
UNIVERSITY OF CINCINNATI

Date:___________________

I, ___,
hereby submit this work as part of the requirements for the degree of:

in:

It is entitled:

This work and its defense approved by:

Chair: _______________________________

An All-Attributes Approach to Supervised Learning

A dissertation submitted to the

Division of Research and Advanced Studies

of the

University of Cincinnati

 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the

Department of Electrical and Computer Engineering

and Computer Science

of the College of Engineering

by

Danny W. Vance

B.S. (College of Education), August 1978

University of Cincinnati, Cincinnati, U.S.A.

M.S. (College of Arts & Sciences), August 1983

University of Cincinnati, Cincinnati, U.S.A.

M.S. (College of Engineering), August 1987

University of Cincinnati, Cincinnati, U.S.A.

Advisor & Committee Chair: Prof. Anca L. Ralescu

September, 2006

Abstract

The objective of supervised learning is to estimate unknowns based on labeled

training samples. For example, one may have aerial spectrographic readings for

a large field planted in corn. Based on spectrographic observation, one would

like to determine whether the plants in part of the field are weeds or corn. Since

the unknown to be estimated is categorical or discrete, the problem is one of

classification. If the unknown to be estimated is continuous, the problem is one

of regression or numerical estimation. For example, one may have samples of

ozone levels from certain points in the atmosphere. Based on those samples,

one would like to estimate the ozone level at other points in the atmosphere.

Algorithms for supervised learning are useful tools in many areas of

agriculture, medicine, and engineering, including estimation of proper levels of

nutrients for cows, prediction of malignant cancer, document analysis, and

speech recognition. A few general references on supervised learning include [1],

[2], [3], and [4]. Two recent reviews of the supervised learning literature are [5]

and [6]. In general, univariate learning tree algorithms have been particularly

successful in classification problems, but they can suffer from several

fundamental difficulties, e.g., "a representational limitation of univariate decision

trees: the orthogonal splits to the feature's axis of the sample space that

univariate tree rely on" [8] and overfit [17].

In this thesis, we present a classification procedure for supervised

classification that consists of a new univariate decision tree algorithm (Margin

Algorithm) and two other related algorithms (Hyperplane and Box Algorithms).

The full algorithm overcomes all of the usual limitations of univariate decision

trees and is called the Paired Planes Classification Procedure. The Paired

Planes Classification Procedure is compared to Support Vector Machines,

K-Nearest Neighbors, and decision trees. The Hyperplane Algorithm allows

direct user input as to acceptable error for each class as contrasted with indirect

input (through use of a slack variable) with Support Vector Machines. Theoretical

and real-life datasets results are shown. Experiments on real-life datasets show

that error rates are in some circumstances lower than these supervised learning

algorithms, while usually being computationally less expensive by an order of

magnitude (or more).

© Copyright by Danny W. Vance 2006

All Rights Reserved

Dedicated to my family.

Acknowledgements

A dissertation marks a milestone in the intellectual achievement of an individual.

In fact, it is much more. It is an entry point into the world inhabited by others who

in the highest degree value knowledge and exploration of ideas. It is the

culmination of the efforts of many people, of whom the individual writing the

dissertation is but one. The acknowledgements here try to reflect this.

My mother deserves the most credit. It was she who was my first teacher

and always stood behind me in whatever I did. Thank you mom, wherever you

are. Anca Ralescu - my teacher, then advisor and friend – I cannot thank you

enough. Without your belief in me, I simply would never have finished. Most of

the other members of the dissertation committee were also my teachers. It is

through their teachings and criticisms that I became a better researcher. I

appreciate the efforts of all members of my dissertation committee. Thanks to all

of you for that most precious commodity that you gave – time.

My wife and children have had the patience, love, and understanding to go

through the long process of my schooling and research. They wished me the

best with my conference papers and welcomed me back from each trip. They

are the icing on the cake. To all of you in my thread of life – thank you for the

connections.

Contents

Abstract

Acknowledgements

1 Introduction 1

 1.1 The Supervised Learning Problem 1

1.2 Supervised Learning Algorithms 2

 1.2.1 k-Nearest Neighbor Algorithm 3

 1.2.2 Support Vector Machines 4

 1.2.3 Decision Trees 5

1.3 Issues in Supervised Learning Algorithms 11

 1.3.1 The Curse of Dimensionality 11

 1.3.2 Overfitting 12

 1.3.3 Structural Representation Limits 12

1.4 Parallel Planes Classification Procedure (PPCP) – Main Features 16

 1.5 Organization of This Thesis 20

 2 Paired Planes Classification Procedure Algorithm 21

 2.1 Introduction 21

2.2 Notation and Terminology 23

2.3 Paired Planes Classification Procedure, A 3-Step Procedure 25

2.4 The Hyperplane Algorithm 29

2.5 The Margin Algorithm 35

 2.5.1 Margins 35

2.6 The Box Algorithm 45

2.7 Pseudocode, System Diagrams, and Complexity 51

 2.7.1 Complexity of the Hyperplane Algorithm 54

 2.7.1.1 Complexity of Training: Two-class Problem 57

 2.7.1.2 Complexity of Testing: Two-class Problem 57

 2.7.2 Complexity of the Margin Algorithm 58

 2.7.2.1 Complexity of Training: Two-class Problem 61

 2.7.2.2 Complexity of Testing: Two-class Problem 61

 2.7.3 Complexity of the Box Algorithm (Cube) 62

 2.7.3.1 Complexity of Training: Two-class Problem 65

 2.7.3.2 Complexity of Testing: Two-class Problem 65

 2.8 Complexity: Multi-class Datasets 66

 2.9 Comparison to Other Classifiers 66

 2.10 Conclusion 68

3 Experiments – Artificial Datasets 69

3.1 Two-Dimensional Datasets 70

3.1.1 Hyperplane Algorithm 73

 3.1.1.1 Results and Conclusions 77

3.1.2 Margin Algorithm 78

 3.1.2.1 Preliminary Testing: Results and Conclusions 80

3.1.3 Box Algorithm 80

 3.1.3.1 Results and Conclusions 80

3.2 Four-Dimensional Datasets 82

3.2.1 Hyperplane Algorithm 84

3.2.2 Margin Algorithm 86

3.2.2.1 Results for the Global and Local Versions 86

of the Margin Algorithm

3.2.2.2 Results and Conclusions 95

3.2.3 Box Algorithm 96

3.2.3.1 Results and Conclusions 97

3.3 Conclusions 99

4 Experiments – Real Datasets 101

 4.1 Wisconsin Breast Cancer 103

4.1.1 Hyperplane Algorithm 106

4.1.2 Margin Algorithm 108

4.1.3 Box Algorithm 110

4.1.4 Distributions of the Classes 114

4.1.5 Conclusions 117

4.2 Pima Indians Diabetes 118

4.2.1 Hyperplane Algorithm 119

4.2.2 Margin Algorithm 121

4.2.3 Box Algorithm 128

4.2.4 Distributions of the Classes 133

4.2.5 Conclusions 134

4.3 Iris 135

4.3.1 Hyperplane Algorithm 136

4.3.2 Margin Algorithm 138

4.3.3 Box Algorithm 141

4.3.4 Conclusions 144

4.4 StatLog Heart Disease 145

4.4.1 Hyperplane Algorithm 147

4.4.2 Margin Algorithm 148

4.4.3 Box Algorithm 150

4.4.4 Conclusions 153

4.5 Contraceptive Method Choice 153

4.5.1 Hyperplane Algorithm 155

4.5.2 Margin Algorithm 156

4.5.3 Box Algorithm 159

4.5.4 Conclusions 162

4.6 Overfit 162

4.7 Conclusions 166

5 Summation 169

 5.1 Thesis Synopsis and Critique 170

 5.2 Future Work 174

Appendix A 175

Bibliography 177

List of Tables

1-1. Linear vs. Multivariate Decision Trees [20]. 15

3-1. Example 2: Class Distribution [25]. 78

3-2. Example 2 results [25]. 80

3-3. The results for all 4-dimensional test sets, including the control set. 85

3-4. Margin (Global Version): Sets #1-3. 87

3-5. Margin (Global Version): Sets #4-6. 88

3-6. Margin (Global Version): Sets #7-9. 89

3-7. Margin (Global Version): Set #10 and control set. 90

3-8. Margin (Local Version): Sets #1-3. 91

3-9. Margin (Local Version): Sets #4-6. 92

3-10. Margin (Local Version): Sets #7-9. 93

3-11. Margin (Local Version): Set #10 and control set. 94

3-12. Box Algorithm (Cube Version): Comparison of Class Order. 97

3-13. Box Algorithm (Symmetric Rectangle Version): 98

 Comparison of Class Order.

4-1. Wisconsin Breast Cancer: Class Distribution. 105

4-2. Wisconsin Breast Cancer: Statistical Analysis. 106

4-3. Wisconsin Breast Cancer: various levels of error during training, 106

 classification accuracy during testing.

4-4. Wisconsin Breast Cancer – learning constants during 10 runs 108

 of the Margin Algorithm (local version) [24].

4-5. Wisconsin Breast Cancer – learning constants during 10 runs 109

 of the Margin Algorithm (global version) [24].

4-6. Wisconsin Breast Cancer: 110

 comparison between versions of the Margin Algorithm [25].

4-7. Wisconsin Breast Cancer (5-fold cross-validation): 112

 Box Algorithm (cube).

4-8. Wisconsin Breast Cancer (5-fold cross-validation): 113

 Box Algorithm (symmetric rectangle).

4-9. Pima Indians Diabetes: Class Distribution. 119

4-10. Pima Indians Diabetes: Statistical Analysis. 119

4 -11. Pima Indians Diabetes (5-fold cross-validation): 120

 Hyperplane Algorithm.

4-12. Pima Indians Diabetes – learning constants and % correctly 122

 classified by attribute i individually [24].

4-13. Pima Indians Diabetes: 123

 10 runs of the Margin Algorithm (local version)[24].

4-14. Pima Indians Diabetes: ranges for attribute values for each class [25].

 125

4-15. Pima Indians Diabetes: truncated ranges for attribute values for 125

 each class after training by the Margin Algorithm (global version)

 to create the margins [25].

4-16. Margins for Pima Indians Diabetes. 126

4-17. Pima Indians Diabetes – 10 runs comparing the two versions[25]. 128

4-18. Pima Indians Diabetes (5-fold cross-validation): 130

 Box Algorithm (cube).

4-19. Pima Indians Diabetes (5-fold cross-validation): 131

 Box Algorithm (symmetric rectangle).

4-20. Iris: Class Distribution. 136

4-21. Iris: Statistical Analysis. 136

4-22. Iris (5-fold cross-validation): Hyperplane Algorithm. 136

4-23. Iris: Margin Algorithm (global version vs. local version). 140

4-24. Iris (5-fold cross-validation): Box Algorithm (cube). 142

4-25. Iris (5-fold cross-validation): Box Algorithm (symmetric rectangle). 144

4-26. StatLog Heart Disease: Class Distribution. 146

4-27. StatLog Heart Disease: Statistical Analysis. 146

4-28. StatLog Heart Disease (5-fold cross-validation): 147

 Hyperplane Algorithm.

4-29. StatLog Heart Disease (5-fold cross-validation): 148

 Margin Algorithm (local).

4-30. StatLog Heart Disease (5-fold cross-validation): 149

 Margin Algorithm (global)

4-31. StatLog Heart Disease (5-fold cross-validation): 151

 Box Algorithm (cube).

4-32. StatLog Heart Disease (5-fold cross-validation): 152

 Box Algorithm (symmetric rectangle).

4-33. StatLog Heart Disease: Class Distribution. 154

4-34. Contraceptive Method Choice: Statistical Analysis. 155

4-35. Contraceptive Method Choice (5-fold cross-validation): 155

 Hyperplane Algorithm.

4-36. Contraceptive Method Choice (5-fold cross-validation): 157

 Margin Algorithm (local).

4-37. Contraceptive Method Choice (5-fold cross-validation): 158

 Margin Algorithm (global).

4-38. Contraceptive Method Choice (5-fold cross-validation): 159

 Box Algorithm (cube).

4-39. Contraceptive Method Choice (5-fold cross-validation): 161

 Box Algorithm (symmetric rectangle).

4-40. Summary Chart: Best results for each algorithm. 168

4-41. Summary Chart: Computation complexity for each algorithm. 171

List of Figures

1-1. Digit Recognition Decision Tree [15]. 9

1-2. Waveform Recognition Decision Tree [15]. 10

1-3. C-Net Multivariate Decision Tree [19]. 14

2-1. Hyperplanes to Separate Directly. 25

2-2. Hyperplanes to Form Margins. 26

2-3. Hyperplanes to Form Boxes. 27

2-4. How two parallel hyperplanes might be used to separate two classes. 30

2-5. Creation of vector N and translation of the training dataset. 31

2-6. Parallel hyperplanes not perpendicular to the vector N separate the classes. 33

2-7. Restriction of Parallel Hyperplanes Lifted. 34

2-8. C4.5-type's Decision Tree for the Iris Dataset [33]. 40

2-9. Margin's Decision Tree for the Iris Dataset. 41

2-10. The data set is shown with the x1 margin. 42

2-11. The data set for after points classified have been removed. 43

2-12. The data set is shown after using both the x1 margin and the x2 margin. 44

 The top region is Class 1 and the bottom region is Class 2.

2-13. Classification Completed. 45

2-14. Too Large Boxes. 49

2-15. Too Small Boxes. 50

2-16. Reasonable Compromise. 51

2-17. Main body of PPCP algorithm. 52

2-18. System Diagram: Complete Classification Procedure. 53

2-19. Angle Between Two Vectors. 54

2-20. Pseudocode: Hyperplane Algorithm. 55

2-21. System Diagram: Hyperplane Algorithm. 56

2-22. Pseudocode: Margin Algorithm - Local Version. 58

2-23. Pseudocode: Margin Algorithm – Global Version. 59

2-24. System Diagram: Margin Algorithm - Global Version. 60

2-25. Pseudocode: Box Algorithm – Cube Version. 63

2-26. System Diagram: Box Algorithm – Cube Version. 64

3-1. Group 1: Small Overlap Between the Two Classes. 72

3-2. Group 2: Heavy Overlap Between the Two Classes. 73

3-3. Two hyperplanes split the space. Lack of overlap allows one hyperplane. 74

3-4. Two hyperplanes collapse to one hyperplane that is used to split the space. 74

3-5. Two hyperplanes split the space. There is slight overlap between classes 75

3-6. Two hyperplanes cannot collapse to one hyperplane. 75

3-7. Two hyperplanes found in the training phase for the case of heavy overlap. 76

3-8. The test data is classified by the hyperplanes found in the training phase. 77

3-9. The data set for is shown with margins. 79

 The solid rectangle is the area where points cannot be classified.

3-10. The results for all shapes, both groups of test sets. 81

3-11. Margin (Global Version): Comparison of Two Heuristics. 95

3-12. Margin (Local Version): Comparison of Two Heuristics. 96

4-1. Wisconsin Breast Cancer: various levels of error during training. 107

4-2. Results averaged over 100 trials for each value of the penalty tested [26]. 111

4-3. Wisconsin Breast Cancer (5-fold cross-validation): Box Algorithm (cube). 112

4-4. Wisconsin Breast Cancer (5-fold cross-validation): 114

 Box Algorithm (symmetric rectangle).

4-5. Wisconsin Breast Cancer: 115

 Approximate Distribution Curves of the Two Classes.

4-6. Densities of benign and malignant points along the normal ω to 116

 the separating plane xTω = γ.

4-7. MSM-T separating planes. 117

4-8. Pima Indians Diabetes (5-fold cross-validation): Hyperplane Algorithm. 120

4-9. 2-D graph of the progression of the Margin Algorithm (local version) [24]. 121

4-10. Pima Indians Diabetes: average accuracy vs. % of training data 124

 Margin Algorithm (local version).

4-11. Pima Indians Diabetes: Margin Algorithm (global version) 127

 3-D plot of percentage correctly classified vs. ηAσ1 and ηBσ2.

4-12. Results averaged over 100 trials for each value of the penalty tested [26]. 129

4-13. Pima Indians Diabetes (5-fold cross-validation): 130

 Box Algorithm (cube).

4-14. Pima Indians Diabetes (5-fold cross-validation): 132

 Box Algorithm (symmetric rectangle).

4-15. Pima Indians Diabetes: 134

 Approximate Distribution Curves of the Two Classes.

4-16. Iris (5-fold cross-validation): 137

 Hyperplane Algorithm.

4-17. Illustration of Margin's Process: 138

 Class 1 vs. non-Class 1 → Class 2 vs. Class 3.

4-18. Iris (5-fold cross-validation): 143

 Box Algorithm (cube).

4-19. Iris (5-fold cross-validation): 144

 Box Algorithm (symmetric rectangle).

4-20. StatLog Heart Disease (5-fold cross-validation): 148

 Hyperplane Algorithm.

4-21. StatLog Heart Disease (5-fold cross-validation): 149

 Margin Algorithm (local).

4-22. StatLog Heart Disease (5-fold cross-validation): 150

 Margin Algorithm (global).

4-23. StatLog Heart Disease (5-fold cross-validation): 151

 Box Algorithm (cube).

4-24. StatLog Heart Disease (5-fold cross-validation): 153

 Box Algorithm (symmetric rectangle).

4-25. Contraceptive Method Choice (5-fold cross-validation): 156

 Hyperplane Algorithm.

4-26. Contraceptive Method Choice (5-fold cross-validation): 157

 Margin Algorithm (local).

4-27. Contraceptive Method Choice (5-fold cross-validation): 158

 Margin Algorithm (global)

4-28. Contraceptive Method Choice (5-fold cross-validation): 160

 Box Algorithm (cube).

4-29. Contraceptive Method Choice (5-fold cross-validation): 161

 Box Algorithm (symmetric rectangle).

4-30. StatLog Heart Disease: accuracy vs. % of training data 163

 (Hyperplane Algorithm)

4-31. StatLog Heart Disease: accuracy vs. % of training data 164

 (Margin Algorithm).

4-32. StatLog Heart Disease: accuracy vs. % of training data 165

 (Box Algorithm).

 1

Chapter 1: Introduction

1.1 THE SUPERVISED LEARNING PROBLEM

Supervised learning can be viewed as a method for function approximation from training

data. The objective of supervised learning is to estimate unknowns based on labeled

observations, input-output pairs. The input is typically a vector. If the output is a class

label, then the problem is called classification. Classification places individual items into

groups/classes based on quantitative information inherent in the items (variables, traits).

If the output is a continuous variable, the problem is called regression.

For instance, one may have aerial spectrographic readings for a large field planted

in corn. Based on spectrographic observation of a particular area of this field, one would

like to determine whether the plants in this area of the field are weeds or corn. Since the

unknown to be estimated is categorical or discrete, the problem is one of classification.

On the other hand, one may have samples of ozone levels from certain points in

the atmosphere. Based on those samples, one would like to estimate the ozone level at

other points in the atmosphere. Since the unknown to be estimated is continuous, the

problem is one of regression.

Supervised learning algorithms are useful tools in many areas of automated

recognition (handwriting, speech, image, chemical compound), agriculture (plant

identification, automatic livestock nutrient and medication dosage), medicine (disease

classification, deciding dosage level), and engineering (fault diagnosis, target

identification, terrain characterization for automated driving). General references on

supervised learning are readily available. Two recent reviews of the supervised learning

 2

literature are [5] and [6]. Supervised learning may be used as an end goal. It also may be

used as a preprocessing step for other work. For example, classification of data into

disease or disease-free categories might precede a study of dosage level for the disease

category.

1.2 SUPERVISED LEARNING ALGORITHMS

Assuming that the type of data has been decided and training examples have been

collected, the input attributes must be decided. Often a subset of the attributes is used to

avoid computational complexity and other difficulties, such as the curse of dimensionality

(section 1.3.1) and overfit (section 1.3.2). The attributes may or may not be transformed

by some process into a feature. The value for an attribute might be squared or two

attributes multiplied together to form such a feature.

Properly speaking, attribute refers to the name of the variable and feature refers to

the value of the variable. However, these are often used interchangeably. Additionally,

feature often refers to a combination of two or more attributes, as described above.

Within this study, we never use feature in this sense when referring to our classification

procedure. However, it may be used when referring to other algorithms, particularly

multivariate decision trees.

Next, the design of the learning function is decided. The design is tied to the

decision as to use of a subset of attributes and whether to create features. Finally, using

parameters determined from training the learning function, the results are tested on a

dataset previously unseen by the algorithm.

 3

 We may divide supervised learning into global models and local models. Here,

global means that all training examples are used to classify a new point and local means

only nearby points are considered to classify a new point. The assumption for the local

model is that the point to be classified is more similar to nearby points than those points

far away.

1.2.1 K-NEAREST NEIGHBOR

The k-Nearest Neighbor algorithm [k-NN] is an example of a local model. It is a method

of classification that relies on grouping examples that are close to one another in the

feature space. The Euclidean distance is usually used as a proximity measure. If a

weighted average of the k nearest neighbors is used, the effect of outliers (isolated

examples) that are noisy (errors) is lessened.

The training phase of the algorithm stores the vectors. At the time of

classification, distances from the point to be classified to all stored vectors are calculated.

The k-nearest neighbors are then selected. The point is classified as to whichever class in

this set of neighbors that is the most frequent; k odd ensures that there are no ties. When

the distance is calculated, all attributes are used, whether relevant or not. This can have a

detrimental effect on classification. This problem of many irrelevant attributes is known

as the curse of dimensionality and is detailed in section 1.3.1.

There are methods, such as weighing each attribute differently, to try to overcome

the curse of dimensionality. This has the effect of giving less value to the irrelevant

attributes. Another method is to completely eliminate those attributes judged irrelevant.

Much research has been applied to these two areas in order to improve classification.

The k-Nearest Neighbor algorithm is easy to implement. However, as the number

of training examples increases, the computation becomes very costly. Thus, for large

 4

datasets, efforts have centered on methods (partial distances, prestructuring, and editing

the stored prototypes) to overcome this limitation [1].

The computational complexity during testing is a limitation. For n training

samples with d attributes, if one seeks the single (k = 1) closest point to a test point x, the

Euclidean distance calculation is O(d) and the search is O(dn2) [1], where d is the number

of attributes. For k > 1, the k closest points vote as to which class the new point belongs

to and that class is assigned. To do this, a sort is required on the n points to find the k

closest points: O(nln n). Therefore, the search complexity is O(dn2 + nln n).

1.2.2 SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) [11] are a special type of binary classifier that seeks to

separate classes by a linear decision boundary – a hyperplane. The distance from the

decision boundary to the nearest data points, support vectors, is called the margin (of

separation). It uses only the hyperplanes determined by these vectors to classify new

points and is therefore a global model conceptually and a local model for actual

classification.

The optimal hyperplane is one where the margin is maximized (there is a

maximum distance to the closest vectors from both classes), minimizing the number of

support vectors. A hyperplane with a maximum margin allows more accurate

classification of new points. A hard margin SVM is applicable when the classes are

linearly separable. A soft margin SVM is applicable when the classes are non-separable,

and the margin is chosen to minimize errors of classification.

SVMs are scale dependent and slow training: "One disadvantage of SVM is that

the training time scales somewhere between quadratic and cubic with respect to the

 5

number of training samples.” [12]. The complexity is O(n3) according to [11], but even

with a quadratic complexity this is still unmanageable for large n.

1.2.3 DECISION TREES

Decision Trees are an example of a global model. By contrast, to k-Nearest Neighbor

algorithm and Support Vector Machines, decision trees such as ID3 (interactive

dicotomizer) [7] and C4.5 [13] typically select only a subset of the attributes to form the

hypothesis – a decision tree. ID3 was restricted to attributes with discrete values for not

only the output variable, but also the input variables. C4.5, Quinlan's extension of ID3,

allows continuous-valued attributes for the input variables as well as methods to prune

the tree. However, according to Quinlan, "Several authors have recently noted that

C4.5's performance is weaker in domains with a preponderance of continuous attributes

than for learning tasks that have mainly discrete attributes.” [14].

Both algorithms start by choosing as the root node of the tree the best attribute

with respect to the information gain. For each of the possible discrete values of this

attribute a descendant node is created and the relevant training examples assigned to the

correct node. The process is repeated using the training examples at each node and so on.

This is a greedy approach and the ID3 algorithm, in its pure form, never goes back

to reconsider: "It does not have the ability to determine how many alternative decision

trees are consistent with the available training data," [4]. Thus, it has an incomplete

search of the hypothesis space of all possible decision trees. This is referred to as a

search bias.

All the relevant training examples are considered at each step making it less

sensitive to single examples. In classifying, the first acceptable tree is chosen.

 6

This preference is essentially for a shorter tree [4]. When a preference is for the

simplest hypothesis that fits the data, it is called Occam's razor. However, objections can

be made to this. For instance, if we have two hypotheses, such as two decision trees, that

are equally simple, how do we choose which one to use? Another objection is that the

size of the hypothesis, determined by the internal representation of the learner, can be

different for the same hypothesis by two different learners. Mitchell [4] gives an example

where the same learned decision tree could be represented by two different learners, each

justifiable by Occam's razor, which generalize differently. Yet another objection is that a

more complex hypothesis can actually provide a better explanation for the classification,

i.e., not everything has a simple explanation.

Choosing attributes, how deep a tree to grow a decision tree, and how to handle

missing data are all addressed by C4.5. The depth of the tree is of particular importance.

Overfitting can result if a tree is grown too deep. A more detailed explanation of overfit

is in section 1.3.2.

CART [15] is a decision tree algorithm similar in most respects to C4.5, with the

notable exception that its internal nodes test on linear combinations of attributes [16]

[15]. "The basic methodology of divide and conquer described in C4.5 is also used in

CART. The differences are in the tree structure, the splitting criteria, the pruning

method, and the way missing values are handled.” [17].

Real-valued variables are treated the same way, multiway splits are used with

nominal data, and heuristics based on statistical significance of splits are used for pruning

the tree [1].

They handle missing attribute values differently: CART uses surrogate splits

while C4.5 follows all possible answers to the leaf nodes. Surrogate splits may use the

 7

simple measure of counting the number of instances sent to the left and right by each of

the two possible splits and choose the one with a higher count. C4.5 considers the class

labels of the leaf nodes reached and weighs its decision by the probability at the splitting

node of how any instance would be classified.

We now discuss the computational complexity for CART and C4.5. Each is given

in terms of the two-class problem.

 Duda gives the training complexity for CART as O(kn2log n) and classification

complexity as O(log n), where k is the number of attributes and n is the number of

training points [1]. Implicit in these calculations are two assumptions: i) an average case

that splits the data into halves for each branch of the binary tree at every level and ii)

there is a single training point per leaf node.

The training complexity for C4.5 is of order O(kn log n) + O(n (log n)2)) [18], as

shown below:

• Assume k attributes, n training instances and a tree depth of O(log n)

• Cost for building a tree: O(kn log n)

• Complexity of subtree replacement: O(n)

• Complexity of subtree raising: O(n (log n)2)

• Every instance may have to be redistributed at every node between its leaf and the

root: O(n log n)

• Cost for redistribution (on average): O(log n)

• Total cost: O(kn log n) + O(n (log n)2)

Univariate decision trees are trees that test one attribute at a time. They alleviate the

curse of dimensionality to some degree, but typically have several limitations [8]. These

are listed below.

 8

1. Trees (such as C4.5 [13] or CART [15]) usually test the same attributes in one or

more subtrees. For example, consider the Digit Recognition (our label) decision tree

from page 47 of [15] shown in Figure 1-1 (originally labeled as FIGURE 2.13 in

[15]). The attributes in this example correspond to the lights displayed to form digits

on electronic watches and calculators. By [15], the device is faulty and the problem is

to decide which digit is displayed. The root of the tree, t1, is the attribute x5. The

subtrees to the left and right each contain the attributes x2, x3, and x4. The attribute x4

is used multiple times to determine the class/digit:

(x5 = 0 /\ x4 = 0 /\ x1 = 0) leads to class 1.

(x5 ≠ 0 /\ x2 ≠ 0 /\ x4 = 0) leads to class 10.

2. An attribute may occur more than once in a path. For a continuous attribute, such as

those used in the Waveform Recognition (our label) decision tree from page 54 of [15]

shown in Figure 1-2 (originally labeled as FIGURE 2.13 in [15]), the attribute may

occur more than once corresponding to the attribute value interval being split more

than once. For example, x6 is split into two intervals: x6 ≤ 2.0 and x6 > 2.0. The

left-most side (x6 ≤ 2.0) is then split again into two intervals: x6 ≤ 0.8 and x6 > 0.8.

The root of the tree is the attribute x6. The subtree to the left contains the attribute x6

again as well and the left-most path to class 3 is (x6 ≤ 2.0 /\ x11 ≤ 2.5 /\ x6 ≤ 0.8).

Multiple paths to class 3 lead to a disjunction of conjunctions:

(x6 ≤ 2.0 /\ x11 ≤ 2.5 /\ x6 ≤ 0.8) \/

(x6 ≤ 2.0 /\ x11 > 2.5 /\ x15 > 1.9) \/

(x6 > 2.0 /\ x10 > 2.6 /\ x7 ≤ 0.9)

 9

Figure 1-1. Digit Recognition Decision Tree [15].

t8 t9

t6

t10 t12

t14 t16 t17

t18 t19

t1

t2 t3

t4 t5 t7

t11 t13

t15

Y

N

Y

Y

Y

Y

Y

Y Y

Y

N

N

N N N

N N

N

x5 = 0

x4 = 0 x2 = 0

x1 = 0 x2 = 0 x4 = 0

x1 = 0 x3 = 0

x3 = 0

7

2

1 3

4

5 9

10

6 8

 10

Figure 1-2. Waveform Recognition Decision Tree [15].

