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Abstract

A layered architecture called Network-on-Chip (NoC) has been recently proposed for global

communication in a complex System-on-Chip (SoC) design to meet the performance requirements,

and many new design and testing issues come up correspondingly. In this work, we aim to develop

an efficient test strategy for NoC embedded core testing with a high performance router architecture

which can support normal mode as well as testing mode operations.

For normal mode router design, we propose to use a novel dynamic XY (namely DyXY)

routing method, which provides adaptive routing based on congestion conditions in the proximity,

and ensures deadlock-free and livelock-free features at the same time. Analytical models based

on queuing theory are developed for DyXY routing in two-dimensional mesh architectures, and

analytical results match very much with the simulation results. It is observed that DyXY routing

can achieve much better performance when compared with static XY routing and odd-even routing.

Hardware is also designed to support the proposed DyXY routing method efficiently. For the

embedded core testing, we propose a multiple-data-flit-format (MDFF) test data transportation

concept, a heuristic wrapper scan chain configuration method, and a test scheduling algorithm which

considers both channel capacity and data flit interleaving in the channels and routers. By applying

the proposed test scheduling method together with the MDFF concept and the heuristic scan chain

configuration method, the on-chip network channel of a NoC can be fully utilized for embedded

core testing, the test time for the entire NoC can be minimized, and the test power dissipation can

be controlled well. By comparing the results with other published works, it has been demonstrated

that the proposed test scheduling method can achieve significant improvement on the test time

for the entire NoC. To support the proposed embedded core testing strategy, the design issues for

testing mode operations have also been explored, and a complete router architecture is presented to

support both normal mode (DyXY) and testing mode operations. With all these works completed,

we have an efficient NoC embedded core testing strategy with the support of a router architecture

which provides high performances in test mode as well as normal mode operations.
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Chapter 1

Introduction

With the improvement of manufacturing process in semiconductor devices, the number of

transistors fabricated onto a single chip has increased tremendously. It has paved the way for

incorporating various systems on a single chip (SoC). This trend of SoC design is not only popular

but also economical for integrating complex systems onto a single chip. With the feature size of

50 nm and below, a SoC consisting of 4 billion transistors running at 10 GHz will be a reality

[2]. This has led to an increase in the production of intellectual property (IP) cores that can be

used readily for various SoCs. Complex SoCs can be realized by integrating various IP cores from

different vendors [3][4]. The major factors that are affected by this kind of component reuse are

reliability in the integrated SoC and its performance. There is also a need for integrating numerous

IPs to perform different functions operating at different clock frequencies on the same chip.

As the size of a chip increases, so does the complexity of the design of its interconnect

resources. Some of the requirements for an interconnect architecture for future SoCs are: scal-

able architecture, heterogeneous architecture, reliable communication, quality of service, less power

dissipation, reusability of design and reusability of interconnect resources. Traditional bus-based

architecture cannot satisfy all of the above requirements. We can clearly see a necessity to make

communication and computation architectures orthogonal for complex SoCs to meet the perfor-

mance requirements. This would result in adding more intelligence to the communication architec-

ture [5]. To address all the above issues, a layered approach along the lines of traditional networks

has been proposed for global communication in a SoC. The interconnect architecture consists of a

message passing network for on-chip communication called Network on Chip (NoC) [2].
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Figure 1.1: Examples of (a) typical bus-based SoC and (b) NoC architectures [1].

A NoC system consists of a number of processing elements connected to each other by a

communication network. The communication network consists of a number of routers for directing

the messages to appropriate processing elements. The network architecture for interconnects de-

couples the communication from the processing elements. Proper design of the network can make

it easily scalable. The important aspect in such communication architecture is to rightly adapt its

characteristics such that they meet the requirements for a complex SoC system [6] -[9]. However,

many design and testing issues also come up with this new SoC architecture correspondingly.

1.1 Design and Testing issues for NoC

1.1.1 Design Issues

The main NoC design consideration is about the router architecture.

Routers are the most important components in NoC architecture. A routing algorithm is

used to determine the path of a packet traverses from the source to the destination. Generally,

routing algorithms can be classified as deterministic routing and adaptive routing. With deter-

ministic routing, the path of a packet is fixed for the given source and destination addresses. The

advantage of deterministic routing is its simplicity in router design. However, when the packet

injection rate increases, deterministic routings are likely to suffer from throughput degradation as
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they cannot respond to the network congestion dynamically. With an adaptive routing algorithm,

instead of determining the path a priori, the path is determined based on the congestion conditions

in the network, thus reducing the latency in the system. Since adaptiveness reduces the chance

for packets to enter hot-spots or faulty components, and hence reduces the blocking probability of

packets, it is an important factor for message routing.

The other important requirement of a routing algorithm is the freedom from deadlock and

livelock. Livelock is a condition in which a message may never arrive at its destination, and it is

possible only when message routing is adaptive and is nonminimal. Deadlock occurs when packets

wait for each other in a cycle. Many works have been done to develop efficient routing methods for

mesh structure computer networks and NoC architectures [10]-[20]. Although they have achieved

some progress, there are still some limitations on the adaptiveness of the routing algorithms and

complexity of the router architecture. A NoC does not only work under normal mode, it also has

some special operation modes such as burst mode and testing mode. Complete router architecture

should also be capable to support these operation modes.

1.1.2 Testing Issues

Testing of the NoC including testing the embedded cores and the on-chip network (the

routers and interconnects).

Testing the embedded cores in a NoC poses considerable challenges. Reuse of the existing

on-chip communication resources, such as routers and channels, is critical to avoid additional area

overhead [21]. However, reusing the NoC resources efficiently is challenging because the design of

routers and channels in on-chip networks is optimized for communication in mission-mode, not for

test. For example, there may be a mismatch between the available network channel width and

the core scan chain width (which is usually equal to the Test Access Mechanism (TAM) width for

traditional SoC architectures [22][23]), and this can adversely affect test efficiency and test cost.

Most embedded cores use scan test to verify the functional and structural correctness for

their random logic circuits. Scan chain configurations in SoC architectures have been fully re-

searched, and good results have been successfully accomplished. However, the objective of scan

testing in a NoC is different from that in a SoC, so the detailed configuration method is also

different. The major difference comes from the following two points.
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1) In a traditional SoC architecture, the width of TAM directly affects the cost of test, so

each embedded core can allow only very few wrapper scan chains. The scan chain configuration has

to be limited by this requirement, and the test application time for a single core has to sacrifice.

However, it is no longer a bottleneck in a NoC where there is no common TAM. Instead, test patterns

and output responses are transferred using the existing on-chip communication network. Each

embedded core is equipped with a wrapper (i.e., network interface) for mission-mode operations to

serve all I/Os of the core. These connections to all I/Os can be used in test mode as a test access

port, and the number of wrapper scan chains only has a limit with the network channel width; in

most common cases, it is much smaller than the network channel width. So, the minimum test

application time for each core can be easily satisfied as long as we limit the length of the longest

internal scan chain as the maximum length of all wrapper scan chains.

2) In a traditional SoC, wrapper scan chains are configured as balanced (i.e., equal length)

as possible, and all bits of each test pattern are scanned into the scan chains simultaneously. Since

the assigned TAM channel width is the same as the number of wrapper scan chains, this can

minimize the waste of the channel bandwidth. However, it is not the case in a NoC. The network

channel structure is fixed and designed for mission-mode operations in a NoC, so there may be a

mismatch between the network channel width and the number of wrapper scan chains in a core

logic. This problem will not affect the test time for a single core, but the waste of the network

channel bandwidth will result in extra network traffic, and thus has a great effect on the total test

time for the entire chip.

Taking these two differences into consideration, we can find that the wrapper scan chain

configuration in a NoC-based system is a totally different problem from that in a traditional SoC,

and thus a new method has to be developed.

With the introduction of NoC, valuable works have been done for embedded core testing

based on this new architecture [21]-[28]. The works in these literatures addressed the reusing of

on-chip network for embedded core testing, and proposed test scheduling methods for this new

architecture. However, none of them addressed the wrapper scan chain configuration issue. There-

fore, the utilization of the on-chip network is still limited, and the testing time for the entire NoC

using these proposed methods is not efficient enough.

4



1.2 Our Work

Our aim of this research is to develop an efficient testable NoC architecture, i.e., we aim

to (1) develop an efficient test strategy for NoC embedded core testing, and (2) design a router

architecture which supports the testing mode and provides good performance for normal mode

operations at the same time.

For the normal mode router architecture design, we propose a novel routing method, namely

dynamic XY (DyXY) routing, which enables adaptive routing based on congestion conditions in the

proximity, and ensures deadlock-free and livelock-free features at the same time. The adaptiveness

lies in making routing decisions by monitoring congestion status in the proximity. The deadlock-

free and livelock-free features are incorporated by limiting a packet to traverse the network only

following one of the shortest paths between the source and the destination. Analytical models based

on queuing theory are developed for both XY routing (we call it static XY in the following part of

this thesis for comparison) and DyXY routing to evaluate their performance for a two-dimensional

mesh NoC architecture. Extensive simulation is done to validate the analytical models, and it

will be demonstrated that the simulation results match very well with the analytical results. To

further evaluate the performance of DyXY, we compare it with both static XY routing and odd-

even routing under different traffic patterns, and it is shown that the DyXY routing method can

achieve the best performance.

For embedded core testing, we propose a new test data transportation method using multiple

data flit formats (MDFF). With this method, a data flit can contain multiple bits for each wrapper

scan chain, instead of only one bit/chain in traditional test application methods. Also, the data flits

for a core can have different formats to adapt with the number of unfilled scan chains, for maximum

utilization of network channels. To address the difference between traditional SoC test bus and

NoC interconnect topology, we propose a new scan chain configuration concept called Factorial

Scan Chain Group (FSCG), instead of equal-length configuration methods adopted in traditional

bus-based SoCs. A heuristic wrapper scan chain configuration method is developed based on this

new concept, to reduce both the test application time and the waste of data flits for testing cores

in a NoC. A test scheduling method is also proposed to optimize the sequence of embedded core

testing to reduce the test time for the entire chip. Test flit routing and flit interleaving issues are
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investigated in detail. Performance evaluations of the wrapper scan chain configuration and test

scheduling methods are conducted by the simulation results on the ITC’02 benchmark set.

To support the proposed embedded core testing strategy, we also explore router design

issues under testing mode, and propose a complete router architecture which can support both

normal mode and testing mode operations.

The dissertaion is organized as follows:

Chapter 2 reviews the basic concepts of network-on-chip, including its architecture, routing meth-

ods, and testing issues.

Chapter 3 presents the DyXY routing method for normal mode operations which can provide

adaptive routing with deadlock free and livelock free features. An analytical model based on queuing

theory is also developed for the DyXY routing method. Experimental results are presented to verify

the analytical model and to compare the DyXY routing method with the static XY and odd-even

routing methods.

Chapter 4 demonstrates the MDFF data flit transportation method and a heuristic wrapper

scan chain configuration method based on the MDFF method for NoC embedded core testing.

Experimental results on ITC’02 benchmark sets are presented to evaluate the wrapper scan chain

configuration method.

Chapter 5 proposes a test scheduling method based on the heuristic wrapper scan chain configura-

tion method for NoC embedded core testing. The test scheduling method takes both test resource

capacity and test flit interleaving into account. The performance of the scheduling method is

evaluated by the experimental results on ITC’02 benchmark sets.

Chapter 6 discusses the router design issues under testing mode, and presents a complete router

architecture for both normal and testing mode operations.

Chapter 7 concludes the dissertaion and proposes future works for testing the interconnect com-

ponents (including the routers and interconnects) of a NoC.
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Chapter 2

Background

2.1 Emergence of NoC

Chip complexities of up to 1 billion transistors on a single piece of silicon is feasible by

the end of this decade[5]. With this development, a whole system (processing elements, memories,

communication infrastructure, analog I/O etc) can be virtually build on one single chip (SoC),

which will bring lots of profit to the embedded system market.

In a SoC, a large part of the transistors may be used as embedded memory, however, a

significant share should be used to increase the number of on-chip processing units in order to en-

hance system performance. Given the complexities of todays state-of-the-art embedded processors,

a single chip can easily accomodate several hundreds or even thousands of embedded processors.

However, no more than 10 to 15 processors can be integrated in a single chip of todays complex

SoCs. Obviously, the maximum possible amount of transistors (silicon-technology-wise) per chip

are unable to be exploited. This problem becomes even more evident if the number of transistors

per SOC without the embedded memory is excluded. Clearly, although there is a demand for higher

complexities from an application demand point of view, real-world SOCs complexities still lag a lot

behind the capabilities of silicon technologies [1].

How does this happen? A possible answer can be found from Figure 2.1. In this figure, the

red graph shows the number of available gates per chip for a given silicon technology for SOCs, and

the blue graph showns the number of actually used gates per chip for a given silicon technology.

As we can see, there is a big gap between these two graph, and the reason of existence of the gap is
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Figure 2.1: Chip complexity and design complexity crisis [1].

due to the lack of ESL (Electronic System Level Design) methodologies. Fortunately, with current

developments in ESL methodologies, it can be predicted that this gap will eventually be closed,

and thus it will be feasible for the system designer to integrate all billions of transistors on a single

chip as silicon technology provided by the end of the decade.

Billion-transistor SoCs have manifold application areas, including security systems, control

systems, individual health systems, and main stream consumer products in areas such as personal

communication, personal computing, entertainment, video/photo and etc. High complexity of these

devices is already a big problem today, and the problem will be even severe with the rising tendency

to integrate larger functionality in new device generation. The trend of more complex SoCs will

significantly change the way SoCs are designed, both from a design methodology point of view

and from an architectural point of view. With hundreds or even thousands of processors to be

integrated on a single chip, a sophisticated communication infrastructure is required. Bus-based

communication infrastructures, even those using hierarchies of buses will not be sufficient.

The problem comes from several aspects. First, large bus lengths are prohibitive in future

designs since it will lead to nonmanageable clock skews which is not tolerable for future large SoCs

with high clock frequencies. Shrinking process geometries reduce the cross section of wires, which

increases the wires resistance per length, while does not scale down their capacitance accordingly.

Wires become slower compared to gates, as illustrated in Figure 2.2. The size of today’s SoCs are

already larger than 10 10 mm, which forces a tight timing constraints for bus-based, synchronous

communication structures. Clock-skew control issue with slow wires in larger system becomes
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increasingly difficult.

Figure 2.2: Relative evolution of wire and gate delays(source: 2003 International Technology
Roadmap for Semiconductors, Sematech, 2003).

From the other aspect, maintaining globally synchronous bus protocols between cores

doesn’t seems practical with SoCs with multiple clocks. Many IP blocks in SoCs have their own nat-

ural clock rate, driven by the components with which they interface or by the real-time data flows

they serve. And SoCs with dozens of clocks is already a reality today. Just as the on-board buses

(such as PCI) have moved to a point-to-point high-speed network implementation (PCI-Express),

transition of on-chip communications of SoCs to point-to-point networks on chips between locally

clocked IP blocks or subsystems, is an inevitable trend.

The scalability and success of the Internet has inspired researchers to borrow the ideas

of switch-based (routers) networks and packet-based communication for on-chip communication.

Networks-on-Chip, NoCs, is emerging as a new design paradigm to overcome the limitations of

todays bus-based communication infrastructure. NoCs use layered communication protocols, de-

coupling the physical transmission of bits through point-to-point wires from higher-level aspects,

such as IP socket transactions. The features of NoCs includes scalability, possibility of standard-

ization and reuse of communication architecture. These features are crucial to chip designers to

lower design effort, and meet time to market constraints for new products. In the next section, we

will introduce the detailed architecture and propertise of NoCs.
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2.2 Basics of NoC Architecture

The concept of NoC is derived from computer networks and a typical NoC architecture is

shown in Figure 2.3.

Figure 2.3: A typical NoC architecture.

A NoC architecture is mainly consists of several basic components:

• Processing core - a processing core can be a microprocessor, a DSP processor, an ASIC,

memory or an I/O processor. Sometimes, it is also referred as a processing element (PE).

• Network interface - it acts as a wrapper between the processing core and the router.

Network interface performs two functions. The first one is to collect information from the

processing core, packetize and insert them into the network. The other one is to collect

packets from the network, de-packetize them and send the information to the processin unit.

• Interconnect - Interconnets denote the physical wires connecting processing cores. The in-

terconnect topology defines how the processing cores are interconnected to each other through

the interconnect channels. Each topology is associated with various factors such as node

degree, maximum hop distance, network diameter, and channel width. Some of the most

common interconnect topologies are fat-free, 2D mesh, 2D torus and Octagon. Architecture
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details and real implementations of the NoC design are presented in [29]-[32], and the ba-

sic topologies are shown in Figure 2.4. The choice in the interconnect topology depends on

various factors such as performance, load distribution, power consumption, regularity, design

complexity, layout compatibility, and chip area. A complete performance comparison of these

interconnect topologies can be found in [33].

Figure 2.4: NoC interconnect topologies (a)SPIN (b)CLICHE (c)Torus (d)Folded torus (e)Octagon
and (f)BFT [33].

• Router - routers are used to direct the flow of communication. A router receives a packet

at one of its inputs and forwards the packet to one of its outputs based on the routing

information. Each router is connected to a processing core, but the degree of the router

depends upon the chosen communciation topology. There are mainly two switching techniques

called circuit switching and packet switching. In circuit switching, the connection between

the source and the destination is made prior to the communication. Once the connection

is established, it stays active for the fixed time. All packets reach the destination in order,

and the bandwidth offered by this switching is guaranteed and fixed. However, this switching

method suffers from long setup delay, unused channel bandwidth and inflexibility. In packet

switching, data is transported from the source to the destination in the form of packets. Each

packet is transferred asynchronously in the network, i.e., each router makes its own decision
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to send the packet to the next available router. Packet switching offers the best effort service

by an efficient utilization of the resources but the order of the packets cannot maintained.

