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Abstract

We address design of optimal MIMO precoders/decoders in theminimum mean square error

(MMSE) sense. Prior work assumes full and perfect channel state information (CSI) at the trans-

mitter, whereas we assume that the CSI has been corrupted in some manner. We re-derive new

optimal precoders/decoders based on corrupt CSI. It is shownthat the received signal cannot be

simplified into parallel subchannels as is performed in previous work to greatly simplify that analy-

sis. The error that corrupts the received signal is described and then bounded. Performance analy-

sis is completed by describing the distribution of the error, SNR/SINR and mutual information

equations, along with BER and capacity plots.
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Chapter 1

Introduction

The research trends in wireless communications are continually striving to reliably send more data

at a faster rate over a wireless channel. More and more end users are needing to send higher quality

data at a faster rate, and those needs are being met through today’s research. In order to introduce

the thesis topic, this chapter is intended to give a high level overview of the communications

industry from its infancy up to the recent research trends that are being followed today so that the

reader may have an understanding of the niche in which this thesis exists.

1.1 The Beginning of Radio

Inspired by the lectures of Righi at The University of Bologna,Guglielmo Marconi built the first

radio telegraph in 1895. Marconi continued to improve his invention over the years and in 1898 his

radio signal bridged the English Channel. In the subsequent years, Marconi integrated cutting edge

technology into his radio equipment, such as the magnetic detector which was an improvement

over the coherer to detect the radio waves, the use of directional antennas and the rotary spark to

increase signal level and reduce interference in duplex receiver circuits, in addition to many others.

The Detroit Police Department was the first organization to make use of wireless technology

by installing the first 2 MHz land mobile radiotelephone system in 1921. The widespread use of

the new radiotelephone was limited by the number of available channels. Not until the invention
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of frequency modulation (FM) in 1933 was there the availability of high quality radio communi-

cations.

The first mobile system to be connected to the public telephone network using a fixed number

of radio channels over a fixed geographic area was introducedby Bell Systems in 1946. Bell

Systems introduced the Personal Correspondence System which operated at 150 MHz with speech

channels separated by 120 kHz. Researchers at AT&T introduced the Improved Mobile Telephone

Service (IMTS) which also used FM technology. It was soon noted that in order to provide a large

number of users with full duplex channels, excessive amounts of bandwidth would be required.

In 1947 Bell Laboratories came up with the cellular concept. The cellular concept helped

to overcome the excessive bandwidth needs by dividing the coverage area into smaller cells and

by using a subset of the total available channels in each cell. AT&T then proposed the Advanced

Mobile Phone Service (AMPS) in 1970, which was the first high capacity analog cellular telephone

system.

Since then, the cellular networks have evolved rapidly and today are using the IS-36 (us-

ing Time Division Multiple Access - TDMA) and IS-95 (using Code Division Multiple Access -

CDMA) standards. The increase in the need for end users to sendlarge quantities of data at a faster

rate over wireless links has led to the development of the current Third Generation (3G) wireless

technologies. Novel techniques must be developed in order to make use of the limited radio fre-

quency (RF) spectrum and the use of multiple-input multiple-output (MIMO) antenna arrays is

one of those techniques [1]. Through the use of multiple antenna arrays at the transmitter and the

receiver, multiple copies of the signal will be sent and received which decreases the likelihood of

errors.

The Fourth Generation (4G) of wireless communications is onthe horizon and will have

MIMO technology at its foundation. Some topics that are at the forefront in the research commu-

nity are Advanced Time Division Multiple Access (ATDMA), Wideband Code Division Multiple

Access (WCDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Multi-Carrier

CDMA (MC-CDMA), and Ultra-Wide Band (UWB) transmission [2].

The following sections highlight recent trends in the development of wireless communication

technologies through the use of Smart Antennas and the inception of MIMO and the benefits.

2



1.2 Smart Antenna Systems

Due to the limitations of the available RF spectrum, the spatial dimension may be exploited through

the use of multiple antennas. When multiple antennas are usedat the receiver and when the re-

ceived signals are decorrelated, the use of smart antennas mitigates signal fluctuations and im-

proves system performance because the receiver may designed so that interference is minimized

and signal strength is maximized.

Smart antennas began the 1960s as a proposed measure for electronic warfare in order to

counter jamming. Today, they may be categorized into three main groups: switched beam antennas,

dynamic phased arrays, and adaptive antenna arrays.

Switched beam antennas are comprised of multiple highly directive, fixed, pre-defined beams,

as shown in Fig. 1.1. The beams are usually formed with an array of antennas, through the use

of a beamforming network such as a Butler Matrix [3]. By generating multiple orthogonal beams

to blanket the cell with coverage [4] the base station (BS) is able to track the mobile station (MS)

through the cell according to the received signal strength.Switching from beam to beam may

be done through the use of semiconductor switches. Switchedbeam antennas are advantageous

in situations where there is low to moderate co-channel interference. This leads to one major

disadvantage which is if the desired user is not centered at the beam’s maximum and an interfering

signal is present at the beam’s center, then the interferingsignal will be enhanced more than the

desired signal, leading to poor system performance.

Dynamic phased arrays are an improvement upon switched beamantennas because they make

use of the direction of arrival (DOA) of the incoming wavefront and steer a beam maximum toward

the desired user. In order to continuously steer the beam toward the desired user, a method of

tracking is needed.

Adaptive antenna arrays weight the gain of the array to maximize performance measures in

order to maximize the received signal. The adaptive system is able to continually determine the

angle of arrival (AOA) which gives it the ability to maximizethe incoming signal and minimize

interference and noise [3], as shown in Fig. 1.2. An early version of an adaptive antenna array

is known as a side lobe canceler (SLC). A SLC works to cancel theinterference entering the

3



Desired MS

Interferer MS

Figure 1.1: A switched beam antenna system.

sidelobes of the antenna. A SLC requires two channels for implementation. The first channel is

used to discern the signal of the MS, whereas the second channel is used to pick up the interference

and discriminate against the desired signal. Adaptive antenna arrays are more computationally

intensive and more expensive to implement than switched beam systems [4].

1.3 MIMO Antenna Systems

The use of multiple antennas allows the exploitation of the multipath fading environment. A MIMO

antenna scheme is shown in Fig. 1.3. Due to the multipath propagation of a transmitted radio

signal, the received signal is the superposition of multiple copies of the received signals. If there

is no line of sight (LOS) component, then the signal is considered to exhibit Rayleigh fading [5].

Quite often the propagation environment varies with time. Due to the time varying nature of

the channel and the Rayleigh distribution of the received amplitude, the received channel gain may

be small or large. This results in the attenuation or amplification of the signal and steps are taken to

alleviate this problem through different methods of diversity. Time diversity is the transmission of

the same signal at different time instances, and frequency diversity is the transmission of the same
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Desired MS

Interferer MS

Figure 1.2: An adaptive antenna array.

signal in different frequency bands. In addition to time andfrequency diversity, antenna diversity

is the exploitation of the independent fading between properly spaced antennas [5].

Antenna diversity may also be known as the exploitation of the spatial dimension. By imple-

menting multiple antennas at the MS one may achieve a performance gain in the downlink with an

improved link budget and a higher tolerance to co-channel interference. By adding receive anten-

nas at the BS, the receive diversity improves the quality of the uplink without any cost to the end

users who operate the MS [5]. Receiver diversity is also knownas single-in multiple-out (SIMO)

and is shown in Fig. 1.4.

The exploitation of the spatial dimension may take place at the transmitter as well, known as

transmit diversity or MISO (Multiple-input single-output), and is shown in Fig. 1.5. The benefits

of transmitter diversity are in accord with those of receiver diversity.