100
85

115

7
0

20

20
0
4

0
10

5

9
7

50

40
1
0

0
0
5

4
50

1

7
1
0

0
7
0

4
9
0

9
0
0

14
0

13

4
9
0

18
1
5

0
10

5

12
10
74

33
6
1

1
1
3

4
4
0

3
4
0

11
41
3

6
3
0

x17 ≤ .6

x6 ≤ 2.0

x11 ≤ 2.5 x10 ≤ 2.6

x6 ≤ .8 x15 ≤ 1.9 x16 ≤ .4 x7 ≤ .9

x10 ≤ 1.8 x12 ≤ 1.6

27
0

24

36
17

109

64
68
6

17
59
6

47
9
0

9
17
85

7
8
0

17
59
1

13
9
0

 11

3. Univariate binary trees rely on splits orthogonal to the axes of the feature space. In

a multi-dimensional feature space, this may be too constrained a model to represent

accurately the decision boundaries, i.e., an oblique decision boundary may split the

classes better.

1.3 ISSUES IN SUPERVISED LEARNING ALGORITHMS

We now consider the three algorithms presented in section 1.2 and discuss some of these

shortcomings relative to them. Many of these problems are common to all supervised

learning and efforts to ameliorate them are important. Complexity of computation has

already been mentioned for SVMs and the k-Nearest Neighbor algorithm. We will look

at other issues here.

1.3.1 THE CURSE OF DIMENSIONALITY

Imagine a case where there are 100 attributes, but only one of these is relevant in the

classification. For the k-Nearest Neighbor algorithm, when the distance is calculated, all

attributes are used. This can have a detrimental effect. All 100 attributes are still used to

calculate the distances. There may be points that have the same value for the relevant

attribute but are far away from each other in the 100 dimensional space. Thus, the non-

relevant attributes dominate the distance measure. The effect of irrelevant attributes is

felt in other algorithms as well. This problem of many irrelevant attributes is known as

the curse of dimensionality [a term coined by Richard Bellman].

1.3.2 OVERFITTING

Overfitting occurs when improvement of classification accuracy on training is done at the

expense of overall accuracy (including testing). Consider the hypothesis h a tree

(obtained by a decision tree algorithm) represents. It has certain accuracy on the training

 12

data with hypothesis h. Now let there be noise introduced in one of the examples, such as

a mislabeling of its class and let h' be the hypothesis corresponding to the tree obtained

by the re-training. This tree separates this example from other examples and, with this

example, is a more complex tree. The resulting hypothesis h' fits the training data better

than h, but in fact the true accuracy for the training data is reduced. The new hypothesis

has learned the error. Even when the data is noise-free, overfitting can occur. If there are

only a few examples at a leaf node, coincidence can cause misclassification. Essentially

this is the result of a too-small sample size affecting the statistical test, which relies on a

minimum number of examples.

Decision trees, including C4.5, are generally prone to overfitting: "... if there are

no conflicting cases, the decision tree will correctly classify all training cases. This so-

called overfitting is generally thought to lead to a loss of predictive accuracy in most

applications (Quinlan 1986).” [17].

1.3.3 STRUCTURAL REPRESENTATION LIMITS

In the case of Support Vector Machines, a hyperplane is used, but a curved surface may

actually better separate the classes. The kernel trick is a method of dealing with this.

Rather than using a linear surface, the dot product is replaced by a non-linear function of

the dot product, which corresponds to the dot product in the higher dimensional feature

space, hence the name kernel. The classifier is linear in a higher dimensional space but

non-linear in the original input space.

 Univariate decision trees use decision surfaces that are orthogonal to the axes.

Unfortunately, a consequence of this is that classes separable by oblique lines may not be

separated as well by univariate decision trees. Multivariate decision trees are trees that

test more than one attribute at a time. They attempt to address this disadvantage of

 13

univariate trees by being able to create an oblique split. This is done by a linear

combination of two or more features. There is an inherent difficulty in this method:

Which features does one choose as a subset? To date, results have not been impressive.

The multivariate decision tree algorithms also are of increased computational complexity.

 One approach (C-Net) to creating multivariate decision trees is to use a neural

network in combination with Quinlan's C5 (an improvement to C4.5) and thereby create

the tree [19]. The artificial neural network (ANN) is trained on the data, then the output

of the hidden layer is the input feature vector to C5. Finally, the univariate decision tree

in the new feature space of hidden units is converted to a multivariate decision tree.

 Figure 1-3 (reproduced from [19] and originally labeled as Table 2) shows results

for testing on four real-life datasets and on four artificial datasets. As can be seen when

compared to the ANN, there is minimal improvement in error rates for the real-life

datasets and an increase in the error rates for the artificial datasets. Comparison to C5 is

more favorable, with the Liver dataset showing the greatest improvement. However, all

these error rates for C-Net appear to us to be strongly linked to the error rates for the

ANN. This is at a cost of computational complexity.

 14

Figure 1-3. C-Net Multivariate Decision Tree [19].

 In [20], an omnivariate decision tree is proposed. The decision node is allowed to

be univariate, linear (multivariate), or nonlinear. C4.5 is used to construct the univariate

tree and a single-layer perceptron is used at each node to construct the multivariate tree.

Table 1-1 (partially reproduced from [20] and originally labeled as Table III)

shows partial results for testing on 30 real-life datasets from the UCI depository [21]. We

restrict our comparison of classification accuracy to univariate versus multivariate trees

(as created in [20]). Of the 30 sets, 18 are classified with higher accuracy by multivariate

decision trees and 12 with higher accuracy by univariate decision trees. There is no basis

for knowing which will perform better on an arbitrary new dataset, i.e., "No single tree

algorithm dominates or is dominated by others.” [1]

 15

Table 1-1. Linear vs. Multivariate Decision Trees [20].

 16

1.4 PARALLEL PLANES CLASSIFICATION PROCEDURE (PPCP)

– MAIN FEATURES

This dissertation presents a new, nonparametric method, the Paired Planes Classification

Procedure (PPCP), for supervised learning that uses all attributes of a dataset as needed.

PPCP can use continuous and discrete numbers for variables, whether based on a metric

or numbered list. Many algorithms use only a subset of the attributes. This is done for

both reduced complexity and to avoid overfitting from irrelevant attributes. Note that

such attributes are discarded forever. However, "Noise reduction and consequently better

class separation may be obtained by adding variables that are presumably redundant."

[22].

Additionally, for difficult class boundaries, such as nonlinear boundaries, other

algorithms map into other feature spaces. While they can yield good performance,

strictly speaking this is a different problem because they do not consider only the original

feature space.

Our objective is to investigate to what extent classification in the original feature

space is possible in terms of acceptable accuracy and computational complexity. The

decision surfaces are in the original attribute space. To date, nine papers have been

accepted at conferences, both domestic and international: [23], [24], [25], [26], [27],

[28], [29], [30], [31].

Paired Planes Classification Procedure is a classification procedure based on

component classifiers: the Hyperplane Algorithm, the Margin Algorithm, and the Box

Algorithm. The component classifiers are based on the same underlying common

approach of parallel hyperplanes, but differ in the way these parallel hyperplanes are

 17

obtained. Each classifier has expertise in a particular region of the feature space. "Such

full classifiers are called mixture-of-expert models, ensemble classifiers, modular

classifiers, or occasionally pooled classifiers. Such classifiers are particularly useful if

each of its component classifiers is highly trained (i.e., an "expert") in a different region

of the feature space.” [1].

For a two-class problem, classifiers typically divide the feature space into two

regions - Class 1 and Class 2. The work presented here typically divides the space into

three regions - Class 1, Class 2, and unclassified, where the last is a region in which the

classifier abstains, usually a region of overlap between Class 1 and Class 2.

This produces trinary decision trees. It avoids the typical limitations of univariate

decision trees that were detailed in section 1.2.3 and are listed again, in less detail, below.

1. Trees usually test the same attributes in one or more subtrees.

2. An attribute may occur more than once in a path.

3. Univariate binary trees rely on splits orthogonal to the axes of the feature space.

In looking at the region of overlap, we consider three cases. Our use of parallel

planes covers all three cases. Because we use three (related) methods, PPCP can classify

a wide range of datasets.

Case 1: no or little overlap

Many algorithms can accurately classify when there is no or little overlap.

Support vector machines do this well, but there is a high computational cost.

For the case of no or little overlap, our method (the Hyperplane Algorithm) relies

on hyperplanes to split the feature space. It finds a pair of hyperplanes in a

straightforward, simple manner. Unlike Support Vector Machines, it uses two

 18

hyperplanes and it does not rely on a set of support vectors. The amount of error

acceptable for each class can be input directly and explicitly by the user (unlike SVMs).

The upper bound of complexity for the Hyperplane Algorithm is O(kn), where k is

the number of attributes and n is the number of samples. The complexity of our method

is much less than that of SVMs: O(n3) [11].

Case 2: moderate overlap

For the case of moderate overlap, the Margin Algorithm relies on a univariate decision

tree. Because only one or a few attributes are used to classify a point, univariate decision

trees alleviate the curse of dimensionality to some degree. Our method uses only one

attribute at a time, thus it has an advantage over most univariate trees. All the training

examples are considered at each step to decide how to proceed. This makes it less

sensitive to errors caused by single examples.

Univariate decision trees do typically have several limitations. Our classification

procedure eliminates one of these in the first step, the Hyperplane Algorithm.

Presumably, if the classes were separated better by an oblique plane than a plane

orthogonal to the axis, it would be detected during this step. The other two limitations

are eliminated by the Margin Algorithm. It also has an advantage over multivariate

decision trees in that the attributes are not processed into features.

The upper bound for the Margin Algorithm is from O(kn) for the global version to

O(kn + klnk) for the local version, where k is the number of attributes and n is the number

of samples.

Case 3: heavy overlap

Depending on the structure of the input data and the algorithm chosen, accuracy

will vary for the case of heavy overlap. If the data for all classes is uniformly

 19

interspersed, no algorithm will accurately predict the classes. If one class is enclosed by

another, such as a box inside another box, the accuracy can be quite high.

For the case of heavy overlap, the Box Algorithm bears a superficial resemblance

to k-Nearest Neighbor in that it relies on points in the same class being close to one

another. Boxes are used to classify the points. For the simplest type of box, i.e., a cube,

the upper bound is O(kn), where k is the number of attributes and n is the number of

samples. The results are comparable to those where an n-dimensional sphere is used to

classify each class.

To gain better accuracy, an asymmetric box is formed, but at computational

increase. This is on the order of O(j2kn), where j is the number of steps in the k loops

required. The increase in accuracy versus cost is justified only for special cases where

accuracy is extremely important. For all types of boxes, the computational cost during

training for m classes can be reduced by a factor of m if the algorithm is run on parallel

processors.

The complexity of Box when using the cube shape is less than that of k-NN, i.e.,

is O(dn2 + nln n), where d is the number of attributes and n is the number of samples.

 20

1.5 ORGANIZATION OF THIS THESIS

The Paired Planes Classification Procedure is presented in Chapter 2. Each of the

algorithms (Hyperplane Algorithm, Margin Algorithm, and Box Algorithm) used for the

three cases of overlap between two classes is explained. Pseudocodes and corresponding

system diagrams are provided for the classification procedure and each component

algorithm. The theoretical properties of the Paired Planes Classification Procedure are

also presented in Chapter 2. Pseudocode and bounds for complexity and training for the

Hyperplane Algorithm, Margin Algorithm, and Box Algorithm and the total classification

procedure are given.

Chapter 3 takes an in-depth look at the methods used to address the three cases of

overlap between two classes. Two heuristics of class order are tested for both binary and

multi-class problems. In addition, the effect of rotating of the axes on the accuracy of

classification is tested through comparison between the Margin Algorithm and the

Hyperplane Algorithm. Artificial datasets are used to explore the behavior of the

proposed algorithm. The results of this study have been published in [26] and [27].

 In Chapter 4 the methods used to address the three cases of overlap between sets

on artificial datasets are tested on real world datasets for both binary and multi-class

problems. Our results are compared to results obtained by Support Vector Machines,

univariate (C4.5) and multivariate (CART) decision trees, and the k-Nearest Neighbor

algorithm.

 Chapter 5 concludes the dissertation with a critique of the Paired Planes

Classification Procedure and with a discussion of future work.

 21

Chapter 2:

The Paired Planes Classification

Procedure

2.1 INTRODUCTION

For the two-class problem in the case when the two classes overlap partially, one may

consider the sample space divisible into three regions: Class 1, Class 2, and a region of

overlap in which classification is at best ambiguous. By contrast to the region of overlap,

the other two regions can be classified accurately and often by considering only a subset

of the attributes. This study takes advantage of this observation in a novel manner. Use

of a single decision surface has proven to be a tenable idea that provides good

classification with reasonable cost. Our algorithm uses pairs of parallel decision surfaces

to classify. There are three separate but related steps (Hyperplane Algorithm, Margin

Algorithm, and Box Algorithm) to achieve this. Each of these steps is an approach to

split the feature space by pairs of parallel planes.

The first step, the Hyperplane Algorithm [30], [31], works best when the overlap

between two classes is either zero or small. The approach has some features in common

with Support Vector Machines [11] and uses all attributes simultaneously. The decision

surfaces are perpendicular to the vector going from the mean of Class 1 to the mean of

Class 2 as computed from the training points. It returns the accuracy of classification of

each class and an estimate of the overlap of each class in the region of confusion. If the

 22

overlap is moderate or heavy and therefore the classification accuracy is poor, the amount

of overlap is used to decide which of the two other steps will be used next.

In case of moderate overlap, the second approach, the Margin Algorithm [23],

[24], [25], is used. This is a decision tree, which results in a disjunctive rule of

classification. It uses attributes sequentially, as needed, to classify points either as Class

1, the overlap, or Class 2. The decision surfaces are perpendicular to the attribute being

used. It returns the accuracy of classification of each class.

 In case of heavy overlap or when moderate overlap does not result in an

acceptable accuracy, the third approach, the Box Algorithm [26] [27], is used. This is a

decision tree that works by a series of conjunctions. It uses all attributes to classify points

either as Class 1, Class 2, or an unclassifiable region (which is not an overlap region). As

with algorithms that create an n-dimensional ball about the mean of a class, this algorithm

creates an n-dimensional box about the mean of a class. It returns the accuracy of

classification of each class. The decision surfaces produced are orthogonal to the

attributes being used.

The amount of overlap between classes determines the order in which these

algorithms are used as steps in a classification procedure. More precisely,

1. No or little overlap (approximately 5% of the data): The Hyperplane Algorithm alone

can serve as the classifier. In addition, estimating the overlap is a by-product of

classification by this algorithm. Therefore, this algorithm is always used as a first

step in the classification procedure.

2. Moderate overlap (approximately 5% to 35% of the data): The Margin Algorithm is

invoked as the second step of the classification procedure for this case. Moreover, if

 23

the Hyperplane Algorithm does not return the required/expected accuracy when the

overlap is slight, the Margin Algorithm is invoked.

3. Heavy overlap (35% or more of the data): When the classes have heavy overlap, such

as when one class is completely inside another, the Box Algorithm is invoked as the

second step of the classification procedure. In addition, if the Margin Algorithm fails

to deliver the required/expected accuracy, the Box Algorithm is invoked as the third

step of the classification procedure. Order of classes in testing classification is

important here.

Obviously, if the overlap is too great, none of these algorithms (as with most other

approaches) will be able to classify in the original feature space accurately.

2.2 NOTATION AND TERMINOLOGY

For all steps, we initially consider the two-class problem. This is later extended to the

multi-class problem, but here the terminology is in terms of the two-class problem.

The following notation and terminology is used throughout this thesis.

• A denotes the acceptable accuracy input to the Hyperplane Algorithm.

• AH, AM, and AB, denote the accuracies returned by the Hyperplane Algorithm, the

Margin Algorithm, and the Box Algorithm, respectively.

• o denotes overlap as estimated by the Hyperplane Algorithm.

• N denotes a vector from the mean of Class 1 to the mean of Class 2, as computed

from the training data.

• P denotes a hyperplane, used as decision surface, generated in the training phase

of the Hyperplane Algorithm.

 24

• J and K denote the hyperplanes, used as decision surfaces, determined by the

Hyperplane Algorithm.

• θ denotes the angle between a hyperplane and the vector N.

• dp denotes the dot product.

• μi , i∈{1, 2}, denotes the mean, where the values for i indicate the class (1 or 2);

σi is the standard deviation for this class.

• μk
i , i∈{1, 2}, denotes the mean value of attribute k corresponding to the training

set for Class i ; σk
i is the standard deviation for this.

• η ki, i∈{1, 2}, denotes the learning constant for attribute k corresponding to the

training set for Class i.

• η i, i∈{1, 2}, denotes the learning constant corresponding to the training set for

Class i.

• ak = min (μk
1 + η k1σk

1 , μk
2 – η k2σk

2) ; bk = max (μk
1 + η k1σk

1 , μk
2 – η k2σk

2)

• mk = (ak , bk), where mk is the local (along attribute k) margin.

• mk = (ak , bk) as above where η k1, η k
2 is replaced by η1, η2 and mk is the global

margin for the kth attribute.

• cY
k = mean/median for the kth attribute in class Y, Y∈{1, 2}

• ak
Y = cY

k - ηY
k σY

k; bk
Y= cY

k + υY
k σY

k

• wk
Y , wk

Y = [ak
Y, bk

Y], denotes the side of the kth attribute in class Y, Y∈{1, 2}.

• bY , bY = w1
Y x … x wn

Y , where x denotes the Cartesian product, denotes the box

for class Y, Y∈{1, 2}.

• \ denotes set difference.

 25

• X = {x1, …, xn} denotes the collection of attributes of interest for a two class

classification problem.

• TRAIN denotes the training set for this problem, i.e., TRAIN = {(x1, … , xn, y)},

y∈{1, 2}, where the values for y indicate the class (1 or 2) that the vector (x1, … ,

xn) belongs to.

• Xk denotes the domain of the attribute xk as represented in TRAIN.

• Xy
k denote the domain of the attribute xk represented in class y.

• Finally, Xk = X 1k ∪ X 2k.

2.3 PAIRED PLANES CLASSIFICATION PROCEDURE,

A THREE-STEP PROCEDURE

We consider three cases as shown in Figures 2-1, 2-2, and 2-3.

Figure 2-1. Hyperplanes to Separate Directly.

 26

1. No overlap or very small (0 – 5%) overlap, Figure 2-1. The region between

parallel hyperplanes (lines in two dimensions) can be an area of overlap or, if

classes are separable, without any points. Points in this region cannot be

classified by such hyperplanes. The objective of the algorithm is to find the two

hyperplanes shown in this figure.

Figure 2-2. Hyperplanes to Form Margins.

2. Moderate (5% – 35%) overlap, Figure 2-2. The region in the solid box is the area

of overlap. Points in this region cannot be classified by this algorithm. The

dashed lines define margins (of overlap) for each attribute. The margin is simply

an interval along an attribute where the classes overlap. Different orders of the

attributes (x1, x2) can be used with different classification accuracy. Therefore,

+ = Class 1

o = Class 2

overlap

 27

attribute order becomes important. The objective of the algorithm is to determine

the margin obtained from the two hyperplanes (dashed lines) corresponding to

each attribute, as well as the best attribute order for classification.

Figure 2-3. Hyperplanes to Form Boxes.

3. Heavy (35% or more) overlap, Figure 2-3. Some points in this region of overlap

(intersection of two boxes) can be classified correctly while others will produce

errors. The amount of error will also depend on the class order of classification.

Therefore, class order becomes important. Class order is determined by the

overlap estimate from a prior step. In addition, there will be an unclassified

Class 1

Class 2

overlap

unclassified

unclassified

 28

region whose points cannot be classified. The objective of the algorithm is to

determine the sides of the box obtained from the two hyperplanes (dashed lines)

corresponding to each attribute, as well as the best class order for classification.

Although, for presentation purposes, these methods are introduced as separate

algorithms, it should be noted that they have an underlying common approach: Each uses

parallel hyperplanes to divide the sample space into three regions – Class 1, Class 2, and

a region where the points are unclassifiable. These methods differ in the way these

parallel hyperplanes are obtained.

The classification procedure can be summarized as follows: Given desired

accuracy A:

1. Apply the Hyperplane Algorithm. Returns overlap estimate o and accuracy AH.

• If AH ≥ A, return accuracy AH and hyperplane parameters.

• If AH < A and o = moderate, apply the Margin Algorithm to the whole set to

obtain accuracy AM.

• If AH < AM and o = heavy, apply the Box Algorithm to obtain accuracy AB.

2. The Margin Algorithm (AH < A): Returns accuracy AM.

• If AM > AH, return accuracy AM and margin parameters.

• If AM ≤ AH, apply the Box Algorithm to obtain accuracy AB.

3. The Box Algorithm (AH < A): Returns accuracy AB.

• If AB > AH, return accuracy AB and box parameters.

• If AB ≤ AH, return accuracy AH and hyperplane parameters

The classification procedure described above is shown in the diagram of Figure 2-18 of

section 2.7.

 29

2.4 THE HYPERPLANE ALGORITHM

As can be noted (and illustrated in Figure 2-2), the Margin Algorithm, as most univariate

decision trees, generates hyperplanes orthogonal to the axes. However, when classes are

not separable by such hyperplanes but still separable, the Margin Algorithm will fail to

detect this. So, the Hyperplane Algorithm is meant to detect such cases and to estimate

the overlap (if any).

Moreover, it turns out that if the amount of overlap is sufficiently small, the

Hyperplane Algorithm by itself is the classification tool. If not, by providing a measure

of class overlap o, it allows us to choose which of the two remaining algorithms – the

Margin or the Box – to use to classify most accurately. In other words, it can be used as a

heuristic to decide whether to use the Margin or the Box Algorithm.

Let N denote the vector connecting the means, μi (i = 1, 2), of the two classes, as

obtained from the training data. The algorithm looks for a hyperplane perpendicular to

N. It is possible to construct an infinite number of such hyperplanes, any one of which

can be used to split the sample space into two regions.

By use of the dot product, we can determine where each point of the training data

is with respect to the hyperplane perpendicular to the head of N. The vector N and the

hyperplanes J and K used to separate the classes are shown in Figure 2-4.

 30

Linearly Separable

N

Hyperplanes

μ1

μ2

J K

Figure 2-4. How two parallel hyperplanes might be used to separate two classes.

The final hyperplanes J, K, and decision hyperplane are obtained as follows:

We form a vector V from each point in the data set to the head of N. For θ =
2
π , cos θ =

0 and
||||||||

,
VN

VN >< = 0. Therefore, positive values of <N,V> will denote points on one side

of the hyperplane, negative values will denote points on the other side of the hyperplane.

Construction of the vector N is shown in Figure 2-5.

Class 1

Class 2

 31

Figure 2-5. Creation of vector N and translation of the training dataset.

Next, we consider two subcases - separable classes and non-separable classes.

Separable classes:

For each such hyperplane, we can ascertain whether it forms a decision surface

that completely separates all points in one class from the other class. We start with the

hyperplane P going through the head of N at μ2. We check to see if all the points in Class

2 are on one side of the plane and all points in Class 1 are on the other side. If not, we

successively shorten the vector N, checking at each iteration to see if P successfully

separates the two classes without error. Let K denote the first hyperplane that separates

Class 2 from Class 1 without error. We continue shortening the vector N. Let J denote

the last hyperplane that separates Class 2 from Class 1 without error.

 For such K and J, the final decision surface is the hyperplane midway between K

and J and parallel to them. This ensures maximum generalization with respect to the

hyperplane given this training data.

μ1
μ2

N = μ2 - μ1

μ2μ1

vector that is normal to the
separation hyperplane

 32

Non-separable classes:

On the other hand, if we cannot find K and J such that perfect accuracy is

assured, this process is still useful. It is used to maximize the region of classification for

each class and to estimate the degree of overlap as follows.

First, we seek to maximize the region where we can correctly classify points for

Class 2 while also correctly classifying all points of Class 1. During the process of

finding K, we check at each iteration to see if P has correctly classified all points for each

class. In the event of a point from Class 2 being incorrectly classified and on the same

side of P as μ2, we back up one step and use the previous hyperplane as K. This is the

last hyperplane such that there were no errors of classification from it towards μ2. Note

that the first hyperplane P, which goes through μ2, may classify one or more points from

Class 2 incorrectly. In that case, K is defined to be the starting hyperplane going through

μ2.

Second, we seek to maximize the region where we can correctly classify points

for Class 1 while also correctly classifying all points of Class 2. We continue marching

the hyperplane P towards μ1. During the process of finding J, we check at each iteration

to see if all points for each class have been correctly classified. When a point from Class

2 is incorrectly classified, we continue. We choose the first hyperplane that makes no

errors of classifications for points in Class 1 and on the same side of P as μ1. This is the

first hyperplane such that there were no errors of classification from it towards μ1. Note

that such a hyperplane may not exist, in which case, J is defined to be the hyperplane

going through μ1.

In both subcases, we found the maximum region for each class where

classification is without error for that class. If the classes are separable by this algorithm,

 33

J and K are used to generate an optimal decision surface. On the other hand, if the

classes are not separable by this algorithm, J and K are used to estimate the overlap (as

computed from the training data). By counting the number of points between J and K,

we can estimate the extent of overlap (as a percentage of the training data) for each class.

This in turn allows us to choose step 2 or step 3, depending upon the degree of overlap.

The approach can be adjusted to take into account values of θ different from
2
π .

Stepping through the values for θ, the algorithm will find J, K, and θ for best accuracy.

Figure 2-6 shows a hypothetical example of this.

Hyperplane Algorithm with Varying Theta

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

x1

x2

Class 1
Class 2
mu1
mu2

Figure 2-6. Parallel hyperplanes not perpendicular to the vector N

separate the classes.

Hyperplane Algorithm with Varying θ

Hyperplanes

N

KJ

μ1

μ2

 34

By relaxing the restriction that the pair of hyperplanes is parallel to one another,

as well as taking into account values of θ different from
2
π , separating surfaces shown in

Figure 2-7 can be generated. In such a case, the hyperplanes would intersect and the

separating surfaces are more complex. Such an investigation was beyond the scope of

this study.

Hyperplane Algorithm with Varying Theta

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

x1

x2

Class 1
Class 2
mu1
mu2

Figure 2-7. Restriction of Parallel Hyperplanes Lifted.

Alternatively, a certain number of errors for either or both classes could be

deemed acceptable. For instance, in the case of separating benign cancers from

N

Hyperplanes

KJ

μ1

μ2

 35

malignant cancers, it may be acceptable to a user that 5% of benign cancers are classified

incorrectly and 0% of malignant cancers are classified incorrectly.

Such criteria can be easily incorporated in the algorithm. In addition to the

relevance to the user, allowing a certain amount of error in the training stage may result

in improved accuracy in the test data set. It should be noted that current algorithms using

SVMs cannot add such criteria. A soft margin SVM [32], by use of slack variables,

accepts some error in classification. However, the number of errors and their distribution

(Class 1 or Class 2) is controlled only indirectly through the total amount of slack

(amount of error).

2.5 THE MARGIN ALGORITHM

The basic idea for the Margin Algorithm is as follows: For a particular attribute, one can

derive hyperplanes that quickly and accurately classify some/many points of the training

set. A formal definition of margin that allows some errors of classification follows.

2.5.1 MARGINS

We discuss the formation and use of the margin by the two-class problem. Two versions

of the algorithm are considered - the global and the local. Constructing the margin takes

into account a tradeoff between the number of correct classifications for a particular class

and the total number of correct classifications. A predetermined number of steps are

used. The margin with the highest accuracy for the training set is chosen.

To define the margins the following quantities are introduced: μk
1, μk

2 mean

values of attribute k corresponding to the training set for Class 1 and Class 2,

 36

respectively, and μk
1 < μk

2 for all k; σk
1, σk

2 standard deviations for these classes along

attribute k; 0 < η k1, η k
2 < Nk and 0 < η1, η2 < N.

Definition 2-1:

(a) The local (along attribute k) margin mk is the interval (ak , bk) where

ak = min (μk
1 + η k1σk

1 , μk
2 – η k2σk

2) (2-1)

bk = max (μk
1 + η k1σk

1 , μk
2 – η k2σk

2)

(b) The global (along all attributes) margin mk is defined by the interval (ak , bk) as in

(2-1) where η k1, η k
2 is replaced by η1, η2, respectively.

The margins are found for each attribute, using η k
1 and η k

2 for the local version

and using η1 and η2 for the global version. Their values determine both the accuracy and

the speed of the convergence of the algorithm. It can be seen that Xk can now be written

as Xk = (X 1k \ X 2k) ∪ mk ∪ (X 2k \ X 1k), where \ denotes set difference.

The number of standard deviations for each class determines the margin. The

underlying class distribution is considered Normal (the Central Limit Theorem [4]

justifies this assumption for large sets). This means that with high probability the class

values fall within three standard deviations from the class mean, allowing us to conclude

that for all practical purposes, all points in the training set have been considered.

As the margins are marched, they approach each other and eventually pass one

another. The margins are updated according to Definition (2-1) on successive values of

η. Basically, the mechanism of constructing the margin marches the quantities ak , bk

away from the class means for attribute k by considering successive values of η. The

differences between the local and global versions lie in how and when the values ηk
1, ηk

2

or η1, η2 are updated for each attribute.

 37

The constants ηk
1, ηk

2 and η1, η2 can be viewed as the learning constants of the

corresponding algorithms. Updating for each attribute before using the next attribute

results in the local version. This update proceeds whenever the accuracy given by

attribute k with new values of ηk
1, ηk

2 is better than that obtained with previous values of

these constants. Updating after all attributes have been used in an increment results in the

global version. This is an update whenever the total accuracy given by all attributes in

combination using new values of η1, η2 is better than it was with previous values of these

constants.

The learning constants ηk
1, ηk

2 / η1, η2 can be varied independently with different

increments. The pseudocode for the Margin Algorithm is found in Chapter 3. The

placement of the updating step for the values of η is the only difference between the

pseudocode for the two versions. In the global version, it appears after all attributes have

been used in an iteration. In the local version, it appears after each attribute has been

used in an iteration.

On the local version of the Margin Algorithm, the order of attributes is important

and it is determined at training by cross validation.

Assuming that mk (the margin for the kth attribute) has been found, the

classification of data points is done as follows.

