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Abstract 

 
 
 
The objective of supervised learning is to estimate unknowns based on labeled 

training samples.  For example, one may have aerial spectrographic readings for 

a large field planted in corn.  Based on spectrographic observation, one would 

like to determine whether the plants in part of the field are weeds or corn.  Since 

the unknown to be estimated is categorical or discrete, the problem is one of 

classification.  If the unknown to be estimated is continuous, the problem is one 

of regression or numerical estimation.  For example, one may have samples of 

ozone levels from certain points in the atmosphere.  Based on those samples, 

one would like to estimate the ozone level at other points in the atmosphere. 

Algorithms for supervised learning are useful tools in many areas of 

agriculture, medicine, and engineering, including estimation of proper levels of 

nutrients for cows, prediction of malignant cancer, document analysis, and 

speech recognition.  A few general references on supervised learning include [1], 

[2], [3], and [4].  Two recent reviews of the supervised learning literature are [5] 

and [6].  In general, univariate learning tree algorithms have been particularly 

successful in classification problems, but they can suffer from several 

fundamental difficulties, e.g., "a representational limitation of univariate decision 

trees:  the orthogonal splits to the feature's axis of the sample space that 

univariate tree rely on" [8] and overfit [17]. 



In this thesis, we present a classification procedure for supervised 

classification that consists of a new univariate decision tree algorithm (Margin 

Algorithm) and two other related algorithms (Hyperplane and Box Algorithms).  

The full algorithm overcomes all of the usual limitations of univariate decision 

trees and is called the Paired Planes Classification Procedure.  The Paired 

Planes Classification Procedure is compared to Support Vector Machines,  

K-Nearest Neighbors, and decision trees.  The Hyperplane Algorithm allows 

direct user input as to acceptable error for each class as contrasted with indirect 

input (through use of a slack variable) with Support Vector Machines.  Theoretical 

and real-life datasets results are shown.  Experiments on real-life datasets show 

that error rates are in some circumstances lower than these supervised learning 

algorithms, while usually being computationally less expensive by an order of 

magnitude (or more). 
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Chapter 1: Introduction 
 

 
1.1 THE SUPERVISED LEARNING PROBLEM 

Supervised learning can be viewed as a method for function approximation from training 

data.  The objective of supervised learning is to estimate unknowns based on labeled 

observations, input-output pairs.  The input is typically a vector.  If the output is a class 

label, then the problem is called classification.  Classification places individual items into 

groups/classes based on quantitative information inherent in the items (variables, traits).  

If the output is a continuous variable, the problem is called regression. 

For instance, one may have aerial spectrographic readings for a large field planted 

in corn.  Based on spectrographic observation of a particular area of this field, one would 

like to determine whether the plants in this area of the field are weeds or corn.  Since the 

unknown to be estimated is categorical or discrete, the problem is one of classification. 

On the other hand, one may have samples of ozone levels from certain points in 

the atmosphere.  Based on those samples, one would like to estimate the ozone level at 

other points in the atmosphere.  Since the unknown to be estimated is continuous, the 

problem is one of regression. 

Supervised learning algorithms are useful tools in many areas of automated 

recognition (handwriting, speech, image, chemical compound), agriculture (plant 

identification, automatic livestock nutrient and medication dosage), medicine (disease 

classification, deciding dosage level), and engineering (fault diagnosis, target 

identification, terrain characterization for automated driving).  General references on 

supervised learning are readily available.  Two recent reviews of the supervised learning 
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literature are [5] and [6].  Supervised learning may be used as an end goal.  It also may be 

used as a preprocessing step for other work.  For example, classification of data into 

disease or disease-free categories might precede a study of dosage level for the disease 

category. 

 

1.2 SUPERVISED LEARNING ALGORITHMS 

Assuming that the type of data has been decided and training examples have been 

collected, the input attributes must be decided.  Often a subset of the attributes is used to 

avoid computational complexity and other difficulties, such as the curse of dimensionality 

(section 1.3.1) and overfit (section 1.3.2).  The attributes may or may not be transformed 

by some process into a feature.  The value for an attribute might be squared or two 

attributes multiplied together to form such a feature.   

Properly speaking, attribute refers to the name of the variable and feature refers to 

the value of the variable.  However, these are often used interchangeably.  Additionally, 

feature often refers to a combination of two or more attributes, as described above.  

Within this study, we never use feature in this sense when referring to our classification 

procedure.  However, it may be used when referring to other algorithms, particularly 

multivariate decision trees. 

Next, the design of the learning function is decided.  The design is tied to the 

decision as to use of a subset of attributes and whether to create features.  Finally, using 

parameters determined from training the learning function, the results are tested on a 

dataset previously unseen by the algorithm. 
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 We may divide supervised learning into global models and local models.  Here, 

global means that all training examples are used to classify a new point and local means 

only nearby points are considered to classify a new point.  The assumption for the local 

model is that the point to be classified is more similar to nearby points than those points 

far away. 

1.2.1 K-NEAREST NEIGHBOR 

The k-Nearest Neighbor algorithm [k-NN] is an example of a local model.  It is a method 

of classification that relies on grouping examples that are close to one another in the 

feature space.  The Euclidean distance is usually used as a proximity measure.  If a 

weighted average of the k nearest neighbors is used, the effect of outliers (isolated 

examples) that are noisy (errors) is lessened.   

The training phase of the algorithm stores the vectors.  At the time of 

classification, distances from the point to be classified to all stored vectors are calculated.  

The k-nearest neighbors are then selected.  The point is classified as to whichever class in 

this set of neighbors that is the most frequent; k odd ensures that there are no ties.  When 

the distance is calculated, all attributes are used, whether relevant or not.  This can have a 

detrimental effect on classification.  This problem of many irrelevant attributes is known 

as the curse of dimensionality and is detailed in section 1.3.1. 

There are methods, such as weighing each attribute differently, to try to overcome 

the curse of dimensionality.  This has the effect of giving less value to the irrelevant 

attributes.  Another method is to completely eliminate those attributes judged irrelevant.  

Much research has been applied to these two areas in order to improve classification. 

The k-Nearest Neighbor algorithm is easy to implement.  However, as the number 

of training examples increases, the computation becomes very costly.  Thus, for large 
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datasets, efforts have centered on methods (partial distances, prestructuring, and editing 

the stored prototypes) to overcome this limitation [1]. 

The computational complexity during testing is a limitation.  For n training 

samples with d attributes, if one seeks the single (k = 1) closest point to a test point x, the 

Euclidean distance calculation is O(d) and the search is O(dn2) [1], where d is the number 

of attributes.  For k > 1, the k closest points vote as to which class the new point belongs 

to and that class is assigned.  To do this, a sort is required on the n points to find the k 

closest points: O(nln n).  Therefore, the search complexity is O(dn2  + nln n). 

1.2.2 SUPPORT VECTOR MACHINES 

Support Vector Machines (SVMs) [11] are a special type of binary classifier that seeks to 

separate classes by a linear decision boundary – a hyperplane.  The distance from the 

decision boundary to the nearest data points, support vectors, is called the margin (of 

separation).  It uses only the hyperplanes determined by these vectors to classify new 

points and is therefore a global model conceptually and a local model for actual 

classification. 

The optimal hyperplane is one where the margin is maximized (there is a 

maximum distance to the closest vectors from both classes), minimizing the number of 

support vectors.  A hyperplane with a maximum margin allows more accurate 

classification of new points.  A hard margin SVM is applicable when the classes are 

linearly separable.  A soft margin SVM is applicable when the classes are non-separable, 

and the margin is chosen to minimize errors of classification. 

SVMs are scale dependent and slow training: "One disadvantage of SVM is that 

the training time scales somewhere between quadratic and cubic with respect to the 
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number of training samples.”  [12].  The complexity is O(n3) according to [11], but even 

with a quadratic complexity this is still unmanageable for large n. 

1.2.3 DECISION TREES 

Decision Trees are an example of a global model.  By contrast, to k-Nearest Neighbor 

algorithm and Support Vector Machines, decision trees such as ID3 (interactive 

dicotomizer) [7] and C4.5 [13] typically select only a subset of the attributes to form the 

hypothesis – a decision tree.  ID3 was restricted to attributes with discrete values for not 

only the output variable, but also the input variables.  C4.5, Quinlan's extension of ID3, 

allows continuous-valued attributes for the input variables as well as methods to prune 

the tree.  However, according to Quinlan, "Several authors have recently noted that 

C4.5's performance is weaker in domains with a preponderance of continuous attributes 

than for learning tasks that have mainly discrete attributes.”  [14]. 

Both algorithms start by choosing as the root node of the tree the best attribute 

with respect to the information gain.  For each of the possible discrete values of this 

attribute a descendant node is created and the relevant training examples assigned to the 

correct node.  The process is repeated using the training examples at each node and so on.   

This is a greedy approach and the ID3 algorithm, in its pure form, never goes back 

to reconsider: "It does not have the ability to determine how many alternative decision 

trees are consistent with the available training data," [4].  Thus, it has an incomplete 

search of the hypothesis space of all possible decision trees.  This is referred to as a 

search bias. 

All the relevant training examples are considered at each step making it less 

sensitive to single examples.  In classifying, the first acceptable tree is chosen. 
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This preference is essentially for a shorter tree [4].  When a preference is for the 

simplest hypothesis that fits the data, it is called Occam's razor.  However, objections can 

be made to this.  For instance, if we have two hypotheses, such as two decision trees, that 

are equally simple, how do we choose which one to use?  Another objection is that the 

size of the hypothesis, determined by the internal representation of the learner, can be 

different for the same hypothesis by two different learners.  Mitchell [4] gives an example 

where the same learned decision tree could be represented by two different learners, each 

justifiable by Occam's razor, which generalize differently.  Yet another objection is that a 

more complex hypothesis can actually provide a better explanation for the classification, 

i.e., not everything has a simple explanation. 

Choosing attributes, how deep a tree to grow a decision tree, and how to handle 

missing data are all addressed by C4.5.  The depth of the tree is of particular importance.  

Overfitting can result if a tree is grown too deep.  A more detailed explanation of overfit 

is in section 1.3.2. 

CART [15] is a decision tree algorithm similar in most respects to C4.5, with the 

notable exception that its internal nodes test on linear combinations of attributes [16] 

[15].  "The basic methodology of divide and conquer described in C4.5 is also used in 

CART.  The differences are in the tree structure, the splitting criteria, the pruning 

method, and the way missing values are handled.”  [17]. 

Real-valued variables are treated the same way, multiway splits are used with 

nominal data, and heuristics based on statistical significance of splits are used for pruning 

the tree [1]. 

They handle missing attribute values differently:  CART uses surrogate splits 

while C4.5 follows all possible answers to the leaf nodes.  Surrogate splits may use the 
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simple measure of counting the number of instances sent to the left and right by each of 

the two possible splits and choose the one with a higher count.  C4.5 considers the class 

labels of the leaf nodes reached and weighs its decision by the probability at the splitting 

node of how any instance would be classified.  

We now discuss the computational complexity for CART and C4.5.  Each is given 

in terms of the two-class problem. 

 Duda gives the training complexity for CART as O(kn2log n) and classification 

complexity as O(log n), where k is the number of attributes and n is the number of 

training points [1].  Implicit in these calculations are two assumptions: i) an average case 

that splits the data into halves for each branch of the binary tree at every level and ii) 

there is a single training point per leaf node. 

The training complexity for C4.5 is of order O(kn log n) + O(n (log n)2)) [18], as 

shown below: 

• Assume k attributes, n training instances and a tree depth of O(log n) 

• Cost for building a tree: O(kn log n) 

• Complexity of subtree replacement: O(n) 

• Complexity of subtree raising: O(n (log n)2) 

• Every instance may have to be redistributed at every node between its leaf and the 

root: O(n log n) 

•  Cost for redistribution (on average): O(log n) 

• Total cost: O(kn log n) + O(n (log n)2) 

Univariate decision trees are trees that test one attribute at a time.  They alleviate the 

curse of dimensionality to some degree, but typically have several limitations [8].  These 

are listed below. 
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1. Trees (such as C4.5 [13] or CART [15]) usually test the same attributes in one or 

more subtrees.  For example, consider the Digit Recognition (our label) decision tree 

from page 47 of [15] shown in Figure 1-1 (originally labeled as FIGURE 2.13 in 

[15]).  The attributes in this example correspond to the lights displayed to form digits 

on electronic watches and calculators.  By [15], the device is faulty and the problem is 

to decide which digit is displayed.  The root of the tree,  t1, is the attribute x5.  The 

subtrees to the left and right each contain the attributes x2, x3, and x4.  The attribute x4 

is used multiple times to determine the class/digit:  

(x5 = 0 /\ x4 = 0  /\ x1 = 0) leads to class 1. 

(x5 ≠  0 /\ x2 ≠  0  /\ x4 = 0) leads to class 10. 

2. An attribute may occur more than once in a path.  For a continuous attribute, such as 

those used in the Waveform Recognition (our label) decision tree from page 54 of [15] 

shown in Figure 1-2 (originally labeled as FIGURE 2.13 in [15]), the attribute may 

occur more than once corresponding to the attribute value interval being split more 

than once.  For example, x6 is split into two intervals: x6 ≤  2.0 and  x6 > 2.0.  The 

left-most side (x6 ≤  2.0) is then split again into two intervals: x6 ≤  0.8 and x6 > 0.8.  

The root of the tree is the attribute x6.  The subtree to the left contains the attribute x6 

again as well and the left-most path to class 3 is (x6 ≤  2.0 /\ x11 ≤  2.5  /\ x6 ≤  0.8).  

Multiple paths to class 3 lead to a disjunction of conjunctions:  

 

(x6 ≤  2.0 /\ x11 ≤  2.5  /\ x6 ≤  0.8)  \/  

(x6 ≤  2.0 /\ x11 > 2.5  /\ x15 > 1.9)  \/ 

(x6 > 2.0 /\ x10 > 2.6  /\ x7 ≤  0.9) 
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Figure 1-1.  Digit Recognition  Decision Tree [15]. 
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Figure 1-2.  Waveform Recognition  Decision Tree [15]. 
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3. Univariate binary trees rely on splits orthogonal to the axes of the feature space.  In 

a multi-dimensional feature space, this may be too constrained a model to represent 

accurately the decision boundaries, i.e., an oblique decision boundary may split the 

classes better. 

 

1.3 ISSUES IN SUPERVISED LEARNING ALGORITHMS 

We now consider the three algorithms presented in section 1.2 and discuss some  of these 

shortcomings relative to them.  Many of these problems are common to all supervised 

learning and efforts to ameliorate them are important.  Complexity of computation has 

already been mentioned for SVMs and the k-Nearest Neighbor algorithm.  We will look 

at other issues here. 

1.3.1 THE CURSE OF DIMENSIONALITY 

Imagine a case where there are 100 attributes, but only one of these is relevant in the 

classification.  For the k-Nearest Neighbor algorithm, when the distance is calculated, all 

attributes are used.  This can have a detrimental effect.  All 100 attributes are still used to 

calculate the distances.  There may be points that have the same value for the relevant 

attribute but are far away from each other in the 100 dimensional space.  Thus, the non-

relevant attributes dominate the distance measure.  The effect of irrelevant attributes is 

felt in other algorithms as well.  This problem of many irrelevant attributes is known as 

the curse of dimensionality [a term coined by Richard Bellman]. 

1.3.2 OVERFITTING 

Overfitting occurs when improvement of classification accuracy on training is done at the 

expense of overall accuracy (including testing).  Consider the hypothesis h a tree 

(obtained by a decision tree algorithm) represents.  It has certain accuracy on the training 
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data with hypothesis h.  Now let there be noise introduced in one of the examples, such as 

a mislabeling of its class and let h' be the hypothesis corresponding to the tree obtained 

by the re-training.  This tree separates this example from other examples and, with this 

example, is a more complex tree.  The resulting hypothesis h' fits the training data better 

than h, but in fact the true accuracy for the training data is reduced.  The new hypothesis 

has learned the error.  Even when the data is noise-free, overfitting can occur.  If there are 

only a few examples at a leaf node, coincidence can cause misclassification.  Essentially 

this is the result of a too-small sample size affecting the statistical test, which relies on a 

minimum number of examples. 

Decision trees, including C4.5, are generally prone to overfitting: "... if there are 

no conflicting cases, the decision tree will correctly classify all training cases.  This so-

called overfitting is generally thought to lead to a loss of predictive accuracy in most 

applications (Quinlan 1986).”  [17]. 

1.3.3 STRUCTURAL REPRESENTATION LIMITS 

In the case of Support Vector Machines, a hyperplane is used, but a curved  surface may 

actually better separate the classes.  The kernel trick is a method of dealing with this.  

Rather than using a linear surface, the dot product is replaced by a non-linear function of 

the dot product, which corresponds to the dot product in the higher dimensional feature 

space, hence the name kernel.  The classifier is linear in a higher dimensional space but 

non-linear in the original input space. 

 Univariate decision trees use decision surfaces that are orthogonal to the axes.  

Unfortunately, a consequence of this is that classes separable by oblique lines may not be 

separated as well by univariate decision trees.  Multivariate decision trees are trees that 

test more than one attribute at a time.  They attempt to address this disadvantage of 
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univariate trees by being able to create an oblique split.  This is done by a linear 

combination of two or more features.  There is an inherent difficulty in this method: 

Which features does one choose as a subset?  To date, results have not been impressive.  

The multivariate decision tree algorithms also are of increased computational complexity. 

 One approach (C-Net) to creating multivariate decision trees is to use a neural 

network in combination with Quinlan's C5 (an improvement to C4.5) and thereby create 

the tree [19].  The artificial neural network (ANN) is trained on the data, then the output 

of the hidden layer is the input feature vector to C5.  Finally, the univariate decision tree 

in the new feature space of hidden units is converted to a multivariate decision tree. 

 Figure 1-3 (reproduced from [19] and originally labeled as Table 2) shows results 

for testing on four real-life datasets and on four artificial datasets.  As can be seen when 

compared to the ANN, there is minimal improvement in error rates for the real-life 

datasets and an increase in the error rates for the artificial datasets.  Comparison to C5 is 

more favorable, with the Liver dataset showing the greatest improvement.  However, all 

these error rates for C-Net appear to us to be strongly linked to the error rates for the 

ANN.  This is at a cost of computational complexity. 
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Figure 1-3.  C-Net Multivariate Decision Tree [19]. 

 

 In [20], an omnivariate decision tree is proposed.  The decision node is allowed to 

be univariate, linear (multivariate), or nonlinear.  C4.5 is used to construct the univariate 

tree and a single-layer perceptron is used at each node to construct the multivariate tree.  

Table 1-1 (partially reproduced from [20] and originally labeled as Table III) 

shows partial results for testing on 30 real-life datasets from the UCI depository [21].  We 

restrict our comparison of classification accuracy to univariate versus multivariate trees 

(as created in [20]).  Of the 30 sets, 18 are classified with higher accuracy by multivariate 

decision trees and 12 with higher accuracy by univariate decision trees.  There is no basis 

for knowing which will perform better on an arbitrary new dataset, i.e., "No single tree 

algorithm dominates or is dominated by others.”  [1] 
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Table 1-1.  Linear vs. Multivariate Decision Trees [20]. 
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1.4 PARALLEL PLANES CLASSIFICATION PROCEDURE (PPCP) 

– MAIN FEATURES 

This dissertation presents a new, nonparametric method, the Paired Planes Classification 

Procedure (PPCP), for supervised learning that uses all attributes of a dataset as needed.  

PPCP can use continuous and discrete numbers for variables, whether based on a metric 

or numbered list.  Many algorithms use only a subset of the attributes.  This is done for 

both reduced complexity and to avoid overfitting from irrelevant attributes.  Note that 

such attributes are discarded forever.  However, "Noise reduction and consequently better 

class separation may be obtained by adding variables that are presumably redundant."  

[22]. 

Additionally, for difficult class boundaries, such as nonlinear boundaries, other 

algorithms map into other feature spaces.  While they can yield good performance, 

strictly speaking this is a different problem because they do not consider only the original 

feature space. 

Our objective is to investigate to what extent classification in the original feature 

space is possible in terms of acceptable accuracy and computational complexity.  The 

decision surfaces are in the original attribute space.  To date, nine papers have been 

accepted at conferences, both domestic and international:  [23], [24], [25], [26], [27], 

[28], [29], [30], [31]. 

Paired Planes Classification Procedure is a classification procedure based on 

component classifiers: the Hyperplane Algorithm, the Margin Algorithm, and the Box 

Algorithm.  The component classifiers are based on the same underlying common 

approach of parallel hyperplanes, but differ in the way these parallel hyperplanes are 
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obtained.  Each classifier has expertise in a particular region of the feature space.  "Such 

full classifiers are called mixture-of-expert models, ensemble classifiers, modular 

classifiers, or occasionally pooled classifiers.  Such classifiers are particularly useful if 

each of its component classifiers is highly trained (i.e., an "expert") in a different region 

of the feature space.”  [1]. 

For a two-class problem, classifiers typically divide the feature space into two 

regions - Class 1 and Class 2.  The work presented here typically divides the space into 

three regions - Class 1, Class 2, and unclassified, where the last is a region in which the 

classifier abstains, usually a region of overlap between Class 1 and Class 2. 

This produces trinary decision trees.  It avoids the typical limitations of univariate 

decision trees that were detailed in section 1.2.3 and are listed again, in less detail, below. 

1. Trees usually test the same attributes in one or more subtrees. 

2. An attribute may occur more than once in a path.  

3. Univariate binary trees rely on splits orthogonal to the axes of the feature space. 

In looking at the region of overlap, we consider three cases.  Our use of parallel 

planes covers all three cases.  Because we use three (related) methods, PPCP can classify 

a wide range of datasets. 

Case 1:   no or little overlap 

Many algorithms can accurately classify when there is no or little overlap.  

Support vector machines do this well, but there is a high computational cost. 

For the case of no or little overlap, our method (the Hyperplane Algorithm) relies 

on hyperplanes to split the feature space.  It finds a pair of hyperplanes in a 

straightforward, simple manner.  Unlike Support Vector Machines, it uses two 
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hyperplanes and it does not rely on a set of support vectors.  The amount of error 

acceptable for each class can be input directly and explicitly by the user (unlike SVMs). 

The upper bound of complexity for the Hyperplane Algorithm is O(kn), where k is 

the number of attributes and n is the number of samples.  The complexity of our method 

is much less than that of SVMs: O(n3) [11]. 

Case 2:   moderate overlap 

For the case of moderate overlap, the Margin Algorithm relies on a univariate decision 

tree.  Because only one or a few attributes are used to classify a point, univariate decision 

trees alleviate the curse of dimensionality to some degree.  Our method uses only one 

attribute at a time, thus it has an advantage over most univariate trees.  All the training 

examples are considered at each step to decide how to proceed.  This makes it less 

sensitive to errors caused by single examples.   

Univariate decision trees do typically have several limitations.  Our classification 

procedure eliminates one of these in the first step, the Hyperplane Algorithm.  

Presumably, if the classes were separated better by an oblique plane than a plane 

orthogonal to the axis, it would be detected during this step.  The other two limitations 

are eliminated by the Margin Algorithm.  It also has an advantage over multivariate 

decision trees in that the attributes are not processed into features. 

The upper bound for the Margin Algorithm is from O(kn) for the global version to 

O(kn + klnk) for the local version, where k is the number of attributes and n is the number 

of samples. 

Case 3:   heavy overlap 

Depending on the structure of the input data and the algorithm chosen, accuracy 

will vary for the case of heavy overlap.  If the data for all classes is uniformly 
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interspersed, no algorithm will accurately predict the classes.  If one class is enclosed by 

another, such as a box inside another box, the accuracy can be quite high. 

For the case of heavy overlap, the Box Algorithm bears a superficial resemblance 

to k-Nearest Neighbor in that it relies on points in the same class being close to one 

another.  Boxes are used to classify the points.  For the simplest type of box, i.e., a cube, 

the upper bound is O(kn), where k is the number of attributes and n is the number of 

samples.  The results are comparable to those where an n-dimensional sphere is used to 

classify each class. 

To gain better accuracy, an asymmetric box is formed, but at computational 

increase.  This is on the order of  O(j2kn), where j is the number of steps in the k loops 

required.  The increase in accuracy versus cost is justified only for special cases where 

accuracy is extremely important.  For all types of boxes, the computational cost during 

training for m classes can be reduced by a factor of m if the algorithm is run on parallel 

processors. 

The complexity of Box when using the cube shape is less than that of k-NN, i.e.,  

is O(dn2  + nln n), where d is the number of attributes and n is the number of samples. 
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1.5 ORGANIZATION OF THIS THESIS 

The Paired Planes Classification Procedure is presented in Chapter 2.  Each of the 

algorithms (Hyperplane Algorithm, Margin Algorithm, and Box Algorithm) used for the 

three cases of overlap between two classes is explained.  Pseudocodes and corresponding 

system diagrams are provided for the classification procedure and each component 

algorithm.  The theoretical properties of the Paired Planes Classification Procedure are 

also presented in Chapter 2.  Pseudocode and bounds for complexity and training for the 

Hyperplane Algorithm, Margin Algorithm, and Box Algorithm and the total classification 

procedure are given. 

Chapter 3 takes an in-depth look at the methods used to address the three cases of 

overlap between two classes.  Two heuristics of class order are tested for both binary and 

multi-class problems.  In addition, the effect of rotating of the axes on the accuracy of 

classification is tested through comparison between the Margin Algorithm and the 

Hyperplane Algorithm.  Artificial datasets are used to explore the behavior of the 

proposed algorithm.  The results of this study have been published in [26] and [27]. 

 In Chapter 4 the methods used to address the three cases of overlap between sets 

on artificial datasets are tested on real world datasets for both binary and multi-class 

problems.  Our results are compared to results obtained by Support Vector Machines, 

univariate (C4.5) and multivariate (CART) decision trees, and the k-Nearest Neighbor 

algorithm. 