This switching mechanism also suffers from congestion, long waiting time for each packet

and the bandwidth is not guaranteed. NoC requires both the guaranteed throughput and

best throughput services depending on the application, but incorporation of both switching

mechanisms add too much complexity to the design. This problem can be solved by making

use of efficient flow control mechanisms such as store and forward, wormhole routing, and

virtual channel flow control. The details of these flow control mechanisms can be found

in [34]. The choice of the flow control is dependent on the silicon cost, design complexity

and performance requirements. Here, we would like to spend a little more space to descibe a

popular packet switching flow control mechanism: wormhole routing. With wormhole routing,

a packet is divided into flow control digits (or flits). The flits are routed through the network

one after another in a pipeline fashion. The first flit of a packet is designated as the header

flit, which contains routing information and leads the packet through the network. When the

header flit is blocked from advancing due to lack of output channels, all of the flits wait at their

current nodes for available channels. Each router only requires small buffer space to store the

flits and communication latencies are low with wormhole routing. The routing algorithm we

will present next in this disseration is based on the wormhole routing flow control mechanism.

Compared with traditional SoC architecture, the NoC architecture has some advantages:

• Parallel Communication: The NoC architecture can support parallel communication, and

the amount of parallelism depends on the topology used.

• Regular Structure: The regular structure of the NoC and the relatively short interconnect

help to reduce the coupling effects and thus can effectively relief the signal integrity problem.

• Reusability: NoC allows to reuse the already designed processing cores and interconnect

resources to reduce development time and the time to market.

• Scalability: NoCs are totally scalable. The degree of scalability depends on various factors

such as flow control, router design and topology.
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• Heterogeity: SoCs tend to run heterogeneous applications on heterogeneous architectures.

Many SoC applications perform several different types of algorithms, and the processing

elements are chosen to match the computational load of each process to the processing element

on which it runs. Communication loads may also vary considerably between pairs of points

in a typical SoC architecture. With NoC architecture, the communication section is totally

hidden from the computation section. Different processing cores can operate at different clock

frequencies and to interact with the network interface for communication with each other.

All communication in the network can be either synchronized to one global clock or can be

totally asynchronous. This new network architecture can better match the traffic and help

to reduce the network size and power consumption.

However, the NoC architecture also has some disadvantages:

• Area: Due to the extra communication components (wires, router and network interfaces)

added to the chip, the NoC architecture consumes more area than traditional SoC architec-

ture. A recent work [6] reported that the network logic occupies around 6-7% of the entire

chip area.

• Under Utilization: Some resources are under utilized if the network payload is smaller than

the network capacity. Careful analysis must be performed at the design time for the proper

utilization of all resources.

• Power Consumption: Power consumption becomes a major problem due to increased clock

frequencies in conjunction with high integration ratio. In NoC architecture, although the

specific power consumption of a wire in an on-chip network might decrease, the sheer amount

of added wires (as part of the links between routers/switches) will increase sharply due to the

increasing number of IP cores residing on future SoCs. In addition, the communication will

likely increase too. As a result, the power consumption of the interconnect may significantly

contribute to the power budget of the entire chip. Therefore, more efforts are required for

detailed analysis of interconnect network power consumption for a feasible design.

13



2.3 Review of Works on NoC Routing Algorithms and Router

Architectures

Routers are the most important components in NoC architecture. A routing algorithm is

used to determine the path of a packet traverses from the source to the destination. Generally,

routing algorithms can be classified as deterministic routing and adaptive routing. With deter-

ministic routing, the path of a packet is fixed for the given source and destination addresses. The

advantage of deterministic routing is its simplicity in router design. However, when the packet

injection rate increases, deterministic routings are likely to suffer from throughput degradation as

they cannot respond to the network congestion dynamically. With an adaptive routing algorithm,

instead of determining the path a priori, the path is determined based on the congestion conditions

in the network, thus reducing the latency in the system. Since adaptiveness reduces the chance

for packets to enter hot-spots or faulty components, and hence reduces the blocking probability of

packets, it is an important factor for message routing. The other important requirement of a rout-

ing algorithm is the freedom from deadlock and livelock. Livelock is a condition in which a message

may never arrive at its destination, and it is possible only when message routing is adaptive and

is nonminimal. Deadlock occurs when packets wait for each other in a cycle. Deadlock-free and

livelock-free are important criterias to guarantee the performance of routing algorithms.

Many routing algorithms dealing with networks with the mesh architecture have been pro-

posed for deadlock-free and adpativeness recently. In [10]-[14], virtual channels are introduced to

assist the design of nonadaptive and adaptive routing algorithms for a variety of network architec-

tures. Virtual channels are abstractions that share the same physical channel. Although adding

virtual channels can allow the adaptiveness of routing algorithms, it sacrifices with extra buffer

space and complex router control logic, and thus may affect the network performance and router

reliability [15].

In [15]-[18], routing algorithms that require no virtual channels have been proposed for

networks with the mesh architecture. A static XY routing algorithm for two-dimensional meshes

has been presented in [16]. With static XY routing, a packet first traverses along the x dimension

and then along the y dimension. This algorithm is deadlock-free but provides no adaptiveness. The

work in [15] proposed another algorithm called the turn model, which is a partially adaptive routing

14



algorithm without virtual channels. The basic idea of the turn model is to prohibit the minimum

number of turns to break all of the cycles, so that deadlock can be avoided. Based on the turn

model, three partially adaptive routing algorithms, namely west-first, north-last, and negative-first

were presented for two-dimensional meshes. In [17], a routing algorithm based on the turn model

was proposed. This routing algorithm is called odd-even turn. It restricts some locations where

turns can be taken so that deadlock can be avoided. In comparison with the previous methods, the

degree of routing adaptiveness provided by this model is more even for different source-destination

pairs. A direction restriction model for a partially adaptive routing algorithm has been proposed in

[18]. A system with this model is divided into two unidirectional networks, and message routing is

done in two phases. A packet is routed adaptively to an intermediate node using one unidirectional

network in the first phase, and then routed adaptively to the destination using the other network

in the second phase.

With the introduction of NoC, some works about routing for NoC architectures have been

done. In [19], the authors showed the benefit of using proximity congestion status to aid hot-potato

routing (routing without buffers) in a deflective network. It was shown that the maximum tolerable

load can increase significantly with the proximity congestion awareness technique. A routing scheme

called DyAD was proposed in [20]. This algorithm is actually a the combination of a deterministic

routing algorithm called oe-fix, and an adaptive routing algorithm called odd-even as introduced in

[17], where oe-fix is the deterministic version of odd-even routing. The router can switch between

these two routing modes based on the network’s congestion conditions.

2.4 Review of Works on NoC Testing Methods

For traditional SoC, test stimuli and test results are transported through the TAM circuit.

Hence, many research efforts for SoC testing are focused on the co-optimization of test wrapper

and TAM [22]-[35]. Functional I/Os and internal scan chains of an embedded core are generally

configured to a designated number of balanced wrapper scan chains whose lengths are as equal

as possible. The number of wrapper scan chains is determined by some optimization algorithms

(e.g., some ILP algorithms), which take both test wrapper and TAM into consideration, and try to

minimize the overall test time and area overhead.
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Besides the work on co-optimization of test wrapper and TAM, some other research sug-

gested the reuse of functional connections during test to reduce test costs in terms of area and

pin overhead, as proposed in literatures [36]-[39]. A core-to-core connection model is assumed in

those methods. Another trend is to use a packet-switching architecture to test embedded cores,

as proposed in [40] and [41]. In [40], the authors proposed a test strategy for a homogeneous

system composed of an on-chip multiprocessor architecture, where the processors are connected in

a network-based model. Test of the routers, the RAM blocks, and the embedded processors were

all ecplored in their work. In [41], the use of a packet switching communication-based TAM was

proposed for an SOC. The proposed TAM model is called NIMA and is defined to allow modularity,

generality, and configurability for the test architecture. The NIMA architecture is very similar to

a functional NoC, but it is specifically designed for the test task. , Power consumption during test

has not been modeled in neither [40] or [41].

A number of approaches considering power constraints during SoC test scheduling have

been presented in literatures [42]-[43]. All these works were based on a bus-based TAM, and the

test scheduling was modeled such that two cores will not be tested concurrently whenever the sum

of their power consumption during test is larger than the maximum power consumption allowed

for the system. The peak power consumption for each core is assumed in all cases, however, the

power consumption of the access mechanism has not been considered. The power consumption of

the access mechanism can be prohibitive, and it is depended on the length and width of the set

of test buses defined for the system. In [44], the author proposed a power profile manipulation

approach to minimize the power dissipation during test. Such a manipulation provideed a more

realistic power profile to be used by any power constrained test scheduling algorithm, and made

the test time reduction possible by increasing the test concurrency.

With the introduction of NoC, valuable works have been done for embedded core testing

based on this new architecture. In [21], two methods of using an on-chip network for the test

of core-based systems were introduced, and advantages in reducing test time, area overhead and

pin-overhead were shown by experimental results. In [24], the authors extended the results of a

previous on-chip network research to a test scheduling algorithm with power constraints considered.

In this algorithm, scheduling was based on every single packet and the test pipeline for a core can be

interrupted. Since this is not applicable for the non-preemptive case, an improved test scheduling
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algorithm with BIST and precedence constrains was further proposed in [25]. For all these test

scheduling algorithms, each packet only contains a single bit for each wrapper scan chain of the

embedded core. Since this may result in a huge waste of packets, a further improved test scheduling

algorithm has been proposed in [26]. The algorithm allows a packet to contain multiple bits for

each wrapper scan chain. To support test under this new packet format, the authors proposed

to use on-chip clocking to speed up the test data transfer for certain cores by faster clocks, and

use slower clocks for other cores to limit the power consumption. An algorithm was presented to

determine the clock rate distribution among the cores.

A network architecture using the star-connected on-chip network was proposed in [27]. The

authors implemented an example NoC and analyzed the core access time and the communication

throughput. It was shown that this architecture can result in reduction of test time due to the

high bandwidth and smaller area overhead due to the network reuse. Another work [28] evaluated

the impact of reusing processors to test a NoC-based system. The results demonstrated that using

available processors as source/sink for test can achieve better test parallelism, and hence can reduce

the system test time without additional area and test pins.
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Chapter 3

Normal Mode Router Design

As introduced in Chapter 2, many works have been done to develop efficient routing meth-

ods for mesh structure computer networks and NoC architectures [10]-[20]. Although they have

achieved some progress, there are still limitations on the adaptiveness of the routing algorithm

and complexity of the router architecture. In this Chapter, we propose a novel routing algorithm,

namely dynamic XY (DyXY) routing, which provides an adaptive routing mechanism based on

congestion conditions in the proximity, and ensures deadlock-free and livelock-free routing at the

same time. A new router architecture is developed to support the routing algorithm. Analytical

models based on queuing theory are developed for both static XY routing and DyXY routing for a

two-dimensional mesh NoC architecture, and the performance of DyXY routing is compared with

both static XY routing and odd-even routing.

3.1 DyXY Routing and Router Architecture

With the DyXY routing algorithm, each packet only travels along a shortest path between

the source and the destination (this guarantees the deadlock-free feature of the routing algorithm).

If there are multiple shortest paths available, routers will help the packet to choose one of them based

on the congestion condition of the network. The detailed routing algorithm can be summarized as

follows:

• Read the destination of an incoming packet.

• Compare the destination address with the current router address.
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– If the destination is the local core of the current router, send the packet to the local core;

– Else

∗ If the destination has the same x (or y) address as the current router, send the packet to

the neighboring router on the y-axis (or x-axis) towards the destination;

∗ Else, check the stress values of current router’s neighbors towards the destination, and send

the packet to the neighbor with the smallest stress value.

The stress value is a parameter representing the congestion condition of a router, and it

can be the instant queue length (the number of occupied cells in all input buffers) of the router.

Each router stores instant stress values for all neighbors. Each stress value is updated based on

an event-driven mechanism, i.e., when there is a change with a router’s stress value, it will send

signals to all neighbors for updating.

Figure 3.1: NoC interconnections under DyXY routing.

The NoC system interconnection under DyXY routing is shown in Figure 3.1, and the router

architecture is shown in Figure 3.2. Each router contains a set of first-in first-out (FIFO) input

buffers, an input arbiter, a history buffer, a crossbar switch circuit, a controller, and four stress

value counters. The size of each input buffer is a design parameter. In Figure 3.2, Din0/Dout0 to

Din4/Dout4 represent the data lines between a router and its local core, right router, up router,

left router and down router, respectively. Rin0/Rout0 to Rin4/Rout4 represent the request signal

lines between a router to its local core and all neighbor routers. Sin1 to Sin4 represent the input

signal lines for stress value updating of the four neighboring routers, and Sout1 to Sout4 represent

19



Figure 3.2: Router Architecture for DyXY routing.

the output signal lines to update the local router’s stress value to its four neighbors.

At each clock cycle, the history buffer records the channels that have input requests. The

input arbiter selects a request from input buffers to process based on the FIFO mechanism referring

to records in the history buffer. For example, in Figure 3.2, the sequence to process received requests

is channel 2, channel 4, channel 3, channel 4, channel 0, and channel 1 based on the history buffer.

The main task of the controller is to determine the routing path for incoming packets, based on

the routing algorithm described above. Besides this, the controller also needs to send signals to its

neighbors for updating its stress value. When there are new incoming packets from neighbors or

the local core, the controller will inform neighbors to increase its stress value. When the outgoing

direction for a packet is determined, the controller will set a request signal to the local core or the

corresponding neighbor router, and inform all neighbors to decrease its stress value.

3.2 Modeling and Performance Analysis

3.2.1 Router Modeling and Analysis

One of the best indicators for a router’s performance is its mean response time. In our

analysis, we model each buffer in a single router as a non-preemptive infinite buffer. Although

each channel has a separate input buffer, the sequence to process all requests is based on the FIFO
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mechanism. Hence, all input buffers of a router can be modeled as a single FIFO buffer for analysis.

Using the infinite buffer model, we can estimate the mean waiting time of a packet in each router,

and thus can use this information to estimate the required buffer size for each router for a specific

traffic load. To model and analyze the mean response time of each router, we need to first analyze

the traffic load of each router.

A. Traffic load

Assume that the NoC network is a two-dimensional network with U × V routers (cores).

Router i (core i) has a network address (ix, iy) which indicates its x and y coordinates, respectively.

A packet enters a router i due to one of the following three reasons: 1) The packet from

core i has to be sent out from its local router; 2) The packet whose destination is core i has to go

through its local router; 3) The packet needs to go through router i to be passed to other routers.

The traffic due to the first case is fixed regardless of the routing algorithm. The traffic due to

the second reason is not affected by the routing algorithm, but will change with different network

communication patterns, e.g., the number of packets received by a core from a given source may be

different with uniform distribution and non-uniform distribution network communication patterns.

However, the traffic due to the third reason will be affected by both the network communication

pattern and the routing algorithm used.

Assume that each core generates packets following a random process with Poisson distribu-

tion with mean rate λ (λ is also called the average packet injection rate for the NoC). The service

time of each router for all packets follows exponential distribution with mean rate µ. Let λi be the

mean packet arrival rate of router i, λs d be the mean rate of packets from core s to core d and

Ps d i be the probability of a packet from core s to core d via router i. The mean packet arrival

rate of router i can be calculated using the following equation

λi = λ+
U×V
∑

s=1

U×V
∑

d=1

λs dPs d i, for s 6= d. (3.1)

The mean rate λs d of packets from core s to core d is determined by the network commu-

nication pattern, and the probability of a packet from core s to core d via router i is determined by

both the network communication pattern and the routing algorithm. Here, we use the uniformly

distributed network communication pattern to model the traffic load of each router with both static

21



XY and DyXY routing algorithms.

With the uniformly distributed network communication pattern, λs d can be calculated as

λs d =
λ

U × V − 1
, for











1 ≤ s ≤ U × V

1 ≤ d ≤ U × V
, and s 6= d. (3.2)

For static XY routing, the probability of a packet from core s to core d via router i is given by

Ps d i =



























1, if iy = sy and ix ∈ [sx, dx] (or [dx, sx])

or ix = dx and iy ∈ [sy, dy] (or ([dy , sy]),

0, otherwise,

(3.3)

where z ∈ [l, h] denotes that z is a value between l and h. Hence, the mean arrival rate of each

router with static XY routing can be calculated using Equations (1), (2) and (3).

For DyXY routing, the probability of a packet from core s to core d via router i is given by

Ps d i =







































1, if i = s or i = d,

0, if iy 6∈ [sy, dy] (or [dy, sy])

or ix 6∈ [sx, dx] (or [dx, sx]),

∑

j∈ψ Ps d jPj i, otherwise,

(3.4)

where ψ is the set of router i’s neighbors, which is located in a packet’s possible routing paths from

core s to core d, immediately before router i. Further, Pj i is the probability that router j forwards

a packet to its neighbor router i with destination core d, and it can be calculated as follows:

Pj i =























































0, if iy 6∈ (jy, dy] (or [dy, jy))

or ix 6∈ (jx, dx] (or [dx, jx)),

1, if ix = jx = dx, iy ∈ (jy , dy] (or [dy, jy))

or iy = jy = dy, ix ∈ (jx, dx] (or [dx, jx)),

p, otherwise,

(3.5)

where p is a variable depending on congestion conditions of the network. For a packet in router j

whose destination is a core in the right-up direction, the packet can be forwarded to either router

i (ix = jx, iy = jy + 1) or router k (kx = jx + 1, ky = jy). If the probability to forward this
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packet to router i is p, the probability to forward this packet to router k is 1− p. Since the DyXY

routing algorithm chooses a path based on each possible router’s stress value, the probability can

be estimated by Equation (6) using the mean waiting time of a packet in the router,

p =
Wk

Wk +Wi
, (3.6)

where Wk (or Wi) is the mean waiting time of router k (or router i). Fortunately, Wk can be

approximated using M/M/1 queue mean waiting time equation by

Wk =
λk

µ− λk
. (3.7)

Since λi can be represented by ai + bi × p and λk can be represented by ak + bk × p (ai,

bi, ak and bk are system parameters that can be calculated for each router with the given traffic

pattern and routing algorithm), by combining Equations (1), (2), and (4) to (7), the value of p can

be calculated.

