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Abstract

We address design of optimal MIMO precoders/decoders inntemum mean square error
(MMSE) sense. Prior work assumes full and perfect chanagt saformation (CSl) at the trans-
mitter, whereas we assume that the CSI has been corruptednm s@anner. We re-derive new
optimal precoders/decoders based on corrupt CSI. It is shiatrthe received signal cannot be
simplified into parallel subchannels as is performed injoevwork to greatly simplify that analy-
sis. The error that corrupts the received signal is desg@nel then bounded. Performance analy-
sis is completed by describing the distribution of the er&XR/SINR and mutual information

equations, along with BER and capacity plots.
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Chapter 1

Introduction

The research trends in wireless communications are cailyrstriving to reliably send more data
at a faster rate over a wireless channel. More and more enslargeneeding to send higher quality
data at a faster rate, and those needs are being met thralaglistoesearch. In order to introduce
the thesis topic, this chapter is intended to give a highlleverview of the communications

industry from its infancy up to the recent research trendsdhe being followed today so that the

reader may have an understanding of the niche in which teEgtexists.

1.1 The Beginning of Radio

Inspired by the lectures of Righi at The University of Bolog@aiglielmo Marconi built the first
radio telegraph in 1895. Marconi continued to improve higition over the years and in 1898 his
radio signal bridged the English Channel. In the subsequearsy Marconi integrated cutting edge
technology into his radio equipment, such as the magnetecte which was an improvement
over the coherer to detect the radio waves, the use of diredtantennas and the rotary spark to

increase signal level and reduce interference in duplevercircuits, in addition to many others.

The Detroit Police Department was the first organization &kenuse of wireless technology
by installing the first 2 MHz land mobile radiotelephone systin 1921. The widespread use of

the new radiotelephone was limited by the number of avalablnnels. Not until the invention



of frequency modulation (FM) in 1933 was there the availgbdf high quality radio communi-

cations.

The first mobile system to be connected to the public telepmatwork using a fixed number
of radio channels over a fixed geographic area was introdbge8ell Systems in 1946. Bell
Systems introduced the Personal Correspondence Systeim @gecated at 150 MHz with speech
channels separated by 120 kHz. Researchers at AT&T introdbhedmproved Mobile Telephone
Service (IMTS) which also used FM technology. It was sooredahat in order to provide a large

number of users with full duplex channels, excessive ansoiibandwidth would be required.

In 1947 Bell Laboratories came up with the cellular concephe Tellular concept helped
to overcome the excessive bandwidth needs by dividing therage area into smaller cells and
by using a subset of the total available channels in each &8&T then proposed the Advanced
Mobile Phone Service (AMPS) in 1970, which was the first higpacity analog cellular telephone

system.

Since then, the cellular networks have evolved rapidly amthy are using the 1S-36 (us-
ing Time Division Multiple Access - TDMA) and IS-95 (using Ce@®ivision Multiple Access -
CDMA) standards. The increase in the need for end users tdaeedquantities of data at a faster
rate over wireless links has led to the development of theeatiThird Generation (3G) wireless
technologies. Novel techniques must be developed in ooderakke use of the limited radio fre-
qguency (RF) spectrum and the use of multiple-input multgaiéput (MIMO) antenna arrays is
one of those techniques [1]. Through the use of multiplerargerrays at the transmitter and the
receiver, multiple copies of the signal will be sent and nee which decreases the likelihood of

errors.

The Fourth Generation (4G) of wireless communications ighenhorizon and will have
MIMO technology at its foundation. Some topics that are atftirefront in the research commu-
nity are Advanced Time Division Multiple Access (ATDMA), d&band Code Division Multiple
Access (WCDMA), Orthogonal Frequency Division Multiple Asse(OFDMA), Multi-Carrier
CDMA (MC-CDMA), and Ultra-Wide Band (UWB) transmission [2].

The following sections highlight recent trends in the depehent of wireless communication

technologies through the use of Smart Antennas and thetinoegf MIMO and the benefits.



1.2 Smart Antenna Systems

Due to the limitations of the available RF spectrum, the gpdimension may be exploited through
the use of multiple antennas. When multiple antennas are atsth@ receiver and when the re-
ceived signals are decorrelated, the use of smart antenitigates signal fluctuations and im-
proves system performance because the receiver may désigrtbat interference is minimized

and signal strength is maximized.

Smart antennas began the 1960s as a proposed measure foynstewarfare in order to
counter jamming. Today, they may be categorized into thi@e groups: switched beam antennas,

dynamic phased arrays, and adaptive antenna arrays.

Switched beam antennas are comprised of multiple highgctiire, fixed, pre-defined beams,
as shown in Fig. 1.1. The beams are usually formed with ary afrantennas, through the use
of a beamforming network such as a Butler Matrix [3]. By genagamultiple orthogonal beams
to blanket the cell with coverage [4] the base station (BSpls # track the mobile station (MS)
through the cell according to the received signal stren@hitching from beam to beam may
be done through the use of semiconductor switches. Switbbath antennas are advantageous
in situations where there is low to moderate co-channelfertence. This leads to one major
disadvantage which is if the desired user is not centerdtbdie¢am’s maximum and an interfering
signal is present at the beam’s center, then the interfesigngal will be enhanced more than the

desired signal, leading to poor system performance.

Dynamic phased arrays are an improvement upon switched degmnas because they make
use of the direction of arrival (DOA) of the incoming waveit@and steer a beam maximum toward
the desired user. In order to continuously steer the bearartbtihe desired user, a method of

tracking is needed.

Adaptive antenna arrays weight the gain of the array to maeimperformance measures in
order to maximize the received signal. The adaptive sysseablie to continually determine the
angle of arrival (AOA) which gives it the ability to maximizbe incoming signal and minimize
interference and noise [3], as shown in Fig. 1.2. An earlsioer of an adaptive antenna array

is known as a side lobe canceler (SLC). A SLC works to canceirttezference entering the



Desired MS

Interferer MS

Figure 1.1: A switched beam antenna system.

sidelobes of the antenna. A SLC requires two channels foleimentation. The first channel is
used to discern the signal of the MS, whereas the second ehiarused to pick up the interference
and discriminate against the desired signal. Adaptiverematearrays are more computationally

intensive and more expensive to implement than switcheohlsyatems [4].

1.3 MIMO Antenna Systems

The use of multiple antennas allows the exploitation of tistipath fading environment. A MIMO
antenna scheme is shown in Fig. 1.3. Due to the multipathggaton of a transmitted radio
signal, the received signal is the superposition of mdtgppies of the received signals. If there

is no line of sight (LOS) component, then the signal is com®d to exhibit Rayleigh fading [5].

Quite often the propagation environment varies with timee@o the time varying nature of
the channel and the Rayleigh distribution of the receivedldmnde, the received channel gain may
be small or large. This results in the attenuation or amaplio of the signal and steps are taken to
alleviate this problem through different methods of diitgrsTime diversity is the transmission of

the same signal at different time instances, and frequeneysity is the transmission of the same
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Figure 1.2: An adaptive antenna array.

signal in different frequency bands. In addition to time &m®djuency diversity, antenna diversity

is the exploitation of the independent fading between pilg@paced antennas [5].

Antenna diversity may also be known as the exploitation efgpatial dimension. By imple-
menting multiple antennas at the MS one may achieve a peafacengain in the downlink with an
improved link budget and a higher tolerance to co-chanretfierence. By adding receive anten-
nas at the BS, the receive diversity improves the quality efuplink without any cost to the end
users who operate the MS [5]. Receiver diversity is also knasveingle-in multiple-out (SIMO)

and is shown in Fig. 1.4.

The exploitation of the spatial dimension may take placdattansmitter as well, known as
transmit diversity or MISO (Multiple-input single-outgutind is shown in Fig. 1.5. The benefits

of transmitter diversity are in accord with those of recetersity.

1.3.1 Recent Research Thrust: Precoding and the Utilization of Channel

Knowledge

In the event that the transmitter has knowledge of the cHamioe to transmission, then it would
benefit the system performance measures to make use of finimnation. Beamforming is one
method which uses an adaptive antenna array in which welghtmbols are used to steer the

energy in the direction of the receiver. Another method &csptime diversity which is inferior
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Figure 1.3: Multiple-input multiple-output (MIMO) diagna

to beamforming because it distributes energy equally adteschannel. Through the use of prior

knowledge of the channel, the performance of space-timersity approaches that of beamform-
ing [5].

There are many approaches in how to most efficiently use @h&nowledge, also known as
channel state information (CSI). CSI of the complete chargwlzation is known as full CSI and
is used in [6], [7], [8] and [9]. Partial CSI refers to the usestdtistics of the channel which may
be the correlation at the transmitter or receiver, the camae of the channel or the mean of the
channel. Partial CSI using the correlation of the receivgdads at the transmitter and receiver is
used in [10], whereas only transmit fading correlationsused in [11]. Partial CSI comparing the
use of amplitude only and the use of phase only is comparegl.inThe covariance of the CSl is

used in [12], [10], [13]. In [12], the use of the mean of the GSihvestigated as well.

To capitalize on the benefits of CSI at the transmitter, CSleslus premulitply the symbols
prior to transmission, which may be referred to as weightgfiltering, or precoding. The
receiver will typically use some form of a maximum likeliddetector which is referred to as
a postfilter or a decoder. Here it is referred to as precodimtgdecoding at the transmitter and

receiver, respectively. This thesis will take a closer l@lsystems using both precoder and a
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Figure 1.4: Single-in multiple-out (SIMO) diagram.

decoder where full CSI is assumed and analyze the performassén the event of imperfect
CSI. In mathematical literature the analysis of an error tadded to a known value is referred
to as perturbation analysis. In effect, the thesis will gpalthe performance loss incurred in the

computation of the precoder/decoder due to perturbatioarrors in the CSI.

1.4 Thesis Overview and Outline

The outline of the thesis is as follows, Chapter 2 will predestkground information on the

capacity benefits of a MIMO system as well as MIMO precodexsdders. Chapter 3 explains
further the system models whose error analysis is presemtdthpter 4. The performance results
of the error analysis of chapter 4 is presented in chapteth®. cbncluding statements and future

work is shown in chapter 6.
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Chapter 2

Background

This chapter presents the benefits of MIMO through an exgitamaf the performance benefits as
well as the theoretical insight behind its usage. Herem diglescription of the wireless channel
which introduces the performance gains of a MIMO system,c@osks by delving further into the

concept of precoding and how that puzzle piece completebdbkground picture necessary to

understand the contribution of this thesis.

2.1 Channel Model

The wireless communications channel is assumed to be tlpagation environment between a
BS that is elevated from the terrain and devoid of local soatteand a MS at ground level which
receives its radio waves via reflections, diffraction anattseing as shown in Fig. 2.1. The con-
structive and destructive vectorial combination of thévarg waves is known as multipath propa-

gation.

A typical MS is modeled as being surrounded by scatteress)tieg in a faded envelope that
is devoid of a specular, or line of sight (LOS) component.sTpe of fading is known as Rayleigh
fading. If a LOS component is present then the received kigiaaminated by the stronger signal,
resulting in a channel modeled as Ricean fading. The chanodehmay also be described as

either flat or frequency selective fading. Flat fading iraplthat the channel is simply a single tap
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Figure 2.1: Typical MS/BS scenario.

filter with a time-varying gain, whereas frequency selecfading is modeled as a multi-tap filter

with a time-varying gain. [14] [15].

2.2 Capacity Benefits of MIMO

The capacity benefits of a MIMO channel are presented in &a8@. Beginning with the devel-
opment of the original single-input single-output (SIS@acnel capacity developed by Shannon
in 1948, and followed with the capacity of a MIMO channel wéihd without CSI at the transmit-
ter. Throughout this section the chanmels assumed to be constant and known to the receiver

which is maintained through training and tracking.

2.2.1 SISO Capacity

Capacity is a measurement which quantifies the maximum gesaibount of information that
may be transmitted across the wireless channel. The tréesihaind received signals are random

variables, this implies that a measure of the entropy is sszng because it is a measure of the

10



uncertainty in a random experiment [16]. Given a discreteetiadditive white Gaussian noise

(AWGN) SISO channel, the received signal is given by
z = hx +n, (2.1)

where z is the transmitted signak; is the received signaly represents the channel, andis
the AWGN. The mutual information is given by the differencévieen the conditional entropy
(h (z|x)) and the differential entropy((z)) and is written as [15]

I(xz;z) = h(z)—h(z|z).

Mutual information is a measure of information shared betwhe transmitter and receiver and is
given by the base two logarithm of the ratio of a posterioolgability to a priori probability. Given
the transmission of a random inputand reception of a random inputthe mutual information is

given by [17, 15]

I(x;2) = Z p(z, 2)log, (pp(m,z)) , (2.2)

TCX,2E2 (z)p(2)

wherep(x) indicates the probability of the random input The capacity, is then defined as the
maximization of the mutual information across all possihfeut distributions as demonstrated by

Shannon [18] in his well-known formula
C' = Blog, (1+ SNR), (2.3)

where B is the bandwidth of the channel, SNR is the signal to noise &atd the capacity is in
bits per second per Hertz (bps/Hz). If the channel is moda$esirandom, independent identically

distributed (IID - spatially white) channel, the above etpafor channel capacity remains valid.

