! I am much obliged to Shubhankar, who had been a significant influence
in my life at UC - a friend & a mentor, always engaging me in many thought-provoking
discussions (technical and otherwise) and being readily available for anything and every-
thing! The banters that I shared with Vijay were delightful and my thanks to him for being
approachable at all times. Not to mention the cozy discussions and arguments that I had
with Angan, watched amusingly by Almitra! Special thanks to Prasun for his collaborative
efforts during the initial stages of my research, which gave the much needed push to an
otherwise fledgling topic. I am thankful to Balaji, Angan and Suman for helping me during
my final dissertation defense.

All together, it had been truly a great and a fulfilling experience here at University of
Cincinnati, not only in terms of my educational advances, but also in terms of the different
roles that I got an opportunity to play, making it the most memorable five years of my
life! The roles of teaching assistant and adjunct faculty had been extremely rewarding to
me, refining my understanding of the concepts. I am thankful to all my friends (Parineeta,
Jothiram, Lakshmi, Arun, Anand, Julie, . . .), whom I enjoyed working with towards the
events of the various UC student organizations - GSA, SABHA & Cultural Connections.
Thanks to all my VLSI batchmates and the tamil junta (Sathish, Sridhar, Karthik, Ali,
Jayaram, Prasanna, Kutty, Krishna, Hari, Diva, Sriram, . . .) for all the memorable and
enjoyable moments at UC.

Last but not the least, I wish to gratefully remember and thank the mentors whom
I had association with during my high school (Brinda & Jayashree) and undergrad college
(Prof. Venkateswaran) for their constant motivation and guidance, which helped me define
the direction and the quality of my academic career. Thanks to all who have positively
influenced me directly or indirectly, thus helping me achieve laurels and become the person
whom I am today!

Contents

List of Figures viii

List of Tables xiii

1 Introduction 1
1.1 Interconnects in the Nano-meter Era . 1

1.1.1 Impact of Technology Scaling . 1

1.1.2 Effects in Nanometer Design Regime 3

1.1.3 Low Power operation . 4

1.1.4 Impact on circuit delay and Bandwidth 4

1.2 System-on-Chip & Platform-based Design 6

1.3 System-on-Chip & Reconfigurability . 9

1.4 Future System-on-Chip: Summary of the real picture 10

1.5 Interconnection Networks . 10

1.5.1 Shared-Medium Systems . 11

1.5.2 Distributed Point-to-Point Interconnection Networks 13

1.6 System-on-Chip & FPGAs . 14

1.7 Motivation & Overview of the Thesis . 16

1.7.1 Light Weight Router for FPGAs 17

1.7.2 Multi Local Port Routers . 17

1.7.3 Efficient NoC architectures having MLPRs 17

1.7.4 Heuristic Fast Mapping Algorithm 18

1.7.5 Multi2 Router . 19

i

1.7.6 Energy Efficient Networks-on-Chip 19

1.7.7 Power Issues in Larger Multiport Routers 19

1.7.8 Handling Dynamic Task Structure 19

1.7.9 Extension to Multi-FPGAs . 20

1.8 Research Summary . 20

1.9 Organization of the Dissertation . 24

2 Networks-on-Chip Background 27
2.1 Networks-on-Chip . 27

2.1.1 Components of a micro-network 28

2.2 Summary of the Benefits & the Issues Involved 29

2.2.1 Advantages . 29

2.2.2 Issues Involved . 31

2.3 Description of a micro-network (Networks-on-Chip) 32

2.3.1 Network Topology . 32

2.3.2 Switching Mechanism . 32

2.3.3 Flow Control Mechanism . 33

2.3.4 Routing Mechanism . 35

2.3.5 Buffering or Queuing . 37

2.3.6 Scheduling . 38

2.4 Design of a Networks-on-Chip . 38

2.4.1 Design Flow . 38

2.5 Research in Networks-on-Chip . 40

3 Light Weight Parallel Router (LiPaR) 44
3.1 Related Work . 44

3.2 Router Architecture . 46

3.2.1 Packet Description . 47

3.2.2 Implementation of the Router . 48

3.2.3 XY Routing . 51

3.2.4 Round-Robin Arbiter (RRA) . 52

ii

3.3 Synthesis Platform . 52

3.4 Simulation and Results . 55

3.4.1 Best Case: Single Router without blocking 55

3.4.2 Worst Case: Single Router with blocking 55

3.4.3 3 × 3 Mesh network . 56

3.4.4 Timing Analysis . 56

3.4.5 Synthesis Report . 58

3.4.6 Power Analysis . 58

3.5 Conclusion . 59

4 Multi Local Port Router 60
4.1 FPGAs & NoCs: Improving Area overhead 60

4.2 Related Work . 61

4.3 MLPR Design . 63

4.3.1 Topology . 63

4.3.2 Routing & Flow Control . 64

4.3.3 Modified Architecture . 64

4.3.4 Adapted Decoding Logic . 66

4.4 Architectural Advantages . 67

4.4.1 Bandwidth Optimization . 67

4.4.2 Area Reduction . 68

4.4.3 Power Savings . 69

4.4.4 Congestion Reduction . 69

4.4.5 Transit Time Reduction . 70

4.4.6 Better Mesh Design . 70

4.5 Design Issues . 71

4.5.1 Critical Path . 71

4.5.2 Buffer Requirements . 72

4.5.3 Input-Output (I/O) Constraints . 73

4.5.4 Routing Resources Congestion . 73

iii

4.5.5 Logic Requirements . 73

4.5.6 Arbitration . 74

4.5.7 Address Utilization Factor . 74

4.6 Scope for Reducing the Latency . 75

4.7 Conclusion . 76

5 Experiment Setup 78
5.1 Benchmarks . 80

5.2 Experiment Platform . 81

5.3 Conclusion . 81

6 Optimal NoC Configuration Generation 82
6.1 optiMap: The Mapping Algorithm . 82

6.1.1 Mapping in an MLPR-based NoC 82

6.1.2 Problem Definition . 83

6.1.3 Description of optiMap Algorithm 84

6.2 Experiment Results . 86

6.2.1 Optimization Cases . 86

6.3 Conclusion . 88

7 Heuristic Fast Mapping Algorithm 90
7.1 cMap: The Fast Mapping Algorithm . 90

7.1.1 Problem Definition . 91

7.1.2 cMap Algorithm Description . 91

7.2 Experiment Results . 95

7.2.1 Effect of # LP . 96

7.2.2 Mapping Results . 96

7.3 Conclusion . 100

8 Multi2 Router 101
8.1 Multicast Feature . 101

8.2 Related Work . 102

iv

8.3 Multi2 Router Architecture . 103

8.3.1 Addressing . 104

8.3.2 Modified Architecture & Decoding Logic 106

8.4 Synthesis & Simulation Results . 110

8.4.1 Synthesis Platform . 110

8.5 Conclusion . 112

9 Energy Efficient NoC Configuration 113
9.1 Advantages of the Multicast Router . 113

9.2 µMap Algorithm . 114

9.3 Experimental Results . 116

9.3.1 Packet Reduction . 116

9.3.2 Performance Gain . 117

9.3.3 Optimization Cases . 117

9.4 Power Results . 120

9.4.1 Power Per Flit . 120

9.4.2 Analysis of Power data . 121

9.5 Conclusion . 122

10 Power Efficiency of Multi-Port Routers 124
10.1 Motivation . 124

10.1.1 Port Level Power Savings . 124

10.1.2 Impact of port count on IR drop 125

10.2 Related Work . 125

10.3 Experiment Platform . 126

10.3.1 Xilinx flow . 127

10.3.2 Synopsys-Cadence Flow . 128

10.4 Intra-port Power Savings in Multi Port Routers 130

10.5 Power related Issues in Multi port Routers 132

10.5.1 Average Power Increase . 132

10.5.2 Rail Analysis . 134

v

10.6 Conclusion . 137

11 Bandwidth Variations in a Dynamic Task Structure Environment 139
11.1 Motivation & Introduction . 139

11.1.1 dynaMap Algorithm . 141

11.2 Related Work . 141

11.3 Dynamic Task Structure . 142

11.4 dynaMap: Fast Mapping Heuristic Algorithm 144

11.5 Experiment Results . 148

11.5.1 Analysis of the Results . 149

11.6 Conclusion . 151

12 Towards Multi-FPGA Systems with Networks-on-Chip 153
12.1 Introduction . 153

12.2 Extension of Networks-on-Chip for Multi FPGAs 155

12.2.1 Modified Design Framework . 155

12.3 Conclusion . 161

13 Conclusions 162
13.1 Contributions . 163

13.2 Salient Inferences . 165

14 Future Directions 167

Bibliography 172

A Demonstration of the Xilinx & Synopsys-Cadence Flow 189
A.1 Xilinx Flow . 189

A.2 Synopsys-Cadence Flow . 197

A.2.1 Logic Synthesis : Synopsys Design Compiler 197

A.2.2 Physical Synthesis : Cadence SoC Encounter 204

A.2.3 Average/Peak Power Estimation - Iteration Procedure 211

vi

B List of Publications 217

vii

List of Figures

1.1 Chip Design under Moore’s law [Sem06] 2

1.2 Effect of scaling of wires on the resistance [HMH01] 2

1.3 Effect of scaling of wires on the capacitance [HMH01] 3

1.4 Need for repeaters for global interconnects [Sem06] 5

1.5 Distance reachable in one clock cycle [HMH01] 5

1.6 Microcontroller-based System-on-a-Chip [Wik06] 6

1.7 System-on-a-Chip Design Flow [Wik06] 8

1.8 Multi Local Port Router based NoC mesh 22

1.9 Multicasting Illustration in a 5 port Multi2 Router 23

3.1 LiPaR - Router Architecture . 48

3.2 Input Channel of the proposed router . 49

3.3 Crossbar switch of the router . 50

3.4 Output Channel of the router . 51

3.5 A typical 3 × 3 Mesh Network . 55

3.6 Simulation of stand alone router (non-blocking inputs) 56

3.7 Simulation of stand alone router (blocking inputs) 56

3.8 Simulation of the 3 × 3 mesh network . 57

4.1 4 LP Router (having 8 Parallel connections) 64

4.2 Simulation of a 5 LP Router, showing 9 Parallel Connections 65

4.3 Modified Header Flit . 65

4.4 Multi Local Port Router based NoC mesh 68

viii

4.5 BandWidth Optimization (in data units/s) 68

4.6 Synthesis Results . 69

4.7 Mapping of Five cores . 71

5.1 Basic Task Graphs [KA96] . 78

5.2 Benchmark Set 1 . 79

5.3 Benchmark Set 2 . 79

5.4 Benchmark Set 3 (lu,les [KA96]) . 79

6.1 Mapping using with 2 Local Port routers 83

6.2 Mapping Search Space for Cores . 83

6.3 Algorithm Flow of optiMap . 85

6.4 LU Decomposition (lu) - Optimum NoC configuration with varying upper
bound on # local ports(LP) - the mapped cores are inside square (router)
(shown till # LP = 4) . 87

6.5 Laplace Equation Solver (les) - Optimum NoC configuration with varying
upper bound on # local ports(LP) - the mapped cores are inside square
(router) (shown till # LP = 4) . 87

6.6 Packed-4 (p4) - Optimum NoC configuration with varying upper bound on
local ports(LP) - the mapped cores are inside square (router) (shown till
LP = 4) . 88

6.7 optiMap Experimental Results I . 88

6.8 optiMap Experimental Results II . 89

7.1 cMap: Folding Example . 91

7.2 cMap: Results of Folding Phase . 92

7.3 cMap: Design Evolve (Grow) Phase . 93

7.4 cMap Experimental Results I . 97

7.5 cMap Experimental Results II . 97

7.6 LU Decomposition (lu) NoC configuration with varying upper bound on #
local ports(LP) - the mapped cores are inside square (router) (shown till #
LP = 4) . 98

7.7 Laplace Equation Solver (les) NoC configuration with varying upper bound
on # local ports(LP) - the mapped cores are inside square (router) (shown
till # LP = 4) . 98

ix

7.8 MPEG4 (mpeg) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4) 98

7.9 cMap: NoC configuration for FFT . 98

7.10 Parallel2 (pa2) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4) 99

7.11 Extended1 (e1) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4) 99

7.12 VOPD (vopd) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP
= 4) . 99

7.13 Random2 (r2) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP
= 4) . 99

7.14 MWD (mwd) NoC configuration with varying upper bound on # local ports(LP)
- the mapped cores are inside square (router) (shown till # LP = 4) 100

7.15 Packed3 (p3) NoC configuration with varying upper bound on # local ports(LP)
- the mapped cores are inside square (router) (shown till # LP = 4) 100

8.1 Multicasting Illustration in a 5 port Multi2 Router 104

8.2 Multi2 Router having 8 parallel connections 104

8.3 Header Flit . 105

8.4 Modified Input Channel . 108

8.5 Modified Crosspoint Matrix . 108

8.6 Simulation with simultaneous multicasts 108

8.7 Variation in clock period . 110

8.8 Simulation with Input Channel(s) waiting for channel-access to multicast . 111

9.1 Multicasting Illustration in a 5 port Multi2 Router 114

9.2 Results 1 - Reduction in the overall execution time 116

9.3 Results 2 - Reduction in the overall execution time 116

9.4 packed3 (p3) - NoC configuration with two optimization cases (EXE &
PKT) - Cost represented as execution time, packet count - the mapped cores
are shown inside the square (router) (shown till # LP = 4, due to space
constraints) . 119

x

9.5 parallel2 (pa2) - NoC configuration with two optimization cases (EXE &
PKT) - Cost represented as execution time, packet count - the mapped cores
are shown inside the square (router) (shown till # LP = 4, due to space
constraints) . 120

10.1 Xilinx FPGA flow . 127

10.2 Synopsys-Cadence Flow . 128

10.3 A Five Port Router with multicast capability 129

10.4 MPEG4 - Mapping of cores with different multiport routers 130

10.5 Average power variation in different source ports 131

10.6 Example NoC mesh - Normalized power 134

10.7 Average Power increase . 135

10.8 VoltageStorm Rail Analysis - IR drop in various routers 135

10.9 VoltageStorm Rail Analysis (IR drop) power graphs - Color illustration . . 136

10.10VoltageStorm Rail Analysis - % increase in IR drop w.r.t single port router . 138

10.11VoltageStorm Rail Analysis - % increase in IR drop w.r.t base design (hav-
ing 0.1 toggle probability) . 138

11.1 Viper communication snapshots . 141

11.2 Dynamic Task Structure Illustration (units in MB/s) 143

11.3 dynaMap: Folding Example . 145

11.4 Composite graph formation (units in MB/s) 147

11.5 NoC configuration in Runs 11-14 (with Maximum Port Count between 1
and 6) - Mapped cores are inside square/router (not to scale - for illustration
of topology & mapping only) . 152

12.1 Multi-FPGA based Networks-on-Chip . 157

12.2 Illustration of an NoC on a Multi-FPGA having customizable inter-FPGA
links . 159

A.1 Xilinx FPGA flow . 190

A.2 Synopsys-Cadence Flow . 198

A.3 Pin Editor . 207

A.4 Extract RC . 208

xi

A.5 GenLib Routine - Binary-view Cell Library generation 209

A.6 Fire & Ice RC extractor . 210

A.7 Statistical Power Estimation . 210

A.8 VoltageStorm GUI . 211

A.9 Display Browser . 212

xii

List of Tables

1.1 System Level Design Requirements - Near-term years [Sem06] 10

3.1 Timing report (stand alone router) - simultaneous non-blocking inputs . . . 57

3.2 Timing report (stand alone router) - simultaneous blocking inputs 58

3.3 Synthesis report for a stand-alone router 59

6.1 Execution Time - Upper bound on # LP 88

7.1 cMap vs optiMap: Cost Difference (in # clock cycles) 96

8.1 Comparison of # bits required . 106

8.2 Modified Request (REQ) Signal . 109

8.3 Xilinx ISE synthesis - Area results in XC2V P30 110

9.1 Packet count in multicast (m) and unicast (u) transfers (optimal result cho-
sen from respective cases) . 117

9.2 Comparison of overall execution time (in # clock cycles) and packet count
for two cost functions (EXE & PKT) . 119

9.3 Power Estimates from XPower [Xil06a] 122

9.4 Multi2 Router - Execution time (in ns) and power consumption (in mW) . . 122

9.5 Unicast MLPR - Execution time (in ns) and power consumption (in mW) . 123

10.1 Five port router - Average Power consumption between different of ports
(L0-L4 represent logic port) . 130

10.2 Increase in Average Power normalized w.r.to a single port router 134

11.1 Runs : Combinations from 22 benchmarks 149

xiii

11.2 Runs 1-10 : Minimum BandWidth Guarantee (MBWG) required in MB/s . 149

11.3 Runs 11-14 : Minimum BandWidth Guarantee (MBWG) required in MB/s . 151

xiv

List of Algorithms

1 LiPaR: Pseudo Code of the Input Channel FSM 53

2 LiPaR: Pseudo Code of the Output Channel FSM 54

3 Pseudo Code of low latency router Input Channel FSM 76

4 Pseudo Code of O/P Channel FSM . 77

5 optiMap Algorithm . 84

6 cMap Algorithm . 94

7 Pseudo Code of Input Channel FSM . 107

8 Pseudo Code of O/P Channel FSM . 109

9 µMap Algorithm . 118

10 dynaMap Algorithm . 146

xv

Chapter 1

Introduction

The Semiconductor industry has shown rapid advancements in various facets, in-
cluding design and fabrication techniques, while obeying the Moore’s law and in some
cases pushing over the limits so as to keep the productivity and eventually the profitabil-
ity with growing competition in the market. In the current nanometer era of design, more
challenges are inevitable both in design and fabrication compared against the sub-micron
and the Deep Sub Micron (DSM) period. Continued Technology scaling helps integra-
tion of large number of transistors on the same chip area. According to the International
Technology Roadmap for Semiconductors (ITRS), we are looking into at a multi-million
transistor chips, with feature sizes at 50nm and below, operating at clock frequencies over
10GHz. The tremendous increase in the transistor count results in the effective gate count
available, thus, paving a path towards implementing large designs, which were otherwise
realized as the interconnection of designs spanning across multiple chips. System-on-Chip
is a new buzz word and represents a complex integration of various heterogenous designs
called Design Cores (refer Figure 1.1).

1.1 Interconnects in the Nano-meter Era

1.1.1 Impact of Technology Scaling

In the billion-transistor era, designers can pack large number of modules on a single
chip. But, technology scaling does not present a rosy picture in terms of the interconnects.
The assumption of the interconnect delay being negligible compared to the gate delay is
no longer valid. The actual scenario is that the technology scaling is better for transistors

1

Figure 1.1: Chip Design under Moore’s law [Sem06]

Figure 1.2: Effect of scaling of wires on the resistance [HMH01]

compared to the interconnect wires. As designs scale to newer technologies, the active
device parameters including the gate length and the speed of operation of the transistor get
improved. But, as the wires get shorter, they do not scale uniformly with length and the
delays over the global communication wires start to increase.

Scaling of wire includes prediction various physical parameters that affect the elec-
trical properties in an circuit. Scaling is performed in using a set of both conservative
and aggressive parameters to observe the overall trend when modelling interconnects. Fig-
ure 1.2, as shown in [HMH01], shows the drastic increase of resistance with technology
scaling. The effect of technology scaling is very moderate for capacitance and induc-
tance [Sem06, HMH01]. It can be seen that the conservative and aggressive scalings esti-
mates are very close (Figure 1.3).

To summarize, the relative change between the speed of wires and the speed of
gates has been modest. But, at 50nm and below, the performance gap between the wire

2

Figure 1.3: Effect of scaling of wires on the capacitance [HMH01]

and the gate widen significantly. With advancements in process technology, the delay
and the crosstalk happening over the interconnects start to dominate the gate delay, thus
affecting the performance of the system. In addition to the performance, the wires cre-
ate considerable overheads with regard to the power consumption and the occupied area
[Sem06,RSV97,KMN+00,SSM+01]. With addition of large number of modules per chip,
the accumulation of wire problems become unmanageable.

1.1.2 Effects in Nanometer Design Regime

In the nanometer regime, there is a drastic rise in cross-coupling effects, noise and
transient errors, and start affecting the circuit operation. With decreased feature size and
reduced operating voltage circuits are more susceptible to noise sources and hence are
vulnerable to failures. Some of the sources that affect the timing closure are the parasitic
capacitance, inductance & resistance, signal delay, simultaneous switching noise (SSN),
Electro-Magnetic-Inductive effects, crosstalk noise, substrate coupling noise, and leakage
currents.

Coupling noise and the resultant crosstalk is a complex and serious problem dur-
ing chip design, since both mutual capacitance and inductance effects come into picture.
Modelling the effect of mutual inductance is much more difficult. Unlike the capacitive
coupling, inductive coupling affects the victim wire(s) in an opposite fashion. Also, while
capacitive coupling mostly affects the neighboring interconnects, inductive coupling hap-
pens over a bigger range. Switching of large number of wires that are present in a bus-like
fashion compound the problem of inductive coupling. The modern System-on-Chips with
thicker Wires that span long lengths and clock frequency in the GHz range will require
interconnection analysis considering inductance and inductive coupling effects on inter-
connect delay and noise. Designers employ techniques to ameliorate this situation by using

3

shielding lines using power/ground rails or by inserting buffers at regular intervals.

In addition, effects like instantaneous voltage drop and ground bounce exacerbate
the problem with signal integrity. Arriving at effective analytical models that predict the
overall effect of the various noise sources is extremely difficult. Uncertainties and inaccu-
racies in the estimation of the cumulative effect of these device effects results in a circuit
having critical failures.

1.1.3 Low Power operation

In addition to high performance chip designs, the current design trend is towards
building designs that consume low power. To achieve this goal, the noise margin is kept
low for operating the circuit with low voltage swing. In addition to this, the supply and
threshold voltages are scaled to minimize the power consumption of the system. For the
nodes that are weakly driven and the nodes that operate with low voltage swing, coupling
due to mutual capacitance and inductance result in illegal or indeterminate states causing
circuit failures. In this context, the global interconnects result in the switching of very high
capacitance (quadratic) and hence lead to high power consumption.

1.1.4 Impact on circuit delay and Bandwidth

As projected by ITRS, the rising impedance of the interconnects has resulted in
the interconnect delay getting multiplied by a large factor. The situation is worsened with
added problems caused by skew and jitter affecting the global signals, especially, the clock.

To tackle the growing interconnect delay effectively, designers break the long inter-
connects by inserting repeaters at regular intervals (Figure 1.4) . Also, the repeaters help
to reduce the inductive current paths effectively, thereby, restricting the inductive noise at
low levels. But, the repeaters are not available for free and have associated penalties. The
repeaters that are realized as inverters, consume a significant area and add to the floorplan
and power/ground rail routing woes. Also, they result in a transfer involving multiple clock
cycles, though providing an opportunity to increase the bandwidth. Optimistic predictions
estimate the propagation delays for highly optimized global wires to be between 6-10 clock
cycles at 50nm [BdM02].

Thus, we observe that transmission of signal on a global basis will only create
more problems. Due to skew and jitter effects, global signal synchronization is becoming

4

Figure 1.4: Need for repeaters for global interconnects [Sem06]

Figure 1.5: Distance reachable in one clock cycle [HMH01]

highly impractical. According to the best estimates, the realistic clock frequency at 50nm
is less than 4GHz (taking the Time of Flight into account), whereas, the active devices have
the ability of operating at 10GHz. Figure 1.5 shows how far a signal can reach within
a single clock. Wires affect both circuit delay and robustness and are turning out to be
show-stoppers in terms of performance and power. Realizing design closure under such a
complex design environment having many noise sources is becoming exceedingly difficult,
under tight productivity constraints.

5

Figure 1.6: Microcontroller-based System-on-a-Chip [Wik06]

1.2 System-on-Chip & Platform-based Design

System-on-a-chip (SoC or SOC) a complex interconnection of various functional
modules or components of a computer or other electronic system into a single chip (Figure
1.6). The modules can be digital, analog, mixed-signal and even radio-frequency compo-
nents, all brought inside a single chip. The typical components of a System-on-Chip is
summarized as follows [Wik06].

• One or more microcontroller, microprocessor or DSP core(s)

• Memory blocks including a selection of ROM, RAM, EEPROM and Flash

• Timing sources including oscillators and phase-locked loops

• Peripherals including counter-timers, real-time timers and power-on reset generators

• External interfaces including industry standards such as USB, FireWire, Ethernet,
USART, SPI

6

• Analog interfaces including ADCs and DACs

• Voltage regulators & Power management circuits

These blocks are connected by means of interconnection networks which includes
industry-standard shared-bus cores like AMBA bus from ARM or STbus from STMi-
cro [AMB06, STB06]. Other than the hardware resources summarized above, a System-
on-Chip design flow cycle also involves design of software to control the various hardware
components like the microprocessors, controllers and other IP cores/interfaces. As illus-
trated in 1.7, the design flow (refer Figure) for an SoC involves development of both the
hardware and the software in a concurrent fashion.

The functional modules themselves can support different features, with varied per-
formance and power levels. In a heterogenous environment, we can have a System-on-Chip
wherein the different islands or modules operating at varied clock frequencies. With such a
complex environment having various interconnected modules, design and full synthesis of
System-on-Chip designs from scratch is highly impractical. More than design, verification
of such an unified system is a nightmare for the engineers. Also, it is hard to meet the
Time-To-Market (TTM) demands with a fine grained approach.

Answer to the above issue lies in the traditional approach of divide-and-conquer.
Design Cores are getting prominence for building System-on-Chip designs, which are ba-
sically the (parameterized) functional blocks or hardware elements that are pre-verified
and pre-qualified for functional correctness, power, performance (frequency of operation,
throughput & bandwidth) and other constraints of merit. As we look into future, the design
cores will encompass a variety of heterogenous cores operating at various voltage levels
and frequencies.

Building a System-on-Chip is essentially comprised of assembling a set of pre-
existing and pre-verified components (Design cores), according to a complex & application-
specific architecture, while satisfying the performance and power constraints. According
to ITRS 2005 edition, future designs are projected to employ more design reuse so as to
increase the productivity. According to optimistic estimates, the gains in terms of produc-
tivity that can be achieved as high as 200% and is projected to be the key element for system
level design [Sem06].

A typical application is in the area of platform-based or embedded systems. A
platform is a specific combination of system components that support specific applica-
tion areas (e.g,. automotive, consumer electronics/multimedia, wireless, communication

7

Figure 1.7: System-on-a-Chip Design Flow [Wik06]

8

infrastructure, memory, customizable analog and digital log, and virtual sockets for new
logic [Sem06]. Functional requirements for the given application area is satisfied by in-
tegrating a number of components, which are basically the design cores or Intellectual
Property (IP) cores. Customization for a particular platform to arrive at a System-on-Chip
design boils down to an exploration of a design space, subject to various constraints. The
communication backbone and the processor/memory choices are pre-determined for a par-
ticular platform and the designers have freedom in choosing certain customization param-
eters and optional IP from a library.

Platform-based design also involves Hardware-Software partitioning, wherein the
delineation between what goes in as hardware components and what is translated to soft-
ware is drawn, so that the various system figures of merit (system performance, energy
consumption, on-chip communications, bandwidth) are optimized. As aptly described by
ITRS [Sem06], platform based design is an important driver for design productivity as it
greatly promotes design reuse, under ever increasing TTM constraints. Different platforms
are expected to converge in future, thanks to the great advancements being achieved in
fabrication and manufacturing processes. As seen from the Table 1.1, we are observing a
full-support for 97% of the platforms available by the year 2020 and more than 55% of the
design being reused.∗

1.3 System-on-Chip & Reconfigurability

Another dimension of the future system level design of SoCs is the percentage of
reconfigurability that is available. The complexity of the systems follow an upscale trend
and errors will be part and parcel of future System-on-Chips. Hence, in order to be able to
fix the errors after fabrication and exploit the concept of design re-use (reprogramming the
existing hardware blocks to realize new tasks), reconfigurability is an essential component
of system design. We expect upto 62% of the design functionality (either in hardware or
software) to be reconfigurable, by the year 2020 (refer the last row in Table 1.1).

∗Full Support for a particular platform means an integrated development environment that supports and auto-
mates architectural exploration, HW/SW partitioning, architectural/platform mapping, HW/SW co-verification, perfor-
mance/area/power/costs trade-offs, HW and SW synthesis and HW/SW interface synthesis for that platform [Sem06]

9

Year of Production 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Design Reuse

Design block reuse % to all logic size 32% 33% 35% 36% 38% 40% 41% 42% 44% 46% 48% 49% 51% 52% 54% 55%
Platform Based Design

Available platforms Normalized to 100% in the start year 96% 88% 83% 83% 75% 67% 60% 55% 50% 46% 43% 42% 39% 36% 33% 32%
Platforms supported % of platforms fully supported by tools 3% 6% 10% 25% 35% 50% 57% 64% 75% 80% 85% 90% 92% 94% 95% 97%

Reconfigurability
SOC reconfigurability % of SOC functionality reconfigurable 23% 26% 28% 28% 30% 35% 38% 40% 42% 45% 48% 50% 53% 56% 60% 62%

Table 1.1: System Level Design Requirements - Near-term years [Sem06]

1.4 Future System-on-Chip: Summary of the real picture

Attaining design closure for timing with better signal integrity and reduced crosstalk
& glitch is increasingly becoming important. Signal communication across the global in-
terconnects do not present a rosy picture for the future System-on-Chips [Kon04]. As we
look at the future System-on-Chips, integration of various digital, analog and mixed-signal
designs represents a very complex environment. This prompts us to adopt a platform-based
design involving larger percentage of design reuse in terms of the Intellectual Property
Cores. In this context, providing point-to-point interconnection by means of long wires
spanning the length and breadth of the chip is out of question. The major challenges in-
clude irregular topology, wires with unpredictable electrical parameters as it is difficult to
model beforehand and nodes with variable in and out degrees and most importantly, the
aforementioned nanometer era design challenges. The growing performance issues cre-
ated by the conventional wires or wiring methodologies (global interconnects) demand for
new interconnection methods. The use of interconnection networks provides an excel-
lent opportunity to mitigate the challenges of implementing interconnects in the nanometer
regime [SSM+01].

1.5 Interconnection Networks

According to [DT04], the term Interconnection network refers to a programmable
system that can transport data between terminals. In simple words, it is a shared medium
of communication which is time-multiplexed while establishing the communications. The
most important application of the interconnection in the mainstream digital systems is in
the intercommunication between processor, memory, and input/output (I/O) devices & con-
trollers. The importance of an interconnection network is highlighted in a multiproces-
sor environment involving large scale communication between the processor and memory
(shared/local). Broadly, the interconnection networks can be classified into two distinct

10

types.

• Bus-based interconnection networks (or) Shared-Medium systems

• Distributed Point-to-Point interconnection networks

1.5.1 Shared-Medium Systems

Traditionally, bus-based systems were the interconnection medium of choice be-
cause of the various offered advantages. Shared-bus approach defines standard-interfaces,
that make the applicability of the bus universal and modular. There are no routing proto-
cols as the data present on the bus wires is accessible to all the cores connected to it. The
advantages and disadvantages of a shared-bus scheme are summarized as follows [GG02],

Advantages

• Bus is a well researched and well studied interconnection medium with standard
interfaces [AMB06, STB06].

• The process of connection initiation and establishment is simple and straightforward.

• By virtue of being a standard, it is compatible with almost all Intellectual Property
cores, microprocessor cores, memory controllers, micro-controllers and input/output
device controllers.

• The area overhead of the bus-based scheme is very low as it is basically a set of wires
interconnecting the the various cores attached plus a small control (or) arbitration
logic to grant access of the bus.

• Bus supports various levels of protocols including priority based access and broad-
casting.

Disadvantages

• Every node or cores that gets attached to the common bus adds to the total load of
the bus. This translates to large and unpredictable switching delays, thus resulting in
degraded performance.

• The direct impact of the increased capacitive load seen by the set of wires forming
the bus, has a profound impact on the total power consumption.

11

• In the Nanometer era, shared-bus system will necessitate the use of the dedicated
wiring approach, which in turn forces the use of long wires (global interconnects).
Also, we are looking at an operating data width of 64 bits and beyond. As ex-
plained in the previous sections, this global interconnect environment having longer
and wider bunch of wires present insurmountable challenges in the pursuit of design
closure. The problems raised of inductive and capacitive coupling get compounded
as it is very difficult to model them and accurately predict in the early phase of the
chip design cycle.

• The bus has a fixed static bandwidth allocated to it which can be efficiently used. But,
since it is a common shared medium, there is no possibility of having simultaneous
parallel communications. The absence of system-level communication parallelism is
a major drawback [DT01].

• Above all, the shared-bus system presents a great deal of scalability issues to contend
with. Since, the cores operate via a common communication medium, the throughput
of the system takes a hit with increased number of cores attached to the bus. The
arbitration process becomes longer and the control logic has to be designed from
scratch making it application-specific, thus adding to the design effort required to
realize the system.

There are new and advanced bus communication techniques proposed including
multi-bus and split-transaction bus. A Multi-bus is a collection of independent local buses
which are integrated by means of bridges. The key idea here is to increase the parallel
operation possible in the overall shared-bus and to reduce the level of capacitance switched
as the component bus lengths are comparatively very small [HP00]. The authors in [HP00]
claim that the power savings using the multi-bus approach vary between 16% and 50%,
compared to the traditional global bus.

Normally, the bus master does not relinquish the bus unless the transaction is com-
pletely finished. The variable response time increases the time during which the bus is idle
and hence the bandwidth is wasted significantly. Split-Transaction bus is an approach to
reduce the amount of time the bus remains idle in between transactions. Here, the bus is
released after the request and hence, the response transaction has to obtain access of the bus
to complete the data transfer process. Also, the commercial bus designs like IBM Core-
Connect bus [Arc05], the ARM AMBA bus [AMB06] and the STMicro’s STBus [STB06]
incorporate advanced techniques like having bus hierarchy with varied levels of operating
frequency and performance.

12

In spite of all these improvements, the shared-bus has inherent scalability issues
with large number of operating cores. Thus, at system level, the increasing performance gap
between the processor and the interconnects necessitate the use of point-to-point dedicated
and distributed interconnection networks in place of the shared-bus approach, in order to
satisfy the communication needs an high-performance System-on-Chip.

1.5.2 Distributed Point-to-Point Interconnection Networks

The distributed point-to-point switched network (direct network) is the new paradig-
matic alternate to the common shared-bus architecture. The notion of long, common and
shared communication fabric is replaced by the short, point-to-point, distributed and inde-
pendent switching communication fabric. Here, the data transfer is effected between the
co-operating pairs of switching elements or routers. There is no central arbitration as the
control of the communication fabric is distributed. The idea of gaining access of the com-
munication medium by arbitration or polling is done away with. Instead, the data transfers
happen between and within the routers and as long as the destination point (can be a logic
core or another router) is free and available to participate in the data transfer process.

A Direct Network is made of the communication backbone comprising of the switch-
ing elements called routers. The cores including the processors, memory or any IP, get
attached to the router elements. The cores initiate data transfers to a destination core (using
proper addressing mechanisms) by pushing the data to be communicated to the correspond-
ing router element. The responsibility of transporting the data properly to the destination
core is offloaded to the routers of the direct network and the sender/receiver cores are
totally abstracted from the actual communication that is happening over the network back-
bone. The data is made to hop between the neighboring routers until the data reaches the
router to which the destination logic core is attached. At this point, the router pushes the
data into the destination logic core. We see that the cores can be involved either in sending
or receipt of data, and hence, this necessitates having two independent channels of commu-
nication. Namely, the input channel to receive the data and the output channel to send the
data. A bi-directional channel is possible in place the two uni-directional channel, but, this
will result in severe performance degradation as the possibility of simultaneous sending
and receipt of data is removed. That is the birds eye view of a direct network from which
is derived the new communication paradigm called Networks-on-Chip.

As we can clearly see, because of the distributed communication nature, the direct

13

networks scales nicely with the addition of large number of cores (processors, memory, in-
put/output devices, microcontrollers or IPs). The concurrent operation and communication
results in increased bandwidth and processing power of the system. The same trend can
be observed in the computer bus implementing for attaching peripheral devices to a com-
puter motherboard. The Peripheral Component Interconnect standard (PCI) is a popular
bus-standard that follows a shared-bus topology for attaching different (PCI) devices onto
a common bus (e.g., sound card, USB card, network card, etc.) for communicating with
the CPU. PCI-Express (PCIe) standard is introduced as an alternative to PCI bus standard
to overcome the severe performance bottlenecks and poor scalability encountered with PCI
standard. PCIe standard presents a drastic improvement by adopting a point-to-point bus
topology effected by means of a shared switch in place of the shared-bus. The switch routes
the traffic over the bus by establishing point-to-point connections between the pairs of com-
municating devices present in the system. Thus, off-chip or on-chip, use of interconnection
networks is the effective answer to the constrained shared-bus approach.

Apart from the classification of the interconnection networks discussed above, there
exists a type referred as indirect network, which are predominantly switch-based networks.
As against a direct network, the node of the communication backplane can operate as a
switching element (forward packets to-and-fro between routers) or a terminal (interface to
the logic core for sending and receiving data), but not both. Examples of such intercon-
nection networks include crossbar networks and the multi-stage interconnection networks
like butterfly networks and clos networks (non-blocking). Also, hybrid networks like hy-
perbuses, hypermeshes and hierarchical cluster-based networks are available in the litera-
ture [DYN98, DT04].

The point to be noted here is that a Networks-on-Chip is a generic term and can
include both direct and indirect networks. In this thesis, we concentrate on the widely
popular direct networks which are essentially router-based networks involving switching
mechanism ranging between circuit switching and packet switching. The following chapter
describes in detail the various parameters involved in a Networks-on-Chip (NoC).

1.6 System-on-Chip & FPGAs

ASICs are increasingly being replaced by FPGAs for applications with low to
medium volume, due to longer design cycles and high cost. Decreasing feature size and

14

improved fabrication techniques have enabled the current FPGAs to provide larger gate
count with increased performance and reduced power dissipation [Xil06a]. Modern FP-
GAs [Xil06b] provide greater scope for realizing System-on-Chip designs, because of the
availability of several Intellectual Property (IP) cores, including embedded hard & soft
processors, memory, Digital Signal Processing (DSP) and Input/Output (I/O) Transceiver
cores [Xil05]. For instance, the latest Xilinx Virtex 4 devices offer a variety of capabilities
that can be summarized as follows [Xil06a].

• Advanced system clock management with operating frequency over 500MHz

• Large and versatile memory resources (SmartRAM)

• Parallel connectivity including differential I/O (1+ Gbps) and single-ended I/O (600
Mbps)

• RocketIO transceivers (622 Mbps 10.3125 Gbps)

• Ethernet Media Access Controller (MAC)

• Embedded IBM PowerPC 405 Processor hard cores (450 MHz)

• Auxiliary Processor Unit (APU) controller

• Dedicated Ultra-high-performance DSP slices (XtremeDSP)

In addition, the Embedded Development Kit (EDK 6.3i) has wide range of IP cores
for realizing embedded applications using the Xilinx FPGAs [Xil06a]. To cite some,

• Soft processing cores in the form of MicroBlaze (32 bit RISC) & PicoBlaze core
(8 bit microcontroller), along with low-latency IEEE-754 compatible Floating Point
Unit (FPU).

• IBM CoreConnect Bus Technology infrastructure cores, including the OPB (On-chip
Peripheral Bus), PLB (Processor Local Bus) and DCR (Device Control Register).

• High value CoreConnect cores like EMAC 10/100/1000, PCI, UART 16450/550 etc.

• Wide range of interfaces and controllers for memories (BRAM, SDRAM and exter-
nal memory), timers, counters, UART and controllers for the OPB.

• Bus Functional Model Simulation (BFM).

• Base System Builder Wizard - generates system IP, example software application
code and simplifies creation of HW for any board.

• XMD - Xilinx Microprocessor Debug engine for MicroBlaze and PowerPC Ad-
vanced system clock management with operating frequency over 500MHz

15

• Graphical memory map manager

• ’Platform Debug’ support via integrated software (GNU gdb) and hardware debug-
gers (ChipScope Pro)

• Instruction set simulator for PowerPC and MicroBlaze

• Data2MEM - tool for loading on-chip memories

This presents an ideal environment for implementing embedded and System-on-
Chip designs including the multi-processors. Also, as discussed in the earlier subsection,
one of the important dimension of the future System-on-Chip design the ability to provide
reconfigurability. With the System-on-Chip capabilities, the latest FPGAs help to achieve
this end in a desired and satisfactory manner. FPGAs can be reconfigured according to
the changing needs of the system even at runtime (dynamic & partial reconfiguration), and
thus provide a versatile implementation platform. Tile based execution is one of the popular
approaches for task execution. The size and the granularity of the tiles can be defined by
the user according to the requirements.

Moreover, we have to contend poor scalability issue that haunts a shared-bus style
of system design.

1.7 Motivation & Overview of the Thesis

All of the factors explained in previous motivate us to adopt the Networks-on-Chip
of design for implementing System-on-Chip applications using the modern FPGAs. The
dissertation is developed, organized and discussed related to the issues that primarily come
into picture when SoC designs are implemented on FPGAs. Ideas explained in this re-
search, though being restricted to FPGAs, are equally pertinent and applicable for ASICs.

In an FPGA, area is available at a premium, and hence the on-chip communication
network should be as small as possible. This ensures that the maximum area can be uti-
lized by the user logic while maintaining the performance of the on-chip network. Also,
reduction in the logic blocks used in FPGAs has a direct impact on the power consumption
and the timing [SBKV05]. The central component of an NoC architecture is a router or the
switch element. Hence, it is prudent to make its area smaller. The on-chip network area
can be reduced in the following ways.

1. Using a simple router supporting complete functionality, without sacrificing the per-
formance [SBKV05].

16

2. Reducing the number of routers, without reducing the number of communicating
logic cores [SV06b].

1.7.1 Light Weight Router for FPGAs

As a first step, we implement a light weight router design customized for the Xilinx
FPGAs, which is capable of establishing multiple simultaneous connections between any
two channels of the various ports of the router. The router occupied only 352 Xilinx Virtex-
II Pro FPGA slices (2.57% of XC2VP30).

1.7.2 Multi Local Port Routers

With n available cores, the second strategy cannot be used, unless the cores are
grouped together and made to share the same Network Interface (NI). This will complicate
the system integration process and create severe performance bottlenecks.

To solve this critical issue, we propose to use the second strategy by introducing an
architectural change to the router element to handle multiple design cores, simultaneously.
The modified router architecture has more than one Local Port (LP), defined as Multi Local
Port Router (MLPR) [SV06b]. The Network Interface is same as that of a traditional NoC
architecture, with the change made only to the header packet and the decoding logic. In
essence, we propose the idea of having a Network within a Network (explained in detail in
Chapter 4).

We exhaustively analyze the merits of Multi Local Port Routers, including area &

power reduction, decrease in transit time & congestion, and most importantly, optimization
of the bandwidth, resulting in an efficient NoC design. We highlight certain issues that play
a role in the use of the proposed approach for NoC design in FPGAs, which are equally
pertinent and applicable to Networks-on-Chips realized on ASICs. Overall, the Multi Local
Port Routers are observed to improve the performance of the NoC system [SV06b].

1.7.3 Efficient NoC architectures having MLPRs

A Network-on-Chip system comprising Multi Local Port Routers represents a com-
plex design environment. Hence, generation of an efficient Network-on-Chip configuration
is a great challenge. Further, obtaining the optimal mapping of cores is no longer a simple

17

nearest neighbor or shortest path finding algorithm. As a proof-of-concept, we present an
exhaustive search algorithm (optiMap) that maps the input task graph optimally, minimiz-
ing the overall execution time. This is an exhaustive search algorithm and is guaranteed
to find the optimal NoC configuration, and hence a formal proof is redundant. We test
the algorithm on a wide variety of benchmarks and report the results. For a given set of
constraints and objectives, the algorithm finds the optimum number of routers, the config-
uration of each router, the optimum mesh topology and the the best possible mapping of
cores onto the NoC architecture. optiMap effectively automates the NoC design cycle by
finding the optimum mesh topology and the final mapping for the given task communica-
tion graph.

1.7.4 Heuristic Fast Mapping Algorithm

The search space of the optiMap algorithm exploded for Network-on-Chip systems
with larger number of communicating cores. This is because of the expensive configuration
generation step (discussed in detail in later sections). The huge memory requirement (for
generating the configurations) and large CPU runtime (several hours) render the use of
optiMap infeasible for larger System-on-Chips.

Hence, we present a fast mapping algorithm (cMap) for generating NoC architec-
tures using Multi Local Port Routers. The algorithm exploits the advantages offered by an
Multi Local Port Router and starts by defining a minimum-dimension mesh. After the ini-
tial bandwidth-communication-cost based nearest-neighbor placement, the algorithm uses
a force-directed approach to expand the mesh iteratively, as the cost gets reduced. The
algorithm introduces the idea of Folding to improve the NoC design (Chapter 7).

Unlike the optiMap algorithm, the cMap algorithm is capable of handling task
graphs of any size, giving near-optimal results (NoC architecture & the best possible map-
ping) within a couple of seconds. We experiment the algorithms on wide variety of syn-
thetic & practical (including MPEG4, MWD, FFT and VOPD) benchmarks and exhaustively
analyze the results. The results indicate significant gains on multiple parameters including
area, performance and power. cMap effectively automates the Network-on-Chip design
cycle by finding the best MLPR-based mesh topology and the final mapping of the given
task communication graph.

18

1.7.5 Multi2 Router

Given the fact that multiple cores can be attached to a single router, as a natural
extension, we introduce capability to multi cast data packets in a traditional mesh based
Networks-on-Chip design. We present the architectural modifications necessary to incor-
porate the multicasting feature.

1.7.6 Energy Efficient Networks-on-Chip

The ability to multicast helps to reduce the number of data packets that flow in the
Networks-on-Chip mesh. The scenario of application mapping on to the NoC backbone
changes when multicasting is considered. We modify the optiMap algorithm and experi-
ment with a set of benchmarks. In addition to the performance gains, the results show a
drastic reduction in the overall power consumed.

1.7.7 Power Issues in Larger Multiport Routers

With respect the latency and area overhead, larger multi port routers remain the
undisputed choice and when dealing with larger bandwidth flow in the design of application-
specific NoCs, it is intuitive to initiate transfers as intra-port rather than inter-port. But,
there is absence of a clear picture with regard to the power efficiency of the larger multi
port routers. Hence, we perform extensive power and IR analysis on the multi port routers
and find the shortcomings in using larger multi port routers from an power efficiency angle.
There is an increase in the average power and also more IR drop violations are observed
with increased port count.

1.7.8 Handling Dynamic Task Structure

Modern System-on-Chips comprise of versatile and varied functional modules which
inter-communicate in a highly dynamic fashion, thereby, introducing varying bandwidth
constraints between various edges in the task graph. In such a scenario, an (near) optimal
topology and mapping generated based on the static task graph structure may introduce
severe bandwidth violations in a dynamic task environment. In order to better estimate
the bandwidth requirements and hence detect any possible violations, we present a heuris-
tic technique called dynaMap to find the NoC architecture requiring minimal bandwidth

19

guarantee (MBWG). Also, we analyze the impact of maximum port count on the MBWG
required. The results demonstrate the need for a highly application-specific NoC architec-
ture generation, catered to the task structure(s) at hand. The knowledge of the maximal
bandwidth variation across links is highly beneficial during the NoC design, as it can help
a great deal in preventing many unwanted surprises in terms of the bandwidth violations
created.

1.7.9 Extension to Multi-FPGAs

Finally, we explore and discuss the applicability of the router designs and NoC ar-
chitecture generation algorithms in an multi FPGA environment, having a set of devices in-
terconnected in a mesh topology. The topology generation and mapping algorithms require
minor modifications compared to ideas proposed related to MLPRs, whereas significant
architectural changes are necessary so as to reduce the latency, without any sacrifice in the
addressability of the entire System-on-Chip.

Despite the results and issues being based on FPGAs, the ideas proposed in this
research can be easily extended without loss of generality and applied to ASICs.

1.8 Research Summary

Emerging Platform-FPGAs with embedded soft and hard processors cores can be
used for System-on-Chip (SoC) designs. SoC systems represent a complex interconnection
of various functional elements. Exploiting the advantages of NoC in FPGAs for imple-
menting SoC designs is an active area of research. Despite the presence of the hard core
blocks in the form of multipliers and processors, the amount of configurable logic is highly
limited, when compared to the design sizes that get implemented on FPGAs and hence the
logic area is at a premium in FPGAs.

In order to implement an efficient NoC architecture in FPGAs, the area occupied
by the network logic should be kept to a minimum. This ensures maximum area utilization
by the logic while maintaining the performance of the on-chip network. Also, reduction
in the logic blocks used in FPGAs has a direct impact on the power consumption and the
timing. Firstly, we achieve area reduction by designing a light weight router for FPGAs. A
router is the central component of a NoC and hence one way of achieving low network area

20

overhead is to have a light-weight router without sacrificing the performance. We design
a light-weight router (LiPaR) for NoCs implemented on FPGAs [SBKV05]. LiPaR is a
parallel router that can service five simultaneous routing requests at the same time (Figure
3.1). The router uses store-and-forward type of flow control and XY deterministic routing.
Two important optimizations are introduced to improve the router design. First impor-
tant optimization is achieved by performing a simple logical OR (instead of the expensive
Multiplexer-based implementation) of the control/select lines, thereby, gaining in area and
performance. The fact that at a given instant an input channel will request only one output
channel is exploited here. In the second optimization, the inter channel data transfer is
made to be governed by the empty status of the FIFO, thereby, removing complex decod-
ing logic. Thus, the empty condition is used to automatically trigger the end of transfer.
This optimization significantly reduced the size of the Finite State Machine (FSM) for XY
routing. Both the optimizations result in significant reduction of the number of slices used.
Also, the performance (frequency of operation) was improved and the power consumption
was reduced. The area overhead of LiPaR is only 352 Xilinx Virtex-II Pro FPGA slices
(2.57% of XC2VP30).

Then, we propose novel router architecture designs (Multi Local Port Routers and
Multi2 Routers) that provide ample opportunity to optimize the data traffic, thereby achiev-
ing improvement in both the power and the performance. This is primarily because of the
reduction in the number of packets flowing in the main Networks-on-Chip mesh. Also, in
this research work, we present efficient NoC configuration generation strategies.

Having achieved the objective of a light-weight and efficient router [SBKV05], we
reduce the network area overhead by reducing the number of routers. But, if n cores are to
be mapped, this strategy cannot be applied effectively, unless the cores are constrained to
share the same Network Interface (NI). But, this will only result in deterioration the per-
formance of the overall NoC system, due to bandwidth limitations. Hence, we propose an
innovative architectural modification to the single local port router (LiPaR) to handle multi-
ple logic cores, at the same time, without any performance or clock penalty. We implement
an improved Multi Local Port Router (MLPR) design having variable number of local ports
(Figure 1.8) [SV06b]. Advantages of such an approach are plenty, including bandwidth op-
timization, area reduction, ease of congestion, transit time reduction and power reduction.
We observe a 36% average area savings (maximum of 47.5%) on XC2VP30 FPGA and a
30% average performance gain by using MLPRS in place of traditional single Local Port
version.

21

2-LP Router

(6 parallel connections)
4-LP Router

(8 parallel connections)

Traditional

1-LP Router

(5 parallel connections)

Figure 1.8: Multi Local Port Router based NoC mesh

Mapping of cores onto such a non-traditional NoC architecture is a complex task
and hence we present a proof-of-concept algorithm (optiMap) for optimally mapping the
cores [SV06b]. OptiMap is an exhaustive search algorithm and finds the optimum NoC
architecture (& hence the formal proof is redundant). For the given system task graph and
the set of constraints & objectives, the algorithm finds the optimal number of routers, con-
figuration of each router, optimal mesh topology and the final mapping. The cost function
includes the overall execution time (taking queuing due to congestion in to consideration).
The algorithm is tested on a wide variety of benchmarks.

Because of the exhaustive search nature, optiMap requires large execution time and
memory (for generating all possible configurations). Thus, scalability issues make the use
of optiMap infeasible for larger systems. Hence, based on the insight and results from
optiMap algorithm, we develop a heuristic based mapping algorithm (cMap) [SV07a]. It
is a force-directed mapping strategy, which starts from the smallest possible mesh size and
expands along all four directions as the cost gets improved. In this approach, there is no
expensive configuration generation step. Also, the execution time is reduced to a couple of
seconds compared to the optiMap that took several hours.

Unlike the bus-based systems, the NoCs are handicapped in terms of versatile fea-
tures like broadcast (present in bus). This is due to the pair-wise data packet transfer that
happen in the traditional NoC having one core per router, thus, offering no scope for mul-
ticasting. In contrast, all the ports of an MLPR have the same mesh XY co-ordinate, thus,
providing an excellent opportunity to multicast to all the cores attached to the same MLPR.
Exploiting this fact, we present a novel & efficient MLPR design (Multi2 Router) that is ca-
pable of multicasting packets to multiple nodes, without any performance penalty [SV06a].
We modify the decoding logic to send the data packet only once, if the receiving cores are

22

North

West

South

East

LP 0

LP 1

LP 2

LP 3

LP 4

Figure 1.9: Multicasting Illustration in a 5 port Multi2 Router

mapped to the same Multi Local Port Router (Figure 1.9). In addition to the performance
gain, this approach significantly decreases the data traffic in the NoC backbone and provide
ample opportunity to reduce the power consumption considerably. In this context, NoC sys-
tem design can be used in conjunction with the tiled execution of cores in FPGAs [SKV04].
Utilizing the multicast capability, we present an energy-efficient NoC configuration gener-
ation approach (µMap), targeting data packet traffic reduction in the network [SV07b].