Finally, the mean arrival rate of each router under DyXY routing can be calculated by

combining Equations (1), (2), (4) and (5).

B. Mean response time

For static XY routing, the total traffic arrival process follows Poisson distribution, and

hence a router can be modeled as a M/M/1 queue. The mean response time of router i can be

calculated using the following equation

E[Tri] =
1

µ− λi
, (3.8)

where λi can be calculated using Equations (1), (2) and (3).

For the DyXY routing algorithm, since the traffic of each router changes dynamically with

network congestion conditions, the real traffic distribution is not Poisson distribution. The mean

router response time in this case can be estimated using a pair of upper bound and lower bound.

The real traffic distribution is an interrupted Poisson distribution, which is actually an

optimization based on network congestion conditions, therefore, the real mean response time should

be smaller than that calculated using the mean arrival rate (λi) and the Poisson distribution model.
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Hence, the later one can be used as an upper bound of the real mean response time. The upper

bound can be calculated using Equation (8) with λi calculated using Equations (1), (2) and (4) to

(7) as described before.

The minimum traffic of each router occurs when p is set to 0 in Equation (5). In this case,

the total traffic arrival process for each router follows Poisson distribution, and the mean arrival

rate of each router can be calculated using Equations (1), (2), (4) and (5), by setting p to 0 in

Equation (5). Hence, the lower bound of the mean response time of each router can be calculated

using Equation (8) with the mean arrival rate of the minimum traffic.

After calculating the mean response time of each router, we can derive the mean waiting

time of a packet in each router by E[Tri] − 1/µ. The mean buffer size required for each router

can be calculated using E[Wi] × λi by Little’s law [45]. The assignment of the buffer size to each

channel of a router can be determined based on the traffic load at each different direction of the

router. The average mean response time of all routers, E[Tr], can be calculated by

E[Tr] =
1

U × V

U×V
∑

i=1

E[Tri]. (3.9)

The performance of a router with finite buffer size α can also be analyzed similarly. The

derivation for the mean packet arrival rate is the same. The only difference is that when calculating

the mean response time, in stead of using Equation (8), we must use the following equation

E[Tri] = λi
1 − ραi

1 − ρα+1
i

,where ρi = λi

µ . (3.10)

Additionally, there is one more performance indicator to check, the blocking probability of packets,

which can be represented by

PBi
=

(1 − ρi)ρ
α
i

1 − ρα+1
i

. (3.11)

3.2.2 System Modeling and Analysis

A NoC system can be modeled as a queuing network. The cores generate packets and inject

them into the routing network. Each packet is queued in the input buffer of the first router, and

then transmitted to the next router until it reaches its destination. The performance of the system
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can be evaluated by the average packet latency E[Latency], which is the product of the average

mean response time for all routers E[Tr] and the average packet path length N . The path length of

a packet denotes the number of routers that the packet traverses from the source to the destination.

Thus, we can calculate the average packet latency by

E[Latency] = E[Tr] ×N, (3.12)

where E[Tr] can be derived directly by Equation (9), and the average packet path length N depends

on the specific communication pattern and routing algorithm employed.

With static XY routing, the path traveled by packets for a given pair of source and desti-

nation is always the same. Thus, the length of a path traveled by packets for a given pair of source

and destination is a constant which equals the shortest path length. For DyXY routing, although

the routing path is not static, it is always a shortest path (as described in Section 3) and hence the

length is still the same, i.e., the shortest path length. Therefore, the average packet path length

does not change for both routing algorithms, and it is only affected by the communication pattern.

The uniform communication pattern is the most popular one used to evaluate the perfor-

mance of a system. With the uniform communication pattern, when a packet is generated, the

destination address is chosen randomly from all cores with equal probability. However, in real-

ity, cores which have larger communication probabilities are often placed closer to each other to

minimize the communication delay. Therefore, the communication probability between the cores

may be non-uniform. Without losing the generality, we consider both uniform and non-uniform

communication patterns in this proposal, and we choose Poisson distribution for the non-uniform

communication pattern.

For a two-dimensional mesh network with U × V as the total number of routers in the

network, let ni,j be the packet path length from core i to core j, and Pc(i, j) be the probability of

communications from core i to core j. Further, let Ni represent the average packet path length of

all outgoing packets from a given core i. The average packet path length N of communications for

the entire network can be calculated as follows:

N =
1

U × V

U×V
∑

i=1

Ni, (3.13)
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where

Ni =
U×V
∑

j=1

ni,jPc(i, j), for i 6= j. (3.14)

Finally, Equation (13) can be simplified as

N =
1

U × V

U×V
∑

i=1

U×V
∑

j=1

ni,jPc(i, j), for i 6= j. (3.15)

A. Uniformly distributed communication pattern

If communications from a given core i to all other cores follow the uniform distribution, the

probability of communications from core i to core j is given by

Pc(i, j) =
1

U × V − 1
, for i 6= j. (3.16)

Thus, Equation (15) can be rewritten as

N =
1

(U × V )(U × V − 1)

U×V
∑

i=1

U×V
∑

j=1

ni,j, for i 6= j. (3.17)

Simplifying Equation (17), if U = V , we have the value of N as

N =
2U

3
. (3.18)

B. Poisson distributed communication pattern

If communications from a given core i to all other cores follows Poisson distribution, the

probability of communications from a given core i to core j is given by

Pc(i, j) =
m
ni,j

i e−mi

ni,j!
, for i 6= j, (3.19)

where mi is the mean communication density of all outgoing packets from core i. The average

packet path length N of communications for the entire network can be calculated by

N =
1

U × V

U×V
∑

i=1

U×V
∑

j=1

ni,j
m
ni,j

i e−mi

ni,j!
, for i 6= j. (3.20)
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3.3 Experimental Results and Discussions

To evaluate the performance of the DyXY routing algorithm and verify the correctness of

our analytical models, we developed an event-driven simulator using C++ and designed three sets

of experiments. The mean service rate µ of each router is set to unity for all simulations.

The first set of experiments is based on a 3 × 3 NoC with average packet injection rate λ

increasing from 0.1 to 0.3 under both the DyXY and static XY routing algorithms. Figures 3 and

4 show the mean arrival rates of the routers in the corner (e.g., router (0,0)), routers at the edge

(e.g., router (1,0)) and the router in the center (i.e., router (1,1)) of the NoC for the DyXY and

static XY routing algorithms, respectively. As we can see, the simulation results precisely match

with the analytical results for both routing algorithms.

Figure 3.3: Mean arrival rate for a router in 3x3 NoC with DyXY routing.

Figure 3.4: Mean arrival rate for a router in 3x3 NoC with static XY routing.

Figures 5 and 6 show the load distribution among different routers for these two routing
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algorithms. As we can see, the DyXY routing algorithm achieves better balance in load distribution

compared with the static XY routing algorithm, and thus it can relieve the hot-spot problem when

network traffic is high.

Figure 3.5: Load distribution for routers in 3x3 NoC with DyXY routing.

Figure 3.6: Load distribution for routers in 3x3 NoC with static XY routing.

Figure 3.7 shows the analytical and simulation results of the average mean response time for

all routers under the static XY and DyXY routing algorithms. The analytical model for static XY

routing can precisely evaluate the average mean response time for all routers. For DyXY routing,

the average mean response time for all routers can be effectively estimated using the analytical

lower bound and upper bound.
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Figure 3.7: Average mean response time for all routers in 3x3 NoC.

Since DyXY routing can balance the load distribution among all routers much better than

static XY routing, the average mean response time for all routers (E[Tr]) is smaller with DyXY

routing than that with static XY routing. Further, since the average packet path length N is the

same for both routing algorithms, the average packet latency (E[Latency]) with DyXY routing

is also smaller than that with static XY routing. This is verified in Figure 3.8, where we also

compared the performance of DyXY routing with that of odd-even routing. It is shown that the

DyXY routing algorithm also performs better than odd-even routing.

Figure 3.8: Average packet latency for 3x3 NoC with uniform network communication pattern.
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To extend this verification, we conducted the second set of experiments with a Poisson

distribution network communication pattern. The NoC size is also fixed to 3 × 3, and the average

packet injection rate λ is increased from 0.1 to 0.4, The results are shown in Figure 3.9. Here, it

can be observed that DyXY routing achieved the best performance in average packet latency.

Figure 3.9: Average packet latency for 3x3 NoC with Poisson distributed network communication
pattern.

The performance of a network with the Poisson distribution based communication pattern

is not sensitive to the network size, however, the performance under the uniform network commu-

nication pattern is affected by the network size. Therefore, our last set of experiments changed

the size of NoC from 3 × 3 to 9 × 9 with λ fixed to 0.15. The results are shown in Figure 3.10.

Obviously, it can be seen that the system performs best with DyXY routing.

For each simulation experiment, more than 20,000 packets were inserted into the network,

and the simulation kept running till the network remained in stable status for enough time. We

have also conducted multiple simulation iterations (by changing the seed of the random number

generator in the simulation engine) for each experimental setting, for the purpose of hypothesis

testing. For example, to evaluate the mean packet arrival rate for each router with the DyXY

routing algorithm, we have run 10 iterations for the condition: external packet injection rate

λ = 0.1. The simulated mean packet arrive rates for the center router locate in the range [0.39532,

0.408416], with mean = 0.401219, and the variance within 1.8%. Therefore, the simulation results

are accurate enough for evaluation.
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Figure 3.10: Average packet latency for 3x3 NoC with uniform network communication pattern.

Based on the simulation results, we can state that the analytical models based on queuing

theory can precisely estimate the performance of static XY and DyXY routing, and DyXY routing

can achieve better performance than static XY routing as well as odd-even routing.
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Chapter 4

MDFF Test Data Application and

Wrapper Scan Chain Configuration

for NoC Embedded Core Testing

With the introduction of NoC, valuable works have been done for embedded core testing

based on this new architecture [21]-[26]. In [21]-[25], the test scheduling methods only allow each

data flit to contain a single bit for each wrapper scan chain of the embedded core, and this may

result in a huge waste of channel capacities. An improved test scheduling algorithm has been

proposed in [26], which allows a data flit to contain multiple bits for each wrapper scan chain,

but the format of data flits for each embedded core is fixed once decided. To support test under

this new data flit format, the authors proposed to use on-chip clocking to speed up the test data

transfer for certain cores by faster clocks, and use slower clocks for other cores to limit the power

consumption. Due to the limit of clock rate, there is strong constraint on the number of bits that

a data flit can contain for each wrapper scan chain. Therefore, although this algorithm add more

freedom for the data flit format and test scheduling, it is still not efficient enough.

In this chapter, we propose a new test data transportation method using multiple data flit

formats (MDFF). With MDFF method, a data flit can contain multiple bits for each wrapper scan

chain, instead of only 1 bit/chain in traditional test application methods. Also, the data flits for

a core can have different formats to adapt with the number of unfilled scan chains, for maximum
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utilization of network channels. A heuristic wrapper scan chain configuration method is developed

based on the concept of MDFF, to reduce both the test application time and the waste of data

flits for testing cores in a NoC. The performance of the configuration method is proved by the

simulation results on the ITC’02 benchmark set.

4.1 MDFF Test Data Application

During scan test, all scan chains involved need to be filled with test patterns. To minimize

the test pattern application time, data for different scan chains are scanned in simultaneously. In a

NoC architecture, communication is in the format of packet-switching, and each packet is composed

of a series of data flits 1, where the width of a data flit is equal to the network channel width. Since

the width of the network channel may be more than the number of wrapper scan chains, each data

flit can contain several bits of test data for each wrapper scan chain instead of only one bit for each.

The simplest case is that there is only one data flit format. However, wrapper scan chains may have

different lengths, and some of them may finish before others. In this case, after short chains are

finished, their input channels are wasted. If there are significant variations between the lengths of

different wrapper scan chains, the waste can be excessive. To reduce the waste of network channel

due to the variation in wrapper scan chain lengths, instead of using only one data flit format, we

propose to use multiple data flit formats for test data application. That is, when some wrapper

scan chains finish their test applications, we will re-assign a new data flit format such that the

remaining wrapper scan chains can fully use the network channel.

For example, if there are four scan chains in an embedded core of a NoC, and their lengths

are 160, 160, 80, and 80 respectively. Assume each data flit can transfer 32 bits of data. By using

only one fixed format of data flits to apply test patterns to the core, each data flit will include eight

bits of data for each scan chain (Figure 4.1(a)). After 10 flits are transferred, both shorter scan

chains are finished, and the network channel for them will be totally wasted. If variable data flit

formats are allowed, after transferring 10 data flits, we can use a new flit format such that each

flit carries 16 bits for each of both longer chains (Figure 4.1(b)). Thus, no network channel will be

1There are different definitions of a ‘flit’ for NoC. In this proposal, a flit means the data unit that can be sent

within one clock cycle. A packet is composed of multiple flits, called head flit, body flit, and tail flit by function. ’Data

flits’ in this proposal are in fact the body flits that contain in-band data in stead of control information. Further, the

width of a data flit indicates the effective bits in a data flit for in-band data.
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wasted, and we can use fewer data flits (15 flits) than the single format option (20 flits) to finish

the test data application.

Figure 4.1: (a)Data flit format with each flit containing 8 bits/chain; (b)Data flit format with each
flit containing 16 bits/chain.

Assume the width of each data flit is N , the total number of wrapper scan chains is m, and

m ≤ N . Based on the idea of multi-format test data transportation, we can calculate the total

number of data flits required to finish the transfer of a test pattern as discussed below.

• At first, each flit includes data for all m chains.

– Each chain has x0 = ⌊Nm⌋ bits where ⌊x⌋ is the floor of x.

– Since we have l0 ≤ l1 ≤ ... ≤ lm (li denotes the length of wrapper scan chain i), the

shortest chain with length l0 will finish first and the number of data flits it takes is

k0 = ⌈ l0x0
⌉, where ⌈y⌉ is the ceiling of y.

• After the shortest chain with length l0 is finished, there are at most m− 1 chains remaining

to be filled.

– Each chain has x1 = ⌊ N
m−1⌋ bits in each flit.

– Since we have l1 ≤ ... ≤ lm, the scan chain with length l1 will finish first and this takes

k1 flits with

k1 = ⌈ (l1−k0∗x0)+

x1
⌉.

Note that (z)+ returns z if z is larger than 0, otherwise, it returns 0.
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• When the chain with length li−1 is finished, there are at most m− i chains remaining to be

filled.

– Each chain has xi = ⌊ N
m−i⌋ bits in each flit.

– To finish shifting the chain with length li, we need another ki flits where

ki = ⌈
(li−

∑i−1

j=0
kj∗xj)+

xi
⌉.

• For the longest chain to finish, totally k flits are required. We have

K = k0 + ...+ km−1

= k0 +
m−1
∑

i=1

⌈
(li −

∑i−1
j=0 kj ∗ xj)

+

xi
⌉ (1).

Consequently, it takes totally K data flits to complete the application of a single test pattern.

Let us use a core with five wrapper scan chains whose lengths equal 300, 300, 300, 120,

and 90 as an example. Again, we assume the size of each data flit is 32 bits. So, we have N = 32

and m = 5 in this example. At first, each data flit will carry ⌊32/5⌋ = 6 bits for each chain. It

takes 90/6 = 15 flits to finish the shortest chain. After this, each data flit will carry 32/4 = 8 bits

for the remaining 4 chains. It will take ⌈(120 − 6 ∗ 15)/8⌉ = 4 flits to finish the second shortest

chain. Then, each data flit will carry ⌊32/3⌋ = 10 bits for each remaining chain, and it will take

⌈(300− 8 ∗ 4− 6 ∗ 15)/10⌉ = 18 flits to finish the 3 chains left to scan. So, the total number of data

flits required to finished a test pattern application is (15+4+18) = 37. If only one data flit format

is used, however, the total number of flits required will be 300/6 = 50. Thus, by using 3 data flit

formats, 26% of data flits can be saved in this example. This is very worthwhile if the hardware

overhead for implementing multi-format data flits is tolerable.
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4.2 Wrapper Scan Chain Configuration for Embedded Core Test-

ing

4.2.1 Guidelines for Scan Chain Configuration

Assume there are two possible wrapper scan chain configurations for a given embedded

core. Configuration C1 has M1 equal length wrapper scan chains and each chain has length L.

Configuration C2 has M2 wrapper scan chains and the longest chain in C2 has length equal to L.

Further, assume C1 (C2) requires N1 (N2) data flits to apply a test pattern to the core. Again, N

is the bit-width of each data flit.

Lemma 1: For configurations C1 and C2 with N mod M1 6= 0, N mod M2 = 0, where M2 is

greater than M1 and is the smallest integer factor of N between M1 and N . We have N2 ≤ N1.

Proof: Based on MDFF method, for configuration C1, since all chains have the same length, there

will be only one data flit format and the total number of data flits needed to send a test pattern is

N1 = ⌈Lx ⌉ and x = ⌊ N
M1

⌋. For configuration C2, since there are different lengths of chains, we need

to use different data flit formats. The data flits that contain maximum number of chains will have

x = ⌊ N
M1

⌋ = ⌊ N
M2

⌋ bits for each chain, and those contains less number of chains will have at least

equal or more bits for each wrapper scan chain. Obviously, the total number of data flits needed

for C2 should be less or equal to that for C1. Q.E.D

For example, let us consider an embedded core with two wrapper scan chain configurations,

C1 and C2. Here, C1 has 17 chains with each equal to 160 bits. C2 has 16 chains with each equal to

160 bits, and another set of 16 chains with each equal to 10 bits. Assume each data flit can carry

32 bits of data. The number of data flits required in the first configuration is 160/1 = 160, while

that in the second configuration is 10/1 + (160 − 10)/2 = 10 + 75 = 85. The number of data flits

saved by the second configuration is (160 − 85)/160 = 46.875%.