 Chapter 5 concludes the dissertation with a critique of the Paired Planes 

Classification Procedure and with a discussion of future work. 
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Chapter 2:  

The Paired Planes Classification 

Procedure 

 
2.1 INTRODUCTION 
 
For the two-class problem in the case when the two classes overlap partially, one may 

consider the sample space divisible into three regions: Class 1, Class 2, and a region of 

overlap in which classification is at best ambiguous.  By contrast to the region of overlap, 

the other two regions can be classified accurately and often by considering only a subset 

of the attributes.  This study takes advantage of this observation in a novel manner.  Use 

of a single decision surface has proven to be a tenable idea that provides good 

classification with reasonable cost.  Our algorithm uses pairs of parallel decision surfaces 

to classify.  There are three separate but related steps (Hyperplane Algorithm, Margin 

Algorithm, and Box Algorithm) to achieve this.  Each of these steps is an approach to 

split the feature space by pairs of parallel planes. 

The first step, the Hyperplane Algorithm [30], [31], works best when the overlap 

between two classes is either zero or small.  The approach has some features in common 

with Support Vector Machines [11] and uses all attributes simultaneously.  The decision 

surfaces are perpendicular to the vector going from the mean of Class 1 to the mean of 

Class 2 as computed from the training points.  It returns the accuracy of classification of 

each class and an estimate of the overlap of each class in the region of confusion.  If the 
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overlap is moderate or heavy and therefore the classification accuracy is poor, the amount 

of overlap is used to decide which of the two other steps will be used next. 

In case of moderate overlap, the second approach, the Margin Algorithm [23], 

[24], [25], is used.  This is a decision tree, which results in a disjunctive rule of 

classification.  It uses attributes sequentially, as needed, to classify points either as Class 

1, the overlap, or Class 2.  The decision surfaces are perpendicular to the attribute being 

used.  It returns the accuracy of classification of each class. 

 In case of heavy overlap or when moderate overlap does not result in an 

acceptable accuracy, the third approach, the Box Algorithm [26] [27], is used.  This is a 

decision tree that works by a series of conjunctions.  It uses all attributes to classify points 

either as Class 1, Class 2, or an unclassifiable region (which is not an overlap region).  As 

with algorithms that create an n-dimensional ball about the mean of a class, this algorithm 

creates an n-dimensional box about the mean of a class.  It returns the accuracy of 

classification of each class.  The decision surfaces produced are orthogonal to the 

attributes being used. 

The amount of overlap between classes determines the order in which these 

algorithms are used as steps in a classification procedure.  More precisely, 

1. No or little overlap (approximately 5% of the data):  The Hyperplane Algorithm alone 

can serve as the classifier.  In addition, estimating the overlap is a by-product of 

classification by this algorithm.  Therefore, this algorithm is always used as a first 

step in the classification procedure. 

2. Moderate overlap (approximately 5% to 35% of the data):  The Margin Algorithm is 

invoked as the second step of the classification procedure for this case.  Moreover, if 
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the Hyperplane Algorithm does not return the required/expected accuracy when the 

overlap is slight, the Margin Algorithm is invoked. 

3. Heavy overlap (35% or more of the data):  When the classes have heavy overlap, such 

as when one class is completely inside another, the Box Algorithm is invoked as the 

second step of the classification procedure.  In addition, if the Margin Algorithm fails 

to deliver the required/expected accuracy, the Box Algorithm is invoked as the third 

step of the classification procedure.  Order of classes in testing classification is 

important here. 

Obviously, if the overlap is too great, none of these algorithms (as with most other 

approaches) will be able to classify in the original feature space accurately. 

 

2.2 NOTATION AND TERMINOLOGY 

For all steps, we initially consider the two-class problem.  This is later extended to the 

multi-class problem, but here the terminology is in terms of the two-class problem. 

The following notation and terminology is used throughout this thesis. 

• A denotes the acceptable accuracy input to the Hyperplane Algorithm. 

• AH, AM, and AB, denote the accuracies returned by the Hyperplane Algorithm, the 

Margin Algorithm, and the Box Algorithm, respectively. 

• o denotes overlap as estimated by the Hyperplane Algorithm. 

• N denotes a vector from the mean of Class 1 to the mean of Class 2, as computed 

from the training data. 

• P denotes a hyperplane, used as decision surface, generated in the training phase 

of the Hyperplane Algorithm. 
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• J and K denote the hyperplanes, used as decision surfaces, determined by the 

Hyperplane Algorithm. 

• θ denotes the angle between a hyperplane and the vector N. 

• dp denotes the dot product. 

• μi , i∈{1, 2}, denotes the mean, where the values for i indicate the class (1 or 2); 

σi is the standard deviation for this class. 

• μk
i ,  i∈{1, 2}, denotes the mean value of attribute k corresponding to the training 

set for Class i ;  σk
i is the standard deviation for this. 

• η ki,  i∈{1, 2}, denotes the learning constant for attribute k corresponding to the 

training set for Class i. 

• η i,  i∈{1, 2}, denotes the learning constant corresponding to the training set for 

Class i. 

• ak = min (μk
1 + η k1σk

1 , μk
2  – η k2σk

2) ; bk = max (μk
1 + η k1σk

1 , μk
2  – η k2σk

2) 

• mk = (ak , bk), where mk is the local (along attribute k) margin. 

• mk = (ak , bk) as above where η k1, η k
2 is replaced by η1, η2  and mk is the global 

margin for the kth attribute. 

• cY
k  = mean/median for the kth attribute in class Y, Y∈{1, 2} 

• ak
Y = cY

k - ηY
k σY

k; bk
Y= cY

k + υY
k σY

k 

• wk
Y , wk

Y = [ak
Y, bk

Y], denotes the side of the kth attribute in class Y, Y∈{1, 2}. 

• bY , bY = w1
Y x … x wn

Y , where x denotes the Cartesian product, denotes the box 

for class Y, Y∈{1, 2}. 

• \  denotes set difference. 
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• X = {x1, …, xn} denotes the collection of attributes of interest for a two class 

classification problem. 

• TRAIN denotes the training set for this problem, i.e., TRAIN = {(x1, … , xn, y)}, 

y∈{1, 2}, where the values for y indicate the class (1 or 2) that the vector (x1, … , 

xn)  belongs to. 

• Xk denotes the domain of the attribute xk as represented in TRAIN. 

• Xy
k denote the domain of the attribute xk represented in class y. 

• Finally, Xk = X 1k ∪ X 2k. 

 

2.3 PAIRED PLANES CLASSIFICATION PROCEDURE, 

A THREE-STEP PROCEDURE 

We consider three cases as shown in Figures 2-1, 2-2, and 2-3. 

 

Figure 2-1.  Hyperplanes to Separate Directly. 
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1. No overlap or very small (0 – 5%) overlap, Figure 2-1.  The region between 

parallel hyperplanes (lines in two dimensions) can be an area of overlap or, if 

classes are separable, without any points.  Points in this region cannot be 

classified by such hyperplanes.  The objective of the algorithm is to find the two 

hyperplanes shown in this figure. 

 

 

Figure 2-2.  Hyperplanes to Form Margins. 

 

2. Moderate (5% – 35%) overlap, Figure 2-2.  The region in the solid box is the area 

of overlap.  Points in this region cannot be classified by this algorithm.  The 

dashed lines define margins (of overlap) for each attribute.  The margin is simply 

an interval along an attribute where the classes overlap.  Different orders of the 

attributes (x1, x2) can be used with different classification accuracy.  Therefore, 

+ = Class 1

o = Class 2

overlap
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attribute order becomes important.  The objective of the algorithm is to determine 

the margin obtained from the two hyperplanes (dashed lines) corresponding to 

each attribute, as well as the best attribute order for classification. 

 

Figure 2-3.  Hyperplanes to Form Boxes. 

 

3. Heavy (35% or more) overlap, Figure 2-3.  Some points in this region of overlap 

(intersection of two boxes) can be classified correctly while others will produce 

errors.  The amount of error will also depend on the class order of classification.  

Therefore, class order becomes important.  Class order is determined by the 

overlap estimate from a prior step.  In addition, there will be an unclassified 

Class 1 

Class 2 

overlap

unclassified 

unclassified 
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region whose points cannot be classified.  The objective of the algorithm is to 

determine the sides of the box obtained from the two hyperplanes (dashed lines) 

corresponding to each attribute, as well as the best class order for classification. 

Although, for presentation purposes, these methods are introduced as separate 

algorithms, it should be noted that they have an underlying common approach:  Each uses 

parallel hyperplanes to divide the sample space into three regions – Class 1, Class 2, and 

a region where the points are unclassifiable.  These methods differ in the way these 

parallel hyperplanes are obtained. 

The classification procedure can be summarized as follows:  Given desired 

accuracy A: 

1. Apply the Hyperplane Algorithm.  Returns overlap estimate o and accuracy AH. 

• If AH  ≥  A, return accuracy AH and hyperplane parameters. 

• If AH < A and o = moderate, apply the Margin Algorithm to the whole set to 

obtain accuracy AM. 

• If AH < AM and o = heavy, apply the Box Algorithm to obtain accuracy AB. 

2. The Margin Algorithm (AH  < A):  Returns accuracy AM. 

• If AM > AH, return accuracy AM and margin parameters. 

• If AM ≤ AH, apply the Box Algorithm to obtain accuracy AB. 

3. The Box Algorithm (AH  < A):  Returns accuracy AB. 

• If AB > AH, return accuracy AB and box parameters. 

• If AB ≤ AH, return accuracy AH and hyperplane parameters 

The classification procedure described above is shown in the diagram of Figure 2-18 of 

section 2.7. 
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2.4 THE HYPERPLANE ALGORITHM 

As can be noted (and illustrated in Figure 2-2), the Margin Algorithm, as most univariate 

decision trees, generates hyperplanes orthogonal to the axes.  However, when classes are 

not separable by such hyperplanes but still separable, the Margin Algorithm will fail to 

detect this.  So, the Hyperplane Algorithm is meant to detect such cases and to estimate 

the overlap (if any). 

Moreover, it turns out that if the amount of overlap is sufficiently small, the 

Hyperplane Algorithm by itself is the classification tool.  If not, by providing a measure 

of class overlap o, it allows us to choose which of the two remaining algorithms – the 

Margin or the Box – to use to classify most accurately.  In other words, it can be used as a 

heuristic to decide whether to use the Margin or the Box Algorithm. 

Let N denote the vector connecting the means, μi (i = 1, 2), of the two classes, as 

obtained from the training data.  The algorithm looks for a hyperplane perpendicular to 

N.  It is possible to construct an infinite number of such hyperplanes, any one of which 

can be used to split the sample space into two regions. 

By use of the dot product, we can determine where each point of the training data 

is with respect to the hyperplane perpendicular to the head of N.  The vector N and the 

hyperplanes J and K used to separate the classes are shown in Figure 2-4. 
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Linearly Separable

N

Hyperplanes

μ1

μ2

J K

 

Figure 2-4.  How two parallel hyperplanes might be used to separate two classes. 

 

 

The final hyperplanes J, K, and decision hyperplane are obtained as follows: 

We form a vector V from each point in the data set to the head of N.  For θ = 
2
π , cos θ = 

0 and 
||||||||

,
VN

VN >< = 0.  Therefore, positive values of <N,V> will denote points on one side 

of the hyperplane, negative values will denote points on the other side of the hyperplane.  

Construction of the vector N is shown in Figure 2-5. 

 

 

 

Class 1 

Class 2
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Figure 2-5.  Creation of vector N and translation of the training dataset. 

 

Next, we consider two subcases - separable classes and non-separable classes. 

Separable classes: 

For each such hyperplane, we can ascertain whether it forms a decision surface 

that completely separates all points in one class from the other class.  We start with the 

hyperplane P going through the head of N at μ2.  We check to see if all the points in Class 

2 are on one side of the plane and all points in Class 1 are on the other side.  If not, we 

successively shorten the vector N, checking at each iteration to see if P successfully 

separates the two classes without error.  Let K denote the first hyperplane that separates 

Class 2 from Class 1 without error.  We continue shortening the vector N.  Let J denote 

the last hyperplane that separates Class 2 from Class 1 without error. 

 For such K and J, the final decision surface is the hyperplane midway between K 

and J and parallel to them.  This ensures maximum generalization with respect to the 

hyperplane given this training data. 

μ1 
μ2

N = μ2 - μ1 

μ2μ1

vector that is normal to the 
separation hyperplane 
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Non-separable classes: 

On the other hand, if we cannot find K and J such that perfect accuracy is 

assured, this process is still useful.  It is used to maximize the region of classification for 

each class and to estimate the degree of overlap as follows. 

First, we seek to maximize the region where we can correctly classify points for 

Class 2 while also correctly classifying all points of Class 1.  During the process of 

finding K, we check at each iteration to see if P has correctly classified all points for each 

class.  In the event of a point from Class 2 being incorrectly classified and on the same 

side of P as μ2, we back up one step and use the previous hyperplane as K.  This is the 

last hyperplane such that there were no errors of classification from it towards μ2.  Note 

that the first hyperplane P, which goes through μ2, may classify one or more points from 

Class 2 incorrectly.  In that case, K is defined to be the starting hyperplane going through 

μ2. 

Second, we seek to maximize the region where we can correctly classify points 

for Class 1 while also correctly classifying all points of Class 2.  We continue marching 

the hyperplane P towards μ1.  During the process of finding J, we check at each iteration 

to see if all points for each class have been correctly classified.  When a point from Class 

2 is incorrectly classified, we continue.  We choose the first hyperplane that makes no 

errors of classifications for points in Class 1 and on the same side of P as μ1.  This is the 

first hyperplane such that there were no errors of classification from it towards μ1.  Note 

that such a hyperplane may not exist, in which case, J is defined to be the hyperplane 

going through  μ1. 

In both subcases, we found the maximum region for each class where 

classification is without error for that class.  If the classes are separable by this algorithm, 
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J and K are used to generate an optimal decision surface.  On the other hand, if the 

classes are not separable by this algorithm, J and K are used to estimate the overlap (as 

computed from the training data).  By counting the number of points between  J and K, 

we can estimate the extent of overlap (as a percentage of the training data) for each class.  

This in turn allows us to choose step 2 or step 3, depending upon the degree of overlap. 

The approach can be adjusted to take into account values of θ different from 
2
π .  

Stepping through the values for θ, the algorithm will find J, K,  and θ for best accuracy.  

Figure 2-6 shows a hypothetical example of this. 
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Figure 2-6.  Parallel hyperplanes not perpendicular to the vector N 

separate the classes. 
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By relaxing the restriction that the pair of hyperplanes is parallel to one another, 

as well as taking into account values of θ different from 
2
π , separating surfaces shown in 

Figure 2-7 can be generated.  In such a case, the hyperplanes would intersect and the 

separating surfaces are more complex.  Such an investigation was beyond the scope of 

this study. 
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Figure 2-7.  Restriction of Parallel Hyperplanes Lifted. 

 

Alternatively, a certain number of errors for either or both classes could be 

deemed acceptable.  For instance, in the case of separating benign cancers from 

N

Hyperplanes

KJ

μ1 

μ2 
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malignant cancers, it may be acceptable to a user that 5% of benign cancers are classified 

incorrectly and 0% of malignant cancers are classified incorrectly. 

Such criteria can be easily incorporated in the algorithm.  In addition to the 

relevance to the user, allowing a certain amount of error in the training stage may result 

in improved accuracy in the test data set.  It should be noted that current algorithms using 

SVMs cannot add such criteria.  A soft margin SVM [32], by use of slack variables, 

accepts some error in classification.  However, the number of errors and their distribution 

(Class 1 or Class 2) is controlled only indirectly through the total amount of slack 

(amount of error). 

 

2.5 THE MARGIN ALGORITHM 

The basic idea for the Margin Algorithm is as follows:  For a particular attribute, one can 

derive hyperplanes that quickly and accurately classify some/many points of the training 

set.  A formal definition of margin that allows some errors of classification follows. 

2.5.1 MARGINS 

We discuss the formation and use of the margin by the two-class problem.  Two versions 

of the algorithm are considered - the global and the local.  Constructing the margin takes 

into account a tradeoff between the number of correct classifications for a particular class 

and the total number of correct classifications.  A predetermined number of steps are 

used.  The margin with the highest accuracy for the training set is chosen. 

To define the margins the following quantities are introduced: μk
1, μk

2 mean 

values of attribute k corresponding to the training set for Class 1 and Class 2, 
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respectively, and μk
1 < μk

2 for all k;  σk
1, σk

2 standard deviations for these classes along 

attribute k; 0 < η k1, η k
2 < Nk and  0 < η1, η2 < N. 

Definition 2-1: 

(a)  The local (along attribute k) margin mk is the interval (ak , bk) where 

ak = min (μk
1 + η k1σk

1 , μk
2  – η k2σk

2)         (2-1) 

bk = max (μk
1 + η k1σk

1 , μk
2  – η k2σk

2)  

(b)  The global (along all attributes) margin mk is defined by the interval (ak , bk) as in  

(2-1) where  η k1, η k
2 is replaced by η1, η2, respectively. 

The margins are found for each attribute, using η k
1 and η k

2 for the local version 

and using η1 and η2 for the global version.  Their values determine both the accuracy and 

the speed of the convergence of the algorithm.  It can be seen that Xk can now be written 

as Xk = (X 1k \ X 2k) ∪ mk ∪ (X 2k \ X 1k), where \ denotes set difference. 

The number of standard deviations for each class determines the margin.  The 

underlying class distribution is considered Normal (the Central Limit Theorem [4] 

justifies this assumption for large sets).  This means that with high probability the class 

values fall within three standard deviations from the class mean, allowing us to conclude 

that for all practical purposes, all points in the training set have been considered. 

As the margins are marched, they approach each other and eventually pass one 

another.  The margins are updated according to Definition (2-1) on successive values of 

η.  Basically, the mechanism of constructing the margin marches the quantities ak , bk 

away from the class means for attribute k by considering successive values of η.  The 

differences between the local and global versions lie in how and when the values ηk
1, ηk

2 

or η1, η2 are updated for each attribute. 
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The constants ηk
1, ηk

2 and η1, η2 can be viewed as the learning constants of the 

corresponding algorithms.  Updating for each attribute before using the next attribute 

results in the local version.  This update proceeds whenever the accuracy given by 

attribute k  with new values of ηk
1, ηk

2 is better than that obtained with previous values of 

these constants.  Updating after all attributes have been used in an increment results in the 

global version.  This is an update whenever the total accuracy given by all attributes in 

combination using new values of η1, η2 is better than it was with previous values of these 

constants. 

The learning constants ηk
1, ηk

2  / η1, η2 can be varied independently with different 

increments.  The pseudocode for the Margin Algorithm is found in Chapter 3.  The 

placement of the updating step for the values of η is the only difference between the 

pseudocode for the two versions.  In the global version, it appears after all attributes have 

been used in an iteration.  In the local version, it appears after each attribute has been 

used in an iteration. 

On the local version of the Margin Algorithm, the order of attributes is important 

and it is determined at training by cross validation. 

Assuming that mk (the margin for the kth attribute) has been found, the 

classification of data points is done as follows. 

Two Classes 

When scanning the training data set in a given direction, all of the examples of Class 1 

appear to one side of the margin, followed by the margin, followed by all of the examples 

for Class 2.  (Without loss of generality, assume that the mean of Class 1 is to the left of 
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the mean of Class 2 for each attribute.)  If mk = (ak, bk), then the class assignment for the 

data point x is given by the rule: 

 

 

Class(x) = 

 

 

At first glance, the Margin Algorithm appears to produce a Top-Down Inductive 

Decision Tree (TDIDT) such as those produced by C4.5.  However, this is not really the 

case.  More precisely, the Margin Algorithm 

• uses a structural geometric criterion to construct a tree while ID3/C4.5 algorithms 

use an information theoretic criterion to construct a tree. 

• is very transparent, using each attribute at most once in the tree to classify a point.  

TDIDT has a series of rules to make the classification decision. 

It is worth noting the structure of the decision tree produced by the Margin 

Algorithm: a tree of depth equal to the number of attributes in which each node has 

exactly (m+1) children (where m is the number of classes).  To illustrate the 

characteristics of the tree produced by the Margin Algorithm and C4.5-type of algorithm, 

consider the trees produced for the well-known Iris data set [21]. 

Compare the tree made by each method.  The C4.5-type tree [33] shown in Figure 

2-8 uses the attribute PL (petal length) more than once.  The Margin Algorithm does not.  

It uses PL once to decide if the point is classifiable by this attribute as one of the three 

classes or unclassifiable.  It uses a series of disjunctions to classify. 

{
 1    if  x ≤ ak 

2    if  x ≥ bk              (1)

none  if  x ∈  mk 
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The C4.5-tree checks initially whether PL < 26.0.  If so, it is classified as Iris-

Setsosa, otherwise, PW (petal width) is checked.  Depending on the value of PW, it is 

again checked for PL of differing values, and then against SW (sepal length) or SL (sepal 

length).  This is a series of conjunctive statements used as rules.  This tree uses two 

subtrees to separate class Versicolor from class Virginica.  Each subtree represents a 

different set of conjunctions.  Measurements are in millimeters. 

According to this tree the Iris-Virginica class is described by the following rules: 

i) PL ≥ 26.0 and PW < 17.5 and PL < 49.5 and SL < 49.5 

ii) PL ≥ 26.0 and PW < 17.5 and PL ≥ 49.5 and SW < 26.5 

iii) PL ≥ 26.0 and PW ≥ 17.5 and PL < 48.5 and SL < 59.5 

iv) PL ≥ 26.0 and PW ≥ 17.5 and PL ≥ 48.5 

Similar rules are produced for Iris-Versicolor and Iris-Setsosa.  Note that the rules 

i) – iv) use multiple tests of the same attribute(s). 

By contrast, the tree produced by the Margin Algorithm (shown in Figure 2-9) is 

of depth four (because there are four attributes) and with four children for each node 

(because there are three classes) tests PL only once.  Moreover, as can be seen from 

Figure 2-9 a classification decision can be made at any level of the tree based on the 

attributes considered up to that level. 
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Figure 2-8.  C4.5-type's Decision Tree for the Iris Dataset [33]. 
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The tree produced by the Margin Algorithm is much simpler and produces much 

simpler rules.  Measurements are in centimeters. 

 

 

Figure 2-9.  Margin's Decision Tree for the Iris Dataset. 
 

The Iris-Virginica class is described by the following simple rule: 

[PL > 5.5 or PW > 2.0 or SL > 6.6 or 2.7 < SW < 3.4]. 

Visualization of the Process 

Figures 2-10 through 2-13 illustrate the algorithm described above.  Informally, the xk-

margin is the region of overlap between the two classes along the kth attribute.  Figure 2-

10 illustrates this:  There are three regions corresponding to attribute x1 - Class 1 on the 

left, Class 2 on the right, and the region of overlap between the two classes. 
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Figure 2-10.  The data set is shown with the x1 margin. 

 

In Figure 2-11, the points classified by x1 have been removed.  The data points 

remaining, i.e., the overlap region is much smaller than the original region.  Its points can 

subsequently be classified by x2, as shown in Figure 2-12. 

The region of uncertainty (the remaining unclassified points) to be classified after 

using x2 is smaller yet.  Again, the regions to either side of the margin are accurately and 

quickly classified.  Only points in the x2-margin that were also not classified by the x1-

margin are left to classify.  Figure 2-12 shows again the overlap region and the correct 

classification of its points as Class 1 or as Class 2. 

 

a1              b1 

Class 2 

Class 1 

x1

x 2
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Figure 2-11.  The data set for after points classified have been removed. 

 
Eventually, either all points are classified or all attributes are used and a non-

empty set of unclassifiable points remains.  In the example (illustrated in Figure 2-12) 

there are no points remaining to be classified.  Obviously if the overlap is complex, one 

will not be able to classify many points.  However, many other algorithms acting in this 

feature space would fail at this point too. 

a1              b1 

x 2
 

x1
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Figure 2-12.  The data set is shown after using both the x1 margin and the x2 margin. 

The top region is Class 1 and the bottom region is Class 2. 

 

In Figure 2-13, the result of using the margins for both attributes is shown.  An L-

shaped region is created for each of the two classes.  The rectangular region that remains 

in the center is where the unclassifiable points, if any, are left. 

Classification rules inferred for this example are: 

Class 1:  (x1 > b1) U  (a1 < x1 < b1 I  x2 > b2)  Overlap x1:  a1 < x1 < b1 

Class 2:  (x1 < a1) U  (a1 < x1 < b1  I  x2 < a2)  Overlap x2:  a2 < x2 < b2 

Unclassifiable:  (a1 < x1 < b1 I  a2 < x2 < b2)  Overlap: (Overlap x1) x (Overlap x2) 

 

a1              b1 

b2 
a2 

Class 2

Class 1
x 2

 

x1
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Figure 2-13.  Classification Completed. 

 

2.6 THE BOX ALGORITHM 

Both the Hyperplane algorithm and the Margin Algorithm (a univariate tree) relied on 

using parallel lines to define the region of overlap between classes.  The regions not in 

the overlap could be classified easily.  However, when one class is entirely within another 

class, the overlap is complete and the previously developed methods are not sufficient.  

Basic Idea 

We seek to define the region for a class by pairs of parallel hyperplanes in each 

dimension resulting in high-dimensional boxes. 

 

Class 2 

Class 1 

a1              b1 

b2 
a2 

x 2
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For instance, the boxes may start from the means or medians of the classes, as 

computed from the training set.  If the parallel hyperplanes are so that for a given 

dimension they are equidistant from the start point, a symmetric box is produced and the 

start point is the geometric center of the box.  If for all dimensions, all pairs of parallel 

hyperplanes are required to be the same distance from the start point, a hypercube is 

produced.  On the other hand, if the equidistance restriction is lifted, an asymmetric box 

(with respect to that point) is produced. 