1.3.1 Recent Research Thrust: Precoding and the Utilization of Channel

Knowledge

In the event that the transmitter has knowledge of the channel prior to transmission, then it would

benefit the system performance measures to make use of this information. Beamforming is one

method which uses an adaptive antenna array in which weighted symbols are used to steer the

energy in the direction of the receiver. Another method is space-time diversity which is inferior
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Figure 1.3: Multiple-input multiple-output (MIMO) diagram.

to beamforming because it distributes energy equally across the channel. Through the use of prior

knowledge of the channel, the performance of space-time diversity approaches that of beamform-

ing [5].

There are many approaches in how to most efficiently use channel knowledge, also known as

channel state information (CSI). CSI of the complete channel realization is known as full CSI and

is used in [6], [7], [8] and [9]. Partial CSI refers to the use ofstatistics of the channel which may

be the correlation at the transmitter or receiver, the covariance of the channel or the mean of the

channel. Partial CSI using the correlation of the received signals at the transmitter and receiver is

used in [10], whereas only transmit fading correlations areused in [11]. Partial CSI comparing the

use of amplitude only and the use of phase only is compared in [8]. The covariance of the CSI is

used in [12], [10], [13]. In [12], the use of the mean of the CSI is investigated as well.

To capitalize on the benefits of CSI at the transmitter, CSI is used to premulitply the symbols

prior to transmission, which may be referred to as weighting, prefiltering, or precoding. The

receiver will typically use some form of a maximum likelihood detector which is referred to as

a postfilter or a decoder. Here it is referred to as precoding and decoding at the transmitter and

receiver, respectively. This thesis will take a closer lookat systems using both precoder and a

6



Transmit

Receive

1

Mr

Figure 1.4: Single-in multiple-out (SIMO) diagram.

decoder where full CSI is assumed and analyze the performanceloss in the event of imperfect

CSI. In mathematical literature the analysis of an error termadded to a known value is referred

to as perturbation analysis. In effect, the thesis will analyze the performance loss incurred in the

computation of the precoder/decoder due to perturbation, or errors in the CSI.

1.4 Thesis Overview and Outline

The outline of the thesis is as follows, Chapter 2 will presentbackground information on the

capacity benefits of a MIMO system as well as MIMO precoders/decoders. Chapter 3 explains

further the system models whose error analysis is presentedin chapter 4. The performance results

of the error analysis of chapter 4 is presented in chapter 5. The concluding statements and future

work is shown in chapter 6.
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Chapter 2

Background

This chapter presents the benefits of MIMO through an explanation of the performance benefits as

well as the theoretical insight behind its usage. Herein lies a description of the wireless channel

which introduces the performance gains of a MIMO system, andcloses by delving further into the

concept of precoding and how that puzzle piece completes thebackground picture necessary to

understand the contribution of this thesis.

2.1 Channel Model

The wireless communications channel is assumed to be the propagation environment between a

BS that is elevated from the terrain and devoid of local scatterers, and a MS at ground level which

receives its radio waves via reflections, diffraction and scattering as shown in Fig. 2.1. The con-

structive and destructive vectorial combination of the arriving waves is known as multipath propa-

gation.

A typical MS is modeled as being surrounded by scatterers, resulting in a faded envelope that

is devoid of a specular, or line of sight (LOS) component. This type of fading is known as Rayleigh

fading. If a LOS component is present then the received signal is dominated by the stronger signal,

resulting in a channel modeled as Ricean fading. The channel model may also be described as

either flat or frequency selective fading. Flat fading implies that the channel is simply a single tap
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Figure 2.1: Typical MS/BS scenario.

filter with a time-varying gain, whereas frequency selective fading is modeled as a multi-tap filter

with a time-varying gain. [14] [15].

2.2 Capacity Benefits of MIMO

The capacity benefits of a MIMO channel are presented in this section. Beginning with the devel-

opment of the original single-input single-output (SISO) channel capacity developed by Shannon

in 1948, and followed with the capacity of a MIMO channel withand without CSI at the transmit-

ter. Throughout this section the channelH is assumed to be constant and known to the receiver

which is maintained through training and tracking.

2.2.1 SISO Capacity

Capacity is a measurement which quantifies the maximum possible amount of information that

may be transmitted across the wireless channel. The transmitted and received signals are random

variables, this implies that a measure of the entropy is necessary because it is a measure of the
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uncertainty in a random experiment [16]. Given a discrete time, additive white Gaussian noise

(AWGN) SISO channel, the received signal is given by

z = hx+ n, (2.1)

wherex is the transmitted signal,z is the received signal,h represents the channel, andn is

the AWGN. The mutual information is given by the difference between the conditional entropy

(h (z|x)) and the differential entropy (h (z)) and is written as [15]

I (x; z) = h (z) − h (z|x) .

Mutual information is a measure of information shared between the transmitter and receiver and is

given by the base two logarithm of the ratio of a posteriori probability to a priori probability. Given

the transmission of a random inputx and reception of a random inputz, the mutual information is

given by [17, 15]

I (x; z) =
∑

x∈X ,z∈Z
p (x, z) log2

(
p (x, z)

p (x) p (z)

)
, (2.2)

wherep(x) indicates the probability of the random inputx. The capacityC, is then defined as the

maximization of the mutual information across all possibleinput distributions as demonstrated by

Shannon [18] in his well-known formula

C = B log2 (1 + SNR) , (2.3)

whereB is the bandwidth of the channel, SNR is the signal to noise ratio and the capacity is in

bits per second per Hertz (bps/Hz). If the channel is modeledas a random, independent identically

distributed (IID - spatially white) channel, the above equation for channel capacity remains valid.

2.2.2 MIMO Capacity

The derivation of the capacity of a SISO channel is easily extended to the MIMO case. The new

received signal is given by expanding (2.1) to become

z = Hx + n,

11



wherez is theMr × 1 received signal vector,x is theMt × 1 transmit vector,H is aMr ×Mt

matrix representing the channel andn is aMr × 1 vector of AWGN. The mutual information of a

MIMO channel is the difference between the conditional entropy and the differential entropy ofz,

and is defined as [15], [1]

I (x; z) = H (z) −H (z|x) . (2.4)

Since the vectorsx andn are independent, (2.4) simplifies to

I (x; z) = H (z) −H (n) . (2.5)

The maximization of (2.5) simplifies to become the maximization of H (z). The covariance ma-

trix of z satisfies the maximization ofH (z) whenz is zero mean circularly symmetric complex

Gaussian (ZMCSCG). This implies thatx must be ZMCSCG as well. The covariance matrix ofz

is given by

E[zzH ] = Rzz

= HRxxHH + Rnn, (2.6)

whereRxx = E[xxH ] andRnn = E[nnH ] = σ2
nnI . This allows (2.5) to become

I (x; z) = log2

(
det

(
σ−2

nnHRxxHH + I
))
. (2.7)

Similar to the SISO derivation of (2.3), the MIMO channel capacity is the maximization of the

mutual information (2.7) over all input covariance matrices [15] [1], and is given by

C = max
Rxx

B log2

(
det

(
σ−2

nnHRxxHH + I
))
. (2.8)

In the event that the channel is modeled as a random, IID channel, the above equation for

capacity differs. IfMr = Mt = M , according the the strong law of numbers the channel covariance

matrix becomes

1

M
HHH → IM ,

asM approaches infinity. This results in a revised capacity equation that may be written as

C = M log2 (1 + SNR) .
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This may be interpreted as while the number of transmit and receive antennas increase, the capacity

of the random MIMO channel approaches that of the deterministic MIMO channel as well as

increases linearly inM [1].

Throughout the rest of the document, only deterministic MIMO channel models will be stud-

ied. For a presentation of MISO or SIMO capacity please referto [1].