The reason behind this lemma is that, under equal length wrapper scan chain configuration,

if the number of (final) wrapper scan chains is not an integer factor of the network channel width,

there is fixed waste for each data flit, which is equal to N − ⌊ N
M1

⌋ ∗M1 = N mod M1. Different

values of M1 result in different values of flit waste, and the relationship between the waste of data

flits and the number of wrapper scan chains can be shown in Figure 4.2 (we still assume that each
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data flit carries 32 bits of data).

Figure 4.2: Relation between the waste of data flits and the number of wrapper scan chains.

So, in this case, the idea of equal length configuration is no longer the optimal solution as

in the case of traditional SoC testing, instead, reconfiguring all scan chains in a core to M2 wrapper

scan chains may achieve some improvement. The best improvement can be estimated by the value

of M1, and it occurs when M1 = N
2 + 1, and the improvement can be up to (N/2−1)

N , as shown in

the above example.

Assume l0 and l′0 are the shortest chains in C1 and C2 respectively, and li (l′i) is the length

of the ith wrapper scan chain in C1 (C2).

Lemma 2: If C1 and C2 have the same number of wrapper scan chains (i.e., M1 = M2 = M , and

N mod M = 0), and l0 ≤ l′0, li = l′i for all M/2 ≤ i < M − 1, then we have N2 ≤ N1. C2 requires

the minimum number of data flits when l0 = l1 = ... = lM/2−1.

Proof: Since C1 and C2 are configurations for the same core, and li = l′i for all M/2 ≤ i ≤M − 1,

we have
∑M−1
i=0 li =

∑M−1
i=0 l′i,

∑M−1
i=M/2 li =

∑M−1
i=M/2 l

′
i, and

∑M/2−1
i=0 li =

∑M/2−1
i=0 l′i. Further, since

l0 ≤ l′0, we have
∑M/2−1
i=1 li ≥

∑M/2−1
i=1 l′i Since N mode M = 0, M/2 is the smallest integer factor

of N among those are bigger than N . So, data flits to finish l0 and lM/2 to lm−1 are non-waste flits

and data flits to finish l1 to lM/2 − 1 are flits with waste. l0 is less than l0 means it takes more

flits to finish l0, thus more data are transferred using non-waste flits in C2. Obviously, total flits

to apply the same test pattern for C1 should be no less than that for C2. To use minimum data

flits, l0 should be as long as possible, so the configuration with minimum data flits is the one with

l0 = l1 = ... = lM/2−1. Q.E.D
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For example, consider three different configurations C1, C2 and C3 with M = 4, N = 32.

The lengths of all wrapper scan chains in C1 are 1600, 1600, 1200, and 400, respectively. Those in

C2 are 1600, 1600, 1000, and 600, respectively. Finally, we have the wrapper scan chain lengths in

C3 equal 1600, 1600, 800, and 800. The number of data flits required to apply a test patter by C1

can be derived by 400/8 + (1200 − 400)/10 + (1600 − 1200)/16 = 50 + 80 + 25 = 155. The number

of data flits required by C2 is 600/8 + (1000 − 600)/10 + ⌈(1600− 1000)/16⌉ = 75 + 40 + 38 = 153,

and that by C3 is 800/8 + (1600 − 800)/16 = 100 + 50 = 150. Obviously, C3 (C1) requires the

smallest (largest) number of data flits.

It can be observed from Lemma 2 that an embedded core will require a smaller number of

data flits if: (1) the embedded core can be configured as S1 long chains with equal length (S1 is

an integer factor of N) plus S2 shorter chains (S1 + S2 is the minimal integer factor of N that is

greater than S1), and (2) the length of the shortest chain can be maximized. The best case occurs

when the shorter S2 chains can be configured to be of equal length.

Combining Lemma1 and Lemma2 and extending them to a general case, we can find that:

the optimum configuration should result in factorial wrapper scan chain groups (FSCG) with

balanced-length chains within each group, as shown in Figure 4.3. Each group FSCGi+1 is com-

posed of sorted wrapper scan chains with index Fi + 1 to Fi+1, where Fi and Fi+1 are consecutive

integer factors of N . For example, when N = 32, we have F1 = 2, F2 = 4, F3 = 8, F4 = 16,

and F5 = 32. We assign F0 = 0 by default. Thus, the wrapper scan chains in FSCG1 is indexed

from F0 + 1 to F1, which is from wrapper scan chain 1 to wrapper scan chain 2 (Figure 4.3). The

maximum wrapper scan chain length of group FSCGi+1 is no greater than that of group FSCGi.

The reason for this configuration to be optimum is evident. With this configuration, there will

always be y wrapper scan chains in a data flit where y is an integer factor of N , so there will be

no channel loss for test data transportation.

4.2.2 A Heuristic Scan Chain Configuration Algorithm

In this section, we will introduce a heuristic wrapper scan chain configuration algorithm.

The objective is to minimize the total number of data flits to apply a test pattern. Wrapper

scan chain configuration has to obey a length constraint, i.e., the maximum length of all wrapper

scan chains cannot be larger than the length of the longest internal scan chain of the core. The

38



Figure 4.3: Factorial Scan Chain Groups with N=32.

performance measure of a configuration is the ratio of waste in data flits, which is given by W =

(K −Kideal)/Kideal. Note that K is the minimum number of data flits required to transfer a test

pattern based on a specific configuration, and can be calculated using equation (1). Further, Kideal

is the theoretical minimum number of data flits to apply a test pattern, and can be calculated using

equation (2),

Kideal = ⌈

∑m−1
i=0 li +Nio

N
⌉ (2)

where li is the length of each internal scan chain, m is the total number of internal scan chains, Nio

is the number of all functional I/Os, and N is the width of the network channel, i.e., the bit-width

of each data flit.

Based on the MDFF test data transfer protocol and two lemmas introduced above, three

guidelines are used during the wrapper scan chain configuration process:

1. Try to configure the internal scan chains and functional I/Os into M wrapper scan chains

where M is an integer factor of N , since there will be no channel loss in this case (refer to

lemma 1).

2. When wrapper scan chains are sorted by length, try to balance the chains within each FSCG

group (refer to lemma 2).
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3. Attach as many functional I/Os together as possible, since this will result in less hardware

complexity.

Three configuration strategies are used in the algorithm:

• Equal-length configuration —- Assign internal scan chains or functional I/Os to wrapper scan

chains and try to balance the lengths of all wrapper scan chains. This is based on guideline

2.

• Shortest-first configuration — Assign functional I/Os to existing wrapper scan chains with

the shortest wrapper scan chain first. This is based on guideline 3.

• Best-fit configuration — Assign internal scan chains or functional I/Os to wrapper scan chains

to allow more chains with the maximum length. This will also help to reduce the hardware

complexity for configuration.

The wrapper scan chain configuration algorithm is given below.

Step 1:

• Sort all internal scan chains by length in a decreasing order.

• Apply the best-fit strategy to all internal scan chains and get M wrapper scan chains.

Step 2:

• Find the maximum integer M1 which is no greater than M , and is an integer factor of N .

• Divide the longest M1 wrapper scan chains into FSCG groups. If within any group, there is

a chain whose length difference with the maximum length in the same group is larger than

a given limit δ, fill it to the maximum length of the group using functional I/Os by the

shortest-first configuration strategy. If there is no I/O left, stop. (note: since connecting

a very small number of I/Os to wrapper scan chains will result in hardware complexity, if

not necessary, we only connect I/Os to wrapper scan chains when more than δ I/Os can be

grouped together.)
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• If M1 = M , and all remaining I/Os can be used to balance existing wrapper scan chains

within each FSCG group without breaking the length constrain, do it using the shortest-first

configuration strategy and stop. Otherwise, continue to step 3.

Step 3:

• Find a minimum integer M2 which is larger than M and is an integer factor of N . We

configure the shortest M −M1 wrapper scan chains and all remaining functional I/Os into a

new FSCG group with M2 −M1 wrapper scan chains, with a constraint that the maximum

wrapper scan chain length of this new FSCG group is no larger than that of the closest FSCG

group.

• If not all chains in this new FSCG group can be filled to the group’s maximum length,

try two options: 1) the equal-length configuration strategy and 2) the best-fit configuration

strategy, and choose one of them based on the measure of data flit waste and the configuration

complexity.

• Otherwise, fill all wrapper scan chains of this FSCG group to the group’s maximum length.

For extra I/Os, if they can be used to balance wrapper scan chains within each FSCG group

without breaking the length constrain, do it using the shortest-first strategy. Otherwise,

configure them to new FSCG groups by following the same method as step 3.

Let us use an example to show the procedure of the proposed algorithm. Given a core with

6 internal chains where the chain lengths are 400, 398, 250, 200, 190, and 150 respectively. There

are also totally 168 functional I/Os around this core. The length constrains is that the longest

wrapper scan chain length cannot exceed 400. Assume each data flit can contain 32 bits of data

(i.e., N = 32). Ideally, the minimum number of data flits required to apply one test pattern is

⌈(400 + 398 + 250 + 200 + 190 + 150 + 168)/32⌉ = 55.

Now, we begin to do wrapper scan chain configuration. At step 1, six internal scan chains are

first sorted and then configured using the best-fit strategy with the length constraint. The longest

two scan chains are each assigned to a wrapper scan chain, the third one (250) and the shortest

one (150) are connected together and assigned to one wrapper scan chain, while the remaining

41



two chains are also connected and assigned to another wrapper scan chain. So, now we have four

wrapper scan chains with lengths: 400, 400, 398, and 390 respectively.

Assume δ = 5, and we continue to step 2. In this example, the maximum integer factor

of N (32) which is no larger than M (4) is 4, i.e., M1 = 4. So, we first divide these four chains

to two FSCG groups and try to balance chains within each group. The first FSCG group has two

chains with full length, so nothing can be done further. For the second FSCG group, the difference

between the shorter one and the longer one is 8, which is larger than δ, so we will assign eight

I/Os to the shorter one and fill it to length 398 (based on the shortest-first strategy). Even we fill

all these four chains to the maximum length, there are still I/Os left. So, we continue to step 3

without any more configuration to these four chains.

The minimum integer factor of N which is larger than M is 8 in this example, i.e., M2 = 8.

Now, we need to assign the remaining 160 (168-8) I/Os to a new FSCG group with 4 (M2 −M1)

new wrapper scan chains. Try 2 options. With option 1, all 160 I/Os are assigned to 4 chains

each with length 40. By option 2, all 160 I/Os are assigned to a single wrapper scan chain. Let us

check the performance measure. The number of data flits required to apply a single test pattern

with option 1 is 40/4 + (400 − 40)/8 = 55. The total number of data flits required by option

2 is ⌈160/6⌉ + ⌈400−6∗⌈160/6⌉
8 ⌉ = 57. Although the second option may result in less hardware

configuration complexity, the waste of data flits by option 1 is smaller than that by option 2. So

we will choose option 1 as the optimal configuration.

In the above algorithm, we only considered the case where M ≤ N . If M > N , we can

divide the wrapper scan chains to 2 parts. Firstly, try to fill the longest N chains to maximum

length, then recursively apply the algorithm to configure the remaining N−M wrapper scan chains.

For simplicity, the above algorithm and example only show the configuration of internal

scan chains with functional inputs or outputs. For a core with internal scan chains, functional

inputs, outputs, and bi-directional I/Os, we need to make a small adjustment to the algorithm.

The first step (internal scan chain configuration) is exactly the same. Then, we fill the bi-directional

I/Os to existing wrapper scan chains using the shortest-first configuration strategy, and assign the

remaining bi-directional I/Os to new wrapper scan chains using the best-fit configuration strategy.

After this, we continue step 2 and step 3 of the heuristic algorithm to configure the current existing

wrapper scan chains and pure inputs. The same thing is done to configure pure outputs separately.
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In the final configuration, all pure inputs are placed at the scan-in part of a wrapper scan chain,

and all pure outputs are placed at the scan-out part of a wrapper scan chain, as shown in Figure

4.4.

Figure 4.4: Wrapper scan chain configuration.

4.2.3 Experimental Result

We have applied our heuristic configuration algorithm to 40 cores from ITC’02 SoC bench-

mark set [46]. Since traditional SoC test wrapper optimization algorithms prefer to configure

internal scan chains and functional I/Os to balanced wrapper scan chains, we also applied this

equal-length configuration strategy to the benchmark set for comparison. In this algorithm (used

for comparison), we first sort the internal scan chains, and then use the best-fit strategy to configure

them into wrapper scan chains with the length constraint. After that, we use the best-fit strategy

to assign functional I/Os to fill existing wrapper scan chains to maximum length, without any δ

limit as in our heuristic algorithm. If there are extra I/Os left, we further use the best-fit strategy

to assign them to new wrapper scan chains with the length constraint. The results obtained by

these two configuration algorithms are shown in Figure 4.5.

As we can see, among 40 benchmark cores, 20 of them can be solved by using the simple

equal-length configuration method without any waste, but the other 20 of them have significant

waste. For the 20 remaining cores, our configuration algorithm can reduce the data flit waste to 0
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Figure 4.5: Comparison of data flit waste between equal length configuration and our algorithm.

Figure 4.6: Number of data flit formats.

for 14 cores, and have slight improvement for the other 6 cores, as shown in Figure 4.5. For the

cores that have significant improvement using our configuration, only 2 or 3 data flit formats are

required (as shown in Figure 4.6), so the hardware overhead is quite small.

For a core with special internal scan chain structure, there is very little space for any

configuration method to reduce its data flit waste without increasing the test time of the core. But,

when testing a NoC-based system, although the test time for a single core is increased, the total

test time for the system can also be reduced using a good scheduling method based on the concept

of MDFF to interleave the test data application of different cores and test them in parallel. The

44



details of parallel core testing based on MDFF test data application protocol are presented in next

section.

4.3 Test Wrapper Architecture for MDFF Test Data Application

The test wrapper architecture for MDFF is slightly more complex than that for a single

data flit format application. The sketch of the architecture is shown in Figure 4.14. The test

wrapper is located between the Network Interface(NI) unit and the embedded core as shown in

Figure 4.14(a). In normal mode, data from the network will firstly pass the network interface (for

synchronization, error check and etc.), go through the decoder and finally reach the I/O pins of

the embedded core. In test mode, data from network interface will directly go to the test wrapper

(instead of the decoder), and then scanned into the wrapper scan chains of the embedded core.

The test wrapper shown in Figure 4.14(b) is composed of a load-shift register, a test pattern

distributor, a controller and several counters. The load-shift register will load a data flit from the

network (when the control signal ‘load’ equals ‘1’), and will operate as a shift register to pass

different bits to the test pattern distributor (when control signal ‘shift’ equals ‘1’). The test

pattern distributor is used to select different bits from a data flit to the wrapper scan chains of the

embedded core. The controller receives input signals from NI and counters, and sets control signals

to load-shift-registers, test pattern distributor, counters and embedded core for testing.

This architecture is suitable for test data transportation where each data flit contains one

or more bit of information for each wrapper scan chain. The only difference between single data

flit format and multiple data flit formats is the number of counters and internal complexity of the

controller. As shown in our experimental results, using 2 or 3 data flit formats can significantly

reduce the waste of data flits in most cases. The small number of data flits formats ensures tolerable

hardware overhead. The functional correctness of this architecture has been verified using VHDL

simulation.
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Figure 4.7: (a)Location of the test wrapper; (b)Test wrapper architecture.
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Chapter 5

Test Scheduling for Embedded Core

Testing

In Chapter 4, we have proposed a MDFF test data application concept and developed

a heuristic wrapper scan chain configuration algorithm based. The wrapper chain configuration

method with MDFF can reduce the waste of data flits for testing cores in a NoC, and formed a good

foundation for efficient embedded core testing. However, an appropriate test scheduling method is

needed to realize the reduction of total test application time of NoCs.

In this paper, a dedicated test scheduling algorithm is proposed to work together with the

wrapper scan chain configuration method and MDFF concept, which can realize the test pattern

application interleaving for different cores, and testing of different cores of a NoC in parallel. Instead

of considering channel capacity only as most traditional methods, the proposed test scheduling

method takes into account the data flit interleaving issues, such that flits (of test patterns or test

responses) for different cores can be well interleaved without conflicts in channels and routers of

the NoC. Therefore, test time of the whole system can be minimized with a specified test power

consumption. By comparing the results with other published works, it has been demonstrated that

the proposed test scheduling method can achieve significant improvement on the test time for the

entire NoC. An optimal test scheduling algorithm is also developed based on MDFF, which can

achieve the maximum utilization of the test resources and reduce the test time for the entire NoC.
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5.1 Basic Concept

With the MDFF test data application method, each data flit can contain multiple bits

for a single wrapper scan chain, and the data flits for a core can have different formats. Test

scheduling makes use of the flexibility of MDFF to interleave the test data application of different

cores through the on-chip network and test the cores in parallel. Assume the clock frequency of the

on-chip network is the same as that of each embedded core. The basic concept is: for a data flit

containing multiple bits (x bits) of each wrapper scan chain, we only need to send one such a flit to

the core every x clock cycles, and the other (x− 1) cycles during the x-cycle period can be utilized

to send data flits to other cores. A NoC may also contain multiple clock domains. In this case,

the on-chip network and embedded cores may work under different clock frequencies, and all cores

can also work under different clock frequencies. The idea of the proposed test scheduling method

can be easily extended to a NoC with multiple clock domains, and the details will be explained in

Sub-section 5.2.

Figure 5.1: Test scheduling based on MDFF for 3 example cores.

Let us look at an example. Assume there are three cores in a NoC-based system, and all

of them need the same resource (I/O ports and network channels) for testing. After configuration,

core 1 has 16 wrapper scan chains with length equal to 55, and the other 16 chains with length

equal to 5. Core 2 has 8 chains with length 50 and the other 8 chains with length 10. Core 3 has

8 chains with length 40. Based on the MDFF method, core 1 needs two data-flit formats. Each of

the first 5 data flits contains 1 bit for each of all 32 chains, while each of the following 25 data flits

contains 2 bits for each of the longer 16 chains. Core 2 also needs two formats of data flits. Each

of the first 5 flits contains 2 bits for each of all 16 chains, and the following 10 flits each contains 4

bits for each of the longer 8 chains. Core 3 needs 10 flits each containing 4 bits for every chain.
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To efficiently use the network channels, we schedule to send test data to core 1 first. It will

take 5 clock cycles to finish the first 5 flits as shown in Figure 5.1. Then, we begin to send data

flits to the remaining 16 chains of core 1 using the second format. Since the data flits of the second

format only need to be sent every 2 clock cycles, we schedule to send the first data flit set of core 2

to fill the empty time slots (Figure 6). After 10 clock cycles, the first data flit set of core 2 is also

finished. Since the data flits of core 2 with the second format only need to be sent every 4 clock

cycles, there are more empty time slots available. So, we schedule to send test data to core 3 using

the empty time slots. As we can see from Figure 5.1, the network channels are fully utilized.

