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Abstract

Carbon nanotubes have generated much interest in the last few years for ap-
plication in electronic devices because of their demonstrated ability to serve
as a possible alternative to silicon technology for fabrication of nanoscale
electronic devices, in view of the challenges faced by the continuous scaling
of existing silicon technology. Much effort has been applied into the un-
derstanding of the underlying principles and the device physics of carbon
nanotubes as also in the fabrication of suitable devices with various geome-
tries. The current simulation approaches used for generating reliable device
characteristics for these devices can be highly complex and are most often
computationally intensive. There is , therefore, a need to develop alterna-
tive approaches that are simple and computationally less intensive and yet
adequately accurate, especially in the context of design and evaluation of
circuits using these devices.

In this thesis, we have performed a detailed study of the working prin-
ciples of semiconducting carbon nanotubes with the objective of developing
compact models that can replicate, with good accuracy, the current-voltage
characteristics of these devices. Specifically, compact models have been devel-
oped for the current - voltage characteristics for the cylindrical gate Schottky-
Barrier Carbon Nanotube Field Effect Transistor (SB-CNFET), consistent
with experimental results published in the literature. These models reflect
the dependence of the transistor characteristics on various physical param-
eters such as different dielectrics and different gate insulator thicknesses.
These compact models can be readily integrated into any of the existing
Hardware Description Languages for building and evaluating circuits based
on SB-CNFET or hybrid CMOS/ CNFET technology.
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Chapter 1

Introduction

1.1 Recent trends in Carbon Nanotube Elec-

tronics

Carbon nanotubes (CNTs) have been extensively studied for use in a variety

of electronic and non-electronic applications since they were first discovered

by Iijima[1] in 1991. CNTs can be either metallic or semiconducting in na-

ture. In the last several years, the use of single walled semiconducting CNTs

as the channel in Field Effect Transistors has been actively investigated while

metallic CNTs have received the same consideration for use as interconnects

in Integrated Circuits. Given their ability to serve as a potential alterna-

tive to existing Silicon CMOS technology[2] and overcome the hurdle of the

scaling limits of Silicon technology, CNTs have been a subject of rigorous

theoretical analysis. Extensive work has been done in trying to establish

fabrication techniques to reliably reproduce these devices for large scale pro-

duction. However, the challenges faced in fabricating single-walled CNTs
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have been formidable.

Briefly, some of the popular techniques used for growth of CNTs currently[3]

are

• Pulsed laser vaporization of graphite in the presence of an inert gas

and metal catalysts. The carbon vapors condense into single walled

nanotubes. This method does not lend itself to large scale production.

• Electric Arc Discharge of an anode containing metal catalysts that react

with Carbon vapors to form single walled tubes. This method is more

rapid than the the earlier one but controlled growth of nanotubes to

obtain only the single walled kind is still not at a mature stage.

• Plasma Enhanced Chemical Vapor Deposition, High Pressure Carbon

Monoxide conversion. These techniques too are yet to prove the ability

for reliable large scale production of single walled CNTs

The current state of the art for fabricating CNFETs uses one of the above

techniques for growing CNTs on a substrate. Then a suitable method like

Atomic Force Microscopy is used to determine the location of CNTs and a

metal, such as gold, is deposited on either end to make contacts. A prototype

transistor of this variety fabricated at an IBM facility is shown in Fig. 1.1.

This is a popular CNFET configuration at this time, due to the feasibility of

fabrication. It is referred to as the planar CNFET[4], since either a topside or

backside planar gate is used to control the semiconducting nanotube. Metal
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Figure 1.1: A planar CNFET fabricated at IBM

contacts deposited on either end of the nanotube form rectifying Schottky

barriers.

While there has been speculation[5] about growing ropes of metallic nan-

otubes interspersed with semiconducting nanotubes to form naturally oc-

curring devices, this occurrence has been rarely observed. Another config-

uration that has been investigated – shown in Fig. 1.2 – is the side gate

variety, wherein a nanotube is grown vertically on a substrate and the gate

lies beyond the source or drain. However, theoretical simulation[6] of such

geometry shows insufficient gate control as compared to the planar geometry.
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Figure 1.2: (a)Lateral and (b)Axial gated CNFET geometry
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1.2 Related work - Modeling and Simulation

From a theoretical perspective, analysis of CNTs can get highly involved. In

fact the current work on Carbon Nanotube FETs often involves computation-

ally intensive numerical procedures such as Monte Carlo analysis and, more

often than not, requires efficient algorithms for numerically solving Green’s

function[7] for the Hamiltonian matrix obtained by applying Schroedinger’s

equation. A typical CNFET simulation through a solution of Greens Func-

tion can run into several hours. A simulation of an Integrated Circuit con-

taining several thousands of CNFETS is therefore not feasible even with the

use of a grid of parallel computers. This disadvantage of accurate atomistic

simulation approaches to CNFETs greatly stresses the need for the develop-

ment of compact models that can run much faster even if they suffer from a

slight reduction in accuracy. These models are usually some form of self con-

sistent solutions of Poisson equation or a Schroedinger-Poisson solver[12, 13].

Also, there is much scope for integration of these compact models into stan-

dard Hardware Description Languages such as VHDL, VHDL-AMS, Verilog

- to name a few - so that circuits and systems composed entirely of CNTs or

hybrid CNT/ Si CMOS can be modeled and the behavior of these systems

and their applicability can be gauged. However, there is yet work to be done

in developing CNFET models for use by HDLs.
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1.3 Problem Statement and Scope

In this thesis, a detailed study of the theory of Carbon Nanotubes was un-

dertaken through numerical simulation to derive compact models for one

popular geometry of the CNFET, namely the Schottky-Barrier CNFET (SB-

CNFET). These models have been generated for incorporation in the model

library of any standard Hardware Description Language. The approach

used was self consistent solutions to the Poisson equation for the potential

profile generated by a coaxial cylindrical gate. Some of the variables that

were tweaked were the gate dielectric thickness, gate dielectric constant and

source/drain contact metal work functions. This model relies on the tun-

neling mechanism at the source/ drain Schottky contacts for current flow.

In addition, thermionic current components too have been included to de-

termine the overall picture. This will be discussed in detail in subsequent

chapters.

1.4 Outline of Thesis

Having introduced the readers to a brief history of Carbon nanotube Elec-

tronics and the development in this area in the last few years, the subsequent

chapters of this thesis are organized as follows:

• Chapter 2 presents the underlying physics and electronic structure of

the CNT in detail. In particular, an expression for the nanotube density
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of states is derived. A comparison is then made between nanotubes and

conventional silicon technology for application to integrated circuits.

• Chapter 3 delves into the electrostatics of the Schottky Barrier CNFET

and the equations for charge and current as a function of the applied

voltage are derived and examined. These equations culminate in the

development of a compact model for the SB-CNFET and the depen-

dance of the transistor characteristics on other parameters such as the

gate insulator, physical dimensions etc are studied and incorporated

into the model.

• Chapter 4 gives the simulated results of the compact model developed

in Chapter 3. The compact model was coded as Matlab scripts and the

results of the simulation of this model in Matlab are incorporated into

Chapter 4 with a brief explanation for each of these results.

• Chapter 5 concludes the work undertaken in this thesis and looks at

the scope for improvement of compact modeling by other approaches.

This thesis work is one of the first attempts to integrate nanoscale de-

vice modeling into the traditional circuits and systems modeling at the Dis-

tributed Processing Lab at University of Cincinnati. As such, the results have

been presented with a view of providing the foundation for the basic under-

standing of nanoscale devices for my colleagues at University of Cincinnati,

new to this regime of device scale.
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Chapter 2

The Carbon Nanotube –

Electronic Structure and

Properties

In this chapter, we briefly review the physics involved in modeling Carbon

nanotubes and look at some of the unique properties that make CNTs a

very good substitute for a Silicon MOSFET. This is followed by a qualitative

analysis of the behavior of a CNFET and we see that its working is quite

similar to that of a conventional Si MOSFET. We then present some devices

which have been fabricated and show how the transistor characteristics of

these devices make a very strong case for the use of CNTs in FETs.
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2.1 Overview of the Nanotube Electronic Struc-

ture

The physical structure of a carbon nanotube is easily understood when it

is viewed as a two dimensional monatomic layer of graphene that has been

rolled up to form a hollow cylinder. The carbon atoms in graphene are

ordered in a hexagonal ’honeycomb’ lattice arrangement as shown in Fig.2.1.