CSI Unavailable at the Transmitter

In the event that the channel is unknown to the transmitter, then there is no opportunity to optimize

the data (Rxx) before transmission. For this reason it is intuitive to allocate equal power to all of

the transmit antennas. The capacity of the channel when CSI isnot available at the transmitter is

C = B log2

(
det

(
σ−2

nnHRxxHH + I
))

(2.9)

By taking the eigenvalue decomposition (EVD) ofHRxxHH = QΛQH , (2.9) may be rewritten as

C = B log2 det
(
σ−2

nnQΛQH + I
)
, (2.10)

whereQ is a matrix of eigenvectors andΛ is a diagonal matrix of eigenvalues. Using the identity

det (I + AB) = det (I + BA) and the property of eigenvectors thatQHQ = I allows (2.10) to

reduce to

C = B log2 det
(
σ−2

nnΛ + I
)

= B
r∑

i=1

log2

(
σ−2

nnλi + 1
)
, (2.11)

wherer indicates the rank of the channel, which implies thatr ≤ min (Mr,Mt). From (2.11), it

is shown that there arer subchannels between the transmitter and the receiver [1]. This shows that

in the absence of CSI the capacity approaches

C = Br log2

(
σ−2

nnλ+ 1
)

(2.12)

and grows linearly inr. This reveals the appeal of a MIMO system, which shows that without CSI

at the transmitter one is able to increase linearly the capacity simply by adding antennas at either

end of the link [15].
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CSI Available at the Transmitter

If the transmitter is provided with CSI, then it is intuitive to assume that the capacity would increase

because the transmitter is able to maximize theRxx matrix as described in (2.8). This allows access

to the subchannels of the channel in order to maximize their effectiveness through the link using

linear processing.

To access the subchannel the singular value decomposition (SVD) is used. The SVD is defined

as

H = UΣVH , (2.13)

whereU, Σ andV are matrices of dimensionMr ×Mr, Mr ×Mt andMt ×Mt, respectively.U

andV are composed of the left and right singular vectors, respectively, andΣ is a diagonal matrix

of singular values. The singular values are positive numbers ordered such that

σ1 ≥ σ2 ≥ . . . σr.

The singular values also have the property thatΣ
2 = Λ, whereΛ is a diagonal matrix of eigen-

values. When performing the SVD on a wide (Mr < Mt) matrix, the lastMt −Mr columns ofΣ

are full of zeros. In theUΣVH product, these columns of zeros cause the lastMt −Mr columns

of V to be of no importance because they do not alter theUΣVH product. Similarly if the SVD

is performed on a tall matrix, the lastMr −Mt rows ofΣ will allow theMr −Mt columns ofU

to be eliminated because they are useless in formingH from the productUΣVH . TheMt −Mr

columns ofV andΣ (wide) and theMr −Mt columns ofU and rows ofΣ (tall) are not needed

in the productUΣVH . This is irrelevant information and the integrity of the productUΣVH is in

no way sacrificed. The elimination of the columns and rows ofU, Σ or V will not be discussed

further until chapter 3.

By multiplying the transmitted symbolss, prior to transmission with the right singular vectors,

the transmitted signal becomes

x = Vs. (2.14)

The transmitted signal corrupted by AWGN prior to reception is

y = HVs + n. (2.15)
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Linear processing also takes place at the receiver as the Hermitian of the left singular vectors is left

multiplied with (2.15) resulting in the following equationand simplification

UHz = UHUΣVHVs + UHn

z′ = Σs+ n′,

which is shown block diagram form in Fig. 2.2. This allows theexplicit decomposition of the

channel intor parallel SISO channels which are written as follows

z′i = σisi + n′
i,

wherei = 1 . . . r.

The capacity of the channel with the CSI known at the transmitter is the sum of capacities of

ther parallel SISO channels and is defined as

C =
r∑

i=1

log2

(
σ−2

nnλiρi + 1
)
, (2.16)

whereρi = E[sH
i si] andσ2

i = λi. This is an improvement upon (2.11) because the user is able

to allocate more or less energy in the subchannels, instead of equally allocating energy in all

subchannels. This results in a decrease of transmit power consumption.

The objective now becomes the maximization of the energy across the subchannels with re-

spect toρ, in order to distribute energy to the weaker subchannels [1]. The optimal method of

allocating energy is known as the Waterpouring algorithm and is presented in [19] and [20].

2.3 Precoding for MIMO

The ability to provide the transmitter with full or partial CSI allows the exploitation of that knowl-

edge to improve the performance of the system. The transmit schemes implemented at the trans-

mitter depend on factors such as the nature of the channel knowledge, the type of receiver, the

performance criterion to be optimized, and the power constraints at the transmitter. Herein the pre-

coding schemes will be grouped according to how much information is provided at the transmitter,

i.e. full, partial, or limited.
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Figure 2.2: Decomposition of the wireless channel.

2.3.1 Full CSI

Using full CSI to precode the data is an ideal assumption but not practical for implementation in

the real world. The quantity of information sent to the transmitter on a zero delay feedback channel

is unrealistic. Exploitation of the eigenstructure is a common practice in constructing the optimal

F (precoder) andG (decoder). The designs of [21] target the minimization of the MSE of the

decoded block of symbols and are further analyzed in Chapter 3. Another method of optimization

of a generalized jointly optimum linear precoder/decoder design attempts to minimize the weighted

sum of symbol estimation errors with the assumption of constrained transmit power across all

antennas [22]. Other research makes use of the assumption offull CSI to obtain optimal linear

precoders/decoders, but optimizes the system to a particular performance criterion. Specifically,

the work of [23] proposes a minimum bit error rate (MBER) diagonal precoder, whereas [24]

maximizes the minimum Euclidean distance of the received constellation under a power constraint.

2.3.2 Partial CSI

Partial CSI makes use of the long term statistics to precode the transmitted signal. Herein partial

CSI is referred to as either knowledge of the transmit and receive antenna fading correlations, trans-

mit antenna fading correlations or the channel covariance matrix, all of which allow transmission

along the eigenmodes of the channel.

Transmit antenna correlation is caused by the lack of multipath fading at the transmitter. A

downlink scenario where the BS is placed high above the groundand sees no local scatterers is an

example of transmitter correlation, as previously shown inFig. 2.1. The lack of multipath fading
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which introduces correlation at the transmitter causes thecolumns of theH matrix to be correlated.

This MIMO channel may be written as

H = HwR1/2
T ,

whereR1/2
T is aMt×Mt transmit antenna correlation matrix andHw is aMr ×Mt complex matrix

with entries that are IID. An optimal linear precoder found through an optimization method may

be used, as well as a maximum likelihood (ML) decoder [11].

Similar to [11], [10], [13] and [25] make use of the correlations at the transmitter, but also

those at the receiver. The spatial correlations at the transmitter and receiver alter the channel matrix

such that it becomes

H = RH/2
R HwR1/2

T ,

whereRR andRT are theMr×Mr andMt×Mt receiver and transmitter correlations, respectively.

If the transmit antennas are too correlated, then a beamforming model is derived which makes

use of the angle of departureαT , angle of arrivalαR, and the complex channel amplitude of the

Rayleigh fading channel. The channel model which implementsbeamforming is described by

H = A
(
αR
)

diag (β) A
(
αT
)T
,

whereA denotes a steering matrix andβ contains the complex amplitudes.

Regardless of the amount of correlation at the antennas the second order fading statistics are

used at the transmitter side to create an optimal precoder. The receiver side has the full CSI which

enables the use of the minimum MSE criterion to create the optimal decoder. More on this topic

may be found in [10], [13] and [25].

Other literature on partial CSI makes use of the input signal covariance in order to calculate the

mutual information and optimize the system with respect to the covariance, which is done in [26].

At the same time the authors make use of the transmit antenna correlation in order to determine if

beamforming is optimal due to the current state of the transmit antennas. If the transmit antennas

are highly correlated, then it is beneficial to use beamforming since it requires using the transmit

antenna array to send a single effective stream of data. Otherwise, if the transmit antenna array has
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low correlation, this implies that the antennas are independent and it is advantageous to make use

of the gains offered by a MIMO system.