Two Classes

When scanning the training data set in a given direction, all of the examples of Class 1

appear to one side of the margin, followed by the margin, followed by all of the examples

for Class 2. (Without loss of generality, assume that the mean of Class 1 is to the left of

 38

the mean of Class 2 for each attribute.) If mk = (ak, bk), then the class assignment for the

data point x is given by the rule:

Class(x) =

At first glance, the Margin Algorithm appears to produce a Top-Down Inductive

Decision Tree (TDIDT) such as those produced by C4.5. However, this is not really the

case. More precisely, the Margin Algorithm

• uses a structural geometric criterion to construct a tree while ID3/C4.5 algorithms

use an information theoretic criterion to construct a tree.

• is very transparent, using each attribute at most once in the tree to classify a point.

TDIDT has a series of rules to make the classification decision.

It is worth noting the structure of the decision tree produced by the Margin

Algorithm: a tree of depth equal to the number of attributes in which each node has

exactly (m+1) children (where m is the number of classes). To illustrate the

characteristics of the tree produced by the Margin Algorithm and C4.5-type of algorithm,

consider the trees produced for the well-known Iris data set [21].

Compare the tree made by each method. The C4.5-type tree [33] shown in Figure

2-8 uses the attribute PL (petal length) more than once. The Margin Algorithm does not.

It uses PL once to decide if the point is classifiable by this attribute as one of the three

classes or unclassifiable. It uses a series of disjunctions to classify.

{
 1 if x ≤ ak

2 if x ≥ bk (1)

none if x ∈ mk

 39

The C4.5-tree checks initially whether PL < 26.0. If so, it is classified as Iris-

Setsosa, otherwise, PW (petal width) is checked. Depending on the value of PW, it is

again checked for PL of differing values, and then against SW (sepal length) or SL (sepal

length). This is a series of conjunctive statements used as rules. This tree uses two

subtrees to separate class Versicolor from class Virginica. Each subtree represents a

different set of conjunctions. Measurements are in millimeters.

According to this tree the Iris-Virginica class is described by the following rules:

i) PL ≥ 26.0 and PW < 17.5 and PL < 49.5 and SL < 49.5

ii) PL ≥ 26.0 and PW < 17.5 and PL ≥ 49.5 and SW < 26.5

iii) PL ≥ 26.0 and PW ≥ 17.5 and PL < 48.5 and SL < 59.5

iv) PL ≥ 26.0 and PW ≥ 17.5 and PL ≥ 48.5

Similar rules are produced for Iris-Versicolor and Iris-Setsosa. Note that the rules

i) – iv) use multiple tests of the same attribute(s).

By contrast, the tree produced by the Margin Algorithm (shown in Figure 2-9) is

of depth four (because there are four attributes) and with four children for each node

(because there are three classes) tests PL only once. Moreover, as can be seen from

Figure 2-9 a classification decision can be made at any level of the tree based on the

attributes considered up to that level.

 40

Figure 2-8. C4.5-type's Decision Tree for the Iris Dataset [33].

P = petal
S = sepal
L = length
W = width

PW < 17.5

PL < 48.5

SL < 49.5

no

yes no

Node 0

Node 1 Node 2

Node 3 Node 4

Node 5 Node 8 Node 6 Node 7

yes PL < 26.0

Iris-Setsosa

Iris-Versicolor

Iris-Virginica

Node 9 Node 10 Node 11 Node 12 Node 13 Node 14

yes

yes yes yes

yes no

no

no

no no
SL < 59.5

SW < 26.5

PL < 49.5

 41

The tree produced by the Margin Algorithm is much simpler and produces much

simpler rules. Measurements are in centimeters.

Figure 2-9. Margin's Decision Tree for the Iris Dataset.

The Iris-Virginica class is described by the following simple rule:

[PL > 5.5 or PW > 2.0 or SL > 6.6 or 2.7 < SW < 3.4].

Visualization of the Process

Figures 2-10 through 2-13 illustrate the algorithm described above. Informally, the xk-

margin is the region of overlap between the two classes along the kth attribute. Figure 2-

10 illustrates this: There are three regions corresponding to attribute x1 - Class 1 on the

left, Class 2 on the right, and the region of overlap between the two classes.

Unclassified

PL < 1.5

Node 1 Node 2 Node 3

Node 4 Node 6

Node 7 Node 9

Node 10 Node 12

Node 5

Node 8

Node 11

Iris-Setsosa

Iris-Versicolor

Iris-Virginica

Unclassified

P = petal
S = sepal
L = length
W = width

4.3 < PL < 5.4

2.7 < SW < 3.4

5.5 < PL

SW < 2.5

2.0 < PW

PW < 0.2

SL ≤ 4.9 6.6 < SL

6.1 < SL < 6.6

3.4 < SW

 42

Figure 2-10. The data set is shown with the x1 margin.

In Figure 2-11, the points classified by x1 have been removed. The data points

remaining, i.e., the overlap region is much smaller than the original region. Its points can

subsequently be classified by x2, as shown in Figure 2-12.

The region of uncertainty (the remaining unclassified points) to be classified after

using x2 is smaller yet. Again, the regions to either side of the margin are accurately and

quickly classified. Only points in the x2-margin that were also not classified by the x1-

margin are left to classify. Figure 2-12 shows again the overlap region and the correct

classification of its points as Class 1 or as Class 2.

a1 b1

Class 2

Class 1

x1

x 2

 43

Figure 2-11. The data set for after points classified have been removed.

Eventually, either all points are classified or all attributes are used and a non-

empty set of unclassifiable points remains. In the example (illustrated in Figure 2-12)

there are no points remaining to be classified. Obviously if the overlap is complex, one

will not be able to classify many points. However, many other algorithms acting in this

feature space would fail at this point too.

a1 b1

x 2

x1

 44

Figure 2-12. The data set is shown after using both the x1 margin and the x2 margin.

The top region is Class 1 and the bottom region is Class 2.

In Figure 2-13, the result of using the margins for both attributes is shown. An L-

shaped region is created for each of the two classes. The rectangular region that remains

in the center is where the unclassifiable points, if any, are left.

Classification rules inferred for this example are:

Class 1: (x1 > b1) U (a1 < x1 < b1 I x2 > b2) Overlap x1: a1 < x1 < b1

Class 2: (x1 < a1) U (a1 < x1 < b1 I x2 < a2) Overlap x2: a2 < x2 < b2

Unclassifiable: (a1 < x1 < b1 I a2 < x2 < b2) Overlap: (Overlap x1) x (Overlap x2)

a1 b1

b2
a2

Class 2

Class 1
x 2

x1

 45

Figure 2-13. Classification Completed.

2.6 THE BOX ALGORITHM

Both the Hyperplane algorithm and the Margin Algorithm (a univariate tree) relied on

using parallel lines to define the region of overlap between classes. The regions not in

the overlap could be classified easily. However, when one class is entirely within another

class, the overlap is complete and the previously developed methods are not sufficient.

Basic Idea

We seek to define the region for a class by pairs of parallel hyperplanes in each

dimension resulting in high-dimensional boxes.

Class 2

Class 1

a1 b1

b2
a2

x 2

x1

 46

For instance, the boxes may start from the means or medians of the classes, as

computed from the training set. If the parallel hyperplanes are so that for a given

dimension they are equidistant from the start point, a symmetric box is produced and the

start point is the geometric center of the box. If for all dimensions, all pairs of parallel

hyperplanes are required to be the same distance from the start point, a hypercube is

produced. On the other hand, if the equidistance restriction is lifted, an asymmetric box

(with respect to that point) is produced.

For each attribute, the measure of distance is in units of standard deviation from

the start point. The number of standard deviations considered must ensure that almost all

attribute values are covered. Usually, this number can be expected to be less than or

equal to three.

Width of the Box and Classification

With the notation and terminology of section 2.3 and by analogy to the margin, the

quantities that control the behavior of the Box Algorithm are the widths of the box (along

each attribute).

Definition 2-2: The width wk
Y along the kth attribute for class Y is defined as follows.

wk
Y = [ak

Y, bk
Y] where

ak
Y = cY

k - ηY
k σY

k (cY
k = mean/median for the kth attribute in class Y) (2-2)

bk
Y= cY

k + υY
k σY

k (σY
k = standard deviation for the kth attribute of class Y)

 and where ηY
k, υY

k vary from 0 to 3.

 47

For ηY
k = υY

k , the resulting box, centered at the start point, is symmetric along the

kth attribute. If ηY
k = υY

k for all k, the resulting box, centered at the start point, is a

hypercube. Otherwise, if ηY
k ≠ υY

k for some k, the box is not centered at the start point.

In scanning the training data set, each class is identified independently of the

others. When classifying the testing data, the order of classes is critical for test sets that

have one class inside the other, regardless of what kind of box is used. Best order can be

inferred by the overlap estimated in the first step (Hyperplane Algorithm).

Assuming that the widths wk
Y for all attributes have been found, a generic data

point x is classified by rule 2 as follows:

As in the case of many classifier-learning algorithms, including the Hyperplane

and Margin Algorithms, the Box Algorithm can be modified/adjusted to allow for more

errors in the training phase. The objective of doing this is to improve the robustness and

overall accuracy of the resulting classifier.

To this end, a penalty for each incorrect classification, varying from [0, 1.5] is

introduced in the training. A sequence of boxes is generated. For two hypotheses

Class(x) =

where bY = w1
Y x … x wn

Y denotes the box with sides w1
Y … wn

Y

and x denotes the Cartesian product.

 1 if x ∈ b1

2 if x ∈ b2 (2)

none if x ∉ b1 and x ∉ b2 {

 48

(boxes), the algorithm choose the one with better overall classification after taking into

account the penalty.

In order to achieve better generalization, a maximal area heuristic is used:

according to this, for equal accuracy, the box of larger area is preferred.

Example 1 illustrates the issues of constructing the boxes for this algorithm.

Example 1: In this example we consider three box cases: a) too large, b) too small, and

c) reasonable boxes. An artificial data set is used to illustrate the properties of these

boxes.

a) Boxes are too large:

In Figure 2-14, the box is defined by the maximum and minimum values for each

class in each attribute. That is, the box bY for class Y is given by definition 2-3.

Definition 2-3: The box bY for class Y is defined as follows.

bY =
k

i
X

1=
[

xY∈
min xi

Y ,
xY∈

max xi
Y] (2-3)

While the area for each class is accurately captured, there is a large area of

overlap, which leads to high classification error (class dependent).

 49

Figure 2-14. Too Large Boxes.

b) Boxes are too small:

Figure 2-15 shows boxes such that all points in them are classified accurately.

However, points x ∈ b1I b2 (not in either of the two boxes) are not classified at all.

Therefore, all points classified in a box are correctly classified, but many points remain

unclassified.

The boxes in Figure 2-15 cannot be guaranteed to be symmetric with respect to

the class mean/median. The point of this example is not the construction of these boxes

but the fact that such boxes exist and they are too small.

Class 2

Class 1

 50

Figure 2-15. Too Small Boxes.

c) Boxes are reasonable:

Figure 2-16 illustrates the case when the boxes are neither too large (as in Figure

2-14) nor too small (as in Figure 2-15). All of the points in one box are correctly

classified (the x's), some of the points in the other box (the o's) are incorrectly classified,

and two points are not classified. Note that while we show two boxes without overlap, at

the final position, the boxes may overlap, especially when we require the box to be

symmetric with respect to the start points. In this case, the order in which the boxes are

used affects the classification accuracy.

Class 1

Class 2

 51

Figure 2-16. Reasonable Compromise.

With a deterministic algorithm, we can vary the dimensions of the box to get the

best classification, i.e., highest classification accuracy (subject to a penalty for

misclassification) and few (or no) points unclassified.

2.7 PSEUDOCODE, SYSTEM DIAGRAMS, AND COMPLEXITY

We now present the algorithms more formally and discuss their computational

complexity.

Class 1

Class 2

 52

There is negligible overhead in calculating the means and standard deviations for

each of the attributes for each of the classes in the training dataset. This is done once and

then used for all steps. In the following, m, k, and n denote the number of classes,

attributes, and data points (in the training set), respectively.

Operations of multiplication, addition, subtraction, and comparison are considered

equal for comparison purposes. Figures 2-17 and 2-18 show the pseudocode and the

system diagram, respectively, for the classification procedure.

 Paired Planes Classification Procedure (main body)
Input Training Set; desired accuracy A

Output Classification Accuracies, Estimate of Overlap,
Classification Parameters

Begin {
1 Calculate training class means and standard
 deviations for each attribute;
2 Algorithm 1: (Hyperplane Algorithm);
 returns AH and overlap o
3 if (AH ≥ A)
4 return AH, o, Hyperplane classification parameters;
5 else % AH < A
6 if (overlap LARGE)
7 Algorithm 3: (Box Algorithm); returns AB
8 if (AB > AH)
9 return AB, Box classification parameters;
10 else % AB ≤ AH
11 return AH, o, Hyperplane classification

parameters;
12 if (overlap MODERATE)
13 Algorithm 2: (Margin Algorithm); returns AM
14 if (AM > AH)
15 return AM, Margin classification parameters;
16 else % AM ≤ AH
17 Algorithm 3: (Box Algorithm); returns AB
18 if (AB > AH)
19 return AB, Box classification parameters;
20 else % AB ≤ AH
21 return AH, o, Hyperplane classification

parameters;
} //End

Figure 2-17. Main body of PPCP algorithm.

 53

Figure 2-18. System Diagram: Complete Classification Procedure.

Algorithm 1: Hyperplane Algorithm

returns AH, o

Algorithm 2:
Margin Algorithm

returns AM

Algorithm 3:
Box Algorithm

returns AB

Return Classification
Parameters for
Hyperplanes

Return Classification
Parameters for

Margins

AH < A < AM
or

AH < AM < A

Return Classification
Parameters for Boxes

AH < A < AB

or
AH < AB < A

Margin Algorithm used:

AM ≤ AH < A < AB

or
AM ≤ AH < AB < A

A ≤ AH

AM > AH AB > AH

A = Minimum Accuracy
(% of Correct)

Return Classification
Parameters for
Hyperplanes

AB < AH < A

Margin Algorithm used:

AB < AM ≤ AH < A

or
AM <AH ≤ AH < A

Heavy
Overlap?
(large o)

Yes No

Yes

No

Yes
No

Yes

No

 54

2.7.1 COMPLEXITY OF THE HYPERPLANE ALGORITHM

As described in section 2.4, the hyperplanes are found by evaluating the dot product

between two suitably selected vectors: the vector N = μ2 - μ1, connects the means of the

two classes, and vector V is computed for each data point x as V = N – x. For each

vector x on the same side of the defined hyperplane (perpendicular to N) as the vector μ1,

the dot product 〈 N, V 〉 > 0, since θ = ∠ (N, V) ∈ (-
2
π ,

2
π). Data points for which 〈 N,

V 〉 < 0 correspond to |θ| >
2
π while those for which 〈 N, V 〉 = 0 are on the hyperplane.

Figure 2-19 illustrates the vectors N, V and hyperplane H.

Figure 2-19. Angle Between Two Vectors.

dot product > 0 V dot product < 0

 x θ

 hyperplane H

 N

 55

Figures 2-20 and 2-21 show the pseudocode and system diagram, respectively, for

the Hyperplane Algorithm.

Algorithm
1: Hyperplane Algorithm (m = 2)

Input Training Dataset, training data class means and standard
deviations for each attribute, number of attributes;

Output AH, o, Classification Parameters

Begin {
1 N = μ2- μ1;
2 j = 1;
3 while (j > 0)
4 N = jN;
5 y1 = 1, y2 = 2;
6 for (x, y in the training set)
7 V = N – x;
8 dp = 〈 N, V 〉 ;
9 if (dp < 0 and x ∈ Class 1)
10 y2 = 0;
11 else
12 if (dp > 0 and x ∈ Class 2)
13 y1 = 0;
14 if (y1 = = 1)
 %Class 1 points on μ1 side of hyperplane
 classified w/o error.
15 update hyperplane K
 % K = j•N using the current value of j.
16 if (y2 = = 2)
 %Class 2 points on μ2 side of hyperplane
 classified w/o error
17 update hyperplane J;
 % J = j•N using the current value of j.
18 j j – ε
} //End

Figure 2-20. Pseudocode: Hyperplane Algorithm.

 56

Figure 2-21. System Diagram: Hyperplane Algorithm.

N = jN;
for each x: V = N - x, dp = 〈 N, V 〉

Stop
updating

J

Errors for Class 2
points on μ2 side of

hyperplane?

Calculate K

N = μ2 - μ1;
j = 1;

Errors for Class 1
points on μ1 side of

hyperplane?

All Class 2
classified perfectly.

j = j - ε

Return Classification
Parameters for Hyperplanes

J and K

j > 0

Classify points
using dp

Calculate J

All Class 1
classified perfectly.

Stop
updating

K

No No Yes Yes

Yes

No

No
YesYesNo

 57

2.7.1.1 Complexity of Training: Two-class Problem

In the training phase, all n points of the training set are tested for each of the j increments

of a single for loop. A vector from each point to the vector Nj is formed. The dot product

is found and the result compared to zero as a classification test. Each time a classification

is made, correctness is checked.

There are k subtractions to form the vector from each point x to the vector Nj.

The classification test requires the dot product for each of the points. Since there are k

attributes, there are k multiplications and (k – 1) additions to form the dot product for

each point. Then the dot product is compared to zero each time. Each time a

classification is made, correctness is checked, so there is another comparison.

We have (k subtractions + k multiplications + (k – 1) additions + 2 comparisons) =

(3k + 1) operations for each iteration of the loop. Thus the complexity of the training

phase is linear in the number of attributes and in the size of the training set, i.e., it is

O(C1kn), where the constant C1 = (j +1) steps is determined by the stepsize j in the for

loop.

2.7.1.2 Complexity of Testing: Two-class Problem

Using J, we classify each point x as Class 2. If the point is not in the region for Class 2,

we use K to classify the point as Class 1. If not in the region for Class 1, it is

unclassifiable (in the overlap region). As in training, the dot product is formed for each

of these classification attempts. One loop is used to go through the n points.

The complexity of the testing phase is linear in the number of attributes and size

of the testing set, i.e., it has an upper bound of O(kn).

 58

2.7.2 COMPLEXITY OF THE MARGIN ALGORITHM

In the classification procedure proposed here, the Margin Algorithm is never invoked as

the first step. It is invoked after the Hyperplane Algorithm (when overlap is moderate or

when AH is too small). Other than the previously mentioned overhead for the calculation

of means and standard deviations, no other work must be done in the Margin step for

training. Figures 2-22 and 2-23 shows the pseudocode for the Local Margin Algorithm

and the Global Margin Algorithm, respectively. The system diagram for the global

version is shown in Figure 2-24.

Algorithm 2a: Local Margin Algorithm (m = 2)

Input Training Dataset, training data class means and standard
deviations for each attribute, number of attributes;

Output AM, Classification Parameters

Begin {
1 for (i = 1 to k), %k = number of attributes
 best_accuracyi = 0;

 best_marginsi = (μi
1, μi

2);
2 for (η1

k = 0 to 3, step size1)
3 for (η2

k = 0 to 3, step size1)
4 for (i = 1 to k)
5 current_accuracyi = 0;
6 calculate current_margini =(ai, bi);
 %by definition 2-1
7 for (x in the training set)
8 if (xi < ai)
9 classify x as Class 1;
10 else
11 if (xi > bi)
12 classify x as Class 2;
13 if (current_accuracyi ≥ best_accuracyi)
14 update:
 best_accuracyi = current_accuracyi;
 best_margini = current_margini;
 %update best_margini if
 accuracy for ith attribute improves
15 if (best_accuracy = 100%)
 return AM,
 Margin Classification Parameters;
16 return AM, Margin Classification Parameters;
} //End

Figure 2-22. Pseudocode: Margin Algorithm - Local Version.

 59

Algorithm 2b: Global Margin Algorithm (m = 2)

Input
Training Dataset, training data class means and
standard deviations for each attribute, number of
attributes;

Output AM, Classification Parameters

Begin {
1 best_accuracy = 0;
2 for (i = 1 to k), %k = number of attributes

 best_margini = (μi
1, μi

2);
3 for (η1 = 0 to 3, step size1)
4 for (η2 = 0 to 3, step size1)
5 current_accuracy = 0;
6 for (i = 1 to k)
7 current_margini = (ai, bi)
 % by definition 2-1
8 for (x in the training set)
9 if (xi < ai)
10 classify x as Class 1;
11 else
12 if (xi > bi)
13 classify x as Class 2;
14 if (current_accuracy ≥ best_accuracy)
15 update:
 best_accuracy= current_accuracy,
 best_margins = current_margins;
 %update best_margin if total accuracy improves
16 if (best_accuracy = 100)
 return AM,
 Margin Classification Parameters;
17 return AM, Margin Classification Parameters;
} //End

Figure 2-23. Pseudocode: Margin Algorithm – Global Version.

 60

Figure 2-24. System Diagram: Margin Algorithm - Global Version.

Update:
best_accuracy = current_accuracy,
best_margins = current_margins

For all x in the
training set, classify
by current_margins.

current_accuracy ≥ best_accuracy

Return Classification
Parameters for Margins

best_accuracy = 0;
current_accuracy = 0;
current_margins = the means for
each attribute for each class;
max_margins = (μ1 + 3σ1 , μ2 –3σ2)
best_margins = current_margins;

Update:
current_margins

current_margins < max_margins

current accuracy = 100%

Calculate:
current_accuracy

YesNo

Yes
No

Yes

No

 61

2.7.2.1 Complexity of Training: Two-class Problem

In the training phase, n points are tested for each of the j increments of two for loops. For

each of the k attributes, a margin, mk = (ak, bk), is formed between the two classes. The

point is then compared to the margin for classification.

There are 4 operations (1 multiplication and 1 addition/subtraction to calculate

each of the two values (ak, bk) for the kth margin) before classifying each point. There are

4 operations (2 comparisons to the kth margin and 2 checks for correctness) at most

during classification of each point. For each point, its value for the kth attribute is

compared to mk. If it is less or equal to ak, it is classified as Class 1. If it is greater than

bk, it is classified as Class 2. Thus, there are 8 operations at most for a single point for

each of the k attributes.

We have (8 operations)k for each iteration of the two for loops where the number

of standard deviations is chosen for each attribute. The j increments in each of the two

for loops require C2 = (j + 1)
2
 steps. Thus, the complexity of the training phase is linear

in the number of attributes and in the size of the training set, i.e., it is O(C2kn).

Each point is classified using the margins as Class 1, Class 2, or unclassifiable (in

the overlap region).

2.7.2.2 Complexity of Testing: Two-class Problem

In the testing phase, n points are tested during a single for loop. Each point is classified

(by the margin) using the first of the k attributes as Class 1 or not, by comparing to

mk = (ak, bk). Thus, there are at most two comparisons for each test point: against ak to

classify in Class 1 and against bk to classify in Class 2.

Points remaining in the overlap region for this attribute k are then tested again

using the values of the margins for the remaining attributes. The local version of the

 62

Margin Algorithm requires a sort on the attributes by classification accuracy obtained in

the training phase. Sorting on the k attributes requires klnk steps.

We have (2 comparisons)(k) for the single for loop. Thus, the complexity of the

testing phase is linear in the number of attributes and in the size of the testing set, i.e., it is

O(kn) for the global version and O[k(n + lnk)] for the local version of the algorithm.

2.7.3 COMPLEXITY OF THE BOX ALGORITHM (CUBE)

In the classification procedure proposed here, the Box Algorithm is never invoked as the

first step. It is invoked either after the Hyperplane Algorithm (when overlap is heavy and

AH < A) or after the Hyperplane Algorithm and the Margin Algorithm (when overlap is

moderate and AM ≤ AH). The classification boxes are controlled from quantities already

calculated in the previous step.

For testing, the estimate of the overlap (from the Hyperplane step) for each class

can be used to decide a best order. The class with the greater amount of points in the

overlap is used first in classifying a generic point x. If one class were totally inside

another, as a box inside a box, it would be likely to have more points in the overlap.

Figures 2-25 and 2-26 show the pseudocode and system diagram, respectively, for

the Box Algorithm (cube version).

 63

Algorithm 3: Box Algorithm (m = 2)

Input
Training Dataset, training data class means and standard
deviations for each attribute, number of attributes,
number of classes;

Output AB, Classification Parameters

Begin {
1 for (m = 1 to 2)
2 best_area = 0;

 best_accuracy = 0;
 accuracym = 0;

3 for (η = 0 to 3, step size1)
 current_accuracy = 0;
4 for (i = 1 to k)
5 ak = μk - η*σk, bk = μk

 + η*σk,smk =[ak, bk]
 % smk = side:kth edge of the box, class m

6 for (x in the training set)
7 if (x ∈ boxm)
8 Classify in class m;
9 calculate current_accuracy, area,
 error; % misclassified
10 current_accuracy =
 current_accuracy-(penalty)(error);
11 if [(current_accuracy > best_accuracy)
 or (current_accuracy = best_accuracy
 & area > best_area)]
12 update:
 best_accuracy = current_accuracy,

 best_sides = sides, best_area = area;
13 accuracym = best_accuracy;
 best_sidesm = best_sides;
} //End

Figure 2-25. Pseudocode: Box Algorithm – Cube Version.

 64

Figure 2-26. System Diagram: Box Algorithm – Cube Version.

Update:
best_accuracy = accuracy-penalty,

best_sides = sides,
best_area = area;

current_accuracy = 0;
For all x in the training
set, classify by sides.

accuracy-penalty > best_accuracy
or

(best_accuracy = accuracy-penalty) and
(area > best_area)

best_accuracy = 0;
max_sides = 0;
best_area = 0;
sides = the means/medians
for each attribute for each class;
best_sides = sides;

Update:
sides

sides < max_sides

accuracy-penalty = 100%

Calculate:
current_accuracy,
accuracy-penalty,

area;

Yes No

Yes

No

Yes

No

Class = 2; Class ≤ 2

Update:
current box,

accuracy

Class = 1;

Yes

No

Return Classification
Parameters for Boxes

 65

2.7.3.1 Complexity of Training: Two-class Problem

In the training phase for a single class, n points are tested for each of the j increments of a

single for loop. There are j iterations in the for loop, where the number of standard

deviations are chosen for each attribute, thus (j + 1) steps for each of the n points.

This loop is inside another for loop for the k attributes. For each attribute k, the

formation of a sidek = [ak, bk], requires 4 operations (1 multiplication and 1

addition/subtraction for each of the two values). After all sides have been formed, the

point is then compared to the sidek. For each k there are 2 comparisons for purposes of

classification at most: If it fails the first, the second is not done. Similarly, if it fails for

any of the k sides, the remaining sides are not tested. Otherwise, it is compared for all k

attributes. The same process is repeated for the remaining class.

We have (6 operations)kn(j + 1)
2
 for each class or 2(6 operations)kn(j + 1)

2
 for

two classes. Thus the complexity of the training phase is linear in the number of

attributes and in the size of the training set, i.e., it is O(C2kn), where the constant C2 is

determined by the stepsize j in the for loop, i.e., C2 = (j + 1).

For construction of boxes that are not cubes but symmetric rectangles, in the

training phase, n points are tested for each of the j increments of k for loops. Thus the

constant C2 = (j + 1)
k
 and for large k, the complexity is extremely high consequently.

2.7.3.2 Complexity of Testing: Two-class Problem

In the testing phase, n points are tested as being in one of the 2 boxes created during the

training phase. A particular point is tested to see if it is in the box for Class 1. If it is not

in Class 1, it is then tested to see if it is in Class 2. Each point is classified using the

boxes as Class 1, Class 2, or unclassifiable (outside both boxes).

 66

Each point is presented to each of the k attributes sequentially for a particular

class. For a particular point, its value for each of the attributes is compared to the 2 edges

of the side for that attribute. If it is within the values for the sides for all attributes, it is

classified as being in the box and therefore in that class. If it fails to fall between the two

values for any attribute, it is presented for classification by the next box (class).

We have (2 comparisons)kn for each of the two classes. Thus the complexity of the

testing phase is linear in the number of attributes and in the size of the testing set, i.e., it is

O(kn).

2.8 COMPLEXITY: MULTI-CLASS DATASETS

Our extension to multi-class problems is by conversion to (m – 1) two-class problems.

Therefore, the increase in complexity is on the order of O(m).

2.9 COMPARISON TO OTHER CLASSIFIERS

We compare the Hyperplane Algorithm to Support Vector Machines. Both use the idea

of a hyperplane as a decision surface, are insensitive to overtraining, and generalize well.

The Hyperplane Algorithm is of complexity O(C1kn), where C1 is determined by the

stepsize j in the for loops of the training phase, while SVMs are of complexity O(n3) [11].

 The Margin Algorithm and C4.5-type decision trees overcome the curse of

dimensionality to some degree, as do all univariate decision trees, because only one or a

few attributes are used to classify a point. C4.5-type trees require a step of discretizing

continuous data, while the Margin Algorithm does not. The Margin Algorithm is of

complexity O(C2kn) during the training phase, where C2 is determined by the stepsize j in

 67

the for loops of the training phase, and of complexity O(kn) during the testing phase for

the global version and O[k(n + lnk)] for the local version of the algorithm. By contrast,

C4.5 is of total complexity O(kn ln n) + O[n(ln n)2], assuming k attributes, n training

instances and a tree depth of O(ln n). [18] The complexity of building the tree is the

first term, while the second term sums the complexities of subtree replacement, subtree

raising, and average possible redistribution of the instances at every node between its leaf

and the root.

 The Box Algorithm is compared to k-Nearest Neighbor because both base

classification on the idea that points near each other are in the same class. The Box

Algorithm is of complexity O(C2kn) , where C1 is determined by the stepsize j in the for

loops of the training phase, while K-NNs are of complexity O(kn + nln n) as shown by

the analysis below. The complexity is primarily due to classification of points.

Analysis of Complexity for K-NN

Calculation of the distance between new point with k attributes and n instances in

a dataset is of the order O(kn). The sort on the n points is of the order O(nln n).

Therefore, the total complexity is of the order O(kn + nln n).