The NoC architecture generation algorithms that optimized different metrics in-
cluding latency and power consumption favor clustering of cores aimed to fewer number
of routers forming the NoC backbone. All the optimizations primarily target reduction in
overall packet count, which in turn results in lesser time and effort spent towards the com-
munication (packet switching) across the on-chip network. This scenario is achieved by
way of reduction in the number of routers (the best case being a single router), thereby, re-
sulting in fewer links forming the NoC topology. This presents a scenario of having routers
with increased port count. We attempt to identify the shortcomings in the use of large multi
port router from a power angle. The experiments show that when using large MLPRs, the
average power of the router increases dramatically, eventually diminishing the gains made
through overall packet reduction. In addition to the average power increase, larger port
count create several IR drop violations because of concentration of large switching activity
across the crossbar of the router [SV07c].

Architecture generation and core mapping assume a static level of data flow be-
tween the nodes of the task graphs and hence, an optimal configuration is generated for
the static data traffic pattern at hand. But, the modern SoCs are a heterogenous composi-
tion of cores, wherein traffic is generated between various cores at runtime, thus, making
the communication dynamic in nature. Taking these variations in the inter-communication
patterns and bandwidth requirements into account, we present technique to estimate the

23

Minimum BandWidth Guarantee (MBWG) required for a given topology. We show that
calculation of MBWG is essential in avoiding bandwidth violations across the various links
due the varying communication patterns. In the end, we elaborate on the applicability of
an Networks-on-Chip based system when extended to a Multi-FPGA based system design.
We identify the commonality in the ideas on an Multi-FPGA approach and also identify
the key issues to be tackled in order to seamlessly integrate multiple FPGAs. We leave the
issue open-ended while detailing the necessary architectural modifications and the changes
to the topology generation algorithms.

To summarize, the dissertation offers novelties in terms of the router architecture as
well as the topology generation and mapping strategies. Exploiting the inherent capabili-
ties and features of a multi port (multi cast) router, we present a set of algorithms targeting
various optimization metrics. Through extensive experimentation, we observe the possi-
bility of degradation in the power efficiency and creation of bandwidth violations, when
increasing the port count of a router. The proposed novel architectural methodologies will
serve as a step forward in the pursuit of an efficient Networks-on-Chip design, in terms of
area, performance and power.

1.9 Organization of the Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 presents a short survey detailing the terminology and approaches in-
volved in a Networks-on-Chip design. The readers who are familiar with Networks-on-
Chip design can skip this chapter to the following chapter.

Chapter 3 describes our initial effort in the pursuit of an FPGA-based Networks-
on-Chip. We propose an architecture design for a light weight router that can establish five
parallel connections simultaneously. The router occupies 2.57% of the Xilinx Virtex II Pro
(XC2VP30) FPGA and 0.4% in the Virtex 4 FPGA. The resource usage provides more area
for the user application logic.

Chapter 4 proposes the novel design architecture for the Networks-on-Chip design.
The key idea is to have have a router with more than one local port, giving rise to the Multi
Local Port Routers (MLPR). An MLPR is a marriage between router-based interconnection
networks and the switch-based interconnection networks. The proposed approach provides
many-fold advantages in terms of area, power, transit time, congestion and optimal mesh

24

design. Also, the design issues involved in the use of Multi Local Port Routers are discussed
in detail.

Chapter 5 presents the details of the experimental platform followed throughout
the thesis. We develop a set of eighteen synthetic benchmarks for experimenting with
the exhaustive-search based algorithms presented in later chapters. The need for synthetic
benchmarks is because of the scalability issues faced in doing an exhaustive search of the
configuration space.

Chapter 6 describes the structured approach to perform an exhaustive search for
finding the optimal NoC mesh having Multi Local Port Routers. The steps of the optiMap
algorithm are discussed in detail. The results clearly indicate the performance gains ob-
tained by the novel MLPRs.

Chapter 7 present a heuristic-based fast mapping algorithm (cMap) for finding the
near-optimal NoC mesh in a fast manner. The algorithm scales nicely with the increased
number of cores in the task graph and finds the NoC configuration within a couple of
seconds.

Chapter 8 extends and exploits the features of the Multi Local Port Router by in-
troducing the capability of Multicasting. We are motivated to introduce this modification
by the presence of high level of out-degree prevalent in the system task graphs. We dis-
cuss the necessary architectural modifications in detail. The proposed design bridges the
gap between the shared-medium and router-based networks in terms of versatile feature
availability.

Chapter 9 presents the design methodology to realize an energy-efficient Networks-
on-Chip. The optiMap algorithm is modified taking into account the multicast capability.
We observe a drastic reduction in the total number of packets, leading to the ease in conges-
tion in the data traffic. Moreover, the reduction in the packet hops translated to significant
improvement in terms of the performance and power consumption.

Chapter 10 presents the elaborate analysis in terms of the power efficiency in the
multi port routers. We experiment and present the intra-port power savings possible, when
choosing a particular port for mapping in a multi port router. Also, in spite of the improved
performance and area requirements, it is observed that larger multi port routers may not be
ideal when targeting a reliable (reduced IR drop violations) and low power Networks-on-
Chip.

25

Chapter 11 describes the need for handling the dynamic nature of task graphs
present in the modern System-on-Chips. We point out the need to consider the bandwidth
variation along various links in order to prevent violations, during the phases of topology
generation and mapping in an NoC. Towards this end, we present a heuristic algorithm
(which is an extended and modified version of cMap) to estimate the Minimum BandWidth
Guarantee (MBWG) required for a particular NoC architecture, thereby, helping the design-
ers to better predict the violations that may arise because of dynamic inter-communication.

Chapter 12 proposes design modifications necessary for seamless integration of
cores that are spread across multiple FPGAs. We discuss the features available in latest
Xilinx Virtex 5 FPGAs that help to realize efficient inter-FPGA transfers, optimizing per-
formance, power and effective bandwidth. The actual implementation details are suggested
as a possible future direction of work.

Chapter 13 summarizes the contributions of the dissertation, throwing highlight on
the novelty and usefulness of the various router designs and algorithms presented in this
dissertation. A balance between the RTL design and the mapping algorithms optimizing
various metrics, coupled with the critical analysis on the pros and cons of the multi port
routers, provide well-rounded coverage to the dissertation topic.

Chapter 14 presents a discussion about the possible directions in terms of the future
work. It is shown that there is enough scope for improvement both in the design of routers
as well as improved Networks-on-Chip architecture generation algorithms.

26

Chapter 2

Networks-on-Chip Background

Traditionally, in a System-on-Chip, interconnection between different Intellectual
Property cores is achieved by means of a shared-bus. In the GigaBits era of System-on-
Chip design, with increasing communication demands and constraints, interconnection of
cores using shared-bus architectures present communication bottlenecks [Sem06], affecting
the overall system performance. Also, they do not present a scalable solution to existing
problems in the communication [Axe03].

2.1 Networks-on-Chip

On-chip point-to-point distributed interconnection networks or Networks-on-Chip
(NoC) have been proposed as a new design paradigm to solve the communication bot-
tlenecks in modern day System-on-Chip designs [BdM02, DT01]. Unlike the shared-bus
approach, the key idea in an NoC design is to implement interconnection of various Intel-
lectual Property (IP) cores using on-chip packet-switched networks [KJS+02].

The concept of on-chip interconnection networks is actually borrowed from the well
established field of computer networks, where the data flow takes place in terms of packets
between the various nodes (computers). The interconnection between the computers are
effected by means of router nodes. The source node or computer packs the data to to com-
municated into large chunks of packets and addresses it to the destination computer. The
router has all the necessary intelligence and information to route the data packets properly.
These are also referred as macro networks.

Using the same analogy, the on-chip interconnection networks or the micro-networks

27

realize the communication between the various communicating modules by initiating packet
transfer through the switching elements or routers. In spite of the similarity, there are key
differences between the micro and the macro networks. They can be summarized as fol-
lows,

• Unlike the macro-networks, the micro-networks are greatly resource-limited. The
silicon real estate is costly and hence the associated area overheads cannot be ignored.
Also, they do not have the comfort of large buffer size and routing tables (like a
macro-network) for the network backbone. But, the wires available to interconnect
modules are abundant in an micro-network [DT01, VDC03].

• The micro-network design involves a number of parameters like performance, power,
least transit time, signal integrity, etc. This is in contrast to macro-networks where the
goal is to achieve reliable packet delivery with guaranteed performance and hence the
means of achieving them is assumed to be available without any resource restriction.

• Further, the data communication in an NoC is expected to be lossless. Hence, the
Networks-on-Chip needs to have both Guaranteed Throughput (GT) and Best Effort
(BE) for the data traffic involved.

• The micro-network design is highly application-specific, against the macro-networks
which are generic in nature.

• The micro-network topology is static as they are the networks implemented and fab-
ricated on silicon.

2.1.1 Components of a micro-network

An on-chip interconnection network is made of the following components that are
interconnected to form a System-on-Chip.

• Routers

• Network Interface (NI)

• Design Core or Processing Element (PE)

28

Routers

Routers are the switching elements that are responsible for forwarding of data pack-
ets such that they reach the destination. In the traditional mesh-based NoC, a router has four
directional ports (North, East, West and South) and a local port to which the design cores
is attached. For communication topology other than the regular mesh, the number of direc-
tional ports can vary. The source design core forms a data packet which is addressed to the
router to which the destination core is attached. The data packet is made to hop across the
routers using proper routing mechanisms [GG02].

Network Interface

The Network Interface (NI) is a wrapper or interface between the router and the
design core. It supports communication along two directions, performing two distinct set
of operations. First, it collects the data from the design core, packetizes, adds the header
(having the destination address) & an optional tail information, and pushes the packet into
the attached router, thereby, inserting the packet into the network. Second, it receives the
packet from the attached router (when the packet is actually addressed to it),

Design Core

The design core can be any heterogeneous core including a microprocessor, DSP
core, microcontroller, memory, input/output device controllers. These are often referred as
the Processing Element (PE). The design cores are totally abstracted from the actual pro-
cess of communication that is happening at the System-on-Chip. This property promotes
independent design of the design cores as Intellectual Property (IP) cores that are integrated
to support a platform-based system functionality [HJK+00, Axe03].

2.2 Summary of the Benefits & the Issues Involved

2.2.1 Advantages

The advantages offered by a Networks-on-Chip communication architecture are
summarized as follows,

• Reusability:

29

As discussed earlier, the Processing Elements are completely abstracted from the
fine details of the communication mechanisms. The sending and receiving of data
with reasonable quality of service is ensured by the communication backbone com-
prising of the routers. The designers are offloaded the burden of initiating different
communication that is necessary for the system operation. Moreover, the Process-
ing Elements, by themselves, are reusable in nature, provided they conform to a
common interface and synchronization mechanisms with the router network. Also,
the switching elements are generic in nature and the communication network can be
used with any conforming design core. Hence, NoC greatly promotes design reuse
and platform-based design that is necessary for the future system-on-chip.

• Scalability:

Networks-on-Chip communication backbone is made of point-to-point communica-
tion links that are basically distributed and independent in nature. New design cores
are added into the network along with a dedicated router having a unique address or
coordinate in the network. Now, the communication is just hopping of packets from
the source router to the neighboring router. There is no central arbitration mech-
anism of the communication backbone. This results in a communication architec-
ture whose performance is not constrained or degraded by the adding of Processing
Elements. This is the essential characteristic of a scalable and modular architec-
ture [HJK+00, Axe03].

• Predictability:

The architecture is highly modular and has regular geometry. Except for the clock,
power and ground wires, there are no global interconnects that span across the chip.
This leads to better electrical and physical properties of the network structure. Ac-
curate analysis and modelling of the system is possible, overcoming many of the un-
certainties that exist in the nanometer regime. Predictability is essential for reusing
the NoC platform for supporting various System-on-Chip applications.

• Heterogenous System:

If we view the arguments presented in reusability from a different angle, an NoC
system supports a heterogeneous system. Each Processing Element or the design
core is isolated from the rest of the System-on-Chip. Hence, it is great possible to
realize the individual components that can operate at varied frequencies and voltage
levels (for power-performance tradeoffs). This property will benefit and support the
idea of Globally Asynchronous Locally Synchronous (GALS) style of system design

30

[Cha84].

• Parallel Communication & Aggregated Bandwidth:

Since, the arbitration of the data flow is not centrally managed, but actually dis-
tributed among the network routers, an NoC structure is inherently parallel in terms
of operation. For example, in a n × n 2D mesh NoC, the total number of paral-
lel communications that can happen is n×n

2
. This increases with different network

topologies. This simultaneous data traffic results in an aggregated bandwidth that is
capable of satisfying the communication requirements of the future System-on-Chip.

2.2.2 Issues Involved

There are few issues that are to be contended with, when using a Networks-on-Chip.

• Area Overhead:

The additional of logic in terms of routers and the network interface adds to the area
requirements, which is quite significant. With more complex and advanced routing
techniques, the area of the router network increases. Any addition in logic directly
results in increased power consumption.

• Transit Time:

Data communication in terms of packet hops across the network routers takes con-
siderable number of clock cycles to accomplish data transfer. The number of hops
varies depending on the topology and the mapping of cores, which needs to be highly
efficient to optimize for performance.

• Network Contention:

Though the data transfer is distributed in nature, multiple data packets can contend
for a common link in the NoC topology. With increased data traffic, the network
contention problem only compounds. If the network design is inefficient and the
data traffic is not properly managed, in the worst case, the on-chip network can suffer
from problems including deadlocks and livelocks.

• Sub-optimal Resource Usage: In spite of the parallel communication and aggre-
gated bandwidth available, a proper mapping and design is necessary to exploit
the gains that is available. Hence, the Networks-on-Chip design tends to be highly
application-specific in nature in order to have high network resource utilization.

31

• Additional Design Effort:

The communication architecture, because of its application-specific nature, requires
additional design effort and time, compared to the well-established communication
backplanes like AMBA, STBus and Silicon Backplane. Additional wrappers are
necessary to make the existing shared-bus based IP cores to resolve the compatibility
issues. All these factors require re-education of NoC design concepts.

2.3 Description of a micro-network (Networks-on-Chip)

An On-chip interconnection network is described in terms of the interconnection
network topology, switching mechanism, flow control, routing, queuing (buffering) and
scheduling [DYN98, DT04].

2.3.1 Network Topology

Network topology is the arrangement and type of interconnection of the nodes in
the network. In simple words, it defines the various channels that are available for the data
transfer across the network. The topology is described by various parameters like node
degree, maximum hop distance, network diameter, channel width, bisection density, and
node distance. The various network topologies include 2D mesh, 2D torus, folded torus,
hypercube and fat-tree [DT04].

Each topology has its own pros and cons. In a fat tree, the complexity of the router
increases as we proceed down the levels and the irregular structure makes it layout in-
compatible. A 2D mesh is highly regular, but, there exists high traffic density near the
center of the mesh compared to the periphery and this creates problems like hot-spot cre-
ation and network contention. But, overall it is highly energy-efficient [BJM+05]. The
other topologies like hypercubes and k-ary n-cubes suffer and become impractical for a 2D
layout realization.

2.3.2 Switching Mechanism

Switching denotes the mechanism of moving data from a source to a destination
node. Circuit switching and packet switching form the two extremes of switching mecha-
nisms [DT04].

32

Circuit Switching

In circuit switching, for every communication between a pair of nodes, a connec-
tion is made which stays active for a fixed time. During this process, the channels remain
occupied for the entire duration and no other communication can take place along the oc-
cupied channels. Also, all the packets reach the destination in order and hence results in
the reduction of the complexity associated with the re-ordering of the packets at the des-
tination node. This kind of system has low delay and guaranteed bandwidths, but, suffers
from channel under-utilization, inefficient usage of bandwidth available and long time to
setup connections.

Packet Switching

In packet switching, data communication takes place in form of packets of variable
length. The packets have control information built into them in the form of header along
with data to be transported. Here, the packet transfer happens between the cooperating
routers, with no channel reservation along the path and independent routing decisions being
made along the entire path. Hence, the overall packet transfers happen asynchronously over
the network. There exists a possibility of the packets arriving out of order (depending on the
routing mechanisms) and hence may require extra effort to re-order them at the destination.
Packet switching provides the best effort service by efficient utilization of the resources.
The issues involved in this type of switching are congestion, increased transit time of the
data packets and the non-guaranteed bandwidth.

In short, achieving both Guaranteed Throughput (GT) and Best Effort (BE) traffic
is highly application-specific and requires considerable design effort to achieve optimal
results. Flow control helps to achieve a better GT/BE tradeoff.

2.3.3 Flow Control Mechanism

Flow control deals with the allocation of channel and buffers for the data pack-
ets as it travels from source to destination. Though, there are bufferless flow control and
circuit-switching variants, the buffered type of flow control are observed to be very effi-
cient [DT04]. The popular buffered flow control mechanisms are [Moh98] listed as fol-
lows. The former two are packet-buffer flow control, while the latter two are flit-buffer
flow control.

33

• Store and forward

• Cut-Through

• Wormhole

• Virtual Channel

Store and Forward flow control

Store and forward is the simplest flow control mechanism. Here, each node along
the path receives the packet in its entirety, stores (buffers) it locally and forwards it to the
neighboring router along the path. Although there are certain buffer requirements depend-
ing on specific applications, store and forward does not reserve channels, and hence it does
not lead to idle physical channels [KS03]. The major drawback of the Store-and-Forward
flow control is the high latency that is proportional to packet size. The overall latency of a
packet is T0 = H(tr + L

b
), where H is the channel cycle time, b is the channel width and L

is the message length and tr is the cycle latency for a flit.

Cut-through flow control

Cut-through flow control is a slight variant of the store-and-forward flow control,
that overcomes the latency penalty by forwarding the packet as soon as the header is re-
ceived and resources (buffer and channel) are acquired, without waiting for the entire packet
to be received [DT04]. Hence, the latency reduces to T0 = H.tr + L

b

Worm-hole flow control

Worm-hole flow control is similar to the cut-through method, but here the channel
and buffer allocation is done on a flit-basis rather than packet-basis. Here, the packet is
divided into basic units called the flow control digits (flits). The header flit acquires the
virtual channel and buffer. The data portion or the body of the packet simply follow the
virtual channel already acquired by the header flit. Thus, The packets flow in a pipelined
fashion. The tail flit releases the acquired virtual channel. Wormhole routing demands
increased decoding logic in each router [Moh98]. Also, there is a great chance of blocking
in the network as the packet reserves the channel along the path, which are prevented from
being used by (other) following data packets. If the leading packet is blocked for some
reason, it blocks the path and this cascades to the successive packets.

34

For the set of applications we experimented with, we found that with heavy random
blockages due to shared paths, the performance of the wormhole routing is comparable to
the store-and-forward case.

Virtual Channel

Virtual channel overcomes the problem of blockages associated with the worm-
hole flow control. Here, there are several virtual channels (channel + flit buffers) for each
physical channel. In simple words, there are multiple paths available along each of the
physical channel. Hence, even if a particular virtual channel is blocked, alternate paths
are available for the following packets to flow without any blocks occurring. Unlike the
worm-hole flow control, there is no guaranteed bandwidth, as there exists a competition
between several virtual channels in acquiring the access of a particular link. Virtual channel
flow control can be costly in terms of the buffer numbers and the associated decoding &
arbitration logic.

2.3.4 Routing Mechanism

Routing refers to the decisions that are taken to forward the packets along appropri-
ate directions. The underlying requirement here is that every node in the network is capable
of communicating or sending data packets every other node in the network. Efficient rout-
ing techniques are necessary as they not only affect the transit time but also after the power
consumption and the congestion in the network.

Source vs Distributed Routing

Based on the routing decision taken, there are two distinct types of routing.

• Source Routing:

Here, the path to be taken is decided by the source node, the information about which
is made part of the packet. The path of the packet is hence statically allocated.

• Distributed Routing:

This is also referred as Table-Based routing. In this approach, the routing decision
are take by the individual routers depending on various parameters. In order to main-
tain the performance, the routing algorithm needs to take the decision in a very fast

35

manner. In addition, there are overheads associated with storing the global route
information at every node.

Deterministic vs Oblivious vs Adaptive Routing

The following is the classification based on the adaptability of the routing decision.
The mode of routing can be deterministic or adaptive or oblivious.

• Deterministic Routing:

Deterministic routing follows a fixed path based on the source and destination loca-
tions, but the decisions are independent. For example, in deterministic XY routing,
starting from the source node, the packet travels along the X direction (left or right)
until the packet reaches the column same as that of the destination node. Next, it pro-
ceeds along the Y direction (top or bottom) till reaches the destination router node.

• Oblivious Routing:

This is a variant of deterministic routing. In short words, the packet is first routed
to a random node in the network, from where it is routed to the destination node.
Here, the packets are routed with no regard to the network condition and represents
a tradeoff between locality and load balance.

• Adaptive Routing:

In this type of routing, the path taken is decided dynamically based on the network
conditions including congestion, wait time, and presence of faulty channels along the
path. Because of this, the path taken can be non-minimal. Adaptive routing is more
flexible, but requires global knowledge of the system for making dynamic routing
decisions. Also, the packets can arrive out of order and hence huge buffering space
at the receiver end is required for reassembly.

Minimal vs Non-Minimal Routing

This is a redundant classification based on the actual path chosen.

• Minimal Routing:

The actual path taken is the shortest between the source and the destination nodes in
terms of the number of hops involved.

36

• Non-Minimal Routing:

Here, the path is not minimal always and this is a direct consequence of the adap-
tive type of routing. If not properly managed, this could result in live-locks in the
network.

Critical problems: Deadlocks & Livelocks

• Deadlock

This represents the network state when packets are blocked because a leading packet
is waiting indefinitely for an event to happen, which in turn is blocked because of an-
other wait happening in the network. In short words, it is a cyclic-wait state occurring
in the network.

• Livelock

This is the result of a non-minimal and adaptive type of routing mechanisms. Here
the packets are made to flow (take different paths) based on the network conditions.
The data packet keeps flowing in the network actively, without reaching the destina-
tion.

• Indefinite Postponement

This is caused due to the fairness criteria. Here the packet waits for an event to
happen, which never does [KS03].

Some of the popular methods of routing that guarantee dead-lock and live-lock free
routing include XY, West-First, North-Last, and Negative-First routing [KS03]. XY-routing
is more popular due to its simplicity, low area overhead and guaranteed minimal route.

2.3.5 Buffering or Queuing

Queuing refers to the strategy of storing the packets received in case of output
contention. Different queuing strategies include output buffering, input buffering or both,
and central buffering. Usually, the type of buffering is a tradeoff between the latency, area
and the performance.

We use both input and output buffering, in LiPaR router (Chapter 3), to decrease
congestion. This is later converted to input buffering in the Multi2 Router (Chapter 8).

37

2.3.6 Scheduling

Scheduling refers to the arbitration algorithm used to service the requests. The
types include static and dynamic.

Static

In static scheduling, a fixed time is reserved for each input to communicate with
output. It has predictable latency and fixed bandwidth, but, it is inflexible.

Dynamic

Dynamic scheduling makes the arbitration decision at run-time and is more flexible
in the service of requests. Dynamic scheduling makes the decision at run-time. Invari-
ably there is request-grant kind of service mechanism in this type of scheduling. Dynamic
scheduling is a of fair scheduling scheme, with high flexibility, but with variable band-
widths and latency.

Scheduling algorithms include Least Recently Used (LRU), Maximum size Match-
ing, Maximum Weight Matching, Parallel Iterative Matching (PIM) and Iterative Round
Robin with Slip (SLIP) [MA98].

Detailed information on the various parameters related to a Networks-on-Chip is
available in [DT04, DYN98, KS03, Axe03].

2.4 Design of a Networks-on-Chip

2.4.1 Design Flow

A typical Networks-on-Chip design flow comprises of three main phases as follows
[Axe03].

• Network Backbone Design

• Communication Architecture Design

• Application Mapping Phase

38

Network Backbone Design

This phase is basically the infrastructure design stage, wherein various generic ar-
chitectural decisions are made. This is the preliminary step wherein the infrastructure of
the on-chip communication network desired is sketched in terms of the network topology,
the switches & buffers required, the channels of communication & related protocols and
the network interfaces. This is one of the critical phase as the decisions directly affect
the cost and the eventual performance of the system. Though regular grid-based topolo-
gies are preferred for their simplicity and controlled electrical parameters, at times, custom
topology generation is desired because of the varying Processing Element sizes. In this
context, floorplanning phase crops into the standard Networks-on-Chip design flow. The
width of the channels for effecting data communication greatly affects the bandwidth and
the performance of the system. This is because the packet latency in terms of the number
flits required is dependent on the channel width chosen. Further, when using the buffered
flow control strategies, the choice of the buffer size/depth has impact on many parame-
ters including the area, latency and ultimately on the system performance. The application
mapping phase is tightly coupled with buffer sizing problem as the traffic pattern or the
workload dictates the optimal buffer size.

Communication Architecture Design

This is the resource allocation phase exclusively catering the workload of the appli-
cation in hand. The decisions taken during this phases are majorly affected by the various
technological and implementational constraints. The dimension of the on-chip communi-
cation network and the types & sizes of the resources to be allocated and the contents of the
resources are primarily fixed in this phase. All the decisions are dictated by the feasibility
estimations based on the characteristics of the application and the resource, and also on the
function/architecture mappings [Axe03].

Once the communication architecture is in place, the eventual performance of the
on-chip network is affected by the routing (Section 2.3.4), switching (Section 2.3.2) and
flow control (Section 2.3.3) methodologies adopted in the routing elements. Adaptiveness
in the routing process creates the issue of out-of-order delivery, the re-assembly process
of which will degrade the performance of the system. Further, proper router design is
necessary to prevent deadlocks and livelocks.

39

Application Mapping Phase

Even after the choice of NoC communication architecture and the associated rout-
ing mechanism, the eventual performance of the overall micro-network is dependant on the
application mapping process. In this phase, the application, that is typically represented
as an annotated system task graph, is mapped to the resources supported by the Network-
on-Chip backbone system. In other words, the different Intellectual Property (IP) cores
of a System-on-Chip are assigned to an appropriate router node of the on-chip network in
hand. This is a very important phase as the effectiveness of the application mapping will
determine the overall performance of the system. The primary goal here is to achieve maxi-
mum utilization of the bandwidth that is available across the network, while decreasing the
communication latency involved in the packet hops and reducing the congestion/contention
problems that is prevalent in a shared network.

Apart from the above mentioned phases, validation and verification of the system
needs to be done. The key idea here is to use the existing communication of the Networks-
on-Chip to feed test input to the Processing Elements at large. Since, we are looking
a platform-based integration of the system, the test methodologies must be sufficiently
adaptable for the heterogenous System-on-Chip environment consisting of microproces-
sors, storage elements and compute/data intensive DSP cores, etc.

2.5 Research in Networks-on-Chip

The purpose of this section is to present a holistic picture of the leading research
groups and works in the field of Networks-on-Chip design. The works that are pertinent to
the issues addressed are given in the respective chapters.

The issues related to the on-chip communication infrastructures like clock skew,
synchronization issues and related power and performance bottlenecks were brought to
limelight by the ITRS in its 2000 edition report [Sem06]. The problems with the global in-
terconnects and the shared-bus approach were highlighted by Dally et al [DT01]. They pre-
sented arguments discussing the need to adopt a radical approach in the way data commu-
nication is effected in a System-on-Chip environment. They floated the idea of routing the
packet, in place of the wires [DT01]. Hemani et al initiated the idea and need for research
on Networks-on-Chip [HJK+00]. At the same time, a high-level design point of view of
the new paradigm of Networks-on-Chip was presented by Benini and De-Micheli, wherein

40

they delineated the various details involved in an Networks-on-Chip design [BdM02]. As
one of the frontrunners, Sashi Kumar/ Axel Jantsch et al presented a Networks-on-Chip
architecture and design methodology [KJS+02]. They also present different approaches
for application specific mapping in Networks-on-Chip [LK03b, LK03a]. Some of the
important works related to the interconnection topologies include SPIN [SPI06, GG02],
CLICHE [KJS+02], SoCIN [ZS03] and OCTAGON [KNDR01, KND02]. SPIN has a fat-
tree topology, while CLICHE uses a 2D mesh topology. SoCIN uses a 2D torus topology,
while the Octagon [KNDR01, KND02] has an an eight router chordal ring interconnection
architecture intended to replaced the shared-bus. A honeycomb type of interconnection
topology is presented in [HJK+00].

There are a number of Networks-on-Chip prototypes from a number of research
groups involved in the NoC domain. These include the Æthereal project from Philips
[GDR05,ARG05], aSoC from University of Massachusetts, NoC design from Arteris Cor-
poration [Art06], Nostrum project from Royal Institute of Technology [Pro06] and ×Pipes
project [JMBM04].

Nostrum research project [Pro06] aims in developing a Network-on-Chip (NoC) ar-
chitecture and a corresponding design methodology, focussing on various communication
issues from the physical to the application levels. It is a packet-switched network with regu-
lar 2D mesh topology and adaptive & flexible routing, and offers best effort and guaranteed
latency traffic [MNTJ04].

The SPIN (Scalable Programmable Integrated Network) micro-network is a generic,
scalable interconnect architecture for System-on-Chip. Following is a short overview of the
SPIN project [SPI06]. A SPIN micro-network consists of three VLSI macro cells, which
included a router (routing packets) and two VCI compliant wrappers (interfacing the SPIN
network with the subscribers like processors, coprocessors, memories, etc).

The adaptive System-on-Chip (aSoC) research project at University of Massachusetts,
presents a single-chip interconnect architecture that provides scalable data transfer along
with capability to reconfigure with the change in application-level communication pattern.
An important aspect of the architecture is the support for compile-time schedule commu-
nication.

The Raw Architecture Workstation (RAW) is a simple, wire-efficient multicore ar-
chitecture that scales with increasing VLSI gate densities. The Raw architecture’s goal is
to provide performance that is comparable to that provided by scaling an existing architec-

41

ture, but that can achieve orders of magnitude more performance for applications in which
the compiler can discover and statically schedule fine-grain parallelism. RAW prototype
is composed of a set of interconnected tiles, each of which comprises of instruction mem-
ory, a switch-instruction memory, data memory, ALU, FPU, registers and a programmable
switch.The tiles are interconnected by two static (compile time route specification) and
two dynamic (run-time routes) 32 bit fully-duplex on-chip networks. The data transfer is
effected by means of regular packet hops [Raw06].

The Silicon Networks (SlicNets) [Sli06] at Carnegie Mellon University aims to
provide a communication-centric SOC design and the related support for analysis and opti-
mization of novel on-chip communication architectures. Essentially, the research explores
the possibility of having a scalable and flexible communication schemes via the Network-
on-Chip (NoC) approach, that includes the entire spectrum of the NoC design (communi-
cation infrastructure design, communication paradigm and application mapping).

×pipesCompiler project aims at generating application specific NoC for heteroge-
nous multiprocessor SoCs. A library comprising of parameterizable soft macros of the
various building blocks is available to quickly realize NoC designs. The authors show a
custom-defined (non-tile) approach to realize Networks-on-Chip architectures on ASICs.
The non-tiled approach is justified by the presence of non-uniform sized cores. The Paris
and SoCIN project present a parametric and scalable Networks-on-Chip design [ZSS04,
ZS03]. Also, the Hermes project and RaSoC router present methodologies for developing
efficient soft core routers [ZKS04].

The Æthereal NoC project presents a Networks-on-Chip architecture that provides
guaranteed services (such as uncorrupted, lossless, & ordered data delivery, with guar-
anteed throughput and bounded latency) in order to realize robust SoCs [GDR05]. A
commercial implementation of the Æthereal NOC is presented in [SDN+06], wherein the
dedicated interconnect of the companion chip of the high-performance Philips PNX8550
(Viper2) SOC, is replaced by an Æthereal NOC [GDR05, ARG05]. The PNX8550 Viper
platform is a television System-on-Chip based on the Philips’s Nexperia Home platform
[Phi03, Phi04, Phi02], that is used by a variety of TV vendors.

Apart from the architectures and design methodologies, there are several simulators
which are required to evaluate various network architectures and application mappings to
realize optimal performance. Some of the generic simulators include OPNET [OPN06],
OMNET++ [Var06], Network Simulator (NS-2) [FV00, ns2] and RSIM [HPRA02]. The

42

simulators that are targeted towards a Network-on-Chip environment include Orion [WZPM02],
NoCSim [Whe06], PoPNet [Sha06], retargettable simulation platform [ZM04] using Lib-
erty Simulation Environment [VVP+02]. The emerging hardware modelling language Sys-
temC [Sys06] and SystemVerilog support both modelling and simulation of the hardware
designs, thus providing an ideal co-design environment. A performance analysis model
using a over-simplified router of an NoC is presented in [Har05], wherein various parame-
ters are measured by event-based simulation for a poisson distributed random traffic, using
queuing-theory. It must be noted that there is comparison with any available bus imple-
mentations. Simulators for modelling shared-bus and NoC using the concept of Operation
State Machines is presented in the PhD thesis [Zhu05]. The collaborative work of this the-
sis [Bha06] presents a comparison of single-port and multi-port NoCs with contemporary
buses implemented on FPGAs, wherein event-driven simulator is used to determine the
performance parameters of both NoC and bus.

The discussion presented so far is by no means a complete research overview of the
field of Networks-on-Chip design. In the interest of space, we do not present the specific
research papers dealing with router design and routing strategies, testing methodologies
and various application-specific synthesis techniques. Research in this particular problem
area is still in its nascency, wherein researchers are trying to apply the established test
methodologies to suit the Networks-on-Chip design environment and hence, a great deal
of work is required in the research area of Networks-on-Chip. The specific research papers
that have a direct relation to this thesis are discussed in the respective chapters.

43

Chapter 3

Light Weight Parallel Router (LiPaR)

Present day technology for ASICs supports Networks-on-Chip designs which can
have 100 million gates on a single chip. The latest FPGAs can support only about 10

million gates to accommodate all logic and the associated routing. In order to implement
a competitive NoC architecture in FPGAs, the area occupied by the network should be
kept to a minimum. This ensures that the maximum area can be utilized by the logic
while maintaining the performance of the router network. Reducing area also reduces the
power consumption. In this chapter, we present a parallel router which can service five
simultaneous routing requests (the maximum possible) with minimum area overhead.

3.1 Related Work

The proposed router is designed to be used in a reconfigurable computing plat-
form. Area limitations of an FPGA based device demand that the router be of small size.
Although there are a number of ASIC based router implementations, we restrict our discus-
sion of the related work to FPGA-based implementations only. Marescaux et al. [MBV+02]
present the first working implementation of a NoC based system on FPGAs. Their system
has scalable 2D-Torus, XY blocking, hop-based and deterministic routing. The packet size
has 16 data bits and 3 control bits. It has two virtual channels each operating at 40MHz.
Their switch takes 446 slices on a Xilinx Virtex XCV 800. The main drawback is that it is
a 2D torus formed using 1D-routers. This creates a serious bottleneck in the traffic as it has
to go through a linear structure of 1D-routers. They also extended their work to a highly
scalable network on chip for reconfigurable systems later in [BMN+03].

44

In [KS04] the authors present an energy-efficient NoC for heterogeneously tiled
reconfigurable SoC. Their system was based on the Chameleon System, which is a tiled
organization, composed of heterogenous components. FPGA is on of the heterogenous
component. It has a 5 × 5 wormhole router with virtual channels along each direction.
There is a central arbiter which establishes necessary connections between various chan-
nels. The bottleneck occurs at the central arbiter, which follows a round-robin approach of
service. Theoretically, there are five possible parallel connections out of the total of twenty
five combinations in a five port router. If the arbitration scheme is central, it leads to per-
formance loss because of queuing of the requests from all ports at one central place. Also,
their switch uses 1832 slices in a Virtex-II FPGA [Xil06a], which is more than 10% of the
total FPGA area. This large area usage results in two drawbacks: First, it is not energy
efficient and second, it will put severe constraints on the total available area for the user
logic.

Zerferino et al. [ZKS04] present a soft-core router called RASoC for NoC. The
VHDL core of RASoC is synthesized in the Altera family of FPGAs [Alt07] using the
Embedded Array Blocks (EABs) or the FlipFlops to build the FIFOs. They report that it
consumes 486 Logic Cells (slices in a Xilinx family FPGAs [Xil06a]) for a 4-flit buffer
having an 8-bit implementation, which is quite high. Each of their input and output chan-
nels has four distinct blocks and uses a large area decoding logic. Zerferino et al. [ZSS04]
also presented a parameterizable interconnect switch for NoC. They also present a highly
modular and parameterizable VHDL core, which is based on SoCIN [ZS03]. Zerferino et
al. also present a highly modular and parameterizable VHDL core for switch [ZS03]. They
report the area overheads based on Altera FPGAs. We obtain the beta version of their core
and synthesize it on Xilinx ML310 platform with a Xilinx Virtex-II Pro FPGA [Xil06a].
We observe that this implementation consumes approximately 11% of the target FPGA
area, which is quite high.

As explained earlier, such a high area penalty puts severe constraints on the avail-
able area for logic in a practically large systems, and the power consumption also increases.
The only comparable work to ours is reported by Moraes et al [MdMM+03]. Some draw-
backs of their work are the following. First, their packet implementation has two header flits
which is quite expensive. Although they claim simultaneous connection can be achieved,
it cannot happen in parallel, as all the requests go to a central arbitration logic and a cen-
tral XY-Routing logic, which oversees the establishment of connections. With increased
amount of traffic and sequential service of the requests by the arbitration logic (and associ-

45

ated XY routing), the performance of the system may be severely degraded.

Also, the buffers are present only at the input channels. If the router wants to
send the data out, then receiving buffer is available only at the input of neighboring router.
So, if that receiving router’s input buffer is blocked/occupied, then the current router’s
input channel is also blocked. If there is an output buffer present, the input channel can
empty the contents into the corresponding output buffer, thereby, making the input channel
available to communicate with the other output channels, without any blocks. The absence
of output buffer creates a handicap in terms of the performance of the router. So, such
an optimization is not profitable, as it hampers performance. Also, their arbitration logic
is quite large and goes through several states plus there is a four clock cycle delay before
a new routing request can be entertained. This also affects the performance of the router.
Their router has a counter running at each of the channels to keep track of the packet length,
further aggravating the problem. They report consuming 316 Virtex-II FPGA slices for a
router with flit width of 8 bits and buffer size of 8. Projecting the number for a buffer depth
of 16 at each input channel would increase the number of slices. Our paper removes most
of the handicaps cited above with a low area overhead and guaranteed performance without
any deadlocks or livelocks.

3.2 Router Architecture

Area is at a premium on an FPGA and therefore, the communication network should
be as small as possible. Hence, a router, which is a central component of any NoC, must
also be small. In this Chapter, we present a light-weight router for an NoC implemented on
FPGAs, which can support five parallel connections simultaneously.

A router or a switch is an key component in any NoC based design. A router has a
set of ports, namely, Local(L), North(N), East(E), South(S) and West(W), to communicate
with the local logic element and the neighboring routers. It receives the incoming packets
and forwards them to the appropriate port. Buffers are present at various ports to store the
packets temporarily. A control logic is be present to take routing decisions and arbitration
decisions. The router uses store-and-forward type of flow control and XY deterministic
routing. We implement two important optimizations: we reduce the size of the Finite State
Machine (FSM) for XY routing and we perform a simple logical OR of the Select/Gnt lines,
which significantly reduces the number of slices. The area savings have significant impact

46

on the performance and the power consumption of the router.

In this work, we design a light weight, energy efficient, parallel router. The mo-
tivation is to reduce the area which also reduces the power consumed. We choose one of
the popular methods of buffering called store and forward. The motivation behind choos-
ing such a scheme is to have the simplest possible decoding logic, thereby, reducing both
area and power. Establishment of connections is made automatically without any complex
decoding logic. The router switches with a set of inter-communicating ports, define the
physical layer of the NoC system. There are two types of ports to establish communica-
tion, namely, the Input and output port. Communication is done by use of two handshake
signals (Req/Ack) between the co-operating ports (output and input). This forms the data
link layer. Dynamic establishment of connections and routing of packets constitutes the
network layer. Here, the cross-point matrix is a very important component, the controls of
which are maintained by the output channels. The transport layer is taken care by the Net-
work Interface of a NoC system. Inside the router, the Gnt/Ack signals are used to access
the FIFO, without the need of any explicit signals. The empty status signal of the FIFO is
used to indicate the end of communication. A detailed explanation is given below.

3.2.1 Packet Description

Packet specification is very simple in our router. In this work, we have used the
FIFO available in Xilinx LogiCORE [Xil06a]. The depth of FIFO is 16. Since we have a
store-and-forward scheme, it makes sense to have a larger buffer size. The flit size is fixed
at 8 bits. The first flit is always the header having the coordinates of the destination router.
With 8 available bits, we can support a maximum of 16× 16 NOC system. The flit size has
to be increased if we want to build a bigger system. With the available FPGAs, building a
16× 16 system is itself impractical because the NoC system would occupy more than 50%

of the total FPGA area (even if a single router takes only 0.2% of the total FPGA area) and
there will be less area available for the user logic.

In this work, we fix the number of X and Y bits at 2 each. Hence, it can support
a maximum of 4 × 4 NOC system. The remaining 4 bits are reserved to implement High
Level Protocols (HLP). We are building an advanced router prototype, incorporating HLP,
as a part of our future work. There is no trailer flit and hence the maximum data size is
120 bits per packet (for the FIFO of depth of 16), which in practical terms, would suffice
communication between cores. If there is a requirement for bigger packet size, we can

47

XR

YR

Input
Channel

Output
Channel

In
pu

t
Ch

an
ne

l

O
ut

pu
t

Ch
an

ne
l

Input
Channel

Output
Channel

In
pu

t
Ch

an
ne

l

O
ut

pu
t

Ch
an

ne
l

Input
ChannelOutput

Channel

CLK RST

XR_in
YR_in

Ld_Reg

n

n

Req_E_in
Ack_E_out

Req_E_out

Data_E_in

Ack_E_in
Data_E_out

n n

n

n

Req_W_in
Ack_W_out

Req_W_out

Data_W_in

Ack_W_in
Data_W_out

n n

Re
q_

S_
in

Ac
k_

S_
ou

t

Re
q_

S_
ou

t

Da
ta

_S
_i

n

Ac
k_

S_
in

Da
ta

_S
_o

ut

n

n

Req_L_in

Ack_L_out
Req_L_out

Data_L_inAck_L_in

Data_L_out

Crossbar

Re
q_

E_
in

Ac
k_

E_
ou

t

Re
q_

E_
ou

t

Da
ta

_E
_i

n

Ac
k_

E_
in

Da
ta

_E
_o

ut

Figure 3.1: LiPaR - Router Architecture

easily build one by increasing the FIFO buffer provided by Xilinx LogiCORE [Xil06a].

3.2.2 Implementation of the Router

Figure 3.1 shows the block-level diagram of the proposed router. The router has
three main blocks, namely the Input Channel, Crosspoint Matrix and Output Channels
(Figures 3.2, 3.3 and 3.4). The input and output channels are the two unidirectional chan-
nels of communication to buffer the data when sending and receiving the data, respectively.
The crossbar switch is a full crossbar that can establish connection between the any input-
output channel combination by setting the select/control signals of the Multiplexers (MUXs)
and Demultiplexers (DEMUXs) that form the crossbar. More than these components, we
have two registers inside every router to store the X and Y coordinate information, which
is used to identify the router in an NoC mesh.

Input channel

There is one input channel at each port, each running its own control logic. Each
Input Channel has a FIFO of depth 16 and data width of 8 bits and a Control Logic which
has been implemented as a FSM. The input channel (refer 3.2) accepts request from other
neighboring router. On receiving the request, if it is free, it will acknowledge the request.
The first flit is the header and following flits constitute the data. It will accept data as long

48

Input Channel

ReqNL
ReqEL
ReqSL
ReqWL

Input Channel

XR YR CLK RST

ReqIn DataIn AckIn

FIFO

GntNL
GntEL
GntSL
GntWL GntL

FSM Controller

XY Routing

Figure 3.2: Input Channel of the proposed router

as the request signal is held high. The previous router’s output channel ensures that the
request line is held high until it empties the packet of data, being accepted by the input
channel. The input channel sets the acknowledge line high, as long as there is a transfer
taking place (indicated by request line). When the transfer is complete, the request and
acknowledge lines go low in sequence. The packet of data received from the previous
router is stored locally in the FIFO thereby implementing a store-and-forward dataflow.
Next the control logic reads the header of the packet and using XY Routing (described later)
decides which output channel is to be requested for sending the packet out of the router and
sends the request to that output channel. It is to be noted that each of the input channel
is running an independent FSM and hence can initiate five possible parallel connections
at the same time. Once the input channel gets a grant from the requested output channel,
the control bits of the crossbar switch are set appropriately by the granting output channel.
An important optimization is done here by performing a simple logical OR (instead of
the costly Multiplexer-based implementation) of the Gnt and DEMUX select lines, thereby,
gaining in area and performance. The fact that at a time only one output channel will be
requested by an input channel is exploited here. The inter channel data transfer is also
governed by the empty status of the FIFO, thereby, removing complex decoding logic.
Empty condition automatically triggers the next transfer. The pseudo code of the FSM at
the output channel is given in Algorithm 1.

Crossbar switch

The Crossbar switch (refer 3.3) is a made of a set of Multiplexers (MUX) and De-
multiplexers (DEMUX) having an interconnection allowing all possible connection between

49

CrossBar
Switch

De
m

ux
se

lN
L

De
m

ux
se

lE
L

De
m

ux
se

lS
L

De
m

ux
se

lW
L

M
ux

se
lL

M
ux

se
lN

M
ux

se
lE

M
ux

se
lS

M
ux

se
lW

InL
InN
InE
InS
InW

OutL
OutN
OutE
OutS
OutW

De
m

ux
se

lL
De

m
ux

se
lN

De
m

ux
se

lE
De

m
ux

se
lS

De
m

ux
se

lW

Figure 3.3: Crossbar switch of the router

the 5 input and 5 output channels. The output channel while granting the request of an in-
put channel configures the MUXs and DEMUXs of the cooperating input and output channels
thereby establishing the connection between them for the transfer of the packet.

The select signals are driven by the output channel FSM to setup the link with there
respective input channel which has requested the transfer. The MUXs are placed at the input
channel end of the crossbar to enable them to send the data to any of the output channels.
But in cases of the north and south port input channels, connections to the east and west
port output channels are not required as we are using XY type of routing. Hence optimized
MUXs with fewer combinations were used. At the output channel side the DEMUXs are
placed to enable them to receive data from any of the input channels. Again since we
are using XY type of routing the DEMUXs towards the east and west output channels can
be optimized similarly. Here also since at a time there can be communication between
one input and one output channel only we can use logical OR function to implement the
select signals of the crossbar MUXs and DEMUXs to save area. Once the communication has
been completed the output channel releases the MUXs and DEMUXs by resetting their select
signals.

Output channel

There is one output channel (refer 3.4) at each port which has an 8-bit FIFO of
depth 16 and an control logic (FSM) making arbitration decisions. The output channel gets
requests from the different input channels and and grants one using Round Robin Arbiter

50

Output
Channel

ReqNL
ReqEL
ReqSL
ReqWL

GntLN
GntLE
GntLS
GntLW

DemuxselNL
DemuxselEL
DemuxselSL
DemuxselWL Output

Channel

MuxSelL

Datain

ReqOut DataOut AckOut

CLK RST

FIFO

FSM Controller

RR Arbiter

Figure 3.4: Output Channel of the router

(RRA) (explained in following paragraphs) and sets the control bit lines of crossbar switch.
It accepts the packet into its FIFO as long as the sending input FIFO is not empty thereby
providing a simple decoding logic. When transfer is complete the crossbar switch controls
are reset. FSM then initiates the process to send the data into neighboring router using
handshake mechanism. Empty status of its FIFO triggers the next inter-channel transfer.
The pseudo code of the FSM at the output channel is given in Algorithm 2.

Two important algorithms are part of the FSM of each router. One is the XY Rout-
ing algorithm which is used to route the packets so that they hop and reach the destination
router. Second is the Round-Robin Arbiter (RRA) used in the output channels to arbitrate
and grant access to the input channel.

3.2.3 XY Routing

In the Input Channel, once the FIFO is filled, the X-coordinate of the destination
router(say Hx) is compared with the locally stored X coordinate of the Router first to decide
on the horizontal displacement. If Hx > X then the packet is forwarded to the East port
of the Router, and if Hx < X then the packet goes out through the West port of the router.
If Hx is equal to X then the Y-coordinate of the destination router(Hy) is compared with
local Y coordinate of the Router to decide on the vertical displacement. If Hy > Y then the
packet is forwarded to the North port and if Hy < Y the packet is forwarded to the South
port. When Hy equals Y it indicates that the packet is at the destination router and so the
packet is forwarded to the local port.

An important optimization decision has helped save a significant number of slices

51

in the router. In XY routing, a packet is forwarded horizontally till the target column is
reached and is then forwarded vertically to the destination router. This means that there are
no request for the East or West output ports by the North or South input ports. This fact is
exploited and the FSMs of the mentioned output channels are simplified, as they need not
service the mentioned input ports. This translates to significant area saving and reduction
in number of clock cycles in servicing requests. This helps in the implementation of a light-
weight router, having area overheads at the minimum with acceptable level of performance.

3.2.4 Round-Robin Arbiter (RRA)

Round Robin Arbiter is implemented as FSM at each output channel. RRA arbi-
trates and decides which input channel is to be given access to that output channel when
many channels are requesting the same output. Generally, the output channel must follow
a priority based arbitration. If a fixed priority scheme is followed, the same input channel
may get access repeatedly. Hence in our arbiter, the priorities of the input ports are changed
dynamically taking the last input port serviced into account. The priorities are implemented
in a clockwise fashion i.e., if the last input port serviced was North, then during next ser-
vice, the priorities will be in the order of East, South, West, Local and North. It should be
noted that no clock cycles are wasted in our scheme as the grant is issued only if there is a
request from corresponding input channel.

Since each input channel has its own XY Routing FSM and each output channel
has its own RRA FSM, there is no latency in establishing the connections. This allows five
different requests to be granted simultaneously at the same time, when five requests come
for different output channels. This provides a significant improvement in the performance
of our router. It is to be noted that the router coordinates are stored in two registers inside
each of the router, which can be accessed from primary inputs. This facilitates easy recon-
figuration of the router coordinates in case of system change, compared to the hard-coded
coordinates, where one has to re-synthesize with new coordinates. We extend our work to
build a 1 × 2 and a 3 × 3 mesh-type router network (Fig. 3.5).

3.3 Synthesis Platform

We use the Xilinx ML310 board, which has a XC2VP30 FPGA [Xil06a], to func-
tionally verify the stand alone router and the NoC system. We use Xilinx ISE 6.2i [Xil06a]

52

Reset State:
Initialize the signals
Go to Wait-For-Request State

Wait-For-Request State:
if Current port is a Local Port then

Wait for data transfer request (REQ) from the Network Interface (NI)
else if Current port is a Directional Port then

Wait for data transfer request (REQ) from the neighbor router (NI)
end
On receiving request, go to Grant-Request State

Grant-Request State:
if Channel Buffer is Free then

Send GNT to the connected Output Channel that requested
Data transfer begins from the next clock cycle
Go to Receive-Data State

end
Receive-Data State:

Use REQ as the Write Enable (WRen) for the FIFO buffer
Receive data into FIFO till REQ becomes low
Go to Initiate-Data-Out State

Initiate-Data-Out State:
Based on header flit, initiate data transfer request to respective output channel
On receiving GNT , go to Push-Data-Out State

Push-Data-Out State:
Use GNT as the Read Enable (RDen) for the FIFO buffer
Push the data out of the FIFO till FIFOEMPTY becomes high
Use FIFOEMPTY high signal to indicate end of transfer
On completion, go to Reset State

Algorithm 1: LiPaR: Pseudo Code of the Input Channel FSM

to synthesize the system and Modelsim 5.8c [Men07] to simulate the model and generate
activity data of the Placed-And-Routed (PAR) model and the FloorPlanner tool of the Xil-
inx ISE 6.2i to implement placement constraints on the NoC system. The XPower tool of
the Xilinx ISE 6.2i is used to get the power estimate values of the designs.

The router core is implemented in VHDL in a modular fashion. The data width
and the FIFO depth are parameterizable. In this work, the data width is fixed at 8 bits (flit
size). The coordinates of the router are designed to be fed from primary I/O. Hence, it
is necessary to initialize the routers with their coordinate values at the start of simulation.
Alternately, it is also possible to hardcode the coordinate values. But, the former approach
gives more flexibility and is more suited in dynamic reconfiguration environment.

We use the Synchronous FIFO v4.0 from Xilinx LogiCORE. The parameters of the
FIFO are customizable and can be appropriately set to meet the system requirements. The
FIFO can be implemented as a Block-RAM (BRAM) or a distributed-RAM (dRAM).