The electrical properties of the CNT are determined by the manner in which

this sheet of graphene is rolled up. The circumference of the nanotube – i.e,

the rolled up graphene sheet – is expressed in terms of a ’chirality’ vector

C that maps two equivalent sites in the 2-D graphene sheet. The chirality

vector can be expressed as C= na1 + ma2 where a1 and a2 are the unit

vectors of the 2-D graphene lattice. It is standard practice in literature to

express nanotubes in terms of the integers (n,m). The ability of the nanotube

to behave either as a semiconductor or a metal is governed by the behavior

of the lowest energy sub-band, which can be derived by evaluating the basis

vectors in the first Brillouin zone.The two possible configurations of carbon

nanotubes are

• n = m : This is referred to as the ’armchair’ configuration as shown

in Fig.2.1 [26]. The nanotubes formed in this configuration are always

metallic in nature. This is because the energy surfaces describing the

conduction band and valence band touch each other at the ′Π′ points
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Figure 2.1: SWNT in the armchair configuration

when evaluated in the E-K space. Thus the nanotube behaves as a

’zero gap’ semiconductor in this configuration.

• n �= m : This is referred to as the ’zig-zag’ configuration – shown in

Fig.2.2. CNTs in this configuration can be either metallic or semi-

conducting in nature depending on whether n-m is a multiple of 3.

CNTs in which n - m �= 3 behave as quasi-metallic nanotubes with

band gaps that vary inversely with the square of nanotube radius[22].

Readers interested in this topic are referred to the paper by Mintmire

and White[22] for a more detailed analysis of the CNT structure in E-K

space. However, for practical purposes, roughly a third of the zig-zag

nanotubes are metallic, while the rest are semiconducting.
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Figure 2.2: SWNT in the Zigzag configuration

2.1.1 A qualitative analysis of the Nanotube Density

of States

In a graphene sheet, each unit cell can be expressed in terms of the two

basis vectors a1 and a2 in real space as shown earlier. These vectors can be

expressed in the cartesian co-ordinate system as:

a1 = a0(

√
3

2
x +

1

2
y) (2.1)

a2 = a0(

√
3

2
x − 1

2
y) (2.2)

where a0 =
√

3acc and acc is the nearest neighbor atomic distance in

graphene and has a value of 1.42 Angstrom.

This gives the basis vectors b1 and b2 in the reciprocal lattice space as

the following:

b1 = b0(
1

2
x +

√
3

2
y) (2.3)

b2 = b0(
1

2
x −

√
3

2
y) (2.4)
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where b0 = 4Π√
3a0

. The ”dispersion relation” is then obtained for the carbon

nanotube by applying the periodic boundary condition

k · c = 2Π (2.5)

where c is the circumferential vector and k is the allowed wave vector ob-

tained from the basis vectors in the reciprocal space. The dispersion relation

gives us the Energy dependance on the wave vector k and the Density of

States (DOS) can be computed from this dispersion relation. The details of

this procedure are clearly explained in the book by Datta[24].

The 1-D nanotube DOS computed[5] for the lowest sub-band of a Single

Walled Nanotube can then be expressed as:

D(E) =
4

Πh̄vf

|E|Θ(|E| − ∆)√
E2 − ∆2

(2.6)

where the Fermi velocity vf = 8.1x105 m/s and the energy gap is given

by

2∆ =
2h̄vf

3R
(2.7)

where R = radius of the nanotube and Θ(x) is the Heaviside Unit step func-

tion. This basically tells us that the nanotube DOS for the electrons begins

upwards from the conduction band edge and that of the holes begins down-

ward from the valence band edge. Also it is shown in [25] that the Fermi level

of the nanotube lies in the middle of the bandgap. Therefore, the Density

12



of States has a symmetric distribution on either side of the Fermi level and

the conduction and valence bands are symmetric, which is advantageous for

complementary operations.

2.1.2 A note on Multi-Walled Nanotubes

CNTs can be single-walled (composed of a single rolled up sheet of graphene)

or multi-walled (several concentric cylinders of graphene). Single Walled

nantubes (SWNTs) usually have a diameter of 1-2 nm and can go upto

several microns in length. The electronic structure and properties of Multi-

Walled nanotubes (MWNT) have been found to be governed by the out-

ermost wall[4]. Therefore, the bandgap dependance on the radius of the

outermost wall causes MWNTs to be usually metallic in nature. Also bun-

dles of MWNTs are easily grown as long ropes , hence, these nanotubes have

shown much promise as a substitute for interconnects in CMOS technology.

This thesis work will, however, be limited to the study and application of

single wall nanotubes as semiconducting channels in devices.

2.2 Carbon Nanotubes Vs Silicon

As mentioned earlier, the length of SWNTs are far greater than their circum-

ferential dimensions. They can, therefore, be considered as one-dimensional

(1-D) structures. Also, since nanotubes are rolled up sheets of graphite, the
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atoms on either edge of the graphene sheet bond with each other thus leav-

ing no unsatisfied dangling bonds. The electronic structure of SWNTs can,

therefore, be determined by the application of periodic boundary conditions.

These properties translate into some important advantages over Silicon.

• CNTs enjoy one-dimensional carrier transport. The charge travelling

through the devices experiences very little phase scattering compared

to silicon and the transport is often ballistic. The resistance of these

devices approaches the quantum limit. The two terminal conductance

is given by the Landauer equation

G = (2e2/h)*
∑

Ti

where Ti is the transmission coefficient of the ith contributing sub-band.

For SWNT we usually consider the lowest sub-band since the higher

sub-bands lie beyond the electrochemical potentials of the source/ drain.

• Silicon often has dangling bonds near the surface and has to be chem-

ically passivated by the growth of Silicon-dioxide. However, a major

contribution to scattering in Silicon FETs occurs at the surface of the

Si/ SiO2 interface. CNTs, on the other hand, do not have such dangling

bonds and therefore the carriers along the surface do not experience as

much scattering or influence of interface traps.

• The self - passivated surface of CNTs implies that these devices can

utilize a variety of high κ dielectrics and are not limited to the use of

14



silicon dioxide. Therefore, the gate has better control over the charge

carriers in the channel than Si MOSFETs. Also, Fermi-level pinning at

the metal-nanotube interface is weak, wherefore it is possible to utilize

a variety of contact metals – resulting in different Schottky barrier

heights – to obtain the desired transistor characteristics.

• There is strong covalent bonding between Carbon atoms in a nanotube

thus giving them very high mechanical and thermal stability. The

possibility of realizing current densities as high as 109A/cm2 has been

predicted[8].

• The presence of the Fermi level in the middle of the bandgap of an in-

trinsic nanotube also means that the electrons and holes have the same

effective mass. This is advantageous for complementary operations in

Integrated Circuits.
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Chapter 3

Modeling the Coaxially–gated

Schottky-Barrier CNFET

In the previous chapter, we briefly reviewed the electronic structure of the

Carbon nanotube and the advantages to be gained by implementing it as the

channel of a FET. While most CNFETs in use are of the planar geometry, it

is quite obvious that optimum transistor control can be achieved when the

channel is encapsulated within a coaxial gate. In this chapter, we lend our

focus to the working principles of the Schottky Barrier CNFET that uses

a coaxial gate and develop a compact model to simulate its response. The

SWNT, which forms the channel, can be used either in the extrinsic form

or can simply be left undoped. The source and drain end of the nanotube

terminate in metal contacts which are rectifying in nature.
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Looking back at the typical Silicon MOSFET, we see that the contacts

are ohmic in nature and are deposited in areas of highly doped source and

drain regions. The MOSFET is so designed that the carriers flowing into the

channel typically encounter minimum resistance at the contacts and the flow

of current through the device is controlled by the applied gate voltage. In

a nanotube, however, the carriers experience almost ballistic transport. The

presence of Schottky barriers indicates that the transistor can be so designed,

that the flow of current through the device is dictated to a great extent by

the metal contact properties. The different possible methods of engineering

the CNFET will be examined in the next section.

