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ABSTRACT 

Intelligent systems theory tries to study the most amazing feature of living 

creatures: intelligence. One active research area with many promising applications is 

autonomous navigation of unmanned vehicles which relies heavily on intelligent systems 

theory. The purpose of this dissertation is to apply an ambiguous concept in intelligent 

systems, called perception, in robot navigation. 

Several approaches have been used to model perception for robot navigation. A 

learning framework, equipped with a perception-based task control center, has been 

proposed. A statistical approach for uncertainty modeling has been investigated as well. 

In addition, a spatial knowledge model was used to model robot navigation. Finally, an 

optimization approach toward perception was used to model robot design and navigation.  

Several case studies of robot design will be presented. An unmanned ground 

vehicle, called the Bearcat Cub, was designed and developed for the Intelligent Ground 

Vehicle Competition (IGVC). This robot was used to demonstrate spatial knowledge 

modeling. In another design, a soil sampling survey robot was developed to measure the 

soil strength in remote areas. And finally, the design and development of a snow 

accumulation prevention robot will be presented.  This autonomous robot can prevent 

accumulation of snow in areas such as driveways and small parking lots. 

The implementation of unique hardware and software systems in several robotic 

systems, as well as promoting a multifaceted view of perception modeling, are significant 

contributions made by this dissertation. The proposed framework uses optimization 

approach; it has learning capability, and is able to handle uncertain situations that are 

common in robot navigation.  
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“If the doors of perception were cleansed every thing would appear to man as it is, 

infinite.” 

William Blake (1757, 1827) 
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Chapter 1 : Introduction 

 

 

  

 

“The most merciful thing in the world, I think, is the inability of the human mind to 

correlate all its contents.”  

H. P. Lovecraft (1890 - 1937) 

 

 

The potential application areas for autonomous navigation of mobile robots 

include automatic driving, guidance for the blind and disabled, exploration of dangerous 

environments, transporting objects in factory or office environments, collecting 

geographical information in unknown terrains, such as unmanned exploration of a new 

planetary surface, and many others 1.  

Intelligent robotics is an active area of research with many promising 

applications. The recent DARPA Grand Challenge, which involved autonomously 

driving for 132 miles, and the DARPA Urban Challenge are examples of such activities. 
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In fact, the US army spent more that 1 billion dollars on unmanned combat vehicles in 

2004 alone 2. 

Autonomous navigation in unknown environments is very difficult, and calls for 

sophisticated sensing strategies and control architectures 3. Most current methods have 

basically been realized by combining algorithms acquired by humans. The real challenge 

is realizing the capability of acquiring algorithms automatically, much like the human 

brain does. This is a very difficult challenge, but it is the key to true autonomy 4. 

Artificial intelligence, psychology, biology, neuroscience, linguistics, and many 

other fields try to gain insight into what is called human intelligence. This intelligence 

includes the ability to model the world, plan and predict events, learn, make decisions, as 

well as many other abilities. 

The difficulty of autonomous navigation comes from the unstructured, 

unpredictable, dynamic environment of robots and the current technological restraints in 

the field of artificial intelligence. Most research in this area is experimental in nature and 

the development of real products is rare. Real world conditions are often quite hostile to 

robotic systems. Things can move and change without warning; at the best only partial 

knowledge of the world is available, and any prior information may be incorrect, 

inaccurate, or obsolete 5.  

Making loops, backtracking, or visiting some areas more than once is common 

behavior for unmanned ground vehicles (UGVs) that lack the capacity for learning. When 

the robot visits a certain area several times, the information obtained can be used to 

improve the quality of navigation. However, in many real world applications it is not 

possible to have prior knowledge of the course and predict the dynamic environment. 
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One example is driving a car in a city. That is a place that human perception shows its 

extra ordinary capability. 

1.1 Problem definition 

Human and robot navigation have similarities and differences, but the basic 

navigation issues are the same. Therefore, general theoretical and analytical approaches 

dealing with navigation in both areas can be integrated, enabling both fields to benefit 

from each other. The difference is in how research in each area deals with the problem. In 

human navigation the main question is how a human processes information and what the 

mechanism is that enables humans and animals to navigate. However, robotics 

researchers are looking for techniques to implement navigational abilities in real 

applications, and whether or not it is biologically inspired is not an issue. 

These two approaches are complementary. Biological systems are proof that an 

efficient and practical navigation system is achievable. On the other hand, robotics 

research can provide a valuable tool to test biological hypotheses. It can isolate a specific 

problem and examine psychological and biological questions surrounding it.  

1.2 Study purpose 

The purpose of this research is to study different facets of human perception and 

how they could possibly be applied to robot navigation. Taking an industrial engineering 

approach, this research will try to model human perception from several disciplinary 

points of view.    

This research is a part of the studies aimed at human perception processing 6, 7. 

The purpose of these studies is to develop a model for computing these perceptions and 
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to implement a model for robot control that is influenced by human behavior. The goal is 

to enhance mobile robot technology by adding this perception-processing model to what 

is currently considered the state of the art, which mainly is based on converting the 

propositions to measurements and not computing perceptions directly. The proposed 

research tries to offer a complementary approach to these traditional methods. It also tries 

to explore similarities and differences in methods of navigation between humans and 

robots, and present a model for the perception-based navigation. 

1.3 Significance 

Intelligent mobile robotics is an active area of research with many promising 

applications. Any new development in this area could enhance the theory and application 

of mobile robots, intelligent systems and computer studies in artificial intelligence. In 

addition, the computational theory of perceptions is still in its infancy with many 

unanswered questions. This project could provide a better understanding of these two 

fields, and could explore the possibility and applicability of perception-based control in 

robotics.   

1.4 Objectives 

The research will be conducted in several steps. The objective of each step is as 

follows: 

• Defining the problem  

• Reviewing the state of the art in biologically inspired robotics 

• Evaluating perception-based reasoning models 

• Developing a test-bed robot and three robot case studies 
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• Developing a natural language based perception model 

• Developing an estimation based perception model 

• Developing a spatial knowledge based perception model 

1.5 Contribution to the current state of the art 

This research builds upon previous research activities conducted at the University 

of Cincinnati, Center for Robotics Research. It enhances the task control center of the 

creative learning framework with a perception-based module.  It also offers a unique 

multifaceted approach for perception modeling, and its application in robot navigation. It 

addition, it presents some novel designs for several robots, one of which has a pending 

patent.  

1.6 Outline of work 

This dissertation is organized into seven chapters. Chapter 1 defines the problem, 

the purpose of study, and its objectives. In Chapter 2, after a background introduction, 

biologically inspired robotics will be reviewed. Chapter 3 discusses several perception 

modeling methodologies and the application of natural language in human perception 

modeling. 

  Design and development of several practical test-bed robots will be presented in 

Chapter 4. The Bearcat Cub robot has been developed at the University of Cincinnati 

robotics lab, where the author has served as the team leader. A soil sampling survey 

robot, which was developed by Masoud Ghaffari, Peter Cao, and Ernie Hall, will also be 

introduced in this chapter. The snow accumulation prevention robot, patent pending, will 

be discussed in this section as well.  
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 Chapter 5 will offer several models for human perception and its application in 

robot navigation. A model based on natural language, an estimation-based model, and a 

spatial knowledge model, have been developed and will be discussed in this chapter. 

Chapter 6 will present a novel optimization approach for perception modeling and robot 

design. Chapter 7 summarizes the results and gives recommendations for future work.  
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Chapter 2 : Biologically Inspired Robot Navigation 

 

 

 

“A static hero is a public liability. Progress grows out of motion.” 

Richard Byrd (1888 – 1957) 

 

 

 

2.1 Background  

The classical AI methodology has two important assumptions: the ability to 

represent hierarchical structure by abstraction, and the use of “strong” knowledge that 

utilizes explicit representational assertions about the world 8. The assumption is that 

knowledge and knowledge representation are central to intelligence, and that robotics is 

not exempt from this. Perhaps these were the results of studying higher human-level 

intelligence and not lower life forms of creatures. Behavior-based robotics reacted against 

these traditions 5.  
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Behavior-based control shows potential for use in a robot-navigation environment 

since it does not need the building of an exact world model or a complex reasoning 

process 9. However, much effort should be made to solve problems like the formulation 

of behaviors and the efficient coordination of conflicts and competition among multiple 

behaviors. In order to overcome these deficiencies, some fuzzy-logic-based behavior 

control schemes have been proposed 10. 

Behavior-based control is an effective method for designing low-level primitives 

that can cope with real-world uncertainties, and the field of AI has developed effective 

tools for symbol manipulation and reasoning 11. Integration of these two could result a 

better understanding and modeling of human perception. 

The application of combined techniques- neural network, fuzzy logic, genetic 

algorithm, reinforcement learning, dynamic programming, and others- is becoming 

increasingly popular among various researchers. 

2.2 Review 

Pratihar et al. used a genetic-fuzzy approach for solving the motion planning 

problem of a mobile robot 12. They used genetic algorithms to tune the scaling factor of 

the state variables and rule sets of a fuzzy logic controller, which a robot uses to navigate 

among moving obstacles.  

Al-Khatib and Saade report a data-driven fuzzy approach for solving the motion 

planning problem of a mobile robot in the presence of moving obstacles. The approach 

consists of devising a general method for the derivation of input–output data to construct 

a fuzzy logic controller (FLC) off-line 13. 
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In another research Tunstel et al. presents an approach to hierarchical control 

design and synthesis for the case where the collection of subsystems is comprised of 

fuzzy logic controllers and fuzzy knowledge-based decision systems. The approach is 

used to implement hierarchical behavior-based controllers for autonomous navigation of 

one or more mobile robots 14. 

Seraji presented a concept called Fuzzy Traversability Index for field mobile 

robots operating on natural terrain. This index is expressed by linguistic variables 

represented by fuzzy sets that quantify the suitability of the terrain for traversal based on 

its geometrical and physical properties, such as slope, roughness, and hardness 15. Three 

simulation studies were presented to demonstrate the capability of the mobile robot. 

Fuzzy logic based approaches uses different types of behavior using fuzzy 

reasoning rather than simply inhibiting some types of behavior according to an assigned 

priority. As a result, unstable oscillations between different types of behavior can be 

avoided 16. 

Michaud et al. proposed an architectural methodology that is based on the idea of 

intentional configuration of behaviors. They use three levels of behavior, responsible for 

driving actions from sensory information, recommendation, which recommends different 

behaviors, and motivation, which is used to monitor the agent’s goals and to coordinate 

the proper working with other modules 17. 

Skubic et al. developed two modes of human-robot communication that utilized 

spatial relationships. First, using sonar sensors on a mobile robot, a model of the 

environment was built, and a spatial description of that environment was generated, 

providing linguistic communication from the robot to the user 18, 19. Second, a hand-
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drawn map was sketched on a PDA, as a means of communicating a navigation task to a 

robot 20. The sketch, which represented an approximate map, was analyzed using spatial 

reasoning, and the navigation task was extracted as a sequence of spatial navigation 

states. 

2.3 Humanoid robots 

For thousands of years, humans have looked to nature to find solutions for their 

problems. This trend has affected the robotics field as well as the fields of artificial 

intelligence, manufacturing, biomechanics, vision and many others. In the robotics field, 

there are many unsolved problems which have been solved in nature. These problems 

vary from basic motion control to high level intelligence problems. Insect motions, a 

human’s ability to walk, drive, explore an unstructured environment, and recognize 

objects are examples of these problems. Although robotics researchers have looked to 

nature to find solutions to these problems, what is missing is human-like computational 

ability. The presumption is that if we want to create a human-like robot, we should 

implement systems which perceive and operate similar to a human’s 21. 

Scientists, predictors, and entertainers have similar dreams about the future of 

robots; however, they may choose different paths to realize them. What is fascinating is 

the social aspect of this technology. This transcending fascination with robotics is not 

necessarily about comfort, physical needs, or economical advantages. Humans are 

looking for companionship as well, which is something they have always traditionally 

looked at nature to find. This chapter will describe a survey of biologically inspired and 

humanoid robotics. It will cover the social aspect of robotics as well as some state of the 



 19

art products. In addition, methodological challenges of humanoid robots will be 

discussed. 

The term robot was coined in a 1923 play by the Karel Capek, entitled RUR 

(Rossum’s Universal Robots), as a derivative of the Czech robota which means "forced 

labor" 22.  The word robotics was coined by the renowned science fiction writer, Isacc 

Asimov, in the 1942 story, “Runabout”23. Science fiction is one of the areas which have 

stimulated creative activity in robotics. 

The laws of robotics are an attempt to counteract some fears by building 

safeguards into such machines.  Isaac Asimov is generally credited with creating these 

laws, and writing a series of short stories (collected in I, Robot) about the application of 

the laws. Nevertheless, Asimov published two robot stories--"Robbie" and "Reason"--

which introduced robots with brains, and alluded to restrictions on robot behavior to 

counter the Frankenstein motif started by Mary Shelly. 

The three original laws were first introduced in toto in "Runabout" (1942). These 

laws are so ingrained in the conventions of science fiction that most authors routinely 

refer to the laws or explain why they are not in effect. The Three [Original] Laws of 

Robotics: 

First law: A robot may not injure a human being, or, through inaction, allow a human 

being to come to harm.  

Second law: A robot must obey the orders given it by human beings except where such 

orders conflict with the first law.  

Third law: A robot must protect its existence as long as such protection does not conflict 

with the first or second law.  
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Asimov added a fourth, or Zeroth, Law in Robots and Empire (1985): 

Zeroth law: A robot may not injure humanity or, through inaction, allow humanity to 

come to harm.  

Today, humanoid robotics labs across the globe are working on creating a new set 

of robots that take us one step closer to the androids of science fiction. Building a 

humanlike robot is a difficult engineering task that requires a combination of mechanical 

engineering, electrical engineering, computer architecture, real-time control, and software 

engineering 22. Human-like service robots, which can work interactively with humans in 

the same environment by using their natural communication means, is one of the biggest 

challenges for future intelligent machines 24. 

The most common goal of robotics researchers is to understand how to design and 

build machines able to perform specific tasks in the production of final products or 

services. In personal robotics, the researcher is directly developing the final product; thus, 

new factors typical of the product engineering design processes (such as task analysis, 

marketing, industrial design, reliability, and safety) must be included in the design phase. 

Whereas the performance of industrial robots can be measured by means of objective 

parameters, the success of a personal robot should be evaluated by applying subjective, 

user-based criteria 25. 

Biologically inspired designs are based on theories drawn from the natural and 

social sciences, including anthropology, cognitive science, developmental psychology, 

ethology, sociology, structure of interaction, and the theory of mind. Generally speaking, 

these theories are used to guide the design of robot cognitive, behavioral, motivational 

(drives and emotions), motor and perceptual systems. Two primary arguments are made 
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for drawing inspiration from biological systems. First, numerous researchers contend that 

nature is the best model for “life-like” activity. The hypothesis is that in order for a robot 

to be understandable by humans, it must have a naturalistic embodiment, it must interact 

with its environment in the same way living creatures do, and it must perceive the same 

things that humans find to be salient and relevant 26. The second rationale for biological 

inspiration is that it allows us to directly examine, test and refine those scientific theories 

upon which the design is based 22. This is particularly true with humanoid robots 27. 

Adams et al. hope not only to produce robots that are inspired by biological 

capabilities, but also to help shape and refine our understanding of those capabilities. By 

bringing this theory to bear on a real system, the proposed hypotheses are tested in the 

real world and can be more easily judged on their content and coverage 22. 

2.4 Social complexity and evolution theory 

Humans and animals have faced similar physical challenges during evolution. If 

our needs were only physical in nature and concerned only with survival, we would not 

need the brain and intelligence that we already have. It seems social complexity was the 

driving force behind the development of the comparatively large human brain in relation 

to that of other mammals. Brain size alone is not the key difference though, since 

elephants have much larger brains than humans.  However, the use of perception and 

natural language must be a major factor in human intelligence. This shows the magnitude 

of the problem that designers of humanoid robots are facing. While our current 

technology is not comparable, even with a low level creature’s abilities, humanoid 

robotics is facing the social complexity of a human, in addition to the challenges inherent 
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in replicating its physical abilities. Some companies already claim that their products are 

true companions and that they should be treated similar to a pet.  

2.4.1 Social robots 

Many species of mammals (including humans, birds, and other animals) often 

form individualized societies. Although individuals may live in groups, they form 

relationships and social networks, they create alliances, and they often adhere to societal 

norms and conventions 28. 

Dautenhahn and Billard proposed the following definition: “Social robots are 

embodied agents that are part of a heterogeneous group: a society of robots or humans. 

They are able to recognize each other and engage in social interactions, they possess 

histories (perceive and interpret the world in terms of their own experience), and they 

explicitly communicate with and learn from each other.”29. 

In particular, social learning and imitation, gesture and natural language 

communication, emotion, and recognition of interaction partners are all important factors. 

Moreover, most research in this area has focused on the application of “benign” social 

behavior. Thus, social robots are usually designed as assistants, companions, or pets, in 

addition to the more traditional role of servants 27.  

“Socially interactive robots” is a term that has been used to describe robots for 

which social interaction plays a key role. It is important to distinguish these robots from 

other robots that involve “conventional” human–robot interaction, such as those used in 

teleoperation scenarios. The focus is on peer-to-peer human–robot interaction. 

Specifically, robots that exhibit the following “human social” characteristics: 
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• Express and/or perceive emotions; 

• Communicate with high-level dialogue; 

• Learn/recognize models of other agents; 

• Establish/maintain social relationships; 

• Use natural cues (gaze, gestures, etc.); 

• Exhibit distinctive personality and character; 

• May learn/develop social competencies 27. 

Socially interactive robots can be used for a variety of purposes: as research 

platforms, as toys, as educational tools, or as therapeutic aids. The common, underlying 

assumption is that humans prefer to interact with machines in the same way that they 

interact with other people 27.  

2.4.2 Some biologically inspired robots 

Cog, Figure (2-1), began as an upper torso, capable of 14 degrees-of-freedom, 

with one arm and a rudimentary visual system. In this first incarnation, multimodal 

behavior systems, such as reaching for a visual target, were implemented. Currently, Cog 

features two six degree-of-freedom arms, a seven degree-of-freedom head, three torso 

joints, and a much richer array of sensors. Each eye has one camera with a narrow field-

of-view for high resolution vision and one with a wide field-of-view for peripheral vision, 

giving the robot a binocular, variable-resolution view of its environment.  
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Figure 2-1: MIT humanoid robot, Cog 

  

Following the success of Sony Corporation’s ‘AIBO,’ robot cats and dogs are 

multiplying rapidly. AIBO means ‘companion’ in Japanese, and is also an acronym for 

Artificial Intelligence roBOt.  

“Robot pets” employing sophisticated artificial intelligence and animatronic 

technologies are now being marketed as toys and companions by a number of large 

consumer electronics corporations 30. 

A legged robot application developed by MIT Leg Laboratory is shown in Figure 

2-2. Troody is an 11-pound walking birdlike robotic dinosaur which is being marketed to 

natural history museums for educational and entertainment purposes. 
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Figure 2-2: Troody the dinosaur robot of MIT 

 
Figure 2-3: AIBO from Sony 

The "Sprawl" family of hand-sized hexapedal robots are prototypes designed to 

test ideas about locomotion dynamics, leg design and leg arrangement and to identify 

areas that can be improved by Shape Deposition Manufacturing. Sprawlita is a 

dynamically-stable running hexapod based on functional principles from biomechanical 

studies of the cockroach. The prototype was fabricated using Shape Deposition 

Manufacturing and is capable of speeds of approximately 3 body-lengths per second 31.  

Honda engineers created ASIMO with 26 Degrees of Freedom that help it walk 

and perform tasks much like a human. One degree of freedom is the ability to move right 

and left or up and down. At birth, the human body has about 350 bones, but by the time a 

human reaches adulthood, some of our bones have fused together to give us a total of 206 

bones in our body.  

If each of these bones is considered as a link that moves with a single degree of 

freedom, then over 200 degrees of freedom are needed to emulate human motion. These 

degrees of freedom act much like human joints for optimum movement and flexibility. 

According to Honda, ASIMO stands for "Advanced Step in Innovative Mobility." It 

probably also derived from the late Isaac Asimov’s name, who authored "I, Robot" in 

1950 and announced the three laws of robotics.  
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Figure 2-4: Sprawlita from Stanford's biomimetic 
robotics lab 

 

Figure 2-5: ASIMO from Honda 

The Hasbro / Wow-wee B.I.O. Bugs are a series of battery-powered autonomous / 

remote-controlled robot bugs. They are substantial beasts, measuring 25cm x 29cm (9.8" 

x 11.4") excluding sensors and weighing 0.492kg (1.08lbs) in the case of the Predator 

bug. The name B.I.O.-Bugs stands for biomechanical integrated organisms. The basic 

capabilities of these 2 motor walkers is considerable: they can traverse surfaces as deep 

as shag carpeting (on full batteries) with little problem. They can perform a fairly sharp 

turn, within 1.5x their body length, which is a fairly impressive feat using only 2 motors. 

They broadcast and receive IR data via the front / rear ports, and can recognize friend, 

foe, and IR controller input. An additional transmitter is located on the rear of the robot, 

leaving a blind spot only when the remote is aimed at the mid-riff from an angle of about 

110 degrees from the angle of travel. 

According to the NASA website, Robonaut is a humanoid robot designed by the 

Robot Systems Technology Branch at NASA's Johnson Space Center in a collaborative 

effort with DARPA. The Robonaut project seeks to develop and demonstrate a robotic 

system that can function as an EVA (extra-vehicular activity) astronaut equivalent. 

Robonaut jumps generations ahead by eliminating the robotic scars (e.g., special robotic 
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grapples and targets) and specialized robotic tools of traditional on-orbit robotics. 

However, it still keeps the human operator in the control loop through its tele-presence 

control system. Robonaut is designed to be used for "EVA" tasks, i.e., those which were 

not specifically designed for robots. 