2.2.2 MIMO Capacity

The derivation of the capacity of a SISO channel is easilgrded to the MIMO case. The new

received signal is given by expanding (2.1) to become

Z=HXx-+n,

11



wherez is the M, x 1 received signal vectok is the M; x 1 transmit vectorH is a M, x M,
matrix representing the channel amés a M, x 1 vector of AWGN. The mutual information of a
MIMO channel is the difference between the conditional@mrand the differential entropy af
and is defined as [15], [1]

I(X;z) = H (z) — H (z]x). (2.4)
Since the vectors andn are independent, (2.4) simplifies to
I(x;z)=H(z)—H(n). (2.5)

The maximization of (2.5) simplifies to become the maximaabf H (z). The covariance ma-
trix of z satisfies the maximization df (z) whenz is zero mean circularly symmetric complex
Gaussian (ZMCSCG). This implies thatmust be ZMCSCG as well. The covariance matrix of
is given by

E[zZ"] = R..

= HR,H"+ R, (2.6)
whereR,, = E[xx"] andR,,, = E[nnfl] = ¢2 1. This allows (2.5) to become
I(x;2) = log, (det (o, 2HR.,H" +1)). (2.7)

Similar to the SISO derivation of (2.3), the MIMO channel aaty is the maximization of the

mutual information (2.7) over all input covariance matsi¢&5] [1], and is given by
C' = max Blog, (det (0, 2HR,H” +1)) . 2.8
In the event that the channel is modeled as a random, |ID @hatire above equation for

capacity differs. IfM,. = M, = M, according the the strong law of numbers the channel cowegia

matrix becomes

1

+7HH T 1,

asM approaches infinity. This results in a revised capacity tgaahat may be written as
C' = Mlog, (1+SNR).
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This may be interpreted as while the number of transmit aceive antennas increase, the capacity
of the random MIMO channel approaches that of the detertienMIMO channel as well as

increases linearly in/ [1].

Throughout the rest of the document, only deterministic MIghannel models will be stud-

ied. For a presentation of MISO or SIMO capacity please ref¢t].

CSI Unavailable at the Transmitter

In the event that the channel is unknown to the transmitien there is no opportunity to optimize
the dataR,,) before transmission. For this reason it is intuitive t@edite equal power to all of

the transmit antennas. The capacity of the channel when @8t @mvailable at the transmitter is
C' = Blog, (det (0, ?HR.,H" +1)) (2.9)

By taking the eigenvalue decomposition (EVD)HR,,H = QAQ", (2.9) may be rewritten as
C = Blog, det (0,,2QAQ" +1) , (2.10)

whereQ is a matrix of eigenvectors amtl is a diagonal matrix of eigenvalues. Using the identity
det (I +AB) = det (I +BA) and the property of eigenvectors tl@t'Q = | allows (2.10) to

reduce to
C = DBlog,det (ang + I)
= B log, (0,20 +1), (2.11)
i=1

wherer indicates the rank of the channel, which implies that min (M., M,). From (2.11), it
is shown that there aresubchannels between the transmitter and the receiver ilg.shows that

in the absence of CSI the capacity approaches
C = Brlog, (oA +1) (2.12)

and grows linearly in. This reveals the appeal of a MIMO system, which shows thttouit CSI
at the transmitter one is able to increase linearly the agpsicnply by adding antennas at either
end of the link [15].
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CSI Available at the Transmitter

If the transmitter is provided with CSlI, then itis intuitivedassume that the capacity would increase
because the transmitter is able to maximizeRhematrix as described in (2.8). This allows access
to the subchannels of the channel in order to maximize thifgct®veness through the link using

linear processing.

To access the subchannel the singular value decompositiéid)(is used. The SVD is defined

as
H=UxVv#, (2.13)

whereU, X andV are matrices of dimensiol, x M,, M, x M, andM; x M,, respectively.U
andV are composed of the left and right singular vectors, regmdygtand: is a diagonal matrix

of singular values. The singular values are positive nusmbsedered such that
01 20'2 2 ... Op.

The singular values also have the property at= A, whereA is a diagonal matrix of eigen-
values. When performing the SVD on a wid¥( < M,) matrix, the last\;, — M, columns ofX
are full of zeros. In th&JX V¥ product, these columns of zeros cause thelgst- M, columns
of V to be of no importance because they do not altetdB®/” product. Similarly if the SVD
is performed on a tall matrix, the last, — M, rows of X will allow the M, — M, columns ofU
to be eliminated because they are useless in forrhirigpm the producUXVY. The M, — M,
columns ofV andX (wide) and theM, — M, columns ofU and rows ofX (tall) are not needed
in the producUXV?. This is irrelevant information and the integrity of the guatUXV? is in
no way sacrificed. The elimination of the columns and rows p®: or V will not be discussed

further until chapter 3.

By multiplying the transmitted symboss prior to transmission with the right singular vectors,

the transmitted signal becomes
X = Vs (2.14)
The transmitted signal corrupted by AWGN prior to recept®n i

y = HVs+n. (2.15)
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Linear processing also takes place at the receiver as thmaitier of the left singular vectors is left

multiplied with (2.15) resulting in the following equati@md simplification
Uz = U”uxvfvs+Un
Z = X¥s+n',

which is shown block diagram form in Fig. 2.2. This allows #wmplicit decomposition of the

channel inta- parallel SISO channels which are written as follows
/ /
zZ; = 08 +n,,

where; =1...r.

The capacity of the channel with the CSI known at the transmigtthe sum of capacities of

ther parallel SISO channels and is defined as
C = Y logy (omadipi +1), (2.16)
=1

wherep; = E[sf’s;] ande? = );. This is an improvement upon (2.11) because the user is able
to allocate more or less energy in the subchannels, insteadually allocating energy in all

subchannels. This results in a decrease of transmit povmsuaaption.

The objective now becomes the maximization of the energgsache subchannels with re-
spect top, in order to distribute energy to the weaker subchannels Thie optimal method of

allocating energy is known as the Waterpouring algorithihiarpresented in [19] and [20].

2.3 Precoding for MIMO

The ability to provide the transmitter with full or partial C&lows the exploitation of that knowl-
edge to improve the performance of the system. The transim@nses implemented at the trans-
mitter depend on factors such as the nature of the channell&dge, the type of receiver, the
performance criterion to be optimized, and the power cairgs at the transmitter. Herein the pre-
coding schemes will be grouped according to how much inftionas provided at the transmitter,

i.e. full, partial, or limited.
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Receiver

Transmitter Channel

n

Figure 2.2: Decomposition of the wireless channel.
2.3.1 FullCSI

Using full CSI to precode the data is an ideal assumption bupraxctical for implementation in
the real world. The quantity of information sent to the trartter on a zero delay feedback channel
is unrealistic. Exploitation of the eigenstructure is a coom practice in constructing the optimal
F (precoder) ands (decoder). The designs of [21] target the minimization & MSE of the
decoded block of symbols and are further analyzed in Chapt#n@ther method of optimization
of a generalized jointly optimum linear precoder/decod=ign attempts to minimize the weighted
sum of symbol estimation errors with the assumption of qamstd transmit power across all
antennas [22]. Other research makes use of the assumptfafi 6fSI to obtain optimal linear
precoders/decoders, but optimizes the system to a pantipefformance criterion. Specifically,
the work of [23] proposes a minimum bit error rate (MBER) diagloprecoder, whereas [24]

maximizes the minimum Euclidean distance of the receivedtaation under a power constraint.

2.3.2 Partial CSI

Partial CSI makes use of the long term statistics to precoeléréimsmitted signal. Herein partial
CSlis referred to as either knowledge of the transmit andvee@mtenna fading correlations, trans-
mit antenna fading correlations or the channel covarianatix) all of which allow transmission

along the eigenmodes of the channel.

Transmit antenna correlation is caused by the lack of mathifading at the transmitter. A
downlink scenario where the BS is placed high above the granddsees no local scatterers is an

example of transmitter correlation, as previously showRig 2.1. The lack of multipath fading
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which introduces correlation at the transmitter causesohemns of théH matrix to be correlated.

This MIMO channel may be written as
H=H,RY*

whereR%/2 is aM; x M, transmit antenna correlation matrix ag, is aM, x M, complex matrix
with entries that are 1ID. An optimal linear precoder fouhdough an optimization method may

be used, as well as a maximum likelihood (ML) decoder [11].

Similar to [11], [10], [13] and [25] make use of the corretats at the transmitter, but also
those at the receiver. The spatial correlations at thermétes and receiver alter the channel matrix

such that it becomes
H = R?H,RY?

whereR; andR+ are the)M,. x M, andM, x M, receiver and transmitter correlations, respectively.

If the transmit antennas are too correlated, then a bearmfgmmodel is derived which makes
use of the angle of departur€’, angle of arrivaln?, and the complex channel amplitude of the

Rayleigh fading channel. The channel model which implemagsnforming is described by

T

H = A (o) diag (3)A (o) ",
whereA denotes a steering matrix apccontains the complex amplitudes.

Regardless of the amount of correlation at the antennas tomd®rder fading statistics are
used at the transmitter side to create an optimal precotierrdceiver side has the full CSI which
enables the use of the minimum MSE criterion to create thienappdecoder. More on this topic
may be found in [10], [13] and [25].

Other literature on partial CSI makes use of the input sigmedance in order to calculate the
mutual information and optimize the system with respech&dovariance, which is done in [26].
At the same time the authors make use of the transmit antennelation in order to determine if
beamforming is optimal due to the current state of the trainsmtennas. If the transmit antennas
are highly correlated, then it is beneficial to use beamfognsince it requires using the transmit

antenna array to send a single effective stream of datar@se if the transmit antenna array has
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low correlation, this implies that the antennas are inddpahand it is advantageous to make use

of the gains offered by a MIMO system.

2.3.3 Limited CSI

Limited CSl is the process of quantizing the CSI at the receaner sending a codebook index to
the transmitter in order to compute the optimal precodear@mation is the process by which an
index indicates a specific matrix located in a codebook, wiheth receiver and transmitter have
copies of the same codebook. Upon computation of the ideabgler at the receiver, the minimum
distance between the subspaces spanned by the precoding amak the ideal precoders in the
codebook, a match is made. By sending only the index of thelradtprecoder to the receiver, less
information is needed to be sent in the feedback loop at teeafdhe size of the codebook. The
larger the codebook, the more minimum distances must be a@apwhich increases computation
time, which delays the arrival of CSI at the transmitter. Forennformation on codebook design

and vector quantization, refer to [27], [28] and [29].

In the case of [30], [31], and [32], the precoder is restddie having orthonormal columns
and the received signal is decoded with a linear decoder.zéra forcing or a minimum MSE
receiver is used, the decoders are

Gzr = (HF)"
Guse = (FIHTHF +0,21) " FIHY,
where* indicates the Moore-Penrose pseudoinverse. The precodieosen at the receiver from a
codebook that had’” = 2P F matrices to chose from. The size of the codebook is detedhige

the number of feedback bits used, which in this casB.isThe codebook is such that the metric

computes a chordal distance and selects a mathigm F = (Fy, Fy, - -, Fy).

The chordal distance metric minimizes the distortion ngetri
. 1
E[mln(iel,2,~~,N)§HVVH — R, (2.17)

whereV is from the EVD ofH and the subscripf’ indicates the Frobenius norm. The chordal

distance is a measure of the distance between two subspabesliterature which makes use
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of the chordal distance measurements within the framewoérknoted feedback MIMO pre-
coders/decoders ([30], [31], and [32]) also make use of €énasinian packing in order to compute
low distortion codebooks. More information on Grassmanmiacking may be found by referenc-
ing [33] and [34].

Other limited feedback literature simply sends back to thedmitter a quantized estimate of
the channel. The estimate of the channel is then used in tra@@mpute what is referred to as a
weighing matrix W. The weighing matrix is simply a precoder, which serves &xpde the space
time block codes (STBC) prior to transmission [35]. In someesdhe precoding matrix is simply
the eigenvectors dfi’H [36], or the eigenvectors multiplied with a diagonal watarpng matrix
[37].

2.3.4 Imperfect CSI

Despite the many methods of informing the transmitter of @& known at the receiver, full,

partial and limited CSI methods are all capable of being qed by noise leading to imperfect
CSI. The corrupted CSI analysis that is common in the liteeatsianalysis of errors that occur
in the process of feeding back the CSI to the transmitter. leesors may be categorized but
are not limited to, time delay errors for the information ®tbansmitted from the receiver to the
transmitter, quantization errors in the feedback charnhéir(ted feedback is used) and channel

estimation errors.

Some literature (such as [38], [39], [40], [41] and [42]) Wewith errors that may occur
during the estimation of the channel. In order to estimatectmannel a training sequence may
be used which is subject to corruption. This thesis will degh a description and derivation of
equations which encompass all forms of errors that befall €&5lt is not limited to the analysis
of one particular type. This section is included to depighomn approaches such as time delay

errors, quantization errors and CSI errors.

In order to approach the error analysis associated withife@eCSlI, it is common to include
an error term which encompasses all of the imperfectionk®fdSI. Given a system with block

diagonal structure, such as that of [43], which is applieabla MIMO Orthogonal Frequency
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Division Multiplexing (OFDM) system, the receivdd M x 1 signal is modeled as
z = GHFs+ Gn, (2.18)

where the channél is a frequency selectivE M, x K M, block diagonal channel matri is a
K M; x KM precoder matrix which allocates the power acrosgfhgibcarriers and/; antennas.
M < min (M,, M,) is the number of symbols to be transmitted per subca@és.a K M x K M,

decoder matrix and is a K M, x 1 noise vector.