5.2 Power-Aware Test Scheduling Algorithm

5.2.1 The Algorithm

The main advantage of on-chip network reuse is the availability of parallel accesses to each

core, depending on the number of the interface I/Os available during test. Therefore, the reduction

in system test time is highly related to test parallelization. However, test parallelization implies

more power consumption, since more network structures are active simultaneously. It is necessary to

consider power consumption during testing to ensure the feasibility of a test plan. The power-aware

test scheduling algorithm is shown below.

Notation:

Ci: an embedded core in a NoC under test.

Rsi: an I/O resource for testing.

Li: the test time of core Ci.

TRsi
: the starting time for resource Rsi to become available.

TCi
: the scheduled starting test time of core Ci.

U{Rsi}: the utilization rate of I/O resource Rsi and related routing channels.

U{Ci}: the I/O resource utilization rate of core Ci.

IO found: the flag to indicate whether an I/O resource is found for a core.

Procedure path finding:

1. Find a XY path from the input of test resource Rsj to core Ci and the other XY path from Ci

to the output of Rsj ;
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2. Check the availability of all the channels on the routing path

/* check whether U{Rsj}+U{Ci} is larger than 1 */

3. If the XY paths are blocked

4. {

5. Find the blocked segment closest to the source of the path;

6. Group all routers on the XY path before this blocked segment in a set in order;

7. While ((the shortest path is not found) and (not all routers have been tried))

8. {

9. Find the last router in the set;

10. Find all available routing paths from this router to the destination of the path without

exceeding the maximum allowed path length;

11. Remove this router from the set;

12. }

13. If one or more paths can be found, select a shortest one and return True;

14. Otherwise, return False;

15. }

16. Otherwise, mark the XY routing paths and return True. End of path finding.

Procedure NoC power aware scheduling:

1. Calculate the test time Li and I/O resource utilization rate U{Ci} for each core Ci;

2. Sort cores in decreasing order of Li;

3. Set U{Rsi}=0, TRsi
= 0 and TCi

= infinity;

4. While (there are unscheduled cores)

5. {

6. For (each unscheduled core Ci) /*with the one with the highest test time first */

7. {

8. Set IO found = False;

9. While (IO found = False and there exists an untried I/O resource Rsa with U{Rsa} < 1)

10. {

11. Find the next resource Rsj with smallest TRsj
;

12. Call path finding();

13. If (path finding() = True)

14. {

15. Calculate the sum of power for all cores scheduled to test concurrently;
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16. If (Power constraints are met)

17. {

18. Assign resource Rsj to core Ci;

19. Update TCi
and U{Rsj};

20. Set IO found = True;

21. }

22. }

23. }

24. }

25. Update TRsk
and U{Rsk} for each resource Rsk ;

26. }

27. For (each core Ci)

28. {

29. If (Ci shares test I/O resource with any other cores)

29. {

29. Check Ci with Rule 1;

30. Add appropriate delay logics to Ci if Rule 1 cannot be met;

31. Check Rule 2 for Ci and each Cj which uses the same test I/Os but some different routers

with Ci;

32. Insert appropriate delay logics if Rule 2 cannot be met;

33. }

34. }

We note here that Rule 1 and Rule 2 in the algorithm are two rules to guarantee data flits

interleaving between cores using the same test I/O resource. The details of data interleaving issues

will be discussed in Sub-section 5.3.

An example NoC under test is shown in Figure 5.2 where there are totally 16 embedded cores

and 3 pairs of I/O ports for test pattern application. An example to illustrate the test scheduling

algorithm is shown in Figure 5.3. In the beginning, all I/O resources are available. Core C1 has

the longest test time L1, so it is scheduled to resource Rs1. TC1 is set to 0 and the utilization rate

U{Rs1} is updated to U{C1}, which is equal to 1. Core C3 is the next to be scheduled since its

test time L3 is the longest among all remaining cores. Since Rs1 is full at this time, Rs2 is assigned

to C3. TC3 is set to 0 and U{Rs2} is updated to U{C3}, which is equal to 1/2. Similarly, core
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Figure 5.2: An example of NoC under test.

Figure 5.3: An illustration of the test scheduling algorithm.

C8 is scheduled to Rs3 with TC8=0 and U{Rs3}=U{C8}=1. Now, C5 is to be scheduled. Since

both U{Rs2} and U{C5} equal to 1/2, C5 is scheduled to Rs2. Similarly, C12 is also scheduled to

Rs2. These processes are shown in Figure 5.3(a). Since all remaining cores have utilization rates

equal to 1, no core can be scheduled under the current condition. Therefore, we update TRs1 = L1,

TRs2 = L5 + L12, TRs3 = L8, and set the utilization rates of all resources to 0 (line 25 of the

algorithm), and then begin a new iteration as shown in Figure 5.3(b).

5.2.2 Path Finding Issue

We emphasize here that U{Rsi} means the utilization rate of the test I/O resource Rsi

and the related routing channels. To simplify the description, we did not mention the details of

the path finding process in the above example. Basically, we apply XY routing to transfer test
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patterns and test results. However, XY routing may be too restrictive to fully utilize the routing

resources, and thus the total test time cannot be minimized. Therefore, when a XY routing path

is not available, we allow to use other paths with small additional path length to efficiently use the

network resources and reduce the total test time. An example of XY path blocking and alternative

path finding is shown in Figure 5.4.

Figure 5.4: An example of routing path finding.

In this example, there are two pairs of test I/O resources Rs1in/Rs1out and Rs2in/Rs2out

for a 4 × 4 NoC. Assume that Rs1in/Rs1out is assigned to test core C7. Based on XY routing

algorithm, the path for test pattern input and test result output is marked in Figure 5.4(a) using
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the dark lines. Assume C6 is the next core to be tested, and it cannot use Rs1in/Rs1out since

U{Rs1}+U{C6} > 1. So, we assign Rs2in/Rs2out to C6. The XY path is marked using the dashed

lines in Figure 5.4(a). If the capacity of channel between the local router of C7 (R7) and that of C8

cannot afford to transfer data flits of C6, C6’s XY path is blocked. In this case, we find the starting

router of this blocked channel, which is R7, and check whether there is any other free path from

here to the destination. A minimum routing path is then found and marked using dashed lines in

Figure 5.4(b). Using this new routing path, C7 and C6 can be tested in parallel. To implement

this routing configuration, only one routing item is needed to be inserted in the routing table of

R7, to enforce R7 to forward the test data flits of C6 to the south direction, and all other routers

can keep working with normal XY routing algorithm. We note here, in this example, we assume

that a router is able to process multiple data flits simultaneously. If this assumption cannot be

met, the assigned paths for C6 and C7 will also block at R7. In this case, another path (as shown

in Figure 5.4(c)) should be used for C6. To implement this new routing path, two special routing

items are needed to be inserted in the routing tables of R9 and R6 separately, to enforce the test

data flits of C6 to be routed along the right direction. Details of path finding and checking process

are described in procedure path finding().

5.2.3 Power Calculation

If there is a power constraint for test, before scheduling a core to an I/O resource, we also

need to check the total power first. The power check process is simple. Assume each core Ci has

test power PCi
, each router Rsi consumes power PR, each interconnect segment consumes power

Pinc, and the overall test power of the entire NoC cannot exceed a limit Pmax. Assume that we plan

to assign core Cj to an I/O resource and start test from time t. Before this assignment, all cores

that have been scheduled and whose test periods have overlaps with that of Cj will be identified.

The sum of test power for Cj , test power for all the identified cores, and power for the involved

routers and interconnect segments will be calculated and compared with Pmax to check whether the

power constraint can be satisfied. For example, in Figure 5.3(a), before assigning C12 to Rs2, we

need to calculate the sum of test power for C1, C3, C12, C8, and involved routers and interconnects,

and compare the result with the maximum test power limit.
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5.2.4 Multi-Clock Domain Application

The algorithm is applicable to both single-clock-domain NoCs and multi-clock-domain

NoCs. The only difference of these two conditions lies in the calculation of test time (Li), net-

work utilization rate U{Ci} and test power for a core Ci. Assume that the on-chip network clock

frequency is f , and the clock frequency of an embedded core Ci is ki × f . In the single-clock-

domain case, all ki’s are equal to 1. However, in the multi-clock-domain case, the values of ki’s can

be larger than 1, less than 1, or equal to 1. If each test data flit of core Ci contains x bits of test

pattern for each wrapper scan chain, one test data flit of core Ci needs to be sent every x/ki clock

cycles, thus U{Ci} = ki/x. And, the test time Li should be updated to 1/ki times the value of

the single-clock-domain case. The test power of Ci should also be updated to ki times the value in

single-clock-domain case. We note here that, no matter how large ki can be, U{Ci} is a value no

larger than 1. So, if ki/x is larger than 1, an on-chip slower-clock generation circuit is needed to

adjust U{Ci} to a value which is at most 1. The test time and test power of Ci should be adjusted

correspondingly.

5.2.5 Test Clock Frequency

Sometimes, among all embedded cores in a NoC, there exist cores whose required test times

are much longer than those of others. These cores become the bottleneck of the entire NoC test

process, and only little improvement can be achieved by test scheduling or adding additional I/O

ports. For example, in benchmark circuit g1023 (a benchmark circuit in ITC’02 benchmark set),

assuming the single-clock-domain case, core 4 has the longest test time which is 14794 clock cycles,

while the second longest test time is only 6374 clock cycles. After applying the wrapper scan chain

configuration algorithm and the test scheduling method, the test time for the entire circuit is 14794

clock cycles with no power constraint, when two pairs of I/O ports are available for testing. When

we increase the I/O ports to 3, the test time for the entire chip is still 14794, and the same result

remains even when we increase the number of I/O ports further. The reason is that the wrapper

scan chain configuration and test scheduling methods can only help to fully utilize the network

channels, and thus allow more parallelisms by testing different cores simultaneously. However, the

test time for a single core is fixed by the internal scan chain length which cannot be modified.
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If the channel utilization rates of cores (U{Ci}’s) are less than 1, we can keep the test

frequency of the network while speeding up the test clock frequencies of the corresponding cores

to reduce their test times. However, this solution will add some hardware overhead (e.g., on-chip

clock generation circuit), and will consume more power for the corresponding cores. Therefore,

only very limited number of cores can be chosen to perform this optimization.

In our test scheduling algorithm, when this problem occurs, we identify the core with the

longest test time and channel utilization rate less than 1, and increase its test clock frequency

to twice of the original frequency. The test time of this core is reduced to half, and its channel

utilization rate and test power are both doubled. Then, the whole scheduling process is performed

with this modification. If the test time for the entire NoC is still too long, we find the next core with

the longest test time and utilization rate less than 1, and then repeat the same clock rate doubling

process for the core. This process is repeated until the test time for the entire NoC satisfies the

requirement, or the maximal number of cores allowed to accelerate frequencies has been attempted.

For g1023, by doubling the test clock frequency of core 4 and by applying the wrapper scan chain

configuration and test scheduling methods, the test time for the entire chip is reduced from 14794

to 12441 clock cycles with no power constraint, when two pairs of I/O ports are available. When

increasing the number of I/O ports to 3, the test time for the entire chip becomes 7626 clock cycles,

and it becomes 7397 clock cycles when the number of I/O ports is increased to 4.

5.3 Data Flits Interleaving Issues

The basic idea of our test scheduling method is to interleave data flits from different cores for

parallel test. In the test scheduling algorithm presented above, we use condition U{Rsj}+U{Ci} ≤

1 to check whether the channel capacity of test I/O resource Rsj can further afford to transfer data

flits for core Ci. This guarantees that the channel capacity of each test I/O resource can support

parallel test of multiple cores assigned to it. However, this is just the basic requirement. Of course,

cores using different I/O resources can be tested in parallel without any question. However, for

cores using the same test channel, their data flits have to be aligned well to avoid any transfer

conflict. Data flits can come from both test patterns and test results. Also, there may exist

latency differences between flits for different cores, if they traverse the network through different
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paths. Therefore, even flits are well scheduled to be interleaved at the starting point, it is not

guaranteed that they can keep interleaving without any conflict in the following channels and

routers. Instead, some rules have to be satisfied to guarantee the interleaving throughout the entire

flit transfer process. In this sub-section, we analyze this question and derive the rules from two

aspects: interleaving between pattern and result flits, and interleaving between flits with different

paths.

5.3.1 Interleaving between pattern and result flits

Assume each data flit of core Ci contain Xi bits for each wrapper scan chain. The time

for a data flit to pass a router is TR cycles, and the time for a data flit to pass the interconnect

between two adjacent routers is Tinc1 cycles (Figure 5.5). Further, assume the time for a data flit

to transfer from a router to its local core is Tinc2 cycles, and the time for a core to perform testing

after receiving a full test pattern is Ttest cycles.

Rule 1: If the test pattern flits of Ci can be well interleaved with data flits for other cores

sharing exactly the same test I/O and routing channels, to guarantee the test result flits of Ci to

continue interleaving with other data flits without any conflict, there must exist an integer ki to

satisfy the equation: TR + Ttest + 2 · Tinc2 = ki ·Xi.

We will use an example shown in Figure 5.5 to derive this rule. In this example, each data

flit of core C1 (C2) contain X1 (X2) bits for each wrapper scan chain, i.e., the channel utilization

rate of C1 (C2) is 1/X1 (1/X2). Assume (1/X1)+(1/X2) is less than 1, and C1 and C2 are scheduled

to be tested in parallel using the same test I/O resource and routing channels. Therefore, the test

pattern flits and result flits of C1 and C2 should be well interleaved to be transferred through the

routing channels. Let F1i represent the ith pattern flit of C1, F2j represent the jth pattern flit of

C2, F
′
1m represent the mth result flit of C1, and F ′

2n represent the nth result flit of C2. The number

of data flits for a single test pattern of C1 (C2) is N1 (N2). Assume the first pattern flit of C1

(C2) reaches the local router of C1 (called R1) at time T1 (T2). Since each data flit of C1 (C2)

contains X1 (X2) bits for each wrapper scan chain, the time interval between two consecutive data

flits of C1 (C2) should be X1 (X2) cycles. So, F1i (F2j) reaches R1 at time TF1i R1 = T1 + i · X1

(TF2j R1 = T2 + j ·X2).
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Figure 5.5: An example of test pattern and result flits interleaving.

Instead of continuing to R2, each flit F1i stops at R1 and is forwarded to C1 for testing.

The last pattern flit of C1 (F1(N1−1)) reach R1 at time TF1(N1−1) R1 = T1 + (N1 − 1) · X1. Then,

it is forwarded to C1, which takes TR + Tinc2. It takes Tscan1 (equals to X1) for this last flit to

be scanned into the wrapper scan chains of C1, and finally C1 is tested for Ttest (Ttest = 1 for

most embedded cores using scan-based testing). After another Tscan1 cycles, the first result flit is

scanned out of the wrapper scan chains. It takes Tinc2 clock cycles for the first result flit reaches

router R1. Therefore, the time interval between the first result flit and last pattern flit of C1 to

reach R1 is: Tdelay1 = TR + Ttest + 2 · Tscan1 + 2 · Tinc2. Thus, the time for the mth result flit of C1

(F ′
1m) to reach R1 is: TF ′

1m R1
= TF1(N1−1) R1 + Tdelay1 +m ·X1.

Since F1i’s and F2j ’s are well interleaved in R1, we have TF1i R1 6= TF2j R1 , where i and

j can be any set of integers. To keep interleaving F ′
1m’s and F2j ’s without conflict, we also need

TF ′

1m R1
6= TF2j R1 for integers j and m. As can be easily observed from Figure 5.6, F ′

1m’s should

take the same time slots originally allocated to F1i’s to be well interleaved with F2j ’s. Thus, the

requirement becomes:

TF ′

1m R1
= TF1i R1 + k ·X1, where k can be any positive integer.

Applying the values of TF ′

1m
R1

and TF1i R1 in the above equation, we have:

T1 + (N1 − 1) ·X1 + Tdelay1 +m ·X1 = (T1 + i ·X1) + k ·X1,

and this leads to:

Tdelay1 = (k + i−N1 −m+ 1) ·X1
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Figure 5.6: Test pattern and result flits interleaving.

Applying the value of Tdelay1, we have:

TR + Ttest + 2 · Tscan1 + 2 · Tinc2 = (k + i−N1 −m+ 1) ·X1.

Since Tscan1 = X1, we get:

TR + Ttest + 2 ·X1 + 2 · Tinc2 = (k + i−N1 −m+ 1) ·X1

Further simplifying the equation, we have:

TR + Ttest + 2 · Tinc2 = (k + i−N1 −m− 1) ·X1

By assigning k1 = k + i−N1 −m− 1, the equation can be written as:

TR + Ttest + 2 · Tinc2 = k1 ·X1. (5.1)

Therefore, as long as we can find an integer k1 to satisfy the above equation, result flits of C1 (F ′
1m)

can be interleaved with pattern flits of C2 (F2j) without conflict.