For each attribute, the measure of distance is in units of standard deviation from 

the start point.  The number of standard deviations considered must ensure that almost all 

attribute values are covered.  Usually, this number can be expected to be less than or 

equal to three. 

Width of the Box and Classification 

With the notation and terminology of section 2.3 and by analogy to the margin, the 

quantities that control the behavior of the Box Algorithm are the widths of the box (along 

each attribute). 

 

Definition 2-2: The width wk
Y along the kth attribute for class Y is defined as follows. 

 

wk
Y = [ak

Y, bk
Y]         where 

ak
Y = cY

k - ηY
k σY

k        (cY
k  = mean/median for the kth attribute in class Y)                (2-2) 

bk
Y= cY

k + υY
k σY

k        (σY
k = standard deviation for the kth attribute of class Y) 

                                  and where ηY
k, υY

k vary from 0 to 3.  
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For ηY
k = υY

k , the resulting box, centered at the start point, is symmetric along the 

kth attribute.  If ηY
k = υY

k for all k, the resulting box, centered at the start point, is a 

hypercube.  Otherwise, if  ηY
k ≠  υY

k for some k, the box is not centered at the start point. 

In scanning the training data set, each class is identified independently of the 

others.  When classifying the testing data, the order of classes is critical for test sets that 

have one class inside the other, regardless of what kind of box is used.  Best order can be 

inferred by the overlap estimated in the first step (Hyperplane Algorithm). 

Assuming that the widths wk
Y for all attributes have been found, a generic data 

point x is classified by rule 2 as follows: 

 

As in the case of many classifier-learning algorithms, including the Hyperplane 

and Margin Algorithms, the Box Algorithm can be modified/adjusted to allow for more 

errors in the training phase.  The objective of doing this is to improve the robustness and 

overall accuracy of the resulting classifier. 

To this end, a penalty for each incorrect classification, varying from [0, 1.5] is 

introduced in the training.  A sequence of boxes is generated.  For two hypotheses 

 

Class(x) = 

 

 

where  bY = w1
Y x … x wn

Y    denotes the box with sides w1
Y … wn

Y  

and x denotes the Cartesian product. 

 1     if  x ∈  b1
 

2     if  x ∈  b2        (2) 

none  if x ∉  b1 and x  ∉  b2 {



 48

(boxes), the algorithm choose the one with better overall classification after taking into 

account the penalty. 

In order to achieve better generalization, a maximal area heuristic is used: 

according to this, for equal accuracy, the box of larger area is preferred. 

Example 1 illustrates the issues of constructing the boxes for this algorithm. 

Example 1:  In this example we consider three box cases:  a) too large, b) too small, and 

c) reasonable boxes.  An artificial data set is used to illustrate the properties of these 

boxes. 

 

a)  Boxes are too large: 

In Figure 2-14, the box is defined by the maximum and minimum values for each 

class in each attribute.  That is, the box bY for class Y is given by definition 2-3. 

 

Definition 2-3: The box bY for class Y is defined as follows. 

bY = 
k

i
X

1=
[

xY∈
min xi

Y ,  
xY∈

max xi
Y ]                 (2-3) 

 

While the area for each class is accurately captured, there is a large area of 

overlap, which leads to high classification error (class dependent).  
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Figure 2-14.  Too Large Boxes. 

 

b)    Boxes are too small: 

Figure 2-15 shows boxes such that all points in them are classified accurately.  

However, points x ∈  b1I b2 (not in either of the two boxes) are not classified at all.  

Therefore, all points classified in a box are correctly classified, but many points remain 

unclassified. 

The boxes in Figure 2-15 cannot be guaranteed to be symmetric with respect to 

the class mean/median.  The point of this example is not the construction of these boxes 

but the fact that such boxes exist and they are too small. 

Class 2

Class 1 
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Figure 2-15.  Too Small Boxes. 

 

c)    Boxes are reasonable: 

Figure 2-16 illustrates the case when the boxes are neither too large (as in Figure 

2-14) nor too small (as in Figure 2-15).  All of the points in one box are correctly 

classified (the x's), some of the points in the other box (the o's) are incorrectly classified, 

and two points are not classified.  Note that while we show two boxes without overlap, at 

the final position, the boxes may overlap, especially when we require the box to be 

symmetric with respect to the start points.  In this case, the order in which the boxes are 

used affects the classification accuracy. 

Class 1 

Class 2
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Figure 2-16.  Reasonable Compromise. 

 

With a deterministic algorithm, we can vary the dimensions of the box to get the 

best classification, i.e., highest classification accuracy (subject to a penalty for 

misclassification) and few (or no) points unclassified. 

 

2.7 PSEUDOCODE, SYSTEM DIAGRAMS, AND COMPLEXITY 

We now present the algorithms more formally and discuss their computational 

complexity. 

Class 1 

Class 2
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There is negligible overhead in calculating the means and standard deviations for 

each of the attributes for each of the classes in the training dataset.  This is done once and 

then used for all steps.  In the following, m, k, and n denote the number of classes, 

attributes, and data points (in the training set), respectively.   

Operations of multiplication, addition, subtraction, and comparison are considered 

equal for comparison purposes.  Figures 2-17 and 2-18 show the pseudocode and the 

system diagram, respectively, for the classification procedure. 

 

 Paired Planes Classification Procedure (main body) 
Input Training Set; desired accuracy A 

Output Classification Accuracies, Estimate of Overlap, 
Classification Parameters 

 

Begin { 
1 Calculate training class   means and standard 
           deviations for each attribute; 
2 Algorithm 1: (Hyperplane Algorithm); 
           returns AH and overlap o 
3 if (AH ≥ A) 
4    return AH, o, Hyperplane classification parameters;
5 else  % AH < A 
6 if (overlap LARGE) 
7      Algorithm 3: (Box Algorithm); returns AB 
8      if (AB > AH) 
9           return AB, Box classification parameters; 
10      else  % AB ≤ AH 
11           return AH, o, Hyperplane classification 

parameters; 
12 if (overlap MODERATE) 
13      Algorithm 2: (Margin Algorithm); returns AM 
14      if (AM > AH) 
15           return AM, Margin classification parameters;
16      else  % AM ≤ AH 
17      Algorithm 3: (Box Algorithm); returns AB 
18      if (AB > AH) 
19           return AB, Box classification parameters; 
20      else % AB ≤ AH 
21           return AH, o, Hyperplane classification 

parameters; 
} //End 

 

Figure 2-17.  Main body of PPCP algorithm. 
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Figure 2-18.  System Diagram: Complete Classification Procedure. 
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2.7.1 COMPLEXITY OF THE HYPERPLANE ALGORITHM 

As described in section 2.4, the hyperplanes are found by evaluating the dot product 

between two suitably selected vectors:  the vector N = μ2 - μ1, connects the means of the 

two classes, and vector V is computed for each data point x as V = N – x.  For each 

vector x on the same side of the defined hyperplane (perpendicular to N) as the vector μ1, 

the dot product 〈 N, V 〉 > 0, since θ = ∠ (N, V) ∈   (-
2
π ,

2
π ).  Data points for which 〈 N, 

V 〉 < 0 correspond to |θ| > 
2
π  while those for which 〈 N, V 〉 = 0 are on the hyperplane.  

Figure 2-19 illustrates the vectors  N, V and hyperplane H. 

 

 

 

 

 

 

 

 

 

Figure 2-19.  Angle Between Two Vectors. 
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Figures 2-20 and 2-21 show the pseudocode and system diagram, respectively, for 

the Hyperplane Algorithm. 

 

Algorithm 
1: Hyperplane Algorithm (m = 2) 

Input Training Dataset, training data class means and standard 
deviations for each attribute, number of attributes; 

Output AH, o, Classification Parameters 

 

Begin { 
1 N = μ2- μ1; 
2 j = 1; 
3 while (j > 0) 
4    N = jN; 
5    y1 = 1, y2 = 2; 
6    for (x, y in the training set) 
7         V = N – x; 
8         dp = 〈 N, V 〉 ; 
9         if (dp < 0 and x ∈ Class 1) 
10              y2 = 0; 
11         else  
12         if (dp > 0 and x ∈ Class 2) 
13              y1 = 0; 
14 if (y1 = = 1) 
           %Class 1 points on μ1 side of hyperplane    
            classified w/o error. 
15      update hyperplane K 
           % K = j•N using the current value of j. 
16 if (y2 = = 2)      
           %Class 2 points on μ2 side of hyperplane      
            classified w/o error 
17      update hyperplane J; 
           % J = j•N using the current value of j. 
18 j  j – ε 
} //End 

 

Figure 2-20.  Pseudocode: Hyperplane Algorithm. 
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Figure 2-21.  System Diagram: Hyperplane Algorithm. 
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2.7.1.1 Complexity of Training:  Two-class Problem 

In the training phase, all n points of the training set are tested for each of the j increments 

of a single for loop.  A vector from each point to the vector Nj is formed.  The dot product 

is found and the result compared to zero as a classification test.  Each time a classification 

is made, correctness is checked. 

There are k subtractions to form the vector from each point x to the vector Nj.  

The classification test requires the dot product for each of the points.  Since there are k 

attributes, there are k multiplications and (k – 1) additions to form the dot product for 

each point.  Then the dot product is compared to zero each time.  Each time a 

classification is made, correctness is checked, so there is another comparison. 

We have (k subtractions + k multiplications + (k – 1) additions + 2 comparisons) = 

(3k + 1) operations for each iteration of the loop.  Thus the complexity of the training 

phase is linear in the number of attributes and in the size of the training set, i.e., it is 

O(C1kn), where the constant C1 = (j +1) steps is determined by the stepsize j in the for 

loop. 

2.7.1.2 Complexity of Testing:  Two-class Problem 

Using J, we classify each point x as Class 2.  If the point is not in the region for Class 2, 

we use K to classify the point as Class 1.  If not in the region for Class 1, it is 

unclassifiable (in the overlap region).  As in training, the dot product is formed for each 

of these classification attempts.  One loop is used to go through the n points. 

The complexity of the testing phase is linear in the number of attributes and size 

of the testing set, i.e., it has an upper bound of O(kn). 
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2.7.2 COMPLEXITY OF THE MARGIN ALGORITHM 

In the classification procedure proposed here, the Margin Algorithm is never invoked as 

the first step.  It is invoked after the Hyperplane Algorithm (when overlap is moderate or 

when AH is too small).  Other than the previously mentioned overhead for the calculation 

of means and standard deviations, no other work must be done in the Margin step for 

training.  Figures 2-22 and 2-23 shows the pseudocode for the Local Margin Algorithm 

and the Global Margin Algorithm, respectively.  The system diagram for the global 

version is shown in Figure 2-24. 

Algorithm 2a: Local Margin Algorithm  (m = 2) 

Input Training Dataset, training data class means and standard 
deviations for each attribute, number of attributes; 

Output AM, Classification Parameters 

 

Begin { 
1 for (i = 1 to k),  %k = number of attributes 
          best_accuracyi = 0; 

    best_marginsi = (μi
1, μi

2); 
2 for (η1

k = 0  to 3, step size1) 
3     for (η2

k = 0  to 3, step size1) 
4         for (i = 1 to k) 
5             current_accuracyi = 0; 
6             calculate current_margini =(ai, bi); 
                   %by definition 2-1 
7             for (x in the training set) 
8                 if (xi < ai) 
9                     classify x as Class 1; 
10                 else 
11                 if (xi > bi) 
12                     classify x as Class 2; 
13             if (current_accuracyi ≥ best_accuracyi) 
14                 update: 
                      best_accuracyi = current_accuracyi;
                      best_margini = current_margini; 
                      %update best_margini if 
                      accuracy for ith attribute improves
15         if (best_accuracy = 100%) 
                  return AM, 
                  Margin Classification Parameters; 
16 return AM, Margin Classification Parameters;    
} //End 

 

Figure 2-22.  Pseudocode: Margin Algorithm  - Local Version. 
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Algorithm 2b: Global Margin Algorithm  (m = 2) 

Input 
Training Dataset, training data class means and 
standard deviations for each attribute, number of 
attributes; 

Output AM, Classification Parameters 

 

Begin { 
1 best_accuracy = 0; 
2 for (i = 1 to k),  %k = number of attributes 

    best_margini = (μi
1, μi

2); 
3 for (η1 = 0  to 3, step size1) 
4     for (η2 = 0  to 3, step size1) 
5         current_accuracy = 0; 
6         for (i = 1 to k) 
7             current_margini = (ai, bi) 
                   % by definition 2-1 
8             for (x in the training set) 
9                 if (xi < ai) 
10                     classify x as Class 1; 
11                 else 
12                 if (xi > bi) 
13                     classify x as Class 2; 
14             if (current_accuracy ≥ best_accuracy) 
15                 update: 
                      best_accuracy= current_accuracy, 
                      best_margins = current_margins; 
         %update best_margin if total accuracy improves
16         if (best_accuracy = 100) 
                 return AM,  
                 Margin Classification Parameters; 
17 return AM, Margin Classification Parameters;    
} //End 

 

Figure 2-23.  Pseudocode: Margin Algorithm – Global Version. 
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Figure 2-24.  System Diagram: Margin Algorithm - Global Version. 
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2.7.2.1 Complexity of Training:  Two-class Problem 

In the training phase, n points are tested for each of the j increments of two for loops.  For 

each of the k attributes, a margin, mk = (ak, bk), is formed between the two classes.  The 

point is then compared to the margin for classification. 

There are 4 operations (1 multiplication and 1 addition/subtraction to calculate 

each of the two values (ak, bk) for the kth margin) before classifying each point.  There are 

4 operations (2 comparisons to the kth margin and 2 checks for correctness) at most 

during classification of each point.  For each point, its value for the kth attribute is 

compared to mk.  If it is less or equal to ak, it is classified as Class 1.  If it is greater than 

bk, it is classified as Class 2.  Thus, there are 8 operations at most for a single point for 

each of the k attributes. 

We have (8 operations)k for each iteration of the two for loops where the number 

of standard deviations is chosen for each attribute.  The j increments in each of the two 

for loops require C2 = (j + 1)
2
 steps.  Thus, the complexity of the training phase is linear 

in the number of attributes and in the size of the training set, i.e., it is O(C2kn). 

Each point is classified using the margins as Class 1, Class 2, or unclassifiable (in 

the overlap region). 

2.7.2.2 Complexity of Testing:  Two-class Problem 

In the testing phase, n points are tested during a single for loop.  Each point is classified 

(by the margin) using the first of the k attributes as Class 1 or not, by comparing to        

mk = (ak, bk).  Thus, there are at most two comparisons for each test point: against ak to 

classify in Class 1 and against bk to classify in Class 2. 

Points remaining in the overlap region for this attribute k are then tested again 

using the values of the margins for the remaining attributes.  The local version of the 
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Margin Algorithm requires a sort on the attributes by classification accuracy obtained in 

the training phase.  Sorting on the k attributes requires klnk steps. 

We have (2 comparisons)(k) for the single for loop.  Thus, the complexity of the 

testing phase is linear in the number of attributes and in the size of the testing set, i.e., it is 

O(kn) for the global version and O[k(n + lnk)] for the local version of the algorithm. 

2.7.3 COMPLEXITY OF THE BOX ALGORITHM (CUBE) 

In the classification procedure proposed here, the Box Algorithm is never invoked as the 

first step.  It is invoked either after the Hyperplane Algorithm (when overlap is heavy and 

AH < A) or after the Hyperplane Algorithm and the Margin Algorithm (when overlap is 

moderate and AM ≤ AH).  The classification boxes are controlled from quantities already 

calculated in the previous step. 

For testing, the estimate of the overlap (from the Hyperplane step) for each class 

can be used to decide a best order.  The class with the greater amount of points in the 

overlap is used first in classifying a generic point x.  If one class were totally inside 

another, as a box inside a box, it would be likely to have more points in the overlap. 

Figures 2-25 and 2-26 show the pseudocode and system diagram, respectively, for 

the Box Algorithm (cube version). 
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Algorithm 3: Box Algorithm (m = 2) 

Input 
Training Dataset, training data class means and standard 
deviations for each attribute, number of attributes, 
number of classes; 

Output AB, Classification Parameters 

 

Begin { 
1 for (m = 1 to 2) 
2     best_area = 0; 

    best_accuracy = 0; 
    accuracym = 0; 

3     for (η = 0  to 3, step size1) 
              current_accuracy = 0; 
4         for (i = 1 to k) 
5            ak = μk - η*σk, bk = μk

 + η*σk,smk =[ak, bk] 
          % smk = side:kth edge of the box, class m 

6            for (x in the training set) 
7                if ( x ∈ boxm) 
8                    Classify in class m; 
9            calculate current_accuracy, area,         
                       error; % misclassified 
10            current_accuracy =  
                     current_accuracy-(penalty)(error); 
11            if [(current_accuracy > best_accuracy) 
                  or (current_accuracy = best_accuracy 
                                   & area > best_area)] 
12              update: 
                  best_accuracy = current_accuracy, 

            best_sides = sides, best_area = area; 
13              accuracym = best_accuracy; 
                  best_sidesm = best_sides; 
} //End 

 

Figure 2-25.  Pseudocode: Box Algorithm – Cube Version. 
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Figure 2-26.  System Diagram: Box Algorithm – Cube Version. 
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2.7.3.1 Complexity of Training:  Two-class Problem 

In the training phase for a single class, n points are tested for each of the j increments of a 

single for loop.  There are j iterations in the for loop, where the number of standard 

deviations are chosen for each attribute, thus (j + 1) steps for each of the n points. 

This loop is inside another for loop for the k attributes.  For each attribute k, the 

formation of a sidek  = [ak, bk], requires 4 operations (1 multiplication and 1 

addition/subtraction for each of the two values).  After all sides have been formed, the 

point is then compared to the sidek.  For each k there are 2 comparisons for purposes of 

classification at most:  If it fails the first, the second is not done.  Similarly, if it fails for 

any of the k sides, the remaining sides are not tested.  Otherwise, it is compared for all k 

attributes.  The same process is repeated for the remaining class. 

We have (6 operations)kn(j + 1)
2
 for each class or 2(6 operations)kn(j + 1)

2
 for 

two classes.  Thus the complexity of the training phase is linear in the number of 

attributes and in the size of the training set, i.e., it is O(C2kn), where the constant C2 is 

determined by the stepsize j in the for loop, i.e.,  C2 = (j + 1). 

For construction of boxes that are not cubes but symmetric rectangles, in the 

training phase, n points are tested for each of the j increments of k  for loops.  Thus the 

constant C2 = (j + 1)
k
  and for large k, the complexity is extremely high consequently. 

2.7.3.2 Complexity of Testing:  Two-class Problem 

In the testing phase, n points are tested as being in one of the 2 boxes created during the 

training phase.  A particular point is tested to see if it is in the box for Class 1.  If it is not 

in Class 1, it is then tested to see if it is in Class 2.  Each point is classified using the 

boxes as Class 1, Class 2, or unclassifiable (outside both boxes). 
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Each point is presented to each of the k attributes sequentially for a particular 

class.  For a particular point, its value for each of the attributes is compared to the 2 edges 

of the side for that attribute.  If it is within the values for the sides for all attributes, it is 

classified as being in the box and therefore in that class.  If it fails to fall between the two 

values for any attribute, it is presented for classification by the next box (class). 

We have (2 comparisons)kn for each of the two classes.  Thus the complexity of the 

testing phase is linear in the number of attributes and in the size of the testing set, i.e., it is 

O(kn). 

 

2.8 COMPLEXITY: MULTI-CLASS DATASETS 

Our extension to multi-class problems is by conversion to (m – 1) two-class problems.  

Therefore, the increase in complexity is on the order of O(m). 

 

2.9 COMPARISON TO OTHER CLASSIFIERS 

We compare the Hyperplane Algorithm to Support Vector Machines.  Both use the idea 

of a hyperplane as a decision surface, are insensitive to overtraining, and generalize well.  

The Hyperplane Algorithm is of complexity O(C1kn), where C1 is determined by the 

stepsize j in the for loops of the training phase, while SVMs are of complexity O(n3) [11]. 

 The Margin Algorithm and C4.5-type decision trees overcome the curse of 

dimensionality to some degree, as do all univariate decision trees, because only one or a 

few attributes are used to classify a point.  C4.5-type trees require a step of discretizing 

continuous data, while the Margin Algorithm does not.  The Margin Algorithm is of 

complexity O(C2kn) during the training phase, where C2 is determined by the stepsize j in 
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the for loops of the training phase, and of complexity O(kn) during the testing phase for 

the global version and O[k(n + lnk)] for the local version of the algorithm.  By contrast, 

C4.5 is of total complexity O(kn ln n) + O[n(ln n)2], assuming k attributes, n training 

instances and a tree depth of O(ln n).  [18]   The complexity of building the tree is the 

first term, while the second term sums the complexities of subtree replacement, subtree 

raising, and average possible redistribution of the instances at every node between its leaf 

and the root. 

 The Box Algorithm is compared to k-Nearest Neighbor because both base 

classification on the idea that points near each other are in the same class.  The Box 

Algorithm is of complexity O(C2kn) , where C1 is determined by the stepsize j in the for 

loops of the training phase, while K-NNs are of complexity O(kn + nln n) as shown by 

the analysis below.  The complexity is primarily due to classification of points. 

Analysis of Complexity for K-NN 

Calculation of the distance between new point with k attributes and n instances in 

a dataset is of the order O(kn).  The sort on the n points is of the order O(nln n).  

Therefore, the total complexity is of the order O(kn + nln n). 
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2.10 CONCLUSIONS 

Paired Planes Classification Procedure (PPCP) may actually invoke all three of the 

algorithms discussed, i.e., the Hyperplane Algorithm, the Margin Algorithm, and the Box 

Algorithm.  Because of this, the complexity of the classification procedure is the can 

range from O(C1kn) to O(C3kn + kln k), where C3 = C1  + C2 as defined in section 2.7 

and the maximum complexity is determined by sum of complexities of all three 

algorithms.  The algorithms that PPCP is compared to vary in complexity from O(kn) to 

O(n3).  PPCP has a comparable complexity at the low end and better complexity by at 

least an order of magnitude at the high end, while being able to effectively handle a wide 

range of datasets. 
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Chapter 3:  

Experiments – Artificial Datasets 

Testing was carried out initially with 2-dimensional sets in order to visually confirm the 

process with graphs and test the viability of the three algorithms.  The sets were limited to 

Gaussian distributions.  Later, in order to test a wider ranges of datasets types, the 

number of dimensions was increased to four and the types of distributions were varied.  

This included the Gaussian, lognormal, t (student), gamma, and beta distributions.  Not 

only were five distributions used, but also a mixture of distributions within a dataset was 

used.  We also avoided having both classes with the same mix of distributions.  Formal, 

precise checks of accuracy were performed using these data sets.  These are presented 

later in this chapter.   

The objectives of this phase of the work are to test our classification procedure 

(Hyperplane Algorithm  Margin Algorithm  Box Algorithm) and several hypotheses: 

Hypothesis 1 (Margin Algorithm):  A filter using rank order of classification by least 

error (least-to-most) would work better than a rank order of classification by 

highest accuracy (best-to-worst).  Our definition of least error excludes 

unclassified points and is explained in section 3.2.2. 

Hypothesis 2 (Box Algorithm):  The order of classes used will change the classification 

accuracy. 

Hypothesis 3 (Box Algorithm):  A symmetric box will have higher classification 

accuracy than a hypercube. 
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The results of testing on artificial sets will determine how we proceed on real-life 

datasets. 

 

3.1 TWO-DIMENSIONAL DATASETS 

This study was initiated with the Margin Algorithm, and then later expanded.  As such, 

we used Matlab to create one artificial set to test the concept.  The Margin Algorithm was 

then applied to two real-life datasets, where it proved acceptable [23].  As we extended 

the classification procedure to include two additional steps (the Hyperplane Algorithm 

and the Box Algorithm), artificial sets were created in greater numbers and complexity. 

For the artificial sets used in testing the Hyperplane Algorithm and the Box 

Algorithm, Matlab was used to create 1000 points for each of two classes.  All artificial 

sets created are Gaussian distributions. 

Two groups of artificial sets were considered.  The first group was composed of 

seven cases where there was a small (less than 10%) overlap.  The other group was 

composed of ten cases where one class was completely inside another or there was a 

larger (greater than 25%) overlap. 

For training, we randomly selected half of each class and used the other half as a 

test set to cross-validate.  One hundred trials were performed for each artificial set.  By 

considering points at a distance as far as three times the maximum standard deviation of 

all the attributes for each class, we assured consideration all or most (greater than 97%) 

of the points in the class. 

As stated, the intension of using these 2-dimensional, artificial datasets was to 

check the viability of the ideas.  Visual confirmation of the viability of the concepts was 
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the primary goal when using 2-dimensional sets.  We could construct graphs of the 

training sets, the test sets, and the hyperplanes, margins, or boxes found.  For the Box 

Algorithm, comparisons between types of boxes (cube, symmetric box, and asymmetric 

box) and circles were made.  We were more formal for this portion because we desired to 

not only confirm the concepts but to determine effectiveness of the various boxes [26].  

This was immediately extended to two real-life datasets [27], whose results will be 

presented in Chapter 5.  Figures 3-1 and 3-2 show the artificial sets used. 

Group 1:  Small Overlap 
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Figure 3-1.  Group 1: Small Overlap Between the Two Classes. 

 

Group 2: Extensive Overlap 
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Figure 3-2.  Group 2: Heavy Overlap Between the Two Classes. 

 

 

3.1.1 HYPERPLANE ALGORITHM 

The placement of a pair of parallel hyperplanes (as decision surfaces) was found.  For a 

typical dataset from the first group, Figure 3-3 shows the trial set results and Figure 3-4 

shows the test set when the classes are linearly separable by this method.  Because there 

are no points in the overlap region for the trial data, the two hyperplanes are replaced by a 

hyperplanes midway between them and parallel to them.  This is the hyperplane used in 

cross-validation on the test set. 
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Figure 3-3.  Two hyperplanes split the space.  Lack of overlap allows one hyperplane. 