             

 
Figure 2-6: BIO bug from Wow-wee toy maker 

 

 
Figure 2-7: Robonaut, a humanoid robot from 

NASA 
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Chapter 3 : Perception-based Reasoning 

 

 

 

“It is the nature of all greatness not to be exact.”  

Edmund Burke (1729 - 1797) 

 

“In this world nothing can be said to be certain, except death and taxes.” 

Benjamin Franklin (1706 - 1790) 

 

 

 

3.1 Soft computing 

Traditional (hard) computing methods do not provide sufficient capabilities to 

develop and implement intelligent systems for many real world problems. Soft 

Computing is tolerant of imprecision, uncertainty, and partial truth, and it has provided 

important practical tools for constructing intelligent systems and dealing with human 

perception 32.  

Zadeh states that; “by design, soft computing is pluralistic in nature in the sense 

that it is a coalition of methodologies which are drawn together be a quest for 

accommodation with pervasive imprecision of the real world. At this juncture, the 
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principal members of the coalition are fuzzy logic, neuro-computing, evolutionary 

computing, probabilistic computing, chaotic computing and machine learning. What is 

important is that members of the coalition are, for the most part, complementary rather 

than competitive. Furthermore, they are synergic in the sense that, in general, better 

results can be obtained when they are used in combination rather than in standalone 

mode” 33. Fuzzy logic is one of the fundamental soft computing methods. 

3.2 Basics of fuzzy logic 

Fuzzy logic intends to represent, and reason with, knowledge that is in linguistic 

or verbal form. The term “fuzzy logic” has been used since the 1960’s when L. A. Zadeh 

published his famous paper on fuzzy set theory 34. The concept was later expanded to the 

theory of approximate reasoning and the theory of linguistic logic. The later is a logic 

whose true values are expressions of natural language (for example, very young, young, 

middle age, old). The former is the most often used 35. A detailed and classic description 

of the basic fuzzy logic ideas can be found in Zadeh’s papers 36-39.  

Fuzzy logic deals with perceptions, and vagueness is an important attribute of 

perception. For example 40 within the range of [0m, 40m] different operators want the 

robot to travel a large distance. The challenge is determining how different people 

perceive the concept of large and how they agree or disagree about the largeness of a 

given distance. Three possible answers are as follows:  

The first approach is to decide a cutoff distance d. For x<d consider disagree and 

for x>d consider agree with the largeness of distance. The graph of agree-disagree is 

distributed uniformly over the left side of dx = and also over its right side.    
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In the second approach the x interval may be divided into three parts. The first 

part represents the area that person is in disagreement about largeness and the last part is 

the area that person is in agreement on the largeness of x. In the middle area, the person is 

uncertain about largeness of x and makes no judgment.  

The third person may use what we call the basic idea of fuzzy logic. This person 

uses a scale for the degree that he/she is in agreement with the largeness of distance. The 

larger the distance the more in agreement this person is. This depends entirely on the case 

and sample, as well as on the person’s perception. In this case a continuous scale will be 

used to represent the degree of distance largeness for all x values.  

These approaches show three different ways of representing one’s knowledge 

about the largeness of distance. The fact that there are three different approaches implies 

that the concept of large is indeed a vague concept, meaning that the set of objects it 

implies have no sharp boundaries 41.  

The main motivation for the development of fuzzy logic was to deal with the 

concept of vagueness. It offers a conceptual framework to deal with this concept and to 

manipulate such variables.  Uncertainty and vagueness are two concepts that sometimes 

are mistaken for each other. The possibility theory addresses uncertainty and not 

vagueness. Uncertainty comes from the lack of knowledge for the occurrence of an event. 

When the event is complete and the results are known, there is no uncertainty. 

Uncertainty exists when an experiment is to proceed and the results are unknown 35.  

Randomness is a specific form of uncertainty. It started as a part of the probability 

theory by Jakob Bernoulli (1654-1705). The main subject of study was gambling and 

games. It is used when the subject of study has numerous parameters which make it 
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almost impossible to model with deterministic methods. Quantum mechanics shows that 

randomness has deep roots in nature. In a simple form “probability can be thought of as a 

numerical measure of the likelihood that a particular event will occur” 35. It generally 

uses a [0,1] scale where values close to 1 represent a high likelihood of occurrence and 

values close to 0 show the opposite. An example of vagueness was discussed earlier.  

3.3 Human perception 

Perception is the name given for the process of the organization, interpretation 

and explanation of the data that reaches the brain from the sense organs. The data 

reaching the sense organs has no meaning or importance without perception. The 

information from the senses has to be perceived, in other words explained. We can only 

decide what kind of a reaction we are going to perform when are able to perceive, or 

decipher, the raw data that is gathered by our senses 42. 

Perception is a vital part of human reasoning. Humans do a variety of physical 

and mental tasks without any measurements or computations. Some examples of these 

activities are driving in traffic, parking a car, cooking a meal, playing an instrument and 

summarizing a story. In fact, our ability to perform these tasks is based on the brain’s 

ability to manipulate perceptions, perceptions of time, distance, force, direction, speed, 

shape, color, likelihood, intent, truth and other attributes of physical and mental 

properties 43. 

The relationship between perception and action are often discussed in the context 

of ecological psychology 44. The new trend in fuzzy logic focuses on the perception 

processing and preliminary results are emerging 35, 45, 46.  
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Uncertainty representation is an important point to consider. Initial works mainly 

focused on probabilistic methods in which Bayesian probabilities were used to represent 

partial beliefs 47, 48. These approaches can not distinguish between lack of information 

and uncertain information, and a probability assignment to a proposition automatically 

implies an assignment also to its negation 49. Dempster-Shafer theory of evidential 

reasoning 50 and fuzzy logic have been used as an alternative 51, 47. 

There is an ample amount of available literature on perception, including 

thousands of papers and books in the areas of psychology, linguistics, philosophy, brain 

science, and many others 52. And yet, what is not in existence is a theory in which 

perceptions are treated as objects of computation. Such a theory is needed to make it 

possible to conceive, design, and construct systems which have a much higher potential 

for intelligence than those we have today 43.    

Perceptions are fuzzy in the sense that perceived values of variables are not 

sharply defined, and perceptions are also granular in the sense that perceived values of 

variables are grouped into granules, with each granule being a clump of points drawn 

together by difference, similarity, proximity or functionality.  

Therefore, the fuzzy logic theory can be used as a departing point for computing 

propositions and perception-based robot control. This will be done through the use of 

what is called constraint-centered semantics of natural languages (CSNL) 53, 43, 54.  

The principal ideas and assumptions which underlie CSNL can be summarized as 

follows: 

• Perceptions are described by propositions drawn from a natural language. 

• A proposition, p, may be viewed as an answer to a question. 
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• A proposition is a carrier of information. 

• The meaning of a proposition, p, is represented as a generalized constraint which 

defines the information conveyed by p. 

• Meaning-representation is viewed as translation from a language into the 

generalized constraint language 

More needs to be done to develop a computational theory of perceptions applicable 

in robot control. 

3.4 Natural language 

The first successful operation of a stored-program electronic computer took place, 

at the University of Manchester, in June 1948. Within weeks mathematician Alan Turing 

was drawing up a list of potential uses for this new device: the second and third items 

were ‘learning of languages’ and ‘translation of languages’. Since the 1960’s computers 

have been available in universities, text analysis being the subject of interest for many 

researchers. In the 1970’s, there were great expectations. For example, it was expected to 

have an automatic translations system very soon but in reality Natural Language 

Processing (NLP) showed to be more complex. 

After what can be called the Chomsky’s decade in the eighties there is a move 

from a general and domain-independent to a more domain-oriented approach to NLP 55. 

As a consequence, instead of pursuing a universal solution for NLP, there was a shift to 

domain-dependent solutions where the specificity of the semantics of the domain played 

a major rule.  
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Language is an important way to convey human perception. Some other 

imaginable ways to express perception could be art, music, vision, touching, smelling, 

wealth, power etc.   

Natural language can express rules and sequences of commands in very concise 

way. Natural language uses symbols and syntactic rules and is well suited to interact with 

robot knowledge represented at the symbolic level. It has been shown that learning in 

robots is much more effective if it operates at the symbolic level 11, 56. 

ROBOT (Harris, 1977) and SHRDLU (Winograd, 1972) are among the first 

attempts for natural language communication with robots 57-59. However, both of them are 

simulated robots and not real ones. SHRDLU allows the user to command a robot that 

moves in a world made of blocks. Selfridge and Vannoy (1986) present a natural 

language interface to an assembly robot which allows the user to talk with the system in 

order to recognize the shapes of objects and put them together to make a more complex 

component. The knowledge base consists of a set of if-then rules 60. 

Some natural language interfaces include both written and spoken forms of 

natural language. The users of SAM (Brwon et al., 1992) can use a telephone or a 

keyboard to command the robot. The robot is manipulator arm with six axes and a grip. 

The user can introduce a description of the objects. This description will later be used to 

command the robot to perform actions over them 57, 61. 

Most of these robots can run a very specific and limited plan. This is a common 

feature in the majority of systems designed for natural language communication with 

robots 57.  
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The difficulty of talking to robots comes from both side of the communication 

channel. The first problem is that it is human dependent. Different people use natural 

language in variety of ways and sometimes it is vague. The second problem is the 

limitations of robots in interact with their environments. This depends on quality of the 

perception system. Limitation of this system should also be taken into consideration at 

the natural language interface design stage. The discrepancy between the human 

perception system and the perception of robot is one of the foreseeable sources of 

communication problems 62.  

3.4.1 Applications of natural language control 

The problem of speaking to a machine had indeed been the focus of speculations 

for a long time before modern technology made it available. However, the style of 

communication might be different than daily conversation among human. The hypothesis 

that communication with computers may eventually create a new, precise language does 

not seem to be surprising 62. 

In practical products application of natural language perception-based control 

might be implemented differently. One application might be object identification. Range 

sensors such as laser, ultrasonic, and stereovision, the most commonly used sensors in 

robot navigation, only provide information about the existence of objects in some given 

positions of space. Many applications require identifying the type of objects that have 

been detected to make the appropriate decision by robot, considering the fact the object 

identification problem has not been solved for many real world situations 63.  

For example an unmanned combat vehicle may face a variety of environments. If 

the object recognition algorithm tries to match the description of the detected object with 
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all possible objects, the search would be huge and probably unpractical. But, if a user 

describes the more probable objects that might be found in a certain mission, object 

identification would be much easier.  

Natural language also can be used for industrial robot programming especially 

when users are inexperienced and don’t know about computer programming. It can 

replace the current teach pending modules which still use a keyboard interface. Another 

potential application of natural language perception-based control is in Ergonomics. 

Ergonomics studies the human-machine interaction and tries to find a more user 

friendly interface for man machine communication. Human made systems are getting 

more complex and sophisticated everyday. At the same time human operators have to 

interact to and control these systems. They get information from the system status and 

they perform proper actions. It is possible to reduce complexity of interaction by 

designing automated systems and by designing an adequate interface between the 

operator and the system. Design of a friendly interface which decrease complexity of 

interaction and allow the operators to act in a simple and quick way in every kind of 

situation is important 57.  

Natural language interfaces can be used in a variety of applications and it could 

help operators to manipulate the system by entering commands in their own language. It 

can be of great interest as a tool to simplify the work of control center and other machine 

operators 57. This is another potential application area for the proposed research.  

Probably it is not unrealistic to predict a time that design software packages like 

AutoCAD are able to design modules by recognizing the verbal description of system 

from the designer. Combination of such a system with the traditional interfaces could 
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change the human design’s ability tremendously. Software industry already is moving in 

that direction. Now, there are voice recognition word processors and in many packages 

menu commands can be run by voice.      

3.4.2 Methodology 

To extract the meaning of a text or speech there are five fundamental steps: 

orthographic, semantic, statistical, syntactic, and usage analysis 64.  

Orthographic Analysis: In this step the units of language, words, will be recognized. In 

English characters like spaces and tabs separate the words and orthographic analysis is 

easier than those languages without a clear word boundary. 

Semantic Analysis: Different words can represent similar meanings. The goal of this step 

is to relate all those words to a same meaning. Some techniques like automatic suffix 

removal or using a domain-specific thesaurus can be applied for semantic analysis. A 

significant work is required in extracting from the semantic representation of the user’s 

speech to the corresponding robot-executable procedures 11. 

Statistical Analysis: The analysis of frequency of word usage is one of the most common 

methods in NLP 65. Counting the number of occurrence of a word or words with co-

occurrence is an example of statistical analysis. 

Syntactic Analysis: Part-of-Speech analysis, for example, can help to disambiguate word 

sense, and syntactically identified phrases can provide a basis for further statistical 

analysis.  

Usage Analysis: The way in which a document has been used can provide valuable 

information. For example if an article is about Neural Network and it is published in a 
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manufacturing journal it would be reasonable to infer that the article talks about 

application of NN in manufacturing.  

Natural language processing is a complex task. Interactions of the mentioned 

analysis present a challenging problem, much higher than the scope and objectives of this 

project. Several resources explain the complexity of this problem 66-69. 
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Chapter 4 : Robot Design 

 

  

 
 
 
“I've been trying for some time to develop a lifestyle that doesn't require my presence.”  

Gary Trudeau (1948 - )  

 

 

 

 

 

The Bearcat Cub is an intelligent, autonomous ground vehicle that provides a test-

bed system for conducting research on mobile vehicles, sensor systems and intelligent 

control. The Bearcat Cub was designed for the Intelligent Ground Vehicle Competition 

(IGVC) and has evolved through the past few years with contributions from all members 

of the University of Cincinnati Robotics Team 70, 71, where the author has been the team 

leader. The following is an overview of the design.  
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4.1 Robot frame  

The frame is made of 80/20 aluminum extrusions in order to have a light-weight 

structure without compromising strength. The junctions are made using small joining 

strips at the ends or by utilizing corner brackets which sit inside the joints. The advantage 

of using this frame concept is that it can be easily reshaped if new components are to be 

added. Stress and weight calculations for the joints were carried out using a safety factor 

of 125%. A drawing of the basic structure is shown in Figure 4-1. 

  

Figure 4-1: Basic robot structure 

 

4.2 Wheels, brakes, motor and gears  

The Cub’s mechanical system utilizes two types of wheels: two main drive wheels 

and a dual rear castor wheel. The main drive wheels are 19”-diameter enhanced traction 

wheels designed by Michelin for the Segway Human Transporter. The rear castor wheel 

helps improve the stability of the robot during turns such as those with a zero turning 

radius. This 8”, 90 series, dual castor wheel is from Borne & Co.  Since the drive wheel 

size is 19” and the maximum speed of the robot is 5 miles/hour, a frictional coefficient of 
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0.125 and a gearbox efficiency of 70% have been used to calculate the required gear 

ratio.  A gearbox with a gear ratio of 25:1 was selected and obtained from Segway. The 

required motor power has been found to be 1.355 hp per motor. Two Pacific Scientific 

PMA43R-00112-00 2-hp brushless servo motors have been selected for providing power. 

The gearbox and motors have been selected based on the calculated values. The robot’s 

power system can utilize a maximum of 2 Honda EU-2000i super-quiet generator sets. 

However, a single generator set has proven to provide 4 ½ hours of continuous power.  

The advantage of having a generator set in place of batteries is that there is less down-

time after losing power, since refueling the generator set is much quicker than recharging 

a battery.  

Mechanical brakes have been designed statically and kinematically in NX 3.0. 

The brakes are fail-safe in nature: when power is cut from electromagnetic magnets, 

multiple springs provide nearly 80 pounds of force to the drive wheels.  Dynamics 

calculations and tests have shown that this ensures a distance of 3 feet from top speed to 

full stop on level ground, in a dry environment. 

4.3 Electrical and electronic systems  

The electrical systems of the Bearcat Cub consists of a motion controller, 2 

amplifiers, 2 DC brushless motors, 2 digital cameras, ISCAN vision processing hardware, 

Bumblebee stereo vision camera, a laser scanner, GPS unit, digital compass and an 

emergency stop.  All power is provided by a Honda GenSet and/or marine battery.  This 

allows the Bearcat Cub to be outfitted with any set of sensors very easily since there is no 

need for the user to customize any electronics.  The system acts like a hardware 
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equivalent of software plug-and-play.  Figure 4-2 below shows the general electronics 

layout. 

 

Figure 4-2: Bearcat Cub block diagram 

4.4 Emergency E-stop 

Safety is of primary importance on the Bearcat Cub.  System operation can be 

halted in 3 separate ways.  A Futaba remote control can be used to cut power from all 

systems via an FM signal capable of transmitting from 65 feet away.  Second a manual, 

large red laboratory standard, emergency power kill switch is located on the back of the 

Bearcat Cub in case the remote should fail.  Also of note the emergency stop is kept from 

tripping via an active high signal which ensures that, if ever a case arose when power was 

not delivered to the emergency stop, the system would automatically stop.  Finally an 

abort command can be sent via the ‘A’ key on our wireless joystick controller.  This kills 

the current process in software allowing a user to check all systems and determine what 

may have caused a problem without losing system data.  Also, the E-Stop is designed 

with redundant systems incase vibration etc compromises electrical connections. 
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4.5 DMC motion controller 

The Galil DMC 2130 motion control board is the motion controller used for the 

Bearcat Cub and it is controlled through commands sent via an Ethernet connection from 

a laptop. Copley amplifiers deliver power to the motors after amplifying the signals they 

receive from the motion controller. Steering is achieved by applying differential speeds at 

the right and left wheels. The vision system used for obstacle avoidance sends data to the 

computer which is processed by the software and then used to generate commands to the 

motion controller to change the differential speeds of the two motors. The Galil motion 

controller was chosen because it is web based, has PID and Bode plot tuning software, 

and is compact and enclosed in a durable package. The controller can accommodate up to 

4 axis formats and can control stepper or servo motors on any combination of axes. The 

Bearcat Cub has the ability to turn about its drive axis effectively performing a Zero 

Turning Radius (ZTR) pirouette.  The block diagram of the system is shown in Figure 4-

3. 

 

Figure 4-3: Motion control system 
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4.6 Sensor systems 

4.6.1 Laser Measurement System 

The Sick LMS 200 scans a 2-dimensional plane of 180 degrees at ½ degree 

increments and returns obstacle distance measurements for up to 8.191 meters based on 

laser time of flight.  The laser scanner has the capability to scan at a variety of angular 

ranges and resolutions.  The range and resolution of the laser scanner can be changed 

easily since the system is designed to deal with variable sensory data input. 

4.6.2 Vision system 

Two video cameras, the right and left cameras, provide the images that are used 

by the line detection system. The cameras used by the Cub are Sony handy cams.  Each 

camera has its own LCD monitor.  The images from the two cameras are fed into a digital 

video switch using standard Audio-Video cables, and the video switch outputs only one 

of them at a time.  The output is toggled between the right and left cameras based on an 

input bit from the Galil motion controller which is set and cleared via a command from 

software. The switch allows the ability to use the output from the other camera if the first 

camera loses sight of the line. An ISCAN RK447-BMP external image tracker is used 

which computes the center of the brightest area within a region of the image and returns 

the image coordinate of the center point at a 30 frame per second rate. Two such points in 

the image are found, and the corresponding real-world points are computed in software 

via a linear transformation utilizing camera calibration information. The line detection 

system then receives the real-world points and uses them to follow the line. 
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Figure 4-4: The vision processor locating the centroid of a bright region 

4.6.3 Global positioning system (GPS) 

A commercially available GPS system has been used for the Bearcat Cub. The 

main criteria for selection are Wide Area Augmentation System (WAAS) capability and 

embedded navigation features. The Garmin 76 has these requirements and has been 

selected for implementation. The GPS unit tracks the NAVSTAR GPS constellation of 

satellites. The signals are received by an antenna and are tracked with 12 parallel 

channels of L1. C/A code is then down converted to an IF frequency and digitally 

processed to obtain a full navigation solution of position, velocity, time and heading. The 

solution is then sent over the serial link via the 9-pin RS 232 connector.  The unit 

communicates with the laptop in NMEA format.  Garmin’s computations are utilized as 

much as possible to alleviate Pentium computations. 
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4.7 Servo motors 

The Bearcat Cub uses DC brushless servo motors PMA43R-00112-00 provided 

by Pacific Scientific. Brushless motors are small and powerful and efficient for servo 

controls. The servo feedback is provided by encoders mounted on the motor shaft and is 

used to compute an error signal to the controller. The compensated signal is sent to the 

motor to turn the robot. The difference between the actual position and position reached 

is the error signal.  This signal is modified by a PID digital filter compensator that is 

designed for stability and accuracy. Thus, the servo motors are designed to achieving 

minimal error and maximum accuracy.  Having the ability to set PID parameters directly 

on the controller also allows the Bearcat Cub the flexibility of different controller 

responses for different environments.  For stepper motors, no encoder is present as it 

sends signals only in steps. 

4.8 Computer system 

A Dell Latitude D800 laptop is the central processing unit of the Bearcat Cub.  It 

processes data from the laser scanner, GPS, motion control system, digital compass and 

image processing system. The software has been executed on a Dell laptop running 

Windows XP. Software has been written in both C++ and C# taking advantage of the 

.NET Framework where applicable.  A user friendly GUI was developed to track the 

Bearcat Cub’s movements and positions. A series of initialization files hold all 

calibration values and initial values for the system parameters.  
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4.9 Obstacle detection and avoidance 

Obstacles are detected by scanning the data returned from the laser scanner and 

checking for values less than a user defined maximum obstacle distance.  Sensor fusion 

plays a role, laser data can be verified by data gathered using PointGray’s Bumblebee 

hardware and our in-house vision algorithms.  The distance at which the user wishes to 

detect obstacles is defined in a user GUI.  Each set of data returned by the laser scanner is 

scanned for values less than the maximum obstacle distance, if a smaller value is found 

then the software continues to check values until a value is found that is greater than the 

maximum obstacle distance or the end of the data is reached.  Any section of data that is 

found to be less than the maximum obstacle distance is used to create a data structure 

representing an obstacle that is described by a two angle and distance pairs for the left 

and right edges. 