Assume after passing through P routers (Figure 5.5), F ′
1m and F2j reach the local router of

C2 (called R2). Thus, F2j should reach R2 at time TF2j R2 = TF2j R1 + P · (TR + Tinc1), and F ′
1m

reach R2 at time TF ′

1m
R2

= TF ′

1m
R1

+P · (TR + Tinc1). The last pattern flit of C2 (F2(N2−1)) reach

R2 at time TF2(N2−1) R2 = T2 + (N2 − 1) ·X2 + P · (TR + Tinc1). Similarly, we can derive the time

for the nth result flit of C2 (F ′
2n) to reach R2 by TF ′

2n R2
= TF2(N2−1) R2 + Tdelay2 + n · X2, where

Tdelay2 = TR + Ttest + 2 · Tscan2 + 2 · Tinc2.
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Since F ′
1m’s and F2j ’s are well interleaved in R2, we have TF ′

1m R2
6= TF2j R2 , where m and

j can be any set of integers. To keep interleaving F ′
1m’s and F ′

2n’s without conflict, we also need

TF ′

1m
R2

6= TF ′

2n
R2

for integers m and n. To satisfy the requirement, we need:

TF ′

2n R2
= TF2j R2 + k′ ·X2, where k′ can be any integer.

Applying the values of TF ′

2n
R2

and TF2j R2 , after simplifications, we get:

TR + Ttest + 2 · Tinc2 = (k′ + j −N2 − n− 1) ·X2

By assigning k2 = k′ + j −N2 − n− 1, the equation can be written as:

TR + Ttest + 2 · Tinc2 = k2 ·X2. (5.2)

Finally, Equations 5.1 and 5.2 can be extended to the general case: as long as we can find an integer

ki’ to satisfy TR + Ttest + 2 · Tinc2 = ki ·Xi for every Ci, there will be no problem to interleave the

test pattern and result flits. Thus, the rule is derived.

For most NoCs, the clock frequencies of the on-chip network and the embedded cores are

different, and synchronization is needed between a core and its local router. In this case, the time

for a data flit to transfer between a core and its local router is not only the time to pass the

interconnect (Tinc2), but also including the the time for synchronization. So, the delay between the

first result flit and last pattern flit of Ci becomes Tdelayi = TR + Ttest + 2 ·Tscani + 2 ·Tinc2 + Tsynci,

where Tsynci is the synchronization time between Ci and Ri. Therefore, the requirement in Rule

1 should be extended to a more general form, which is : TR + Ttest + 2 · Tinc2 + Tsynci = ki · Xi.

Generally, the time for synchronization between different clock domains is not a constant, but a

distribution with a mean value and a variance. Fortunately, routers in this case are usually able

to work together with the synchronization circuit to adjust each arrival flit for interleaving. That

is, when two flits for two different cores lose their interleaving alignment at a router Ri, the buffer

of Ri can work as a regulator to resume the interleaving alignment. Thus, the synchronization

problem for different clock domains seems to be a minor problem for NoCs, though details still

need to be taken into account.
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5.3.2 Interleaving between flits with different paths

Assume F1i’s and F2j ’s are two sets of data flits for different cores, and they share the

same test I/O resource. F1i (F2j) reach a router R1 at time TF1i R1 (TF2j R1). The time interval

between F1i and F1(i+1) (F2j and F2(j+1)) is X1 (X2) cycles. After passing through N1 (N2) routers,

F1i (F2j) reach router R2 at time TF1i R2 (TF2j R2). By assuming X1 ≤ X2 and using the same

notation as in Sub-section 5.3.1, the rule shown below for interleaving flits with different paths can

be derived.

Rule 2: If F1i’s and F2j ’s can be well interleaved in the starting router R1 but pass through

different paths after R1 (Figure 5.7), to guarantee the interleaving to continue without any conflict

in another router R2, there must exist an integer k to satisfy the equation: (TR+Tinc1)·(N1−N2) =

k ·X1.

Figure 5.7: An example of flits interleaving with different paths.

We will also use an example (shown in Figure 5.7) to analyze how this rule is derived. Since

F1i’s and F2j ’s are well interleaved at R1, we have TF1i R1 − TF2j R1 6= 0 for integers i and j. Let

d0 be the delay between two closest data flits from F1i’s and F2j ’s at R1 (as shown in Figure 5.8).

Since the time interval between any pair of two flits of F1i’s is a multiple of X1, we have:

TF1i R1 − TF2j R1 = d0 + k1 ·X1. (5.3)

where k1 can be any integer. The interleaving example at R1 of Fig. 13 has d0 = 1, X1 = 2, and

K1 = 2.
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Figure 5.8: Flits interleaving with different paths.

To keep interleaving F1i’s and F2j ’s at R2, the timing relationship between F1i’s and F2j ’s

at R1 should continue, i.e., for any set of i and j, we have:

TF1i R2 − TF2j R2 = d0 + k2 ·X1 (5.4)

where k2 can be any integer. Combining Equations 5.3 and 5.4, we have:

(TF1i R2 − TF2j R2) − (TF1i R1 − TF2j R1) = (k2 − k1) ·X1.

Since TF1i R2 = TF1i R1 +N1 · (TR+Tinc1) and TF2j R2 = TF2j R1 +N2 · (TR+Tinc1), let k = k2−k1,

simplifying both equations, we have:

(TR + Tinc1) · (N1 −N2) = k ·X1,

where k (equal k2 − k1) can be any integer. Thus, the rule is derived.

For a 2-D mesh structure, we observe that: If two flits F1 and F2 both depart from the

same router R1 and arrive at the other router R2, with N1 (N2) routers passed by F1 (F2) during

this process, the difference between N1 and N2 must be an even integer. This can be easily verified

as shown in Figure 5.9.

Given a pair of routers in a 2-D mesh network and a path between the source and the

destination, no matter how the path is routed, it can be divided into 10 segments (Figure 5.9) and

the total path length is:

L = |Xd −Xs| + |Yd − Ys| +Xs+ +Xs− + Ys+ + Ys− +Xd+ +Xd− + Yd+ + Yd−.
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Figure 5.9: Routing path length in a 2-D mesh structure.

We emphasize here that the routing path shown in Figure 5.9 is just a general case, i.e.,

the shape of an actual routing path may not be the same as in this figure. However, any real

routing path can be represented using this general case by setting different values to each segment

(sometimes, value 0 is assigned). Easily, we find the relations: Xs+ = Xs−, Ys+ = Ys−, Xd+ = Xd−

and Yd+ = Yd−. Also, we know that |Xd −Xs| + |Yd − Ys| is equal to Lmin which is the minimum

path length between the source and destination. Therefore, the length of any path between this

router pair can be represented as:

L = Lmin + 2 · (Xs+ + Ys+ +Xd+ + Yd+).

noindent Obviously, the difference in length between any two paths of this router pair is an

even number. Thus, the difference between the number of routers traversed (N1 and N2) by any

pair of two paths between routers R1 and R2 is an even number.

Based on this observation, N1 −N2 can be represented as 2 · p (p is an integer), and Rule 2

can be written as (TR+Tinc1)·2·p = k·X1. For most NoCs, we have TR = Tinc1 = 1. Therefore, from

this equation, as long as X1 is an integer factor of 4, Rule 2 can be satisfied and interleaving of data

flits with different paths is not a problem. Similar to Rule 1, if Rule 2 cannot be directly satisfied

for some cores, the interleaving can still be implemented by inserting simple logic to compensate

the delay.
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5.3.3 Checking of Interleaving Capability

As stated in the beginning of this sub-section, to enable parallel test of multiple embedded

cores using the same test I/O resource, data flits of these cores need to be interleaved without any

conflict. To guarantee the interleaving, two rules presented above need to be satisfied. Therefore,

after all cores are scheduled to appropriate test I/O resources, an extra interleaving checking process

is required. If a core Ci is not interleaved with other cores for testing, it does not need to be checked.

Otherwise, Ci needs to be checked with Rule 1. If Rule 1 cannot be met, appropriate delay logic

circuits need to be inserted as we stated in 5.3.1. After this, we also need to check Rule 2 for this core

and all other cores using the same test I/O resource as Ci but different routers. Similarly, if Rule

2 cannot be satisfied, appropriate delay circuits are needed to accomplish the interleaving. It may

seem complicated to add extra logic circuits to satisfy these two rules. However, the case is not so

difficult to achieve most of the time. For example, generally, we have TR = Ttest = Tinc2 = Tinc1 = 1

and Xi equals to 2 or 4, so Rule 1 and Rule 2 can be satisfied very easily.

5.4 Experimental Results

We have applied the heuristic configuration algorithm to 40 cores from ITC’02 SoC bench-

mark set [46]. Since traditional SoC test wrapper optimization algorithms prefer to configure

internal scan chains and functional I/Os to balanced wrapper scan chains, we also applied this

equal-length configuration strategy to the benchmark set for comparison. In this algorithm (used

for comparison), we first sort the internal scan chains, and then use the best-fit strategy to configure

them into wrapper scan chains with the length constraint. After that, we use the best-fit strategy

to assign functional I/Os to fill existing wrapper scan chains to maximum length, without any δ

limit as in our heuristic algorithm. If there are extra I/Os left, we further use the best-fit strategy

to assign them to new wrapper scan chains with the length constraint. The results obtained by

these two configuration algorithms are shown in Figure 5.10.

As we can see, among 40 benchmark cores, 20 of them can be solved by using the simple

equal-length configuration method without any waste, but the other 20 of them have significant

waste. For the 20 remaining cores, our configuration algorithm can reduce the data flit waste to 0

for 14 cores, and have slight improvement for the other 6 cores, as shown in Figure 5.10. For the
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Figure 5.10: Comparison of data flit waste between equal length configuration and our algorithm.

cores that have significant improvement using our configuration, only 2 or 3 data flit formats are

required, so the hardware overhead is quite small.

To evaluate the performance of our test scheduling method, we applied the heuristic wrapper

scan chain configuration algorithm and test scheduling method to the ITC’02 benchmark set, and

compare the results with the published works [25][26]. The selected benchmark circuits are d695,

g1023 and p22810 for easy comparison with the results of [25][26]. All the results are based on

the assumption that the width of each data flit is equal to 32 bits and all NoCs originally work

in a single clock domain. The results of test time for these chips after test scheduling are shown

in Figure 5.11 to Figure 5.13. In these figures, Base denotes the test scheduling method proposed

in [25], which only uses one test clock frequency and allows each data flit to contain only a single

bit for each wrapper scan chain of a core. Case1 and Case2 denote the test scheduling methods

proposed in [26], which allow each data flit to contain multiple bits for each wrapper scan chain of

a core, but only allow a single data flit format for all data flits of a core. Case1 only allows normal

and faster test clock frequencies for some embedded cores, while Case2 allows each embedded core

to choose from a set of test clock frequencies, including slower, normal and faster frequencies.

MDFF denotes our proposed test scheduling method based on the optimal wrapper scan chain

configuration algorithm. We want to note that, different topologies of a NoC greatly affect the

efficient utilization of network resources, and thus affect the final results of test scheduling. Since

no topologies were available from the benchmark set description or the other published works, we

choose the optimum topologies for our test scheduling method in this paper.

Without losing the generality, the power consumption limit during test is defined as a func-
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tion of the overall power consumption of the embedded cores. This function is a percentage of the

sum of the power consumptions of all cores, e.g., a test power limit of 50% indicates that the power

limit corresponds to half of the total power consumption of all cores. With this assumption, the

result of the test scheduling algorithm can be independent of the absolute power values. However,

in the real case, the designer can define any power limit according to the system requirements. In

our experiments, we considered the conditions with 2, 3 and 4 test interface I/O pairs, and with

no power limit, 50% power limit and 30% power limit.

Figure 5.11: Test scheduling results on benchmark circuit d695.

As we can see, our test scheduling method based on the MDFF concept and wrapper scan

chain configuration algorithm achieves the smallest test time for all these benchmark circuits. For

benchmark circuit d695, by our method, all cores use the same test clock frequency f as the on-chip

network. In benchmark circuit g1023, only one core needs to use higher test frequency (2f). And,

in benchmark circuit p22810, only two cores need to use higher test clock frequency (2f). Thus,

only very limited hardware overhead is required to achieve smaller test time by our method. In

most cases, the proposed test scheduling method outperforms Base by 30% − 50%, which is much

better than both Case1 and Case2.
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Figure 5.12: Test scheduling results on benchmark circuit g1023.

Figure 5.13: Test scheduling results on benchmark circuit p22810.
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Chapter 6

Testing Mode Router Design and A

Complete Router Architecture

In Chapter 3, we have proposed a DyXY routing algorithm for normal mode operations.

Besides normal working mode, routers also need to support testing mode operations. In this

section, we will discuss the router design issues for testing mode, and will present a complete router

architecture to support both working modes at the end of this chapter.

6.1 Testing Mode Router Design Issues

No matter which test strategy to choose, besides the test function implementation, minimum

hardware complexity and area overhead are two most important aspects to evaluate the merits of

the design. Two basic questions to be considered in testing mode router design are stated below.

• How to set a router to operate in different modes?

In NoC, there is no global test control signal, and all signals need to be transferred using

the network in the form of packets. Therefore, the operation mode selection of a router also

needs to refer the information carried by each incoming packets. To minimize the network test

traffic and router complexity, an efficient method to embed operation-mode information in a

packet needs to take three aspects into consideration. First, the embedding of information

should add minimum overhead to the size of each packet. Second, the operation-mode control
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logic in each router should be as simple as possible. And the last point, it is better to isolate

this logic unit from the other functional units in each router, so the functional test of a router

will not be affected by this part.

• Which routing mechanism should be chosen to support test pattern transfer and

how to implement it?

For embedded core testing, test patterns need to be routed following specific paths, which

are dedicatedly selected to achieve maximum network utilization and minimum testing time.

Traffic in test mode is pre-known once the test plan is developed. Therefore, routing in test

mode should be deterministic instead of adaptive as in normal mode. As we know, there

are generally two ways to implement deterministic routing in a network. First, the routing

information can be embedded in each incoming packet, and the routers only need to forward

the packets based on their routing information. The second way is that the packet only include

source and destination addresses, and the routers make decision based on the addresses and

routing algorithms (which is implemented as internal logic of each router). Either of these two

methods has its advantages and disadvantages. For the first one, the router structure is very

simple, however the packet size is bigger and thus induces traffic overhead. For the second

one, only few extra information need to be inserted in a packet, however, routers become

more complex and thus induces area overhead. Which method is the better one relies on the

specific test strategy adopted.

Before presenting the details of our testing mode router design, let us first review our embed-

ded core test strategy. Based on our test scheduling strategy, each test packet follows deterministic

routing path. Paths of most test packets are XY routing path by default, however, there are also

a few exceptions which need to take different routing paths to avoid blocking during parallel test.

Which path needs to change and what is the new path are determined during the test scheduling

process. Recall the DyXY routing algorithm for normal mode operation, we found that the basic

logic to implement DyXY routing is the same as that to implement XY routing, and the only dif-

ference is that DyXY needs to consider congestion information in proximity when making routing

decision. Therefore, only a little optimization on routers can help us to implement XY and DyXY

routing at the same time. The question now becomes how to implement special routing paths for
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the few exceptions. As we have stated in the test scheduling strategy, the special routing paths are

XY routing paths for most routers, and only take special turns in very few routers. Considering

the logic complexity, we plan to implement special routing paths by inserting the special routing

information in the routing map of related routers.

Three questions need to be answered to implement this idea. First, how to set the special

routing information into designated routers. Second, how to let a router know which packet needs

to follow the special routing path as stated in the routing map. And third, what is the format of

the routing map. For the first question, obviously, we need a special type of packets to set the

routing map of routers, and the type of the packets should be indicated in the head flits of packets.

The second question can be solved in two ways, by embedding information in the packets or saving

information in the routers. Since a packet may need different actions in different routers, a better

way is to embed the information in the routers’ routing map. And based on the second question,

we get the answer to the third question: each routing item in the routing map needs to include the

ID of a test packet and the routing direction. Therefore, to implement special routing for some test

packets, we define a new packet type, set packet. set packets are used to set special routing items

(each item includes a Core ID and a routing direction) to related routers, such that these routers

will forward test packets of specific cores based on the directions indicated in the routing items.

For simplification, we apply the default XY routing for set packets.

The general structure of different flits in packets are shown in Figure 6.1. As we can see,

the packet type and flit type information are clearly stated in the flits, so routers can easily make

decision based on these information. The detail of routers’ working flow is described in the next

section.

Here, we would like to spend a few more sentences to explain the format of set packets.

Let us recall the example of routing path find example in Chapter 5, as shown in Figure 6.2. In

this example, to implement parallel testing of Core 6 and Core 7, we force the test packets of Core

6 to take special routing path instead of XY routing path. To realize this, we need to set special

routing items to the routing maps of Router 6 and Router 9. Assume the network addresses of

Core 6, Router 6 and Router 9 are (1, 2), (1, 2) and (0, 1), respectively, the set packets for Router

6 and Router 9 are shown in Figure 6.3. We note that, the ’Destination’ in the Head flits (and Tail

flits) means the destination router of a set packet, the ’Test Core’ in the data flits means the Core
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Figure 6.1: Formats of flits.

whose test packets need special routing paths, and the ’Routing direction’ in the data flits means

the scheduled routing direction of test packets of the ’Test Core’. Since test packets include both

test pattern packets and test result packets, we use ’Other flag’ to differentiate these two type of

test packets, e.g., ’1’ mean test pattern packets and ’0’ means test result packets. Therefore, the

set packets in Figure 6.3 mean that Router 6 should forward all test result packets of Core 6 to

the ’South’ direction, and Router 9 should forward all test pattern packets of Core 6 to the ’North’

direction. The ’Test Core’ address, the ’Routing direction’, as well as the flag indicating the test

packet type (test pattern or test result packets) should all be included in each routing item within

routing maps.

6.2 Router Architecture

The basic router architecture is as shown in Figure 3.2 and the general working flow of

router has been described in Section 3.1. In this section, we will discuss the logic of the center

component of each router, the controller, in detail. The working flow of the controller is shown in

71



Figure 6.2: Example of Special Routing Path.

Figure 6.4.

As shown in the Figure 6.4, upon receiving a flit, the controller will first check the flit type.

For head flits, the task is to make routing decision. The controller then checks the packet type.