3.1 Electrostatics of the SB-CNFET

For the coaxially gated SB-CNFET – we shall henceforth refer to it simply as

the SB-CNFET – shown in Fig.3.1, we see that the gate dielectric spans over

the entire length of the nanotube and that this device has metal contacts

that greatly exceed the dimensions of the nanotube itself.

The nanotube has a radius Rt and is surrounded by a cylinderical gate

of radius Rg. Typically the value of Rt varies anywhere between 0.6 – 2 nm

while the length of the nanotube Lt varies from 50nm to several microns. The

gate dielectrics typically used for CNFETS are Silica, Alumina or Zirconia.

Like a MOSFET, the electrostatics of the SB-CNFET can depend to a great

17
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Figure 3.1: Construction of a coaxially-gated SB-CNFET

extent on its physical structure such as the dimensions of gate radius, the

extent of the channel (nanotube) encapsulated within the dielectric and the

thickness of the metal contacts and the work functions of the source, drain

and gate metals.

The presence of ’bulk’ metal contacts, as shown in Fig.3.2, causes the

potential profile of the source and drain to be governed by the work functions

of the metal contacts and the voltage applied on the contacts and the gate

does not have much control over the nanotube in these regions. This is

18



because the field due to the image charges on the source and drain contacts

extends into the tube. The distance over which the presence of this field is

felt can be approximated to be equal to the dimensions of the gate radius

Rg. Beyond this distance from the contacts, the effect of the gate voltage is

felt more strongly on the channel. Again, the local electrostatics at the ends

will depend on whether the gate extends all the way to the ends of the tube.

The electrostatics of partially gated CNFETs has been studied in [14].

Electrostatics at the ends governed
 by Bulk contacts

Vgs

Gate

Source

Drain

Figure 3.2: Electrostatics of the coaxially-gated SB-CNFET

If the source/ drain contacts are of the same dimensions as the tube radius

Rt, then the effect of the gate is felt strongly even at the contacts and the gate

19



voltage can modify the Schottky barrier characteristics at the contacts. For

the case of bulk contacts, however, there is charge transfer onto the nanotube

depending on the difference in work functions and this governs the barrier

profile. The source/ drain metals of the SB-CNFET being modeled in this

thesis are assumed to have the same workfunction as the intrinsic nanotube

for the sake of convenience. The band profile for such a device in thermal

equilibrium is shown in Fig. 3.3.

Ec

Figure 3.3: Equilibrium band profile

We can see that the intrinsic Fermi level of the nanotube is aligned with the

work function of the metal. Also, it may be recalled that the Fermi level

20



lies right in the middle of the bandgap of the nanotube. The value of the

bandgap in eV of this tube is given by

2∆ =
2h̄vf

3Rt

(3.1)

where Rt = radius of the nanotube in nm, vf = 8.1x105 m/s, is the Fermi

velocity of carriers in the nanotube.

3.2 Nanotube Charge Density

In equilibrium, the net charge density on the nanotube is zero because of the

symmetric band profile. When a positive gate voltage is applied to nanotube,

the conduction band moves down and the Fermi level moves closer to the

conduction band. Consequently charge is induced in the conduction band.

The source/ drain regions are, however, held by the metal work functions

and consequently a Schottky barrier is formed at the ends. This is shown in

Fig.3.4

3.2.1 A self-consistent solution for charge density

It can be seen that in low dimensional semiconductors where energy levels

tend to be more discretized, – unlike bulk semiconductors, which have a
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Figure 3.4: Band profile under Applied gate voltage

parabolic density of states vs. energy– the addition of charge to the semicon-

ductor causes the available states to float up in the energy scale. This means

that the addition of further charge will require a lot more applied potential,

as more and more states get filled up. A similar argument can be applied

while computing the charge density of carbon nanotubes. In this case, a

simple capacitance expression is used to calculate the change in the band

profile due to the accumulation of charge on the tube. The charge density

– which is obtained from the band profile in the first place – is then recom-

puted taking into account the modification in the band profile and again the

new band profile is computed taking into account this charge density and so

forth. Thus the band profile of the nanotube and charge density have to be

22



repeatedly solved in this iterative manner until they eventually attain values

that are consistent with each other.

The Fermi-Dirac probability for the occupation of an energy state ’E’ is

given by

f(E) =
1

1 − exp (E−Ef)
KBT

(3.2)

where KB is the Boltzmann constant. At room temperature, i.e. T = 300

Kelvin, KBT � 25.6 meV

The general expression for calculating the charge density is

n =
∫ +∞

−∞
f(E)D(E)dE (3.3)

If η is the mid-length charge density on a nanotube channel, then the

dependance of the local potential on this charge is given in terms of the gate

capacitance as:

U =
e2η

Cins

(3.4)

where Cins is the gate capacitance per unit area given by

Cins =
εins

tins

(3.5)

This local potential ’U’ causes the nanotube DOS to float up and must

be taken into account for computing the charge density.

Using the expression for the nanotube Density of States D(E), given in
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2.6, and taking into account the effect of the local potential from 3.4, we can

compute the mid-length charge density from 3.3 as

η =
∫ +∞

Ec
D(E + V gs − U) · f(E)dE (3.6)

Equations 3.4 and 3.6 are solved self-consistently using Newton-Ralphson

method to obtain the charge density for an applied gate voltage Vgs. It

can also be seen that, for a negative voltage applied at the gate, the same

expression holds for computing the hole charge density and the band profile

obtained will simply be a mirror image of that observed in Fig.3.4

Quantum Capacitance

In deriving the self consistent charge density on the nanotube, we made use

of a simple capacitance relation involving the charge on the nanotube and

the gate dielectric capacitance. However, there is an additional capacitance

term, namely, the quantum capacitance [9] of the nanotube. This term is

proportional to the nanotube DOS and is given by

Cq = q2 · D̄ (3.7)

This capacitance appears in series with the nanotube gate capacitance. How-

ever, since the magnitude of the quantum capacitance of the nanotube is far

greater than the gate capacitance, we can approximate the overall capaci-
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tance as shown in 3.5

Triangular Barrier Approximation

An approximation for computing the band profile towards either end of the

nanotube is made as follows: Over a distance Rg from the source/drain end,

the electrostatic potential is a linear combination of applied gate voltage and

the source voltage (ground, in our case). Therefore, we have a triangular bar-

rier profile at the Schottky contacts. The width of the base of this triangular

barrier is Rg and the height is given by:

h = φm − φcn +
Eg

2
(3.8)

3.3 Determining the SB-CNFET Current-Voltage

characteristics

For the equilibrium situation considered in the previous section, computing

the nanotube charge density involved a straightforward calculation of the

self consistent potential profile. However, once a drain voltage is applied,

the Schottky barrier profile at the drain end is modified as seen in the upper

part of Fig.3.5. We must now account for the tunneling current through

this barrier. The magnitude of the applied drain voltage not only causes

the barrier height to reduce, but also induces an effective reduction in the
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barrier width. Qualitatively, we can understand the effect of the drain voltage

(assuming that the source is held to ground) on the current flowing through

the nanotube as follows:

• Vds = 0: Initially when there is no voltage applied on the drain and

only a positive gate voltage is applied, the band profile is as shown in

Fig. 3.4. We observe identical Schottky barriers at the ends of the

tube, the dimensions of which, are given by 3.8. The electrons from

the source and drain can now tunnel through these barriers into the

channel region and vice-versa. Although there is charge induced in

the channel, there is no net current flow through the device since the

electrochemical potentials at the source and drain are identical.