Due to the block diagonal structure of the received signalehof (2.18), the MIMO channel
may be decomposed intle MIMO frequency flat fading channels by imposing a block diagjo

structure on the matrices and vectors of (2.18) such that

H = diag([HiHs---Hgk])
F = diag([FiFs---Fi])
G = diag([GiGs---Gy])
7z = [zrfz}q

This result enables rewriting (2.18) on the subcarrierllage

Zr = GLHLFiXx;, + Giny (2.19)
wherek = 1... K. By storing the MIMO channel response for thi subcarrier in a vector

hy, = vec [Hy]
and making use of the identity [44]
vec (ABC) = (C" @ A) vec (B),

(2.19) may be rewritten as

Z. = Azh, + Gin,
wherek =1... K andA; = (stk)T ® G;.
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This enables incorporating the channel eddn into the the channel estimation as

_ 2

A=, (h+Ah) (2.20)

2
0, + OAp,

whereo? = F [hHh} ando%, = £ [AhHAh]. This error term encompasses the feedback de-
lay and the CSI errors due to additive noise. The work of [43jvée (2.18), (2.19) and (2.20)
and also assumes that the chareind the channel errdi are jointly Gaussian in order to de-
sign the optimal linear precoder and decoder which are nireichaccording to the MMSE and
the minimization of the bit error rate (BER). In the design @& according to the MMSE and
BER criterion a cost function is derived, followed by a clo$exdn solution and a description of
the asymptotic performance of the linear precoder/decdeezloped. Models of the MMSE pre-
coder/decoder are not developed in [43] as they are in Chapterthe MMSE precoder/decoder.

The mismatch between the CSI at the receiver and the CSI atahentitter is analyzed for
broadcast Orthogonal Space Division Multiple Access (O2DMs well. One unique aspect of
this work is that it focuses on the individual error sourgeead of grouping all of the errors into
one term, which is done in [45]. The separate developmen@irhpact of imperfect CSI on
system performance parameters such as ML channel estim#i®effects of channel estimation

errors and the time delay effects of channel estimationratigidually considered.

Other literature reveals the development of optimal povaapsation and adaptive modula-
tion for MIMO systems with imperfect CSI [46]. The system mbdeveloped used the same

precoder/decoder originally designed and developed by f2@ed on the SVD of the CSI.

Itis common among literature dealing with imperfect CSI attitansmitter and/or receiver to
introduce an error term. After the introduction of the elerm and a system model, development
of performance analysis of SNR and bit error probability][4f BER analysis and quantization
effects [48] or the trade-offs in transmission strategiespace time coding and beamforming and

the effects on the information transfer rate [12] may be tbun
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2.4 Conclusion

This chapter introduces the concept of MIMO and the diffeferms of precoding. Section 2.3.4
shows that there has been analysis into the more realigti@asios of imperfect CSl. Despite the
research completed in the literature, none develop eq&tidich quantify the amount of error
introduced to the system, as will be shown in Chapter 4. Nexap@r 3 will show the development

of the MMSE precoder/decoder designs of [21].
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Chapter 3

Design of Optimal Linear

Precoders/Decoders

This chapter delves into the design aspect of linear pres@airoders within a MIMO system.

One nice aftereffect of some MIMO precoders is their abilityseparate the subchannels into in-
dividual SISO channels, which if accomplished, enablesastdined analysis. Through the use of
full CSI the optimal designs of the linear precoders/decagessented in [21] accomplish the iso-
lation of the individual subchannels as well as presenecdsrm solutions to various performance
measures. However, partial CSI provides a more realisticosgh since providing the transmitter
with complete channel knowledge instantaneously is imptssPerformance measures are pro-
vided herein for full CSI. This chapter will address the dasignd performance measures of the

above precoders/decoders.

3.1 Optimal Linear Precoders/Decoders using Full CSI

By beginning the design with the minimum MSE, an initial peil occurs on whether to design
a decoder tuned to the precoder and channel, or to desigrcadaretuned to the channel and
decoder. One logical option is to pick the former choice, dadign an optimal decoder for a

given precoder and channel since the receiver will have ¢eten€SI. Starting from this point a
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decoder design is created using the minimum MSE and thréetit design criterion are created
from which six optimization scenarios emerge in order taglemultiple precoders. Performance

measures are then derived for the precoder/decoder designs

3.2 System Model

The overall system model had,. receive antennas and, transmit antennas. Evefly symbol
intervals there ar&/ symbols, denoted &, transmitted by @ x 1 vector. The system begins by

precoding theV x 1 vector withF in order to produce &/; x 1 transmit vector

It is assumed that the discrete time channel has a time vaimpulse response, is causal and
has finite memoryi., which enables writing the input-output equations in bl&dR (finite im-
pulse response) form. Using a block by block transmissiarcsire the transmitted and received
symbols are stacked into snapshots. A snapshot is one sioehl d&f data that is transmitted over
one symbol period which is then stacked into large blocksieefind after transmission in order
to attempt to cancel interblock and intersymbol interfeee(iBl and ISI, respectively) which are

caused by the frequency selectivity of the channel.

The block transmission begins by stackifg= M + L precoded transmit snapshot¥ (is
the number of receive snapshots) into a vegfoil he structure of thé/, P x 1 transmitted vector
X; IS

X[iP]

X[(i+1)P —1]
which is the product of tha/, P x N precoder and the symbas The output of the channel prior
to corruption by AWGN is

y; = HX,.

y; is the product of the channel and the stacked transmissicoryevhereH is the M, M x M, P
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channel matrix. Similar ta;, y, has the form

yliP]
y, = :
yl(i+1) P —1]
The receivedV/, M x 1 vectory is corrupted by AWGN with variance? . The received signal is
z; =y, + n;. The received signal is then decoded by a< M, M decoder matriG. This results

inaN x 1 vector of estimated symbols in the receiver which are egaeas

The transmit and receive snapshots are included for theidérezry selective case. If the channel
exhibits flat fading, thelP = M = 1 and L = 0 and the above equations collapse to simpler

forms, which will be dealt with throughout this thesis siriguency flat fading is assumed.

The precoder/decoder block diagram is shown in Fig. 3.1.0ftienal design of the decoder
begins with the minimization of the mean square error (MSBe MSE is a function of botk

andG and is given by
MSE(F,G) = E{(&-s)(&-s)"}. (3.2)
By substituting in the received signal (3.1) into (3.2), tbkdwing is obtained
MSE(F,G) = (GHF —I)R,, (GHF —1)" + GR,,,G", (3.3)

whereR,, = o2 | because the transmit symbols are assumed to be white. Téecmiariance ma-

trix R,,, = 02,1 is positive definite, and the noisg is uncorrelated with the transmitted symbols
S:.

The optimal decoder is found by designing a Weiner receid8i fvhich minimizes the
tr (MSE (F, G)), and is given by

Gupt = RuFH (HFRFHY £ R,,) . (3.4)

By substituting in the optimab of (3.4) into the MSE equation (3.3), the minimum M$EG)

becomes MSH, G,,:). The resulting MSHE) is minimum in the sense that

MSE (F) = MSE (F, Gop) = o2 (I + US?SFHHHRgnlHF)_1 . (3.5)
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Y Precoder [ — Channel

S =QGz
Decoder i>

zZz=y+tn

Figure 3.1: A block diagram of the system model.

Since the transmit symbols are white, the previous equébioB, (3.4) simplifies to
1

G = F"HY (HFFHY + R,.022) . (3-6)

The result of (3.6) requires that the receiver has knowleafgihe channel and the noise
covariance matrix. If the receiver does not have knowledghe two matrices then decoder is
useless. The most important assumption of the optimaliipescoder/decoder design due to full

CSl is that both the receiver and transmitter have completeparfect channel knowledge.

The optimal designs of the optimal precoder may be found agipg different performance
measures which depend on the MSE-@B.5). A trivial solution would be to increase the norm of
F to infinity, but that is not reasonable. The first constramits the transmit power and is found
by limiting the expected value of the norm of the transmittee® [||x;||?] = tr (FFH) o2, which

results in
tr (FF") 02, = P, (3.7)

The second constraint limits the maximum eigenvalue of thesimit covariance matrix. It is

another method of limiting the power, and is given by
Amaz (FF?) 02, = Lo. (3.8)

The third and final constraint limits the peak power of thesrait symbols and is shown by the

following inequality
max (|| [Fs ) < Ao (FF) maz; (|[s]°) (3.9)
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The constraint comes froifis;||> since the transmit symbols are bounded in amplitude. This co

straint limits signal peak and is constellation indepemnden

In order to find the optimaF, the minimum value of (3.5) must be found. The trace operator
and the determinant are two avenues in which the minimum radgund. Other methods of find-
ing minimum values of a matrix are through Lagrange mukigj the Frobenius, two, or infinity
norms, and by minimizing the eigenvalues [50] [51] [52]. histcase, the trace and determinant
are used to compute the minimum argument of (3.5), with @sjeethe three constraints (3.7),
(3.8) and (3.9), resulting in six optim& matrices. These six designs have different performance
results which may be used to suit the users needs. Obvidhely;s obtained are by no means an

all encompassing list of optimal precoder designs.

3.3 Considerations for Non-Square Channels

No reservations have been made yet as to the size of the dharimeh is determined by the
number of transmit and receive antennas. If the number efve@antennas is less than the number
of transmit antennas\(,. < M,), then the channel matrix is wide. If the number of receivieanas

is greater than the number of transmit antenrds ¢ M,), then the channel matrix is tall. A by-
product of the SVD of the channel matit is that for wide or tall matrices some of the matrices
contain irrelevant information. In the case of a wide chanmatrix, the M/, — M, columns ofX
andV may be eliminated. For a tall channel matrix, the — M, rows of X and theM, — M,
columns ofU may be eliminated because those rows and columns are argl@vthe computation

of H, as was discussed in Chapter 2

Here is a small example to help in understanding the elingnaif irrelevant rows. Recall
that the SVD of the channel was defined in (2.13). Recogniniagwith a3 x 7 H matrix, the other
matrices of (2.13) artl = 3 x 3, X =3 x 7,V = 7 x 7, andrank (H) = rank () = r = 3.

Lwog-legl= g v |-

X7

The previous example shows that in order to fully represeatchannel, only dimensions are
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necessary. Additionally, the previous result shows onéydhse of a wide channel matrix, but the

same may be shown for a tall channel matrix but is omitted.here

All of the previous results assume a full rank matrix. For¢hse of a non-full rank channel
matrix the necessary information to fully representeduces to-, wherer is the rank ofH and

the following inequality applies < min (M,, M,).

The above arguments concerning the size and rakkmofy be restated in terms of the EVD
instead of the SVD. However the end result is the same. The &\ube CSl is presented in [21]

as follows
HPR 'H = VAVZ.

If further clarification is needed, please refer to [21] favn@ information.

3.4 Specific Precoder Designs

The following precoders are presented without derivatiéor. specific details, please refer to the

appendices of [21]. Every design results in a precédier be of the form
F=V®, (3.10)

whereV is the same in each, but a nalwis derived.V is a matrix containing the right singular

vectors of the SVD of the full CSI, an# is a square, diagonal power allocation matrix.

The first design is obtained by minimizing the trace of (3.8hwespect to the total transmit
power constraint given in (3.7). The entries along the diaj@re denoted ag;; and the first
design’s entries are [21]

Po+ M AL 1 \"
|¢u‘|2:< 0+ D k1 )\nn)\ /2 ) (3.11)

M, \—1/2 7' 52
02, Sk A i 2y

where(.)+ is defined as thewaz (2, 0) and the);; term denotes the eigenvaluestbf

Minimizing the determinant of (3.5) with respect to the tgawer constraint of (3.7), yields

a new® which is found as [21]

M, y—1 +
I@ilzz(Pﬁz’“:M’“’“ ! ) : (3.12)

2 TN 42
M, o2, NiiOZ,
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Moving on to the minimization of the trace of (3.5) with respt the maximum eigenvalue

constraint in (3.8) yields & of the form [21]

by = \/720 . (3.13)
O.SS

The minimization of the determinant of (3.5) with respectite maximum eigenvalue con-

straint in (3.8) yields the sam® as shown in (3.13).

The final two®’s are constrained by the peak power of the transmit symi3o8,(and are

given by [21]

b 1
Gii e ——— Ni s (3.14)
| | Jgs Zk )\kkl
and
Lo
s> = °U2NN - (3.15)

These different precoder matrices may be used to suit theization needs of the user.

3.5 Equivalent Channel Model

The optimal form ofG shown in (3.4) may be rearranged in order to show that thevalgunt
channel seen by the data becomes an identity. Beginning th&hmanipulation of (3.4) is as

follows:
G = R.F'H" (HFR,F'H” +R,,) (3.16)
1 1\ 1
= o2 FHHY ((TSSHFFHHHUSS + R;mR;m)
_1 _1 _1 -1 1
_ g RyEFTHY (ass PHFEPHAR oy + |> Rk 0,
_1

and by settindA = o,,Rn.?HF = ZVAV® = &, the aboveG may be written as

G =A"(AAT 1) Rz 0.,
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Now by making use of the matrix inversion lemm&’ (AAH + I)_1 = (AHA + I)_lAH, and
by settingl’ = (AHA + I)f1 o2,, G may be rewritten as

_1
G = I'A"Ruio)}
- <ass ,;%FHHH) Rufor)
_ F/FHHHR—I
= I'(V®)"HIR!