The flow control mechanism is handshake based with minimal decoding logic. Both

53

Reset State:
Initialize the signals
Go to Decide-Priority-Of-Current-Data-Transfer State

Decide-Priority-Of-Current-Data-Transfer State:
(Dynamic Priority Scheme, that is statically decided) Based on the input channel that was serviced in the
last transfer, Decide the Round Robin Priority Scheme for the current data transfer
Go to Wait-For-Request State

Wait-For-Request-&Grant State:
if Multiple requests are received simultaneously then

Set the GNT for the input channel, according to the dynamic-fixed priority scheme decided in
previous step

else if Single request from an input channel then
Set the GNT for the requested input channel

end
Wait for acknowledgement (ACK) from the granted input channel
Go to Setup-Crossbar State

Setup-Crossbar State:
Set the select signals of the appropriate MUX and DEMUX to establish appropriate connection
Go to Data-Transfer State

Data-Transfer State:
Use ACK as the Read Enable (RDen) for the FIFO buffer
Use FIFOEMPTY high signal from the sending input channel to indicate end of transfer
When data transfer is complete (FIFOEMPTY =1), reset the crossbar connections and disable FIFO
and go to Initiate-Push-Data-Out State

Initiate-Push-Data-Out State:
if Current port is Local Port then

Request the Network Interface of the Local Port
else

Request the input channel of the neighbor router
end
Go to Push-Data-Out State

Push-Data-Out State:
Wait for ACK from the requested channel/ NI
Use ACK as the Read Enable (RDen) for the FIFO buffer
Push the data out of the FIFO till FIFOEMPTY becomes high
Use FIFOEMPTY high signal to indicate end of transfer
On completion, go to Reset State

Algorithm 2: LiPaR: Pseudo Code of the Output Channel FSM

the input and output channels are buffered, so as to minimize the blockages in a store-and-
forward buffering scheme. We employ XY routing, and the FSMs and decoding logic has
been optimized accordingly. The arbitration scheme is dynamic, as there is round-robin
arbiter implemented with a dynamic priority scheme.

54

R

R

R R R

RR

R R

L L L

LLL

LLL

Logic Core (L) attached to the
local port of the Router (R)

Figure 3.5: A typical 3 × 3 Mesh Network

3.4 Simulation and Results

We experiment the router design with various set of test cases, which are explained
as follows.

3.4.1 Best Case: Single Router without blocking

We initially test a single router by feeding random inputs in a fashion such that
there are no blocking taking place at any of the output channels. It is to be noted that
establishing five simultaneous connections in parallel is possible in this router. Figure 3.6
shows that case where five simultaneous requests are being serviced by the router. As the
inputs coming to the five input channels of the router, request five different outputs thus
the router is able to service them at the same time and send them out through the output
channels at the same time. As per the request the data from the local port (rin l) is being
routed to the west port (r out w), data from north (rin n) is sent to the local port (r out l),
data from east (rin e) goes to south port (r out s) and the data from west(rin w) is sent out
via the north port (r out n) simultaneously. Figure 3.6 five simultaneous connections are
established and serviced, when non-blocking inputs are present.

3.4.2 Worst Case: Single Router with blocking

Figure 3.7 shows the worst case when all the packets arriving at different input
channels simultaneously request the same output channel This leads to blocking as one
output channel cannot service all of them at the same time. Here the packets coming in via
the north, east, south and west channels request the same local output channel of the router.
So the Round Robin Arbiter at the local output port decides the order in which the input

55

Figure 3.6: Simulation of stand alone router (non-blocking inputs)

Figure 3.7: Simulation of stand alone router (blocking inputs)

requests will be serviced. In this case for the local output port the order of service is north,
east, south followed by west according to the priorities given in the Arbiter.

3.4.3 3 × 3 Mesh network

Figure 3.8 shows the routing of two packets of data, one going from the local port
of router 0 (l00) to the local port of router 8 (l22 o) and the other going from the local port
of router 8 (l22)to the local port of router 0 (l00 o). These are the two of the four longest
paths possible in the 3 × 3 matrix of routers. The other two longest paths are the cases
where there is communication along other diagonal.

3.4.4 Timing Analysis

The timing analysis for both the non-blocking and blocking types of inputs are
presented below. The frequency of operation of the router is found to be close to 95 MHz.

56

Figure 3.8: Simulation of the 3 × 3 mesh network

Packet Size single router 1 × 2mesh 3 × 3mesh

(bits) (# clocks) (# clocks) (# clocks)
16 10 20 50
32 14 28 70
64 22 44 110
128 38 76 190

Table 3.1: Timing report (stand alone router) - simultaneous non-blocking inputs

Best Case: Non-Blocking Style

In the case of the stand-alone router, each input channel requests a different output
channel. In the case of 1 × 2 mesh network, the time taken for the first flit to reach from
the input of one router to the output of the other router is given in Table 3.1. In the case of
3 × 3 mesh network, the time taken for the communication between the local ports of the
two farthest routers is given in Table 3.1.

Worst Case: Blocking Style

The packets coming in through the west, north, east and south requesting the same
local output port. So the inputs are serviced one by one in the order of their priorities
as decided by the Round-Robin Arbiter of the local output port. In this case the order of
service is north, east, south followed by west. Table 3.2 shows the number of clock cycles
before the first flit of data coming in at each input channel arrives at the output of the router.

57

Packet Size North East South West
(bits) clock cycles clock cycles clock cycles clock cycles
16 10 20 30 40
32 14 28 42 56
64 22 44 66 88
128 38 76 114 152

Table 3.2: Timing report (stand alone router) - simultaneous blocking inputs

The latency, L (in number of clock cycles) of our router is given in Equation. 3.1

L =

n∑

i=0

(6 + 2b + (Si − 1)(6 + b)) (3.1)

Here, n is the number of routers in the path, b is the number of bytes in the packet
and Si represents the service order number inside each router according to the arbitration
scheme. Note that the Si can vary between 1 and 4.

3.4.5 Synthesis Report

The results of synthesis of our router are given in Table 3.3. The BRAM-based
implementation of the router consumes 437 slices. After putting an area constraint, the
number of slices decreases to 352 (352 slices , 478 FF, 772 4-input LUTs, 10 BRAMs),
thereby, consuming only 2.57 % of the total Xilinx XC2VP30 FPGA area. This is smallest
possible parallel router with all the standard features. The synthesis report is presented in
Table 3.3. We also synthesize the 1×2, 2×2 and 3×3 network and they take 874(6.38%),
1748(12.76%) and 3934(28.72%) slices of Xilinx XC2VP30 FPGA, respectively, which is
reasonable and we have a lot of area available for the user logic.

3.4.6 Power Analysis

Initially, we experiment to calculate the power consumed by a stand alone router.
We feed random input vectors following uniform distribution. We simulate the post placed-
and-routed model using ModelSim 5.8c [Men07] and generate an activity file of design.
Then, we use Xpower [Xil06a] to calculate the average power taken by the router design.
It is noted that the router consumes 824.25 mW, out of which 797.5 mW is the quiescent
power. We then build 1× 2, 2× 2 and 3× 3 NoC systems. The aim is to obtain power data
for random input vectors. Care is taken to place each router module in the Xilinx Virtex-II

58

Component BRAM based dRAM based
(# Slices) (# Slices)

Router 437 489
Crosspoint Matrix 98 98

Input Channel 34 35
Output channel (L, N, S) 55 60
Output channel (E, W) 36 41

Input Channel Controller 13 13
Output channel controller (L, N, S) 34 34
Output channel controller (E, W) 15 15

Table 3.3: Synthesis report for a stand-alone router

Pro FPGA (XC2VP30) [Xil06a]. This is required as we have to ensure that routers are
optimally placed near the BRAM modules, while giving ample amount of space for the
logic to fit in, without any area wastage. This is achieved using the FloorPlanner tool of
the Xilinx ISE 6.2 tool set [Xil06a]. It is seen that the average power consumed by 1 × 2,
2 × 2 and 3 × 3 are 828.8mW, 844.58mW and 873.36mW respectively.

3.5 Conclusion

We present a light weight parallel router architecture for implementing Networks-
on-Chip on FPGAs. We introduce optimizations in XY routing and decoding logic thereby
gaining in area and performance. The header overhead is 8 bits per packet and the packet
size can vary between 16 and 128 bits. Each router consumes only 352 Xilinx Virtex-II
Pro FPGA slices (2.57% of XC2VP30). We also implement a 3 × 3 mesh network with a
total area overhead of 28% leaving 72% of the area available for the logic in a Virtex-II Pro
XC2VP30 device. We characterize the router and several mesh networks for power and
performance parameters. We show the functional validation of the stand alone router and a
3×3 mesh network. We also present the timing data for a stand alone router, 1×2 network
and 3 × 3 network. We obtain the area and power values of the design implemented on
Xilinx XC2VP30.

59

Chapter 4

Multi Local Port Router

In a Networks-on-Chip style of design, systems are built by integrating different
design cores in a preset fashion. Design Cores are the Intellectual Property (IP) cores
that are pre-built and verified for functionality, performance and other constraints. On-
chip communication networks offer several advantages including increased performance,
modular & structured design, and reuse of cores [BdM02, DT01, KS03, ALMM05]. At
the same time, there can be increased network area overheads, congestion, latency and
bandwidth limitations. So far, researchers have primarily concentrated in developing an
Networks-on-Chip (NoC) configuration and mapping that optimized a specific objective
[SC05, HM03a, BJM+05, KPN+05]. But, the inherent limitations of a shared network pre-
vent further optimization of the performance/power.

4.1 FPGAs & NoCs: Improving Area overhead

Exploiting the NoC style of system design for FPGAs in an active area of research
[NMAM05, MBD+05, NMV+04, BDM+04, MNM+04, MMB+03]. Though system design
using an FPGA is popular, area limitation is one of the major constraints that dictates
the choice of designs. Because of this premium availability of the user logic area, the
on-chip communication network should be as small as possible. This ensures that the
maximum area can be utilized by the logic while maintaining the performance of the on-
chip network. Also, reduction in the logic blocks used in FPGAs has a direct impact on the
power consumption and the timing [SBKV05].

The on-chip network area can be reduced by means following approaches.

60

• The router is the key component of an NoC architecture and is the major source of
the network area overhead. Hence, it is prudent to use a small and simple router
supporting complete functionality, without sacrificing the performance [SBKV05].

• The router count can be reduced while maintaining the communication backbone
between the existing communicating logic cores.

With n available cores, the latter strategy of area reduction cannot be exploited
unless the cores are grouped together and made to share the same Network Interface (NI).
Combining of core interfaces will further complicate the system integration process and
cause severe performance bottlenecks due to increased congestion.

To solve this critical issue, we propose to use the second strategy by introducing
an innovative architectural change to the router design to handle multiple design cores, si-
multaneously. The modified router architecture has more than one Local Port (LP), thus,
capable of servicing multiple cores at the same time, without taking a hit on the perfor-
mance.

4.2 Related Work

Premium availability of logic area in an FPGA based device demand that the router
of the on-chip interconnection network be of small size. Researchers in the reconfigurable
computing domain have tried to attack the area overhead issue of Networks-on-Chip imple-
mented on FPGAs, by coming up with small and efficient router designs [ZSS04,SBKV05,
ZKS04,ZSS04,ZS03,MCM+04,MdMM+03]. Sethuraman et al present the smallest router
called LiPaR for FPGAs [SBKV05]. LiPaR is a light-weight router (2.57% in XC2V P30)
capable of establishing parallel connections between various ports, simultaneously.

Apart from a prudential router design, an efficient NoC configuration and a proper
mapping of design cores are important. In the literature, we have different mapping strate-
gies for mesh networks [BJM+05,HM03a,LK03a]. An NoC synthesis flow is presented by
Bertozzi et al [BJM+05]. They present algorithms for mesh NoC architectures under differ-
ent routing functions and delay/bandwidth constraints. Hu and Marculesu present a branch-
and-bound algorithm to get a power efficient mapping of cores onto tile-based mesh archi-
tectures, while satisfying the bandwidth constraints of the Networks-on-Chip [HM03a].
Ascia et al use evolutionary computing techniques to implement multi-objective explo-

61

ration mapping in mesh based Networks-on-Chip, to obtain pareto mappings optimizing
performance and power [ACP04]. Lei and Kumar present a two-step genetic algorithm
to map the task graph minimizing the execution time [LK03a]. Chan and Parameshwaran
give a template based NoC generation methodology [CP04]. In many of the above works,
the authors use non-deterministic routing schemes to minimize cost. In this context, the
authors make an over-simplistic assumption about the router design & its capability and do
not exhaustively discuss the overheads involved in the design. Overheads in implementing
such complex routers and latency of the logic (that implements dynamic routing decisions)
cannot be taken for granted, as it affects the final system performance. Deterministic XY
routing is a simple routing scheme and yields a simpler decoding logic. Oblivious or adap-
tive routing schemes are observed to increase the overhead of the on-chip network as well
as the latency of connection establishment [DT04, SBKV05].

The only conceptually comparable work is reported in [ARG05]. Æthereal archi-
tecture supports multiple cores to be attached onto the Network Interface (NI) kernel ports,
but, not directly onto the router node. In spite of having multiple NI kernel ports, the sin-
gle link (which is time-multiplexed between different channels) between the router and NI
creates a large bottleneck, preventing simultaneous parallel connections from the router.
Further, the connections between NI kernel ports suffer from a lengthy transaction go-
ing through a scheduler. Using Æthereal as the base architecture, Hansson et al present a
scheme for combined mapping, routing and slot allocation [HGR05]. But, the fundamental
differences in the underlying architecture and the non-availability of router metrics make it
hard to achieve an apples-to-apples comparison.

To the best of our knowledge, this is the first work to propose the innovative concept
of using Multi Local Port Router design to improve the Networks-on-Chip design. As a
proof-of-concept, we present an optimal NoC configuration generation algorithm, for regu-
lar mesh architectures having Multi Local Port Routers (refer Chapter 6. Though an exhaus-
tive search algorithm guarantees to find the optimal NoC architecture, it presents scalability
and runtime issues. Hence, in this research, we present a heuristic mapping methodology
for handling system task graphs of any size and generating efficient Networks-on-Chip
configurations in a fast and efficient manner (refer Chapter 7).

62

4.3 MLPR Design

Multi Local Port Router is a modified router architecture where a router in the mesh
can handle more than one logic core at the same time. The MLPR is based on the LiPaR
design [SBKV05] (Figure 3.1), wherein the router header and the decoding scheme are
modified so as to serve multiple cores simultaneously, without any performance penalty.
The LiPaR is a parallel router that is capable of establishing between any channel-pair, si-
multaneously, without any additional latency. LiPaR is reported to be the smallest router
design for Xilinx FPGAs [SBKV05]. The customization for Xilinx devices is because of
the use of the efficient FIFO design cores (Synchronous FIFO v4.0) provided by Xilinx
LogiCORETM [Xil05]. Except for the FIFO part, the rest of design is universal in terms of
its applicability. Figure 3.1 shows the block diagram of the LiPaR router which is tradi-
tional single local port router. We refer the readers to [SBKV05] for a detailed architectural
description of the LiPaR design. Before we proceed with the modified architecture details,
we discuss other NoC parameters of the designs that were used in this research.

4.3.1 Topology

Design cores can be mapped onto an on-chip network following various network
topologies. Network topology refers to the arrangement and type of interconnection of
the nodes. Various network topologies include mesh, torus, hypercube and fat-tree [DT04,
DYN98, KS03]. Figure 3.5 shows a typical 3 × 3 mesh NoC. In an FPGA, the three-
dimensional form of network topologies will increase the routing complexity, using the
expensive global wires. Hence, two dimensional form of network topologies are preferred.
We choose the mesh network topology because of the following advantages,

• The two-dimensional mesh topology is reported to be efficient in terms of area and
power [BJM+05].

• Mesh topology uses less routing overheads and fewer # expensive global wires in
FPGAs [SBKV05].

• Pin limitations and memory requirements (for logic & buffer) in an FPGA cause the
IP cores to be spread across the FPGA. In a mesh style, cores can be distributed
effectively complementing the above requirement. Also, the block-RAMS (Xilinx
FPGA) used in the MLPR are distributed across the FPGA, and hence a mesh topol-
ogy is preferred.

63

North

South

Ea
st

W
es

t

Lo
ca

l 0

Lo
ca

l 2

Local 1

Local 3

Figure 4.1: 4 LP Router (having 8 Parallel connections)

4.3.2 Routing & Flow Control

We use the deterministic XY routing and store-and-forward type of flow control∗.
XY routing is one of the efficient forms of routing for a mesh based NoC [KS03]. It im-
poses lesser overhead on the part of a router, as the decoding logic for routing the packets is
simple. The popular flow control mechanisms like store-and-forward, wormhole or virtual
cut-through have their own pros and cons. Wormhole routing reserves channels with the
reduced buffer overhead for the routers, used in the on-chip network. But, there is a high
possibility of under utilized channels and wasted bandwidth in certain applications [KS03].
Virtual channel approach removes the limitations of the wormhole approach to some ex-
tent. Store-and-forward, though having some buffer requirements, can result in increased
channel utilization and a simple router [KS03, SBKV05].

4.3.3 Modified Architecture

For the proposed Multi Local Port Router architecture, we use LiPaR (having 8 bit
header with the X and Y coordinates) as the base system. We modify the header (Figure
4.3) to have two parts, namely, the Address co-ordinate (A) and the Local Port ID (LID).
The X and Y co-ordinates of the destination router are described in the address part (A).
The number of bits of LID (and hence A) varies with the maximum number of Local Ports
(LP) present in the router. There is no additional overhead on part of the header. Also, there
is no reduction in the total number of addressable cores. This scheme primarily aims to re-
place the inter-router-channel communication with intra-channel communication. Please

∗The MLPR architecture is a proof-of-concept router design. The methodologies and algorithms presented are
applicable & extensible to other popular schemes like virtual channel, the use of which will further enhance the quality
of results

64

0053 0E53 01C0 0000

01E9 303B 0F80 0000

01D9 44B0 01A8 0000

0078 0C78 0180 0000

01B9 0128 036C 0000

000F E00F 1830 0000

0179 1D19 2440 0000

005B 603B 1806 0000

00F9 1438 0440 0000

0000 01E9 303B 0F80 0000

0000 00F9 1438 0440 0000

0000 005B 603B 1806 0000

0000 01D9 44B0 01A8 0000

0000 000F E00F 1830 0000

0000 01B9 0128 036C 0000

0000 0078 0C78 0180 0000

0000 0179 1D19 2440 0000

0000 0053 0E53 01C0 0000

CLK

Rin_L0 0053 0E53 01C0 0000

Rin_L4 01E9 303B 0F80 0000

Rin_N 01D9 44B0 01A8 0000

Rin_L1 0078 0C78 0180 0000

Rin_E 01B9 0128 036C 0000

Rin_L2 000F E00F 1830 0000

Rin_S 0179 1D19 2440 0000

Rin_L3 005B 603B 1806 0000

Rin_W 00F9 1438 0440 0000

Rout_L0 0000 01E9 303B 0F80 0000

Rout_L4 0000 00F9 1438 0440 0000

Rout_N 0000 005B 603B 1806 0000

Rout_L1 0000 01D9 44B0 01A8 0000

Rout_E 0000 000F E00F 1830 0000

Rout_L2 0000 01B9 0128 036C 0000

Rout_S 0000 0078 0C78 0180 0000

Rout_L3 0000 0179 1D19 2440 0000

Rout_W 0000 0053 0E53 01C0 0000

Figure 4.2: Simulation of a 5 LP Router, showing 9 Parallel Connections
Local Port

ID
Router Co-ordinate

(A)

LID X Y

Figure 4.3: Modified Header Flit

note that there is no tail flit in the LiPaR design [SBKV05]. As a general case, an n-LP
router having 4 directional ports is capable of establishing n+4 parallel connections simul-
taneously. Figure 4.2 shows the simulation of a 5 LP router where 9 parallel connections
are established simultaneously.

Input Channel

The input channel is similar to the LiPaR, except for the additional decoding logic
to operate on the upper 4 bits to identify the local port and issue appropriate request signals
to a particular local port.

Crosspoint Matrix

The structure of the crosspoint matrix also remains similar to LiPaR, with changes
happening with regard to the sizes of the MUXs and DEMUXs used to establish proper con-
nections. There is a quadratic increase in the number of the interconnections, as from a
particular port (directional or local) connection can be established to any of the remaining
ports (directional or local). This is required to maintain the capability of initiating simulta-

65

neous parallel connections between any two ports.

Output Channel

Similar to the input channel, the output channel is very similar except for the fact
that the round-robin arbitration FSM operating at each of the output channel will have to
handle requests from larger number of ports.

4.3.4 Adapted Decoding Logic

The deterministic XY routing scheme is followed till data packet reaches the des-
tination router. On reaching the destination router, the LID part of the header is used to
identify the local port to which the packet is addressed. Based on the LID, the cross point
matrix (made of Multiplexer (MUX) and Demultiplexer (DEMUX)) select signals are appro-
priately set. There is no central arbiter and because of the distributed nature of channel
access, every channel-pair connection can be established in an independent and concurrent
fashion. Thus, transfer is initiated to the appropriate local port, when more than one local
ports are available. But for the extra decoding logic, to correctly select one among many
logic (referred interchangeably as local, hereon) ports, the rest are same as the traditional
mesh based NoC system. Since there is no clock penalty while establishing connections,
this approach does not degrade the performance.

Figure 4.1 shows the block diagram of a 4 Local Port (LP) router. As an example
case, we see the 8 connections between different input and output channels that can be
established simultaneously. In general, in an n LP router with 4 directional ports, n + 4

connections can be established simultaneously. This is possible because of the presence of
an arbiter at each of the output channels (no central arbiter) in LiPaR [SBKV05]. Because
of the distributed nature of arbitration of channel access, the connections can be established
independent of other channels. Please refer to [SBKV05] for an more details including the
dynamic priority scheme.

In addition, we implement an important design optimization on part of Network
Interface (NI) design. The Network Interface has a lookup table having the address co-
ordinate information of the destination core (which is mapped to a (the) local port of the
destination router). Assume that the task graph is mapped in a particular fashion on an
Network-on-Chip architecture. If a source node communicates to multiple destination
nodes (out-degree > 1), we give precedence in sending, based on the distance of the re-

66

ceiving node from the sender node (farthest first) in the mapped NoC architecture. This
increases the data pipelining rate in the network and serves to reduce the overall time by
overlapping the multiple transfers at the same time [SV06b]. There is no additional over-
head on part of the header of each packet and there is no reduction in the total number of
addressable logic cores. This scheme mainly aims to replace the inter-router-channel com-
munication with intra-router-channel communication. This scheme is applicable to other
types of flow control including the virtual cut-through and wormhole. Also, this scheme
provides an opportunity to optimize the buffer size of the channels in each router [OHM05].

4.4 Architectural Advantages

A Multi Local Port Router provide several advantages in an Network-on-Chip de-
sign, bolstering the merit of this research. We summarize the salient merits of an MLPR
below.

4.4.1 Bandwidth Optimization

An important advantage of an Multi Local Port Router is that it helps to optimize
the data traffic by adjusting the BandWidth (BW) along different links (paths). This results
in the improvement of the overall performance of the NoC system. Consider the task graph
and an example mapping (Figure 4.5(a)). If the BW limit along each link is ≤ 300, the
condition is violated at 3 different links (1-2, 2-3, 3-6). By using two 2-LP routers (Figure
4.5(b)), we are able to resolve all the bandwidth violations.

This is because the transfer between the Local Ports in an MLPR occur directly on a
point-to-point basis, and hence does not affect the bandwidth of the main mesh of the NoC.
Highly communicating nodes can be mapped onto the same MLPR, and hence reduces the
traffic of main mesh. This results in increased performance and reduced energy consump-
tion, in addition to other benefits. Thus, using this efficient architectural transformation,
we can optimize the NoC design according to the bandwidth requirements.

In short, an MLPR transforms the traditional design into an NoC with 2 levels
of network hierarchy, the normal mesh, and the point-to-point network (crossbar/pseudo-
circuit-switched-network) within a single router. As shown in Figure 4.4, each router node
in the NoC mesh can have different number of Local Ports (including the traditional single

67

2-LP Router

(6 parallel connections)
4-LP Router

(8 parallel connections)

Traditional

1-LP Router

(5 parallel connections)

Figure 4.4: Multi Local Port Router based NoC mesh

4

450
1 2 3

5 6

750

5050 350 50

6

250

1 23

4 5 50

(a) (b)

4

3

2

65

5050

100

100 300

1

250
50

Figure 4.5: BandWidth Optimization (in data units/s)

LP router). For illustration, the polygons shown are indicative of the number of the Local
Ports (= # polygon edges - 4 directional ports), and hence the number of parallel connec-
tions (= # LPs + 4) present in a router node. In Figure 4.4, the pentagon, the hexagon and
the octagon represent, respectively, the single, double and four local port routers.

4.4.2 Area Reduction

Figure 4.6 shows the Xilinx ISE synthesis results for the router versions having 1,
2, 3, 4 and 8 local ports. Multi Local Port Routers provide an average area savings of
36% (maximum savings of 47.5%) in Xilinx XC2V P30 Virtex II Pro FPGA (upto 9 LPs)
(Figure 4.6). The large area savings are due to the fact that for every single LP router that
is removed (and the corresponding logic core added to an MLPR), we save upon 8 channel
buffers (of 4 directional ports) and the associated decoding & routing logic. Furthermore,
we save on the routing area (interconnections) between single LP routers, which was not
directly available from Xilinx ISETM Place-And-Route (PAR) tool [Xil06a].

68

Xilinx Area Report (Buffer Depth/Width : 16/8)

0

1000

2000

3000

4000

5000

Local
 Ports (LP)

Ar
ea

 (S
lic

es
)

>1 LP 462 671 899 969 2397

1 LP 462 924 1386 1848 3696

1 2 3 4 8

 > 1 LP Using single router with 1, 2, 3, 4 or 8 local ports

1 LP Using 1, 2, 3, 4 or 8 single local port routers

Figure 4.6: Synthesis Results

4.4.3 Power Savings

Quiescent power occupies close to 94% of the total power consumption in LiPaR
[SBKV05]. Hence, area reduction in terms of the number of routers effectively reduces
the usage of logic slices, thereby, reducing the power consumption substantially. Also, the
power savings by optimizing data traffic is enormous [BdM01, SC05, HM03b, KS04].

4.4.4 Congestion Reduction

Networks-on-chip design using traditional approach can suffer in terms of perfor-
mance, if the inter-communication of cores is not streamlined and managed properly. Sev-
eral techniques have been proposed to map the cores on the NoC architecture [BJM+05]
[HM03a] [LK03a] [ACP04]. In the traditional NoC design, there exists serious bottlenecks
because of the sharing of the paths by different logic communications at the same time.

Congestion is an inherent problem in a shared medium [DYN98]. An efficient
mapping algorithm can improve the performance by reducing congestion, following the
intuitive way of nearest-neighbor first. But, the algorithms are handicapped in terms of
mapping as they have limited positions available, when mapping cores. As the data traffic
between the cores increase, there can be heavy congestion due to shared paths. Further,
congestion creates and compounds the problems of deadlocks/livelocks [DT04]. Since
Multi Local Port Router replaces an inter-router-channel transfer with an intra-channel
transfer, the number of shared path(s) is reduced, resulting in ease of congestion in the
network.

It is to be noted that if the task graph has bottlenecks at the receiving end (desti-

69

nation), even the multi-local port router will not be of much use. But, in any case, the
performance will be better than a single-local port design.

4.4.5 Transit Time Reduction

The transit time of the packets is one of the performance bottlenecks in an NoC. If
a proper network design and an efficient core mapping are absent, the performance of the
system can be very poor. A mapping algorithm will try to place cores so as to reduce the
number of hops. But, the final mapping may not be optimum. For example, consider a case
where a core is communicating with more than four cores (out-degree > 4). In such a case,
there are only four positions that can be reached in one router hop, in a n × n mesh. The
fifth receiving core, at the best, can only be reached in 2 router hops.

In a large System-on-Chip having several high-communicating cores, with limited
number of the nearby- locations available for the placement of cores, separation of cores
to farther locations is a possibility. In such a situation, the cores can be placed in the
opposite ends of the mesh in the worst case. This increases the hop count of the packets
(transit time), thereby, affecting the overall system performance. With use of Multi Local
Port Routers, the total number of hops can be significantly reduced. For every Local Port
combined, we do away with two complete channel hops, which reduces the number of
clock cycles by 2 × #flits [SBKV05]. This is because the inter-router-channel transfers
are replaced by intra-router-channel transfers and this effect is more pronounced in routers
having store-and-forward type of flow control.

4.4.6 Better Mesh Design

Multi-local port routers can be used to improve the NoC design by avoiding certain
unnecessary routers. In a mesh-based NoC, when there are odd number of logic cores
(hence odd number of routers), it creates a linear chain of routers giving rise to maximum
router hops. But, with use of Multi Local Port Routers, we can transform the NoC design to
use even number of routers, thereby, providing varied mesh topologies to experiment with
(Eg., Figure. 7.1).

Consider the case where 5 cores are communicating in a particular fashion (Figure
4.7). With traditional mesh design, we have either a 5× 1 or a 1× 5 mesh. In this scenario,
even with the best mapping, the communication between core 1 and 5 needs four router

70

1

432 5

5 x 1 Mesh

1

2

3

4

5

1 x 5 Mesh

1 2 3 4 5

Worst case Router Hops = 4

2 x 2 Mesh
3

4

5

2

1

Worst case Router
Hops = 2

Figure 4.7: Mapping of Five cores

hops (assuming that the cores 2, 3 and 4 are placed by nearest-neighbor strategy). In other
words, the worst case consists of 4 router hops. But, with the use of just one 2 LP router,
we can implement a 2 × 2 design, reducing the worst-case router hops to 2. This is a very
effective strategy and with large number of cores and complex interconnection patterns, the
savings will be much larger.

4.5 Design Issues

The proposed approach provides gain in terms of area, power and performance.
Intuitively, a single router with n local ports seems to be the best option. With a single n

Local Port router, we can do away with the directional ports, going away from traditional
NoC design. But, there are certain factors that have to be weighed carefully when choosing
Multi Local Port Routers in an NoC design. The issues that may limit the maximum number
of Local Ports in an MLPR based NoC design are discussed below.

4.5.1 Critical Path

Addition of more Local Ports to a single router results in increased interconnect
count/length and larger decoding logic. The cross-point matrix (having the MUXs and
DEMUXs) must handle increased number of interconnects. Further, the variation in the
size of MUXs/DEMUXs is highly non-uniform. For example, an 8-LP or 6-LP router can be
implemented in an efficient manner (8 × 1 MUX or a 4 × 1&2 × 1 MUX) than a 7-LP router
which has to either use a 8 × 1 MUX or a combination of larger number of smaller MUXs.
The mapping results observed of optiMap [SV06b] justifies this point. Thus, factors includ-
ing the MUX size & availability of MUXs of required size in CLBs (FPGA device specific
parameter) make the use of the larger MLPR designs inefficient compared smaller ones.

71

Also, this impacts the critical path of the router design, thereby, affecting the operating
frequency.

In FPGAs, because of the organization of Configurable Logic Blocks (CLBs), the
channels will be spaced and placed apart. This may increase the interconnect length of the
intra-channel communication, thereby, increasing the critical path of the router. Thus, the
performance of the router network may get impacted, because the operating frequency is
reduced, compared to the smaller design versions. The variation of operating frequency
between a 1-LP and 9-LP router is close to 15MHz which is significant [SV06b]. The
router designs are reported to be operating close to 90MHz. With increased local port
count, we can expect a larger variation.

4.5.2 Buffer Requirements

Buffers at various channels of the router use the block-RAMs (bRAMs) available
in the Xilinx XC2V P30 Virtex II Pro FPGA. The bRAMs are distributed across the FPGA
fabric. Consider the case where a set of bRAMs are sufficient to implement a k-local port
router and there are no contiguous bRAMs available. In such a situation, any additional port
will mean that the bRAM from the next available set will have to be used. This increases
the interconnect length.

Also, there is a limit up till which one FIFO can be synthesized using only a single
bRAM available in Xilinx FPGA devices. That is, we can get a FIFO version upto certain
depth and width. If we try to increase the depth and/or width of the FIFO, then that version
of the FIFO has to make use of another bRAM from the FPGA. Since, there are limited
number of bRAM resources available in an FPGA device,

Hence, one has to be very judicious in the FIFO selection for the final router(s),
therefore, the NoC design. Also, cores that require high memory transfer are better placed
near the bRAMs available in the FPGA. This will form a placement constraint and hence
limit the use of higher local port routers. Hence, the buffer requirements and its availability,
places an upper bound on the number of local ports that can be added to a single router,
without affecting the performance.

72

4.5.3 Input-Output (I/O) Constraints

There are limited number of I/O pins in an FPGA. External I/O requirements of the
cores will dictate the physical placement of the core. This in turn affects the placement of
the router and its configuration. If a core is placed in one corner of the FPGA due to the
I/O constraint and the associated router for the core is a multi-local port router present at a
farther place in the FPGA, it leads to unnecessary increase in the interconnect length. This
has a negative impact on the performance. This impact is more pronounced, if this path
has high bandwidth requirements. Also, because of the use of long/global wires, the power
consumption increases (due to higher capacitance switching). This effectively places an
upper bound on the number of local ports that can be added.

4.5.4 Routing Resources Congestion

A larger Local Port router requires larger number and complex form of intercon-
nects (quadratic increase in the number of interconnects inside the crossbar). With the
area/placement constraints, this may create problems for the FPGA Place-And-Route (PAR)
tool. For a 9-LP router, PAR was successful by the Xilinx ISE [Xil06a], with increased
synthesis time. FPGA’s have limited routing resources. A router with numerous local ports
places a big constraint on the synthesis tool. A cross-point matrix (with MUXs and DEMUXs)
implements many-to-many interconnections. There is a limit on the number of lines that
can be drawn from a component (say, a multiplexer to the channel in all the ports) in an
FPGA. Hence, the synthesis may fail for a router design with numerous local ports, if an
area constraint for the router is placed. This forms another constraint on the number of
local ports in a router.

4.5.5 Logic Requirements

Area is at a premium in an FPGA device. We have to accommodate as big a logic
core as possible inside the reconfigurable fabric. IP cores are made available with certain
dimensions and hence has to be effectively placed in the available CLBs of a reconfig-
urable device. Alternatively, the logic cores can be forced to fit in one of the few available
spots adjacent to a router, using placement constraints. Arbitrary addition of local ports
to a router may cause the placement of the logic cores infeasible, which would have been
possible otherwise with smaller router designs. Hence, the aspect ratio requirements of the

73

logic cores put a constraint on the NoC design, at large. This, in turn, affects the available
choice of routers.

4.5.6 Arbitration

Our modified router design has an arbiter at each of the output channels and there
are no extra cycles wasted for arbitration. The access grant of an output channel is given
inside a single FSM state (if-then-else construct) and hence has a fixed round-robin
service scheme. To be fair, this round-robin structure is changed in the current arbitration
cycle, based on the port granted access in the previous cycle. For example, if Local Port 1
was granted access in the previous transfer cycle, it (LP1) will get the least priority (i.e.,
polled last) in the current transfer cycle. Thus, the service order is changed (coded as nested
FSMs), giving rise to a revolving round-robin structure. Even this new scheme may not be
totally fair, if multiple input channels are requesting the same output channel. Here, since
the amount of wait time of each request is not taken into account, the (fixed) service order,
in the current arbitration cycle, will not preferentially grant access to the input channel that
has been waiting for a longest period of time. Alternately, a scheme addressing the wait
time of the requests will result in a more complex and larger router.

4.5.7 Address Utilization Factor

LiPaR uses just a 8 bit header for a maximum payload of 120 bytes. With the 8

bit header (in case of single local port routers), we can address a maximum of 16 × 16

NoC system and can get the desired type of mesh (square or rectangle). But, consider the
case where there are a maximum of 8 local ports in a router. This will use 3 bits of the
header. We have 5 bits remaining, thus, removing the possibility of a square mesh. Thus,
for a square mesh, the # bits of A must be even, in order to get equal # bits for X and
Y . In other words, the # bits of LID must be a multiple of two (# Local Ports must be a
multiple of four). Hence, for a desired mesh dimension, a constraint on the number of local
ports is created. Also, the # bits of A will determine the maximum dimension of the NoC
system. Theoretically, we can map equal number of cores similar to a system having only
1-LP routers. In order to achieve this, same size MLPRs must be used in every node in the
mesh, i.e., LID address space in each router must be utilized fully.

Based on the above factors, we investigate the alternate router architecture with

74

multiple local ports against the traditional NoC implementation. Apart from critical path
constraint (that directly affects the operating frequency), others dictate the upper bound on
the number of local ports that can be used. We form a cost function and the set of constraint
files incorporating all the above parameters and experiment with a variety of benchmarks
(discussed in Chapter 5).

4.6 Scope for Reducing the Latency

The idea behind buffering at both input and output channels is to avoid a packet
waiting at an input channel from preventing the following data packets that share the path
through the same input channel. The solution here is to push the data packet to the output
channel (from where it leaves the router), by which any future waiting will not prevent the
input channels of the router being blocked (through which there are other potential data
transfers possible).

It is evident that with the use MLPRs, the size of the NoC mesh is considerably
reduced. To restate what was mentioned earlier, the connections happen more frequently
as intra-router-channel connections in place of the traditional inter-router channel connec-
tions. Hence, it is intuitive to avoid buffering at both input and output channels. Hence, a
low latency router is possible by having just the input channels buffered. The key point to
be noted here is that now the connections are established between the various input chan-
nels, in place of the earlier MLPR version where the connections happened between an
input-output channel pair. Removal of output buffers leads to the change in both the input
and output FSMs (refer Algorithm and). This is explained in detail in []. The latency of
the new low-latency router is described by the equation

L =

n∑

i=0

(3 + b + (Si − 1)(3 + b)) (4.1)

Here, n is the number of routers through which the packet hops, b is the number of
flits per packet, the term 3 refers to the constant latency that is caused because of the arbi-
tration algorithm, and Si is the service order number defined by the arbitration algorithm.
In an n Local Port router, for a given ports, requests can come from the remaining (n+3)
ports (including directional and local) and hence, Si can vary between 1 and (n+3). Note
that because of output buffering the latency according to number of flits is now b instead of
2b. Also, the constant latency factor has come down from 6 to 3.

75

Reset State:
Initialize the signals
Go to Wait-For-Request State

Wait-For-Request State:
if Current port is a Local Port then

Wait for data transfer request (REQ) from the Network Interface (NI)
else if Current port is a Directional Port then

Wait for data transfer request (REQ) from the neighbor router (NI)
end
On receiving request, go to Receive-Data State

Receive-Data State:
Use REQ as the Write Enable (WRen) for the FIFO buffer
Receive data into FIFO till REQ becomes low
While data transfer is in progress, based on header flit, initiate data transfer request to respective output
channel
On completion of transfer, wait for grant (GNT) from requested output channel
On receiving GNT , go to Push-Data-Out State

Push-Data-Out State:
Use GNT as the Read Enable (RDen) for the FIFO buffer
Push the data out of the FIFO till FIFOEMPTY becomes high
Use FIFOEMPTY high signal to indicate end of transfer
Go to Wait-For-Request State

Algorithm 3: Pseudo Code of low latency router Input Channel FSM

4.7 Conclusion

We present a novel approach of incorporating routers with multiple local ports in a
regular mesh based Networks-on-Chip design in FPGAs. We find that MLPRs provide a
host of advantages, especially reduction in area and transit time of packets in the network.
We analyze the merits and the constraints involved in using such a design methodology. As
evident from the discussion, the advantages of an Multi Local Port Router can be exploited
in order to create a high-performance router design and hence, more efficient Networks-
on-Chip architectures.

76

Reset State:
Initialize the signals
Go to Wait-For-Request State

Wait-For-Request-&Grant State:
if Multiple requests are received simultaneously then

Set the GNT for the input channel, according to the dynamic-fixed priority scheme
else if Single request from an input channel then

Set the GNT for the requested input channel
end
Wait for acknowledgement (ACK) from the granted input channel
if Current router is Destination Router then

Request the Network Interface of the destination Local Port
else

Request the input channel of the neighbor router
end
On receiving ACK, go to Setup-Crossbar State

Setup-Crossbar State:
Set the select signals of the appropriate MUX and DEMUX to establish appropriate connection
Go to Data-Transfer State

Data-Transfer State:
Use ACK as the Read Enable (RDen) for the FIFO buffer
Use FIFOEMPTY high signal from the sending input channel to indicate end of transfer
When FIFOEMPTY of the sender input channel becomes high, reset the crossbar connections and
disable FIFO and go to Wait-For-Request-&Grant State

Algorithm 4: Pseudo Code of O/P Channel FSM

77

Chapter 5

Experiment Setup

A typical System-on-Chip (SoC) design is described as a task communication graph.
The application is described as a Directed Acyclic Graph G(T, E) (referred to as Task
Graph hereon), where T represents the vertices (tasks) and E is the set of directed edges
describing the precedence, the dependence, the timing and the bandwidth constraints in the
task graph. Nodes in a task graph represent independent units of computation. Parallel
branches represent parallel code sequence of the algorithm/system. All parallel computa-
tion structures can be represented as task graphs. Task graphs cannot represent control flow
information such as loops. In fact, all the control and loop structures are abstracted inside
the node in the form of IP core. If a loop structure cannot be implemented within a node,
then the loop is unrolled in space using redundant copies. However, Most applications,
including Fast Fourier Transform, Discrete Cosine Transform (DCT) and Auto Regressive
Filter, can be described in the form of task graphs.

2 3 4

1

5

9

6 7 8

2 3

6

1

54

7 8 9

1 2

6

5

43

7

8

9

2 3

6

1

54

7 8

9

In (bs1) Out (bs2) Fork-Join (bs3) Mean-Value
Analysis (bs4)

Figure 5.1: Basic Task Graphs [KA96]

78

Basic – 2
(b2)

Extended – 1
(e1)

Extended – 2
(e2)

2

4

8

1

6

3

9

7

5
2

4 8

1

6

3

7

9

5

34

7

1

5

8

6

9

2

3

2

4

1

6

8

5

97
Basic – 1

(b1)

Figure 5.2: Benchmark Set 1

Packed – 2
(p2)

Packed – 3
(p3)

Packed – 4
(p4)

Packed – 1
(p1)

6

4

7

1 2 3

8

9

5

6

4

8

1 2 3

7

9

5
6

4

8

1 2 3

7

9

5

6

4

8

1 2 3

7

9

5

3

4

7

1

5

8

6

9

2

Random – 2
(r2)

Figure 5.3: Benchmark Set 2

Parallel – 2
(pa2)

LU Decomposition
(lu)

Laplace Equation
Solver (les)

Parallel – 1
(pa1)

32 4

1

6
7

5

9

8

32 4

1

65

8

9

7 3 6 7

1

4

8

5

9

2

2 3

6

1

4

8

5

7

9

2 3 4

1

5

8

6 7

9

Random -1
(r1)

Figure 5.4: Benchmark Set 3 (lu,les [KA96])

79

5.1 Benchmarks

Kwok and Ahmad [KA96] use a set of different task graph types for studying vari-
ous scheduling algorithms for multiprocessors, including Out-Tree, In-Tree, Fork-Join and
Mean-Value-Analysis. Figure 5.1 shows the basic graph structures [KA96]. These basic
task graph types represent high level task structures that are commonly encountered in par-
allel applications. We use a tool called Task Graphs for Free (TGFF) [DRW98] to generate
the basic task graphs having nine nodes (bs1, bs2) by fixing the in-degree, out-degree, and
dependence width/depth. The fork-join (bs3) and mean-value-analysis (bs4) graph struc-
tures are manually created, as TGFF was not capable of generating these graph structures.

In order to generate the rest of the benchmarks, we write a C++ program that takes
in the set of basic task graph structures that were already generated and outputs an applica-
tion task graph, G. The application task graph G is formed by a random combination of the
basic graph structures, by varying the dependence degree, the width and the depth across
different levels of nodes. It is to be noted that most of the application task structures can
be generated using the combination of the basic graph structures and hence the program
generates a variety of the system task graphs. We set the upper limit on the number of tasks
in the graphs to nine and develop a set of eighteen synthetic benchmarks (including the 4
basic graphs). We fix the number of nodes at 9 because it represents a 3 × 3 NoC system,
a typical case. But, most importantly, the scalability and runtime issues of the optiMap
algorithm make the use of benchmarks with more than nine nodes infeasible (discussed in
detail in Chapter 7). We analyze this system with 9 single local port routers, against the
new scheme.

The optiMap algorithm presented in Chapter 6 explains the strategy to find an op-
timum mapping in the new scenario involving Multi Local Port Routers (discussed in pre-
vious Chapter). Figures 5.2, 5.3 and 5.4 shows the benchmark set that was generated using
our tool. We omit the specific details of the nodes and edges of each of the benchmarks
due to space limitations. The benchmarks b1 and b2 represent the simple graph structures,
whereas e1 and e2 have large out-degree. Benchmarks p1 - p4 represent packed struc-
tures [DRW98], while r1 and r2 are two random cases. Benchmarks pa1 and pa2 have
high degree of parallelism. LU Decomposition (lu) and Laplace Equation Solver(les) rep-
resent the practical examples [KA96]. The set of eighteen synthetic benchmarks cover a
wide variety of graph types encountered in multiprocessor and System-on-Chip applica-
tions. For experimentation purposes, we assume equal execution times (defined as k clock

80

cycles) for all nodes in the graph (communication time from Network Interface to logic is
also abstracted into this lumped time) and equal bandwidth constraints (50 data units/s) for
all the edges in the task graph. Additionally, we test the cMap algorithm on the 4 widely ex-
perimented practical benchmarks (MPEG4, VOPD, MWD, FFT). The FFT benchmark
has 15 nodes and the other 3 benchmarks have 12 nodes. We refer the readers to [KA96]
and [JMBM04] for the details (task structure, bandwidth) on these 4 benchmarks.

5.2 Experiment Platform

The ML310 board from Xilinx R© Inc. is used to functionally verify the various
designs of the stand alone router and the NoC system. The board has Virtex II ProTM FPGAs
(XC2V P30) [Xil06a]. The buffers for the router are implemented using the efficient FIFO
design cores (Synchronous FIFO v4.0) provided by Xilinx LogiCORETM [Xil05]. Xilinx
ISETM 6.2i is used to synthesize the designs and ModelsimTM 5.8c [Men07] is used to
simulate the model and generate activity data of the Placed-And-Routed (PAR) models.
Placement/ Timing constraints are input using the FloorPlannerTM tool of the Xilinx ISETM

6.2i. Power estimates are obtained from the XPowerTM tool of the Xilinx ISETM 6.2i.

The mapping algorithms (discussed in detail in following Chapters) were coded in
C++/STL and were executed on a SunBladeTM 1000 workstation having dual processors
operating at 750MHz and 2GB RAM. The average execution time of the optiMap and
µMap algorithm varied between 5 and 6 hours. The large execution time is due to the fact
that the algorithm does an exhaustive search of a very large design space (refer Chapter
6), to find the optimum NoC configuration. The cMap algorithm took a couple of sec-
onds (4 seconds for 15 node FFT) to arrive at the near-optimal NoC configuration. This
small runtime is highly suited for a dynamic reconfiguration environment involving online
placement of tasks.

5.3 Conclusion

We discuss the experimental setup and framework adopted throughout the thesis.
Because of scalability issues and lack of standard benchmarks for System-on-Chip design,
we present a method to generate synthetic benchmarks that is described by a task graph.
The node in a task graph represents an IP present in a System-on-Chip and the edges deter-
mine the data transfer happening between the nodes (IPs), described by the bandwidth of
data transfer.

81

Chapter 6

Optimal NoC Configuration Generation

Generation of a Networks-on-Chip configuration, described by the topology and
the mapping is a great challenge. In this chapter, we present an algorithm which maps the
input task graph optimally, minimizing the overall execution time. This is an exhaustive
search algorithm and is guaranteed to find the optimal configuration and hence a formal
proof is redundant. For a given set of constraints and objectives, the algorithm finds the
optimum number of routers, the configuration of each router, the optimum mesh topology
and the the best possible mapping of cores onto the NoC architecture. The algorithm effec-
tively automates the NoC design cycle by finding the optimum mesh topology and the final
mapping for the given task communication graph. We test the algorithm on a wide variety
of benchmarks presented in Chapter 5 and discuss the results.

6.1 optiMap: The Mapping Algorithm

6.1.1 Mapping in an MLPR-based NoC

Generating efficient NoC architectures and mapping of cores using Multi Local Port
Routers is not a simple process and presents a complex design environment. It is to be noted
that increasing the number of local ports will not always guarantee better performance. In
certain cases, the traditional NoC architecture may be better under some constraints. Even
in that situation, there can be a better mapping compared to a naive nearest-neighbor based
mapping.

Let us consider the example shown in Figure 6.1, to give a flavor of mapping on

82

1

4

32

(c)

2

1

3

4

Cost = 12
(b)

3

1

4

2

Cost = 13
(a)

4

1

3

2

Cost = 16

Figure 6.1: Mapping using with 2 Local Port routers

9

12 x 1

Varying number of local ports (from nine 1-port routers to one 9-port router)
3 x 3 2x3 3 x 2 2 x 2 1 x 2

2 1 2

1 2 1

2

2

2

3

2

1

2

1

2

1

1 1 1

1 1 1

1 1 1 4 5

5

4

(Square represents Router in the mesh, # inside square represents # of Local Ports)

Figure 6.2: Mapping Search Space for Cores

multi local port routers. Here we choose a 1 × 2 mesh each having a two local port router.
Let us consider a simple cost function where we sum number of hops. We increment the
cost for each channel access, to get the final cost. We observe from Figure 6.1 that the cost
is reduced by 25%, with proper mapping. This represents the simplest of cases, where the
queuing effect at channels and other cost parameters are not considered.

In such a complex NoC system, a mapper that finds an optimum NoC configuration
is required. Hence, as a proof-of-concept, we present a mapping algorithm, capturing the
effects explained in Section 4.4 and 4.5. The algorithm does an exhaustive search and
hence guarantees to find the optimal configuration and hence a formal proof is redundant.
The mapping algorithm can be easily extended to incorporate additional cost parameters,
thereby, giving a multi-objective based mapping algorithm. The algorithm efficiently maps
the cores of the given task graph for various objectives and constraints. Also, the algorithm
finds the optimum number of routers, the configuration of each router and an optimum mesh
topology for a given task graph. We test the algorithm on a wide variety of benchmarks
and report the results.

6.1.2 Problem Definition

Given a system level task graph, G(T, E) and the set of constraints, find the opti-
mum NoC configuration, that is, find the number of routers, the mesh topology configura-
tion of each router and the final mapping of logic cores, reducing the cost function.

83

Input: Given a system level acyclic task graph, G(T, E) with n logic cores
Input: Input the placement constraint, routing constraint, I/O constraint and buffer constraint
Output: The optimum NoC configuration
Analyze the constraint file and set the upper bound of the router configuration, thereby, defining the search space1
of the algorithm
repeat2

γ: Generate all partition configurations for n for the defined search space3
Γ: Permute and generate all possible combinations of γ4
foreach Partition configuration in Γ do5

Define the # of routers for the present configuration6
Define the configuration of each router7
Υ: Generate all possible mesh topologies for the partition configuration8
foreach Mesh and Partition configuration in Γ, Υ do9

ϕ: Generate all possible ways of mapping of cores10
foreach Mapping of given Mesh and Partition configuration in Γ, Υ, ϕ do11

foreach Edge in the Task graph do12
Identify the source (i1, j1) and the destination routers (i2, j2)13
κ: Decompose in terms of the intra/inter-channel communications between (i1, j1) and (i2, j2)14
using XY routing scheme
Update the communication times of all channels15
Calculate the Queue times (Qt) at all channels and update the transit/arrival times appropriately16
Cf = α× Total Execution Time of cores (transit, core execution and arbitration times) +β ×Qt17
if Cf < Best.Config.Cost then18

Best.Config← Current.Config19
end20

end21
end22

end23
end24

until All the configurations are evaluated25

Algorithm 5: optiMap Algorithm

6.1.3 Description of optiMap Algorithm

Algorithm 5 presents the pseudo code of the optiMap Algorithm. Before the start
of the NoC configuration generation, the algorithm performs a pre-processing step. In this
step, the various constraint files (area, placement, buffer & operating frequency) are parsed
to determine the upper bound (UB) on the number of local ports that can be used during the
course of the algorithm. Based on UB, the next phase involves generating different router
counts (partitions). For the given task graph , the problem of finding the different partition
configurations (γ) is translated into the partitioning of an integer problem. That is, for a
given value (n), find the combination of numbers (which are ≤ n) such that the sum of the
numbers is equal to n. We permute the above configurations and find all possible ways
of partitioning the value n (which is the number of nodes in the graph) to get the set Γ.
Using the set Γ and based on the constraints, we describe the number of router(s) and the

84

Constraint
FilesCongestion

Logic Area
Requirements

Buffer
Requirements

I/O ConstraintsTarget FPGA

Cycle Accurate Time
Estimator

Mesh-based
NoC

Configuration
Generator

Library of
Routers

32 4

1

65

8

9

7

Application
Task Graph

Area, Timing
Data

Core Timing,
Bandwidth data

No

Optimum NoC
Configuration

VHDL files

Finished analyzing the
defined search space

Yes

Figure 6.3: Algorithm Flow of optiMap

configuration of each router. For each partition configuration, we generate all possible mesh
topologies to get the set Υ. After this step, we map the cores onto each of the configuration
in all possible ways (ϕ) and evaluate the cost function.

Figure 6.2 shows the search space of the mapping algorithm for a specific case of
a system having nine cores. The cost function is the weighted sum of total execution time
(which includes transit time, core execution time and arbitration time) and queue delay
(due to simultaneous access of paths/channels). The factors explained in the Section 4.5
like routing density, placement constraints, input/output constraints, buffer requirements,
etc. dictate the upper bound of the search space, that is, the maximum number of local ports
that can be added to a router. We build a cycle accurate (C++ based) simulator to calculate
the execution and queue times, for the overall data transfer. In other words, we find the
overall execution time of the given task (application). In the end, the algorithm outputs the
best NoC configuration (including the best partition, configuration of each router, the mesh
topology, and the optimum mapping of the cores).