• 0 < Vds < Vgs: As we start applying a positive potential at the drain,

the electrochemical potential at the drain goes below the source and

now the equilibrium is broken. The barrier at the drain end begins

to diminish and electrons can easily tunnel out of the channel into

the drain. The barrier dimensions at the source end, however, do not

change. Thus, compared to the drain end of the tube, the electrons

in the channel see a larger barrier at the source end and the flux of

electron flowing into the source is far less than that flowing into the

drain. In this regime of operation, the Fermi level of the nanotube

can be considered to have split, giving rise to a quasi-Fermi level that

describes the electron current. For the case Vds = Vgs, – shown in
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the upper portion of Fig. 3.5 – the barrier at the drain is entirely

suppressed and the backscattering of electrons at the drain end goes

to zero. However, this means that it is also easier for electrons to flow

into the channel from the drain end. This kind of negative flux has

been considered in our model. It may be noted that, throughout the

entire analysis, the mid-length Conduction Band Value of the channel

does not change. It is held to its equilibrium value as decided by the

gate potential. The channel band profile is entirely under the control

of the gate.

• Vds > Vgs: When the voltage applied at the drain exceeds the gate

voltage – shown in lower portion of Fig. 3.5 – a barrier spike begins to

develop at the Valence band of the nanotube. This now presents the

opportunity for holes to tunnel into the device from the drain. Thus,

we now begin to see a hole component in the total current flowing

through the device. Another effect is that as drain voltage is increased

above the gate, the barrier width at the source end for the electrons

begins to reduce. This can be explained as follows. The assumption

of near ballistic transport through the nanotube implies that the net

electron current flowing into the device from the source should equal

the net electron current flowing out of the channel into the drain. Since

the electron flow is determined only from the nature of the triangular
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Electron Current flows

Electron Current flows

Hole Current flows

Figure 3.5: Non-Equilibrium Band profile
Suppressing the Schottky barrier at the drain (top). Formation of a tunneling
barrier for holes (bottom)

barrier at the contacts, we can see that for a fixed barrier height at the

source, an increase in the electron current can only be explained by a

corresponding thickness in the barrier width.

• In addition to the current obtained as a function of the applied drain

voltage, there is also a thermionic current component. This sets the

limit for the minimum current flowing through the device.
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From a study of the different modeling and simulation approaches for the

SB-CNFET available in literature [11 - 14, 16 - 19], we concluded that the

one best suited towards developing a compact model of the SB-CNFET for

incorporation within a standard library was the approach adopted by Clifford

et al.[10]. In order to model the current flowing through the SB-CNFET, we

make use of the concept of quasi fermi levels for the electrons and holes,

which can be used to compute the electron and hole current independently.

This technique was adopted from [10].

3.4 Deriving expressions for transistor cur-

rent

The current flowing through the channel of the SB-CNFET is derived from

the standard two terminal Landauer conductance formula given by

I =
q

h

∫ +∞

−∞
T̄ (E) · [f(E − µ1) − f(E − µ2)]dE (3.9)

where T̄ (E) is the composite quantum mechanical transmission coefficient

through the ballistic device and fE is the Fermi-Dirac probability of an En-

ergy state E being occupied. Here µ refers to the electrochemical potential

at the source and drain end of the device under consideration.

For our model of the SB-CNFET, the Landauer equation can be modified
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to obtain the electron current In from the equation:

2q

Πh̄

∫ +∞

Ec
Ts(E)·[f(E)−f(E−Efn)]−Td(E)·[f(E−Efn)−f(E+qV ds)]dE = 0

(3.10)

Here we are computing only the electron current contribution to the total

current. Hence, the factor Efn which is the electron quasi Fermi level. Ts(E)

and Td(E) are the quantum mechanical tunneling probabilities computed for

the triangular Schottky barriers at the source and drain respectively. The

factor 2 appears in the constant to account for the double degeneracy of the

lowest sub-band.

The tunneling probability for a triangular barrier of height u and width

l is given by the formula[5]

Ts = exp(− 4l

9R

√
2u

∆
) (3.11)

where ∆ is half the value of the nanotube bandgap.

A similar current equation for the hole current Ip can be derived by ex-

pressing 3.10 in terms of the hole quasi Fermi levels as:

2q

Πh̄

∫ Ev

+∞
Ts(E)·[f(E)−f(E+Efp)]−Td(E)·[f(E−qV ds)−f(E+Efp)]dE = 0

(3.12)

The procedure for calculating the electron and hole currents is akin to the

one for charge density calculation in the sense that, here also, a self consistent
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solution to the quasi fermi levels and the net current flowing through the

devices must be obtained. A starting point for computing the current is

to calculate the tunneling probabilities at the source and drain using 3.11.

The electron quasi Fermi level is initially referenced to the electrochemical

potential of the source while the hole quasi Fermi level is referenced to the

potential at the drain. We then iteratively solve the equations 3.10 and 3.12

using the Newton-Raphson method to obtain the self consistent solution to

the electron and hole currents.

An expression for the Thermionic Current

The expression for the aggregate thermionic current – due to both electrons

and holes – as a function of the applied drain voltage for a CNFET has been

derived by Guo et. al. [25] and is given by:

It =
8e2

h
· exp(− Eg

2KT
) · V ds (3.13)

where h = Planck’s constant, Eg is the nanotube bandgap and KT = 25.6

meV at 300K.

Therefore the total current flowing through the nanotube is given by

I = In + Ip + It (3.14)
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Chapter 4

Results and Analysis

The analytical expressions for the behavior of SB-CNFET were incorporated

into a compact model and simulated for a SB-CNFET with the following

parameters:

• SWNT Radius: Rt = 0.6nm

• SWNT Length: Lt = 100nm

• Gate Dielectric Thickness: Rg = 10*Rt = 6.6nm

• SWNT Work function = Source/drain/gate metal workfunction = 4.5eV

• Gate Insulator = Zirconia( Relative Dielectric constant = 16.1)

• Operating temperature = 300K
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4.1 Nanotube Density of States
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Figure 4.1: Density of States of the SWNT around the Fermi Level

The simulation of the DOS for the lowest sub-band of a typical SWNT

shows a symmetric density of states around the Fermi level with the maxima

at just above the conduction band and just below the valence band respec-

tively as shown in Fig. 4.1.

The simulation of the SWNT in the SB-CNFET in our study is shown in

Fig. 4.2. There is a spike just above the conduction band and an exponential

decay beyond that with increasing energy.
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Figure 4.2: Density of States of the SWNT in the SB-CNFET studied
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4.2 Equilibrium characteristics

The mid length charge induced on the nanotube is shown in Fig. 4.3. As

expected, the charge increases with increasing gate voltage due to the gate

capacitance relationship. The increase in the charge density is almost linear

after 0.2 Volt.

Fig. 4.4 shows the result obtained for a coaxially gated SWNT by Guo

et. al. in [19]. By comparison with Fig. 4.3, it can be seen that the two

results show agreement.