= I'e"VIHIR, .
By substituting inl' = I'® A the final form ofG is derived

G=TA 'VIHIR I (3.17)

It may be inferred from above th# is a diagonal matrix since it may be written as the
product of two diagonal matricedy = 3X®. From thisI” may also be shown to be a diagonal
-1
sincel” = (AHA + I) o2.. Furthermore, it may be concluded tfats a diagonal matrix since

it is the product of three diagonal matric&= I'®A.

In the computation of the equivalent channel model, if theegdnal matrices andT" are

excluded, the overall channel reduces ta\édnx M, identity as shown below,

T = GHF
= A'WIHUR JHV
= A 'WHAVAVHV
= I, (3.18)

The subscriptV/, indicates the dimension of the matrix. If the channel is sguten the size of
W is M, or M. If the channel is wide or tall, then the sizeWfreduces tal/,. or M, respectively.
This is significant because it indicates the number of palralid independent subchannels of the
channel that exist in which the data symbols pass througjhis the effective channel that the
symbols see, excluding the diagonal matrideandI". Since the overall channel model reduces

to an identity, the gain of the systemli$» as shown in Fig. 3.2.
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The noise correlation reducesAc ! as shown below

GnnG"? = A'WHHYR''R,,R;IHVA™!
= ATV (VAVT) VAT
= AL

3.6 Performance Results

The results in the previous section allow a streamlinedoperdnce analysis. One nice result of
the overall channel reducing to an identity, as shown in egu#3.18). Another is that the system
gain is determined by two diagonal matridéeand®. Additionally, the MIMO channel reduces to
r parallel, independent and ISl free subchannels. Each anbethhas the gain,, .. and noise
variance);;’, wherekk indicates theith diagonal element of the matrix, or ti¢h subchannel.

This allows writing the estimated signal at thi subchannel as
8k = Orekk (i), + Ve (), -

The SNR for the:th subchannel is

02| Dl Vil
A |2
= o2 | Mer

SNR; =

wherevy.,, A\ andey, are the diagonal elements of the diagonal matridtes and®, respectively.

The capacity defined in (2.8) is no longer valid since the gdec/decoder pair are not in-

cluded.R.. of (2.6) must be rederived, along wiky,,,. R.. andR,,,, become

R.., = GHFss"FAHAGHY 4+ Gnnf'G*,

R,, = GnnfG~.

The mutual information of the overall system becomes

1(8;2) = log, ( det (GR,,,,G" ' (GHFR..FYHYG" + GR,,G") ). (3.19)
2

31



n

L

s :> @ # \% d> H :>+:> AWVIHR ! @ r i> s

Figure 3.2: Overall channel model.

Capacity is defined as the maximization of the mutual inforomabetween the transmitter

and receiver across all subchannels. The capacity is g&ven a

C = maxR_log, (det ((GRHHGH)l (GHFRSSFHHHGH + GRHHGH)>) . (3.20)

Since the equivalent channel model reduces to an idertaynformation transmitted across
all subchannels is parallel and independent. It may alschberrs that the mutual information
across the parallel and independeifivherer is the rank oH) subchannels as

" 1<
I(5;s) == log,(1+SNR;). (3.21)
Tz
This shows that the mutual information on each of the pdraheependent subchannels form
is equivalent, but each subchannel has a different muté@inmation and hence different capac-
ity. Thus, the total mutual information of the overall systés the summation of the individual

subchannels.

3.7 Conclusion

Chapter 2 introduced MIMO and the concept of precoders/dasodChapter 3 takes a closer
look at a specific precoder/decoder designs, thus this ehagthe completion of the foundational
material from which the contribution of the next chapter sltoupon. The precoder/decoder

designs of this chapter are the same as the imperfect prestdeeoders presented in Chapter 4.
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Chapter 4

Performance Analysis of Linear

Precoders/Decoders with Imperfect CSI

In the event that the CSI contains errors, how will this afteet overall performance of a MIMO
system? Errors may occur in the estimation of the channejubytization of the CSI prior to feed-
back if limited CSl is used, or errors could occur while segdime CSI to the transmitter, or any
combination of the above sources of error. It is obvious tharte are a plethora of potential loca-
tions within a wireless system in which errors could be itgdanto the system. The concentration

herein is limited to the errors in the channel which impaetphecoder/decoder performance.

The analysis of imperfect precoders/decoders with full G&hiportant because it will enable
the design engineer to have an estimate of how robust or havh performance degradation the
implemented system will have given varying degrees of erfdre purpose of this chapter is to
serve as a model on how to estimate the severity of these etaeuThe imperfect channel model
is introduced, equations are developed which factor in trenoel error, a proof on the SVD of
the channel as the number of transmit antennas is addedvws stral the overall channel model is

derived along with performance equations.
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4.1 Imperfect Channel

Analysis of the channel matrid with errors is an investigatable scenario which may represey
errors in the channel that are introduced on the receiver pribr to the CSI being fed back to the
transmitter side. In order to model the imperfect systemralile AX is introduced which repre-

sents the amount of error added to a system parameter, Wheq@esents any system parameter.

Beginning with the channel itself is where the error analgsists. The imperfect channel

caused by imperfect CSl is represented as
H=H+ AH, (4.1)

where the imperfect channel is denoted with a tildeis the true channel anAH is the error.
Throughout this thesis ¥ indicates the actual variable plus the error. The erropihiced to the
system is assumed to be noise that is modeled as uncorreM&aEN with varianceai, e, N

(0, 012)). This models the scenario where, by increasing the variaﬁctdae errorAH is increased,

indicating more errors in the CSI.

The error analysis conducted herein begins with the assamfftat errors may first be in-
troduced in the estimation of the channel. The channel astimomprises the CSI which is used
in the decoder and is fed back to the precoder through a lasvdaplex channel. If the CSl is
imperfect, that implies that the decoder and precoder wéietcomputed from that incorrect data

are also imperfect.

The SVD of the imperfect channel is
H=U0sv" (4.2)

The imperfect CSI may also be written in terms of the EVD. Sitieenoise covariancR, ;! is
assumed to be white and uncorrelated, it becamjgs and the EVD of the CSI covariance matrix
is

RoA"A = o (05V")" (0s0")

= sV

nn

~ o~ ~H

— o 2VAV'.
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4.1.1 Imperfect Precoder and Decoder

To consider errors in the knowledge Bf and their impact on performance, the precoder and
decoder designs of Section 3.2 are repeated. Beginning latmtnimization of the mean square
error (MSE) as a function of both andG, instead ofF and G is the first step. The MSE is

minimized with respect to both andG and is given by
MSE(F.G) = E{&-s)&-9)"}. (4.3)
Substituting the received signé& — GHFs+ én) into equation (4.3) yields
MSE (F,G) = (GHF —1)R,, (GHF —1)" + GR,.G", (4.4)
where the prior assumptions on the noise and signal covarianatrices hold.

The imperfect decoder is also based on a Weiner receivenfdi@h minimizes ther (MSE (IE, G))

and is given by

6= R.FR" (AFRLFTR 1R, (4.5)
By substituting in the optimab of (4.5) into (4.4), the MSE becomes

MSE (F) = o2 (1 + agsﬁHﬁHR;;ﬁﬁ)‘l | (4.6)

The imperfect versions of decoders (3.16), (3.17) and teeqater (3.10)may be rewritten as fol-
lows in order to express them in a form where the amount of ésrquantified in equation form.

By rearranging the equations as the decoder plus the termodogperfect CSI and as the pre-
coder plus the terms due to imperfect CSI, the system desigagrbetter visualize in equation

form the amount of error introduced into the system.

The decoder in (4.5) may be rewritten as
G = (Gi+GaG)(G:+Gagy)
where

G, = Ry FHY
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GAG, = Rs(FAH+ AFH + AFAH)”
Gy, = HFR,F'H” +R,,
GAG, = HFR. (FAH -+ AFH + AFAH)"
+HAFR,E + AHFR,E + AHAFR,.E

2 = (FH+FAH 4 AFH + AFAH)".
The imperfect decoder from (3.17) may be rewritten as
G=TA V Ho,; =G+ AG 4.7)
where
G = TA'WVIHYs 2
AG = TA™'((VAH + AVH + AVAH)") 0,2
+TAA'II + ATA'ITI + ATAA I
I = ((VH+VAH+AVH + AVAH)") 0,2
The imperfect precoder from (3.10) may be rewritten in alsinfashion
F=V®=F+AF (4.8)
where
F = V&

AF = VA® + AV® + AVAD.

In addition, thep;;'s that depend o will be rewritten sinceA becomes\. Equations (3.11),
(3.12), (3.14) and (3.15) become

~ +
2 (P A g 1
gbii - M, ~_1/2 >\u - 7 2 ) (4'9)
O'gs Zk:TI Ann /\iigss
e (Rt 1T
i| = o - ) (4.10)
Mo, Niio2,
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2 PO Y1

il = —— =<7 > (4.11)
O-gs Zk )‘klcl
and
~ |2 LOS\NN~_1
respectively.

4.2 Equivalent Channel Model

The effective channel including the precoder (4.8), thenale&(4.1), and the decoder (4.7), while
excluding diagonal matrices such&g(4.9), (4.10), (4.11), (4.12)) add(T' = T'®" A), becomes

T = FHG
= A V'R"RIHV (4.13)
— 1~ ~~~g\H -
— o 2A V! <UEVH> (uzvH)V (4.14)

~ _1 ~ ~ o~ o~ ~
_ o2 (22> vivs0Tusviv

= 025 '0"uzviv (4.15)
= 5 2(T+AD) U+ AUV (V+AVY). (4.16)

The imperfect overall channel gainisl ®. The question now becomes: What effect doXheJ

andV have on the overall equivalent channel?

4.3 Effects of Imperfect CSl on the SVD

The goal of this section is to describe in detail a useful SW&tem which assists in describing
the channel model when the CSI is imperfect. In mathematigabture, the analysis of the ad-
dition of an error term to a matrix is known as perturbatioalgsis. A useful tool to describe a
perturbed subspace decomposition was found in [53], whicisiders the case where the error is

an uncorrelated AWGN random variable, exactly the scenamie.hrhis theorem assumes that the
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varianceE[AHAH] is asymptotic as the number of columns approaches infinityissdenoted

by E[AHAHY]/r = o’l.. For alargeM,, the SVD ofH may be represented as

_ 1 .

i ~ U (22 + Myo2ly, ) V" = Ay, (4.17)
Whereag is the variance of the CSI error term or perturbation, and thsaiptV indicates a
wide matrix (i.e. M; > M,) This shows that for a smablg and as the number of columns ldf
are increased, the singular valueg-bincrease by an amount approximately equat to/M7;. It is
important to notice that the matrix of left singular vectbksis not changed. In other words, for a

wideH, (4.2) becomes
~ =~ H
Hy =UXV . (4.18)

The matrix of singular values may be written as

N

Sw = (2% + Mol (4.19)

The above theorem which appeared in [53] is presented onlyitte matrices as the number
of columns is increased to infinity. A literature search wadeartaken to find a theorem which
stated a similar argument for tall matrices, but was not douDespite the literature search not
providing useful results, the symmetry of the SVD regardhmgU andV matrices was enough to
postulate a theorem for the contrary asymptotic case wheneumber of rows approaches infinity.
Which may also be found by transposing the above theorem. Fogel\/,, the SVD ofH may
be represented as

~ ~ 1 ~
Hr ~ U (3% + Myo2ly, )* V! = Hy. (4.20)

From the above equation, it may be inferred that for a sa‘ﬁadind as the number of rows Bfare
increased, the singular valuesiéfincrease by an amount approximately equatj§/M,. The

approximated SVD oH may be written in shorthand form as
Hr = USVA, (4.21)

followed by the matrix of singular values

NI

Sr= (3% + Mol (4.22)
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Two simulation scenarios were set up to model the error atviee actual imperfect chan-
nels,Hy, andH; and the approximation to the imperfect chanté), andH ., respectively, for
both the cases wherd, and M, approach infinity. For the wide case, the simulation begiits w
a random flat fading Rayleigh channel with an antenna configuraf 1 x 5 and computes the
two-norm of the difference betwedty,;, andHy and is averaged over 1000 trials for a gi\Lejn
On the next iteration, a row is added to the channel and tlee batweerHy, andHyy is again
averaged over 1000 trials and continues until the antennfigtwation is square. The simulation
then repeats for a diﬁeremﬁ value. Two different matrix sizes are giveh X 5 becomes x 5

and1l x 10 becomed0 x 10) in Fig. 4.1 for two different values off,.

The same simulation was mimicked for the case of a tall asteonfiguration and computed

the error betweeﬁIT andl:|T. The results for the tall antenna configuration is shown g Ei2.

Notice in both Fig. 4.1 and 4.2 that the approximation becmerse the more closer to
square the antenna configuration becomes, regardlesszmefst.heag. As the ratio of transmit
to receive antennas increases to 1, the greater the ermweédethe actual imperfect channel and
the approximation to the imperfect channel. In Chapter 5 solots will be presented which show
how well the approximation improves with non-square andéecaonfigurations. This will allow us

to quantify how much error is tolerable within a system desig

4.4 Equivalent Channel Model: Wide Case

The results of Section 4.3 may be used as a tool to simplifgthavalent channel model found in
(4.16). The matrix of the imperfect left singular vectorsynbe approximated dd = U as shown
in (4.18). Additionally, the amount of error introducedarthe matrix of singular values is shown
in (4.19). This eliminates two of the three unknowdsl and AY) introduced in (4.2). The only

remaining unknown variable of (4.16) 48V which will be addressed in Section 4.4.1.