2.3.3 Limited CSI

Limited CSI is the process of quantizing the CSI at the receiverand sending a codebook index to

the transmitter in order to compute the optimal precoder. Quantization is the process by which an

index indicates a specific matrix located in a codebook, where both receiver and transmitter have

copies of the same codebook. Upon computation of the ideal precoder at the receiver, the minimum

distance between the subspaces spanned by the precoding matrix and the ideal precoders in the

codebook, a match is made. By sending only the index of the matched precoder to the receiver, less

information is needed to be sent in the feedback loop at the cost of the size of the codebook. The

larger the codebook, the more minimum distances must be computed, which increases computation

time, which delays the arrival of CSI at the transmitter. For more information on codebook design

and vector quantization, refer to [27], [28] and [29].

In the case of [30], [31], and [32], the precoder is restricted to having orthonormal columns

and the received signal is decoded with a linear decoder. If azero forcing or a minimum MSE

receiver is used, the decoders are

GZF = (HF)∗

GMMSE =
(
FHHHHF + σ−2

nn I
)−1

FHHH ,

where∗ indicates the Moore-Penrose pseudoinverse. The precoder is chosen at the receiver from a

codebook that hasN = 2D F matrices to chose from. The size of the codebook is determined by

the number of feedback bits used, which in this case isD. The codebook is such that the metric

computes a chordal distance and selects a matrixF fromF = (F1,F2, · · · ,FN).

The chordal distance metric minimizes the distortion metric

E[min(i∈1,2,···,N)
1

2
||VVH − FiFH

i ||2F], (2.17)

whereV is from the EVD ofH and the subscriptF indicates the Frobenius norm. The chordal

distance is a measure of the distance between two subspaces.The literature which makes use
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of the chordal distance measurements within the framework of limited feedback MIMO pre-

coders/decoders ([30], [31], and [32]) also make use of Grassmannian packing in order to compute

low distortion codebooks. More information on Grassmannian packing may be found by referenc-

ing [33] and [34].

Other limited feedback literature simply sends back to the transmitter a quantized estimate of

the channel. The estimate of the channel is then used in orderto compute what is referred to as a

weighing matrix,W. The weighing matrix is simply a precoder, which serves to precode the space

time block codes (STBC) prior to transmission [35]. In some cases the precoding matrix is simply

the eigenvectors ofHHH [36], or the eigenvectors multiplied with a diagonal waterpouring matrix

[37].

2.3.4 Imperfect CSI

Despite the many methods of informing the transmitter of theCSI known at the receiver, full,

partial and limited CSI methods are all capable of being corrupted by noise leading to imperfect

CSI. The corrupted CSI analysis that is common in the literature is analysis of errors that occur

in the process of feeding back the CSI to the transmitter. These errors may be categorized but

are not limited to, time delay errors for the information to be transmitted from the receiver to the

transmitter, quantization errors in the feedback channel (if limited feedback is used) and channel

estimation errors.

Some literature (such as [38], [39], [40], [41] and [42]) deals with errors that may occur

during the estimation of the channel. In order to estimate the channel a training sequence may

be used which is subject to corruption. This thesis will dealwith a description and derivation of

equations which encompass all forms of errors that befall CSI, so it is not limited to the analysis

of one particular type. This section is included to depict common approaches such as time delay

errors, quantization errors and CSI errors.

In order to approach the error analysis associated with imperfect CSI, it is common to include

an error term which encompasses all of the imperfections of the CSI. Given a system with block

diagonal structure, such as that of [43], which is applicable to a MIMO Orthogonal Frequency
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Division Multiplexing (OFDM) system, the receivedKM × 1 signal is modeled as

z = GHFs + Gn, (2.18)

where the channelH is a frequency selectiveKMr ×KMt block diagonal channel matrix.F is a

KMt×KM precoder matrix which allocates the power across theK subcarriers andMt antennas.

M ≤ min (Mt,Mr) is the number of symbols to be transmitted per subcarrier.G is aKM ×KMr

decoder matrix andn is aKMr × 1 noise vector.

Due to the block diagonal structure of the received signal model of (2.18), the MIMO channel

may be decomposed intoK MIMO frequency flat fading channels by imposing a block diagonal

structure on the matrices and vectors of (2.18) such that

H = diag ([H1H2 · · ·HK])

F = diag ([F1F2 · · ·FK])

G = diag ([G1G2 · · ·GK])

sT =
[
sT
1 · · · sT

K

]

zT =
[
zT
1 · · · zT

K

]
.

This result enables rewriting (2.18) on the subcarrier level as

zk = GkHkFkxk + Gknk (2.19)

wherek = 1 . . . K. By storing the MIMO channel response for thekth subcarrier in a vector

hk = vec [Hk]

and making use of the identity [44]

vec (ABC) =
(
CT ⊗ A

)
vec (B) ,

(2.19) may be rewritten as

zk = Akhk + Gknk

wherek = 1 . . . K andAk = (Fksk)
T ⊗ Gk.
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This enables incorporating the channel error∆h into the the channel estimation as

H̃ =

√√√√ σ2
h

σ2
h + σ2

∆h

(h + ∆h) (2.20)

whereσ2
h = E

[
hHh

]
andσ2

∆h = E
[
∆hH

∆h
]
. This error term encompasses the feedback de-

lay and the CSI errors due to additive noise. The work of [43] derives (2.18), (2.19) and (2.20)

and also assumes that the channelH and the channel error̃H are jointly Gaussian in order to de-

sign the optimal linear precoder and decoder which are minimized according to the MMSE and

the minimization of the bit error rate (BER). In the design process according to the MMSE and

BER criterion a cost function is derived, followed by a closedform solution and a description of

the asymptotic performance of the linear precoder/decoderdeveloped. Models of the MMSE pre-

coder/decoder are not developed in [43] as they are in Chapter4 for the MMSE precoder/decoder.

The mismatch between the CSI at the receiver and the CSI at the transmitter is analyzed for

broadcast Orthogonal Space Division Multiple Access (OSDMA) as well. One unique aspect of

this work is that it focuses on the individual error sources instead of grouping all of the errors into

one term, which is done in [45]. The separate development of the impact of imperfect CSI on

system performance parameters such as ML channel estimation, the effects of channel estimation

errors and the time delay effects of channel estimation are individually considered.

Other literature reveals the development of optimal power adaptation and adaptive modula-

tion for MIMO systems with imperfect CSI [46]. The system model developed used the same

precoder/decoder originally designed and developed by [20], based on the SVD of the CSI.

It is common among literature dealing with imperfect CSI at the transmitter and/or receiver to

introduce an error term. After the introduction of the errorterm and a system model, development

of performance analysis of SNR and bit error probability [47], or BER analysis and quantization

effects [48] or the trade-offs in transmission strategies of space time coding and beamforming and

the effects on the information transfer rate [12] may be found.
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2.4 Conclusion

This chapter introduces the concept of MIMO and the different forms of precoding. Section 2.3.4

shows that there has been analysis into the more realistic scenarios of imperfect CSI. Despite the

research completed in the literature, none develop equations which quantify the amount of error

introduced to the system, as will be shown in Chapter 4. Next, Chapter 3 will show the development

of the MMSE precoder/decoder designs of [21].
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Chapter 3

Design of Optimal Linear

Precoders/Decoders

This chapter delves into the design aspect of linear precoders/decoders within a MIMO system.

One nice aftereffect of some MIMO precoders is their abilityto separate the subchannels into in-

dividual SISO channels, which if accomplished, enables streamlined analysis. Through the use of

full CSI the optimal designs of the linear precoders/decoders presented in [21] accomplish the iso-

lation of the individual subchannels as well as present closed form solutions to various performance

measures. However, partial CSI provides a more realistic approach since providing the transmitter

with complete channel knowledge instantaneously is impossible. Performance measures are pro-

vided herein for full CSI. This chapter will address the design and performance measures of the

above precoders/decoders.

3.1 Optimal Linear Precoders/Decoders using Full CSI

By beginning the design with the minimum MSE, an initial problem occurs on whether to design

a decoder tuned to the precoder and channel, or to design a precoder tuned to the channel and

decoder. One logical option is to pick the former choice, anddesign an optimal decoder for a

given precoder and channel since the receiver will have complete CSI. Starting from this point a
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decoder design is created using the minimum MSE and three different design criterion are created

from which six optimization scenarios emerge in order to design multiple precoders. Performance

measures are then derived for the precoder/decoder designs.