For head flits of normal packets, the controller will find a routing direction using DyXY routing

algorithm. For head flits of set packets or test packets with XY routing, the controller will find a

routing direction using XY routing algorithm. For head flits of special routing test packets, the

controller will first look up the routing map. If the source (or destination) address of the head flit

is the same as a ’Test Core’ address in the routing map, the routing direction in the routing map

corresponding with this ’Test Core’ address is the routing decision. Otherwise, the controller will

find the routing direction using XY routing algorithm. After a routing decision is made or found,

the decision is saved in related item (based on the incoming direction of the flits) of the routing

table for the use of following data flits. Also, if current router is not the destination of the flit, the

head flit will be forwarded to the next router based on the routing decision. We note here that,

test packets include both test pattern packets and test result packets. In test pattern packets, the

destination address is the Test Core address, and in test result packets, the source address is the

’Test Core’ address. So, when we look up the routing map, we should use the destination address

in head flits of test pattern packets, and use source address in head flits of test result packets.

Whether a test packet is test pattern packet or test result packet can be indicated using the ’other

flag’ in head flits. For example, ’1’ means test pattern packets and ’0’ mean test result packets. Let

us still use the example in Figure 6.2 for demonstration. Given the head fit of test pattern packets

of Core 6. When this head flit reaches Router 9, the controller will use its destination address to
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Figure 6.3: Example Set Packets.

look up the routing map. A routing item will be found, and the related routing direction with this

routing item is ’01’, so the routing decision for this flit is ’North’. The head flit is then forwarded

to Router 5. Since no related routing item can be found in Router 5’s routing map, based on XY

routing rule, the routing direction of this packet is ’East’, so the head flit is forwarded to Router

6. Although there is a routing item in Router 6 whose Test Core address is the same as the head

flit’s destination address, the test packet type with this item is test result packet instead of test

pattern packet, so the routing decision is ’111’ (local Core) based on XY routing algorithm. Readers

might get confused at this point regarding the bit representation of routing decisions, since we only
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use two bits to represent routing decisions in set packets, while use three bits here. We would

like to spend a few sentences to explain this. There are totally five possible routing directions,

’East’, ’North’, ’West’, ’South’, and ’Local’. To represent all these five directions, we need three

bits, ’000’ for ’East’, ’001’ for ’North’, ’010’ for ’West’, ’011’ for ’South’ and ’111’ for ’Local’. So,

each routing decision in the routing table should has three bits. Let us recall the purpose of set

packets. They are used to tell routers to forward some test packets to special directions instead of

following XY routing path. The only possible special routing directions are ’East’, ’North’, ’West’

and ’South’, since we will never need to force a test packet to enter its destination core (which can

be naturally decided by XY routing rule), and we will never allow any test packet to enter any

other core which is not its destination. Therefore, the ’Local’ direction will never occur in any set

packet. To save space, we only use two bits to represent the four possible routing directions in

set packets. Careful readers may question that head flits should stop at their destination routers,

instead of being forwarded to the embedded cores. This is true. However, an important task of

head flits is to find and set a routing path for following data flits of the same packet. So, the routing

decision still needs to be made and stored in the routing table, such that the following data flits

can directly read this routing decision and be forwarded to the embedded cores. Only when the

test result packets of Core 6 reach Router 6, they will follow the direction in the routing map, and

be forwarded to the ’South’ direction.

For data flits, the controller will find a routing decision from the routing table based on

the flits’ incoming direction. This routing decision is made earlier based on the information in the

head flits of the data flits. If current router is the destination of the data flits, and the data flits

belongs to set packet, the controller will get the information from the data flits and save them

in the routing map. For example, for the set packet of Figure 6.3(b), when the data flit reaches

Router 9, the controller will get the ’Test Core Address’, the flag showing the type of the test

packet, and the ’Routing Direction’ (which is ’0110 1 01’) from the data flit, and save this content

as a routing item in Router 9’s routing map. Otherwise, the controller will forward the data flits

based on the routing decision. We note here that, we apply wormhole routing for flits within the

same packet, i.e., all flits within the same packet will follow the same routing path and will have

the same incoming direction for each router. Thus, each router’s routing table will need to have

five items, each for an incoming direction (east, west, north, south and local).
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For each tail flit, the controller will find a routing decision from the routing table based

on the flit’s incoming direction. And then, the controller will write a special value (an invalid

indication) to the related item of the routing table. The tail flit is then forwarded to the next

router based on the routing decision, if the current router is not the destination. Let us use Figure

6.3(b) as an example. When the tail flit of the set packet for Core 6 reaches Router 9, the controller

will look up the routing table for its routing decision based on its incoming direction. Bit pattern

’001’ will be found which means ’North’. Since this is not the destination of the tail flit, it will be

forwarded to the ’North’ direction. At the same time, a special value will be written to the related

routing decision item in the routing table of Router 9, to set an invalid direction. When the tail flit

reaches Router 6, the routing decision from the routing table is ’111’ which means ’Local’. Since

it is the destination of the tail flit, the flit will not be forwarded anymore. The related routing

decision item in the routing table will also be set to an invalid value.

Readers may question whether the contents in the routing map be set to invalid, together

with the routing table. Before answering this question, let us clarify the purpose of routing map

and routing table first. The purpose of a routing map is to store special routing decisions for some

test packets which do not follow the XY routing rule. These decisions are determined by the test

scheduling algorithm and are fixed. The contents in a routing map are set by set packets, and

should remain unchanged once they are written. The purpose of a routing table, however, is to

store the routing decisions for current incoming packets (including set packets, test packets and

normal packets) for the use of data and tail flits. The routing decision in a routing table can

come from either its routing map, or the result of its routing logic based on XY or DyXY routing

algorithms. Since there will be many different incoming packets, the contents of the routing table

change dynamically with different incoming packets. For each incoming packet, once the routing

decision is made with its head flit, the corresponding item of the routing table will remain unchanged

until the arrival of the tail flit. Therefore, when a tail flit arrives at a router, the related routing

item of the routing table will be set to invalid since this packet is ended; however, the contents in

the routing map should remain unchanged.

The structure of each router controller is shown in Figure 6.5. As we can see, a controller

consists of a flit type checker, a packet type checker, a routing logic, a routing table, a write enable

signal generator and a few Multiplexers. Inputs of the controller are the incoming flits, stress values
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and the incoming direction information, and the outputs are signals to control the crossbar switch

to forward incoming flits to correct directions.

The function of the flit type checker is to check the type of each incoming flit. The inputs

of this function block are the first two bits of a flit: F type 0 and F type 1. There are three output

control signals F sel0, F sel1 and F sel2, each indicating the head flit, the tail flit and the data

flit of a set packets respectively. The logic of this function block is shown in Figure 6.6. Similarly,

the function of the packet type checker (Figure 6.7) is to check the packet type for each incoming

head flit or tail flit. Each packet type checker has two output control signals: P sel0 and P sel1.

P sel0 indicates whether a flit belongs to a normal packet or not, and it is one of the inputs for

the stress value comparator. P sel1 indicates whether a flit belongs to a test packet with special

routing or not, and it is a control signal for the 3-to-1 Mux in the routing logic.

Routing logic is a very important function block of a controller. It consists of a first step

decision logic, a second step decision logic, a stress value comparator, a routing map logic and a

few Muxs. The function of the first step decision logic is to make first level decision of possible

routing directions for incoming flits. As shown in Figure 6.8, this function block is composed of

two comparators which compare the X and Y addresses of the destination of each incoming head

flit and those of the current router. The logic of this block is very simple as shown in this figure.

Each comparator has two-bit output to indicate the comparison result. The output will serve as

the input for the second step decision logic, as well as the control signal of the 4-to-2 Mux to select

an appropriate stress value.

As we have stated in Section 3.1, there are four stress value registers in each router, each

storing the stress value of a neighboring direction. Based on the outputs of the first step decision

logic, the 4-to-2 Mux (shown in Figure 6.9) selects stress values of two possible routing directions

as the inputs of the stress value comparator. The stress value comparator is shown in Figure 6.10.

The basic function of this block is to compare the stress values of two possible routing directions.

However, since we adopt DyXY routing only for normal packets, stress values should not affect the

routing decision of other packets. Thus, one other control signal, P sel0, is also taken as the input

of this block. As shown in Figure 6.5, P sel0 = And(P type 0, P type 1), i.e., P sel0 = 1 only for

flits belongs to normal packets. Thus, the output of the stress value comparator only represents

the actual comparison result of stress values when P sel0 = 1. Otherwise, the output is set to ’0’
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which indicates that X direction is preferred.

The second step decision logic is the function block which makes routing decision. Inputs

of this block includes the outputs of the first step decision logic and the output of the stress value

comparator. The decision is made based on the DyXY routing algorithm. However, since the

packet type information is included in the logic of stress value comparator, the decision is actually

based on XY routing for set packets and test packets. The detailed logic is shown in Figure 6.11.

The output of this block has three bits, indicating five possible routing decisions.

We will use some examples to show how the routing decisions are made by the first step

decision logic, stress value comparator and second step decision logic. Let us still use the NoC

structure shown in Figure 6.2. Assume there is a Set packet for Router 6 entering Router 9. The

first step decision logic of Router 9 compares the destination address (Router 6) with the current

router address (Router 9). Since Router 6 locates in the northeast of Router 9, the output of the

first step decision logic will be: X comp 0 = 0, X comp 1 = 0, Y comp 0 = 0, Y comp 0 = 0,

indicating ’East’ or ’North’ direction. Since this is a set packet, XY routing will be chosen, and

the output of the stress value comparator will be set to ’0’, indicating that the X direction is

preferred. Refer to the truth table in Figure 6.11, the output of the second step decision logic

will be ’000’ representing the ’East’ direction. Again assume there is a normal packet for Core 6

entering Router 9. The first step decision logic of Router 9 has the same output: X comp 0 = 0,

X comp 1 = 0, Y comp 0 = 0, Y comp 0 = 0, indicating ’East’ or ’North’ direction. Since this is

a normal packet, DyXY routing will be chosen, and the output of the stress value comparator will

be the true comparison result of stress values of Router 5 and Router 10. Assume Router 10 has

bigger stress value than Router 5, the output of the stress value comparator will be ’1’, indicating

the Y direction is preferred. Refer to the truth table in Figure 6.11, the output of the second step

decision logic will be ’001’ indicating the ’North’ direction.

Another important function block of the routing logic is the routing map logic shown in

Figure 6.12. This function block is composed of a routing map, an input address Mux, an address

comparator, a routing map status Register, a M-to-1 Mux and an enable signal generator. The

routing map is the storing unit. A routing map consists of a number (M) of items each storing a

test core address, the related test packet type and a special routing direction.

The input address Mux, the address comparator, and the M-to-1 Mux are logic blocks used
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for reading the contents from the routing map.

When there is an incoming head flit of a test packet with special routing, the input address

Mux will select either the source address or destination address in the head flit based on the test

packet type to look up the routing map. If the source (destination) address of an incoming head

flit is the same as one of the test core addresses in the routing map, and the test packet type of

this head flit is the same as the type flag in the related routing item, the Find signal is set to ’1’;

moreover, the Sel signal is set to a value to control the M-to-1 Mux to output the routing direction

of the related routing item. For example, if there is an item in Router 9’s routing map indicating

a special routing decision for test pattern packets of Core 6. When the head flit of Core 6’s test

pattern packet enters Router 9, the routing map logic will find this special routing decision for the

head flit.

The routing map status reg and the enable signal generator are used for writing information

to the routing map. The routing map status register is essentially a self-increment register, which

increases by 1 at every rising edge of the write en signal. The function of this status register is

to record how many items have been written to the routing map. The input signal of the routing

map status reg is write en, which is the product of F sel2 and Dir. F sel2 = 1 indicates a data

flit of set packets. Dir is the final output of the controller logic, indicating the routing direction.

Dir = 11 means current router is the destination of the flits. So, when write en = 1, we need to

write the information from the data flit to the routing map. write en also serves as the input for the

Enable signal generator. The enable signal generator will take the status register’s output and the

write en signal as inputs, to enable the information of data flits of set packets (test core address,

the related test packet type and a special routing direction) to be written to the appropriate place

of the routing map. For example, assume that the routing map of Router 6 has totally 5 routing

items and only the first one has been filled. If the data flit of one set packet of Router 6 enters

at this time, the enable signal generator will generate an enable signal to write the information of

this data flit to the second routing item in Router 6’s routing map, and the value of routing map

status reg will also be increased by 1.

The last function block within the routing logic is the 3-to-1 Mux. The logic of the 3 to

1 Mux is stated in Figure 6.5. Inputs of the Mux are the decision from the Second step decision

logic, the output from the routing map logic and a special value. For tail flits, we need to set the
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related routing item to an invalid value, so, the special value is selected. For head flits of special

routing test packet, if an item is found from the routing map, the result should be taken as the

routing decision. Otherwise, the decision from the Second step decision logic is selected.

Output of the 3 to 1 Mux is the input of the routing table. As stated before, routing table

consists of 5 sets of registers each storing routing decision for an incoming direction. The Write

enable signal generator (Shown in Figure 6.13) takes F sel0 and the information of the incoming

direction of flits as inputs, and generates enable signals to write the decision of the routing logic to

appropriate place.

The 2-to-1 Mux is the final stage of the controller. For head flits, the controller will select

the decision of the routing logic and forward head flits based on it. And for data and tail flits, the

controller will select a routing decision from the routing table based on the incoming information

(the output of the 5 to 1 Mux) to forward the flits.

Besides generating routing decision, the controller also have another function: generating

control signals to update the values of its stress value counter. Only two-bit outputs are required,

with one for increasing the stress value and the other for decreasing it. The function is simple,

whenever there is a new flit entering the input buffer of the router, the controller will generate a

pulse on the signal for increasing. Whenever there is a flit leaving the input buffer, the controller

will generate a pulse on the signal for decreasing. Since the design of this logic depends on the

detailed structure of the input buffer, we will not go into the details at this time. However, please

remember that the function does exist.

With the help of the controller design, the proposed router architecture can support both

normal mode and testing mode operations. Unfortunately, it still cannot support test flit inter-

leaving. The reason comes from the assumption of wormhole routing. With wormhole routing, a

routing path is reserved for one packet at a time, i.e., once the head flit of a packet begins to travel

through a routing channel, this channel is reserved for all flits of the packet until it finishes. So,

no flit interleaving is possible. Both normal packets and set packets can follow wormhole routing

without any problem; however, to realize efficient test scheduling, we need to interleave flits of dif-

ferent packets to fully utilize the network channel. Therefore, test packets cannot follow wormhole

routing. What will be different with this change? The operations of each head flit and tail flit are
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still the same, and only operations with data flits need to be changed. With wormhole routing,

when there is an incoming data flits, the controller will look up the routing table for its routing

decision based on its incoming direction. For test packets, data flits of different packets can enter

the same router from the same direction alternately. Therefore, we cannot look up the routing

decision merely based on a data flit’s incoming direction. To solve this problem, each data flit of a

test packets should also include the test core address, besides other information needed for common

data flits. This can be realized by adding the test Core address to the ’Other flag’ area of each data

flit. And, the controller must look up the routing decision for each incoming data flit based on both

the incoming direction and the test core address. For example, in Figure 6.2, assume Core 11 and

Core 16 will be tested using the same Test I/O concurrently, and their flits need to interleave at

Router 15. Furthermore, we assume that both of their flits enter Router 15 by the ’West’ direction.

When head flits (test packets) of Core 11 and Core 16 enter Router 15, the controller will make

routing decisions based on their destination addresses using the XY routing algorithm. So, two

routing items will be written to Router 15’s routing table for the West incoming direction. One

item includes ’001’ (North) and ’1001’ (the XY address of Core 11), and the other item includes

’000’ (East) and ’1100’ (the XY address of Core 16). When data flits (and tail flits) of test packets

for Core 11 and Core 16 enter Router 15, the controller will find their routing decisions from the

routing table based on their incoming directions and test core addresses. Therefore, flit interleaving

can be easily supported.

To adapt with the proposed optimization, corresponding changes are needed at the routing

table logic. Instead of only one routing item for each incoming direction of head flits, there should

be more items for each direction (except the local direction). Due to the constraints of channel

capacity and power consumption, generally at most three packets can be interleaved in one incoming

direction. Therefore, we reserve three items for each outside incoming direction (this is based on

our observation during test scheduling on the ITC’02 SoC benchmark sets). Also, each item should

include both the routing direction and the test core address. The logic for each incoming direction

(except the local direction) of the optimized routing table is shown in Figure 6.14. The logic for

each direction includes three storing units, a status Reg, an enable signal generator, a comparator

and a Mux. The function of the status Reg and the enable signal generator is to write information

to the storing units, and the function of the comparator and the Mux is to read information from
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the storing units. The working principles of these units are the same as the corresponding units in

the routing map logic. For example, if the status reg in the routing table logic for East direction is

2, it means there is only one empty storing unit for this incoming direction. If there is a new head

flit coming from the East direction, its routing decision and its test core address will be written

to the last storing unit for the East incoming direction. If later, a data flit comes from the East

direction, the comparator in Figure 6.14 will compare the test Core address of the data flit with the

addresses in the three storing units of the routing table logic for East direction, and will generate

signals to control the Mux to output a routing decision from the matched storing unit.

With this optimized controller logic, we have a high-performance router architecture which

can support test mode operation, as well as provide adaptive, deadlock and livelock free DyXY

routing in normal operation mode.
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Figure 6.4: Controller working flow.

82



Figure 6.5: Structure of the controller.

Figure 6.6: Flit type checker.
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Figure 6.7: Packet type checker.

Figure 6.8: First step decision logic.

Figure 6.9: 4 to 2 Mux.

Figure 6.10: Stress value comparator.
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Figure 6.11: Second step decision logic.
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Figure 6.12: Routing map logic.

Figure 6.13: Enable signal generator.
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Figure 6.14: Partial Logic of the Optimizaed Routing Table.
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Chapter 7

Conclusion and Future Works

7.1 Conclusions

SoC platforms based on large, complex multiprocessor are already well into existence. Ac-

cording to common expectations and technology roadmaps, the emergence of billion-transistor chips

is also around the corner. Wireless base stations, high-definition TV, and mobile handsets are just a

few applications that have arisen because of multiprocessor SoCs. With such chips, the constraints

for performance, power consumption, reliability, error tolerance and recovery, cost, and so forth can

be extremely severe. One design characteristic that lies at the core of all these critical specifications

is the on-chip interconnection network. The NoC paradigm is one, if not the only one, to enable the

integration of an exceedingly large number of computational, logic, and storage blocks in a single

chip (known as a SoC).