Recall from Section 3.3 that in the event of a wide channel hdde irrelevantdl, — M,
columns of¥ andV are eliminated. This simplification makes the mathemabparations much
easier within this section; otherwise, the matrix multiption of (4.7) and (4.8) would not be

possible for a non-square matrix. Earlier in this thesis dhbscript, (e.g.) ;) indicated the
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Figure 4.1: SVD approximation error for wide matrices as améenna configuration becomes

square.

dimension of a square matrix, but herein it will also indecatatrices that have had columns or
rows eliminated. Specifically for the case of a wide chanrelehusing the approximatids = U,

the overall channel model becomes

f‘i’/Mr = 0‘;7122;/[17.0HU2MTV]\H/[T\7]WT
— 0,25, UTUS,, VI (V+AV),,

— 025, SV (V+AY),, . (4.23)

This leaves only one unknowd\V. By determiningAV, a workable expression for the effect of

the error on system performance may be obtained.
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Figure 4.2: SVD approximation error for tall matrices as Hrenna configuration becomes

square.

4.4.1 Effects ofAV

By beginning with the SVD of a wideM(, > M,) H andH of the same size and eliminating the
M, — M, columns of%, £, V andV, the SVD ofH andH may be rearranged as follows

Vi = A"US,

Vi, = HYUZ;,

r

whereV,; .V, ,H andH areM, x M, andU, f];j andX;; areM, x M,. Next, equation (4.1)

may be rewritten as

AH=H—H. (4.24)
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Now the desire is to knowvAV. We may writeAV in the same fashion as

AV =V -V,
Orin this case, it is
AVy, = V. — Vo
= R"uUs,, - HYUS;, (4.25)
Now by subtracting and adding the same teHﬁ[UEJ_V[lT) from (4.25) yields
~H ~—1 Hy sl Hyp—l H -1
AV, = H'UX,, —H7UXZ, +H7UX,, —H7UZ,]. (4.26)
By manipulating (4.26) the final expression AV, becomes
i H &1 Hyy (! 1
AV, = (A—H)"UZ, +HU (zMr _ EMT) (4.27)
— AHYUS,, +H"UAS;) (4.28)
This produces an approximate expression for the ma¥ix,, , which holds for wide matrices

only. This does not give an estimation of the size of the etemef the matrix.

It is assumed from the SVD error theorem in Section 4.3 that U and the size o% may
be inferred from (4.19). The question remains as to the dixe dhe following is an analysis of

the elements oAV, which will give insight to the amount of error M.

4.4.2 Elements oAV

Taking a closer look at the elements from left to right of 8,2heir properties may be analyzed.
The noise standard deviatier,, is a constant and the matricBsand X are both diagonal with
zeros on all of the off-diagonal elementéis a unitary matrix, which means that the norm of each
of the columns is unity and the norm of the matrix itself istyniThe question remains as to the

size of the errors in the non-diagonal matrix on the far rgfh®.23),AV . .

By isolating the matrix produdt/]\HLVM,,, we may approximate the size of the elements of the

error AV ,,, . This matrix product may be clarified as

Zy =V, (Va, + AVay,) = Iy, + Vi AVyy,. (4.29)
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Rewriting the right hand side in terms of the individual elmsa)fVﬁTAVMr and making com-

parisons to a two dimensional case helps the analysis.

First generalizing the matricas), AV, into vector form

Av, Av, - Avy |, (4.30)

then taking a closer look at their individual elements yseld

vEAv, VEAv, ... viIEAv,,,
H H H
Vi AV, V5 AVy - V5 AV,
(4.31)
Vi Avy Vi Avy -e v Avyy,

The aim is to approximate or bound the individual elementthefabovel, x M, matrix. Two
approximations may be made from which the above matrix §4n3dy be simplified. The first
approximation may be made by looking at an example that isl Wat any dimensions of the
vectorsv;;, for any columns iV, regardless of the size . Multiplying two vectors ofV results

in a product equal to zero, but also reveals some useful gppations such as,

VIV, = (vi+Av)T (v; + Av;) =0 (4.32)
0=v'v; + VI Av; + Avl'v; + AV Av; (4.33)
0~ VvIIAv; + Avi'y;. (4.34)

Recall thatv; denotes théth column of the right singular vectors of the trdeand theAv, terms
are the errors. Thus the terms inside the parenthesis i)(#h@icate the true value plus the error
term due to imperfect CSI. The first term of (4.33) is zero bsedhe vectors are orthogonal due
to the unitary structure of. The final term of (4.33) is approximated to be zero becauisetlie
inner product of two small terms. The remaining terms of £ show that théi,j)th element is

equal to the negative of thg, i)"" element.

The second approximation may be made from the two dimenisexaenple shown in Fig.

4.3. The two perpendicular sets of vectors in Fig. 4.3 shat the error of the right singular
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vectors, is assumed to be small. As the error termAwf and Av, approach zero, the two pairs
of vectors ¢4, V; andv,, V,) approach each other. For small errors, the vectxws and Av, are
approximately perpendicular to the vectors they are camgpv,; andv,, respectively. In other

words, the following products are approximately zero

vIAv; ~ 0 (4.35)

Applying these to approximate the right-hand-side of (}@®duces

0 VEAv, VviAv; ce vEAv,,
—vi Av, 0 vE Avy

Zy ~1 +| —vifAv; —vEAv; : . (4.36)

V]\H4T71AV]VIT—1

—VvEAvV,, e —Vvi AV, 0
The above matrix may be simplified further, by noting that effediagonal elements are the dot
product of two vectors. Recall that the dot product is the plidgation of two vectors and is
denoted as
a-b=a” -b=]|la|l-||b|| cosba, (4.37)

whered,, is the angle between vectoasandb and||-|| denotes the norm. This allows the off-

diagonal elements to be reduced to

0 ||AV2||COS€12 ||AV3||COS€13
— ||Avs]|| cos & 0 AvVsl| cosd
Zy ~ 1+ (Al costne | 3‘_‘ ” . (4.38)
—HAV3HC08613 —||AV3||608923

This shows that each of the off-diagonal elements in coldrmbounded by|v;|| wherei =
1...M,. Itis also apparent that the size of the off-diagonal eldsare directly related to the

amount of CSl error. The above equation (4.38) may be boungled b

0 [|AVs||  [[Avs]]
— ||Av 0 AV
2y ~t | lAv lavsi | 439
—[|Avs]| —[|Avs]]
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Figure 4.3: A two dimensional example.

4.5 Equivalent Channel Model: Tall Case

The analysis of the previous section may be rederived inrdodmake use of the SVD theorem
of Section 4.3 to apply to tall channel matrices. Recall that matrix of the imperfect right
singular vectors may be approximated\as= V, according to the theorem, and the amount of
error introduced into the matrix of singular values is shawi¥.22). This eliminates two of the
three unknowns A3 and AV) introduced in (4.2). The only remaining unknown variabfe o

equation (4.16) ifAU which will be determined next.

In Section 3.3 it was shown that for a wide channel model, itedevant)M, — M, columns
of , 2, V andV may be eliminated. For a tall channel model, ffe — M, columns ofU and
U and theM, — M, rows of X andX: may be eliminated. The matrices that have had columns or

rows eliminated are denoted with a subscript (&3.,),

/l:\[;Mt = U;ﬁii/[ltO]\H/[tUMtthvHv
= O'_QEEDAH/[tUMtEMt

nn

— 025, (U+ AU U2y, (4.40)

The AU parameter is the only unknown and will be determined in a rmaemilar toAV in the

previous section.
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45.1 Effects ofAU

By computing the SVD of a tall{/, > M,) H andH of the same dimension and eliminating the
M, — M, columns ofU, U, and theM, — M, rows of £ and X, the SVD ofH andH may be

rearranged as follows
Uy, = AVE,,
Uy, = HVE,.,

t

WhereDMt, U, H andH are M, x M, andE;jt, i;t andV areM,; x M,;. AU may be rewritten

as
AU=U-U.
Or in this case, it is

AUy, = Uy, — Uy,

= AVE,, —HV;,. (4.41)
Again, by subtracting and adding the same teik Ejjf) from (4.41) yields
AUy, = HVE,, —HVE,, + HVS,, —HVS;,. (4.42)
After manipulating (4.42) the final expression fAlU,,, becomes
AUy, = (H-H)VEy, +HY (iMl - 2@) (4.43)
— AHVE,, +HVAY;} (4.44)

This produces an approximate expression for the maitik,, which provides the final unknown

from (4.40) for a tall channel matrix.

It is assumed from (4.20) that = V and the size o may be inferred from (4.22). The
question remains as to the size of the errorsliriThe following is an analysis bounding the size

of AU, which will give insight to the impact of the error &f.
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45.2 Elements oAU

By mimicking the previous analysis which derived the boundAd/, a similar derivation may
be completed for theAU matrix in the case of a tall channel matrix. By isolating thd&mnmwn
matriceq U + Au)ﬁt U,,, of (4.40) an approximation to the size of the erdd,,, may be made.

This matrix product may be clarified as
Zy = (U, + AU)4; Uny, = Ly, + AUS Uy, (4.45)

Again, generalizing the matriceSUﬁtUMt into vector form

Aul

Auf
U Uy - Uy | (4.46)

H
I Ath |

then taking a closer look at their individual elements piaau

Auflu;  Auflu, Aufluy; - Aufluy,
Aulflu;  Auflu, Aulluy,
' (4.47)
| Aujjur Aujjuy - Aufl Uy, |

The goal is to approximate or bound the individual elemehts® abovel; x M; matrix. Two

approximations may be made
u’Au; = —Aufu; and Aui'u; = 0. (4.48)

Again, recall thaty, is theith column of the right singular vectors of the tidamatrix and theAu;

indicates the errors due to imperfect CSI.

Applying the two approximations to (4.45) produces

0 Auflu,  Aufu; Aulluy,,
—Auflu, 0 Auflug

Zy ~1 +| —Aufu; —Aufu; . : . (4.49)

H
Athflth_l

—Aufluy,, —Aul _Up,_g 0
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Similar to equation (4.36), the above matrix may be simgliflerough the use of the dot product.

The simplification of the above matrix produces

o fau fau
N B 1 B PV s
] fau]

This is a significant result because it shows the directicglahip of the size of the CSl errors and

the size of the off-diagonal elements for the case of a tairara configuration.

4.6 Equivalent Channel Model: Non-Full Rank Case

The final case of the equivalent channel model is for the casenon-full rank channeH. In
the event of a non-full rank channel, the effective size ef thannel reduces to the ranklof

regardless of the antenna configuration, square, widelor tal

The results of Section 4.3 may be applied to a non-full renkr H. If the non-full rank
channel is wide, the results of Section 4.4 apply. Similafihe non-full rank channel is tall, the
results of Section 4.5 apply. The effects of a non-full rahkrmnel simply reduces the number of

parallel and independent subchannels that exist to beHaaghe minimum of\/, and M.

4.7 Performance Results

The cascade of th& andF with perfect CSl is given in (3.18) and depicted in Fig. 3.2. Whee

CSl is perfect it also allows the suchannels to be written as parallel, independent subeltgnn
However, when the suboptim@ andF (equations (4.7) and (4.8), respectively) are cascadey, th
do not conveniently reduce to an identity but produce equa.13). The corresponding noise

correlation for the cascaded precoder/decoder is

Gnn’G" = AT'V'HURIR,,R-IAVA"

= o)A VIR"AVAT
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—1~ g\ —
— oAV <UEVH> (UZVH> VA~
= o AT'ESAT
= 0_1]&71.

This results in the estimated signal being written as

5111/711&51151 + 7111;1252252 +-+ %ﬂzlrﬁgrrsr + Y11
%2&21%151 + %2@522552282 + -+ 722@527&”7«37« + Yaano

>
I

, (4.51)

L 5/”1/77“1(51181 + 7%“7"1;&9’52252 Tt ’7rr{/;rr§grr5r + ﬁrrnr i

where~,, and &y, are therrth elements of the diagonal power allocation matrices aris the

approximated channel as shown in (4.13).

The signal received in any of the subchannels may be founcelecting the desired row
element of the- x 1 vector of (4.51). For example, the signal recieved at thé $ubchannel is

expressed as
A1 = ”7/112;11$1181 + 7)/111;12&2252 + e+ ﬁ?ll&lr(grrsr + :Yllnl- (4'52)
This helps in the computing the SINR at thk equivalent channel

0 = ol |[Feliil ; (4.53)

A (|’7¢,¢1Zi,i+1<51+1,z+1’ + i iiiv2Pirnival + o+ Wi,ﬂ;i,r‘gwmﬂni)

wherei, j < Min(M,, M,). Recall that\; is theith eigenvalue of.

Finally we may write the channel capacity, as derived in Géraptand shown in (3.20), with
the precoder and decoder computed based on imperfect CSth@heel capacity may be written

as

~ ~ -1, _ . . ~ ~
Cymvio = mMaxg _ log, (det ((GRHHGH> (GH FRSSFHHHGH + GRnnGH)>> . (4.54)

4.8 Gaussian Approximated BER and Capacity

Knowledge of the distribution of the CSI errors may be usefusimplifying the performance

equations. If the CSlI errors are found to be Gaussian in tiegniltltion then they may be treated
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in the same manner in which the AWGN is treated with probatulfiterror and the type of detector.

