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Abstract 

The main topic of this dissertation involves cluster-based computing, specifically relating to 

computations performed on Beowulf clusters. I have developed a light-weight library for dynamic 

interoperable message passing, called the InterCluster Interface (ICI). This library not only supports 

computations performed over multiple clusters that are running different Message Passing Interface (MPI) 

implementations, but also can be used independently of MPI. In addition I developed the Backtracking 

Framework (BkFr) that simplifies implementations of the parallel backtracking paradigm in the single 

cluster environment, and supports the extension of computations over multiple clusters. BkFr uses MPI 

for the intra-cluster communication and ICI for the inter-cluster communication. I have also developed a 

template-based library of programming modules that facilitate the introduction of the rapidly emerging 

message passing parallel computing paradigm in upper-division undergraduate courses. 

An important application of ICI and the backtracking framework discussed in this dissertation is 

the computation of Van der Waerden numbers, which involve the existence of arithmetic progressions in 

arbitrary partitions of {1, 2, …, n} for sufficiently large n. The computations of these numbers utilized a 

special SAT solver that I developed. For example, I almost doubled the previously known lower bound 

for the Van der Waerden number W(2, 6), and I am running a calculation whether the lower bound is 

actually the exact value. Among other reductions, I was able to drastically reduce the search for potential 

solutions with the aid of a tunneling technique based on an aggressive addition of uninferred constraints. 

The tunneling technique has the likely potential to be used in a number of other satisfiability settings. I 

also developed an FPGA version of my SAT solver for Van der Waerden numbers that improved the 

search speed up to 230 times or more compared to its sequential equivalent. Utilizing this special SAT 

solver has resulted in significant progress in the search to determine bounds or exact values for Van der 

Waerden numbers and, more generally, for Van der Waerden subnumbers. I have found the exact values 

for several of these subnumbers, specifically W(2; 5,6)=206, W(2; 4,8)=146, W(2; 3,16)=238 and W(3; 

2,4,7)=119. 
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Chapter 1 - Introduction 

In recent years a new paradigm of computing has emerged, namely cluster computing. In this 

paradigm, off-the-shelf processors, typically rack mounted, are connected using generic network 

components such as Ethernet[1], or specialized equipment such as Myrinet[2] or Infiniband[3]. The name 

for such a configuration is a Beowulf cluster[4], and it is economically feasible to build such clusters 

containing hundreds of processors. Moreover, by connecting together multiple clusters even more 

computing power can be harnessed. 

To provide a common environment for programs developed for not only Beowulf clusters but 

also other multiprocessor machines, the message passing paradigm has been standardized into the 

message passing interface (MPI)[5, 6]. MPI is implemented by a number of commercial vendors, as well 

as open-source projects such as MPICH[7], OpenMPI[8] and LAM[9]. MPI provides a library of 

functions augmenting existing high level languages such as Fortran, C, or C++. Communication between 

processors is implemented by point-to-point send and receive instructions, and global operations such as 
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broadcast, scatter, and so forth, are also supported. In addition to these basic communication instructions, 

MPI provides a large library of instructions that provide the user with a programming environment 

supporting cluster-based computations. With this new paradigm problems can be attacked that heretofore 

were impractical due to their computation time complexity.  

To bring even more computational power into play, it would be very advantageous to be able to 

connect multiple clusters together in a dynamic fashion. By dynamic is meant the possibility to connect 

and disconnect two independently running clusters. However, the MPI-1 Standard[5] does not define any 

interface for dynamic communication between two clusters. The MPI-2 Standard[6] does define dynamic 

communication between two clusters, but the communication protocol is not standardized, thereby 

rendering dynamic communication impossible between MPI libraries of different origin. In other words, 

the MPI-2 Standard is not interoperable, and only allows communication between clusters using the same 

version of MPI. The Interoperable MPI (IMPI) Standard[10] does define the communication protocol for 

connecting multiple clusters running different versions of MPI. However, the participating clusters must 

be captured at the outset of the computation, thereby creating a static environment with the inability to 

connect and disconnect cluster during the computation. 

One of the main topics in this dissertation is my development of a communication library 

(InterCluster Interface, or ICI)[11, 12]) that allows multiple clusters to be connected in a dynamic and 

interoperable manner. More precisely, ICI allows clusters running different versions of MPI 

(interoperability) to dynamically join an ongoing computation. Of course, this most naturally supports 

problems amenable to asynchronous computation, such as parallel depth-first search or parallel 

backtracking.  

The problem of maintaining efficient load balancing when performing cluster-based computation 

is becoming a major issue. The ever-increasing number of nodes puts a high demand on the way 

applications are parallelized. In response I developed a tool that supports efficient parallelization of the 

various problems. This tool, which is a second major topic of this dissertation, is a backtracking 
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framework (BkFr)[13] that simplifies implementation of the parallel backtracking paradigm in the single 

cluster environment, and supports the extension of computations over multiple clusters. Problems 

implemented in this framework can not only make use of all nodes in a single cluster, but also can 

dynamically span multiple clusters. Communication within a single cluster is provided using MPI and 

communication between clusters utilizes the above-mentioned ICI library. 

The message passing paradigm can be considered to be a fundamental component of the CS 

curriculum. However, often the undergraduate CS curriculum is too constrained to devote an entire course 

to this topic. A third major topic of this dissertation is my development of a template library of 

problems[14] amenable to parallel backtracking as supported by MPI and ICI. This template library 

facilitates a rapid introduction to the message passing paradigm and allows an instructor to introduce 

these important ideas as one topic amongst many in a typical algorithms course. Indeed, my belief that all 

CS undergraduates should be exposed to the message passing paradigm provided the motivation for 

developing this template library. 

Satisfiability (or SAT)[15]) refers to the problem of determining the existence of an assignment of 

values to the variables occurring in a given Boolean expression that makes the expression true (called a 

satisfying assignment). Satisfiability is a fundamental problem in computer science, since solutions to 

many important problems, such as circuit testing, combinatorial search, and so forth, can be formulated as 

satisfiability questions. Satisfiability is also fundamental to the theory of computation, since in 1971 Cook 

proved that SAT is NP-complete[16]. Programs for solving Satisfiability problems are called SAT solvers, 

and there is a very active research community working on improving their efficiency.  

A fourth major topic of this dissertation is my design of a highly efficient SAT solver that uses 

parallel backtracking to address the problem of computing Van der Waerden numbers W(K,L)[17]. More 

specifically, given positive integers K, L, Van der Waerden proved that there exists a (smallest) integer n 

= W(K,L) such that whenever {1,2, …, n} is K-colored, there exists a monochromatic arithmetic 

progression of length L in {1, 2, …, n}. An arithmetic progression is defined as a sequence of numbers 
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such that the difference between any two successive numbers of the sequence is a constant[18]. These 

numbers were shown to exist by B.L. Van der Waerden in the 1920s, but their exact values are known for 

a handful of cases.  

By showing that W(2,6) ≥ 1132, I have almost doubled the previously known lower bound of 

696. This calculation was performed using my tunneling technique[19] described in more detail in 

Chapter 5  of this dissertation. I hope to complete the computation for the number W(2,6) (W(2,K) only 

currently known for K = 2, 3, 4 and 5). Determining the exact value of W(2,6) will be a breakthrough, 

since the last Van der Waerden number was found more than two decades ago in 1979. 

A Van der Waerden sub number W(K; L1, L2,…LK) is defined analogously to the Van der 

Waerden number W(K,L), but a different L is given for each color. Using my SAT solver I have also 

improved known lower bounds for several sub numbers.  

In addition to Beowulf clusters, reconfigurable hardware is also gaining popularity. I call 

reconfigurable hardware refers to a device (typically an integrated circuit) that can be programmed on the 

gate level at run-time[20]. While there are several types of reconfigurable hardware, I will focus on Field 

Programmable Gate Arrays (FPGAs). I have employed FPGAs to aid in the completion of the 

computation of W(2,6) with significant speedup over available clusters.  

The dissertation is organized into five chapters: The second chapter contains the background for 

various concepts used in the dissertation. The third chapter contains the details of the Backtracking 

Framework (BkFr), including how it is applied, and how it is used for teaching MPI in the classroom. The 

fourth chapter includes a description and discussion of the main properties of the InterCluster Interface 

library, which provides the dynamic interoperable connection for BkFr. The fifth chapter focuses on the 

problem of computing Van der Waerden numbers, finding lower bounds for these numbers, and 

specifically describing the search for W(2,6). Chapter six contains a description of how I extend the 

computer-based Van der Waerden number-specific SAT solver to reconfigurable hardware – that is, to 

FPGAs. In chapter seven I summarize my research and discuss future directions.  
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Chapter 2 - Background 

In this chapter I describe some of the key concepts used throughout the dissertation. I begin by 

expanding my description given in the previous chapter of Beowulf clusters and associated programming 

environment. Both single cluster and multiple cluster environments are discussed. In particular, I describe 

the limitations imposed by the current communication protocols for connecting clusters together. I then 

describe the parallel backtracking design strategy, and how I utilize it to attack difficult combinatorial 

problems such as testing the satisfiability of CNF formulas, and determining lower bounds or exact values 

for Van der Waerden numbers.  

2.1 Beowulf Clusters 

A Beowulf cluster refers to a collection of processors (nodes) connected in a network usually 

using Ethernet, but new protocols and systems such as Myrinet are beginning to see widespread use. 

Communication between nodes in the clusters is typically done via message passing. The nodes in the 
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cluster are off-the-shelf general purpose processors, each having their own local memory. Message 

passing parallel languages such as MPI (Message Passing Interface) contain a library of functions, which 

extend ordinary sequential languages such as Fortran, C, or C++, and allow the programmer to regard the 

processors as connected in a complete graph topology. In other words, commands in the language exist 

for sending a message between any pair of processors in the cluster, and no routing needs to be explicitly 

coded, in contrast to interconnection network parallel machines such as meshes or hypercubes. Of course, 

while communication between clusters is straightforward in code, nevertheless it has high latency 

compared to local computations performed by the processors. Thus, the design of efficient 

implementation of parallel algorithms on clusters requires careful attention to achieving a good balance 

between computation and communication. I am concerned with efficient utilization of a cluster or set of 

clusters for problems that are amenable to a solution using a generalized backtracking algorithm, and for 

which it is possible to efficiently control computation and communication phases in order to achieve good 

speedup that also scales well. 

General purpose CPUs are getting faster and faster. According Moore’s Law[21], the component 

density and related performance of integrated circuits roughly doubles every 18 months. The continuation 

of Moore’s law beyond a decade or so is questionable[22], since it requires miniaturization approaching 

the atomic level. Hence, my best hope for continued growth in computation power seems to lie in 

utilizing hundreds or thousands of processors executing some form of parallelism. Among the fastest 

supercomputers today are also clusters built from general purpose CPUs – Beowulf clusters. The first 

Beowulf cluster was built in 1994[4] when the interconnection network evolved, allowing for adequate 

communication having sufficient bandwidth1 and low latency2. Connecting hundreds or even thousands 

of CPUs accumulates unprecedented raw power.  

                                                      

1 Communication bandwidth measures the amount of data transferred per second (e.g.: 100 megabits per second) 
2 Communication latency measures the time it takes to transfer data. It is measured from the time the application 
starts the transfer to the time the receiving application gets the data. 
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2.2 Parallel vs. Distributed Processing 

Parallel processing typically involves connecting sequential CPUs (processors) under tight 

synchronization managed by a central control to solve a given task. Often one processor cannot proceed 

with its assigned computation until it obtains a result from another processor, requiring frequent 

synchronization among the processors. For some tasks, such as simulations of physical processes, 

synchronization constraints are necessary and cannot be dropped. Due to the architecture of the general 

processor, and the significant difference between computation speed and communication speed, the 

longer a computation can proceed without waiting for synchronization with other processors, the greater 

utilization of all the processors is achieved. 

In the distributed computing scenario, processors are not tightly synchronized, but rather can 

proceed relatively asynchronously working on that part of a given problem assigned to them. 

Synchronization, when it does occur, can often be limited to relatively short intervals between 

computation phases. 

2.3 The Single Cluster 

A single cluster, being homogenous, possesses certain properties that can be integrated into a 

computational scheme. For example, the number of nodes stays the same for the entire time a task is 

running. The nodes within the cluster usually have the same or similar speed, memory, and hardware. 

Depending on the communication library, every node has a unique ID, and nodes communicate in a fairly 

simple way using send and receive instructions. Some of the libraries offer special functions for global 

operations such as scatter, gather, and so forth. 

A cluster usually has a standard way of running applications. For example, a batch system might 

be implemented using one or more job queues, where jobs sit and wait for the scheduler to assign it free 

resources (e.g., a subset of the nodes in the cluster). If there are no free resources available immediately, 

7 



the job is put into a queue. Batch systems also implement restrictions on the number of resources the job 

can require, including the maximum time it can occupy the cluster. Batch systems also can manage 

computers with different hardware configurations and make sure that the job requirements, which are 

submitted with the job, match with the actual computer the job runs on. There also might be different 

queues with different priorities and different access controls. Jobs of different users might be entitled to 

different treatment. Batch systems also offer additional services such as accounting, e-mail notification, 

and so forth. They also ensure that the application has dedicated access to the resources.  

Another way of running an application on a cluster is simple sharing without a scheduler. A user 

can run an application anytime, but there is no guarantee that other applications won’t be running at the 

same time.  

2.4 The Cluster Hardware/Software Environment 

The Beowulf cluster, as previously mentioned, consists of off-the-shelf computers connected 

together. These computers are dedicated to running user applications typically without monitor and 

keyboard, and it is common practice to store them in the rack cabinets for space efficiency. The cluster is 

usually homogeneous – consisting of the same or similar computers, i.e., the same number of CPUs per 

computer, the same CPU speed, the same model of CPU, the same amount of memory, and so forth. It is 

possible to build a cluster from heterogeneous components, but this results in decreased predictability of 

behavior in disparate parallel applications. 

Typically the clusters run Unix operating system such as Linux, AIX, or Solaris. Clustering using 

Windows is possible as well. TCP/IP is the underlying communication protocol for most of the 

communication libraries. The vast majority of clusters connect to the Internet also using TCP/IP protocol. 

From the programmer’s point of view, several communication libraries support the cluster environment, 

i.e., communication among the nodes. The most commonly used communication library for clusters is 

probably MPI (Message Passing Interface). As the name indicates, the underlying technique relies on 

8 



passing messages between nodes. The current standard is MPI 1.1, and the newly created version—and in 

some packages already supported—is MPI 2.0. Older than MPI is the PVM (Parallel Virtual Machine) 

standard, which treats every node as a virtual machine. Other methods not closely related to the clusters, 

but allowing communication between computers, are RPC (Remote Procedure Call), as a standard part of 

every Unix implementation, Java-only implementation of RMI (Remote Method Invocation), Microsoft’s 

Distributed COM, Corba, etc. 

2.5 Multiple Clusters 

Sometimes a single cluster is not big enough or powerful enough to finish a task in a reasonable 

time, or there are not enough resources (such as memory) to start the task. Access to several clusters then 

would be desirable. But clusters usually have different properties and are not available at exactly the same 

time. Although several available systems do assume tight synchronization and simultaneous availability, 

they have certain limitations. The fact that the user has to reserve these resources in advance when they 

are likely to be geographically separated is causing serious challenges for cluster scheduling. Another 

reason for concern is that the failure of a single node in a cluster that might contain a thousand nodes 

causes the simulation to fail. The development of my framework does not count on such systems being 

available. The framework targets clusters that are available at arbitrary times – essentially a more 

unfriendly environment. There are also different communication aspects of inter-cluster and intra-cluster 

communication. The available bandwidth between clusters is much smaller than the bandwidth of the 

interconnection network within the cluster, and the latency is much higher. Finally, there is a need for 

fault tolerance and security. Interruption of communication between two nodes in the Internet is more 

likely than inside the cluster. In the cluster, interruptions are usually caused by a hardware failure, as 

opposed to the Internet, where routing tables change dynamically and frequently, and disconnections or 

timeouts are likely. 
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2.6 Connecting Clusters 

The idea of connecting clusters is not as well researched as intra-cluster communication. 

Although it’s popular to create a computation grid that might consist of several clusters, most of the time 

it only refers to how the jobs are submitted and not to the actual implementation of inter-cluster 

communication. For example, one might submit code to a computation grid asking for a cluster of 64 

nodes. But if there is no such cluster as a part of that grid, the code will not get executed even if the total 

number of nodes is more than 64. If, for example, 32 node clusters are available, then of course it is 

possible to submit two smaller jobs requesting 32 nodes each. However, since most of the grids operate 

under batch systems, one has no way of predicting when the two jobs get executed—much less expecting 

that they will execute at the same time. The only jobs that would properly execute under this scenario are 

jobs whose work can be divided into parts that don’t require communication between the parts. If 

communication is required between the two jobs during execution, usually the only available way of 

communicating between such clusters is Berkeley TCP/IP API. Even when API is available on the entire 

system (and this is not always the case), a new API function for the communication between clusters will 

have to be introduced that will deviate from the MPI standard. One goal of this project is to design an 

extension to the MPI standard extension so that this ‘special’ API won’t be necessary.  

Libraries such as Globus can be used to create a global network of computers called a 

computational grid. Every computer is uniquely identified and public/private key certificates insure the 

security of the system. The main parts of Globus are GRAM (Globus Resource Allocation Manager), GIS 

(Grid Information Service) and GSI (Grid Security Infrastructure). One of the MPI packages, MPICH, has 

an extension for Globus called MPICH-G2 where it is possible to run MPI programs over Globus nodes. 

However, there seems to be a problem in running the programs (MPI) using a homogeneous API interface 

(MPI interface) over a non-homogeneous underlying hardware (made transparent for MPI due to Globus). 

Unless the assignment of nodes between physical nodes and MPI logical nodes is given, it is difficult to 

tune the global cluster accordingly. However, this assignment is not available to the programmer. 
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Another system for implementing a computational grid is called Condor[23] with an extension for 

Globus called Condor-G. “Condor is a specialized workload management system for compute-intensive 

jobs. Like other full-featured batch systems, Condor provides a job queuing mechanism, scheduling 

policy, priority scheme, resource monitoring, and resource management. Users submit their serial or 

parallel jobs to Condor, Condor places them into a queue, chooses when and where to run the jobs based 

upon a policy, carefully monitors their progress, and ultimately informs the user upon completion.”[24] 

However, Condor suffers from the same type of limitations that were discussed in connection with 

MPICH-G2. 

Other frameworks are available for scientific computation. One of the most successful is 

Cactus[25]. It can run over Globus, but exhibits the problem with heterogeneous underlying architecture 

mentioned earlier in this chapter[26]. This framework does not efficiently support the multi-cluster 

functionality that is a feature of my Backtracking Framework. 

2.7 Backtracking 

Many important problems are amenable to the backtracking algorithm, and are good candidates 

for parallelization as implemented in the cluster environment. 

A solution to these problems involves making a sequence of decisions, and the associated state 

space tree for the problem simply models all possible decision sequences. Backtracking refers to a 

systematic algorithm for searching for a solution in a state space tree modeling a given problem. One 

starts at the root of the tree (the empty decision), and generates a path in the tree consisting of a decision 

sequence. If a leaf is hit without finding a solution, or the path is bounded through some constraint, the 

algorithm would backtrack to the first node in the tree where an alternate decision could be made, and 

continues the search from there. Backtracking is particularly well suited for parallelization since the state 

space tree can be divided into a covering set of initial paths starting at the root, and each initial path can 

be assigned to a different computing node (distributed backtracking). A covering set of initial paths is 
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simply a set of paths starting at the root, such that an initial segment of any path from the root to a leaf 

agrees with (exactly) one of the initial paths in the covering set. The state space tree is divided into 

disjoint subtrees rooted at the endpoints of the paths in the covering set, and the computing nodes would 

then search their own subtree of the tree independently of other nodes. However, it is important that 

information be shared among the nodes which might help restrict (bound) the search, or when a node has 

exhausted its part of the search, and can then help another node in its search by splitting the node’s 

subtree.  

In Figure 1 a covering set of six initial paths for a binary state-space tree is shown, together with 

the associated subtrees assigned to computing node. Figure 2 illustrates the current path generated by 

node 2, and the subtree that would be sent to a helper node if node 2’s subtree would be split. It is 

assumed that a left child is visited first in the backtracking search. Since the path with the backtrack point 

(BkPt) determines the subtree, the phrases “splitting the path” and “splitting the subtree” will be 

interchangeably.  