The plot of the Conduction Band as a function of the gate voltage as

shown in Fig. 4.5 shows that the conduction band is lowered due to an in-

crease in gate voltage. However, the amount by which it is lowered reduces

with increase in gate voltage. This is because an increase in the gate voltage

produces a linear increase in the charge induced. This induced charge in-

creases the gate dielectric capacitance and part of the gate voltage drops over

this capacitor. This feature introduces the requirement for a self-consistent

charge - band profile calculation. In fact, a comparison of Figs. 4.5 and

4.3 shows that for V gs ≤ 0.2 the charge density increases quadratically and

the conduction band too shows much lowering. For higher values of Vgs, as

more and more charge is induced, the gate dielectric capacitance increases

greatly and we can observe the consequent effect of a reduced lowering of the

conduction band edge.
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Figure 4.3: Charge Density on the SWNT as a function of the applied gate
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Figure 4.4: Charge Density on the SWNT computed by Guo et.al.
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4.2.1 Effect of Gate Insulator Thickness

Fig. 4.6 shows that as the ratio of the gate dielectric radius to the SWNT

radius increases, the charge induced on the nanotube is reduced. This can be

explained by the simple capacitance equation which states that the capaci-

tance is inversely proportional to the distance between the plates. It follows

that the charge induced on the channel must reduce for increasing thickness

of the gate dielectric. This can simply be viewed as a reduction in the ability

of the gate to control the channel as it is moved further away from it. Thus,

as the gate dielectric is made thinner, the gate has better control over the
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channel.

4.2.2 Effect of Gate Insulator Dielectric Constant

A higher dielectric constant of the gate insulator results in a higher gate

capacitance and obviously this means that more charge will be induced on

the nanotube. The Fermi level of the channel will be raised or there will

relatively be an increased band bending. This simulated result is shown in

Fig. 4.6. The gate dielectrics Silicon Dioxide (ε = 11.7), Alumina (ε = 9.3)

and Zirconia (ε = 16.1) are often used in CNFETs and have therefore been

simulated for the SB-CNFET model under study.
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4.3 The SB-CNFET under non-equilibrium

When a positive voltage is applied on the drain, the barrier spike begins to

progressively diminish at that end of the channel. The barrier thickness, as

seen by the charge carriers, begins to reduce too. Consequently, the electrons

induced on the channel can now enter the drain metal by tunneling through

the barrier while those carriers with sufficient thermal energy can jump over

the barrier. The limiting value of current through the nanotube is described

by the thermionic current component. This is shown in Figs. 4.8(a and b),

which show the simulated I-V characteristics for small values of Vgs and Vds.

We can see from the figure, that when no gate voltage is applied, the current

is purely thermionic. For the case of Vgs = 0 in Fig. 4.8(a), the current

increases linearly with Vds. This is attributed to the linear dependance of

the thermionic current on the drain voltage. The application of a positive

gate voltage induces heavy charge on the channel. It can be seen from the

same figure that the current due to charge, tunneling through the barrier at

the drain end, is significantly greater than the thermionic current component.

The transfer characteristics in Fig. 4.8(b) reflect a similar scenario. For an

applied drain voltage, the current increases almost quadratically as soon as a

gate voltage is applied. The two drain and transfer characteristics show that

the current flowing through the device is very sensitive to the drain voltage

and is largely controlled by manipulating the barrier height at the contacts.

In the model we have considered, the barrier height is approximately, 0.3 eV.
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Figure 4.8: Unipolar I-V characteristics of the SB-CNFET
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We can see from Fig. 4.8(c) that for a given Vgs, the current saturates at

approximately this region, i.e., when the applied Vds � barrier height. At

this point the barrier is entirely suppressed and there is maximum current

flow through the channel. Fig. 4.8(d) shows an almost linear increase in the

current as a function of the gate voltage. The onset of current saturation

as a function of drain voltage is expressed very clearly here. The plot (d)

consists of 5 curves for Vds ranging from 0 - 1 V. However, while there is

a marked increase in the current for an increase of Vds from 0.1V to 0.3V,

beyond this limit, all the other curves representing the higher values of Vds

are almost merged. The electron current beyond this point is independent of

Vds.
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Bipolar Current Characteristics

The simulation results shown in Fig. 4.8 can now be extended to include

contribution due to the hole current. As the drain voltage is increased be-

yond the half bandgap value of SWNT, the barrier for electrons at the drain

is entirely suppressed and now a tunneling barrier begins to form for the

holes. This leads to a net bipolar current that has contribution from the

electrons injected into the channel from the source as well as holes injected

into the channel from the drain. At this point, the fermi level obtained by

self consistent calculation of the gate potential is insufficient to describe both

types of carriers. The Fermi level is now described by a quasi fermi level for

the electrons (referenced to the source) and a quasi fermi level for the holes

(referenced to the drain). As Vds keeps increasing, the hole current begins

to increase until the point where Vds = valence band edge of the SWNT.

At this point, the contribution due to the hole current equals that of the

electron current and for a higher Vds, the hole current exceeds the electron

current in magnitude. This is shown in Fig. 4.9. Fig. 4.10 shows the Bipolar

I-V characteristics for a SB-CNFET obtained by Clifford et al in their study

[10]. It can be seen by comparison with our results in Fig. 4.9, that the

graphs are very similar in nature, especially graphs 3 and 4 of their study.
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Figure 4.10: Bipolar I-V characterisitcs of the SB-CNFET from [10]
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Chapter 5

Conclusions and Future Work

In summary, a compact model was developed for the Schottky-Barrier Car-

bon Nanotube Field Effect Transistor with the following key concepts

• 1-D nanotube density of states

• Self-consistent band profile computation

• Assumption of ballistic transport and use of Landauer formalism for

current expression

• Triangular Barrier Approximation

• Use of quasi-fermi levels to account for bipolar current flow

• Thermionic current
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This model was implemented in MATLAB as a collection of scripts and

functions and can be incorporated as a library in any standard Hardware

Description language. When simulated in MATLAB, this model adequately

explains the working of the SB-CNFET and demonstrates the bipolar nature

of current flow in the transistor. It also accounts for the thermionic (leakage)

current through the device and can generate the transistor I-V characteris-

tics and their dependance on the gate dielectric thickness and nature of the

insulator used.

Scope for future work

The model developed in this thesis work can be improved upon by determin-

ing the electrostatics at the contacts and doing away with the triangular bar-

rier approximation. Also, phonon scattering within the device can be taken

into consideration. However, the incorporation of phonon scattering effects

might increase the complexity if computed in real space. The techniques

used by Guo in [25] for mode space approach can be actively investigated for

improving the accuracy of the model while maintaining its compactness.

The compact model developed in the thesis can be used to model cir-

cuits composed of CNTs such as basic inverters and logic gates. The various

parameters such as the contact work functions, gate dielectrics etc., can be

tweaked to obtain the desired geometry of SB-CNFET based on the applica-

tion.
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Matlab scripts and functions used in simulating the SB-CNFET

% Nanotube 1-D Density of states per Joule-meter computation

%-----------------------------------------------------------

function density_of_states = D(E)

h = 6.625E-34; pi = 3.1314; hbar = h/(2*pi);q = 1.6E-19; %J

%Fermi velocity of electron

vf = 8.1E5;%m/s

% Nanotube radius

r = 0.6E-9; %nm

% Nanotube Bandgap

Eg = 2*hbar*vf/(3*r*q); delta = Eg/2;%eV

const1 = 4/(pi*hbar*vf);% constant in the equation (1/joule-meter)

density_of_states = const1 * theta(abs(E)-delta)*abs(E)/sqrt(E^2 - delta^2);

function stepfunction = theta(E); %subfunction

if E>=0

stepfunction = 1;

else stepfunction = 0;

end
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% This function computes the fermic-dirac probability if a state being

% filled by electrons

%---------------------------------------------------------------------

function fermi_dirac_probability = f(E)

kT = 0.0256;

Ef = 0;

fermi_dirac_probability = 1/(1+exp(E-Ef/kT));

% Script for calculating density of states in a CNT both on the Conduction

% and Valence band

%-------------------------------------------------------------------------

volt = 0;

for energy = -1.5:0.001:1.5

volt =volt+1;

Q(volt) = D(energy);

energyrange(volt) = energy;

end

density = Q * 1.6E-19/1E2;% DOS in 1/(ev-cm)

h = plot(energyrange, density);

set(h,’linewidth’,[1.0]);
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ylabel ( ’Nanotube Density of states (1/ev.cm) ----->’);

xlabel (’Energy (eV) --------->’);

grid on;