In short terms, we are doing an exhaustive search of all possible NoC configurations
(Figure 6.3). Analytically, for a task graph with n nodes, the total number of configurations
analyzed is (2n−1 partitions) × (# mesh configurations) × (n! ways of mapping n cores).
The # of mesh configurations (k) for a given value of partition (p) is k += t (where t=1, if
(p

i
)=0; else t=0;), where i = 1,...,p.

85

6.2 Experiment Results

In this research, we make the optiMap algorithm to search the entire search space,
while caching the results under different constraints. We collect the results of all the bench-
marks and form a database. Based on the specific constraints, we can derive the results for
a specific case from this database. We perform this to present a broad picture of the ef-
fectiveness of proposed architecture and the algorithm. For experimentation purposes, we
assume equal execution times (defined as k clock cycles) for all nodes in the graph (commu-
nication time from Network Interface to logic is also abstracted into this lumped time) and
equal bandwidth constraints for the edges in the task graph. The equal execution time/BW
assumption in the synthetic benchmarks is primarily to find the effect of the task graph
structure on the final optimal mapping. The operating frequency of the largest Multi Local
Port Router in the final NoC architecture is taken as the overall operating frequency. The
frequency value is back-annotated to get the absolute time† from the number of clock cy-
cles taken at each step (node) of the task graph. The time unit of the synthetic benchmarks
reported in ns is for illustrative and intuitive purposes only. Without any loss of generality,
the methodology and algorithm is applicable to any system at hand, provided the clock
cycle latencies between the various nodes in the task graph and the operating frequency of
the system are known. We discuss the results of selected benchmarks in each of the cases
below.

6.2.1 Optimization Cases

Upper Bound on # Routers

Figure 6.7 shows the execution times∗ of selected benchmarks where there exist
an upper bound on the number of routers used. It is to be noted that for a case where
the upper bound on the number of routers is k, the optimum configuration can contain
combination of router(s) with ≤ k local ports. The timing of the router with maximum
number of local ports is taken as the timing of NoC configuration and back-annotated in
the simulator. It is seen in all of the benchmarks that reduction in the number of routers
increases performance. Interestingly, from the Figure 6.7, we see that having 8 routers is
more beneficial than having 7 routers. This is due to the fact the maximum number of hops
(diagonal length) is reduced from 6 to 4. Overall, we infer that it is better to reduce the

∗Refers to the completion (end) time of the last node in the task graph

86

6,8,
9

2,5,
7

1,3,
4

1,3 2,5 6,8

4 7 9

2 1 3

5 4 7

6 8 9
1,2,
3,5

6,7,
8,9 4

1 LP Cost = 1041.2

2 LP Cost = 907.92

3 LP Cost = 858.92

4 LP Cost = 824.68

Figure 6.4: LU Decomposition (lu) - Optimum NoC configuration with varying upper
bound on # local ports(LP) - the mapped cores are inside square (router) (shown till #
LP = 4)

1,2,
4

3,5,
7

6,8,
9

1,3 2,5 4,7

6 8 9

1 2 4

3 5 7

6 8 9

1 LP Cost = 904.4

2 LP Cost = 861.36

3 LP Cost = 811.64

4 LP Cost = 801.34

6 1,3,
8,9

2,4,
5,7

Figure 6.5: Laplace Equation Solver (les) - Optimum NoC configuration with varying upper
bound on # local ports(LP) - the mapped cores are inside square (router) (shown till # LP
= 4)

router count, by introducing multi LP routers.

Upper Bound on # LP

In Figure 6.8, we fix an upper bound on the number of local ports (timing data in
Table 6.1). We see that increasing the number of local ports increases performance. But, it
is seen in most of the cases that the 7 LP version is not better than the 6 LP version. Also,
for the specific case of p4, the 8 LP version is better than the 9 LP version. The best NoC
configurations obtained by the optiMap algorithm for lu, les and p4 (for different upper
bounds on number of Local Ports) are shown in Figures 6.4, 6.6 and 6.5, along with the
single LP versions. It is to be noted that the algorithm finds the optimum NoC configuration
even for the single LP router version. Interestingly, in Figure 6.5, for a 3 LP upper bound
case, the optimum NoC configuration uses 4 routers (instead of three 3 LP routers). This
is due to the fact that the algorithm tries to reduce the overall hop count (thereby reducing
overall time) and the inter-communication pattern of p4 dictates this configuration.

We observe an average performance improvement of 30% across the set of bench-
marks, compared to a single LP design. To summarize, the optimum number of routers and
the router configuration (and the final mapping) depends on the given application task graph
and the maximum frequency of operation of the NoC system. Across all the benchmarks,

87

1 LP Cost = 1185.6

1 2,6 7

3,5 8,9 4

7 1 5

2 6 3

8 4 9
1,3,
5,9

2,6,
7,8 42 LP Cost = 1086.4

3 LP Cost = 1032.28

4 LP Cost = 956.94

1 2,6
,7

4,8
,9 3,5

Figure 6.6: Packed-4 (p4) - Optimum NoC configuration with varying upper bound on #
local ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Best Execution Time

300

400

500

600

700

800

900

1000

1100

1200

1300

1 2 3 4 5 6 7 8 9# Routers

Ti
m

e
 (

ns
)

e1 pa1 b1 p1 p3

Figure 6.7: optiMap Experimental Results I

it is observed that choosing a single LP router design is never optimal, thus, validating our
proposed approach.

6.3 Conclusion

We present a proof-of-concept algorithm to find the optimal Networks-on-Chip con-
figuration describing the optimal number of routers, the optimal mesh topology and the
optimal mapping of cores onto the mesh. We experiment with a wide set of benchmarks
and report the results. The results show significant area savings and improvement in per-
formance, thereby, validating the merit of an MLPR-based Networks-on-Chip.

Max local Benchmark Execution Time (ns) †
port count p4 pa2 les lu r2

1 1185.60 1086.8 904.40 1041.20 1451.60
2 1086.40 985.52 861.36 907.92 1241.60
3 1032.28 914.08 811.64 858.92 1158.36
4 956.94 894.70 801.34 824.68 1089.20
5 889.28 849.58 786.06 817.82 1071.90
6 829.92 821.94 758.10 805.98 1077.30
7 817.02 825.03 776.97 809.01 1081.35
8 808.00 792.00 760.00 776.00 1024.00
9 814.06 773.76 717.34 749.58 1023.62

Table 6.1: Execution Time - Upper bound on # LP

88

Best Execution Time

600

700

800

900

1000

1100

1200

1300

1 2 3 4 5 6 7 8 9# Local Ports

Ti
m

e
(n

s)

p4 pa2 les lu r2

Figure 6.8: optiMap Experimental Results II

89

Chapter 7

Heuristic Fast Mapping Algorithm

The optiMap is an exhaustive-search algorithm that is capable of finding the opti-
mum NoC configuration. But, because of the expensive configuration-generation step, the
search space of the algorithm exploded for larger designs. optiMap requires generation
of n! combinations, each for creating partitions (outer loop) and creating mapping (inner
loop). The memory requirement of the process (for the configurations) is exorbitant as n

increases. For instance, the size of the configuration file for a design with 9 nodes is 70MB.
For every node added, the size jumps by the factor of 10 (eg., approx 700MB for 10 node
graph). The factorial size of the configuration and mapping generation (O(nn)) make the
problem NP hard. Also, the runtime is in the order of several hours because of larger search
space. All these factors make the use of optiMap impractical for larger systems.

7.1 cMap: The Fast Mapping Algorithm

In this section, we present a heuristic fast mapping algorithm (cMap) for generating
NoC architectures using Multi Local Port Routers [SV07a]. The cMap algorithm exploits
the advantages offered by a Multi Local Port Router and arrives at a near-optimal NoC con-
figuration. Let us assume that the cost calculation of a given NoC configuration as the basic
operation. Then, the average order of complexity of cMap algorithm is O(n2), as against
optiMap that analyzed O(nn) NoC configurations. In the worst case, when maximum
expansion occurs (explained in detail below), the cMap complexity increases to O(n3).
Unlike optiMap algorithm, cMap can handle task graphs of any size. The NoC architecture
generation process is reduced to a couple of seconds. In addition to the eighteen synthetic

90

(b)
Folded
Mesh

(a)
Without Folding (Linear Chain)

Figure 7.1: cMap: Folding Example

benchmarks explained earlier, we test the cMap algorithm on the four widely experimented
practical benchmarks and analyze the results in Section 7.2.

7.1.1 Problem Definition

Given a system level task graph, G(T, E) and a set of constraints/objectives, find
an NoC configuration (number of routers, mesh topology, configuration of each router and
the final mapping) with minimum cost∗ [SV07a].

7.1.2 cMap Algorithm Description

The cMap Algorithm (refer Algorithm 6) has five phases as follows.

• Mesh Definition (steps 6-7)

• Folding (step 8)

• Core Placement (steps 10-22)

• Design Evolve (steps 23-34)

• Design Perturb (steps 35-41)

Mesh Definition

The results of optiMap demonstrate the merits of the Multi Local Port Routers,
favoring lesser router count and hence, routers with more number of Local Ports. Using
this inference, we start with a mesh with the minimum router count (k). This is obtained
by defining routers (k) having maximum number of Local Ports (m).

∗For a fast-mapping algorithm intended for an arbitrary task graph structure/ size, it is not feasible to perform a
(time-consuming) cycle-accurate simulation as in optiMap and hence the new bandwidth based cost function. Also, area
is not part of the cost, since, the addition of more LPs always decreases the network area (as evident from the Xilinx
synthesis results in Figure 4.6)

91

fft
bs3

bs1
b1
b2

e1
e2
pa1

pa2
les

lu
bs4

mpeg
mwd
bs2

p1
p2
p3
p4
r1

r2
vopd

0 1 2

fft

bs1

b2

e2

pa2

lu

mpeg

bs2

p2

p4

r2

Be
nc

hm
ar

k

times folding was better

Figure 7.2: cMap: Results of Folding Phase

Folding

If the number of routers (k) is an odd number, then we are forced to choose a linear
chain of routers (Figure 7.1 (a)). Hence, we introduce a phase called Folding. Here, we
add an additional 1-LP router to mesh (k+1 routers), thereby, giving an opportunity for a
folded mesh. For example, in Figure 7.1(b), the mesh is folded by half (having two rows).
Then, we define all possible mesh configurations for both of the above cases (γ1, γ2) and
repeat the following three phases. Figure 7.2 shows the number of times the folding was
better, across all configurations (1 ≤ m ≤ # cores), thereby, validating the usefulness of
Folding.

Core Placement

In a nearest-neighbor strategy, the start mesh location (where the first core is placed)
determines the best possible mapping that can be obtained and this varies with the input
task graph structure. Hence, to amortize the effect of the start location choice, we analyze
the NoC configurations starting from each location of the current mesh configuration at
hand. For each mesh configuration in the lists γ1 and γ2, starting from each location of
the mesh configuration, we do a novel cost-based nearest-neighbor placement to achieve
minimum traffic in the mesh (refer Steps 12-19, with lists L1 & L2 generated in Steps 2-5,
in Algorithm 6).

92

0 2 4 6 8 10 12 14 16 18 20 22

fft
bs3
bs1
b1
b2
e1
e2

pa1
pa2
les
lu

bs4
mpeg
mwd
bs2
p1
p2
p3
p4
r1
r2

vopd

Be
nc

hm
ar

k

times design grew

North East West South

Figure 7.3: cMap: Design Evolve (Grow) Phase

Design Evolve

The results from optiMap demonstrate that the best NoC configuration need not nec-
essarily have minimum number of routers. A best NoC configuration can have increased
router count, provided it significantly reduced the overall traffic. Using this insight, we de-
fine a phase called Design Evolve, where the mesh size is allowed to grow. After obtaining
the initial mesh and a placement, we employ a force-directed approach to expand the mesh
along all four directions, as the cost gets reduced. Along each direction, if there are pe-
ripheral routers with ≤ m cores mapped, we move only one core (d=1) having the highest
cost to the best possible location. Otherwise, we expand the mesh by adding routers (d
= # columns for North/South expansion; d = # rows for East/West expansion) and move
top d costly cores to the best possible location (in the d added routers). The best possible
location is the router node where the cost is maximally reduced. Movement of the cores is
subject to the global constraint, 1 ≤ # Local Ports in any router ≤ m. Hence, if a chosen
core (being moved) violates this condition, the next costlier core is chosen for movement.

Figure 7.3 shows the number of times the design grew for the 22 benchmarks, across
all configurations (1 ≤ m ≤ # cores). We observe that for certain cases (r2, p3, lu, pa2,
bs3), there is no evolution of the mesh. At the same time, we have benchmarks (p4, mwd,
mpeg, bs4, les, bs1) evolving at least 10 times during the course of cMap algorithm, in find-
ing the NoC configuration. Design growth occurs more along East/West than North/South.
Apparently, from the minimum-sized starting mesh, East/West expansion needs addition of
lesser number of routers than a North/South expansion and hence this behavior is justified.

93

Input: Given a system level task graph, G(T,E) with n cores
Input: The placement constraint, routing constraint, I/O constraint and buffer constraint
Output: A near-optimal NoC configuration, such that 1 ≤ # Max. # LPs in any router ≤ m
Analyze the constraint files and set Max # LP value (m)1
L1: List of nodes in descending order of In-degree + Out-degree2
foreach Node-L1: Node in the List L1 do3

L2: List of nodes that are connected to Node-L1, sorted in the descending order of the Bandwidth (BW)4
end5
Routers, k = n

m
� γ2 = γ2 = {}6

γ1: Generate all possible mesh connection topologies for the k routers7
γ2: If k is odd, increment the router count by one and create a folded mesh and generate all possible mesh8
connection topologies for k+1 routers
repeat9

foreach Loc: Location in the current mesh configuration do10
Start.Mesh.Location← Loc11
repeat12

foreach Node-L1: Unplaced node in List L1 do13
Perform a nearest-neighbor placement of Node-L114
foreach Node-L2: Unplaced node that is connected to Node-L1 in List L2 do15

Perform a nearest-neighbor placement of Node-L216
end17

end18
until All cores are Placed19
forall Edges in Task Graph do20

Best.Config.Cost += α× Distance between the cores × BandWidth between the cores21
end22
repeat23

foreach Peripheral Direction (North/East/West/South) do24
if Peripheral Routers have #cores < m then d = 125
else Add one row/column to the mesh along the respective direction (Hence, d = 1 row (or) column26
length)
Move top d costly nodes to best available location along respective periphery27
Current.Config.Cost← Cost(Current.Config)28
if Current.Config.Cost < Best.Config.Cost then29

Best.Config← Current.Config30
Best.Config.Cost← Current.Config.Cost31

end32
end33

until Cost NOT reduced by Mesh Expansion34
for i=1 to iter-max do35

Current.Config: Initiate a random pair-wise swap of mapped cores36
if Current.Config.Cost < Best.Config.Cost then37

Best.Config← Current.Config38
Best.Config.Cost← Current.Config.Cost39

end40
end41

end42
until All the mesh configurations in γ1 and γ2are evaluated43

Algorithm 6: cMap Algorithm

94

Design Perturb

In this final phase, we contemplate pairwise swaps for iter-max times so as to reduce
the overall cost. This is a fine tuning phase performed to escape from the local maxima. At
the end of this phase, the best Networks-on-Chip configuration found is returned.

7.2 Experiment Results

The cMap algorithm is a heuristic-based NoC configuration finder, that uses a force-
directed approach to arrive at near-optimal NoC configuration [SV07a]. In most of the
benchmarks, the result was obtained within a couple of seconds.

Table 7.1 shows the comparison of the costs (optiMap vs. cMap) of the NoC con-
figuration of three selected benchmarks†.

The NoC configuration produced by optiMap and cMap were back-annotated into
optiMap framework to obtain the cost numbers. This was done because of the difference
in cost function between the two algorithms. The average cost difference‡ varied between
3% and 10%. For the 9-LP case, there is no difference in the results produced, since all the
cores are mapped to a 9-LP router (hence, the cost difference = 0). If we are to ignore this
redundant case, the average cost difference will increase slightly. Interestingly, cMap also
found the optimal NoC configuration for the 7-LP and 8-LP case of packed-4. Note that
the worst case cost difference§ is not related to number of Local Ports and varies with the
benchmark at hand.

†We compare the effectiveness of the proposed cMap algorithm with the exhaustive-search based optiMap algorithm.
Note that this can be done only for task graphs with 9 nodes (optiMap limitation). For larger systems, there are no existing
algorithms (heuristic, ILP, branch-and-bound or evolutionary strategies) for comparison in the literature that generate an
MLPR-based NoC configuration. In fact, an ILP formulation of such an NP-hard problem (as explained in Section 7.1)
is unrealistic, as scalability issues crop up and hence will run forever.

‡The cost of optiMap algorithm is clock latency and the cost of cMap algorithm is bandwidth. Hence, in order to
compare the quality of results, the NoC configurations produced by optiMap and cMap are back-annotated into optiMap
framework, thus comparing the clock latencies (Table 7.1)

§The percentage deviation in the results must be appreciated in conjunction with the fact that we are not performing
an exhaustive-search that requires exorbitant amount of run-time/resources.

95

Max LP pa2 p3 p4 r2 e1
Count optiMap cMap % Diff. optiMap cMap % Diff. optiMap cMap % Diff. optiMap cMap % Diff. optiMap cMap % Diff.

1 138 162 17.39 125 141 12.80 137 149 8.76 188 216 14.89 71 83 16.90
2 122 138 13.11 113 117 3.54 113 117 3.54 152 172 13.16 63 71 12.70
3 110 122 10.91 89 101 13.48 105 111 5.71 144 162 12.50 59 67 13.56
4 110 110 0.00 85 85 0.00 97 99 2.06 132 148 12.12 59 67 13.56
5 102 110 7.84 81 85 4.94 81 86 6.17 132 148 12.12 55 59 7.27
6 98 113 15.31 77 83 7.79 81 82 1.23 132 132 0.00 55 61 10.91
7 98 98 0.00 77 81 5.19 81 81 0.00 132 132 0.00 51 55 7.84
8 94 94 0.00 77 77 0.00 77 77 0.00 124 124 0.00 51 55 7.84
9 90 90 0.00 77 77 0.00 77 77 0.00 124 124 0.00 51 51 0.00

Average % Diff. 7.17 Average % Diff. 5.31 Average % Diff. 3.05 Average % Diff. 7.20 Average % Diff. 10.07

Table 7.1: cMap vs optiMap: Cost Difference (in # clock cycles)

7.2.1 Effect of # LP

We present the variation of cost with the upper bound on the number of Local Ports
in Figures 7.4 and 7.5 (for the sake of clarity). Overwhelmingly, the results favor the use
of more # LPs. At the same time, increased LP count is not necessarily better always.
For instance, in MPEG4, there is negligible variation from 6-LP to 9-LP case. We observe
the same trend in MWD, between 8-LP and 10-LP case. Interestingly, in VOPD, the 4-LP
cost is significantly more than the 3-LP case (mapping shown in Figure 7.12). A similar
variation is observed for the 5-LP case in MWD. This behavior is highly dependent on the
bandwidth and the intercommunication pattern of the benchmark. Hence, given an upper
bound on the number of Local Ports, it is necessary to analyze all design possibilities with
≤ Maximum # LP, in order to arrive at the best possible NoC configuration. Overall, the
cost is reduced by an average 74% across the benchmarks (Figures 7.4 & 7.5). This is
the percentage reduction in the amount of traffic in the main mesh. In mpeg, with all 12

cores mapped to a single router, the cost is 0 (representing no traffic in main mesh, actually
speaking, the mesh is absent!), thereby, indicating a 100% reduction. But, actually, there
is point-to-point traffic inside the single router. If we are to take that traffic into account in
the cost calculation, we get a 30.17% net reduction in total traffic (12 1-LPs vs. a 12-LP).
Thus, to find the actual reduction in the overall traffic, one has to specifically calculate the
cost of the actual mapping (NoC configuration) that was obtained for the given benchmark.

7.2.2 Mapping Results

Figures 7.6, 7.7, 7.8, 7.9, 7.10, 7.11, 7.12, 7.13, 7.14, and 7.15 present the mapping
results of selected benchmarks. The usefulness of the Design Evolve phase is seen in both
les and MPEG4 (Figures 7.7 and 7.8). A closer look on the evolved design shows that a
hand manipulation can provide a better design, with reduced router count. For example,
in the 2-LP (non-folded) case of les, having cores 1 and 4 in the same router is obviously

96

Variation of Cost with # Local Ports

50

550

1050

1550

2050

1 2 3 4 5 6 7 8 9 10 11 12 13 14Max # LP

W
ei

gh
te

d
Co

st
 (B

an
dw

id
th

)

FFT

MWD

LES

LU

P4

Figure 7.4: cMap Experimental Results I

Variation of Cost with # Local Ports

50

550

1050

1550

2050

2550

3050

3550

4050

4550

5050

1 2 3 4 5 6 7 8 9 10 11Max # LP

W
ei

gt
ed

 C
os

t (
Ba

nd
w

id
th

)

MPEG4
VOPD

Figure 7.5: cMap Experimental Results II

better than the configuration shown. The absence of knowledge about the actual direction of
growth during the initial placement is the reason. In this case (les), the core 1 was initially
mapped to a separate router due to the global constraint, 1 ≤ # Local Ports in any router
≤ m. During the course of cMap, the mesh grew along west direction, moving the core 6 to
the left periphery (earlier it was with core 4) and finally, stopped at this configuration. The
effect of folding on the final cost is seen in lu and les (Figures 7.7 and 7.7). We observe that
folded design is not always better than an unfolded (achieving comparable costs in many
cases). In any case, folding is a good design alternative to explore, in the pursuit of the best
Network-on-Chip configuration.

Overall, the results of the cMap algorithm validate the merits of Multi Local Port
Routers (MLPRs) in a Networks-on-Chip design, producing the near-optimal configura-
tions within a couple of seconds [SV07a].

97

Figure 7.6: LU Decomposition (lu) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Figure 7.7: Laplace Equation Solver (les) NoC configuration with varying upper bound on
local ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Figure 7.8: MPEG4 (mpeg) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Cost = 1350 (2,2)

Cost
= 650 (1,1)

Max # LP = 2

Cost = 1000 (1,1)

Max # LP = 1

10

13 7

9 12

15 11

5

6

14

7,
13 4,8

11,
15 5,9

6,
10

14,
12

Max # LP = 3

Max #
LP = 4

1,3

2

Cost = 1900 (1,2)

312

84

Folded Cost = 900 (1,1)

11,
13,15

9,12,
14

7,6,
10 4,5,8 1,2,3

6,10,
12,14

4,5,
8,9

7,11,
13,15

1,2,
3

7,6,
10

9,12
, 14

1,2,
3

4,5,
8

11,
13

15

Figure 7.9: cMap: NoC configuration for FFT

98

Cost = 800 (1,2)
3

6 8 1

54 2

7 9 8,9 4,2 5,17,6

Cost = 950 (1,2) Max # LP = 3

Max # LP = 1 Max # LP = 2

3 4,2 5,1

9 3

7,6

8

Cost = 500 (1,1)
Cost = 350 (1,1)

4,2,
5,1

8,9,
7,6 3 Max #

LP = 4

8,9,
7

5,1,
3

6,4,
2

Folded Cost = 700 (2,1)

Figure 7.10: Parallel2 (pa2) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Cost = 850 (1,2)

4

7 3 1

56 2

8 9 3,9 6,2 5,18,7

Cost = 1100 (2,2)
Max # LP = 3

Max # LP = 1 Max # LP = 2

4 8,7 6,2

4 5,1

3

9

Cost = 450 (1,2)

(1,3) (1,4)

Cost = 400 (1,1)

6,2,
5,1

3,9,
8,7 4 Max #

LP = 4

6,7 1,4,
5

3,8,
9

Folded Cost = 800 (1,1)

2

Figure 7.11: Extended1 (e1) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Figure 7.12: VOPD (vopd) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Cost = 600 (1,2)
8

7 6 4

32 1

9 5 5,9 4,8 3,17,6

Cost = 950 (1,2) Max # LP = 3

Max # LP = 1 Max # LP = 2

2 4,8 3,1

9 2

7,6

5

Cost = 450 (1,1)
Cost = 350 (1,1)

6,4,
8

5,9,
7,6

3,1,
2 Max #

LP = 4

5,9,
7

3,1,
2

6,4,
8

Folded Cost = 550 (2,1)

Figure 7.13: Random2 (r2) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

99

Cost = 1184 (1,1)

(2,3) (2,4)

Cost = 704 (1,1)

Max # LP = 2

Cost = 928 (1,1)

Max # LP = 1

12

4 1

11 8

10 2

935

7

6 2,10,
4,1

11,5,
3,9

7,10,
6,8

2,
10 4

3,9 5

11

1

Max # LP = 3

Max #
LP = 4

2,4,
10

6,8,
11

1,7,
12

5,3,
9

7,
12

6,8

Cost = 1952(1,2)

Figure 7.14: MWD (mwd) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

Cost = 1300 (1,2)
9

3 2 8

75 1

4 6 8,9 3,2 1,56,4

Cost = 1750 (2,3) Max # LP = 3

Max # LP = 1 Max # LP = 2

7

Cost = 850 (1,1) Cost = 550 (1,1)

3,2,
1,5

8,9,
6,4 7

Max # LP = 4

8,9,
6

1,5,
7

4,3
2

Figure 7.15: Packed3 (p3) NoC configuration with varying upper bound on # local
ports(LP) - the mapped cores are inside square (router) (shown till # LP = 4)

7.3 Conclusion

To resolve the scalability issues encountered in the optiMap algorithm and to obtain
the results in a fast manner, we present a fast mapping algorithm (cMap) for generating
near-optimal Networks-on-Chip configurations using the Multi Local Port Routers. The
cMap algorithm follows an heuristic approach to arrive at the results within a couple of
seconds. We experiment with a wide set of benchmarks and report the results. The re-
sults obtained from the cMap algorithm come within the acceptable range compared to the
optimal results obtained from the optiMap algorithm. There is a scope for improvement
of the heuristic so as to reduce the average percentage cost difference from an optimum
Networks-on-Chip design.

100

Chapter 8

Multi2 Router

Multi Local Port Router (MLPR) is a design alternative for the traditional NoC
design and offers various gains including bandwidth optimization and reduced network
area & power consumption, resulting eventually in an efficient Networks-on-Chip. Till
date, communication in router-based NoCs have no scope of multicasting, an effective
feature available in bus-based systems. In this chapter, we present a novel approach to
incorporate the multicast feature into the routers in an MLPR-based Networks-on-Chip.
Ideas explained in this research are equally pertinent and applicable to NoCs realized on
ASICs.

8.1 Multicast Feature

Most practical applications including image processing, multimedia and Digital
Signal Processing (DSP) have high degree of parallelism and involve communicating data
to multiple nodes in the system [Sod03]. An in-depth look at the different benchmarks
presented in [SV06b] provide a good idea of the level of out-degree prevalent in the task
graphs. Further applications like DCT & Fast Fourier Transform [LSEV99] and FIR fil-
ters [DKSL04, YN01, CC05, Eva94] have multicast nature. Multicasting is a feature by
which data is transferred to multiple nodes, in one-shot. A neural network is a classic
example having a complex interconnection structure [LTXW05, YP03] and has received
considerable attention [CLP00, TLV+04, GCBM00, SHSM02].

Bus is a well-researched interconnection architecture having a variety of data trans-
fer capabilities [HK03, Cor99, DSY96, MT99, CCCS90, THT+97, GC98, KDHDS]. They

101

are very efficient for point-to-point communication and transferring multicast messages
(with/without priority) [EM96,KCPP00,KR87,Sto83,CKPP99,DEW99,BOSW94]. But, it
suffers from the under-utilization of bandwidth because of static allocation nature. Networks-
on-Chip (NoC) help in the efficient usage of the bandwidth available across the network. In
an NoC, multicasting is an entirely novel feature. This is because the traditional single lo-
cal port router based NoCs can provide only point-to-point packet transfers, thus, removing
any possibility of multicasting in NoCs.

Multi Local Port Routers (MLPRs) have been introduced as a architectural alterna-
tive in place of the traditional NoC design, with the aim of improving the overall perfor-
mance of the system. MLPRs provide a host of advantages including reduction in area,
power, transit time & congestion, and most importantly, the optimization of the bandwidth,
thus, resulting in an efficient and high performance NoC design [SV06b]. With the novel
MLPR architecture, multiple cores can be mapped to the same router, thus, providing an
opportunity to multicast to all the cores attached to the same MLPR. This is because the
packets reaching a particular router node have the same [X,Y] mesh co-ordinate value, irre-
spective of the destination local port. The proposed architectural modification is illustrated
for a five port Multi Local Port Router in Figure 8.1. Since the data transfers are distributed
in nature, multicast can happen only between co-operating router pairs. In an NoC mesh,
universal broadcasting will translate to flooding of packets in all possible directions, thus,
requiring more complex routing algorithms and flow control. Moreover, the problem of
congestion is compounded, and hence is highly impractical in NoCs.

In this chapter, we propose an architectural modification for incorporating the mul-
ticast feature in the routers of a Networks-on-Chip implemented on FPGAs. We discuss in
detail the modified decoding scheme & the crosspoint matrix that result in reduced logic
usage.

8.2 Related Work

In the Reconfigurable Computing platform, researchers have tried to realize effi-
cient router designs [ZSS04, SBKV05, ZKS04, ZSS04, MdMM+03]. LiPaR is an efficient
router design fine-tuned towards Xilinx based FPGAs [SBKV05] and can establish connec-
tions between different channel pairs simultaneously. The authors in [SV06b] introduce an
innovative concept of using Multi Local Port Routers (MLPRs) to improve the NoC design.

102

For System-on-Chip designs, bus based interconnect architectures [AMB06,STB06,
Arc05, wis06, Son06] are popular and well-studied. In the literature, we have several effi-
cient designs and protocols for bus-based design. A mesh network containing array pro-
cessors with separate buses is presented in [KR87]. [KCPP00] introduces the concept of
Virtual Bus (VB) that is dynamically built on the communication links of the mesh net-
work. Various point-to-point links of the mesh (row/column) are used to setup real bus.
The authors extend their work to present a bandwidth efficient implementation of mesh
with multiple multicasting [CKPP99]. [Cor99] presents a bus architecture with enhanced
reusability and customizability for System-on-Chip (SoC) designs. Efficient multicasting
techniques for constrained reconfigurable meshes are presented in [DEW99]. There are
efficient protocols for multicasting in a bus based design [CCCS90, BOSW94].

To to the best of our knowledge, this is the first work to introduce the multicast
feature into the routers that form the backbone of the Networks-on-Chip for implementing
SoC designs on FPGAs.

8.3 Multi2 Router Architecture

Multi Local Port Router is an innovative architecture design, wherein a router in
an NoC mesh, handles more than one logic core simultaneously, without any performance
penalty [SV06b]. The MLPR NoC architecture has deterministic XY routing and store-and-
forward flow control in a mesh structure. MLPRs primarily aim to replace the inter-router-
channel communication with the intra-router-channel communication. As a general case,
an n-LP router having 4 directional ports is capable of establishing n+4 parallel connections
simultaneously (Fig. 8.2). MLPRs offer a host of advantages including reduction in area
(maximum of 47.5% on XC2V P30 FPGA), power, congestion & transit time, improved
mesh design and most importantly, optimization of bandwidth usage. The issues that may
limit the maximum number of Local Ports (LPs) include the critical path, routing resource
availability, buffer, logic & I/O requirements and the effective address space [SV06b].

An important observation to be noted in case of the novel MLPR architecture is that
the packets reaching a particular router node have the same [X,Y] mesh co-ordinate value,
irrespective of the destination local port. Thus, the various cores mapped to the same router
provide an excellent opportunity to multicast to all the cores attached to the same MLPR.
The proposed architectural modification is illustrated for a five port Multi Local Port Router

103

North

West

South

East

LP 0

LP 1

LP 2

LP 3

LP 4

Figure 8.1: Multicasting Illustration in a 5 port Multi2 Router
North

South
Ea

st

W
es

t

Lo
ca

l 0

Lo
ca

l 2

Local 1

Local 3

Figure 8.2: Multi2 Router having 8 parallel connections

in Figure 8.1.

In this section, we present an innovative router design with multicast capability,
called as Multi2 Router (Multicast Multi Local Port Router). We improve upon the existing
MLPR design and implement major modifications to the header flit and the corresponding
decoding logic.

8.3.1 Addressing

Figure 8.3 shows the header packet in the various schemes. Below, we discuss
the two addressing schemes that were contemplated and justify the choice of a particular
scheme over the other.

Contiguous Scheme

Figure 8.3(a) shows the header flit of an MLPR, where LID uniquely identifies
a single destination Local Port (LP). In order to achieve multicasting, the header flit is
modified as shown in Figure 8.3(b). Here, sLID identifies the start Local Port ID and

104

Local Port ID Router Co-ordinate (A)

LID X Y

Starting
Local Port ID

Router
Co-ordinate (A)

sLID X YCNT

LPs
in transfer

One-hot Encoded
bits = # LPs

Router
Co-ordinate (A)

nLID X Y

(a) Unicast MLPR Header Flit

(b) Multi2 Router – Contiguous Scheme Header Flit

(c) Multi2 Router – Random Scheme Header Flit

Figure 8.3: Header Flit

CNT specifies the # LPs (from the start Local Port, LID) that receive the multicast data.
Theoretically, # bits of sLID must be equal to # bits of CNT , in order to be able to
multicast to all the Local Ports present in an MLPR. This scheme is capable of multicasting
to CNT contiguous Local Ports, starting from any desired Local Port. For example, if
sLID = 1 and CNT = 2, the data will be multicast to 2 contiguous LPs, starting from
LP1 (i.e., LP1 and LP2). The architecture is also capable of wrapping around while
multicasting. For example, in a 4-LP router, if sLID = 3 and CNT = 3, LP3, LP0
& LP1 will receive the data in a multicast fashion, simultaneously. The major handicap
of this scheme is the contiguity constraint. Let us assume a case where the data is to
be multicasted to LP0 and LP2. Here, multicasting is not possible because of the non-
contiguity of the participating Local Ports. Hence, a data transfer in terms of multiple
point-to-point communication is forced. Also, this scheme requires implementation of
costly comparators for identifying the destination Local Port(s). Comparators are required
to check if a particular LP is within the range of {sLID, sLID + CNT}. Above all, the
contiguous constraint creates a severe handicap on the mapping algorithm by eliminating
many potentially optimal combinations [SV06b].

Random Scheme

We overcome the contiguous constraint in this scheme, by employing one-hot en-
coding for the identification of the Local Port IDs that are to multicasted. Figure 8.3(c)
shows the modified header flit for proposed architecture. Here, each bit of nLID identifies
a unique Local Port and hence presence of 1 will indicate if the data packet is destined for
a particular Local Port. Summary of the merits of the scheme are,

• This is a simple scheme wherein any combination of Local Ports can receive the
multicast data.

105

LPs Scheme - # Bits required
Contiguous Random

n 2 × dlog2(n)e n
2 2 2
4 4 4
6 6 6
8 6 8

10 8 10
12 8 12
14 8 14
16 8 16
32 10 32
64 12 64

Table 8.1: Comparison of # bits required

• The expensive comparison operation is removed and the decoding logic inside the
router is greatly simplified. This is due to the fact that the destination Local Port(s)
identification information is readily available from the header flit itself. This results
in the reduced number of CLB usage and reduced latency in connection establish-
ment.

• The mapping tool is provided with a large configuration space for choosing the opti-
mal mapping, thanks to the random multicast capability [SV06b].

The flip side of this scheme is the considerable increase in the # of bits for LID

identification, with the addition of more number of Local Ports (refer Table 8.1). The LID

representation format (binary for contiguous scheme & one-hot for random scheme) is the
reason behind this disparity. Hence, the random addressing is preferred for a typical system
having an average of 10 communicating cores [SV06b]. For larger systems, the use of the
contiguous scheme is to be contemplated because of the aforementioned reasons.

8.3.2 Modified Architecture & Decoding Logic

We use LiPaR [SBKV05] as the base system and implement changes to the architec-
ture. The inter-router-channel transfers and the transfers between the Local Port channels
& the Network Interface (NI) remain similar to LiPaR. The new decoding scheme is im-
plemented after the data packet arrives at the input channel of various ports (directional &

local). The Request signal (REQ) is increased to be 2 bits wide (in place of a 1 bit line in
LiPaR), the combinations of which indicate the type of transfer (Table 8.2).

Figure 8.4 shows the architecture of the modified input channel of various ports.
The STARTTRANSFER signal is the AND of several 2-input OR logical operations. One
input of the OR function is the GNT signal, set (granted) by the output channel of other

106

if Multicast Transfer (≥ 1 Destination LP) then
Send REQ = 10 to the destination Local Ports
Set the CTRL lines of non-participating LPs to 1

if STARTTRANSFER = 1 then
Set REQ = 11 indicating start of transfer from next cycle
On completion, Reset REQ = 00 indicating end of operation
Wait for data for new data packet

else
Wait for GNT from the output channels of the requested LPs

else if UniCast Transfer (inside/outside router) then
Send REQ = 01 to the destination output channel
Set the CTRL lines of other (non-requested) output channels to 1

if STARTTRANSFER = 1 then
Set REQ = 11 indicating start of transfer from next cycle
On completion, Reset REQ = 00 indicating end of operation
Wait for data for new data packet

else
Wait for GNT from the requested output channels

end

Algorithm 7: Pseudo Code of Input Channel FSM

ports. The second input is the locally generated CTRL signal, which is set high if a par-
ticular output channel was not requested for channel-access. This is due to the obvious fact
that a non-requested output channel will not set the GNT signal for a given input channel.
The logic function, AND{ORs(CTRL, GNT) signals} indicates the actual start of
the transfer (STARTTRANSFER). When STARTTRANSFER = 1, the input channel sets
REQ = 11, thus, indicating to all the (requested) output channels that the data transfer is
set to start from the following cycle. The transfer continues until REQ becomes 00.

The pseudo code of the new FSMs at the input and output channels are given, re-
spectively, in Algorithms 7 and 8. During the channel transfers, the multicast transfers are
given precedence over the unicast transfers. And, there is no distinction in the precedence
when multiple multicast happen simultaneously inside a single router. In other words, the
multicast requests are granted access on a first-come first-serve basis.

Additionally, we remove the entire block containing the DEMUXs from crosspoint
matrix present in an MLPR [SV06b] and directly connect the output of the various input
channels to the MUXs of the crosspoint matrix. Figure 8.5 shows Connection Matrix in the
modified architecture. The connection to various MUXs is governed by positional associ-
ation. That is, the output of a particular input channel is port-mapped to the same input
position (1st, 2nd,. . .) of the various MUXs, thus, maintaining the uniformity across all the
channels. These architectural optimizations help to reduce the CLB usage and the latency

107

.

.

.

Input Channel

Input Channel

XR YR CLK RST

ReqIn DataIn AckIn

FIFO

FSM Controller

XY Routing

ReqN

ReqE

ReqW

ReqS

ReqL1

ReqL2

ReqLk

2

2

2

2

2

2

2
STARTTRANSFER

CTRL
NG

NT
N CTRL

EG
NT

E

CTRL
WG

NT
W CTRL

SG
NT

S

CTRL
L1G

NT
L1

CTRL
L2G

NT
L2 CTRL

LKG
NT

LK

. . .

Figure 8.4: Modified Input Channel
...

log2(k+4)

North
East
West

South
Local 1
Local 2

Local k

...

log2(k+4)

...

log2(k+4)

North Input
Channel

East Input
Channel

West Input
Channel

South Input
Channel

Local Port 1
Input Channel

Local Port 2
Input Channel

Local Port k
Input Channel

...

Connection Matrix

To
Output

Channel
of Local

Port 0
To

/F
ro

m
 o

th
er

O
ut

pu
t C

ha
nn

el
s

From
Output

Channel
of Local

Port 0

Figure 8.5: Modified Crosspoint Matrix

0169 00F0 7880 0000

01D9 2420 1108 0000

00B9 0619 30C0 0000

0000 0169 00F0 7880 0000

0000 01D9 2420 1108 0000

0000 00B9 0619 30C0 0000

0000 0169 00F0 7880 0000

0000 00B9 0619 30C0 0000

CLK

Rin_N 0169 00F0 7880 0000

Rin_E 01D9 2420 1108 0000

Rin_S 00B9 0619 30C0 0000

Rout_L0 0000 0169 00F0 7880 0000

Rout_L1 0000 01D9 2420 1108 0000

Rout_L2 0000 00B9 0619 30C0 0000

Rout_L3 0000 0169 00F0 7880 0000

Rout_L4 0000 00B9 0619 30C0 0000

Figure 8.6: Simulation with simultaneous multicasts

108

if Free to receive data then
if REQi = 10 (Multicast Transfer) then

Follow the dynamic-fixed priority scheme [SBKV05]
Set GNTi = 1 and wait for REQ to become 11

Set the select signals of the MUXs appropriately
Enable the FIFO to receive the data
On completion of transfer (indicated by REQ = 00), Disable the FIFO & Reset the select
signals of MUX

else if REQi = 01 (Unicast Transfer) then
Follow the dynamic-fixed priority scheme [SBKV05]
Set GNTi = 1 and wait for REQ to becomes 11

Set the select lines of the MUX appropriately
Enable the FIFO to receive the data
On completion of transfer (indicated by REQ = 00), Disable the FIFO & Reset the select
lines of MUX;

end
else

Wait for the destination output channel to become available

Algorithm 8: Pseudo Code of O/P Channel FSM

REQ Type of operation
00 End-of-transfer/No Operation
01 Channel Request (unicast)
10 Channel Request (multicast)
11 Start Transfer (beginning next cycle)

Table 8.2: Modified Request (REQ) Signal

of connection establishment, thus, improving the overall performance of the system.

On completion of the data transfer, the input channel sets the REQ signal to 00

and the FIFO output lines to high impedance state. Also, the output channel stops the FIFO
transfer by appropriately tristating the Select/Enable lines, thus removing any possibility of
corrupt data being sent/received. The architecture of the output channel is similar to LiPaR
[SBKV05], except for the removal of output buffer and the new priority-based control logic
to set MUX lines.

Multicast can happen from one local port to multiple local ports present in the same
router node, thus, giving a versatile multicast capability. Since, a multicast represents the
data transfer to output channels of the local ports (inside a single router), the directional
ports do not participate in the multicast. This is because a data packet arriving at the
output channel of a directional port (actually, passing through) indicates that the packet is
addressed to a different router node. Hence, multicast is restricted between router pairs or
within a router. Universal broadcasting will result in flooding of the network with packets

109

slices (% in XC2VP30)
LPs Multi2 Router Unicast MLPR

1 446 (3%) 461(3%)
3 1202(8%) 1015(7%)
4 1838(13%) 1419(10%)
5 2370(17%) 1759(12%)
7 4004(29%) 2866(20%)
9 5354(39%) 3753(27%)

Table 8.3: Xilinx ISE synthesis - Area results in XC2V P30

Timing Variation

5

7

9

11

13

15

1 2 3 4 5 6 7 8 9# LPs

Cl
oc

k
Pe

rio
d

(n
s)

Multicast Router Unicast MLPR

Figure 8.7: Variation in clock period

and hence is impractical for mesh-based NoCs.

8.4 Synthesis & Simulation Results

8.4.1 Synthesis Platform

The Multi2 Router designs with varied number of Local Ports are coded in VHDL
and synthesized using Xilinx ISE 6.3i [Xil06a]. Modelsim 5.8c [Men07] is used to simu-
late the model and generate activity data (Value Change Dump) of the Placed-And-Routed
(PAR) models. The FloorPlanner tool of the Xilinx ISE 6.3i is used to implement place-
ment constraints on the NoC system. Xpower tool of the Xilinx ISE 6.3i is used to obtain
the power estimates. The ML310 board provided by Xilinx is used to functionally verify
the various versions of the stand alone router and the NoC system. The test board has Virtex
II Pro family (XC2V P30) of FPGA [Xil06a].

The synthesis results of the various Placed-And-Routed (PAR) designs are given in
Table 8.3. Figure 8.7 shows the variation in the clock period for both the (original) unicast
router designs and new Multi2 Router designs. Though the overall variation in the clock
period is linear, an interesting point to be noted is the bump in the clock period of the router
designs with odd number of local ports. Especially, the 7 LP version is worse compared

110

019B 003C 0000

008B 0007 0000

01CB 000F 0000

0000 008B 0007 0000 01CB 000F 0000

0000 008B 0007 0000 01CB 000F 0000 019B 003C 0000

0000 008B 0007 0000 019B 003C 0000

0000 008B 0007 0000

CLK

Rin_N 019B 003C 0000

Rin_L3 008B 0007 0000

Rin_W 01CB 000F 0000

Rout_L0 0000 008B 0007 0000 01CB 000F 0000

Rout_L1 0000 008B 0007 0000 01CB 000F 0000 019B 003C 0000

Rout_L2 0000 008B 0007 0000 019B 003C 0000

Rout_L4 0000 008B 0007 0000

Figure 8.8: Simulation with Input Channel(s) waiting for channel-access to multicast

to the 8 LP router. It is to be noted that the clock period of the Multi2 Router is better
than original MLPR, but, consumes more area. The variations in the logic area usage are
attributed to the following reasons.

• The width of data packet is increased to 16 bits (from 8), in order to accommodate
the extra bit requirements for implementing the multicast feature. This translates to
accretion in additional logic & routing overheads.

• The synchronization signal REQ is now a 2 bit signal.

• The added decoding logic & signals(STARTTRANSFER, CTRL) to achieve multi-
casting.

• Modification of the output channel FSM to implement the prioritized multicast, in
addition to the unicast transfers.

Simulation: Figure 8.8 shows the simulation wherein the input channel of LP3 multicasts
to LP0, LP1, LP2 & LP4, the input channel of West directional port multicasts to LP0 &

LP1, and the input channel of North directional port multicasts to LP1 & LP2. In this case,
not all the requested (required) local ports are free to receive the multicast data. Hence, the
requesting input channel has to wait till all the requested output channels become available
to participate in the multicast transfer. Here, initially, the local port LP3 multicasts to local
ports, LP0, LP1, LP2 & LP4. When the local ports LP0 & LP1 become free, the West
directional port multicasts to LP0 & LP1. Later, when LP1 is ready to receive data, the
North directional port multicasts to LP1 & LP2.

Figure 8.6 presents a case showing simultaneous multicast between different chan-
nels. Here, the North directional ports multicasts to local ports, LP0 & LP3, the South
directional port multicasts to LP2 & LP4 local ports, and the East directional port performs
a single transfer to LP1, all happening simultaneously. The ability to multicast to any

111

combination (non-contiguous random scheme) of local ports can be clearly observed here.
Thus, we verify the functional correctness of the proposed design.

8.5 Conclusion

We present a novel approach of introducing multicast capability into the router ele-
ments in a Networks-on-Chip design, thus, bridging the gap between NoC and shared-bus
in terms versatile feature availability. We present the modified architecture for the new
router design and report the synthesis and simulation results.

112

Chapter 9

Energy Efficient NoC Configuration

A Networks-on-Chip having Multi2 Routers provides a many-fold advantage, even-
tually improving the power and the performance of the system. The scheme significantly
reduces the data traffic in the network by exploiting the multicast capability in place of the
traditional unicast transfers. A complex environment having MLPRs with multicast ability
exacerbates the process of finding the efficient mapping of design cores in a System-on-
Chip and hence demands an efficient NoC architecture generation algorithm. Based on
modified optiMap algorithm [SV06b], we experiment with a variety of benchmarks and
exhaustively analyze the performance and power gains obtained by exploiting the multi-
cast feature.

9.1 Advantages of the Multicast Router

The salient advantages of the proposed approach are summarized as follows.

• There is a marked reduction in the total number of clock cycles taken for data transfer
across the system task graph, due to reduced packet flow.

• Reduction in the # of packets flowing across the network will help ease congestion
and hence helps to remove the contentions for channel access to a great extent.

• The bandwidth across the links is not wasted for doing multiple unicasts, thereby,
improving the effective bandwidth available for the (other) data transfers.

• Every channel hop of the data packet adds to the dynamic power consumption of
the system. Thus, reduced number of packet transfer between channels provides

113

North

West

South

East

LP 0

LP 1

LP 2

LP 3

LP 4

Figure 9.1: Multicasting Illustration in a 5 port Multi2 Router

an excellent opportunity to reduce the overall power consumption in the network,
drastically.

9.2 µMap Algorithm

The factors discussed above provide the basis for an energy-efficient NoC architec-
ture generation. We envisage to arrive at an Network-on-Chip topology and a correspond-
ing mapping that is optimum in terms of the energy-efficiency and performance. We use
the optiMap [SV06b] NoC configuration generator as the base system for implementing the
µMap Algorithm. We implement the changes and develop the modified algorithm called
µMap (Multi2 router Map) to generate the various energy-efficient Networks-on-Chip con-
figurations. We modify the cycle-accurate simulator for the new scenario involving multi-
cast routers. We explore all possible combinations of multicast based transfer in order to
generate the various power-efficient Networks-on-Chip configurations.

In a system task graph, when a set of cores are the children of the same parent and if
those the (child) cores are mapped to a single router in the current NoC configuration, there
exists a possibility of receiving the same data simultaneously. Accordingly, we modify the
cost calculation so as to send the data packet once, thus, effectively exploiting the multi-
casting to the maximum. The above idea is illustrated in Figure 9.1, wherein simultaneous
multicast are shown in a five port Multi2 Router.

The µMap algorithm is shown in detail in Algorithm 9. It is an exhaustive search
algorithm analyzing all possible configurations in forming an NoC mesh (Lines 3-27). A
Multi2 Router can have varying number of ports ranging from a single port (in addition to
the North/East/West/South ports) to a maximum port count equal to the number of nodes

114

(n) in the task graph. Hence, the topology can have varying partition count In effect, the
different partition count reflects on the number of routers for the current iteration (Line
4-5). For a given partition count, different mesh combinations are possible, ranging from a
linear chain (eg. 1×n or n×1 mesh) to a square mesh (m×m), with the other rectangular
combinations forming the rest (Line 6). Once the topology is in place, the n cores can be
mapped onto the n ports (distributed based on the partition count and mesh topology) in n!

way (Line 7).

After the formation of mesh topology and the corresponding mapping (for the cur-
rent iteration), we find the top hop count based on the mapping of the task graph nodes. In
a system task graph, when a set of cores are the children of the same parent and if those the
(child) cores are mapped to a single router in the current NoC configuration, there exists
a possibility of receiving the same data simultaneously. Accordingly, we modify the cost
calculation so as to send the data packet once, thus, effectively exploiting the multicast-
ing to the maximum (Lines, 9-16). The hop count (estimated by the manhattan distance
because of XY routing scheme) is translated into the clock cycles needed which in turn is
dictated by the flits per packet (assumed to be 5 in this work). In Line 13, the last term of
1 is necessary because even in case of the source and destination ports present within the
same router, at least once hop is necessary to complete the transfer. The value is weighted
to account for the difference in the arbitration cycles at various ports, which is dictated
based on the NoC configuration at hand. We implement a simple C++ program to perform
cycle accurate simulation for the new scenario involving multicast routers. This step is
necessary to find the queue times that may be arise because of the blocking at the various
channels and due the different arbitration times due the round-robin policy (Lines 17-19).
The configurations are stored in a greedy fashion (Lines 20-22). This process is repeated
for all possible configurations formed using various Multi2 Routers.

We experiment with a set of eighteen benchmarks presented in [SV06b]. The
benchmarks cover a variety of task structures commonly found in a multiprocessor en-
vironment. The modified mapping algorithm (µMap) is written in C++ using the Standard
Template Library (STL) vectors and dynamic arrays. The µMap algorithm is executed on a
SunBlade 1000 workstation having dual processors operating at 750MHz and 2GB RAM.
Because of the exhaustive search of the complete search space (factorial order, O(nn)), the
average execution time varied between 5 and 6 hours for the various benchmarks.

115

Reduction in Execution time

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9# LPs

%
 re

du
ct

io
n

lu
r2
les

Figure 9.2: Results 1 - Reduction in the overall execution time

Reduction in Execution time

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9# LPs

%
 re

du
ct

io
n

e1 p3 p4 pa2

Figure 9.3: Results 2 - Reduction in the overall execution time

9.3 Experimental Results

The NoC configuration generation process involves an exhaustive search of the en-
tire search space for each of the benchmark in the set. By virtue of being exhaustive in
nature, the optimal solution is guaranteed. Hence, understandably, the µMap algorithm
caches the optimal results in a greedy fashion. We present and exhaustively discuss the
results of selected benchmarks below.