 

 
Figure 1. A covering set of six initial paths in a binary state-space tree 

 

12 



 

Figure 2. Splitting node 2’s subtree 

 

2.8 Speedup 

When comparing the performance of parallel versus sequential backtracking search, two extreme 

situations arise. One extreme is when it takes a long time for the sequential algorithm to find a solution 

but the parallel algorithm finds it very quickly. This extreme situation arises when the solution is in a 

portion of the state space tree toward the end of a sequential backtracking search, and the parallel 

algorithm assigns this portion to a node that finds this solution quickly. Such a situation results in super-

linear speedup. On the other hand, a solution might be located in a part of the state space tree searched 

early on by the sequential backtracking search, resulting in a situation where the sequential and parallel 

algorithm take the same amount of time (in fact, the parallel algorithm might even take more time because 

of the need to communicate the fact that a solution has been found). In the latter situation, I don’t achieve 

any speedup at all, and at the cost of using n processors. Clearly, these two extremes are measuring the 

speedup of somewhat anomalous inputs, and the more important measure is the speedup on average. It is 

reasonable to expect that my backtracking framework will achieve the average linear speedup. Moreover, 
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if attention is restricted to those inputs of a given problem having no solution, such as searching for a 

satisfying assignment to the variables occurring in an unsatisfiable Boolean expression, it seems that 

linear speedup or even super-linear speedup will be achieved (on average) by my backtracking 

framework. 

2.9 The Class NP / NP-complete 

There is a large class of important decision problems, known as NP-complete problems, for 

which polynomial complexity algorithms solving any input instance for a given problem have not been 

found, nor has it been shown that any algorithm solving all inputs for the problem will necessarily require 

a super-polynomial time in the worst case. Moreover, if a polynomial solution can be found (for all input 

instances) for any NP-complete problem, then all NP-complete problems can be solved in polynomial 

time. Recall that the class NP is the set of decision problems for which a potential solution (called a 

“witness”) to yes instances can be guessed in polynomial time, and the validity of the solution can be 

verified in polynomial time. The class P is the class of problems solvable in polynomial time, so that P ⊆  

NP. The question of whether P = NP (generally believe to be false) has remained open since it was posed 

over thirty years ago. 

A problem X in NP is called NP-complete if every other problem Y in NP can be polynomially 

reduced to X, meaning that there is a mapping τ from the inputs of size n to Y to the inputs of at most size 

p(n) to X, for a suitable polynomial p(n), such τ is computable in polynomial time, and such that an input 

I to Y is a yes instance, if, and only if, τ(I) is a yes instance to X. It is far from obvious that NP-complete 

problems exist. However, in 1971, Cook proved that SAT is NP-complete. SAT refers to the problem of 

determining whether or not there is an assignment of values to the variables occurring in a given Boolean 

expression that makes the expression true (called a satisfying assignment). Recall that a Boolean 

expression is an expression among Boolean variables using the connectives “and”, “or” and “not” (and 
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possibly others such as “xor”, “implies”, and so forth). Since Cook’s result appeared, literally thousands 

of problems have been shown to be NP-complete. 

Since problems in NP are decision problems, they are suitable for the Backtracking Framework. 

As mentioned above, for NP-complete problems, there is no known algorithm that would solve the 

problem in polynomial time, and backtracking is often the only known algorithmic approach to the 

problem. As part of this project, a library of NP-complete problems will be created that are suitable for 

this framework, and a template will also be created that will help potentially implement any such 

problem. The problems currently implemented and tested so far are sum of subsets, knapsack, hitting set 

and SAT. A major goal of this project is to significantly enhance my implementation of a solver for SAT. 

2.10 CNF 

The most common SAT input is in the CNF (Conjunction Normal Form). Each CNF instance 

contains n variables. Each variable can have either a positive or negative literal (variable x – literal +x and 

-x). The variable can be either true or false. The literals form clauses that contain boolean ‘or’ operator 

only (e.g, (x1 v -x2 v x3) ). Clauses are then joined with boolean ‘and’ operator forcing each clause to be 

satisfied in order for the whole instance to be satisfied. 

 

Example: 

For variable x1, x2 and x3 could be literals x1,x1,x2,x2,x3,x3  and set of clauses 

(x1 ∨ x2 ∨ x3)∧(x1 ∨ x2)  

Where one possible satisfying assignment could be 

x1 = true  

x2 = true  

x3 = false 
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CNF is a very common format for SAT in computing, and it is the one we use here. The standard 

DIMACS defines the actual file format.  

2.11 SAT Solvers 

There are two categories of SAT solvers, those which use a systematic search algorithm, and 

those which use a stochastic local search (also called incomplete). Solvers in the first category will give 

the solution if there is one and will give the answer ‘unsatisfiable’ if there is no solution. The stochastic 

local search algorithm will give a solution if there is one and will not finish if there is no solution. In this 

dissertation the discussion is limited to solvers in the first category that are based on Davis-Putnam-

Loveland-Logemann backtrack search. 

2.12 Van der Waerden numbers 

In the 1920s, B. L. Van der Waerden proved the existence of a combinatorial property 

corresponding to partitioning (coloring) sufficiently large initial intervals of integers {1,2, …, n} [17]. 

Specifically, given positive integers K, L, Van der Waerden proved that there exists a (smallest) integer n 

= W(K,L) such that whenever {1,2, …, n} is K-colored, there exists a monochromatic arithmetic 

progression of length L in {1, 2, …, n}. Ever since this result was announced it has been a problem of 

interest to determine the exact value of these numbers, or at least improve lower bound estimates (Van der 

Waerden’s existence proof gives truly enormous upper bounds). This problem has proved extremely 

difficult, and only a handful of these numbers are known. For example, for K = 2, the only known 

numbers are W(2,3) = 3, W(2,3)=9, W(2,4)=35 and W(2,5)=178. Using a specialized version of my SAT 

solver, I have determined a number of improved lower bounds for some Van der Waerden numbers. In 

particular, I have shown that W(2,6) ≥ 1132, and I hope to soon finish a calculation showing that equality 

obtains. 
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2.13 FPGAs 

FPGAs (Field Programmable Gate Arrays) or reconfigurable chips are integrated circuits that can 

be dynamically programmed to perform various functions. FPGAs are a relatively new technology that is 

a very active area of research today. The first FPGAs appeared in the mid 80s having around 1000 gates. 

The latest FPGAs have over tens of millions of gates. The basic building block in a typical FPGA is the 

LUT (LookUp Table). A typical FPGA has LUTs consisting of 4 inputs and 1 output, although some of 

the latest chips have started to use LUTs with more inputs. Accompanying the LUTs is a customizable 

interconnect that allows connecting virtually any LUT output to any LUT input. In addition to LUTs and 

the interconnect, FPGAs have external input/outputs and possibly additional logic such as RAMs, DSPs, 

registers, flip-flops, latches, adders, and so forth. By programming and combining logical components 

one can have a FPGA behave like a CPU or several CPUs, a specialized MPEG compression circuit, or 

even a SAT solver as I show in this dissertation. 
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3.2 Introduction 

The backtracking paradigm as described in section 2.7 is particularly well suited to distributed 

and parallel processing, since the associated state-space tree modeling a given problem can be partitioned 

into subtrees that are assigned to different processes for independent processing. The resulting parallel 

backtracking strategy has been widely discussed in the literature. For example, Kumar et. al. [27] describe 

a general method where processes alternate between idle and active states in what they call parallel 

depth-first search. The flowchart in Figure 3 I illustrates how parallel depth-first search is implemented 

within my backtracking framework. In particular, when a process Pi finishes processing its assigned 

subtree and becomes idle, it then is available to help a working process Pj by a splitting of Pj’s subtree 

into two subtrees that can then be worked on separately by Pi and Pj. In this way good load balancing can 

often be achieved. The BkFr backtracking framework described in this dissertation follows this depth-first 

search paradigm, and implements it in a single or multiple Beowulf cluster environment. Extending the 

computation over multiple clusters with good scalability is one of the principal aims of this research. 

Beowulf clusters are becoming common today since they bring super-computer performance at a 

fraction of the cost. The main parallel communication library for Beowulf clusters is MPI [28], which is 

widely available for intra-cluster communication. Although MPI-2 [29], Globus [30] and other libraries 

offer support for inter-cluster message passing, they lack dynamic fault-tolerant capabilities, and require a 

high level of system support. In view of these limitations, I decided to develop ICI (see Chapter 4), which 

offers MPI-like functionality with only very basic system requirements such as Unix socket API. ICI 

provides a communication framework in which multiple clusters can be connected in a peer-to-peer 

scenario, thereby enabling clusters to dynamically join and leave complex computations. ICI also 

incorporates fault-tolerant features, including recovering from communication failures by transparently 

attempting to reconnect the resources. When reconnection is not possible, ICI informs my framework so 

that work can be reassigned to other resources. ICI allows my backtracking framework BkFr to be 
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implemented over multiple clusters, and uses functions that closely resemble a (small) subset of MPI, 

thereby facilitating programming by the user. 

 

 

 

Figure 3. Implementation of parallel depth-first search within my backtracking framework 

 

Other backtracking frameworks similar to BkFr have been built or described theoretically. For 

example, the ZRAM[31, 32] framework also uses a subset of the MPI functions for communication 

within a cluster, and additional features such as check-pointing and dynamic load balancing are 

implemented. The framework has several search engines: branch-and-bound, reverse search, backtracking 

and tree size estimation. However, the ZRAM framework is limited to a single cluster, and, in particular, 

does not provide for multiple clusters to dynamically enter and (possibly) leave the computation. 

The paper by Sander[33] describes a model where a class of applications is modeled as a tree 

shaped computation. Various splitting strategies and several other strategies that help with efficient 
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parallelization are discussed. The author mentions random polling as a simple yet efficient method for 

work distribution. Karp & Zhang[34] show that random polling and randomized methods, in general, 

yield good results in a distributed environment. Here again, these implementations of the backtracking 

paradigm do not address support for multi-cluster computation and fault tolerance. 

BkFr was created to provide a scalable platform for problems in the backtracking domain. The 

framework scales well from a small cluster or even a single computer computation to a multi-cluster 

environment where clusters can dynamically join and leave during the course of the computation. The 

intra-cluster communication provided by BkFr uses a small set of MPI functions, so other communication 

libraries could easily be used instead. Also, BkFr simplifies the API interface with compute modules 

facilitating effective utilization of any number of processors. The framework also imposes no restrictions 

on the work-splitting strategies or on the heuristics used by a particular problem implementation. Its 

generality makes it a useful tool for implementing the backtracking strategy in a variety of settings, from 

single computers to multiple clusters. Moreover, BkFr offers a simple interface (less than 10 functions) 

for new compute modules, making it relatively simple for the user to adapt existing code to the BkFr 

framework. 

3.3 BkFr Overview 

A general Backtracking Framework consists of three parts: (i) the communication part that 

handles (intra-cluster) communication between the nodes of the cluster and eventually (inter-cluster) 

communication between more than one cluster, (ii) the core part that creates an interface between the 

communication and the computation library in order to effectively handle the transparency of the platform 

for the problem implementation, and (iii) the problem implementation part that addresses the problem that 

is being solved. 
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When implementing BkFr in a cluster environment, nodes in a cluster are designated as either 

workers or the master. In the multi-cluster environment, one node in the initiating cluster is designated as 

the supermaster. BkFr has five main components: 

 

• Communication 

• Shared Variable Emulator and events 

• Worker, master and supermaster framework functions 

• Path Repository for multi-cluster computation 

• Compute modules API 

 

The relationship among these components is shown in Figure 4. When implementing a new 

problem in the BkFr framework, the user only needs to write code for the compute module. This code 

amounts to implementing the set of functions required by the compute module API as described in 

Section 3.12. As shown in Figure 4, when implementing the compute module API, the user utilizes the 

Shared Variable Emulation Layer, thereby obviating the necessity to explicitly include any MPI or ICI 

code in the compute module. In Section 3.12 I illustrate part of an actual compute module for the sum of 

subsets problem.  
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Figure 4. BkFr components 

 

Figure 5. Communication options 

3.4 Inter-Cluster and Intra-Cluster Communication Libraries 

For intra-cluster communication, BkFr utilizes MPI, since it is available on a wide variety of 

clusters. However, BkFr uses only a small subset of the MPI library, so that it would not be difficult to 

develop alternate versions that use a different interface for intra-cluster communication. To better focus 

on framework functionality and to hide certain communication details, I developed a Shared Variable 

Emulation Layer (discussed further in the next section) that makes use of MPI Tags to identify a specific 
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variable or an event during send and receive operations. All MPI functions used by BkFr are non-

blocking, such as MPI_Bsend, and MPI_Iprobe. MPI_Recv is executed only if the existence of a message 

is confirmed via MPI_Iprobe. 

For applications where the preallocated buffer required by non-blocking communication presents 

a difficulty, future implementations of BkFr will provide the opportunity to utilize alternate 

communication functions such as MPI_Isend. Asynchronous broadcasting is important to the BkFr 

framework, and while not supported directly by MPI, is easy to implement with existing MPI commands 

and explicit broadcast trees. 

For reasons mentioned at the beginning of this chapter, I decided to implement my own Inter-

Cluster Interface library (ICI) for inter-cluster communication. ICI provides an MPI-like interface with 

functions corresponding to a subset of the MPI functions. Again I use non-blocking functions such as 

ICI_Bsend, ICI_Iprobe. In addition, functions for managing connections between clusters are required, 

such as ICI_Listen and ICI_Connect. The ICI environment allows for clusters to enter and possibly leave 

a computation dynamically (for example, due to a network link failure), without affecting the integrity of 

the computation. The initiating cluster for a computation contains a node that BkFr designates as a 

supermaster, and all inter-cluster communication goes through the supermaster. A node in each of the 

participating clusters is designated as the master node, which manages computations within the cluster, 

and which is the only node in the cluster that communicates with the supermaster. All other nodes are 

designated as workers (see Figure 5). If the cluster containing the supermaster node encounters a node 

failure, then (as usual in the MPI environment) the whole computation fails. However, this is not true of 

any of the other participating clusters, since the supermaster maintains a Path Repository, and will simply 

reassign the work of a failed cluster to another resource. This fault-tolerance feature was a principal 

motivation for the development of ICI. 

The standard MPI process numbering scheme within each cluster is used to accommodate intra-

cluster and inter-cluster communication. More precisely, the nodes inside the cluster have node number 
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assigned as they would using standard MPI_Comm_rank(MPI_COMM_WORLD). Node number 0 in 

any cluster is regarded as the master node for the cluster, and is the only node in the cluster directly 

participating in inter-cluster communication. Inter-cluster communication uses the negation of a 

connection number obtained from the ICI library. Hence, if the framework sends a message with a 

positive destination identifier, then the request is targeted inside the cluster, otherwise inter-cluster 

communication occurs. 

3.5 The Shared Variable emulator and event functions 

As mentioned above, in order to implement the higher-level framework functionality I decided to 

create an intermediate layer, called the Shared Variable Emulator, which hides the communication 

specific functions like MPI or ICI function calls. Not only did this allow us to better focus on the desired 

framework functionality, but it also greatly simplifies the implementation details required by users of 

BkFr. Variables are identified by a value of 0 to VAR_USER-1 for system variables and VAR_USER and 

up for user variables. Every shared variable has to be first registered with the Shared Variable Emulator. 

During the registration the user has to specify the identifier, text representation, variable type, and number 

of members (1 – single value, 0 – for auto-allocation during message receive and > 1 for a pre-allocated 

array). The user also has to specify the physical location of the variable identified by a pointer. The 

pointer is NULL for auto-allocated variables. A special type of temporary variable is used to send a value 

without retaining a local copy. The variable space is de-allocated as soon as the temporary variable is 

sent. Every variable has a set of rules attached to it that describe what to do with the value should the 

variable be updated. The special functions for updating the variables are, of course, available as well. This 

layer is not only available for the framework and its functionality, but also for the compute modules 

themselves. All of these features make it easier to implement new problems within the framework. 

My Shared Variable Emulator recognizes three types of elements: variables, variable events and 

system events (see Table 1). One variable can have more than one event associated with it, so that the 
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variable can be sent with event-dependent purposes. Variables can contain a condition validation function 

that will update variable only if the condition is true (for example, if the new value is higher that the 

previous value). The set of rules directing the distribution of the variables is sensitive to a sender-receiver 

hierarchy (supermaster, master, worker). For example, it is possible to set the rules in such a way that a 

variable is automatically broadcast throughout the cluster when it is updated by the master. 

Typically a function is called upon receiving an update to a variable/event. System events are also 

attached to variables and allow the framework to perform appropriate system actions when a node 

receives a variable. At the same time, a compute module attaches its own events to variables as 

appropriate to its problem-specific functionality (for example, see the PATH variable description in the 

section 8). 

 

Table 1. Shared Variable Emulator elements 

Type  Description 

Variable  Shared variable identification, by default no function is attached. 

VariableEvent  Function assigned to an earlier defined variable 

SystemEvent  Function defined by the system and later assigned to a variable 

 

Updating variables can trigger different actions depending on whether the variable is updated 

locally or from another node or cluster. Moreover, while the user can use SendVariable or SendVariableAs 

functions to send a variable to a specific node, these functions should be restricted to use by the 

framework in order to avoid portability problems. Some of the functions available to the user are shown 

in Figure 6. 

To illustrate how the API works I now describe two of the functions – RegisterVariable and 

LocalUpdateVariableInt. 
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Every variable in the Shared Variable Emulator has to be registered, a task that is performed by 

the RegisterVariable function. The RegisterVariable function initializes internal structures for the 

variable and sets up the initial sharing rules. The format and parameters are listed below: 

 

void RegisterVariable(char *name, int id, int num_elements, int datatype, void *ptr) 

• char *name – variable name – string used to read the variable from a data file or to display the 

variable together with its value 

• int id – variable id – integer with a value of greater or equal to VAR_USER. This is the 

identifier of the variable. 

• int num_elements – 0 or positive integer. Identifies the number of elements in the variable. If the 

variable is not an array num_elements equals 1. If num_elements equals 0 the variable is auto-

allocated whenever necessary.  

• int datatype – BKFR_INT or BKFR_CHAR. Additional types will be added in future 

implementations. 

• void *ptr – pointer pointing to the actual location of the variable. For auto-allocated variables 

this value is NULL. 
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void RegisterVariable(char *name, int id, int num_elements,  

     int datatype, void *ptr); 

void RegisterTempVariable(int *id, int num_elements,  

     int datatype, int duplicate_id); 

int SendVariable(pcompute_struct compute, int var_id, int dst); 

int SendVariableAs(pcompute_struct compute, int var_id,  

     int dst, int evt_id); 

void FreeVariable(int var_id); 

void ReallocateVariable(int i, int num_elements); 

void LocalUpdateVariable(int var_id, void *ptr, int len); 

void LocalUpdatedVariable(int var_id); 

void LocalUpdateVariableInt(int var_id, int val, int pos); 

void AddVariableFn(int var_id, proc_var_event proc, int bcast); 

void AddVariableDst(int var_id, int dst, int dst_send_as); 

void AddVariableCond(int var_id, proc_vars_cmp fn); 

void AddVariableEvent(int var_id, int evt_id,  

     proc_var_event proc); 

void AddSystemEvent(int evt_id, proc_var_event proc, int bcast); 

int GetVariableCount(int id); 

int SetVariableCount(int id, int count); 

void *GetVariablePtr(int id); 

void SetVariablePtr(int id, void *ptr); 

int GetElementSize(int id); 

int GetVariableCount(int id); 

int GetVariableSize(int id); 

Figure 6. Selected Shared Variable Emulator API Functions 

 

For example, one might invoke RegisterVariable(“SUM”, VAR_SUM, 1, BKFR_INT, 

&var_sum). 

LocalUpdateVariableInt is function for updating the shared variable by the user program. Using 

this function instead of a direct update to the variable location ensures that any rules connected with the 

variable will be followed. Such rules could be communicating the variable value to all nodes (broadcast), 

conditional update, and so forth. The first argument is the variable id, the second is the new value and the 

third is the position in the array if the variable is defined as an array. For example, one might invoke 

LocalUpdateVariableInt(VAR_SUM, 100, 0). 
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3.6 The Master-Worker Intra-Cluster Paradigm 

Within a single cluster, the framework designates a master process (typically node 0), and all 

other processes are workers. If the MPI (intra-cluster communication environment) is not detected, or 

only one process is requested, the framework defaults to the so called stand-alone mode where the 

computation module is loaded on a single computer without any external connection. The main functions 

of a worker process are to accept work from the master, to eventually report back to the master when the 

work is finished, and to respond to the master’s requests for splitting the work of other workers.  