 

 

Figure 3-4.  Two hyperplanes collapse to one hyperplane that is used to split the space. 
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For a typical dataset from the first group, Figure 3-5 shows the trial set results and 

Figure 3-6 shows the test set when the classes have a slight overlap.  Two hyperplanes are 

required as decision surfaces. 

 

Figure 3-5.  Two hyperplanes split the space.  There is slight overlap between classes. 

 

Figure 3-6.  Two hyperplanes cannot collapse to one hyperplane. 
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For a typical dataset from the second group, Figure 3-7 shows the trial set results 

and Figure 3-8 shows the test set when the classes have a heavy overlap, but are not 

totally enmeshed or enclosed.  The algorithm finds two hyperplanes.  At this stage, we 

see that there is a large percentage of overlap and we should go to a later step of the 

classification procedure.  When overlap is so extensive, we may jump to the third step 

(the Box Algorithm).  However, the second step (the Margin Algorithm) may actually do 

better.  We use the overlap estimated during the first step (the Hyperplane Algorithm) as 

the deciding factor.  For heavier overlap (>35%), we skip the second step. 

 

 

Figure 3-7.  Two hyperplanes found in the training phase for the case of heavy overlap. 

 

Note that the hyperplanes found are not quite orthogonal to the x1-axis. 
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Figure 3-8.  The test data is classified by the hyperplanes found in the training phase. 

 

3.1.1.1  Results and Conclusions 

For all sets in Group 1 (little overlap), the Hyperplane Algorithm was able to classify the 

two classes accurately and to estimate the overlap between the classes.  The sets in Group 

2 (heavy overlap) show the limitations of the Hyperplane Algorithm for classification as 

well for estimation of overlap.  When the means of the two classes are the same or very 

close to one another, the overlap cannot be reliably estimated by this algorithm when 

using the current choice of starting points.  However, when the hyperplanes found are at 

one or both of the endpoints of N (the vector connecting μ1 to μ2), we can infer that there 

is heavy overlap.  Therefore, even when this step of the classification procedure cannot 

accurately estimate the overlap between classes, it still allows us to determine the next 

step (the Box Algorithm). 
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3.1.2 MARGIN ALGORITHM 

A preliminary check was to create an artificial dataset by using Matlab Student Edition.  

A first simple version of the algorithm was done by hand and checked, using an artificial 

dataset (described in Table 3-1).  The margin divides the feature space into regions for 

each of the two classes and an overlap region.  For this initial version, no errors were 

allowed in the regions for the classes.  This restriction was later eased to increase 

classification accuracy and robustness of the algorithm.  Example 2, used to test the 

feasibility of margins, it is now shown [25]. 

Example 2:  Class 1 consists of 34 points, Class 2 consists of 232 points.  Each has a 

normal distribution and for each attribute,  μ1 < μ2. 

Table 3-1.  Example 2: Class Distribution [25]. 

Class Distribution 
Class Number of Instances μ σ 

1 34 (12.8%) (50.21, 52.73) (20.42, 23.12) 
2 232 (87.2%) (115.82, 111.73) (28.94, 27.79) 

 

In Figure 3-9 a dashed vertical line, x =  x2, is drawn where x2 is the maximum
 

coordinate for points in Class 1 and another dashed vertical line, x  =  x1 is drawn where 

x2 is the minimum x coordinate for points in Class 2.  The interval determined by these 

can be used to classify some of the points: those whose x coordinates fall to the left and 

right of the interval.  However, the points with the x coordinate within the interval are not 

classified using their x coordinates.  Since this example is just to illustrate the idea, the 

final position for the margin reached by the algorithm is not shown.  Here the margin is 

simply set by using the maximum for Class 1 and the minimum for Class 2 along the x-

axis. 
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Figure 3-9.  The data set for is shown with margins.  The solid rectangle is the area where 

points cannot be classified. 

 

For these points, a similar construction of a margin is done in the y attribute.  In 

Figure 3-9, a dashed horizontal line, y = y2, is drawn where y2 is the maximum y 

coordinate for the points from the y-margin that are in Class 1 and another dashed 

horizontal line, y = y1, is drawn, where y1 is the minimum y coordinate for the points from 

the y-margin which are in Class 2.  The values y1 and y2

  

determine the y-margin for the 

attribute y.  The points with the y coordinates in the y-margin whose y coordinates fall 

outside of it are classified as either Class 1 or Class 2, while those whose y coordinates 

fall inside the y-margin cannot be classified (by this procedure).  Again, for this example, 

+ = Class 1 
o = Class 2 

x 

y 
y = y2 

y = y1 

x = x1 x = x2
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the final position reached by the algorithm is not shown.  The margin is simply set by 

using the maximum for Class 1 and the minimum for Class 2 along the y-axis 

3.1.2.1  Preliminary Testing:  Results and Conclusions 

Table 3-2 shows the combination of the results from the margins for the x-axis and the y-

axis.  The points inside the rectangle are not classified.  All other points can be classified 

correctly.   

Table 3-2.  Example 2 results [25]. 

 Class 1 Class 2 Total 
Correct 22 228 250 
Unclassified 12 6 18 
% Correct 65% 97% 93% 

 

In this simplistic version of the algorithm, accuracy is 93.2%.  The errors are the 

18 of 266 points that remain unclassified.  Even without the final positions that the 

algorithm attains for the margins, most points have been classified.  From these results, 

we concluded that testing on real-life datasets would be worthwhile. 

3.1.3 BOX ALGORITHM 

The various boxes (cube, symmetric box, and asymmetric box) and a circle were 

compared.  The circle was tested both with and without (area ignored) the maximal area 

heuristic, which is detailed in section 2.6. 

3.1.3.1  Results and Conclusions 

Figure 3-10 shows results for the two groups of artificial sets [26], [27].  In 

general, the hypercubes did at least as well as the circles for all sets, whether in Group 1 

or in Group 2. 

There is little difference in Group 1 (small overlap).  All shapes tested perform at 

the almost same level of classification accuracy for each set.  Group 2 (heavy overlap) 
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shows a larger variation in classification accuracy for more than half the sets.  In two sets, 

there is a 30%+ range in classification accuracy for the shapes.  The symmetric boxes 

show a definite advantage in accuracy for Group 1 sets, i.e., those with greater overlap.  

The computational cost is greater than that of a circle.  In general, it appears that: 

heavy overlap ⇔  rectangles' classification accuracy ≥ circles' classification accuracy 

 

 
 

Figure 3-10.  The results for all shapes, both groups of test sets. 
 

The following hypotheses were made: 

1. There would be little difference when starting with the mean or median as the center 

because of the symmetry of the Gaussian distribution used here, i.e., the mean and 

median of the distributions are almost identical.  This proved true.  That is why results 

using the median are not included in a figure. 

2. The classification ability of a circle and a hypercube would be very close in value.  

This proved true. 
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3. The classification ability of a rectangle would be better than that of a circle or a cube.  

This proved true only about half the time and slightly worse a couple of times.  

Statistical variance could account for this being true/false on several cases. 

4. The classification ability of an asymmetric rectangle would be better than that of a 

symmetric rectangle.  This was clearly true only for set #10 (shown in the bottom, 

right of Group 2 graphs).  Since asymmetric rectangles are extremely high in 

computational cost with the current implementation, use is limited to situations 

warranting the cost. 

5. Class order (Hypothesis 2) would be important in for classification accuracy for 

moderate to heavy overlap.  Though not shown here, this was true in general for cases 

of overlap, in particular when one class was inside another.  When there was slight 

overlap between classes, there was little difference in classification accuracy. 

 

3.2 FOUR-DIMENSIONAL DATASETS 

For the sets, Matlab was used to create 1000 points for each class.  The goal was to have 

a wide variety of distributions where two classes may or may not have the same 

distributions and where within a class, each attribute may or may not have the same 

distribution as other attributes.  Matlab's mvnrnd and gallery functions were used, as well 

as several others, to do this.  Matlab's inverse probability functions require symmetric, 

positive, semi-definite matrices to use for the covariance matrix.  The appropriate 

function that guaranteed this was used. 

We varied these choices for distributions by each of ten artificial datasets and by 

class within the artificial dataset.  As a control, an additional dataset was created in this 
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manner but with 1000 points initially.  By duplicating these 1000 points, two identical 

sets of points labeled Class 1 and the other Class 2 were formed. 

Each class in a set was composed of four attributes.  For each attribute in a class, 

the values obtained through the mvnrnd function were used as input in inverse functions 

for various distributions.  This included the Gaussian, lognormal, t (student), gamma, and 

beta distributions.  This was done separately for each class. 

Only in one case was the same distribution used for all four attributes.  Even then, 

the other class was varied in the distributions used for each attribute.  Sometimes two of 

four dimensions were beta distribution, the third a gamma distribution, and the fourth a  

t-distribution, and so on. 

The overlap between datasets varied from 5% to 50%.  This was estimated by 

using the first step in the algorithm (the Hyperplane Algorithm).  Each estimated overlap 

is viewed as a maximum.  The hyperplanes used to estimate it are orthogonal to a vector 

that connects the means of the training classes' means.  It is possible that by tilting the 

hyperplanes, a smaller overlap could be shown to exist.  However, this estimate will be 

used for purposes of the full classification procedure. 

The overlap of each class was also estimated.  For example, in one test set, the 

overall overlap was estimated at 25% (500 points):  Class 1's contribution to this was 

~28% (280 points) of its examples and Class 2's contribution to this was ~22% (220 

points) of its examples.  For a different set, the overall overlap was estimated at 26%: 

Class 1's contribution to this was ~19% of its examples and Class 2's contribution to this 

was ~33% of its examples. 
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We randomly selected half of each class for training and used the other half of the 

set as a test set to cross-validate.  One hundred trials were performed for each artificial 

set. 

3.2.1 HYPERLANE ALGORITHM 

Initially, the Hyperplane Algorithm was run without any error for either class allowed 

during the training phase.  Approximations for the placement of hyperplanes were found, 

as were estimates of overlap o between classes.  Then, the algorithm was run multiple 

times  and varying amounts of errors were allowed for each class.  An estimate of the best 

accuracy using this method was obtained, along with estimates for placement of the 

hyperplanes to do this. 

Table 3-3 shows both sets of results: column 2 shows the overlap, and by 

inference the classification accuracy, when no errors during training were allowed.  For 

example, when the overlap is 25%, classification accuracy = 75%:  75% = 100% – 25%. 

Column 6 shows the best classification accuracy when some errors during training 

were allowed.  Allowing some errors increases the accuracy by 20% or more at times.  In 

these cases, outliers between the two classes have probably led to a larger overlap being 

detected.  While true, we make the apriori decision to accept some errors in the hope of 

higher overall accuracy. 

In Table 3-3, best_1 and best_2 refer to the relative length of the vector 

connecting the means of the two classes, as computed from the training set.  Column 5 

shows these values when no errors were allowed during training.  Column 8 shows these 

values when some errors were allowed during training and we found the best 

classification accuracy. 
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The value 0.39 means we place a hyperplane (as a decision surface) 39% of the 

way along the vector N connecting μ1 to μ2 and perpendicular to N.  It is interesting to 

note that the overlap between (the two identical) classes for the control set is estimated at 

75%.  The values of 0.00/0.00 for the separating hyperplanes in this case reflect that the 

algorithm can do no better than the initial placement of the hyperplanes (at the two ends 

of the vector connecting the means) and thus a later step (the Margin Algorithm or the 

Box Algorithm)  in our classification procedure is appropriate. 

Table 3-3.  The results for all 4-dimensional test sets, including the control set. 

PPCP 
Algortihm 

Hyperplane Algorithm 

dataset # 
Total: % 
Overlap 

Class 1:  
% Overlap 

Class 2: 
% Overlap

best_1/ 
best_2 

Best % correct 
for 2 planes 

% 
unclassified 

best_1/ 
best_2 

1 25 28 22 0.10/0.82
96.15 (25 errors 

each class) 1.9 0.39/0.46

2 26 19 33 0.19/0.77
96.4 (30 errors 

each class) 1.3 0.41/0.48

3 40 20 60 0.000/0.58

79.7 (150 errors 
Class1, 150 

errors Class 2) 10.0 0.60/0.90

4 8 4 12 0.00/0.64

92.1 (30 errors 
Class1, 30 errors 

Class 2) 0.2 0.81/0.84

5 30 23 38 0.00/0.00

70.7 (50 errors 
Class1, 50 errors 

Class 2) 10.0 0.45/0.81

6 5 4 6 0.05/0.51
95.9 (10 errors 

each class) 0.9 0.65/0.71

7 50 0 100 0.69/0.00
96.3 (10 errors 

each class) 1.0 0.73/0.79

8 11 18 4 0.26/0.66
99.3 (10 errors 

each class) 0.8 0.47/0.58

9 27 24 30 0.09/0.70
95.7 (20 errors 

each class) 0.3 0.42/0.44

10 48 49 47 0.09/0.86
94.6 (10 errors 

each class) 1.5 0.39/0.51

11: control 75 0 100 0.00/0.00

25 (0<n<500 
errors each 

class) 0.0 0.00/0.00
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3.2.2 MARGIN ALGORITHM 

Hypothesis 2 (the order of classes) is irrelevant for the Margin Algorithm.  In the context 

of most classification algorithms, when rank order by least error is used, this is typically 

equivalent to highest accuracy because most algorithms have a classification division of 

accuracy and error:  error  = 100% - accuracy.  Therefore, classification using the 

heuristic of best attribute order by highest accuracy is equivalent to using the attributes 

increasing order of least error of classification.  We term this highest accuracy for our 

comparison. 

On the other hand, the Margin Algorithm has a classification division of 

accuracy, error, and unclassified.  Thus, error  ≠ 100% - accuracy for our algorithm, 

unless no points remain as unclassified.  By Hypothesis 1, a rank order of classification 

that starts classification with the attribute with least true error (not including 

unclassified), those points as yet not classified might be classified correctly by attributes 

used later.  The least error value is the accuracy of classification using the heuristic of 

best attribute order where the attributes are used in increasing order of true (not including 

unclassified) error of classification.  We use this term, i.e.,  least error, for our 

comparison. 

3.2.2.1   Results for the Global and Local Versions of the Margin Algorithm 

Results for artificial datasets, numbered one through ten, and the control dataset are 

shown in Tables 3-4 through 3-7 for the global version and in Tables 3-8 through 3-11 for 

the local version of the algorithm. 
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Table 3-4.  Margin (Global Version): Sets #1-3. 

PPCP 
Algorithm 

Margin Algorithm – global version 

dataset # --> 1 2 3 

best left margin 
1.65, 0.55, 0.41, 0.27 1.71, 0.555, 0.41, 0.27 0.74, 0.57, 0.12, 0.44 

best right 
margin 

2.49, 0.67, 0.74, 0.77 2.58, 0.67, 0.72, 0.74 11.21, 0.935, 1.30, 17.54

Best by least 
error 

4, 3, 1, 2: 3.15%, 3.90%, 
4.50%, 5.40%; 

3/4 and 2/1 are tied 
4, 3, 1, 2: 3.45%, 4.05%, 

4.35%, 4.50% 
1, 2, 3, 4: 1.80%, 3.90%, 

4.20%, 4.65% 

Best by 
highest 

accuracy 

3, 4, 2, 1: 82.10%, 
79.20%, 71.70%, 60.40%

3, 4, 2, 1: 82.10%, 81.10%, 
73.00%, 62.70% 

3, 2, 1, 4: 74.20%, 
44.90%, 33.90%, 30.60%

Attribute Order 
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
Total % 
Correct

Class 1 
% 

Correct

Class 2 
% 

Correct
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
1,2,3,4 87.91 80.74 95.09 89.74 84.26 95.21 90.45 83.59 97.31 
1,2,4,3 88.42 82.60 94.24 89.09 83.15 95.03 90.48 83.58 97.37 
1,3,2,4 89.44 83.49 95.40 89.20 82.32 96.07 90.08 85.73 94.43 
1,3,4,2 89.97 84.90 95.03 90.05 84.49 95.62 89.64 84.95 94.34 
1,4,2,3 88.08 80.93 95.23 89.56 83.40 95.72 88.33 82.39 94.26 
1,4,3,2 88.20 81.22 95.17 89.60 83.21 95.99 88.30 84.01 92.59 

2,1,3,4 91.61 89.75 93.46 91.27 88.29 94.24 93.94 89.15 98.73
2,1,4,3 91.11 89.12 93.10 92.27 90.42 94.12 93.75 88.93 98.57
2,3,1,4 91.60 89.42 93.78 92.50 91.41 93.59 93.66 89.29 98.03
2,3,4,1 91.32 88.71 93.93 93.10 91.86 94.35 93.67 88.96 98.38
2,4,1,3 91.75 90.25 93.26 92.50 91.12 93.88 93.51 88.48 98.54
2,4,3,1 91.12 88.17 94.07 92.28 90.20 94.35 93.48 88.85 98.12

3,1,2,4 94.62 92.75 96.50 94.99 93.84 96.13 90.55 86.21 94.89 
3,1,4,2 94.84 92.93 96.74 94.73 92.90 96.56 90.90 87.46 94.33 
3,2,1,4 93.78 91.93 95.64 94.83 93.87 95.80 90.69 86.25 95.12 
3,2,4,1 93.91 91.75 96.08 94.54 93.11 95.96 90.44 85.34 95.53 
3,4,1,2 95.36 93.50 97.22 95.24 93.66 96.81 89.23 83.34 95.12 
3,4,2,1 94.84 92.46 97.23 95.02 93.61 96.43 90.09 85.03 95.15 

4,1,2,3 93.14 91.10 95.18 93.41 90.90 95.92 86.71 79.11 94.31
4,1,3,2 93.04 90.11 95.97 93.33 90.43 96.24 86.84 80.21 93.47
4,2,1,3 92.99 90.53 95.46 93.69 91.53 95.86 87.97 82.01 93.93
4,2,3,1 93.28 90.75 95.80 94.09 92.05 96.13 88.03 81.99 94.07
4,3,1,2 94.32 92.13 96.52 94.70 93.12 96.28 86.86 82.08 91.64
4,3,2,1 94.08 91.78 96.38 94.87 93.72 96.02 87.07 82.14 92.00

maximum 95.36 93.50 97.23 95.24 93.87 96.81 93.94 89.29 98.73 
mean 92.03 88.79 95.27 92.69 89.87 95.51 90.19 84.96 95.43 
minimum 87.91 80.74 93.10 89.09 82.32 93.59 86.71 79.11 91.64 

least  error 94.32   92.70 90.45  
best  accuracy 94.84  95.02 90.69  
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Table 3-5.  Margin (Global Version): Sets #4-6. 

PPCP 
Algorithm 

Margin Algorithm –global version 

dataset # --> 4 5 6 

best left margin 
-0.04, 0.55, -0.06, 4.68 -4.44, 0.315, 0.36, 6.09 -4.57, 0.29, 0.35, 6.06 

best right 
margin 

11.33, 0.71, 0.72, 8.33 11.04, 0.38, 1.64, 26.95 4.68, 0.37, 0.90, 7.78 

Best by least 
error 

1, 2, 3, 4: 3.20%, 4.60%, 
6.20%, 6.20%; 3/4 are 

tied 
2, 4, 1, 3: 3.80%, 4.00%, 

4.80%, 5.60% 
2, 4 ,3 ,1: 2.80%, 4.80%, 

5.20%, 6.00% 

Best by 
highest 

accuracy 

3, 2, 4, 1: 73.90%, 
71.50%, 65.30%, 29.70%

2, 3, 1, 4: 98.90%, 
27.00%, 23.10%, 19.70%

2, 4 ,3 ,1: 98.00%, 
95.60%, 73.30%, 62.00%

Attribute Order 
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
Total % 
Correct

Class 1 
% 

Correct

Class 2 
% 

Correct
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
1,2,3,4 92.24 87.91 96.58 88.66 87.17 90.15 94.64 93.64 95.63 
1,2,4,3 91.99 88.53 95.45 87.39 86.58 88.21 94.43 92.99 95.86 
1,3,2,4 90.34 85.38 95.30 88.96 90.53 87.39 93.49 91.27 95.71 
1,3,4,2 90.73 86.23 95.22 87.03 88.46 85.60 93.34 91.67 95.00 
1,4,2,3 89.79 84.14 95.43 87.44 88.25 86.64 94.44 93.08 95.81 
1,4,3,2 92.36 88.45 96.27 86.83 87.65 86.02 94.36 93.30 95.42 

2,1,3,4 97.26 95.40 99.12 97.68 97.84 97.52 98.38 98.34 98.42
2,1,4,3 96.43 94.09 98.76 97.42 97.58 97.26 98.67 98.58 98.75
2,3,1,4 97.81 96.06 99.56 96.87 96.38 97.36 98.53 98.47 98.58
2,3,4,1 97.64 95.83 99.45 97.00 96.62 97.38 98.54 98.07 99.02
2,4,1,3 96.64 94.76 98.53 96.99 96.60 97.38 98.90 98.51 99.30
2,4,3,1 96.72 94.70 98.75 96.64 96.24 97.03 98.88 98.38 99.38

3,1,2,4 88.49 81.13 95.85 89.71 89.04 90.39 95.94 95.47 96.40 
3,1,4,2 90.30 84.82 95.78 89.61 90.82 88.40 95.83 95.48 96.18 
3,2,1,4 90.18 84.51 95.86 86.97 82.64 91.30 96.59 96.70 96.47 
3,2,4,1 90.20 84.69 95.72 89.28 86.35 92.21 97.18 97.22 97.14 
3,4,1,2 90.16 84.61 95.71 88.27 87.63 88.91 96.22 95.97 96.48 
3,4,2,1 88.33 80.63 96.03 87.78 84.50 91.06 96.26 95.92 96.61 

4,1,2,3 94.15 92.10 96.19 89.07 89.19 88.95 97.36 95.99 98.73
4,1,3,2 95.46 94.08 96.84 89.70 91.29 88.10 97.29 95.73 98.85
4,2,1,3 95.17 92.61 97.74 87.49 85.38 89.60 97.79 96.73 98.85
4,2,3,1 95.70 92.98 98.42 87.10 83.54 90.65 97.69 96.69 98.68
4,3,1,2 95.73 94.10 97.35 87.33 86.20 88.46 97.02 96.28 97.76
4,3,2,1 95.57 93.18 97.95 86.71 83.56 89.85 97.02 96.20 97.83

maximum 97.81 96.06 99.56 97.68 97.84 97.52 98.90 98.58 99.38 
mean 93.31 89.62 96.99 90.33 89.58 91.08 96.62 95.86 97.37 
minimum 88.33 80.63 95.22 86.71 82.64 85.60 93.34 91.27 95.00 

least  error 92.24  96.99 98.88 
best  accuracy 90.20  96.87 98.88 
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Table 3-6.  Margin (Global Version): Sets #7-9. 

PPCP 
Algorithm 

Margin Algorithm –global version 

dataset # --> 7 8 9 

best left margin 
13.75, 2.38, 5.07, -6.65 -2.01, 0.60, 0.24, 0.16 -2.01, 0.11, 0.24, 0.16 

best right 
margin 

28.76, 42.06, 13.18, 25.33 0.16, 1.01, 0.98, 0.98 -1.59, 0.60, 1.115, 0.685

Best by least 
error 

3, 4, 2, 1: 4.00%, 4.00%, 
4.20%, 5.00%; 3/4 are 

tied 

3, 4, 2, 1: 3.00%, 3.00%, 
5.00, 5.80% and 3/4 are 

tied 

2, 4, 3, 1: 0.00%, 4.60%, 
4.60%, 6.80% and 3/4 are 

tied 

Best by 
highest 

accuracy 

3, 4, 1, 2: 14.40%, 
12.90%, 10.50%, 0.00% 

3, 4, 1, 2: 55.20%, 
33.00%, 0.00, 0.00% and 

1/2 are tied 
4, 2, 1, 3: 80.20%, 

50.00%, 26.90%, 12.50%

Attribute Order 
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
Total % 
Correct

Class 1 
% 

Correct

Class 2 
% 

Correct
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
1,2,3,4 63.09 62.53 63.64 67.36 69.25 65.47 92.08 88.84 95.32 
1,2,4,3 62.58 63.78 61.38 67.45 70.10 64.79 92.10 87.96 96.24 
1,3,2,4 64.23 64.43 64.03 75.97 76.51 75.43 89.15 82.34 95.96 
1,3,4,2 64.49 65.47 63.50 74.71 72.74 76.68 91.61 87.88 95.34 
1,4,2,3 62.90 64.20 61.59 73.84 74.21 73.47 91.42 86.50 96.34 
1,4,3,2 63.62 62.40 64.85 73.16 71.96 74.37 89.42 85.34 93.50 

2,1,3,4 55.39 57.40 53.38 67.30 68.23 66.37 99.60 99.36 99.84
2,1,4,3 55.02 58.55 51.48 67.93 71.87 63.99 99.88 99.92 99.84
2,3,1,4 57.23 61.45 53.00 75.35 79.53 71.17 98.59 97.32 99.86
2,3,4,1 55.69 57.95 53.43 73.73 72.53 74.92 98.11 96.38 99.84
2,4,1,3 51.51 48.51 54.51 71.66 74.84 68.48 98.91 98.00 99.82
2,4,3,1 52.55 52.64 52.45 74.06 75.64 72.49 99.85 99.94 99.76

3,1,2,4 67.36 69.68 65.04 85.00 83.95 86.04 88.34 81.44 95.24 
3,1,4,2 67.44 68.13 66.75 84.72 83.18 86.25 84.29 76.16 92.42 
3,2,1,4 66.99 70.79 63.18 85.34 85.44 85.24 88.25 81.82 94.68 
3,2,4,1 66.43 71.10 61.77 84.35 82.20 86.51 87.06 80.62 93.50 
3,4,1,2 66.77 71.02 62.51 83.69 80.78 86.60 81.97 72.96 90.98 
3,4,2,1 67.07 70.60 63.55 83.47 79.76 87.18 91.01 88.76 93.26 

4,1,2,3 57.44 49.04 65.84 79.35 81.17 77.53 91.08 85.42 96.74
4,1,3,2 56.93 51.40 62.46 79.24 79.27 79.22 93.01 91.58 94.44
4,2,1,3 55.69 50.73 60.66 79.39 80.55 78.23 92.54 88.00 97.08
4,2,3,1 56.21 49.34 63.08 81.10 81.19 81.02 95.17 92.46 97.88
4,3,1,2 58.15 55.86 60.45 81.18 79.73 82.63 95.04 94.28 95.80
4,3,2,1 58.03 53.59 62.47 81.68 80.20 83.16 93.52 91.44 95.60

maximum 67.44 71.10 66.75 85.34 85.44 87.18 99.88 99.94 99.86 
mean 60.53 60.44 60.62 77.13 77.28 76.97 92.58 88.95 96.22 
minimum 51.51 48.51 51.48 67.30 68.23 63.99 81.97 72.96 90.98 

least  error 67.07 83.47 99.85  
best  accuracy 66.77 83.69 92.54  
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Table 3-7.  Margin (Global Version): Set #10 and control set. 