% Script for calculating density of states in the SWNT under test

%----------------------------------------------------------------

index = 0;% dummy variable for generating an array

% The Fermi level of the tube is set to 0 by grounding the source and drain

% The work functions of the metal and charge neutrality level of nanotube

% are assumed to be of the same value

% Evaluation of Density of states from 0 to 0.5 eV

for Energy = 0:0.001:0.5

index =index+1;

density(index) = D(Energy); % DOS calculated by function D(E)

Energyrange(index) = Energy;

end

density = density * 1.6E-19/1E2;% conversion from 1/(J-m) to 1/(eV-cm)

plot(density, Energyrange);

%set(h,’linewidth’,[2.0]);

xlabel ( ’Nanotube Density of states (1/ev.cm) ----->’);
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ylabel (’Energy (eV) --------->’);

grid on;
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% Script to determine the charge density for different values of Vgs

%-------------------------------------------------------------------

clear all

clc

eps = 3.9*8.85E-12; %dielectric permittivity farad/m (16.1 for zirconia)

tdiel = 6E-9;%dielectric thickness in meter

dicap = 6.28*eps/log(6.6/0.6);%dielectric capacitance for concentric

cylinders in F/m

%Energy by which the conduction band moves upwards by addition of a single

%electron

Usingle = 1.6E-19/dicap;% eV-meter of energy per electron added

% Computation of the self consistent field for different Vgs

%-----------------------------------------------------------

index = 0;

for Vgs = 0:0.05:0.5; %Applied gate voltage

index =index+1; %some variable for use as index in array

U = 0; %Mid-length Self Consistent Field

dU = 1;%some initial value of error

while dU>1E-5
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iterationcount = iterationcount+1;

charge = 0;

for Energy = 0:0.01:1 %integrating from 0 to 1eV

charge = charge + (D(Energy)*1.6E-19)*f(Energy-Vgs+U);

%total charge per meter

end

Unew = charge*Usingle;

%potential energy for given charge density in eV

dU = abs(U-Unew); %error in computation

U = U + 0.01*(Unew-U);

end

Energyrange(index) = Vgs;%Vgs(V)

totalcharge(index) = charge;%charge per meter

end

% Plot of charge induced as a function of Gate Voltage

% ----------------------------------------------------

hold on

g = plot(Energyrange, totalcharge);

xlabel(’mid-length charge /m’);

ylabel(’Vgs (Volt)--------> ’);
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% Script to generate CB profiles for different values of Vgs. The CB goes

% down as Gate Voltage is applied.

%------------------------------------------------------------------------

clear all

clc

eps = 16.1*8.85E-12; %dielectric permittivity farad/m (16.1 for zirconia)

tdiel = 6E-9;%dielectric thickness in meter

Rg = 2.4; Rt = 0.6; %gate dielectric thickness and nanotube radius in nanometer

dicap = 6.28*eps/log(Rg/Rt);%dielectric capacitance for concentric cylinders in

%Energy by which the conduction band moves upwards by addition of a single

%electron

Usingle = 1.6E-19/dicap;% eV-meter of energy per electron added

% Computation of the self consistent field for different Vgs

%-----------------------------------------------------------

index = 0;

for Vgs = 0:0.2:1; %Applied gate voltage

index =index+1; %some variable for use as index in array

U = 0; %Mid-length Self Consistent Field

dU = 1;%some initial value of error
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iterationcount = 0;

while dU>1E-5

iterationcount = iterationcount+1;% counter to prevent infinite loop

charge = 0;

for Energy = 0:0.01:0.5 %integrating from 0 to 0.5eV

charge = charge + (D(Energy)*1.6E-19)*f(Energy-Vgs+U);

%total charge per meter

end

Unew = Usingle * charge/(2*3.14*0.6); %potential energy for given

charge density in eV

dU = abs(U-Unew); %error in computation

U = U + 0.01*(Unew-U);

if iterationcount > 50000, break, end

end

Energyrange(index) = Vgs;%Vgs(V)

totalcharge(index) = charge;%charge per meter

% Computation and Plot of the Conduction and Valence Band Profiles

% ----------------------------------------------------------------

index1 = 19; %dummy variable for array index

for i = 1:20

length(i) = i;

conduction_band_value(index,i) = 0;
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end

for i = 0:0.1:Rg %Running along length of tube from 0 to Rg

index1 = index1 + 1;% first 19 index values of the array

reserved for metal work function

length(index1) = 20+i;

conduction_band_value(index, index1) = 0.3-(Vgs-U)*(i/Rg);

end

for i = 1:50 %CB profile from Rg to midlength

length(index1+i) = 20+12+i;

conduction_band_value(index, index1+i) = 0.3 - (Vgs-U);

end

end

valence_band_value = conduction_band_value-0.6;

plot(length, conduction_band_value);

xlabel(’distance from Source (nm) ---->’);

ylabel(’Conduction Band Energy (eV)’);
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% Script to generate CB profiles for different dielectric materials. The CB

% goes down as as the Permittivity of the Gate dilectric increases because

% more charge is induced due to increase in the gate capacitance.

%--------------------------------------------------------------------------

clear all

clc

for i = 1:1:3

if i == 1

eps = 3.9*8.85E-12; %dielectric permittivity farad/m (3.9 for Silica)

else if i == 2

eps = 9.3*8.85E-12; %dielectric permittivity farad/m (9.3 for Alumina)

else

eps = 16.1*8.85E-12; %dielectric permittivity farad/m (16.1 for zirc

end

end

tdiel = 6E-9;%dielectric thickness in meter

Rg = 2.4; Rt = 0.6; %gate dielectric thickness and nanotube radius in nanom

dicap = 6.28*eps/log(Rg/Rt);%dielectric capacitance for concentric cylinder

%Energy by which the conduction band moves upwards by addition of a single

%electron
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Usingle = 1.6E-19/dicap;% eV-meter of energy per electron added

% Computation of the self consistent field for different Vgs

%-----------------------------------------------------------

index = 0;

Vgs = 0.2; %Applied gate voltage

index =index+i; %some variable for use as index in array

U = 0; %Mid-length Self Consistent Field

dU = 1;%some initial value of error

iterationcount = 0;

while dU>1E-5

iterationcount = iterationcount+1;% counter to prevent infinite loop

charge = 0;

for Energy = 0:0.01:0.5 %integrating from 0 to 0.5eV

charge = charge + (D(Energy)*1.6E-19)*f(Energy-Vgs+U);

end

Unew = Usingle * charge/(2*3.14*0.6);

dU = abs(U-Unew); %error in computation

U = U + 0.01*(Unew-U);

if iterationcount > 50000, break, end

end

Energyrange(index) = Vgs;%Vgs(V)

totalcharge(index) = charge;%charge per meter
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% Computation and Plot of the Conduction and Valence Band Profiles

% ----------------------------------------------------------------

index1 = 19; %dummy variable for array index

for i = 1:20

length(i) = i;

conduction_band_value(index,i) = 0;

end

for i = 0:0.1:Rg %Running along length of tube from 0 to Rg

index1 = index1 + 1;%

length(index1) = 20+i;

conduction_band_value(index, index1) = 0.3-(Vgs-U)*(i/Rg);

end

for i = 1:50 %CB profile from Rg to midlength

length(index1+i) = 20+12+i;

conduction_band_value(index, index1+i) = 0.3 - (Vgs-U);

end

end

valence_band_value = conduction_band_value-0.6;

plot(length, conduction_band_value);

xlabel(’distance from Source (nm) ---->’);

ylabel(’Conduction Band Energy (eV)’);
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% Script to determine the charge density for different values of dielectric

% thickness ratios for a fixed value of Vgs

%--------------------------------------------------------------------------

clear all

clc

eps = 3.9*8.85E-12; %dielectric permittivity farad/m (16.1 for zirconia)

% Computation of the self consistent field for different Thickness ratios

%------------------------------------------------------------------------

index = 0;