The master’s responsibilities include managing the computation, and maintaining the worker 

status vector, where the entry for each worker is one of the values IDLE, WORKING, STUCK, SENT, 

REJECTING or DEAD. These values have the following interpretations: 

  

• IDLE – process has not been sent the problem definition yet 

• WORKING – process is working on its subtree 

• STUCK – process has finished its part of the subtree and informed the master 

• REJECTING – process is working has refused to split its subtree 

• SENT – after a worker has reported being STUCK, the master has requested another (working) 

worker to accept help from this stuck worker. The status SENT is assigned to the STUCK worker 

so the master knows that it already dealt with this STUCK worker. 

• DEAD – the worker is in the process of shutting down. The master will not try to further contact 

the worker. 

 

From the communication standpoint, the framework uses the Shared Variable Emulator 

mentioned earlier, which hides the actual communication calls behind a list of rules attached to each 

variable. Table 2 lists the variables and their properties. 
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The main transition phases of a single-cluster computation are as follows: 

 

Initialization.  

1. The master starts, and waits for a status report from each worker. 

2. Each worker reports status IDLE as soon as it starts. 

3. When the master has received the idle report from each worker, it sends out the problem 

definition and the initial path for each worker. 

4. After receiving the problem definition and its initial path, each worker begins executing the 

alternating computation/communication cycles. 

 

A worker finishes searching its part of the state-space tree. 

1. The worker informs the master that it is available as a helper. 

2. The master will choose a working worker and sends message containing the id of the available 

helper whose status is now SENT. 

3. The worker receives the id of the helper and makes an attempt to split its work. 

4. If successful the split path is sent to the helper that then restarts its computation/communication 

cycle. 

5. If unsuccessful the master is so informed and it then attempts to send the helper id to another 

working worker. 

6. If no working workers are available to accept help, the helper’s status is (re)set to STUCK. 

 

Shutdown. 

1. The master receives messages from all workers that they have finished searching their subtrees. 

2. The master updates a variable and initiates a broadcast of this variable to every worker with the 

request to shutdown. 
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3. Upon receiving this update, workers forward the update to their children in the broadcast tree, and 

shutdown. The last worker (highest id) in the cluster sends a message back to the master for a 

more graceful shutdown. 

4. The master also shuts down and the job terminates. 

3.7 The SuperMaster-Master-Worker Inter-Cluster Paradigm 

During a multi-cluster computation, some type of central control must manage the splitting and 

the distribution of the problem onto multiple clusters. Such functionality is a natural extension to the 

master role, and is given to a node that I call the supermaster. In addition to its responsibilities for 

managing the work of other clusters, the supermaster also performs the usual tasks of a master node with 

respect to its own cluster. The supermaster uses a subsystem called the Path Repository (see Section 3.11) 

where it maintains the status of every possible path in the state-space tree. The supermaster also maintains 

a clusters status vector, which contains a status of every cluster currently participating in the computation. 

Similar to the single cluster worker status vector, entries in the cluster status vector have one of the values 

IDLE, WORKING, STUCK, REJECTING or SENT. The interpretations of each of these values are as 

follows: 

 

• IDLE – cluster has not been sent the problem definition yet 

• WORKING – cluster is working on its subtree 

• STUCK – cluster has finished its part of the subtree and informed the master 

• REJECTING – cluster is working but refusing to split its subtree 

• SENT – after a cluster reported being STUCK, the supermaster has requested another working 

cluster to accept help from this stuck cluster. The status SENT is assigned to the STUCK cluster 

so the supermaster knows that he already dealt with this STUCK cluster. 
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Initially, the supermaster reads a problem definition and initializes its own cluster. When a cluster 

joins the computation, the supermaster sends the joining cluster the problem definition and an initial path. 

If there are no more pre-split initial paths to be sent, the supermaster asks another cluster to split its path 

and send it back. The supermaster then records the split path in the Path Repository and forwards it to the 

idle cluster. The similar situation happens when any cluster finishes its assigned subtree. A cluster has an 

option to refuse to split its path, in which case it so informs the supermaster. The supermaster, as with a 

single cluster helper scheme, makes a note of this (changes the status of the cluster in the clusters status 

vector to REJECTING) and asks another working cluster to accept the split path. The computation ends 

when all clusters remain in the STUCK status. At this point the supermaster sends a request to every 

connected cluster to shut down. 

3.8 BKFR Shared Variables 

In this section I describe the shared variables that control the framework (see Table 2). The 

PATH variable plays a special role in the system. The compute module defines the PATH variable instead 

of the framework. Since every compute module expresses the PATH in a different way, this variable 

cannot be predefined by the framework. My solution is to let compute module define the PATH variable 

and attach framework events to it. Then the framework uses events rather than actual variable to perform 

such tasks as initializing a new worker, sending a helper a new path, and so forth. 

In Table 2 only communication properties for variables that require them are listed. When the 

communication properties are left blank it means that no further communication actions are taken. The 

broadcast communication is always non-blocking and initiated by the master.  
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3.9 Single cluster shared variables 

BkFr maintains the variable VAR_STATUS in the worker portion of the code, and uses the 

variable to send updates to the master whenever the status of the worker changes. Some examples of the 

status of a worker and the concomitant value taken by VAR_STATUS include: 

• the worker was just initialized and is ready to accept the problem definition and the initial PATH 

(STATUS_IDLE) 

• the worker has started a computation (STATUS_WORKING) 

• the worker has finished the work associated with it’s subtree (STATUS_STUCK) 

• the worker has shutdown (STATUS_DEAD) 
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Table 2. BkFr Shared Variables 

(* identify variable defined and assigned to the function by the compute module) 

Worker: 

Variable / direction Event Communication 
properties 

Attached Function 

VAR_STATUS / in  Broadcast No function attached 
VAR_STATUS / out  To master -- 
VAR_HELPER / in EMPLOY_HELPER  BkFr_EmployHelper 
VAR_HELPER / out REFUSE_HELPER To master -- 
* / in INIT_PATH Broadcast InitPath 
* / in INIT_HELPER_PATH  InitHelperPath 
-- / out INIT_HELPER_PATH To helper 

(worker/master) 
-- 

Master: 

Variable / direction Event Comm. 
props 

Attached Function 

VAR_STATUS / in   BkFr_WorkerStatusUpdate 
VAR_STATUS / out  Broadcast -- 
VAR_HELPER / in REJECT_HELPER  BkFr_RejectHelper 
VAR_HELPER / out EMPLOY_HELPER  -- 
VAR_CLUSTER_STATUS 
/ in 

  No function attached 

VAR_CLUSTER_STATUS 
/ out 

  -- 

* / in INIT_PATH Broadcast No function attached 
* / in INIT_HELPER_PATH  BkFr_ClusterHelperPath 
-- / out INIT_HELPER_PATH  -- 
 

Multi-cluster (supermaster and non supermaster): 

Variable / direction Event Comm. 
Props 

Attached Function 

NEW_CLUSTER_STATUS / in   BkFr_NewClusterStatus 
* / in INIT_CLUSTER_PATH  InitClusterPath 
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Supermaster: 

Variable / direction Event Comm. 
Props 

Attached Function 

VAR_CLUSTERS_STATUS / 
in 

  No function attached 

VAR_CLUSTER_STATUS / in   BkFr_ClusterStatusUpdate 
-- / in CLUSTER_HELPER_PATH  No function attached 
 

Non supermaster: 

Variable / direction Event Comm. 
Properties 

Attached Function 

VAR_CLUSTERS_STATUS / 
out 

 DST=uplink -- 

VAR_HELPER / in CLUSTER_SPLIT_TREE  BkFr_ClusterSplitTree 
1variable defined and assigned to the function by the compute module  

 

When the master determines that the entire computation has completed, it updates every worker’s 

VAR_STATUS by initiating a broadcast of the value STATUS_DIE for this variable to all the processes. 

The shared variable VAR_HELPER contains the id of a worker that is available to help other 

workers with their subtrees. The master uses the event called EMPLOY_HELPER with the attached 

variable VAR_HELPER to ask a working worker to split its subtree. If the worker accepts help, it splits 

its subtree and sends a portion of it to the worker identified by the VAR_HELPER variable. If the worker 

refuses to split its tree, it replies with an event REFUSE_HELPER, and an attached variable 

VAR_HELPER containing the previously received id contained in EMPLOY_HELPER. 

The PATH variable is not directly registered by the framework, but relies instead on the compute 

module to register it. The framework registers events that the compute module is expected to attach to the 

PATH variable via the events INIT_PATH and INIT_HELPER_PATH. The event INIT_PATH is used to 

initialize the worker, which automatically creates its assigned path of the covering set based on its own id. 

The event INIT_HELPER_PATH initializes the worker’s path without adding the covering set. 
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3.10 Multi-cluster extension of shared variables 

In a multi-cluster computation, the status of the clusters is kept by the supermaster in the variable 

VAR_CLUSTERS_STATUS. The value of VAR_CLUSTERS_STATUS is initialized as 

STATUS_WORKING and is changed to STATUS_DEAD if all connected clusters are shutdown. The 

variable NEW_CLUSTER_STATUS is used by supermaster to inform a connected cluster to shutdown in 

the end of the computation. 

In the multi-cluster setting, there are two additional events attached to the PATH variable 

registered by the compute module. These events are INIT_CLUSTER_PATH for initializing PATH for 

the whole cluster by the supermaster, and CLUSTER_HELPER_PATH for sending PATH from one 

cluster to the supermaster after the supermaster has requested to split the subtree associated with PATH. 

3.11 Path Repository 

The Path Repository is the critical component of multi-cluster computations, since it maintains 

the status of every possible path in the covering set. In the current version there is only one Path 

Repository, and it is maintained by the supermaster. The Path Repository allows the supermaster to find a 

path that is not assigned to anyone, or, for fault tolerant purposes, to find that portion of the state-space 

tree that was previously assigned to a failed cluster so that it can be assigned to another resource.  

When a cluster gets stuck the supermaster has two options for assigning additional work to the 

cluster. First, if the Path Repository contains unsearched paths, the next available unsearched path is sent 

to the stuck cluster. If no unsearched paths exist, then the supermaster asks another cluster to split its 

subtree into two parts, one of which will be sent to the stuck cluster via the worker (helper) → master → 

supermaster → master (stuck cluster) communication chain. 

37 



3.12 Compute modules API 

In order to create a flexible environment in which new problems can be very easily added to the 

library by the user, I have designed BkFr so that the modules are required to implement only a small set 

of functions (see below). The compute modules are loaded in the form of a shared library, so that there is 

no need to recompile the framework itself when adding a new module. 

The functions are split into three groups. The first group (basic computation) is mandatory the 

other two are required only if additional functionality is required. For example, if no multi-cluster 

computation is expected, then the user does not have to implement Path Repository or any other functions 

connected with the multi-cluster computation. 

 

Basic computation 

• proc_init_compute – initializes the compute module. 

• proc_search_tree – hands the control over to the alternating compute/communication cycle. It is 

expected that the compute module will return control after reasonable amount of time so the 

framework could check for messages from other processes. 

• proc_get_path_var – returns the id of the variable in which the module stores the PATH variable. 

• The compute module must register the path-description variable and attach it to the event 

INIT_PATH using the function AddVariableEvent. The third parameter of AddVariableEvent is a 

name of a function that will be called upon receiving the INIT_PATH event. 
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Helpers 

• proc_employ_helper – this function is called from the framework to request the compute module 

to split its current subtree, update PATH, and hand over a portion of the split subtree to another 

(idle) worker. The new path is expected to be in another registered variable. 

• The compute module must attach a path-description variable to the INIT_HELPER_PATH event 

using the function AddVariableEvent. The third parameter of AddVariableEvent is a name of a 

function that will be called upon receiving the INIT_HELPER_PATH event. 

 

Multi-cluster computation with Path Repository 

• proc_get_init_path – the compute module is expected to return an initial path, that is, a path 

representing the entire subtree to be searched. 

• proc_split_path – the compute module will split the subtree associated with the supplied path 

into two subtrees. 

• proc_compare_path – by comparing two paths the compute module will return one of 5 possible 

answers – 1) the paths are equal, 2) path 1 is subsumed by path 2, 3) path 2 is subsumed by path 

1, 4) path 1 is further in the tree than path 2 and 5) path 2 is further in the tree than path 1. 

• The compute muddle must attach path-description variable to the INIT_CLUSTER_PATH event 

using the AddVariableEvent function3. The third parameter of AddVariableEvent is a name of a 

function that will be called upon receiving the INIT_CLUSTER_PATH event. The framework 

itself initiates a broadcast of the PATH variable automatically to all nodes. 

• The compute module must attach a path-description variable to the 

CLUSTERS_HELPER_PATH event using the AddVariableEvent function3. The third parameter 

of AddVariableEvent is a name of a function that will be called upon receiving the 

CLUSTERS_HELPER_PATH event. 

                                                      

3 the compute module is not required to implement these functions. 
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3.13 Teaching component of BkFr 

It is important that the CS undergraduate be exposed to the message passing parallel computing 

paradigm as supported by MPI. However, often the undergraduate curriculum is too tightly constrained to 

allow for a full course devoted to this topic. Also, since learning MPI imposes an additional requirement 

on students and teachers alike, the message passing parallel computing concept might be skipped due to 

its complexity and background requirements. With these things in mind I have created a template library 

based on BkFr to facilitate teaching message passing parallel computing modules that can be easily 

integrated into the standard upper-division undergraduate (or first year graduate) course in algorithms. My 

focus has been on developing MPI programming modules that can be generated using a general parallel 

backtracking framework that I have developed, but I have also generated modules outside of this 

framework. The template library not only simplifies the material for the students, but also eases the 

burden on the instructor without compromising the concepts themselves. This library will eventually be 

available on-line. 

Most of my MPI programming templates involve the backtracking design strategy. There are 

several reasons for focusing on the backtracking (and, more generally, on parallel depth-first search) for 

my template library. First of all, backtracking is one of the major design strategies that are typically 

included in an algorithms course. Second, backtracking problems are well suited to parallelization using 

the fundamental master-worker parallel design strategy. Moreover, parallel backtracking illustrates nicely 

yet another fundamental concept, namely, the alternating computation/communication cycle paradigm. 

Third, there are important problems with many applications, such as the satisfiability (SAT) problem for 

Boolean expressions, for which backtracking is the most commonly used design strategy. Indeed, there is 

a very active research community devoted to designing ever more efficient SAT solvers, and a large suite 

of benchmark problem instances is available on which to test solutions. Thus, the student can be exposed 

and gain insight into leading-edge research on SAT 
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I have tested my template library in the two quarter upper-division course in algorithms that is 

required for all CS majors. The students were very enthusiastic about including this introduction to the 

message passing parallel programming environment as part of the algorithms course. In the first quarter, 

with the aid of a template the students developed a sequential SAT solver using various heuristics to 

bound the search, and tested their results against a given standard suite of benchmark problems. Then in 

the second quarter, using my template library they developed a parallel SAT solver and compared it to the 

results obtained with their sequential solvers. In a semester course, this scenario could still be followed by 

assigning the sequential SAT solver problem early (or another problem of the instructor’s choice), and the 

parallel SAT solver problem toward the end of the term. In any case, with the aid of the template library, 

it is quite feasible to give the student a solid introduction to the message passing parallel paradigm, but at 

the same time not spending more time than typically devoted to one of the many usual topics included in 

the standard upper-division algorithms course.  

In reference [35] there is a chapter devoted to message passing parallel algorithms, including 

high-level pseudocode for basic process communication functions such as synchronous and asynchronous 

send and receive instructions. An appendix in [35] includes actual MPI code for some of the algorithms 

given in pseudocode within the text. Based on in-class experience, the treatment in [35] is adequate for 

those wishing to introduce MPI programming as one topic amongst many in an algorithms course. For 

those giving an entire course on the subject, there are now some good books devoted to teaching these 

topics ([36],[37]).  

Template-based learning approaches in other programming contexts have been used in the past 

with success. To give some examples, in [38] a dynamic analysis framework for analyzing “fill-in-the-

gap” Java exercises is discussed. The concept of “example-based” (Pascal) programming is presented in 

[39], and in [40] a project involving template-based programming in chemical engineering is described.  
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To illustrate my template-based MPI programming library, I focus on one template module, namely SAT. 

However, I have also developed modules for a number of other backtracking problems (sum of subsets, n-

Queens, and so forth), as well as numerical problems such as matrix multiplication. 

 

Table 3. Description of the provided functions 

Provided function Description 

read_cnf(FILE *fin); Read in CNF file in DIMACS format 

init_variables(); Initialize all variables to unknown 

print_solution(); If a solution was found this function prints it in the standard format 

print_unsatisfiable(); If no solution exists this function reports it in the standard format 

check_all_clauses(); Check all the clauses given the current assignment 

Returns SAT if the current assignment satisfies the formula, or 

UNSAT if a contradiction was found or UNDECIDED if some 

unsatisfied clauses are left. 

 

3.13.1 Sequential Version 

As mentioned in the introduction, students are first assigned the problem of generating a 

sequential SAT solver. To accelerate the student’s ability to create their own SAT solver, I generated a C 

program template for the sequential version that included the functions described in the Table 3. An 

example of the template code given to the students is given in Figure 7. 

typedef enum { 

   NOT_ASSIGNED, 

   TRUE, 

   FALSE 

} t_variable; 
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typedef enum { 

   UNDECIDED, 

   SAT, 

   UNSAT 

} t_sat; 

 

/* remember where each clause starts */ 

int clauses_array[MAX_CLAUSES]; 

/* all clauses delineated by zeros */ 

int all_literals[MAX_LITERALS];  

/* variable assignment */ 

t_variable variables_array[MAX_VARIABLES+1];  

/* number of variables, clauses */ 

int variables, clauses;  

 

t_sat backtrack() { /* return SAT if the satisfiable assignment is found, UNSAT otherwise */ 

/* FIXME */ 

} 

 

int main() { 

    int err = read_cnf(stdin); 

    /* check for error during read_cnf */ 

    if (err != 0) return (err); 

    /* assign all variables NOT_ASSIGNED */ 

    init_variables();  

    if (backtrack() == SAT) print_solution(); 

    else print_unsatisfiable(); 

    return 0; 

} 

Figure 7. Example of part of the template function in the sequential version 

The student’s main responsibility is to write the backtracking portion utilizing various heuristics. 

In order to aid a student with the development environment, the following “quick start” is given to the 

student (see Figure 8). 

As indicated by Figure 8, the students will then complete their SAT solvers by fixing the 

template, compiling, executing, and checking their results using the verifier. Fixing the template involves 

writing a backtracking function, as well as implementing a heuristic to determine the branching order in 

the associated state space tree. The student is asked to implement three different versions based on the 

following orderings of the variables. 
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a) Order the variables by their indices. This is a static ordering, that does not depend on the 

particular problem instance. 

b) Order the variables based on the number of clauses they appear in at the start of the program. This 

heuristic is problem dependent, but the ordering is fixed (static) throughout the computation. 

c) Order the variables dynamically by choosing the next variable based on the number of remaining 

unsatisfied clauses each variable is in. 

 

The reader is referred to Chapter 18 in [35] for further details.  
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Quick start: 

1) log in to gatekeeper (or your favorite UNIX machine) 
gatekeeper ~> 

2) download the skeleton source code 
gatekeeper ~> wget http://www.ececs.uc.edu/~mkouril/class_sat/testsat.c 

3) download the verifier 
gatekeeper ~> wget http://www.ececs.uc.edu/~mkouril/class_sat/verifier.c 

4) download a few cnf examples 
gatekeeper ~> wget http://www.ececs.uc.edu/~mkouril/class_sat/uf20/uf20-01.cnf 

gatekeeper ~> wget http://www.ececs.uc.edu/~mkouril/class_sat/uf20/uf20-02.cnf 

5) compile the skeleton 
gatekeeper ~> gcc testsat.c -o testsat -Wall -g 

6) compile the verifier 
gatekeeper ~> gcc verifier.c -o verifier 

7) test the skeleton 
gatekeeper ~> ./testsat < uf20-01.cnf 

s SATISFIABLE 

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 

8) test the skeleton with the verifier 
gatekeeper ~> ./testsat < uf20-01.cnf | ./verifier uf20-01.cnf 

c~~ verifier: ERROR some clauses left (v lines don't define an implicant) 

c~~ verifier: ERROR: Original clause left: c~~ verifier: -5 -8 -15 0 

As you can see the skeleton returns the wrong solution due to the missing backtracking function. Please 

come up with your own backtracking function. 

Once your backtracking function works correctly the output from the verifier will change to 
c~~ verifier: OK: SATISFIABLE claimed, and implicant is correct 

Figure 8. Quick start given to the students 

 

 

3.13.2 Parallel Version 

In the parallel version I utilize the master-worker paradigm, where the master process hands out 

tasks (initial paths in the state space tree) to the workers. The master (node with MPI rank=0) 
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precomputes a fixed depth covering set of initial paths, (see Figure 9), and hands out the next unused path 

to any worker node currently idle. Typically the covering set has more leaf nodes than the number of 

nodes involved in the parallel computation.  