PPCP 
Algortihm 

Margin Algorithm –global version 

dataset # --> 10 control 

best left margin 
-1.38, 0.59, 0.53, -0.05 120.58, 0.17, 6.78, -0.79 

best right 
margin 

1.14, 1.72, 2.45, 0.18 127.79, 0.19, 8.25, -0.62 

Best by least 
error 

2, 1, 4,3: 3.80%, 5.00%, 5.20%, 
5.20%; 3/4 are tied 

2, 3, 4, 1: 73.20%, 79.00%, 80.20%, 
82.20% 

Best by 
highest 

accuracy 

4, 3, 1, 2: 77.2%, 17.5%, 2.00%, 
0.00% 

1, 4, 3, 2: 40.00%, 39.40%, 38.40%, 
37.20% 

Attribute Order 
Total % 
Correct 

Class 1 % 
Correct 

Class 2 % 
Correct 

Total % 
Correct 

Class 1 % 
Correct 

Class 2 % 
Correct 

1,2,3,4 82.94 92.87 73.01 49.28 58.26 40.30 
1,2,4,3 85.10 93.26 76.93 49.38 58.23 40.52 
1,3,2,4 86.62 93.21 80.04 49.36 57.95 40.78 
1,3,4,2 86.42 93.93 78.92 49.53 58.00 41.05 
1,4,2,3 87.61 94.27 80.94 49.33 56.57 42.08 
1,4,3,2 86.54 93.49 79.59 49.36 57.11 41.62 

2,1,3,4 86.16 93.46 78.87 49.46 56.81 42.10
2,1,4,3 86.14 93.28 79.00 49.45 58.13 40.76
2,3,1,4 79.83 93.08 66.58 49.37 57.44 41.29
2,3,4,1 84.54 94.70 74.39 49.37 58.21 40.53
2,4,1,3 88.35 95.29 81.40 49.48 57.62 41.35
2,4,3,1 88.73 95.12 82.33 49.70 59.40 40.00

3,1,2,4 83.69 91.85 75.54 49.45 55.79 43.11 
3,1,4,2 85.43 91.90 78.97 49.32 56.50 42.13 
3,2,1,4 85.38 92.14 78.62 49.40 56.85 41.96 
3,2,4,1 87.75 93.31 82.19 49.26 57.11 41.42 
3,4,1,2 86.69 91.41 81.96 49.47 55.74 43.20 
3,4,2,1 84.39 89.66 79.11 49.36 55.56 43.17 

4,1,2,3 94.66 96.60 92.72 49.37 56.13 42.62
4,1,3,2 94.71 96.73 92.70 49.54 58.62 40.47
4,2,1,3 94.82 96.91 92.73 49.52 59.26 39.78
4,2,3,1 94.61 96.41 92.80 49.41 58.75 40.08
4,3,1,2 94.62 96.61 92.63 49.34 58.02 40.67
4,3,2,1 94.84 96.96 92.73 49.62 55.45 43.78

maximum 94.84 96.96 92.80 49.70 59.40 43.78 
mean 87.94 94.02 81.86 49.42 57.40 41.45 
minimum 79.83 89.66 66.58 49.26 55.45 39.78 

least  error 86.14 49.37
best  accuracy 94.62 49.36
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Table 3-8.  Margin (Local Version): Sets #1-3. 

PPCP 
Algorithm 

Margin Algorithm – local version 

dataset # --> 1 2 3 

best left margin 
1.65, 0.55, 0.41, 0.27 1.71, 0.555, 0.41, 0.27 0.74, 0.57, 0.12, 0.44 

best right 
margin 

2.49, 0.67, 0.74, 0.77 2.58, 0.67, 0.72, 0.74 11.21, 0.935, 1.30, 17.54

Best by least 
error 

4, 3, 1, 2: 3.15%, 3.90%, 
4.50%, 5.40%; 

3/4 and 2/1 are tied 
4, 3, 1, 2: 3.45%, 4.05%, 

4.35%, 4.50% 
1, 2, 3, 4: 1.80%, 3.90%, 

4.20%, 4.65% 

Best by 
highest 

accuracy 

3, 4, 2, 1: 82.10%, 
79.20%, 71.70%, 60.40%

3, 4, 2, 1: 82.10%, 81.10%, 
73.00%, 62.70% 

3, 2, 1, 4: 74.20%, 
44.90%, 33.90%, 30.60%

Attribute Order 
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
Total % 
Correct

Class 1 
% 

Correct

Class 2 
% 

Correct
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
1,2,3,4 89.05 83.38 94.72 91.27 87.42 95.12 91.12 84.76 97.48 
1,2,4,3 85.97 80.72 91.22 86.67 79.10 94.24 90.16 82.58 97.74 
1,3,2,4 88.60 81.42 95.78 90.95 84.68 97.22 89.23 83.60 94.86 
1,3,4,2 89.86 85.54 94.18 87.75 81.96 93.54 90.09 86.38 93.80 
1,4,2,3 89.44 85.14 93.74 87.68 80.56 94.80 89.24 84.62 93.86 
1,4,3,2 86.56 76.22 96.90 89.25 81.56 96.94 87.15 80.46 93.84 

2,1,3,4 92.72 91.98 93.46 91.34 88.94 93.74 93.44 89.56 97.32
2,1,4,3 89.79 86.30 93.28 92.08 88.76 95.40 93.59 88.94 98.24
2,3,1,4 91.68 92.28 91.08 93.73 92.96 94.50 93.94 89.28 98.60
2,3,4,1 91.30 88.34 94.26 93.36 92.32 94.40 94.10 89.80 98.40
2,4,1,3 91.93 90.76 93.10 92.99 92.30 93.68 93.93 89.10 98.76
2,4,3,1 91.51 88.26 94.76 94.02 93.94 94.10 93.60 89.10 98.10

3,1,2,4 94.33 92.26 96.40 94.73 91.92 97.54 89.12 82.32 95.92 
3,1,4,2 94.46 93.04 95.88 94.53 91.90 97.16 88.08 79.92 96.24 
3,2,1,4 93.63 91.54 95.72 93.86 89.96 97.76 90.83 85.80 95.86 
3,2,4,1 94.18 93.72 94.64 94.83 93.28 96.38 90.60 85.76 95.44 
3,4,1,2 95.75 94.26 97.24 95.75 95.58 95.92 86.09 76.30 95.88 
3,4,2,1 95.54 94.08 97.0094.49 91.74 97.24 86.92 77.98 95.86 

4,1,2,3 93.48 91.66 95.30 93.55 90.94 96.16 84.20 71.88 96.52
4,1,3,2 93.30 90.66 95.94 92.36 88.36 96.36 86.24 78.82 93.66
4,2,1,3 91.62 85.36 97.88 94.52 94.84 94.20 88.21 81.50 94.92
4,2,3,1 93.11 91.02 95.20 94.58 92.62 96.54 87.36 80.20 94.52
4,3,1,2 95.03 94.62 95.44 92.70 88.74 96.66 88.02 82.96 93.08
4,3,2,1 94.90 93.08 96.72 94.89 93.88 95.90 86.59 82.04 91.14

maximum 95.75 94.62 97.88 95.75 95.58 97.76 94.10 89.80 98.76 
mean 91.99 88.99 94.99 92.58 89.51 95.65 89.66 83.49 95.84 
minimum 85.97 76.22 91.08 86.67 79.10 93.54 84.20 71.88 91.14 

least  error 95.03  92.70 91.12 
best  accuracy 95.54  94.49 90.83 
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Table 3-9.  Margin (Local Version): Sets #4-6. 

PPCP 
Algorithm 

Margin Algorithm – local version 

dataset # --> 4 5 6 

best left margin 
-0.04, 0.55, -0.06, 4.68 -4.44, 0.315, 0.36, 6.09 -4.57, 0.29, 0.35, 6.06 

best right 
margin 

11.33, 0.71, 0.72, 8.33 11.04, 0.38, 1.64, 26.95 4.68, 0.37, 0.90, 7.78 

Best by least 
error 

1, 2, 3, 4: 3.20%, 4.60%, 
6.20%, 6.20%; 3/4 are 

tied 
2, 4, 1, 3: 3.80%, 4.00%, 

4.80%, 5.60% 
2, 4 ,3 ,1: 2.80%, 4.80%, 

5.20%, 6.00% 

Best by 
highest 

accuracy 

3, 2, 4, 1: 73.90%, 
71.50%, 65.30%, 29.70%

2, 3, 1, 4: 98.90%, 
27.00%, 23.10%, 19.70%

2, 4 ,3 ,1: 98.00%, 
95.60%, 73.30%, 62.00%

Attribute Order 
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
Total % 
Correct

Class 1 
% 

Correct

Class 2 
% 

Correct
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
1,2,3,4 89.87 83.38 96.36 90.08 90.84 89.32 93.84 92.82 94.86 
1,2,4,3 87.98 79.54 96.42 89.35 89.44 89.26 92.91 89.52 96.30 
1,3,2,4 89.20 82.84 95.56 84.52 83.20 85.84 93.75 91.88 95.62 
1,3,4,2 92.16 89.24 95.08 90.61 91.34 89.88 90.64 84.00 97.28 
1,4,2,3 91.63 88.88 94.38 87.83 85.94 89.72 92.51 89.88 95.14 
1,4,3,2 89.58 82.14 97.02 88.88 92.20 85.56 93.37 91.04 95.70 

2,1,3,4 97.36 95.40 99.32 97.55 97.94 97.16 98.58 98.50 98.66
2,1,4,3 96.72 94.32 99.12 98.17 98.30 98.04 98.67 98.38 98.96
2,3,1,4 97.56 95.70 99.42 96.72 96.08 97.36 98.57 98.40 98.74
2,3,4,1 96.63 93.46 99.80 95.70 93.84 97.56 98.53 98.24 98.82
2,4,1,3 96.53 94.32 98.74 97.06 97.30 96.82 98.76 98.26 99.26
2,4,3,1 96.19 93.40 98.98 95.30 94.00 96.60 98.93 98.50 99.36

3,1,2,4 87.82 79.86 95.78 90.92 91.42 90.42 96.23 96.16 96.30 
3,1,4,2 85.31 73.98 96.64 90.51 90.08 90.94 96.18 95.56 96.80 
3,2,1,4 92.27 88.06 96.48 88.21 84.10 92.32 96.45 95.90 97.00 
3,2,4,1 88.77 81.58 95.96 89.77 87.84 91.70 96.68 96.70 96.66 
3,4,1,2 93.11 90.60 95.62 85.46 82.16 88.76 96.36 96.24 96.48 
3,4,2,1 90.00 84.08 95.92 91.27 89.80 92.74 95.90 95.00 96.80 

4,1,2,3 93.58 90.10 97.06 90.43 90.74 90.12 97.44 96.68 98.20
4,1,3,2 94.66 91.64 97.68 92.18 93.28 91.08 96.88 95.20 98.56
4,2,1,3 94.55 91.74 97.36 85.70 85.06 86.34 97.79 97.10 98.48
4,2,3,1 95.68 92.86 98.50 89.90 87.28 92.52 97.82 96.80 98.84
4,3,1,2 95.99 93.90 98.08 89.77 87.90 91.64 96.92 96.18 97.66
4,3,2,1 95.31 92.52 98.10 89.79 86.32 93.26 96.59 95.18 98.00

maximum 97.56 95.70 99.80 98.17 98.30 98.04 98.93 98.50 99.36 
mean 92.85 88.48 97.22 91.07 90.27 91.87 96.26 95.09 97.44 
minimum 85.31 73.98 94.38 84.52 82.16 85.56 90.64 84.00 94.86 

least  error 89.87  97.06 98.93
best  accuracy 88.77  96.72 98.93
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Table 3-10.  Margin (Local Version): Sets #7-9. 

PPCP 
Algorithm 

Margin Algorithm – local version 

dataset # --> 7 8 9 

best left margin 
13.75, 2.38, 5.07, -6.65 -2.01, 0.60, 0.24, 0.16 -2.01, 0.11, 0.24, 0.16 

best right 
margin 

28.76, 42.06, 13.18, 25.33 0.16, 1.01, 0.98, 0.98 -1.59, 0.60, 1.115, 0.685 

Best by least 
error 

3, 4, 2, 1: 4.00%, 4.00%, 
4.20%, 5.00%; 3/4 are 

tied 

3, 4, 2, 1: 3.00%, 3.00%, 
5.00, 5.80% and 3/4 are 

tied 

2, 4, 3, 1: 0.00%, 4.60%, 
4.60%, 6.80% and 3/4 are 

tied 

Best by 
highest 

accuracy 

3, 4, 1, 2: 14.40%, 
12.90%, 10.50%, 0.00% 

3, 4, 1, 2: 55.20%, 
33.00%, 0.00, 0.00% and 

1/2 are tied 
4, 2, 1, 3: 80.20%, 

50.00%, 26.90%, 12.50%

Attribute Order 
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
Total % 
Correct

Class 1 
% 

Correct

Class 2 
% 

Correct
Total % 
Correct 

Class 1 
% 

Correct 

Class 2 
% 

Correct
1,2,3,4 63.67 59.24 68.10 67.94 67.32 68.56 92.08 88.84 95.32 
1,2,4,3 62.67 64.62 60.72 67.76 75.00 60.52 92.10 87.96 96.24 
1,3,2,4 64.40 64.46 64.34 76.85 79.82 73.88 89.15 82.34 95.96 
1,3,4,2 65.29 64.62 65.96 76.26 76.60 75.92 91.61 87.88 95.34 
1,4,2,3 63.09 71.90 54.28 75.04 76.82 73.26 91.42 86.50 96.34 
1,4,3,2 63.24 60.38 66.10 72.02 68.86 75.18 89.42 85.34 93.50 

2,1,3,4 56.62 59.12 54.12 69.19 75.04 63.34 99.60 99.36 99.84
2,1,4,3 52.85 49.26 56.44 67.85 77.08 58.62 99.88 99.92 99.84
2,3,1,4 57.46 57.74 57.18 73.93 73.06 74.80 98.59 97.32 99.86
2,3,4,1 55.15 56.76 53.54 72.99 71.78 74.20 98.11 96.38 99.84
2,4,1,3 50.82 50.74 50.90 70.73 68.86 72.60 98.91 98.00 99.82
2,4,3,1 53.12 56.40 49.84 74.02 78.38 69.66 99.85 99.94 99.76

3,1,2,4 66.82 67.46 66.18 85.19 84.18 86.20 88.34 81.44 95.24 
3,1,4,2 66.96 70.52 63.40 85.40 85.34 85.46 84.29 76.16 92.42 
3,2,1,4 66.45 73.16 59.74 84.51 82.72 86.30 88.25 81.82 94.68 
3,2,4,1 66.76 70.10 63.42 86.07 88.88 83.26 87.06 80.62 93.50 
3,4,1,2 67.28 70.70 63.86 84.55 82.06 87.04 81.97 72.96 90.98 
3,4,2,1 67.68 72.54 62.82 81.89 76.24 87.54 91.01 88.76 93.26 

4,1,2,3 58.34 46.86 69.82 80.37 84.36 76.38 91.08 85.42 96.74
4,1,3,2 58.23 48.70 67.76 78.82 75.46 82.18 93.01 91.58 94.44
4,2,1,3 54.91 51.82 58.00 79.93 80.42 79.44 92.54 88.00 97.08
4,2,3,1 57.48 48.86 66.10 82.07 85.16 78.98 95.17 92.46 97.88
4,3,1,2 57.81 67.74 47.88 82.47 81.40 83.54 95.04 94.28 95.80
4,3,2,1 57.63 63.20 52.06 81.78 77.42 86.14 93.52 91.44 95.60

maximum 67.68 73.16 69.82 86.07 88.88 87.54 99.88 99.94 99.86 
mean 60.61 61.12 60.11 77.40 78.01 76.79 92.58 88.95 96.22 
minimum 50.82 46.86 47.88 67.76 67.32 58.62 81.97 72.96 90.98 

least  error 67.68 81.78 99.85 
best  accuracy 67.28 84.55 92.54 
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Table 3-11.  Margin (Local Version): Set #10 and control set. 

PPCP 
Algorithm 

Margin Algorithm – local version 

dataset # --> 10 control 

best left margin 
-1.38, 0.59, 0.53, -0.05 120.58, 0.17, 6.78, -0.79 

best right 
margin 

1.14, 1.72, 2.45, 0.18 127.79, 0.19, 8.25, -0.62 

Best by least 
error 

2, 1, 4,3: 3.80%, 5.00%, 5.20%, 
5.20%; 3/4 are tied 

2, 3, 4, 1: 73.20%, 79.00%, 80.20%, 
82.20% 

Best by 
highest 

accuracy 

4, 3, 1, 2: 77.2%, 17.5%, 2.00%, 
0.00% 

1, 4, 3, 2: 40.00%, 39.40%, 38.40%, 
37.20% 

Attribute Order 
Total % 
Correct 

Class 1 % 
Correct 

Class 2 % 
Correct 

Total % 
Correct 

Class 1 % 
Correct 

Class 2 % 
Correct 

1,2,3,4 92.24 87.64 96.84 49.47 60.60 38.34 
1,2,4,3 91.82 86.78 96.86 49.17 64.80 33.54 
1,3,2,4 91.70 88.92 94.48 48.54 54.26 42.82 
1,3,4,2 89.06 83.18 94.94 49.64 55.20 44.08 
1,4,2,3 90.32 84.18 96.46 49.16 60.02 38.30 
1,4,3,2 91.15 87.00 95.30 49.30 55.60 43.00 

2,1,3,4 99.50 99.24 99.76 49.63 58.78 40.48
2,1,4,3 99.39 98.96 99.82 49.72 57.02 42.42
2,3,1,4 98.33 96.98 99.68 48.83 60.74 36.92
2,3,4,1 99.09 98.32 99.86 49.72 56.48 42.96
2,4,1,3 98.68 97.42 99.94 50.27 61.04 39.50
2,4,3,1 99.41 99.04 99.78 49.01 57.52 40.50

3,1,2,4 89.67 84.10 95.24 49.19 57.10 41.28 
3,1,4,2 86.62 80.58 92.66 49.90 60.44 39.36 
3,2,1,4 88.23 81.80 94.66 49.32 62.84 35.80 
3,2,4,1 85.08 80.94 89.22 49.56 56.08 43.04 
3,4,1,2 89.68 88.02 91.34 49.91 52.88 46.94 
3,4,2,1 87.90 84.50 91.30 49.49 51.48 47.50 

4,1,2,3 93.65 91.54 95.76 50.08 55.64 44.52
4,1,3,2 92.27 90.36 94.18 50.26 58.76 41.76
4,2,1,3 94.79 91.88 97.70 49.42 57.76 41.08
4,2,3,1 92.57 88.28 96.86 49.18 57.96 40.40
4,3,1,2 92.52 89.70 95.34 49.07 55.38 42.76
4,3,2,1 92.26 89.36 95.16 49.24 63.40 35.08

maximum 99.50 99.24 99.94 50.27 64.80 47.50
mean 92.75 89.53 95.96 49.46 57.99 40.93
minimum 85.08 80.58 89.22 48.54 51.48 33.54

least  error 99.39 49.72
best  accuracy 92.52 49.30
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3.2.2.2  Results and Conclusions 

We tested Hypothesis 1, that classification by rank order of least error will give higher 

classification accuracy than rank order of classification by highest accuracy.  Results for 

the global version and the local version of the algorithm are shown in Figures 3-11 and 3-

12, respectively.  The control set (#11) shows ~50% for each class, regardless of the 

version of the algorithm, as it should.  The results are almost an exact tie:  five sets are 

better classified using highest accuracy as the filter, four sets are better classified using 

least error as the filter, and there is one tie.  There seems to be little difference (with 

these data sets) by way of accuracy on test data regarding the choice of these two filters.  

While we have only a small number of data sets, we must reject Hypothesis 1 at this 

point. 
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Figure3-11.  Margin (Global Version): Comparison of Two Heuristics. 
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Margin - Local Version
Comparison of Heuristics
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Figure 3-12.  Margin (Local Version): Comparison of Two Heuristics. 

 

3.2.3 BOX ALGORITHM 

In testing with artificial, 2-dimensional sets, Hypothesis 2 (classification accuracy by 

order of classes) was the same regardless of the shape used (circles, cubes, symmetric 

boxes, or asymmetric boxes).  Classification accuracy by circles and cubes was similar, 

with symmetric and asymmetric rectangles being able to gain accuracy at higher 

computational cost.  Testing is now extended to ten artificial sets (plus a control set) in 4-

dimensions.  We test two hypotheses here: 

Hypothesis 2 :  The order of classes used will change the classification accuracy. 

Hypothesis 3 : A symmetric box will have higher classification accuracy than a 

hypercube. 

Since an example is only classified as inside a box when it is within all 

dimensions of the box, Hypothesis 1 (the order of attributes) is irrelevant.. 
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3.2.3.1  Results and Conclusions 

Tables 3-12 and 3-13 show the results of testing for Hypothesis 2 (the class order 

hypothesis) and Hypothesis 3 (the shape hypothesis), respectively. 

For datasets 1, 2, 5, 7, 10, and the control set, there was little difference in the 

overall accuracy for the hypercube when Hypothesis 2 was tested.  However, the 

accuracies of Class 1 and Class 2 were approximately reversed.  This was true for each 

the symmetric rectangle also. 

For datasets 3, 4, 6, 8, and 9, there was not only a change in the overall accuracy, 

but also in the accuracies of each class.  Again, this was true for each shape tested. 

 

Table 3-12.  Box Algorithm (Cube Version): Comparison of Class Order. 

 Box Algorithm (Cube) 
 Class 1, then Class 2 Class 2, then Class 1 

dataset # 
Total: % 
Correct 

Class 1: % 
Correct 

Class 2: % 
Correct 

Total: % 
Correct 

Class 1: % 
Correct 

Class 2: % 
Correct 

1 55.21 92.66 17.77 54.39 17.29 91.49 

2 57.90 90.99 24.80 57.27 25.66 88.87 

3 49.30 98.60 0.00 65.71 45.47 85.95 

4 49.46 98.91 0.00 74.57 69.31 79.83 

5 49.10 98.20 0.00 49.37 0.00 98.73 

6 57.48 87.59 27.37 71.60 46.93 96.26 

7 49.46 98.92 0.00 49.36 0.01 98.71 

8 53.02 95.65 10.39 49.52 0.00 99.03 

9 68.90 94.04 43.76 49.58 0.40 98.77 

10 48.73 97.46 0.00 49.27 0.00 98.54 

11: control 49.38 98.75 0.00 49.39 0.00 98.79 
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When Hypothesis 3 was tested, seven sets showed improvement in the overall 

accuracy for one of the class orders and three sets showed improvement for both class 

orders when symmetric boxes were used.  The improvement was usually a 3% gain.  In 

general, whichever class gave better classification accuracy for one shape also gave better 

accuracy for the other shape. 

 Both hypotheses proved true.  More work is needed to establish if a clear pattern 

as to class order can be determined.  Use of the computationally higher symmetric boxes 

is justified when even modest gains in classification accuracy are of importance. 

 

Table 3-13.  Box Algorithm (Symmetric Rectangle Version): Comparison of Class Order 

 Box Algorithm (Symmetric Rectangle) 
 Class 1, then Class 2 Class 2, then Class 1 

dataset # 
Total: % 
Correct 

Class 1: % 
Correct 

Class 2: % 
Correct 

Total: % 
Correct 

Class 1: % 
Correct 

Class 2: % 
Correct 

1 57.18 90.88 23.48 59.20 31.00 87.40 

2 58.85 91.06 26.64 59.87 29.26 90.48 

3 49.20 98.40 0.00 68.52 45.00 92.04 

4 49.24 98.48 0.00 78.05 68.12 87.98 

5 48.87 97.74 0.00 49.31 0.02 98.60 

6 67.69 80.08 55.30 69.60 79.00 60.20 

7 49.25 98.50 0.00 49.10 0.01 98.19 

8 53.04 95.24 10.84 49.12 0.00 98.24 

9 69.16 94.08 44.24 52.11 10.30 93.92 

10 48.54 97.08 0.00 49.20 0.00 98.40 

11: control 49.13 98.26 0.00 49.11 0.00 98.22 
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3.3 CONCLUSIONS 

The estimated overlap o found by the Hyperplane Algorithm when no errors are allowed 

during the training phase fails to predict which of our three steps is most appropriate to be 

used.  This is probably due to the presence of outliers (for one or both classes) that are 

located between the means of the two classes.  Their presence distorts the estimate.  