 

Figure 4-5: Graphical output for the Navigation Challenge 70 
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The obstacle avoidance system then widens the edges for each obstacle by half 

the robot’s width plus a specified safe distance, thereby finding the minimum angle the 

robot must steer to safely avoid hitting the obstacle.  The system then throws out the safe 

angles that overlap, grouping overlapping obstacle regions together.  The safe angles that 

bound the obstacle regions are then compared, and the angle which causes the robot to 

deviate the least from the desired bearing (i.e. the bearing to waypoint in the Navigation 

Challenge) is selected.  Figure 4-6 shows this process in action, with the blue dot 

representing the next waypoint. 

 

Figure 4-6: Selecting the proper angle to steer through a cluttered environment 70 

 

4.10 Line following 

For the line following competition, the Bearcat Cub has been designed to 

negotiate an outdoor obstacle course in the minimum time while staying within a 5 mph 

speed limit and avoiding obstacles. The line following system receives as input a line 

from the line detection system and a series of obstacles detected by the obstacle 

detections system.  The line is first abstracted as a wall obstacle, and then added to the 

list of other obstacles.  The desired angle to steer the robot through the course is then 

calculated using the algorithm described in the previous section.  Figure 4-7 shows the 
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graphical output from the line following system.  On the left, the line (in red) with respect 

to the robot (in blue) is shown as detected by the line detection system.  The right graphic 

depicts the region to avoid for the line obstacle in yellow, with the regions for the rest of 

the obstacles in red. 

  

 

Figure 4-7: Graphical User Interface for Autonomous Challenge 70 

 

4.11 Waypoint navigation 

Global Positioning System (GPS) technology provides the basis for waypoint 

navigation in the Bearcat Cub.  The classical closed feedback control loop was utilized in 

the modeling of the navigational challenge problem with an input command, feedback 

signal, error signal, and output transfer function characteristics.  The target waypoint 

destinations are specified as the input command and the feedback signal is provided by 
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the GPS unit based on its position with reference to satellite data.  Using the current 

position co-ordinates and velocity the GPS unit provides bearing, tracking, signal validity 

and range from the target waypoint to determine the error. The bearing to the waypoint is 

passed to the obstacle avoidance system, which then determines the best path to the target 

while avoiding any nearby obstacles and returns the safe bearing.  The Waypoint 

Navigation sends the new bearing to the motion control system, which translates the 

commands into motor control voltages that steer and propel (right, left or stop) the robot 

on the course.  Once the target range has been reduced to the required tolerance, the robot 

has reached its target destination waypoint. The process continues for all the waypoints in 

the input file finally returning the robot to the starting point. A dead reckoning algorithm 

has been written to compute range and bearing data between GPS updates.  While the 

robot is navigating its route between waypoints, the system graphical user interface  

(Figure 4-5) displays current information regarding the robots current position, the map 

of waypoints, the field of view from the obstacle detection system overlaid with red for 

all areas where the robot cannot go, and any appropriate error or feedback information. 

4.12 System integration 

The run-time system sensory input consists of two digital cameras, an image 

processor, a laser scanner system, a GPS unit, and in certain cases a joystick for manual 

control. The software allows initialization information that is input before the 

autonomous system begins operation in order to properly calibrate various parts of the 

system.  The output is commands to the motion controller will set the speeds of the two 

independent drive wheels.  The system will use the input information and apply various 
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algorithms to determine the proper course of action, based on the current competition, 

and output the motion commands to the motion controller. 

 

Figure 4-8: Interface for conveniently initializing system parameters 70 

4.13 Safety and reliability 

There are four different safety systems built in to stop the robot: manual e-stop, 

remote control e-stop system capable of stopping the robot from a range of 65 feet, 

joystick “full-stop” button, with a range of 30 feet and mechanical brakes. Joystick “full-

stop” can be used to pause and continue software functionality, while use of the primary 

e-stop necessitates a manual reboot of the system. The drawbacks to the secondary e-stop 

are its range and its reliance on the software to be functioning properly in order to work.  

The primary remote e-stop will work regardless of the state of the software or any other 

device on the robot and controls engagement of the mechanical brake. A disconnect 
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switch can also cut off all power to the robot. The generators have hazards from both 

internal combustion and electric powered systems but they come with built in overheat, 

over power and power surge protection.   

Reliability of an autonomous robot can sometimes be difficult to predict. 

However, we have tried to be as thorough as possible in our testing strategies, and the 

Cub has performed very well. The emergency stop systems are available to quickly and 

reliably stop the robot if it starts to misbehave.  Front bumpers are present which reduce 

the impact of physical shocks from reaching the stereo vision and cameras mounted on 

the robot. All circuits have been color coded to ensure proper reconnection with the black 

wires used for ground.  

4.14 Dynamic model 

For the Bearcat Cub robot, a kinematic and dynamic model was derived using the 

Newton-Euler method by Alhaj Ali et al. 72-76. “Bearcat Cub structure and dynamic 

analysis are shown in Figure 4-9”: 

 

 

 

 

 

 

 

a. Robot Structure  b. Dynamic analysis for 
the right wheel 

c. Dynamic analysis for the robot 

Figure 4-9: Robot dynamic analysis 76 
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According to Figure 4-9, the kinematic model with respect to the robot center of gravity 

(Point C in Fig. 4-9 a.) can be described as follows 76: 
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Eq. (4-1) 

Where ϖ,, nt vv can be defined in terms of the angular velocity of the robot left wheel 

lω and the angular velocity of the robot right wheel rω as follows 76: 
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Eq. (4-2) 

However, Eq. 4-1 can be simplified by utilizing that ωevn =  as follows 76: 
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Eq. (4-3) 

The nonholonomic constraint can be obtained directly from Eq. 4-3 as 76: 

eyx ωθθ =− cossin &&  Eq. (4-4) 

For the center of the wheel axes (Point E in Fig. 4-9 a.) 0=e and hence Eq. 4-4 reduces 

to 76: 

0cossin =− θθ yx &&  Eq. (4-5) 

This means that there is no motion in the direction of the wheel axis. 

Another constraint for the kinematic model comes from the inertial structure of 

the robot where the robot’s path cannot exceed the minimum turning radius or the 

maximum curvature 76: 
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imumRmin≥ρ  , or  imumKk max≤  Eq. (4-6) 

From Figure 4-9 b., the Newton-Euler equation for the right wheel can be described as 76: 

rwrr xmfF &&=−  

rwrr JrF ωτ &=⋅−  

where: 

rF : is the reaction force applied to the right wheel by the rest of the robot; 

rf : is the friction force between the right wheel and the ground; 

wm : is the mass of the wheel; 

rτ : is the torque acting on the right wheel which provided by the right motor; 

r : is the radius of the wheel; 

wJ : is the inertia of the wheel. 

Eq. (4-7) 

Note that the Coriolis part had been deleted since it is negligible due to the fact 

that the wheel inertia is much smaller than the robot inertia. 

The dynamic model of the robot can be defined as 76: 

τξξξξξ =++ FJM &&&& ),()(            Eq. (4-8) 
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To customize the dynamic model for the Bearcat III, the values for 

nc fJdeJrm ,,,,,, 0  in Eq. 8 are substituted by kgm 18.306= , mr 2095.0= , me 338.0= , 

md 432.0= , and nc fJJ ,,0  need to be calculated according to Figure 4-9 for Bearcat III. 

The value of the frictional coefficient µ  between the ground and the wheel 

depend of the type of the surface of the ground; for grass, 0.6 is common, while for 

concrete 0.9 is usually used. Bearcat III usually moves on grass, therefore, 0.6 was used 

in the calculations. Substituting the parameters for Bearcat III into the normal force 

equation )
3
1( gmmgf wn += µ , nf  is calculated to be 629.45 N. 

The moment of inertia for the robot wheel is calculated as follows: 

22222 055.0)(
2
1)(

2
1 kgmrrmrrmJ rirertitetw =−+−=  

       Eq. (4-9) 

Substituting the value of wJ  from Eq. 4-9 for Bearcat III, 0J  is calculated to be 

2274.0 kgm . For more details, refer to Alhaj Ali et al. 7, 75. 

Substituting these values into Eq. 4-8, the Bearcat III dynamic model is: 
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4.15 Robot calibration  

A robot can be thought of as an intelligent connection of perception to action. 

Implementing this is a formidable task and might take on a wide variety of disciplines, 

ranging from mechanical logic to microprocessor control to networks of neuron-like 

gates. Mobile robots pose a unique challenge to artificial intelligence researchers. They 

are inherently autonomous and they force us to deal with key issues such as uncertainty, 

reliability and real time response. They also require an integration of mechanical strength, 

reliable control systems, and sensors for vision and obstacle avoidance. Navigation and 

mapping are crucial to all robotic systems and are an integral part of autonomous mobile 

robots. While it is possible for a robot to be mobile and not do mapping and navigation, 

sophisticated tasks require that a mobile robot build maps and use them to move around. 

Levitt and Lawton (1990) pose three basic questions that define mobile robot mapping 

and navigation 77, 78: 

1. Where am I? 

2. How do I get to other places from here? 

3. Where are the other places relative to me? 

Humans receive a large amount of their information through the human vision 

system, which enables them to adapt quickly to changes in their environment. Vision-
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based mobile robot guidance has proven difficult for classical machine vision methods 

because of the diversity and real time constraints inherent in the task. Vision for motion 

control must always be real time vision. In this context of unmanned guided vehicles, the 

vision system must enable the robot to perceive changes in its environment while they are 

occurring and soon enough to react to these changes and make decisions accordingly. For 

mobile systems, a speed of reaction similar to human beings is desirable. For this, a robot 

vision system should not introduce a delay of more than 100 ms in reporting an event in 

the environment or in providing data for some visible motion.  

There are several factors, which affect the functioning of the outdoor autonomous 

systems. Some are variations of road type, appearance variations due to lighting and 

weather conditions, real time processing constraints and high level reasoning constraints. 

A general autonomous vehicle should be capable of driving on a variety of road surfaces 

like grass, concrete, sand, boards etc. The vehicle should function equally well inside, 

i.e., on a plane surface as well as outside on a varying terrain. The second factor making 

autonomous driving difficult is the variation in appearance that results from 

environmental factors. Lighting changes and deep shadows make it difficult for 

perception systems to pick up important and desired features during daytime driving. The 

threshold of the perception system has to be adjusted in such a way that the desired 

features are identified correctly. Any change to the light affects the threshold and 

performance of the system. Also to be considered is the fact that missing or obscured lane 

markers make driving difficult for an autonomous system even under favorable lighting 

conditions. Adequate computer hardware is a key to practical robot vision. Multi-

processor systems containing a small number of processing elements, each of them based 
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on a standard microprocessor of moderate performance have been demonstrated to 

outperform much more expensive computer systems in robot vision applications. 

Flexibility is a very important factor, including the flexibility of random access pixel data 

by the processing elements, and flexibility in dynamically concentrating the computing 

power of the system on those parts of an image containing the most relevant information 

at any moment. The system should also be flexible in restructuring under software control 

to match the inherent structure of the vision task. There is always a limited amount of 

time for processing sensor information. The speed of the front end processing system 

should be such that the vehicle reacts very quickly to the changes in the environment. For 

example at 5 miles per hour a vehicle is traveling nearly 7.5 feet per second. A lot can 

happen in 7.5 feet, like losing track of the lane or straying a significant distance from the 

lane or colliding with an obstacle if the system does not react accurately or act quickly 

enough. 

To simplify this tedious calibration an artificial neural network can be used. 

Image processing is used to automatically detect calibration points. Then a back 

projection neural algorithm is used to learn the relationships between the image 

coordinates and three-dimensional coordinates. This transformation is the main focus of 

this study. 

The three dimensional (3-D) vision system makes use of 2 CCD cameras and an 

image-tracking device for the front end processing of the image captured by the camera. 

The camera reduces the three dimensional world co-ordinate system into two dimensional 

image co-ordinate system. After getting the information regarding image co-ordinates, at 

any time, the challenge is to extract three-dimensional information from them. A 
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mathematical as well as geometrical transformation occurs via the camera parameters in 

transforming a 3-D coordinate system to a 2-D system. If these mathematical and 

geometrical relations are known, a 3-D coordinate point on a line can be autonomously 

determined from its corresponding 2-D image point. To establish these mathematical and 

geometrical relationships, the camera has to be calibrated. This is because if the vision 

system is well calibrated, accurate measurements of the coordinates of the points on the 

line with respect to the robot can be made. From these measurements, the orientation of 

the line with respect to the robot can be computed. With these computations, the next task 

is to guide the robot. The motion control of the AGV designed has the capability of 

turning about the center of its drive axis, which is called the zero turning radius feature. It 

is gaining popularity and expanding commercially in the U.S. mowing market. This 

feature provides exceptional maneuverability and can make sharp turns possible with 

relatively greater ease than those without the ZTR (Zero turning radius) feature. Rotating 

one wheel forward and the other wheel backward generally accomplishes the ZTR 

function. However in our design we instead vary the speeds of the left and right drive 

wheels while negotiating a curve. This enables the AGV to make a curved turning path 

parallel to the track lines. 

Calibration of a camera means determining the geometric properties of the 

imaging process i.e. the transformation that maps a 3-D point, expressed with respect to a 

reference frame onto its 2-D image whose co-ordinates are expressed in pixel units. This 

problem has been a major issue in photogrammetry and computer vision for years. The 

main reason for such interest is that the knowledge of the imaging parameters allows one 

to relate the image measurements to the spatial structure of the observed scene 79. The 
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fundamental theorem of robot vision says that manipulation of a point in space x1 by 

either a robot manipulator that moves it to another point x2 or through a camera system 

that images the point onto a camera sensor at x2, is described by the a matrix 

transformation, which is of the form X2 = Tx1. The transformation matrix T describes the 

first-order effects of translation, rotation, scaling, and projective and perspective 

projections. Camera calibration is a complex problem because of the following problems: 

1. Calibration of internal parameters of a camera, the so-called intrinsic 

parameters, including the optical and mechanical (geometrical) properties of the camera, 

such as focal length, lens distortion parameters, the intersection point of the optical axis 

with the image plane etc. Sometimes the manufacturers supply these parameters but they 

are usually not accurate enough for computations. Some of them such as focal length 

vary with adjustments, while some of them such as the lens center are calibrated once and 

for all depending upon the optical stability of the camera. 

2. Estimation of the location of the camera (system) relative to the 3-D world 

reference system, including rotation and translation between these two systems is 

required. These are called extrinsic parameters. These parameters are not directly related 

to the camera itself, but the set up of a camera, which means they have to be calibrated at 

each set up. 

Robert in his paper "Camera Calibration without Feature Extraction" has 

presented an approach to this problem using a calibration pattern 80. The approach is 

different from the classical calibration techniques, which involve extraction of image 

features and computation of camera coefficients. A classical iterative technique is used to 

search for the camera parameters that best project 3-D points of a calibration pattern. Li 
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and Lavest have thrown light on some aspects of zoom lens camera calibration 81.  A lot 

of care has to be taken in the electronic stability of the camera and frame grabber, and the 

way calibration points are measured and detected in images. In that paper they have 

addressed some practical aspects of camera calibration, in particular, of a zoom lens 

system. Through a systematic approach they describe all the keys points that have to be 

checked in order to obtain accurate calibration results. 

Caution is required during calibration. Hong, et al. list two points that should be 

considered in camera calibration 82: 

1. Reducing the location error of image features as far as possible, by exploiting 

image processing technique, and 

2. Compensating system error by the optimal pattern of approximating residual 

error of image points, namely the posterior compensation of the system error. 

Based on these two points, the calibration process discussed by Weng et al. are of three 

parts 83: (1) The direct transformation error approximation camera calibration algorithm; 

(2) the sub pixel image feature location algorithm combined with the 3D control point 

field delicate design and fabrication; (3) The precisely movable stage, which provides the 

reliable means of accuracy checking. Tsai presented an algorithm that decomposes a 

solution for 12 transformational parameters (nine for rotation and three for translation) 

into multiple stages by introducing a radial alignment constraint 84. The radial alignment 

constraint assumes that the lens distortion occurs only in the radial direction from the 

optical axis Z of the camera. Using this constraint, six parameters are computed first, and 

the constraint of the rigid body transformation is used to compute five other parameters. 
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The remaining parameters are computed by radial lens distortion parameter and 

estimating it by a nonlinear optimization procedure. 

Zhang et. al in “Analysis of a Sequence of Stereo Scenes Containing Multiple 

Moving Objects Using Rigidity Constraints” describe a method for computing the 

movement of objects as well as that of a mobile robot from a sequence of stereo frames 

85. Stereo frames are obtained at different instants by a stereo rig, when the mobile robot 

navigates in an unknown environment possibly containing some moving rigid objects. 

Zhang et al. present a method for estimating 3D displacements from two stereo 

frames 86. It is based upon the hypothesize-and-verify paradigm, which is used to match 

3D line segments between the two frames. In order to reduce the complexity of the 

algorithm, objects are assumed to be rigid. In the experimental sections, the algorithm is 

shown to work on indoor and natural scenes. “A 3D World Model Builder with a Mobile 

Robot” - An article written by the same authors describes a system to incrementally build 

a world model with a mobile robot in an unknown environment 87. The model is segment-

based. A trilocular stereo system is used to build a local map about the environment. A 

global map is obtained by integrating a sequence of stereo frames taken when the robot 

navigates in the environment. Luong, et al. in their paper “Motion of an Uncalibrated 

Stereo Rig: Self-Calibration and Metric Reconstruction” address the problem of self-

calibration and metric reconstruction (up to a scale) from one unknown motion of an 

uncalibrated stereo rig, assuming the coordinates of the principal point of each camera are 

known 88. They also present a novel technique for calibrating a binocular stereo rig by 

using the information from both scenes and classical calibration objects. The calibration 

provided by the classical methods is only valid for the space near the position of the 
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calibration object. Their technique takes the advantage of the rigidity of the geometry 

between two cameras. The idea is to first estimate precisely the epipolar geometry, which 

is valid for a wide range in space from all available matches. 

During the execution of a task the vision-system is subject to external influences 

such as vibrations, thermal expansion etc. which affect and possibly render invalid the 

initial calibration. Moreover, it is possible that the parameters of the vision-system such 

as the zoom or the focus are altered intentionally in order to perform specific vision-

tasks. 

“Self-Maintaining Camera Calibration over Time” by Schenk et al. describes a 

technique for automatically maintaining calibration of stereovision systems over time 

without using again any particular calibration apparatus 86. Worrall, Sullivan and Baker in 

the paper “A simple, intuitive camera calibration tool for natural images” present an 

interactive tool for calibrating a camera, suitable for use in outdoor scenes 89. The 

motivation for the tool was the need to obtain an approximate calibration for images 

taken with no explicit calibration data. The method decomposes the calibration 

parameters into intuitively simple components, and relies on the operator interactively 

adjusting the parameter settings to achieve a visually acceptable agreement between a 

rectilinear calibration model and his own perception of the scene. 

Most of the previous research deals with the theoretical aspects of zoom lens 

camera calibration. The intrinsic parameters are obtained by building a pinhole camera 

model. The research here deals with designing a calibration algorithm keeping in mind 

the significant practical aspects. 
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4.15.1 Line following  

The objective of the vision system is to make the robot follow a line using a 

camera. In order to obtain accurate information about the position of the line with respect 

to the centroid of the robot, the distance and the angle of the line with respect to the 

centroid of the robot has to be known. The camera system reduces the 3-D information 

about the obstacle course into 2-D image co-ordinates. In order to obtain a relationship 

between the two co-ordinate systems, the camera needs to be calibrated. Camera 

calibration is a process to determine the relationship between a given 3-D coordinate 

system (world coordinates) and the 2-D image plane a camera perceives (image 

coordinates). More specifically, it is to determine the camera and lens model parameters 

that govern the mathematical or geometrical transformation from world coordinates to 

image coordinates based on the known 3-D control field and its image. The CCD camera 

maps the line from the 3-D coordinate system to the 2-D image system. Since the process 

is autonomous, the relationship between the 2-D system and the 3-D system has to be 

accurately determined so that the robot can be appropriately controlled to follow the line. 

The objective of this section is to explain the entire calibration process and its 

significance in this project. 

The model of the mobile robot illustrating the transformation between the image 

and the object is shown in Figure 4-10. The robot is designed to navigate between two 

lines that are spaced 10 feet apart. The lines are nominally 4 inches wide but are 

sometimes dashed. This requires a two-camera system design so that when a line is 

missing, the robot can look to the other side via the second camera. Measurements are 
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referenced to the robot centered as a global coordinate system. For navigation, the 

cameras must be located with respect to this centroid. 

 

 

Figure 4-10: Top view model of the robot in the obstacle course 

 

Camera calibration is considered very important in many computer vision 

problems. Camera calibration in the context of three-dimensional machine vision is the 

process of determining the internal camera geometric and optical characteristics (intrinsic 

parameters) and/or the 3-D position and orientation of the camera frame relative to a 

certain world coordinate system (extrinsic parameters). Camera projection is often 

modeled with a simple pinhole camera model. In reality, the camera is a much more 

complicated device, and if it is used as a measurement instrument, a proper calibration 

procedure should be performed. In order to follow a track, which is separated by two 

lines, which are 10 ft apart, 2 CCD cameras and an image-tracking device (ISCAN) are 

used. The ISCAN image tracking system finds the centroid of the darkest or the brightest 

region in an image and returns the co-ordinates of these points. These are the image co-
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ordinates. These coordinates are two-dimensional while the real world co-ordinates are 

three-dimensional. An algorithm is developed to establish a mathematical and 

geometrical relationship between the physical three-dimensional (3-D) and its 

corresponding digitized two-dimensional (2-D) co-ordinates. In an autonomous situation 

the challenge is to determine 3-D co-ordinates given the image co-ordinates. This is 

established by what is popularly known as “Calibration” of the camera. The objective is 

to find any corresponding ground co-ordinate given an image co-ordinate. What makes 

this the most important and crucial task is that the process of following the line is 

autonomous and dynamic and hence the relationship between these co-ordinates should 

be accurately determined. This, in turn, determines how closely the robot follows the line 

and hence the success of the robot. 