This simplifies the performance analysis greatly.

It is desirable to know the distribution of the CSI errorstbf Histograms of the diagonal
and off diagonal elements of the equivalent channel modilbgi shown. Recall how in the
event of perfect CSI, the equivalent channel model, exctudiagonal matrice® andT’, reduces
the to anM, x M, identity as shown in (3.18). The imperfect channel modelshm (4.13)
differs from (3.18) only in the inclusion of errors. For siralrors, the imperfect channel model of
(4.13) should be strongly diagonal with small values on &the off-diagonal elements. For this
reason, the use of a histogram will aid in the developmeri®fésults by showing the probability

distribution of the diagonal and off-diagonal terms.

A simulation was created which begins by creating 1,000/@88omH andH matrices and
computes (4.13). Histograms for the elementsiofire plotted for various values ofﬁ The
histograms are plottedf (p) andp on thez- andy- axes, respectively) in Fig. 4.4 and Fig. 4.5 for
the diagonal and off-diagonal elements, respectively. mkan and variance of the PDF’s in Fig.
4.4 are 0.5883, 0.7692, 0.9091 and 0.0154, 0.0112 and Q.6&s&ctively. Notice in Fig. 4.4, that
as the variance of the CSI error decreases, the distribufitrealiagonal elements approaches 1,
as expected. The mean and variance of the PDF’s in Fig. 4G@081248, 0.0000062, 0.0001339
and 0.0154, 0.0113 and 0.0052, respectively.

Additionally, for each different value of? in Fig. 4.5, the distribution is centered around 0.
The PDFs of Fig. 4.4 approaching 1, and the PDFs of Fig. 4.&irecentered around 0, which is

expected. Fovg = 0, the PDF would be centered at 1.

If the CSlI errors of the overall chann@ may be shown to be Gaussian then existing perfor-
mance measures that have been derived in previous workbavdpplicable to our results. The
PDF’'s shown in Fig. 4.4 display how as the CSI error decredsmemean becomes more closely
centered around zero and the variance decreases. SintilerRDF’s of Fig. 4.5 display how an

off-diagonal element of the overall channilmatrix becomes more closely centered around zero.

Given this information that the CSI error resembles that aiss&an noise is not enough but
will be supported by mathematical expressions. By reviewirgreceived signas, shown in

(4.51), the CSI error may be approximated and a new estimaadlsnay be shown. Based on
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Figure 4.5: PDF of the (1, 2) element@ffor a2 x 6 channel model.
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the simulations resulting in the PDF’s of Figs. 4.4 and 4éstdrms due to interfering signals and

the AWGN may be lumped into a single AWGN termas follows,

%11/711&1131 + uq
%2%2&2251 + Usg

>
~

(4.55)

L ;?rr{/;rr(grrsl + Uy ]
Note thatu is white Gaussian noise since the interferingndn (in row 1 s, throughs,) are
Gaussian. The mean and variance of the interfering termisatbapproximated as Gaussian are

denoted as (using; as an example)

Eluy] = AU haa Bl ]+ + ?rﬂzrrqzrrE[Sf] + E [n4]

Var (Ur) = (Futhiade) Var ($) + -« + (F11thuen) Var (s) + Var (n) .
Recall thatk (nnH> =R,, = oul andE (SSH> =Ry = ol
Now (4.52) may be rewritten as in a similar fashion as (4.8g)ain using the first subchannel,

A =Audbn s + . (4.56)

Next equation (4.53) may be rewritten as follows,

o = Tl + [?iqf]fj _— [0 (4.57)

This new SINR equation will in turn lead to a probability of@requation.

We derive the BER based upon a 16-QAM constellation. The M-Q&dvistellation was
selected based upon its high spectral efficiency in AWGN. Wafately, the performance is poor
because of channel amplitude and phase variation. Beginvithghe probability of error for an

M-QAM system we obtain [54],

1 3o/
Pm:2<1—m>Q( Y ) (4.58)

From the probablility of error the probability of a symbokar for the system herein may be

defined as
2
Py=1- (1 — Pm) (4.59)
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To complete the performance equations of the Gaussian Appation case we now show the
mathematical expression for capacity. Similar to the nesicapacity equation shown in (4.54)

for the case of imperfect CSI we have

~ ~ _1 ~ ~ ~ ~ ~ ~
C'vinvo = maxg_log, <det ((GRHUGH) (GH FR.E'HIG" + GRUHGH)>> . (4.60)

4.9 Conclusion

This chapter has shown theoretical analysis of the impa@rmfrs in CSI used to compute a
decoder/precoder in a MIMO system. This analysis is coragbetcause it applies to full rank

channels with both transmitter and receiver diversityhnext chapter the focus is shifted to the
performance of the equations derived within this chaptdrtaeir robustness to channel errors, or

lack thereof.
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Chapter 5

Simulation Results of Linear

Precoders/Decoders with Imperfect CSI

The simulation results of linear precoders/decoders aeted in the presence of imperfect CSI
is analyzed herein. Results are shown that describe thebdisdn of the error caused by the

imperfect CSI by way of BER and capacity plots for various angeconfigurations.

5.1 CSI Error

To begin the performance analysis, the first step is to giyantiat happens to the vectors of the
channel matrixH, when an error matrix such &sH, is added to it. This first set of plots is shown
to verify how in a three dimensional case the angles of thenonlvectors comprising thid and

H matrices differ. By taking a pair dff andH matrices and performing the SVD a comparison
between the disturbed and undisturbed matrices may be nkade this comparison the angles

between the individual vectors tf, U, V andV may be shown.

The simulation begins with a three transmit and receiverarateonfiguration. The random
H and AH matrices are selected from a Gaussian distribution witb pegan and unit variance.
After performing the SVD on thél andH, the individual vectors of th&J), U, V andV pairs

are plotted against one another with a measure of the angtegén the individual vectors listed.
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The angles between each of the vectors and their imperfecttegpart are computed using the

equation

B; = cos ! <

and is shown in Fig. 5.1. For a CSI error variancesgf= 0.01 the measure of angular error

ufu, > 180
— X
[Jua | 10 | m
between the vectors df andU are 3, = 3.8, 5, = 2.1 and3; = 3.1. For the same CSlI error
variance the measure of angular error between the vectdfsaoflV are; = 1.9, 3, = 1.8 and
(3 = 2.4. This plot showing the angles between theU, V andV pairs is included to reinforce

the discussions of Fig. 4.3 in Section 4.4.2 and in Sectibr4.

Additional examples of the angular error between the veatdt), U andV, V for a larger
o—§ are shown in Fig. 5.2 and 5.3. Fig. 5.2 displays the measuam@dlar error for a CSl error
variance ofag = 0.05. The angular error between the vectordofindU are, = 72,53, =72
and; = 1.3. The angular error between the vectorsvondV are3; = 10.3, 3, = 9.0 and
(3 = 5.2. Fig. 5.3 displays the measure of angular error for a CSI| e/agance ofag = 0.1.
The angular error between the vectordbandU are; = 11.6, 5, = 18.8 and3; = 20.2. The
angular error between the vectors\bhndV are(; = 4.3, f; = 28.2 andf; = 28.0.

From Figs. 5.1, 5.2 and 5.3, it is evident thato%s(the CSI error variance) increases, the
distance between the column vectorshf U andV, V increases. Sinc#, V andU, V are
from the SVD of the channel matricesandH, respectively, this implies that the column vectors
betweerH andH are similarly corrupted. This discussion shows how a snadirevill alter the

vectors of theH matrix, but it does not describe the type of distributionrad error.

5.1.1 SVD Theorem

The next simulation is presented to show extreme cases &\thetheorem of Section 4.3 a9,
approaches infinity. Two channel models are compared gifiemeht transmit and receive antenna
configurations for different values (a:ff, The equivalent channel model of (4.13) is compared
against the approximation to the equivalent channel modeé approximation to the equivalent
channel model is found by substituting (4.28) into (4.23)akilyields

By = 0,25, Sy VL (v + AHPUS,, + HHUAE]‘V}T> . (5.1)
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-0.5
Angles between U and U

Figure 5.1: Angles between the vectors of the acthahdV and error matricedl andV, respec-

tively.

Z axis

Z axis

Angles between V and \Y%

Figure 5.2: Angles between the vectors of the acthahdV and error matricesl andV, respec-

tively.
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Angles between V and \Y%

Figure 5.3: Angles between the vectors of the acthahdV and error matricedl andV, respec-

tively.

The two norm of the difference between the two channel mddelen averaged over 5000 trials
and plotted, as shown in Fig. 5.4, whebe ¥ 4, indicate the equivalent channel and the approx-
imation to the wide equivalent channel model, respectivElgch point on the: axis indicates a
different value ofaz and they axis indicates the average of the two norm of the differerate/ben

the two channel models, which indicates the amount of enwoduced by theAH term. The
different antenna configurations are listed in the uppérciemer of the plot. The plot shows that
as the channel model becomes wider, the closer the appribamizecomes for various values of
af,. In particular notice that the approximation is not goodgquare matrices, butfax 7 has a
significantly better approximation than the< 5 and is nearly as good as very wide matrices such

asb x 15, especially for smalclrg.

The SVD theorem is shown to hold true for a tall channel modelell, when)M, approaches
infinity. The setup for the simulation of the tall channel e tsame for the case of the wide

channel. The theoretical channel model for this simulatias found by substituting (4.44) into
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Figure 5.4: SVD theorem example.
(4.40) resulting in
— ~ 1 ~—1 H
U =028, (U + AHVS,, + HVAzMﬁ) Unt, S, (5.2)
) e

The result is averaged over 5000 trials and is shown in F@.Mere@AT indicates the approx-
imation to the tall equivalent channel model. Again, eacimipon thex axis indicates a different
value ofag and they axis indicates the average of the two norm of the differeratesben the two
channel models. The different antenna configurations stediin the upper left corner of the plot.
This plot reinforces the idea that as the channel matrix imecsataller, the better the SVD theorem
holds. Since the resolution of the non-square antenna ewafigns is poor, the simulation was
repeated but with the square antenna configuration leftTthe.result of that simulation is shown

in Fig. 5.6.

Although the theorem holds for the case of a tall channelagiproximation is not as good as
the wide case, notice how much greater the error is in FigtHab that of Fig. 5.4. This indicates

that settingl = U results in a better approximation to the equivalent chanmedel for wide
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120

Figure 5.5: SVD theorem example.

channel matrices than settiiwy= V for the equivalent channel model for tall channel matrices.
This is shown to hold true in a similar simulation without gggproximations foAV and AU as

shown in (4.28) and (4.44), which will be shown next.

By looking closer at the equivalent channel model (4.13)séssn the investigation to why
the assumptiol = V performs worse than the assumptldr= U. The equivalent channel model
is presented again
¥ = A V'A"RIHV

= oms V! (0s0") (usve)v
= o575 0"usn ViV, (5.3)
~—— ——

From this point one of the two assumptions may be made whadtslén two different directions,
as indicated by the underbraces, depending on the desiteghanconfiguration. If a wide antenna

configuration is desired, the assumption= U may be made and (5.3) may be simplified further
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as

T, = > ‘sufuxviv

— s 'svEv.

Now if a tall antenna configuration is desired, the contraguanptionV = V, may be used to

simplify (5.3) as follows,

O, = 2 ’s0"sviv

~—1~H

= X U UX.

Now the desire is to investigate why the erM@ - {IjATHz is greater than the err#ﬁ — ﬁAWHg'
Due to the symmetry of the SVD one would guess that they woelcelatively close. A separate

simulation was setup that mimicked what is shown in Fig. Bd ig. 5.5, but instead computed
ew = Hf‘j:; - f‘inQ and €T = Hf‘i’/ - f‘i;THQ . (54)

The result is shown in Fig. 5.7, where all of the antenna condigons used are square. Square
antenna configurations were used in order to present ansethanalysis. Notice that the perfor-
mance of the equivalent channél;, still performs worse tha’yy, for large values offf,. This
shows that the assumptidth= U is initially poor, but as the antenna configuration becora#srt

the better the approximation holds, which leads to imprgueadormance.

5.1.2 Distribution of CSI Errors

Despite the insight provided in the PDF’'s of Section 4.8,dhalysis is lacking because it does
not take into account the statistics of the other elementisarequivalent channel mode¥,. The
statistics of the other elements differ slightly. The nexlgsis quantifies a relationship between

the mean and variance of each row ver(sgjéor different antenna configurations.

In order to describe the mean of the overall channel modfegnd compare it Withfg a
simulation was setup to show how individual antenna conéitioms vary with different values

of ag. For a given antenna configuration, the simulation beginsrbgting randonH and AH
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—A— 7x5
—— 10x5

Figure 5.6: SVD theorem example.

matrices for a giverafg and ¥ is computed. The simulation then repeats for 10,000 itemati
storing the individual entries of the overall channel mat®. From the stored values of the
overall channel matrix the mean and variance of each entgrigouted. Excluding the diagonal
element, each entry is then averaged row-wise to produceneae and one variance for each row

of ¥. The simulation then repeats for increasing valuasf)of

Specific cases of wide antenna configurations, suéhas, 4 x 10 and6 x 12 with a}% values
of (0,0.1,0.2,...1.0) were evaluated. The antenna configurations were select@dddake into
consideration the ratio of receive antennas to transméranats, which i$.3333, 0.4 and0.5 for
the aforementioned cases, respectively. The results arvensim Fig. 5.8, Fig. 5.9 and Fig. 5.10
forthe2 x 6, 4 x 10 and6 x 12 configurations. From the three figures, it may be observedtha
the CSI errorgg increases, the mean of the diagonal elements decreasasasltiee mean of the

off-diagonal elements stays centered at zero, regardf¢ks size of the antenna configuration.