However, if we allow some errors during the training phase, the algorithm is much more 

robust and the appropriate steps are much more likely to be predicted. 

 For example, set #1 has an estimated overlap of 25% when no errors are allowed 

during the training phase.  From this, we would choose the second step, the Margin 

Algorithm.  If we allow some errors during training, the Hyperplane Algorithm gives 

96% accuracy for a cross-validation set, which is unbeaten by other steps of the 

classification procedure.  Both versions of the Margin Algorithm almost match this 

accuracy with either rank order of classification used.   

 The use of the overlap must therefore be tempered with the knowledge that 

outliers may substantially interfer with a meaningful estimate.  By allowing a small 

amount of error during the training of parameters, this is easily overcome.  When we do 

this, we see that no estimate of overlap exceeds 10% for set #1 and the Box Algorithm is 

not called as a third step. 

 The Box Algorithm does not classify well for set #1.  In particular, whichever of 

the two classes is classified second is not classified with high accuracy.  The sides of the 

box are orthogonal to the attribute axes.  It may be that each class for this set could be 

successfully modeled by a box with sides not orthogonal to the attribute axes. 

 We consider the allowance of some errors during training to minimize errors 

during testing as a tuning of the algorithm.  Many algorithms use a similar approach.  For 
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instance, a decision tree algorithm will usually attain very high accuracy on training data, 

but a lower accuracy on testing data, i.e. previously unseen data.  The classification 

parameters are adjusted to minimize the error on the test set and these parameters are 

used for future classification. 

For real-life datasets in Chapter 4, we will use: 

• The rank order of classification of highest accuracy (highest-to-lowest) 

• The estimate of overlap attained for the best accuracy (with errors allowed 

during training) to determine the next step of the classification procedure. 



 101

Chapter 4: 

Experiments – Real Datasets 

When classifying or estimating the unknown, no one method will always work best.  

Certainly though, some methods work better than others do.  In addition, some methods 

work very well in a particular circumstance.  Ensemble methods that use different 

methods in different situations attempt to make the best of various approaches by 

combining them.  Hybrid/ensemble classification systems which use multiple classifiers 

have been shown to be useful [34], [35], [36], [37], [38].  The Paired Planes 

Classification Procedure uses the same idea to add to performance, but the methods of the 

ensemble are strongly related and thus properly referred to as steps rather than different 

classifiers.  The Paired Planes Classification Procedure performs competitively 

throughout, and yields transparent classifications that can be used to understand the 

nature of the classification. 

In particular, we wish to evaluate the performance of the Paired Planes 

Classification Procedure on real-life datasets.  As with the artificial sets in Chapter 3, the 

objectives here are to test our classification procedure (Hyperplane Algorithm  Margin 

Algorithm  Box Algorithm) and several hypotheses: 

Hypothesis 1 (Margin Algorithm):  A filter using rank order of classification by highest 

accuracy (best-to-worst) would improve the classification accuracy, particularly in 

the local version. 

Hypothesis 2 (Box Algorithm):  The order of classes used will change the classification 

accuracy. 
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Hypothesis 3 (Box Algorithm):  A symmetric box will have higher classification 

accuracy than a hypercube. 

Initially, we tested two datasets, each of which was a two-class problem.  

Algorithms classify one of the datasets, the Wisconsin Breast Cancer dataset [21], to 

90%+ accuracy.  This set was used to test the feasibility of the Margin Algorithm and to 

determine if any adjustments needed to be made.  Then the Pima Indians Diabetes dataset 

[21] was tested.  This data is noisy and algorithms typically classify it with 65-75% 

accuracy.  These two datasets are representative of the range difficulty in classification 

and the classification accuracy attainable by most algorithms.  In each of these datasets, 

the mean of one class is to the right of the mean of the other set for all attributes.  As each 

new step of the classification procedure was developed, we tested it on these two 

datasets. 

We then extended the algorithm beyond the two-class problem to the well-known 

Iris dataset [21].  This is a multi-class problem and the mean of one class is not to the 

right of the mean of the other set for all attributes.  One of the three classes is linearly 

separable, while the other two are not. 

Because there are only four attributes, the order of attributes used for 

classification can be evaluated.  This allowed us to validate one of our heuristics, i.e., that 

rank order by classification ability for each attribute, is preferable for the Margin 

Algorithm, particularly when the local version is used.  Having tested, on artificial 

datasets, Hypothesis 1  (least error is preferable to highest accuracy) and rejected it, we 

use highest accuracy for rank order of classification.  For the other two steps (the 

Hyperplane Algorithm and the Box Algorithm), all attributes are used, thus there is no 

order of use for the attributes, i.e., Hypothesis 2 is irrelevant. 
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Each of the three steps of the classification procedure were at some time tested on 

the Wisconsin Breast Cancer, Pima Indians Diabetes, and Iris datasets, though not in the 

order specified by the overlap estimate.  Initial testing was by cross-validation with half 

of the dataset as a test set.  Each dataset was later evaluated using 5-fold cross-validation 

for the Hyperplane Algorithm and the Box Algorithm. 

Finally, the start-to-finish classification procedure using the overlap estimate o is 

used for two additional datasets:  StatLog Heart Disease [21] and Contraceptive Method 

Choice [21].  This allows a thorough testing of several different ideas, including using 

our heuristics, i.e., rank order of classification (by highest accuracy) for the local version 

of the Margin Algorithm, maximal area and a penalty for the Box Algorithm, and 

classification by class order for both of these; as well as our 3-step classification 

procedure.  We used 5-fold cross-validation throughout. 

  In addition to using our classification procedure (Hyperplane Algorithm  

Margin Algorithm  Box Algorithm) for these two datasets, we also classify by any step 

that would be skipped, as determined by the overlap estimate.  We are thus able to state, 

when the overlap is used to decide the steps and their sequence, whether the procedure 

serves to give the best classification possible using these three algorithms. 

For the Wisconsin Breast Cancer dataset, there are 16 missing attribute values.  

We explain in section 4.1 how we deal with these. 

 

4.1 WISCONSIN BREAST CANCER 

The Wisconsin Breast Cancer dataset is a benchmark dataset available from the 

Information and Computer Science Department, University of California, Irvine [21]. 
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Of the 699 samples, 16 correspond to missing attributes.  We remove these for the 

Margin Algorithm, which does not require their removal, unlike the Hyperplane 

Algorithm and the Box Algorithm, which require all attributes to have values.  We use 

the average value for the attribute, as calculated from the training set, as a replacement 

for missing values when classifying by the Hyperplane or Box Algorithm.  The data is 

composed of nine attributes, plus a patient identifier attribute and a class attribute.  There 

are 241 positive (malignant) and 458 negative (benign) instances.  Thus, about one third 

are positive and two thirds are negative.  The class distribution and a short statistical 

analysis are shown in Tables 4-1 and 4-2, respectively. 

 This breast cancer database was obtained from the University of Wisconsin   

Hospitals, Madison from Dr. William H. Wolberg [21].  Samples arrive periodically as 

Dr. Wolberg reports his clinical cases.  The database therefore reflects this chronological 

grouping of the data.  This grouping information appears immediately below, having 

been removed from the data itself: 

Group 1: 367 instances (January 1989) 

Group 2:  70 instances (October 1989) 

Group 3:  31 instances (February 1990) 

Group 4:  17 instances (April 1990) 

Group 5:  48 instances (August 1990) 

Group 6:  49 instances (Updated January 1991) 

Group 7:  31 instances (June 1991) 

Group 8:  86 instances (November 1991) 

Total:   699 points (as of the donated database on 15 July 1992) 
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Number of Attributes: 10 plus the class attribute 

 

The eleven attributes are (class attribute has been moved to last column): 

1. Sample code number (id number) 

2. Clump Thickness 

3. Uniformity of Cell Size 

4. Uniformity of Cell Shape 

5. Marginal Adhesion 

6. Single Epithelial Cell Size 

7. Bare Nuclei 

8. Bland Chromatin 

9. Normal Nucleoli 

10. Mitoses 

11. Class: 2 for benign, 4 for malignant 

Missing Attribute Values: 16 

There are 16 instances in Groups 1 to 6 that contain a single missing (i.e., unavailable) 

attribute value, now denoted by "?" (in the downloaded dataset). 

 

Table 4-1.  Wisconsin Breast Cancer: Class Distribution. 

Class Distribution – Wisconsin Breast Cancer 

Class Value Number of instances 

2 458 (65.5%) 

4 241 (34.5%) 
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Table 4-2.  Wisconsin Breast Cancer:  Statistical Analysis. 
 

Brief statistical analysis 

Attribute Minimum Maximum Mean Standard Deviation 

Clump Thickness 1 10 4.4 2.8 

Uniformity of Cell 
Size 

1 10 3.1 3.1 

Uniformity of Cell 
Shape 

1 10 3.2 3.0 

Marginal Adhesion 1 10 2.8 2.9 

Single Epithelial 
Cell Size 

1 10 3.2 2.2 

Bare Nuclei 1 10 3.5 3.6 

Bland Chromatin 1 10 3.4 2.4 

Normal Nucleoli 1 10 2.9 3.1 

Mitoses 1 10 1.6 1.7 

 

 
4.1.1 HYPERPLANE ALGORITHM 

By allowing some error during the training phase, we are able to attain a classification 

accuracy of 96.59%, with each of the classes having a 96%+ classification.  This is 

shown in Table 4-3 and Figure 4-1. 

  

Table 4-3.  Wisconsin Breast Cancer: 

various levels of error during training, classification accuracy during testing. 

PPCP Algorithm 
Wisconsin Breast Cancer - Hyperplane 

Algorithm 
Error Allowed During Training: 

Class 1, Class 2 0%,0% 2%,2% 3%,3% 4%,4% 

Total: % Correct 80.07 93.85 96.59 96.10 

Class 1: % Correct 92.15 96.45 96.58 95.66 

Class 2: % Correct 56.92 88.88 96.60 96.94 
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The amount of error allowed during training has a significant effect on the 

classification ability of the hyperplanes found.  In particular, the classification for Class 2 

is only ~57% unless error during training is allowed.  When 3% error for each class is 

allowed during training, classification accuracy increases for Class 1 by ~4% and for 

Class 2 by ~40%. 
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Figure 4-1.  Wisconsin Breast Cancer: various levels of error during training. 

 

By our classification procedure, we would use the classification parameters 

returned by this algorithm and not perform step 2 (the Margin Algorithm) or step 3 (the 

Box Algorithm). 
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4.1.2 MARGIN ALGORITHM 

We present results for each, then compare the two versions. 

Local Version 

Table 4-4 shows the results for each version of the algorithm on ten runs of the algorithm 

[24].  Results over ten runs have 92.6% accuracy. 

 

Table 4-4. Wisconsin Breast Cancer – learning constants during 10 runs 

of the Margin Algorithm (local version) [24]. 

Run # % Correct of Test Data 

1 92.3 
2 93.0 
3 93.0 
4 93.0 
5 91.5 
6 91.9 
7 92.1 
8 92.3 
9 93.4 

10 93.4 

Mean: 92.6 
 

Global Version 

Table 4-5 shows the learning constants found for the algorithm as well as the 

classification accuracy for both training and test sets during ten sample runs [25].  The 

average classification accuracy for training was very close to the average classification 

accuracy for the test sets.  The learning constants indicate that on average the margins are 

approximately one standard deviation from the mean for each class (as computed from 
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the training data) and toward the mean of the other class.  We can infer that there is little 

overlap and that the classes are compact, i.e., the points are near one another at the mean. 

 

Table 4-5. Wisconsin Breast Cancer – learning constants during 10 runs 

of the Margin Algorithm (global version) [24]. 

Run # ηA ηB % Correct of 
Training Data 

% Correct of 
Test Data 

1 2 2 93.0 94.2 

2 0 0.1 94.7 95.5 

3 0 0 95.6 94.6 

4 0 0 96.9 95.6 

5 1.9 1.7 94.7 95.1 

6 1.8 2 96.9 92.5 

7 0 0.3 94.3 94.1 

8 0 0.3 96.5 95.5 

9 2 1.6 94.3 95.3 

10 1.7 1.8 93.4 94.4 

Mean: .94 .98 95.0 94.7 
 

On a training run of the entire dataset, 25 of 444 benign cases were misclassified 

(5.6%), 9 of 239 malignant cases were misclassified (4.8%), and 3 of the 683 cases were 

not classified (0.4%), for a total of 94.6% classified accurately. 

Comparison of Versions 

Using the same training data, the learning constants were found for each version and then 

used on the same test set.   Results over ten runs are shown in Table 4-6 [25].  The global 

version consistently classifies more accurately by ~2%.  
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Table 4-6. Wisconsin Breast Cancer:  

comparison between versions of the Margin Algorithm [25]. 

 

4.1.3 BOX ALGORITHM 

The results range from 91.13% to 94.36% average accuracy of classification for the 

Wisconsin Breast Cancer dataset for the initial testing (using symmetric rectangles).  The 

results are averages of 100 trials with 50:50 splits of the data between training and testing 

[26]. 

 In this initial testing, a penalty, for misclassification of points, 0 ≤  penalty ≤ 1 by 

a step size of 0.1 was evaluated.  Figure 4-2 shows the results.  At penalty = 0.3, the 

classification accuracy stabilized.  At penalty > 0.6, the classification accuracy appeared 

to decrease from the maximum.  The highest classification accuracy appears to be when  

0.2.5 < penalty < 0.7.  Similar behavior was observed for the Pima Indians Diabetes 

% Correct of Test Data % Correct of Test Data Run # 

Local  Version Global Version 

1 92.3 94.2 
2 93.0 95.5 
3 93.0 94.6 
4 93.0 95.6 
5 91.5 95.1 
6 91.9 92.5 
7 92.1 94.1 
8 92.3 95.5 
9 93.4 95.3 

10 93.4 94.4 

Mean: 92.6 94.7 
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dataset.    Based on the results for these disparate datasets, a penalty  = 0.4  was deemed 

reasonable to use on all other sets to be tested in this study. 
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Figure 4-2.  Results averaged over 100 trials for each value of the penalty tested [26]. 

 

 

Subsequently, with 5-fold cross-validation, the hypercube version had an average 

overall accuracy of ~88% (shown in Table 4-7 and Figure 4-3) for class order 1 2, i.e., 

Class 1 is used followed by Class 2.  In both orders, Class 2 was 91-92% accurate.  

Hypothesis 2 is supported, i.e., not only is the overall accuracy changed by class order, 

but also the individual class accuracy.  
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Table 4-7.  Wisconsin Breast Cancer  (5-fold cross-validation): 

Box Algorithm (cube). 

PPCP Algorithm 
Wisconsin Breast Cancer 

Box Algorithm (cube) 

Class Order 1,2 2,1 

Total: % Correct 87.55 58.12 

Class 1: % Correct 85.91 40.16 

Class 2: % Correct 90.68 92.21 
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Figure 4-3.  Wisconsin Breast Cancer  (5-fold cross-validation): 

Box Algorithm (cube). 
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The symmetric rectangle  had an average total accuracy of ~92% (shown in Table 

4-8 and Figure 4-4) with each of the two orders of classes used to classify.  In the order of 

Class 1 followed by Class 2, Class 1 was ~91% accurate and class 2 was ~94% accurate.  

In the order of class 2 followed by Class 1, Class 1 was ~90% accurate and Class 2 was 

~96% accurate.  

 

Table 4-8.  Wisconsin Breast Cancer  (5-fold cross-validation): 

Box Algorithm (symmetric rectangle). 

PPCP Algorithm Wisconsin Breast Cancer 
Box Algorithm (symmetric rectangle) 

Class Order 1,2 2,1 

Total: % Correct 92.38 92.14 

Class 1: % Correct 91.30 90.22 

Class 2: % Correct 94.44 95.83 
 

 

 There is a slight difference in classification accuracy overall, as well as for  

individual class, with the two class orders.  It is not sufficient to support Hypothesis 2.   

Hypothesis 3 is supported for this dataset:  the overall classification accuracy is 

increased for each order, as is the classification accuracy for the individual classes.  Note 

that Class 2 is classified with 90%+ accuracy irregardless of the class order or the shape 

used here.  We infer that it is (to a large degree) symmetric about the mean in the original 

k-dimensional space, thus a hypercube can model it well.  On the other hand, Class 1 does 

not exhibit this type of symmetry, but symmetry by each attribute axis instead.  

Therefore, a symmetric rectangle models it well. 
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Figure 4-4.  Wisconsin Breast Cancer  (5-fold cross-validation): 

Box Algorithm (symmetric rectangle). 

 

4.1.4 DISTRIBUTIONS OF THE CLASSES 

It is instructive to look at a graph of the distributions of the two classes.  By means of a 

histogram, an estimate of these distributions was created using the trial data.  It is shown 

below in Figure 4-5.  To mark the means, 0 was used for Class 1 and 1 was used for Class 

2.  As the reader may recall, the Hyperplane Algorithm uses a constant times the vector 

connecting the two means in order to find the hyperplanes desired.  It is by the 

Hyperplane Algorithm that a count for the histogram is obtained.  The position relative to 

this vector is generally from 0 to 1, with the constant marking the position between the 

means. 

 We see in the case of the Wisconsin Breast Cancer dataset that while the 

distributions for the two classes overlap, the majority of examples are not in the region of 
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overlap.  Choosing a value between 0.35 and 0.55 gives high accuracy to the 

classification.  The Hyperplane Algorithm finds two such values as hyperplanes.  The 

Box Algorithm can also do well when given such distributions for the two classes. 
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Figure 4-5.  Wisconsin Breast Cancer: 

Approximate Distribution Curves of the Two Classes. 

 

 Next, compare our approximate distribution curves with the densities of points 

normal to the separating plane obtained by Mangasarian in [10] and reproduced here in  

Figure 4-6 (originally labelled Figure 3).  This was published in their landmark paper 

describing the Xcyt Image Analysis Program.  The benign class on the left (not in the 

original feature space of ten attributes) in Figure 4-6 corresponds to our Class 1 on the 
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left (in the original feature space of nine attributes) in Figure 4-5.  Each shows that the 

overlap is slight. 

  

 

Figure 4-6.  Densities of benign and malignant points along the 

normal ω to the separating plane xTω = γ. 

 

At the time of this paper (1994), there were 569 patients for the training set and 

the testing was on 131 subsequent patients in the database rather than the 699 that we 

used.  The Xcyt program generates a 30-dimensional vector for each instance: (10 

original features per image) x (3 other values computed from each original feature). 
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The program finds a separating plane and, if there are errors, can be recursively 

applied to each of the half-spaces previously found.  The separating plane is shown here 

in Figure 4-7 (originally labelled Figure 2) reproduced from [10].  P1 is the original 

separating plane, with P2 and P3 found by recursion.  No details of this figure explain 

why it is 2-dimensional, so we conclude it is to illustrate the separating plane recursion. 

 

 

Figure 4-7.  MSM-T separating planes. 

 

It is quite possible that the Hyperplane Algorithm could be used recursively on 

points in the overlap region, but that is beyond the scope of this study. 

4.1.5 CONCLUSIONS 

According to our classification procedure, we expect the Hyperplane Algorithm to give 

the highest classification accuracy, which it does for this dataset.  As this was part of our 

original two real-life datasets, Hypothesis 1 was evaluated using highest accuracy for the 
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local version to determine if the local version could out-perform the global version.  

Hypothesis 1 proved true for the local version.  Hypothesis 2 is verified only for the 

hypercube.  Hypothesis 3 proved true. 

 

4.2 PIMA INDIANS DIABETES 

The Pima Indian diabetes dataset is also a benchmark dataset available from the 

Information and Computer Science Department at the University of California, Irvine 

[21].  The Pima Indians dataset is usually a difficult dataset to classify due at least in part 

to the noise it contains.  The Pima Indian dataset has 768 instances of eight attributes 

(none missing), plus a class attribute (diabetic or non-diabetic).  Of the 768 instances, 268 

are positive (diabetic) and 500 are negative (non-diabetic).  Thus, about one third are 

positive and two thirds are negative.  The class distribution and a short statistical analysis 

are shown in Tables 4-9 and 4-10, respectively. 

All patients were Pima Indian females at least 21 years old.  The nine attributes are: 

1. Number of times pregnant 

2. Plasma glucose concentration at 2 hours in an oral glucose tolerance test 

3. Diastolic blood pressure (mm Hg) 

4. Triceps skin fold thickness (mm) 

5. 2-Hour serum insulin (mu U/ml) 

6. Body mass index (weight in kg/(height in m)2) 

7. Diabetes pedigree function 

8. Age (years) 

9. Class: 1 for tested positive for diabetes, 2 otherwise 
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Missing Attribute Values: None 

 
Table 4-9.  Pima Indians Diabetes: Class Distribution 

Class Distribution – Pima Indians Diabetes 

Class Value Number of instances 

0 500 (65.1%) 

1 268 (34.9%) 

 
 
 

Table 4-10.  Pima Indians Diabetes: Statistical Analysis. 
 

Brief statistical analysis 
Attribute number Minimum Maximum Mean Standard Deviation 

1 0 17 3.8 3.4 

2 0 199 120.9 32.0 

3 0 122 69.1 19.4 

4 0 99 20.5 16.0 

5 0 846 79.8 115.2 

6 0 67.1 32.0 7.9 

7 0.078 2.42 0.5 0.3 

8 21 81 33.2 11.8 

 

 

4.2.1 HYPERPLANE ALGORITHM 

The results (shown in Table 4-11 and Figure 4-8) are 64.94% average accuracy of 

classification when errors during training are not allowed.  The hyperplane has simply 

been placed where all data on one side of it is classified as Class 1, the majority class.  By 

allowing 20% of Class 1 and 42% of Class 2 to be incorrectly classified during training, 

the average accuracy on a test set improves by ~4.5%; in this case, accuracy of Class 1 

goes down and accuracy of Class 2 goes up. 
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Table 4 -11.  Pima Indians Diabetes (5-fold cross-validation): Hyperplane Algorithm. 

PPCP Algorithm Pima Indians Diabetes 
Hyperplane Algorithm 

Error Allowed During Training: 0%,0% 20%,20% 40%,40% 20%,42% 

Total: % Correct 64.94 64.94 66.23 69.48 

Class 1: % Correct 100.00 100.00 71.00 78.00 

Class 2: % Correct 0.00 0.00 57.41 53.70 
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Figure 4-8.  Pima Indians Diabetes (5-fold cross-validation): Hyperplane Algorithm. 

 

 It appears that as we approach the value of the estimated overlap (without 

outliers) as our error allowed during training, we also approach our maximum 

classification accuracy by this algorithm.  This is also true for the Wisconsin Breast 

Cancer dataset. 
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According to our classification procedure, we would now go to the step 2 (the 

Margin Algorithm).  Following this, we would decide whether the Hyperplane Algorithm 

or the Margin Algorithm would the classifier of choice.  Though the Box Algorithm 

would not be used normally, we do so in order to evaluate the classification procedure. 

4.2.2 MARGIN ALGORITHM 

We present results for each, then compare the two versions. 

Local Version 

Figure 4-9 shows the progress of the algorithm as it steps through the two for loops [24].  

A local maximum classified correctly is found for each inner loop.  The maximum of 

these local maxima is the best local maximum correctly classified.  The algorithm uses 

the classification parameters for this best local maximum. 

 Table 4-12 shows the learning constants found for each attribute during a typical 

training run [24].  Rather than the same value of the learning constant for all attributes of 

a class, individual values are found based on the classification performance of just that 

attribute.  These values were the learning constants calculated at the maximum of the 

local maxima shown in Figure 4-9. 
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Figure 4-9.  2-D graph of the progression of the Margin Algorithm (local version) [24]. 

 

Table 4-12.  Pima Indians Diabetes – learning constants  

and % correctly classified by attribute i individually [24]. 

Attribute #i η i
A η i

B % Correct of Test Data 
by Attribute i 

1 0.4 0 62.5 

2 0.8 0.3 75.9 

3 0 0 49.0 

4 0.2 0 56.1 

5 0.4 0.1 67.2 

6 0.7 0 64.4 

7 0.5 0 63.2 

8 0.3 0.2 65.2 
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In Table 4-13, results for ten runs of training data for Pima Indians Diabetes 

dataset is  shown [24].  Approximately one third of the entire dataset was used for 

training data, on each run, two thirds as testing data.  The rank order of classification 

accuracy (most-to-least) by attributes was used. 

 

Table 4-13.  Pima Indians Diabetes: 

10 runs of the Margin Algorithm (local version) [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 shows the classification accuracy on testing, using the local version of 

the Margin Algorithm, and averaging ten runs when the size of the training set varies 

from 10% to 70% of the entire dataset. 

 

% Correct of Test Data  

Run # Local  Version 

1 71.4 

2 73.7 

3 74.7 

4 75.8 

5 74.2 

6 75.3 

7 73.4 

8 75.3 

9 75.3 

10 73.7 

Mean: 74.3 
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Figure 4-10.  Pima Indians Diabetes: average accuracy vs. % of training data  

Margin Algorithm (local version). 

 

Global Version 

Table 4-14 shows the ranges of values for both classes and the extensive overlap between 

classes [25].  The overlap makes separation appear difficult. 

 Table 4-15 shows the ranges of values for both classes after overlap are limited by 

the margins created by Margin (global version) [25].  The overlap between classes is no 

longer extensive.  Note that the minimum values for Class 1 is unchanged, as are the 

maximum values for Class 2.  The margins are the regions of overlap for each attribute. 
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Table 4-14.  Pima Indians Diabetes: ranges for attribute values for each class [25]. 

 

 

Table 4-15.  Pima Indians Diabetes: truncated ranges for attribute values for each class 

after training by the Margin Algorithm (global version) to create the margins [25]. 