 

 

Figure 9. Typical covering set of fixed depth 3 for a suitable heuristic. An initial path x3, x 10, x 1 is 

indicated. 

 

A worker (node with non-zero MPI rank) upon receiving an initial path from the master starts the 

backtracking function that alternates between computation (backtracking) and communication. The 

communication portion is simply checking for a message sent by master indicating that someone already 

found a solution and the worker can shutdown. Upon receiving such a “die” message, the worker then 

propagates this message to its children in a user-defined broadcast tree so that eventually the message is 

received by all processes. This user-defined asynchronous broadcast is used instead of the MPI provided 

synchronous broadcast that locks all nodes. The MPI synchronous broadcast function cannot be used in 

this context, since the state (idle or working) of individual workers is not known in advance. The master 

initiates the user-defined asynchronous broadcast of a “die” message after exhausting the covering set and 

receiving an “I’m done” message from everyone, or upon receiving an “I found a solution” from a 

worker. In order to focus on parallelization issues, the template for the parallel version includes code for 
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the heuristic that orders variables before each decision based on the product of the number of remaining 

clauses the variable is in positively and negatively. However, the code for this heuristic is straightforward, 

and was actually part of the student’s responsibility in the sequential version. Figures 4 and 5 show 

portions of the code from the parallel version of the template. 

The template provided to the students also includes a “stand alone” configuration that allows the 

student to debug the basic backtracking portion of their code in a purely sequential setting (i.e., 

independent of any MPI code). This stand alone feature allows them to verify their programming logic 

before introducing the parallelism provided by MPI. When proceeding to the parallel version, the 

template is missing MPI calls that they are required to fill in. The places where MPI is missing are clearly 

marked with a comment (FIXME), and even the number of recommended MPI function calls is provided 

(e.g., /* FIXME MPI, 2 */ means that two MPI statements are required). Similar to the quick start given in 

Figure 2 for the sequential version, I provide the student with a quick start for the parallel version that 

reflects the implementation details of my current MPI environment.  
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. . . 

while(running==1) { 

  if (idle == 0) { 

     /* worker received task to work on */ 

     t_sat result=backtrack(myid, p); 

     idle=1; 

     switch (result) { 

     case SAT: { 

       /* SAT solution was found */ 

       /* get solution from the SAT solver */ 

       /* FIXME MPI, 0 */ 

 

       /* send it to the master */ 

       /* FIXME MPI, 1 */ 

 

       /* send idle message to the master */ 

       /* FIXME MPI, 1 */ 

     } break; 

. . .   

Figure 10. A portion of the worker code template with missing parallel code 

 

 

Remarks: The template I generated for extending the sequential SAT version to the parallel version 

actually used a simplified version of a general backtracking framework (BkFr). In particular, BkFr 

includes the possibility for idle workers to request more work by splitting the state space subtree assigned 

to another worker.  
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t_sat backtrack(int myid, int p) /* return SAT if the satisfiable assignment is found, UNSAT 

otherwise */ 

{ 

 while(1) { 

  /* communication cycle: 

   * check to see whether it is possible to end the computation 

   * prematurely – i.e., whether an MPI message with  

   * MPI_TAG = DIE has been received */ 

#ifndef STANDALONE  //run parallel code 

  int flag=0; 

  MPI_Status status; 

  MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &flag, &status); 

  if (flag == 1) { 

     if (status.MPI_TAG != DIE) {  

       fprintf(stderr, "Worker(%d): Unexpected message\n", myid); 

       exit(1); 

     } 

     MPI_Recv(NULL, 0, MPI_BYTE, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status); 

 

     /* tree like continuation of  

        broadcast of DIE message */ 

     /* FIXME MPI, 2 */ 

 

     /* if I'm the last processor  

        send message back to the master */ 

     /* FIXME MPI, 1 */ 

     return UNDECIDED; 

  } 

#endif 

 /* computation cycle: purely sequential code */ 

 /* FIXME MPI, 0 */ 

 } 

} 

Figure 11. Template version of the parallel backtracking function executed by workers 
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3.14 Evaluation 

3.14.1 The Sum of Subsets Problem module 

In order to test the functionality of BkFr, I first ran a straightforward implementation of the 

optimization version of the sum of subsets problem. Recall that in the sum of subsets problem a set of 

numbers S and a number sum are given, and a smallest subset A of S whose elements add up to sum is 

sought. The input data to the sum of subsets problem module is an array of numbers representing S, and 

the number sum. The output (PATH) corresponding to a solution A is a 0/1 array representing the 

characteristic vector of A.  

The sum of subsets compute module reads the numbers from a file on the master/supermaster and 

distributes them to the workers/masters. The module registers variables called NUMBERS, SUM, PATH 

and bounding variable VAR_BOUND. Variable PATH could be updated by two events – initial path 

setup (in the beginning of the computation where the whole cluster is stuck) or by receiving path from 

another computer after previously finishing its subtree. 

The bounding variable is expressed as the length of the best solution found so far. It is a 

controlled variable with a special function attached that checks whether the local copy is better that the 

copy received from the external source (worker, master) or updated by the local computation. If the value 

is indeed better, then the framework will initiate the sharing of this variable with the rest of the cluster.  

 

The compute module registers the following variables: 

• VAR_PATH – array of integers (0/1) 

• VAR_NUMBERS – array of integers 

• VAR_SUM - integer 

• VAR_BOUND (with MIN_cmp_fn) - integer 

 

50 



Basic computation 

• proc_init_compute – allocates necessary internal variables 

• proc_search_tree – in steps searches sequentially through the tree keeping the initial path intact. 

• proc_get_path_var – returns VAR_PATH 

• INIT_PATH function – creates initial covering set for all nodes depending on the number of the 

nodes in the cluster. Each node will have path as the starting point to search tree function. 

 

Helpers 

• proc_employ_helper – splits the path effectively dividing the search space by two and extending 

the initial path by one. It returns the the newly created second half of the path  

• INIT_HELPER_PATH function – Receives VAR_PATH and sets up the starting point for the 

compute cycle. 

 

int module_init (pcompute_struct _compute, int *argc, char **argv[]) 

{ 

   compute->proc_init_compute =   sumset_InitCompute; 

   compute->proc_search_tree =    sumset_SearchTree; 

   compute->proc_get_path_var =   sumset_GetPathVar; 

   compute->proc_employ_helper =  sumset_EmployHelper; 

 

   /* Path Repository */ 

   compute->proc_get_init_path =  sumset_GetInitPath; 

   compute->proc_split_path =     sumset_SplitPath; 

   compute->proc_compare_path =   sumset_ComparePaths; 

 

   compute->proc_register_variable( 

                 "PATH", VAR_PATH, 0, BKFR_INT, NULL); 

   AddVariableEvent(VAR_PATH,  

          INIT_PATH, sumset_InitialSetupTree); 

   AddVariableEvent(VAR_PATH,  
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          INIT_HELPER_PATH, sumset_HelperSetupTree); 

   AddVariableEvent(VAR_PATH,  

          INIT_CLUSTER_PATH, sumset_HelperSetupTree); 

   AddVariableEvent(VAR_PATH,  

          CLUSTERS_HELPER_PATH, sumset_HelperSetupTree); 

 

   compute->proc_register_variable( 

       "BOUND", VAR_BOUND, 1, BKFR_INT, &c_wrk_opt_len); 

   AddVariableCond(VAR_BOUND, MIN_cmp_fn); 

   *(int*)GetVariablePtr(VAR_BOUND) = INT_MAX; 

 

   compute->proc_register_variable( 

       "NUMBERS", VAR_NUMBERS, 0, BKFR_INT, NULL); 

   AddVariableFn(VAR_NUMBERS, sumset_ReceivedNumbers, 1); 

   compute->proc_register_variable( 

       "SUM", VAR_SUM, 1, BKFR_INT, &c_sum); 

} 

 

/* PATH REPOSITORY */ 

int sumset_GetInitPath(int *var_id) 

{ 

   int i = GetVariableCount(VAR_PATH); 

   compute->proc_register_temp_variable( 

         var_id, i, BKFR_INT, VAR_PATH); 

   return 0; 

} 

 

int sumset_SplitPath(int var_id, int *dst_var_id, int sup_var_id) 

{ 

   int i = GetVariableCount(var_id); 

   int *current_path, *new_path; 

   compute->proc_register_temp_variable( 

          dst_var_id, i, BKFR_INT, var_id); 

   i++; 

   SetVariableCount(var_id, i); 

   SetVariableCount(*dst_var_id, i); 
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   current_path = GetVariablePtr(var_id); 

   new_path = GetVariablePtr(*dst_var_id); 

 

   /* current node gets 1 

    * helper node gets 0  

    */ 

   new_path[i-1]      = 0; 

   current_path[i-1]  = 1; 

   return 0; 

} 

 

int sumset_ComparePaths(int var_id1, int var_id2) 

{ 

   int *path1 = GetVariablePtr(var_id1); 

   int path1_len = GetVariableCount(var_id1); 

   int *path2 = GetVariablePtr(var_id2); 

   int path2_len = GetVariableCount(var_id2); 

   int i = 0; 

 

   while (1) { 

      if (i==path1_len) { 

        if (i==path2_len) return 0; /* equal */ 

        return 1; /* path 2 within path 1 */ 

      } 

      if (i==path2_len) return -1; /* path 1 within path 2 */ 

      if (path1[i] > path2[i]) return 2; 

                             /* path 1 comes after path 2 */ 

      if (path1[i] < path2[i]) return -2; 

                             /* path 1 comes before path 2 */ 

      i++; 

   } 

   return 0; 

} 

Figure 12. Example of the actual code for the sum of subsets compute module 
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Multi-cluster computation with Path Repository 

• proc_get_init_path – returns an empty array variable 

• proc_split_path – splits the VAR_PATH into VAR_PATH and a new variable 

• proc_compare_path – compares two variables (paths) 

• INIT_CLUSTER_PATH function – the same as INIT_HELPER_PATH 

• CLUSTERS_HELPER_PATH function – the same as INIT_HELPER_PATH 

 

3.14.2 SAT modules implementation 

In view of its fundamental position in the domain of NP-complete problems, the SAT problem 

has received much attention in the literature. In fact, there is an annual conference International 

Conference on Theory and Applications of Satisfiability Testing devoted entirely to issues relating to the 

SAT problem, including the development of SAT solvers. The best SAT solvers use a variety of 

heuristics, resolution methods such as Davis-Putnam [41], lemmas, and complicated structures in order to 

speedup the search. Two SAT solvers, SBSAT [42] and zChaff[43], were added to BkFr as compute 

modules. In order to implement these solvers in BkFr, I had to add the following functions added to each 

of them: 

a) create initial covering set – selecting first few variables 

b) splitting function – for splitting the current PATH and handing part of it to a different worker 

c) path comparison 

d) periodic calling of the framework – so the framework can check for messages from other nodes 
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3.14.3 Teaching Template Evaluation 

Using template modules I have developed a method of introducing the message passing parallel 

programming paradigm as a topic to be included in the standard upper-division algorithms course. One 

particularly important module consists of a sequential SAT solver, together with a parallel version created 

using a master-worker parallel design strategy and implemented using MPI on a Beowulf cluster. The 

SAT programming assignment has been used in several classes so far, with good success. Students really 

appreciate the opportunity to be exposed to message passing parallel programming. Another positive 

aspect to the SAT solver problem is the availability of standard I/O formats, as well as extensive 

benchmarks for evaluating code performance. As an additional incentive, I ran a competition of the 

correct solvers on a set of benchmarks, where the fastest solver received extra bonus points. This emulates 

a scenario that exists in the SAT solver research community in which an annual competition is run to 

determine the currently fastest SAT solver based on a test-bed of problem instances. The student is 

thereby given an insight into the current state of the art in this important topic.  

3.15 Performance Results 

In order to determine the performance characteristics of the backtracking framework, I first 

implemented the sum of subsets problem and found that it scaled well over multiple clusters. I then 

implemented the SAT problem using two existing SAT solvers, and found similar scalability results.  

 

Table 4. Single cluster computation performance 

 Standalone 8 node cluster 16 node cluster 
Sum of subsets 
bkfr03.sumset 

5:28 0:56 0:42  
 

SAT SBSAT  
vdw_178_2_5.cnf[44] 

14:19 3:12 1:49 

SAT zChaff 
longmult10.cnf 

4:32 0:49 0:33 
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Table 5. Multi cluster computation performance 

 Single node 16 node cluster 16+32 node clusters 
Sum of subsets 
bkfr03x.sumset 

1:13:27 9:04 3:36 

SAT SBSAT  
slider_120_unsat.cnf 

1:07:13 7:14 5:06 

SAT zChaff 
slider_100_unsat.cnf 

50:59 4:13 2:35 

 

The performance data were obtained on a cluster with dual CPU AMD MP-1700 with 1GB RAM. 

The 2nd cluster is dual 450MHz Pentium III with 1GB RAM. The number of nodes is the number of 

processes participating in the computation. In general one process = one processor. 

 

3.16 Summary 

I have shown that the BkFr framework can be used as a general platform to solve problems 

amenable to parallel backtracking on both the single cluster and the multiple cluster environments. 

Performance data for the problems that I have implemented to date indicates near linear scaling (on 

average) within one cluster or two clusters. When implementing new problems in the BkFr framework, 

the compute module plays the main role in determining how fast the problem will be solved. The 

performance numbers illustrate good speedup for the algorithms employed, but leave open the question of 

finding more clever algorithms. One of my goals has been to design a platform with sufficient generality 

that new algorithms for a given problem could be readily adapted to the BkFr framework. Another goal 

was to design a flexible framework allowing resources (clusters) to be added to an ongoing computation, 

thereby providing a robust computational platform for lengthy computations. The fault tolerant and Path 

Repository features of BkFr allow for unexpected disconnects of the joined clusters without a major 

impact on the computation.  
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While my performance runs show that BkFr provides good speedup on average for the problems 

considered, as with parallel depth-first search in general, some instances might not yield any speedup due 

to the skewed nature of the instance. For example, I encountered SAT instances that took longer than 

sequential version, which was probably due to a screwed heuristic, and the fact that I utilized limited 

lemma sharing in the version currently implemented. I hope to enhance my implementation of SAT in 

future work. I also are considering looking into a threaded environment that would replace polling using 

two threads. The first thread would wait for messages and the second thread would handle the 

computations. Another direction for future work might be the decentralization of the supermaster function 

to eliminate this single point of failure. This decentralization could by done by replicating changes in the 

Path Repository to a backup location.  
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4.2 Introduction 

When connecting multiple clusters there are two main paradigms and concomitant programming 

environments, static versus dynamic. In the static environment, all participating processes are captured at 

the outset. In the dynamic environment, processes can join and leave during the execution of the 

computation. Using the Inter-Cluster Interface (ICI) library that I have developed, I have applied this 

dynamic environment to computationally intensive, hard problems (such as NP complete problems) with 

good speedup results. In particular, I have parallelized some SAT solvers, including SBSAT [42, 45] and 

zChaff [43], as well as my own special solver. The latter solver was targeted to determine exact values or 

improved lower bounds for van der Waerden numbers W(K,L) (see Chapter 5). Amongst other results, I 

have almost doubled the previously known lower bound on W(2,6) from 696 to 1132. ICI together with 

my backtracking framework BkFr is being used in an attempt to establish that this bound is sharp. The 

computation is estimated to take several months, but it is critical that I use all available computing 

resources, including using heterogeneous clusters dynamically. 

There is a large problem domain for which it is extremely advantageous to have both 

interoperability and dynamic cluster participation available to the programmer. Grid computing and the 

heterogeneity of the current grid make yet another case for having an interoperable way to dynamically 

connect running MPI programs. Current MPI standards do not explicitly support interoperability 

(communication between two different MPI implementations). On the other hand, the IMPI Standard, 

while it supports interoperability, is limited to the static environment.  

In the next section I summarize the existing implementations available for static and dynamic 

message passing programming environments. I then introduce my methods of solving the interoperability 

issue in the dynamic setting and discuss the performance data that I obtained. 

60 



4.3 Current Static and Dynamic Message Passing Environments 

In my scenario I assume that the applications I wish to connect are started independently, as 

opposed to being spawned from the currently running task. In other words, there is no previous 

connection between the running tasks. I also assume that the applications are compiled by different MPI 

implementations, therefore making it impossible to directly use the existing functions introduced in MPI-

2. In Table 6 I list the dynamic/interoperability status of the current standards. Although using compatible 

MPI implementations on both ends of intercluster communication is an option, usually every cluster has 

an optimized MPI implementation installed and compatible implementations might not be available. The 

user should not be expected to recompile MPI implementation on each cluster. My intercluster interface 

library is small and provides the bare minimum for the intercluster communication, so that applications 

can take advantage of the optimized intracluster communication. ICI does not include collective 

communication functions at this time, since many applications, including those discussed in this 

dissertation, do not require this functionality. 

 

Table 6. Dynamicity and interoperability supported by the current MPI Standards 

Standard Participating nodes Interoperability status 

IMPI Static Interoperable 

MPI-1 Static Non-interoperable 

MPI-2 Dynamic Non-interoperable 

Not currently available Dynamic Interoperable 

 

Spreading static MPI-1 computations among multiple clusters without changing the source code 

has been addressed by PACX-MPI [46], PLUS [47], MPI-Glue [48] and MPICH-Madeleine [49]. The 

number of nodes for such computation is statically preallocated and no new dynamic connections are 

61 



possible. The project StaMPI [50] also allows the spawning of new processes, but does not allow 

connecting independent processes. Additional projects touching on the subjects are MagPIe [51] and 

MPICH-G2 [52]. None of these projects cover dynamic connections of independent MPI 

implementations.  

Interoperable MPI (IMPI) [10] addressed the problem of interconnecting different MPI implementations, 

but it is done statically on a group of preallocated nodes without the possibility of connecting additional 

nodes or clusters using the IMPI protocol.  

Relative to the dynamic environment, MPI_Connect [53] allowed dynamic connections between 

clusters by forming inter-communicators. This project had similar goals as my project, but it is no longer 

supported. MPI_Connect implementation was based on MetaComputing system SNIPE. MPI_Connect 

was succeeded by Harness/FT-MPI [54] which is a light-weight MPI implementation with a focus on 

fault tolerance, which retained the dynamic communication capabilities from MPI_Connect. Harness/FT-

MPI has its own MPI implementation, and therefore is not interoperable. 

4.4 The MPI Standards Needed for My Solutions 

I now briefly describe the parts of the MPI Standards necessary to implement my solutions given 

in section 4.5 (see the MPI Standards [5, 6] for additional details). MPI-2 extends the existing MPI-1 

Standard by adding a number of new functions. In particular, communication functions were added 

between two sets of MPI processes that do not share a communicator, but no standard was mandated for 

interoperable communication. However, the new functions for establishing communication, such as 

MPI_Comm_connect and MPI_Comm_join, have a few associated specifics that are not 

interoperable, such as port names, MPI_Info parameters, and communication protocols. Thus, 

implementers must decide how to communicate (no protocol specification is given), thereby effectively 

making any communication implementation specific, i.e., not interoperable.  
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The MPI-2 Standard defines MPI_Init_thread (to be used instead of MPI_Init) specifically 

targeted towards threaded applications. This function returns the highest level of thread safety the 

implementation can provide.  

Three functions (MPI_Pack_external, MPI_Pack_external_size and MPI_Unpack_external) were 

added that allow conversion of the data stored in the internal format to a portable format "external32". 

This format ensures that all MPI implementations will interpret the data the same way. For example 

"external32" uses big-endian for storing integral values, big-endian IEEE format for floating point values, 

and so forth. The MPI-2 Standard mentions that this could be used to send typed data in a portable way 

from one MPI implementation to another. In both of my solutions, ICI allows the utilization of these 

functions when they are available. 

Finally, MPI-2 added a group of functions called generalized requests allowing for the definition 

of additional non-blocking operations and their integration into MPI. These functions are 

MPI_Grequest_start and MPI_Grequest_complete. MPI_Grequest_start returns a handle that can be used 

in MPI functions such as MPI_Test and MPI_Wait. The completion of the operation is signaled to MPI 

using MPI_Grequest_complete. Typically the non-blocking operation runs in a separate thread, so that it 

is only usable in a sufficiently thread-safe environment.  

While MPI-2 also added functions for spawning new processes, they are not considered in this 

dissertation, since in my problem domain parallel applications are typically started independently. 