The objective was to design a calibration method, which was not only accurate 

but also is easy and less time consuming. Some calibration methods are very accurate but 

are extremely time consuming. Two approaches for camera calibration are discussed 

here. 

4.15.2 Matrix method 

Camera calibration is a process to determine the relationship between a given 3-D 

coordinate system (world coordinates) and the 2-D image plane a camera perceives 

(image coordinates). These co-ordinates are two-dimensional while the real world co-

ordinates are three-dimensional.  

An algorithm is developed to establish a mathematical and geometrical 

relationship between the physical three-dimensional (3-D) and its corresponding digitized 

two-dimensional (2-D) co-ordinates 90-92.  
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The simple pinhole camera model for a perspective projective transformation is 

shown in Figure 4-11 and is easily modeled in homogeneous coordinates by the matrix 

transformation from ground to homogeneous image coordinates.  

y
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Figure 4-11: Perspective projection onto an image plane 
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         Eq. (4-11) 

The physical image coordinates are determined by dividing by the scale term W. 

( ) )/,/,/(,, WWzWWyWWxzyx PIPIPIPIPIPI =                    Eq. (4-12) 

In general the lens center may be translated and rotated with respect to the global 

coordinate system. This results in a general perspective projective matrix representation 

as shown. With projection, the image z term and corresponding matrix row can be 

considered discarded. 
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The stereo vision principles approach uses the scaling between the two coordinate 

systems to determine the relationship between the physical and image coordinates.  If the 

image is projected on the z axis, the model equations relating the two coordinates are 

described by: 

14131211 AzAyAxAWx gggpi +++=  

24232221 AzAyAxAWy gggpi +++=            Eq. (4-14) 

34333231 AzAyAxAW ggg +++=  

The coefficients for the above equations may be computed by eliminating the 

scaling term, W, from the first two equations to obtain Equations 4-15 and 4-16. Then 

one can utilize matching calibration points to solve for the unknown A  coefficients. 

033323114131211 =−−−+++ pigpigpigggg xzAxyAxxAAzAyAxA
g

 Eq. (4-15) 

033323124232221 =−−−+++ pigpigpigggg xzAxyAxxAAzAyAxA
g

 Eq. (4-16) 

Equations 4-15 and 4-16 represent two equations in twelve unknown coefficients, 

nmA . The coefficients are computed using magic matrix techniques by utilizing six 

matching calibration points. Since we are dealing with a homogeneous coordinate 

system, the matrix will include an arbitrary scale factor.  If the coefficient 34A is set as 

unity, the resulting transformation matrix will be normalized.  

With six calibration data points and 134 =A , the following matrix equation was 

formulated. 

                                            0=QA                         Eq. (4-17) 

Where 
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  Eq. (4-18) 

 

 and 

[ ]TrAAAAAAAAAAAAA 343332312423222114131211 ,,,,,,,,,,,=        Eq. (4-19) 

There are 12 unknowns in the matrix equation.  However, since the matrix 

equation is homogeneous, there is an arbitrary value or scale.  The transformation 

coefficients can be solved by moving the last column in the matrix Q to the right-hand 

side and applying the least square regression method. Therefore, one coefficient can be 

arbitrarily selected leaving 11 coefficients to be determined.  Since each image point (x, 

y) gives two equations, a minimum of five and one half image points could give a 

solution. A greater number of points permit a least squares solution. After the A  

coefficients are determined, W is computed and for any image coordinate, pix  and piy , 

the corresponding ground coordinates may be computed as shown in the following. 

[ ]
where

BAQ =1  
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To solve for the coefficients, one may use the Moore-Penrose pseudo inverse. 

First multiply by the transpose of the reduced matrix 1Q .  

BQAQ T
11

T
1 **Q =  

Then multiply both sides by the inverse of the squart matrix 1
T
1 *Q Q  

BQQA T
1

1
1

T
1 )*Q( −=                 Eq. (4-21)  

Now given the A matrix coefficients, and the physical image coordinates, one 

may determine the three dimensional ground coordinates. If this pseudo inverse matrix 

computation comes out ill conditioned or with a small condition number, another way of 

doing this computation is needed. For example, the original equations may be rewritten in 

matrix form as: 
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Where inv(A) is the inverse of the 3 by 3 A matrix, W is the scaling factor, nmA  

are coefficients, pix  and piy  are x and y image coordinates, and gx , gy  and gz are the 

ground coordinates.  

So with this formulation, the ground coordinates can be computed with an 

estimate of the single scale parameter W. Further experimentation is needed to determine 

if this method is robust 92. 

4.15.3 Calibration using Neural Networks 

The purpose of this section is to simplify this tedious calibration using an artificial 

neural network. Image processing is used to automatically detect calibration points. Then 

a back projection neural algorithm is used to learn the relationships between the image 

coordinates and three-dimensional coordinates. 

Static backpropagation is used to produce an instantaneous mapping of a static 

(time independent) input to a static output. At the core of all back propagation methods is 

an application of the chain rule for ordered partial derivatives to calculate the sensitivity 
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that a cost function has with respect to the internal states and weights of a network. In 

other words, the term backpropagation is used to imply a backward pass of error to each 

internal node within the network, which is then used to calculate weight gradients for that 

node. Learning progresses by alternately propagating forward the activations and 

propagating backward the instantaneous errors. 

A Backpropagation network consists of at least three layers of units: an input 

layer, at least one intermediate hidden layer, and an output layer. Typically, units are 

connected in a feed-forward fashion with input units fully connected to units in the 

hidden layer and hidden units fully connected to units in the output layer. When a 

backpropagation network is cycled, an input pattern is propagated forward to the output 

units through the intervening input-to-hidden and hidden-to output weights. 

The data used to train the neural network is as follow:  

t= [48.856, 56.346, 56.346, 48.831, 52.919, 52.87, 44.55, 47.75, 46.75, 46, 49.75, 40.1, 
58, 60, 62, 60, 59, 61, 59.50, 62]. 
p= [220, 187, 135, 158, 153, 124, 245, 229, 221, 195, 168, 195, 138, 124, 156, 174, 149, 
145, 124, 182]. 
 

 

Figure 4-12:  Training plot of x coordinate  
 
(Trained values are represented by * and actual 
values are represented by +)  

 

Figure 4-13: Performance plot for x 
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Figure 4-14: Training plot of y coordinate  

(Trained values are represented by * and actual 

values are represented by +) 

 

Figure 4-15: Performance plot for y 

 
(Published in reference 78 78) 

4.16 Remote control 

Recent progress in Internet capabilities has made it easier to use as a reliable and 

widely accessible communication framework. Remote control via the Internet is a very 

young field of research that could have significant applications in the near future.  

Robotics, manufacturing, traffic control, space exploration, health care, disaster rescue, 

house cleaning, security, inspection and tele-presence are examples of such applications 

93.  

Since the first networked device, “Cambridge coffeepot,” appeared on the 

Internet, a rapid enlargement of the WWW over the past several years has resulted in a 

growing number of tele-robotics sites and Web accessible devices 94, 95.  

Previous researchers have had different approaches to accessibility from the 

Internet. Availability for public users has been a goal for most projects, but others have 

focused on special user devices. For example, by 1995, Goldberg et al. had developed a 
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tele-robotic system called the Tele-Garden by which WWW users are able to observe, 

plant and nurture life in a remote garden 95, 96. Likewise, Peterson et al. developed a 

system for tele-pathology by the Internet. This system allows any Internet user to become 

a consultant for tele-pathology without the acquisition of specialized hardware or 

software 96.         

Rovetta et al. used a mix of communication media for performing tele-surgery in 

1995. Their work was based on a special-user access and not a public access Internet 97. 

Various other devices have become available over time, such as the Programmable Logic 

Control for a chemical experiment 98, Microscope 96, 99, 100, Blimp Space Browser, 

Nuclear Microprobe 101 and Web Camera 102. In fact, Web cameras are the most common 

Internet connected devices 94.   

The merge of the Internet and manufacturing technologies has resulted in bridging 

of the gap between engineering technology (such as a rapid prototyping hardware system) 

and information systems to enable the remote control of engineering resources 103, 104. 

Wang et al. presented the concept of an Internet assisted manufacturing system for agile 

manufacturing practice 105. In this system, a local user is able to introduce design 

specifications to a product information system and the Central Network Server can 

generate complete CAD/CAPP/CAM/CAA files and control the remote FMS or CNC 

machines to accomplish the whole production process.  

Tele-robotics is also an active branch in Internet connected devices. Schiling 

developed an educational inspection mobile robot for tele-diagnosis of malfunctions, tele-

maintenance of machines, and tele-monitoring of remote sites by sensors and tele-

operations of remote equipment, including robots 106. In another experience, Winfield et 
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al. developed a system that can control several robots from a Local Area Network 

simultaneously 107.  

All these systems are not yet commercially available. In fact, the limitation of 

bandwidth, safety, harmonizing the remote activities and time delays are the major 

concern of research in this area. In many situations, a human is needed to control these 

machines. In the existing set up, there are very few tools that offer a remote access to the 

robot, and its scope is also limited.  

Description of the design and development of an interface for remote control of 

the Bearcat Cub robots via the Internet can be found in 93.  

4.17 JAUS standard  

The Joint Architecture for Unmanned Systems (JAUS) is a data communication 

standard targeted toward unmanned systems. The purpose of JAUS is to support the 

acquisition of Unmanned Systems by providing a mechanism for reducing system life-

cycle costs. This is accomplished by providing a framework for technology 

reuse/insertion.  JAUS defines a set of reusable “components” and their interfaces. These 

reusable components not only reduce the maintenance costs of a system, but also 

dramatically reduce the development costs of any follow-on system(s).  Reuse allows a 

component developed for one Unmanned System to be readily ported to another 

Unmanned System or to be easily replaced when technological advances. 

Technology insertion is achievable when the architecture is designed to be both 

modular and scaleable. Components that are deemed necessary for the mission of the 

Unmanned System may be inserted simply by bundling. 
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JAUS defines components for all classifications of Unmanned Systems from 

remote control toward autonomous, regardless of application.  As a particular system 

evolves, the architecture is already in place to support more advanced capabilities 108. 

Technical constraints are imposed on JAUS to ensure that the architecture is 

applicable to the entire domain of Unmanned Systems - now and in the future.  The 

constraints are: 

• Platform Independence 

• Mission Isolation 

• Computer Hardware Independence 

• Technology Independence 

A simple set of JAUS commands were implemented on Bearcat Cub robot. The 

commands intended to start the vehicle moving forward in the autonomous mode, stop 

the vehicle from moving in the autonomous mode, and activate a warning device 

(horn/light). The JAUS messages were sent over an 802.11g link.  

4.18 Robot application case 1: mine clearing 

An estimated 100 million landmines which have been planted in more than 60 

countries kill or maim thousands of civilians every year. Millions of people live in the 

vast dangerous areas and are not able to access to basic human services because of 

landmines’ threats.  This problem has affected many third world countries and poor 

nations which are not able to afford high cost solutions. This section tries to present some 

solutions for the mine clearing. It studies current situation of this crisis as well as state of 

the art robotics technology for the mine clearing. It also introduces a survey robot which 

is suitable for the mine clearing applications.  The results show that in addition to 
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technical aspects, this problem has many socio-economic issues 109. Landmines do not 

distinguish between a soldier, a child or an animal. They can not be aimed and their 

deadly force is indiscriminant. That’s why they are so horrible. 

The first generation of mines were pressure-activated and large and used to stop 

or destroy enemy’s vehicles. They could be found and neutralized easily by infantry. As a 

counter measure, armies developed anti-personnel mines to keep enemy mine clearers 

away from anti-vehicle mine fields. It is estimated that 75% of all uncleared mines are 

anti-personnel mines, and this is the category that has created most problems110.  

  According to International Campaign to Ban Landmines (ICBL) leading 

producers and exporters of antipersonnel mines in the past 25 years include China, Italy, 

the former Soviet Union, and the United States.  More than 50 countries have 

manufactured as many as 200 million antipersonnel landmines in the last 25 years and 

more than 350 different types of antipersonnel mines exist. Even if no more mines are 

ever laid, they will continue to maim and kill for years to come. In fact, they kill or injure 

more than 2000 people a month and with the current mine removal technology it may 

take about 1000 years to remove all mines if no new mines are buried in the war zones 

111. 

The 1997 Ottawa treaty bans the use, production, stockpiling, and transfer of 

antipersonnel landmines. Since the treaty became law, countries may no longer sign it, 

they must accede. Those countries which have already signed must still ratify it in order 

to be fully bound by the ban provisions. By the end of 2002, a total of 146 countries had 

signed the Mine Ban Treaty and 130 had ratified or acceded to it. Since then, 30 million 
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stockpiled mines have been destroyed according to ICBL which monitors the treaty 

compliance112. 

Landmines have many social and economical impacts which can not be described 

by simple quantitative measures. Many communities have not been involved in proper 

clearance activities and have adapted to situation in their own ways. Global Landmine 

Survey is an international effort to understand the socio-economic impact of landmines 

and unexploded ordnance (UXO). Without knowing the impacts it is difficult to develop 

strategies to allocate limited resources to minimize the effect of landmines. Landmine 

resources compete with other humanitarian activities. The low and decreasing mortality 

from landmines is often compared to high and soaring mortality from epidemic disease. 

This has provoked an all-over-nothing debate over the costs and benefits of demining 113. 

It is becoming clear that complete clearance is not a feasible solution of the worldwide 

landmine problem when the size of contaminated area is considered into account. That is 

why it is essential to understand the social and economical impacts of landmines. 

4.18.1 Mine technology 

4.18.1.1 Types of mines 

The Mine Ban Treaty defines a mine as follow:  

Anti-personnel (AP) landmine: "A mine designed to be exploded by the presence, 

proximity or contact of a person and that will incapacitate, injure or kill one or more 

persons."  

Anti-tank (AT) landmine: An AT mines is a device designed to detonate by more than 100 

kilograms of pressure -AT mines cannot distinguish between a tank and tractor. 
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ICBL categorize mines as follow: 

“Blast mines: usually hand-laid on or under the ground or scattered from the air. The 

explosive force of the mine causes foot, leg, and groin injuries and secondary infections 

usually result in amputation.  

Fragmentation mines: usually are laid on or under the ground and often activated by 

tripwire or other means. When detonated the explosion projects hundreds of fragments at 

ballistic speed of up to 50 meters resulting in fragmentation wounds. Some fragmentation 

mines contain a primary charge to lift the mine above the ground (about 1 to 1.5 meters) 

before detonating which can injure an adult's abdomen, genitals and take off a child's 

head.  

Plastic mines: Undetectable by metal detectors used by deminers.  

Remotely-delivered (R/D) or scatterable mines: Usually disseminated from aircraft, 

helicopters or artillery. Accurate mapping, recording and marking mines laid in this 

manner is impossible.  

Anti-handling devices: A device intended to protect mine and which activates when an 

attempt is made to tamper with or otherwise intentionally disturb the mine (Mine Ban 

Treaty definition).  

Self-destruct (S/D) mines: So-called "smart" mines are designed to self-destruct after a 

designated period of time. If they fail to self-destruct, these mines are also sometimes 

designed to self-deactivate. There is nothing smart about these mines though - while 

armed they cannot discriminate between the footfall of a soldier and a civilian.”  
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Most of mines are plastic or wooden mines with a small metal needle which is 

hard to detect using the well know metal detectors. Other metal objects in the same 

minefield create many false alarms. There are other technologies to detect mines. Neutron 

activation imaging, ion spectroscopy or x-ray tomography which are used for detection of 

explosive inside the luggage are not practical for mine detection yet. Ground penetrating 

radars can be used along with the metal detectors. Odor detectors also seem a promising 

technology for mine detection. Some use dogs to double check a cleared area and 

sometimes to survey the extent of a minefield before clearance begins. Their main use is 

to confirm suspected mined areas. 

Cost is an important issue in the mine clearing. A clearing cost close to the cost of 

mine could also decrease the use of mines. It is estimated that even with the traditional 

demining technology average cost of demining is $800 per mine found 114.  

There are also important differences between military and civilian demining 

efforts. In many military applications speed of operation is more important than the safety 

of soldiers since the objective is to punch a path though the minefield, with the acceptable 

losses. This is called “breaching”. In this case typically a tank pushes a heavy demining 

system and troops follow and a removal of 80% of mines is acceptable 115. Figure 3 

shows an example of such device.  

The UN requirement of civilian mine clearing is 99.6%. Simple large rollers are 

not sufficient to meet the UN requirement. They leave most mines on the side berm they 

create, where the mine are more difficult to find 115.  

Besides, many poor nations and civilian groups are not able to afford high cost 

military solutions. To be practical in large scale demining efforts the cost of demining 
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system should be less $10,000 in mass production. This is some kind of threshold, 

suggested by some researchers 114. This cost is mainly influenced by sensors.   

4.18.1.2 Mine-clearing technology 

The current mine clearing technology reflects a varied and diverse approach to 

diffuse anti-personnel land mines. They range from the old fashioned sniffer dogs to 

highly sophisticated polarized infrared technology. The costs of landmine clearing using 

sophisticated techniques are prohibitive for poor third world countries which have the 

majority of the dormant mines. The relatively primitive technique of detecting mines 

using a trained sniffer dogs and a trained deminer has a high human costs. It is estimated 

that for every 2000 mine cleared there is a fatal human error. The training required for 

personnel to disarm mine is even more complicated by the fact that there are almost 

thousands types and makes of anti-personnel mines. For example during the last days of 

Persian gulf war in 1991 they were many different kinds of mines were used like MK-

118, Blu-77b, Blu-97, M-42 and 46, Blu-61-a-b, Blu-63-b, 86-b, Blu-91-b, Blu-92-b and 

bluga 116. 

None of the technologies available seem in fact capable of reaching, in a very 

large number of situations, good enough detection while maintaining a low false alarm 

rate. Rather, each one will probably have to find, if it exists, a specific area of 

applicability, determined by technological as well as economical or even social factors, 

and possibly other sensors to work with using some form of sensor fusion. The need for a 

better exchange of information between the specialists in each category is obvious, using 

options such as data sharing on the Internet 117. 
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The following table lists the current technologies available or are in the process of 

being developed. These technologies can be leveraged to find the ‘best of breed’ which 

works for most mine clearing scenarios 117. 

Table 4-1: Mine detection technologies 

Sensor technology Maturity Cost and Complexity 

Passive infrared Near Medium 

Active infrared Near Medium 

Polarized infrared Near Medium 

Passive electro-optical Near Medium 

Multi-hyperspectral Far High 

Passive mm-wave Far High 

mm-Wave radar Near High 

Ground penetrating radar Near Medium 

Ultra-wideband radar Far High 

Active acoustic Mid Medium 

Active seismic Mid Medium 

Magnetic field sensing Near Medium 

Metal detection Available Low 

Neutron activation analysis Near High 

Charged particle detection Far High 

Nuclear quadrupole reason. Far High 

Chemical sensing Mid High 

Biosensors Far High 

Dogs Available Medium 

 

There are different approaches to detecting mines. Robots which can be equipped 

with different kinds of sensors and actuators depending on the mines that are being 

cleared seem to be a realistic option. The costs of these robots are reasonable if we 

consider the lives that can saved.  
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4.18.2 Examples of robots 

The robots that are available in the market for detection and clearing mines are 

very different in their approach. Here we list a few which represents some of the typical 

approaches for mine clearing robots. 

Pemex –BE: is a lightweight 2-wheels robots developed as a first cross-country test 

vehicle for searching anti-personnel mines as shown in Figure 4-16. The sensors are 

located inside a half-sphere which acts as a third supporting point. It weights less than 16 

kg and can easily be dismantled and carried out as hand luggage. It is battery operated 

with autonomy of 60 minutes and can move at a speed of up to 6 km/h118. 

Advantages: 

o The cheaper of all the robots 

o Easiest to navigate across difficult terrain 

o The very light weight robot 

Disadvantages: 

o The not safe for the operator. 

o No sophisticated sensors 

 

Figure 4-16. Pemex –BE 

 

Figure 4-17. Dervish 
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 Dervish: 

The Dervish, shown in Figure 4-17, is a remote-controlled vehicle designed to 

detonate anti-personnel mines with charge weights up to 250 gm, equivalent to the largest 

size of anti-personnel mine. The Dervish detects and detonates anti-personnel mines by 

mimicking the ground loading of a human foot. It sweeps a path, 5 meters wide, covering 

ground at intervals of only 3cm 119. 

Advantages: 

o It can detonate the landmines 

o Extremely safe for the operator 

o It is very easy to use 

Disadvantages: 

o No sophisticated sensors 

o Difficult to navigate 

 

Figure 4-18: ILDP system 

ILDP: The ILDP system consists of a teleoperated vehicle carrying three scanning 

sensors which operate while the system is in motion; a metal detector array (MMD) based 

on electromagnetic induction (EMI), an infrared imager (IR), ground penetrating radar 
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(GPR), and a confirmatory sensor which requires the system to be stationary and near a 

target of interest, consisting of a thermal neutron analysis (TNA) detector.5 

Advantages: 

o Highly sophisticated sensors 

o Fastest land mine clearing robot 

o Highly safe for the operator 

Disadvantages: 

o Training the operator is expensive 

 

 

Figure 4-19: SHADOW DEMINER 

Shadow Deminer is a robot capable of traversing an anti-personnel minefield 

carrying mine detecting sensors or video cameras. The robot is able to traverse rugged 

terrain and degrade gracefully in the event of damage. The Shadow Deminer for an eight-

legged vehicle with emergent walking behavior using pneumatic actuators and local 

materials where possible. These factors contribute to the simplicity of the basic vehicle 

and low cost if destroyed.  