 68

2.10 CONCLUSIONS

Paired Planes Classification Procedure (PPCP) may actually invoke all three of the

algorithms discussed, i.e., the Hyperplane Algorithm, the Margin Algorithm, and the Box

Algorithm. Because of this, the complexity of the classification procedure is the can

range from O(C1kn) to O(C3kn + kln k), where C3 = C1 + C2 as defined in section 2.7

and the maximum complexity is determined by sum of complexities of all three

algorithms. The algorithms that PPCP is compared to vary in complexity from O(kn) to

O(n3). PPCP has a comparable complexity at the low end and better complexity by at

least an order of magnitude at the high end, while being able to effectively handle a wide

range of datasets.

 69

Chapter 3:

Experiments – Artificial Datasets

Testing was carried out initially with 2-dimensional sets in order to visually confirm the

process with graphs and test the viability of the three algorithms. The sets were limited to

Gaussian distributions. Later, in order to test a wider ranges of datasets types, the

number of dimensions was increased to four and the types of distributions were varied.

This included the Gaussian, lognormal, t (student), gamma, and beta distributions. Not

only were five distributions used, but also a mixture of distributions within a dataset was

used. We also avoided having both classes with the same mix of distributions. Formal,

precise checks of accuracy were performed using these data sets. These are presented

later in this chapter.

The objectives of this phase of the work are to test our classification procedure

(Hyperplane Algorithm Margin Algorithm Box Algorithm) and several hypotheses:

Hypothesis 1 (Margin Algorithm): A filter using rank order of classification by least

error (least-to-most) would work better than a rank order of classification by

highest accuracy (best-to-worst). Our definition of least error excludes

unclassified points and is explained in section 3.2.2.

Hypothesis 2 (Box Algorithm): The order of classes used will change the classification

accuracy.

Hypothesis 3 (Box Algorithm): A symmetric box will have higher classification

accuracy than a hypercube.

 70

The results of testing on artificial sets will determine how we proceed on real-life

datasets.

3.1 TWO-DIMENSIONAL DATASETS

This study was initiated with the Margin Algorithm, and then later expanded. As such,

we used Matlab to create one artificial set to test the concept. The Margin Algorithm was

then applied to two real-life datasets, where it proved acceptable [23]. As we extended

the classification procedure to include two additional steps (the Hyperplane Algorithm

and the Box Algorithm), artificial sets were created in greater numbers and complexity.

For the artificial sets used in testing the Hyperplane Algorithm and the Box

Algorithm, Matlab was used to create 1000 points for each of two classes. All artificial

sets created are Gaussian distributions.

Two groups of artificial sets were considered. The first group was composed of

seven cases where there was a small (less than 10%) overlap. The other group was

composed of ten cases where one class was completely inside another or there was a

larger (greater than 25%) overlap.

For training, we randomly selected half of each class and used the other half as a

test set to cross-validate. One hundred trials were performed for each artificial set. By

considering points at a distance as far as three times the maximum standard deviation of

all the attributes for each class, we assured consideration all or most (greater than 97%)

of the points in the class.

As stated, the intension of using these 2-dimensional, artificial datasets was to

check the viability of the ideas. Visual confirmation of the viability of the concepts was

 71

the primary goal when using 2-dimensional sets. We could construct graphs of the

training sets, the test sets, and the hyperplanes, margins, or boxes found. For the Box

Algorithm, comparisons between types of boxes (cube, symmetric box, and asymmetric

box) and circles were made. We were more formal for this portion because we desired to

not only confirm the concepts but to determine effectiveness of the various boxes [26].

This was immediately extended to two real-life datasets [27], whose results will be

presented in Chapter 5. Figures 3-1 and 3-2 show the artificial sets used.

Group 1: Small Overlap

 72

Figure 3-1. Group 1: Small Overlap Between the Two Classes.

Group 2: Extensive Overlap

 73

Figure 3-2. Group 2: Heavy Overlap Between the Two Classes.

3.1.1 HYPERPLANE ALGORITHM

The placement of a pair of parallel hyperplanes (as decision surfaces) was found. For a

typical dataset from the first group, Figure 3-3 shows the trial set results and Figure 3-4

shows the test set when the classes are linearly separable by this method. Because there

are no points in the overlap region for the trial data, the two hyperplanes are replaced by a

hyperplanes midway between them and parallel to them. This is the hyperplane used in

cross-validation on the test set.

 74

Figure 3-3. Two hyperplanes split the space. Lack of overlap allows one hyperplane.

Figure 3-4. Two hyperplanes collapse to one hyperplane that is used to split the space.

 75

For a typical dataset from the first group, Figure 3-5 shows the trial set results and

Figure 3-6 shows the test set when the classes have a slight overlap. Two hyperplanes are

required as decision surfaces.

Figure 3-5. Two hyperplanes split the space. There is slight overlap between classes.

Figure 3-6. Two hyperplanes cannot collapse to one hyperplane.

 76

For a typical dataset from the second group, Figure 3-7 shows the trial set results

and Figure 3-8 shows the test set when the classes have a heavy overlap, but are not

totally enmeshed or enclosed. The algorithm finds two hyperplanes. At this stage, we

see that there is a large percentage of overlap and we should go to a later step of the

classification procedure. When overlap is so extensive, we may jump to the third step

(the Box Algorithm). However, the second step (the Margin Algorithm) may actually do

better. We use the overlap estimated during the first step (the Hyperplane Algorithm) as

the deciding factor. For heavier overlap (>35%), we skip the second step.

Figure 3-7. Two hyperplanes found in the training phase for the case of heavy overlap.

Note that the hyperplanes found are not quite orthogonal to the x1-axis.

 77

Figure 3-8. The test data is classified by the hyperplanes found in the training phase.

3.1.1.1 Results and Conclusions

For all sets in Group 1 (little overlap), the Hyperplane Algorithm was able to classify the

two classes accurately and to estimate the overlap between the classes. The sets in Group

2 (heavy overlap) show the limitations of the Hyperplane Algorithm for classification as

well for estimation of overlap. When the means of the two classes are the same or very

close to one another, the overlap cannot be reliably estimated by this algorithm when

using the current choice of starting points. However, when the hyperplanes found are at

one or both of the endpoints of N (the vector connecting μ1 to μ2), we can infer that there

is heavy overlap. Therefore, even when this step of the classification procedure cannot

accurately estimate the overlap between classes, it still allows us to determine the next

step (the Box Algorithm).

 78

3.1.2 MARGIN ALGORITHM

A preliminary check was to create an artificial dataset by using Matlab Student Edition.

A first simple version of the algorithm was done by hand and checked, using an artificial

dataset (described in Table 3-1). The margin divides the feature space into regions for

each of the two classes and an overlap region. For this initial version, no errors were

allowed in the regions for the classes. This restriction was later eased to increase

classification accuracy and robustness of the algorithm. Example 2, used to test the

feasibility of margins, it is now shown [25].

Example 2: Class 1 consists of 34 points, Class 2 consists of 232 points. Each has a

normal distribution and for each attribute, μ1 < μ2.

Table 3-1. Example 2: Class Distribution [25].

Class Distribution
Class Number of Instances μ σ

1 34 (12.8%) (50.21, 52.73) (20.42, 23.12)
2 232 (87.2%) (115.82, 111.73) (28.94, 27.79)

In Figure 3-9 a dashed vertical line, x = x2, is drawn where x2 is the maximum

coordinate for points in Class 1 and another dashed vertical line, x = x1 is drawn where

x2 is the minimum x coordinate for points in Class 2. The interval determined by these

can be used to classify some of the points: those whose x coordinates fall to the left and

right of the interval. However, the points with the x coordinate within the interval are not

classified using their x coordinates. Since this example is just to illustrate the idea, the

final position for the margin reached by the algorithm is not shown. Here the margin is

simply set by using the maximum for Class 1 and the minimum for Class 2 along the x-

axis.

 79

Figure 3-9. The data set for is shown with margins. The solid rectangle is the area where

points cannot be classified.

For these points, a similar construction of a margin is done in the y attribute. In

Figure 3-9, a dashed horizontal line, y = y2, is drawn where y2 is the maximum y

coordinate for the points from the y-margin that are in Class 1 and another dashed

horizontal line, y = y1, is drawn, where y1 is the minimum y coordinate for the points from

the y-margin which are in Class 2. The values y1 and y2

determine the y-margin for the

attribute y. The points with the y coordinates in the y-margin whose y coordinates fall

outside of it are classified as either Class 1 or Class 2, while those whose y coordinates

fall inside the y-margin cannot be classified (by this procedure). Again, for this example,

+ = Class 1
o = Class 2

x

y
y = y2

y = y1

x = x1 x = x2

 80

the final position reached by the algorithm is not shown. The margin is simply set by

using the maximum for Class 1 and the minimum for Class 2 along the y-axis

3.1.2.1 Preliminary Testing: Results and Conclusions

Table 3-2 shows the combination of the results from the margins for the x-axis and the y-

axis. The points inside the rectangle are not classified. All other points can be classified

correctly.

Table 3-2. Example 2 results [25].

 Class 1 Class 2 Total
Correct 22 228 250
Unclassified 12 6 18
% Correct 65% 97% 93%

In this simplistic version of the algorithm, accuracy is 93.2%. The errors are the

18 of 266 points that remain unclassified. Even without the final positions that the

algorithm attains for the margins, most points have been classified. From these results,

we concluded that testing on real-life datasets would be worthwhile.

3.1.3 BOX ALGORITHM

The various boxes (cube, symmetric box, and asymmetric box) and a circle were

compared. The circle was tested both with and without (area ignored) the maximal area

heuristic, which is detailed in section 2.6.

3.1.3.1 Results and Conclusions

Figure 3-10 shows results for the two groups of artificial sets [26], [27]. In

general, the hypercubes did at least as well as the circles for all sets, whether in Group 1

or in Group 2.

There is little difference in Group 1 (small overlap). All shapes tested perform at

the almost same level of classification accuracy for each set. Group 2 (heavy overlap)

 81

shows a larger variation in classification accuracy for more than half the sets. In two sets,

there is a 30%+ range in classification accuracy for the shapes. The symmetric boxes

show a definite advantage in accuracy for Group 1 sets, i.e., those with greater overlap.

The computational cost is greater than that of a circle. In general, it appears that:

heavy overlap ⇔ rectangles' classification accuracy ≥ circles' classification accuracy

Figure 3-10. The results for all shapes, both groups of test sets.

The following hypotheses were made:

1. There would be little difference when starting with the mean or median as the center

because of the symmetry of the Gaussian distribution used here, i.e., the mean and

median of the distributions are almost identical. This proved true. That is why results

using the median are not included in a figure.

2. The classification ability of a circle and a hypercube would be very close in value.

This proved true.

 82

3. The classification ability of a rectangle would be better than that of a circle or a cube.

This proved true only about half the time and slightly worse a couple of times.

Statistical variance could account for this being true/false on several cases.

4. The classification ability of an asymmetric rectangle would be better than that of a

symmetric rectangle. This was clearly true only for set #10 (shown in the bottom,

right of Group 2 graphs). Since asymmetric rectangles are extremely high in

computational cost with the current implementation, use is limited to situations

warranting the cost.

5. Class order (Hypothesis 2) would be important in for classification accuracy for

moderate to heavy overlap. Though not shown here, this was true in general for cases

of overlap, in particular when one class was inside another. When there was slight

overlap between classes, there was little difference in classification accuracy.

3.2 FOUR-DIMENSIONAL DATASETS

For the sets, Matlab was used to create 1000 points for each class. The goal was to have

a wide variety of distributions where two classes may or may not have the same

distributions and where within a class, each attribute may or may not have the same

distribution as other attributes. Matlab's mvnrnd and gallery functions were used, as well

as several others, to do this. Matlab's inverse probability functions require symmetric,

positive, semi-definite matrices to use for the covariance matrix. The appropriate

function that guaranteed this was used.

We varied these choices for distributions by each of ten artificial datasets and by

class within the artificial dataset. As a control, an additional dataset was created in this

 83

manner but with 1000 points initially. By duplicating these 1000 points, two identical

sets of points labeled Class 1 and the other Class 2 were formed.

Each class in a set was composed of four attributes. For each attribute in a class,

the values obtained through the mvnrnd function were used as input in inverse functions

for various distributions. This included the Gaussian, lognormal, t (student), gamma, and

beta distributions. This was done separately for each class.

Only in one case was the same distribution used for all four attributes. Even then,

the other class was varied in the distributions used for each attribute. Sometimes two of

four dimensions were beta distribution, the third a gamma distribution, and the fourth a

t-distribution, and so on.

The overlap between datasets varied from 5% to 50%. This was estimated by

using the first step in the algorithm (the Hyperplane Algorithm). Each estimated overlap

is viewed as a maximum. The hyperplanes used to estimate it are orthogonal to a vector

that connects the means of the training classes' means. It is possible that by tilting the

hyperplanes, a smaller overlap could be shown to exist. However, this estimate will be

used for purposes of the full classification procedure.

The overlap of each class was also estimated. For example, in one test set, the

overall overlap was estimated at 25% (500 points): Class 1's contribution to this was

~28% (280 points) of its examples and Class 2's contribution to this was ~22% (220

points) of its examples. For a different set, the overall overlap was estimated at 26%:

Class 1's contribution to this was ~19% of its examples and Class 2's contribution to this

was ~33% of its examples.

 84

We randomly selected half of each class for training and used the other half of the

set as a test set to cross-validate. One hundred trials were performed for each artificial

set.

3.2.1 HYPERLANE ALGORITHM

Initially, the Hyperplane Algorithm was run without any error for either class allowed

during the training phase. Approximations for the placement of hyperplanes were found,

as were estimates of overlap o between classes. Then, the algorithm was run multiple

times and varying amounts of errors were allowed for each class. An estimate of the best

accuracy using this method was obtained, along with estimates for placement of the

hyperplanes to do this.

Table 3-3 shows both sets of results: column 2 shows the overlap, and by

inference the classification accuracy, when no errors during training were allowed. For

example, when the overlap is 25%, classification accuracy = 75%: 75% = 100% – 25%.

Column 6 shows the best classification accuracy when some errors during training

were allowed. Allowing some errors increases the accuracy by 20% or more at times. In

these cases, outliers between the two classes have probably led to a larger overlap being

detected. While true, we make the apriori decision to accept some errors in the hope of

higher overall accuracy.

In Table 3-3, best_1 and best_2 refer to the relative length of the vector

connecting the means of the two classes, as computed from the training set. Column 5

shows these values when no errors were allowed during training. Column 8 shows these

values when some errors were allowed during training and we found the best

classification accuracy.

 85

The value 0.39 means we place a hyperplane (as a decision surface) 39% of the

way along the vector N connecting μ1 to μ2 and perpendicular to N. It is interesting to

note that the overlap between (the two identical) classes for the control set is estimated at

75%. The values of 0.00/0.00 for the separating hyperplanes in this case reflect that the

algorithm can do no better than the initial placement of the hyperplanes (at the two ends

of the vector connecting the means) and thus a later step (the Margin Algorithm or the

Box Algorithm) in our classification procedure is appropriate.

Table 3-3. The results for all 4-dimensional test sets, including the control set.

PPCP
Algortihm

Hyperplane Algorithm

dataset #
Total: %
Overlap

Class 1:
% Overlap

Class 2:
% Overlap

best_1/
best_2

Best % correct
for 2 planes

%
unclassified

best_1/
best_2

1 25 28 22 0.10/0.82
96.15 (25 errors

each class) 1.9 0.39/0.46

2 26 19 33 0.19/0.77
96.4 (30 errors

each class) 1.3 0.41/0.48

3 40 20 60 0.000/0.58

79.7 (150 errors
Class1, 150

errors Class 2) 10.0 0.60/0.90

4 8 4 12 0.00/0.64

92.1 (30 errors
Class1, 30 errors

Class 2) 0.2 0.81/0.84

5 30 23 38 0.00/0.00

70.7 (50 errors
Class1, 50 errors

Class 2) 10.0 0.45/0.81

6 5 4 6 0.05/0.51
95.9 (10 errors

each class) 0.9 0.65/0.71

7 50 0 100 0.69/0.00
96.3 (10 errors

each class) 1.0 0.73/0.79

8 11 18 4 0.26/0.66
99.3 (10 errors

each class) 0.8 0.47/0.58

9 27 24 30 0.09/0.70
95.7 (20 errors

each class) 0.3 0.42/0.44

10 48 49 47 0.09/0.86
94.6 (10 errors

each class) 1.5 0.39/0.51

11: control 75 0 100 0.00/0.00

25 (0<n<500
errors each

class) 0.0 0.00/0.00

 86

3.2.2 MARGIN ALGORITHM

Hypothesis 2 (the order of classes) is irrelevant for the Margin Algorithm. In the context

of most classification algorithms, when rank order by least error is used, this is typically

equivalent to highest accuracy because most algorithms have a classification division of

accuracy and error: error = 100% - accuracy. Therefore, classification using the

heuristic of best attribute order by highest accuracy is equivalent to using the attributes

increasing order of least error of classification. We term this highest accuracy for our

comparison.

On the other hand, the Margin Algorithm has a classification division of

accuracy, error, and unclassified. Thus, error ≠ 100% - accuracy for our algorithm,

unless no points remain as unclassified. By Hypothesis 1, a rank order of classification

that starts classification with the attribute with least true error (not including

unclassified), those points as yet not classified might be classified correctly by attributes

used later. The least error value is the accuracy of classification using the heuristic of

best attribute order where the attributes are used in increasing order of true (not including

unclassified) error of classification. We use this term, i.e., least error, for our

comparison.

3.2.2.1 Results for the Global and Local Versions of the Margin Algorithm

Results for artificial datasets, numbered one through ten, and the control dataset are

shown in Tables 3-4 through 3-7 for the global version and in Tables 3-8 through 3-11 for

the local version of the algorithm.

 87

Table 3-4. Margin (Global Version): Sets #1-3.

PPCP
Algorithm

Margin Algorithm – global version

dataset # --> 1 2 3

best left margin
1.65, 0.55, 0.41, 0.27 1.71, 0.555, 0.41, 0.27 0.74, 0.57, 0.12, 0.44

best right
margin

2.49, 0.67, 0.74, 0.77 2.58, 0.67, 0.72, 0.74 11.21, 0.935, 1.30, 17.54

Best by least
error

4, 3, 1, 2: 3.15%, 3.90%,
4.50%, 5.40%;

3/4 and 2/1 are tied
4, 3, 1, 2: 3.45%, 4.05%,

4.35%, 4.50%
1, 2, 3, 4: 1.80%, 3.90%,

4.20%, 4.65%

Best by
highest

accuracy

3, 4, 2, 1: 82.10%,
79.20%, 71.70%, 60.40%

3, 4, 2, 1: 82.10%, 81.10%,
73.00%, 62.70%

3, 2, 1, 4: 74.20%,
44.90%, 33.90%, 30.60%

Attribute Order
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
1,2,3,4 87.91 80.74 95.09 89.74 84.26 95.21 90.45 83.59 97.31
1,2,4,3 88.42 82.60 94.24 89.09 83.15 95.03 90.48 83.58 97.37
1,3,2,4 89.44 83.49 95.40 89.20 82.32 96.07 90.08 85.73 94.43
1,3,4,2 89.97 84.90 95.03 90.05 84.49 95.62 89.64 84.95 94.34
1,4,2,3 88.08 80.93 95.23 89.56 83.40 95.72 88.33 82.39 94.26
1,4,3,2 88.20 81.22 95.17 89.60 83.21 95.99 88.30 84.01 92.59

2,1,3,4 91.61 89.75 93.46 91.27 88.29 94.24 93.94 89.15 98.73
2,1,4,3 91.11 89.12 93.10 92.27 90.42 94.12 93.75 88.93 98.57
2,3,1,4 91.60 89.42 93.78 92.50 91.41 93.59 93.66 89.29 98.03
2,3,4,1 91.32 88.71 93.93 93.10 91.86 94.35 93.67 88.96 98.38
2,4,1,3 91.75 90.25 93.26 92.50 91.12 93.88 93.51 88.48 98.54
2,4,3,1 91.12 88.17 94.07 92.28 90.20 94.35 93.48 88.85 98.12

3,1,2,4 94.62 92.75 96.50 94.99 93.84 96.13 90.55 86.21 94.89
3,1,4,2 94.84 92.93 96.74 94.73 92.90 96.56 90.90 87.46 94.33
3,2,1,4 93.78 91.93 95.64 94.83 93.87 95.80 90.69 86.25 95.12
3,2,4,1 93.91 91.75 96.08 94.54 93.11 95.96 90.44 85.34 95.53
3,4,1,2 95.36 93.50 97.22 95.24 93.66 96.81 89.23 83.34 95.12
3,4,2,1 94.84 92.46 97.23 95.02 93.61 96.43 90.09 85.03 95.15

4,1,2,3 93.14 91.10 95.18 93.41 90.90 95.92 86.71 79.11 94.31
4,1,3,2 93.04 90.11 95.97 93.33 90.43 96.24 86.84 80.21 93.47
4,2,1,3 92.99 90.53 95.46 93.69 91.53 95.86 87.97 82.01 93.93
4,2,3,1 93.28 90.75 95.80 94.09 92.05 96.13 88.03 81.99 94.07
4,3,1,2 94.32 92.13 96.52 94.70 93.12 96.28 86.86 82.08 91.64
4,3,2,1 94.08 91.78 96.38 94.87 93.72 96.02 87.07 82.14 92.00

maximum 95.36 93.50 97.23 95.24 93.87 96.81 93.94 89.29 98.73
mean 92.03 88.79 95.27 92.69 89.87 95.51 90.19 84.96 95.43
minimum 87.91 80.74 93.10 89.09 82.32 93.59 86.71 79.11 91.64

least error 94.32 92.70 90.45
best accuracy 94.84 95.02 90.69

 88

Table 3-5. Margin (Global Version): Sets #4-6.

PPCP
Algorithm

Margin Algorithm –global version

dataset # --> 4 5 6

best left margin
-0.04, 0.55, -0.06, 4.68 -4.44, 0.315, 0.36, 6.09 -4.57, 0.29, 0.35, 6.06

best right
margin

11.33, 0.71, 0.72, 8.33 11.04, 0.38, 1.64, 26.95 4.68, 0.37, 0.90, 7.78

Best by least
error

1, 2, 3, 4: 3.20%, 4.60%,
6.20%, 6.20%; 3/4 are

tied
2, 4, 1, 3: 3.80%, 4.00%,

4.80%, 5.60%
2, 4 ,3 ,1: 2.80%, 4.80%,

5.20%, 6.00%

Best by
highest

accuracy

3, 2, 4, 1: 73.90%,
71.50%, 65.30%, 29.70%

2, 3, 1, 4: 98.90%,
27.00%, 23.10%, 19.70%

2, 4 ,3 ,1: 98.00%,
95.60%, 73.30%, 62.00%

Attribute Order
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
1,2,3,4 92.24 87.91 96.58 88.66 87.17 90.15 94.64 93.64 95.63
1,2,4,3 91.99 88.53 95.45 87.39 86.58 88.21 94.43 92.99 95.86
1,3,2,4 90.34 85.38 95.30 88.96 90.53 87.39 93.49 91.27 95.71
1,3,4,2 90.73 86.23 95.22 87.03 88.46 85.60 93.34 91.67 95.00
1,4,2,3 89.79 84.14 95.43 87.44 88.25 86.64 94.44 93.08 95.81
1,4,3,2 92.36 88.45 96.27 86.83 87.65 86.02 94.36 93.30 95.42

2,1,3,4 97.26 95.40 99.12 97.68 97.84 97.52 98.38 98.34 98.42
2,1,4,3 96.43 94.09 98.76 97.42 97.58 97.26 98.67 98.58 98.75
2,3,1,4 97.81 96.06 99.56 96.87 96.38 97.36 98.53 98.47 98.58
2,3,4,1 97.64 95.83 99.45 97.00 96.62 97.38 98.54 98.07 99.02
2,4,1,3 96.64 94.76 98.53 96.99 96.60 97.38 98.90 98.51 99.30
2,4,3,1 96.72 94.70 98.75 96.64 96.24 97.03 98.88 98.38 99.38

3,1,2,4 88.49 81.13 95.85 89.71 89.04 90.39 95.94 95.47 96.40
3,1,4,2 90.30 84.82 95.78 89.61 90.82 88.40 95.83 95.48 96.18
3,2,1,4 90.18 84.51 95.86 86.97 82.64 91.30 96.59 96.70 96.47
3,2,4,1 90.20 84.69 95.72 89.28 86.35 92.21 97.18 97.22 97.14
3,4,1,2 90.16 84.61 95.71 88.27 87.63 88.91 96.22 95.97 96.48
3,4,2,1 88.33 80.63 96.03 87.78 84.50 91.06 96.26 95.92 96.61

4,1,2,3 94.15 92.10 96.19 89.07 89.19 88.95 97.36 95.99 98.73
4,1,3,2 95.46 94.08 96.84 89.70 91.29 88.10 97.29 95.73 98.85
4,2,1,3 95.17 92.61 97.74 87.49 85.38 89.60 97.79 96.73 98.85
4,2,3,1 95.70 92.98 98.42 87.10 83.54 90.65 97.69 96.69 98.68
4,3,1,2 95.73 94.10 97.35 87.33 86.20 88.46 97.02 96.28 97.76
4,3,2,1 95.57 93.18 97.95 86.71 83.56 89.85 97.02 96.20 97.83

maximum 97.81 96.06 99.56 97.68 97.84 97.52 98.90 98.58 99.38
mean 93.31 89.62 96.99 90.33 89.58 91.08 96.62 95.86 97.37
minimum 88.33 80.63 95.22 86.71 82.64 85.60 93.34 91.27 95.00

least error 92.24 96.99 98.88
best accuracy 90.20 96.87 98.88

 89

Table 3-6. Margin (Global Version): Sets #7-9.

PPCP
Algorithm

Margin Algorithm –global version

dataset # --> 7 8 9

best left margin
13.75, 2.38, 5.07, -6.65 -2.01, 0.60, 0.24, 0.16 -2.01, 0.11, 0.24, 0.16

best right
margin

28.76, 42.06, 13.18, 25.33 0.16, 1.01, 0.98, 0.98 -1.59, 0.60, 1.115, 0.685

Best by least
error

3, 4, 2, 1: 4.00%, 4.00%,
4.20%, 5.00%; 3/4 are

tied

3, 4, 2, 1: 3.00%, 3.00%,
5.00, 5.80% and 3/4 are

tied

2, 4, 3, 1: 0.00%, 4.60%,
4.60%, 6.80% and 3/4 are

tied

Best by
highest

accuracy

3, 4, 1, 2: 14.40%,
12.90%, 10.50%, 0.00%

3, 4, 1, 2: 55.20%,
33.00%, 0.00, 0.00% and

1/2 are tied
4, 2, 1, 3: 80.20%,

50.00%, 26.90%, 12.50%

Attribute Order
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
1,2,3,4 63.09 62.53 63.64 67.36 69.25 65.47 92.08 88.84 95.32
1,2,4,3 62.58 63.78 61.38 67.45 70.10 64.79 92.10 87.96 96.24
1,3,2,4 64.23 64.43 64.03 75.97 76.51 75.43 89.15 82.34 95.96
1,3,4,2 64.49 65.47 63.50 74.71 72.74 76.68 91.61 87.88 95.34
1,4,2,3 62.90 64.20 61.59 73.84 74.21 73.47 91.42 86.50 96.34
1,4,3,2 63.62 62.40 64.85 73.16 71.96 74.37 89.42 85.34 93.50

2,1,3,4 55.39 57.40 53.38 67.30 68.23 66.37 99.60 99.36 99.84
2,1,4,3 55.02 58.55 51.48 67.93 71.87 63.99 99.88 99.92 99.84
2,3,1,4 57.23 61.45 53.00 75.35 79.53 71.17 98.59 97.32 99.86
2,3,4,1 55.69 57.95 53.43 73.73 72.53 74.92 98.11 96.38 99.84
2,4,1,3 51.51 48.51 54.51 71.66 74.84 68.48 98.91 98.00 99.82
2,4,3,1 52.55 52.64 52.45 74.06 75.64 72.49 99.85 99.94 99.76

3,1,2,4 67.36 69.68 65.04 85.00 83.95 86.04 88.34 81.44 95.24
3,1,4,2 67.44 68.13 66.75 84.72 83.18 86.25 84.29 76.16 92.42
3,2,1,4 66.99 70.79 63.18 85.34 85.44 85.24 88.25 81.82 94.68
3,2,4,1 66.43 71.10 61.77 84.35 82.20 86.51 87.06 80.62 93.50
3,4,1,2 66.77 71.02 62.51 83.69 80.78 86.60 81.97 72.96 90.98
3,4,2,1 67.07 70.60 63.55 83.47 79.76 87.18 91.01 88.76 93.26

4,1,2,3 57.44 49.04 65.84 79.35 81.17 77.53 91.08 85.42 96.74
4,1,3,2 56.93 51.40 62.46 79.24 79.27 79.22 93.01 91.58 94.44
4,2,1,3 55.69 50.73 60.66 79.39 80.55 78.23 92.54 88.00 97.08
4,2,3,1 56.21 49.34 63.08 81.10 81.19 81.02 95.17 92.46 97.88
4,3,1,2 58.15 55.86 60.45 81.18 79.73 82.63 95.04 94.28 95.80
4,3,2,1 58.03 53.59 62.47 81.68 80.20 83.16 93.52 91.44 95.60

maximum 67.44 71.10 66.75 85.34 85.44 87.18 99.88 99.94 99.86
mean 60.53 60.44 60.62 77.13 77.28 76.97 92.58 88.95 96.22
minimum 51.51 48.51 51.48 67.30 68.23 63.99 81.97 72.96 90.98

least error 67.07 83.47 99.85
best accuracy 66.77 83.69 92.54

 90

Table 3-7. Margin (Global Version): Set #10 and control set.