  

 Class 1 (Diabetic) Class 2 (Non-diabetic) 

Attribute # Minimum 
Value 

Maximum 
Value 

Minimum 
Value 

Maximum 
Value 

1 0 13 0 17 

2 0 197 0 199 

3 0 122 0 114 

4 0 60 0 99 

5 0 744 0 846 

6 0 57.3 0 67.1 

7 0.078 2.329 0.088 2.42 

8 21 81 21 70 

 Class 1 (Diabetic) Class 2 (Non-diabetic) 

Attribute # Minimum 
Value 

Maximum 
Value 

Minimum 
Value 

Maximum 
Value 

1 0 7.4039 2.9009 17 

2 0 157.71 107.83 199 

3 0 80.705 63.187 114 

4 0 29.951 17.892 99 

5 0 166.19 62.108 846 

6 0 37.025 28.602 67.1 

7 0.078 0.72941 0.41378 2.42 

8 21 43.735 29.172 70 
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In this dataset, Class 1 is to the left of Class 2, relative to the origin.  Separation of classes 

proceeds by classifying the points outside the margin as belonging to Class 1 or Class 2.  

The overlaps between the ranges shown in Table 4-14 are the margins and explicitly 

shown in Table 4-16. 

 

Table 4-16.  Margins for Pima Indians Diabetes. 

 

 

 

 

 

 

 

 

 

A surface plot of the classification accuracy on training data is shown in Figure  

4-11.  The percentage correctly classified is plotted versus ηAσ1 and ηAσ2.  For this graph, 

one third of the dataset is being used for training and the balance for  testing. 

 

Attribute # Left margin  Right margin 

1 2.9009 7.4039 

2 107.83 157.71 

3 63.187 80.705 

4 17.892 29.951 

5 62.108 166.19 

6 28.602 37.025 

7 0.41378 0.72941 

8 29.172 43.735 
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Figure 4-11.  Pima Indians Diabetes: Margin Algorithm (global version) 

3-D plot of percentage correctly classified vs. ηAσ1 and ηBσ2. 

 

Comparison of Versions 

Using the same training data, the learning constants were found for each version, then 

used on the same test set.  Results over ten runs are shown in Table 4-17. 

On a trial run, the local version classifies the test data with 73.6% accuracy, which 

compares favorably with other results in the literature.  All points were classified, i.e., 

none were left in the margins.  The percentage classified correctly is slightly less than 

that of the best single classifier as calculated for that run.  On another run, the test results 

ηBσ2  
ηAσ1  
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are 75.7%, which is somewhat better than the single best classifier results of 71.1% as 

calculated for that run. 

 

Table 4-17.  Pima Indians Diabetes – 10 runs comparing the two versions[25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 BOX ALGORITHM 

In initial testing, the results range (shown in Figure 4-12) from 71% to 75% average 

accuracy of classification for the Pima Indians Diabetes dataset for the initial testing 

(cube version) with 100 trials of 50:50 splits of the data between training and testing [26]. 

 

% Correct of Test Data % Correct of Test Data  
Run # Local  Version Global Version 

1 71.4 82.5 

2 73.7 77.5 

3 74.7 83.1 

4 75.8 75.7 

5 74.2 81.6 

6 75.3 81.9 

7 73.4 77.5 

8 75.3 75.9 

9 75.3 79.8 

10 73.7 77.5 

Mean: 74.3 79.3 
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Figure 4-12.  Results averaged over 100 trials for each value of the penalty tested [26]. 

 

In this initial testing, a penalty, for misclassification of points, 0 ≤  penalty ≤ 1 by 

a step size of 0.1 was evaluated.  Figure 4-12 shows the results.  At penalty = 0.25, the 

classification accuracy is near the maximum.  At penalty > 0.6, the classification 

accuracy appeared to decrease.  The highest classification accuracy appears to be when  

0.3 < penalty < 0.75.  Based on similar results for the Wisconsin Breast Cancer dataset, a 

penalty  = 0.4  was deemed reasonable to use on all other sets to be tested in this study. 

Subsequently, with 5-fold cross-validation, the hypercube version had an average 

total accuracy of ~65% (shown in Table 4-18 and Figure 4-13) with each of the two 

orders of classes used to classify.  In both orders, Class 1 was ~88% accurate and Class 2 

was ~24% accurate. 
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Table 4-18.  Pima Indians Diabetes (5-fold cross-validation):  

Box Algorithm (cube). 

PPCP Algorithm 
Pima Indians Diabetes 
Box Algorithm (cube) 

Class Order 1,2 2,1 

Total: % Correct 65.40 65.10 

Class 1: % Correct 88.00 87.13 

Class 2: % Correct 23.56 24.31 
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Figure 4-13.  Pima Indians Diabetes (5-fold cross-validation):  

Box Algorithm (cube). 

 

Table 4-19 and Figure 4-14 show the results for the symmetric rectangle.  When 

the order was Class 1 followed by Class 2, the symmetric rectangle had an average total 

accuracy of ~68%.  When Class 1 was followed by Class 2, Class 1 was ~90% accurate 

and Class 2 was ~28% accurate.  
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Table 4-19.  Pima Indians Diabetes (5-fold cross-validation):  

Box Algorithm (symmetric rectangle). 

PPCP Algorithm Pima Indians Diabetes 
Box Algorithm (symmetric rectangle) 

Class Order 1,2 2,1 

Total: % Correct 68.05 33.64 

Class 1: % Correct 89.60 0.00 

Class 2: % Correct 28.15 95.93 
 

 

All of the accuracies mentioned to this point showed an increase in accuracy of 1-

5%  over the hypercube version.  However, in the order of Class 2 followed by Class 1, 

Class 1 was ~90% accurate and Class 2 was ~28% accurate.  The average total accuracy  

dropped to ~33% while the accuracy of Class 2 was greatly increased. 

It appears that if Class 1 is modeled well, Class 2 is not, and vice versa.  This 

indicates a large overlap, as estimated by the Hyperplane Algorithm. 

The extent of the box for Class 2 was allowed  to go to 5 standard deviations 

rather than the usual 3.  This was done because with 3 standard deviations, less than 5% 

of Class 2 was accurately classified.  An assumption of a normal distribution here is not 

justified.  The symmetric rectangle more successfully models Class 2 than the hypercube 

does when using the class order 1 2 while slightly improving the classification accuracy 

of Class 1. 
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Figure 4-14.  Pima Indians Diabetes (5-fold cross-validation):  

Box Algorithm (symmetric rectangle). 

 

All of the accuracies mentioned to this point showed an increase in accuracy of 1-

5%  over the hypercube version.  However, in the order of Class 2 followed by Class 1, 

Class 1 was ~90% accurate and Class 2 was ~28% accurate.  The average total accuracy  

dropped to ~33% while the accuracy of Class 2 was greatly increased.  It would seem that 

the box that approximates Class 2 completely encloses Class 1.  Even so, it is still not 

large enough to include all points of Class 2.  This is quite remarkable in view of the fact 

that the extent of the box for Class 2 was allowed  to go to 5 standard deviations rather 

than the usual 3.  This was done because with 3 standard deviations, less than 5% of 

Class 2 was accurately classified.  An assumption of a normal distribution here is not 

justified.  The symmetric rectangle more successfully models Class 2 than the hypercube 

does. 
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When there is heavy overlap, Hypothesis 2 (class order for classification) holds 

true for the symmetric rectangle.   

Overall classification accuracy is increased for class order 1 2 when the 

symmetric rectangle is used.  As the better classification order by class would be used, 

Hypothesis 3 (symmetric rectangles classify better than hypercubes) holds then. 

4.2.4 DISTRIBUTIONS OF THE CLASSES 

We again look at a graph of the estimated distributions of the two classes (shown in 

Figure 4-15).  As in section 4.1.4, by means of a histogram, an estimate of these 

distributions was created using the trial data.  This time we do not normalize the vector 

connecting the means of the two classes, but simply show the estimated distributions 

relative to one another. 

 Unlike the case of the Wisconsin Breast Cancer, the distributions for the two 

classes overlap greatly, with the majority of examples for both classes in the region of 

overlap.  It is not possible to choose a value to separate the two classes with high 

classification accuracy.  This is why the Hyperplane Algorithm is a poor classifier for this 

dataset.  The Box Algorithm can also do better when given such distributions for the two 

classes.  If one class were totally inside another, the distribution of one class would be 

totally inside the distribution for the other class.  This is not true here, so we think this 

explains why the Margin Algorithm step more accurately classifies this dataset than other 

steps. 
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Figure 4-15.  Pima Indians Diabetes: 

Approximate Distribution Curves of the Two Classes. 

 

4.2.5 CONCLUSIONS 

According to our classification procedure, the Margin Algorithm would give the highest 

classification accuracy, which it does for this dataset.  As this was part of our original two 

real-life datasets, Hypothesis 1 was evaluated using highest accuracy for the local version 

to determine if the local version could out-perform the global version.  Hypothesis 1 

proved true for the local version.  Hypothesis 2 is verified only for the symmetric 

rectangle.  Hypothesis 3 proved true only when the class order was 1 2. 
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4.3 IRIS 

The Iris diabetes dataset is a benchmark dataset available from the Information and 

Computer Science Department at the University of California, Irvine [21].  The data is 

composed of four attributes, plus a class attribute.  The Iris dataset contains three classes 

of fifty instances each, where each class refers to a type of iris plant (Iris Setosa, Iris 

Versicolor, Iris Virginica).  Thus, the classes are evenly distributed.  One class is linearly 

separable from the other two; the latter are not linearly separable from each other.  The 

class distribution and a short statistical analysis are shown in Tables 4-20 and 4-21, 

respectively. 

This is perhaps the best-known database to be found in the pattern recognition 

literature.  Fisher's paper is a classic in the field and is referenced frequently to this day.  

(See Duda & Hart, for example.)  This data differs from the data presented in Fisher's 

article (identified by Steve Chadwick, spchadwick@espeedaz.net):  "The 35th sample 

should be: 4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the fourth feature.  The 38th 

sample: 4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the second and third 

features." 

 

The five attributes are: 

1. sepal length in cm 

2. sepal width in cm 

3. petal length in cm 

4. petal width in cm 

5. class: Iris Setosa, Iris Versicolor, Iris Virginica 

Missing Attribute Values: None 
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Table 4-20.  Iris: Class Distribution. 

Class Distribution - Iris 
Class Value Number of instances
Iris Setosa 50 (33.3%) 

Iris Versicolor 50 (33.3%) 
Iris Virginica 50 (33.3%) 

 

Table 4-21.  Iris: Statistical Analysis. 

Brief statistical analysis 
Attribute Minimum Maximum Mean Standard Deviation Correlation 

sepal length 4.3 7.9 5.84 0.83 0.7826 
sepal width 2.0 4.4 3.05 0.43 -0.4194 
petal length 1.0 6.9 3.76 1.76 0.9490 
petal width 0.1 2.5 1.20 0.76 0.9565 

 

4.3.1 HYPERPLANE ALGORITHM 

The classification accuracy (shown in Table 4-22 and Figure 4-16) ranges from 68.40% 

when no error is allowed during training to 90.50% when 0%, 15%, and 20% error is 

allowed for Class 1, Class 2, and Class 3, respectively, during training.  Figure 4-16 

shows results with differing amounts of error allowed during training. 

 

Table 4-22.  Iris (5-fold cross-validation): Hyperplane Algorithm. 

 
PPCP Algortihm Iris - Hyperplane Algorithm 

Error Allowed 
During Training: 
Class 1, Class 2, 

Class 3 

0%, 0%, 
0% 

0%, 0%, 
5% 

0%, 0%, 
15% 

0%, 0%, 
25% 

0%, 15%, 
15% 

0%, 15%, 
20% 

Total: % Correct 68.40 84.00 85.97 87.33 90.20 90.50 

Class 1: % Correct 97.70 97.10 97.50 100.00 98.20 98.10 

Class 2: % Correct 13.50 82.70 84.90 90.00 86.00 87.10 

Class 3: % Correct 94.00 72.20 75.50 72.00 86.40 86.30 
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 When no error is allowed during training, Class 1 (the separable class) and Class 3 

are classified with high accuracy.  As we increase the allowed error during training, the 

classification accuracy of Class 3 decreases while the classification accuracy of Class 2 

increases.  These two classes are not linearly separable.  By allowing error during training 

for these two classes, overall classification accuracy is 90%+, with classification accuracy  

of 98%+ for Class 1 and classification accuracy of 86%+ for Class 2 as well as Class 3. 
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Figure 4-16.  Iris (5-fold cross-validation): Hyperplane Algorithm. 

  

According to our classification procedure, we would now go to the step 2 (the 

Margin Algorithm).  Following this, we would decide whether the Hyperplane Algorithm 

or the Margin Algorithm would be the classifier of choice.  Though the Box Algorithm 

would not be used normally, we do so in order to evaluate the classification procedure. 
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4.3.2 MARGIN ALGORITHM 

Previous work [25] showed that Margin is feasible for two-class classification where for 

each attribute the mean for Class 1 is to the left of the mean for Class 2.  Both a global 

version [25] and a local version [26] were tested. 

For Iris, Margin is extended beyond two-class classification and the means may 

be right-to-left or left-to-right.  Figure 4-17 shows the process for a simplified version. 

 

Figure 4-17.  Illustration of Margin's Process: 

Class 1 vs. non-Class 1 →  Class 2 vs. Class 3. 
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Example 3:  Consider the artificial dataset with three classes shown in Figure 4-17.  This 

is a simple version of the algorithm and the margin edges are not in the final positions.  

Starting with the  y-attribute, the margin edges (y1, y2) are found and the classification is 

made for Class 1 versus non-Class 1.  Then the margin edges (x1, x2) are found for the x-

attribute and further classification is made for Class 1 versus non- Class 1.  In top ,right 

of Figure 4-17, the lower L-shaped area is Class 1 and the upper L-shaped area is non- 

Class 1.  The small rectangle is unclassified.  The margins (x1', x2') and (y1', y2') are used 

to further classify points in non-Class 1 as Class 2 versus Class  3.  Bottom, left of Figure 

4-17 shows the result.  Note that there is a second small rectangle that is unclassified. 

Two versions of the algorithm are tested: a global version and a local version.  For 

the local version used, there is a best order of attributes using rank order of classification, 

i.e., attributes are used in decreasing order of their highest accuracy.  The rank order 

classification ability (from highest-to-lowest) is 4 3 1 2, as was determined during 

training.  The small number of attributes to test how the order of attribute use in 

classification affects the accuracy.  We present results (shown in Table 4-23) for each, 

then compare the two versions. 

Local Version 

With 100 trial runs for each of the 24 permutations, the results range from 63.32% to 

95.57% average accuracy of classification.  There is small variation within most 

groupings and the overall variation is large.  

Global Version 

With 100 trial runs for each of the 24 permutations, the average classification accuracy 

ranges from 88.89% to 94.33%.  There is little variation within each of the groupings 
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shown starting with a particular attribute and the overall variation is much less than with 

the local version. 

 

Table 4-23.  Iris: Margin Algorithm (global version vs. local version). 

 

 

Average % Classified Correctly  (100 trials each permutation) 

Global Version Local Version 

Permutations of 
the 4 attributes – 
order of use for 
classification Ave Correct % (std deviation %) Ave Correct % (std deviation %) 
1,2,3,4 90.79   (4.95) 71.24   (3.46) 
1,2,4,3 92.64   (4.18) 71.15   (3.23) 
1,3,2,4 92.47   (3.84) 71.45   (3.57) 
1,3,4,2 93.64   (4.13) 71.37   (3.21) 
1,4,2,3 92.83   (3.54) 71.77   (3.32) 
1,4,3,2 92.04   (5.20) 71.24   (3.45) 

2,1,3,4        88.89   (5.13) 64.48   (5.59)
2,1,4,3         89.17   (4.54)         63.32   (6.12)
2,3,1,4         89.47   (5.07)         69.91   (6.76)
2,3,4,1         91.60   (4.43)         67.35   (6.88)
2,4,1,3         89.92   (4.36)         69.28   (8.08)
2,4,3,1         89.84   (5.00)         69.52   (7.86)

3,1,2,4 92.77   (3.77) 90.83   (3.83) 
3,1,4,2 93.68   (3.08) 90.97   (4.30) 
3,2,1,4 93.44   (4.50) 92.59   (3.18) 
3,2,4,1 94.09   (3.72) 92.51   (3.39) 
3,4,1,2 94.43   (3.88) 93.60   (3.23) 
3,4,2,1 94.11   (3.75) 93.99   (2.74) 

4,1,2,3         93.77   (3.88)         93.99   (3.11)
4,1,3,2         94.08   (3.99)         94.08   (2.94)
4,2,1,3         94.41   (3.45)         94.45   (2.46)
4,2,3,1         94.19   (3.36)         95.44   (1.77)
4,3,1,2         94.01   (3.79)         94.69   (2.98)
4,3,2,1         94.33   (2.97)         95.57   (1.81)
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Comparison of Versions 

The maximum classification accuracy using each of the four attribute as the initial 

classifier is highlighted in bold print in Table 4-23.  The attribute order that was predicted 

by highest accuracy (4, 3, 1, 2) is highlighted in italicized print.  As hypothesized, the 

order of attribute used during classification is important, particularly for the local version 

of the Margin Algorithm. 

 Clearly, attribute order is of great importance in the local version, but it does not 

appear to be totally explained by rank order by single  components.  If it did, we might 

reasonably expect 4, 3, 1, 2 (4 3 1 2) to be better than all other permutations.  This is 

shown false by counterexamples: 4, 2, 3, 1 gives a better (average) classification 

accuracy, as does 4, 3, 2, 1.  However, the difference is less than 1% and may simply be a 

statistical anomaly. 

 The two versions were quite close for the overall classification accuracy with the 

predicted best order, i.e., by highest accuracy as well as with each version's true best 

order.  If the processing time for sorting the attributes is a concern, as with very large k, 

one may choose the global version. 

 According to our classification procedure, we would now stop and return 

classification parameters for the Margin Algorithm. 

4.3.3 BOX ALGORITHM 

A penalty of 0.4 was used in the training, as this appears from previous testing with two 

real datasets to be an optimal value.  With 5-fold cross-validation, Hypothesis 2 (class 

order) and Hypothesis 3 (hypercubes versus symmetric rectangles) were tested and results 

are shown in Table 4-24 and Figure 4-18. 
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 For the cube, as can be seen in the top row of Table 4-23, roughly 80% of the data 

is classified correctly by three of the orders and roughly 87% is classified correctly by the 

other three of the orders.  The order of classification for the second and third classes 

affects the overall results.  When Class 2 is classified before Class 3, the total accuracy is 

better.  Also apparent is that whichever of these two classes is classified first has better 

classification accuracy.  Both of these observations lead to the conclusion that there is a 

substantial overlap between them. 

 

Table 4-24.  Iris (5-fold cross-validation): Box Algorithm (cube). 

PPCP Algorithm Iris - Box Algorithm (cube) 

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1 

Total: % Correct 86.69 80.32 87.05 87.69 80.92 81.31 
Class 1: % Correct 88.56 90.60 90.52 91.12 90.32 91.64 
Class 2: % Correct 93.12 65.04 93.72 93.92 66.56 66.68 
Class 3: % Correct 78.40 85.32 76.92 78.04 85.88 85.60 

 

It is known that these two classes are non-separable.  The Hyperplane Algorithm 

gave best classification accuracy when it was calculated allowing 15%+ errors during 

training.  This is an inference of the degree of overlap.  The observations regarding Class 

2 and Class 3 tend to confirm this. 
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Figure 4-18.  Iris (5-fold cross-validation): Box Algorithm (cube). 

 

For the symmetric rectangle, the computational complexity increases quite a bit.  

Because of this, preliminary testing was used to roughly approximate the limits of the 

dimensions of the box.  This was accomplished by using a larger step-size during the for 

loops.  Results are shown in Table 4-25 and Figure 4-19. 

The same patterns are generally seen in the data, but mitigated.  Noticeably, the 

class order 3, 2, 1 has an improvement in accuracy of 7%.  The usual improvement for 

symmetric rectangle over cube is 2-5%.  This is similar to the results with the artificial 

sets in 4-dimensions. 

Note that both the overall classification accuracy and the classification accuracy 

for a particular class are both affected by order of classification. 
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Table 4-25.  Iris (5-fold cross-validation): Box Algorithm (symmetric rectangle). 

PPCP Algorithm Iris - Box Algorithm (symmetric rectangle) 

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1 

Total: % Correct 88.53 84.44 89.07 90.40 85.87 88.67 

Class 1:% Correct 90.80 89.33 88.00 87.60 87.20 94.00 

Class 2: % Correct 92.80 77.33 94.80 95.20 80.00 84.00 

Class 3: % Correct 82.00 86.67 84.40 88.40 90.40 88.00 
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Figure 4-19.  Iris (5-fold cross-validation): Box Algorithm (symmetric rectangle). 

 

4.1.5 CONCLUSIONS 

According to our classification procedure, we expect the Margin Algorithm to give the 

highest classification accuracy, which it does for this dataset.  Symmetric rectangles 

classify more accurately than do hypercubes.  Hypothesis 1, Hypothesis 2, and  

Hypothesis 3 are verified. 
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4.4  STATLOG HEART DISEASE 

The StatLog Heart Disease dataset is also a benchmark dataset available from the 

Information and Computer Science Department at the University of California, Irvine 

[21].  The StatLog Heart Disease has 270 instances of thirteen attributes (none missing) 

that have been extracted from a larger set of 75 attributes, plus a class attribute (disease or 

non-disease).  Of the 270 instances, 120 are positive (disease) and 150 are negative (non-

disease).  Thus, about 44% are positive and 56% are negative.  The class distribution and 

a short statistical analysis are shown in Tables 4-26 and 4-27, respectively. 

 

The thirteen attributes are: 

1. Age 

2. Sex 

3. Chest pain type ( 4 values) 

4. Resting blood pressure 

5. serum cholesterol in mg/dl 

6. Fasting blood sugar > 120 mg/dl 

7. Resting electrocardiographic results  (values 0,1,2)  

8. Maximum heart rate achieved 

9. Exercise induced angina 

10. Oldpeak = ST depression induced by exercise relative to rest 

11. The slope of the peak exercise ST segment 

12. Number of major vessels (0-3) colored by fluoroscopy 

13. Thal: 3 = normal; 6 = fixed defect; 7 = reversible defect 
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Attributes types 

Real: 1, 4, 5, 8, 10, 12 

Ordered: 11 

Binary: 2, 6, 9 

Nominal: 3, 7, 13 

Missing Attribute Values: None 

 

Table 4-26.  StatLog Heart Disease: Class Distribution. 

Class Distribution - StatLog Heart Disease 

Class Value Number of instances

0 150 (55.6%) 

1 120 (44.4%) 

 

Table 4-27.  StatLog Heart Disease: Statistical Analysis. 

Brief statistical analysis 

Attribute number Minimum Maximum Mean Standard Deviation 

1 29 71 54.4 9.1 

2 0 1 0.7 0.5 

3 1 4 3.2 1.0 

4 29 77 54.4 9.1 

5 0 1 0.7 0.5 

6 1 4 3.2 1.0 

7 94 200 131.3 17.9 

8 126 564 249.7 51.7 

9 0 1 0.1 0.4 

10 0 2 1.0 1.0 

11 71 202 149.7 23.2 

12 0 1 0.3 0.5 

13 0 6.2 1.1 1.1 
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4.4.1 HYPERPLANE ALGORITHM 

The classification accuracy (shown in Table 4-28 and Figure 4-20) ranges from 55.56% 

with no error allowed during training to 64.00% when 40% error for Class 1 and 30% 

error for Class 2 is allowed during training.  Note that by simply choosing Class 1 every 

time to classify a generic point x, we can achieve 55.56% accuracy, i.e., this is the 

majority class. 

 According to our classification procedure, we would now go to step 2 (the Margin 

Algorithm).  Following this, we would decide whether the Hyperplane Algorithm or the 

Margin Algorithm would be the classifier of choice.  Though the Box Algorithm would 

not be used normally, once again we do so in order to evaluate the classification 

procedure. 

 

Table 4-28.  StatLog Heart Disease (5-fold cross-validation): Hyperplane Algorithm. 

 

  

PPCP Algorithm StatLog Heart Disease - Hyperplane Algorithm 

Error Allowed During 0%,0% 30%,40% 35%,35% 40%,30% 40%,40% 40%,25% 

Total: % Correct 55.56 61.76 61.89 64.00 59.09 63.30 

Class 1: % Correct 100.00 67.30 61.63 59.37 58.00 63.93 

Class 2: % Correct 0.00 54.83 62.21 69.79 60.46 62.50 
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Figure 4-20.  StatLog Heart Disease (5-fold cross-validation): Hyperplane Algorithm. 

 

4.4.2 MARGIN ALGORITHM 

We present results for each, then compare the two versions. 

Local Version 

The results (shown in Table 4-29 and Figure 4-21) range from 63.74% average accuracy 

of classification when the attributes are taken in the order given in the database to 76.98% 

when rank order by highest accuracy is used. 

 

Table 4-29.  StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (local). 

PPCP Algorithm StatLog Heart Disease - Margin Algorithm (local) 

 no order highest accuracy 

Total: % Correct 63.74 76.98 

Class 1: % Correct 57.73 79.00 

Class 2: % Correct 71.25 74.46 
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Figure 4-21.  StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (local). 

 

Global Version 

The results (shown in Table 4-30 and Figure 4-22) range from 63.37% average accuracy 

of classification when the attributes are taken in the order given in the database to 76.35% 

when rank order by highest accuracy is used. 

 

Table 4-30.  StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (global). 

PPCP Algorithm StatLog Heart Disease - Margin Algorithm (global)

Order of Attributes no order highest accuracy 

Total: % Correct 63.37 76.35 

Class 1: % Correct 56.97 79.17 

Class 2: % Correct 71.37 72.82 
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Figure 4-22.  StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (global). 

 

Comparison of Versions 

In both versions, Hypothesis 1 is verified.  It was expected that this would be more 

pronounced for the local version, but it was not.  Unlike the results in several other 

databases tested, there appeared to be little difference between versions in the results for 

overall classification accuracy or for individual classes. 