Advantages: 

o Highly efficient sensors 

o Can climb inclines. 

o High resolution area 
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Disadvantages: 

o High cost of maintenance 

o High initial investment 

There are different ways that robot could help human in mine detection and mine 

clearing. Small autonomous vehicles equipped with different sensors could scan an area 

and determine the contaminated area. This phase when is done manually is very 

dangerous because deminers are working faster and talking more risks in compare to 

systematic search 120. Once the polluted area or the actual location of a mine was 

specified then the systematic search and neutralizing process can begin. Even a robot can 

go to a pre-specified location by avoiding obstacles and place a detonator or some 

chemical to destroy the mine.  

A light-weight small autonomous robot is an option for the mine clearing.  Such 

robot could be cheap enough in mass production for many humanitarian applications. It 

should carry small weight and size sensors (which is still an unsolved problem). There 

are major subsystems for the robot.  

Landmines are great treats to lives of millions of people and no perfect solution 

exists. In this section several state of the art mine clearing methods were investigated and 

some mine clearing robots were introduced. It also current status of international mine 

clearing activities were presented. The survey robot, which was developed by the authors, 

will be explained briefly and its applicability in mine clearing will be discussed. It can be 

concluded that much more research and development is needed to solve the global crisis 

of landmines.  
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4.19 Robot application case 2: soil sampling survey robot 

A survey robot was developed by Peter Cao, Masoud Ghaffari, and Ernie Hall at 

the Center for Robotics Research at the University of Cincinnati which can be modified 

for mine clearing purpose. The robot has several subsystems. The survey robot shown in 

Figure 4-20 is equipped with the GPS navigation system with supervised remote control 

ability.    

The overall function of the robot is to carry the soil sampling device to a targeted 

waypoint. Stop and let the soil sampling device sample the soil, and then send back 

sample data to the remote base.  

The computer communicates with the soil sampling tube via two RS232 ports. 

There are two motion units in the robot. The robot is guided by the GPS receivers with a 

bounded error of approximately 10 feet. On the robot navigation side, both wheels rotate 

a that navigate the robot from one spot to the next; on the soil sampling unit side, the 

linear actuator pushes the penetrometer down for soil sampling and lift up after that. The 

sampling unit could be equipped with chemical sensors or it the whole sensors could be 

replaced by other mine detecting sensors.  The original robot platform is a Friendly Robot 

lawnmower which cost only $500. The GPS system and the sensors will add an 

additional cost. 

The proposed sensor system for soil sampling was constructed and fully verified 

the concept of sample soil properties with autonomous mobile robot is feasible. The soil 

sampling system was demonstrated to the air force officers at Hurlburt Air force Base in 

November 2002. The robot finished designated tasks on site with a better than expected 

accuracy. This is the first time an autonomous soil sampling sensor system was 
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successfully integrated with a GPS guided mobile robot. The performance of this robot 

verified the concept that robot can take place of personnel for the soil sampling operation 

in unstructured environments. However, more needs to be done to add mine detecting 

sensors and proof the concept in a real mine field. 

 

Figure 4-20: Survey robot 

 Soil sampling can be labor-intensive, time consuming and even dangerous for 

humans. For example, soil strength sampling requires human labor in collecting samples 

and doing tests on-site in an unstructured environment or in a laboratory 121. One 

important goal of this research is to determine the resistance strength of the soil sub-

grade. The California Bearing Ratio (CBR) test is a way of quantifying the soil strength 

factor. A soil’s CBR value is an index of its resistance to shearing under a standard load 

compared to the shearing resistance of a standard material (crushed limestone) subjected 

to the same load. The CBR is the basis for determining the thickness of soil and 

aggregate layers used in the design of roads and airfields in the theater of operations 122. 

The bearing capacity of a soil is its ability to support loads that may be applied to it by an 

engineering structure, such as a building, a pavement on a highway, or a runway in an 

airport and the moving loads that may be carried thereon. A soil with insufficient bearing 
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capacity to support the loads applied on it would fail by shear, resulting in the structure 

moving or sinking into the ground. Bearing capacity is directly related to the allowable 

load that may be safely placed on a soil 122. 

 The CBR test is a simple penetration test developed to evaluate the strength of 

soil subgrades. The CBR test is standardized so we are able to rank soil strengths 

according to their CBR values: the stronger the subgrade, the higher the CBR reading; 

conversely, the softer the sub-grade, the lower the CBR reading. The CBR test consists of 

causing a plunger of a standard penetrometer to penetrate into a soil sample. The CBR 

test can be done in the laboratory, or in the field. Although it is most appropriate for fine-

grained soils, CBR can also be used to characterize aggregates for road base applications 

123.  

 The Global Positioning System (GPS) navigation gives the robot adaptive 

navigation ability. That is, starting from any point with any initial orientation, the robot 

can navigate to the targeted point. Even if the robot motion system is not very accurate, 

its motion errors can be compensated by continuous adjustments from GPS guidance. 

The proposed navigation controller allows the robot to interact with the environment 

much more accurately, much faster, and much more reliably and allows the robot to 

exhibit complex behaviors while taking into account multiple goals. For example, avoid 

nearby obstacles while performing long-distance navigation, or navigation to a long 

distance targeting point. 

 Figure 4-21 shows different views of the soil sampling robot. The soil sampling 

core is contained in an aluminum tube, which is mounted onto the bottom of the robot. 

The tube functions as sample core protector and force withstander. When the linear 
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actuator pushes the penetrometer into the ground, the linear actuator force is transferred 

to the aluminum bottom of the robot. 

 The penetrometer is connected with the load cell, and the load cell with the 

actuator. The actuator, when it functions, pushes the penetrometer into the ground at a 

constant speed. Therefore we can record the soil penetration force as a function of 

penetration depth. 

 
Figure 4-21: Survey robot structure 122 

 

4.20 Robot application case 3: snow accumulation prevention 

robot 

Snow is a major problem in many cities across the United States. Snow cleaning 

is a tedious and time/labor consuming task. When there is significant amount of snow, 

let’s say more than 2”, it is economical to utilize heavy snow cleaning equipment and 

remove the snow. Dealing with a small amount of snow is a different challenge. When 
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people wake up and see 1” of snow in their driveway they wish they had a way to prevent 

the snow from accumulating in the first place.  

Masoud Ghaffari along with Jay Lee and Mark McCrate designed and patented a 

snow prevention accumulation robot to answer such need. The can be preprogrammed 

and, with no human intervention, it can clear a predetermined area with its snow blower 

and prevent further accumulation with its salt spreader. The design considers the 

following criteria:  

- The work space is limited to a perimeter; a driveway or a parking lot   

- The robot should scan the whole area 

- An economical and affordable solution is desired  

- The amount of accumulated snow is less than 1” 

- Snow prevention and cleaning, and not snow shoveling, is desired  

Figure 4-22 shows the robot cleaning a driveway.   

 

Figure 4-22: Snow accumulation prevention robot 
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Chapter 5 : Perception Modeling 

 

 

 

 

 

 

“If the human brain were so simple we could understand it, we would be so simple we 
couldn't.” 

Lyall Watson (1939- ) 

 

 

 

According to Wikipedia1 “perception is one of the oldest fields within scientific 

psychology, and there are correspondingly many theories about its underlying processes. 

The oldest quantitative law in psychology is the Weber-Fechner law, which quantifies the 

relationship between the intensity of physical stimuli and their perceptual effects. It was 

the study of perception that gave rise to the Gestalt school of psychology, with its 

emphasis on holistic approaches.” 

                                                 
1  www.wikipedia.org  
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5.1 Approach I: Natural language perception-based control 

Information which is conveyed by propositions drawn from a natural language 

will be said to be perception-based 53. Natural language perception-based control (NLPC) 

can be defined as “perceiving information about the dynamic environment by interpreting 

the natural language and reacting accordingly”.   

In the NLPC, perceptions are not dealt with directly. Instead, NLPC deals with the 

descriptions of perceptions expressed in the natural language. Therefore, propositions in a 

natural language play the role of surrogates of perceptions. In this way, manipulation of 

perceptions is reduced to a familiar process, manipulation of propositions expressed in a 

natural language 43. 

Table 5-1: Comparison of measurement and perception-based information 

Information Data Example 

Measurement-based Numerical There is a obstacle 20.2 feet away 

Perception-based Linguistic There is a ramp in front 

 

The problem is how to compute on perceptions and use it for robot control. To be 

realistic, the proposed model applies some assumptions to restrict the scope of project.  

• Application of computing theory of perceptions is limited to the robot control. 

• The robot’s operating environment is limited to what has been defined for the 

international ground vehicle competition (IGVC) navigation course. It is a semi-

structured environment with lines and obstacles (see Figure 5-1).   

• Natural language processing is limited to simple propositions related to the robot 

navigation.  
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• The robot works on the semi-supervised mode by receiving the feedback from the 

environment.  

• Less precision, which is an intrinsic part of perception, in exchange to the lower 

cost and complexity of sensory system, is accepted.  

The robot control implementation has two phases. The first phase is the 

instructional mode. The commands were given to the robot and robot followed the 

instructions based on what operator perceives. Table 5-2 shows some examples of these 

commands.   

Table 5-2: Example of instructional control commands 

What Where How much 

MOVE LEFT A LITTLE 
MOVE FORWARD  UNTIL SEE OBSTACLE/LINE 

DISAPEAR 
GO TO OBSTACLE UNTIL VERY CLOSE/CLOSE 
FOLLOW KNOWN 

ROUTE 
UNTIL it is DEFFERNT 

LOOK From RIGHT 
CAMERA 

UNTIL SEE A 
LINE/OBSTACLE 

CONTINUE In 
AUTOMODE

 

STOP HERE WITHIN 1 FOOT 
 

The second mode is the declarative mode. In this mode the environment was 

described to the robot with simple propositions. The robot should make its movement 

decisions based on what is described to it. Propositions are limited to what is expected in 

the international ground vehicle competition course. Table 5-3 gives an idea about some 

of these propositions.  
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Table 5-3: Examples of propositions in the declarative mode 

Proposition Possible action  

There is an obstacle in the front 
left 

Move a little bit to right 

Left line is disappearing Switch to the right camera for line following 
The obstacle is very close in front Make a big turn 
There is a obstacle in front close 
to the left line 

Turn to right and then left 

5.1.1 Model context  

The international ground vehicle competition course was used as a test-bed. In the 

navigation challenge of this contest there are white lines to follow, which sometimes 

disappear, and barrels to avoid. This course declared to the system by an operator and the 

robot was supposed to navigate through the path. Figure 5-1 shows the competition 

course. Figure 5-2 is the picture of an unmanned ground vehicle demonstrated in the 11th 

IGVC in Detroit and taken by the author.          

 

Figure 5-1: IGVC competition course 

 

Figure 5-2: An UGV by General Dynamics 

5.1.2 Perception modeling and creative control  

Sherry Liao et al. developed a creative control model as shown in Figure 5-3 6, 124. 

The architecture is proposed according to the creative learning theory 125. In this proposed 

diagram, there are three important components: task control center, criteria (critic) 
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knowledge database, and learning system. Adaptive critic learning method is a part of the 

creative learning algorithm. However, creative learning with decision-making capabilities 

is beyond the adaptive critic learning. The most important characteristics of the creative 

learning structure are: (1) Brain-like decision-making task control center, entails the 

capability of human brain decision-making; (2) Dynamic criteria database integrated into 

the critic-action framework, makes the adaptive critic controller reconfigurable and 

enables the flexibility of the network framework; (3) Multiple criteria, multi-layered 

structure; (4) Modeled and forecasted critic modules result in faster training network.  

It is assumed that we can use a kinematic model of a mobile robot to provide a 

simulated experience to construct a value function in the critic network and to design a 

kinematic based controller for the action network. Furthermore, the kinematic and 

dynamic models may also be used to construct a model-based action in the framework of 

the adaptive critic-action approach. In this algorithm, we build a criteria (critic) database 

to generalize the critic network and its training process. It is especially critical when the 

operation of mobile robots is in an unstructured environment. Another component in the 

diagram is the utility function for a tracking problem (error measurement). A creative 

controller is designed to integrate the domain knowledge and task control center into the 

adaptive critic controller. It needs to be a well-defined structure such as in the 

autonomous mobile robot application as the test-bed for the creative controller. 
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Figure 5-3: Proposed CL Algorithm Architecture 6 

5.1.3 Adaptive critic control 

Adaptive critic (AC) control theory is a component of creative learning theory. 

Werbos summarized recent accomplishments in neurocontrol as a “brain-like” intelligent 

system. It should contain at least three major general-purpose adaptive components: (1) 

an Action or Motor system, (2) an “Emotional” or “Evaluation” system or “Critic” and 

(3) an “Expectations” or “System Identification” component 126.  

“Critic” serves as a model of the external environment to be controlled; solving an 

optimal control problem over time may be classified as adaptive critic designs (ACD). 

ACD is a large family of designs which learn to perform utility maximization over time. 

In dynamic programming, normally the user provides the function U(X(t), u(t)) , an 

interest rate r, and a stochastic model. Then the analyst tries to solve for another function 

J(X(t)), so as to satisfy some form of the Bellman equation shown in Eq. (5-1) that 

underlies dynamic programming 3:  

…
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where “<>” denotes expected value.  

In principle, any problem in decision or control theory can be classified as an 

optimization problem. Many ACDs solve the problem by approximating the function J. 

The most popular methods to estimate J in ACDs are heuristic dynamic programming 

(HDP), Dual Heuristic Programming (DHP) and Globalized DHP (GDHP) 126, 127. HDP 

and its ACD form have a critic network that estimates the function J (cost-to-go or 

strategic utility function) in the Bellman equation of dynamic programming, presented as 

follows: 

 

   

Where γ is a discount factor (0<γ<1), and U(.) is the utility function or local cost. An 

alternative approach referred to as Dual Heuristic Programming (DHP) has been 

proposed. Here, the critic network approximates the derivatives of the future cost with 

respect to the state variable. It has been proved that DHP is capable of generating 

smoother derivatives and has shown improved performance when compared to HDP 128, 

129. Werbos first proposed the idea of how to do GDHP130. Training the critic network in 

GDHP utilizes an error measure which is a combination of the error measures of HDP 

and DHP.  

5.1.4 Task Control Center (TCC) 

The task control center (TCC) can build task-level control systems for the creative 

learning system as shown in Figure 5-4 125. By “task-level”, we mean the integration and 



 99

coordination of perception, planning and real-time control to achieve a given set of goals 

(tasks). TCC provides a general task control framework, and it is intended to be used to 

control a wide variety of tasks and permits responsive actions based on mission 

commands, on interactions with other robots. Although TCC has no built-in control 

functions for particular tasks (such as robot path planning algorithms), it provides control 

functions, such as task decomposition, monitoring, and resource management, that are 

common to many applications. The particular task built-in rules in the dynamic database 

matches the constraints on particular control schemes or sub-tasks or environment 

allocated by TCC. The task control center acts as a decision-making system. It integrates 

domain knowledge or criteria into the database of the adaptive learning system. Task 

control architecture for mobile robots provides a variety of control constructs that are 

commonly needed in mobile robot applications, and other autonomous mobile systems. 

Integrating TCC with adaptive critic learning system and interacting with the dynamic 

database, the creative learning system could provide both task-level and real-time control 

or learning within a single architectural framework.  

 

Figure 5-4: The structure of task control center 

5.1.5 Perception-based task control center 

In the presented model the TCC acts as the highest level of decision making. It 

processes perceptions and the sensory information. This is the area that the human brain 

shows its extraordinary abilities.  

Task Control Center  

IInntteerr--PPrroocceessss    
CCoommmmuunniiccaattiioonn   Task Description Language (TDL)  

Multiple (TDL) 
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The problem can be explained as follow. There are a collection of propositions 

expressed in the natural language about the robot environment and the goals. These 

propositions could come from an online operator or in the fully autonomous mode they 

could be stored in the robot or sensed and perceived from sensory information. From 

these propositions we wish to infer proper tasks for the TCC. In the perception-based 

module the answers could be in the form of natural language.  

The perception-based task control center should follow a human-like logic. 

Consider an example suggested by Kubota et al. about how human drive 4. In driving a 

car when the road is wide and without obstacle, drivers pay attention to the far area ahead 

and speed up. However, in a crowded situation they pay attention to near area, and should 

slow down. In this case the relationship between the attention range and speed has been 

changed dynamically based on the facing environment state. It shows how human brain 

approaches the problem differently.  

A similar approach was taken by Stanford team who won the 2005 DARPA 

Grand Challenge. “After the competition, Thrun reflected that one of the key advantages 

of his Stanford team's Stanley robot, which won the race and the $2 million, was its 

vision-based speed switch. Stanley uses a simple but powerful form of machine learning 

to hit the gas whenever it spots a smooth road extending into the distance” 131. 

Figure 5-5 shows the flow of information in the perception-based task control 

center. First, sensory data from environment will be collected and processed to 

information. In the IGVC context and Bearcat Cub robot there are GPS, laser, digital 

cameras, and stereo vision cameras that collect information from the environment. Then 

collected information will be perceived.  
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Figure 5-5: Flow of information in perception system 

 
 

A human-like perception is the one that differentiates between coarse and fine 

perceptions. In the coarse perception, a broader view is the subject of attention. In an 

analogy with Bellman equations, coarse perception is an estimation of the function J 

(cost-to-go or strategic utility function). The fine perception is when the system tries to 

solve a local problem. For example when there is an immediate obstacle in front of the 

robot, the main priority or subject of attention is avoiding that obstacle. That is analogous 

to the local utility function or U in Bellman equation. Table 5-4 represents examples of 

sensing to action process.  
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Table 5-4: Example of sensing to action process 

Coarse 
Sensing 

Coarse 
Perception 

Fine 
Sensing 

Fine 
Perception 

Task 
Selection 

Criteria Action –
Iteration 

Look 
around 

Where am I Zoom in on 
certain 
areas 

What is 
that 

What can I 
do 

How well 
can I do it 

Do it  

  Navigation 
challenge 
start 

Load 
waypoints 

Navigation 
challenge 

Go to next 
waypoint 

Error of 
location 

Go to 
waypoint 

  Autonomous 
challenge 
start 

Look for 
lines 

Find lines 
and 
obstacles 

Go down 
path and 
avoid 
obstacles 

Track error 
and ticket 
error 

Go along 
path 

5.1.6 Implementation methodologies 

Among soft computing methodologies, which were explained in chapter 3, fuzzy 

theory is a preferred choice to implement the proposed perception framework. Fuzzy 

theory provides linguistic representation such as ‘close’, ‘far’, and ‘safe’. Fuzzy system 

implements mapping from its input space to output space by a number of fuzzy if-then 

rules. In the autonomous navigation problem, fuzzy system enables to deal with 

incompleteness and uncertainty of information which comes from the environment 132. 

 Figure 5-6 shows a basic fuzzy approach for the task control center. The input of 

this system is sensory data collected from the environment. The output is suggested tasks 

that will be entered to the dynamic knowledge database module.  

 

Figure 5-6: A basic fuzzy model 
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 Fuzzy rules will be used to generate tasks. In a basic fuzzy inference system the 

input variables are perceptual information and the output is the desired task. When n is 

the number of perceptual information, r the number of fuzzy rules, and s that of output 

tasks, a general inference rule can be written as: 

if 1p is 1,lA and 2p is 2,lA  … and np is nlA ,   then  1y is 1,lw and 2y  is 2,lw  … sy  is slw ,  

where ip is perceptual input information and jy  is task output (i=1,2,…,n. ; j=1,2,…,s) 

and ilA , is the membership function (l=1,2,…,r). 

5.1.6.1 Neuro-Fuzzy methodology 

 Fuzzy systems are used when expert knowledge about the process is available, 

while artificial neural networks are useful when enough process data are available or 

measurable. Both systems are capable of dealing with non-linear problems. The main 

difference is that neural systems are treated in a numeric quantitative manner, whereas 

fuzzy systems are capable of symbolic qualitative processing.  

Another perception-based implementation approach for TCC is neuro-fuzzy 

methodology. Neuro-fuzzy combines the features of both fuzzy theory and artificial 

neural networks. Hayashi and Buckley proved that 1) any rule-based fuzzy system may 

be approximated by a neural net and 2) any neural net (feedforward, multilayered) may 

be approximated by a rule-based fuzzy system 133. This kind of equivalence between 

fuzzy rule-based systems and neural networks is also studied by others 133-135. 

   Neuro-fuzzy computing enables one to build more intelligent decision-making 

systems. This incorporates the generic advantages of artificial neural networks like 

massive parallelism, robustness, and learning in data-rich environments into the system. 
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The modeling of imprecise and qualitative knowledge as well as the transmission of 

uncertainty are possible through the use of fuzzy logic.  

 Neuro-fuzzy hybridization is done broadly in two ways: a neural network 

equipped with the capability of handling fuzzy information (fuzzy-neural network (FNN)) 

and a fuzzy system augmented by neural networks to enhance some of its characteristics 

like flexibility, speed, and adaptability (neural-fuzzy system (NFS)) 136, 137, 135. For the 

TCS model, a neural-fuzzy system is proposed.  

  A neural-fuzzy system (NFS) is designed to realize the process of fuzzy 

reasoning, where the connection weights of the network correspond to the parameters of 

fuzzy reasoning 138, 135. Using the backpropagation-type learning algorithms, the NFS can 

identify fuzzy rules and learn membership functions of the fuzzy reasoning. To goal is to 

design neural networks guided by fuzzy logic formalism to implement fuzzy logic and 

fuzzy decision-making, and to realize membership functions representing fuzzy sets. A 

neuro-fuzzy system is shown in Figure 5-7.  