PPCP
Algortihm

Margin Algorithm –global version

dataset # --> 10 control

best left margin
-1.38, 0.59, 0.53, -0.05 120.58, 0.17, 6.78, -0.79

best right
margin

1.14, 1.72, 2.45, 0.18 127.79, 0.19, 8.25, -0.62

Best by least
error

2, 1, 4,3: 3.80%, 5.00%, 5.20%,
5.20%; 3/4 are tied

2, 3, 4, 1: 73.20%, 79.00%, 80.20%,
82.20%

Best by
highest

accuracy

4, 3, 1, 2: 77.2%, 17.5%, 2.00%,
0.00%

1, 4, 3, 2: 40.00%, 39.40%, 38.40%,
37.20%

Attribute Order
Total %
Correct

Class 1 %
Correct

Class 2 %
Correct

Total %
Correct

Class 1 %
Correct

Class 2 %
Correct

1,2,3,4 82.94 92.87 73.01 49.28 58.26 40.30
1,2,4,3 85.10 93.26 76.93 49.38 58.23 40.52
1,3,2,4 86.62 93.21 80.04 49.36 57.95 40.78
1,3,4,2 86.42 93.93 78.92 49.53 58.00 41.05
1,4,2,3 87.61 94.27 80.94 49.33 56.57 42.08
1,4,3,2 86.54 93.49 79.59 49.36 57.11 41.62

2,1,3,4 86.16 93.46 78.87 49.46 56.81 42.10
2,1,4,3 86.14 93.28 79.00 49.45 58.13 40.76
2,3,1,4 79.83 93.08 66.58 49.37 57.44 41.29
2,3,4,1 84.54 94.70 74.39 49.37 58.21 40.53
2,4,1,3 88.35 95.29 81.40 49.48 57.62 41.35
2,4,3,1 88.73 95.12 82.33 49.70 59.40 40.00

3,1,2,4 83.69 91.85 75.54 49.45 55.79 43.11
3,1,4,2 85.43 91.90 78.97 49.32 56.50 42.13
3,2,1,4 85.38 92.14 78.62 49.40 56.85 41.96
3,2,4,1 87.75 93.31 82.19 49.26 57.11 41.42
3,4,1,2 86.69 91.41 81.96 49.47 55.74 43.20
3,4,2,1 84.39 89.66 79.11 49.36 55.56 43.17

4,1,2,3 94.66 96.60 92.72 49.37 56.13 42.62
4,1,3,2 94.71 96.73 92.70 49.54 58.62 40.47
4,2,1,3 94.82 96.91 92.73 49.52 59.26 39.78
4,2,3,1 94.61 96.41 92.80 49.41 58.75 40.08
4,3,1,2 94.62 96.61 92.63 49.34 58.02 40.67
4,3,2,1 94.84 96.96 92.73 49.62 55.45 43.78

maximum 94.84 96.96 92.80 49.70 59.40 43.78
mean 87.94 94.02 81.86 49.42 57.40 41.45
minimum 79.83 89.66 66.58 49.26 55.45 39.78

least error 86.14 49.37
best accuracy 94.62 49.36

 91

Table 3-8. Margin (Local Version): Sets #1-3.

PPCP
Algorithm

Margin Algorithm – local version

dataset # --> 1 2 3

best left margin
1.65, 0.55, 0.41, 0.27 1.71, 0.555, 0.41, 0.27 0.74, 0.57, 0.12, 0.44

best right
margin

2.49, 0.67, 0.74, 0.77 2.58, 0.67, 0.72, 0.74 11.21, 0.935, 1.30, 17.54

Best by least
error

4, 3, 1, 2: 3.15%, 3.90%,
4.50%, 5.40%;

3/4 and 2/1 are tied
4, 3, 1, 2: 3.45%, 4.05%,

4.35%, 4.50%
1, 2, 3, 4: 1.80%, 3.90%,

4.20%, 4.65%

Best by
highest

accuracy

3, 4, 2, 1: 82.10%,
79.20%, 71.70%, 60.40%

3, 4, 2, 1: 82.10%, 81.10%,
73.00%, 62.70%

3, 2, 1, 4: 74.20%,
44.90%, 33.90%, 30.60%

Attribute Order
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
1,2,3,4 89.05 83.38 94.72 91.27 87.42 95.12 91.12 84.76 97.48
1,2,4,3 85.97 80.72 91.22 86.67 79.10 94.24 90.16 82.58 97.74
1,3,2,4 88.60 81.42 95.78 90.95 84.68 97.22 89.23 83.60 94.86
1,3,4,2 89.86 85.54 94.18 87.75 81.96 93.54 90.09 86.38 93.80
1,4,2,3 89.44 85.14 93.74 87.68 80.56 94.80 89.24 84.62 93.86
1,4,3,2 86.56 76.22 96.90 89.25 81.56 96.94 87.15 80.46 93.84

2,1,3,4 92.72 91.98 93.46 91.34 88.94 93.74 93.44 89.56 97.32
2,1,4,3 89.79 86.30 93.28 92.08 88.76 95.40 93.59 88.94 98.24
2,3,1,4 91.68 92.28 91.08 93.73 92.96 94.50 93.94 89.28 98.60
2,3,4,1 91.30 88.34 94.26 93.36 92.32 94.40 94.10 89.80 98.40
2,4,1,3 91.93 90.76 93.10 92.99 92.30 93.68 93.93 89.10 98.76
2,4,3,1 91.51 88.26 94.76 94.02 93.94 94.10 93.60 89.10 98.10

3,1,2,4 94.33 92.26 96.40 94.73 91.92 97.54 89.12 82.32 95.92
3,1,4,2 94.46 93.04 95.88 94.53 91.90 97.16 88.08 79.92 96.24
3,2,1,4 93.63 91.54 95.72 93.86 89.96 97.76 90.83 85.80 95.86
3,2,4,1 94.18 93.72 94.64 94.83 93.28 96.38 90.60 85.76 95.44
3,4,1,2 95.75 94.26 97.24 95.75 95.58 95.92 86.09 76.30 95.88
3,4,2,1 95.54 94.08 97.0094.49 91.74 97.24 86.92 77.98 95.86

4,1,2,3 93.48 91.66 95.30 93.55 90.94 96.16 84.20 71.88 96.52
4,1,3,2 93.30 90.66 95.94 92.36 88.36 96.36 86.24 78.82 93.66
4,2,1,3 91.62 85.36 97.88 94.52 94.84 94.20 88.21 81.50 94.92
4,2,3,1 93.11 91.02 95.20 94.58 92.62 96.54 87.36 80.20 94.52
4,3,1,2 95.03 94.62 95.44 92.70 88.74 96.66 88.02 82.96 93.08
4,3,2,1 94.90 93.08 96.72 94.89 93.88 95.90 86.59 82.04 91.14

maximum 95.75 94.62 97.88 95.75 95.58 97.76 94.10 89.80 98.76
mean 91.99 88.99 94.99 92.58 89.51 95.65 89.66 83.49 95.84
minimum 85.97 76.22 91.08 86.67 79.10 93.54 84.20 71.88 91.14

least error 95.03 92.70 91.12
best accuracy 95.54 94.49 90.83

 92

Table 3-9. Margin (Local Version): Sets #4-6.

PPCP
Algorithm

Margin Algorithm – local version

dataset # --> 4 5 6

best left margin
-0.04, 0.55, -0.06, 4.68 -4.44, 0.315, 0.36, 6.09 -4.57, 0.29, 0.35, 6.06

best right
margin

11.33, 0.71, 0.72, 8.33 11.04, 0.38, 1.64, 26.95 4.68, 0.37, 0.90, 7.78

Best by least
error

1, 2, 3, 4: 3.20%, 4.60%,
6.20%, 6.20%; 3/4 are

tied
2, 4, 1, 3: 3.80%, 4.00%,

4.80%, 5.60%
2, 4 ,3 ,1: 2.80%, 4.80%,

5.20%, 6.00%

Best by
highest

accuracy

3, 2, 4, 1: 73.90%,
71.50%, 65.30%, 29.70%

2, 3, 1, 4: 98.90%,
27.00%, 23.10%, 19.70%

2, 4 ,3 ,1: 98.00%,
95.60%, 73.30%, 62.00%

Attribute Order
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
1,2,3,4 89.87 83.38 96.36 90.08 90.84 89.32 93.84 92.82 94.86
1,2,4,3 87.98 79.54 96.42 89.35 89.44 89.26 92.91 89.52 96.30
1,3,2,4 89.20 82.84 95.56 84.52 83.20 85.84 93.75 91.88 95.62
1,3,4,2 92.16 89.24 95.08 90.61 91.34 89.88 90.64 84.00 97.28
1,4,2,3 91.63 88.88 94.38 87.83 85.94 89.72 92.51 89.88 95.14
1,4,3,2 89.58 82.14 97.02 88.88 92.20 85.56 93.37 91.04 95.70

2,1,3,4 97.36 95.40 99.32 97.55 97.94 97.16 98.58 98.50 98.66
2,1,4,3 96.72 94.32 99.12 98.17 98.30 98.04 98.67 98.38 98.96
2,3,1,4 97.56 95.70 99.42 96.72 96.08 97.36 98.57 98.40 98.74
2,3,4,1 96.63 93.46 99.80 95.70 93.84 97.56 98.53 98.24 98.82
2,4,1,3 96.53 94.32 98.74 97.06 97.30 96.82 98.76 98.26 99.26
2,4,3,1 96.19 93.40 98.98 95.30 94.00 96.60 98.93 98.50 99.36

3,1,2,4 87.82 79.86 95.78 90.92 91.42 90.42 96.23 96.16 96.30
3,1,4,2 85.31 73.98 96.64 90.51 90.08 90.94 96.18 95.56 96.80
3,2,1,4 92.27 88.06 96.48 88.21 84.10 92.32 96.45 95.90 97.00
3,2,4,1 88.77 81.58 95.96 89.77 87.84 91.70 96.68 96.70 96.66
3,4,1,2 93.11 90.60 95.62 85.46 82.16 88.76 96.36 96.24 96.48
3,4,2,1 90.00 84.08 95.92 91.27 89.80 92.74 95.90 95.00 96.80

4,1,2,3 93.58 90.10 97.06 90.43 90.74 90.12 97.44 96.68 98.20
4,1,3,2 94.66 91.64 97.68 92.18 93.28 91.08 96.88 95.20 98.56
4,2,1,3 94.55 91.74 97.36 85.70 85.06 86.34 97.79 97.10 98.48
4,2,3,1 95.68 92.86 98.50 89.90 87.28 92.52 97.82 96.80 98.84
4,3,1,2 95.99 93.90 98.08 89.77 87.90 91.64 96.92 96.18 97.66
4,3,2,1 95.31 92.52 98.10 89.79 86.32 93.26 96.59 95.18 98.00

maximum 97.56 95.70 99.80 98.17 98.30 98.04 98.93 98.50 99.36
mean 92.85 88.48 97.22 91.07 90.27 91.87 96.26 95.09 97.44
minimum 85.31 73.98 94.38 84.52 82.16 85.56 90.64 84.00 94.86

least error 89.87 97.06 98.93
best accuracy 88.77 96.72 98.93

 93

Table 3-10. Margin (Local Version): Sets #7-9.

PPCP
Algorithm

Margin Algorithm – local version

dataset # --> 7 8 9

best left margin
13.75, 2.38, 5.07, -6.65 -2.01, 0.60, 0.24, 0.16 -2.01, 0.11, 0.24, 0.16

best right
margin

28.76, 42.06, 13.18, 25.33 0.16, 1.01, 0.98, 0.98 -1.59, 0.60, 1.115, 0.685

Best by least
error

3, 4, 2, 1: 4.00%, 4.00%,
4.20%, 5.00%; 3/4 are

tied

3, 4, 2, 1: 3.00%, 3.00%,
5.00, 5.80% and 3/4 are

tied

2, 4, 3, 1: 0.00%, 4.60%,
4.60%, 6.80% and 3/4 are

tied

Best by
highest

accuracy

3, 4, 1, 2: 14.40%,
12.90%, 10.50%, 0.00%

3, 4, 1, 2: 55.20%,
33.00%, 0.00, 0.00% and

1/2 are tied
4, 2, 1, 3: 80.20%,

50.00%, 26.90%, 12.50%

Attribute Order
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
Total %
Correct

Class 1
%

Correct

Class 2
%

Correct
1,2,3,4 63.67 59.24 68.10 67.94 67.32 68.56 92.08 88.84 95.32
1,2,4,3 62.67 64.62 60.72 67.76 75.00 60.52 92.10 87.96 96.24
1,3,2,4 64.40 64.46 64.34 76.85 79.82 73.88 89.15 82.34 95.96
1,3,4,2 65.29 64.62 65.96 76.26 76.60 75.92 91.61 87.88 95.34
1,4,2,3 63.09 71.90 54.28 75.04 76.82 73.26 91.42 86.50 96.34
1,4,3,2 63.24 60.38 66.10 72.02 68.86 75.18 89.42 85.34 93.50

2,1,3,4 56.62 59.12 54.12 69.19 75.04 63.34 99.60 99.36 99.84
2,1,4,3 52.85 49.26 56.44 67.85 77.08 58.62 99.88 99.92 99.84
2,3,1,4 57.46 57.74 57.18 73.93 73.06 74.80 98.59 97.32 99.86
2,3,4,1 55.15 56.76 53.54 72.99 71.78 74.20 98.11 96.38 99.84
2,4,1,3 50.82 50.74 50.90 70.73 68.86 72.60 98.91 98.00 99.82
2,4,3,1 53.12 56.40 49.84 74.02 78.38 69.66 99.85 99.94 99.76

3,1,2,4 66.82 67.46 66.18 85.19 84.18 86.20 88.34 81.44 95.24
3,1,4,2 66.96 70.52 63.40 85.40 85.34 85.46 84.29 76.16 92.42
3,2,1,4 66.45 73.16 59.74 84.51 82.72 86.30 88.25 81.82 94.68
3,2,4,1 66.76 70.10 63.42 86.07 88.88 83.26 87.06 80.62 93.50
3,4,1,2 67.28 70.70 63.86 84.55 82.06 87.04 81.97 72.96 90.98
3,4,2,1 67.68 72.54 62.82 81.89 76.24 87.54 91.01 88.76 93.26

4,1,2,3 58.34 46.86 69.82 80.37 84.36 76.38 91.08 85.42 96.74
4,1,3,2 58.23 48.70 67.76 78.82 75.46 82.18 93.01 91.58 94.44
4,2,1,3 54.91 51.82 58.00 79.93 80.42 79.44 92.54 88.00 97.08
4,2,3,1 57.48 48.86 66.10 82.07 85.16 78.98 95.17 92.46 97.88
4,3,1,2 57.81 67.74 47.88 82.47 81.40 83.54 95.04 94.28 95.80
4,3,2,1 57.63 63.20 52.06 81.78 77.42 86.14 93.52 91.44 95.60

maximum 67.68 73.16 69.82 86.07 88.88 87.54 99.88 99.94 99.86
mean 60.61 61.12 60.11 77.40 78.01 76.79 92.58 88.95 96.22
minimum 50.82 46.86 47.88 67.76 67.32 58.62 81.97 72.96 90.98

least error 67.68 81.78 99.85
best accuracy 67.28 84.55 92.54

 94

Table 3-11. Margin (Local Version): Set #10 and control set.

PPCP
Algorithm

Margin Algorithm – local version

dataset # --> 10 control

best left margin
-1.38, 0.59, 0.53, -0.05 120.58, 0.17, 6.78, -0.79

best right
margin

1.14, 1.72, 2.45, 0.18 127.79, 0.19, 8.25, -0.62

Best by least
error

2, 1, 4,3: 3.80%, 5.00%, 5.20%,
5.20%; 3/4 are tied

2, 3, 4, 1: 73.20%, 79.00%, 80.20%,
82.20%

Best by
highest

accuracy

4, 3, 1, 2: 77.2%, 17.5%, 2.00%,
0.00%

1, 4, 3, 2: 40.00%, 39.40%, 38.40%,
37.20%

Attribute Order
Total %
Correct

Class 1 %
Correct

Class 2 %
Correct

Total %
Correct

Class 1 %
Correct

Class 2 %
Correct

1,2,3,4 92.24 87.64 96.84 49.47 60.60 38.34
1,2,4,3 91.82 86.78 96.86 49.17 64.80 33.54
1,3,2,4 91.70 88.92 94.48 48.54 54.26 42.82
1,3,4,2 89.06 83.18 94.94 49.64 55.20 44.08
1,4,2,3 90.32 84.18 96.46 49.16 60.02 38.30
1,4,3,2 91.15 87.00 95.30 49.30 55.60 43.00

2,1,3,4 99.50 99.24 99.76 49.63 58.78 40.48
2,1,4,3 99.39 98.96 99.82 49.72 57.02 42.42
2,3,1,4 98.33 96.98 99.68 48.83 60.74 36.92
2,3,4,1 99.09 98.32 99.86 49.72 56.48 42.96
2,4,1,3 98.68 97.42 99.94 50.27 61.04 39.50
2,4,3,1 99.41 99.04 99.78 49.01 57.52 40.50

3,1,2,4 89.67 84.10 95.24 49.19 57.10 41.28
3,1,4,2 86.62 80.58 92.66 49.90 60.44 39.36
3,2,1,4 88.23 81.80 94.66 49.32 62.84 35.80
3,2,4,1 85.08 80.94 89.22 49.56 56.08 43.04
3,4,1,2 89.68 88.02 91.34 49.91 52.88 46.94
3,4,2,1 87.90 84.50 91.30 49.49 51.48 47.50

4,1,2,3 93.65 91.54 95.76 50.08 55.64 44.52
4,1,3,2 92.27 90.36 94.18 50.26 58.76 41.76
4,2,1,3 94.79 91.88 97.70 49.42 57.76 41.08
4,2,3,1 92.57 88.28 96.86 49.18 57.96 40.40
4,3,1,2 92.52 89.70 95.34 49.07 55.38 42.76
4,3,2,1 92.26 89.36 95.16 49.24 63.40 35.08

maximum 99.50 99.24 99.94 50.27 64.80 47.50
mean 92.75 89.53 95.96 49.46 57.99 40.93
minimum 85.08 80.58 89.22 48.54 51.48 33.54

least error 99.39 49.72
best accuracy 92.52 49.30

 95

3.2.2.2 Results and Conclusions

We tested Hypothesis 1, that classification by rank order of least error will give higher

classification accuracy than rank order of classification by highest accuracy. Results for

the global version and the local version of the algorithm are shown in Figures 3-11 and 3-

12, respectively. The control set (#11) shows ~50% for each class, regardless of the

version of the algorithm, as it should. The results are almost an exact tie: five sets are

better classified using highest accuracy as the filter, four sets are better classified using

least error as the filter, and there is one tie. There seems to be little difference (with

these data sets) by way of accuracy on test data regarding the choice of these two filters.

While we have only a small number of data sets, we must reject Hypothesis 1 at this

point.

Margin - Global Version
Comparison of Heuristics

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

11 Artificial 4-D Datasets

%
 C

la
ss

ifi
ed

 C
or

re
ct

ly

Maximum
Mean
Minimum
Least Error
Highest Accuracy

Figure3-11. Margin (Global Version): Comparison of Two Heuristics.

 96

Margin - Local Version
Comparison of Heuristics

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

11 Artificial 4-D Datasets

%
 C

la
ss

ifi
ed

 C
or

re
ct

ly

Maximum
Mean
Minimum
Least Error
Highest Accuracy

Figure 3-12. Margin (Local Version): Comparison of Two Heuristics.

3.2.3 BOX ALGORITHM

In testing with artificial, 2-dimensional sets, Hypothesis 2 (classification accuracy by

order of classes) was the same regardless of the shape used (circles, cubes, symmetric

boxes, or asymmetric boxes). Classification accuracy by circles and cubes was similar,

with symmetric and asymmetric rectangles being able to gain accuracy at higher

computational cost. Testing is now extended to ten artificial sets (plus a control set) in 4-

dimensions. We test two hypotheses here:

Hypothesis 2 : The order of classes used will change the classification accuracy.

Hypothesis 3 : A symmetric box will have higher classification accuracy than a

hypercube.

Since an example is only classified as inside a box when it is within all

dimensions of the box, Hypothesis 1 (the order of attributes) is irrelevant..

 97

3.2.3.1 Results and Conclusions

Tables 3-12 and 3-13 show the results of testing for Hypothesis 2 (the class order

hypothesis) and Hypothesis 3 (the shape hypothesis), respectively.

For datasets 1, 2, 5, 7, 10, and the control set, there was little difference in the

overall accuracy for the hypercube when Hypothesis 2 was tested. However, the

accuracies of Class 1 and Class 2 were approximately reversed. This was true for each

the symmetric rectangle also.

For datasets 3, 4, 6, 8, and 9, there was not only a change in the overall accuracy,

but also in the accuracies of each class. Again, this was true for each shape tested.

Table 3-12. Box Algorithm (Cube Version): Comparison of Class Order.

 Box Algorithm (Cube)
 Class 1, then Class 2 Class 2, then Class 1

dataset #
Total: %
Correct

Class 1: %
Correct

Class 2: %
Correct

Total: %
Correct

Class 1: %
Correct

Class 2: %
Correct

1 55.21 92.66 17.77 54.39 17.29 91.49

2 57.90 90.99 24.80 57.27 25.66 88.87

3 49.30 98.60 0.00 65.71 45.47 85.95

4 49.46 98.91 0.00 74.57 69.31 79.83

5 49.10 98.20 0.00 49.37 0.00 98.73

6 57.48 87.59 27.37 71.60 46.93 96.26

7 49.46 98.92 0.00 49.36 0.01 98.71

8 53.02 95.65 10.39 49.52 0.00 99.03

9 68.90 94.04 43.76 49.58 0.40 98.77

10 48.73 97.46 0.00 49.27 0.00 98.54

11: control 49.38 98.75 0.00 49.39 0.00 98.79

 98

When Hypothesis 3 was tested, seven sets showed improvement in the overall

accuracy for one of the class orders and three sets showed improvement for both class

orders when symmetric boxes were used. The improvement was usually a 3% gain. In

general, whichever class gave better classification accuracy for one shape also gave better

accuracy for the other shape.

 Both hypotheses proved true. More work is needed to establish if a clear pattern

as to class order can be determined. Use of the computationally higher symmetric boxes

is justified when even modest gains in classification accuracy are of importance.

Table 3-13. Box Algorithm (Symmetric Rectangle Version): Comparison of Class Order

 Box Algorithm (Symmetric Rectangle)
 Class 1, then Class 2 Class 2, then Class 1

dataset #
Total: %
Correct

Class 1: %
Correct

Class 2: %
Correct

Total: %
Correct

Class 1: %
Correct

Class 2: %
Correct

1 57.18 90.88 23.48 59.20 31.00 87.40

2 58.85 91.06 26.64 59.87 29.26 90.48

3 49.20 98.40 0.00 68.52 45.00 92.04

4 49.24 98.48 0.00 78.05 68.12 87.98

5 48.87 97.74 0.00 49.31 0.02 98.60

6 67.69 80.08 55.30 69.60 79.00 60.20

7 49.25 98.50 0.00 49.10 0.01 98.19

8 53.04 95.24 10.84 49.12 0.00 98.24

9 69.16 94.08 44.24 52.11 10.30 93.92

10 48.54 97.08 0.00 49.20 0.00 98.40

11: control 49.13 98.26 0.00 49.11 0.00 98.22

 99

3.3 CONCLUSIONS

The estimated overlap o found by the Hyperplane Algorithm when no errors are allowed

during the training phase fails to predict which of our three steps is most appropriate to be

used. This is probably due to the presence of outliers (for one or both classes) that are

located between the means of the two classes. Their presence distorts the estimate.

However, if we allow some errors during the training phase, the algorithm is much more

robust and the appropriate steps are much more likely to be predicted.

 For example, set #1 has an estimated overlap of 25% when no errors are allowed

during the training phase. From this, we would choose the second step, the Margin

Algorithm. If we allow some errors during training, the Hyperplane Algorithm gives

96% accuracy for a cross-validation set, which is unbeaten by other steps of the

classification procedure. Both versions of the Margin Algorithm almost match this

accuracy with either rank order of classification used.

 The use of the overlap must therefore be tempered with the knowledge that

outliers may substantially interfer with a meaningful estimate. By allowing a small

amount of error during the training of parameters, this is easily overcome. When we do

this, we see that no estimate of overlap exceeds 10% for set #1 and the Box Algorithm is

not called as a third step.

 The Box Algorithm does not classify well for set #1. In particular, whichever of

the two classes is classified second is not classified with high accuracy. The sides of the

box are orthogonal to the attribute axes. It may be that each class for this set could be

successfully modeled by a box with sides not orthogonal to the attribute axes.

 We consider the allowance of some errors during training to minimize errors

during testing as a tuning of the algorithm. Many algorithms use a similar approach. For

 100

instance, a decision tree algorithm will usually attain very high accuracy on training data,

but a lower accuracy on testing data, i.e. previously unseen data. The classification

parameters are adjusted to minimize the error on the test set and these parameters are

used for future classification.

For real-life datasets in Chapter 4, we will use:

• The rank order of classification of highest accuracy (highest-to-lowest)

• The estimate of overlap attained for the best accuracy (with errors allowed

during training) to determine the next step of the classification procedure.

 101

Chapter 4:

Experiments – Real Datasets

When classifying or estimating the unknown, no one method will always work best.

Certainly though, some methods work better than others do. In addition, some methods

work very well in a particular circumstance. Ensemble methods that use different

methods in different situations attempt to make the best of various approaches by

combining them. Hybrid/ensemble classification systems which use multiple classifiers

have been shown to be useful [34], [35], [36], [37], [38]. The Paired Planes

Classification Procedure uses the same idea to add to performance, but the methods of the

ensemble are strongly related and thus properly referred to as steps rather than different

classifiers. The Paired Planes Classification Procedure performs competitively

throughout, and yields transparent classifications that can be used to understand the

nature of the classification.

In particular, we wish to evaluate the performance of the Paired Planes

Classification Procedure on real-life datasets. As with the artificial sets in Chapter 3, the

objectives here are to test our classification procedure (Hyperplane Algorithm Margin

Algorithm Box Algorithm) and several hypotheses:

Hypothesis 1 (Margin Algorithm): A filter using rank order of classification by highest

accuracy (best-to-worst) would improve the classification accuracy, particularly in

the local version.

Hypothesis 2 (Box Algorithm): The order of classes used will change the classification

accuracy.

 102

Hypothesis 3 (Box Algorithm): A symmetric box will have higher classification

accuracy than a hypercube.

Initially, we tested two datasets, each of which was a two-class problem.

Algorithms classify one of the datasets, the Wisconsin Breast Cancer dataset [21], to

90%+ accuracy. This set was used to test the feasibility of the Margin Algorithm and to

determine if any adjustments needed to be made. Then the Pima Indians Diabetes dataset

[21] was tested. This data is noisy and algorithms typically classify it with 65-75%

accuracy. These two datasets are representative of the range difficulty in classification

and the classification accuracy attainable by most algorithms. In each of these datasets,

the mean of one class is to the right of the mean of the other set for all attributes. As each

new step of the classification procedure was developed, we tested it on these two

datasets.

We then extended the algorithm beyond the two-class problem to the well-known

Iris dataset [21]. This is a multi-class problem and the mean of one class is not to the

right of the mean of the other set for all attributes. One of the three classes is linearly

separable, while the other two are not.

Because there are only four attributes, the order of attributes used for

classification can be evaluated. This allowed us to validate one of our heuristics, i.e., that

rank order by classification ability for each attribute, is preferable for the Margin

Algorithm, particularly when the local version is used. Having tested, on artificial

datasets, Hypothesis 1 (least error is preferable to highest accuracy) and rejected it, we

use highest accuracy for rank order of classification. For the other two steps (the

Hyperplane Algorithm and the Box Algorithm), all attributes are used, thus there is no

order of use for the attributes, i.e., Hypothesis 2 is irrelevant.

 103

Each of the three steps of the classification procedure were at some time tested on

the Wisconsin Breast Cancer, Pima Indians Diabetes, and Iris datasets, though not in the

order specified by the overlap estimate. Initial testing was by cross-validation with half

of the dataset as a test set. Each dataset was later evaluated using 5-fold cross-validation

for the Hyperplane Algorithm and the Box Algorithm.

Finally, the start-to-finish classification procedure using the overlap estimate o is

used for two additional datasets: StatLog Heart Disease [21] and Contraceptive Method

Choice [21]. This allows a thorough testing of several different ideas, including using

our heuristics, i.e., rank order of classification (by highest accuracy) for the local version

of the Margin Algorithm, maximal area and a penalty for the Box Algorithm, and

classification by class order for both of these; as well as our 3-step classification

procedure. We used 5-fold cross-validation throughout.

 In addition to using our classification procedure (Hyperplane Algorithm

Margin Algorithm Box Algorithm) for these two datasets, we also classify by any step

that would be skipped, as determined by the overlap estimate. We are thus able to state,

when the overlap is used to decide the steps and their sequence, whether the procedure

serves to give the best classification possible using these three algorithms.

For the Wisconsin Breast Cancer dataset, there are 16 missing attribute values.

We explain in section 4.1 how we deal with these.

4.1 WISCONSIN BREAST CANCER

The Wisconsin Breast Cancer dataset is a benchmark dataset available from the

Information and Computer Science Department, University of California, Irvine [21].

 104

Of the 699 samples, 16 correspond to missing attributes. We remove these for the

Margin Algorithm, which does not require their removal, unlike the Hyperplane

Algorithm and the Box Algorithm, which require all attributes to have values. We use

the average value for the attribute, as calculated from the training set, as a replacement

for missing values when classifying by the Hyperplane or Box Algorithm. The data is

composed of nine attributes, plus a patient identifier attribute and a class attribute. There

are 241 positive (malignant) and 458 negative (benign) instances. Thus, about one third

are positive and two thirds are negative. The class distribution and a short statistical

analysis are shown in Tables 4-1 and 4-2, respectively.