3.2 System Model

The overall system model hasMr receive antennas andMt transmit antennas. EveryT symbol

intervals there areN symbols, denoted assi, transmitted by aN × 1 vector. The system begins by

precoding theN × 1 vector withF in order to produce aMt × 1 transmit vector

xi = Fsi.

It is assumed that the discrete time channel has a time varying impulse response, is causal and

has finite memoryL, which enables writing the input-output equations in blockFIR (finite im-

pulse response) form. Using a block by block transmission structure the transmitted and received

symbols are stacked into snapshots. A snapshot is one small block of data that is transmitted over

one symbol period which is then stacked into large blocks before and after transmission in order

to attempt to cancel interblock and intersymbol interference (IBI and ISI, respectively) which are

caused by the frequency selectivity of the channel.

The block transmission begins by stackingP = M + L precoded transmit snapshots (M is

the number of receive snapshots) into a vectorxi. The structure of theMtP × 1 transmitted vector

xi is

xi =




x[iP ]
...

x[(i+ 1)P − 1]



,

which is the product of theMtP ×N precoder and the symbolssi. The output of the channel prior

to corruption by AWGN is

yi = Hxi.

yi is the product of the channel and the stacked transmission vector, whereH is theMrM ×MtP
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channel matrix. Similar toxi, yi has the form

yi =




y[iP ]
...

y[(i+ 1)P − 1]



.

The receivedMrM × 1 vectory is corrupted by AWGN with varianceσ2
nn. The received signal is

zi = yi + ni. The received signal is then decoded by aN ×MrM decoder matrixG. This results

in aN × 1 vector of estimated symbols in the receiver which are expressed as

ŝi = Gzi = GHFsi + Gni. (3.1)

The transmit and receive snapshots are included for the frequency selective case. If the channel

exhibits flat fading, thenP = M = 1 andL = 0 and the above equations collapse to simpler

forms, which will be dealt with throughout this thesis sincefrequency flat fading is assumed.

The precoder/decoder block diagram is shown in Fig. 3.1. Theoptimal design of the decoder

begins with the minimization of the mean square error (MSE).The MSE is a function of bothF

andG and is given by

MSE (F,G) = E
{
(ŝi − si) (ŝi − si)

H
}
. (3.2)

By substituting in the received signal (3.1) into (3.2), the following is obtained

MSE (F,G) = (GHF − I) Rss (GHF − I)H + GRnnGH , (3.3)

whereRss = σ2
ssI because the transmit symbols are assumed to be white. The noise covariance ma-

trix Rnn = σ2
nnI is positive definite, and the noiseni is uncorrelated with the transmitted symbols

si.

The optimal decoder is found by designing a Weiner receiver [49] which minimizes the

tr (MSE (F,G)), and is given by

Gopt = RssFHHH
(
HFRssFHHH + Rnn

)−1
. (3.4)

By substituting in the optimalG of (3.4) into the MSE equation (3.3), the minimum MSE(F,G)

becomes MSE(F,Gopt). The resulting MSE(F) is minimum in the sense that

MSE (F) = MSE (F,Gopt) = σ2
ss

(
I + σ2

ssF
HHHR−1

nn HF
)−1

. (3.5)
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Precoder DecoderChannel
s x = Fs y = Hx

z = y + n

 = Gz

AWGN

Figure 3.1: A block diagram of the system model.

Since the transmit symbols are white, the previous equationfor G, (3.4) simplifies to

G = FHHH
(
HFFHHH + Rnnσ

−2
ss

)−1
. (3.6)

The result of (3.6) requires that the receiver has knowledgeof the channel and the noise

covariance matrix. If the receiver does not have knowledge of the two matrices then decoder is

useless. The most important assumption of the optimal linear precoder/decoder design due to full

CSI is that both the receiver and transmitter have complete and perfect channel knowledge.

The optimal designs of the optimal precoder may be found by placing different performance

measures which depend on the MSE ofF (3.5). A trivial solution would be to increase the norm of

F to infinity, but that is not reasonable. The first constraint limits the transmit power and is found

by limiting the expected value of the norm of the transmit vectorE [||xi||2] = tr
(
FFH

)
σ2

ss which

results in

tr
(
FFH

)
σ2

ss = P0. (3.7)

The second constraint limits the maximum eigenvalue of the transmit covariance matrix. It is

another method of limiting the power, and is given by

λmax

(
FFH

)
σ2

ss = L0. (3.8)

The third and final constraint limits the peak power of the transmit symbols and is shown by the

following inequality

max
i,k

(
|| [Fsi]k ||2

)
≤ λmax

(
FHF

)
maxi

(
||si||2

)
. (3.9)
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The constraint comes from||si||2 since the transmit symbols are bounded in amplitude. This con-

straint limits signal peak and is constellation independent.

In order to find the optimalF, the minimum value of (3.5) must be found. The trace operator

and the determinant are two avenues in which the minimum may be found. Other methods of find-

ing minimum values of a matrix are through Lagrange multipliers, the Frobenius, two, or infinity

norms, and by minimizing the eigenvalues [50] [51] [52]. In this case, the trace and determinant

are used to compute the minimum argument of (3.5), with respect to the three constraints (3.7),

(3.8) and (3.9), resulting in six optimalF matrices. These six designs have different performance

results which may be used to suit the users needs. Obviously,theF’s obtained are by no means an

all encompassing list of optimal precoder designs.

3.3 Considerations for Non-Square Channels

No reservations have been made yet as to the size of the channel, which is determined by the

number of transmit and receive antennas. If the number of receive antennas is less than the number

of transmit antennas (Mr < Mt), then the channel matrix is wide. If the number of receive antennas

is greater than the number of transmit antennas (Mr > Mt), then the channel matrix is tall. A by-

product of the SVD of the channel matrixH, is that for wide or tall matrices some of the matrices

contain irrelevant information. In the case of a wide channel matrix, theMt −Mr columns ofΣ

andV may be eliminated. For a tall channel matrix, theMr −Mt rows ofΣ and theMr −Mt

columns ofU may be eliminated because those rows and columns are irrelevant to the computation

of H, as was discussed in Chapter 2

Here is a small example to help in understanding the elimination of irrelevant rows. Recall

that the SVD of the channel was defined in (2.13). Recognizing that with a3×7 H matrix, the other

matrices of (2.13) areU = 3 × 3, Σ = 3 × 7, VH = 7 × 7, andrank (H) = rank (Σ) = r = 3.

[
H

]

︸ ︷︷ ︸
3×7

=
[

U
]

︸ ︷︷ ︸
3×3

[
Σ

]

︸ ︷︷ ︸
3×7

[
V

]H

︸ ︷︷ ︸
7×7

.

The previous example shows that in order to fully represent the channel, only3 dimensions are
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necessary. Additionally, the previous result shows only the case of a wide channel matrix, but the

same may be shown for a tall channel matrix but is omitted here.

All of the previous results assume a full rank matrix. For thecase of a non-full rank channel

matrix the necessary information to fully representH reduces tor, wherer is the rank ofH and

the following inequality appliesr ≤ min (Mr,Mt).

The above arguments concerning the size and rank ofH may be restated in terms of the EVD

instead of the SVD. However the end result is the same. The EVDof the CSI is presented in [21]

as follows

HHR−1
nnH = VΛVH .

If further clarification is needed, please refer to [21] for more information.

3.4 Specific Precoder Designs

The following precoders are presented without derivation.For specific details, please refer to the

appendices of [21]. Every design results in a precoderF to be of the form

F = VΦ, (3.10)

whereV is the same in each, but a newΦ is derived.V is a matrix containing the right singular

vectors of the SVD of the full CSI, andΦ is a square, diagonal power allocation matrix.