9.3.1 Packet Reduction

From Table 9.1, across the benchmarks, the average packet reduction using Multi2

Routers is 30%, compared to the respective unicast MLPR designs. In benchmark p3, the
packet reduction is as high as 51.3% for the 8 & 9 LP routers (average of 44.6% across
all nine router versions). From Table 9.2, we observe that, compared to the traditional 1
LP router, the average packet reduction is close to 50% (across all benchmarks) by using
larger LP routers. The maximum reduction is to the tune of 74% in benchmark p3, which
is quite significant. The drastic reduction in the total packet count exemplifies the merit of
the proposed approach and provides a firm basis for further exploration in the pursuit of an

116

e1 p3 p4 pa2 r2 lu les
LPs u m % Diff u m % Diff u m % Diff u m % Diff u m % Diff u m % Diff u m % Diff

1 656 656 - 1040 1040 - 1072 1072 - 704 704 - 544 544 - 560 560 - 576 576 -
2 560 376 32.9 896 648 27.7 928 712 23.3 592 504 14.9 480 432 10.0 496 448 9.7 528 472 10.6
3 496 336 32.3 800 512 36.0 800 528 34.0 544 440 19.1 432 368 14.8 448 376 16.1 480 368 23.3
4 464 280 39.7 752 432 42.6 768 448 41.7 512 400 21.9 416 352 15.4 432 344 20.4 480 376 21.7
5 432 264 38.9 720 384 46.7 720 408 43.3 480 384 20.0 384 336 12.5 400 328 18.0 448 352 21.4
6 432 272 37.0 688 344 50.0 672 392 41.7 480 368 23.3 384 312 18.8 400 328 18.0 432 320 25.9
7 416 248 40.4 672 328 51.2 656 376 42.7 464 344 25.9 368 296 19.6 384 312 18.8 432 336 22.2
8 400 232 42.0 640 312 51.3 640 360 43.8 448 312 30.4 368 296 19.6 384 296 22.9 416 304 26.9
9 384 216 43.8 608 296 51.3 608 344 43.4 416 296 28.8 352 280 20.5 352 280 20.5 384 288 25.0

Avg. % Diff. = 38.4 Avg. % Diff. = 44.6 Avg. % Diff. = 39.2 Avg. % Diff. = 23.0 Avg. % Diff. = 16.4 Avg. % Diff. = 18.0 Avg. % Diff. = 22.1

Table 9.1: Packet count in multicast (m) and unicast (u) transfers (optimal result chosen
from respective cases)

energy-efficient Networks-on-Chip.

9.3.2 Performance Gain

Multi2 router also provides a significant reduction in the overall execution time∗.
Figures 9.2 and 9.3 show the percentage reduction in the execution time (in # clock cycles)
in the Multi2 Router compared to the respective unicast MLPR. The gain in the execution
time varies over a range (minimum gain of 7% and a maximum gain of 34%). Across most
of the selected benchmarks, large gains are observed for the router designs having 4 to 7
local ports. The gains of the 9 LP routers match the gains of the traditional 1 LP routers,
indicating the point of diminishing returns in terms of performance, as we increase the LP
count of a single router. But, in any case, the reduction in area is significantly large for a
router with larger LP count [SV06b].

9.3.3 Optimization Cases

We define two optimization cases for the µMap algorithm. In the first case (EXE),
the total execution time of the task graph is optimized, while, in the second (PKT), the
total packet count (including both inter-router-channel and intra-router-channel) is opti-
mized. Table 9.2 lists the results of both optimization cases, for each of the seven selected
benchmarks.

∗Refers to the completion (end) time of the last node in the task graph

117

Input: Given a system level task graph, G(T,E) with n logic cores
Output: Power Efficient NoC configuration
Best.Config.Cost←∞
Best.Config← NULL
repeat

forall Partition configurations with Partition Count ≤ max{ Local Port Count} do
Router← Current Partition Count
forall Mesh topologies for the the given Partition configuration do

forall Combinations of mapping of cores onto the given Mesh topology do
Total.Hop.Count← 0
foreach Node (n1) in the Task graph do

(i1, j1)← Router Coordinate of Node n1
repeat

2: Set of child nodes with common router co-ordinate (i2, j2)
Total.Hop.Count← Total.Hop.Count + i1 ∼ i2 + j1 ∼ j2 + 1

Mark the child nodes in 2 as visited
until All the child nodes of the given node are analyzed

end
Perform a cycle-accurate simulation of the task graph
Wait.Time← Sum of all queue times at various ports
Current.Cost← α× Total Hop Count ×# Flits per packet + Wait.Time
if Current.Cost < Best.Config.Cost then

Best.Config← Current.Config
Best.Config.Cost← Current.Cost

end
end

end
end

until All the configurations are evaluated

Algorithm 9: µMap Algorithm

Case 1: EXE

In the EXE case, against the usual trend, there is a jump in the total number of
packets as we increase the LP count, which is quite noteworthy. This is particularly evident
in the benchmarks lu (4LP > 3LP, 7LP > 6LP)† and les (6LP,7LP,8LP, all three > 5LP).
This is because of the lesser out-degree level prevalent in those benchmarks. Further, the
EXE optimization case searches for the NoC configuration with the minimum execution
time, which need not necessarily have the least packet count for the complete transfer.

Case 1: PKT

The PKT optimization case involves a completely different optimization scenario.
An important point to be noted here is that a Network-on-Chip configuration that is opti-

†nLP refers to a n LP router.

118

p3 p4 pa2 lu les e1 r2
EXE PKT EXE PKT EXE PKT EXE PKT EXE PKT EXE PKT EXE PKT

LPs exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt exe pkt
time count time count time count time count time count time count time count time count time count time count time count time count time count time count

1 125 1136 129 1040 137 1120 133 1072 138 752 150 704 134 592 138 560 113 576 113 576 71 656 71 656 188 736 188 544
2 101 760 113 648 101 776 109 712 118 576 126 504 114 488 134 448 105 528 117 472 59 416 63 376 152 472 164 432
3 85 528 85 512 97 528 97 528 110 512 118 440 105 440 114 376 89 368 89 368 55 344 59 336 144 408 148 368
4 85 464 85 432 81 448 81 448 106 440 110 400 102 384 106 344 93 376 93 376 51 312 55 280 132 368 140 352
5 81 424 85 384 81 432 81 408 102 480 102 384 98 328 98 328 85 360 89 352 47 264 47 264 132 336 132 336
6 73 408 81 344 81 392 81 392 98 424 98 368 98 352 106 328 81 320 81 320 47 272 55 272 132 312 132 312
7 73 344 73 328 81 376 81 376 94 368 114 344 94 352 98 312 85 344 89 336 47 248 47 248 132 296 132 296
8 73 312 73 312 77 400 81 360 94 352 98 312 94 352 98 296 81 304 81 304 47 232 47 232 124 296 124 296
9 73 296 73 296 73 344 73 344 90 296 90 296 90 280 90 280 73 288 73 288 39 216 39 216 124 280 124 280

Table 9.2: Comparison of overall execution time (in # clock cycles) and packet count for
two cost functions (EXE & PKT)

1,4,
5

6,8,
9

2,3,
7

4,5 3 6,7

1 8,9 2

3 4 6

1 8 9

5 7 2

1 LP = 125, 1136

EXE case

1 4 5

8 6 3

9 2 7

6,7,
8,9

1,3,
4,5

2

1 LP = 129, 1040

2 LP = 113, 648

3 LP = 85, 512

4 LP =
85, 432

8,9 6

1 4,5

7 2

2 LP = 101, 760
6,8,

9
1,4,
5

2,7 3

6,7,
8,9

1,4,
5

2 3

3 LP = 85, 528 4 LP = 85, 464

PKT case

Figure 9.4: packed3 (p3) - NoC configuration with two optimization cases (EXE & PKT)
- Cost represented as execution time, packet count - the mapped cores are shown inside the
square (router) (shown till # LP = 4, due to space constraints)

mized for the total packet count need not be the configuration with the least total execution
time. This is observed in almost all of the benchmarks (compare the packet count of EXE
& PKT cases, in the respective benchmarks in Table 9.2). Alternately, the design that com-
pletes early can have increased packet count, thus, a tradeoff between the execution time
and the packet count needs to be established. Apart from this trend, in benchmark p4, we
observe that the execution time remains same from 4LP to 8LP router, but, the respec-
tive packet counts decrease steadily. Since, the total area will decrease with increased LP
count [SV06b], the choice of a particular MLPR is now based on other constraints includ-
ing the absolute power consumption, floorplan constraints, etc. This behavior stresses the
need for application-specific NoC configuration generation.

In both the cases, the drastic reduction in the number of packets can be clearly
observed. Against the traditional single port transfers, the µMap based transfers reduce the
packet count by more than 3 folds (refer the packet count between 1LP and 9LP in PKT
case(s), in Table 9.2). The effect of optimization case on the final NoC configuration is
clearly seen from Figures 9.4 & 9.5.

119

1,4,
5

6,8,
9

2,3,
7

4,5 3 6,7

1 8,9 2

3 4 6

1 8 9

5 7 2

1 LP = 125, 1136

EXE case

1 4 5

8 6 3

9 2 7

6,7,
8,9

1,3,
4,5

2

1 LP = 129, 1040

2 LP = 113, 648

3 LP = 85, 512

4 LP =
85, 432

8,9 6

1 4,5

7 2

2 LP = 101, 760
6,8,

9
1,4,
5

2,7 3

6,7,
8,9

1,4,
5

2 3

3 LP = 85, 528 4 LP = 85, 464

PKT case

Figure 9.5: parallel2 (pa2) - NoC configuration with two optimization cases (EXE & PKT)
- Cost represented as execution time, packet count - the mapped cores are shown inside the
square (router) (shown till # LP = 4, due to space constraints)

9.4 Power Results

To get a real picture of the actual power gains obtained in absolute terms, we need
to estimate the power consumed by Multi2 router and unicast MLPR designs. For each
router design, we simulate the Placed-And-Routed (PAR) model in order to generate the
activity information of the PAR design. We use the XPower tool of the Xilinx ISE 6.3i

[Xil06a] to get the power estimate values of the designs. XPower takes in the PAR design
and VCD file (containing the activity data) and provides an estimate of various power
parameters. We use the ff896 package of XC2VP30 for the purposes of power estimation.
All the temperatures including the ambient and junction temperatures are set at 25 degree
centigrade.

9.4.1 Power Per Flit

We define PPF (Power Per Flit) as the average dynamic power consumed in transfer-
ring a flit between two given channels. The interconnect usage information is not directly
available from the Xilinx ISE synthesis tool and hence it is difficult to model them ana-
lytically in terms of the capacitances switched. Hence, we write multiple test cases and
simulate wherein a fixed number of flits are transferred between various pairs of channels.
For a given router design, the total average dynamic power consumption is divided by the
total flit count to obtain the PPF. This is a coarse level of power estimation, but, is rea-
sonably (relatively) accurate. Since, the aim of this research is to obtain an idea about the
level of power gains achieved using Multi2 routers, this kind of power analysis serves the
purpose well.

120

9.4.2 Analysis of Power data

Table 9.3 presents the power estimates (of selected cases, owing to verbosity) ob-
tained from the XPower tool of the Xilinx ISE [Xil06a]. In case of unicast MLPRs, we
note that the PPF is relatively constant across the various LP routers. But, the PPF is highly
non-uniform in Multi2 routers and is observed to be increasing for larger LP routers. This
increase is attributed to increased load seen at each input channel because of the direct port
mapping of various crosspoint matrix lines (refer Chapter 8.3). At the same time, the PPF
of the 9 LP router is significantly low and matches that of 1 LP router. To understand this
behavior, we find the number of flits that are actually saved by multicasting, compared to
the unicast transfers. From Table 9.3, we infer that the number of flits saved must be large
in order to keep the PPF to a low value. In other words, a Multi2 router must have a large
degree of multicast transfers happening, which is highly application-specific.

We annotate the PPF & the timing information (from Figure 8.7) and recalculate
the absolute values as shown in Table 9.4. For comparison, the corresponding timing &
power estimates of the unicast MLPR is given in Table 9.5. The execution time (in terms
of ns) is for the illustrative purposes of the synthetic benchmarks that are experimented
with [SV06b]. On an average, the execution time of Multi2 routers is found to be reduced
by 20% across the benchmarks. But, the picture is entirely different in terms of the power
numbers, having low power gains. We see that the PPF value of the unicast MLPRs are
very low, compared to the respective Multi2 routers. Though there is a significant reduction
in packet count using Multi2 routers, the high PPF overshadows that effect and results in
low power gains. As seen from Tables 9.4 & 9.5, the 9 LP router is the best for a Multi2

router implementation and is seen to have a very low PPF value. Thus, obtaining a low PPF
value is of great importance.

Further, compared to single LP routers (Table 9.4), we observe a 16% reduction in
execution time and 25% reduction in power in Multi2 routers. For the benchmarks r2, lu
and les, the 4, 5 & 7 LP versions fare poorly compared to the 1 LP router, leading to the
negative gains. Again, the reason is the high PPF values of those router versions compared
to the 1 LP case. Also, the low degree of multicast (leading to smaller gains in terms of
the packet count) in those cases, aggravates the problem further. Hence, a large percentage
reduction in the packet count is required to offset the high PPF values. The average power
reduction raises to 35% if we ignore those odd cases involving negative gains.

To summarize, we observe significant gains in terms of both the power and per-

121

Multi2 Router Unicast MLPR
LPs power/flit (mW) # flits saved power/flit (mW)

1 3.465 0 2.18
3 4.20 6 2.90
4 6.17 8 2.24
5 6.01 10 2.90
7 6.14 8 2.90
9 3.60 28 2.80

Table 9.3: Power Estimates from XPower [Xil06a]
e1 p3 p4 pa2 r2 lu les

Exe. % Pwr. % Exe. % Pwr. % Exe. % Pwr. % Exe. % Pwr. % Exe. % Pwr. % Exe. % Pwr. % Exe. % Pwr. %
LPs Time Diff. Diff. Time Diff. Diff. Time Diff. Diff. Time Diff. Diff. Time Diff. Diff. Time Diff. Diff. Time Diff. Diff.

1 667 - 2273 - 1213 - 3604 - 1250 - 3714 - 1410 - 2439 - 1767 - 1885 - 1297 - 1940 - 1062 - 1996 -
3 596 11 1411 38 859 29 2150 40 980 22 2218 40 1192 15 1848 24 1495 15 1546 18 1151 11 1579 21 899 15 1546 23
4 567 15 1730 24 876 28 2670 26 834 33 2769 25 1133 20 2472 -1 1442 18 2175 -15 1092 16 2126 -14 958 10 2324 -16
5 512 23 1587 30 927 24 2308 36 883 29 2452 34 1112 21 2308 5 1439 19 2019 -7 1068 18 1971 -4 970 9 2116 -6
7 569 15 1523 33 883 27 2014 44 980 22 2309 38 1379 2 2112 13 1597 10 1817 4 1186 9 1916 0 1077 -1 2063 -3
9 530 20 778 66 993 18 1066 70 993 21 1238 67 1224 13 1066 56 1686 5 1008 47 1224 6 1008 57 993 7 1037 48

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Red. 17 Red. 38 Red. 25 Red. 43 Red. 25 Red. 41 Red. 14 Red. 20 Red. 13 Red. 9 Red. 12 Red. 12 Red. 8 Red. 9

Table 9.4: Multi2 Router - Execution time (in ns) and power consumption (in mW)

formance, thus, validating the proposed approach. The ideas and the results presented in
this research are just the tip of the iceberg and provides a great opportunity for realizing
energy-efficient Networks-on-Chip.

9.5 Conclusion

We experiment the modified optiMap algorithm (called µMap) with the set of eigh-
teen synthetic benchmarks presented in Chapter 5. Compared to the unicast transfers, we
observe an average of 50% packet reduction (maximum of 74% using 9 Local Port (LP)
router, in benchmark p3), across a set of benchmarks. On an average, when compared
to the traditional 1 LP unicast router, there is a 16% reduction in the execution time and
35% reduction (maximum of 67% in benchmark p4) in total power consumption. In addi-
tion to significant performance benefits, the results clearly indicate a drastic reduction in
the packet count of the network, thus, providing a way for an energy-efficient Networks-
on-Chip. With improved multicast router designs, there is a larger possibility of further
improving the energy efficiency of the overall NoC system.

122

e1 p3 p4 pa2 r2 lu les
Exe. Pwr. Exe. Pwr. Exe. Pwr. Exe. Pwr. Exe. Pwr. Exe. Pwr. Exe. Pwr.

LPs Time Time Time Time Time Time Time
1 774 1430 1406 2267 1450 2337 1635 1535 2049 1186 1504 1221 1232 1256
3 811 1438 1077 2320 1319 2320 1428 1578 1791 1253 1379 1299 1174 1392
4 726 1039 1193 1684 1242 1720 1451 1147 1820 932 1304 968 1193 1075
5 773 1253 1166 2088 1323 2088 1493 1392 1729 1114 1389 1160 1218 1299
7 745 1206 1124 1949 1183 1902 1606 1346 1927 1067 1431 1114 1299 1253
9 770 1075 1163 1702 1163 1702 1359 1165 1872 986 1359 986 1223 1075

Table 9.5: Unicast MLPR - Execution time (in ns) and power consumption (in mW)

123

Chapter 10

Power Efficiency of Multi-Port Routers

Application-specific NoCs are preferred in place of a standard topology, so as to
compete with the shared-bus in terms of performance. In order to reduce the communi-
cation overheads in traditional routers (key elements of any NoC), varying the port count
of the routers are found to be beneficial. In this chapter, we critically analyze the power
variations present in a router having varied number of ports, in a Networks-on-Chip. The
work is divided into two major sections, projecting the merits and shortcomings of a multi-
port router from the aspect of power consumption [SV07c]. First, we evaluate the power
variations present during the transfers between various port pairs in a multi-port router.
The power gains achieved through careful port selection during the mapping phase of the
NoC design are shown. Secondly, through exhaustive experimentation, we discuss the IR-
drop related issues that arise (due to large current drawn), when using large multi-port
routers [Kon04].

10.1 Motivation

10.1.1 Port Level Power Savings

Being a shared network, a Networks-on-Chip suffers from several overheads in-
cluding additional area, hop-based communication adding to the overall delay, conges-
tion and tighter bandwidth constraints. Competent designs to improve the area overhead
and performance are available in the literature [SBKV05, RDG+04]. An important high-
light among these works is the stress on the application-specific topology generation and
core mapping. The router nodes are custom-tailored in order to satisfy the performance

124

and bandwidth constraints, ignoring the ill-effects on the power front. NoCs consume a
significant percentage of the total system power, thereby requiring power-efficient tech-
niques [Vas04, Han03, RSG03, KYL+03, JKY05]. On the shared-bus front, we have differ-
ent power optimization techniques that predominantly involve isolation of segments of bus
to prevent switching-related overheads [HP00].

Objective 1: In this chapter, firstly, we attempt to improve the power efficiency by ex-
ploiting the intra-port variations in power present in a multiport router (the ad-hoc switch
catered to the application at hand [SV06b, BJM+05]). Owning to space constraints, we
present the results from a five port router and highlight the power savings that can be ob-
tained by careful selection of ports during mapping of cores.

10.1.2 Impact of port count on IR drop

In addition to the router architecture, topology generation and mapping form an
important phase of an NoC design, having a direct impact on the final System-on-Chip
performance [OHM05]. Though it is possible to achieve a mapping that is efficient in
terms of performance and power [KPN+05,SC05,YBK99], ad-hoc router design and topol-
ogy generation will give rise to a larger crossbar (the key element inside router), pos-
sibly resulting in larger IR drops [ABPvG01]. Violations in terms of a larger current
drawn will lead to timing issues and electromigration, eventually resulting in chip fail-
ures [CLRK99, You02]. Thus, in the nanometer regime of system design, ensuring power
integrity is of utmost importance, due to the widespread appearance of IR drop and ground
bounce [Str06, McC07, BPA01, BMSVH99].

Objective 2: We experiment exhaustively to observe the effect of adding ports to a router
(in other words, increasing the complexity of the router) in terms of the average power
variation and IR violations created. The results indicate that a large multi-port router is not
beneficial from the viewpoint of power integrity.

10.2 Related Work

Different router designs aimed at improving the performance and power are avail-
able in the domain of Networks-on-Chip. A gradual shift towards the ad-hoc design of
routers, tailored to the application(s) to be interconnected through the NoC backbone, is

125

gaining prominence. In contrast to total ad-hoc designs that route packets along any de-
sired path [BJM+05], we have structured implementations that introduce a heterogenous
composition of routers having multiple ports [SV06b]. Apart from the efficient router de-
signs, topology generation and final mapping determine the efficiency of the NoC in terms
of both power and performance [KPN+05, SC05].

With larger System-on-Chips, NoCs are found to be consuming a significant per-
centage of total system power, being as high as 40% [Vas04, Han03]. Several techniques
that target power reduction by optimizing the packet transfer are available [MCM+05].
Hu and Marculesu [HM03b] present a branch-and-bound algorithm to get a power effi-
cient mapping of cores onto tile-based mesh architectures, while satisfying the bandwidth
constraints of the NoC. An ILP formulation for low energy mapping and routing is pre-
sented in [SC05]. An energy model and a buffer-reduction based energy-efficient NoC
is given in [YMB02, YMB04]. Several techniques like wire-style and topology optimiza-
tion [HZC+06, WPM05], selective long-link insertion [OM05, OMLC06, HCZ+05] and
voltage-scaled links [CLKI06, SK04] aim to improve the energy efficiency of the NoC.

All of these works target efficient packet transfer between the various router nodes
of an NoC. To the best of our knowledge, this is the first work to investigate the power
variations at an individual router level using multiport routers [SV07c]. Multiport routers
have been found to be efficient in terms of overall performance and power at the system-
level. It is to be noted though that presently there is insufficient work looking on the IR
drop effects of using ad-hoc router nodes. In this work, with suitable experimentation, we
discuss the IR drop effects that arise by using larger multiport routers.

10.3 Experiment Platform

In contrast to ASICs, modern FPGAs come with numerous capabilities such as em-
bedded hard/soft processor cores, DSP and transceiver blocks with an operating frequency
crossing 500MHz, all of which provide an excellent opportunity for realizing platform-
based and System-on-Chip (SoC) designs on reconfigurable fabrics [Xil06a]. Exploiting
the advantages of a NoC style of interconnection is gaining popularity in FPGA-based SoC
designs [SBKV05, SSA04]. In this work, we use the router designs that were originally
developed for an FPGA-based NoC. Hence, in our experimental flow∗, we carry out the

∗An exhaustive discussion of the two flows is given in Appendix A

126

Generate VHDL Models

User
Constraint File

(.ucf)
Performance,

Floorplan,
Placement and

I/O

Max Port Count Target FPGA

Place-And-Route (PAR)

XPower

Design File (.ncd)
Physical Constraint

File (.pcf) Modelsim Simulation

PAR
Simulation

Model
Testbench

Activity - Value
Change Dump

(.vcd)

XML Settings file
(Temperature,
Power analysis
mode,…)

Power Estimates
Junction Temperature

Figure 10.1: Xilinx FPGA flow

prototyping and characterization of router modules on an Xilinx-based FPGAs to meet the
first objective.

10.3.1 Xilinx flow

In this flow, the power differences present between various pairs of ports in a mul-
tiport router are captured. We obtain the primary multi port router designs from [SV06a],
which are based on Xilinx FPGAs and make intelligent use of the block RAMs available
across the FPGA. As shown in Figure 10.1, given the port count and the target FPGA de-
vice, we synthesize the various multi port designs using the Xilinx ISE synthesis tool. After
the Place-And-Route phase of synthesis, we simulate the Placed-And-Routed (PAR) router
simulation model using ModelSim 6.3i [Men07] and generate the Value Change Dump
(VCD) file. Throughout the simulation, the switching activity of all nets and logic in the
PAR design at every clock step are stored in the VCD file. Next, XPower tool of the Xilinx
ISE 6.3i [Xil06a] is used to obtain the power estimate values of the design, for the vec-
tors that were provided as input for the current run. XPower takes in the PAR design file
(.ncd), the physical constraint file (.pcf), the user settings file (.xml) and VCD file (contain-
ing the activity data) and provides an estimate of various power parameters. We use the
ff896 package of XC2VP30 Xilinx Virtex II Pro FPGA for the purposes of power estima-
tion. For experimentation purposes, the temperatures including the ambient and junction
temperatures are set at 25 degree celsius during all simulation runs.

127

Max Port Count

Synopsys Design Compiler

.sdc .db, .v, .vhdl

.db, .saif

.tlf, .lef

Clock Tree Insertion

Detailed Routing

Timing
AnalysisOptimization

-ve slack

Timing
AnalysisOptimization

-ve slack

Timing
AnalysisOptimization

-ve slack

User Constraints
Clock, Max Delay,

Max Fanout,
Operating

Conditions,
Wireload Model

OSU / IIT
TSMC 0.18µ
.db, .vhdl, .v,
.saif, .tlf, lef

Generate VHDL
Models

Floorplan / Powerplanning
Special Route (Sroute)

Timing-driven Placement

GenLib
Phase

Fire & Ice RC
Extraction

Filler Cell Insertion
Violation Checks

Delay Calculation

.spef, .cap

Statistical Power
Analysis

.sdf
VoltageStorm
Rail Analysis

Net Toggle
Probability,
Clock Rate,

Pad Location
Files Instance

power

bias voltage,
voltage limit

Average power reports EM & IR drop analysis

IceCaps
technology
File (.tch)

IceCaps
technology

file (.tch), .lef,
lefdef.layermap

Cell binary-view
(timing &

power-grid)
(.cl file)

Cadence
SoC Encounter

Figure 10.2: Synopsys-Cadence Flow

10.3.2 Synopsys-Cadence Flow

A vector set is used to observe the power variations between various ports in the
Xilinx FPGA based flow. Though the power estimation tool (XPower) of the Xilinx ISE
synthesis platform is able to report the average and peak powers, it is not comprehensive
in terms of the temperature and IR drop analysis. Many of the device level details are
abstracted away and the user has to remain contended with the summary reports and files
generated by Xilinx ISE. Due to limited leeway available for an extensive IR drop analysis,
we port the designs onto a ASIC based flow, making use of the Synopsys and Cadence

128

North

West

South

East

LP 0

LP 1

LP 2

LP 3

LP 4

Figure 10.3: A Five Port Router with multicast capability

CAD tool set. During porting, the only required change was to replace the Xilinx BRAM
based FIFO (the buffer elements that store the packets in an NoC) association into a user
defined FIFO . This is because the Synchronous FIFO implementation using BRAM is
only available as a black-box implementation using Xilinx LogiCORE tool [Xil05] and the
corresponding reference is replaced with a new RTL implementation of the FIFO.

Figure 10.2 shows the complete flow for layout synthesis, followed by power and
rail analysis. TSMC 0.18µ library available from OSU (formerly from IIT) [osu07] is used
at various stages of the flow. First, the VHDL router designs are input into Synopsys Design
Compiler and a gate level net list along with the timing constraint file (.sdc) are obtained.
We port them into Cadence SoC Encounter in addition to the timing library (.tlf) and LEF
(Library Exchange Format) files of the standard cells from IIT TSMC 0.18µ library. After
initial floorplan and power rail (vdd/gnd) definition, the power track routing (special route)
and via-insertion are performed. Timing-driven placement, clock tree insertion and detailed
routing constitute the next phase of tasks, with the intermediate timing violations removed
through an optimization phase. This is then followed by filler-cell insertion and verification,
in order to check for various issues including a check for complete connectivity.

The next sequence of steps constitute the power and IR drop analysis using Cadence
SoC Encounter [Cad07a]. Using the Layer Map file and IceCaps technology file (.tch file,
having models for resistance and capacitance extraction in various layers) as input, the
GenLib routine is invoked to create a binary-view (.cl library) of the LEF cells (TSMC
0.18µ). The binary view has two key data, namely, the graycell data (for extraction-for-
timing flows) and power-grid view of all cells. Fire & Ice RC extractor [fir07] is used
to generate the Standard Parasitic Exchange File (.spef) followed by the delay estimation

129

Destination Ports receiving the same data from Source port
Source 1 (1-to-1 transfer) 2 (1-to-2 transfer) 3 (1-to-3 transfer) 4 (1-to-4 transfer)

Port Average Power (mW) Average Power (mW) Average Power (mW) Average Power (mW)
Min Max Avg Min Max Avg Min Max Avg Min Max Avg

N 173 180 177.75 186 190 187.70 193 197 195.20 201 204 202.20
E 190 194 192.13 200 204 203.30 210 216 212.70 220 224 222.00
W 162 165 163.75 172 177 174.90 182 188 184.80 193 197 194.80
S 153 163 159.63 170 174 172.10 180 184 182.00 190 193 191.80

L0 171 175 172.50 178 181 179.50 184 187 185.75 192 192 192.00
L1 176 179 177.63 184 187 185.67 192 194 193.00 200 200 200.00
L2 176 182 179.38 185 190 187.50 193 198 194.75 202 202 202.00
L3 172 175 173.50 179 174 179.83 193 197 195.20 193 193 193.00
L4 180 183 181.38 188 192 189.83 196 199 197.50 205 205 205.00

Table 10.1: Five port router - Average Power consumption between different of ports (L0-
L4 represent logic port)

Figure 10.4: MPEG4 - Mapping of cores with different multiport routers

(SDF file generation). Since, the worst case for IR drop is hard to construct using vec-
tor based power analysis, we make use of the statistical power analysis with a net toggle
probability of 0.5 and clock rate of 100MHz (typical). A report for average/peak power
is generated along with detailed instance power files, which are input to the VoltageStorm
tool. VoltageStorm is sign-off tool for detailed rail analysis to find IR drop violations in the
layout and the profile is displayed as a power graph [Cad07b].

10.4 Intra-port Power Savings in Multi Port Routers

First, we describe some of the terminology related to a multiport router. In a tra-
ditional Networks-on-Chip design, a mesh based topology comprises of a router that has
four directional ports (North/East/West/South) and one logic port to which the IP core gets
attached. This is referred as single (logic) port router. Hence, not counting the directional
ports, multiple number of logic ports constitutes a multiport router. Figure 10.3 shows a
five (logic) port router having three simultaneous transfers happening in a multicast fash-
ion. A detailed discussion of the router design and capabilities is present in Chapter 4,
Chapter 6, Chapter 7, Chapter 8, and Chapter 9 [SV06b, SV07a, SV06a, SV07b]. Figure
10.4 shows a particular case wherein the MPEG4 application (refer [BJM+05] for bench-

130

Average Power variation in ports of five port router

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

230.00

N E W S L0 L1 L2 L3 L4Source Port
Av

er
ag

e
Po

w
er

 (m
W

)

1 to 1 transfer 1 to 2 transfer 1 to 3 tranfer 1 to 4 transfer

Figure 10.5: Average power variation in different source ports

mark) is mapped with various multiport routers†. The mapping algorithm(s) will attempt
to cluster the cores optimizing the performance and the packet count, while satisfying the
bandwidth constraints at the system level [SV06b,SV07a,SV07b]. The underlying assump-
tion across the work presented so far is that when NoC architecture generation (topology
+ mapping) is complete, the amount of power for intra-router switching (between ports of
the same router) is constant. Hence, on an individual router basis, the logic port to which
core gets attached is considered to be having no effect on the overall power consumption.

In this work, we concentrate on the Multi2 Router‡ and analyze the power dif-
ferences in switching packets between various ports (intra-port transfers) [SV07c]. We
simulate the router designs by switching a fixed set 10000 packets between various router
ports. Table 10.1 summarizes the average power estimated by the Xilinx XPower tool for
different combinations of packet transfers between various ports. Each row corresponds to
a source port from which the packets are switched to multiple ports in a multicast fashion
§ [SV06a]. Each source port can switch to any combination of the rest of the ports. Eg., in
first case, N can transfer to {E, W, S, L0, L1, L2, L3, L4} and in 2nd case N can transfer to
{L0&L1, L0&L3, L0&L4, L1&L2, L1&L3, L1&L4, L2&L3, L2&L4, L3&L4, . . .}. Sim-
ilarly, combinations for rest of the cases and for rest of the source ports can be obtained.
Owing to verbosity, for each of the four cases & for each of the source port, we present the
minimum, maximum and average of all the combinations of transfers.

For a given source port, the minimum and maximum values clearly indicate the
spread of the average power consumed based on the destination port(s) at hand. Contrast-

†Max # LP in the figure denotes the maximum number of logic ports, with the mapped cores inside the box.
‡Owing to verbosity, we present only results from a 5 port router
§Four cases indicate # of participating ports which receive the same data from the single source port (multicast)

[SV06a].

131

ingly, the choice of source port also affects the average power, as shown in Figure 10.5. For
instance, in case I (1-to-1 transfer), the difference in average power based on the source port
is as high as 20% (refer 4th column of Table 10.1). Assuming the degenerate case wherein
same amount of data is switched between all ports, the minimum savings of 20% is ob-
tained. Depending on the amount of data that is switched between ports by an application
in hand, the savings can grow to a large value. It is seen that irrespective of the type of
transfer (1-to-1/1-to-2/1-to-3/1-to-4), W & S & L0 are better candidates as source ports for
a high bandwidth transfer, with E & L4 being worse. For example, if there are two trans-
fers, wherein one is switching 4× amount of data when compared to the other transfer, by
careful port selection, the power savings gets improved by 4×20% (due to 20% difference
in average power between two extreme cases in mapping).

After developing a database of power values for various ports of a multiport router,
a power-efficient mapping on a per router node basis is possible by careful selection of ports
during the mapping phase of NoC. Thus, it is clearly seen that the choice of the source port
and the destination port is of prime importance for improving the power efficiency of an
NoC having multiport routers [SV07c].

10.5 Power related Issues in Multi port Routers

In this section, we analyze the power-related issues that arise owing to a com-
plex/larger multiport router [SV07c]. We adopt the Synopsys-Cadence flow (refer Sec-
tion 10.3.2) for the various simulation runs. In addition to statistical power analysis, an
exhaustive rail analysis is performed to observe the negative effects in terms of IR drop
increase [ABPvG01, Str06, You02].

10.5.1 Average Power Increase

Addition of ports to a router reduces the dimension of the topology of the Networks-
on-Chip, since the routers with smaller port count are replaced with a larger multiport
router. Albeit a reduction in the operating frequency, the overall system performance and
power improves as lesser hops take place [SV06b]. But, a power perspective of larger
multiport router needs to be established to find the point of diminishing returns for average
power.

132

Figure 10.7 shows an increase in the average power that results due to addition of
ports forming a larger multiport router. The flatness of the curve with changing toggle
probabilities for the same router design is along the expected lines. With respect to the
average power of a single port router, we observe an increase as high as 5× in case of
nine port router (refer br9inc in the figure). For an overall power efficiency, this increase
in average power must be less than the power gains obtained by hop reduction using a
multiport router in place of multiple smaller routers.

A 3×3 mesh (with 9 single port routers) and different multiport routers are shown in
Figure 10.6. Using data from Fig. 10.7, the increase in power with respect to the single port
router is indicated inside the boxes of all the router versions (Figure 10.6). For example,
the increase in the average power of a three port router is 1.3×. It takes approximately
20% more power to switch a packet between two routers compared to the packet switching
within a router (between various ports) and hence the links connecting the various single
port routers in the 3×3mesh are annotated with a 1.2× increase [SCK06].

Let us assume a simple case where there is a single source and other routers receive
from the source (marked as D1-D8 in 3×3 mesh). The total power is the summation of
the power at various links and ports of the routers. For instance, in a 3×3 mesh having
9 nodes (1 source and 8 destinations), D1/D2 consume 2.2× (1.2+1), D3/D4/D5 consume
3.4×(1.2∗2 +1) , D6/D7 consume 4.6 (1.2∗3 +1) and D8 consumes 5.4× (1.2∗4+1). Note
that all of them have a constant single additive term of 1 (the average power of a single
port router) representing the power required to switch to the logic module, on reaching the
destination router. In total, it takes 29.6× to send one packet from the source to all of the
8 destinations. In contrast, if we have a single nine port router, the total power required is
estimated as 40× (8 packets ∗ 5×), since the average power is 5× compared to a single
port router.

Table 10.2 summarizes the results for other router versions using the above method.
When using only the single port routers, prime & odd number of routers introduces a linear
chain of routers. For example, 1×3 mesh for 3 routers, 1×5 mesh for 5 routers and 1×7
mesh for 7 routers, the diagonal length of which are abominably high. Case I in Table 10.2
represents the power increase tolerating this linear chain. This linear chain can be broken,
provided the router count is even. We can render it possible by using a two port router
in place of two single port routers. Thus, we can transform 1×3, 1×5 and 1×7 linear
chains into 1×2, 2×2 (grey-shaded inside dotted box) and 2×3 meshes, thereby, reducing
the diagonal length by half. Taking this new scenario into account, Case II of Table 10.2

133

SOURCE 1

1.2

1 1
1

1

1 1 1

1.21.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2
D1

D3D2

D4

D6

D5 D7 D8

1.78x

3.5x

9 single port routers

1 four port
router

1 seven port
router

2.3x

5x

1 five port
router

1 nine port
router

1.3x

1 three port router

Figure 10.6: Example NoC mesh - Normalized power

using single port routers using one
nodes Case I Case II multiport router

3 5.6× 4.2× 2.6×
4 7.8× - 5.34×
5 16× 11× 9.2×
7 31.2× 17× 21×
9 29.6× - 40×

Table 10.2: Increase in Average Power normalized w.r.to a single port router

represents the effective power increase. We can observe that a single nine port router is
inferior and a seven port router is bad compared to the Case I (linear chain) in terms of the
power. Even though a combination of smaller multiport routers (eg., 2-5 port routers) is
beneficial, it is inferred that a larger multiport router (eg., 9 port router) must be sparingly
used from a power angle.

10.5.2 Rail Analysis

A router is a combination of various elements including buffers, I/O channels and
a crossbar based interconnection of various ports. The switching activity is distributed in
a non-uniform fashion across the router with the crossbar bearing the brunt. This is partic-
ularly true inside a crossbar where a complex interconnection of multiplexers and demul-
tiplexers between various ports increases the interconnect density and hence the switching
activity, within a small area. Concentration of large switching activity on the crossbar
results in large current being drawn from the nearby rails. Such non-uniform IR drops in-
troduce large variations in temperature gradient, with the creation of hotspots in extreme
cases [BPA01,Bil74,BMSVH99]. The non-uniformities of temperature across the substrate
is shown to degrade the interconnect performance [ABPvG01, ATT05]. Hence, timing is-
sues are created due to excessive IR drop and ground bounce effects. Recent articles throw
more light on the importance of doing an extensive IR drop analysis at a post-layout stage
for maintaining system reliability [Str06, McC07, You02]. Thus, ensuring the power in-

134

% increase in Average Power w.r.to single port router

0

100

200

300

400

500

600

0.
01

0.
05

0.
09

0.
13

0.
17

0.
21

0.
25

0.
29

0.
33

0.
37

0.
41

0.
45

0.
49

0.
53

0.
57

0.
61

0.
65

0.
69

0.
73

0.
77

0.
81

0.
85

0.
89

0.
93

0.
97

Toggle Probability

%
 In

cr
ea

se

br3inc br4inc br5inc br7inc br9inc

Figure 10.7: Average Power increase
IR Drop

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
0.0

5 0.1 0.1
5 0.2 0.2

5 0.3 0.3
5 0.4 0.4

5 0.5 0.5
5 0.6 0.6

5 0.7 0.7
5 0.8 0.8

5 0.9 0.9
5

Toggle probability

IR
 D

ro
p

(V
)

br1 br3 br4 br5 br7 br9

Figure 10.8: VoltageStorm Rail Analysis - IR drop in various routers

tegrity is of utmost importance in order to prevent chip failures that may result due to
thermal and electromigration effects [ATT05].

The issues discussed above are exacerbated by the arbitrary addition of ports in
order to realize a larger multiport router. In a large System-on-Chip, concentration of high
switching logic design is detrimental due to various thermal-related issues. Hence, we do
an extensive rail analysis of the various multiport router designs [SV07c], using the sign-off
rail analysis tool, VoltageStorm of Cadence SoC Encounter [Cad07b, Cad07a].

Figure 10.8 shows that the rate of increase in IR drop with increasing activity inside
the router is very large for the seven port router (br7) & nine port router (br9). A similar
effect is evident in Figure 10.10, wherein the % increase in IR drop of various multiport
routers is shown with respect to the IR drop of the single port router for various toggle
probabilities. In Figure 10.11, we compare the percentage increase in IR drop of various
router designs with respect to the corresponding base design. Here, for a given router
design, a base design is the one having the typical minimal value of 0.1 as the toggle
probability. For example, for a five port router (br5), the corresponding base design is the

135

(a) 1 port (b) 3 port

(c) 5 port (d) 9 port

Figure 10.9: VoltageStorm Rail Analysis (IR drop) power graphs - Color illustration

IR drop estimated for the same five port router, with 0.1 toggle probability. Till the port
count of five, the % increases are uniform with the curves overlapping. But, the deviation
is distinct for the seven and nine port cases.

Next, we use the VoltageStorm signoff tool to perform a detailed rail analysis for
violations and display the results as a color-coded power graph of the router designs. As
suggested in the industry flow [Str06], we fix the net toggle probability at 0.5 and a clock
frequency of 100MHz (typical). In Figure 10.9, we present the power graphs of selected
router versions, showing the violations occurring at various points of the router designs (as
determined by VoltageStorm). As we move from left to right, we notice a marked increase
in the amount of violations, the worst being indicated by dark red color¶. As pointed
earlier, the worst violator regions happen to the ones having the crossbar connections. This
distribution of IR drops is a good indicator of the temperature gradient profile that will
result across the substrate [Str06, You02, Cad07b].

In summary, we can clearly infer that larger multiport routers result in the creation
¶Figure 10.9 is a colored illustration and the differences may not be observable in a B/W printout

136

of worst IR drops and will eventually lead to a host of critical issues including hotspots,
electromigration and timing errors [ABPvG01, BPA01, Str06, McC07, You02].

10.6 Conclusion

Application-specific NoCs make use of multi port routers. We analyze the merits
and shortcomings of multi port routers from a power perspective. We show that it is possi-
ble to achieve a power-efficient mapping, by exploiting the power differences in switching
among various ports. Through exhaustive rail analysis, we infer that large multi port routers
introduce greater amount of IR violations. Hence, a heterogenous mix of smaller multi port
routers will provide a better tradeoff in terms of performance and power.

137

% increase in IR Drop w.r.to single port router

0

100

200

300

400

500

600

700

800

0.
01

0.
05

0.
09

0.
13

0.
17

0.
21

0.
25

0.
29

0.
33

0.
37

0.
41

0.
45

0.
49

0.
53

0.
57

0.
61

0.
65

0.
69

0.
73

0.
77

0.
81

0.
85

0.
89

0.
93

0.
97

Toggle Probability

%
 In

cr
ea

se

br3inc br4inc br5inc br7inc br9inc

Figure 10.10: VoltageStorm Rail Analysis - % increase in IR drop w.r.t single port router

% Increase in IR Drop w.r.to base design

0

200

400

600

800

1000

1200

0.1
1

0.1
5

0.1
9

0.2
3

0.2
7

0.3
1

0.3
5

0.3
9

0.4
3

0.4
7

0.5
1

0.5
5

0.5
9

0.6
3

0.6
7

0.7
1

0.7
5

0.7
9

0.8
3

0.8
7

0.9
1

0.9
5

0.9
9

Toggle Probability (TP)

Pe
rc

en
ta

ge
 (%

)

br1 br3 br4 br5 br7 br9

Figure 10.11: VoltageStorm Rail Analysis - % increase in IR drop w.r.t base design (having
0.1 toggle probability)

138

Chapter 11

Bandwidth Variations in a Dynamic
Task Structure Environment

Modern System-on-Chips (SoCs) integrate a large number and variety of Intellec-
tual Property (IP) cores involving high bandwidth transfers. Networks-on-Chip (NoC) is
projected to be a scalable communication backbone in place of a shared-bus and an effi-
cient Networks-on-Chip design will improve the performance and throughput of the overall
system. Multitude of applications in a modern SoC dictate varying communication patterns
between the mapped IP cores, thereby, creating a dynamic nature in the intercommunica-
tion [MKSC05]. In such circumstances, the NoC topology generation and mapping phases
must consider the bandwidth variation along various links in order to prevent violations.

In this chapter, we investigate the impact of the dynamic nature of the task graphs
that may lead to bandwidth violations. We present an algorithm to find the Minimum
BandWidth Guarantee (MBWG) that can be satisfied without any violation, along the var-
ious links of the NoC architecture. In addition, we vary the port count of the various router
nodes in the NoC architecture and experiment to find its effect on the MBWG required. The
results demonstrate the promise of the proposed approach in aiding an efficient application-
specific NoC design.

11.1 Motivation & Introduction

According to ITRS [Sem06], the trend in the semiconductor industry is towards
a larger percentage of design reuse, in order to increase the productivity amidst stringent

139

Time-To-Market constraints. A platform based design methodology is followed to build
a System-on-Chip, wherein several processor/memory cores along with the Intellectual
Property (IP) cores are integrated [LZT04]. In such circumstances, we have high band-
width communication traffic flowing between the various cores of a System-on-Chip. The
traditional and popular shared-bus based interconnection of cores is predominantly a global
interconnect scheme. In addition to the chip level synchronization issues (creating relia-
bility problems), it creates a bottleneck in terms of the performance, as it is incapable of
supporting hundreds of cores present in a future System-on-Chip [DT01].

Networks-on-Chip (NoC) is emerging as a scalable alternative, capable of integrat-
ing hundreds of cores while maintaining high throughput [BdM02,MMCM04]. NoC archi-
tecture is tailored in an application-specific fashion to improve the performance with least
overhead [GDG+05,BJM+05,ASTBN04,HM04,CGMP99]. Different NoC topology gen-
eration and mapping strategies are available in the literature that optimize different metrics
based on the given application [BJM+05, SV06b, HM03a, PRR+04, RGR+03, WKL+04].

Predominantly, the task structure has been assumed to be static (using a single
trace) with negligible percentage variation in the traffic patterns. Such an assumption
is no longer valid in modern multimedia SoCs [SDN+06, Phi03, Phi02], wherein there
is a significant variation in the bandwidth of data flow between various cores at runtime
[VM02,Pau04,SMCRT05,TST03,ZHM07,MKSC05]. For example, consider the snapshot
of the traffic patterns found in Viper set-top box (Figure 11.1 [DJR01, MCR+06a]) at two
different instances, portraying varying bandwidth flow. This is particularly true considering
the fact that varied functional capabilities of the SoC make use of different combinations of
the functional modules. For instance, the Viper SoC supports multiple resolution modes
(high/standard definition), picture modes (Picture-In-Picture (PIP)/split-screen), Digital
Video Recording (DVR) and internet capabilities. Such versatile feature capabilities are
becoming a norm in many other electronic devices including mobile video/audio players
and personal digital assistants [DJR01, MCR+06a].

Generation of an NoC architecture based on an overpessimistic bandwidth assump-
tion is not the correct solution and will result in an oversized NoC having large over-
heads [MCR+06a]. Hence, it is of paramount importance that both the topology definition
as well as the core mapping take the varying traffic patterns into consideration and tailor
an architecture that will not cause any bandwidth violation along any of the links of the
NoC. But, the number of such varying instances in a modern SoC run into several hundreds
and hence, it is not possible to iteratively perform resource allocation and topology gen-

140

Filter I

Filter
II

Filter
III

Memory I Memory II

Result

Input

50 MB/s

50 MB/s100
MB/s

100
MB/s

50 MB/s 150 MB/s

200 MB/s

Filter I

Filter II

Filter
III

Memory I Memory II

Result

Input

50 MB/s
50 MB/s

50 MB/s

100
MB/s

50 MB/s
150 MB/s

200 MB/s

50 MB/s

(a) Snapshot 1 (b) Snapshot 2

Figure 11.1: Viper communication snapshots

eration for each of the instances [MCR+06a]. Such a process is not only time-consuming
(due to # configurations analyzed), but also sub-optimal, as it is hard to find a single NoC
architecture meeting all the constraints, in an iterative search mechanism.

11.1.1 dynaMap Algorithm

In this chapter, we investigate the impact of the dynamic nature of the task graphs
that may lead to bandwidth violations. We present an algorithm to find the Minimum
BandWidth Guarantee along the various links of an NoC mesh. In addition to the tradi-
tional one-core-per-router NoC design, we analyze the effect of using multi-port routers
in an NoC design flow [SV06b]. We define multiple combinations of the eighteen task
graphs presented in [KA96, SV06b] along with the task graph structures of the widely ex-
perimented benchmarks including MPEG4, MWD and VOPD [JMBM04]. In this work,
we restrict to the mesh-based NoCs and experiment exhaustively to find the NoC topology
and mapping requiring the MBWG. The proposed methodology is generic and scalable to
handle arbitrary core count as well as varied number/degree of the communication patterns.

11.2 Related Work

Topology generation and mapping are the two important steps in the Networks-on-
Chip design. Several strategies are available that targeted different optimization metrics,
while meeting the constraints of the application in hand [BJM+05, HM03a, LK03a]. Hu
and Marculesu [HM03a] present a branch-and-bound algorithm to get a power efficient

141

mapping of cores onto tile-based mesh architectures, while satisfying the bandwidth con-
straints of the NoC. Ascia et al [ACP04] use evolutionary computing techniques to imple-
ment multi-objective exploration mapping in mesh based NoC, to obtain pareto mappings
optimizing performance and power. Lei and Kumar [LK03a] present a two-step genetic
algorithm to map the task graph minimizing the execution time. An NoC synthesis flow is
presented by Bertozzi et al [BJM+05]. They present algorithms for mesh NoC architectures
under different routing functions and delay/bandwidth constraints.

The underlying assumption of the above strategies is that the task structure is pre-
dominantly static (using a single trace) with negligible percentage variation in the traffic
patterns. Modern SoCs support a wide variety of functional capabilities and the traffic
patterns and conditions change at runtime [DJR01,SDN+06,Phi03]. Hence, an NoC archi-
tecture based on static assumptions will only result in violations along several links of the
NoC. In the literature, we have two works that try to address this scenario. In [MCR+06b],
a synthetic worst case is defined based on the constraints of all the communication patterns
(instances) and an NoC architecture is generated. As admitted by the authors themselves,
the strategy is based on over-specified constraints and hence, will not address the true dy-
namic nature of the application and will also lead to an oversized NoC. The authors extend
their work to realize a scalable solution in [MCR+06a], wherein they couple the process of
mapping and slot allocation to address the multiple instance scenario.

In such a dynamic task structure environment, this paper further complements and
extends the work by presenting a strategy to find the Minimum BandWidth Guarantee
(MBWG) required along the various links of the NoC mesh, accommodating all the com-
munication patterns. Also, we vary the port count to observe the effect of the port count
on the MBWG required. The dynaMap algorithm is scalable to support applications of any
size (described by # nodes in a task graph), with any number of communication instances.
Such a solution will aid the designer in observing the tradeoffs possible for the varying
bandwidth constraints of the given design.

11.3 Dynamic Task Structure

In an NoC, systems are built by integrating different design cores in a defined fash-
ion (topology + mapping). Design Cores are the Intellectual Property (IP) cores that are
pre-built and verified for functionality, performance and other constraints. Modern System-

142

(a) (b)

2

3

4
100

50

50 50

1

4 2

3

200

50
250

1

0

450
1 2

4 3

250

50

0 0
0

50

150
1 2

4 3

50

50

0 0
0

0

200
1 2

3 4

0

50

250 0
0

50

100
1 2

3 4

0

50

50 0
50

After Remapping

(c) (d)

After Remapping

Max MBWG = 250

Max MBWG = 450

MBWG
= 250

MBWG
= 100

MBWG = 150 MBWG = 450

Figure 11.2: Dynamic Task Structure Illustration (units in MB/s)

on-Chips (SoCs) are a package of multiple functional modules that communicate with each
other in a more dynamic fashion [DJR01,SDN+06,Phi03]. The dynamic nature of the task
graphs (that define the intercommunication patterns between the Intellectual Property (IP)
cores) will not greatly affect the NoC architecture, if the communication patterns remain
fixed between nodes of a task graph, with only the change happening in the amount of data
traffic (bandwidth) [MNTJ04, VM02, Pau04]. Such an environment will represent the sim-
plest of the dynamic task graphs, and it is possible to only consider the worst case traffic
between any pair of cores [MCR+06b]. But, in reality, there are new communication pat-
terns (paths) created in the task graph structure (in addition to the increase in the amount
of traffic), resulting in the formation of new bandwidth constraints in the system. This
scenario will complicate the communication backbone design, as it becomes necessary to
foresee the worst cast conditions in terms of bandwidth violations created in the NoC mesh.
In short, for avoiding the bandwidth violations, an NoC architecture generation algorithm
must consider the variation in the bandwidth requirement along various links and produce
a tolerant & efficient design.

In order to better appreciate the dynamic task structure environment, let us consider
an example representing two communication patterns. Figure 11.2 (a) represents the first
snapshot of the task graph, along with a sample NoC topology and mapping. The band-
width of traffic flowing in the link from router R1 (having core 1) to router R2 (having core
2) is 150MB/s. Hence, we note that the minimum bandwidth that needs to be guaranteed,
covering all the links, is 150MB/s. If the link bandwidth constraint for the NoC design
is any value less than the 150MB/s, it will result in violations. Now, consider the second

143

snapshot of the task graph represented in Figure 11.2 (b), having the same NoC architecture
(topology & mapping) as in Figure 11.2 (a). The bandwidth of data traffic across the link
from Router R1 to Router R2 has increased to 450MB/s. Hence, in order to avoid band-
width violations, this NoC configuration requires an MBWG of 450MB/s to accommodate
the two communication patterns, a significant increase.

Figures 11.2 (c) & 11.2 (d) represent a changed NoC architecture (mapping of cores
3 and 4 have been interchanged) for the task graph structure snapshots in Figure 11.2 (a)
& 11.2 (b), respectively. In both the cases in Figures 11.2 (c) & 11.2 (d), we see that the
Max{MBWG} across the various links (accommodating the two communication patterns)
has come down to 250MB/s. This example represents the simplest of the scenarios, wherein
a small change in the mapping has resulted in the reduction of the MBWG requirement.