4.5 Two Solutions for Dynamic Interoperable Communication 

I will describe two solutions to the problem of establishing interoperable dynamic connections, 

where the first solution assumes the relevant functions from the MPI-2 Standard are available, and the 

second is suitable for environments in which some of the relevant functions in this standard are missing. 

In fact, the second solution creates a communication layer that is independent of MPI and is usable with 

other communication libraries. In the both solutions, a user could choose to call ICI functions directly and 
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thereby explicitly recognize when the communication is with a process of another MPI implementation. 

On the other hand, a user could use the profiling interface where interoperable communication is hidden 

from the user.  

4.5.1 A Solution That Assumes a Thread-Safe Implementation of MPI-2 

Together with ICI, the following set of functions from the MPI-2 Standard can be used to create 

dynamic interoperable MPI communication: 

 

1. Canonical MPI_Pack_external and MPI_Unpack_external for interoperability. 

2. Generalized requests for integration with MPI. 

3. Full thread-safeness. 

4. Profiling interface for transparent integration with MPI (optional). 

 

The ICI library has to be used on both ends of the communication. The library uses the existing 

MPI implementations and ICI low level functions (such as recv_data, send_data and so on). The 

ICI functions use the Berkeley TCP/IP API interface, which is available on the majority of platforms.  

In Table 7 I list the basic ICI communication functions required to support dynamic interoperable 

communication. These functions are counterparts to MPI functions having the same arguments, with the 

possibility of using the profiling interface. In Table 7 I only show a sample set of MPI functions and their 

ICI counterparts. The full set would contain all MPI functions that allow communication using point-to-

point communicators. 
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Table 7. A sample set of ICI functions 

MPI ICI counterpart Description 

MPI_Send ICI_Send Send data, blocking 

MPI_Recv ICI_Recv Receive data, blocking 

MPI_Isend ICI_Isend Send data, non-blocking 

MPI_Irecv ICI_Irecv Receive data, non-blocking 

MPI_Probe ICI_Probe Blocking wait for message 

MPI_Comm_connect ICI_Connect Initiate connection, blocking 

 ICI_Iconnect Initiate connection, non-blocking 

 

 

4.5.2 A Solution for Implementations Missing Some Functionality of The MPI-2 

Standard 

For interoperability, I encode the data using the MPI-2 "external32" format by 

MPI_Pack_external and MPI_Unpack_external. This encoding incurs overhead during 

sending and receiving data, but guaranties interoperability, not only among implementations, but also 

among platforms and high-level languages utilized. 

Generalized requests are used to integrate inter-cluster communication into the existing MPI 

code. Non-blocking ICI_Isend and ICI_Irecv calls setup a request handle using MPI_Grequest_start, 

execute in a separate thread and call MPI_Grequest_complete once the operation is complete. It is 

therefore possible to use ICI just like MPI for point-to-point communication; that is, analogous to 

communication using an inter-communicator. Since the ICI communication happens in a separate thread, 
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MPI_Grequest_complete is called in a separate thread and therefore the MPI implementation has to be 

fully thread-safe (see Section 4.6). 

I chose not to use the MPI profiling interface to create a uniform API interface for intra-cluster 

and inter-cluster communication, since its use would negatively impact performance. However, it could 

be added in future ICI implementations. 

In addition to dynamic interoperability, the ICI library allows implementing properties such as 

encryption, authentication, tunneling, and so forth. 

Although some of the MPI implementations comply with the MPI-2 Standard, at the time of 

writing this dissertation the implementation level and thread safety is low (see Section 4.6). I now discuss 

how the solution in Section 4.5.2 can be adjusted for the current state of the implementations when one or 

more of the following functionalities are missing. In the special case where MPI is not even available, the 

missing MPI functionality can be easily obtained by substituting appropriate ICI functions. 

 

1. Implementations missing the canonical MPI_Pack_external and 

MPI_Unpack_external functions. These functions are not only platform dependent but also 

language dependent. However, it is feasible to implement them using 

MPI_Type_get_envelope and MPI_Type_get_contents which are generally 

available.  

2. Implementations missing generalized requests. Instead of integrating ICI communication with 

MPI, I substituted blocking functions that potentially use both MPI and ICI communication, such 

as using MPI_WaitAny with a polling loop of non-blocking tests of ICI and 

MPI communication. In my applications the communication is not the critical component, and 

therefore the polling overhead is acceptable. 

3. Implementations missing thread–safety. This can be overcome by implementing not only 

blocking ICI communication within ICI function calls, but also enabling progress checks on non-
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blocking ICI communication within all ICI function calls. In my pseudocode this is called the 

do_background_ops function. 

 

This solution was implemented as part of the BkFr project, and tested with MPI-1 

implementations MPICH [7] and LAM[9] with good results. 

4.6 Evaluation 

The first solution places the most requirements on the implementation level of the MPI-2 

Standard. Moreover, this solution requires full thread-safety, which renders it unusable for the widely 

available MPI implementations shown in Table 8. Even in cases where MPI_Pack_external is not 

available MPI_Type_get_contests and MPI_Type_get_envelope are available. 

Table 8. MPI-2 implementation level in various MPI implementations 

 Thread safety MPI_Grequests MPI_Pack_external 

MPICH 1.2.7 FUNNELED N N 

MPICH2 1.0.2 FUNNELED Y Y 

MPICH G2 1.2.5.3 SINGLE N N 

LAM 7.1.1 SERIALIZED N N 

SUN HPC 5.0 SINGLE Y Y 

 

My tests of the second solution show a comparison of MPICH 1.2.7, LAM 7.1.1 with my 

implementation of the ICI communication with and without encoding the messages into an interoperable 

format “external32.” The data were measured on AMD MP-1800+ cluster connected by 1000Base-T 

adapters using modified perftest 1.3a (a performance testing tool included with MPICH). MPICH and 

LAM data were measured using perftest as a communication performance between two nodes of the 
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cluster during intracluster communication. I also used perftest to measure communication performance of 

the ICI library as described in the Section 4.5.2 between the same two computers as used with LAM and 

MPICH. In the prototype the exchanged messages were MPI_INT typed arrays.  

Figure 13 shows the performance for small and midsize messages of length up to 8K. LAM 

outperforms both ICI and MPICH, whereas ICI with and without “external32” outperforms MPICH for 

small messages (size < 1k). Figure 14 shows performance for long messages. The overhead of 

“external32” encoding is obvious and ICI with the “external32” encoding is outperformed by LAM and 

MPICH. Although the performance was not my primary goal for small and large messages (size<1000 

and size>32K), the ICI implementation without “external32” encoding outperforms MPICH 1.2.7. For 

small messages the “external32” encoding poses only negligible overhead, which increases with the 

increasing message size up to 58%, after which it remains constant (see Figure 15).  

The performance of the BkFr project utilizing ICI is shown in the Table 9 and further described in 

Chapter 3. 

 

Table 9. Performance of BkFr without and with ICI communication 

 One node One cluster 2 clusters connected via ICI 

BkFr Sum of subsets 1:13:27 9:04 3:36

BkFr SAT SBSAT 1:07:13 7:14 5:06

BkFr SAT zChaff 50:59 4:13 2:35
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Figure 13. Performance data for small and midsize messages 

 

Figure 14. Performance data for long messages 

 

69 



 

Figure 15. Perf. data for encoding overhead 

4.7 Summary 

There are many MPI applications where it would be very advantageous to dynamically add 

clusters, with possibly varying MPI implementations, to an ongoing computation. Using resources 

dynamically as they become available is currently possible, but the MPI-2 Standard lacks interoperability. 

I presented two solutions to the dynamic interoperable problem, both of which isolate inter-cluster 

communication within a separate library layer (ICI), thereby possibly introducing stronger fault tolerant 

capabilities for inter-cluster communication. The first solution utilizes MPI-2 general requests, threads 

and "external32" encoding. The second solution provides adjustments to the first solution assuming that 

some parts of the MPI-2 Standard are not implemented, including the absence of thread safeness. I have 

implemented a prototype version of the second solution, and successfully utilized it in a general 

backtracking framework BkFr over multiple clusters, as well as verifying its feasibility in various 

environments and implementations. The results show that ICI efficiently handles intercluster 

communication, and that BkFr running SAT instances that scale well within the cluster continue to scale 

well into multiple clusters. I hope that dynamic interoperable communication will eventually become part 

of the MPI Standard.  
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5.2 Introduction 

In the 1920s B.L. Van der Waerden proved the following result about partitions of sufficiently 

large initial intervals of positive integers {1, 2, …, n}: given positive integers K and L, there exists a 

(smallest) integer n = W(K,L) such that whenever {1, 2, …, n} is partitioned into K disjoint classes, at 

least one of the classes contains an arithmetic progression of length L. A partition of {1, 2, …, n} into K 

classes is also called a k-coloring of {1, 2, …, n}, and an arithmetic progression contained in one of the 

classes is called monochromatic. There is no known closed form expression for W(K,L) and all but five 

of the first few numbers are unknown. Table 10 shows all the known Van der Waerden numbers. In 1979 

W(4, 3) became the most recent addition to this table.  

 

Table 10. Known Van der Waerden numbers 

K \ L 3 4 5 

2 9 35 178 

3 27   

4 76   

 

Upper and lower bounds on some of the remaining numbers have been derived but they are so far 

apart that they are of little practical use. An unpublished general upper bound is W (K,L) ≤ ee
(1/ K )ee( L +110)

 

 [55], and a general lower bound, due to the Lovasz local lemma, is W (K,L) >
K L

eLK
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (1+ o(1)) . 
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Work on specific Van der Waerden numbers has sharpened some of these bounds as the results of 

Table 11 (taken from [56]) show. 

Table 11. Lower bounds for some Van der Waerden numbers 

K \ L 3 4 5 6 7 8 

2 9 35 178 >1131 >3703 >11495 

3 27 > 292 > 1209 >8886 >43855 >238400 

4 76 >1048 >17705 >91331 >393469  

5 >125 >2254 >24045 >246956   

 

The number W(K,L) can be found by determining whether solutions exist for certain formulae of 

a class of CNF formulae described in Figure 16. I refer to a formula of this class, with parameters n,K,L, 

by ψ(K,L)n. A solution exists for ψ(K,L)n  if and only if n < W(k,l). So, several of these formulae may be 

solved for various values of n until that boundary is reached. In this manuscript ψ(K,L)n  is treated as a set 

of clauses to make some algorithmic operations easier to express.  

 

 

Figure 16. Formula ψ(K,L)n for finding Van der Waerden numbers. Equivalence classes are named 

C1, C2, ..., Ck for convenience. 
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The nature of ψ(K,L)n is such that the number of solutions increases with n up to a point, then 

decreases. The formulae, as expected, become more difficult in the latter range. This difficulty may 

prevent the boundary from being reached or even approached. In that case, there is no choice but to accept 

a lower bound which is the largest n for which a solution to ψ(K,L)n is found. 

5.3 Analysis of the known Van der Waerden numbers 

I analyzed the known Van der Waerden numbers to better understand the unknown Van der 

Waerden numbers. I will use 0/1 to identify colors for K=2 colorings. When K>2, the colors will be 

identified by 1,2,4,8. 

5.3.1 W(2,3)=9 

The extreme partition has 6 possible colorings: 

 11001100, 00110011, 10011001, 01100110, 01011010, 10100101 

number of 2-colored partitions without mono-
arithmetic progression length 3
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Figure 17. Number of 2-colored partitions without mono-arithmetic progression length 3 
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5.3.2 W(2,4)=35 

The extreme partition has 28 possible colorings: 

.0100011101.0100011101.0100011101. 

.1011100010.1011100010.1011100010. 
 
where four dots are substituted by one of the valid 14 colorings. 
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Figure 18. Number of 2-colored partitions without mono-arithmetic progression length 4 

 

5.3.3 W(2,5)=178 

The extreme partition has 193624 possible colorings: 

.0010000100.0111010001.1101111011.1000101110.↵ 
 0010000100.0111010001.1101111011.1000101110.↵ 
 0010000100.0111010001.1101111011.1000101110.↵ 
 0010000100.0111010001.1101111011.1000101110. 
 
(reversed) 
.0111010001.1101111011.1000101110.0010000100. (4x) 
 
(negated) 
.1101111011.1000101110.0010000100.0111010001. (4x) 
 
(reversed and negated) 
.1000101110.0010000100.0111010001.1101111011. (4x) 
 
 
where the 17 dots are substituted with one of 48406 valid colorings. 
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number of 2-colored partitions without mono-
arithmetic progression length 5
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Figure 19. Number of 2-colored partitions without mono-arithmetic progression length 5 

5.3.4 W(3,3)=27 

The extreme partition has 48 possible colorings: 

1) 11224114142244224141142211 
2) 11242114142244224141124211 
3) 11221124244141121224144242 
4) 12112124422442121124411414 
5) 12122114224241144114242241 
 

First two lines are palindromes so the recoloration only yields 3*2=6 patterns for each line. The 

remaining 3 lines are not palindromes therefore the reverse is not identical and should be also counted 

totaling in 12 possible patterns for each line. 

5.3.5 W(4,3)=76 

The extreme partition has 1440 possible colorings: 

.124488181141822182824882414424221184.124488181141822182824882414424221184. 
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Both parts are the same and both of them are palindromes. There is 60 possible colorations of the dots (all 

combinations 43without all the same colors = 4*4*4 – 4). In addition there are 4*3*2=24 recolorations of 

the basic pattern totaling 24*60=1440 possible colorings. 

5.3.6 W(2,6)=1132 

Based on the results obtained so far (having searched about 80% of the W(2,6) initial patterns): 

(basic pattern (len 56):  
B = 01111001000001011110111001111101101110100011101001010011 
. BBrev,neg . BnegBrev . BBrev,neg . BnegBrev . ↵ 
  BBrev,neg . BnegBrev . BBrev,neg . BnegBrev . BBrev,neg . BnegBrev . 
 
. 
 01111001000001011110111001111101101110100011101001010011↵ 
 00110101101000111010001001000001100010000101111101100001. 
 10000110111110100001000110000010010001011100010110101100↵ 
 11001010010111000101110110111110011101111010000010011110. 
 (5x) 
 
(negated) 
. 
 10000110111110100001000110000010010001011100010110101100 
 11001010010111000101110110111110011101111010000010011110. 
 01111001000001011110111001111101101110100011101001010011 
 00110101101000111010001001000001100010000101111101100001. 
   (5x) 

Where the 11 dots are substituted with one of 888 valid colorings. The 2 operations – reverse, negation 

and rotation+negation will quadruple this to the total of 3552.  

5.3.7 Analytical expression of number of valid partitions for W(2,L) 

In an attempt to find a closed form expression for the number of valid colorings for various 

values of n, the following recurrence relation arises for the number of valid colorings when the gap in the 

progressions is 1 (it seems that for higher gaps such recurrent relations do not exist). 
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N(0)=2 

N(1)=2 

N(2)=4 

... 

N(L-1)=2^(L-1) 

N(n)=N(n-1)*2 - N(n-L) 

 

Analysis of the progression gaps>1: For every L-1 additional colored number new additional gap 

kicks in. Eventually the number of arithmetic progressions with greater and greater gaps starts to 

influence the number of possible partitions from the upward (growing) trend to the downward trend. As 

shown in the W(2,4) and W(2,5) this downward trend hits a bottom of the valley and starts growing again.  

5.4 Van der Waerden numbers and Satisfiability 

SAT solvers have been applied to the above formulations with the results shown in Table 12 

(taken from [57]), all lower bounds. Except in one case, all these bounds are greatly inferior to those 

obtained analytically.  

Table 12. Bounds on Van der Waerden numbers obtained by SAT solvers 

K \ L 3 4 5 6 7 8 

2 9 35 178 > 341 > 614 > 1322 

3 27 > 193 > 676 > 2236   

4 76 > 416     

5 > 125 > 880     

6 > 194      
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Resolution is a general procedure that may be used to determine whether a given CNF expression 

has a model and to supply a certificate of unsatisfiability if it doesn't. The idea predates the often cited 

work reported in [58] and for decades resolution has been one of the primary engines for CNF SAT 

solvers. In the last 10 years tree resolution, in the form of variants of DPLL [41], has given way to DAG 

resolution through the introduction of clause learning and recording during search. This and other ideas 

have led to a spectacular improvement in the performance of resolution-based SAT solvers. Hardware and 

algorithmic improvements have together contributed to perhaps an order 10^9 speed-up in SAT solving 

over the past 15 years and, consequently, some problems considered very difficult then are now 

considered trivial. But there remain many problems, which are considered hard, for example in the 

important domains of protocol and hardware verification. 

The last 15 years has also seen some brilliant theoretical work that has revealed exponential lower 

bounds for tree and DAG resolution, and has illuminated the reasons for it, when resolution is applied to 

``sparse,'' unsatisfiable CNF formulae (e.g. [59-65]). 

In such cases, very large resolvents must be created first, then resolved to get the smaller clause 

constraints that play a significant role in establishing the refutation. Generating the large resolvents is 

expensive, particularly since exponentially many have to be generated. In DPLL terms, this means a 

search space of great breadth may have to be explored. Metaphorically, one may think of search breadth 

as a mountain that must be climbed; on the other side of the mountain the search breadth may be 

significantly reduced due to the short resolvents that are finally generated. Clearly, one needs to find some 

way to ``tunnel'' through this mountain and arrive quickly in the fertile valley of low-breadth search 

space, if it exists. It is one of the the aims of this dissertation to explore this possibility for Boolean 

expressions with a particular structure.  
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In the Satisfiability literature, the term ``tunnel'' has been applied to Stochastic Local Search 

algorithms, a class which includes members of the WalkSAT, GSAT, and other families [66-70]. In that 

context, one may think of a location as an assignment of values to variables and the height at a location as 

the number of constraints falsified by the assignment at that location. Then, for a given, hard Boolean 

expression, there are generally many mountain peaks and the objective is to locate and enter the deepest 

valley. Changing the value of a single variable merely moves the current location up and down the side of 

a mountain but changing values of several variables permits ``tunneling'' into another valley. This use of 

tunneling is to be distinguished from the way I use it: in my context there is one principal mountain to get 

over or around and the valley on the other side can be quite wide. To reach the top of my mountain one 

must wait for many large constraints to be learned. But, in many cases, one cannot afford to wait: to reach 

the valley in a reasonable time, constraints must be efficiently added before they are learned.  

There are several ways to do this, some safe and some risky. A reasonably efficient method for 

finding a safe tunnel through the mountain has been identified in [71] for a class of non-CNF formulae. I 

would like to be able to add constraints aggressively without having to worry about retracting them and, 

as I show in this dissertation, this can sometimes be done to achieve a result that is an approximation to 

the actual result. In other words, the extra constraints may prevent an optimal solution from being 

returned, but are weak enough to admit suboptimal solutions that are not far from optimal. However, if 

the extra constraints are too weak, a solver may take too much time and not find a good suboptimal result. 

So, a good ``heuristic'' is needed for adding constraints in some optimal way.  

At this point in time, it seems the spectacular tunneling success I seek, which will be a 

consequence of my choice of tunnel heuristic, is practical only by a careful analysis of the specific 

structure of a given formula. In this dissertation I underscore this point by developing aggressive tunnel 

heuristics for formulae associated with the problem of finding Van der Waerden numbers (described in 

the next section). Such formulae are currently extremely difficult for off-the-shelf SAT solvers, even 

though most of them are satisfiable. By adding aggressive tunnel constraints to the formulae, however, I 
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are able to find the best bound yet, by far, for W(2,6). My analysis serves as motivation for attempting 

aggressive tunnel heuristics for other hard problems.  

When I employ aggressive tunneling techniques, I can increase the lower bound for W(2,6) to 

1132 from the previously known best value of 696 [72, 73] shown in Table 11) (that itself far exceeds the 

best prior bound of 342 obtained by SAT solvers and shown in Table 12). The reason I have a bound 

instead of the actual number is that aggressive tunneling forces my SAT solver to be incomplete. I 

emphasize that although an incomplete solver precludes finding a refutation for the formula, it does 

provide an apparently tight bound for W(2,6). I believe the bound is tight because it is obtained using 

three widely different tunnels. In addition, using tunnels aggressively I have found a bound for W(3,4) 

which matches the best analytic bound shown in Table 11 and greatly exceeds the best bound obtained by 

SAT solvers as shown in Table 12. This is further evidence of the tightness of bound in the presence of 

these aggressive tunnels.  

My interest in examining tunnels for Van der Waerden numbers is due partly to this being an 

interesting problem to many mathematicians, but mainly because the propositional formulae for solving 

Van der Waerden numbers have a structure that is similar to formulae found in Bounded Model Checking 

and other practical applications. Therefore, I view this work as a preliminary to investigations on 

problems in the area of Formal Verification, among others.  