 

Figure 5-7: Structure of a neuro-fuzzy system 

 

W0 
W1 

Fuzzy input layer 
Rule-base layer Fuzzy output

Outputs  

Wk 

Wn 

x1 

x2 Inputs  



 105

5.2 Approach II:  estimation-based perception modeling  

In robot navigation building an exact world model in a dynamic environment is 

not feasible or practical in many situations. Estimation theory provides foundations and 

tools to deal with uncertainty that is inherent of such models. Estimation theory has been 

known and studied in control theory for a while. Weiner, who is a pioneer in the area of 

Cybernetics, and Kolmogoro, with his familiar statistical test, independently developed 

the foundation of estimation theory 139, 140.  Kalman filter that was introduced in 1960 was 

a major breakthrough in navigation theory 141, 142. Kalman introduced a recursive digital 

algorithm for integrating navigation sensor data to achieve optimal overall system 

performance. 

Application of estimation theory in mobile robot modeling has been inspired by 

several papers by Smith 143, Durrant-Whyte 144, and Faugeras 145. Brooks and Chatila also 

published ad-hoc techniques for manipulation of uncertainty 146, 147. Crowley has applied 

estimation theory to model uncertainty of sensor data and perception for mobile robots 

148-150. A more theoretical and detailed approach toward estimation theory and it 

application in tracking and navigation has been introduced by Bar-Shalom et al. 151.  

Estimation theory and Bayesian approach have been applied more extensively in 

vision than dynamic world modeling.  

The perception modeling is based on some assumptions.  

1. Perceptions are described by propositions. 

2. A proposition is a carrier of information. 

3. The meaning of a proposition, P, is represented as a generalized constraint which 

defines the information conveyed by P. 
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4. A proposition, P, include a set of properties and associations based on spatial 

positions. 

5. Each proposition comes with a confidence factor.  

The model presented in Figure 5-8 includes several steps. In the first step 

information from surrounding environment will be perceived. Sensory information 

should be converted to a language that lends itself to the estimation theory operations.  

The uncertainty is an inherent part of the robot dynamic environment and also subject of 

estimation theory. Therefore, each proposition, that conveys perceived information, 

would have a confidence value that represents the uncertainty.   

The next step is to estimate navigation variables and parameters based on 

perceived information. These values will be compared by previous information and will 

be fed to the robot model in ‘matching and modeling’ stage. Finally, navigation decisions 

will be made and process will be repeated and updated. 

 

Figure 5-8: Estimation-based model 
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When a proposition is converted to a numerical form, there are well defined 

techniques to investigate the model further 149.    

In this case the Kalman filter prediction equations provides the means for 

predicting the state of the model, the Mahalanobis Distance provides a simple measure 

for matching, and the Kalman filter update equations provide the mechanism to update 

the property estimates in the model.  

A dynamic world model, )(tM , is a list of propositions which describe the "state" 

of a part of the world at an instant in time t. 

Model: { })(),...,(),()( 21 tPtPtPtM m≡    Eq. (5-3) 

Each )(tPi describes a part of the world model and includes conjunction of estimated 

properties, )(ˆ tX i , and a confidence factor )(tCFi .   

Proposition: { })(),(ˆ)( tCFtXtP iii ≡       Eq. (5-4) 

Newer observations have a lower confidence factor. When an observation 

confirms its previous ones, a higher confidence factor will be assigned to that particular 

segment. If no observation of the segments occurs in a few cycles, it will be considered as 

noise and will be removed from the model. When an observation becomes confident, it 

will be kept in the model for several cycles, even if it is missed from observations. The 

number of cycle depends on the system application.  

Consider the IGVC robot example mentioned in the previous section. Detection of 

a line is an observation with a confidence factor. When observations of points on the line 

are repeated, a higher confidence factor will be assigned to the line detection proposition. 

Those observations will remain in the model even if they are not repeated for several 
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cycles. In this case, the robot may have moved further and the line is no longer in its field 

of view. Such information will remain in the model as long as they are relevant and 

useful for navigation. Observation of random bright points – in IGVC example – which 

will not be repeated will be removed for the model as noise.  

A proposition can represent an estimate of a subsystem, or a part of the world, 

with association among N properties of a vector, )(ˆ tX . 

{ })(ˆ),...,(ˆ),(ˆ)(ˆ
21 txtxtxtX n≡    Eq. (5-5) 

The actual state of the world, )(tX , in unknown but it is estimated by an 

observation process and observation vector of )(tY . The observation process comes with 

a random noise, )(tN 149. 

                        )()()( tNtXtY +=              Eq. (5-6) 

)(tX  is not known but its estimate, )(ˆ tX , can be calculated from observations. At each 

cycle, combination of a predicted observation )(ˆ tY and an actual observation )(tY will 

provide an estimate value, )(ˆ tX . The difference between )(tY  and )(ˆ tY  will be used to 

update the estimate )(ˆ tX  in the following way. 

Estimates of uncertainty for )(ˆ tX  and )(tY  are needed for this process. The 

uncertainty can be seen as deviation between the estimated and actual vectors of the 

world,  )(ˆ tX  and )(tX .  The expected value of deviation is approximated by a 
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covariance matrix )(ˆ tC  which represents the square of the expected difference between 

the estimate and the actual world state. 

                         [ ][ ]{ }T
tXtXtXtXEtC )(ˆ)(.)(ˆ)()(ˆ −−≡                      Eq. (5-7) 

The uncertainty estimate provides two crucial roles: 

1) It provides the tolerance bounds for matching observations to predictions, and 

2) It provides the relative strength of prediction and observation when calculating 

a new estimate. 

Because )(ˆ tC  determines the tolerance for matching, system performance will 

degrade rapidly if we under-estimate )(ˆ tC . On the other hand, overestimating )(ˆ tC  may 

increase the computing time for finding a match 149. 

In the next phase of modeling, the value for )(* ttX ∆+ will be predicted based 

on the estimated vector )(ˆ tX . That corresponds to calculation of predicted uncertainty, 

)(* ttC ∆+ , based on estimated uncertainty )(ˆ tC . Temporal derivatives of the )(ˆ tX  

properties and covariance’s between the properties and their derivatives will be used for 

such prediction. The estimated derivatives can be considered as properties of the vector 

)(ˆ tX .  

5.2.1 The first order prediction  
In the first order prediction only the first temporal derivative is estimated. For the 

higher number of properties and the higher order of derivatives the same procedure can 

apply. Also in this case the time variable t is continuous and the time interval, T∆ , can 

vary.  
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 The derivatives can be added to the proposition vector )(tX . Therefore, if there 

are N properties in )(tX , the vector will include 2N elements that are N properties and N 

first derivatives. However, the observation vector )(tY includes only N elements.     

To predict the next value, )(* Ttx ∆+ , of the property )(ˆ tx  of the vector )(ˆ tX , 

an estimation of a first order temporal derivative, )(ˆ tx′ , is needed. 

t
txtx

∂
∂

=′ )(ˆ)(ˆ  

A Taylor series can be used to predict the change in )(tX . In the case of first 

order prediction, all higher order terms are represented by the random vector )(tV , 

approximated by its estimate )(ˆ tV . The mean for )(tV  is assumed to be zero, in most 

cases, and its variance is represented by )(tQ . 

                                      { }TtVtVEtQ )()()( =              Eq. (5-8) 

Therefore, the prediction of a property can be summarized as: 

                     )(ˆ)(ˆ)(ˆ)(* tVT
t
txtxTtx +∆

∂
∂

+=∆+               Eq. (5-9) 

Consider the case that there are two properties )(1 tx  and )(2 tx for the proposition )(ˆ tX  

. 
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In the matrix form the prediction can be written as: 
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)()(ˆ:)(* tVtXTtX +=∆+ ϕ  

Where ϕ  is: 
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With the prediction of )(* TtX ∆+ there is an uncertainty that can be calculated 

based on the covariance between each property, )(ˆ tx , and its derivative. That 

uncertainty, )(ˆ xQ , can model the effect of other derivatives. The second prediction 

equation is 149: 

                                          )(ˆ)(ˆ:)(* tQtCTtC xx
T

x +=∆+ ϕϕ                      Eq.  (5-10) 

5.3 Approach III: spatial knowledge modeling for autonomous 
challenge   

5.3.1 Spatial knowledge 

Humans use spatial relationships to describe their environment and to navigate, 

for example, a pothole or to veer around a desk and pass through a doorway. Recent 

cognitive models suggest that people use these types of spatial knowledge to perform 

many daily tasks. They also emphasize in importance of spatial knowledge and how it 

develops 18, 152, 153. 

Spatial cognition includes acquisition, organization, use, and revision of 

knowledge about spatial environments 154. Natural language descriptions of spatial 

situations can be viewed as the linguistic image of mental/internal representations of 
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these situations. In particular, this concerns the partial correspondence between the 

spatial inventory of natural language and the ‘cognitive ontology’ of space. In this 

framework, the following problem areas require attention (among others): Which 

cognitive entities can we assume to exist in the system of natural language 

(dimensionality, shape, orientation, etc.)? 

The spatial cognition priority program is particularly oriented towards cognitively 

oriented sub areas of computer science / artificial intelligence, psychology, linguistics, 

anthropology, and philosophy which are concerned with complex behavior in dealing 

with physical space.  

Different forms and representations of spatial information can be identified in 

systems navigating in complex surroundings. One of the most common distinctions in 

spatial navigation research concerns the difference between landmark, route, and survey 

knowledge of an environment 154. In human navigation three distinctive terms should be 

defined, landmarks, routes and survey knowledge. 

Landmark: A landmark is a unique object at fixed location. It could be a visual 

object, odor, sound, or a tactile percept. A landmark is a decision making point. It could 

be a confirmation for continuing the previous pattern and decision or it could result to a 

new decision.  

Route: A route corresponds to a sequence of objects or events as experienced 

during navigation (e.g. tunnels, trails, roads, corridors). Sequences can either be 

continuous or discrete. Examples of objects are pictures and movements, and examples of 

events are decisions like left or right turns.  
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Survey knowledge: Survey knowledge is a navigation environment model that 

contains routes and landmarks. A map is an example of the survey knowledge.  

Information in route knowledge is accessed sequentially as an ordered list of 

locations. Survey knowledge in the other hand is considered as an integrated model of 

navigation environment. It enables the inference of spatial relationship between the 

arbitrary pairs of locations. In a set theory approach landmark, route, and survey 

knowledge can be related with a subset relationship as shown in Eq. (5-10).  

                      ledgesurveyknowroutelandmark ⊂⊂                              Eq. (5-10) 

Route knowledge can be acquired in different ways. Exposure to a route can lead 

to a series of connections. This route knowledge can be used in similar situations. For 

example driving in a US city downtown may familiarize a driver with a pattern that can 

be used in similar situations. 

The study of route and survey knowledge has received a great deal of attention in 

spatial cognition research 154. 

5.3.2 Implementation of spatial knowledge model 

The University of Cincinnati robot team has designed and constructed a robot, the 

Bearcat Cub as shown in Figure 5-9, for the Intelligent Ground Vehicle Competition, the 

DARPA Grand Challenge, and many other potential applications. The Bearcat Cub is an 

intelligent, autonomous ground vehicle that provides a test-bed system for conducting 

research on mobile vehicles, sensor systems and intelligent control.  

The Bearcat Cub was used as a test bed to implement the human-like spatial 

knowledge model in a robot. The robot has two cameras for line following, a laser 

scanner and a stereo vision system for obstacle detection and spatial modeling, a Global 
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Positioning System (GPS) for navigation. It has different modes of run including manual 

control, autonomous challenge that includes line following and obstacle avoidance, voice 

control, and GPS navigation. It also utilizes a hybrid power system. 

A model similar to what was explained in the human navigation modeling was 

implemented in the bearcat cub robot. A 200 meter long, 8 meter wide route was marked 

by flags. The route had some sharp turns and some obstacles were placed randomly. Five 

points were marked by GPS as landmarks. The robot was supposed to stay in the route 

and reach the landmarks.  

Several tests were conducted and the robot finished the course successfully. Since 

the GPS accuracy was limited to 10 feet, in some runs the robot reached to a certain 

distance of the landmarks. To offset the error, the results of each run were used to update 

the GPS coordinates of the landmarks. This corresponds to the idea of survey knowledge 

in the human navigation model.  

A laser scanner was used to detect the obstacles. A remotely controlled toy car 

was driven in the robot route to create a moving obstacle. The robot was able to avoid the 

stationary and moving obstacles successfully.  

Humans drive and navigate differently and there is no unique path. However, the 

idea of smooth driving and avoiding sudden movements is common in human navigation. 

A similar approach was used in the robot navigation. One example of such approach is 

shown in Figure 5-10.  

The robot detects a path that could be a line, a wall or any other indicator of a 

need for changing the direction. The bearcat cub has two powered wheels and a caster 

wheel as shown in Figure. 5-9. To change the direction, the wheels should move with 
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different velocities. Equation 5-11 represents the speed of each wheel for a robot with the 

width of w and the turn angle of θ. The t is the interesting part of the equation. It is the 

expected time for a turn. By its nature t is a fuzzy variable. It was used to add a human-

like feature to this experiment. A table of expected values of t based on human perception 

for different values of θ and velocities was used. This way the robot was able to avoid 

obstacles, reach landmarks, and follow the route smoothly.  

      

Figure 5-9: The Bearcat Cub robot 

 From two points, p1 and p2, along the line, the robot detects the orientation of the 

line with respect to the robot. The appropriate steering angle, θ, is calculated to make the 

robot parallel to the line. In addition, a certain hugging distance, h, must also be 

maintained with the midpoint of the two points on the line.  

 This architecture is influenced by psychological models of human navigation as 

explained. It consist three levels of landmark, route, and survey knowledge. Humans use 

this kind of spatial knowledge to navigate  
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Figure 5-10: Top view of the robot and its steering angle θ 

                         Vleft  = Vcenter  – (θwt/2)    Eq. (5-11) 

Vright = Vcenter + (θwt/2) 
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Chapter 6 : Perception Optimization 

 

 

 

 

 

“Do what you know and perception is converted into character.” 

Ralph Waldo Emerson (1803 - 1882) 

 

 

 

 

In this section, DARPA Grand Challenge, DARPA Urban Challenge, and 

Intelligent Ground Vehicle Competition (IGVC) will be used interchangeably as 

examples for the foundation of perception optimization theory. This theory tries to apply 

an optimization approach to formulate the design process, as well as navigation 

algorithm, of a robot using human perception.  

6.1 DARPA Urban Challenge problem  

The Defense Advanced Research Projects Agency (DARPA) plans to hold its 

third Grand Challenge competition in 2007, which will feature autonomous ground 
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vehicles executing simulated military supply missions safely and effectively in a mock 

urban area2. 

There are several missions that each vehicle needs to complete. These are 

examples according to DARPA:  

Mission 1: Complete a mission defined by an ordered series of checkpoints in a 

complex route network. The vehicle will have 5 minutes to process a mission description 

before attempting the course. 

Mission 2: Interpret static lane markings (e.g., white and yellow lines) provided 

with the route network definition file and behave in accordance with applicable traffic 

laws and conventions. 

Mission 3: Exhibit context-dependent speed control to ensure safe operation, 

including adherence to speed limits. 

Mission 4: Exhibit safe-following behavior when approaching other vehicles from 

behind in a traffic lane. This includes maintaining a safe-following distance. 

Mission 5: Exhibit safe check-and-go behavior when pulling around a stopped 

vehicle, pulling out of a parking spot, moving through intersections, and in situations 

where collision is possible. 

Mission 6: Stay on the road and in a legal and appropriate travel lane while en 

route, around sharp turns, through intersections, and while passing. The route network 

definition file will specify the GPS coordinates of the stop signs. 

                                                 
2 http://www.darpa.mil/grandchallenge/index.asp  
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6.2 Problem formulation  

The contest missions can be divided into smaller problems. The question is how 

to formulate the designer expertise and perception in this process with an optimization 

approach. The concept of Quality Function Deployment (QFD) will be used for problem 

formulation.   

Quality Function Deployment is a decision-making tool that has been used to 

collect the voice of expert and human perception in product and service development, 

brand marketing, and product management. QFD was originally developed by Yoji Akao 

and Shigeru Mizuno in the 1960s. The first published article was in 1966 by Oshiumi of 

Bridgestone Tire. In the last 20 years this technique has been embraced by US companies 

and is being implemented in Six Sigma and ISO procedures 155.   

Table 6-1 represents relationship between missions (WHATs) and criteria 

(HOWs). The symbol in each cell represents perception of affinity between the mission 

and the criterion. This measure could come from the expert, survey, literature, and so on.        

Table 6-1: Criteria matrix 

What\How Importance Avoid 
obstacle  

Detect line Minimize 
distance to 
waypoint 

Smooth 
move 

Keep 
distance 
from line 

Mission 1  VH VH M L L M 
Mission 2 H M VH L L H 
Mission 3 VH H VH VH M M 
Mission 4 VH VH H VH M H 
Mission 5 VH H VH H N/A H 
Relative 
weight  

 
0.19 0.20 0.17 0.28 0.16 

 
The second column is the importance of each mission. The numbers in this 

column would be the same if missions are equally weighted. Numbers 1-5 were assigned 
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to the symbols and after considering the importance of each mission, the relative weight 

of each criterion was calculated as shown in the last row.  

To capture human perception in the robot design and formulate the optimization 

problem, the second iteration of QFD has been shown in Table 6-2. HOWs (i.e. the 

criteria) in the first table have been converted to WHATs in the second table. Therefore, 

what is called mission in this table is different from that in Table 6-1. To achieve lower-

level missions (e.g. avoiding obstacles) different sensory systems are required. Table 6-2 

shows the relative importance of each sensor.  The last row shows the relative weight of 

each sensor in the overall design. Fields in Tables 6-1 and 6-2 are just examples of what 

could be explored in this process.     

Table 6-2: Sensor matrix 

What\How Importance GPS Laser Stereo 
vision 

Camera Compass  

Avoid 
obstacle  

VH L VH VH M L 

Detect line  VH N/A N/A VH VH N/A 
Minimize 
distance to 
waypoint  

H VH M M M H 

Move 
smoothly 

M L M L L H 

Keep 
distance from 
line  

VH N/A L H VH H 

Relative 
weight 

 0.11 0.17 0.27 0.26 0.18 

 
More iterations of QFD can be performed to formulate experts’ perceptions and 

clarify different aspects of robot development.  

6.3 Perceptual state 

Sensors collect information from a robot’s environment. Then the robot needs to 

decide the next action based on the perceived information. This section focuses on 
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perception optimization. Figure 6-1 shows this process. How to act and navigate in an 

optimal fashion, after the decision has been made, is a problem that has been studied by 

others 6, 7.   

 
Figure 6-1: World-robot interaction 

The subject of interest is that which was called criteria in Table 6-1 and missions 

in Table 6-2 (relative to their roles in each phase). This can be defined as perceptual 

states of the agent. 

Agent: An agent is a system that perceives its environment, acts on it, and pursues 

its agenda to change what it will sense in the future. In this context, the words agent and 

robot will be used interchangeably.    

Perceptual state: The state of an agent which represents the criteria of a higher 

level system. A comparison between Tables 6-1 and 6-2 provides an example for this 

definition. Criteria such as ‘avoid obstacle’, ‘detect line’, and ‘move smoothly’ are 

examples of perceptual states of the agent.  

6.4 Analogy with human perception  

The perceptual state of the agent is quite similar to human state of mind. Consider 

the daily activities of a student as an example. Studying for next week’s exam is a 
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concern- a state of mind- for the first two hours. The student may continue studying (or 

think about studying) until he/she switches to the next state. If there is a strong 

reward/punishment for staying in the current state, he/she tends not to change the state 

(continue studying). If the current state is satisfied (ready for the exam), the student most 

likely will move to the next state (e.g. chatting online). A good (rational) student is one 

who tries to maximize his rewards over a period of time. He/she may plan his daily 

activities accordingly. The good student has a sense of reward, or satisfaction, for 

different activities over a period of time. Choosing the right sequence of activities 

(different states of mind), and adjusting those activities according to information 

collected from the environment, is the way the student can optimize his/her rewards.  

Perception modeling and optimization for robot navigation would follow a similar 

path. Consider the IGVC example illustrated in Figure 6-2. 

 
Figure 6-2: The IGVC course 
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The robot perceptual state is avoiding immediate obstacles in front of it. 

Simultaneously, other perceptual states are in the robot’s horizon: ‘following lines’, 

‘moving smoothly’, or ‘moving fast’ are other possible states. Based on sensory 

information, the robot may stay in ‘avoiding obstacle’ mode or may switch to another 

state. In each perceptual state a different action may be taken. Sensory information 

provides the result of each action and how appropriate they have been. Figure 6-3 is an 

example of this process.  

State Avoid obstacle Avoid obstacle Follow line Go to waypoint 
Action  Turn left Turn left Turn right  

slightly 
Accelerate 

 T1 T2 T3 T4 

 
 
 

From time T1 to T2 the agent does not change its perceptual state. In both states it 

tries to avoid obstacles. Then it perceives it more rewarding to go to the state of ‘follow 

line’. The question is: how should the agent switch to different perceptual states to 

maximize its reward.  

6.5 Markov decision process  

A Markov decision process (MDP) can model this problem. For simplification, a 

discrete time model has been chosen. However, it is possible to use continuous models as 

well 156, 130.  

In the discrete time model at each time step t = 0, 1, 2, 3, … the robot decides to 

update its state and chooses the next action. The following terminology will be used 

according to Sutton and Barto 157:  

• Sst ∈ , where ts is the state at step t  and S is the set of possible states 

Time

Figure 6-3: State-action over time 
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• )( tt sAa ∈ , where )( tsA  is the set of actions available in state ts and ta is 

an action 

• Rrt ∈ , where tr is reward received after taking action ta     

• tπ , where ),( astπ is the probability of aat = if sst = . Deciding which 

action to take is called policy. 

• γ , discount factor that reduces the weight of future rewards in compare to 

current one 

• )(*
tsV , the optimum state-value function 

• πV , the state-value function for policyπ  

• πQ , the action-value function for policyπ . 