 This breast cancer database was obtained from the University of Wisconsin

Hospitals, Madison from Dr. William H. Wolberg [21]. Samples arrive periodically as

Dr. Wolberg reports his clinical cases. The database therefore reflects this chronological

grouping of the data. This grouping information appears immediately below, having

been removed from the data itself:

Group 1: 367 instances (January 1989)

Group 2: 70 instances (October 1989)

Group 3: 31 instances (February 1990)

Group 4: 17 instances (April 1990)

Group 5: 48 instances (August 1990)

Group 6: 49 instances (Updated January 1991)

Group 7: 31 instances (June 1991)

Group 8: 86 instances (November 1991)

Total: 699 points (as of the donated database on 15 July 1992)

 105

Number of Attributes: 10 plus the class attribute

The eleven attributes are (class attribute has been moved to last column):

1. Sample code number (id number)

2. Clump Thickness

3. Uniformity of Cell Size

4. Uniformity of Cell Shape

5. Marginal Adhesion

6. Single Epithelial Cell Size

7. Bare Nuclei

8. Bland Chromatin

9. Normal Nucleoli

10. Mitoses

11. Class: 2 for benign, 4 for malignant

Missing Attribute Values: 16

There are 16 instances in Groups 1 to 6 that contain a single missing (i.e., unavailable)

attribute value, now denoted by "?" (in the downloaded dataset).

Table 4-1. Wisconsin Breast Cancer: Class Distribution.

Class Distribution – Wisconsin Breast Cancer

Class Value Number of instances

2 458 (65.5%)

4 241 (34.5%)

 106

Table 4-2. Wisconsin Breast Cancer: Statistical Analysis.

Brief statistical analysis

Attribute Minimum Maximum Mean Standard Deviation

Clump Thickness 1 10 4.4 2.8

Uniformity of Cell
Size

1 10 3.1 3.1

Uniformity of Cell
Shape

1 10 3.2 3.0

Marginal Adhesion 1 10 2.8 2.9

Single Epithelial
Cell Size

1 10 3.2 2.2

Bare Nuclei 1 10 3.5 3.6

Bland Chromatin 1 10 3.4 2.4

Normal Nucleoli 1 10 2.9 3.1

Mitoses 1 10 1.6 1.7

4.1.1 HYPERPLANE ALGORITHM

By allowing some error during the training phase, we are able to attain a classification

accuracy of 96.59%, with each of the classes having a 96%+ classification. This is

shown in Table 4-3 and Figure 4-1.

Table 4-3. Wisconsin Breast Cancer:

various levels of error during training, classification accuracy during testing.

PPCP Algorithm
Wisconsin Breast Cancer - Hyperplane

Algorithm
Error Allowed During Training:

Class 1, Class 2 0%,0% 2%,2% 3%,3% 4%,4%

Total: % Correct 80.07 93.85 96.59 96.10

Class 1: % Correct 92.15 96.45 96.58 95.66

Class 2: % Correct 56.92 88.88 96.60 96.94

 107

The amount of error allowed during training has a significant effect on the

classification ability of the hyperplanes found. In particular, the classification for Class 2

is only ~57% unless error during training is allowed. When 3% error for each class is

allowed during training, classification accuracy increases for Class 1 by ~4% and for

Class 2 by ~40%.

Wisconsin Breast Cancer Dataset
Hyperlane Algorithm

Results on Test Set

0
10
20
30
40
50
60
70
80
90

100

0%, 0% 2%, 2% 3%, 3% 4%, 4%

Allowed Error in Training: Class 1, Class 2

%
 A

cc
ur

ac
y

Total: % Correct
Class 1
Class 2

Figure 4-1. Wisconsin Breast Cancer: various levels of error during training.

By our classification procedure, we would use the classification parameters

returned by this algorithm and not perform step 2 (the Margin Algorithm) or step 3 (the

Box Algorithm).

 108

4.1.2 MARGIN ALGORITHM

We present results for each, then compare the two versions.

Local Version

Table 4-4 shows the results for each version of the algorithm on ten runs of the algorithm

[24]. Results over ten runs have 92.6% accuracy.

Table 4-4. Wisconsin Breast Cancer – learning constants during 10 runs

of the Margin Algorithm (local version) [24].

Run # % Correct of Test Data

1 92.3
2 93.0
3 93.0
4 93.0
5 91.5
6 91.9
7 92.1
8 92.3
9 93.4

10 93.4

Mean: 92.6

Global Version

Table 4-5 shows the learning constants found for the algorithm as well as the

classification accuracy for both training and test sets during ten sample runs [25]. The

average classification accuracy for training was very close to the average classification

accuracy for the test sets. The learning constants indicate that on average the margins are

approximately one standard deviation from the mean for each class (as computed from

 109

the training data) and toward the mean of the other class. We can infer that there is little

overlap and that the classes are compact, i.e., the points are near one another at the mean.

Table 4-5. Wisconsin Breast Cancer – learning constants during 10 runs

of the Margin Algorithm (global version) [24].

Run # ηA ηB % Correct of
Training Data

% Correct of
Test Data

1 2 2 93.0 94.2

2 0 0.1 94.7 95.5

3 0 0 95.6 94.6

4 0 0 96.9 95.6

5 1.9 1.7 94.7 95.1

6 1.8 2 96.9 92.5

7 0 0.3 94.3 94.1

8 0 0.3 96.5 95.5

9 2 1.6 94.3 95.3

10 1.7 1.8 93.4 94.4

Mean: .94 .98 95.0 94.7

On a training run of the entire dataset, 25 of 444 benign cases were misclassified

(5.6%), 9 of 239 malignant cases were misclassified (4.8%), and 3 of the 683 cases were

not classified (0.4%), for a total of 94.6% classified accurately.

Comparison of Versions

Using the same training data, the learning constants were found for each version and then

used on the same test set. Results over ten runs are shown in Table 4-6 [25]. The global

version consistently classifies more accurately by ~2%.

 110

Table 4-6. Wisconsin Breast Cancer:

comparison between versions of the Margin Algorithm [25].

4.1.3 BOX ALGORITHM

The results range from 91.13% to 94.36% average accuracy of classification for the

Wisconsin Breast Cancer dataset for the initial testing (using symmetric rectangles). The

results are averages of 100 trials with 50:50 splits of the data between training and testing

[26].

 In this initial testing, a penalty, for misclassification of points, 0 ≤ penalty ≤ 1 by

a step size of 0.1 was evaluated. Figure 4-2 shows the results. At penalty = 0.3, the

classification accuracy stabilized. At penalty > 0.6, the classification accuracy appeared

to decrease from the maximum. The highest classification accuracy appears to be when

0.2.5 < penalty < 0.7. Similar behavior was observed for the Pima Indians Diabetes

% Correct of Test Data % Correct of Test Data Run #

Local Version Global Version

1 92.3 94.2
2 93.0 95.5
3 93.0 94.6
4 93.0 95.6
5 91.5 95.1
6 91.9 92.5
7 92.1 94.1
8 92.3 95.5
9 93.4 95.3

10 93.4 94.4

Mean: 92.6 94.7

 111

dataset. Based on the results for these disparate datasets, a penalty = 0.4 was deemed

reasonable to use on all other sets to be tested in this study.

Wisconsin Breast Cancer
Box Algorithm (symmetric rectangle)

90.5
91.0
91.5
92.0
92.5
93.0
93.5
94.0
94.5
95.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Penalty

%
 C

or
re

ct
ly

 C
la

ss
ifi

ed

Figure 4-2. Results averaged over 100 trials for each value of the penalty tested [26].

Subsequently, with 5-fold cross-validation, the hypercube version had an average

overall accuracy of ~88% (shown in Table 4-7 and Figure 4-3) for class order 1 2, i.e.,

Class 1 is used followed by Class 2. In both orders, Class 2 was 91-92% accurate.

Hypothesis 2 is supported, i.e., not only is the overall accuracy changed by class order,

but also the individual class accuracy.

 112

Table 4-7. Wisconsin Breast Cancer (5-fold cross-validation):

Box Algorithm (cube).

PPCP Algorithm
Wisconsin Breast Cancer

Box Algorithm (cube)

Class Order 1,2 2,1

Total: % Correct 87.55 58.12

Class 1: % Correct 85.91 40.16

Class 2: % Correct 90.68 92.21

Wisconsin Breast Cancer Dataset
Box Algorithm (cube)

0
10
20
30
40
50
60
70
80
90

100

1,2 2,1
Classification Order by Class

%
 A

cc
ur

ac
y

Total Correct
Class 1
Class 2

Figure 4-3. Wisconsin Breast Cancer (5-fold cross-validation):

Box Algorithm (cube).

 113

The symmetric rectangle had an average total accuracy of ~92% (shown in Table

4-8 and Figure 4-4) with each of the two orders of classes used to classify. In the order of

Class 1 followed by Class 2, Class 1 was ~91% accurate and class 2 was ~94% accurate.

In the order of class 2 followed by Class 1, Class 1 was ~90% accurate and Class 2 was

~96% accurate.

Table 4-8. Wisconsin Breast Cancer (5-fold cross-validation):

Box Algorithm (symmetric rectangle).

PPCP Algorithm Wisconsin Breast Cancer
Box Algorithm (symmetric rectangle)

Class Order 1,2 2,1

Total: % Correct 92.38 92.14

Class 1: % Correct 91.30 90.22

Class 2: % Correct 94.44 95.83

 There is a slight difference in classification accuracy overall, as well as for

individual class, with the two class orders. It is not sufficient to support Hypothesis 2.

Hypothesis 3 is supported for this dataset: the overall classification accuracy is

increased for each order, as is the classification accuracy for the individual classes. Note

that Class 2 is classified with 90%+ accuracy irregardless of the class order or the shape

used here. We infer that it is (to a large degree) symmetric about the mean in the original

k-dimensional space, thus a hypercube can model it well. On the other hand, Class 1 does

not exhibit this type of symmetry, but symmetry by each attribute axis instead.

Therefore, a symmetric rectangle models it well.

 114

Wisconsin Breast Cancer
Box Algorithm (symmetric rectangle)

0
10
20
30
40
50
60
70
80
90

100

1,2 2,1
Classification Order by Class

%
 A

cc
ur

ac
y

Total Correct
Class 1
Class 2

Figure 4-4. Wisconsin Breast Cancer (5-fold cross-validation):

Box Algorithm (symmetric rectangle).

4.1.4 DISTRIBUTIONS OF THE CLASSES

It is instructive to look at a graph of the distributions of the two classes. By means of a

histogram, an estimate of these distributions was created using the trial data. It is shown

below in Figure 4-5. To mark the means, 0 was used for Class 1 and 1 was used for Class

2. As the reader may recall, the Hyperplane Algorithm uses a constant times the vector

connecting the two means in order to find the hyperplanes desired. It is by the

Hyperplane Algorithm that a count for the histogram is obtained. The position relative to

this vector is generally from 0 to 1, with the constant marking the position between the

means.

 We see in the case of the Wisconsin Breast Cancer dataset that while the

distributions for the two classes overlap, the majority of examples are not in the region of

 115

overlap. Choosing a value between 0.35 and 0.55 gives high accuracy to the

classification. The Hyperplane Algorithm finds two such values as hyperplanes. The

Box Algorithm can also do well when given such distributions for the two classes.

Distribution of Wisconsin
Breast Cancer Trial Data

0

20

40

60

80

100

-0.
10 0.0

5
0.2

0
0.3

5
0.5

0
0.6

5
0.8

0
0.9

5
1.1

0
1.2

5
1.4

0
1.5

5
1.7

0

0 <---> 1
Class 1's mean <---> Class 2's mean

of

 P
oi

nt
s i

n
In

te
rv

al

Class 1
Class 2

Figure 4-5. Wisconsin Breast Cancer:

Approximate Distribution Curves of the Two Classes.

 Next, compare our approximate distribution curves with the densities of points

normal to the separating plane obtained by Mangasarian in [10] and reproduced here in

Figure 4-6 (originally labelled Figure 3). This was published in their landmark paper

describing the Xcyt Image Analysis Program. The benign class on the left (not in the

original feature space of ten attributes) in Figure 4-6 corresponds to our Class 1 on the

 116

left (in the original feature space of nine attributes) in Figure 4-5. Each shows that the

overlap is slight.

Figure 4-6. Densities of benign and malignant points along the

normal ω to the separating plane xTω = γ.

At the time of this paper (1994), there were 569 patients for the training set and

the testing was on 131 subsequent patients in the database rather than the 699 that we

used. The Xcyt program generates a 30-dimensional vector for each instance: (10

original features per image) x (3 other values computed from each original feature).

 117

The program finds a separating plane and, if there are errors, can be recursively

applied to each of the half-spaces previously found. The separating plane is shown here

in Figure 4-7 (originally labelled Figure 2) reproduced from [10]. P1 is the original

separating plane, with P2 and P3 found by recursion. No details of this figure explain

why it is 2-dimensional, so we conclude it is to illustrate the separating plane recursion.

Figure 4-7. MSM-T separating planes.

It is quite possible that the Hyperplane Algorithm could be used recursively on

points in the overlap region, but that is beyond the scope of this study.

4.1.5 CONCLUSIONS

According to our classification procedure, we expect the Hyperplane Algorithm to give

the highest classification accuracy, which it does for this dataset. As this was part of our

original two real-life datasets, Hypothesis 1 was evaluated using highest accuracy for the

 118

local version to determine if the local version could out-perform the global version.

Hypothesis 1 proved true for the local version. Hypothesis 2 is verified only for the

hypercube. Hypothesis 3 proved true.

4.2 PIMA INDIANS DIABETES

The Pima Indian diabetes dataset is also a benchmark dataset available from the

Information and Computer Science Department at the University of California, Irvine

[21]. The Pima Indians dataset is usually a difficult dataset to classify due at least in part

to the noise it contains. The Pima Indian dataset has 768 instances of eight attributes

(none missing), plus a class attribute (diabetic or non-diabetic). Of the 768 instances, 268

are positive (diabetic) and 500 are negative (non-diabetic). Thus, about one third are

positive and two thirds are negative. The class distribution and a short statistical analysis

are shown in Tables 4-9 and 4-10, respectively.

All patients were Pima Indian females at least 21 years old. The nine attributes are:

1. Number of times pregnant

2. Plasma glucose concentration at 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m)2)

7. Diabetes pedigree function

8. Age (years)

9. Class: 1 for tested positive for diabetes, 2 otherwise

 119

Missing Attribute Values: None

Table 4-9. Pima Indians Diabetes: Class Distribution

Class Distribution – Pima Indians Diabetes

Class Value Number of instances

0 500 (65.1%)

1 268 (34.9%)

Table 4-10. Pima Indians Diabetes: Statistical Analysis.

Brief statistical analysis
Attribute number Minimum Maximum Mean Standard Deviation

1 0 17 3.8 3.4

2 0 199 120.9 32.0

3 0 122 69.1 19.4

4 0 99 20.5 16.0

5 0 846 79.8 115.2

6 0 67.1 32.0 7.9

7 0.078 2.42 0.5 0.3

8 21 81 33.2 11.8

4.2.1 HYPERPLANE ALGORITHM

The results (shown in Table 4-11 and Figure 4-8) are 64.94% average accuracy of

classification when errors during training are not allowed. The hyperplane has simply

been placed where all data on one side of it is classified as Class 1, the majority class. By

allowing 20% of Class 1 and 42% of Class 2 to be incorrectly classified during training,

the average accuracy on a test set improves by ~4.5%; in this case, accuracy of Class 1

goes down and accuracy of Class 2 goes up.

 120

Table 4 -11. Pima Indians Diabetes (5-fold cross-validation): Hyperplane Algorithm.

PPCP Algorithm Pima Indians Diabetes
Hyperplane Algorithm

Error Allowed During Training: 0%,0% 20%,20% 40%,40% 20%,42%

Total: % Correct 64.94 64.94 66.23 69.48

Class 1: % Correct 100.00 100.00 71.00 78.00

Class 2: % Correct 0.00 0.00 57.41 53.70

Pima Indians Diabetes
Hyperplane Algorithm

0
10
20
30
40
50
60
70
80
90

100

0%, 0% 20%, 20% 40%, 40% 20%, 42%

Allowed Error in Training: Class 1, Class 2

%
 A

cc
ur

ac
y

Total: % Correct
Class 1
Class 2

Figure 4-8. Pima Indians Diabetes (5-fold cross-validation): Hyperplane Algorithm.

 It appears that as we approach the value of the estimated overlap (without

outliers) as our error allowed during training, we also approach our maximum

classification accuracy by this algorithm. This is also true for the Wisconsin Breast

Cancer dataset.

 121

According to our classification procedure, we would now go to the step 2 (the

Margin Algorithm). Following this, we would decide whether the Hyperplane Algorithm

or the Margin Algorithm would the classifier of choice. Though the Box Algorithm

would not be used normally, we do so in order to evaluate the classification procedure.

4.2.2 MARGIN ALGORITHM

We present results for each, then compare the two versions.

Local Version

Figure 4-9 shows the progress of the algorithm as it steps through the two for loops [24].

A local maximum classified correctly is found for each inner loop. The maximum of

these local maxima is the best local maximum correctly classified. The algorithm uses

the classification parameters for this best local maximum.

 Table 4-12 shows the learning constants found for each attribute during a typical

training run [24]. Rather than the same value of the learning constant for all attributes of

a class, individual values are found based on the classification performance of just that

attribute. These values were the learning constants calculated at the maximum of the

local maxima shown in Figure 4-9.

 122

Figure 4-9. 2-D graph of the progression of the Margin Algorithm (local version) [24].

Table 4-12. Pima Indians Diabetes – learning constants

and % correctly classified by attribute i individually [24].

Attribute #i η i
A η i

B % Correct of Test Data
by Attribute i

1 0.4 0 62.5

2 0.8 0.3 75.9

3 0 0 49.0

4 0.2 0 56.1

5 0.4 0.1 67.2

6 0.7 0 64.4

7 0.5 0 63.2

8 0.3 0.2 65.2

 123

In Table 4-13, results for ten runs of training data for Pima Indians Diabetes

dataset is shown [24]. Approximately one third of the entire dataset was used for

training data, on each run, two thirds as testing data. The rank order of classification

accuracy (most-to-least) by attributes was used.

Table 4-13. Pima Indians Diabetes:

10 runs of the Margin Algorithm (local version) [24].

Figure 4-10 shows the classification accuracy on testing, using the local version of

the Margin Algorithm, and averaging ten runs when the size of the training set varies

from 10% to 70% of the entire dataset.

% Correct of Test Data

Run # Local Version

1 71.4

2 73.7

3 74.7

4 75.8

5 74.2

6 75.3

7 73.4

8 75.3

9 75.3

10 73.7

Mean: 74.3

 124

Figure 4-10. Pima Indians Diabetes: average accuracy vs. % of training data

Margin Algorithm (local version).

Global Version

Table 4-14 shows the ranges of values for both classes and the extensive overlap between

classes [25]. The overlap makes separation appear difficult.

 Table 4-15 shows the ranges of values for both classes after overlap are limited by

the margins created by Margin (global version) [25]. The overlap between classes is no

longer extensive. Note that the minimum values for Class 1 is unchanged, as are the

maximum values for Class 2. The margins are the regions of overlap for each attribute.

 125

Table 4-14. Pima Indians Diabetes: ranges for attribute values for each class [25].

Table 4-15. Pima Indians Diabetes: truncated ranges for attribute values for each class

after training by the Margin Algorithm (global version) to create the margins [25].

 Class 1 (Diabetic) Class 2 (Non-diabetic)

Attribute # Minimum
Value

Maximum
Value

Minimum
Value

Maximum
Value

1 0 13 0 17

2 0 197 0 199

3 0 122 0 114

4 0 60 0 99

5 0 744 0 846

6 0 57.3 0 67.1

7 0.078 2.329 0.088 2.42

8 21 81 21 70

 Class 1 (Diabetic) Class 2 (Non-diabetic)

Attribute # Minimum
Value

Maximum
Value

Minimum
Value

Maximum
Value

1 0 7.4039 2.9009 17

2 0 157.71 107.83 199

3 0 80.705 63.187 114

4 0 29.951 17.892 99

5 0 166.19 62.108 846

6 0 37.025 28.602 67.1

7 0.078 0.72941 0.41378 2.42

8 21 43.735 29.172 70

 126

In this dataset, Class 1 is to the left of Class 2, relative to the origin. Separation of classes

proceeds by classifying the points outside the margin as belonging to Class 1 or Class 2.

The overlaps between the ranges shown in Table 4-14 are the margins and explicitly

shown in Table 4-16.

Table 4-16. Margins for Pima Indians Diabetes.

A surface plot of the classification accuracy on training data is shown in Figure

4-11. The percentage correctly classified is plotted versus ηAσ1 and ηAσ2. For this graph,

one third of the dataset is being used for training and the balance for testing.

Attribute # Left margin Right margin

1 2.9009 7.4039

2 107.83 157.71

3 63.187 80.705

4 17.892 29.951

5 62.108 166.19

6 28.602 37.025

7 0.41378 0.72941

8 29.172 43.735

 127

Figure 4-11. Pima Indians Diabetes: Margin Algorithm (global version)

3-D plot of percentage correctly classified vs. ηAσ1 and ηBσ2.

Comparison of Versions

Using the same training data, the learning constants were found for each version, then

used on the same test set. Results over ten runs are shown in Table 4-17.

On a trial run, the local version classifies the test data with 73.6% accuracy, which

compares favorably with other results in the literature. All points were classified, i.e.,

none were left in the margins. The percentage classified correctly is slightly less than

that of the best single classifier as calculated for that run. On another run, the test results

ηBσ2
ηAσ1

 128

are 75.7%, which is somewhat better than the single best classifier results of 71.1% as

calculated for that run.

Table 4-17. Pima Indians Diabetes – 10 runs comparing the two versions[25].

4.2.3 BOX ALGORITHM

In initial testing, the results range (shown in Figure 4-12) from 71% to 75% average

accuracy of classification for the Pima Indians Diabetes dataset for the initial testing

(cube version) with 100 trials of 50:50 splits of the data between training and testing [26].

% Correct of Test Data % Correct of Test Data
Run # Local Version Global Version

1 71.4 82.5

2 73.7 77.5

3 74.7 83.1

4 75.8 75.7

5 74.2 81.6

6 75.3 81.9

7 73.4 77.5

8 75.3 75.9

9 75.3 79.8

10 73.7 77.5

Mean: 74.3 79.3

 129

Pima Indians Diabetes
Box Algorithm (symmetric rectangle)

70.5
71.0
71.5
72.0
72.5
73.0
73.5
74.0
74.5
75.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Penalty

%
 C

or
re

ct
ly

 C
la

ss
ifi

ed

Figure 4-12. Results averaged over 100 trials for each value of the penalty tested [26].

In this initial testing, a penalty, for misclassification of points, 0 ≤ penalty ≤ 1 by

a step size of 0.1 was evaluated. Figure 4-12 shows the results. At penalty = 0.25, the

classification accuracy is near the maximum. At penalty > 0.6, the classification

accuracy appeared to decrease. The highest classification accuracy appears to be when

0.3 < penalty < 0.75. Based on similar results for the Wisconsin Breast Cancer dataset, a

penalty = 0.4 was deemed reasonable to use on all other sets to be tested in this study.

Subsequently, with 5-fold cross-validation, the hypercube version had an average

total accuracy of ~65% (shown in Table 4-18 and Figure 4-13) with each of the two

orders of classes used to classify. In both orders, Class 1 was ~88% accurate and Class 2

was ~24% accurate.

 130

Table 4-18. Pima Indians Diabetes (5-fold cross-validation):

Box Algorithm (cube).

PPCP Algorithm
Pima Indians Diabetes
Box Algorithm (cube)

Class Order 1,2 2,1

Total: % Correct 65.40 65.10

Class 1: % Correct 88.00 87.13

Class 2: % Correct 23.56 24.31

Pima Indians Dataset
Box Algorithm (cube)

0
10
20
30
40
50
60
70
80
90

100

1,2 2,1
Classification Order by Class

%
 A

cc
ur

ac
y

Total % Correct
Class 1
Class 2

Figure 4-13. Pima Indians Diabetes (5-fold cross-validation):

Box Algorithm (cube).

Table 4-19 and Figure 4-14 show the results for the symmetric rectangle. When

the order was Class 1 followed by Class 2, the symmetric rectangle had an average total

accuracy of ~68%. When Class 1 was followed by Class 2, Class 1 was ~90% accurate

and Class 2 was ~28% accurate.

 131

Table 4-19. Pima Indians Diabetes (5-fold cross-validation):

Box Algorithm (symmetric rectangle).

PPCP Algorithm Pima Indians Diabetes
Box Algorithm (symmetric rectangle)

Class Order 1,2 2,1

Total: % Correct 68.05 33.64

Class 1: % Correct 89.60 0.00

Class 2: % Correct 28.15 95.93

All of the accuracies mentioned to this point showed an increase in accuracy of 1-

5% over the hypercube version. However, in the order of Class 2 followed by Class 1,

Class 1 was ~90% accurate and Class 2 was ~28% accurate. The average total accuracy

dropped to ~33% while the accuracy of Class 2 was greatly increased.

It appears that if Class 1 is modeled well, Class 2 is not, and vice versa. This

indicates a large overlap, as estimated by the Hyperplane Algorithm.

The extent of the box for Class 2 was allowed to go to 5 standard deviations

rather than the usual 3. This was done because with 3 standard deviations, less than 5%

of Class 2 was accurately classified. An assumption of a normal distribution here is not

justified. The symmetric rectangle more successfully models Class 2 than the hypercube

does when using the class order 1 2 while slightly improving the classification accuracy

of Class 1.

 132

Pima Indians Dataset
Box Algorithm (symmetric rectangle)

0
10
20
30
40
50
60
70
80
90

100

1,2 2,1
Classification Order by Class

%
 A

cc
ur

ac
y

Total % Correct
Class 1
Class 2

Figure 4-14. Pima Indians Diabetes (5-fold cross-validation):

Box Algorithm (symmetric rectangle).

All of the accuracies mentioned to this point showed an increase in accuracy of 1-

5% over the hypercube version. However, in the order of Class 2 followed by Class 1,

Class 1 was ~90% accurate and Class 2 was ~28% accurate. The average total accuracy

dropped to ~33% while the accuracy of Class 2 was greatly increased. It would seem that

the box that approximates Class 2 completely encloses Class 1. Even so, it is still not

large enough to include all points of Class 2. This is quite remarkable in view of the fact

that the extent of the box for Class 2 was allowed to go to 5 standard deviations rather

than the usual 3. This was done because with 3 standard deviations, less than 5% of

Class 2 was accurately classified. An assumption of a normal distribution here is not

justified. The symmetric rectangle more successfully models Class 2 than the hypercube

does.

 133

When there is heavy overlap, Hypothesis 2 (class order for classification) holds

true for the symmetric rectangle.

Overall classification accuracy is increased for class order 1 2 when the

symmetric rectangle is used. As the better classification order by class would be used,

Hypothesis 3 (symmetric rectangles classify better than hypercubes) holds then.

4.2.4 DISTRIBUTIONS OF THE CLASSES

We again look at a graph of the estimated distributions of the two classes (shown in

Figure 4-15). As in section 4.1.4, by means of a histogram, an estimate of these

distributions was created using the trial data. This time we do not normalize the vector

connecting the means of the two classes, but simply show the estimated distributions

relative to one another.

 Unlike the case of the Wisconsin Breast Cancer, the distributions for the two

classes overlap greatly, with the majority of examples for both classes in the region of

overlap. It is not possible to choose a value to separate the two classes with high

classification accuracy. This is why the Hyperplane Algorithm is a poor classifier for this

dataset. The Box Algorithm can also do better when given such distributions for the two

classes. If one class were totally inside another, the distribution of one class would be

totally inside the distribution for the other class. This is not true here, so we think this

explains why the Margin Algorithm step more accurately classifies this dataset than other

steps.

 134

Distribution of Pima Indians
DiabetesTrial Data

0
5

10
15
20
25
30
35
40
45

0.7
5

0.9
5

1.1
5

1.3
5

1.5
5

1.7
5

1.9
5

2.1
5

2.3
5

2.5
5

2.7
5

2.9
5

3.1
5

3.3
5

3.5
5

3.7
5

Classes Relative to One Another

of

 P
oi

nt
s i

n
In

te
rv

al

Class 1
Class 2

Figure 4-15. Pima Indians Diabetes:

Approximate Distribution Curves of the Two Classes.

4.2.5 CONCLUSIONS

According to our classification procedure, the Margin Algorithm would give the highest

classification accuracy, which it does for this dataset. As this was part of our original two

real-life datasets, Hypothesis 1 was evaluated using highest accuracy for the local version

to determine if the local version could out-perform the global version. Hypothesis 1

proved true for the local version. Hypothesis 2 is verified only for the symmetric

rectangle. Hypothesis 3 proved true only when the class order was 1 2.

 135

4.3 IRIS

The Iris diabetes dataset is a benchmark dataset available from the Information and

Computer Science Department at the University of California, Irvine [21]. The data is

composed of four attributes, plus a class attribute. The Iris dataset contains three classes

of fifty instances each, where each class refers to a type of iris plant (Iris Setosa, Iris

Versicolor, Iris Virginica). Thus, the classes are evenly distributed. One class is linearly

separable from the other two; the latter are not linearly separable from each other. The

class distribution and a short statistical analysis are shown in Tables 4-20 and 4-21,

respectively.

This is perhaps the best-known database to be found in the pattern recognition

literature. Fisher's paper is a classic in the field and is referenced frequently to this day.

(See Duda & Hart, for example.) This data differs from the data presented in Fisher's

article (identified by Steve Chadwick, spchadwick@espeedaz.net): "The 35th sample

should be: 4.9,3.1,1.5,0.2,"Iris-setosa" where the error is in the fourth feature. The 38th

sample: 4.9,3.6,1.4,0.1,"Iris-setosa" where the errors are in the second and third

features."

The five attributes are:

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class: Iris Setosa, Iris Versicolor, Iris Virginica

Missing Attribute Values: None

 136

Table 4-20. Iris: Class Distribution.