Formulae showing structural similarities to Van der Waerden formulae do so, in part, because 

their corresponding problems are typically circuit queries with a time dependent nature, such as 

verification problems. In such problems a circuit is fixed so there are numerous repetitions of 

subformulae, each corresponding to the circuit properties at a different time step. The subformulae differ 

in the variables they contain. This structure is characteristic of the Van der Waerden formulae shown in 

Figure 16. This structure sometimes is partly responsible for difficult formulae since the making of small 

inferences is delayed considerably in such cases.  
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5.4.1 CNF representation of Van der Waerden numbers 

For K=2 assign each number to color a binary variable vi. Each clause in the resulting CNF will 

prevent an arithmetic progression of length L. Add one clause for each arithmetic progression. 

 For example, to prove that W(2,3)=9 there are two possible approaches: 

a) The SAT solver finds at least one solution for W(2,3)=8 and then finds no solution to W(2,3)=9 

b) The SAT solver finds all solutions to W(2,3)=8 and then it is easy to show that none of the found 

solutions is extendable 

The CNF representations of W(2,3)=8 and W(2,3)=9 are in the Figure 20. and Figure 21. 

respectively. 

(1 2 3) (2 3 4) (3 4 5) (4 5 6) (5 6 7) (6 7 8) 

(1 3 5) (2 4 6) (3 5 7) (4 6 8) (1 4 7) (2 5 8) 

(-1 -2 -3) (-2 -3 -4) (-3 -4 -5) (-4 -5 -6) (-5 -6 -7) (-6 -7 -8) 

(-1 -3 -5) (-2 -4 -6) (-3 -5 -7) (-4 -6 -8) (-1 -4 -7) (-2 -5 -8) 

Figure 20. CNF representation of W(2,3)=8 

(1 2 3) (2 3 4) (3 4 5) (4 5 6) (5 6 7) (6 7 8) (7 8 9) 

(1 3 5) (2 4 6) (3 5 7) (4 6 8) (5 7 9) (1 4 7) (2 5 8) (3 6 9) (1 5 9) 

(-1 -2 -3) (-2 -3 -4) (-3 -4 -5) (-4 -5 -6) (-5 -6 -7) (-6 -7 -8) (-7 -8 -9) 

(-1 -3 -5) (-2 -4 -6) (-3 -5 -7) (-4 -6 -8) (-5 -7 -9) (-1 -4 -7) (-2 -5 -8) 

(-3 -6 -9) (-1 -5 -9) 

Figure 21. CNF representation of W(2,3)=9 (bold are addition clauses vs. W(2,3)=8) 

5.5 Computing the lower bound 

In order to show a lower bound for W(K,L) it is enough to provide a coloring of the length n such 

that there is no monochromatic progression of length L, since then W(K,L) > n. There are various 

methods to reach such lower bound [57, 72]. 

I explored tunneling – aggressive adding uninferred constraints to the problem.  
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5.6 The Lower bound W(2,6)>=1132 

When considering the case K=2, I reinterpret variables to remove some of the constraints shown 

in Figure 16. The formulae I consider are described in Figure 22. They use single index variables. For 

purposes of discussion, variable indices have been translated so that v0 and v1 are the middle variables. In 

doing so, the number of variables is always even. It is straightforward to consider odd variable formulae 

as well and I leave this for the reader. In what follows, n is even when considering the formulae ψ(2,6)n.  

 

 

Figure 22. Formula ψ(2,6)n, n even, for finding W(2,6). Classes are named C1, C2, ..., Cn for 

convenience. 

 

5.6.1 Motivating the Use of a Tunnel – Analyzing ψ(2,L)n 

The approach to finding W(2,6) that is described below is the result of an analysis of the 

performance of an off-the-shelf SAT solver on formulae ψ(2,L)n (Figure 16), and patterns of variable 

assignments satisfying those formulae. 

Figure 23 shows SAT solver performance on ψ(2,5)n, for various values of n. The vertical axis 

measures the number of nodes of the search space at the depth indicated by the horizontal axis. In all 
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cases, the entire search space was explored, even if the input formula was satisfiable, but the results are 

similar if the solver stops immediately upon discovering a solution. Although the displayed results have 

been obtained using stock settings, similar results, which are not shown, apply for various settings of SAT 

solver parameters. According to Figure 23 there is a performance mountain that has roughly the same 

shape, regardless of n. The mountain tails off to a point of little significance after rising to a formidable 

peak. In addition to the mountain is a smaller peak, which behaves more like a wave since it always 

appears near n.  

From performance curves and known Van der Waerden numbers and bounds I have observed the 

following: 

 

Observation 1: Consider a performance plot of search breadth vs. depth for any common SAT solver 

applied to ψ(2,L)n. Such a plot has two maxima, the greatest of which occurs at approximately the same 

depth, say W(2,L)/(2(L-1)), for n > W(2,L)/(L-1). The value of the greatest maximum is approximately 

the same for n>W(2,L)/(L-1) and several orders of magnitude greater than the search breadth at depth 

W(2,L)/(L-1).  

 

Observation 2: W(2,L) ≈ L*W(2,L-1), at least for small L. 
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Figure 23. Typical SAT solver performance on ψ(2,5)n for various values of n. 

 

Each curve in Figure 23 shows the breadth of the search space at the search depth indicated on the 

horizontal. Curves shown are due to SBSAT, which is a SAT solver currently under development at the 

University of Cincinnati. Other SAT solvers have been shown to perform similarly. 

From the above observations I propose a way to solve the very difficult W(2,6) formulae. Start by 

searching for solutions to ψ(2,6)n0  where no is large enough so that the mountain can be crossed but 

smaller than the suspected value of W(2,6). By Observations 1 and 2, no should be greater than about 210. 

To get through the mountain, append a tunnel to the formula. I have developed three applicable tunnels 

which are specially designed to take advantage of certain structural or analytical characteristics of the 

formulae and are described separately in Section 5.6.3. The mountain is crossed when the search breadth 

is considered ``low.'' From then on, by Observation 1, the search is accomplished efficiently no matter 

what. Retract the tunnel. Add clauses so that the solver is effectively seeing ψ(2,6)n0 +x  for x=1,2,3,... 

until search breadth falls to 0. The depth at which this occurs is a bound on W(2,6).  
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Details are given in the following sections. 

 

5.6.2 Procedure for Finding a Bound on W(2,6) 

I used a SAT solver designed specifically to solve formulae ψ(2,L)n, and which incorporates 

special optimizations as outlined in Section 5.6.8. The outline below briefly describes the search process 

using the special solver.  

 

1. The solver is started on the input ψ(2,6)n0 , for some even no, plus a collection of clauses 

representing the tunnel. The parameter no is determined according to the description given in 

Section 5.6.1. There are three types of tunnels that have been applied. Detailed descriptions are 

given in Section 5.6.3. All three yield the same lower bound on W(2,6) as stated in Section 5.6.3.  

2. Instead of a depth-first, or even priority-driven evaluation of the search space, as is commonly 

practiced, the solver conducts a strictly breadth-first evaluation. I chose breadth-first search to 

find all solutions (not just the first one) so I can at the point of no remove the tunnel and continue 

the search by extending the existing set of solutions. The order in which variables are considered 

for evaluation is fixed for all branches of the search tree, regardless of values assigned previously. 

The order represents a reflection around the center variable and is given as follows, from left to 

right: v0, v1, v-1, v2, v-2, .... This is undoubtedly an inferior choice with respect to building the 

entire search space. Reasons for this choice are given in Section 5.6.7. 

3. The search reaches depth no because there are so many solutions to ψ(2,6)n0  and the tunnel 

constraints do not filter some of them. At this depth all variables of ψ(2,6)n0  have been assigned 

values on all leaves of the search tree. Clauses from the set ψ(2,6)n0 +1 - ψ(2,6)n0  are then added 

to the clause database of the solver and the search commences as before. The tunnel is retracted. 
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Remark: The tunnel has been designed so that the mountain has been crossed, for the most part, by this 

time. From this point on, the breadth of the search space is moderately small because the values of many 

variables are inferred on all branches, so the search continues quickly. 

 

4. The following is repeated for m=2,3,... until the search breadth becomes 0: when the search depth 

reaches no+m-1, clauses from ψ(2,6)n0 +m  - ψ(2,6)n0 +m−1 are added to the solver's clause database 

and the search continues. When the search breadth becomes 0, a lower bound of no+m is found 

for W(2,6). 

 

Remark: Upon completion of every iteration of this step, a non-zero search breadth means at least one 

solution for ψ(2,6)n0 +m−1 exists, hence no+m is a lower bound for W(2,6). 

 

Remark: There is no clause recording. Experiments show that zChaff, for example, does not benefit from 

clause recording on this family of formulae. I believe this is because the structure of the formulae is such 

that inferences can only be determined at high search depth. This is why I needed the tunnels in the first 

place.  

 

With the above modifications to the SAT solver, and the improved formulation shown in Figure 

22, a greatly improved bound for W(2,6) was obtained. However, this was not the case if no tunnels had 

been added at the outset.  

Below I present performance figures for zChaff (v.2004.11.15) and Berkmin (v.561) as well as 

the special SAT solver described above. It is important to realize that zChaff and Berkmin can succeed 

with tunnels only if some mechanism is provided for determining when the other side of the mountain is 

reached. The mechanism I used was to apply my special solver up to Step 3. Then I removed the  
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tunnel, and sequentially applied zChaff or Berkmin to the given formula for every partial assignment not 

falsified at depth no until either a solution is found or it is determined that no solution is possible.  

5.6.3 The Tunnels 

Three different aggressive tunneling techniques to improve SAT solver performance are 

described in the subsections below. All three yield the same new lower bound of 1132 for W(2,6). This is 

significant for two reasons: 1) this is a big improvement over the previous best bound of 696[72, 73]; 2) 

since three different techniques stopped at the same point, I conjecture W(2,6)=1132.  

5.6.4 First Tunnel 

The first tunnel arises from an analysis of solutions to ψ(2,L)W(2,L)-1 (recall W(2,L)-1 is the 

greatest n for which a solution to ψ(2,L)n exists). Figure 24 and Figure 25 help visualize patterns 

associated with a typical solution to ψ(2,4)34 and ψ(2,5)177, respectively. For both figures, the solution is 

shown as a sequence of 0's and 1's representing an assignment of values to variables in increasing order of 

index, from left to right. Each curve shown is called a solution curve and is derived from the solution in 

the figure. A solution curve raises one unit for every 1 encountered and drops one unit for every 0 

encountered when traversing the solution from left to right. Observe that the number of peaks in each 

figure is l-1 and, more importantly, there appears to be a limited length pattern of reverse symmetry, 

which I call a reflected pattern, in the vicinity of at least one of the peaks.  

 

 

Figure 24. Typical solution curve for ψ(2,4)34. This is the largest satisfiable formula for W(2,4). 
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Figure 25. Typical solution curve for ψ(2,5)177 . This is the largest satisfiable formula for W(2,5). 

I conjecture the following based on observations such as those depicted in Figure 24 and Figure 25: 

 

Conjecture 1: For every ψ(2,L)W(2,L)-1 there exists a solution that contains at least one reflected pattern of 

length W(2,L)/((L-1)*2) with the middle positioned somewhere between W(2,L)/(L-1) and W(2,L)*(L-

2)/(L-1). 

 

The tunnel is designed as a filter for consecutive variable assignment patterns that are not reverse 

symmetric. The tunnel consists of clauses involving s consecutive variables where, s is even and by 

Conjecture 1 and Observation 2, s < ⎣1068/10⎦ = 106. I tried several values for s including 60, 80, 100, 

even 150 and all worked, but speed increased significantly with increasing s up to 150. 

The first family of tunneling constraints is shown in Figure 26. By using negative indices in Figure 22 

these constraints remain fixed as n grows. Otherwise, the tunnel would have to move with n. 

 

Figure 26. First tunnel constraints added to ψ(2,6)n0  initially, then retracted after "tunneling." 
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5.6.5 Second Tunnel 

From the results obtained by using the first tunnel alone, it was observed that some small 

assignment patterns did not occur in solutions. The second tunnel filters those patterns. This action is 

opposite to that of forcing patterns to occur, which is the objective of the first tunnel. Consequently, the 

first tunnel spans a small number of variables because longer forced reverse symmetric patterns do not 

exist in any solution to ψ(2,6)W(2,6)-1, but the second tunnel spans all variables because non-solution 

patterns can appear anywhere in the clauses of ψ(2,6)W(2,6)-1. 

The second family of tunneling constraints is shown in Figure 27. The maximum value of 20 for t 

is a compromise: the tunnel needs to be big enough to have an impact but small enough to keep some 

solutions around to the end. The number 20 was determined by experiment on ψ(2,6)n formulae.  

 

 

Figure 27. Second tunnel constraints added to ψ(2,6)n0  initially, then retracted after "tunneling." 

 

5.6.6 Third Tunnel 

In [73] solutions to ψ(2,6)n are found for various values of n including 565 and 695. The latter 

number implies the best known analytic lower bound on W(2,6). Regarding the solution to ψ(2,6)565, re-

index the assigned variables  
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v-282, ..., v0,v1,...v282 

to 

v-564,v-562,...,v0,v2,...,v562,v564 

and add unassigned variables 

v-565, v-563, ...,v1,..., v563,v565. 

Observe that this operation will not introduce any arithmetic progression among the even indexed 

variables. The assignment to the even indexed variables is the third tunnel. Search for a solution to 

ψ(2,6)1131 among the variables above, keeping the values of the even indexed variables fixed. The search 

completes in a reasonable time with a solution.  

Remarkably, using any of the three tunnels or even combining them leads to the same bound of 

1132 for W(2,6). 

 

5.6.7 Choosing the Search Heuristic 

Variables are always considered in the following order, regardless of assignment:  

v0, v1, v-1, v2, v-2, v3, v-3, ... 

The reason is that by assigning values to middle variables first, there is a good chance of 

inferences developing, symmetrically, for higher and lower indexed variables. If, say, the lower indexed 

variables were assigned first, perhaps half of the potential future inferences would not be realized early. 

This is particularly important for the first tunnel where the inferences are needed to appear outside of the 

tunnel variables.  

5.6.8 Optimizations and Special Procedures 

I was able to get the lower bound of 1132 for W(2,6) with either tunnel using the special solver 

described in Section 5.6.2 with the optimizations mentioned below. However, for stock SAT solvers I 
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could not get this result in reasonable time using either the first or second tunnels alone, but could get the 

result using both simultaneously.  

The following optimizations to the special solver were used. 

1. Data structures specifically designed for very fast checking of arithmetic progressions and 

inferences were used. Estimated speed up due to these structures is about a factor of 25. Another 

factor of approximately 2 speedup is due to item 3 below.  

2. Without optimization, all nodes of the search space would have two children representing True 

and False assignments to the variable of that node. However, I generate two children only when 

inferences force that to be necessary. In other words, I implement a primitive form of conflict-

analysis, but do not record the result as a clause as is done in modern SAT solvers. The estimated 

speed up due to this optimization is about a factor of 2.  

3. The static search heuristic described in Section 5.6.7 accounts for an estimated speed up factor of 

2. 

 

5.6.9 Performance Results 

On W(2,5) formulae, my solver with special data structures took 1 second with the first tunnel of 

6 variable width on a 2 GHz Pentium 4 computer, and made 143184 variable assignments. Without a 

tunnel my solver with special data structures took 8 seconds on the same machine and made 719640 

variable assignments. On the same machine zChaff (2004.11.15) took 702 seconds and made 570981 

assignments and Berkmin (561) took greater than 1500 seconds without a tunnel (see the end of Section 

5.6.2 for information about how zChaff and Berkmin were run). Upon adding the first tunnel of 6 variable 

width to the Van der Waerden formulae, zChaff (2004.11.15) took 25 seconds and made 93031 

assignments. This factor of 30 improvement demonstrates the strength of the idea on the same SAT 

solver. On W(2,6) formulas zChaff ran out of memory (2GB) in a few hours and BerkMin took greater 
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than 24 hours and were not able to finish, hence this comparison could not be made, only estimated, from 

the W(2,5) results. 

5.7 Lower bounds for K>2 

Using a similar tunnel as described in the previous section I have obtained previously known 

bound W(3,4)>292. I have also applied the tunnels to W(5,3) but the tunnel was too restrictive and no 

valid coloring was extendable past 123 (compare with the current best bound of W(5,3)>125). 

5.8 Preprocessing for the complete search 

In the due course of my research I identified several ways to cut the search space. During the 

preprocessing some of the branches will not be searched because they are found to be equivalent with 

other branches. I will also show how some patterns are always present in a pattern particular length for a 

given K and L – I call this property unavoidable patterns. There is another property called forbidden 

patterns that has been mentioned in the previous section and which might be also useful. I am not taking 

advantage of this property during my search for W(2,6). 

5.8.1 Preprocessing patterns 

In the course of the search for the value of W(2,6) I would like to eliminate as much of a 

redundant search as possible. As a simple example, it is obvious that the search tree can stem from a 

variable vi being assigned 0 while all other variables are unassigned. I do not have to explore the case 

where this variable i is assigned 1 because the search would explore the identical search space with 0 and 

1 negated. 
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For 2-colorings as defined earlier I will consider color 0 to be identified as ‘0’ and color 1 to be 

identified as ‘1’. To explore the cutting the redundant branches further I define a few functions: 

negation (p) returns the same pattern reversed colors. Example: negation('00001') = '11110' 

reverse (p) returns the same pattern spelled backwards. Example reverse('00001') = '10000' 

min (p1,p2) returns the minimal binary comparison of two equal length patterns. Example:  

                                            '0' = '0', '0' < '1', '0001' < '0101' 

minimal(p) returns the minimal binary representation of a pattern p. 

minimal(p) = min(min(p, reverse(p)), min(negation(p), reverse(negation(p))) 

extend(p, direction) = returns two patterns that are the extension of the pattern p in the desired 

direction. For example extend(‘000’, left) = ‘0000’ and ‘1000’ 

 

When exploring the search space for n numbers, starting the variable assignment in the middle 

allows redundancies to be found soon at the price of only shrinking the value of n.  

I will use x to identify unassigned variables: 

Start with: x50 0 x49 and extend on the right: 

x50 00 x48 

x50 01 x48 

 

Extend on the right again: 

x50 000 x47 

x50 001 x47 

x50 010 x47 

x50 011 x47 
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Taking the second and fourth pattern and combine them together, I end up with the following two 

patterns: 

x50 001 x47 

x47 110 x50 

Here you can see that the second pattern is a negation of the first one only in the different place in 

the original pattern length n. The result is a smaller pattern length 47*2+3 = 97: 

x50 000 x47 

x47 001 x47 

x50 010 x47 

 

If I only consider patterns in their minimal form and eliminate redundancies the n will shrink by 

2*(the number of extensions).  

Now assume that there is a sufficient number of x on each side and focus only on the expanded 

patterns. For example, I know that any K>1 and L>1 will have a pattern ‘01’ for any n>n0, where n0 = L-

1. I have a choice to either expand this pattern on the left (a) or on the right (b). 

 

(a) 01x   or    (b) x01 

 

(a) 010, 011 and after recoloring 010, 001 

(b) 001, 101 and after recoloring 001, 101 

 

Notice that after recoloring the patterns are identical 

 

Going one step further I have four options 
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x010              x010             010x            010x 

x001              001x             x001            001x 

 

Resulting (after recoloration): 

 

0010              0010               0010           0010 

0101              0101               0101           0101 

0001              0010               0001           0010 

0110              0011               0110           0011 

 

In the next step, notice that if I extend 0010x and 0101x I get the following result (after 

recoloration): 

 

00100 

00101  the following two patterns are the same and one of them can be safely eliminated 

00101 

01010 

 

In general, for every existing pattern I have a choice of extending it either on the left or right. The 

number of patterns to consider can be greatly reduced by a careful choice of the direction in which they 

are extended, since some of them extend to identical patterns. 

Finding the optimal way to extend each pattern is a hard problem and looking for the best 

solution by enumerating all possibilities yielded results only for a few steps. The problem of finding the 
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minimum number of jobs is probably a hard problem, and I came up with a palindrome-based 

approximation discussed in the next section. 

Figure 28 and Figure 29 show pattern expansion trees. Highlighted patterns in Figure 29 indicate 

which patterns have a choice of expansion on the left or on the right. Non-highlighted patterns are 

palindromes and yield the same patterns if expanded on the left or on the right. 