The first design is obtained by minimizing the trace of (3.5) with respect to the total transmit

power constraint given in (3.7). The entries along the diagonal are denoted asφii and the first

design’s entries are [21]

|φii|2 =

(
P0 +

∑Mr

k=1 λ
−1
nn

σ2
ss

∑Mr

k=1 λ
−1/2
nn

λ
−1/2
ii − 1

λiiσ2
ss

)+

(3.11)

where(.)+ is defined as themax (x, 0) and theλii term denotes the eigenvalues ofH.

Minimizing the determinant of (3.5) with respect to the total power constraint of (3.7), yields

a newΦ which is found as [21]

|φii|2 =

(
P0 +

∑Mr

k=1 λ
−1
kk

Mrσ2
ss

− 1

λiiσ2
ss

)+

. (3.12)
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Moving on to the minimization of the trace of (3.5) with respect to the maximum eigenvalue

constraint in (3.8) yields aΦ of the form [21]

φii =

√
L0

σ2
ss

. (3.13)

The minimization of the determinant of (3.5) with respect tothe maximum eigenvalue con-

straint in (3.8) yields the sameΦ as shown in (3.13).

The final twoΦ’s are constrained by the peak power of the transmit symbols (3.9), and are

given by [21]

|φii|2 =
P0

σ2
ss

∑
k λ

−1
kk

λ−1
ii , (3.14)

and

|φii|2 =
L0λNN

σ2
ss

λ−1
ii . (3.15)

These different precoder matrices may be used to suit the optimization needs of the user.

3.5 Equivalent Channel Model

The optimal form ofG shown in (3.4) may be rearranged in order to show that the equivalent

channel seen by the data becomes an identity. Beginning with the manipulation of (3.4) is as

follows:

G = RssFHHH
(
HFRssFHHH + Rnn

)−1
(3.16)

= σ2
ssF

HHH
(
σssHFFHHHσss + R

1

2
nnR

1

2
nn

)−1

= σssR
− 1

2
nn FHHH

(
σssR

− 1

2
nn HFFHHHR

− 1

2
nn σss + I

)−1

R
− 1

2
nn σss,

and by settingA = σssR
− 1

2
nn HF = ΣVHVΦ = ΣΦ, the aboveG may be written as

G = AH
(
AAH + I

)−1
R

− 1

2
nn σss.
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Now by making use of the matrix inversion lemmaAH
(
AAH + I

)−1
=
(
AHA + I

)−1
AH , and

by settingΓ′ =
(
AHA + I

)−1
σ2

ss, G may be rewritten as

G = Γ
′AHR

− 1

2
nn σ−1

ss

= Γ
′
(
σssR

− 1

2
nn FHHH

)
R

− 1

2
nn σ−1

ss

= Γ
′FHHHR−1

nn

= Γ
′ (VΦ)H HHR−1

nn

= Γ
′
Φ

HVHHHR−1
nn .

By substituting inΓ = Γ
′
Φ

H
Λ the final form ofG is derived

G = ΓΛ
−1VHHHR−1

nn . (3.17)

It may be inferred from above thatA is a diagonal matrix since it may be written as the

product of two diagonal matrices,A = ΣΦ. From thisΓ′ may also be shown to be a diagonal

sinceΓ
′ =

(
AHA + I

)−1
σ2

ss. Furthermore, it may be concluded thatΓ is a diagonal matrix since

it is the product of three diagonal matrices,Γ = Γ
′
Φ

H
Λ.

In the computation of the equivalent channel model, if the diagonal matricesΦ andΓ are

excluded, the overall channel reduces to anMr ×Mr identity as shown below,

Ψ = GHF

= Λ
−1VHHHR−1

nnHV

= Λ
−1VH [VΛVH ]V

= IMr
. (3.18)

The subscriptMr indicates the dimension of the matrix. If the channel is square, then the size of

Ψ isMr orMt. If the channel is wide or tall, then the size ofΨ reduces toMr orMt, respectively.

This is significant because it indicates the number of parallel and independent subchannels of the

channel that exist in which the data symbols pass through.Ψ is the effective channel that the

symbols see, excluding the diagonal matricesΦ andΓ. Since the overall channel model reduces

to an identity, the gain of the system isΓΦ as shown in Fig. 3.2.
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The noise correlation reduces toΛ−1 as shown below

GnnHGH = Λ
−1VHHHR−1

nnRnnR−1
nnHVΛ

−1

= Λ
−1VH

(
VΛVH

)
VΛ

−1

= Λ
−1.

3.6 Performance Results

The results in the previous section allow a streamlined performance analysis. One nice result of

the overall channel reducing to an identity, as shown in equation (3.18). Another is that the system

gain is determined by two diagonal matricesΓ andΦ. Additionally, the MIMO channel reduces to

r parallel, independent and ISI free subchannels. Each subchannel has the gainφkkγkk and noise

varianceλ−1
kk , wherekk indicates thekth diagonal element of the matrix, or thekth subchannel.

This allows writing the estimated signal at thekth subchannel as

ŝk = φkkγkk (si)k + γkk (n)k .

The SNR for thekth subchannel is

SNRk =
σ2

ss|φkk|2|γ2
kk|2

λ−1
kk |γkk|2

= σ2
ss|φkk|2λkk ,

whereγkk, λkk andφkk are the diagonal elements of the diagonal matricesΓ, Λ andΦ, respectively.

The capacity defined in (2.8) is no longer valid since the precoder/decoder pair are not in-

cluded.Rzz of (2.6) must be rederived, along withRnn. Rzz andRnn become

Rzz = GHFssHFHHHGH + GnnHGH ,

Rnn = GnnHGH .

The mutual information of the overall system becomes

I (ŝi; z) = log2

(
det

(
GRnnGH

)−1 (
GHFRssFHHHGH + GRnnGH

))
. (3.19)
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Figure 3.2: Overall channel model.

Capacity is defined as the maximization of the mutual information between the transmitter

and receiver across all subchannels. The capacity is given as

C = maxRss
log2

(
det

((
GRnnGH

)−1 (
GHFRssFHHHGH + GRnnGH

)))
. (3.20)

Since the equivalent channel model reduces to an identity, the information transmitted across

all subchannels is parallel and independent. It may also be shown that the mutual information

across the parallel and independentr (wherer is the rank ofH) subchannels as

I (ŝi; s) =
1

r

r∑

i=1

log2 (1 + SNRi) . (3.21)

This shows that the mutual information on each of the parallel, independent subchannels form

is equivalent, but each subchannel has a different mutual information and hence different capac-

ity. Thus, the total mutual information of the overall system is the summation of the individual

subchannels.

3.7 Conclusion

Chapter 2 introduced MIMO and the concept of precoders/decoders. Chapter 3 takes a closer

look at a specific precoder/decoder designs, thus this chapter is the completion of the foundational

material from which the contribution of the next chapter is built upon. The precoder/decoder

designs of this chapter are the same as the imperfect precoders/decoders presented in Chapter 4.
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Chapter 4

Performance Analysis of Linear

Precoders/Decoders with Imperfect CSI

In the event that the CSI contains errors, how will this affectthe overall performance of a MIMO

system? Errors may occur in the estimation of the channel, byquantization of the CSI prior to feed-

back if limited CSI is used, or errors could occur while sending the CSI to the transmitter, or any

combination of the above sources of error. It is obvious thatthere are a plethora of potential loca-

tions within a wireless system in which errors could be injected into the system. The concentration

herein is limited to the errors in the channel which impact the precoder/decoder performance.

The analysis of imperfect precoders/decoders with full CSI is important because it will enable

the design engineer to have an estimate of how robust or how much performance degradation the

implemented system will have given varying degrees of error. The purpose of this chapter is to

serve as a model on how to estimate the severity of these encounters. The imperfect channel model

is introduced, equations are developed which factor in the channel error, a proof on the SVD of

the channel as the number of transmit antennas is added is shown and the overall channel model is

derived along with performance equations.
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4.1 Imperfect Channel

Analysis of the channel matrixH with errors is an investigatable scenario which may represent any

errors in the channel that are introduced on the receiver side, prior to the CSI being fed back to the

transmitter side. In order to model the imperfect system a variable∆X is introduced which repre-

sents the amount of error added to a system parameter, whereX represents any system parameter.