Within the same simulation to capture the relationship leetwthe means of the overall chan-

nel model versus CSI error, the variances of the overall ablamodel versus CSI error were
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Figure 5.7: SVD theorem example.

captured as well. Figures 5.11, 5.12 and 5.13 show the w@a$aof the diagonal and off diagonal

elements of various antenna configurations versus CSI error.

In Fig. 5.11 it is shown that the variance of the diagonal affidiagonal elements increase
at the same rate as the CSI error increases. This is an expestédtisince the Gaussian plots of
Figs. 4.4 and 4.5 become wider as the CSI error increases.ahne sonclusion may be made for

the4 x 10 and6 x 12 cases shown in Figs. 5.12 and 5.13, respectively.

Additional information is revealed in the plots of Figs. 34nd 5.13 which shows that differ-
ent rows of the overall channel model have different vagand his is due to th@ matrix which is
used in the precodér (recallF = V®. & is computed using the eigenvaluesbfthe eigenvalues
are ordered from increasing to decreasing along the diagbrg the matrix of eigenvalues). This
causes more of the power to be allocated to the higher rowslfouthe equivalent channel model,
¥, hence their variance is smaller and the variance of therlowes is larger. This is why in Fig.
5.12 the variance of the off diagonal elements of rbis higher than the other off diagonal rows.

Similarly in Fig. 5.13 the off diagonal elements of r@inare higher than the other off diagonal
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Figure 5.8: Mean versuslf of ¥ for a2 x 6 channel model.
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Figure 5.9: Mean versusg of ¥ for a4 x 10 channel model.
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Figure 5.10: Mean versus, of ¥ for a6 x 12 channel model.

rows.

A similar simulation was executed with tall antenna confagians analyzing the means and
variances of the overall channel model versus the incrgasSli error. As expected the results
were very similar for the cases 6fx 2, 10 x 4 and12 x 6. The results for mean versug are
shown below in Figs. 5.14, 5.15, 5.16. The results for vme'aaversus;f, are shown in 5.17, 5.18

and 5.19.

5.2 BER

One important aspect of a wireless communications systétsi BER performance. Simulations
were setup for wide, square, and tall channel models for #sggds of Chapter 4, to emphasize
the SVD theorem (as both/, and M, increase). Simulations were also setup to emphasize the
loss in performance as the CSI erroﬁXincreased. A flat fading Rayleigh channel was simulated

using theMATLAB commandrRAYLEIGHCHAN, with a sampling frequency of 10kHz and Doppler
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Figure 5.11: Variance versmg of ¥ for a2 x 6 channel model.
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Figure 5.12: Variance versuﬁ of ¥ for a4 x 10 channel model.
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Figure 5.13: Variance versw§ of ¥ for a6 x 12 channel model.
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Figure 5.14: Mean versusg of ¥ for a6 x 2 channel model.
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Figure 5.15: Mean versuﬁ of ¥ for a10 x 4 channel model.
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Figure 5.16: Mean versu@s}] of ¥ for a12 x 6 channel model.
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Figure 5.17: Variance versmg of ¥ for a6 x 2 channel model.
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Figure 5.18: Variance versuﬁ of ¥ for a10 x 4 channel model.
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Figure 5.19: Variance versu’% of ¥ for a12 x 6 channel model.

frequency of 80Hz to the symbols. The noise variance is asdumbe unity, since the transmitted
symbols are white and the noise is modeled as AWGN. Everyrresgon period results in 1

symbol being transmitted from each antenna.

In order to be cognizant of the appropriate values to usénfovariance of the CSl errors?2,
a literature search was undertaken on the topic of chantiglagon errors. For the simulations of
[47], o} was set to 0.09, [39] let? be equal to 0.2, 0.6, 0.7 and 0.9, [42] t&t= 0.12 and 0.375,
[43] leto; = 0.02 and 0.625 and [41] variedq between 0 and 1. For this reason variegj/alues

were used to simulate CSI error for this section.

The precoder that was used to precode the transmitted sgriwbich were already modu-
lated by a 16 QAM constellation) is the same as found in (4s8)aitheg;; found in (4.9). Thisp;;
was selected because according to [21] it provides the bespmmise between BER and infor-
mation rate. AWGN corrupts the transmitted signal prior toepgion at the receiver where (4.7)
is used to decode the received signal. The received sigtiamscompared with the transmitted

signal and the number of bits in error results in the BER curves
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Figure 5.20: BER for @ x 6 channel witho2 = 0.05.

The first set of BER curves shown in Fig. 5.20 are forddnx M, antenna configuration of
2 x 6. The first of the four curves shown in the figure are the scenahere the CSl is perfect,
the second curve uses the approximation of the SVD theotesrthird curve denotes the actual
case when the CSl is imperfect. A variancesgf= 0.05 was used to degrade the quality of the
CSI. Notice that the two curves with CSI errors are able to perfas well as the curve with no
CSl error up to 20dB. This system reaches a BEROof at approximately 18dB, 20dB and 22dB
for the perfect CSI, imperfect CSI and the approximation usimgerfect CSlI, respectively. The
fourth curve, which is denoted as AWGN, depicts the BER for an A\&Bannel with no fading

for al x 1 channel configuration. It is displayed for comparison psgsoonly.

The same simulation setup was then used for an increasedaof@SI error. Withf; =0.1,
the three curves given (Perfect, Approximate and Actudfjgn 5.21 nearly achieve a BER tff 2
at 15dB before the performance degrades1@t® the curve with perfect CSl is at 18dB, but the
actual curve does not achieve that same level of performantie25dB and the approximation

is not on the plot. This shows a degradation in the performari¢he approximation to the wide
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Figure 5.21: BER for @ x 6 channel withos? = 0.1.

channel model when compared to the perfect CSI case.

This issue was explored further with a wider antenna condiiom, to investigate how well,
if at all, the SVD theorem held as the number of transmit amasrincreased. Fig. 5.22 shows
a 3 x 10 with three curves: perfect, approximation and actual Witdnga: 0.05. There is a
noticeable increase in performance of the approximatiocesatl 0~ there is approximately 1dB
of separation between the curve with perfect and the curitesmperfect CSI. The approximation
curve of Fig. 5.20 never even achieves a BERL®f*, which indicates that for the same CSI
error variance otrg = 0.05, a wider antenna configuration will perform better, as waslitlae

approximation.

Next, Fig. 5.23 shows & x 10 antenna configuration with a CSI error variancefﬁf: 0.1.
It is here that the performance gains of the wider antennfigrmation break down. At0~2 there
is 1dB of separation with the perfect and approximate BER azirvAt 10~3 a 7dB separation
in performance, which shows that with a higher CSI error varéa the gains achieved by wider

antenna configuration are lost.
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Figure 5.23: BER for & x 10 channel withs> = 0.1.
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By isolating the individual effects of different values o€t Sl error variance it allows inves-
tigation into the point at which the approximation breakevdalue to too much CSI error. Given
the3 x 10 antenna configuration in Fig. 5.24 the effects of differesiues ofag are shown. At
102 BER the approximation usin@ﬁ = 0.08 is less than 1dB away from the perfect curve, the
approximation withag = 0.12 is around 2.5dB away and the approximation w'rﬁ1: 0.16 is
10dB away. Atl0~? only the approximation using; is on the plot and is a little over 2dB away

from the curve with perfect CSI.

Next the CSI error was isolated and different antenna cordtguns were used to show how
a wider antenna configuration effected the BER. In Fig. 5.252the6 case with perfect CSI
(where perfect indicates the ideal situation of zero CSI) pared against imperfect CSI with
o> = 0.1 with antenna configuratiorsx 6, 2 x 10 and2 x 14. At 1072 there is 2dB of separation
in performance between the approximation usingzhe 6 antenna configuration. At0—3 the
2 x 6 antenna configuration is not in the figure, but there is onlg dflseparation between the
approximation using x 10 and the2 x 14 and perfec® x 6 case. Atl0~* the approximation with
the2 x 10 case begins to degrade more and now there is 2dB of separdi@napproximation
using the imperfect CSI with 2 x 14 antenna configuration performs as well as 2he 6 case
with perfect CSI throughout the entire range of SNR value® ddses for perfect CSlI for antenna
configurations o2 x 10 and2 x 14 are left off of Fig. 5.25 to readily compare approximatioman

actual curves easily for the other antenna configurations.

Due to the symmetry of the SVD theorem, a converse analysgedormed for tall channel
matrices. The performance of this tall approximation wasn@rxed under the same simulation
conditions as the previous approximation for a wide chanwatious antenna configurations all

with M, > M, were performed with different values @ﬁ.

The first simulation result presented for a tall antenna gondition is with & x 2 channel
with a CSl error variance fo) = (.05, shown in Fig. 5.26. When the BER reachés?, the curve
which indicates the case using perfect CSl, the approximainl the actual curves found using the
imperfect CSl are all near 12dB. Once the BER readbes there is significant degradation in the
performance since the perfect curve is at 20dB, the actuaédsrat 25dB and the approximation

is too poor to be on the figure.
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By increasing the value of the CSI error varian&zﬁ, it may be shown how the performance
of the approximation for the tall channel degrades. Fig7 Sf2ows & x 2 antenna configuration
with a CSI error variance off) = 0.1. When the SNR of the system reaches 13dB the BER of
the perfect curve is only at0~2 and the approximation does not reach the same level of perfor
mance until 17dB. At a BER of0~3 the approximation is not on the figure, which indicates the
decline in performance due to the increase of CSI error int@xidio the poor quality of the tall

approximation compared with that of the wide approximation

By increasing the number of receive antennas and making tiear@a configuration0 x 3
and reducing the CSI error variancectg) = 0.05 the performance of the system improves, as
shown in Fig. 5.28. When the three curves achieve a BER)of the SNR of the curve found
using perfect CSl is at 13dB, the actual curve is at 14dB and plpeoaimation is at 15dB. At
this level of BER performance there is only a 2dB differenctvieen the perfect curve and the
approximation to that perfect curve. Howeverl@it* there is a 6dB separation between the perfect
(16dB) and approximate (22dB) curves. Comparing these resulteat of Fig. 5.26 this shows
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Figure 5.27: BER for & x 2 channel witho? = 0.1.

that by making the channel taller better BER performancehseaed.

By increasing the CSI error variance of theé x 3 antenna configuration, the gains that were
achieved in the previous simulation and shown in Fig. 5.88|@st. The poor performance which
is achieved when the CSI error variance is seztr]io: 0.1 is shown in Fig. 5.29. At a BER of
10~2 the perfect curve is at 10dB, where as the actual and apprtigimzurves achieve 12dB and
13dB, respectively. The approximation curve performs salgdbat it never achieves a BER of
1073,

Next, the antenna configuration @fx 2 was used to investigate how well different values of
af, effected the BER and is shown in Fig. 5.30. The curve compuiddperfect CSl achieves a
BER of 102 at 12dB. The approximation using the smallest CSl error vaeiaﬁl = 0.08 achieves
the same level of BER at 14dB. The values of the CSI error variapee 0.12 ando; = 0.16 do
not achieve the level af0~2 BER. Notice in Fig. 5.30 how as the CSI error variance increages b

0.04 for each pair of curves, each pair is equidistant from ealshrot

The next group of curves presented uses one value for the @8Ivariance and multiple
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Figure 5.30: BER for a tall channel with manﬁ.

antenna configuration pairs. F@i = 0.1 the antenna configurations 6fx 2, 10 x 2 and14 x 2
were used to show that as the channel model became talldrettes the approximation becomes,
as shown in Fig. 5.31. The perfect curve computed with pe@&i achieves a BER dafo—* at
21dB. The6 x 2 approximation to the perfect curve barely achiees® at the same SNR. The
10 x 2 approximation achieves a BER o~ at 15dB, and thé4 x 2 approximation achieves a
BER of 1072 at 11dB. This shows that as the tall approximation becomies,tdde BER improves,
fora givenof,. The cases for perfect CSI for antenna configurationg)of 2 and14 x 2 are left
off of Fig. 5.31 to readily compare approximation and actuales easily for the other antenna

configurations.

The final scenario is for a square antenna configuration. Bi§2 shows two curves, the
perfect and the actual forﬁ = 0.05. There is no approximation curve since there was no SVD
theorem which allowed an approximation to be made, whichelganly two curves. At 10dB the
CSI error does not have an adverse effect on the BER curve, $iadevo are at the same level

10~'. However, the actual curve does not reach a BER)of within the range of 10dB to 25dB,
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Figure 5.31: BER with a CSl error variancectﬁ = 0.1 and multiple antenna configurations.

whereas the perfect curve reachés? at 19dB.

To investigate further the effects of imperfect CSl for a squantenna configuration, Fig. 5.33
reveals the BER curves for anothex 4 channel matrix using a CSl error variancw@f: 0.1.
The performance of the system fod & 4 antenna configuration is not able to withstand errors in
the CSI, given that there is a 5dB difference in perfect anctheal curves at0~! BER, which is

poor.

To conclude our discussion on BER, we now present the apprd®m#o the equivalent
channel model and the Gaussian approximation togetheresame figure for both wide and
tall antenna configurations. Beginning with Fig. 5.34 it i®wh that the performance of the
approximations remains relatively equal up to 10dB, but aBlthe superior performance of the
Gaussian approximation is clear. The performance of thevalgmt channel model approximation

for ag = 0.12 is relatively close to that of the Gaussian approximatioraf@f) = 0.08.