4.4.3 BOX ALGORITHM 

Again, a penalty of 0.4 was used in the training as with all other real datasets.  With 5-

fold cross-validation, Hypothesis 2 (class order) and Hypothesis 3 (hypercubes versus 

symmetric rectangles) were tested.  The results are shown in Table 4-31 and Figure 4-23. 
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Table 4-31.  StatLog Heart Disease (5-fold cross-validation): Box Algorithm (cube). 

PPCP Algorithm StatLog Heart Disease - Box Algorithm (cube) 

Class Order 1,2 2,1 

Total: % Correct 66.17 65.93 

Class 1: % Correct 88.57 87.60 

Class 2: % Correct 38.17 38.83 
 

 

For the cube, as can be seen in the top row of Table 4-31, roughly two thirds of 

the data is classified correctly regardless of the order of the classes.  Also apparent is that 

the classification accuracies of Class 1 and Class 2 are unaffected by the classification 

order of classes.  This suggests that one class is not inside the other, but that there is 

considerable overlap.  The overlap estimated by the Hyperplane Algorithm is 30%+. 
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Figure 4-23.  StatLog Heart Disease (5-fold cross-validation): Box Algorithm (cube). 
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For the symmetric rectangle, there is an extremely high increase in computational 

complexity because there are thirteen attributes.  Because of this, preliminary testing was 

used to roughly approximate the limits of the dimensions of the box.  As with the Iris 

data, this was accomplished by using a larger step-size during the for loops.  We also 

introduced loop limitations < 3 standard deviations in an effort to make the evaluation 

possible.  Even with these adjustments, an individual run went from seconds or minutes 

using hypercubes to overnight using symmetric rectangles. 

  These results are very preliminary and should not be considered definitive.  Each 

box is determined independently of the others.  This would allow parallel computing for 

such time-consuming instances.  The testing portion is 1-2 seconds for either version of 

the box.  Results are shown in Table 4-32 and Figure 4-24. 

 There is increase in overall accuracy of about 1% - 2% when using the symmetric 

box version.  The symmetric box version appears to be able to classify individual classes 

better, as shown in class order 2 1:  Class 2 is classified to ~68% accuracy here, while 

the other class order of the symmetric rectangle version and the cube version classify 

Class 2 with 35% - 39% accuracy,.  There is a concurrent decrease in classification 

accuracy for Class 1 of 17%. 

Table 4-32.  StatLog Heart Disease (5-fold cross-validation): 

 Box Algorithm (symmetric rectangle). 

PPCP Algorithm 
StatLog Heart Disease -  Box Algorithm 

(symmetric rectangle) 
Class Order 1,2 2,1 

Total: % Correct 67.04 69.63 

Class 1: % Correct 92.00 70.67 

Class 2: % Correct 35.83 68.3 
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Figure 4-24.  StatLog Heart Disease (5-fold cross-validation): 

 Box Algorithm (symmetric rectangle). 

4.4.4 CONCLUSIONS 

According to our classification procedure, we expect the Margin Algorithm to give the 

highest classification accuracy.  It does so for this dataset.  Symmetric rectangles classify 

more accurately than do hypercubes.  Hypothesis 1 and Hypothesis 3 are verified.  

Hypothesis 2 is supported by results for the symmetric rectangle but not by the results for 

the hypercube. 

 

4.5  CONTRACEPTIVE METHOD CHOICE 

The Contraceptive Method Choice dataset is also a benchmark dataset available from the 

Information and Computer Science Department at the University of California, Irvine 

[21].  This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence 

Survey.  The samples are married women who were either not pregnant or do not know if 
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they were at the time of interview.  The problem is to predict the current contraceptive 

method choice (no use, long-term methods, or short-term methods) of a woman based on 

her demographic and socio-economic characteristics.   

The Contraceptive Method Choice dataset has 1473 instances of ten attributes 

(none missing), plus a class attribute (no-use, long-tern, or short-term).  Of the 1473 

instances; 629 are no-use, 333 are long-term, and 511 are short-term.  The class 

distribution and a short statistical analysis are shown in Tables 4-33 and 4-34, 

respectively. 

The ten attributes are: 

1. Wife's Age    (numerical) 

2. Wife's education   (categorical)  1 = low, 2, 3, 4 = high 

3. Husband's education  (categorical)  1 = low, 2, 3, 4 = high 

4. Number of children ever born (numerical) 

5. Wife's religion   (binary)  0/1 = Non-Islam/Islam 

6. Wife now working  (binary)  0/1 = Yes/No 

7. Husband's occupation  (categorical)  1, 2, 3, 4 

8. Standard-of-living index  (categorical)  1 = low, 2, 3, 4 = high 

9. Media exposure   (binary)  0/1 = Good/Not good 

 

Table 4-33.  StatLog Heart Disease: Class Distribution. 

Class Distribution - Contraceptive Method Choice 

Class Value Number of instances 

1/No-use 629 (42.7%) 

2/Long-term 333 (22.6%) 

3/Short-term 511 (34.7%) 
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Table 4-34.  Contraceptive Method Choice: Statistical Analysis. 

Brief statistical analysis 

Attribute number Minimum Maximum Mean Standard Deviation 

1 16 49 32.5 8.2 

2 1 4 3.0 1.0 

3 1 4 3.4 0.8 

4 0 16 3.3 2.4 

5 0 1 0.9 0.4 

6 0 1 0.7 0.4 

7 1 4 2.1 0.9 

8 1 4 3.1 1.0 

9 0 1 0.1 0.3 

 

4.5.1 HYPERPLANE ALGORITHM 

The classification accuracy (shown in Table 4-35 and Figure 4-25) when no errors are 

allowed during training is 41.32%.  With various choices of error allowed during training, 

we did not find a higher accuracy.  We suspect that either the classes have a heavy 

overlap or one class is inside the other class. 

 

 Table 4-35.  Contraceptive Method Choice (5-fold cross-validation):  

Hyperplane Algorithm. 

PPCP Algorithm 
Contraceptive Method Choice - Hyperplane 

Algorithm 
Error Allowed During Training:     

Class 3, Class 1-2; Class 1, Class 2 0%, 0%; 0%, 0% 40%, 50%; 40%, 40% 

Total: % Correct 41.32 40.81 

Class 1: % Correct 14.60 14.00 

Class 2: % Correct 38.99 37.22 

Class 3: % Correct 68.29 69.18 
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Figure 4-25.  Contraceptive Method Choice (5-fold cross-validation):  

Hyperplane Algorithm. 

According to our classification procedure, we would now go to step 3 (the Box 

Algorithm).  Following this, we would decide whether the Hyperplane Algorithm or the 

Box Algorithm would the classifier of choice.  Though the Margin Algorithm would not 

be used normally, we do so in order to evaluate the classification procedure. 

 

4.5.2 MARGIN ALGORITHM 

We present results for each, then compare the two versions. 

Local Version 

The use of highest accuracy does lead to an improvement in classification accuracy, as 

shown in Table 4-36 and Figure 4-26, but the results are inferior to those obtained by the 

Hyperplane Algorithm. 
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Table 4-36.  Contraceptive Method Choice (5-fold cross-validation):  

Margin Algorithm (local). 
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Figure 4-26.  Contraceptive Method Choice (5-fold cross-validation):  

Margin Algorithm (local). 

 

 

 

PPCP Algorithm Contraceptive Method Choice - Margin Algorithm (local) 

 no order highest accuracy 

Total: % Correct 34.85 38.64 

Class 1 0.00 44.55 

Class 2 68.76 86.36 

Class 3 55.64 0.00 
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Global Version 

The use of highest accuracy does lead to an improvement in classification accuracy for 

this version as well, as shown in Table 4-37 and Figure 4-27, and the results are 

somewhat superior (using highest accuracy) to those obtained by the Hyperplane 

Algorithm. 

Table 4-37.  Contraceptive Method Choice (5-fold cross-validation):  

Margin Algorithm (global). 

PPCP Algorithm Contraceptive Method Choice - Margin Algorithm (global) 

 no order highest accuracy 

Total: % Correct 32.53 42.71 

Class 1 1.04 100.00 

Class 2 74.19 0.00 

Class 3 44.06 0.00 
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Figure 4-27.  Contraceptive Method Choice (5-fold cross-validation):  

Margin Algorithm (global). 



 159

Comparison of Versions 

The results show that using either version at least one of the classes is classified 

completely wrong.  We think that this is further evidence of the overlap between classes 

being extensive.  Hypothesis 1 is supported. 

4.5.3 BOX ALGORITHM 

A penalty of 0.4 was used in the training as with all other real datasets.  Results are 

shown in Table 4-38 and Figure 4-28. 

For the cube, as can be seen in the top row, 40% - 43% of the data is classified 

correctly regardless of the order of the classes.  This corresponds to the majority class.  

Also apparent is that the class that is used first generally has the best accuracy, with one 

exception of the six orders.  One of the order of classes that uses Class 2 first does best 

for the entire classification and the other one starting with Class 2 is the only one that 

classifies each of the three classes with accuracy > 20%. 

 

Table 4-38.  Contraceptive Method Choice (5-fold cross-validation):  

Box Algorithm (cube). 

PPCP 
Algorithm Contraceptive Method Choice - Box Algorithm (Cube) 

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1 
Total: % 
Correct

42.20 42.02 43.26 40.15 40.62 40.66 
Class 1 % 

Correct
98.18 98.62 74.97 24.03 24.44 23.83 

Class 2 % 
Correct

0.18 0.00 50.43 49.40 0.00 2.05 
Class 3 % 

Correct
0.01 0.00 0.00 53.65 87.12 87.02 
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Class order 2 3 1 is the only time that all three classes appear to be modeled at 

all successfully.  Class 1 is classified with ~24% accuracy and the other two classes with 

~50% accuracy each. 

Inspection of the means for each class reveals that many of the attributes have 

means that are close to one another.  If this were simply one class being inside another, a 

box inside a box so to speak, the means being close to one another would not matter.  We 

suggest that this is a case of the classes being enmeshed with one another.   
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Figure 4-28.  Contraceptive Method Choice (5-fold cross-validation):  

Box Algorithm (cube). 

 

We show results for the symmetric rectangle in Table 4-39 and Figure 4-29.  

Classification accuracy ranges from 41.15% to 49.49%, depending on the order of 

classes.  
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Table 4-39.  Contraceptive Method Choice (5-fold cross-validation): 

Box Algorithm (symmetric rectangle). 

PPCP Algorithm Contraceptive Method Choice - Box Algorithm 
(Symmetric Rectangle) 

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1 

Total: % Correct 48.54 41.15 41.15 43.73 49.49 45.08 

Class 1 % Correct 48.13 88.26 67.08 34.07 48.42 39.84 

Class 2 % Correct 57.10 0.00 50.31 54.76 0.59 10.08 

Class 3 % Correct 43.19 5.58 3.29 48.29 83.40 77.46 
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Figure 4-29.  Contraceptive Method Choice (5-fold cross-validation): 

Box Algorithm (symmetric rectangle). 

This dataset has ten attributes.  Once again, due to computational complexity for 

the symmetric rectangle, preliminary testing was used to roughly approximate the limits 

of the dimensions of the boxes.  We again implement loop limitations and step-sizes.  

These results are preliminary and should not be considered definitive. 
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4.5.4 CONCLUSIONS 

According to our classification procedure, we expect the Box Algorithm to give the 

highest classification accuracy, which it does for this dataset.  Using Class 3 first 

increases the classification accuracy of the entire dataset at the expense of classification 

accuracy of Class 2.  The order 1 2 3 is the only one that classifies each of the three 

classes with accuracy > 43%.  Symmetric rectangles classify more accurately than do 

hypercubes, i.e., an increase up to 6% for overall classification accuracy.  Hypothesis 1, 

Hypothesis 2, and  Hypothesis 3 are verified. 

 

4.6  OVERFIT 

One area of concern for any classification algorithm is overfit.  In order to evaluate this, 

we calculate the classification accuracy for the StatLog Heart Disease database using 

varying amounts of the training set, i.e., from 10% to 90%.  As more data becomes 

available, one expects that the algorithm can do better because there are more examples.  

Overfit when doing this is indicated by an increase then a decrease in classification 

accuracy on the test set as the percentage of data for training is increased. 

 This evaluation was carried out for all three steps of the classification procedure 

and results are shown in Figures 4-30 through 4-32.  For this, we split the dataset between 

training and test sets.  When we used 10% was used for training, we used 90% for testing, 

and so on.  The classification accuracies shown are averages for a number of runs:  100 

runs except for the symmetric boxes, for which we performed ten runs (due to the time 

required for each run). 
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StatLog Heart Disease - Hyperplane Algorithm:
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Figure 4-30.  StatLog Heart Disease: accuracy vs. percentage of training data 

(Hyperplane Algorithm). 

 

Note that when the Hyperplane Algorithm is applied (shown in Figure 4-30), the 

classification accuracy is within a range of 2% for all percentages of training data. 
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Figure 4-31.  StatLog Heart Disease: accuracy vs. percentage of training data  

(Margin Algorithm). 

 

When the Margin Algorithm is applied (shown in Figure 4-31) and the Margin 

Algorithm is applied (shown in Figure 4-32), the trend is for the classification accuracy to 

monotonically increase as the percentage of training data increases. 
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Figure 4-32.  StatLog Heart Disease:  accuracy vs. percentage of training data 

(Box Algorithm). 

 

 In general, accuracy appears to not decrease as it would with overfit.  Table 4-5, 

shows, in addition to the learning constants, the classification accuracy for training and 

testing during ten runs of the global version of the Margin Algorithm for the Wisconsin 

Breast Cancer dataset.  If the data was being overfit, we would expect to see the training 

data classified with higher accuracy than the testing data for a given run.  In fact, this 

varies – sometimes it is higher, sometimes it is lower – and it is never 100%.  Figure 4-10 

shows the classification accuracy of the local version of the Margin Algorithm on testing 

versus the size of the training set of the Pima Indians Diabetes dataset.  The percentage of 

the dataset used for training varied from 10% to 70%.  If the data was being overfit, we 

would expect to see the classification accuracy of testing decrease as the percentage of 



 166

training data used increased.  For the range we tested, the trend was for accuracy to 

increase as percentage of training data used increased. 

 These are snapshots, i.e., results for specific datasets at specific times.  Therefore, 

the conclusion that overfit is not occurring cannot be made.  It seems likely that there is 

much less overfit than with C4.5 though.  We suspect that the robust nature of our 

component algorithms accounts for this: 

1. The Hyperplane Algorithm is used with errors allowed during training. 

2. The Margin Algorithm accepts errors in hope of attaining higher accuracy. 

3. The Box Algorithm invokes a penalty for errors but allows them in order to attain a 

reasonable box. 

 By contrast, univariate decision trees usually classify the training set perfectly, 

must be pruned [8].  This is because such trees show overfit [17].  Results shown for 

C4.5, as in [14], are for pruned trees. 

 

4.7 CONCLUSIONS 

The classification procedure works on the five datasets tested.  Hypothesis 1, Hypothesis 

2, and Hypothesis 3 proved to be true, with exceptions noted in the appropriate sections. 

 We now compare our results to those of others.  In particular, we compare the 

Hyperplane Algorithm to Support Vector Machines (linear kernel), the Margin Algorithm 

to C4.5 and CART, and the Box Algorithm to K-Nearest Neighbors.  All results are 

summarized in Table 4-40.  For each column representing a specific database, the best 

classification accuracy attained by any algorithm is in bold print.  The best classification 

accuracy attained by our classification procedure is in italicized print. 
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 Where possible, the comparison to Support Vector Machines was restricted to 

linear kernels.  Despite an extensive search of the literature, the comparison for the 

Contraceptive Method Choice was to SVM with a LS-SVM.  LS-SVMs use a least 

squares approach to overcome computational complexity: "A modified version of SVM 

classifiers, Least Squares SVMs (LS-SVMs) classifiers...to obtain a linear set of equations 

instead of a QP problem in the dual space.”  [39]. 

By [40], we compare to UC0 (CART using 0-SE pruning rules) rather than to 

UC1 (CART using 1-SE pruning rules).  The two versions have a 0.15% – 1.2% 

difference in classification accuracy.  Only in one case was the percentage we reported 

lower, and then by 0.2%. 

The classification procedure performed well on all five datasets.  In comparison, 

SVM had a higher classification accuracy on the StatLog Heart Disease dataset, as did 

CART and one version of C4.5.  The non-linear version of SVM also had a higher 

classification accuracy on the Contraceptive Method Choice dataset, as did CART.  

However, across the range of datasets, only CART tied our classification results.  We 

cannot directly compare of the speed of training and testing by PPCP to CART at this 

time because the results using CART are from different researchers using different 

measures of speed, when considered at all.  
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Table 4-40.  Summary Chart: Best results for each algorithm. 
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Hyperplane 96.6% 69.5% 64.0% 90.2% 41.3% 

Margin (global) 94.7% 78.5% 78.8% 94.4% 42.7% 

Margin (local) 93.0% 74.0% 77.0% 95.6% 38.6% 

Box (cube) 88.15% 65.4% 66.2% 87.7% 43.3% 

Box 
(symmetric rectangle) 92.4% 68.05% 69.6% 90.4% 49.5% 

C4.5 R8 
(univariate) 94.74% [14] 74.6% [14] 

 77.0%  [14] 95.20% [14] – 

C4.5 
(univariate) 95.75% [40] 

 

73.05%  [41] 

73.0%  [42] 

75.8% [40] 

80.4% [40] – 41.7% [40] 

Utree 
(univariate) 95.7% [43] 72.5%  [43]  93.3%  [43]  

Decision 
Trees 

CART 
(multivariate) 

95.72–95.88%  [44] 

93.5% [42] 

95.47% [40] 

74.48%  [41] 

72.8%  [42] 

76.3% [40] 
79.3% [40] 94.53% [8] 54.9% [40] 

SVM 
(linear) 84.06% [45] 72.37% [45] 83.86% [46] 66.43% [45] – Support 

Vector 
Machine 

 
LS-SVM 
(linear) 96% [39] 78% [39] 

 83% [39] 89.6% [39] 46.9% [39] 

K-Nearest Neighbors 
75.73% [48] 

96.18% [40] 

96.2%  [43] 

67.58%  [41] 

70.26% [48] 

71.9%  [42] 

70.5% [40] 

71.6%  [43] 

80.42% [48] 

77.4% [40] 

96.0% [49] 

96.7% [9] 

92.7%  [43] 
40.1% [40] 
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Chapter 5: Summation 
 
The principal contribution of this thesis is the investigation of classification when using 

all attributes.  The goal was to extend supervised learning to include all attributes in the 

original feature space without a concurrent increase in computational complexity.   

Towards this goal, this thesis proposed dividing it into three regions rather than 

dividing the original feature space into two regions, as many other algorithms do.  It 

focused on development and evaluation of a classification procedure that employs three 

separate but related component algorithms, each using the original feature space. 

The Hyperplane Algorithm creates hyperplanes reminiscent of Support Vector 

Machines, but without their computational complexity.  The Margin Algorithm is a 

univariate decision tree that can deal with missing attributes very simply.  Brodley, a 

well-known researcher of multivariate decision trees, states in [43]: "A strength of 

univariate decision trees is that they need not evaluate a lot of the input features, which is 

desirable for representing concepts that are described by a subset of the input features.  

Indeed for many tasks, the set of relevant features may be unknown and applying a 

univariate decision tree algorithm to such tasks can generate feedback as to which 

features are relevant to the task."  Its computational complexity is approximately that of 

C4.5 [7].  The hypercube version of the Box Algorithm provides a method of classifying 

classes with large overlap or when one class is enclosed in the other class, while 

maintaining low computational complexity.  The symmetric rectangle of the Box 

Algorithm, when higher classification accuracy is more important than computational 

cost, provides a solution to gain it. 
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5.1 THESIS SYNOPSIS AND CRITIQUE 

In Chapter 1, we presented the supervised learning problem, several supervised learning 

algorithms (Support Vector Machines, decision trees, and K-Nearest Neighbors), and 

some of the current issues in supervised learning: 

1. The Curse of Dimensionality 

2. Overfitting 

3. Structural Representation Limits 

Chapter 2 detailed the classification procedure as well as the three component 

algorithms.  We presented the pseudocode and computational complexity of the 

algorithm.  Each component algorithm was compared to one of the supervised learning 

algorithms discussed in Chapter 1: 

• The Hyperplane Algorithm was compared to Support Vector Machines. 

• The Margin Algorithm was compared to decision trees. 

• The Box Algorithm was compared to K-Nearest Neighbors. 

The evaluation was performed on artificial datasets and results shown in Chapter 

3.  Heuristics were evaluated for usefulness and several hypotheses tested.  It was shown 

that the penalty heuristic derived for the Box Algorithm worked well across all the 

datasets.  The heuristic of overlap estimation given by the Hyperplane Algorithm worked 

well to determine the next step (if needed) of the classification procedure as long as we 

allowed some small error during training.  For these artificial datasets, we can state that it 

is possible to use all attributes in classification in the original feature space.  Hypothesis  

1 was rejected, as it did not give any noticeable improvement.  Hypothesis  2 and 
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Hypothesis  3 were accepted.  From these results, for real-life datasets in Chapter 4, we 

determined to use: 

• The rank order of classification of highest accuracy (highest-to-lowest). 

• The estimate of overlap attained for the best accuracy (with errors allowed during 

training) to determine the next step of the classification procedure. 

 In Chapter 4, the practical application of the classification procedure was tested 

on five real-life datasets and results compared to Support Vector Machines, (univariate 

and multivariate) decision trees, and K-Nearest Neighbors.  Again, both the penalty 

heuristic of a particular value for the Box Algorithm worked well across all the datasets 

and the heuristic of overlap estimation given by the Hyperplane Algorithm worked well 

to determine the next step (if needed) of the classification procedure.  In particular, 

• All hypotheses for the real datasets are accepted, as shown in detail in Chapter 4.  We 

note that while rank order of classification by highest accuracy affect both the global 

and local versions of the Margin Algorithm, it does not always have a greater affect on 

the local version, as we suspected.  The underlying cause was not clear; indicating that 

more work in this area is needed.  We also note that the symmetric boxes occasionally 

did not have an improvement in classification error over hypercubes for all orders of 

classes tested.  We suspect that as the classes are modeled better, the classification 

order by class is affected; again indicating that more work in this area is needed. 

• We show in Table 4-41 that computational complexity can be competitive with other 

methods.  Except for C4.5, PPCP has better time of computation by one or more 

orders of magnitude.  For C4.5, it depends on the values of k and n for the database in 

question; if k is less than log2n, PPCP has a lesser time of computation. 
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For these real-life datasets, we can state that it is possible to use all attributes in 

classification in the original feature space.  This can be done while maintaining both 

reasonable computational complexity of training and classification accuracy in testing 

these algorithms competitive with other algorithms that classify in the original feature 

space. 

 

Table 4-41.  Summary Chart: Computation complexity for each algorithm. 

Algorithm SVM C4.5 CART K-NN 

Complexity O(n3) [11] O(klog n + nlog2 n) [18] O(kn2log n) [1] O(kn2)* [52] 

Algorithm Hyperplane Margin Margin Box (cube) 

Complexity O(kn) O(kn + klnk) O(kn + klnk) O(kn) 

 

 

• We show in Chapter 4 that overfit does not appear to be great for any of the 

component algorithms.  In particular, overfit can be reduced with a univariate decision 

tree, i.e., the Margin Algorithm 

• Hyperplane Algorithm: 

– The error accepted can be input directly, rather than indirectly as with Support 

Vector Machines. 

• Margin Algorithm, unlike other univariate decision trees: 

– Each attribute is tested only once in a path. 

– Each attribute is tested in only one subtree. 

– Missing values are simply skipped during classification, eliminating the need for 

surrogate splits, etc. 
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• Box Algorithm: 

– The symmetric version can provide increased accuracy. 

 Classification accuracy for each of the datasets was competitive with existing 

algorithms that classify in the original feature space and in shown in Table 4-40.  Use of 

the Paired Planes Classification Procedure as an ensemble classifier allows classification 

on a broader range of datasets than many algorithms. 

 Two of the components, the Hyperplane Algorithm and the Box Algorithm, 

require values for every attribute.  Real-life datasets often have missing values, thus this 

is a problem for these two components of the complete classification procedure. 

The classification procedure does not work on the XOR problem or with classes 

in a sinusoidal pattern.  This is because when a large percentage of the points are in the 

margin of overlap for the sinusoidal curve, neither the Hyperplane Algorithm nor the 

Margin Algorithm classifies any of these points; the Box Algorithm fails completely.  

When one or both classes are composed of disjoint pieces, it is quite unlikely that the 

classification procedure would work.  The exception is when the disjoint pieces of each 

class occur in such a way that a hyperplane, margin or box could detect each of the 

classes without significant overlap of the other class. 
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5.2 FUTURE WORK 

The use of the Hyperplane Algorithm to create approximate distribution curves for each 

of the classes is seen as a way of visualizing the classes in k-dimensional space.  

According to Duda, "… these theorems highlight the need for insight into proper features 

and matching the algorithm to the data distribution.”  [1].  Therefore, these distribution 

curves may also allow one to better match the problem to the best algorithm.  Use of 

these class distribution curves on an attribute basis may allow a better choice of attribute 

use in the classification procedure.   

Currently, the Margin Algorithm uses the means of the training sets as starting 

points for determining the parameters.  Investigation of alternate starting points, such as 

the extremes is needed in order to detect boundaries of overlap that the current algorithm 

does not find. 

Speedup of the algorithm is desirable and may be attained by judicious use of the 

stepsize in the for loops for all of the components.  One method of doing this is to start 

with a large stepsize and backup one step at the first unacceptable error, reduce the 

stepsize, then proceed in a recursive manner. 
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