The adoption and deployment of NoCs face important issues related to design and test

methodologies. One big design challenge is on router design. Routers need to be adaptive to

achieve high performance for high network traffic. Meanwhile, livelock and deadlock-free are also

important to guarantee the service. In a NoC, area and logic efficiency are evenly important merits

for router design. Works have been done to develop efficient routing methods for mesh structure

computer networks and NoC architectures [10]-[20]. Although they have achieved some progress,

there are still limitations on the adaptiveness of the routing method and complexity of the router

architecture.

In Chapter 3, we have presented our works in router design. A novel routing method (DyXY)
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was presented to achieve efficient network communication for normal mode NoC operations. The

DyXY routing method provides adaptive routing based on congestion conditions in the proximity,

and ensures deadlock-free and livelock-free features at the same time. Analytical models based on

queuing theory were developed for both static XY routing and DyXY routing to evaluate their

performance for a two-dimensional mesh NoC architecture. Extensive simulation was done to

validate the analytical models, and it was observed that the simulation results match very well

with the analytical results. To further evaluate the performance of DyXY, we compared it with

both static XY routing and odd-even routing under different traffic patterns, and it was shown that

the DyXY routing method can achieve the best performance.

Although many researches have worked on the design and implementation issues of NoCs,

few of them paid enough attention to the testing issues. Reuse of the existing on-chip communica-

tion resources, such as routers and channels, is critical to avoid additional area overhead [21]. But

reusing NoC resources efficiently is also challenging because the design of routers and channels in

an on-chip network is optimized for communication in mission-mode, not for test. For example,

there may be a mismatch between the available network channel width and the core scan chain

width (which is usually equal to the Test Access Mechanism (TAM) width for traditional SoC

architectures), and this can adversely affect test efficiency and test cost.

Some works have been done for embedded core testing based on the new NoC architecture.

In [21], two methods for the test of core-based systems were introduced by using an on-chip network,

and advantages in reducing test time, area overhead and pin-overhead were shown by experimental

results. In [24], the authors extended the results of a previous on-chip network research to a test

scheduling algorithm with power constraints considered. In this algorithm, scheduling was based

on every single data flit, and the test pipeline for a core can be interrupted. Since this is not

applicable for the non-preemptive case, an improved test scheduling algorithm with built-in self

test (BIST) and precedence constrains was further proposed in [25]. For all these test scheduling

algorithms, each data flit contains only a single bit for each wrapper scan chain of the embedded

core. For example, if the bit-width of a data flit is 32 bits and there are 10 wrapper scan chains

in an embedded core, then only 10 bits of each data flit are used to apply test patterns. Since

this may result in a huge waste of packets, a further improved test scheduling algorithm has been

proposed in [26]. The algorithm allows a data flit to contain multiple bits for each wrapper scan
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chain. To support test under this new packet format, the authors proposed to use on-chip clocking

to speed up the test data transfer for certain cores by faster clocks, and use slower clocks for other

cores to limit the power consumption. An algorithm was presented to determine the clock rate

distribution among the cores. Although these proposed test scheduling methods have achieved

good performance, none of them addressed the wrapper scan chain configuration issue. Therefore,

the utilization of the on-chip network is still limited, and the testing time for the entire NoC using

these methods is still not efficient enough.

In Chapter 4, a heuristic wrapper scan chain configuration method has been proposed based

on the concept of multiple-data-flit-format (MDFF) test data transportation concept. With MDFF,

a data flit can contain multiple bits for each wrapper scan chain, instead of only 1 bit/chain in

traditional test application methods [22]-[35]. Also, the data flits for a core can have several formats

to adapt the entire test process to different numbers of unfilled scan chains, for the maximum

utilization of network channels. Since a data flit may contain more than one bit of each test

pattern (assume x bits) for each wrapper scan chain of an embedded core, one such a data flit only

needs to be sent to the core every x clock cycles, instead of every cycle. Therefore, the free clock

cycles can be used to apply test patterns for other embedded cores. The MDFF concept and the

heuristic wrapper scan configuration method can reduce the waste of data flits for testing cores in

a NoC, and formed a good foundation for efficient embedded core testing. However, an appropriate

test scheduling method is needed to realize the reduction of total test application time of NoCs.

In Chapter 5, a dedicated test scheduling algorithm is proposed to work together with the

wrapper scan chain configuration method and MDFF concept proposed in [47]. The test scheduling

algorithm can realize test pattern application interleaving for different cores, and testing of different

cores for a NoC in parallel. Instead of only considering channel capacity as most traditional

methods, the proposed test scheduling method takes into account the data flit interleaving issues,

such that flits (of test patterns or test responses) for different cores can be well interleaved without

conflicts in channels and routers of the NoC. Therefore, test time of the whole system can be

minimized with a specified test power consumption. By comparing the results with other published

works, it has been demonstrated that the proposed test scheduling method can achieve significant

improvement on the test time for the entire NoC.

To support testing mode operations, router design issues under testing mode were also
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explored in Chapter 6, and a complete router architecture which can support both normal mode

and testing mode operations has been presented. With all these works done, we finally have a

complete and efficient test strategy for NoC embedded core testing, with the support of a high-

performance router designed for both normal mode and testing mode operations. The total test

application time of a NoC can be minimized, and the network traffic can be handled efficiently

both in normal mode and testing mode.

7.2 Future Works

In this dissertation, we presented our works in NoC embedded core testing and router

design. However, testing of a NoC includes not only the embedded core testing, but also testing

of the on-chip network, i.e., the routers and the interconnects. In this section, we will state the

research problems for on-chip network testing, review current works in this area, and propose

possible solutions to solve these problems.

A. Testing of Routers

A.1 Related Works

To our best knowledge, so far, there is only one work addressing the router testing problem

for a NoC architecture [48]. The testing of NoC routers is divided into two parts: the router

logic blocks (RLBs) and the FIFOs [48]. For RLB testing, two methods, unicast and multicast are

proposed. A test source is directly connected to a corner router (in a 2-D mesh architecture), and

it stores the test patterns and expected outputs. Each router has two operation modes, the normal

mode and the test mode. In normal mode, a router transfer test patterns and expected outputs to

the next designated neighbor. In test mode, the router performs test using the test pattern received

and the results are compared with the expected outputs locally. Using the unicast strategy, RLBs

of the routers are tested in a sequential-recursive manner, one block at a time, using the upstream

routers to transport test data to the RLB under test (Figure 7.1 (a)). Using the multicast strategy,

the testing process can be performed on multiple routers concurrently, i.e., once a router is verified

to be functional correct, it can be used to broadcast the test patterns to all adjacent neighbors as

shown in Figure 7.1 (b). The test time of the entire NoC using both strategies were calculated,
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and it was shown that the multicast strategy performs better than the unicast strategy especially

when network size is large.

Figure 7.1: NoC router test strategies (a) unicast and (b) multicast [48].

For the test of FIFO blocks in each router, the authors in [48] proposed a distributed BIST

methods as shown in Figure 7.2. In this scheme, the read/write mechanism, the control circuitry and

the test data source are shared among multiple FIFO blocks, whereas the local response analyzers

are distributed, one for each FIFO.

Figure 7.2: Distributed mechanism for FIFO test [48].

This work was the first one on NoC router test and stated many valuable points in this

research area. However, it also has some limitations as summarized below.

• First, the testing of routers is based on the assumption that the all interconnects are in good
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function which cannot be guaranteed in such a highly integrated interconnect network.

• Second, although the multicast strategy is superior to the unicast strategy, there is still space

to optimize. With both strategies, to test a router, test patterns need to be transferred

from the external test source to each destination router. This procedure is repeated for each

router and takes a significant part in the overall testing time of all routers for the entire NoC.

However, in NoC, each router has exactly the same architecture and the same RLB block,

i.e., the test patterns for the RLBs of all routers are the same. Hence, there is no reason to

repeat this test pattern transfer process. Also, each router may need multiple test patterns

for functional test. To make use of the parallel structure of NoC, different routers should

be able to conduct test concurrently. An optimized test methodology by pipelining will be

proposed later in this section.

• Finally, although BIST methods for FIFO block testing is mature, there still exist some

implementation issues for applying distributed BIST for FIFO testing in a NoC architecture

as listed below:

– How many BIST controllers are sufficient for a NoC?

– How to map routers to the BIST controllers?

– Should the interconnection between BIST controllers and routers use existing intercon-

nects or additional wires?

The authors in [48] did not consider these questions, therefore, more works need to be done

to realize the idea of distributed BIST methodology to a practical implementation.

A.2 Possible Optimizations

To further optimize the multicast test strategy, we propose a new test methodology named

pipelined-multicast. The main idea of the pipelined-multicast is shown in Figure 7.3.

Since each router may need multiple test patterns, once a router finishes one test pattern

and is verified to be correct under this test pattern, it propagates the test pattern to all the direct

downstream neighbors and let them begin to conduct testing. The testing time for all routers in

a m × m 2-D mesh NoC using multicast strategy is shown in Equation 5.1, where k is the total
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Figure 7.3: Pipelined-multicast test strategy.

number of test patterns for a RLB in each router, Tr is the testing time for a single test pattern of

a standalone RLB, and Np is the time needed for a single test pattern to traverse a router and an

inter-router line.

Tmmesh = k × (2m− 1) × Tr + k × (2m− 1)(m− 2)(Np + 1) (7.1)

However, using pipelined-multicast, the total testing time can be reduced to

Tmmesh = (k + 1) × Tr + (2m− 2)(Np + 1). (7.2)

Of course, to support the pipelined-multicast strategy, more control logic circuits need to be added

to each router. Therefore, detailed analysis of design complexity, area overhead and test time

reduction needs to be performed to verify this new test strategy.

B. Testing of Interconnects

B.1 Fault Models for Interconnects

Many works have been done for interconnect testing in traditional SoC architectures. Tra-

ditional fault models in interconnect testing includes stuck-at, open faults on a wire and short

faults among wires (wired-OR or wired-AND). In [49], it was shown that ⌈log2n⌉ test patterns are

necessary and sufficient for detecting all kinds of short faults on a board with n wires. The input bit
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stream proposed in [49] contains all ‘0’s and all ‘1’ streams that cannot detect stuck-at-0 faults and

stuck-at-1 faults respectively. In [50], the test method was modified to exclude these two streams

to cover the stuck-at faults, and the test pattern length becomes ⌈log2(n + 2)⌉. Further, a fault

diagnosis method was proposed in [51] which requires ⌈log2(n+ 2)⌉ test patterns following another

set of ⌈log2(n+ 2)⌉ test patterns that are complement of the original set.

With deep sub-micron technology and high clock frequencies in the GHz range, signal

integrity problems due to increasing cross-coupling capacitance and mutual inductance becomes

significant, and may cause adverse effect on the proper functioning and performance of the chip.

To analyze the signal integrity problem, a new fault model, named the Maximal Aggressor Fault

Model (MA fault model) was proposed in [52]. In the MA model, it is assumed that the signal

traveling on a wire (victim wire) may be affected by signals/transitions on other wires (aggressor

wires) in its neighborhood. The coupling can be generalized by a generic coupling component, and

the effect could lead to any of the following four crosstalk errors on the victim wire: positive glitch

(gp), negative glitch(gn), rising delay(dr) and falling delay (df ). The transitions needed on the

aggressors and victim wires to produce the maximum error effect for all four error types on the

victim wire Yi were also shown in the paper (Figure 7.4), and it was stated that these transitions

constitute a necessary and sufficient MA tests to detect the corresponding four crosstalk faults for

the victim wire Yi.

Figure 7.4: Maximal Aggressor Fault Model [53].

In the MA model, only capacitance coupling was taken into account. However, when mutual

inductance comes into play, the presented MA test sets may not reflect the worst case and the test

patterns may not create maximal integrity loss [54]-[56]. To solve this problem, another fault model
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named Multiple Transition Model (MT) was proposed in [57]. MT essentially is a superset of MA

patterns, and covers all possible transitions on the interconnects to stimulate integrity losses. The

main idea of MT is having single victim, limited number of aggressors, full transition on victim, and

multiple transition aggressors. An example of MT and MA test patterns for a 3-line interconnect

is shown in Figure 5.5.

Figure 7.5: Transitions that MT and MA (shaded) models generated for a 3-line interconnect [57].

B.2 Interconnect Testing Methodologies for Traditional SoCs

Most of the works for SoC interconnect testing are aimed to develop self-test schemes, and

many of them have made use of the boundary scan cells. Testing interconnect crosstalk defects

using on-chip processor [58], a BIST to test long interconnects for signal integrity [59], and using

boundary scan and IDDT for testing bus [60] are some of the proposed methods.

In [61], the author proposed to insert dedicated interconnect self-test structures in the

SoCs to generate vectors for full coverage of crosstalk defects based on the MA model. However,

this method has a prohibitively high area overhead. To reduce this overhead, a low-cost self-test

scheme called LI-BIST was proposed in [53]. In LI-BIST, the existing LFSR structure was modified

to generate high-quality tests for interconnect crosstalk defects, and thus the area overhead and

interconnect power can be reduced.

BIST test pattern generators for board-level interconnect testing and delay testing were

proposed in [62] and [63], respectively. A modified boundary scan cell using an additional level

sensitive latch (called Early Capture Latch or ECL) was proposed in [63] for delay fault testing.
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An extended JTAG was proposed to test SoC interconnects for signal integrity in [64] and

[65]. The fault model used in [64] was the MA model, where MA test patterns are generated and

applied to the interconnects by modified boundary scan cells placed at the output of a core. The

other modified boundary scan cells are placed at the input of a core (at the end of interconnects) to

collect the integrity loss information. Since the MA model does not count the inductance coupling

effect, an optimized work based on the a fault model including inductance coupling was proposed

in [65]. Similar to [64], this work also assumed that test patterns were generated externally and

then scanned in. The scan-in process takes a long time and this becomes a major drawback of

the work in [64] and [65]. In [57], an optimized fault model including inductance effects (MT) was

introduced, and a new test pattern generation architecture was proposed to generate and apply

test patterns almost at the speed of test clock.

B.3 Interconnect Testing Problems in NoC

Testing of interconnects in a NoC has similarities to that in a traditional SoC, however, it

also has some significant differences summarized as following:

• Different from that in a traditional SoC, there is no global TAM in a NoC.

• Interconnects in a NoC consist of a large number of regular structured short wires. From this

aspect, they are analogous to the segmented buses or the interconnects in a FPGA.

• Interconnects in a NoC include interconnects between neighboring routers and interconnects

between each router and its local core. Each router in a core should have the same clock

frequency, however, embedded cores in a NoC may work in different clock domains. Therefore,

the clock frequency of an embedded core may be different from that of its local router, and

synchronization logics are required to be inserted between them. In this case, testing of

the interconnects between these core and router pairs also becomes more complex, since

synchronization issues must be taken into consideration. Special cares are required to test

the asynchronous interconnect fabric, e.g., insertion of scan-latches to break feedback loops

[66].

• In a traditional SoC, interconnect testing can make use of the existing boundary scan cells

and BIST logic circuits of the embedded cores. In a NoC, most interconnects are between
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neighboring routers. Since routers are simple logic blocks, adding boundary scan cells and

BIST logic to each router may cause too much area overhead, and thus may not be practical.

Due to these differences, although we can refer the fault models and some testing ideas in

traditional SoC interconnect testing, no existing method can be directly applied to NoC interconnect

testing.

Compared with plenty of works in embedded core testing, little research has been done

in interconnect testing in a NoC architecture. The work in [67] is so far the only one we have

found to address this problem. In this work, the authors stated that NoC interconnect testing

is analogous to FPGA interconnect testing, and the most important thing is to configure all the

inter-router links to several concatenated buses. The authors proposed a priority-based approach

to derive the minimum number of configurations for testing interconnects for any 2-D mesh NoC.

The approach achieves zero redundancy in testing interconnects and thus reduces test cost. By

using this approach, all inter-router links in a 2-D mesh NoC can be covered by two concatenated

buses C1 and C2 as shown in Figure 7.6, where C1 consists of C11 and C12, and C2 consists of C21

and C22.

Figure 7.6: Test configuration for interconnect test [67].

Although the developed test configuration is efficient, this work only addressed the seg-

mented property of the NoC interconnect without considering the complexity feature of the inter-

connect. Therefore, the testing problem was simplified too much. On the other hand, using the

proposed configuration, the test is essentially a sequential test, which takes long testing time and

does not take advantage of the parallel structure of NoC architectures. Further, the work is based

on the assumption that the routers are functionally correct. However, the testing of routers cannot
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be performed without the aid of interconnects functionally, unless we use BIST for each router

which is not practical.

B.4 Possible Solutions

Based on the previous discussions, there are two possible solutions for NoC interconnect

testing.

• Concurrent Distributed BIST

As described previously, the FIFO blocks in routers need to be tested using distributed BIST

method. A possible solution is to make use of these existing BIST structure and modify it

to generate high-quality test patterns for interconnect testing. Thus, interconnects in a NoC

can be self-tested and different part of interconnects can be tested concurrently.

• Pipelined-multicast test combined with router testing

If a BIST method for interconnect testing is not feasible, test patterns for interconnects have

to be transferred from the external test source. Since router testing needs to make use of

the interconnects, the other possible solution is to combine the testing of interconnects and

routers together. The test pattern application method can use the pipeline-multicast method

proposed before. After testing a router, the interconnects between this router and its direct

downstream neighbor are tested. Then, test patterns are transferred to the neighbors for

functional test, and so on.

NoC on-chip network testing is a complicated problem, and there are many implementation

issues to be considered to develop a practical and efficient solution. However, it is also a very

important problem to solve. Only with the solution of this problem, a complete NoC test strategy

can be developed.
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