Vgs = 0.2;%Volt

for thickness_ratio = 10:10:50 % varying the thickness ratio of Rg/Rt from 10 t

dicap = 6.28*eps/log(thickness_ratio);

%dielectric capacitance for concentric cylinders in F/m

%Energy by which the conduction band moves upwards by addition of a single

%electron

Usingle = 1.6E-19/dicap;% eV-meter of energy per electron added

index =index+1; %some variable for use as index in array

U = 0; %Mid-length Self Consistent Field
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dU = 1;%some initial value of error

while dU>1E-5

charge = 0;

for Energy = 0:0.001:0.5 %integrating from 0 to 0.5eV

charge = charge + (D(Energy)*1.6E-19)*f(Energy-Vgs+U);

%total charge per meter

end

Unew = charge*Usingle; %potential energy for given charge density in eV

dU = abs(U-Unew); %error in computation

U = U + 0.1*(Unew-U);

end

MidlengthEnergy(index) = U;

%Conduction band value for Vgs=0.2V for different thickness ratios

totalcharge(index) = charge;%charge per meter for different thickness ratio

thicknessratiorange(index) = thickness_ratio;

end

% Plot of charge induced as a function of Dielectric thickness for Vgs=0.2V

% -------------------------------------------------------------------------

hold on

g = plot(thicknessratiorange, totalcharge);

xlabel(’ratio of dielectric/nanotube thickness --->’);
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ylabel(’Midlength charge density (/meter)--------> ’);

grid on
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% To calculate Drain current vs Dain voltage for different Vgs for both the

% subthreshold as well as above threshold case

% -------------------------------------------------------------------------

clear all;

clc;

pi = 3.1314;

h = 6.625E-34; % J-s (Planck’s constant)

hbar = h /(2*pi);

KT = 0.0256;%eV

q = 1.6E-19; %couloumb

%dielectric permittivity farad/m (16.1 for zirconia)

eps = 16.1*8.85E-12;

%gate dielectric thickness and nanotube radius in nanometer

Rg = 6; Rt = 0.6;

%Fermi velocity of electron

vf = 8.1E5;%m/s

% Nanotube Bandgap

Eg = 2*hbar*vf/(3*Rt*1E-9*q); delta = Eg/2;
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%dielectric capacitance for concentric cylinders in F/m

dicap = 2*pi*eps/log(Rg/Rt);

%Energy by which the conduction band moves upwards by addition of a single

%electron

Usingle = 1.6E-19/dicap;% eV-meter of energy per electron added

% phicn = phig =4.5;% Carbon nanotube and gate metal work functions (eV)

% phis = phid = 4.63;% Source and Drain metal workfunctions (eV)

%--------------------------------

%*******Sub-Threshold************

%--------------------------------

% Computation of the mid length self consistent field for a given Vgs

%--------------------------------------------------------------------

indexVgs=0;

for Vgs = 0:0.01:0.05; %Applied gate voltage (volt)

indexVgs = indexVgs+1;%index variable for array

U = 0; %Mid-length Self Consistent Field

dU = 1;%some initial value of error

while dU>1E-5

charge = 0;
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for Energy = 0:0.01:0.5 %integrating from 0 to 0.5eV

charge = charge + (D(Energy)*1.6E-19)*f(Energy-Vgs+U);

end

Unew = charge*Usingle; %potential energy for given charge density in eV

dU = abs(U-Unew); %error in computation

U = U + 0.01*(Unew-U);

end

%Computation of the VI characteristics by self consistent procedure

%------------------------------------------------------------------

%This procedure involves calculating the barrier heights from the

%equilibrium Conduction band profile and then obtaining the transmission

%probabilities from them. Each of these probabilities is multiplied with

%the corresponding fermi function over the entire conduction band range

indexVds = 0;

for Vds = 0:0.05:0.2;%Drain voltage (volt)

indexVds = indexVds + 1;

% Assume a quasi fermi level for electrons : set to charge neutrality l

% - Vgs + Uscf computed above

Efn = 0;

CB = delta - Vgs + U;
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% The Fermi function at Source contact is f(E) while within the nanotub

% shifts to f(E-Efn) and at the drain contact, it is f(E-q*Vds)

% Self-consistent current calculation

%------------------------------------

dEf = 1;

count=0;% counter

while abs(dEf) > 1E-5

flux1= 0; flux2= 0; flux3= 0; flux4 = 0;

for E = CB:0.01:delta

%Source barrier height(hs) and width(ws) in nm

hs = delta - E; ws = (Rg-Rt)*(delta-E)/(delta-CB);

%Drain barrier height (hd) and width (wd) in nm

hd = delta - Vds - E; wd = (Rg-Rt)*(delta-Vds-E)/(delta-Vds-CB)

flux1 = flux1 + T(hs,ws)*f(E);

flux2 = flux2 + T(hs,ws)*f(E-Efn);

flux3 = flux3 + T(hd,wd)*f(E-Efn);

flux4 = flux4 + T(hd,wd)*f(E+Vds);

end

dEf = (flux1-flux2)-(flux3-flux4);

Efn = Efn + sign(dEf)*0.001;

count = count + 1;
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if count>500, break, end;

end

%Landauer formula for ballistic current. The additional q is to convert

%to units of eV

thermionic_current = (8*q^2/h) * exp(-0.3/KT) *Vds;%Amp

electron_current(indexVgs, indexVds) = 2*(1.6E-19)^2/(pi*hbar) * (flux1

+ thermionic_current;

drain_voltage(indexVds) = Vds;

end

gate_voltage(indexVgs) = Vgs;

end

subplot(2,2,1), plot(drain_voltage, electron_current);

xlabel(’Drain Voltage (V) ------->’);

ylabel(’Drain Current (Amp) ------>’);

subplot(2,2,2), plot(gate_voltage, electron_current);

% Computation of the mid length self consistent field for a given Vgs

%--------------------------------------------------------------------

indexVgs=0;
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for Vgs = 0:0.01:0.5; %Applied gate voltage (volt)

indexVgs = indexVgs+1;%index variable for array

U = 0; %Mid-length Self Consistent Field

dU = 1;%some initial value of error

while dU>1E-5

charge = 0;

for Energy = 0:0.01:0.5 %integrating from 0 to 0.5eV

charge = charge + (D(Energy)*1.6E-19)*f(Energy-Vgs+U);

end

Unew = charge*Usingle; %potential energy for given charge density in eV

dU = abs(U-Unew); %error in computation

U = U + 0.01*(Unew-U);

end

%Computation of the VI characteristics by self consistent procedure

%------------------------------------------------------------------

%This procedure involves calculating the barrier heights from the

%equilibrium Conduction band profile and then obtaining the transmission

%probabilities from them. Each of these probabilities is multiplied with

%the corresponding fermi function over the entire conduction band range

indexVds = 0;

for Vds = 0:0.1:1;%Drain voltage (volt)
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indexVds = indexVds + 1;

% Assume a quasi fermi level for electrons : set to charge neutrality l

% - Vgs + Uscf computed above

Efn = 0;

CB = delta - Vgs + U;

% The Fermi function at Source contact is f(E) while within the nanotub

% shifts to f(E-Efn) and at the drain contact, it is f(E-q*Vds)

% Self-consistent current calculation

%------------------------------------

dEf = 1;

count=0;% counter

while abs(dEf) > 1E-5

flux1= 0; flux2= 0; flux3= 0; flux4 = 0;

for E = CB:0.01:delta

%Source barrier height(hs) and width(ws) in nm

hs = delta - E; ws = (Rg-Rt)*(delta-E)/(delta-CB);

%Drain barrier height (hd) and width (wd) in nm

hd = delta - Vds - E; wd = (Rg-Rt)*(delta-Vds-E)/(delta-Vds-CB)

flux1 = flux1 + T(hs,ws)*f(E);

flux2 = flux2 + T(hs,ws)*f(E-Efn);
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flux3 = flux3 + T(hd,wd)*f(E-Efn);

flux4 = flux4 + T(hd,wd)*f(E+Vds);

end

dEf = (flux1-flux2)-(flux3-flux4);