At each time step, a reward coming from sensors will be given to the robot from 

its environment. This approach is called reinforcement learning. The goal of the robot is 

to maximize the total amount of reward, not the immediate reward, it receives. In a 

formal way it can be written as:  

∑
=

++=
T

k
kt

k
t rR

0
1γ        Eq. (6-1) 

If the robot is in state s  and takes action a , then the transition probability of each 

possible next state, s′ , is: 

{ }aassssP ttt
a
ss ==′== +′ ,Pr 1        Eq. (6-2) 

And the expected value of the next reward is: 
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{ }ssaassrER tttt
a
ss ′==== ++′ 11 ,,      Eq. (6-3) 

A policy,π , is a mapping from each state, Ss ∈ , and action, )(sAa ∈ , to 

the probability ),( asπ of taking action a  when in state s . The value of a state s  under 

a policyπ , denoted )(sV π , is the expected return when starting in s  and following 

π thereafter. )(sV π  can be defined as:  

{ }
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π   Eq. (6-4) 

The value of taking action a  in state s  under a policyπ , denoted ),( asQπ , as 

the expected return starting from s , taking action a , and thus following policyπ :  

{ }
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⎬
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⎩
⎨
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∑ aassrEaassREasQ ttkt
k

k
ttt ,,),( 1

0
γππ

π  

A policy π is superior than policy π ′ if its expected return is greater than or 

equal to that of π ′ . That means ππ ′≥ , if and only if )()( sVsV ππ ′≥ for all Ss∈ . 

The optimum policy is the one that is better than or equal to all other policies. All the 

optimum policies can be shown by *π . They have the same state-value function *V . 

)(max)(* sVsV π

π
=  , for all Ss∈  

The optimal action-value function, *Q , is also the same for all optimum policies.  

),(max),(* asVasQ π

π
= , for all Ss∈ and )(sAa∈  
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This function gives the expected return when the robot takes action a  in state s  

following an optimal policy. It can be rewritten as: 

 { }aasssVrEasQ tttt ==+= ++ ,)(),( 1
*

1
* γ    Eq. (6-5) 

 { }aasssVrEsV tttta
==+= ++ ,)(max)( 1

*
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* γ  

And  
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Dynamic programming (DP) methodologies can be used to find an optimum 

solution for this problem. It is assumed that the robot has a starting point and a target 

which makes the problem a finite Markov decision process. Also, the discrete action 

space is assumed to be an approximation of continuous possible robot actions in each 

state. 

The main idea of dynamic programming is to use value functions to plan the 

search for better policies. Reinforcement learning provides update rules for improving 

approximations of the desired value functions. The first step is to compute the value 

function for each state. This is called policy evaluation or prediction problem in DP 

literature 157. Following the previous equations for πV : 
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The value function for policy π  can be rewritten as:  
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[ ]∑ ∑
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when ),( asπ  is the probability of taking action a  in state s  under policy π , with the 

expectation that policy π  will be followed and 1<γ .  

Iterative and recursive methods are common in solving DP problems. If 0V , 1V , 

2V … are a sequence of approximate value functions, each mapping state space to reward 

space, given the initial approximation 0V  is chosen arbitrarily, then each successive 

approximation is obtained using the Bellman equation for πV  as an update rule: 

{ }sssVrEsV ttktk =+= +++ )()( 111 γπ   

[ ]∑∑
′

′′+ ′+=
s

k
a
ss

a
ss

a
k sVRPassV )(),()(1 γπ       Eq. (6-8) 

It can be shown that the sequence { }kV  will converge to πV as ∞→k 157. This 

algorithm is called iterative policy evaluation. 

6.6 Policy improvement 

The reason for calculating the value function is to find better policies. Consider 

πV is the value function for an arbitrary policyπ . To be sure that there is no better 

policy in state s , or if there is a need to change to a new policy, action a  from s can be 

chosen with the assumption that policy π will be continued thereafter. The value for this 

new policy is:  

{ }aasssVrEasQ tttt ==+= ++ ,)(),( 11
π

π
π γ  
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If this is greater than )(sV π , then it is expected to select a  every time s  is 

encountered.  

6.7 Perceptual states in DARPA Grand Challenge case 

The output of each sensor indicates a reward for reaching a particular state. Some 

sensors are more relevant to the state than others. For example, when the robot is in 

‘avoid obstacle’ state, information collected from its laser scanner is more important than 

that from its GPS. To calculate the final reward for this state, each sensor has a different 

voting right (weight). In other words, the perceived value of information from each 

sensor is different. To organize the voting regime according to the experts’ perception, 

the QFD approach explained in Table 6-2 can be used.  

 The number of possible actions, states, transition probabilities, and rewards 

depends on the specific problem and mission. To clarify the perception optimization 

approach consider the DARPA Grand Challenge example. Gibbs reports the following 

story 131: 

“In a mobile office set up near the starting chutes 13 route editors, three speed setters, three 
managers, a statistician and a strategist waited for the DARPA CD. Within minutes of its 
arrival, a "preplanning" system that the team had built with help from Science Applications 
International Corporation, a major defense contractor, began overlaying the race area with 
imagery drawn from a 1.8-terabyte database containing three-foot-resolution satellite and 
aerial photographs, digital-elevation models and laser-scanned road profiles gathered during 
nearly 3,000 miles of reconnaissance driving in the Mojave. 
The system automatically created initial routes for Sandstorm and H1ghlander, the team's 
two racers, by converting every vertex to a curve, calculating a safe speed around each 
curve, and knocking the highest allowable speeds down to limits derived from months of 
desert trials at the Nevada Automotive Testing Center. The software then divided the course 
and the initial route into segments, and the manager assigned one segment to each race 
editor. 

Flipping among imagery, topographic maps and reconnaissance scans, the editors 
tweaked the route to take tight turns the way a race driver would and to shy away from cliff 
edges. They marked "slow" any sections near gates, washouts and underpasses; segments 
on paved roads and dry lake beds were assigned "warp speed." 
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The managers repeatedly reassigned segments so that at least four pairs of eyes reviewed 
each part of the route. Meanwhile, in a back room, team leaders pored over histograms of 
projected speeds and estimates of elapsed time. 

The software then divided the course and the initial route into segments, and the 
manager assigned one segment to each race editor. 
Flipping among imagery, topographic maps and reconnaissance scans, the editors tweaked 
the route to take tight turns the way a race driver would and to shy away from cliff edges. 
They marked "slow" any sections near gates, washouts and underpasses; segments on paved 
roads and dry lake beds were assigned "warp speed."” 
 
The DARPA Grand Challenge was taken on October 8th, 2005. Two hours before 

the race a CD containing 2,935 GPS waypoints, speed limits, and width of corridors was 

given to each team. Some teams used satellite imagery and reconnaissance information of 

the course to plan a strategy for each segment. Each segment was assigned to a team of 

experts to define features such as ‘slow’, ‘speed up’, and ‘stay away from cliff edges’. 

These features are examples of perceptual states. Moving from one state to 

another is a critical decision that needs to be optimized. Previous information about the 

route, such as GPS data and images, can provide transition probabilities for moving 

among states.  

No map is entirely up-to-date and accurate. Information collected from sensors, 

along with previous knowledge of route, will provide reward signals and will be a source 

of correction in policy selection.  

The DARPA Grand Challenge report reveals an important characteristic of robot 

navigation that generally has not been emphasized in the literature: integration of human 

perception and strategy with robot navigation algorithms. The perception theory 

presented here is equipped with a strategy planning tool, QFD, which links strategy and 

planning stages with dynamic programming optimization tools. The main rationale 

behind this approach is optimization theory as applied to robot design and development. 
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Chapter 7 : Conclusion  

 

 

 

 

 

“An author is a fool who, not content with boring those he lives with, insists on boring 

future generations.”  

Charles de Montesquieu (1689 - 1755)  

 

 

 

7.1 Summary and contribution 

In the case of robot navigation, when it is possible to build an accurate map of the 

environment, following an approximately optimal path is achievable. However, in a 

dynamic situation, when obstacles are not stationary or when enough information about 

the environment is not available, traditional path planning approaches are not sufficient. 

That is where other methodologies, e.g. the perception-based control, play an important 

role. 

In this dissertation, several prototype robots were studied. An unmanned ground 

vehicle, the Bearcat Cub, a soil sampling survey robot, and a snow prevention robot were 
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introduced. Potential applications of these robots in environments such as mine fields 

were discussed as well.  

 The problem of perception-based control was formulated from several points of 

view. The creative control framework was expanded to include the perception-based task 

control center with fuzzy and neuro-fuzzy elements. This adds qualitative reasoning to 

the dynamic programming optimality approach.  

 A statistical model was used to model the uncertainty that is an inherent part of 

perception. In addition, the spatial knowledge approach was used to model autonomous 

navigation of the Bearcat Cub robot. Applying an optimization approach to model human 

perception in the design process, as well as navigation algorithm of the robot, is another 

contribution of this research. 

7.2 Future work  

A solid theory for computation of perception is currently missing. Soft computing 

methodologies, and specifically fuzzy theory, are slowly moving in this direction. A 

multidisciplinary approach that combines the strengths of current methodologies- e.g. 

neural networks, genetic algorithm, fuzzy logic, machine learning, statistical theory, and 

optimization theory- appears to be a promising research direction.     

Most research on verbal communication with robots has mainly focused on 

issuing commands, such as activating pre-programmed procedures using a limited 

vocabulary. These procedures directly convert the voice commands to measurements 

without computing perceptions. Mimicking human perception and to some degree 

perception computing, can be investigated much further.  
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In the area of robot design, home robotics also has great potential. There are 

increasing numbers of products such as vacuum cleaners, pet or toy robots, and 

lawnmowers. Different aspects of home robotics can be studied in future work. 

In addition, autonomous navigation of vehicles is an open-ended problem that 

requires sophisticated methodologies. Implementation of the previously-discussed 

creative control framework in a real product is another suggested future task. 

Finally, using an industrial engineering approach to model all stages of design for 

unmanned vehicles in a systematic fashion provides interesting future avenues for 

research. 

 

     

 

 



 133

References 

1. Chatterjee, R., Matsuno, F., "Use of single side reflex for autonomous navigation 
of mobile robots in unknown environments," Robotics and Autonomous Systems, 
35, pp. 77-96, 2001.  

2. Cahlink, G. Making Sacrifices for the Future. 
http://www.govexec.com/top200/03top/top03s4.htm  

3. Oriolo, G., Ulivi, G., Vendittelli, M., "Fuzzy Maps: A New Tool for Mobile 
Robot Perception and Planning," Journal of Robotic Systems, 14, (3), pp. 179-
197, 1996.  

4. Kubota, N., et al., "Learning of mobile robots using perception-based genetic 
algorithm," Measurement, 29, pp. 237-248, 2001.  

5. Arkin, R. C., Behavior-based robotics. MIT Press: Cambridge, MA, 1999. 

6. Liao, X. Creative Learning for Intelligent Robots. University of Cincinnati, 
Cincinnati, 2005. 

7. Alhaj Ali, S. Technologies for Autonomous Navigation in Unstructured Outdoor 
Environments. University of Cincinnati, Cincinnati, 2004. 

8. Boden, M., "AI's Half-Century," AI Magazine, 16, (2), pp. 69-99, 1995.  

9. Duro, R. J., Santos, J., Becerra, J. A., Some approaches for reusing behavior 
based robot cognitive architectures obtained through evolution. In Biologically 
inspired robot behavior engineering,  vol. 109  pp. 239-260, Duro, R. J., Santos, 
J., Grana, M., Physica-Verlag: New York, 2003. 

10. Barber, H. M., Skarmeta, A. G., "A Framework for Defining and Learning Fuzzy 
Behaviors for Autonomous Mobile Robots," International Journal of Intelligent 
Systems, 17, pp. 1-20, 2002.  

11. Lauria, S., et al., "Mobile robot programming using natural language," Robotics 
and Autonomous Systems, 38, pp. 171-181, 2002.  

12. Pratihar, D. K., Deb, K., Ghosh, A., "A genetic-fuzzy approach for mobile robot 
navigation among moving obstacles," International Journal of Approximate 
Reasoning, 20, pp. 145-172, 1999.  



 134

13. Al-Khatib, M., Saade, J. J., "An effcient data-driven fuzzy approach to the motion 
planning problem of a mobile robot," Fuzzy Sets and Systems, 134, pp. 65-82, 
2003.  

14. Tunstel, E., Oliveira, M. A. A. d., Berman, S., "Fuzzy Behavior Hierarchies for 
Multi-Robot Control," International Journal of Intelligent Systems, 17, pp. 449-
470, 2002.  

15. Seraji, H., "Fuzzy Traversability Index:A New Concept for Terrain-Based 
Navigation," Journal of Robotic Systems, 17, (2), pp. 75-91, 2000.  

16. Li, W., Ma, C., Wahl, F. M., "A neuro-fuzzy system architecture for behavior-
based control of a mobile robot in unknown environments," Fuzzy Sets and 
System, 87, pp. 133-140, 1997.  

17. Michaud, F., Lachiver, G., Dinh, C. T. L., "Architectural Methodology Based on 
Intentional Configuration of Behaviors," Computational Intelligence, 17, (1), pp. 
132-156, 2001.  

18. Skubic, M., et al.  "Using Spatial Language in a Human-Robot Dialog," IEEE 
International Conference on Robotics &Automation,   pp. 4143-4148, 
Washington, DC,  2002. 

19. Skubic, M., et al.  "Generating linguistic spatial descriptions from sonar readings 
using the histogram of forces," IEEE International Conference on Robotics & 
Automation,   vol. 1,  pp. 485-490 Seoul, Korea,  2001. 

20. Skubic, M., et al.  "Extracting navigation states from a hand-drawn map," IEEE 
International Conference on Robotics & Automation,   vol. 1,  pp. 259-264 Seoul, 
Korea,  2001. 

21. Ghaffari, M., Hall, E. L.  "Robotics and nature, from primitive creatures to human 
intelligence," SPIE Intelligent Robots and Computer Vision XXI: Algorithms, 
Techniques, and Active Vision,   vol. 5608,  pp. 169-176, Philadelphia,  2004. 

22. Adams, B., et al., "Humanoid Robots: A New Kind of Tool," IEEE Intelligent 
Systems, 15, (4), pp. 25-31, 2000.  

23. Hall, E. L., Hall, B. C., Robotics, A User Friendly Introduction. Holt, Rinehart 
and Winston: 1985. 



 135

24. Halme, A., Luksch, T., Ylonen, S., "Biomimicing motion control of the 
WorkPartner robot," Industrial Robot: An International Journal, 31, (2), pp. 209–
217, 2004.  

25. Dario, P., Guglielmelli, E., Laschi, C., "Humanoids and Personal Robots: Design 
and Experiments," Journal of Robotic Systems, 18, (12), pp. 673–690, 2001.  

26. Zlatev, J., "The epigenesis of meaning in human beings and possbly in robots," 
Lund University Cognitive Studies, 79,  1999.  

27. Fong, T., Nourbakhsh, I., Dautenhahn, K., "A survey of socially interactive 
robots," Robotics and Autonomous Systems, 42, pp. 143–166, 2003.  

28. Dautenhahn, K., "Getting to know each other - artificial social intelligence for 
autonomous robots," Robotics and Autonomous Systems, 16, pp. 333-356, 1995.  

29. Dautenhahan, K., Billiard, A.  "Bringging up robots or the psychology of socially 
intelligent robots: From theory to implementation," Autonomus Agents,    1999. 

30. Kanda, T., et al., "Effects of Observation of Robot–Robot Communication on 
Human–Robot Communication," Electronics and Communications in Japan, 87, 
(5), pp. 691-700, 2004.  

31. Clark, J. E., et al.  "Biomimetic Design and Fabrication of a Hexapedal Running 
Robot," IEEE International Conference on Robotics and Automation,    2001. 

32. Zhou, C. Soft Computing for Intelligent Robotic Systems. 
http://www.dia.fi.upm.es/doctorado/temasavanzados/anteriores/0102/4.htm  

33. Zadeh, L. A., "Applied Soft Computing – Foreword," Applied Soft Computing, 1, 
pp. 1-2, 2001.  

34. Zadeh, L. A., "Fuzzy Sets," Information and Control, 8, pp. 338-353, 1965.  

35. Novak, V., Perfilieva, I., Mockor, J., Mathematical Principles of Fuzzy Logic. 
Kluwer Academic Publishers: Boston, 1999. 

36. Zadeh, L. A., "The Concept of a Linguistic Variable and its Application to 
Approximate Reasoning - I," Information Sciences, 8, pp. 199-249, 1975.  

37. Zadeh, L. A., "The Concept of a Linguistic Variable and its Application to 
Approximate Reasoning - II," Information Sciences, 8, pp. 301-357, 1975.  



 136

38. Zadeh, L. A., "The Concept of a Linguistic Variable and its Application to 
Approximate Reasoning - III," Information Sciences, 9, pp. 43-80, 1975.  

39. Zadeh, L. A., "Fuzzy logic and approximate reasoning," Synthese, 30, pp. 407-
428, 1975.  

40. Kochen, M., Application of Fuzzy Sets in Psychology. In Fuzzy Sets and their 
Application to Cognitive and Decision Processes,  pp. 395-408, Zadeh, L. A., et 
al., Academic Press: New York, 1975. 

41. Driankov, D., A Reminder on Fuzzy Logic. In Fuzzy Logic Techniques for 
Autonomous Vehicle Navigation, Driankov, D., Saffiotti, A., Physica-Verlag 
Heidelberg: New York, 2001. 

42. Ghaffari, M., Ali, S. A., Hall, E. L., "A Perception –Based Approach toward 
Robot Control by Natural Language," Intelligent Engineering Systems through 
Artificial Neural Networks, 14, pp. 391-396, 2004.  

43. Zadeh, L. A.  "A new direction in fuzzy logic-toward automation of reasoning 
with perceptions," Fuzzy Systems, IEEE International,   vol. 1,  pp. 1-5, IEEE,  
22-25 Aug,1999. 

44. Kubota, N., et al., "Fuzzy and Neural Computing for Communication of a Partner 
Robot," Journal of Multi-Valued Logic & Soft Computing, 9, pp. 221-239, 2003.  

45. Dvorak, A., Novak, V., "Formal theories and linguistic descriptions," Fuzzy Sets 
and Systems, 143, pp. 169-188, 2004.  

46. Novak, V., Perfilieva, I., "On the Semantics of Perception-Based Fuzzy Logic 
Deduction," International Journal of Intelligent Systems, 19, pp. 1007–1031, 
2004.  

47. Gasos, J., Rosetti, A., "Uncertainty representation for mobile robots: Perception, 
modeling and navigation in unknown environments," Fuzzy Sets and System, 107, 
pp. 1-24, 1999.  

48. Elfes, A., "Sonar-based real world mapping and navigation," IEEE Journal of 
Robotics and Automation, 3, pp. 249-265, 1987.  

49. Tirumalai, A., Schunck, B., Jain, R., "Evidential reasoning for building 
environment maps," IEEE Transactions on Systems, Man and Cybernetics, 25, 
(1), pp. 10-20, 1995.  



 137

50. Kim, H., Swain, P., "Evidential reasoning approach to multi source data 
classification in remote sensing," IEEE Transactions on Systems, Man and 
Cybernetics, 25, (8), pp. 1257-1265, 1995.  

51. Saffiotti, A., Wesley, L., Perception-based self localization using fuzzy locations. 
In Reasoning with Uncertainty in Robotics, Lecture Notes in Artificial 
Intelligence,  pp. 368-385, Dorst, L., Springer: Berlin, 1996. 

52. Carruthers, P., Chamberlain, A., Evolution and the human mind, modularity, 
language and meta-cognition. Cambridge University: Cambridge, 2000. 

53. Zadeh, L. A., "Toward a perception-based theory of probabilistic reasoning with 
imprecise probabilities," Journal of Statistical Planning and Inference, 105, pp. 
233-264, 2002.  

54. Zadeh, L. A., "From computing with numbers to computing with words. From 
manipulation of measurements to manipulation of perceptions," IEEE 
Transactions on Circuits and Systems I: Fundamental Theory and Applications, 
46, (1), pp. 105 -119, 1999.  

55. Baud, R., "Present and future trends with NLP," International Journal of  Medical 
Informatics, 52, pp. 133-139, 1998.  

56. Cangelosi, A., Harnad, S., "The adaptive advantage of symbolic theft 
oversensorimotor toil: Grounding language in perceptual categories," Evolution 
Communication, 4, (1) 2002.  

57. Romano, J. M. G., et al., "A generic natural language interface for task planning 
application to a mobile robot," Control Engineering Practice, 8, pp. 1119-1133, 
2000.  

58. Harris, L. R., "ROBOT: a high performance natural language processor for data 
base query," ACM SIGART Newsletter, 61, pp. 39-40, 1977.  

59. Winograd, T., Understanding natural language. Academic Press: New York, 
1972. 

60. Selfridge, M., Vannoy, W., "A natural language interface to a robot assembly 
system," IEEE Journal of Robotics and Automation, 2, (3), pp. 167-171, 1986.  

61. Brown, M. K., Buntschuh, B. M., Wilpon, J. G., "A perceptive spoken language 
understanding robot," IEEE Transactions on Systems, Man and Cybernetics, 22, 
(6), pp. 1390-1402, 1992.  



 138

62. Marciniak, J., Vetulani, Z. y., "Ontology of Spatial Concepts in a Natural 
Language Interface for a Mobile Robot," Applied Intelligence, 17, pp. 271-274, 
2002.  

63. Gasos, J., Integrating linguistic descriptions and sensor observations for the 
navigation of autonomous robots. In Fuzzy logic Techniques for autonomous 
vehicle navigation,  vol. 61  pp. 313-339, Driankov, D., Saffiotti, A., Physica-
Verlag: New York, 2001. 

64. Cimino, J., "Knowledge-based approaches to maintenance of a large controlled 
medical terminology," International Journal of  Medical Informatics Association, 
1, pp. 35-50, 1994.  