Class Distribution - Iris
Class Value Number of instances
Iris Setosa 50 (33.3%)

Iris Versicolor 50 (33.3%)
Iris Virginica 50 (33.3%)

Table 4-21. Iris: Statistical Analysis.

Brief statistical analysis
Attribute Minimum Maximum Mean Standard Deviation Correlation

sepal length 4.3 7.9 5.84 0.83 0.7826
sepal width 2.0 4.4 3.05 0.43 -0.4194
petal length 1.0 6.9 3.76 1.76 0.9490
petal width 0.1 2.5 1.20 0.76 0.9565

4.3.1 HYPERPLANE ALGORITHM

The classification accuracy (shown in Table 4-22 and Figure 4-16) ranges from 68.40%

when no error is allowed during training to 90.50% when 0%, 15%, and 20% error is

allowed for Class 1, Class 2, and Class 3, respectively, during training. Figure 4-16

shows results with differing amounts of error allowed during training.

Table 4-22. Iris (5-fold cross-validation): Hyperplane Algorithm.

PPCP Algortihm Iris - Hyperplane Algorithm

Error Allowed
During Training:
Class 1, Class 2,

Class 3

0%, 0%,
0%

0%, 0%,
5%

0%, 0%,
15%

0%, 0%,
25%

0%, 15%,
15%

0%, 15%,
20%

Total: % Correct 68.40 84.00 85.97 87.33 90.20 90.50

Class 1: % Correct 97.70 97.10 97.50 100.00 98.20 98.10

Class 2: % Correct 13.50 82.70 84.90 90.00 86.00 87.10

Class 3: % Correct 94.00 72.20 75.50 72.00 86.40 86.30

 137

 When no error is allowed during training, Class 1 (the separable class) and Class 3

are classified with high accuracy. As we increase the allowed error during training, the

classification accuracy of Class 3 decreases while the classification accuracy of Class 2

increases. These two classes are not linearly separable. By allowing error during training

for these two classes, overall classification accuracy is 90%+, with classification accuracy

of 98%+ for Class 1 and classification accuracy of 86%+ for Class 2 as well as Class 3.

Iris Dataset
Hyperplane Algorithm
Results with Test Data

0
10
20
30
40
50
60
70
80
90

100

0%, 0%,
0%

0%, 0%,
5%

0%, 0%,
15%

0%, 0%,
25%

0%, 15%,
15%

Allowed Error in Training: Class 1, Class 2, Class 3

%
 A

cc
ur

ac
y Total: % Correct

Class 1
Class 2
Class 3

Figure 4-16. Iris (5-fold cross-validation): Hyperplane Algorithm.

According to our classification procedure, we would now go to the step 2 (the

Margin Algorithm). Following this, we would decide whether the Hyperplane Algorithm

or the Margin Algorithm would be the classifier of choice. Though the Box Algorithm

would not be used normally, we do so in order to evaluate the classification procedure.

 138

4.3.2 MARGIN ALGORITHM

Previous work [25] showed that Margin is feasible for two-class classification where for

each attribute the mean for Class 1 is to the left of the mean for Class 2. Both a global

version [25] and a local version [26] were tested.

For Iris, Margin is extended beyond two-class classification and the means may

be right-to-left or left-to-right. Figure 4-17 shows the process for a simplified version.

Figure 4-17. Illustration of Margin's Process:

Class 1 vs. non-Class 1 → Class 2 vs. Class 3.

 139

Example 3: Consider the artificial dataset with three classes shown in Figure 4-17. This

is a simple version of the algorithm and the margin edges are not in the final positions.

Starting with the y-attribute, the margin edges (y1, y2) are found and the classification is

made for Class 1 versus non-Class 1. Then the margin edges (x1, x2) are found for the x-

attribute and further classification is made for Class 1 versus non- Class 1. In top ,right

of Figure 4-17, the lower L-shaped area is Class 1 and the upper L-shaped area is non-

Class 1. The small rectangle is unclassified. The margins (x1', x2') and (y1', y2') are used

to further classify points in non-Class 1 as Class 2 versus Class 3. Bottom, left of Figure

4-17 shows the result. Note that there is a second small rectangle that is unclassified.

Two versions of the algorithm are tested: a global version and a local version. For

the local version used, there is a best order of attributes using rank order of classification,

i.e., attributes are used in decreasing order of their highest accuracy. The rank order

classification ability (from highest-to-lowest) is 4 3 1 2, as was determined during

training. The small number of attributes to test how the order of attribute use in

classification affects the accuracy. We present results (shown in Table 4-23) for each,

then compare the two versions.

Local Version

With 100 trial runs for each of the 24 permutations, the results range from 63.32% to

95.57% average accuracy of classification. There is small variation within most

groupings and the overall variation is large.

Global Version

With 100 trial runs for each of the 24 permutations, the average classification accuracy

ranges from 88.89% to 94.33%. There is little variation within each of the groupings

 140

shown starting with a particular attribute and the overall variation is much less than with

the local version.

Table 4-23. Iris: Margin Algorithm (global version vs. local version).

Average % Classified Correctly (100 trials each permutation)

Global Version Local Version

Permutations of
the 4 attributes –
order of use for
classification Ave Correct % (std deviation %) Ave Correct % (std deviation %)
1,2,3,4 90.79 (4.95) 71.24 (3.46)
1,2,4,3 92.64 (4.18) 71.15 (3.23)
1,3,2,4 92.47 (3.84) 71.45 (3.57)
1,3,4,2 93.64 (4.13) 71.37 (3.21)
1,4,2,3 92.83 (3.54) 71.77 (3.32)
1,4,3,2 92.04 (5.20) 71.24 (3.45)

2,1,3,4 88.89 (5.13) 64.48 (5.59)
2,1,4,3 89.17 (4.54) 63.32 (6.12)
2,3,1,4 89.47 (5.07) 69.91 (6.76)
2,3,4,1 91.60 (4.43) 67.35 (6.88)
2,4,1,3 89.92 (4.36) 69.28 (8.08)
2,4,3,1 89.84 (5.00) 69.52 (7.86)

3,1,2,4 92.77 (3.77) 90.83 (3.83)
3,1,4,2 93.68 (3.08) 90.97 (4.30)
3,2,1,4 93.44 (4.50) 92.59 (3.18)
3,2,4,1 94.09 (3.72) 92.51 (3.39)
3,4,1,2 94.43 (3.88) 93.60 (3.23)
3,4,2,1 94.11 (3.75) 93.99 (2.74)

4,1,2,3 93.77 (3.88) 93.99 (3.11)
4,1,3,2 94.08 (3.99) 94.08 (2.94)
4,2,1,3 94.41 (3.45) 94.45 (2.46)
4,2,3,1 94.19 (3.36) 95.44 (1.77)
4,3,1,2 94.01 (3.79) 94.69 (2.98)
4,3,2,1 94.33 (2.97) 95.57 (1.81)

 141

Comparison of Versions

The maximum classification accuracy using each of the four attribute as the initial

classifier is highlighted in bold print in Table 4-23. The attribute order that was predicted

by highest accuracy (4, 3, 1, 2) is highlighted in italicized print. As hypothesized, the

order of attribute used during classification is important, particularly for the local version

of the Margin Algorithm.

 Clearly, attribute order is of great importance in the local version, but it does not

appear to be totally explained by rank order by single components. If it did, we might

reasonably expect 4, 3, 1, 2 (4 3 1 2) to be better than all other permutations. This is

shown false by counterexamples: 4, 2, 3, 1 gives a better (average) classification

accuracy, as does 4, 3, 2, 1. However, the difference is less than 1% and may simply be a

statistical anomaly.

 The two versions were quite close for the overall classification accuracy with the

predicted best order, i.e., by highest accuracy as well as with each version's true best

order. If the processing time for sorting the attributes is a concern, as with very large k,

one may choose the global version.

 According to our classification procedure, we would now stop and return

classification parameters for the Margin Algorithm.

4.3.3 BOX ALGORITHM

A penalty of 0.4 was used in the training, as this appears from previous testing with two

real datasets to be an optimal value. With 5-fold cross-validation, Hypothesis 2 (class

order) and Hypothesis 3 (hypercubes versus symmetric rectangles) were tested and results

are shown in Table 4-24 and Figure 4-18.

 142

 For the cube, as can be seen in the top row of Table 4-23, roughly 80% of the data

is classified correctly by three of the orders and roughly 87% is classified correctly by the

other three of the orders. The order of classification for the second and third classes

affects the overall results. When Class 2 is classified before Class 3, the total accuracy is

better. Also apparent is that whichever of these two classes is classified first has better

classification accuracy. Both of these observations lead to the conclusion that there is a

substantial overlap between them.

Table 4-24. Iris (5-fold cross-validation): Box Algorithm (cube).

PPCP Algorithm Iris - Box Algorithm (cube)

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

Total: % Correct 86.69 80.32 87.05 87.69 80.92 81.31
Class 1: % Correct 88.56 90.60 90.52 91.12 90.32 91.64
Class 2: % Correct 93.12 65.04 93.72 93.92 66.56 66.68
Class 3: % Correct 78.40 85.32 76.92 78.04 85.88 85.60

It is known that these two classes are non-separable. The Hyperplane Algorithm

gave best classification accuracy when it was calculated allowing 15%+ errors during

training. This is an inference of the degree of overlap. The observations regarding Class

2 and Class 3 tend to confirm this.

 143

Iris Dataset
Box Algorithm (cube)

50

60

70

80

90

100

1,2
,3

1,3
,2

2,1
,3

2,3
,1

3,1
,2

3,2
,1

Classification Order by Class

%
 A

cc
ur

ac
y Total Correct

Class 1
Class 2
Class 3

Figure 4-18. Iris (5-fold cross-validation): Box Algorithm (cube).

For the symmetric rectangle, the computational complexity increases quite a bit.

Because of this, preliminary testing was used to roughly approximate the limits of the

dimensions of the box. This was accomplished by using a larger step-size during the for

loops. Results are shown in Table 4-25 and Figure 4-19.

The same patterns are generally seen in the data, but mitigated. Noticeably, the

class order 3, 2, 1 has an improvement in accuracy of 7%. The usual improvement for

symmetric rectangle over cube is 2-5%. This is similar to the results with the artificial

sets in 4-dimensions.

Note that both the overall classification accuracy and the classification accuracy

for a particular class are both affected by order of classification.

 144

Table 4-25. Iris (5-fold cross-validation): Box Algorithm (symmetric rectangle).

PPCP Algorithm Iris - Box Algorithm (symmetric rectangle)

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

Total: % Correct 88.53 84.44 89.07 90.40 85.87 88.67

Class 1:% Correct 90.80 89.33 88.00 87.60 87.20 94.00

Class 2: % Correct 92.80 77.33 94.80 95.20 80.00 84.00

Class 3: % Correct 82.00 86.67 84.40 88.40 90.40 88.00

Iris Dataset
Box Algorithm (symmetric rectangle)

70

75

80

85

90

95

100

1,2
,3

1,3
,2

2,1
,3

2,3
,1

3,1
,2

3,2
,1

Classification Order by Class

%
 A

cc
ur

ac
y Total Correct

Class 1
Class 2
Class 3

Figure 4-19. Iris (5-fold cross-validation): Box Algorithm (symmetric rectangle).

4.1.5 CONCLUSIONS

According to our classification procedure, we expect the Margin Algorithm to give the

highest classification accuracy, which it does for this dataset. Symmetric rectangles

classify more accurately than do hypercubes. Hypothesis 1, Hypothesis 2, and

Hypothesis 3 are verified.

 145

4.4 STATLOG HEART DISEASE

The StatLog Heart Disease dataset is also a benchmark dataset available from the

Information and Computer Science Department at the University of California, Irvine

[21]. The StatLog Heart Disease has 270 instances of thirteen attributes (none missing)

that have been extracted from a larger set of 75 attributes, plus a class attribute (disease or

non-disease). Of the 270 instances, 120 are positive (disease) and 150 are negative (non-

disease). Thus, about 44% are positive and 56% are negative. The class distribution and

a short statistical analysis are shown in Tables 4-26 and 4-27, respectively.

The thirteen attributes are:

1. Age

2. Sex

3. Chest pain type (4 values)

4. Resting blood pressure

5. serum cholesterol in mg/dl

6. Fasting blood sugar > 120 mg/dl

7. Resting electrocardiographic results (values 0,1,2)

8. Maximum heart rate achieved

9. Exercise induced angina

10. Oldpeak = ST depression induced by exercise relative to rest

11. The slope of the peak exercise ST segment

12. Number of major vessels (0-3) colored by fluoroscopy

13. Thal: 3 = normal; 6 = fixed defect; 7 = reversible defect

 146

Attributes types

Real: 1, 4, 5, 8, 10, 12

Ordered: 11

Binary: 2, 6, 9

Nominal: 3, 7, 13

Missing Attribute Values: None

Table 4-26. StatLog Heart Disease: Class Distribution.

Class Distribution - StatLog Heart Disease

Class Value Number of instances

0 150 (55.6%)

1 120 (44.4%)

Table 4-27. StatLog Heart Disease: Statistical Analysis.

Brief statistical analysis

Attribute number Minimum Maximum Mean Standard Deviation

1 29 71 54.4 9.1

2 0 1 0.7 0.5

3 1 4 3.2 1.0

4 29 77 54.4 9.1

5 0 1 0.7 0.5

6 1 4 3.2 1.0

7 94 200 131.3 17.9

8 126 564 249.7 51.7

9 0 1 0.1 0.4

10 0 2 1.0 1.0

11 71 202 149.7 23.2

12 0 1 0.3 0.5

13 0 6.2 1.1 1.1

 147

4.4.1 HYPERPLANE ALGORITHM

The classification accuracy (shown in Table 4-28 and Figure 4-20) ranges from 55.56%

with no error allowed during training to 64.00% when 40% error for Class 1 and 30%

error for Class 2 is allowed during training. Note that by simply choosing Class 1 every

time to classify a generic point x, we can achieve 55.56% accuracy, i.e., this is the

majority class.

 According to our classification procedure, we would now go to step 2 (the Margin

Algorithm). Following this, we would decide whether the Hyperplane Algorithm or the

Margin Algorithm would be the classifier of choice. Though the Box Algorithm would

not be used normally, once again we do so in order to evaluate the classification

procedure.

Table 4-28. StatLog Heart Disease (5-fold cross-validation): Hyperplane Algorithm.

PPCP Algorithm StatLog Heart Disease - Hyperplane Algorithm

Error Allowed During 0%,0% 30%,40% 35%,35% 40%,30% 40%,40% 40%,25%

Total: % Correct 55.56 61.76 61.89 64.00 59.09 63.30

Class 1: % Correct 100.00 67.30 61.63 59.37 58.00 63.93

Class 2: % Correct 0.00 54.83 62.21 69.79 60.46 62.50

 148

StatLog Heart Disease Dataset
Hyperplane Algorithm
Results with Test Data

0
10
20
30
40
50
60
70
80
90

100

0%,0% 30%,40% 35%,35% 40%,30% 40%,40% 40%,25%

Allowed Error in Training: Class 1, Class 2

%
 A

cc
ur

ac
y

Total: % Correct
Class 1
Class 2

Figure 4-20. StatLog Heart Disease (5-fold cross-validation): Hyperplane Algorithm.

4.4.2 MARGIN ALGORITHM

We present results for each, then compare the two versions.

Local Version

The results (shown in Table 4-29 and Figure 4-21) range from 63.74% average accuracy

of classification when the attributes are taken in the order given in the database to 76.98%

when rank order by highest accuracy is used.

Table 4-29. StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (local).

PPCP Algorithm StatLog Heart Disease - Margin Algorithm (local)

 no order highest accuracy

Total: % Correct 63.74 76.98

Class 1: % Correct 57.73 79.00

Class 2: % Correct 71.25 74.46

 149

StatLog Heart Disease
Margin Algorithm (local)

Results with Test Data

0
10
20
30
40
50
60
70
80
90

100

no order best accuracy

%
 A

cc
ur

ac
y

Total: % Correct
Class 1
Class 2

Figure 4-21. StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (local).

Global Version

The results (shown in Table 4-30 and Figure 4-22) range from 63.37% average accuracy

of classification when the attributes are taken in the order given in the database to 76.35%

when rank order by highest accuracy is used.

Table 4-30. StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (global).

PPCP Algorithm StatLog Heart Disease - Margin Algorithm (global)

Order of Attributes no order highest accuracy

Total: % Correct 63.37 76.35

Class 1: % Correct 56.97 79.17

Class 2: % Correct 71.37 72.82

 150

StatLog Heart Disease
Margin Algorithm (global)

Results with Test Data

0
10
20
30
40
50
60
70
80
90

100

no order best accuracy

%
 A

cc
ur

ac
y

Total: % Correct
Class 1
Class 2

Figure 4-22. StatLog Heart Disease (5-fold cross-validation): Margin Algorithm (global).

Comparison of Versions

In both versions, Hypothesis 1 is verified. It was expected that this would be more

pronounced for the local version, but it was not. Unlike the results in several other

databases tested, there appeared to be little difference between versions in the results for

overall classification accuracy or for individual classes.

4.4.3 BOX ALGORITHM

Again, a penalty of 0.4 was used in the training as with all other real datasets. With 5-

fold cross-validation, Hypothesis 2 (class order) and Hypothesis 3 (hypercubes versus

symmetric rectangles) were tested. The results are shown in Table 4-31 and Figure 4-23.

 151

Table 4-31. StatLog Heart Disease (5-fold cross-validation): Box Algorithm (cube).

PPCP Algorithm StatLog Heart Disease - Box Algorithm (cube)

Class Order 1,2 2,1

Total: % Correct 66.17 65.93

Class 1: % Correct 88.57 87.60

Class 2: % Correct 38.17 38.83

For the cube, as can be seen in the top row of Table 4-31, roughly two thirds of

the data is classified correctly regardless of the order of the classes. Also apparent is that

the classification accuracies of Class 1 and Class 2 are unaffected by the classification

order of classes. This suggests that one class is not inside the other, but that there is

considerable overlap. The overlap estimated by the Hyperplane Algorithm is 30%+.

StatLog Heart Dataset
Box Algorithm (cube)

0
10
20
30
40
50
60
70
80
90

100

1,2 2,1
Class Order for Classification

%
 A

cc
ur

ac
y

Total % Correct
Class 1
Class 2

Figure 4-23. StatLog Heart Disease (5-fold cross-validation): Box Algorithm (cube).

 152

For the symmetric rectangle, there is an extremely high increase in computational

complexity because there are thirteen attributes. Because of this, preliminary testing was

used to roughly approximate the limits of the dimensions of the box. As with the Iris

data, this was accomplished by using a larger step-size during the for loops. We also

introduced loop limitations < 3 standard deviations in an effort to make the evaluation

possible. Even with these adjustments, an individual run went from seconds or minutes

using hypercubes to overnight using symmetric rectangles.

 These results are very preliminary and should not be considered definitive. Each

box is determined independently of the others. This would allow parallel computing for

such time-consuming instances. The testing portion is 1-2 seconds for either version of

the box. Results are shown in Table 4-32 and Figure 4-24.

 There is increase in overall accuracy of about 1% - 2% when using the symmetric

box version. The symmetric box version appears to be able to classify individual classes

better, as shown in class order 2 1: Class 2 is classified to ~68% accuracy here, while

the other class order of the symmetric rectangle version and the cube version classify

Class 2 with 35% - 39% accuracy,. There is a concurrent decrease in classification

accuracy for Class 1 of 17%.

Table 4-32. StatLog Heart Disease (5-fold cross-validation):

 Box Algorithm (symmetric rectangle).

PPCP Algorithm
StatLog Heart Disease - Box Algorithm

(symmetric rectangle)
Class Order 1,2 2,1

Total: % Correct 67.04 69.63

Class 1: % Correct 92.00 70.67

Class 2: % Correct 35.83 68.3

 153

StatLog Heart Dataset
Box Algorithm (symmetric rectangle)

0
10
20
30
40
50
60
70
80
90

100

1,2 2,1
Class Order for Classification

%
 A

cc
ur

ac
y

Total % Correct
Class 1
Class 2

Figure 4-24. StatLog Heart Disease (5-fold cross-validation):

 Box Algorithm (symmetric rectangle).

4.4.4 CONCLUSIONS

According to our classification procedure, we expect the Margin Algorithm to give the

highest classification accuracy. It does so for this dataset. Symmetric rectangles classify

more accurately than do hypercubes. Hypothesis 1 and Hypothesis 3 are verified.

Hypothesis 2 is supported by results for the symmetric rectangle but not by the results for

the hypercube.

4.5 CONTRACEPTIVE METHOD CHOICE

The Contraceptive Method Choice dataset is also a benchmark dataset available from the

Information and Computer Science Department at the University of California, Irvine

[21]. This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence

Survey. The samples are married women who were either not pregnant or do not know if

 154

they were at the time of interview. The problem is to predict the current contraceptive

method choice (no use, long-term methods, or short-term methods) of a woman based on

her demographic and socio-economic characteristics.

The Contraceptive Method Choice dataset has 1473 instances of ten attributes

(none missing), plus a class attribute (no-use, long-tern, or short-term). Of the 1473

instances; 629 are no-use, 333 are long-term, and 511 are short-term. The class

distribution and a short statistical analysis are shown in Tables 4-33 and 4-34,

respectively.

The ten attributes are:

1. Wife's Age (numerical)

2. Wife's education (categorical) 1 = low, 2, 3, 4 = high

3. Husband's education (categorical) 1 = low, 2, 3, 4 = high

4. Number of children ever born (numerical)

5. Wife's religion (binary) 0/1 = Non-Islam/Islam

6. Wife now working (binary) 0/1 = Yes/No

7. Husband's occupation (categorical) 1, 2, 3, 4

8. Standard-of-living index (categorical) 1 = low, 2, 3, 4 = high

9. Media exposure (binary) 0/1 = Good/Not good

Table 4-33. StatLog Heart Disease: Class Distribution.

Class Distribution - Contraceptive Method Choice

Class Value Number of instances

1/No-use 629 (42.7%)

2/Long-term 333 (22.6%)

3/Short-term 511 (34.7%)

 155

Table 4-34. Contraceptive Method Choice: Statistical Analysis.

Brief statistical analysis

Attribute number Minimum Maximum Mean Standard Deviation

1 16 49 32.5 8.2

2 1 4 3.0 1.0

3 1 4 3.4 0.8

4 0 16 3.3 2.4

5 0 1 0.9 0.4

6 0 1 0.7 0.4

7 1 4 2.1 0.9

8 1 4 3.1 1.0

9 0 1 0.1 0.3

4.5.1 HYPERPLANE ALGORITHM

The classification accuracy (shown in Table 4-35 and Figure 4-25) when no errors are

allowed during training is 41.32%. With various choices of error allowed during training,

we did not find a higher accuracy. We suspect that either the classes have a heavy

overlap or one class is inside the other class.

 Table 4-35. Contraceptive Method Choice (5-fold cross-validation):

Hyperplane Algorithm.

PPCP Algorithm
Contraceptive Method Choice - Hyperplane

Algorithm
Error Allowed During Training:

Class 3, Class 1-2; Class 1, Class 2 0%, 0%; 0%, 0% 40%, 50%; 40%, 40%

Total: % Correct 41.32 40.81

Class 1: % Correct 14.60 14.00

Class 2: % Correct 38.99 37.22

Class 3: % Correct 68.29 69.18

 156

Contraceptive Method Choice Dataset
Hyperlane Algorithm
Results with Test Data

0
10
20
30
40
50
60
70
80
90

100

0%, 0%; 0%, 0% 40%, 50%; 40%, 40%
Allowed Error in Training:

Class 3, Class 1-2; Class 1, Class 2

%
 A

cc
ur

ac
y Total: % Correct

Class 1
Class 2
Class 3

Figure 4-25. Contraceptive Method Choice (5-fold cross-validation):

Hyperplane Algorithm.

According to our classification procedure, we would now go to step 3 (the Box

Algorithm). Following this, we would decide whether the Hyperplane Algorithm or the

Box Algorithm would the classifier of choice. Though the Margin Algorithm would not

be used normally, we do so in order to evaluate the classification procedure.

4.5.2 MARGIN ALGORITHM

We present results for each, then compare the two versions.

Local Version

The use of highest accuracy does lead to an improvement in classification accuracy, as

shown in Table 4-36 and Figure 4-26, but the results are inferior to those obtained by the

Hyperplane Algorithm.

 157

Table 4-36. Contraceptive Method Choice (5-fold cross-validation):

Margin Algorithm (local).

Contraceptive Method Choice Dataset
Margin Algorithm (local)

Results with Test Data

0
10
20
30
40
50
60
70
80
90

100

no order best accuracy

%
 A

cc
ur

ac
y Total: % Correct

Class 1
Class 2
Class 3

Figure 4-26. Contraceptive Method Choice (5-fold cross-validation):

Margin Algorithm (local).

PPCP Algorithm Contraceptive Method Choice - Margin Algorithm (local)

 no order highest accuracy

Total: % Correct 34.85 38.64

Class 1 0.00 44.55

Class 2 68.76 86.36

Class 3 55.64 0.00

 158

Global Version

The use of highest accuracy does lead to an improvement in classification accuracy for

this version as well, as shown in Table 4-37 and Figure 4-27, and the results are

somewhat superior (using highest accuracy) to those obtained by the Hyperplane

Algorithm.

Table 4-37. Contraceptive Method Choice (5-fold cross-validation):

Margin Algorithm (global).

PPCP Algorithm Contraceptive Method Choice - Margin Algorithm (global)

 no order highest accuracy

Total: % Correct 32.53 42.71

Class 1 1.04 100.00

Class 2 74.19 0.00

Class 3 44.06 0.00

Contraceptive Method Choice Dataset
Margin Algorithm (global)

Results with Test Data

0
10
20
30
40
50
60
70
80
90

100

no order best accuracy

%
 A

cc
ur

ac
y Total: % Correct

Class 1
Class 2
Class 3

Figure 4-27. Contraceptive Method Choice (5-fold cross-validation):

Margin Algorithm (global).

 159

Comparison of Versions

The results show that using either version at least one of the classes is classified

completely wrong. We think that this is further evidence of the overlap between classes

being extensive. Hypothesis 1 is supported.

4.5.3 BOX ALGORITHM

A penalty of 0.4 was used in the training as with all other real datasets. Results are

shown in Table 4-38 and Figure 4-28.

For the cube, as can be seen in the top row, 40% - 43% of the data is classified

correctly regardless of the order of the classes. This corresponds to the majority class.

Also apparent is that the class that is used first generally has the best accuracy, with one

exception of the six orders. One of the order of classes that uses Class 2 first does best

for the entire classification and the other one starting with Class 2 is the only one that

classifies each of the three classes with accuracy > 20%.

Table 4-38. Contraceptive Method Choice (5-fold cross-validation):

Box Algorithm (cube).

PPCP
Algorithm Contraceptive Method Choice - Box Algorithm (Cube)

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1
Total: %
Correct

42.20 42.02 43.26 40.15 40.62 40.66
Class 1 %

Correct
98.18 98.62 74.97 24.03 24.44 23.83

Class 2 %
Correct

0.18 0.00 50.43 49.40 0.00 2.05
Class 3 %

Correct
0.01 0.00 0.00 53.65 87.12 87.02

 160

Class order 2 3 1 is the only time that all three classes appear to be modeled at

all successfully. Class 1 is classified with ~24% accuracy and the other two classes with

~50% accuracy each.

Inspection of the means for each class reveals that many of the attributes have

means that are close to one another. If this were simply one class being inside another, a

box inside a box so to speak, the means being close to one another would not matter. We

suggest that this is a case of the classes being enmeshed with one another.

Contraceptive Method Choice Dataset
Box Algorithm (cube)

0
10
20
30
40
50
60
70
80
90

100

1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1
Classification Order by Class

%
 A

cc
ur

ac
y Total: % Correct

Class 1 % Correct
Class 2 % Correct
Class 3 % Correct

Figure 4-28. Contraceptive Method Choice (5-fold cross-validation):

Box Algorithm (cube).

We show results for the symmetric rectangle in Table 4-39 and Figure 4-29.

Classification accuracy ranges from 41.15% to 49.49%, depending on the order of

classes.

 161

Table 4-39. Contraceptive Method Choice (5-fold cross-validation):

Box Algorithm (symmetric rectangle).

PPCP Algorithm Contraceptive Method Choice - Box Algorithm
(Symmetric Rectangle)

Class Order 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

Total: % Correct 48.54 41.15 41.15 43.73 49.49 45.08

Class 1 % Correct 48.13 88.26 67.08 34.07 48.42 39.84

Class 2 % Correct 57.10 0.00 50.31 54.76 0.59 10.08

Class 3 % Correct 43.19 5.58 3.29 48.29 83.40 77.46

Contraceptive Method Choice Dataset
Box Algorithm (symmetric rectangle)

0
10
20
30
40
50
60
70
80
90

100

1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1
Classification Order by Class

%
 A

cc
ur

ac
y Total: % Correct

Class 1 % Correct
Class 2 % Correct
Class 3 % Correct

Figure 4-29. Contraceptive Method Choice (5-fold cross-validation):

Box Algorithm (symmetric rectangle).

This dataset has ten attributes. Once again, due to computational complexity for

the symmetric rectangle, preliminary testing was used to roughly approximate the limits

of the dimensions of the boxes. We again implement loop limitations and step-sizes.

These results are preliminary and should not be considered definitive.

 162

4.5.4 CONCLUSIONS

According to our classification procedure, we expect the Box Algorithm to give the

highest classification accuracy, which it does for this dataset. Using Class 3 first

increases the classification accuracy of the entire dataset at the expense of classification

accuracy of Class 2. The order 1 2 3 is the only one that classifies each of the three

classes with accuracy > 43%. Symmetric rectangles classify more accurately than do

hypercubes, i.e., an increase up to 6% for overall classification accuracy. Hypothesis 1,

Hypothesis 2, and Hypothesis 3 are verified.

4.6 OVERFIT

One area of concern for any classification algorithm is overfit. In order to evaluate this,

we calculate the classification accuracy for the StatLog Heart Disease database using

varying amounts of the training set, i.e., from 10% to 90%. As more data becomes

available, one expects that the algorithm can do better because there are more examples.