Efn = Efn + sign(dEf)*0.001;

count = count + 1;

if count>500, break, end;

end

%Landauer formula for ballistic current. The addition q is to convert h

%to units of eV

thermionic_current = (8*q^2/h) * exp(-0.3/KT) *Vds;%Amp

electron_current(indexVgs, indexVds) = 2*(1.6E-19)^2/(pi*hbar) * (flux1

+ thermionic_current;

drain_voltage(indexVds) = Vds;

end

gate_voltage(indexVgs) = Vgs;

end

subplot(2,2,3), plot(drain_voltage, electron_current);

xlabel(’Drain Voltage (V) ------->’);

ylabel(’Drain Current (Amp) ------>’);

subplot(2,2,4), plot(gate_voltage, electron_current);
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% Electron Current as well as Hole current

% Script to generate CB and VB profiles and to compute the I-V

% characteristics the for different values of Vgs and Vds

%-------------------------------------------------------------------

clear all;

clc;

pi = 3.1314;

h = 6.625E-34; % J-s (Planck’s constant)

hbar = h /(2*pi);

q = 1.6E-19; %couloumb

%dielectric permittivity farad/m (16.1 for zirconia)

eps = 16.1*8.85E-12;

%gate dielectric thickness and nanotube radius in nanometer

Rg = 6.6; Rt = 0.6;

%Fermi velocity of electron

vf = 8.1E5;%m/s

% Nanotube Bandgap

Eg = 2*hbar*vf/(3*Rt*1E-9*q); delta = Eg/2;

%dielectric capacitance for concentric cylinders in F/m
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dicap = 2*pi*eps/log(Rg/Rt);

%Energy by which the conduction band moves upwards by addition of a single

%electron

Usingle = 1.6E-19/dicap;% eV-meter of energy per electron added

% phicn = phig =4.5;% Carbon nanotube and gate metal work functions (eV)

% phis = phid = 4.63;% Source and Drain metal workfunctions (eV)

% Computation of the mid length self consistent field for a given Vgs

%--------------------------------------------------------------------

Vgs = 2; %Applied gate voltage (volt)

Vds = 0.2;%Drain voltage (volt)

U = 0; %Mid-length Self Consistent Field

dU = 1;%some initial value of error

while dU>1E-5

charge = 0;

for Energy = 0:0.01:1 %integrating from 0 to 0.5eV

charge = charge + (D(Energy)*1.6E-19)*f(Energy-Vgs+U); %total charge pe

end

Unew = charge*Usingle; %potential energy for given charge density in eV

dU = abs(U-Unew); %error in computation

U = U + 0.01*(Unew-U);
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end

% Computation and Plot of the Conduction and Valence Band Profiles for the

% applied Vds

% ----------------------------------------------------------------

CB = delta-(Vgs-U);% Mid length conduction band value

VB = CB - Eg;%Mid length Valence band value

index1 = 20; %dummy variable for array index

for i = 1:19

length(i) = i-20;

conduction_band_value(i) = 0;

valence_band_value(i) = 0;

end

length(20)=-0.99;

for i = 0:0.1:6 %Running along length of tube from 0 to Rg

index1 = index1 + 1;

length(index1) = i;

conduction_band_value(index1) = delta-(Vgs-U)*(i/6);

valence_band_value(index1) = conduction_band_value(index1)-0.6;

end

for i = 1:88 %CB profile from Rg to (length of tube - Rg)

length(index1+i) = 6+i;
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conduction_band_value(index1+i) = delta - (Vgs-U);

valence_band_value(index1+i) = conduction_band_value(index1+i) - 0.6;

end

index1 = index1 + 88;

for i = 0:0.1:6 %Running along length of tube from Rg to drain end

length(index1) = 6 + 88 + i;

conduction_band_value(index1) = delta- Vds*i/6 - (Vgs-U)*(1-(i/6));

valence_band_value(index1) = conduction_band_value(index1) - 0.6;

index1 = index1 + 1;

end

for i = 0:20

length(index1+i) = 6 + 88 + 6 + i;

conduction_band_value(index1+i) = -Vds;

valence_band_value(index1+i) = -Vds;

end

% hold on

% plot(length, conduction_band_value);

% plot(length, valence_band_value);

% grid on;

% hold off

%Computation of the VI characteristics by self consistent procedure
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%------------------------------------------------------------------

%This procedure involves calculating the barrier heights from the

%equilibrium Conduction band profile and then obtaining the transmission

%probabilities from them. Each of these probabilities is multiplied with

%the corresponding fermi function over the entire conduction band range

indexVds = 0

for Vds = 0:0.01:0.5

indexVds = indexVds + 1;

% Assume a quasi fermi level for electrons and holes: Reference electron qu

% fermi level to source and hole quasi fermi level to drain

Efn = 0;

Efp = -Vds;

% The Fermi function at Source contact is f(E) while within the nanotube it

% shifts to f(E-Efn) and at the drain contact, it is f(E-q*Vds)

%-------------------------------------------------

% Self-consistent current calculation for electron

%-------------------------------------------------

dEf = 1;

electron_count=0;% counter

while abs(dEf) > 1E-5

flux1= 0; flux2= 0; flux3= 0; flux4 = 0;

for E = CB:0.01:delta
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%Source barrier height(hs) and width(ws) in nm

hs = delta - E; ws = (Rg-Rt)*(delta-E)/(delta-CB);

%Drain barrier height (hd) and width (wd) in nm

hd = delta - Vds - E; wd = (Rg-Rt)*(delta-Vds-E)/(delta-Vds-CB);

flux1 = flux1 + T(hs,ws)*f(E);

flux2 = flux2 + T(hs,ws)*f(E-Efn);

flux3 = flux3 + T(hd,wd)*f(E-Efn);

flux4 = flux4 + T(hd,wd)*f(E+Vds);

end

dEf = (flux1-flux2)-(flux3-flux4);

Efn = Efn + sign(dEf)*0.001;

electron_count = electron_count + 1;

if electron_count>500, break, end;

end

%Landauer formula for ballistic current. The addition q is to convert hbar

%to units of eV

electron_current(indexVds) = 2*(1.6E-19)^2/(pi*hbar) * (flux1-flux4);

%----------------------------------------------

% Self-consistent current calculation for hole

%----------------------------------------------
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dEf = 1;

hole_count=0;% counter

while abs(dEf) > 1E-5

flux5= 0; flux6= 0; flux7= 0; flux8 = 0;

for E = abs(VB):0.01:1

%Source barrier height(hs) and width(ws) in nm

hs = delta - E; ws = (Rg-Rt)*(delta-E)/(delta-abs(VB));

%Drain barrier height (hd) and width (wd) in nm

hd = delta + Vds - E; wd = (Rg-Rt)*(delta+Vds-E)/(delta+Vds-abs(VB)

flux5 = flux5 + T(hs,ws)*f(E);

flux6 = flux6 + T(hs,ws)*f(E+Efp);

flux7 = flux7 + T(hd,wd)*f(E+Efp);

flux8 = flux8 + T(hd,wd)*f(E-Vds);

end

dEf = (flux8-flux7)-(flux6-flux5);

Efp = Efp - sign(dEf)*0.001;

hole_count = hole_count + 1;

if hole_count>500, break, end;

end

%Landauer formula for ballistic current. The addition q is to convert hbar

%to units of eV

hole_current(indexVds) = 2*(1.6E-19)^2/(pi*hbar) * (flux8-flux7);
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Drain_current(indexVds) = electron_current(indexVds) + hole_current(indexVd

drain_voltage(indexVds) = Vds;

end

hold on

plot(drain_voltage, Drain_current);

plot(drain_voltage, electron_current);

plot(drain_voltage, hole_current);
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