 

 

Figure 28. Tree of minimal patterns for 4 numbers 
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Figure 29. Tree of minimal patterns for 6 numbers 

5.8.2 Palindrome symmetries 

The best approximation to pattern extension I have seen so far is based on the obvious property of 

symmetrical (palindrome) patterns where an extension on each end of the pattern yields 3 new patterns 

instead of 4 patterns. Another advantage is that two of the newly formed patterns are again palindromes. 

 

I recognize tree types of pattern palindromes: 

a) positive palindrome (either odd or even n) 

Examples: 00100, 10101 
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b) negative palindrome (only even n) 

 Examples: 1100, 101010 

 

Example of the expansion process:   

X 010 x 

0 010 0 

1 010 1 

0 010 1 

1 010 0 

 

Where last two are identical (only rotated) and one of them can be eliminated.  

 

Another example:  

x 0011 x 

0 0011 1 

1 0011 0 

0 0011 0 

1 0011 1 (=> 1 1100 1 -> 0 0011 0) 

 

Again last two are identical – only reversed and negated. 

 

The non-palindromes are extended so they reach palindrome in the shortest number of steps. For 

example 0001 is not a palindrome but if extended on the left it yields one (10001) and a non-palindrome 

(00001). 

To recover the original search space I only have to shift the final set of patterns in the n numbers. 

Since I will use the resulting set and apply the SAT solver first to get over the hump (as defined in the 

section 5.4) the shifting is not computationally intensive compared to crossing the hump. 
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5.8.3 Unavoidable patterns 

For some patterns (given K and L) it is easy to prove that they have to be present in any partition 

longer than some n0. For example ‘01’ has to be present for n0 > L-1 (for K>1 and L>2). Also a pattern 

‘001’ has to be present for n0 > 2*(L-1) (for K>1 and L>2). 

Please notice that from the pattern equivalence 001 is equivalent with 110, 100 and 011. 

Finding n0 for longer patterns is becoming increasingly difficult.  

For some patterns p exist n such that every pattern longer than n that does not have a 

monochromatic arithmetic progression length L will contain minimal representation of pattern p. 

Using the computer search I established n0 for selected patterns. The longest pattern for W(2,6) 

took several weeks on a single computer. I used a modified SAT solver where the solver not only 

backtracked when found a monochromatic arithmetic progression but also when found one of the 

unavoidable patterns. The longest partition without an unavoidable pattern plus 1 indicates the length n0 

which has to contain the unavoidable pattern for a given K and L. This of course assumes that n0 < 

W(K,L). If the solver, given the above description, returned the length of the longest partition equal to 

W(K,L) it would mean that the pattern is not unavoidable and the extreme partition does not contain this 

pattern. 
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Table 13. n0 for various unavoidable patterns. 

K L Pattern n0 

2 L 01/10 (L-1) 

2 L 00 2(L-1)+1 

2 4 00/11 7 

2 4 000/111 21 

2 5 00/11 9 

2 5 000/111 61 

2 5 0000/1111 85 

2 5 00/11 11 

2 5 000/111 190 

2 5 0000/1111 240 

 

 

5.8.4 Forbidden Patterns 

Every pattern has nf0 but only those that have nf0 < n are interesting. 

For larger Ls patterns that are not part of the extreme partition typically have much smaller nf0.  

See the second tunnel for example of forbidden patterns. 

5.8.5 Putting all preprocessing together for W(2,6) 

The longest unavoidable pattern I proved for W(2,6) is 0000. This pattern can be even extended 

to ‘00001’ without the loss of generality. Growing this pattern when the lower bound is 1131 gives us 

plenty of space for a number of iterations of growing the patterns. I grow the initial pattern while the 
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number of patterns is manageable stopping after 12th iteration when most of the patterns are 28 lengths 

long and total count 2,537,546 patterns (see Table 14). 

1. ‘00001’  

2. ‘100001’, ‘000001’ 

3. ‘01000010’, ‘11000011’,’01000011’, ‘1000001’ 

4. … 

Table 14. Counts of patterns during the palindrome based pattern growing 

Iteration Palindromes Non Palindromes Lengths Total Count

0 0 1 5 1

1 2 0 7 2

2 4 3 9 7

3 8 18 11 26

4 14 78 13 92

5 28 319 15 347

6 46 1252 17 1298

7 97 4581 19 4678

8 176 17034 21 17210

9 363 62092 23 62455

10 722 224113 25 224835

11 1218 763984 27 765202

12 2429 2535117 29 2537546
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There are total of 77948442 patterns length 29 without a monochromatic arithmetic progression 

of length 6 when one coloring is forced to 0 (so double the number to include even all the negated 

patterns). 

11403360 of the original 77948442 patterns do NOT have the initial patterns of 0000/1111. 

The result of the palindrome based preprocessing with the initial pattern of 00001 is 1248 patterns 

of the length 28 and 2536298 patterns of the length 29 to the total of 2537546 patterns (the difference in 

lengths is due to even and odd palindromes). 

These considerations show that only 3.26% of the original search space needs to be explored in 

order to still cover the entire original search space. 

5.9 SAT Solver for Van der Waerden Numbers 

5.9.1 Pseudocode for the Preprocessor 

Internal representation of the patterns in the preprocessor has the following format. Since the 

negations are treated the same way as original patterns I can simplify the format to count the number of 

equally colored positions between transitions between 0/1 and 1/0. For example, a string 323 would 

identify 00011000 as well as 11100111 without loss of generality.  

The expansion/growing of the pattern on the left is a simple addition of 1 on the left or increasing 

the left-most number by one. The same holds to the expansion/growing on the right.  

This format was chose for its efficient storage of the patterns although checking for progressions is 

somewhat cumbersome compared to regular pattern array.  

Finding the minimal binary representation is also simple as it amounts to the smallest of the 

strings in the string-wise comparison.  
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The preprocessor performs the expansion and then sorts the patterns to weed out the duplicities. 

This approach scales over 30 steps when it ends up with millions of patterns and almost exhausted 2GB 

of RAM.  

Internally two arrays are allocated – one for palindromes and another for non-palindromes since 

both groups are expanded in different way. Palindromes are expanded on both sides – two expansions in a 

single step and one of the resulting non-palindromes is eliminated. Non-palindromes are expanded on the 

side closest to creating a palindrome. This creates an approximation for the smallest set after i steps, and I 

believe that it is not optimal but it is the best I can do. 

5.9.2 Pseudocode for the Solver 

push('0') 

while(!stack_empty())  

begin 

   path=pop() 

   if last position is NOT part of progression then 

       push(path + '0') 

       push(path + '1')  

   endif 

end while 

Figure 30. Solver pseudocode version 1 
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path is stored as a string with the set position as set_pos and the last heuristically chosen 

variable as cp_pos 

 

set path.set_pos=0 

set path.cp_pos=0 

set path to '0' at path.set_pos 

push(path) 

while(!stack_empty())  

begin 

   path=pop() // path.set_pos, path.cp_pos 

   if path.set_pos does not create a contradition then 

       path.cp_pos++ 

       while path.cp_pos position is set do 

            path.cp_pos++ 

       end while 

       path.set_pos=path.cp_pos 

       set path to '0' at path.set_pos 

       push(path) 

       set path to '1' at path.set_pos 

       push(path)  

   endif 

end while 

Figure 31. Solver pseudocode version 2 
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path is stored as a string with the set position as set_pos and the last heuristically chosen 

variable as cp_pos 

for contradiction and inference checking it is beneficial to save min and max position that has 

been set 

 

set path.set_pos=middle of path 

set path.cp_pos=0 

set path to '0' at path.set_pos 

push(path) 

while(!stack_empty())  

begin 

   path=pop() // path.set_pos, path.cp_pos 

   if path.set_pos does not create a contradition then 

       path.cp_pos++ 

       while heuristic_mapping(path.cp_pos) position is set do 

            path.cp_pos++ 

       end while 

       path.set_pos=heuristic_mapping(path.cp_pos) 

       set path to '0' at path.set_pos 

       push(path) 

       set path to '1' at path.set_pos 

       push(path)  

   endif 

end while 

Figure 32. Solver pseudocode version 3 
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path is stored as a string with the set position as set_pos and the last heuristically chosen 

variable as cp_pos 

for contradiction and inference checking it is beneficial to save min and max position that has 

been set 

 

set path.set_pos=0 

set path.cp_pos=0 

set path to '0' at path.set_pos 

push(path) 

while(!stack_empty())  

begin 

   path=pop() // path.set_pos, path.cp_pos 

 

   if position path.set_pos has potential for progression (due to dots) then  

        pos=last dot 

        set save_path to path 

        set path to '0' at pos 

        if check for contradictions with inferences in path at pos then push(path) 

        set path to save_path 

        set path to '1' at pos 

        if check for contradictions with inferences in path at pos then push(path) 

   else 

        path.cp_pos++ 

        path.set_pos=heuristic_mapping(path.cp_pos) 

        if path.cp_pos position is NOT set then  set path to '.' at path.set_pos 

        push(path) 

   endif 

  

end while 

Figure 33. Solver pseudocode version 4 
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5.9.3 Performance results 

The solver can prove W(2,5)=178 in 2.613s, provide a partition of length 177 for W(2,5) in 

0.091s and provide all satisfiable assignments for W(2,7) for n=177 in 2.683s on Intel Pentium 4/3GHz. 

For W(2,6) the solver given an initial pattern and has to determine whether this pattern has a solution in 

W(2,6) for n=240. 

I have available the clusters in the following configurations: 

• 66x AMD Opteron cores running 1800MHz 

• 34x AMD Athlon running 1533MHz 

• 64x Intel PIII running 450MHz 

• around 50 other Intel and Sun Sparc based processors no exceeding 500MHz each  

 It is my estimate that it would take more than a year to complete the search of all ~2.5mil preprocessed 

patterns. 

In fact, after 6 months I completed about 45% of the patterns. The remaining 55% is being 

completed with the help of FPGAs described in the next chapter, and it is estimated that this portion will 

take less than 2 months, with the help of FPGAs. 

5.10 Van der Waerden Sub Numbers 

So far I have only considered Van der Waerden numbers where the length of the progression was 

limited equally for all colors. I call Van der Waerden sub number W(K;L1,L2,..,Lk)=n, the smallest integer 

with the property such that whenever integers 1,..,n are K-colored, there always exists monochromatic 

arithmetic progression in at least one of the color of length Lk. There is a number of exact Van der 

Waerden sub numbers known as illustrated by Table 15, Table 16, Table 17 and Table 18. Number in 

bold are those that I contributed compared to [74].  
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Table 15. Sub numbers for W(2; x,x) 

W(2; x,x)       
  2 3 4 5 6 
 2 3     
 3 6 9    
 4 7 18 35   
 5 10 22 55 178  
 6 11 32 73 206 1132 
 7 14 46 109     
 8 15 58 146     
 9 18 77       
 10 19 97       
 11 22 114       
 12 23 135       
 13 26 160       
 14 27 186       
 15 30 218       
 16 31 238       
 17 34         
 18 35         
 19 38         
 20 39         

 

 

Table 16. Sub numbers for W(3; 2,x,x) and W(3; 3,x,x) 

W(3; 2,x,x)     
  2 3 4 
 2 4   
 3 7 14  
 4 11 21 40 
 5 15 32 71 
 6 16 40 83 
 7 21 55  119 
 8 22 72   

W(3; 3,x,x)    
  3 4 
 3 27  
 4 51 89 
 5 80   
 6     
 7     
 8     
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Table 17. Sub numbers for W(4; 2,2,x,x) and W(4; 2,3,x,x) 

W(4; 2,2,x,x)    
  2 3 4 
 2 5   
 3 8 17  
 4 12 25 53 
 5 20 43 75 
 6 21 48   
 7 28 65   
 8 29     

W(4; 2,3,x,x)   
  3 4 
 3 40  
 4 60   
 5     
 6     
 7     
 8     

 

Table 18. Sub numbers for W(4; 3,3,x,x) 

W(4; 3,3,x,x)  
  3 
 3 76 

 

5.11 Summary 

I have shown how an analysis of performance curves and solution patterns of a class of CNF 

formulae can present insight for designing effective tunnels through a search depth of high breadth. I have 

chosen to experiment with formulae for finding Van der Waerden numbers since they are a difficult class 

for standard SAT solvers, apparently because clause recording (learning) is ineffective. By tunneling, 

reasonable yet uninferred constraints are added just long enough to get to a search depth that has 

relatively low breadth. Then the tunnel is retracted with the hope that not all solutions have been 

destroyed by the tunnel. Doing so, I found a solution to ψ(2,6)1131 and therefore a new, significantly 

improved lower bound on the number W(2,6) of 1132.  

The symmetric nature of the formulae and solution played an important part in designing 

effective tunnels and three tunnels were tried with the same result. This type of symmetry is common in 

many formula classes that arise from practical applications including problems of formal verification. I 

believe other difficult problems will succumb to tunneling.  
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I believe performance curves of search breadth vs. depth, such as shown in Figure 23, provide a 

“fingerprint” for tunnel effectiveness of problem classes. I speculate the fingerprint will not change much 

qualitatively from one solver to the next, but cannot rule out that possibility. Assuming this, I make some 

claims about the performance curve with respect to hardness as follows. If a performance curve should 

reach a peak at very high depth, tunneling is unlikely to be effective. The family of queue formulae from 

bounded model checking seem to fall into this category. I speculate that early, large peaks mean delayed 

inferences and force exhaustive exploration at search depths corresponding to many unassigned variables.  

Although the development of general purpose propositional solvers that work well on all inputs is 

strongly desirable, at this point it is hard to imagine how this is going to be accomplished. However, a 

general purpose solver can be assisted greatly by giving special consideration to an input problem class, 

mining its structure for some property that may be used to improve search. This is what I have done with 

tunneling. Although I do not foresee generally applicable principals for developing tunnels, I do believe 

that normal human intuition is enough to uncover exploitable structure in many cases. The Van der 

Waerden numbers illustrate both points. 
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Chapter 6 - A FPGA-Based 

Van der Waerden Solver 

SAT solvers are finding increasing applicability in various fields such as combinatorics, model 

checking, hardware verification, and so forth. Increasing the speed of SAT solvers has a direct effect on 

advancements in those fields. I describe how I have used FPGAs (Field Programmable Gate Arrays) to 

implement a special SAT solver dedicated to the problem of determining new lower bounds or exact 

values for certain Van der Waerden numbers.  

Previously I have used a special SAT solver to show that W(2,6) ≥ 1132. This result roughly 

doubled the previously known lower bound for this number. I am currently attempting to show that 

W(2,6) = 1132 by using FPGAs to speed up my SAT solver to complete an exhaustive search of the space 

of 2-colorings of {1, 2, … 1132}. Using various equivalences (complementation and reversal) to bound 

the search, the solver takes an assignment (2-coloring) for m initial variables (integers) and tries to 
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determine whether there is an assignment to the remaining variables such that the formula is satisfied – in 

my case such that there is no monochromatic arithmetic progression of length 6. The solver will backtrack 

whenever it encounters an assignment having arithmetic progression of length 6. 

The process of creating the FPGA downloadable design involves the following major steps. The 

first step is to create the design using a tool such as VHDL [75, 76] or verilog languages. The next step 

involves synthesizing the source files (comparable to compilation of source code to object files). The 

resulting intermediate form is then placed and routed, thereby producing a bit file that can be uploaded to 

the FPGA.  

FPGAs retain the design while powered up, but when reset the design is lost and has to be 

uploaded again. Some boards have PROM memory attached to FPGA, which “boots” the FPGA with the 

initial design. 

The primary motivation for using FPGAs for my Van der Waerden number search came from the 

following observation. During my profiling of the PC-based SAT solver it was clear that 90% of time the 

solver spent checking whether a newly set color did not form an arithmetic progression, or whether the 

newly set color did not infer a coloring on another number. These operations can be translated as 

checking a member of a set for some property (in my case an arithmetic progression). Such a property can 

be implemented on FPGA to take one or a limited number of cycles. One gate with six inputs and one 

output can signal whether the inputs form a progression of length six. The PC based program would take 

6 comparisons to find this information.  

Obviously this approach has a number of concerns. One concern is the space (number of LUTs on 

the FPGA) it takes to accommodate the entire problem of checking for progression on a set of 240 

numbers. Another concern might be the clock speed of my design and achieved speed up compared to the 

PC-based solver. The price effectiveness of the reconfigurable hardware versus an off-the-shelf PC must 

also be taken into account. 
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6.1 Architecture 

As mentioned earlier, my solver is searching the search space of 2-colorings of {1,2, …, n} for a 

coloring not containing a monochromatic arithmetic progression of a certain length. Each number has a 

color represented using two registers. At the start of the computation both registers are assigned 0 for all 

numbers except those that are part of the initial assignment. An assignment of either registers with the 

value 1 constitutes a coloring of that number with either color. Assigning both registers the value 1 is not 

a possible state.  

All registers of one color for all numbers form a vector (C0 and C1).  

My design consists of the following major blocks: 

IB – Inference Block 

CD – Contradiction Detection Block 

CP – Choice Point Selection Block 

LB – Logic block 

RAM – Backtrack Memory 

  

 

Figure 34. The FPGA solver block diagram 

 

The CD (Contradiction Detection Block) has an input of a color vector and the output is True or 

False depending on whether or not the input vector contains an arithmetic progression.  
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Figure 35. Contradiction Detection Block 

 

For example if the input is “01111110001” the output will be 1 (True) since positions 2 to 7 

contain an arithmetic progression of length 6.  

 

The IB (Inference Block) has as input a color vector and as output a list of inferences – list of 

colorations forced to happen in the other color.  

 

 

Figure 36. Inference Block 

For example if the input vector is “111101” it is obvious that I cannot color 5th position using the 

same color and therefore the opposite color is inferred. The output of the IB is “000010”. 

 

The CP (ChoicePoint Selection Block) has as input both color vectors and an output of length n. 

The output will only have one bit set which corresponds to the next unassigned number. My solver uses a 

simple selection of the next choicepoint by selecting the numbers to color starting from the middle 

working its way out. The CP selects the next unassigned number that is closest to the middle (n/2). 
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Figure 37. The Choice Point Selection Block 

 

The LB (Logic Block) takes the output of all three previously described blocks and does the 

following. If the assignment contains a contradiction (as would be indicated by CD block) backtracking 

will be triggered and the previously saved assignment will be retrieved from RAM to be expanded. If 

there is no assignment in memory the computation is done and no assignment without an arithmetic 

progression is possible. If the assignment does not contain contradiction but a new coloring was inferred 

by the IB block, then the inference is made and set as the new input to all three previously described 

blocks to check for contradictions and possible additional inferences. Finally, if the assignment contains 

neither a contradiction nor new inferences, a new choice point is selected. If all numbers are assigned a 

color, then the solution is found. Otherwise the selected number, colored using the first color, is the 

current new assignment and the selected number, colored using the second color, is saved into RAM for 

future backtracks.  

This design simplifies my fastest SAT solver version by removing the delayed literal evaluation 

logic while still maintaining excellent speedup over the sequential version and taking the advantage of the 

fine grain parallelism in the FPGA. 

6.2 Equivalence Check 

The solver consists of about 1000 lines of VHDL code. It is fully pipelined and parameterized for 

n, L and the number of stages in the CD, CP and IB blocks. In addition to running the solver and 

comparing the output with my PC-based solver, I verified the equivalence of some parts of the VHDL 
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with the cryptol code. In other words the cryptol code presented later was found to be equivalent to my 

VHDL code even though it is pipelined. 

6.2.1 Equivalence check process example 

The following is a description with examples of how the equivalence check was performed. For 

the illustration a simple VHDL and cryptol code is used. 

 

1. Create a VHDL specification 

For example I will assume a function that takes 3 inputs and one out where output is ‘1’ when all 

inputs are ‘1’ and ‘0’ otherwise. 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

Entity example is 

port (clk: in std_logic; 

      i : in  std_logic_vector(3-1 downto 0);  

      o : out std_logic); 

end example; 

  

architecture behavioral of example is 

begin 

    o <= i(0) and i(1) and i(2); 

end behavioral; 

Figure 38. Source of example.vhdl 

Note: For the purpose of the equivalence check the first port has to be the input clock 

 

2. Create a Cryptol specification 

The same function as in the first step, but now written in the cryptol language. 
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f:([3][1]) -> [1]; 

 

f(x) = x@0 & x@1 & x@2; 

Figure 39. Source code of f.cry 

 

3. Create a Makefile and compile the VHDL specification 

This step assumes that Xilinx ISE tools are available. 

example: 

        xflow \ 

        -p XC4VLX60-10FF668 \ 

        -synth xst_vhdl.opt \ 

        -implement fast_runtime.opt \ 

        example 

Figure 40. Makefile for the VHDL compilation 

Type “make example” 

 

4. Create verilog netlist (.v) from the ncd file 

The Xilinx tools include the netgen utility, which allows the generation of a verilog netlist from a 

compiled design. The interaction with the utility is shown in Figure 41. 