The topology and mapping of the NoC architecture can be optimized by using a
router with varied port count [SV06b]. Multi Local Port Router (MLPR) is a non-traditional
packed switched router architecture design, which can handle more than one logic core
simultaneously, without any performance penalty [SV06b]. In an NoC mesh, MLPRs pri-
marily aim to replace the inter-router-channel communication (between router pairs) with
the intra-router-channel communication (within a single router). MLPRs are reported to
provide a host of advantages including reduction in area, power, transit time & congestion,
and most importantly, the optimization of the bandwidth, thus, resulting in an efficient and
high performance NoC design [SV06b]. It is shown that the diameter of the mesh can be
reduced by using MLPRs, transforming an NoC mesh into a heterogenous structure having
a network-within-a-network (as against the traditional homogeneous NoC mesh having sin-
gle port routers). Thus, it is evident that, in addition to a prudent mapping, proper topology
definition must have a significant impact. Hence, we vary the maximum port count of the
routers used in the NoC mesh and observe the effect on the MBWG requirment.

11.4 dynaMap: Fast Mapping Heuristic Algorithm

Summarizing the discussions in the previous sections, we infer that an efficient NoC
architecture should be tolerant to the task graph structure variations and be able to avoid
any bandwidth violation. In other words, the Minimum BandWidth Guarantee (MBWG)
required by the NoC architecture must be estimated, along with a proper design effort to
reduce the MBWG, for realizing an efficient NoC architecture. We translate the above

144

(b)
Folded
Mesh

(a)
Without Folding (Linear Chain)

Figure 11.3: dynaMap: Folding Example

ideas into an algorithm called dynaMap∗, with an objective to find the MBWG for a given
combination(s) of task graph.

Problem Definition: Given a combination of communication patterns (Υ) of a system level
task graph, G(T, E) and a constraint on maximum port count, find an NoC configuration
(# of routers, mesh topology, configuration of each router and the final mapping) with
Minimum BandWidth Guarantee.

The dynaMap algorithm is described in Algorithm 10. First, we define the minimum
dimension mesh for the cores in the task graph. If the number of nodes in the task graph
is n and maximum port count is m, then we need at least k = n

m
routers (considering only

the logic ports [SV06b]), using which we build all possible mesh configurations (ρ1). Here,
if the number of routers (k) is prime and odd, it forces a linear chain of routers (Figure
11.3(a)). Linear chain is not efficient as the diameter of the mesh is increased significantly.
Further, a single row creates a large bottleneck in terms of the bandwidth usage of the links
and any variation in the amount of data traffic or the communication patterns will result
in violations. To resolve this situation, we accommodate one more router (k+1 routers) so
that linear chain can be broken (E.g., folded mesh in Figure 11.3(b)) and build all possible
mesh configurations (ρ2).

Next, we construct a composite graph (Gcomp(T, E)) by combining all the instances
of the task graph, making sure that the total number of edges is sum of all the edges of
different instances. For better understanding, this step is illustrated in Figure 11.4 . It is
obvious that there will be multiple edges between a pair of nodes (from various instances).
The idea of allowing this redundancy (in terms of the # edges between a pair of nodes)
is to find the frequently communicating pairs of nodes (across all the instances). In order
to achieve this, we build a list Ψ1 comprising of the nodes in the task graph, sorted in
the descending order of the In-degree + Out-degree. Thus, the frequently communicating
nodes (Ψ1) are given more priority during mapping in the mesh. For each node in the list
Ψ1, we build a corresponding list Ψ2 comprising of nodes connected to it, sorted in the
descending order of the amount of data traffic. Thus, large bandwidth transfers are given

∗based on the cMap algorithm introduced earlier

145

Input: Given a system level task graph, G(T,E) with n cores
Input: Υ: Communication patterns in G(T, E)

Output: An efficient NoC configuration representing the topology and mapping such that Max{MBWG} across
various links is minimized, subject to the constraint that maximum number of port count is m

Routers, k = n
m

ρ1: Generate all possible mesh topologies for the k routers
ρ2: If k is prime & odd, increment the router count by one and generate all possible mesh topologies for k+1
routers
Gcomp(T, E) : Construct a composite graph representing all the communication patterns between all the nodes
in the combinations (Υ)
Ψ1: Build a list of nodes in the descending order of In-degree + Out-degree of nodes in Gcomp(T, E)

foreach Ψ1(i): Node in the List Ψ1 do
Ψ2: Build a list of nodes connected to Ψ1(i), sorted in the descending order of the Bandwidth (BW)

end
BWGlobal.Min =∞

repeat
foreach τ : Location in the current mesh configuration do

repeat
foreach Ψ1(i): Unplaced node in List Ψ1 do

Place the node Ψ1(i) in the nearest free location from τ

foreach Ψ2(i): Unplaced node that is connected to Ψ1(i) in List Ψ2 do
Place the node Ψ2(i) in the nearest free location from τ

end
end

until All cores are Placed

Best.Cost←
edges in graph

X

i=1

Link BandWidth of mesh

for i=1 to iter-max do
Current.Config: Initiate a random pair-wise swap of mapped cores
if Current.Config.Cost < Best.Cost then

Best.Config← Current.Config
Best.Cost← Current.Config.Cost

end
end
foreach Communication pattern in Υ do

forall Edges in a combination (task graph) do
Identify the source (i1, j1) and destination (i2, j2) nodes in the mesh
Update the bandwidth of all the links between (i1, j1) and (i2, j2) in the mesh (XY routing)

end
if BWMin < Max{Bandwidth of links in mesh} then

BWMin← Max{Bandwidth of links in the mesh}
Best.Config← Current.Config

end
end
if BWMin < BWGlobal.Min then

Global.Min.BW.Config← Best.Config
end

end
until All the mesh configurations in ρ1 and ρ2are evaluated

Algorithm 10: dynaMap Algorithm

more priority during mapping (placed close to each other), so that the total bandwidth usage
of links in the mesh can be minimized. It is quite obvious that this step will directly affect

146

4 2

3

200

175
250

1

5

75

2

3

4

10025

50
60

1

5

125

75

200

250

175
2

3

4
100

25

50 60

1

5

125
Composite Graph

Figure 11.4: Composite graph formation (units in MB/s)

the MBWG of the mesh.

For each of the mesh configuration in ρ1 (& ρ2) and starting from each location of
the mesh at hand, we perform the following steps in our pursuit of an NoC configuration,
requiring an MBWG. The intuition behind this strategy to start from each location of the
mesh is to amortize the effect of the choice of start location (which limits the # of nearest
neighbors available). Using the ordered list Ψ1 and a corresponding list Ψ2, we perform
a nearest-neighbor placement (Steps 12-19). The cost function is the sum of bandwidths
in all the links - lesser the cost, the more tightly are the cores packed. It is not always
necessary that the design having the cores placed with smallest sum of distances (between
the cores) is optimal in terms of the global bandwidth usage. Hence, after the placement
of all cores, we contemplate pair-wise swapping to see if the overall cost (bandwidth usage
across all links) can be minimized (steps 21-27).

Next, we find the Minimum BandWidth Guarantee required for each of the com-
munication pattern stored in the list Υ (steps 28-39). In order to achieve this, for each edge
in the communication pattern at hand, we identify the links that will be used in the mesh
(dictated by the co-ordinates of the source and destination nodes) and update them with
the corresponding bandwidth. This step is similar to the illustration shown in Figure 11.2,
wherein the bandwidth requirement is estimated for each of the links in the mesh for a given
communication pattern. Overall, the effective MBWG for the current mesh configuration
and placement is the Max{Bandwidth of all the links in the mesh}.

Across all configurations and mappings, we iterate to find the NoC configuration
that will guarantee a minimal requirement of the MBWG. The complexity of the algorithm
is linear in n. This is because we iterate only for constant factor of n, which is dictated
by the number of meshes possible for the given router count (k), which in turn is dictated
by the maximum port count constraint. During our experimentation with the benchmark

147

designs, the algorithm completed within a couple of seconds.

11.5 Experiment Results

A typical SoC design is represented as a task communication graph, which is de-
scribed as a directed graph G(T, E) (referred to as Task Graph interchangeably), where
T represents the vertices (tasks) and E is the set of directed edges describing the prece-
dence, the dependence, the timing and bandwidth constraints in the task graph. Nodes in a
task graph represent independent units of computation, denoting the Intellectual Property
(IP) cores of the system. The dynamacity of the task intercommunication is created by
the formation of new directed edges between the various nodes having finite bandwidth
requirements.

We experiment with the set of twenty two benchmarks described in 5. The set
of eighteen synthetic benchmarks cover a wide spectrum of the communication patterns,
with a node count of nine, having equal bandwidth of 50MB/s across all edges and equal
execution time of the nodes. In this chapter, we make use of all the eighteen benchmarks
and after careful analysis and experimentation, we define ten combinations or Runs† (Runs
1-10 in Table 11.1). The idea behind these Run definitions is to incorporate a widely
varying dynamic task graph structure environment. In addition to the eighteen benchmarks,
we include the three widely experimented benchmarks (MPEG4, VOPD, MWD) and define
four additional runs (Runs 11-14 in Table 11.3). The node count in these three benchmarks
is 12, with the bandwidth flow across the various edges varying significantly.

For the purposes of this research work, the focus is on the different communication
patterns of the fourteen runs (Table 11.1) and their relation with the MBWG of the final
NoC architecture. Further, in this work, we assume that the dynamic nature created in the
task graphs is due to the varying communication patterns and data traffic between the nodes
present. The case of having a new task graph reconfigured at runtime is not in the scope of
this work. Given such a scenario, the objective of the work is to observe the variation in
MBWG required for varying maximum port count constraint, across different runs.

†Each Run represents an unique combination of the chosen benchmarks representing varying degree of communica-
tion patterns (i.e., dynamic nature of task graph).

148

Run # Combinations of benchmark set
1 bs1, bs2, bs3, bs4, r1
2 p1, p2, p3, p4
3 bs3, bs4, b1, b2, e1, e2
4 b1, b2, e1, e2, r1, r2, lu
5 bs1, bs2, bs3, bs4, lu, les, b1, b2, r2
6 e1, e2, p1, p3, lu, les, bs1, bs2, bs3, bs4
7 b1, b2, e1, e2, p1, p2, p3, p4, r1, r2, pa1, pa2
8 lu, les, r1, r2, bs1, bs2, bs3, bs4, p1, p2, p3, p4, pa1, pa2
9 bs1, bs2, bs3, bs4, b1, b2, r1, r2, e1, e2, p2, p3, les, lu, pa1, pa2

10 bs1, bs2, bs3, bs4, b1, b2, r1, r2, e1, e2, p1, p2, p3, p4, les, lu, pa1, pa2
11 mpeg4, vopd
12 mpeg4, mwd
13 vopd, mwd
14 mpeg4, vopd, mwd

Table 11.1: Runs : Combinations from 22 benchmarks
Maximum Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Port count Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II

1 150 - 200 - 150 - 250 - 150 - 250 - 250 - 300 - 250 - 300 -
2 250 200 450 300 300 200 300 200 200 200 450 350 550 300 500 350 450 350 500 350
3 300 200 450 350 400 350 400 350 300 350 600 500 600 500 600 500 600 500 600 500
4 300 300 450 500 300 300 300 300 300 300 700 500 600 500 700 500 700 350 700 500
5 300 - 250 - 350 - 350 - 300 - 750 - 750 - 500 - 750 - 750 -
6 300 - 300 - 400 - 400 - 250 - 600 - 600 - 600 - 600 - 600 -
7 300 - 200 - 250 - 300 - 150 - 400 - 400 - 400 - 400 - 400 -
8 100 - 150 - 150 - 150 - 100 - 200 - 200 - 200 - 200 - 200 -

Table 11.2: Runs 1-10 : Minimum BandWidth Guarantee (MBWG) required in MB/s

11.5.1 Analysis of the Results

The algorithm was coded in C++/STL and was executed on a SunBlade 1000 work-
station having dual processors operating at 750MHz and 2GB RAM. The average exe-
cution time to find the NoC configuration requiring MBGW for a given maximum port
count was a couple of seconds. The algorithm uses the heuristic technique as described
in Algorithm 10 to arrive the final NoC configuration. The results from various runs are
given in Tables 11.2 & 11.3 for the sake of clarity. Here, Mesh I represents the case ρ1

having k routers and Mesh II represents the case ρ2 having k+1 routers (refer to Algorithm
10). Mesh II case is possible only when n

m
is a prime and odd number (where n is node

count and m is maximum port count) and therefore, we see many dashes (-) in the Mesh II
column of Tables 11.2 & 11.3. For instance, in Runs 1-10 (Table 11.2), Mesh II is possible
only for the maximum port count of 2, 3 & 4 (as the node count is 9). Similarly, Mesh
II is possible for Runs 11-14 for the maximum port count of 4 & 5 (as the node count is
12). Also, in Tables 11.2 & 11.3, the condition representing the maximum port count equal
to the node count is not present because it represents the case of a single router, wherein
all the transfers happen as direct intra-port transfers, and per se, there is no link present in
the mesh. The results shown are obtained after back-annotating the operating frequency
numbers obtained from [SV06b].

149

Across all the Runs‡ in Table 11.2, the single port router outperformed most of the
other cases (having maximum port count between 2 & 7) in terms of the MBWG required.
Further, the MBWG for the cases having the maximum port count between 3 & 6 have less
variation of MBWG. This is due to the fact that the number of routers required is either 3
(when maximum port count is 3 or 4) or 2 (when maximum port count is 5, 6 or 7) and
the mappings across these various cases are similar. Hence, the links of the mesh having
either 2 or 3 routers do not show a significant MBWG variation, because of the fact that
less transfer happens across the shared links in the mesh. Further, Mesh II case in Runs
1-10 show better or comparable number in terms of the MBWG required, as the bottleneck
due to the linear chain is avoided.

An important observation from Table 11.2 is that the cases with maximum port
count of 3, 4 & 5 are worse across all the Runs 1-10, compared to the other cases. This
is due to the fact that with a router count of 3, we have only two links (forward/reverse
direction) available which are occupied or used by most of the transfers in the task graph.
It is not so for the other case with lesser maximum port count (1 or 2). This is because
the number of routers increase and so are the number of links available in the mesh. These
links are used in a distributed manner with lesser bottlenecks. Similarly, in the cases with
larger maximum port count (>5), despite the router count being the same, they have better
MBWG. This is because more cores are mapped onto a single router and hence lesser
number of transfers require the use of the link(s) of the mesh.

Runs 11-14 in Table 11.3 show a different trend, in contrast to the results in Table
11.2. We observe that there is a significant decrease in the MBWG required with every
increase in the maximum port count constraint. Also, unlike the trend in Runs 1-10, the
single port case is faring very poorly. This effect is attributed to the fact the Runs 11-14
involve varying bandwidth flow across different edges of the task graph (unlike Runs 1-
10 having equal bandwidth across all the edges), creating larger bottlenecks in the shared
links. Further, similar MBWG numbers in Run 12 & Run 14 for the maximum port count
of 2, 4, 5 & 6 show the dominance of a particular task graph(s) structure (mpeg4 & mwd)
on the final NoC design.

In order to better appreciate the above results, we present the selected NoC config-
urations of Runs 11-14 in Figure 11.5. As evident, the varying communication patterns in
different runs (dictated by the frequency of communication through the number of edges
and the bandwidth of data flow between the cores) create differences in the final mapping.

‡The results are multiples of 50 because the benchmarks used in Runs 1-10 have equal bandwidth of 50MB/s [SV06b]

150

Maximum Run 11 Run 12 Run 13 Run 14
Port Count Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II Mesh I Mesh II

1 1843 - 1792 - 419 - 1702 -
2 1102 - 1770 - 392 - 1770 -
3 2999 - 1740 - 383 - 1813 -
4 963 1083 2451 2451 705 407 2451 2451
5 764 1250 843 1330 732 407 843 1330
6 925 - 783 - 702 - 783 -
7 924 - 845 - 389 - 924 -
8 923 - 844 - 389 - 923 -
9 830 - 751 - 357 - 830 -

10 407 - 251 - 353 - 407 -
11 80 - 128 - 64 - 80 -

Table 11.3: Runs 11-14 : Minimum BandWidth Guarantee (MBWG) required in MB/s

This observation is true even in cases where there is a fixed router count (due to the fact
n
m

can be same for multiple maximum port count constraint, as it is an integral division
representing the integer number of routers).

In summary, we infer that an efficient NoC configuration in terms of the MBGW
required is possible, if the bottlenecks in the shared links of the mesh can be reduced, ei-
ther by distributing the flow across many links (single port router) or by reducing the usage
of the links (larger port router). In any case, there is no consensus winner in terms of
the maximum port count constraint and an application-specific NoC architecture genera-
tion becomes necessary. Towards this objective, the proposed heuristic technique is found
to be successful in finding the NoC configuration with Minimum BandWidth Guarantee
(MBWG) required.

11.6 Conclusion

Modern System-on-Chips are a package of multiple functional modules that com-
municate with each other in a more dynamic fashion [DJR01, SDN+06, Phi03]. Here, new
communication patterns (paths) created in the task graph structure (in addition to the traffic
increase), resulting in the formation of new bandwidth constraints in the system. Hence, an
efficient NoC configuration (topology & mapping) generation needs to take the variation in
the bandwidth requirements along various links into account or alternately, must be tolerant
to the task graph structure variations and be able to avoid bandwidth violations. Towards
this end, we present a heuristic technique called dynaMap to find the NoC architecture re-
quiring minimal bandwidth guarantee. We analyze the impact of maximum port count on
the MBWG required. The results demonstrate the need for a highly application-specific
NoC architecture generation, catered to the task structure(s) at hand. The knowledge of the

151

MBWG = 963

MBWG = 1843

Max # LP = 2

MBWG = 1102

Max # LP = 1

2

1 6

9 11

7 5 3

4

10

8

12

1,2,
5,7

9,10,
11,12

3,4,
6,83,4 10,

12

6,8 9,
11

2,5

1,7

Max # LP = 3

Max # LP = 4

MBWG =
764

9 3,4,8,
11,12

1,2,5,
6,7

Max # LP = 5

Max # LP = 6

3,4,9,10,11, 121,2,5, 6,7,8

MBWG = 925MBWG = 2999

4,5,
10

9 1,6,
7

11,
12

2,3,
7

(a) Run 11

MBWG = 2451

MBWG = 1702

Max # LP = 2

MBWG = 1770

Max # LP = 1

10

3 2

1 6

7 5 12

11

9

4

8

 2,3,
5,7

9,10,
11,12

 1,4,
6,86,1 9,

11

4,8 10,
12

3,7

2,5

Max # LP = 3

Max # LP = 4

MBWG =
843

1,2,3,
5,7 9,114,6,8,

10,12

Max # LP = 5

Max # LP = 6

4,8,9,10,11,121,2,3,5,6,7

MBWG = 783MBWG = 1813

4,8,
10

9 1,3,
6

11,
12

2,5,
7

(d) Run 14

MBWG = 2451

MBWG = 1792

Max # LP = 2

MBWG = 1770

Max # LP = 1

5

1 6

4 7

3 7 9

11

12

2

10

2,3,
5,7

9,10,
11,12

1,4,
61,6 9,

11

4,8 10,
12

3,7

2,5

Max # LP = 3

Max # LP = 4

1,2,3,
5,7 9,114,6,8,

10,12

Max # LP = 5

Max # LP = 6

4,8,9,10,11,121,2,3,5,6,7

MBWG = 783

MBWG = 1740
1,3,6

4,8,
10

2,5,7

9,11,
12

MBWG = 843

(b) Run 12

MBWG = 705

MBWG = 419

Max # LP = 2

MBWG = 392

Max # LP = 1

5

2 1

4 11

10 3 6

8

9

7

12

1,2,
3,10

5,6,
8,9

4,11,
7,121,3 8,9

7,
12 5,6

2,
10

4,
11

Max # LP = 3

Max # LP = 4

1,2,3,
4,10 8,95,6,7,

11,12

Max # LP = 5

Max # LP = 6

5,6,7,8,9,121,2,3,4,10,11

MBWG = 702

MBWG = 383

2,4,
11

5,7,
12

1,3,
10

6,8,9

MBWG = 732

(c) Run 13

Figure 11.5: NoC configuration in Runs 11-14 (with Maximum Port Count between 1 and
6) - Mapped cores are inside square/router (not to scale - for illustration of topology &
mapping only)

maximal bandwidth variation across links is highly inevitable during the NoC design, as
it can help a great deal in preventing many unwanted surprises in terms of the bandwidth
violations created.

152

Chapter 12

Towards Multi-FPGA Systems with
Networks-on-Chip

Traditionally the reconfigurable devices including the CPLDs and the FPGAs have
been limited predominantly in terms of the effective logic capacity available. The area
limitation is the primary motivation for this dissertation because of which we attempt to
optimize the individual router design(s) as well perform selective grouping of routers (thus,
clustering of cores) so as to reduce the overall area occupied by the on-chip network. In this
chapter, we explore the applicability of the designs and methodologies proposed in earlier
chapters in relation to System-on-Chip design spanning across multiple FPGAs. We con-
centrate to find the changes that are necessary to fit the proposed methodologies seamlessly
onto a Multi-FPGA based System-on-Chip design. The discussions given below captures
the framework comprising of the architectural and algorithmic design modifications, and
the actual implementation of the proposed ideas are suggested as a possible future direction
of work. The primary objective of this chapter is to present a motivation for an multi-chip
(multi-FPGA) Networks-on-Chip, and present the pertinent issues that need to be addressed
in a Multi-FPGA scenario, in line with ideas proposed in this research.

12.1 Introduction

Field Programmable Gate Arrays have been the first choice in the context of logic
emulation [Hau98]. Though there has been a significant jump in the number of configurable
logic elements (eg., CLBs in Xilinx), FPGAs have been always limited in terms of the total

153

usable logic area that is available compared to the contemporary ASIC counterparts. Hence,
a full-fledged logic emulation of a large design requires the use of multiple FPGAs in order
to accommodate the entire system design. This gives rise to the new scenario involving
a structured interconnection of multiple FPGAs called Multi-FPGAs. The chosen set of
FPGAs are placed on an Printed Circuit Board and are inter connected through the commu-
nication links following a defined topology. Given the dynamic reconfiguration capability,
the significance of a Multi FPGA systems are elevated to build scalable System-on-Chip
designs controlled by the host computer or a dedicated on-chip configuration controller. In
the literature, we have several multi FPGA based system designs that have demonstrated
acceleration several orders higher than a comparable software based simulation and proto-
typing systems [GHK+90, HTA94, SSS95, SADB95, VBR+, CM94, Dzu93, CR93, MC93,
HKL+95,MVB95,ST95]. Detailed account on the research and products based on the multi
FPGA systems is present in [Hau95, HBE98, HB97b, HB97a, Hau98, HB95].

In Multi-FPGA based systems, the given application (described at the algorith-
mic/behavioral or the Register Transfer Level) is synthesized and mapped across the FPGA
boundaries optimizing the overall performance and power. In this context, a mesh type
of interconnection topology is found to be an ideal choice in optimizing the external in-
terconnect resource usage. It must be understood that multi FPGA systems are realized
in a two dimensional planar printed circuit boards, and the luxury of having several lay-
ers of interconnects running in three dimensions is very restricted in multi FPGA boards.
Hence, the experimentation of the interconnect schemes are restricted to mesh in most of
the works available in literature, though there are schemes including hierarchical cross-
bars and custom-tailored mesh-based schemes like one-hop, four-way or eight-way topolo-
gies [Hau98,Hau95]. The limitations present in earlier generation of FPGA in terms of the
total available pin count is overcome by the adoption of time-based multiplexing schemes.
One such scheme is the popular Virtual Wires project [BTA93], wherein a pipeline is de-
fined internally to an FPGA and the Input/Output pins are time-shared to make transfers
to and from the FPGAs. In other words, virtual wires represent a uncommitted logical in-
terconnection between the output from one FPGA to the input of another FPGA. It is con-
tended that this approach will result in the increase of the available off-chip bandwidth, in
addition to overcoming the pin-count limitations that is prevalent in the previous generation
FPGAs [BTA93]. The latest FPGAs (eg., Xilinx Virtex 5) offer increased pin count (reach-
ing close to four hundred pins) [Xil07b], in addition to the improved logic area. Hence,
in contrast to earlier generations, the multi FPGA designs are no longer restricted by the
pin count, but rather by the effective logic area available inside each FPGA. This is highly

154

significant as optimal packing of FPGA can lead to the minimization of the out-of-chip
interconnections.

12.2 Extension of Networks-on-Chip for Multi FPGAs

In this section, we attempt to throw light on the issues that need to be addressed
when several FPGAs or for that matter several chips (ASICs) are to be interconnected,
which is a commonality in a platform-based System-on-Chip designs & embedded sys-
tems. The design environment comprising of IP cores spread across several FPGAs, with
Networks-on-Chip being the preferred medium for the communication backbone design,
represents altogether a different scenario. On the positive side, the complex issues re-
lated to the routing resource optimization and the custom-tailoring of various of mesh-
topologies [Hau98, Hau95] are totally abstracted away, thus, helping the System-on-Chip
integration possible in a fast and efficient manner. At the same time, there exists some basic
requirements in terms of the capability offered by the different routers and the flow control
& routing schemes that are followed. We discuss the most pertinent issues in line with the
other works presented in this dissertation below.

12.2.1 Modified Design Framework

Architecture

For a seamless integration in a multi FPGA environment, the changes made to a
router must be kept minimal. This will allow the designers to operate at the highest level of
abstraction. In this section, we describe the changes are necessary with regard to the router
architecture, the flow control and the routing algorithm.

Predominantly, the strategy adopted in the topology definition of Multi FPGA sys-
tems has been to have a minimal usage of the out-of-chip interconnections running across
the printed circuit board. This is intuitive considering the fact the impedance seen by
the out-of-chip interconnections is tens of hundred times greater when compared to the
on-chip interconnections. Hence, the inter-FPGA (chip) communication will result in
larger currents being sinked during data transfers, confirming to the voltage standard of
our choice (eg., LVTTL, LVCMOS33, LVCMOS18, LVDC33, LVDC15, PCI33, PCI66,
PCI-X, GTLP, GTL, HSTL, DIFF HSTL, SSTL, DIFF SSTL [Xil07a]). In the moti-

155

vating scenario of versatile Input/Output capabilities present the latest FPGAs [Xil07b],
tThe exact architecture at the FPGA I/O boundary is a matter of designer’s choice de-
pending on the tradeoffs required. For instance, the SelectIO technology (with rates upto
1.25 Gb/s LVDS using differential I/O pairs) provides a rich set of features like Input
Serial-to-Parallel Logic Resources (ISERDES), Output Parallel-to-Serial Logic Resources
(OSERDES), Input/Output Delay Element (IODELAY), Digitally Controlled Impedance
(DCI), and Buffers with dual-ports, multi-rate & dual-edge-clockable capabality [Xil07b].
Also, advanced deskew capability (ChipSync Source-Synchronous Interfacing Logic) along
with dedicated I/O & clocking resources, and built-in serializer/deserializers provide vari-
ous means for efficient and reliable inter-FPGA transfers. In addition, programmable 8-24
channel RocketIO GTP transceivers (supporting different DC levels of operation) help to
achieve transfer rates as high as 3.2Gb/s. Also, based on the amount of traffic flowing
across the FPGA boudary, the communication width and number of such parallel links can
be varied (Figure 12.1).

Apart from the implementation-specific architectural modifications, the following
changes are required for the extension and application of the Networks-on-Chip commu-
nication architecture across multiple FPGAs. The ideas discussed below are the most per-
tinent ones related to the research in this disseratation and are described in an abstract
fashion, and more research is required on the exact implementation based on the tradeoffs
desired.

(i) Packet Control Information: In a Multi Local Port Router, the packets are routed in
an XY fashion, and after reaching the destination router module, the packets are
switched to the appropriate logic port [SV06b]. On similar lines, in case of Multi-
FPGA systems, the packets follow the XY routing scheme when traversing the FPGA
boundaries and reach the destination FPGA module. In order to provide this capa-
bility, modifications are necessary with regard the control information present in the
header flit. There are two scenarios that are possible in a multi FPGA design envi-
ronment. Packets can be generated (source core) and consumed (destination core)
inside the same FPGA. Alternately, packets need to be crossing FPGA boundaries,
in which case, there are two levels of XY routing happening. First, from source
FPGA to destination FPGA and second, at source (destination) FPGA the normal
XY routing inside the mesh within the source (destination) FPGA.

In order to support the two levels of hierarchies during routing of packets, we require
a combination of a single-flit header and two-flit header packets. The case when the

156

Boundary Wrapper

Bo
un

da
ry

 W
ra

pp
er

Boundary W
rapper

MLPR based
NoC mesh
partition

Boundary Wrapper has customizable links having
variable # of input and output links

Boundary Wrapper

Figure 12.1: Multi-FPGA based Networks-on-Chip

transfers happen within a single FPGA resembles the normal scenario (traditional
on-chip network) and hence, the packets in such a case need only a single header
flit. On the other hand, Inter-FPGA transfers require the ability to route packets in
two stages - first, between the FPGAs (from source FPGA to destination FPGA)
and second, between the routers inside a single FPGA. In order to achieve, we re-
quire control information with two header flits - the first header flit will represent the
mesh co-ordinate of the destination FPGA, while the second header flit will represent
the (normal case) header flit having the co-ordinate information of the destination
router/port in the destination FPGA. While effecting the inter-FPGA transfers, the
packets are routed to the FPGA corner (boundary) in an XY fashion dictated by the
destination FPGA co-ordinate.

(ii) Boundary Wrapper: The block diagram of an Multi-FPGA based NoC mesh is shown
in Figure 12.1. Apart from packet level and routing modifications, the mesh inside
each FPGA is surrounded by a wrapper present in all four corners of the FPGA. The
wrapper provides multiple features based on the latency-bandwidth-power tradeoffs
that are desired. All the four wrappers in the four corners of an FPGA are inter-
connected completing a pipelined circular links in both directions (clockwise/anti-
clockwise) (Figure 12.1). Each of the link between the adjacent boundary wrappers
is customizable according to the application at hand, wherein the traffic pattern will
determine the size as well as the presence of the link.

157

Figure 12.2 shows a block-level description when implmenting an interconnection
of two FPGAs. In order to appreciate the effectiveness of the circular pipelined
path, consider a packet arriving at the eastern corner of an FPGA and the local NoC
inside the FPGA is a n×n mesh. If the packet has to eject out the FPGA through
the western corner (the opposite end of the FPGA)∗, instead of making the packets
follow the normal path inside the n×n (clock latency gets increased by n times), the
pipelined circular link forms a kind of expressway. Thus, the packets bypass the
n×n network and reach the other corner of the FPGA via the circular link. The path
taken is indicated as a dotted red line in Figure 12.2. Note that the path shown is
for illustration only and it is also possible to use the top (north) boundary wrapper
in place of the bottom (south) boundary wrapper. This is valid because the circular
pipelined links are available in both directions and hence, it is possible to have both
clockwise and anti-clockwise paths established dynamically, with the only restriction
in the form of the availability of buffers, which again is traffic dependent.

It must be noted that the corner-to-corner FPGA links have longer delay and hence,
the wrapper must operate in an asynchronous manner so as to tolerate the worst case
delay of all the links inside the circularly-interconnected wrapper, while being inde-
pendent of the n×n mesh. Also, a Multi-FPGA system can have a heterogeneous mix
of FPGAs (generation/size/speed grade) and the IO transceivers of each FPGA can
operate at varied data rates. This necessitates the use of asynchronous type of buffers
in the wrappers for interconnection between various FPGAs, while not sacrificing the
throughput and the performance. In addition, various architecural improvements are
possible in a boundary wrapper - (a) buffering the intermittent packets and initiating
burst mode of inter-FPGA transfers. This results in the creation of macro packets so
that the handshakes happening for each packet across FPGAs can be minimized. At
the same time, the overheads for macro-packet creation and dis-assembly must be
adequately addressed and taken into account in the cost function(s). (b) incorporat-
ing various packet encoding schemes in order to minimize the number of bit-changes
when traversing FPGA boundaries, which can have significant impact on the overall
power consumption [BV06]..

Also, each corner-wrapper can be made to have multiple channels (wherein, the
upper-bound is dictated by the number of columns/rows of the mesh present in the
respective corner), and again, the width of each channel can be made variable. The

∗Without loss of generality, similar arguments are applicable in the cases, when the packet needs to pass through the
northern or the southern corner of the FPGA.

158

MLPR
Mesh

MLPR
Mesh

Double-headed block arrows represent inter-fpga links, each of which
can be have varied number of links (m-bits wide)

FPGA 2FPGA 1

n
inter-fpga

links
(m-bits
wide)

Figure 12.2: Illustration of an NoC on a Multi-FPGA having customizable inter-FPGA
links

particular choice on the number of channel(s) and the width of the channel(s) is
implementation specific and the decision are to be made based on the latency-power-
bandwidth tradeoffs possible/desired. In this context, it is also possible to have dedi-
cated links between various FPGAs to bypass the mesh-interconnected FPGAs sim-
ilar to the seletive long-link insertion ideas found in [OM05, OMLC06, HCZ+05,
HZC+06, WPM05]. Though this idea may find use in the form of selective insertion
to facilitate high bandwidth traffic, this idea breaks the common standard interface
available in the form of an mesh-inteconnected NoC and also, it is greatly dependant
on the routing constraints in the PCB layout.

Mapping Algorithm

The mesh form of interconnection topology is preferred in FPGAs and the latest
FPGAs (from Xilinx & Altera) offer exceedingly larger pin count. Hence, there is no re-
striction in realizing mesh-based SoC topologies, thus helping us to achieve a more efficient
communication (bandwidth flow) between multiple FPGAs. Also, throughout the disserta-
tion, we restrict our experimentation and discussion to mesh-based topologies, which again
is the preferred choice to interconnect routers in an on-chip network implemented inside

159

FPGAs. The mesh-favored scenario greatly simplifies the Networks-on-Chip architecture
generation phase. This is because of the fact that the FPGA count and the size of each
FPGA is a specification at hand, and hence an exhaustive topology generation phase (eg.,
similar MLPR topology generation of optiMap [SV06b]) is absent at FPGA level. Based
on the total number of FPGAs that are to be interconnected following an NoC type of com-
munication backbone, the effort is now required largely during the mapping phase. Even
the process of mapping gets greatly simplified to a procedure of the identification of the
clusters† that will go inside each of the mesh-interconnected FPGAs (already defined in
terms of logic capacity and topology), while optimizing the intended cost metric. This is
not an restriction per se and the algorithm can be extended to explore various combinations
taking the FPGA count and the size of FPGAs into equation. At the same time, the choice
in terms of the combination of FPGAs (both count and capacity) is very restricted when
realizing a Printed Circuit Board design having set of FPGAs (Multi FPGAs), due to the
direct influence on the cost.

Changes Required: In the new multi FPGA environment and in the context of a Networks-
on-Chip, an FPGA is equivalent to a Multi Local Port Router proposed in Chapter 4. In
other words, inside each FPGA, multiple cores can be synthesized and mapped, thus, repre-
senting an analogous condition of having an MLPR having varied port count. The only con-
straint present here is in the form of the total logic capacity of the individual FPGA, which
restricts the number of cores that can go onto that FPGA. Hence, with regard to the mapping
algorithm(s) proposed earlier in Chapters 6, 7, 9 & 11, the actual change that is required is
minimal. Given the set of constraints with respect to the individual FPGA size and the to-
tal FPGA count that are mesh-interconnected, the mapping algorithm(s) get simplified and
will now populate the cores into each FPGA, while optimizing the latency/power metric.
There is no change necessary with respect to the cost function, as in the new multi FPGA
scenario, the intended mapping is to cluster the cores together locally inside an FPGA,
while minimizing inter-FPGA transfers. At the same time, the availability and proximity
of the Input-Output Pads (Pins) must be considered when clustering cores across multiple
FPGAs. Also, topology generation inside an individual FPGA must take the IO pad/pin
characteristics (which have direct impact on the latency/performance/power) into account
when generating an appropriate MLPR-based mesh-topology. In this context, different
packet encoding schemes (for the boundary wrapper) can be explored targetting the inter
FPGA transfers in order to improve the overall power efficiency and performance [BV06].

†A cluster represents the group of IP cores populated inside a single FPGA.

160

As discussed in Chapter 9, different cluster configurations may provide different, but appre-
ciable tradeoffs in terms of the overall latency, bandwidth or the total power consumption.
But, with the inter FPGA transfers, the impedance seen is hundred times larger [Xil07a]
and hence must be kept to the bare minimum possible for an efficient multi FPGA SoC.

Extensions with respect to the other topologies are not complex and will require ap-
propriate changes to the latency and the packet count estimation metrics. At the same time,
the instances wherein an FPGA is not large enough to accommodate even a single IP core is
not in the scope of the Networks-on-Chip research. Such a scenario require hardware par-
titioning techniques [JKK00,Hau98,Hau95,JKK03,JKK02], which may not be efficient or
adaptable in the System-on-Chips having on chip interconnection networks. This is partic-
ularly true because the Network Interfaces are defined conforming to a commonly-agreed
packet standard and hence, in the worst case, the desired partitioning of an IP core may
not be even possible‡. Also, when a core gets partitioned, there will be a host of problems
created with respect to the addressability of cores and more importantly with respect to
the buffering strategies required, amidst stringent throughput and latency constraints. All
these aspects will force the final System-on-Chip to be sub-optimal with respect to both
the resource usage and the system performance. In such cases, a complete redesign of the
IP core (taking the logic capacity constraints of the FPGAs into account) or the use of an
FPGA with larger logic capacity may be the only effective solutions possible.

12.3 Conclusion

We present a holistic and a bird’s eye view of the issues to be tackled in the exten-
sion and application of Networks-on-Chip kind of system interconnection in a Multi FPGA
environment. The topology exploration phase gets simplified due the adoption of the mesh-
based interconnection topology as the preferred choice and only a minimal change in the
cost function(s) is required with respect the mapping algorithms. Communication inside a
single FPGA does not require any change, while the inter FPGA transfer requires a wrapper
and associated & suitable changes to the control information of the packet(s). The proposed
ideas provide a good scope for a possible direction of work in the future, in terms of the
implementation of the framework.

‡This is because the core boundary requires a Network Interface to achieve effective switching of packets

161

Chapter 13

Conclusions

Future System-on-Chips (SoCs) will have billions of transistors integrated on a sin-
gle die. In order to increase the productivity, decrease costs and meet stringent Time-
to-Market constraints, a platform-based design methodology is preferred having a larger
percentage of design re-use. In such cases, modern SoCs will be realized as a complex
integration of various Intellectual Property cores.

In addition to the global interconnect related issues, the traditional and popular
shared-bus approach is losing its steam on the scalability aspect. Networks-on-Chips
(NoCs) are the modern day answer to address the compounded problems in the existing
SoCs, with the data transfer happening in a distributed packet-switched fashion, using
smaller and better predictable interconnects.

In addition to ASICs, modern FPGAs [Xil06b] provide greater scope for realiz-
ing System-on-Chip designs, because of the availability of several Intellectual Property
(IP) cores, including embedded hard & soft processors, memory, Digital Signal Process-
ing (DSP) and Input/Output (I/O) Transceiver cores [Xil05]. Due to the scalability issues
present in the use of shared-bus, NoC is being preferred as the communication backbone
for integration of IP modules. But, despite the several advantages, being a typical shared
network, an NoC throws challenges on multiple fronts including area overheads, hop-based
transfer increasing the latency, creation of congestion and deadlocks, and most importantly
bandwidth violations across several link of an NoC.

In this thesis, we present novel designs that target area reduction and improvement
in both power and performance. An important contribution of the thesis is the concept of
a heterogenous Networks-on-Chip mesh, having routers with varied port count. We extend

162

this novel design to included the ability to multicast. In addition, use the proposed router
designs as the communication backbone of the intended NoC mesh, we present several NoC
topology generation and mapping algorithms that optimized for various metrics including
latency, bandwidth and power. In addition, algorithms exploited the the heterogenous na-
ture of multi port routers and minimized the overall packet count, resulting in improved
performance and reduction in power.

13.1 Contributions

The specific contributions of the research in the dissertation are summarized as
follows:

1. An area-efficient router design for implementing Networks-on-Chip (NoC) on re-
configurable devices like FPGAs. We present the architectural optimizations that
resulted in the reduction in the logic area usage by the router. The router design is
capable of establishing and servicing multiple requests simultaneously without any
performance penalty.

2. We target area reduction by reduction of number of routers in an NoC mesh. An novel
architectural modification to the traditional Networks-on-Chip architecture, giving
rise to a Multi Local Port Router (MLPR) that is capable of handling multiple logic
cores simultaneously, without compromising the performance of the system. The
new Multi Local Port Router (MLPR) provided many-fold advantages including re-
duction in area, power, transit time & congestion, and most importantly, bandwidth
optimization, resulting in an efficient and high performance NoC design. Essentially,
the MLPR is a marriage between switch-based and router-based interconnection net-
work. We exhaustively analyze the merits and issues involved in adopting MLPR
into the NoC design flow.

3. We present the complexity involved in generating efficient NoC configurations in an
MLPR-based NoC. As a proof-of-concept, we present an exhaustive search algorithm
to find the optimum mesh based Network-on-Chip configuration (using Multi Local
Port Routers) and the final mapping, reducing the overall execution time. The results
indicate the significant performance gain that is obtained.

4. Since an exhaustive search is infeasible for larger NoC systems, we present a fast

163

mapping algorithm (cMap) based on the heuristics observed from the optiMap algo-
rithm. The algorithm uses an forced-directed approach to iteratively expand the mesh
design, as the cost is reduced. The algorithm finds the near-optimal results within a
couple of seconds.

5. We extend the Multi Local Port Router to incorporate the multicast ability into them.
We present the architectural modifications necessary to accomplish this facility. This
extension bridges one of the feature-gap that exists between an NoC and a shared-
bus.

6. Using the modified optiMap algorithm, we find energy-efficient NoC configuration
exploiting the available multicast feature. There is a significant reduction in the
amount of data traffic across the network, which directly result in a drastic reduc-
tion in the power consumption of the design. In addition, we observe significant
performance gains due to reduction in the overall transit time.

7. In addition to the power reduction achieved by the direct reduction of packet flowing
in the NoC mesh, we experiment and present the intra-port power savings possible.
We observe significant variation in the amount of power required to switch pack-
ets between different ports, thereby, giving an opportunity to achieve more power
savings by careful selection of port when mapping a design core to an MLPR.

8. We perform extensive power and IR analysis on the multi port routers and find the
shortcomings in using larger multi port routers from an power efficiency angle. We
observe that there is an increase in the average power with increased port count.
Through exhaustive rail analysis, we infer that large multi port routers introduce
greater amount of IR violations. Hence, a heterogenous mix of smaller multi port
routers will provide a better tradeoff in terms of performance and power.

9. We highlight the necessity to handle the varying nature of inter-communication and
bandwidth flow between the cores of a System-on-Chip, thereby, requiring a better
approach to avoid possible bandwidth violations. For a given topology, we present
technique to estimate the Minimum BandWidth Guarantee (MBWG) required for a
given topology and , We analyze the impact of maximum port count on the MBWG
required and extend the algorithm to find the NoC architecture minimizing the MBWG.
The results demonstrate the need for a highly application-specific NoC architecture
generation, catered to the task structure(s) at hand. The knowledge of the maximal

164

bandwidth variation across links is highly inevitable during the NoC design, help-
ing the designers to better predict the possible violations that may arise because of
dynamic inter-communication.

10. We propose and discuss the necessary design changes that may be required for adopt-
ing an on-chip network kind of core integration in a multi chip based System-on-Chip
design environment, wherein a set of FPGAs are interconnected following a mesh-
based topology.

13.2 Salient Inferences

In this section, we summarize the notable inferences that can be drawn out of the
dissertation.

• Networks-on-Chip implementation on Reconfigurable Devices requires an efficient
implementation of the communication backbone comprising of the routers or the
switch elements.

– This is more so because of the balanced and predictable (global) interconnects
available across the reconfigurable fabric, along with a better managed clock
management mechanisms, which is not the case in an ASIC based NoC design.

– Also, premium availability of logic area in FPGAs motivates (forces) the logic
area reduction has to be a prime target for optimization, even at the expense of
performance due to the use of longer interconnects.

– Field Programmable Gate Arrays are inherently suited for a mesh based inter-
connection of routers that forms the communication backbone of the Networks-
on-Chip.

• Selective clustering or grouping of cores is more efficient through the careful selec-
tion of the multi port routers during topology generation and mapping, thus, enabling
us to realize a heterogenous mix of routers.

• Multi-port router based NoC architecture generation provides an opportunity to achieve
tradeoffs with respect to various metrics including area, latency, power and band-
width.

165

• Heuristic and fast mapping techniques are necessary to handle the complexity present
in the System-on-Chips involving hundreds of cores, and hence, requires cost func-
tions targeting various optimization metrics.

• Router level multicasting is possible with least overheads in terms of the area and the
operating frequency, helping a great deal in the avoidance of switching of same data
packet multiple times (to the ports in a single multi port router).

• Reduction in the overall packet count in the Networks-on-Chip mesh may not neces-
sarily result in the reduction in the overall latency, but has an direct and significant
impact on the packet-switching power required by the communication network.

• Variations in the amount of power required to switch packets between various ports
of a multi port router are significant. Hence, depending the amount of data transfer
happening across the various port of a multi port router, a careful selection of the port
during IP mapping phase will result in a pronounced reduction in the total power.

• Large multi port routers, despite being efficient in terms of area usage and latency, are
poor candidates for power efficiency. In addition to the average power increase, there
are large IR drop violations, requiring a concerted effort (eg., widening of supply rail
stripes, . . .) and thus, making the NoC design flow more complex (in ASICs).

• In order to avoid bandwidth violations, the bottlenecks in the shared links of the mesh
must be reduced, either by distributing the flow across many links (single port router)
or by reducing the usage of the links (larger port router).

• Thus, we have contrasting requirements and possibilities in terms of the port count,
and hence, an application-specific tailoring of the Networks-on-Chip architecture is
required, based on the given application and the target implementation technology &
platform.

In summary, the dissertation presents novel and efficient router designs, supported
by the NoC architecture generation algorithms. Despite having an FPGA bias, the ideas
proposed in this research are equally applicable to ASICs, thus providing a small but sig-
nificant leap in the quest of an efficient NoC architecture design.

166

Chapter 14

Future Directions

Being an emerging domain of research, Networks-on-Chip offers larger scope of
original research. As explained in Section 2.4, better techniques, designs and algorithms
are necessary for all phases of design starting from communication architecture design (in-
volving nittygritties with regard to buffer selection, flow control and routing) to application
mapping [OHM05]. In this chapter, we present some of the possible directions of work that
can be pursued in line with the research presented in this dissertation. We also cite some of
the recent and relevant works along with the discussion [BM06].

Floorplan-inclusive NoC Architecture Generation: In this dissertation, the topology gen-
eration and mapping are done in isolation, without taking the effect of floorplan and
placement of cores in FPGAs (& ASICs) into consideration. The relative position-
ing of the cores has a direct impact and affects the available choice of the multi-port
routers. Floorplan information is necessary to account for variations created, cov-
ering the various metrics including the performance and the power. The longer the
length of the interconnect, larger will the delay and the amount of wire capacitance
switched, thus resulting in a reduction in the operating frequency, while increasing
the power. In Chapter 10, we approximate and normalize the amount of link power
consumed in relation to the intra-port packet transfers (20% increase) [SCK06]. This
is valid only in the context of having an uniform and predictable value for the inter-
connect length.

In this work, we restrict our experimentation to a mesh type of interconnection topol-
ogy that is observed to be highly efficient for an FPGA-based implementation. Also,
topologies like the torus, the folded torus and the octagon can be explored to make

167

the application-specific generation of the Networks-on-Chip architecture more effi-
cient. It is argued that power optimizations in significant proportions are possible
with torus topology [HCZ+05]. Localized customization of channels and buffers
along with optimal slot allocation are possible only if the slack possible can be esti-
mated accurately, which in turn is highly floorplan and interconnect (link) specific.
Also, the bandwidth constraint is dictated by the router-to-router interconnects. Bet-
ter estimation and optimization of the above parameters are possible only through
accurate modeling and data from the floorplan [MMA+06,SC06b,AMC+06,SC06a].

Globally Asynchronous Locally Synchronous Design: In Chapter 10, we show the pres-
ence of variations up to 25% in the amount of power that is used in switching packets
from different source ports to the various combinations of other ports. In a simi-
lar manner, due to the relative placement of the input and output ports, the critical
path between the various ports (through the central cross point matrix) varies over
an appreciable range. This variation can be exploited with a provision and capability
of having multiple operating frequencies for the Networks-on-Chip communication
backbone. In order to achieve this, a router node must be capable of accepting and
sending data at multiple frequencies, thereby, requiring the buffer or the FIFO ele-
ments to handle multiple frequencies. With regard to the reconfigurable devices, the
Xilinx Virtex 4 FPGAs have the provision to derive as much as sixteen independent
clocks [Xil06a]. But, this comes at a price in term of extra routing and logic over-
heads, but, more importantly, it results in a larger capacitance switched and hence
larger average power consumption. Further, multiple clocks will complicate and
throw more issues to tackle with regard to data synchronization [DGS04]. Also,
routing multiple clocks to different modules is more complex involving increased as-
sociated overheads (area/power), along with a large number of reliability issues and
meta-stability problems to contend with [DGS06].

Broadcast Router: In this dissertation, we have present the router design in which it is
possible to multicast to various combinations of ports present in a multi port router,
thereby, making is a broadcast-capable router at a node (router) level. In addition
to such a node-restricted multicast capability, designs and strategies are possible and
necessary to extend this versatile capability and make the Networks-on-Chip design
to support multicast to various combinations of routers present in the communication
backbone. In other words, router decoding logic and the control information embed-
ded in a packet can be modified to incorporate the capability to multicast/broadcast

168

to multiple routers (ports).

Enforcing Coherency in Multi-processor Networks-on-Chip: An important component
of realizing multi-processor system-on-Chips is maintaining a consistent and coher-
ent memory model. In addition to the microprocessor cores, the dedicated/shared
memory and its associated controllers increase the complexity of the memory ar-
chitecture. Also, provisions of out-of-order delivery of packets and the associated
re-ordering of the packets complicate the situation further. With the use of multi-port
routers, preferences given to intra-port transfers will reduce the need for out-of-order
packet delivery. Hence, this underlying capability can be exploited to enforce archi-
tecture generation that provides an effective tradeoff in terms of observable metrics
like performance and power against reduction of situations requiring buffering and
processing of packets that are received out of order [MABM06].

Architectural & Algorithmic Improvements: The switch or the router elements repre-
sent the key elements in the communication backbone defined in an Networks-on-
Chip. There is a larger scope for improvement at every aspect of the router design in-
cluding the flow control, routing and buffering strategies. It is argued in [AMC+06]
that unlike the earlier assumptions, a majority of the power is utilized by the se-
quential elements that act as intermediate storage points (buffers). A small varia-
tion in the size of the flit-width has an enormous impact on the power. Here, the
tradeoff is present in the form of the latency as well - larger the flit width, lesser
is the number of flits (i.e., reduced latency). In the same context, the NoC design
flow must take into consideration the possibility of allowing stream or burst trans-
fers. Hence, if the overheads caused due to the packetization and depacketization
steps are to be minimized and overshadowed, then the size of the payload of the
packet must increase [AMC+06, Bha06]. There exists a plethora of possibilities
in terms of the customization of the buffers and flow control for the application at
hand [CMR+06, VN06a, TMG+06, KPKJ07].

In addition to the packet-switched architecture, the circuit-switched architecture can
be exploited locally to improve the performance, by avoiding the latency created due
to the packetization-depacketization process. The heavy data traffic between intra-
port-mapped cores can be made to go through the circuit-switched layer, avoiding the
packet creation and the successive joining of the payload of the packets. But, such
an approach will throw more overhead in terms of the logic area and the operating
power, thus, forcing yet another tradeoff point. Also, such an architecture is better for

169

a highly intermittent traffic with a large aggregated bandwidth [CSC06,HN06,GJ05].

Also, improved and adaptive routing schemes are necessary to offset the compounded
queuing problems created due to congestions. But, care must be taken to avoid the
situations resulting in the creation of deadlocks and livelocks. Also, the revised
schemes must be as distributed as possible in nature, in terms of the routing decision
making that need to taken based on congestion spots which are created in a more
dynamic fashion [TMG+06,OM06,XWHC06]. Also, there is a greater stress for the
system design, taking the link capacity and Quality-of-Service (Best Effort/ Guar-
anteed Throughput) into consideration [LB06,NPK+06,KNP06,PHKC06,DKS+06,
MABM06, GWB+06, LT06].

Æthereal architecture supports multiple cores to be attached onto the Network In-
terface (NI) kernel ports, but, not directly onto the router node. In spite of having
multiple NI kernel ports, the single link (which is time-multiplexed between different
channels) between the router and NI creates a large bottleneck, preventing simultane-
ous parallel connections from the router. Further, the connections between NI kernel
ports suffer from a lengthy transaction going through a scheduler. Using Æthereal as
the base architecture, Hansson et al present a scheme for combined mapping, routing
and slot allocation [HGR05]. Thus, apart from the multi-port router architectures, de-
signs can be custom-tailored so as to share the network interfaces [RJH04], thereby,
still optimizing the Networks-on-Chip architecture for logic area. But, it must be
understood that sharing of network interface is beneficial only in scenarios wherein
multiple logic modules mapped (thus sharing the network interfaces) are not be com-
peting for channel access simultaneously, in which case, the advantage of parallel
communication present in a Networks-on-Chip kind of architecture may be lost.