65. Feldman, R., Dagan, I., Hirsh, H., "Mining Text Using Keyword Distributions," 
Journal of  Intelligent Information Systems, 10, pp. 281-300, 1998.  

66. Teich, E., Systemic Functional Grammar in Natural Language Generation. 
Cassell: New York, 1999. 

67. Oostendrop, H., Mul, S., Cognitive Aspects of Electronic Text Processing. In 
Advances in Discourse Process, Ablex: New Jersey, 1996. 

68. Sampson, G., Evolutionary Language Understanding. Cassell: New York, 1996. 

69. Cummins, R., Cummins, D., Minds, Brains, and Computers: The Foundation of 
Cognitive Science, An Anthology. Blackwell: Malden, MA, 2000. 

70. Gaylor, J., et al. Senior Design Report: Bearcat Cub; University of Cincinnati: 
Cincinnati, 2005; p^pp. 

71. The Bearcat Cub design report for 14th Intelligent Ground Vehicle Competition; 
Univeristy of Cincinnati Robotics Team: Cincinnati, 2006; p^pp. 

72. Alhaj Ali, S. M. Technologies for Autonomous Navigation in Unstructured 
Outdoor Environments. PhD, University of Cincinnati, Cincinnati, OH, 2003. 

73. Alhaj Ali, S. M., et al., Dynamic Simulation of Computed-Torque Controllers for 
a Wheeled Mobile Robot Autonomous Navigation in Outdoor Environments. In 
Intelligent Engineering Systems through Artificial Neural Networks,  vol. 13  pp. 
511-516, ASME: New York, 2003. 

74. Rajagopalan, R., "A generic kinematic formulation for wheeled mobile robots," 
Journal of Robotic Systems, 14, (2), pp. 77-91, 1997.  



 139

75. Ghaffari, M., et al., "Design of an Unmanned Ground Vehicle, Bearcat III, Theory 
and Practice," Journal of Robotic Systems, 21, (9) 2004.  

76. Wu, W., Chen, H., Woo, P., "Time optimal path planning for a wheeled mobile 
robot," Journal of Robotic Systems, 17, (11), pp. 585-591, 2000.  

77. Levitt, T. S., Lawton, D. T., "Qualitative Navigation for Mobile Robots," 
Artificial Intelligence, 44, pp. 305-360, 1990.  

78. Sethuramasamyraja, B., Ghaffari, M., Hall, E.  "Automatic Calibration and Neural 
Networks for Robot Guidance," SPIE Intelligent Robots and Computer Vision 
XXI: Algorithms, Techniques, and Active Vision,   vol. 5267,  pp. 137-144, 
Providence, RI,  2003. 

79. Thorpe, C. E., Vision and navigation: the Carnegie Mellon Navlab. Kluwer 
Academic Publishers: Boston, 1990. 

80. Robert, L.  "Calibration Without Feature Extraction," International Conference on 
Pattern Recognition,   pp. 704-706, Computer Society Press, Jerusalem,  1994. 

81. Li, M. X., Lavest, J. M., "Some Aspects of Zoom-Lens Camera Calibration," 
IEEE Transaction on Pattern Analysis and Machine Intelligence, pp. 1105-1110, 
1996.  

82. Hong, F., Baozong, Y., "An Accurate and Practical Camera Calibration System 
for 3D Computer Vision," Chinese Journal of Electronics, 1, (1), pp. 63-71, 1991.  

83. Weng, J., Cohen, P., Herniou, M., "Camera calibration with distortion models and 
accuracy evaluation," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 14, (10), pp. 965-980, 1992.  

84. Tsai, R. Y., "A Versatile Camera Calibration Technique for High-Accuracy 3D 
Machine Vision Metrology Using Off-The-Shelf Cameras and Lenses," IEEE 
Transaction on Robotics and Automation, 3, (4), pp. 323- 344, 1987.  

85. Zhang, Z., Faugeras, O., Ayache, N.  "Analysis of a Sequence of Stereo Scenes 
Containing Multiple Moving Objects Using Rigidity Constraints," International 
Conference on Computer Vision,   pp. 177-186,  1988. 

86. Zhang, Z., et al., "A Robust Technique for Matching Two Uncalibrated Images 
Through the Recovery of the Unknown Epipolar Geometry," Artificial 
Intelligence Journal, 78, pp. 87-119, 1995.  



 140

87. Zhang, Z., Faugeras, O. D., "A 3D World Model Builder with a Mobile Robot," 
International Journal of Robotics Research, 11, (4), pp. 269-285, 1992.  

88. Zhang, Z., Luong, Q. T., Faugeras, O., "Motion of an Uncalibrated Stereo Rig: 
Self-Calibration and Metric Reconstruction," IEEE Transaction on Robotics and 
Automation, 12, (1), pp. 103-113, 1996.  

89. Worrall, A. D., Sullivan, G. D., Baker, K. D.  "A simple, intuitive camera 
calibration tool for natural images," 4th British Machine Vision Conference,   
Berkshire, UK,  1994. 

90. Hall, E. L. Robot vision course notes. University of Cincinnati, Cincinnati, 2005. 

91. Parasnis, S. S. Four Point Calibration and a Comparison of Optical Modeling and 
Neural Networks for Robot Guidance. University of Cincinnati, Cincinnati, 1999. 

92. Hall, E., et al., "A Comparison of Two and Three Dimensional Imaging," to be 
published in  SPIE Intelligent Robots and Computer Vision : Algorithms, 
Techniques, and Active Vision,  2006.  

93. Ghaffari, M., et al.  "Internet-based Control for the Intelligent Unmanned Ground 
Vehicle: Bearcat Cub," SPIE Intelligent Robots and Computer Vision XXI: 
Algorithms, Techniques, and Active Vision,   vol. 5267,  pp. 90-97, Providence,  
2003. 

94. Devices Connected to the Internet. 
http://dir.yahoo.com/Computers_and_Internet/Internet/Devices_Connected_to_th
e_Internet/  

95. Paulos, E., Canny, J., "Ubiquitous tele-embodiment: applications and 
implications," International Journal of Human-Computer Studies, 46, pp. 861-
877, 1997.  

96. Petersen, I., "Telepathology by the Internet," Journal of Pathology, 191, pp. 8-14, 
2000.  

97. You, S., "A low-cost internet-based telerobotic system for access to remote 
laboratories," Artificial Intelligence in Engineering, 15, pp. 265-279, 2001.  

98. Frederik, O., "Remote Monitoring and Control of Electrochemical Experiments 
via the Internet Using “Intelligent Agent” Software," Electroanalysis, 11, (14), 
pp. 1027-1032, 1999.  



 141

99. Mansfield, J., "Development of a System to Provide Full, Real-time Remote 
Control of a Scanning Electron Microscope across the Second Generation 
Internet: The Teaching SME," Microscopy and Microanalysis, 6, pp. 31-41, 2000.  

100. Baur, C., "Robotic nanomanipulation with a scanning probe microscope in a 
networked computing environment," Journal of Vacuum Society, 15, (4), pp. 
1577-1580, 1997.  

101. Churms, C., "The remote control of nuclear microprobes over the Internet," 
Nuclear Instruments and Methods in Physics Research B, 158, pp. 124-128, 1999.  

102. Solina, B. P. F., "User interface for video observation over the internet," Journal 
of Network and Computer Applications, 21, pp. 219-237, 1998.  

103. Wang, C., "Implementation of remote robot manufacturing over Internet," 
Computers in Industry, 45, pp. 215-229, 2001.  

104. Tay, F., "Distributed rapid prototyping – a framework for Internet prototyping and 
manufacturing," Integrated Manufacturing System, 12, (6), pp. 409-415, 2001.  

105. Wang, Z., "Architecture for Agile Manufacturing and Its Interface with Computer 
Integrated Manufacturing," Journal of Material Processing Technology, 61, pp. 
99-103, 1996.  

106. Schilling, K., "Telediagnosis and teleinspection potential of telematic techniques," 
Advances in Engineering Software, 31, pp. 875-879, 2000.  

107. Winfield, Holland, O., "The application of wireless local area network technology 
to the control of mobile robots," Microprocessors and Microsystems, 23, pp. 597-
607, 2000.  

108. The Joint Architecture for Unmanned Systems: Reference Architecture 
Specification.  Ed 3.2, 2004. 

109. Ghaffari, M., et al.  "Mines and human casualties, a robotics approach toward 
mine clearing," SPIE Intelligent Robots and Computer Vision XXI: Algorithms, 
Techniques, and Active Vision,   vol. 5608,  pp. 306-312,  2004. 

110. Dincerler, V., "Landmines and Mine Clearance Technologies," International 
Secretariat,  1995.  



 142

111. Huang, Q.-J., Nonami, K., "Humanitarian mine detecting six-legged walking 
robot and hybrid neuro walking control with position/force control," 
Mechatronics, 13, pp. 773-790, 2003.  

112. "Annual Report 2002," International Campaign to Ban Landmines,  2002.  

113. Benini, A., Moulton, L. H., Conley, C. E., "Landmines and Local Community 
Adaptation," Journal of Contingencies and Crisis Management, 10, (2), pp. 82-
94, 2002.  

114. Nicoud, J. D., Machler, P., "Robots for Anti-personnel Mine Search," Control 
Eng Practice, 4, (4), pp. 493-498, 1996.  

115. Nicoud, J. D., "Vehicles and robots for humanitarian demining," Industrial Robot, 
24, (2), pp. 164-168, 1997.  

116. Khuraibet, A. M., "Nine years after the invasion of Kuwait: the impacts of the 
Iraqi left-over ordnance," The Environmentalist, 19, pp. 361-368, 1999.  

117. Bruschini, C., Gros, B.  "A survey of current sensor technology research for the 
detection of landmines," International Workshop on Sustainable Humanitarian 
Demining,   Zagreb, Croatia,  1997. 

118. Tunstel, E., Howard, A., Seraji, H., "Rule-based reasoning and neural network 
perception for safe off-road robot mobility," Expert Systems, 19, (4), pp. 191-200, 
2002.  

119. Maaref, H., Barret, C., "Sensor-based navigation of a mobile robot in an indoor 
environment," Robotics and Autonomous Systems, 38, pp. 1-18, 2002.  

120. Colona, E., et al., "An integrated robotic system for antipersonnel mines 
detection," Control Engineering Practice, 10, pp. 1283–1291, 2002.  

121. Ghaffari, M., Cao, P., Hall, E.  "Autonomous Techniques for Soil Sampling in 
Hazardous Fields," International Conference on Human Impacts on Soil Quality 
Attributes in Arid and Semiarid Regions,   pp. 159-163, Isfahan,  2005. 

122. Cao, P. Autonomous Runway Soil Survey System with the Fusion of Global and 
Local Navigation Mechanism. PhD University of Cincinnati, Cincinnati, 2004. 

123. Hausmann, M. R., Engineering Principles of Ground Modification. McGraw-Hill 
Publishing Company: New York, 1990. 



 143

124. Ghaffari, M., Liao, S., Hall, E. L.  "A Framework for the Natural Language 
Perception-based Creative Control of Unmanned Ground Vehicles," SPIE 
Defense and Security Symposium vol. 5422,  pp. 218-226, Orlando (Kissimmee),  
2004. 

125. Liao, X., et al.  "Creative Control for Intelligent Autonomous Mobile Robots," 
Intelligent Engineering Systems Through Artificial Neural Networks, ANNIE,   
vol. 13,  St. Louis, MI,  2003. 

126. Werbos, P.  "Optimal Neurocontrol: Practical Benefits, New Results and 
Biological Evidence," Wescon Conference Record,   pp. 580-585,  1995. 

127. Prokhorov, D., D.Wunsch, "Adaptive Critic Designs," Neural Networks, 8, (5), 
pp. 997-1007, 1997.  

128. Lendaris, G. G., Shannon, T. T., Rustan, A.  "A Comparison of Training 
Algorithms for DHP Adaptive Critic Neurocontrol," Neural Networks, 1999. 
IJCNN '99. International Joint Conference on,,   vol. 4,  pp. 2265 -2270,  1999. 

129. Venayagamoorthy, G. K., Harley, R. G., Wunsch, D. C., "Comparison of 
Heuristic Dynamic Programming and Dual Heuristic Programming Adaptive 
Critics for Neurocontrol of a Turbogenerator," IEEE Transactions on Neural 
Networks, 13, (3), pp. 764-773, May 2002.  

130. Werbos, P. J., Approximate Dynamic Programming for Real-Time Control and 
Neural Modeling. In Handbook of Intelligent Control,  pp. 493--525, White, A. 
D., Sofge, D. A., Van Nostrand Reinhold: 1992. 

131. Gibbs, W., "Innovations from a Robot Rally," Scientific American, 294, (1), pp. 
64-71, 2006.  

132. Hashimoto, S., Kojima, F., Kubota, N.  "Perceptual System for A Mobile Robot 
under A Dynamic Environment," IEEE International Symposium on 
Computational Intelliieoce in Robotics and Automation,   pp. 747-752, Japan,  
2003. 

133. Hayashi, Y., Buckley, J., "Approximations between fuzzy expert systems and 
neural networks," International Journal of Approximate Reasoning 10, pp. 63–73, 
1994.  

134. Benitez, J. M., Castro, J. L., Requena, I., "Are artificial neural networks black 
boxes?," IEEE Transaction on Neural Networks 18, pp. 1156–1164, 1997.  



 144

135. Mitra, S., Hayashi, Y., "Neuro–Fuzzy Rule Generation: Survey in Soft 
Computing Framework," IEEE Transactions on Neural Networks, 11, (3), pp. 
746-768, 2000.  

136. Pal, S. K., Mitra, S., Neuro-fuzzy Pattern Recognition: Methods in Soft 
Computing. Wiley: New York, 1999. 

137. Lin, C. T., Lee, C. S. G., Neural Fuzzy Systems—A Neuro–Fuzzy Synergism to 
Intelligent Systems. Prentice-Hall: Englewood Cliffs, NJ, 1996. 

138. Nauck, D., Klawonn, F., Kruse, R., Foundations of Neuro–Fuzzy Systems. Wiley: 
Chichester, U.K. , 1997. 

139. Weiner, N., Extrapolation, Interpolation and Smoothing of Stationary Time 
Series. John Wiley and Sons: New York, 1949. 

140. Kolmogorov, A., "Interpolation and Extrapolation of Stationary Random 
Sequences," Bulletin of the Academy of Sciences of the USSR 5,  1941.  

141. Kalman, R. E., "A New Approach to Linear Filtering and Prediction Problems," 
Transactions of the ASME–Journal of Basic Engineering, 82, pp. 35-45 1960.  

142. Kalman, R. L., Bucy, R. S., "New Results in Linear Filtering and Prediction 
Theory," Transactions of the ASME–Journal of Basic Engineering, 83, pp. 95-
107, 1961.  

143. Smith, R. C., Cheeseman, P., "On the Estimation and Representation of Spatial 
Uncertainty," International Journal of Robotics Research, 5, (4), pp. 56-68, 1987.  

144. Durrant-White, H. F., "Consistent Integration and Propagation of Disparate 
Sensor Observations," International Journal of Robotics Research, 6, (3), pp. 3-
24, 1987.  

145. Faugeras, O., Ayache, N., Faverjon, B.  "Building Visual Maps by Combining 
Noisey Stereo Measurements," IEEE International Conference on Robotics and 
Automation,   San Francisco, CA,  1986. 

146. Brooks, R.  "Visual Map Making for a Mobile Robot," IEEE International 
Conference on Robotics and Automation,   St. Louis,  1985. 

147. Chatila, R., Laumond, J. P.  "Position Referencing and Consistent World 
Modeling for Mobile Robots," IEEE International Conference on Robotics and 
Automation,   St. Louis,  1985. 



 145

148. Crowley, J. L.  "Asynchronous Control of Orientation and Displacement in a 
Robot Vehicle," IEEE Conference on Robotics and Automation,   Scottsdale, AZ,  
1989. 

149. Crowley, J. L.  "Mathematical Foundations of Navigation and Perception For an 
Autonomous Mobile Robot," International Workshop on Reasoning with 
Uncertainty in Robotics,   pp. 9-51, University of Amsterdam, The Netherlands,  
1995. 

150. Crowley, J. L., Wallner, F., Schiele, B.  "Position Estimation Using Principal 
Components of Range Data," IEEE International Conference on Robotics & 
Automation,   pp. 3121-3128, Leuven, Belgium,  1998. 

151. Bar-Shalom, Y., Li, X. R., Kirubarajan, T., Estimation with applications to 
tracking and navigation Wiley: New York, 2001. 

152. Ghaffari, M., Hall, E. L., "Perception and Navigation Modeling in Humans and 
Intelligent Systems," Intelligent Engineering Systems through Artificial Neural 
Networks, 15, pp. 43-49, 2005.  

153. Previc, F. H., "The Neuropsychology of 3-D Space," Psychological Bulletin, 124 
(2), pp. 123-164, 1998.  

154. Werner, S., et al.  "Spatial Cognition: The Role of Landmark, Route, and Survey 
Knowledge in Human and Robot Navigation," Informatik 97,   pp. 4150, Springer,  
1997. 

155. Denney, R., Succeeding with Use Cases: Working Smart to Deliver Quality. 
Addison-Wesley Boston, MA, 2005. 

156. Bertsekas, D. P., Dynamic Programming and Optimal Control Athena Scientific: 
Nashua, NH, 2005. 

157. Sutton, R. S., Barto, A. G., Reinforcement Learning: An Introduction. MIT Press: 
Cambridge, MA, 1998. 

158. Genaidy, A. M., Karwowski, W., Shoaf, C., "The fundamentals of work system 
compatibility theory: An integrated approach to optimization of human 
performance at work " Theoretical Issues in Ergonomics Sciences, 3, pp. 346-368, 
2002.  



 146

159. Ghaffari, M., Genaidy, A.  "A Neural Network Model for Human Performance 
Optimization in the Workplace," 2nd International IEEE EMBS Conference on 
Neural Engineering,   Washington DC,  2005. 

160. Wallace, W., et al., "Assessing the compatibility of work system factors through 
an integrative model: A case study," International Journal of Occupational Safety 
and Ergonomics, 9, pp. 25-33, 2003.  

 
 



 147

 

Appendix A: A case study 
 
Human perception and performance optimization 

Human perception is the subject of study in many fields such as psychology, 

biology, management, and engineering, in addition to intelligent systems and robotics. As 

one could imagine, getting the optimum results from the ‘machine’ and ‘human’ is a 

major topic of study in some of these fields. ‘How to improve robot’s performance by 

studying human perception’ was the main question in previous sections. In this section, 

perception and intelligent system’s techniques will be used to study human performance. 

A neural network will estimate the optimal conditions that an employee should work in 

based on the job demands.    

  In a series of studies by Genaidy et al. the concept of work compatibility (WC) 

and its relation with work energizers (WE) and work demands (WD) have been studies 

158-160. Work-related factors are classified into two major categories depending upon their 

impact on human performance. Work demands (e.g. making decision, work conflict) are 

forces with negative impact in the sense of energy replenishment. Work energizers (e.g. 

financial incentives, social recognition) are factors with positive impact on the flow of 

energy in the human engine. The work compatibility is an integrated work design 

criterion that improves different aspects of human performance in a workplace. 

The magnitude of work energizer, work demand, or work compatibility is each 

described by five linguistic levels, that is, very low (VL), low (L), moderate (M), high 

(H), and very high (VH) 160. For mathematical derivation of WC, we express these levels 
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by numerical numbers ranging from 1 to 5 corresponding to the five linguistic levels, 

respectively. 

Work compatibility is written in a matrix form as ][ ijWC  where i and j correspond 

to the respective levels of WD (row) and WE (column) taking values from 1 to 5. For 

example, 23WC  is the work compatibility that corresponds to WD=2 and WE=3 as 

demonstrated in (1) and (2).  

Neural Network Model 
As mentioned work compatibility matrix represents WC as a function of the WD 

and WE. For each entry, the row and column numbers are values of WD and WE 

respectively. This provides 25 training data for the following neural network.  

 

Figure A-1: Mathematical concept of work compatibility (WC)  

Table A-1: Linguistic values of work compatibility160  

  WE  
WD Very low Low Moderate High Very high 

Very low L L L L L 
Low L M M M M 
Moderate L M H H H 
High VL L M VH H 

Very high VL VL L M M 
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A generalized regression neural network was constructed. This is a kind of radial 

basis network that is often used for function approximation.  

∑
Work Energizer 

Work Demand

Work Compatibility 
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MatlabT code for constructing and training the network is as follow: 

P = [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5; 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5]; 

T = [2 2 2 2 2 2 3 3 3 3 2 3 4 4 4 1 2 3 5 4 1 1 2 3 3]; 

Data2 = [ 2  2  2  2 2;  2  3 3 3 3; 2 3 4 4 4; 1 2 3 5 4;  1 1 2 3 3]; 

spread = 0.5; 

net = newgrnn(P,T, spread); 

Y = sim(net,P); 

P is the input matrix which corresponds to row and column numbers is matrix (1) 

that are WD and WE respectively. T is the target vector that represents values of WC for 

each given WE and WD based on table A-1. The spread parameter determines the 

smoothness of function. The larger spread will result in a smoother function in exchange 

to a higher sum square error. To fit data closely a spread smaller than the typical distance 

between input vectors is appropriate.  For this problem spread=0.5 was chosen that 

resulted Figure A-2. For this function sum square error is 0.1975. It means that the neural 

network approximates work compatibility as a function of work demand and work 

energizer well. This function (and corresponding network) represents the expert 

knowledge for work compatibility for different values of work demand and work 

energizer.  Figure A-2 illustrates WC as a function of WD and WE.  
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Figure A-2 Approximated WC function 

This function shows where the maximum work compatibility is located. The rate of 

change around the local and global optima is extractable as well. A proper combination 

of WD and WE should be chosen to avoid low compatibility as well as high rate of 

change (danger of dramatic change). More discussion about this graph can be found in 

reference 159. 
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