Overfit when doing this is indicated by an increase then a decrease in classification

accuracy on the test set as the percentage of data for training is increased.

 This evaluation was carried out for all three steps of the classification procedure

and results are shown in Figures 4-30 through 4-32. For this, we split the dataset between

training and test sets. When we used 10% was used for training, we used 90% for testing,

and so on. The classification accuracies shown are averages for a number of runs: 100

runs except for the symmetric boxes, for which we performed ten runs (due to the time

required for each run).

 163

StatLog Heart Disease - Hyperplane Algorithm:
20% error allowed for each class during training

40
41
42
43
44
45
46
47
48
49
50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% of data used for training

%
 A

cc
ur

ac
y

Classification Accuracy

Figure 4-30. StatLog Heart Disease: accuracy vs. percentage of training data

(Hyperplane Algorithm).

Note that when the Hyperplane Algorithm is applied (shown in Figure 4-30), the

classification accuracy is within a range of 2% for all percentages of training data.

 164

StatLog Heart Disease - Margin Algorithm

60

61

62

63

64

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% of data used for training

%
 A

cc
ur

ac
y

Global Version
Local Version

Figure 4-31. StatLog Heart Disease: accuracy vs. percentage of training data

(Margin Algorithm).

When the Margin Algorithm is applied (shown in Figure 4-31) and the Margin

Algorithm is applied (shown in Figure 4-32), the trend is for the classification accuracy to

monotonically increase as the percentage of training data increases.

 165

StatLog Heart Disease - Margin Algorithm

45

50

55

60

65

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% of data used for training

%
 A

cc
ur

ac
y Cube Version

Symmetric Rectangle
Version

Figure 4-32. StatLog Heart Disease: accuracy vs. percentage of training data

(Box Algorithm).

 In general, accuracy appears to not decrease as it would with overfit. Table 4-5,

shows, in addition to the learning constants, the classification accuracy for training and

testing during ten runs of the global version of the Margin Algorithm for the Wisconsin

Breast Cancer dataset. If the data was being overfit, we would expect to see the training

data classified with higher accuracy than the testing data for a given run. In fact, this

varies – sometimes it is higher, sometimes it is lower – and it is never 100%. Figure 4-10

shows the classification accuracy of the local version of the Margin Algorithm on testing

versus the size of the training set of the Pima Indians Diabetes dataset. The percentage of

the dataset used for training varied from 10% to 70%. If the data was being overfit, we

would expect to see the classification accuracy of testing decrease as the percentage of

 166

training data used increased. For the range we tested, the trend was for accuracy to

increase as percentage of training data used increased.

 These are snapshots, i.e., results for specific datasets at specific times. Therefore,

the conclusion that overfit is not occurring cannot be made. It seems likely that there is

much less overfit than with C4.5 though. We suspect that the robust nature of our

component algorithms accounts for this:

1. The Hyperplane Algorithm is used with errors allowed during training.

2. The Margin Algorithm accepts errors in hope of attaining higher accuracy.

3. The Box Algorithm invokes a penalty for errors but allows them in order to attain a

reasonable box.

 By contrast, univariate decision trees usually classify the training set perfectly,

must be pruned [8]. This is because such trees show overfit [17]. Results shown for

C4.5, as in [14], are for pruned trees.

4.7 CONCLUSIONS

The classification procedure works on the five datasets tested. Hypothesis 1, Hypothesis

2, and Hypothesis 3 proved to be true, with exceptions noted in the appropriate sections.

 We now compare our results to those of others. In particular, we compare the

Hyperplane Algorithm to Support Vector Machines (linear kernel), the Margin Algorithm

to C4.5 and CART, and the Box Algorithm to K-Nearest Neighbors. All results are

summarized in Table 4-40. For each column representing a specific database, the best

classification accuracy attained by any algorithm is in bold print. The best classification

accuracy attained by our classification procedure is in italicized print.

 167

 Where possible, the comparison to Support Vector Machines was restricted to

linear kernels. Despite an extensive search of the literature, the comparison for the

Contraceptive Method Choice was to SVM with a LS-SVM. LS-SVMs use a least

squares approach to overcome computational complexity: "A modified version of SVM

classifiers, Least Squares SVMs (LS-SVMs) classifiers...to obtain a linear set of equations

instead of a QP problem in the dual space.” [39].

By [40], we compare to UC0 (CART using 0-SE pruning rules) rather than to

UC1 (CART using 1-SE pruning rules). The two versions have a 0.15% – 1.2%

difference in classification accuracy. Only in one case was the percentage we reported

lower, and then by 0.2%.

The classification procedure performed well on all five datasets. In comparison,

SVM had a higher classification accuracy on the StatLog Heart Disease dataset, as did

CART and one version of C4.5. The non-linear version of SVM also had a higher

classification accuracy on the Contraceptive Method Choice dataset, as did CART.

However, across the range of datasets, only CART tied our classification results. We

cannot directly compare of the speed of training and testing by PPCP to CART at this

time because the results using CART are from different researchers using different

measures of speed, when considered at all.

 168

Table 4-40. Summary Chart: Best results for each algorithm.

Algorithm

W
is

co
ns

in
 B

re
as

t

C
an

ce
r

Pi
m

a
In

di
an

s

D
ia

be
te

s

St
at

Lo
g

H
ea

rt

D
is

ea
se

Ir
is

C
on

tra
ce

pt
iv

e

M
et

ho
d

C
ho

ic
e

Hyperplane 96.6% 69.5% 64.0% 90.2% 41.3%

Margin (global) 94.7% 78.5% 78.8% 94.4% 42.7%

Margin (local) 93.0% 74.0% 77.0% 95.6% 38.6%

Box (cube) 88.15% 65.4% 66.2% 87.7% 43.3%

Box
(symmetric rectangle) 92.4% 68.05% 69.6% 90.4% 49.5%

C4.5 R8
(univariate) 94.74% [14] 74.6% [14]

 77.0% [14] 95.20% [14] –

C4.5
(univariate) 95.75% [40]

73.05% [41]

73.0% [42]

75.8% [40]

80.4% [40] – 41.7% [40]

Utree
(univariate) 95.7% [43] 72.5% [43] 93.3% [43]

Decision
Trees

CART
(multivariate)

95.72–95.88% [44]

93.5% [42]

95.47% [40]

74.48% [41]

72.8% [42]

76.3% [40]
79.3% [40] 94.53% [8] 54.9% [40]

SVM
(linear) 84.06% [45] 72.37% [45] 83.86% [46] 66.43% [45] – Support

Vector
Machine

LS-SVM
(linear) 96% [39] 78% [39]

 83% [39] 89.6% [39] 46.9% [39]

K-Nearest Neighbors
75.73% [48]

96.18% [40]

96.2% [43]

67.58% [41]

70.26% [48]

71.9% [42]

70.5% [40]

71.6% [43]

80.42% [48]

77.4% [40]

96.0% [49]

96.7% [9]

92.7% [43]
40.1% [40]

 169

Chapter 5: Summation

The principal contribution of this thesis is the investigation of classification when using

all attributes. The goal was to extend supervised learning to include all attributes in the

original feature space without a concurrent increase in computational complexity.

Towards this goal, this thesis proposed dividing it into three regions rather than

dividing the original feature space into two regions, as many other algorithms do. It

focused on development and evaluation of a classification procedure that employs three

separate but related component algorithms, each using the original feature space.

The Hyperplane Algorithm creates hyperplanes reminiscent of Support Vector

Machines, but without their computational complexity. The Margin Algorithm is a

univariate decision tree that can deal with missing attributes very simply. Brodley, a

well-known researcher of multivariate decision trees, states in [43]: "A strength of

univariate decision trees is that they need not evaluate a lot of the input features, which is

desirable for representing concepts that are described by a subset of the input features.

Indeed for many tasks, the set of relevant features may be unknown and applying a

univariate decision tree algorithm to such tasks can generate feedback as to which

features are relevant to the task." Its computational complexity is approximately that of

C4.5 [7]. The hypercube version of the Box Algorithm provides a method of classifying

classes with large overlap or when one class is enclosed in the other class, while

maintaining low computational complexity. The symmetric rectangle of the Box

Algorithm, when higher classification accuracy is more important than computational

cost, provides a solution to gain it.

 170

5.1 THESIS SYNOPSIS AND CRITIQUE

In Chapter 1, we presented the supervised learning problem, several supervised learning

algorithms (Support Vector Machines, decision trees, and K-Nearest Neighbors), and

some of the current issues in supervised learning:

1. The Curse of Dimensionality

2. Overfitting

3. Structural Representation Limits

Chapter 2 detailed the classification procedure as well as the three component

algorithms. We presented the pseudocode and computational complexity of the

algorithm. Each component algorithm was compared to one of the supervised learning

algorithms discussed in Chapter 1:

• The Hyperplane Algorithm was compared to Support Vector Machines.

• The Margin Algorithm was compared to decision trees.

• The Box Algorithm was compared to K-Nearest Neighbors.

The evaluation was performed on artificial datasets and results shown in Chapter

3. Heuristics were evaluated for usefulness and several hypotheses tested. It was shown

that the penalty heuristic derived for the Box Algorithm worked well across all the

datasets. The heuristic of overlap estimation given by the Hyperplane Algorithm worked

well to determine the next step (if needed) of the classification procedure as long as we

allowed some small error during training. For these artificial datasets, we can state that it

is possible to use all attributes in classification in the original feature space. Hypothesis

1 was rejected, as it did not give any noticeable improvement. Hypothesis 2 and

 171

Hypothesis 3 were accepted. From these results, for real-life datasets in Chapter 4, we

determined to use:

• The rank order of classification of highest accuracy (highest-to-lowest).

• The estimate of overlap attained for the best accuracy (with errors allowed during

training) to determine the next step of the classification procedure.

 In Chapter 4, the practical application of the classification procedure was tested

on five real-life datasets and results compared to Support Vector Machines, (univariate

and multivariate) decision trees, and K-Nearest Neighbors. Again, both the penalty

heuristic of a particular value for the Box Algorithm worked well across all the datasets

and the heuristic of overlap estimation given by the Hyperplane Algorithm worked well

to determine the next step (if needed) of the classification procedure. In particular,

• All hypotheses for the real datasets are accepted, as shown in detail in Chapter 4. We

note that while rank order of classification by highest accuracy affect both the global

and local versions of the Margin Algorithm, it does not always have a greater affect on

the local version, as we suspected. The underlying cause was not clear; indicating that

more work in this area is needed. We also note that the symmetric boxes occasionally

did not have an improvement in classification error over hypercubes for all orders of

classes tested. We suspect that as the classes are modeled better, the classification

order by class is affected; again indicating that more work in this area is needed.

• We show in Table 4-41 that computational complexity can be competitive with other

methods. Except for C4.5, PPCP has better time of computation by one or more

orders of magnitude. For C4.5, it depends on the values of k and n for the database in

question; if k is less than log2n, PPCP has a lesser time of computation.

 172

For these real-life datasets, we can state that it is possible to use all attributes in

classification in the original feature space. This can be done while maintaining both

reasonable computational complexity of training and classification accuracy in testing

these algorithms competitive with other algorithms that classify in the original feature

space.

Table 4-41. Summary Chart: Computation complexity for each algorithm.

Algorithm SVM C4.5 CART K-NN

Complexity O(n3) [11] O(klog n + nlog2 n) [18] O(kn2log n) [1] O(kn2)* [52]

Algorithm Hyperplane Margin Margin Box (cube)

Complexity O(kn) O(kn + klnk) O(kn + klnk) O(kn)

• We show in Chapter 4 that overfit does not appear to be great for any of the

component algorithms. In particular, overfit can be reduced with a univariate decision

tree, i.e., the Margin Algorithm

• Hyperplane Algorithm:

– The error accepted can be input directly, rather than indirectly as with Support

Vector Machines.

• Margin Algorithm, unlike other univariate decision trees:

– Each attribute is tested only once in a path.

– Each attribute is tested in only one subtree.

– Missing values are simply skipped during classification, eliminating the need for

surrogate splits, etc.

 173

• Box Algorithm:

– The symmetric version can provide increased accuracy.

 Classification accuracy for each of the datasets was competitive with existing

algorithms that classify in the original feature space and in shown in Table 4-40. Use of

the Paired Planes Classification Procedure as an ensemble classifier allows classification

on a broader range of datasets than many algorithms.

 Two of the components, the Hyperplane Algorithm and the Box Algorithm,

require values for every attribute. Real-life datasets often have missing values, thus this

is a problem for these two components of the complete classification procedure.

The classification procedure does not work on the XOR problem or with classes

in a sinusoidal pattern. This is because when a large percentage of the points are in the

margin of overlap for the sinusoidal curve, neither the Hyperplane Algorithm nor the

Margin Algorithm classifies any of these points; the Box Algorithm fails completely.

When one or both classes are composed of disjoint pieces, it is quite unlikely that the

classification procedure would work. The exception is when the disjoint pieces of each

class occur in such a way that a hyperplane, margin or box could detect each of the

classes without significant overlap of the other class.

 174

5.2 FUTURE WORK

The use of the Hyperplane Algorithm to create approximate distribution curves for each

of the classes is seen as a way of visualizing the classes in k-dimensional space.

According to Duda, "… these theorems highlight the need for insight into proper features

and matching the algorithm to the data distribution.” [1]. Therefore, these distribution

curves may also allow one to better match the problem to the best algorithm. Use of

these class distribution curves on an attribute basis may allow a better choice of attribute

use in the classification procedure.

Currently, the Margin Algorithm uses the means of the training sets as starting

points for determining the parameters. Investigation of alternate starting points, such as

the extremes is needed in order to detect boundaries of overlap that the current algorithm

does not find.

Speedup of the algorithm is desirable and may be attained by judicious use of the

stepsize in the for loops for all of the components. One method of doing this is to start

with a large stepsize and backup one step at the first unacceptable error, reduce the

stepsize, then proceed in a recursive manner.

 175

Appendix A

List of Publications

1. Dan Vance, Anca Ralescu, Sifting the Margins - An Iterative Empirical Classification Scheme,

Proceedings of 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI),

LNAI 3157, Springer-Verlag, 2004, 191-200 (Auckland, New Zealand).

2. Dan Vance, Anca Ralescu, Sifting the Local Margins: An Iterative Empirical Classification

Scheme, Proceedings of the Fifteen Midwest Artificial Intelligence and Cognitive Science

Conference (MAICS), April 16-17, 2004, 131-137 (Chicago, Illinois, U.S.A.).

3. Dan Vance, Anca Ralescu, A Comparison Between the Local & Global Versions of the Margin

Classification Algorithm, International Conference on Computational Intelligence for Modeling

Control and Automation (CIMCA), July 12-14, 2004 (Sydney, Australia).

4. Dan Vance, Anca Ralescu, Boxes are Better than Circles for Classification, Proceedings of the

16th Midwest Artificial Intelligence and Cognitive Science Conference (MAICS), April 16-17,

2005, 74-82 (Dayton, Ohio, U.S.A.).

5. Dan Vance, Anca Ralescu, Are Boxes Better for Classification?, The 48th IEEE International

Midwest Symposium on Circuits and Systems, August 7-10, 2005 (Cincinnati, Ohio, U.S.A.) CD:

ISBN 0-7803-9198-5, IEEE Catalog Number: 05CH37691C.

6. Dan Vance, Anca Ralescu, An All-Attributes Approach to Classification, WCI-NexisLexis

Metadata Conference 2005 (Dayton, Ohio, U.S.A.).

7. Dan Vance, Anca Ralescu, Extending the Margin Algorithm, International Conference on

Computational Intelligence for Modeling Control and Automation (CIMCA), November 27-30,

2005, 389-395 (Vienna, Austria),.

8. Dan Vance, Anca Ralescu, The Hyperplane Algorithm - A Decision Tree Using Oblique Lines,

Proceedings of the 17th Midwest Artificial Intelligence and Cognitive Science Conference

(MAICS), April 1-2, 2006, Valparaiso University (Chicago, Il, U.S.A.), 2006.

 176

9. Dan Vance, Anca Ralescu, The Margin Algorithm - A Decision Tree Based on Pairs of Parallel

Lines, 11th Information Processing and Management of Uncertainty International Conference

(IPMU), July 2-7, 2006.

 177

Bibliography
[1] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd Edition. John Wiley and Sons,

New York. 2001.

[2] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.

Springer-Verlag, New York. 2001.

[3] Robert Schalkoff. Pattern recognition: statistical, structural, and neural approaches. John Wiley,

New York. 1992.

[4] Tom M. Mitchell. Machine Learning. McGraw-Hill, United States of America. 1997.

[5] S.R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning pattern classification a survey. IEEE Trans.

on Information Theory, 44(6): 2178–2206. October 1998.

[6] A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition: a review. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 22(1): 4–37. January 2000.

[7] J.R. Quinlan, Induction of Decision Trees, Machine Learning 1: 81-106, 1986. Kluwer Academic

Publishers, Boston.

[8] Brodley and Utgoff. COINS Technical Report 92-82, 1992.

[9] A. Lorenz, M. Blum, et al, Comparison of Different Neuro-Fuzzy Classification Systems for the

Detection of Prostate Cancer in Ultrasonic Images, 1997 IEEE Ultrasonics Symposium Proceedings,

1201-1204, 1997.

[10] O. Mangasarian, N. Street, and W. Wolberg, Breast Cancer Diagnosis and Prognosis via Linear

Programming, Mathematical Programming Technical Report 94-10 (revised December, 1994), 1994.

[11] Y. Chang, Y. Lee et al. Data Visualization via Kernel Machines. Technical Report C-2006-04,

Institute of Statistical Science, Academia Sinica, to appear in Handbook of Computational Statistics

(Volume III) – Data Visualization 2006.

[12] L. Cao and F. Tay. Support Vector Machine with Adaptive Parameters in Financial Time Series

Forecasting. IEEE Transactions On Neural Networks, vol 14/6, November 2003.

 178

[13] J.R. Quinlan, C4.5: Programs for Machine Learning, 1993. San Mateo, CA, Morgan Stanley.

[14] J.R. Quinlan, Improved Use of Continuous Attributes in C4.5. Journal of Artificial Intelligence

Research 4, 77-90. 1996.

[15] L. Breiman, J. Friedman, et al. Classification and Regression Trees. Wadsworth, Inc., U.S.A., 1984.

[16] P. Tan and D. Dowe. MML Inference of Large Margin Oblique Decision Trees. Australian

Conference on Artificial Intelligence 2004. Springer, Lecture Notes in Computer Science, volume 3339,

p1082-1088 2004.

[17] R. Kohavi and J.R. Quinlan, Decision Tree Discovery (Chapter 16 of Handbook of Data Mining and

Knowledge Discovery, 267-276, Oxford University Press, edited by W. Klosgen, J. Zytkow, and J. Zyt.

2002.

[18] E. Frank. Machine Learning Techniques for Data Mining (Lecture Notes). Eibe Frank, University of

Waikato, New Zealand. 10/25/2000.

[19] H. Abbass, M. Towsey, and G. Finn. C-Net: A Method for Generating Non-deterministic and

Dynamic Multi-variate Decision Trees, Knowledge and Information Systems: An International Journal

(KAIS), Springer, volume 3, number 2, 184-197. 2001.

[20] O.Yildiz, E. Alpaydin. Omnivariate Decision Trees, IEEE Transactions on Neural Networks, 12(6),

1539-1546. 2001.

[21] C.J. Merz, P.M. Murphy. UCI repository of machine learning databases. University of California,

Irvine, Department of Information & Computer Sciences. 1998.

[22] I. Guyon, A. Elisseeff, An Introduction to Variable and Feature Selection, Journal of Machine

Learning Research 3 (2003), 1157-1182.

[23] Dan Vance, Anca Ralescu, Sifting the Margins - An Iterative Empirical Classification Scheme,

Proceedings of 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI), LNAI 3157,

Springer-Verlag, 191-200, 2004 (Auckland, New Zealand).

[24] Dan Vance, Anca Ralescu, Sifting the Local Margins: An Iterative Empirical Classification Scheme,

Proceedings of the Fifteen Midwest Artificial Intelligence and Cognitive Science Conference (MAICS),

April 16-17, 2004, 131-137 (Chicago, Illinois, U.S.A.).

 179

[25] Dan Vance, Anca Ralescu, A Comparison Between the Local & Global Versions of the Margin

Classification Algorithm, International Conference on Computational Intelligence for Modeling Control

and Automation (CIMCA), July 12-14, 2004 (Sydney, Australia).

[26] Dan Vance, Anca Ralescu, Boxes are Better than Circles for Classification, Proceedings of the 16th

Midwest Artificial Intelligence and Cognitive Science Conference (MAICS), April 16-17, 2005, 74-82

(Dayton, Ohio, U.S.A.).

[27] Dan Vance, Anca Ralescu, Are Boxes Better for Classification?, The 48th IEEE International Midwest

Symposium on Circuits and Systems, August 7-10, 2005 (Cincinnati, Ohio, U.S.A.). CD: ISBN 0-7803-

9198-5, IEEE Catalog Number: 05CH37691C.

[28] Dan Vance, Anca Ralescu, An All-Attributes Approach to Classification, WCI-NexisLexis Metadata

Conference 2005 (Dayton, Ohio, U.S.A.).

[29] Dan Vance, Anca Ralescu, Extending the Margin Algorithm, International Conference on

Computational Intelligence for Modeling Control and Automation (CIMCA), November 27-30, 2005

(Vienna, Austria).

[30] Dan Vance, Anca Ralescu, The Hyperplane Algorithm - A Decision Tree Using Oblique Lines,

Proceedings of the 17th Midwest Artificial Intelligence and Cognitive Science Conference (MAICS), April

1-2, 2006, Valparaiso University (Chicago, Il, U.S.A.), 2006.

[31] Dan Vance, Anca Ralescu, The Margin Algorithm - A Decision Tree Based on Pairs of Parallel Lines,

11th Information Processing and Management of Uncertainty International Conference (IPMU), July 2-7,

2006.

[32] N. Christianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Press Syndicate of

the University of Cambridge, United Kingdom, 2000.

[33] Online applet for C4.5-type trees, P. Geurts, www.montefiore.ulg.ac.be/~geurts/dtapplet/

dtexplication.html/#online.

[34] F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning,

42(3): 203–210, 2001.

 180

[35] Y. Kawata et al. Computer-aided differential diagnosis of pulmonary nodules based on a hybrid

classification approach. Proceedings of the SPIE, 4322: 1796–1806, 2001.

[36] A. Kumar and I. Olmeda. A study of composite or hybrid classifiers for knowledge discovery.

INFORMS Journal on Computing, 11(3): 267–277, 1999.

[37] L. Hadjiiski et al. Classification of malignant and benign masses based on hybrid art2lda approach.

IEEE Trans. on Medical Imaging, 18(12): 1178–1187, 1999.

[38] I. Olmeda and E. Fernandez. Hybrid classifiers for financial multicriteria decision-making: the case of

bankruptcy prediction. Computational Economics, 10(4): 317–335, 1997.

[39] T. Gestel et al. Benchmarking Least Squares Support Vector Machine Classifiers. Machine Learning,

54(1), 5-32, January 2004.

[40] T. Lim, W. Loh, and Y. Shih. An Empirical Comparison of Decision Trees and Other Classification

Methods. Department of Statistics, University of Wisconsin, Madison, Wisconsin, U.S.A. Technical

Report 979, June 30, 1997 (revised January 27, 1998).

[41] R. King, C. Feng, and A. Sutherland. Statlog: Comparison of Classification Algorithms on Large

Real-World Problems. Applied Artificial Intelligence, 9(3): 259-287, 1995.

[42] W. Duch, R. Adamczak, and k. Grbczewski. A new methodology of extraction, optimization and

application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks, 11(2), March, 2000.

[43] C. Brodley. Recursive Automatic Algorithm Selection for Inductive Learning. Department of

Computer Science, University of Massachusetts, Amherst, Massachusetts, U.S.A., COINS Technical

Report 94-61, August, 1994.

[44] C. Brodley and P. Utgoff. Multivariate Decision Trees. Machine Learning, 19, 45-77, 1995. Kluwer

Academic Publishers, Boston.

[45] A. Ali and A. Abraham, Improved Kernel Learning Using Smoothing Parameter Based Linear Kernel,

IWANN, LNCS 2686, p 206-213, 2003. Springer-Verlag.

[46] C. Park. Generalization Error Rates for Margin-Based Classifiers, PhD Dissertation, Ohio State

University, 2005.

 181

[47] G. Pandey, H. Gupta and P. Mitra. Stochastic Scheduling of Active Support Vector Learning

Algorithms, in the Proceedings of the ACM Symposium on Applied Computing (SAC), 38-42, Santa Fe,

USA, 2005.

[48] D. Meyer, F. Leisch, and K. Hornik. Benchmarking Support Vector Machines. Report 78, November,

2002. Adaptive Information Systems and Modeling in Economics and Management Science.

[49] S. Weiss, C. Kulikowski, Computer Systems That Learn, Morgan Kaufman Publishers, Inc, 1991.

	Title: An All-Attributes Approach to Supervised Learning
	Abstract
	Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 THE SUPERVISED LEARNING PROBLEM
	1.2 SUPERVISED LEARNING ALGORITHMS
	1.2.1 K-NEAREST NEIGHBOR
	1.2.2 SUPPORT VECTOR MACHINES
	1.2.3 DECISION TREES

	1.3 ISSUES IN SUPERVISED LEARNING ALGORITHMS
	1.3.1 THE CURSE OF DIMENSIONALITY
	1.3.2 OVERFITTING
	1.3.3 STRUCTURAL REPRESENTATION LIMITS

	1.4 PARALLEL PLANES DECISION TREE – MAIN FEATURES
	1.5 ORGANIZATION OF THIS THESIS

	Chapter 2: The Paired Planes Decision Tree Algorithm
	2.1 INTRODUCTION
	2.2 NOTATION AND TERMINOLOGY
	2.3 PAIRED PLANES CLASSIFICATION PROCEDURE
	2.4 THE HYPERPLANE ALGORITHM
	2.5 THE MARGIN ALGORITHM
	2.5.1 MARGINS

	2.6 THE BOX ALGORITHM
	2.7 PSEUDOCODE, SYSTEM DIAGRAMS, AND COMPLEXITY
	2.7.1 COMPLEXITY OF THE HYPERPLANE ALGORITHM
	2.7.1.1 Complexity of Training: Two-class Problem
	2.7.1.2 Complexity of Testing: Two-class Problem

	2.7.2 COMPLEXITY OF THE MARGIN ALGORITHM
	2.7.2.1 Complexity of Training: Two-class Problem
	2.7.2.2 Complexity of Testing: Two-class Problem

	2.7.3 COMPLEXITY OF THE BOX ALGORITHM (CUBE)
	2.7.3.1 Complexity of Training: Two-class Problem
	2.7.3.2 Complexity of Testing: Two-class Problem

	2.8 COMPLEXITY: MULTI-CLASS DATASETS
	2.9 COMPARISON TO OTHER CLASSIFIERS
	2.10 CONCLUSIONS

	 Chapter 3: Experiments – Artificial Datasets
	3.1 TWO-DIMENSIONAL DATASETS
	3.1.1 HYPERPLANE ALGORITHM
	3.1.1.1 Results and Conclusions

	3.1.2 MARGIN ALGORITHM
	3.1.2.1 Preliminary Testing: Results and Conclusions

	3.1.3 BOX ALGORITHM
	3.1.3.1 Results and Conclusions

	3.2 FOUR-DIMENSIONAL DATASETS
	3.2.1 HYPERLANE ALGORITHM
	3.2.2 MARGIN ALGORITHM
	3.2.2.1 Results for the Global and Local Versions of the Margin Algorithm
	3.2.2.2 Results and Conclusions

	3.2.3 BOX ALGORITHM
	3.2.3.1 Results and Conclusions

	3.3 CONCLUSIONS

	 Chapter 4: Experiments – Real Datasets
	4.1 WISCONSIN BREAST CANCER
	4.1.1 HYPERPLANE ALGORITHM
	4.1.2 MARGIN ALGORITHM
	4.1.3 BOX ALGORITHM
	4.1.4 DISTRIBUTIONS OF THE CLASSES
	4.1.5 CONCLUSIONS

	4.2 PIMA INDIANS DIABETES
	4.2.1 HYPERPLANE ALGORITHM
	4.2.2 MARGIN ALGORITHM
	4.2.3 BOX ALGORITHM
	4.2.4 DISTRIBUTIONS OF THE CLASSES
	4.2.5 CONCLUSIONS

	4.3 IRIS
	4.3.1 HYPERPLANE ALGORITHM
	4.3.2 MARGIN ALGORITHM
	4.3.3 BOX ALGORITHM

	4.4 STATLOG HEART DISEASE
	4.4.1 HYPERPLANE ALGORITHM
	4.4.2 MARGIN ALGORITHM
	4.4.3 BOX ALGORITHM
	4.4.4 CONCLUSIONS

	4.5 CONTRACEPTIVE METHOD CHOICE
	4.5.1 HYPERPLANE ALGORITHM
	4.5.2 MARGIN ALGORITHM
	4.5.3 BOX ALGORITHM
	4.5.4 CONCLUSIONS

	4.6 OVERFIT
	4.7 CONCLUSIONS

	 Chapter 5: Summation
	5.1 THESIS SYNOPSIS AND CRITIQUE
	 5.2 FUTURE WORK

	 Appendix A
	 Bibliography

	DATE: September 6, 2006
	NAME: Danny W. Vance
	DEGREE: Doctor of Philosophy
	DEPT: Computer Science and Engineering
	TITLE1: An All-Attributes Approach to Supervised Learning
	TITLE2:
	TITLE3:
	TITLE4:
	CHAIR: Dr. Anca L. Ralescu
	COMM2: Dr. Michael Behbehani
	COMM3: Dr. Kenneth Berman
	COMM4: Dr. Raj Bhatnagar
	COMM5: Dr. Urmila Ghia