The unused links, channels and ports can be removed, which will result in substantial
savings in terms of the area and power. So far in this dissertation, when optimizing
for latency, we have concentrated on the global latency metric, without taking the
local latency into consideration. In other words, we did not bring the pair-wise la-
tency constraints into the equation, when generating the topology and mapping. In
this process, it is possible for latency violations to occur during packet transfers be-
tween pair(s) of cores. If this situation is not taken care and resolved during the
Networks-on-Chip architecture generation, it will result in reliability issues, nullify-
ing any gains that may be expected. Similar arguments will hold true when there
exists a hotspot kind of traffic, thereby, resulting in a host of issues related to the

170

power and the performance. In this context, the highly localized activity and the
resulting IR drops must be foreseen and addressed properly and adequately.

Hence, a comprehensive NoC architecture generation algorithm (in addition to ad-
dressing the above issues), must incorporate capabilities for custom tailoring (eg.,
removal of unused or least used logic consumed by various channels/ports). By this
way, it can provide NoC architecture generation with varying tradeoffs, and when
coupled with a what-if analysis, will provide the system designers with the invalu-
able insight regarding the various options available when creating a Networks-on-
Chip based System-on-Chip. On top of the architectural changes suggested above,
it is necessary to make the designs complaint with the various standards including
OCP/VCI to provide a capability for seamless IP integration.

System Level Optimizations: Apart from the router design, and task graph based topol-
ogy generation & mapping, latest configurable-logic based platform/embedded sys-
tems require an efficient hardware-software co-design approach. With greater stress
on the design re-use and with larger usage of microprocessor cores, efficient usage
of the limited logic available is necessary to increase the design productivity, while
keeping the costs down. Networks-on-Chip is gaining much attention in this aspect,
wherein the application at hand is partitioned into the synthesized-hardware and soft-
ware components targeting improvement in both power and performance [VN06b].
The primary advantages offered by a Networks-on-Chip in terms of the large ag-
gregate bandwidth and improved computational power provide a larger design space
to explore in a hardware-software co-design methodology. In this context, efficient
task allocation and scheduling techniques are required to maximize the resource uti-
lization with improved performance [HCY+07]. Moreover, with improved dynamic
reconfiguration capabilities offered by the latex Xilinx Virtex 4/5 FPGAs, there exists
larger scope for improved system designs. Added to all these features/capabilities,
dynamic voltage scaling and frequency scaling, along with the compiler-directed de-
sign optimizations, will help in the implementation of an highly optimal System-on-
Chip design [CLK06, CLKI06].

.

171

Bibliography

[ABPvG01] Amir H. Ajami, Kaustav Banerjee, Massoud Pedram, and Lukas P. P. P. van Ginneken. Analy-
sis of Non-Uniform Temperature-Dependent Interconnect Performance in High Performance
ICs. In DAC ’01: Proceedings of the 38th conference on Design automation, pages 567–572,
2001.

[ACP04] G. Ascia, V. Catania, and M. Palesi. Multi-objective Mapping for Mesh-based NoC
Architectures. In Intl. Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’04), pages 182–187, 2004.

[ALMM05] Alexandre M. Amory, Marcelo Lubaszewski, Fernando Gehm Moraes, and Edson I. Moreno.
Test Time Reduction Reusing Multiple Processors in a Network-on-Chip Based Architecture.
In DATE, pages 62–63, 2005.

[Alt07] Altera Inc. http://www.altera.com, 2007.

[AMB06] AMBA Specification (ver 2.0). ARM Inc. In http://www.arm.com/products/solutions/
AMBAHomePage.html, 2006.

[AMC+06] Federico Angiolini, Paolo Meloni, Salvatore Carta, Luca Benini, and Luigi Raffo. Contrasting
a NoC and a Traditional Interconnect Fabric With Layout Awareness. In DATE ’06: Proceed-
ings of the conference on Design, Automation and Test in Europe, pages 124–129, 2006.

[Arc05] The Coreconnect Bus Architecture. IBM Corporation. In http://www.chips.ibm.com, 2005.

[ARG05] Santiago González Pestana Om Prakash Gangwal Edwin Rijpkema Paul Wielage Andrei Rad-
ulescu, John Dielissen and Kees Gooses. An Efficient On-Chip Network Interface Offer-
ing Guaranteed Services, Shared-Memory Abstraction, and Flexible Network Programming.
IEEE Trans. on CAD of Integrated Circuits and Systems, 24(1):4–17, Jan 2005.

[Art06] Arteris NoC Solution 1.4. http://www.arteris.com, May 2006.

[ASTBN04] Tapani Ahonen, David A. Sigüenza-Tortosa, Hong Bin, and Jari Nurmi. Topology Optimiza-
tion for Application-Specific Networks-on-Chip. In SLIP ’04: Proceedings of the 2004 inter-
national workshop on System level interconnect prediction, pages 53–60, 2004.

[ATT05] Syed M. Alam, Donald E. Troxel, and Carl V. Thompson. Thermal Aware Cell-Based Full-
Chip Electromigration Reliability Analysis. In GLSVLSI ’05: Proceedings of the 15th ACM
Great Lakes symposium on VLSI, pages 26–31, 2005.

172

[Axe03] Axel Jantsch and Hannu Tenhunen (Eds.). Networks on Chip. Kluwer Academic, 2003.

[BdM01] Luca Benini and Giovanni de Micheli. Powering Networks on Chips: Energy-efficient and
Reliable design for SOCs. In Design Automation Conference, pages 33–37, 2001.

[BdM02] Luca Benini and Giovanni de Micheli. Networks on Chips: A New SOC Paradigm. In IEEE
Computer, pages 70–78, Jan 2002.

[BDM+04] Andrei Bartic, Dirk Desmet, Jean-Yves Mignolet, Théodore Marescaux, Diederik Verkest,
Serge Vernalde, Rudy Lauwereins, J. Miller, and Frédéric Robert. Network-on-Chip for Re-
configurable Systems: From High-Level Design Down to Implementation. In FPL, pages
637–647, 2004.

[Bha06] Prasun Bhattacharya. Comparison of single-port and multi-port nocs with contemporary buses
on fpgas. Master of science thesis, University of Cincinnati, Cincinnati, Ohio, United States,
March 2006.

[Bil74] Alberto A. Bilotti. Static Temperature Distribution in IC Chips with Isothermal Heat Source.
IEEE Transaction on Electron Device, ED-21 (3):217–226, Feb 1974.

[BJM+05] Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna Tamhankar, Stergios Ster-
giou, Luca Benini, and Giovanni De Micheli. NoC Synthesis Flow for Customized Domain
Specific Multiprocessor Systems-on-Chip. IEEE Trans. Parallel Distrib. Syst., 16(2):113–129,
2005.

[BM06] Tobias Bjerregaard and Shankar Mahadevan. A Survey of Research and Practices of Network-
on-Chip. ACM Computing Survey, 38(1):1, 2006.

[BMN+03] T.A. Bartic, J.-Y Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde, and R. Lauw-
ereins. Highly Scalable Network on Chip for Reconfigurable Systems. In Proceedings of the
International Conference on System-On-Chip 2003, pages 79–82, Nov. 2003.

[BMSVH99] Kaustav Banerjee, Amit Mehrotra, Alberto Sangiovanni-Vincentelli, and Chenming Hu. On
Thermal Effects in Deep Sub-Micron VLSI Interconnects. In DAC ’99: Proceedings of the
36th ACM/IEEE conference on Design automation, pages 885–891, 1999.

[BOSW94] D. Bhagavathi, S. Olariu, W. Shen, and L. Wilson. A Unifying Look at Semigroup Computa-
tions on Meshes with Multiple Broadcasting. Parallel Processing Letters, 4(1), 1994.

[BPA01] Kaustav Banerjee, Massoud Pedram, and Amir H. Ajami. Analysis and Optimization of Ther-
mal Issues in High-Performance VLSI. In ISPD ’01: Proceedings of the 2001 international
symposium on Physical design, 2001.

[BTA93] Jonathan Babb, Russ Tessier, , and Anant Agarwal. Virtual Wires: Overcoming Pin Limita-
tions in FPGA-based Logic Emulators. In IEEE Workshop on FPGAs for Custom Computing
Machines, pages 142–151, 1993.

[BV06] E. Beigne and P. Vivet. Design of On-chip and Off-chip Interfaces for a GALS NoC Architec-
ture. In ASYNC ’06: Proceedings of the 12th IEEE International Symposium on Asynchronous
Circuits and Systems, page 172, 2006.

173

[Cad07a] Cadence R© Encounter R© digital IC design platform. SoC Encounter
TM

: RTL-to-GDSII
system. http://www.cadence.com/products/digital ic/soc encounter/index.aspx, 2007. Data
Sheet.

[Cad07b] Cadence R© Encounter R© digital IC design platform. VoltageStorm R© Power and Power Rail
Verification. http://www.cadence.com/products/dfm/fireandice/index.aspx, 2007. Data Sheet.

[CC05] Li-Hsun Chen and O.T.-C. Chen. A Hardware-Efficient FIR Architecture with Input-Data and
Tap Folding. In IEEE International Symposium on Circuits and Systems (ISCAS ’05), 2005.

[CCCS90] Y. C. Chen, W. T. Chen, G. H. Chen, and J. P. Sheu. Designing Efficient Parallel Algorithms
on Mesh-Connected Computers with Multiple Broadcasting. IEEE Transactions on Parallel
and Distributed Systems, 1990.

[CGMP99] Shang-Tse Chuang, Ashish Goel, Nick McKeown, and Balaji Prabhakar. Matching Output
Queueing with a Combined Input Output Queued Switch. In INFOCOM, pages 1169–1178,
1999.

[Cha84] Daniel M. Chapiro. Globally Asynchronous Locally Synchronous Systems. PhD thesis, Stan-
ford University, 1984.

[CKPP99] Jong Hyuk Choi, Bong Wan Kim, Kyu Ho Park, and Kwang-Il Park. A Bandwidth-Efficient
Implementation of Mesh with Multiple Broadcasting. In International Parallel Processing,
1999.

[CLK06] Guangyu Chen, Feihui Li, and Mahmut Kandemir. Compiler-Directed Channel Allocation
for Saving Power in On-Chip Networks. In POPL ’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 194–
205, 2006.

[CLKI06] Guangyu Chen, Feihui Li, Mahmut Kandemir, and Mary Jane Irwin. Reducing NoC Energy
Consumption Through Compiler-Directed Channel Voltage Scaling. In PLDI ’06: Proceed-
ings of the 2006 ACM SIGPLAN conference on Programming language design and implemen-
tation, pages 193–203, 2006.

[CLP00] S. Coric, I. Latinovic, and A. Pavasovic. A Neural Network FPGA Implementation. In 5th
Seminar on Neural Network Applications in Electrical Engineering (NEUREL 2000), pages
117–120, Belgrade, 2000.

[CLRK99] Danqing Chen, Erhong Li, Elyse Rosenbaum, and Sung-Mo (Steve) Kang. Interconnect Ther-
mal Modeling for Determining Design Limits on Current Density. In ISPD ’99: Proceedings
of the 1999 international symposium on Physical design, pages 172–178, 1999.

[CM94] C. P. Cowen and S. Monaghan. A Reconfigurable Monte-Carlo Clustering Processor (MCCP).
In IEEE Workshop on FPGAs for Custom Computing Machines, pages 59–65, 1994.

[CMR+06] Martijn Coenen, Srinivasan Murali, Andrei Ruadulescu, Kees Goossens, and Giovanni De
Micheli. A Buffer-Sizing Algorithm for Networks on Chip using TDMA And Credit-Based
End-To-End Flow Control. In CODES+ISSS ’06: Proceedings of the 4th international con-
ference on Hardware/software codesign and system synthesis, pages 130–135, 2006.

174

[Cor99] B. Cordan. An Efficient Bus Architecture for System-On-Chip Design. In IEEE 1999 Custom
Integrated Circuits, 1999.

[CP04] Jeremy Chan and Sri Parameshwaran. NoCGEN: A Template Based Resuse Methodology
for Networks on Chip Architecture. In 17th International Conference on VLSI Design (VL-
SID’04), pages 717–720, 2004.

[CR93] Steven A. Cuccaro and Craig F. Reese. The CM-2X: A Hybrid CM-2 / Xilinx Prototype. In
IEEE Workshop on FPGAs for Custom Computing Machines, pages 121–130, 1993.

[CSC06] Kuei-Chung Chang, Jih-Sheng Shen, and Tien-Fu Chen. Evaluation and design trade-offs
between circuit-switched and packet-switched NOCs for application-specific SOCs. In DAC
’06: Proceedings of the 43rd annual conference on Design automation, pages 143–148, 2006.

[DEW99] O. Diessel, H. ElGindy, and L. Wetherall. Efficient Broadcasting Procedures for Constrained
Reconfigurable Meshes. In Third Australasian Conference on Parallel and Real-Time Systems,
pages 85–88, Brisbane, Australia, Sep 1999.

[DGS04] Rostislav (Reuven) Dobkin, Ran Ginosar, and Christos P. Sotiriou. Data Synchronization Is-
sues in GALS SoCs. In 10th International Symposium on Asynchronous Circuits and Systems,
pages 170– 179, April 2004.

[DGS06] Rostislav (Reuven) Dobkin, Ran Ginosar, and Christos P. Sotiriou. High Rate Data Synchro-
nization in GALS SoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
14(10):1063–1074, 2006.

[DJR01] Santanu Dutta, Rune Jensen, and Alf Rieckmann. Viper: A Multiprocessor SOC for Advanced
Set-Top Box and Digital TV Systems. In IEEE Design and Test of Computers, pages 21–31,
Sept.-Oct. 2001.

[DKS+06] Masoud Daneshtalab, Ali Afzali Kusha, Ashkan Sobhani, Zainanabedin Navabi, Moham-
mad D. Mottaghi, and Omid Fatemi. Ant Colony Based Routing Architecture for Minimizing
Hot Spots in NOCs. In SBCCI ’06: Proceedings of the 19th annual symposium on Integrated
circuits and systems design, pages 56–61, 2006.

[DKSL04] Sarang Dharmapurikar, Praveen Krishnamurthy, T.S. Sproull, and J.W. Lockwood. Deep
Packet Inspection using Parallel Bloom Filters. Micro, IEEE, 24(1):52–61, 2004.

[DRW98] R.P. Dick, D.L. Rhodes, and W. Wolf. Tgff: Task graphs for free. In 6th Intl Workshop on
Hardware/Software Codesign (CODES/CASHE ’98), pages 97–101, 1998.

[DSY96] J. Duato, F. Silla, and S. Yalamanchili. A High Performance Router Architecture for Inter-
connection Networks. In International Conference on Parallel Processing, 1996.

[DT01] W.J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection Networks. In
Design Automation Conference, pages 684–689, 2001.

[DT04] W.J. Dally and B. Towles. Principles and Practices of Interconnection Networks. San Fran-
cisco: Morgan Kaufmann, 2004.

175

[DYN98] J. Duato, S. Yalamanchili, and L. Ni. Interconnect Networks: An Engineering Approach.
IEEE CS Press, 1998.

[Dzu93] Dzung T. Hoang. Searching Genetic Databases on Splash 2. In FPGAs for Custom Computing
Machines, 1993. Proceedings. IEEE Workshop on, pages 185–191, 1993.

[EM96] K. Echtle and A. Masum. A Multiple Bus Broadcast Protocol Resilient to Non-Cooperative
Byzantine Faults. In Annual Symposium on Fault Tolerant Computing, pages 158 – 167, 1996.

[Eva94] J.B. Evans. Efficient FIR Filter Architectures Suitable for FPGA Implementation. Circuits
and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 41(7), 1994.

[fir07] Fire & Ice R© QXC 3-D Extractor. http://www.cadence.com/products/dfm/fireandice/
index.aspx, 2007. Data Sheet.

[FV00] K. Fall and K. Varadhan. The ns Manual. In The VINT Project, UC Berkeley, LBL, USC/ISI,
Xerox PARC, 2000.

[GC98] Ming-Huang Guo and Ruay-Shiung Chang. A Simple Multicast ATM Switches Based on
Broadcast Buses. In IEEE Global Telecommunications Conference (GLOBECOM 98), vol-
ume 4, pages 2369–2374, Sydney, NSW, Australia, 1998.

[GCBM00] R. Gadea, J. Cerda, F. Ballester, and A. Macholi. Artificial Neural Network Implementation
on a Single FPGA of a Pipelined On-Line Backpropagation. In 13th International Symposium
on System Synthesis, pages 225–230, 2000.

[GDG+05] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago González Pestana, Andrei
Radulescu, and Edwin Rijpkema. A Design Flow for Application-Specific Networks on Chip
with Guaranteed Performance to Accelerate SOC Design and Verification. In DATE, pages
1182–1187, 2005.

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. The Æthereal Network on Chip: Concepts,
Architectures, And Implementations. IEEE Design and Test of Computers, 22(5):21–31, Sept-
Oct 2005.

[GG02] P. Guerrier and A. Greiner. A Generic Architecture for on-chip Packet-Switched Interconnec-
tions. In DATE’02, pages 250–256, 2002.

[GHK+90] Maya Gokhale, William Holmes, Andrew Kopser, Dic Kunze, Daniel Lopresti, Sara Lucas,
Ronald Minnich, and Peter Olsen. Splash: A Reconfigurable Linear Logic Array. In Interna-
tional Conference on Parallel Processing, pages 526–532, 1990.

[GJ05] Cristian Grecu and Michael Jones. Performance Evaluation and Design Trade-Offs for
Network-on-Chip Interconnect Architectures. IEEE Trans. Comput., 54(8):1025–1040, 2005.
Student Member-Partha Pratim Pande and Senior Member-Andre Ivanov and Senior Member-
Resve Saleh.

[GWB+06] Zvika Guz, Isask’har Walter, Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam
Kolodny. Efficient Link Capacity and QoS Design for Network-on-Chip. In DATE ’06: Pro-
ceedings of the conference on Design, automation and test in Europe, pages 9–14, 2006.

176

[Han03] Hangsheng Wang and Li-Shiuan Peh and Sharad Malik. Power-Driven Design of Router
Microarchitectures in On-Chip Networks. In Proc. International Symposium on Microarchi-
tecture, page 105116, 2003.

[Har05] Sriram Hariharan. Performance evaluation of on-chip communications in a network-on-chip
system. Master of science thesis, University of Cincinnati, Cincinnati, Ohio, United States,
February 2005.

[Hau95] Scott Hauck. Multi-FPGA Systems. PhD thesis, University of Washington, 1995.

[Hau98] Scott Hauck. The Roles of FPGAs in Reprogrammable Systems. Proceedings of the IEEE,
86(4):615–638, April 1998.

[HB95] Scott Hauck and Gaetano Borriello. Logic Partition Orderings For Multi-FPGA Systems.
In FPGA ’95: Proceedings of the 1995 ACM third international symposium on Field-
programmable gate arrays, pages 32–38, New York, NY, USA, 1995.

[HB97a] Scott Hauck and Gaetano Borriello. An Evaluation of Bipartitioning Techniques. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits & Systems, 16(8):849–866, August
1997.

[HB97b] Scott Hauck and Gaetano Borriello. Pin Assignment for Multi-FPGA Systems. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits & Systems, 16(9):956–964, September
1997.

[HBE98] Scott Hauck, Gaetano Borriello, and Carl Ebeling. Mesh Routing Topologies for Multi-FPGA
Systems. IEEE Transactions on VLSI Systems, 6(3):400–408, September 1998.

[HCY+07] Wei-Hsuan Hung, Yi-Jung Chen, Chia-Lin Yang, Yen-Sheng Chang, and Alan P. Su. An
Architectural Co-Synthesis Algorithm for Energy-Aware Network-on-Chip Design. In SAC
’07: Proceedings of the 2007 ACM symposium on Applied computing, pages 680–684, 2007.

[HCZ+05] Yuanfang Hu, Hongyu Chen, Yi Zhu, Andrew A. Chien, and Chung-Kuan Cheng. Physical
Synthesis of Energy-Efficient Networks-on-Chip Through Topology Exploration and Wire
Style Optimizations. In ICCD ’05: Proceedings of the 2005 International Conference on
Computer Design, pages 111–118, 2005.

[HGR05] Andreas Hansson, Kees Goossens, and Andrei Rădulescu. A Unified Approach to Constrained
Mapping and Routing on Network-on-Chip Architectures. In International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), sep 2005.

[HJK+00] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam Postula, Johnny Öberg, Mikael Millberg,
and Dan Lindqvist. Network on Chip: An Architecture for Billion Transistor Era. In IEEE
NorChip Conference, Nov 2000.

[HK03] D. Hecht and C. Katsinis. Performance Analysis of a Fault-Tolerant Distributed-Shared Mem-
ory Protocol on the SOME-bus Multiprocessor Architecture. In International Parallel and
Distributed Processing Symposium, 2003.

177

[HKL+95] H. Högl, A. Kugel, J. Ludvig, R. Männer, K. H. Noffz, and R. Zoz. Enable++: A Second
Generation FPGA Processor. In FCCM ’95 : Proceedings of IEEE Symposium FPGAs for
Custom Computing Machines, pages 45–53, 1995.

[HM03a] Jingcao Hu and Radu Marculescu. Exploiting the Routing Flexibility for Energy/Performance
Aware Mapping of Regular NoC Architectures. In DATE’03, pages 688–693, 2003.

[HM03b] Jingcao Hu and Radu Marculesu. Energy-Aware Mapping for Tile-Based NoC Architectures
under Performance Constraints. In ASP-DAC ’03, 2003.

[HM04] Jingcao Hu and Radu Marculescu. Application-Specific Buffer Space Allocation for
Networks-On-Chip Router Design. In ICCAD ’04: Proceedings of the 2004 IEEE/ACM In-
ternational conference on Computer-aided design, pages 354–361, 2004.

[HMH01] R. Ho, K.W. Mai, and M.A. Horowitz. The Future of Wires. Proc. of IEEE, 89 (4):490504,
2001.

[HN06] Clint Hilton and Brent Nelson. PNoC: A Flexible Circuit-Switched NoC for FPGA-Based
Systems. IEE Proceedings Computers and Digital Techniques, 153(3):181– 188, May 2006.

[HP00] Cheng-Ta Hsieh and Massoud Pedram. Architectural Power Optimization by Bus Splitting.
In Design, Automation and Test in Europe, pages 612–616, March 2000.

[HPRA02] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve. RSIM: Simulating Shared-Memory
Multiprocessor with ILP Processors. IEEE Computer, 35(2), February 2002.

[HTA94] Neil Howard, Andrew Tyrrell, and Nigel Allinson. FPGA Acceleration of Electronic Design
Automation Tasks. Abingdon EE&CS Books, Oxford, UK, UK, 1994.

[HZC+06] Yuanfang Hu, Yi Zhu, Hongyu Chen, Ronald Graham, and Chung-Kuan Cheng. Communica-
tion Latency Aware Low Power NoC Synthesis. In DAC ’06: Proceedings of the 43rd annual
conference on Design automation, pages 574–579, 2006.

[JKK00] Sushil Chandra Jain, Anshul Kumar, and Shashi Kumar. Efficient Embedding of Partitioned
Circuits onto Multi-FPGA Boards. In FPL ’00: Proceedings of the The Roadmap to Recon-
figurable Computing, 10th International Workshop on Field-Programmable Logic and Appli-
cations, pages 201–210, London, UK, 2000. Springer-Verlag.

[JKK02] Sushil Chandra Jain, Anshul Kumar, and Shashi Kumar. Hybrid Multi-FPGA Board Evalua-
tion by Limiting Multi-Hop Routing. In RSP ’02: Proceedings of the 13th IEEE International
Workshop on Rapid System Prototyping (RSP’02), 2002.

[JKK03] Sushil Chandra Jain, Anshul Kumar, and Shashi Kumar. Hybrid Multi-FPGA Board Evalua-
tion by Permitting Limited Multi-Hop Routing. In Design Automation of Embedded Systems,
pages 309–326, London, UK, 2003. Kluwer Academic Publishers.

[JKY05] Y. Jin, E.J. Kim, and K.H. Yum. Peak Power Control for a QoS Capable On-Chip Network.
In ICPP ’05: International Conference on Parallel Processing, pages 585–592, June 2005.

[JMBM04] Antoine Jalabert, Srinivasan Murali, Lica Benini, and Giovanni De Micheli. ×pipesCompiler:
A Tool for Instantiating Application Specific Networks on Chip. In DATE’04, volume 2, pages
884–889, 2004.

178

[Joh05] Johannes Grad. First Encounter. http://www.chiptalk.org/modules/wfsection/
article.php?articleid=1, Oct 14 2005. Cadence Encounter Tutorial.

[KA96] Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic Critical-Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
7(5):506–521, 1996.

[KCPP00] Bong Wan Kim, Jong Hyuk Choi, Kwang-Il Park, and Kyu Ho Park. A Wormhole Router
with Embedded Broadcasting Virtual Bus for Mesh Computers. Annual Symposium on Fault
Tolerant Computing, 10(1):29–38, 2000.

[KDHDS] C. Katsinis, booktitle=”Parallel D. Hecht”, title = ”Fault-Tolerant Distributed Shared
Memory on a Broadcast-Based Architecture”, and volume=15(12) pages =1082-1092
month=December year=2004 Distributed Systems, IEEE Transactions on”.

[KJS+02] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikael Millberg, Johny
Öberg, Kari Tiensyrjä, and Ahmed Hemani. A Network on Chip Architecture and Design
Methodology. In Annual Symposium on VLSI’2002, IEEE CS Press, pages 105–112, 2002.

[KMN+00] Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and Alberto Sangiovanni-
Vincentelli. System-Level Design: Orthogonalization of Concerns and Platform-Based De-
sign. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19
(12):1523–1543, December 2000.

[KND02] A.N.F. Karim, A Nguyen, and S. Dey. An Interconnect Architecture for Networking Systems
on Chip. IEEE Micro, 22(5):36–45, Sept-Oct 2002.

[KNDR01] F. Karim, A. Nguyen, S. Dey, and R.D. Rao. On-chip Communication Architecture for Oc-768
Network Processors. In DAC, pages 678–683, 2001.

[KNP06] Jongman Kim, Chrysostomos Nicopoulos, and Dongkook Park. A Gracefully Degrading and
Energy-Efficient Modular Router Architecture for On-Chip Networks. In ISCA ’06: Pro-
ceedings of the 33rd annual international symposium on Computer Architecture, pages 4–15,
2006.

[Kon04] Jeong-Taek Kong. CAD for Nanometer Silicon Design Challenges and Success. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 12 (11):1132–1147, Nov. 2004.

[KPKJ07] Amit Kumar, Li-Shiuan Peh, Partha Kunduz, and Niraj Jha. Express Virtual Channels: To-
wards the Ideal Interconnection Fabric. In ISCA’07, 2007.

[KPN+05] H. Jin Kim, David Park, Chrysostomos Nicopoulos, Vijaykrishnan Narayanan, and C. Das.
Design and Analysis of an NoC Architecture from Performance, Reliability and Energy Per-
spective. In Symposium On Architecture For Networking And Communications Systems, pages
173 – 182, 2005.

[KR87] V.K.P. Kumar and C.S. Raghavendra. Array Processor with Multiple Broadcasting. Parallel
and Distributed Computing, 4:173–190, 1987.

[KS03] Nikolay Kavaldjiev and Gerard J.M. Smit. A Survey of Efficient On-Chip Communications
for SoC. In PROGRESS 2003 Embedded Systems Symposium, October 2003.

179

[KS04] Nikolay Kavaldjiev and Gerard J.M. Smit. An Energy-Efficient Network-on-Chip for a Het-
erogeneous Tiled Reconfigurable Systems-on-Chip. In EUROMICRO Symposium on Digital
System Design, pages 492–498, Sep 2004.

[KYL+03] E.J. Kim, K.H. Yum, G.M. Link, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, M. Yousif,
and C.R. Das. Energy Optimization Techniques in Cluster Interconnects. In ISLPED ’03:
International Symposium on Low Power Electronics and Design, pages 459–464, 2003.

[LB06] Seung Eun Lee and Nader Bagherzadeh. Increasing the Throughput of an Adaptive Router in
Network-On-Chip (NoC). In CODES+ISSS ’06: Proceedings of the 4th international confer-
ence on Hardware/software codesign and system synthesis, pages 82–87, 2006.

[LK03a] Tang Lei and Shashi Kumar. A Two-step Genetic Algorithm for Mapping Task Graphs to a
Network on Chip Architecture. In Euromicro Symposium on Digital System Design (DSD’03),
2003.

[LK03b] Tang Lei and Shashi Kumar. Algorithms and Tools for Network on Chip Based System De-
sign. In 16th Symposium on Integrated Circuits and Systems Design (SBCCI’03), 2003.

[LSEV99] D. Lau, A. Schneider, M.D. Ercegovac, and J. Villasenor. FPGA-Based Structures for On-
Line FFT and DCT. In Field-Programmable Custom Computing Machines (FCCM ’99),
pages 310–311, 1999.

[LT06] Lap-Fai Leung and Chi-Ying Tsui. Optimal Link Scheduling on Improving Best-Effort and
Guaranteed Services Performance in Network-On-Chip Systems. In DAC ’06: Proceedings
of the 43rd annual conference on Design automation, pages 833–838, 2006.

[LTXW05] Yong Li, Zheng Tang, GuangPu Xia, and RongLong Wang. A Positively Self-feedbacked
Hopfield Neural Network Architecture for Crossbar Switching. Circuits and Systems I, IEEE
Transactions on, 52(1), 2005.

[LZT04] Jian Liu, Li-Rong Zheng, and Hannu Tenhunen. Interconnect Intellectual Property for
Network-on-Chip (NoC). J. Syst. Archit., 50(2-3):65–79, 2004.

[MA98] N. McKeown and T.E. Anderson. A Quantitaive Comparison of Scheduling Algorithms for
Input-Queued Switches. In Computer Networks & ISDN Systems, vol. 30, n. 24, pages 2309–
2326, December 1998.

[MABM06] Srinivasan Murali, David Atienz, Luca Benini, and Giovanni De Michel. A Multi-Path Rout-
ing Strategy with Guaranteed In-Order Packet Delivery and Fault-Tolerance for Networks on
Chip. In DAC ’06: Proceedings of the 43rd annual conference on Design automation, pages
845–848, 2006.

[MBD+05] Théodore Marescaux, B. Bricke, P. Debacker, Vincent Nollet, and Henk Corporaal. Dynamic
Time-Slot Allocation for QoS Enabled Networks on Chip. In ESTImedia, pages 47–52, 2005.

[MBV+02] Theodore Marescaux, Andrei Bartic, Diderick Verkest, Serge Vernalde, and Rudy Lauwere-
ins. Interconnection Networks Enable Fine-Grain Dynamic Multi-Tasking on FPGAs. In
FPL’2002, pages 795–805, September 2002.

180

[MC93] S. Monaghan and C. P. Cowen. Reconfigurable Multi-Bit Processor for DSP Applications in
Statistical Physics. In IEEE Workshop on FPGAs for Custom Computing Machines, pages
103–110, 1993.

[McC07] Peter McCrorie. Using Dynamic and Static Power Rail Analysis to Maximize Results with
Minimum Effort. http://www.soccentral.com/results.asp?entryID=19453, 2007. Contributor:
Cadence Design Systems, Inc.

[MCM+04] Fernando Gehm Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Luciano Ost. HER-
MES: An Infrastructure for Low Area Overhead Packet-Switching Networks on Chip. Inte-
gration, 38(1):69–93, 2004.

[MCM+05] César Marcon, Ney Calazans, Fernando Moraes, Altamiro Susin, Igor Reis, and Fabiano Hes-
sel. Exploring NoC Mapping Strategies: An Energy and Timing Aware Technique. In DATE
’05: Proceedings of the conference on Design, Automation and Test in Europe, pages 502–
507, Washington, DC, USA, 2005.

[MCR+06a] Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, and Giovanni De
Micheli. A Methodology for Mapping Multiple Use-Cases onto Networks on Chips. In DATE
’06: Proceedings of the conference on Design, automation and test in Europe, pages 118–123,
2006.

[MCR+06b] Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, and Giovanni De
Micheli. Mapping and Configuration Methods for Multi-Use-Case Networks on Chips. In
ASP-DAC ’06: Proceedings of the 2006 conference on Asia South Pacific design automation,
pages 146–151, 2006.

[MdMM+03] Fernando Gehm Moraes, Aline Vieira de Mello, Leandro Heleno Möller, Luciano Copello
Ost, and Ney Laert Vilar Calazans. A Low Area Overhead Packet-switched Network On
Chip: Architecture and Prototyping. In IFIP VLSI-SOC 2003, pages 318–323, 2003.

[Men07] Mentor Graphics Inc. ModelSim Simulator. http://www.model.com, 2007.

[MKSC05] César A. M. Marcon, Márcio Eduardo Kreutz, Altamiro Amadeu Susin, and Ney Laert Vilar
Calazans. Models for Embedded Application Mapping onto NoCs: Timing Analysis. In IEEE
International Workshop on Rapid System Prototyping, pages 17–23, 2005.

[MMA+06] Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Salvatore Carta, Luca
Benini, Giovanni De Micheli, and Luigi Raffo. Designing Application-Specific Networks
on Chips with Floorplan Information. In ICCAD ’06: Proceedings of the 2006 IEEE/ACM
International Conference on Computer-Aided Design, pages 355–362, 2006.

[MMB+03] Théodore Marescaux, Jean-Yves Mignolet, Andrei Bartic, W. Moffat, Diederik Verkest, Serge
Vernalde, and Rudy Lauwereins. Networks on Chip as Hardware Components of an OS for
Reconfigurable Systems. In FPL, pages 595–605, 2003.

[MMCM04] Aline Mello, Leandro Möller, Ney Calazans, and Fernando Gehm Moraes. MultiNoC: A
Multiprocessing System Enabled by a Network on Chip. In DATE, pages 234–239, 2004.

181

[MNM+04] Théodore Marescaux, Vincent Nollet, Jean-Yves Mignolet, Andrei Bartic, W. Moffat, Prabhat
Avasare, Paul Coene, Diederik Verkest, Serge Vernalde, and Rudy Lauwereins. Run-time
Support for Heterogeneous Multitasking on Reconfigurable SoCs. Integration, 38(1):107–
130, 2004.

[MNTJ04] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed Bandwidth Using Looped
Containers in Temporally Disjoint Networks within the Nostrum Network on Chip. In Design,
Automation and Test in Europe Conference and Exhibition, pages 890–895, 2004.

[Moh98] Prasant Mohapatra. Wormhole Routing Techniques for Directly Connected Multicomputer
Systems. In ACM Computing Surveys, volume 30(3), Sep 1998.

[MT99] S. Matsumae and N. Tokura. Simulating a Mesh with Separable Buses by a Mesh with Parti-
tioned Buses. In Fourth International Symposium on Parallel Architectures, Algorithms, and
Networks (I-SPAN ’99), pages 198–203, 1999.

[MVB95] Laurent Moll, Jean Vuillemin, and Philippe Boucard. High-Energy Physics on DECPeRLe-1
Programmable Active Memory. In FPGA ’95: Proceedings of the 1995 ACM third Interna-
tional Symposium on Field-programmable Gate Arrays, pages 47–52, 1995.

[NMAM05] Vincent Nollet, Théodore Marescaux, Prabhat Avasare, and Jean-Yves Mignolet. Centralized
Run-Time Resource Management in a Network-on-Chip Containing Reconfigurable Hard-
ware Tiles. In DATE, pages 234–239, 2005.

[NMV+04] Vincent Nollet, Théodore Marescaux, Diederik Verkest, Jean-Yves Mignolet, and Serge Ver-
nalde. Operating-System Controlled Network on Chip. In DAC, pages 256–259, 2004.

[NPK+06] Chrysostomos A. Nicopoulos, Dongkook Park, Jongman Kim, N. Vijaykrishnan, Mazin S.
Yousif, and Chita R. Das. ViChaR: A Dynamic Virtual Channel Regulator for Network-
on-Chip Routers. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 333–346, 2006.

[ns2] The Network Simulator : ns-2. http://www.isi.edu/nsnam/ns/.

[OHM05] Umit Y. Ogras, Jingcao Hu, and Radu Marculescu. Key Research Problems in NoC Design:
A Holistic Perspective. In CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP inter-
national conference on Hardware/software codesign and system synthesis, pages 69–74, New
York, NY, USA, 2005.

[OM05] U. Y. Ogras and R. Marculescu. Application-Specific Network-on-Chip Architecture Cus-
tomization Via Long-Range Link Insertion. In ICCAD ’05: Proceedings of the 2005
IEEE/ACM International conference on Computer-aided design, pages 246–253, 2005.

[OM06] Umit Y. Ogras and Radu Marculescu. Prediction-Based Flow Control for Network-on-Chip
Traffic. In DAC ’06: Proceedings of the 43rd annual conference on Design automation, pages
839–844, 2006.

[OMLC06] Umit Y. Ogras, Radu Marculescu, Hyung Gyu Lee, and Naehyuck Chang. Communication
Architecture Optimization: Making the Shortest Path Shorter in Regular Networks-on-Chip.
In DATE ’06: Proceedings of the conference on Design, automation and test in Europe, pages
712–717, 2006.

182

[OPN06] OPNET Technologies Inc. OPNET Modeler. In http://www.opnet.com/products/modeler/
opnet modeler.pdf, May 2006.

[osu07] Oklahoma State University System on Chip (SoC) Design Flows. http://avatar.ecen.okstate.
edu/projects/scells/, 2007.

[Pau04] P.G. Paulin. Automatic mapping of parallel applications onto multi-processor platforms: A
multimedia application. In Euromicro Symposium on Digital System Design (DSD ’04), 2004.

[Phi02] Philips Semiconductors. Device Transaction Level (DTL) Protocol Specification. Version 2.2,
July 2002.

[Phi03] Philips. Nexperia PNX8550 Home Entertainment Engine, Dec 2003.

[Phi04] Philips. Nexperia PNX15xx Series Data Book, December 2004.

[PHKC06] Maurizio Palesi, Rickard Holsmark, Shashi Kumar, and Vincenzo Catania. A Methodology
for Design of Application Specific Deadlock-Free Routing Algorithms for NoC Systems. In
CODES+ISSS ’06: Proceedings of the 4th international conference on Hardware/software
codesign and system synthesis, pages 142–147, 2006.

[Pro06] Nostrum Research Project. http://www.imit.kth.se/info/FOFU/Nostrum, May 2006.

[PRR+04] Santiago González Pestana, Edwin Rijpkema, Andrei Radulescu, Kees G. W. Goossens, and
Om Prakash Gangwal. Cost-Performance Trade-Offs in Networks on Chip: A Simulation-
Based Approach. In DATE, pages 764–769, 2004.

[Raw06] Raw Architecture Workstation (RAW) research project. http://cag-www.lcs.mit.edu/raw/,
May 2006.

[RDG+04] Andrei Radulescu, John Dielissen, Kees G. W. Goossens, Edwin Rijpkema, and Paul Wielage.
An Efficient On-Chip Network Interface Offering Guaranteed Services, Shared-Memory Ab-
straction, and Flexible Network Configuration. In DATE, pages 878–883, 2004.

[RGR+03] Edwin Rijpkema, Kees G. W. Goossens, Andrei Radulescu, John Dielissen, Jef L. van Meer-
bergen, Paul Wielage, and E. Waterlander. Trade Offs in the Design of a Router with Both
Guaranteed and Best-Effort Services for Networks on Chip. In DATE, pages 10350–10355,
2003.

[RJH04] Chae-Eun Rhee, Han-You Jeong, and Soonhoi Ha. Many-To-Many Core-Switch Mapping in
2-D Mesh NoC Architectures. In ICCD ’04: Proceedings of the 2004 International Confer-
ence on Computer Design, pages 438–443, 2004.

[RSG03] V. Raghunathan, M.B. Srivastava, and R.K. Gupta. A Survey of Techniques for Energy Effi-
cient On-Chip Communication. In Design Automation Conference, pages 900–905, 2003.

[RSV97] James A. Rowson and Alberto Sangiovanni-Vincentelli. Interface-Based Design. In 34th
Design Automation Conference, 1997.

[SADB95] Charles Selvidge, Anant Agarwal, Matt Dahl, and Jonathan Babb. TIERS: Topology Indepen-
dent Pipelined Routing and Scheduling for VirtualWire Compilation. In FPGA ’95: Proceed-
ings of the 1995 ACM third International Symposium on Field-programmable Gate Arrays,
pages 25–31, 1995.

183

[SBKV05] Balasubramanian Sethuraman, Prasun Bhattacharya, Jawad Khan, and Ranga Vemuri. LiPaR:
A Light-Weight Parallel Router for FPGA-based Networks-on-Chip. In 15th Great Lakes
Symposium on VLSI (GLSVLSI’05), Chicago, IL, USA, 2005.

[SC05] Krishnan Srinivasan and Karam S. Chatha. A Technique for Low Energy Mapping and Rout-
ing in Network-on-Chip Architectures. In International Symposium on Low Power Electronics
and Design (ISLPED’05), pages 387 – 392, 2005.

[SC06a] Krishnan Srinivasan and Karam S. Chatha. A Methodology for Layout Aware Design and
Optimization of Custom Network-on-Chip Architectures. In ISQED, pages 352–357, 2006.

[SC06b] Krishnan Srinivasan and Karam S. Chatha. Layout aware design of mesh based NoC archi-
tectures. In CODES+ISSS ’06: Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis, pages 136–141, 2006.

[SCK06] Krishnan Srinivasan, Karam S. Chatha, and Goran Konjevod. Linear-Programming-Based
Techniques for Synthesis of Network-on-Chip Architectures. IEEE Transactions on Very
Large Scale Integration Systems, 14(4):407–420, 2006.

[SDN+06] Frits Steenhof, Harry Duque, Björn Nilsson, Kees Goossens, and Rafael Peset Llopis. Net-
works on Chips for High-End Consumer-Electronics TV System Architectures. In DATE ’06:
Proceedings of the conference on Design, automation and test in Europe, pages 148–153,
2006.

[Sem06] International Sematech. International Technology Roadmap for Semiconductors, 2006 Up-
date. http://public.itrs.net, 2006.

[Sha06] L. Shang. PoPNet Project. In http://www.princeton.edu/ lshang/popnet.html, 2006.

[SHSM02] F. Schurmann, S. Hohmann, J. Schemmel, and K. Meier. Towards an Artificial Neural Net-
work Framework. In NASA/DoD Conference on Evolvable Hardware, pages 266–273, 2002.

[SK04] Dongkun Shin and Jihong Kim. Power-aware Communication Optimization for Networks-
on-Chips with Voltage Scalable Links. In CODES+ISSS ’04: Proceedings of the 2nd
IEEE/ACM/IFIP International Conference on Hardware/software Codesign and System Syn-
thesis, pages 170–175, 2004.

[SKV04] Balasubramanian Sethuraman, Jawad Khan, and Ranga Vemuri. Battery-Efficient Task Execu-
tion on Portable Reconfigurable Computing Platforms. In IEEE International System-on-Chip
Conference (IEEE-SOCC 2004), pages 237–240, April 2004.

[Sli06] SlicNets. Silicon Networks System-on-Chip Project. In http://www.ece.cmu.edu/s̃ld/research/
soc.php, May 2006.

[SMCRT05] P. Schumacher, M. Mattavelli, A. Chirila-Rus, and R. Turney. A Software/Hardware Platform
For Rapid Prototyping Of Video And Multimedia Designs. In Fifth International Workshop
on System-on-Chip for Real-Time Applications, pages 30–33, 2005.

[Sod03] M.A Soderstrand. CSD multipliers for FPGA DSP applications. In International Symposium
on Circuits and Systems (ISCAS ’03), 2003.

184

[Son06] Sonics Inc. SiliconBackplaneTM III. In http://www.sonicsinc.com/sonics/products/
siliconbackplaneIII/, 2006.

[SPI06] SPIN. Scalable Programmable Integrated Network. In http://www-asim.lip6.fr/recherche/
spin/, May 2006.

[SSA04] R. Soares, I.S. Silva, and A. Azevedo. When reconfigurable architecture meets network-
on-chip. In 17th Symposium on Integrated Circuits and Systems Design (SBCCI’04), pages
216–221, 2004.

[SSM+01] Marco Sgroi, Michael Sheets, Andrew Mihal, Kurt Keutzer, Sharad Malik, Jan M. Rabaey,
and Alberto L. Sangiovanni-Vincentelli. Addressing the System-on-a-Chip Interconnect Woes
Through Communication-Based Design. In DAC, pages 667–672, 2001.

[SSS95] Stephen D. Scott, Ashok Samal, and Shared Seth. HGA: A Hardware-Based Genetic Al-
gorithm. In FPGA ’95: Proceedings of the 1995 ACM third International Symposium on
Field-programmable Gate Arrays, pages 53–59, 1995.

[ST95] Herman Schmit and Don Thomas. Implementing Hidden Markov Modelling and Fuzzy Con-
trollers in FPGAs. In FCCM ’95 : Proceedings of IEEE Symposium FPGAs for Custom
Computing Machines, pages 214–221, 1995.

[STB06] STBus Interconnect. STMicroelectronics Inc. In http://www.st.com/stonline/prodpres/
dedicate/soc/cores/stbus.htm, 2006.

[Sto83] Q. F. Stout. Mesh-Connected Computers with Broadcasting. IEEE Transactions on Comput-
ers, C-32(9):826830, September 1983.

[Str06] David Stringfellow. Rail-Signoff Analysis Ensures SoC Power Integrity. http://www.
elecdesign.com/Articles/ArticleID/11883/11883.html, Jan 19 2006. Article.

[SV06a] Balasubramanian Sethuraman and Ranga Vemuri. Multi2 Router: A Novel Multi Local Port
Router Architecture With Broadcast Facility For FPGA-Based Networks-On-Chip. In Inter-
national Conference on Field Programmable Lofic & Applications, pages 543–546, 2006.

[SV06b] Balasubramanian Sethuraman and Ranga Vemuri. optiMap: A Tool for generating efficient
NoC Architectures using Multi-Port Routers for FPGAs. In Design Automation and Test in
Europe (DATE ’06), Munich, Germany, 2006.

[SV07a] Balasubramanian Sethuraman and Ranga Vemuri. A Force-directed Approach for Fast Gen-
eration of Efficient Multi-Port NoC Architectures. In 20th International Conference on VLSI
Design + 6th International Conference on Embedded Systems, pages 419–426, Bangalore,
India, 2007.

[SV07b] Balasubramanian Sethuraman and Ranga Vemuri. Multicasting based topology generation and
core mapping for a power efficient networks-on-chip. In ISLPED ’07 : IEEE/ACM SIGDA
International Symposium on Low Power Electronics and Design, Portland, OR, USA, August
2007.

185

[SV07c] Balasubramanian Sethuraman and Ranga Vemuri. Power Variations of MultiPort Routers in
an Application-Specifi NoC Design : A Case Study. In ICCD ’07 : XXV IEEE International
Conference on Computer Design, Lake Tahoe, CA, USA, October 2007.

[Sys06] SystemC Language Specification ver 2.0. Open SystemC Initiative. In http://www.systemc.
org/, May 2006.

[THT+97] Horng-Ren Tsai, Shi-Jinn Horng, Shun-Shan Tsai, Tzong-Wann Kao, and Shung-Shing Lee.
Solving An Algebraic Path Problem and Some Related Graph Problems on a Hyper-Bus
Broadcast Network. 8(12):1226–1235, December 1997.

[TLV+04] T. Theocharides, G. Link, N. Vijaykrishnan, M.J. Invin, and V. Srikantam. A Generic Recon-
figurable Neural Network Architecture as a Network on Chip. In IEEE International SOC
Conference, pages 191–194, 2004.

[TMG+06] Leonel Tedesco, Aline Mello, Leonardo Giacomet, Ney Calazans, and Fernando Moraes. Ap-
plication Driven Traffic Modeling for NoCs. In SBCCI ’06: Proceedings of the 19th annual
symposium on Integrated circuits and systems design, pages 62–67, 2006.

[TST03] K. Tatas, D. Soudris Siozios, and A. Thanailakis. Power-Efficient Implementations of Multi-
media Applications on Reconfigurable Platforms. In Field-Programmable Logic and Appli-
cations, volume 2778, pages 1032–1035. Springer-Verlag GmbH, 2003.

[Var06] A. Varga. OMNET++ User Manual Version 2.3. In http://www.omnetpp.org/, May 2006.

[Vas04] Vass Soteriou and Li-Shiuan Peh. Design space Exploration of Power-Aware On/Off Inter-
connection Networks. In ICCD ’04: Proceedings of International Conference on Computer
Design, Oct 2004.

[VBR+] Jean Vuillemin, Patrice Bertin, Didier Roncin, Mark Shand, Hervé Touati, and Philippe Bou-
card. Programmable Active Memories: Reconfigurable Systems Come of Age. IEEE Trans-
actions on VLSI Systems, 4.

[VDC03] Bart Vermeulen, John Dielissen, and Calin Ciordas. Bringing Communication Networks on
a Chip: Test and Verification Implications. Communications Magazine, IEEE, 41 (9):74–81,
September. 2003.

[VM02] Girish Varatkar and Radu Marculescu. Traffic Analysis For On-Chip Networks Design Of
Multimedia Applications. In DAC ’02: Proceedings of the 39th conference on Design au-
tomation, pages 795–800, 2002.

[VN06a] Mário Véstias and Horácio Neto. Area and Performance Optimization of a Generic Network-
On-Chip Architecture. In SBCCI ’06: Proceedings of the 19th annual symposium on Inte-
grated circuits and systems design, pages 68–73, 2006.

[VN06b] Mário Véstias and Horácio Neto. Co-Synthesis of a Configurable SoC Platform Based on a
Network on Chip Architecture. In ASP-DAC ’06: Proceedings of the 2006 conference on Asia
South Pacific design automation, pages 48–53, 2006.

186

[VVP+02] M Vaccharajini, N. Vachharajani, D.A. Penry, J.A. Blome, and D.I. August. Micro-
Architectural Exploration with Liberty. In Proceedings of International Symposium on Mi-
croarchitecture, pages 271–282, November 2002.

[Whe06] D. Whelihan. The CMU NOCSim Simulator. In http://www.ece.cmu.edu/ djw2/NOCSim/,
2006.

[Wik06] Wikipedia. System-on-Chip. In http://en.wikipedia.org/wiki/System-on-a-chip, 2006.

[wis06] Wishbone system-on-chip (soc) interconnect architecture. In http://www.opencores.org/
projects.cgi/web/wishbone/wishbone, 2006.

[WKL+04] Andreas Wieferink, Tim Kogel, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Gunnar Braun,
and Achim Nohl. A System Level Processor/Communication Co-Exploration Methodology
for Multi-Processor System-on-Chip Platforms. In Design, Automation and Test in Europe
Conference and Exhibition, volume 2, pages 1256–1261, 2004.

[WPM05] Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. A Technology-Aware and Energy-
Oriented Topology Exploration for On-Chip Networks. In DATE ’05: Proceedings of the
conference on Design, Automation and Test in Europe, pages 1238–1243, Washington, DC,
USA, 2005.

[WZPM02] H. Wang, X. Zhu, L. Peh, and S. Malik. ORION: A Power-Performance Simulator for In-
terconnection Networks. In Proceedings of International Symposium on Microarchitecture,
pages 294–305, November 2002.

[Xil05] Xilinx Inc. logiCORE. In http://www.xilinx.com/ipcenter/, 2005.

[Xil06a] Xilinx Inc. http://www.xilinx.com, 2006.

[Xil06b] Xilinx Inc. Virtex IV Platform FPGA User Guide. In http://direct.xilinx.com/bvdocs/
userguides/ug070.pdf, 2006.

[Xil07a] Xilinx Inc. Virtex-5 Data Sheet: DC and Switching Characteristics. In http://direct.xilinx.
com/bvdocs/userguides/ug100.pdf, 2007.

[Xil07b] Xilinx Inc. Virtex V Platform FPGA User Guide. In http://direct.xilinx.com/bvdocs/
userguides/ug190.pdf, 2007.

[XWHC06] Jiang Xu, Wayne Wolf, Joerg Henkel, and Srimat Chakradhar. A Design Methodology for
Application-Specific Networks-on-Chip. Trans. on Embedded Computing Sys., 5(2):263–280,
2006.

[YBK99] Joon-Seo Yim, Seong-Ok Bae, and Chong-Min Kyung. A Floorplan-Based Planning Method-
ology for Power and Clock Distribution in ASICs. In DAC ’99: Proceedings of the 36th
ACM/IEEE conference on Design automation, pages 766–771, 1999.

[YMB02] Terry Tao Ye, Giovanni De Micheli, and Luca Benini. Analysis of Power Consumption on
Switch Fabrics in Network Routers. In DAC ’02: Proceedings of the 39th conference on
Design automation, pages 524–529, 2002.

187

[YMB04] Terry Tao Ye, Giovanni De Micheli, and Luca Benini. Packetization and Routing Analysis of
On-Chip Multiprocessor Networks. JSA, 50(2-3):81–104, Feb 2004.

[YN01] M. Yamada and A. Nishihara. High-Speed FIR Digital Filter with CSD Coefficients Imple-
mented on FPGA. In Asia and South Pacific Design Automation Conference, 2001.

[You02] Simon Young. Neglecting IR Drop In Nanometer Designs Leads To Silicon Failure.
http://www.elecdesign.com/Articles/ArticleID/2594/2594.html, Aug 5 2002. Article.

[YP03] Fan Yang and M. Paindavoine. Implementation of an RBF Neural Network on Embedded
Systems: Real-Time Face Tracking and Identity Verification. Neural Networks, IEEE Trans-
actions on, 14(5):1162–1175, September 2003.

[ZHM07] Nicholas H. Zamora, Xiaoping Hu, and Radu Marculescu. System-Level Performance/Power
Analysis for Platform-Based Design of Multimedia Applications. ACM Transactions Design
Automation of Electronic Systems, 12(1):2, 2007.

[Zhu05] Xinping Zhu. Sofware Tools for Modeling and Simulation of On-Chip Communication Archi-
tectures. PhD thesis, Princeton University, Princeton, New Jersey, United States, June 2005.