Beginning with the channel itself is where the error analysisstarts. The imperfect channel

caused by imperfect CSI is represented as

H̃ = H + ∆H, (4.1)

where the imperfect channel is denoted with a tilde,H is the true channel and∆H is the error.

Throughout this thesis ãX indicates the actual variable plus the error. The error introduced to the

system is assumed to be noise that is modeled as uncorrelated, AWGN with varianceσ2
p, i.e.,N

(
0, σ2

p

)
. This models the scenario where, by increasing the varianceσ2

p, the error∆H is increased,

indicating more errors in the CSI.

The error analysis conducted herein begins with the assumption that errors may first be in-

troduced in the estimation of the channel. The channel estimate comprises the CSI which is used

in the decoder and is fed back to the precoder through a low rate duplex channel. If the CSI is

imperfect, that implies that the decoder and precoder whichare computed from that incorrect data

are also imperfect.

The SVD of the imperfect channel is

H̃ = ŨΣ̃Ṽ
H
. (4.2)

The imperfect CSI may also be written in terms of the EVD. Sincethe noise covarianceR−1
nn is

assumed to be white and uncorrelated, it becomesσ−2
nn I and the EVD of the CSI covariance matrix

is

R−1
nnH̃

H
H̃ = σ−2

nn

(
ŨΣ̃Ṽ

H
)H (

ŨΣ̃Ṽ
H
)

= σ−2
nn ṼΣ̃

2
Ṽ

H

= σ−2
nn ṼΛ̃Ṽ

H
.
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4.1.1 Imperfect Precoder and Decoder

To consider errors in the knowledge ofH and their impact on performance, the precoder and

decoder designs of Section 3.2 are repeated. Beginning with the minimization of the mean square

error (MSE) as a function of both̃F and G̃, instead ofF and G is the first step. The MSE is

minimized with respect to both̃F andG̃ and is given by

MSE
(
F̃, G̃

)
= E

{
(ŝi − si) (ŝi − si)

H
}
. (4.3)

Substituting the received signal
(
ŝi = G̃H̃F̃s+ G̃n

)
into equation (4.3) yields

MSE
(
F̃, G̃

)
=

(
G̃H̃F̃ − I

)
Rss

(
G̃H̃F̃ − I

)H
+ G̃RnnG̃

H
, (4.4)

where the prior assumptions on the noise and signal covariance matrices hold.

The imperfect decoder is also based on a Weiner receiver [49]which minimizes thetr
(
MSE

(
F̃, G̃

))
,

and is given by

G̃ = RssF̃
H

H̃
H
(

H̃F̃RssF̃
H

H̃
H

+ Rnn

)−1

. (4.5)

By substituting in the optimal̃G of (4.5) into (4.4), the MSE becomes

MSE
(
F̃
)

= σ2
ss

(
I + σ2

ssF̃
H

H̃
H

R−1
nn H̃F̃

)−1

. (4.6)

The imperfect versions of decoders (3.16), (3.17) and the precoder (3.10)may be rewritten as fol-

lows in order to express them in a form where the amount of error is quantified in equation form.

By rearranging the equations as the decoder plus the terms dueto imperfect CSI and as the pre-

coder plus the terms due to imperfect CSI, the system designermay better visualize in equation

form the amount of error introduced into the system.

The decoder in (4.5) may be rewritten as

G̃ = (G1 + G∆G1
)(G2 + G∆G2

)−1,

where

G1 = RssFHHH
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G∆G1
= Rss (F∆H + ∆FH + ∆F∆H)H

G2 = HFRssFHHH + Rnn

G∆G2
= HFRss (F∆H + ∆FH + ∆F∆H)H

+H∆FRssΞ + ∆HFRssΞ + ∆H∆FRssΞ

Ξ = (FH + F∆H + ∆FH + ∆F∆H)H .

The imperfect decoder from (3.17) may be rewritten as

G̃ = Γ̃Λ̃
−1

Ṽ
H

H̃σ−2
nn = G + ∆G (4.7)

where

G = ΓΛ
−1VHHHσ−2

nn

∆G = ΓΛ
−1
(
(V∆H + ∆VH + ∆V∆H)H

)
σ−2

nn

+Γ∆Λ
−1

Π + ∆ΓΛ
−1

Π + ∆Γ∆Λ
−1

Π

Π =
(
(VH + V∆H + ∆VH + ∆V∆H)H

)
σ−2

nn .

The imperfect precoder from (3.10) may be rewritten in a similar fashion

F̃ = ṼΦ̃ = F + ∆F (4.8)

where

F = VΦ

∆F = V∆Φ + ∆VΦ + ∆V∆Φ.

In addition, theφii’s that depend onΛ will be rewritten sinceΛ becomes̃Λ. Equations (3.11),

(3.12), (3.14) and (3.15) become

∣∣∣φ̃ii

∣∣∣
2

=

(
P0 +

∑Mr

k=1 λ̃
−1
nn

σ2
ss

∑Mr

k=1 λ̃
−1/2
nn

λ̃
−1/2
ii − 1

λ̃iiσ2
ss

)+

, (4.9)

∣∣∣φ̃ii

∣∣∣
2

=

(
P0 +

∑Mr

k=1 λ̃
−1
kk

Mrσ2
ss

− 1

λ̃iiσ2
ss

)+

, (4.10)

36



∣∣∣φ̃ii

∣∣∣
2

=
P0

σ2
ss

∑
k λ̃

−1
kk

λ̃−1
ii , (4.11)

and

∣∣∣φ̃ii

∣∣∣
2

=
L0λ̃NN

σ2
ss

λ̃−1
ii , (4.12)

respectively.

4.2 Equivalent Channel Model

The effective channel including the precoder (4.8), the channel (4.1), and the decoder (4.7), while

excluding diagonal matrices such asΦ̃ ((4.9), (4.10), (4.11), (4.12)) and̃Γ (Γ̃ = Γ̃
′
Φ̃

H
Λ̃), becomes

Ψ̃ = F̃HG̃

= Λ̃
−1

Ṽ
H

H̃
H

R−1
nnHṼ (4.13)

= σ−2
nn Λ̃

−1
Ṽ

H
(

ŨΣ̃Ṽ
H
)H (

UΣVH
)

Ṽ (4.14)

= σ−2
nn

(
Σ̃

2
)−1

Ṽ
H

ṼΣ̃Ũ
H

UΣVHṼ

= σ−2
nn Σ̃

−1
Ũ

H
UΣVHṼ (4.15)

= σ−2
nn (Σ + ∆Σ)−1 (U + ∆U)H UΣVH (V + ∆V) . (4.16)

The imperfect overall channel gain is̃ΓΨ̃Φ̃. The question now becomes: What effect do theΣ̃, Ũ

andṼ have on the overall equivalent channel?