The tall antenna configuration 6fx 2 with both approximations is shown in Fig. 5.35. In

this figure there exists separation between the types obappations at low SNR values. Similar
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Figure 5.34: BER for & x 6 channel with both approximations.

to the previous figure, the overall performance of the Gamsapproximation is better and the
performance of the Gaussian approximationcfﬁr: 0.12 is equivalent to the approximation to

the equivalent channel withag = 0.08.

5.3 Capacity

In addition to BER, capacity is also an important system peréorce measure. Simulations were
setup for different antenna configurations to analyze timopeance of a precoder/decoder setup
under perfect and imperfect conditions. The CSI error vaganas set at 0, 0.4 and 0.8 in each
case. The simulations begin by first creating a Rayleigh tadimannel with the desired fading
characteristics, computing the optimal decoder and pecdken finally using the equation for
capacity as given in the perfect (3.20) and imperfect (4caéps. The value of capacity computed

was then averaged over 10,000 iterations for each SNR/SINR .va

The first capacity plot to be shown is for a wide channel modtd an antenna configuration
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Figure 5.35: BER for & x 2 channel with both approximations.

of 2 x 6. The capacity of the system with perfect CSl is given and isvshim Fig. 5.36. In
this case the capacity of the system computed using perfdc&ves 23bps/Hz at 10db. The
capacity of the system computed using CSI with an error vaeialia]% = 0.4 loses 0.5bps/Hz,

and the system computed using CSI with an error varianoé ef 0.8 loses nearly 1bps/Hz.

By increasing the number of receive antennas the overalkdgpa the system improves, as
shown in Fig. 5.37 which uses3ax 10 antenna configuration. When the capacity of the system is
computed using perfect CSI a capacity of 32bps/Hz is achiat&0dB. Given the same scenario
but using imperfect CSl results in a 0.5bps/Hz and 1bps/Hxzitosapacity for the same SNR level

for o, = 0.4 ando, = 0.8 respectively.

The final illustration of the capacity of a wide antenna camfagion is shown in Fig. 5.38
with a4 x 10 antenna configuration. Analyzing the capacity curves aBlSldows a capacity
of 37bps/Hz while using perfect CSI. The subsequent perfocemalegradation losses incurred
while using imperfect CSl are 1bps/Hz and 1.5bps/Hz with a @9k eariance ofgg = 0.4 and

o> = 0.8, respectively.
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Figure 5.37: Capacity of & x 10 channel.
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By reversing the antenna configurations similar capacityégwere achieved using the same
values foro—f). The first capacity plot to be shown is for a tall channel mags#s an antenna
configuration of6 x 2. The capacity of the system with perfect CSl is given and isvshim
Fig. 5.39. In this case the capacity of the system computed perfect CSl achieves 23bps/Hz at
10db. The capacity of the system computed using a CSI err'mmmrofaf; = 0.4 loses 0.5bps/Hz,

and the system computed using a CSlI error varianeg ef 0.8 loses an additional 0.5bps/Hz.

By increasing the number of transmit antennas the overadl@gpof the system improves, as
shown in Fig. 5.40 which useslé x 3 antenna configuration. When the capacity of the system is
computed using perfect CSI a capacity of 31bps/Hz is achiav@@dB. Given the same scenario
but using imperfect CSI results in a 0.5bps/Hz and 0.5bps#dz in capacity for the same SNR

level foro, = 0.4 ando, = 0.8, respectively.

The final illustration of the capacity of a tall antenna couafaion is shown in Fig. 5.41
with a 10 x 4 antenna configuration. Analyzing the capacity curves aBl€idows a capacity

of 37bps/Hz while using perfect CSI. The subsequent perfocmalegradation losses incurred
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Figure 5.39: Capacity of @ x 2 channel.

while using imperfect CSl are 0.5bps/Hz and 0.5bps/Hz with be@®r variance ofrﬁ = 0.4 and

o> = 0.8, respectively.

From the previous six figures it can be concluded that inangdsy increasing the number
of transmit or receive antennas increases the system tapasishown in the figures, as the CSI
degrades from perfect to imperfect, it is shown that therelsss in capacity, but not more than

1.5bps/Hz in any of the cases.

5.4 Gaussian Approximated BER and Capacity Results

The equations of Section 4.8 were then simulated to rel&ie pierformance to the performance
of the plots in Section 5.2. The first group of results are ierwide cases using different antenna
configurations for multiple values @rf; The first set of plots shown in Fig. 5.42 are fo2 & 6
antenna configuration. For the three differeijntcases, the Gaussian approximations outperform

the results of Section 5.2. This is because the off-diageleahents are approximated as Gaussian,
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Figure 5.41: Capacity of & x 4 channel.
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which results in the elimination of terms which influence gegformance of the system. In the
approximation of the BER, the performance of each of the Gansgiproximations outperforms

the actual system.

Moving on to a different antenna configuration, such as4the 10, as shown in Fig. 5.43
shows improved performance over the previdus 6 case. Each of the Gaussian approximations
outperforms its’ counterpart using the sanrje/alue. Additionally thet x 10 Gaussian approxima-
tion usingag = (.08 achieves a BER of(0~* at20 dB, whereas the x 6 Gaussian approximation

never achieves a BER ab—*.

However, by further increasing the size of the antenna cordtgon from4 x 10 to 6 x 12
does not significantly improve the performance of the BER ddlte2 x 6 to 4 x 10 increase.
Taking the Gaussian approximation for the casef)of: 0.08 for the6 x 12 case, shown in Fig.
5.44 shows a BER of0~2 at a SNR ofl4 dB, a BER of10~3 at17 dB and a BER ofi0~* at 21
dB. In Fig. 5.43, the same Gaussian approximation valuﬁoi 0.08 performs the same. It was
previously shown that as the antenna configuration chamgedwider to square with this linear
MMSE design, that the performance decreased. Howeverchbgasing the number of propagation
paths, BER improves. The comparison of the plots of Figs. &mB5.44 shows that the benefits
of more propagation paths is offset by a more square antesmfgaration. Where more square

indicates a ratio of receive to transmit antennas is clasér t

The second group of results compare the approximationshiotdll cases using different
antenna configurations for multiple vaIuesaﬁt Beginning with Fig. 5.45, one may see that the
performance of & x 2 antenna configuration is quite similar to that of Fig. 5.26ckhs with a
ag = 0.05. Again, similar to Fig. 5.42, the Gaussian approximatioangperform the actual plots

for each of the variousg values.

Increasing the number of antennas and moving t0 & 4 antenna configuration is shown
in Fig. 5.46. The increase in the number of propagation platims transmitter to receiver is the
dominating factor in the increased performance froméhe2 to 10 x 4 cases. Again, as in Fig.

5.45, the Gaussian approximation plots in Fig. 5.46 oummftheirag counterparts.

The last BER approximation plot is fori2 x 6 antenna configuration and is shown in Fig.

5.47. There is not a significant performance improvememdday increasing the antenna config-
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Figure 5.42: BER of the Gaussian approximations and theimteoparts of Section 5.2 forax 6

antenna configuration.

uration from10 x 4 to 12 x 4. Looking closely at the performance wiﬁlﬁ = 0.12 of Fig. 5.46, the
BER value atl0=2 is 14 dB and at10~? is 19 dB. The corresponding plot for th2 x 6 antenna
configuration shown in Fig. 5.47 has a BER16f 2 at 13 dB and10~2 at20 dB. This shows that
for benefit of increasing the number of propagation pathegated by the poor performance of
the approximation to the linear MMSE design. However, samib the previous Gaussian approx-
imation plots, the 2 x 6 antenna configuration performs in accord with the previaysés in that

the Gaussian approximations outperform their actual @patts.

It may be concluded that the Gaussian approximations ar@ gobd indicator of the true per-
formance of the linear MMSE designs corrupted with CSI eiltas not a good indicator because
in all of the cases as the SNR of the system increased, the BE#R @aussian approximations

decreased at a higher rate than that of their correspondinvgg for the particuladrf, values.

Now we will delve into the Gaussian approximations to cayaand show a parallel analysis.

Based on the above development of the Gaussian approxinmatiBER the capacity simulations
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Figure 5.43: BER of the Gaussian approximations and themmteoparts of Section 5.2 fordax 10

antenna configuration.

of the previous section were repeated in order to invegtigatv well the Gaussian approximation
applies to capacity computations. The simulations wergezhout identically as in the previous
section, with the exception of the addition of the two adufiil curves indicating the Gaussian

approximation to the CSI error for each antenna configuration

The first plot shown in Fig. 5.48 shows a 2bps/Hz increasegubie Gaussian approximations
for both CSI error variances between 5 and 25dB with>a6 antenna configuration. Increasing
to a4 x 10 antenna configuration, as shown in Fig. 5.49 shows an inerefasearly 17bps/Hz
between 5 and 25dB. This an unreasonably large increaseacitapnd shows the limitations of

the Gaussian approximation, due to the increase in the nuoflb@tennas.

Next, by changing to a tall antenna configuration as showrign .50, similar results are
obtained. Using & x 2 antenna configuration there is a 1bps/Hz increase using fussin
approximation than that of the case with perfect CSI from 53dE Increasing the size of the

antenna configuration to B) x 4 shows an alarming increasing in the capacity of the Gaussian
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Figure 5.44: BER of the Gaussian approximations and themmtesparts of Section 5.2 fortax 12

antenna configuration.
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Figure 5.48: Capacity of a x 6 channel.

approximations. In Fig. 5.51 the Gaussian approximatioad dbps/Hz greater than the case with
perfect CSI. Again, similar to Fig. 5.49, Fig. 5.51 shows thathtions of the Gaussian approxi-
mation. This is why the Gaussian approximation foréhe 12 and12 x 6 antenna configurations
were left off, they averaged an increase of 25bps/Hz inereasapacity. This only reinforces the

idea that the Gaussian approximation has limitations.

5.5 Conclusion

In this chapter, a performance analysis of linear precddeoders was performed. It was shown
that the errors disturbing the CSI may be approximated asseaysince their probability distribu-

tion is Gaussian-like. The SVD approximation of Sectionid shown to be a better approximation
for wide channels than for tall channels. The BER plots ingithe robustness at low SNR values
of the SVD approximations. Additionally, the BER plots inglie that as the channel matrix be-

comes wider or taller and ag decreases, the better the performance of the system. Theityap
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Figure 5.51: Capacity of & x 4 channel.

figures show how the imperfect CSI matrices decrease the ibapdeen compared against their
undisturbed counterparts because the precoder/decodecenaare not properly matched to the
channel, thereby decreasing capacity. The Gaussian dppatiens to BER and capacity showed
that the Gaussian approximations do hold for small CSI emdrralatively smaller antenna con-

figurations.
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Chapter 6

Conclusion

This thesis has presented a performance analysis of the &\piidcoder/decoder design when the
CSl is imperfect. This is significant because it enables tiseggder to answer theoretical questions
that cannot be answered through ideal laboratory simugatid his analysis is intended to give a

more realistic impact to the sensitivity of linear MMSE poders/decoders to CSI errors.

The main benefit of MIMO antenna configurations is the inaedgserformance gains. It was
shown in chapter 2 that if the CSI is not known at the transmitthe capacity of the system may
be increased linearly by simply by adding antennas at eghdrof the link. If CSl is available,
the simplest precoder/decoder pait, J) may be used to precode the data, which will in effect

cause the capacity to become the sum pérallel SISO channels.

This lead into the topic of MIMO precoders/decoders and #reelits of full CSI, when avail-
able. The particular design introduced in chapter 3 is basedesigning the precoder/decoder
pair from the MMSE of the received signal. The optimal linpaecoder/decoder design using
full CSI was then analyzed in the event of imperfect full CSI.@&wprecoder/decoder design was
arrived at, as well as performance equations based upomgerfiect CSl, in addition to consid-
erations for non-square channels. Most importantly, imptérad we were able to analyze exactly
how the imperfect CSl effects the off-diagonal elements @wtide and tall antenna configuration

scenarios.

Chapter 5 showed detailed analysis of the Gaussian-likeapiltity distributions of the CSI
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error in the channel models. Wide and tall channel model@apprations were made from the SVD
theorem presented in chapter 4. The performance of the dpmatbons was relatively good for
wider/taller channel models and low CSI error, but performpedrly with square channel models
and high CSI error. The figures of chapter 5 which present ¢gpaaerves show that poor CSI
does effect capacity, but it is not as large of a factor in thality of the capacity curves as it is
with BER. This shows that the quantity of information sent asra wireless channel is degraded

only slightly, whereas the quality of information is sigonéntly degraded.

This body of work has revealed the impact that the imperfedtiaS on the performance
of MMSE linear precoders/decoders. The findings indicast tihhe designs are sensitive to CSI
errors, so the practicality is probably limited, unlesshiygaccurate channel estimation is used.
Future analysis into the performance of MIMO precodersddecs may be found in investigations

of

The performance of a multiuser MIMO precoder/decoder aesig

Performance analysis of MIMO precoders/decoders usingiifapt partial CSI.

Performance analysis of MIMO precoders/decoders usingifapt limited CSI.

The elimination of assumptions such as uncorrelated aateand the inclusion of their

effect in addition to imperfect full/partial/limited CSI digns.
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