[ZKS04] C.A. Zerferino, M.E. Kreutz, and A.A. Susin. RASoC: A Router Soft-Core for Networks-on-
Chip. In DATE’2004-Designer’s Forum. IEEE CS Press, 2004.

[ZM04] Xinping Zhu and Sharad Malik. Using A Communication Architecture Specification in an
Application-Driven Retargetable Prototyping Platform for Multiprocessing. In Proceedings
of Design Automation and Test in Europe (DATE 04), volume 2, pages 1244–1249, February
2004.

[ZS03] C.A. Zerferino and A.A. Susin. SoCIN: A Parametric and Scalable Network on Chip. In
SBCCI’2003, pages 169–174. IEEE CS Press, 2003.

[ZSS04] C.A. Zerferino, F.G.M.E. Santo, and A.A. Susin. ParIS: A Parametric and Scalable Network
on Chip. In SBCCI’2004, 2004.

188

Appendix A

Demonstration of the Xilinx &
Synopsys-Cadence Flow

In this appendix, we present a detailed discussion of the flows mentioned in Chapter
10.3. In both the flows, the discussion presented in this chapter is based on the reference
design representing a five port Multi2 Router (in both the flows). Note that this appendix
is specific to Section 10.3 and changes may be necessary (Xilinx flow in particular), when
operating with the designs from the other Chapters 3, 4, 5, 6, 8, & 9.

A.1 Xilinx Flow

Initially, a project is created in the Xilinx Integrated Synthesis Environment (ISE),
populated with all the VHDL files in the design hierarchy. In the project properties window,
the target device is chosen as Xilinx Virtex II Pro FPGA (XC2VP30, ff896package). At this
point, the black box references to the synchronous FIFO (using BRAM/DRAMs) must be
resolved by generating FIFO definitions using FIFO Generator v2.3 (year:2006), which is
one of the many core generation utility in the logiCORE tool of Xilinx ISE. Any constraints
for synthesis including the placement and the pin constraints have to be specified in the User
Constraint File (.ucf), that is available as a design utility in the Process menu/window. Next,
the design is compiled and checked for errors, followed a behavioral simulation (before
mapping and Place-And-Route steps). In this work, we make use of the Synplicity Synplify
Pro for RTL synthesis in place of the standard synthesis engine supported by the Xilinx
ISE. Next, we invoke the scripts for Mapping and Placement from the process window. It

189

Generate VHDL Models

User
Constraint File

(.ucf)
Performance,

Floorplan,
Placement and

I/O

Max Port Count Target FPGA

Place-And-Route (PAR)

XPower

Design File (.ncd)
Physical Constraint

File (.pcf) Modelsim Simulation

PAR
Simulation

Model
Testbench

Activity - Value
Change Dump

(.vcd)

XML Settings file
(Temperature,
Power analysis
mode,…)

Power Estimates
Junction Temperature

Figure A.1: Xilinx FPGA flow

is necessary to set the option to generate the Post PAR simulation model, before the routing
script is initiated. This is the technology specific PAR model which can be simulate using
the Modelsim simulator using a testbench and the activity information of various nodes and
wires can be captured as a Value Change Dump (VCD) file.

As explained in Chapter 10.3, randomly-generated but a fixed set of data is switched
from each of the nine source ports(4 directional + 5 logic ports) available. In other words,
except for the header flit that identifies the destination port, the payload of the packets
switched from different source ports to the rest of the destination ports remains same. Note,
this step covers all possible combinations in terms of the destination port(s) choice, thereby,
exploiting the multi cast capabilities of the router. In order to achieve this, when generating
a (fixed) set of vectors, the perl script is hardcoded with values (in the port str variable),
representing the header flit that is necessary to effect a particular transfer to one or more
destination ports (covering all combinations in a multi cast type of transfer) as shown below.

#!/usr/local/bin/perl
#assuming the current router coordinate is 2,2

@vec = (5, 10, 15, 20, 25, 50, 100, 250, 500, 1000);
%port str = (5

’n’ => "1111111111111011",
’s’ => "1111111111111001",
’e’ => "1111111111111110",
’w’ => "1111111111110110",
’l-0’ => "1111111111101010", 10

190

’l-1’ => "1111111111011010",
’l-2’ => "1111111110111010",
’l-3’ => "1111111101111010",
’l-4’ => "1111111011111010",
’l-01’ => "1111111111001010", 15

’l-02’ => "1111111110101010",
’l-03’ => "1111111101101010",
’l-04’ => "1111111011101010",
’l-12’ => "1111111110011010",
’l-13’ => "1111111101011010", 20

’l-14’ => "1111111011011010",
’l-23’ => "1111111100111010",
’l-24’ => "1111111010111010",
’l-34’ => "1111111001111010",
’l-012’ => "1111111110001010", 25

’l-013’ => "1111111101001010",
’l-014’ => "1111111011001010",
’l-023’ => "1111111100101010",
’l-024’ => "1111111010101010",
’l-034’ => "1111111001101010", 30

’l-123’ => "1111111100011010",
’l-124’ => "1111111010011010",
’l-134’ => "1111111001011010",
’l-234’ => "1111111000111010",
’l-0123’ => "1111111100001010", 35

’l-0124’ => "1111111010001010",
’l-0134’ => "1111111001001010",
’l-0234’ => "1111111000101010",
’l-1234’ => "1111111000011010"

); 40

foreach $co (keys (%port str))
{

print $co," => ", $port str{$co}, "\n";
}

srand; 45

foreach $c2 (keys (%port str))
$fi`e name str = "p1-$c2";
foreach $c3 (@vec)
{

$t name ="$file_name_str-$c3.vec"; 50

open DATA, ">$t_name" or die "Cannot open file: $t_name";
for($c4=0; $c4<$c3; $c4++)
{

$rand str =’’;
print DATA "$port_str{$c2}\n"; 55

191

for($j=0; $j<4; $j++)
{

$rand str =’’;
for($i=0; $i<16; $i++) 60

{

$randno = int(rand(2));
$rand str .= "$randno";

} #i loop
print DATA "$rand_str\n"; 65

}

} #c4
close (DATA);
} #c3

} #c2 70

Using the different vector sets generated using the above perl script, the power
consumption is estimated for various cases and the iterative process involved in the average
power analysis of various cases is explained as follows:

After the Place-And-Route phase of synthesis, we simulate the Placed-And-Routed
(PAR) router simulation model using ModelSim 6.3i [Men07] and generate the Value
Change Dump (VCD) file. During the simulation, the switching activity of all nets and
logic in the PAR design is stored at every clock cycle in the VCD file. Next, XPower tool
of the Xilinx ISE 6.3i [Xil06a] is used to obtain the power estimate values of the design, for
the vectors that were provided as input for the current simulation run. XPower takes in the
PAR design file (.ncd), the physical constraint file (.pcf), the user settings file (.xml) and the
VCD file (containing the activity data), and provides an estimate of various power param-
eters. For experimentation purposes, the temperatures including the ambient and junction
temperatures are set at 25 degree Celsius during all simulation runs.

The above iterative process is automated using a perl script (given below). At every
iteration, the script chooses each of the different vector sets that was generated earlier and
simulates the Post Placed-And-Routed simulation model that was synthesized earlier.

#!/usr/local/bin/perl
#assuming the current router coordinate is 2,2

@vec = (5, 10, 15, 20, 25, 50, 100, 250, 500, 1000);
@vec1 = (5, 10, 15, 20, 25, 50, 100); 5

%src str = (

192

’n’ => "file N_IN: TEXT open read_mode is \"../vec/",
’e’ => "file E_IN: TEXT open read_mode is \"../vec/",
’w’ => "file W_IN: TEXT open read_mode is \"../vec/", 10

’s’ => "file S_IN: TEXT open read_mode is \"../vec/",
’l0’ => "file L0_IN: TEXT open read_mode is \"../vec/",
’l1’ => "file L1_IN: TEXT open read_mode is \"../vec/",
’l2’ => "file L2_IN: TEXT open read_mode is \"../vec/",
’l3’ => "file L3_IN: TEXT open read_mode is \"../vec/", 15

’l4’ => "file L4_IN: TEXT open read_mode is \"../vec/"

);

$ttt="./tbtemplate.vhd";
20

open TBTEMPLATE, "$ttt" or die "Cannot open file : tbtemplate.vhd";
open DOTEMPLATE, "br5do-template.fdo" or

die "Cannot open file : br5do-template.fdo";
@dodata = <DOTEMPLATE>;
@tbdata = <TBTEMPLATE>; 25

close TBTEMPLATE;
close DOTEMPLATE;
$cnt =0;
$`inecnt=@tbdata;
open RPFILE, ">>RandomPowerResults.txt" or 30

die "Cannot open file: RandomPowerResults.txt";
foreach $c1 (@vec)
{

foreach $c2 (keys (%src str))
{ 35

open TBFILE,">LWRL4_testb.vhd" or
die "Cannot open file: LWRL4_testb.vhd";

$cnt = 0;
while ($cnt <= $`inecnt)
{ 40

if ($tbdata[$cnt] !˜ $src str{$c2})
{

print TBFILE $tbdata[$cnt];
}

else 45

{

$prnt str = "$src_str{$c2}"."r-$c2-$c1.vec\"\;\n";
$pwrrpt str = "$c1 $c2 R ";
print TBFILE "$prnt_str";

} 50

$cnt++;
}#end of while cnt <= linecnt
close TBFILE;

193

Call the Modelsim and Xpwr 55

open DOFILE, ">br5do.fdo" or die "Cannot open file: br5do.fdo";
print DOFILE "set i $c1;\n";
$cnt2 = 1;
$`inecnt2 = @dodata;

60

while($cnt2 <= $`inecnt2)
{

print DOFILE "$dodata[$cnt2]";
$cnt2++;

}#end of while cnt2 <= linecnt2 65

close DOFILE;

#print “Calling System(\”sh x.bat\“)\n”;
system("sh simulate.sh");

70

Read in the power report and print data into the PowerResults file
open PWRFILE, "lwrouter_pwr_rpt.pwr" or
die "Cannot open file: lwrouter_pwr_rpt.pwr";

push(@select str, $pwrrpt str);
while(<PWRFILE>) 75

{

@comp str=split;
if ($. == 19)
{

push(@select str, $comp str[4]); 80

push(@select str, ($comp str[4]/$c1));
}

elsif ($. == 21)
{

push(@select str, $comp str[3]); 85

}

elsif ($. == 39)
{

push(@select str, $comp str[5]);
} 90

elsif ($. == 40)
{

push(@select str, $comp str[2]);
}

elsif ($. == 41) 95

{

push(@select str, $comp str[2]);
}

elsif ($. == 42)

194

{ 100

push(@select str, $comp str[2]);
}

elsif ($. == 46)
{

push(@select str, $comp str[3]); 105

}

elsif ($. == 47)
{

push(@select str, $comp str[2]);
} 110

elsif ($. == 48)
{

push(@select str, $comp str[2]);
}

elsif ($. == 49) 115

{

push(@select str, $comp str[2]);
}

elsif ($. == 51)
{ 120

push(@select str, $comp str[2]);
}

elsif ($. == 52)
{

push(@select str, $comp str[2]); 125

}

elsif ($. == 53) { last;}
}#end of while <pwrfile>

$pwr prnt str = join(" ",@select str); 130

$#select str=−1;#reset the array
#Total Pwr, power/packet, vccint 1.50v, package power limit 25C, 250LFM, 500LFM, 750LFM,
Estimated Junction Temp, 250LFM, 500LFM, 750LFM, Case Temp, Theta J-A
print RPFILE "$pwr_prnt_str\n";
$pwr prnt str=""; 135

close PWRFILE;
}

}

close RPFILE;

Broadly, the above perl script carries out three major steps during every iteration as follows:

(1) Testbench Generation: The template of the testbench in stored in the tbtemplate.vhd
file. Depending on the source port and the type of transfer (one of the many combinations

195

possible in a multi cast) in the current iteration, the vector set of the different ports are
modified. If a particular port is not switching any packets, a black vector file is attached to
that port.

(2) Design Simulation & Power Estimation: Next in line is the process of simulation
and power estimation. Before all, the actual simulation time for the current simulation must
be fixed, which in turn is dictated by the number of packets that are switched in the current
iteration. Hence, the simulation time is modified inside the TCL file (br5do.fdo), which
will be used when invoking the Modelsim simulator. The template of the br5do.fdo TCL
file is given below,

set i 1000;
set a 400;
set b [expr $a + ($i*400)];
set c [expr $b+50];
puts stdout "c value is $c"; 5

vlib work
vcom −93 −explicit LWRL4 testb.vhd
vsim −quiet +no tchk msg −c −lib work −t 1ps
−sdfmax "/UUT=netgen/par/LWRouter_timesim.sdf" lwrouter lwrl4 test vhd tb

vcd file lwrouter.vcd 10

vcd add −r /lwrouter LWRL4 test vhd tb/uut/*
#report simulator control
run ${c}ns
vcd off lwrouter.vcd
echo "The time now is $now ps." 15

#report simulator state
quit −f

Here, the variable $i is set a value equal to the number of packets switched in
the current iteration. Except for this modification, the rest of the TCL code remains same
across all the iterations. Note that the values represented by the variables $a and $c rep-
resent, respectively, the fixed time overhead present during the start and end of the simu-
lation. At the end of simulation, the Value Change Dump (VCD) file having the activity
information is created, which is fed to the XPower tool of Xilinx ISE, along with the PAR
design file. At the end, the power estimates from XPower tool are available in the file
lwrouter pwr rpt.pwr.

The above two steps involving PAR design simulation followed by power estima-
tion are performed using the shell script file (simulate.sh in the perl code presented
earlier) as follows,

196

/opt/CAD/MentorGraphics/Modelsim/bin/vsim −c −do br5do.fdo
xpwr LWRouter.ncd LWRlwrouter.pcf −v −a −s lwrouter.vcd −o lwrouter pwr rpt.pwr

(3) Storing the Essential Power Values: Next, the power estimate values present in the
lwrouter pwr rpt.pwr file are parsed and the required values are appended to the
PowerResults.dat file, as shown in the perl script.

At the end of all iterations (controlled by the perl script), the power estimates for
different cases are available in the PowerResults.dat file, which is used for the anal-
ysis present in Section 10.4.

A.2 Synopsys-Cadence Flow

A vector set is used to observe the power variations between various ports in the
Xilinx FPGA based flow. Though the power estimation tool (XPower) of the Xilinx ISE
synthesis platform is able to report the average and peak powers, it is not comprehensive
in terms of the temperature and IR drop analysis. Many of the device level details are
abstracted away and the user has to remain contended with the summary reports and files
generated by Xilinx ISE. Due to limited leeway available for an extensive IR drop analysis,
the router designs are ported into an ASIC flow, making use of the Synopsys and Cadence
synthesis tool set. In the process of porting, the only required change is to replace the Xilinx
BRAM based FIFO (the buffer elements that store the packets in an NoC) references and
association with a user defined FIFO. This is because the Synchronous FIFO implementa-
tion using BRAM is only available as a black-box implementation using Xilinx LogiCORE
tool [Xil05] and the corresponding reference is replaced with a new RTL implementation
of the FIFO. Figure 10.2 shows the complete ASIC design flow for layout synthesis.

A.2.1 Logic Synthesis : Synopsys Design Compiler

The router designs available as VHDL source files are input to the industry-standard
logic synthesis tool from Synopsys (Design Compiler). TSMC 0.18µ library available
from OSU (formerly from IIT) [osu07] is used for technology mapping. Broadly, the steps
involved are listed as follows:

Library Path Specification: Paths for the Target Library (having the technology logic
gates to be used during logic synthesis), Link Library (similar to target library, but,

197

Max Port Count

Synopsys Design Compiler

.sdc .db, .v, .vhdl

.db, .saif

.tlf, .lef

Clock Tree Insertion

Detailed Routing

Timing
AnalysisOptimization

-ve slack

Timing
AnalysisOptimization

-ve slack

Timing
AnalysisOptimization

-ve slack

User Constraints
Clock, Max Delay,

Max Fanout,
Operating

Conditions,
Wireload Model

OSU / IIT
TSMC 0.18µ
.db, .vhdl, .v,
.saif, .tlf, lef

Generate VHDL
Models

Floorplan / Powerplanning
Special Route (Sroute)

Timing-driven Placement

GenLib
Phase

Fire & Ice RC
Extraction

Filler Cell Insertion
Violation Checks

Delay Calculation

.spef, .cap

Statistical Power
Analysis

.sdf
VoltageStorm
Rail Analysis

Net Toggle
Probability,
Clock Rate,

Pad Location
Files Instance

power

bias voltage,
voltage limit

Average power reports EM & IR drop analysis

IceCaps
technology
File (.tch)

IceCaps
technology

file (.tch), .lef,
lefdef.layermap

Cell binary-view
(timing &

power-grid)
(.cl file)

Cadence
SoC Encounter

Figure A.2: Synopsys-Cadence Flow

used only for reference to obtain the information about the logic cells in the syn-
thesis technology library and not for mapping) and Symbol Library (optional library
required for symbol (visual) specification - needed when used with Design Ana-
lyzer). In this work, the library paths correspond to the TSMC 0.18µ library available
from OSU (formerly from IIT) [osu07] and the DesignWare components of generic
GTECH library available from Synopsys.

Analyze, Elaboration, Link & Uniquify Phases: Each of the VHDL design files must be
analyzed and elaborated. Analyze command checks the design for syntax errors and
performs RTL translation before building the generic logic for the design (GTECH

198

components). Also, the analyze command stores the result of translation as an inter-
mediate design library, which can be used later without the need to be analyzed again.
During elaboration, the generic parameters (if any) are passed down the hierarchy
and multiple references are created, in terms of the generic technology independent
DesignWare components from GTECH library. Alternately, the read command per-
forms the combined operations of analyze and elaborate commands, but, does not
store the analyzed results. Also, parameterized designs (generic valued) statements
need to be elaborated, which is not possible using the read command.

Next, the intermediate representation is linked and uniquified (resolve multiple in-
stances of a block and create unique definition and representation of each instance of
a block, allowing individual and independent optimization). At the end of this step, a
RTL net list in terms of technology independent generic components (from GTECH
library) is available.

Constraints & Operating Conditions A clock must to be created with the target operat-
ing frequency. This will provide the constraints required for the maximum register-
to-register delay, based on which there can be a positive or a negative slack. Global
nets such as clock and reset must be attributed as don’t touch, to prevent the Design
Compiler from optimizing them and the resultant complications. The timing con-
straints including the skew, rise/fall times and slew rate, fan out constraints, false
path specifications must be included at this step. Fault coverage, if necessary, can be
specified, subject to various parameters that need must be critical (time/area/power).

In the Static Timing Analysis, the slack calculation is based on the .LIB file from
the target library. The Synopsys .LIB technology library has the Wire-load models ,
operating conditions along with scaling k-factors for different delay components (to
estimate the delay number based on the effects of temperature, process, and voltage),
and different delay models (eg., piece-wise linear, non-linear, cmos2, etc.,). Note that
the actual delay estimation is based on the set of parameters including the pin (name
& direction), functional description (combinational/ sequential), pin capacitance &
drive capabilities, pin-to-pin timing and area. Most importantly, the delay is greatly
affected by the input slew and the output load. In addition, operating conditions
including the supply voltage and temperature are specified.

Optimization Constraints & Logic Synthesis: With regard to the optimization constraints,
we can turn on the other optimization options like flattening of the design (by default
false) and structuring of the design (by default true). Flattening is the process of

199

converting the multi-level logic functions into a two-level boolean equations, remov-
ing all intermediate variable and parenthesis. This optimization is recommended for
unstructured design with random logic and results in a fewer and more balanced
logic levels, and may help in the avoidance of false paths. Structuring involves
modification of the boolean expressions by factoring and representing the factored
expressions using intermediate variables. Structuring can be done for either tim-
ing (default) or boolean optimization and may sometimes result in increased area.
Next, the design is compiled at specified effort levels, with varied optimization met-
ric (time/area/power).

In addition, the most useful optimization is the process of ungrouping, wherein the
hierarchy of the design is smashed. This allows the possibility of cross boundary
logic optimization and may result in better synthesized logic net list compared to the
synthesis that is done in isolation with respect to blocks in the hierarchy. It should be
noted that removal hierarchy may result in abominable increase in runtime, due the
need to optimize the entire design for the constraints specified.

Netlist Save & Report Generation: After the slack is met and the design is optimized,
the design can be saved in multiple format including the Synopsys proprietary .DB
format, VHDL or verilog netlist. The timing constraints of various ports are available
as .SDC file, which along with the synthesized technology-mapped netlist form the
input for the next phase involving physical synthesis. In addition, different reports
are available in varying levels of detail.

Note that there exists incompatibility with regard to the SDC file format produced
by Synopsys Design Compiler and the input for Cadence SoC Encounter. The differences
exist mainly in the syntax for the ports having a width greater than one (bus-like). Fol-
lowing is the modified SDC file (five port Multi2 router) that is passed into Cadence SoC
Encounter along with the technology-mapped gate-level net list.

###

Created by Design Compiler write sdc on Thu Dec 21 09:23:12 2006

5

set sdc version 1.4

create clock −name "clock" −period 15 −waveform {0 7.5} [get ports {CLK}]
set clock uncertainty 0.15 [get ports {CLK}]

200

set max fanout 10 [current design] 10

set wire load mode "top"

set max fanout 10 [get ports {CLK}]
set max fanout 10 [get ports {RST}]
set max fanout 10 [get ports {Rin L0(15)}]
set max fanout 10 [get ports {Rin L0(14)}] 15

set max fanout 10 [get ports {Rin L0(13)}]
set max fanout 10 [get ports {Rin L0(12)}]
set max fanout 10 [get ports {Rin L0(11)}]
set max fanout 10 [get ports {Rin L0(10)}]
set max fanout 10 [get ports {Rin L0(9)}] 20

set max fanout 10 [get ports {Rin L0(8)}]
set max fanout 10 [get ports {Rin L0(7)}]
set max fanout 10 [get ports {Rin L0(6)}]
set max fanout 10 [get ports {Rin L0(5)}]
set max fanout 10 [get ports {Rin L0(4)}] 25

set max fanout 10 [get ports {Rin L0(3)}]
set max fanout 10 [get ports {Rin L0(2)}]
set max fanout 10 [get ports {Rin L0(1)}]
set max fanout 10 [get ports {Rin L0(0)}]
set max fanout 10 [get ports {Rin L4(15)}] 30

set max fanout 10 [get ports {Rin L4(14)}]
set max fanout 10 [get ports {Rin L4(13)}]
set max fanout 10 [get ports {Rin L4(12)}]
set max fanout 10 [get ports {Rin L4(11)}]
set max fanout 10 [get ports {Rin L4(10)}] 35

set max fanout 10 [get ports {Rin L4(9)}]
set max fanout 10 [get ports {Rin L4(8)}]
set max fanout 10 [get ports {Rin L4(7)}]
set max fanout 10 [get ports {Rin L4(6)}]
set max fanout 10 [get ports {Rin L4(5)}] 40

set max fanout 10 [get ports {Rin L4(4)}]
set max fanout 10 [get ports {Rin L4(3)}]
set max fanout 10 [get ports {Rin L4(2)}]
set max fanout 10 [get ports {Rin L4(1)}]
set max fanout 10 [get ports {Rin L4(0)}] 45

set max fanout 10 [get ports {Rin N(15)}]
set max fanout 10 [get ports {Rin N(14)}]
set max fanout 10 [get ports {Rin N(13)}]
set max fanout 10 [get ports {Rin N(12)}]
set max fanout 10 [get ports {Rin N(11)}] 50

set max fanout 10 [get ports {Rin N(10)}]
set max fanout 10 [get ports {Rin N(9)}]
set max fanout 10 [get ports {Rin N(8)}]
set max fanout 10 [get ports {Rin N(7)}]
set max fanout 10 [get ports {Rin N(6)}] 55

201

set max fanout 10 [get ports {Rin N(5)}]
set max fanout 10 [get ports {Rin N(4)}]
set max fanout 10 [get ports {Rin N(3)}]
set max fanout 10 [get ports {Rin N(2)}]
set max fanout 10 [get ports {Rin N(1)}] 60

set max fanout 10 [get ports {Rin N(0)}]
set max fanout 10 [get ports {Rin L1(15)}]
set max fanout 10 [get ports {Rin L1(14)}]
set max fanout 10 [get ports {Rin L1(13)}]
set max fanout 10 [get ports {Rin L1(12)}] 65

set max fanout 10 [get ports {Rin L1(11)}]
set max fanout 10 [get ports {Rin L1(10)}]
set max fanout 10 [get ports {Rin L1(9)}]
set max fanout 10 [get ports {Rin L1(8)}]
set max fanout 10 [get ports {Rin L1(7)}] 70

set max fanout 10 [get ports {Rin L1(6)}]
set max fanout 10 [get ports {Rin L1(5)}]
set max fanout 10 [get ports {Rin L1(4)}]
set max fanout 10 [get ports {Rin L1(3)}]
set max fanout 10 [get ports {Rin L1(2)}] 75

set max fanout 10 [get ports {Rin L1(1)}]
set max fanout 10 [get ports {Rin L1(0)}]
set max fanout 10 [get ports {Rin E(15)}]
set max fanout 10 [get ports {Rin E(14)}]
set max fanout 10 [get ports {Rin E(13)}] 80

set max fanout 10 [get ports {Rin E(12)}]
set max fanout 10 [get ports {Rin E(11)}]
set max fanout 10 [get ports {Rin E(10)}]
set max fanout 10 [get ports {Rin E(9)}]
set max fanout 10 [get ports {Rin E(8)}] 85

set max fanout 10 [get ports {Rin E(7)}]
set max fanout 10 [get ports {Rin E(6)}]
set max fanout 10 [get ports {Rin E(5)}]
set max fanout 10 [get ports {Rin E(4)}]
set max fanout 10 [get ports {Rin E(3)}] 90

set max fanout 10 [get ports {Rin E(2)}]
set max fanout 10 [get ports {Rin E(1)}]
set max fanout 10 [get ports {Rin E(0)}]
set max fanout 10 [get ports {Rin L2(15)}]
set max fanout 10 [get ports {Rin L2(14)}] 95

set max fanout 10 [get ports {Rin L2(13)}]
set max fanout 10 [get ports {Rin L2(12)}]
set max fanout 10 [get ports {Rin L2(11)}]
set max fanout 10 [get ports {Rin L2(10)}]
set max fanout 10 [get ports {Rin L2(9)}] 100

set max fanout 10 [get ports {Rin L2(8)}]

202

set max fanout 10 [get ports {Rin L2(7)}]
set max fanout 10 [get ports {Rin L2(6)}]
set max fanout 10 [get ports {Rin L2(5)}]
set max fanout 10 [get ports {Rin L2(4)}] 105

set max fanout 10 [get ports {Rin L2(3)}]
set max fanout 10 [get ports {Rin L2(2)}]
set max fanout 10 [get ports {Rin L2(1)}]
set max fanout 10 [get ports {Rin L2(0)}]
set max fanout 10 [get ports {Rin S(15)}] 110

set max fanout 10 [get ports {Rin S(14)}]
set max fanout 10 [get ports {Rin S(13)}]
set max fanout 10 [get ports {Rin S(12)}]
set max fanout 10 [get ports {Rin S(11)}]
set max fanout 10 [get ports {Rin S(10)}] 115

set max fanout 10 [get ports {Rin S(9)}]
set max fanout 10 [get ports {Rin S(8)}]
set max fanout 10 [get ports {Rin S(7)}]
set max fanout 10 [get ports {Rin S(6)}]
set max fanout 10 [get ports {Rin S(5)}] 120

set max fanout 10 [get ports {Rin S(4)}]
set max fanout 10 [get ports {Rin S(3)}]
set max fanout 10 [get ports {Rin S(2)}]
set max fanout 10 [get ports {Rin S(1)}]
set max fanout 10 [get ports {Rin S(0)}] 125

set max fanout 10 [get ports {Rin L3(15)}]
set max fanout 10 [get ports {Rin L3(14)}]
set max fanout 10 [get ports {Rin L3(13)}]
set max fanout 10 [get ports {Rin L3(12)}]
set max fanout 10 [get ports {Rin L3(11)}] 130

set max fanout 10 [get ports {Rin L3(10)}]
set max fanout 10 [get ports {Rin L3(9)}]
set max fanout 10 [get ports {Rin L3(8)}]
set max fanout 10 [get ports {Rin L3(7)}]
set max fanout 10 [get ports {Rin L3(6)}] 135

set max fanout 10 [get ports {Rin L3(5)}]
set max fanout 10 [get ports {Rin L3(4)}]
set max fanout 10 [get ports {Rin L3(3)}]
set max fanout 10 [get ports {Rin L3(2)}]
set max fanout 10 [get ports {Rin L3(1)}] 140

set max fanout 10 [get ports {Rin L3(0)}]
set max fanout 10 [get ports {Rin W(15)}]
set max fanout 10 [get ports {Rin W(14)}]
set max fanout 10 [get ports {Rin W(13)}]
set max fanout 10 [get ports {Rin W(12)}] 145

set max fanout 10 [get ports {Rin W(11)}]
set max fanout 10 [get ports {Rin W(10)}]

203

set max fanout 10 [get ports {Rin W(9)}]
set max fanout 10 [get ports {Rin W(8)}]
set max fanout 10 [get ports {Rin W(7)}] 150

set max fanout 10 [get ports {Rin W(6)}]
set max fanout 10 [get ports {Rin W(5)}]
set max fanout 10 [get ports {Rin W(4)}]
set max fanout 10 [get ports {Rin W(3)}]
set max fanout 10 [get ports {Rin W(2)}] 155

set max fanout 10 [get ports {Rin W(1)}]
set max fanout 10 [get ports {Rin W(0)}]
set max fanout 10 [get ports {Req i L0}]
set max fanout 10 [get ports {Req i L4}]
set max fanout 10 [get ports {Req i N}] 160

set max fanout 10 [get ports {Req i L1}]
set max fanout 10 [get ports {Req i E}]
set max fanout 10 [get ports {Req i L2}]
set max fanout 10 [get ports {Req i S}]
set max fanout 10 [get ports {Req i L3}] 165

set max fanout 10 [get ports {Req i W}]
set max fanout 10 [get ports {Ack o L0}]
set max fanout 10 [get ports {Ack o L4}]
set max fanout 10 [get ports {Ack o N}]
set max fanout 10 [get ports {Ack o L1}] 170

set max fanout 10 [get ports {Ack o E}]
set max fanout 10 [get ports {Ack o L2}]
set max fanout 10 [get ports {Ack o S}]
set max fanout 10 [get ports {Ack o L3}]
set max fanout 10 [get ports {Ack o W}] 175

set max fanout 10 [get ports {XR in(1)}]
set max fanout 10 [get ports {XR in(0)}]
set max fanout 10 [get ports {YR in(1)}]
set max fanout 10 [get ports {YR in(0)}]
set max fanout 10 [get ports {Ld reg}] 180

A.2.2 Physical Synthesis : Cadence SoC Encounter

In order to do Physical Synthesis for performing Power & IR analysis, we port
technology-mapped gate-level netlist along with the .SDC into Cadence SoC Encounter. In
addition, the timing library (.tlf) and LEF (Library Exchange Format) files of the standard
cells from IIT TSMC 0.18µ library are also input to SoC Encounter.

Encounter Configuration Setup: Initially, the configuration file (encounter.conf) must
edited to have the path to the cell library properly set, wherein the paths to the Tim-

204

ing Library File (.tlf) and the LEF (Library Exchange Format) cell library are set. In
this work, the path is set to the TLF and LEF of TSMC 0.18 library available from
OSU (formerly available from IIT). In addition, the paths for the verilog netlist and
the SDC file (outputted by Synopsys Design Compiler) must be set, along with the
topmost design entity name. Note that at the time of this experimentation, Cadence
SoC Encounter supported only the verilog gate-level netlist as design input. The
buffer and inverter cell footprint must be properly set, to be used during optimiza-
tion. Note that this step is only necessary only incase of a footprint-based physical
synthesis and is optional. Detailed information regarding the footprintless is avail-
able in Cadence SoC Encounter User Manual. Also, the values for pin names must
be set in the pin list. The encounter.conf file used for the five port Multi2 Router is
given below,

##

#

FirstEncounter Input configuration file

#

5

global rda Input
set rda Input(ui netlist) "LWRouter_gate.v"
set rda Input(ui timingcon file) "LWRouter_sdc.sdc"
set rda Input(ui topcell) "LWRouter" 10

set rda Input(ui netlisttype) {Verilog}
set rda Input(ui ilmlist) {}

set rda Input(ui settop) {1}
set rda Input(ui celllib) {} 15

set rda Input(ui iolib) {}

set rda Input(ui areaiolib) {}

set rda Input(ui blklib) {}

set rda Input(ui kboxlib) ""

set rda Input(ui timelib) "/home/sethurb/noc/iit_stdcells/\ 20

tsmc018/main/iit018_stdcells.tlf"

set rda Input(ui smodDef) {}

set rda Input(ui smodData) {}

set rda Input(ui dpath) {}

set rda Input(ui tech file) {} 25

#set rda Input(ui buf footprint) {BUFX2}
#set rda Input(ui delay footprint) {BUFX2}
#set rda Input(ui inv footprint) {INVX1}
#set rda Input(ui buf footprint) {buf}

205

#set rda Input(ui delay footprint) {buf} 30

#set rda Input(ui inv footprint) {inv}
set rda Input(ui leffile) "/home/sethurb/noc/iit_stdcells/\

tsmc018/main/iit018_stdcells.lef"

set rda Input(ui core cntl) {aspect}
set rda Input(ui aspect ratio) {1.0} 35

set rda Input(ui core util) {0.7}
set rda Input(ui core height) {}

set rda Input(ui core width) {}

set rda Input(ui core to left) {}

set rda Input(ui core to right) {} 40

set rda Input(ui core to top) {}

set rda Input(ui core to bottom) {}

set rda Input(ui max io height) {0}
set rda Input(ui row height) {}

set rda Input(ui isHorTrackHalfPitch) {0} 45

set rda Input(ui isVerTrackHalfPitch) {1}
set rda Input(ui ioOri) {R180}
set rda Input(ui isOrigCenter) {0}
set rda Input(ui exc net) {}

set rda Input(ui delay limit) {1000} 50

set rda Input(ui net delay) {1000.0ps}
set rda Input(ui net load) {0.5pf}
set rda Input(ui in tran delay) {120.0ps}
set rda Input(ui captbl file) {}

set rda Input(ui cap scale) {1.0} 55

set rda Input(ui xcap scale) {1.0}
set rda Input(ui res scale) {1.0}
set rda Input(ui shr scale) {1.0}
set rda Input(ui time unit) {none}
set rda Input(ui cap unit) {} 60

set rda Input(ui sigstormlib) {}

set rda Input(ui cdb file) {}

set rda Input(ui echo file) {}

set rda Input(ui qxtech file) {}

set rda Input(ui qxlib file) {} 65

set rda Input(ui qxconf file) {}

set rda Input(ui pwrnet) {vdd}
set rda Input(ui gndnet) {gnd}
set rda Input(flip first) {1}
set rda Input(double back) {1} 70

set rda Input(assign buffer) {0}
set rda Input(ui pg connections) [list {PIN:vdd:} {PIN:gnd:}]
set rda Input(PIN:vdd:) {vdd}

set rda Input(PIN:gnd:) {gnd}

206

Figure A.3: Pin Editor

Encounter - From Floorplan till Detailed Routing & Verification: At the start, Cadence
SoC encounter is invoked as follows,

encounter −config encounter.conf −init enc.tcl −log myrouter.log−overwrite

This will bring up the Encounter GUI with an empty design area. Note that the en-
counter must not be invoked as a background process (i.e., with an & at the end).
The first step is to specify the floorplan, which is done by invoking, ”Floorplan →

Specify Floorplan”. The core utilization is set at 50% (value = 0.5) and the space
between the core and the boundary is set to 30µm on all sides (used for supply ring
insertion - VDD, GND). The specified values and some of the following steps are
loosely based on the First Encounter tutorial found at [Joh05]. It is argued that a
50% core utilization is ideal in terms of availability of space for buffer insertion dur-
ing optimization. The location of the different ports are set (Top/Bottom/Left/Right
corresponding to North/South/West/East) using the Pin Editor (”Edit → Pin Editor”).
This is necessary in order to maintain the relative position for ease in identification
and the integration of router modules when forming an NoC mesh (Figure A.3).

After initial floorplan and power rail (VDD/GND) definition, the power-track routing
(special route command) and via-insertion are performed. Timing-driven placement,

207

Figure A.4: Extract RC

clock tree insertion and detailed routing constitute the next phase of tasks, with the
intermediate timing violations removed through an optimization phase. It is then
followed by filler-cell insertion and verification, in order to check for various issues
including a check for completeness in connectivity.

A step by step tutorial showing snapshots of the intermediate points are available
at [Joh05] and is recommended to develop an initial understanding and develop a
comfort level for the use of Cadence SoC Encounter. The purpose of this tutorial is
to show the steps that are specific for performing a statistical power estimation and
IR analysis, which require additional technology-specific files. The next sequence
of steps constitute the power and IR drop analysis using Cadence SoC Encounter
[Cad07a].

Parasitics Extraction: RC extraction must be completed before a power estimation can
be be performed. This can be done in two ways. One, a simple RC extraction can be
done (”Timing → Extract RC) as shown in Figure A.4.

Alternately, the Fire & Ice RC extractor [fir07] can be used for a more accurate
parasitic extraction. Using the Layer Map file and IceCaps technology file (.tch file
- having models for resistance and capacitance extraction in various layers) as input,
the GenLib routine (a button inside the Fire & Ice RC Extractor window) is invoked
to create a binary-view (.cl library) of the LEF cells (TSMC 0.18µ). The binary
view has two key data, namely, the graycell data (for extraction-for-timing flows)
and power-grid view of all cells. Also, Fire & Ice RC extractor [fir07] is used to
generate the Standard Parasitic Exchange File (.spef). This RC extraction approach
is recommended, because in addition to better accuracy, the binary-view cell library
generation is necessary before doing an IR analysis using the VoltageStorm tool.

The snapshots of the major steps in the above process, namely, the binary-view cell
generation (GenLib Routine) and Fire & Ice RC extraction (”Timing → Fire & Ice

208

Figure A.5: GenLib Routine - Binary-view Cell Library generation

Extract RC) are shown in Figures A.5 and A.6, respectively. It is then followed by the
parasitics-inclusive delay estimation (SDF file generation). At this point, the design
must be saved (”Design → Save Design”) so that the design can be restored (instead
of performing synthesis from the scratch, starting from floorplan), when performing
power and IR analysis for multiple times

Power Estimation & IR Drop Analysis: A corner case representing the worst case IR
drop is very difficult to construct using vector based power analysis, and hence, we
make use of the statistical power analysis (”Power → Analysis → Power Analysis
→ Statistical) using the typical parameter values having a net toggle probability of
0.5 and clock rate of 100MHz. As shown in Figure A.7, it is necessary to specify the
appropriate options to generate the Instance Power, which is required for performing
an IR drop analysis. At the end of statistical power estimation (Figure A.7), a report
for average/peak power∗ is generated along with detailed instance power files, which
are input to the VoltageStorm tool.

VoltageStorm is sign-off tool for performing a detailed rail analysis to find IR drop
violations in the layout and the profile is displayed as a power graph [Cad07b]. Volt-
ageStorm GUI (”Power → Analysis → Run Voltage Storm) and the Power Graph

∗This step forms the basis for the analysis of average power variation discussed in Chapter 10.5.1.

209

Figure A.6: Fire & Ice RC extractor

Figure A.7: Statistical Power Estimation

210

Figure A.8: VoltageStorm GUI

Display Browser (”Power → Analysis → Display → Display Rail Analysis Results)
are shown in Figures A.8 and A.9, respectively.

A.2.3 Average/Peak Power Estimation - Iteration Procedure

The process of average/peak power estimation is needed to be automated, as it
involves iteration covering hundreds of cases with various multi-port routers having various
toggle probabilities. The iteration is controlled by a perl script as shown below.

#!/usr/local/bin/perl
%rep file name=(

’average’ => "br5-statistical-avg-results.txt",
’peak’ => "br5-statistical-peak-results.txt"

); 5

#open in read only mode
open PWRTCLTEMPLATE, "<encouter-statistical-power-template.tcl"

or die "Cannot open file : encouter-statistical-power-template.tcl";
@pwrtcldata = <PWRTCLTEMPLATE>;
close PWRTCLTEMPLATE; 10

$`inecnt=@pwrtcldata;
foreach $c1 (keys (%rep file name))
{

#open in append mode

211

Figure A.9: Display Browser

open RPFILE, ">>$rep_file_name{$c1}" or die "Cannot open file: $rep_file_name{$c1}"; 15

print RPFILE "Format:\n

avg/peak, toggle prob, temp, avg power, switching power, internal power,

leakage power, avg power clocked, unclocked domain pwr, core power, block pwr,

io pwr, worst IR drop, nodes in rail nw, worst EM m1, m2, m3, m4, m5, v12, v23,

v34, v45, biggest toggled net, terminals, total cap\n"; 20

for($c3=20; $c3 <= 50; $c3++)
{

for($c2=0.00; $c2 <= 1.00; ($c2=$c2+0.01))
{

#print “c1, c2, c3 = $c1, $c2, $c3\n”; 25

#open in write/truncate mode
open PWRTCLFILE,">encounter_statistical_power.tcl" or

die "Cannot open file: encounter_statistical_power.tcl";
$cnt = 0;
while ($cnt <= $`inecnt) 30

{

if ($cnt == 12) # n
{

@encntr str=split(/ /, $pwrtc`data[$cnt]);
$encntr str[2] = $c1; 35

$encntr str[4] = $c2;
$encntr str[10] = $c3;
$pwr tcl prnt str = join(" ",@encntr str);
$#encntr str=−1;#reset the array
print PWRTCLFILE "$pwr_tcl_prnt_str\n"; 40

212

$pwr tcl prnt str="";
}

else
{

print PWRTCLFILE $pwrtc`data[$cnt]; 45

}

$cnt++;
}#end of while cnt <= linecnt
close PWRTCLFILE;

50

#Invoking Encounter
system("sh encntr_statistical.bat");

Read in the power report and print data into the PowerResults file
#print string format: avg/peak, toggle prob, temp, avg power, switching power, 55

#internal power, leakage power,avg power clocked, unclocked domain pwr,
#core power, block pwr, io pwr, worst IR drop, #nodes in rail nw, worst EM m1,
#m2, m3, m4, m5, v12, v23, v34, v45, biggest toggled net, terminals, total cap
open PWRFILE, "LWRouter_Statistical.rep" or

die "Cannot open file: LWRouter_Statistical.rep"; 60

$pwrrpt str = "$c1 $c2 $c3 ";
push(@select str, $pwrrpt str);
while(<PWRFILE>)
{

@comp str=split; 65

if ($. == 5)
{

push(@select str, $comp str[2]);
}

elsif ($. == 6) 70

{

push(@select str, $comp str[3]);
}

elsif ($. == 7)
{ 75

push(@select str, $comp str[3]);
}

elsif ($. == 8)
{

push(@select str, $comp str[3]); 80

}

elsif ($. == 11)
{

push(@select str, $comp str[4]);
} 85

elsif ($. == 12)

213

{

push(@select str, $comp str[3]);
}

elsif ($. == 14) 90

{

push(@select str, $comp str[1]);
}

elsif ($. == 15)
{ 95

push(@select str, $comp str[1]);
}

elsif ($. == 16)
{

push(@select str, $comp str[1]); 100

}

elsif ($. == 18)
{

push(@select str, $comp str[5]);
} 105

elsif ($. == 19)
{

push(@select str, $comp str[6]);
}

elsif ($. == 21) 110

{

push(@select str, $comp str[1]);
}

elsif ($. == 22)
{ 115

push(@select str, $comp str[1]);
}

elsif ($. == 23)
{

push(@select str, $comp str[1]); 120

}

elsif ($. == 24)
{

push(@select str, $comp str[1]);
} 125

elsif ($. == 25)
{

push(@select str, $comp str[1]);
}

elsif ($. == 26) 130

{

push(@select str, $comp str[1]);

214

}

elsif ($. == 27)
{ 135

push(@select str, $comp str[1]);
}

elsif ($. == 28)
{

push(@select str, $comp str[1]); 140

}

elsif ($. == 29)
{

push(@select str, $comp str[1]);
} 145

elsif ($. == 30)
{

push(@select str, $comp str[3]);
}

elsif ($. == 31) 150

{

push(@select str, $comp str[3]);
}

elsif ($. == 32)
{ 155

push(@select str, $comp str[2]);
}

}

$pwr prnt str = join(" ",@select str);
$#select str=−1;#reset the array 160

print RPFILE "$pwr_prnt_str\n";
$pwr prnt str="";
close PWRFILE;

}#c2
}#c3 165

close RPFILE;
}#c1

After necessary modifications to the encounter statistical power.tcl, SoC Encounter
(sh encntr statistical.bat) is invoked to do the power and IR drop analysis
(command line mode) as shown below.

encounter −init encounter−statistical−power.tcl −log power−myrouter.log −overwrite

Here, Encounter is invoked using the Restore Design option, using the options
present in encounter statistical power.tcl as follows.

215

Restore the database
restoreDesign LWRouter final.enc.dat LWRouter

Extract for power Analysis
isExtractRCModeDefault 5

isExtractRCModeSignoff
setExtractRCMode −detail −noReduce
isExtractRCModeSignoff
autoFetchDCSources vdd
extractRC 10

delayCal −sdf LWRouter.sdf −idealclock

#Statistical Power Estimation
updatePower −irDropAnalysis peak −toggleProb 0.5 −clockRate 100 −pad LWRouter.pp

−temperature 25 −report LWRouter Statistical.rep −mode layout vdd 15

exit

216

Appendix B

List of Publications

1. Jawad Khan, Balasubramanian Sethuraman and Ranga Vemuri. “A Power-Performance
Tradeoff Methodology for Portable Reconfigurable Platforms”. In ERSA’04, pages
33-37, Las Vegas, Nevada, C.S.R.E.A. Press, June 2004.

2. Balasubramanian Sethuraman, Jawad Khan and Ranga Vemuri. “Battery-Efficient
Task Execution on Portable Reconfigurable Computing Platforms”. In IEEE Inter-
national SOC Conference: SOCC 2004, pages 237-240, April 2004.

3. Balasubramanian Sethuraman, Prasun Bhattacharya, Jawad Khan and Ranga Vemuri.
“LiPaR: A Light-Weight Parallel Router for FPGA-based Networks-on-Chip”. In
15th Great Lakes Symposium on VLSI (GLSVLSI 2005) pages 452-457, Chicago,
2005.

4. Balasubramanian Sethuraman and Ranga Vemuri, “optiMap: A Tool for Automated
Generation of NoC Architectures using Multi-Port Routers for FPGAs”, In Design
Automation and Test Europe, (DATE 2006), Munich, Germany, 2006.

5. Balasubramanian Sethuraman and Ranga Vemuri, “Multi2 Router: A Novel Multi
Local Port Router Architecture with broadcast facility for FPGA-based Networks-
on-Chip”, In Field Programmable Logic & Applications conference (FPL 2006),
Madrid, Spain, August 2006.

6. Balasubramanian Sethuraman, “Novel Methodologies for Performance & Power Ef-
ficient Reconfigurable Networks-on-Chip”, In PhD Forum - Field Programmable
Logic & Applications conference (FPL 2006), Madrid, Spain, August 2006.

217

7. Balasubramanian Sethuraman and Ranga Vemuri, “A Force-directed Approach for
Fast Generation of Efficient Multi-port Architectures”, In 20th International Confer-
ence on VLSI Design, Bangalore, India, January 2007.

8. Balasubramanian Sethuraman and Ranga Vemuri, “Multicasting based Topology Gen-
eration and Core Mapping for a Power Efficient Networks-on-Chip”, In IEEE/ACM-
SIGDA International Symposium on Low Power Electronics and Design (ISLPED
2007), Portland, Oregon, USA, August 2007.

9. Balasubramanian Sethuraman and Ranga Vemuri, “Power Variations of MultiPort
Routers in an Application-Specific NoC Design : A Case Study”, In XXV Interna-
tional Conference on Computer Design (ICCD 2007), Lake Tahoe, California, USA,
October 2007.

10. Balasubramanian Sethuraman and Ranga Vemuri, “A Methodology for Application-
Specific NoC Architecture Generation in a Dynamic Task Structure Environment”
(under review).

218

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Interconnects in the Nano-meter Era
	Impact of Technology Scaling
	Effects in Nanometer Design Regime
	Low Power operation
	Impact on circuit delay and Bandwidth

	System-on-Chip & Platform-based Design
	System-on-Chip & Reconfigurability
	Future System-on-Chip: Summary of the real picture
	Interconnection Networks
	Shared-Medium Systems
	Distributed Point-to-Point Interconnection Networks

	System-on-Chip & FPGAs
	Motivation & Overview of the Thesis
	Light Weight Router for FPGAs
	Multi Local Port Routers
	Efficient NoC architectures having MLPRs
	Heuristic Fast Mapping Algorithm
	Multi2 Router
	Energy Efficient Networks-on-Chip
	Power Issues in Larger Multiport Routers
	Handling Dynamic Task Structure
	Extension to Multi-FPGAs

	Research Summary
	Organization of the Dissertation

	Networks-on-Chip Background
	Networks-on-Chip
	Components of a micro-network

	Summary of the Benefits & the Issues Involved
	Advantages
	Issues Involved

	Description of a micro-network (Networks-on-Chip)
	Network Topology
	Switching Mechanism
	Flow Control Mechanism
	Routing Mechanism
	Buffering or Queuing
	Scheduling

	Design of a Networks-on-Chip
	Design Flow

	Research in Networks-on-Chip

	Light Weight Parallel Router (LiPaR)
	Related Work
	Router Architecture
	Packet Description
	Implementation of the Router
	XY Routing
	Round-Robin Arbiter (RRA)

	Synthesis Platform
	Simulation and Results
	Best Case: Single Router without blocking
	Worst Case: Single Router with blocking
	33 Mesh network
	Timing Analysis
	Synthesis Report
	Power Analysis

	Conclusion

	Multi Local Port Router
	FPGAs & NoCs: Improving Area overhead
	Related Work
	MLPR Design
	Topology
	Routing & Flow Control
	Modified Architecture
	Adapted Decoding Logic

	Architectural Advantages
	Bandwidth Optimization
	Area Reduction
	Power Savings
	Congestion Reduction
	Transit Time Reduction
	Better Mesh Design

	Design Issues
	Critical Path
	Buffer Requirements
	Input-Output (I/O) Constraints
	Routing Resources Congestion
	Logic Requirements
	Arbitration
	Address Utilization Factor

	Scope for Reducing the Latency
	Conclusion

	Experiment Setup
	Benchmarks
	Experiment Platform
	Conclusion

	Optimal NoC Configuration Generation
	optiMap: The Mapping Algorithm
	Mapping in an MLPR-based NoC
	Problem Definition
	Description of optiMap Algorithm

	Experiment Results
	Optimization Cases

	Conclusion

	Heuristic Fast Mapping Algorithm
	cMap: The Fast Mapping Algorithm
	Problem Definition
	cMap Algorithm Description

	Experiment Results
	Effect of # LP
	Mapping Results

	Conclusion

	Multi2 Router
	Multicast Feature
	Related Work
	Multi2 Router Architecture
	Addressing
	Modified Architecture & Decoding Logic

	Synthesis & Simulation Results
	Synthesis Platform

	Conclusion

	Energy Efficient NoC Configuration
	Advantages of the Multicast Router
	Map Algorithm
	Experimental Results
	Packet Reduction
	Performance Gain
	Optimization Cases

	Power Results
	Power Per Flit
	Analysis of Power data

	Conclusion

	Power Efficiency of Multi-Port Routers
	Motivation
	Port Level Power Savings
	Impact of port count on IR drop

	Related Work
	Experiment Platform
	Xilinx flow
	Synopsys-Cadence Flow

	Intra-port Power Savings in Multi Port Routers
	Power related Issues in Multi port Routers
	Average Power Increase
	Rail Analysis

	Conclusion

	Bandwidth Variations in a Dynamic Task Structure Environment
	Motivation & Introduction
	dynaMap Algorithm

	Related Work
	Dynamic Task Structure
	dynaMap: Fast Mapping Heuristic Algorithm
	Experiment Results
	Analysis of the Results

	Conclusion

	Towards Multi-FPGA Systems with Networks-on-Chip
	Introduction
	Extension of Networks-on-Chip for Multi FPGAs
	Modified Design Framework

	Conclusion

	Conclusions
	Contributions
	Salient Inferences

	Future Directions
	Bibliography
	Demonstration of the Xilinx & Synopsys-Cadence Flow
	Xilinx Flow
	Synopsys-Cadence Flow
	Logic Synthesis : Synopsys Design Compiler
	Physical Synthesis : Cadence SoC Encounter
	Average/Peak Power Estimation - Iteration Procedure

	List of Publications

	DATE: November 16, 2007
	NAME: Balasubramanian Sethuraman
	DEGREE: Doctor of Philosophy
	DEPT: Computer Science and Engineering
	TITLE1: Novel Methodologies for Efficient Networks-on-Chip Implementation
	TITLE2: on Reconfigurable Devices
	TITLE3:
	TITLE4:
	CHAIR: Dr. Ranga Vemuri
	COMM2: Dr. Harold W. Carter
	COMM3: Dr. Wen-Ben Jone
	COMM4: Dr. Karen Tomko
	COMM5: Dr. Karam Chatha