5. Create a formal model (.fm) from the verilog netlist 

The cryptol suite contains a program for the generation of the cryptol formal model files from the 

verilog netlist. Since the VHDL example file is not pipelined I can omit the output latency specification 

and leave it 1 as default. For pipelined designs I would use “-l <num_stages>” as another option for the 

symbolic_netlist command (see Figure 42). 

6. Perform an equivalence check for the cryptol function and the verilog netlist formal model (see Figure 

43). 
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[mkouril@beowulf bin]$ netgen -ecn formality -w example.ncd  

Release 8.2.02i - netgen I.33 

Copyright (c) 1995-2006 Xilinx, Inc. All rights reserved. 

 

Command Line: netgen -ecn formality -w cd.ncd   

 

WARNING:NetListWriters:629 - The -ngm switch was not used in the netgen command 

   line. This will prevent netgen from being able to create an assertion file 

   for the equivalency checking tool. 

Read and Annotate design 'example.ncd' ... 

Flattening design ... 

Processing design ...  

  Preping design's networks ... 

  Preping design's macros ... 

Writing Verilog netlist file 'example_ecn.v' ... 

Number of warnings: 1 

Total memory usage is 191784 kilobytes 

 

Created netgen log file 'example_ecn.nlf'. 

Figure 41. Interation with netgen utility to create verilog net list 

 

 [mkouril@beowulf bin]$ ./symbolic_netlist -s example_ecn.v 

Figure 42. Interaction with symbolic_netlist to generate formal model file 

 

 [mkouril@beowulf bin]$ ./cryptol_fpga f.cry  

Cryptol FPGA version 0.8, Copyright (c) 2001-2006 Galois Connections Inc. 

A beta release.                                          www.cryptol.net  

 

Type :? for help 

Loading "f.cry".. Checking types.. Processing.. Done! 

cd> :equals f "example_ecn.v.fm" 

EQUIVALENT 

cd> 

Figure 43. Interaction with cryptol program during the equivalence check 

6.2.2 Results of Equivalence Checks 

I wrote cryptol files for three major blocks of my design, namely, the CD, CP and IB. They are 

shown in Figure 44, Figure 45 and Figure 46, respectively. 
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For the CD block the function cd(x) returns 0 if the output of clause(x,start,step) is True for any 

start and step between 1 and n-1. The function clause(x, start, step) returns True if the clause starting with 

start and having step step forms an arithmetic progression length L 

n=240; 

L=6; 

 

clause: ([n*2+1][1],[width n],[width n]) -> Bit; 

clause(x,start,step) =  

      if ((n-start-1)/step>=(L-1))  

      then [| x@(start+(p-1)*step) || p<-[1..L] |]==[| 1 || p<-[1..L] |]  

      else False; 

 

cd: ([n][1]) -> [1]; 

cd(x) =  

  if  

    [|  

        if clause(x#[| 0 || p<-[1..n+1] |], start-1, step) then 1 else 0  

     || start<-[1..n], step<-[1..n]  

      |]  == [| 0 || p<-[1..((n-1)*(n-1))] |]  

  then 0 else 1; 

Figure 44. Source for cd.cry 

The function cp(c0,c1) returns the result of the function done(c0,c1), which is 1 if there is no 

uncolored number, 0 otherwise. The function cp also returns a vector c in which one bit is set indicating 

the next choice point. The numbers are chosen from the center and then work their way out. The function 

map(x) remaps the input vector to place the highest priority selection to the lowest bit of the resulting 

vector and vice versa. The function lowest(x) finds the lowest set bit and leaves it as the only set bit. If no 

bit is set in the input vector the output of lowest is all zeros. The function unmap is the reverse function of 

map(), and it remaps the bits such that the lowest bit is placed in the middle, second lowest is placed next 

to the middle bit, and so on up to the highest bit which is placed at position 0 or n-1 in the output vector. 
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n=240; 

 

done: ( [n][1], [n][1] ) -> [1]; 

done(c0, c1) = if ~(c0 | c1) == [| 0 || p<-[1..n] |] then 1 else 0; 

 

map: ( [n][1] ) -> [n][1]; 

map(c) = c@@ [| if (index%2)==1 then n-1-(index/2) else (index/2) || index<-reverse [0 .. n-1] 

|]; 

 

unmap: ( [n][1] ) -> [n][1]; 

unmap(c) = c @@ ( [| index || index <- reverse [ 1 3 .. n-1 ] |] # [| index || index <- [ 0 2 .. 

n-1 ] |]); 

 

is_zero: ( [n][1], [ width n ] ) -> Bit; 

is_zero(c, len) = [| if (p<len) then c@p else 0 || p<-[0..n-1] |] == [| 0 || x<-[ 0 .. n-1] |]; 

 

lowest: ( [n][1] ) -> [n][1]; 

lowest(c) = 

[ (if (c@0 == 1) then 1 else 0 ) ] 

# 

[| if (is_zero(c, p) & (c @ p == 1)) then 1 else 0 || p <- [1 .. n-1] |] 

; 

 

give_me_lowest: ( [n][1], [n][1] ) -> [n][1]; 

give_me_lowest(c0, c1) = unmap(lowest(map(~(c0 | c1)))); 

 

cp: ( [n][1], [n][1] ) -> [n+1][1]; 

cp (c0, c1) =  [ (done(c0,c1)) ] # give_me_lowest(c0,c1) ; 

Figure 45. Source for cp.cry 
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n=20; 

L=6; 

 

index_arr: [ width n] -> [L-1][ width n]; 

index_arr(id) = [| if (i-1)<id then i-1 else i || i<-[2..L] |]; 

 

/* i is 0 based, id is 1 based */ 

infer_lit: ([n*2+1][1],[width n],[width n],[width n]) -> Bit; 

infer_lit(x,i,step,id) =  

  if   (i/step >= (id-1))   /* enough number before i/step >= (id-1) */ 

     & ((n-1-i)/step>=(L-id+1-1)) 

  then 

  if (id==1) then  

      ( [| x@(i+p*step) || p<-[1..L-1] |]==[| 1 || p<-[1..L-1] |] ) 

  else if (id==L) then  

      ([| x@(i-p*step) || p<-[1..L-1] |]==[| 1 || p<-[1..L-1] |] ) 

  else ([| x@(i-(id-1)*step+(p-1)*step) || p<-index_arr(id) |]==[| 1 || p<-[1..L-1] |] ) 

else 

  False; 

 

infer_one: ([n][1], [ width n ]) -> [1]; 

infer_one(x,i)=if [| (if (infer_lit(x # [| 0 || p<-[1..n+1]|] ,i,step,index_L))  then 1 else 0) 

|| step<-[1..n],index_L<-[1..L] |] == [| 0 || p<-[1..n*L] |] then 0 else 1; 

 

infer: ([n][1]) -> [n][1]; 

infer(x) = [| infer_one(x,i) || i<-[0..n-1] |]; 

 

any_infer: ([n][1],[n][1]) -> [1]; 

any_infer(c1, infer_v) = if (infer_v& (~c1))==[| 0 || p<-[1..n] |] then 0 else 1; 

 

ib: ([n][1],[n][1]) -> [n+1][1]; 

ib(c0,c1) = [  ( any_infer(c1,infer_v) ) ]  #  (infer_v|c1)  where { infer_v:[n][1]; infer_v = 

infer(c0); }; 

Figure 46. Source for ib.cry 
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Finally, the function ib(c0, c1) returns a tuple consisting of a bit and an output vector, where the 

first bit indicates whether there is a new inference, i.e., whether the output vector is any different than c1 

on the input vector. The output vector consists of an inferred coloring from c0 OR c1. The function 

infer(c0) returns a vector of all bits inferred by c0. The function infer_one(x,i) returns 1 if bit i in x should 

be inferred, 0 otherwise. The function infer_one calls infer_lit(x,i,step, index_L) for all possible 

combinations of step and index_L, which is the bit placement in the possible progression (between 1 and 

L). The function infer_lit first decides whether such clause is possible, and then returns 1 if the remaining 

bits in the progression are set to ‘1’, i.e., if the current position is inferred (should be forced to be set to a 

different color to prevent formation of an arithmetic progression). 

I was able to equivalence check the following modules.  

Table 19. Equivalence check results 

 Result 
CD Checked in full (at n=240, L=6 with 8 stage pipeline) 
CP Checked in full (at n=240 with 8 stage pipeline) 
IB Checked in full (at n=240, L=6 with 8 stage pipeline) 
 

The remaining part of the code is relatively trivial, and consists of LB, RAM and the framework 

VDW_SOLVER. 

6.3 Evaluation 

To address the limitation concerns discussed in the introduction, I synthesized the initial design. 

After a number of optimizations it was clear that the design would not fit into available Xilinx Spartan 

devices and Virtex-4[77, 78] would be needed. The product offering Virtex-4 starts with just a few 

thousand LUTs and goes up to hundreds of thousands of LUTs. The ideal fit in terms of chip size and the 

availability of evaluation boards led to a Virtex-4 LX60 with almost 60K LUTs. 
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Also I developed the simulation equivalent C-code to evaluate the speed of the final design with 

respect to the PC-based solver. The simulation yielded the speedup of 1.1x 1MHz, which indicated great 

potential for the FPGAs. Virtex-4 maximum (unrealistic) speed is cited at 450MHz. The realistic speed 

for available evaluation boards is 100MHz, yielding 110x speedup for one FPGA, which matches the 

speed of all Linc Lab’s currently working clusters. 

The design was evaluated on four AVNET ADS-XLX-V4LX-EVL60[79] evaluation boards with 

Xilinx Virtex-4 FPGA. Specifically the boards have XC4VLX60-10FF668 with almost 60 thousands 

LUTs. The board was selected for the chip’s large number of available logic to fit my design, and also for 

its excellent price/performance ratio.  

I used Xilinx tools ISE 8.1i and 8.2i to synthesize and place and route the design as well as Xilinx 

EDK 8.1 to integrate the design with the embedded MicroBlaze soft core processor described later. The 

Xilinx tools were run on Linux based server with two 3GHz Pentium 4 processors and 2GB RAM. 

The simulation and debugging was mainly done using Cadence tools. The simulation is relatively 

slow and only relatively small designs were simulated. The full design could not be simulated for any 

reasonable initial paths for the time it would take to return a result. 

Initial one-stage (no pipeline) designs were clocked at 25-50MHz, and even then confirmed the 

simulation prediction of about 1.1x1MHz speedup compared to the sequential SAT solver, achieving 55x 

speed up over 1800MHz Opteron.  

The depth of the logic limits the speed of the one-stage design. The pipelining of my design 

proved to be relatively simple. Each of the major blocks (IB, CD and CP) was pipelined into a number of 

stages, while the LB and RAM were split into one stage each. The LB block had to be altered to not only 

end the computation when one stage found a contradiction while the RAM is empty, but also when there 

was no other working stage. 
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The pipelined architecture allows us to achieve speeds of up to 240MHz, or 260x of the 

sequential SAT solver running on a sequential processor. The test of the synthesis and place and route on 

the latest Xilinx chip Virtex-5 showed even greater potential due to the increased number of inputs to 6 on 

LUTs. 

On the Virtex-4 evaluation board the fastest frequency I can achieve is 210MHz due to the 

limitation of the DCM (Digital Clock Manager) component. This embedded component is responsible for 

generating the desired clock frequency from the input clock, which, runs at 100MHz. 

6.4 Software Interface 

In order to interface the evaluation FPGA with a host computer, make the initial assignment, and 

retrieve additional information about the computation (such as the value of the internal cycle, choicepoint 

and solution counters), I decided to use the embedded serial port. This choice was primarily driven by the 

simplicity of the communication over the serial port. My solver does not have great bandwidth 

requirements and the serial port, albeit slow, does not create a bottleneck in the computation.  

In addition to using the serial port I explored the Xilinx EDK (Embedded Development Kit) and 

found the supplied MicroBlaze processor core to fit my needs. MicroBlaze is a 32-bit soft core processor 

with user-friendly tools supplied in the EDK such as gcc compiler suite and debug tools for onchip 

debugging. I was able to quickly design OPB (Onchip Peripherial Bus) interface for my solver and 

connect it with the instantiated MicroBlaze. A relatively small piece of code for the MicroBlaze allowed 

us to control the solver from a host computer.  
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Figure 47. Overall architecture of the special FPGA SAT solver 

 

The MicroBlaze core, however, also limits the speed of the design. Although the solver is capable 

running at 200MHz, the MicroBlaze core at its minimal configuration is not able to exceed 133MHz on 

this particular FPGA chip. Therefore, in the end my design is only clocked at 100MHz achieving the 

speed up of about 110x over the single Opteron core. 

6.5 Integration with ICI Based Computation 

In order to integrate FPGA based computation with the ongoing cluster based computation I 

connected all four available evaluation boards to the Cyclades terminal server card in a cluster node. A 

simple program in a shell script retrieves the next initial configuration to work on from the ICI work 

server and passes it on to the FPGA board over the serial port. When the FPGA board is done the shell 

script indicates back to the ICI work server that the FPGA completed the task and hands over the results.  

6.6 Summary 

I designed the FPGA-based SAT solver that significantly increases the speed of the searching 

compared to the sequential-based SAT solver. The FPGA-based SAT solver has a number of limitations. 
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One of these limitations is the space (number of LUTs on FPGA) it takes to accommodate the entire 

problem of checking for progression on a set of 240 numbers. Another limitation might be the clock speed 

of my design and achieved speed up compared to the PC-based solver. Another concern is the price 

effectiveness of the reconfigurable hardware vs. an off-the-shelf PC. 

The design utilizes up to 72% of the LUTs and 84% of the slices. The MicroBlaze core occupies 

about 5-10% of this space. Although this might not seem like a fully utilized design, it is necessary to 

keep in mind that 100% utilized design is increasingly hard to route and might not be feasible.  

I also evaluated architecture with a PicoBlaze 8-bit core, and even one without an embedded soft 

core. In both cases the speed increased significantly reaching about 133MHz for PicoBlaze core and 

210MHz for core-less architecture with just a simple interface to the serial port. 

When clocking the design at the higher speeds the heat dissipation becomes a serious problem. 

The evaluation board that comes with the FPGA chips has no heatsinks whatsoever. Although I have not 

encounter any issues when the design was clocked at 100MHz, the chips ran rather hot. A simple added 

heatsink together with a fan placed above the evaluation board solved the problem. The Virtex-4 has a 

built-in temperature sensor so in theory it should shut down when there is a danger of overheating. 

Unfortunately the sensor readings became unavailable starting Xilinx ISE 6.3 and no other way was found 

to monitor the temperature of the FPGA chip. 

I showed that FPGAs can have a great impact in the field of SAT solvers. I achieved a good 

speedup with a relatively cheap ($700) board. The downsides I encountered are primarily connected with 

the development cost and development time as well as the constraint in the fabric space. The combined 

time for the synthesis and place and route ranged from 2-3 sometimes reaching the extremes of 6 hours on 

3GHz Pentium 4. 
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Chapter 7 - Conclusions 

Scientific computing today is headed toward expanded utilization of multi-processor clusters. The 

price of hardware is steadily falling while at the same time processor speed is steadily increasing. These 

trends place greater burdens on efficiency of software management and make more demands on the 

efficient utilization of existing hardware resources. Some problems require more processing power than 

clusters of reasonable size can provide, and newer technologies must be employed. Fortunately, such 

technologies have become available and at competitive price-performance ratios. One such technology, 

namely, reconfigurable computing as supported by FPGAs, has emerged that can be used in combination 

with clusters or in a standalone fashion. In this way even more computational power can be delivered with 

lower energy and environmental costs. 

In this dissertation I presented a number of solutions for employing a single cluster, multiple 

clusters, or even other devices into long-term computations. I addressed an important problem of 

connecting clusters running diverse software and hardware through the InterCluster Interface (ICI) 
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library. Although this library does not address issues such as aggregate operations and group 

communication, its point-to-point interoperable aspect makes it appealing for projects where the 

computation is not limited to one homogenous cluster, but can be performed by multiple computers or 

clusters. 

My Backtracking Framework (BkFr) not only enables communication between heterogeneous 

clusters, it also supports load balancing and uniform distribution of the problem over all participating 

resources. Although the framework is not limited to the backtracking paradigm, much of the development 

of the framework was connected with this paradigm, and most of the modules make use of backtracking. 

For intracluster communication (communication within the cluster) the standard MPI library is used. As 

noted earlier BkFr also takes advantage of ICI and can span the execution over multiple clusters with the 

uniform load balance and failure recovery using the Path Repository component. A cluster can come in 

and out of computation, as it becomes available taking advantage of cluster that might be available only 

for a limited time. 

The research involving BkFr not only supports efficient utilization of computing resources, but 

also facilitates the introduction of MPI to the CS student using a template library. The template library 

helps the student get started in the somewhat confusing environment of cluster computing, and supplies 

the basic functionality of MPI. Students can then focus on the algorithm and its implementation, while 

filling in blanks based on learned properties of a very basic set of MPI functions. In the end student can 

quickly get the MPI code running on a cluster. 

One of the major contributions of this thesis is the work on the problem of Van der Waerden 

numbers. In concert with SAT solvers I developed a methodology called tunneling that allowed us to 

almost double the existing lower bound for W(2,6). My technique involved adding uninferred constraints 

to the problem. This move effectively cut the search space while keeping sufficient number of partial 

solutions around so that even after retracting the constraints I was led to solutions. Enormous speedup 
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was thereby obtained, and I generated the longest partition known so far that can be 2-colored without a 

monochromatic arithmetic progression of length 6. More precisely, I showed that W(2,6) ≥ 1132. 

 In addition to establishing the best lower bound so far I have found a way to compute the Van 

der Waerden number W(2,6) exactly. Employing assertive elimination of the redundant paths throughout 

the search space during the preprocessing, and using the notion of unavoidable patterns in a partition of 

certain length, I was able to cut the original search space by 96.74%. I was also able to speed up my 

special Van der Waerden SAT solver taking advantage of the various profiling tools and optimization 

tools yielding a feasible running of about one year on available department clusters consisting of about 

200 CPU. The speed was verified after 6 months of computation where I explored about 50% of the 

search space. 

I also ported the Van der Waerden solver into the FPGA environment. Using FPGAs was 

motivated by the observation that the majority of time in the PC-based solver is spent checking for 

progressions. This single task can be done in the reconfigurable environment in a single clock step, 

suggesting a potentially much faster solver. After simulation and final implementation the FPGA based 

solver proved to be significantly than the PC-based solution. One FPGA evaluation board running 

100MHz design yielded the same speed as all the department clusters. Obviously with the available 4 

boards the remaining work will be completed in less than two months compared to previously anticipated 

6 months. 

7.1 Future Work 

What I have done can be built upon and expanded to various other problems. 

The InterCluster Interface library could highly benefit from group communication and aggregate 

operations although this is a challenging problem in itself. I hope that the MPI standard will eventually 

include interoperable communication even on a simple point-to-point communication level. I have been 

informed that this extension to the standard might happen as early as next year. 
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The Backtracking Framework can be expanded as well. Not only can new problems can be 

implemented using BkFr, but also the framework itself can be optimized in various areas. For example, 

more paradigm specific functionality can be added in addition to those for the backtracking part. In the 

teaching aspect of the framework, more templates and greater accessibility, such as using a web interface, 

can be further developed 

Results in the Van der Waerden numbers area might bring even more significant outcomes once 

the methodology developed in this thesis is further applied. The FPGA design shows good potential, and 

with 210 MHz designs or newly released Xilinx Virtex-5 chips it is not unreasonable to assume that an 

additional lower bound or two or even the exact number might be determined. Specifically W(2,7) with 

the tunneling might bring a new lower bound, and W(5,3) could be computed exactly. I believe that both 

of these numbers have significantly greater lower bounds than currently known. 

The tunneling technique described in this dissertation has greater applicability. If applied to other 

problems such as BMC (Bounded Model Checking) I might yet again see other problems previously 

considered unsolvable to yield solutions much earlier in the search. 

In the FPGA world more work could be done to make the designs more flexible and easier to 

manage. For example implementing ICI directly onto an FPGA is an option that would reduce the 

problem of interfacing the FPGA with the rest of the computation to merely plugging it into the regular 

Ethernet network. Also, the partial self-reconfiguration could achieve independence from the 

configuration interface and allow the board to function truly independently. This independence would 

also allow quick changing of the designs, not only in response to input parameters, but possibly also in 

response to the position in the search tree. In this way even bigger problems might be solvable in the 

FPGA world. 
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