4.3 Effects of Imperfect CSI on the SVD

The goal of this section is to describe in detail a useful SVD theorem which assists in describing

the channel model when the CSI is imperfect. In mathematical literature, the analysis of the ad-

dition of an error term to a matrix is known as perturbation analysis. A useful tool to describe a

perturbed subspace decomposition was found in [53], which considers the case where the error is

an uncorrelated AWGN random variable, exactly the scenario here. This theorem assumes that the

37



varianceE[∆H∆HH ] is asymptotic as the number of columns approaches infinity and is denoted

byE[∆H∆HH ]/r = σ2
pI r. For a largeMt, the SVD ofH̃ may be represented as

H̃W ≈ U
(
Σ

2 +Mtσ
2
pIMr

) 1

2 Ṽ
H

= ĤW , (4.17)

whereσ2
p is the variance of the CSI error term or perturbation, and the subscriptW indicates a

wide matrix (i.e.Mt ≥ Mr) This shows that for a smallσ2
p and as the number of columns ofH̃

are increased, the singular values ofH̃ increase by an amount approximately equal toσp

√
Mt. It is

important to notice that the matrix of left singular vectorsU, is not changed. In other words, for a

wideH, (4.2) becomes

H̃W = UΣ̃Ṽ
H
. (4.18)

The matrix of singular values may be written as

Σ̃W =
(
Σ

2 +Mtσ
2
pIMr

) 1

2 . (4.19)

The above theorem which appeared in [53] is presented only for wide matrices as the number

of columns is increased to infinity. A literature search was undertaken to find a theorem which

stated a similar argument for tall matrices, but was not found. Despite the literature search not

providing useful results, the symmetry of the SVD regardingtheU andV matrices was enough to

postulate a theorem for the contrary asymptotic case where the number of rows approaches infinity.

Which may also be found by transposing the above theorem. For alargeMr, the SVD ofH̃ may

be represented as

ĤT ≈ Ũ
(
Σ

2 +Mrσ
2
pIMt

) 1

2 VH = H̃T . (4.20)

From the above equation, it may be inferred that for a smallσ2
p and as the number of rows ofH̃ are

increased, the singular values ofH̃ increase by an amount approximately equal toσp

√
Mr. The

approximated SVD of̃H may be written in shorthand form as

H̃T = ŨΣ̃VH , (4.21)

followed by the matrix of singular values

Σ̃T =
(
Σ

2 +Mrσ
2
pIMt

) 1

2 . (4.22)
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Two simulation scenarios were set up to model the error between the actual imperfect chan-

nels,ĤW andĤT and the approximation to the imperfect channel,H̃W andH̃T , respectively, for

both the cases whereMr andMt approach infinity. For the wide case, the simulation begins with

a random flat fading Rayleigh channel with an antenna configuration of 1 × 5 and computes the

two-norm of the difference between̂HW andH̃W and is averaged over 1000 trials for a givenσ2
p.

On the next iteration, a row is added to the channel and the error betweenĤW andH̃W is again

averaged over 1000 trials and continues until the antenna configuration is square. The simulation

then repeats for a differentσ2
p value. Two different matrix sizes are given (1 × 5 becomes5 × 5

and1 × 10 becomes10 × 10) in Fig. 4.1 for two different values ofσ2
p.

The same simulation was mimicked for the case of a tall antenna configuration and computed

the error between̂HT andH̃T . The results for the tall antenna configuration is shown in Fig. 4.2.

Notice in both Fig. 4.1 and 4.2 that the approximation becomes worse the more closer to

square the antenna configuration becomes, regardless the size of theσ2
p. As the ratio of transmit

to receive antennas increases to 1, the greater the error between the actual imperfect channel and

the approximation to the imperfect channel. In Chapter 5 someplots will be presented which show

how well the approximation improves with non-square antenna configurations. This will allow us

to quantify how much error is tolerable within a system design.

4.4 Equivalent Channel Model: Wide Case

The results of Section 4.3 may be used as a tool to simplify theequivalent channel model found in

(4.16). The matrix of the imperfect left singular vectors may be approximated as̃U = U as shown

in (4.18). Additionally, the amount of error introduced into the matrix of singular values is shown

in (4.19). This eliminates two of the three unknowns (∆U and∆Σ) introduced in (4.2). The only

remaining unknown variable of (4.16) is∆V which will be addressed in Section 4.4.1.

Recall from Section 3.3 that in the event of a wide channel model, the irrelevantMt −Mr

columns ofΣ andV are eliminated. This simplification makes the mathematicaloperations much

easier within this section; otherwise, the matrix multiplication of (4.7) and (4.8) would not be

possible for a non-square matrix. Earlier in this thesis thesubscript, (e.g.,IMr
) indicated the
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Figure 4.1: SVD approximation error for wide matrices as theantenna configuration becomes

square.

dimension of a square matrix, but herein it will also indicate matrices that have had columns or

rows eliminated. Specifically for the case of a wide channel model using the approximationU = Ũ,

the overall channel model becomes

Ψ̃Mr
= σ−2

nn Σ̃
−1

Mr
Ũ

H
UΣMr

VH
Mr

ṼMr

= σ−2
nn Σ̃

−1

Mr
UHUΣMr

VH
Mr

(V + ∆V)Mr

= σ−2
nn Σ̃

−1

Mr
ΣMr

VH
Mr

(V + ∆V)Mr
. (4.23)

This leaves only one unknown,∆V. By determining∆V, a workable expression for the effect of

the error on system performance may be obtained.
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Figure 4.2: SVD approximation error for tall matrices as theantenna configuration becomes
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4.4.1 Effects of∆V

By beginning with the SVD of a wide (Mt ≥ Mr) H̃ andH of the same size and eliminating the

Mt −Mr columns ofΣ̃, Σ, Ṽ andV, the SVD ofH̃ andH may be rearranged as follows

ṼMr
= H̃

H
UΣ̃

−1

Mr

VMr
= HHUΣ

−1
Mr
,

whereṼMr
,VMr

, H̃ andH areMt ×Mr andU, Σ̃
−1

Mr
andΣ

−1
Mr

areMr ×Mr. Next, equation (4.1)

may be rewritten as

∆H = H̃ − H. (4.24)
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Now the desire is to know∆V. We may write∆V in the same fashion as

∆V = Ṽ − V.

Or in this case, it is

∆VMr
= ṼMr

− VMr

= H̃
H

UΣ̃
−1

Mr
− HHUΣ

−1
Mr
. (4.25)

Now by subtracting and adding the same term (HHUΣ̃
−1

Mr
) from (4.25) yields

∆VMr
= H̃

H
UΣ̃

−1

Mr
− HHUΣ̃

−1

Mr
+ HHUΣ̃

−1

Mr
− HHUΣ

−1
Mr
. (4.26)

By manipulating (4.26) the final expression for∆VMr
becomes

∆VMr
=

(
H̃ − H

)H
UΣ̃

−1

Mr
+ HHU

(
Σ̃

−1

Mr
− Σ

−1
Mr

)
(4.27)

= ∆HHUΣ̃
−1

Mr
+ HHU∆Σ

−1
Mr

(4.28)

This produces an approximate expression for the matrix∆VMr
, which holds for wide matrices

only. This does not give an estimation of the size of the elements of the matrix.

It is assumed from the SVD error theorem in Section 4.3 thatŨ = U and the size of̃Σ may

be inferred from (4.19). The question remains as to the size of Ṽ. The following is an analysis of

the elements of∆V, which will give insight to the amount of error iñV.

4.4.2 Elements of∆V

Taking a closer look at the elements from left to right of (4.23), their properties may be analyzed.

The noise standard deviationσnn is a constant and the matricesΣ̃ andΣ are both diagonal with

zeros on all of the off-diagonal elements.V is a unitary matrix, which means that the norm of each

of the columns is unity and the norm of the matrix itself is unity. The question remains as to the

size of the errors in the non-diagonal matrix on the far rightof (4.23),∆VMr
.

By isolating the matrix productVH
Mr

ṼMr
, we may approximate the size of the elements of the

error∆VMr
. This matrix product may be clarified as

ZV ≡ VH
Mr

(VMr
+ ∆VMr

) = IMr
+ VH

Mr
∆VMr

. (4.29)
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Rewriting the right hand side in terms of the individual elements ofVH
Mr

∆VMr
and making com-

parisons to a two dimensional case helps the analysis.

First generalizing the matricesVH
Mr

∆VMr
into vector form




vH
1

vH
2

...

vH
Mr




[
∆v1 ∆v2 · · · ∆vMr

]
, (4.30)

then taking a closer look at their individual elements yields



vH
1 ∆v1 vH

1 ∆v2 · · · vH
1 ∆vMr

vH
2 ∆v1 vH

2 ∆v2 · · · vH
2 ∆vMr

...
...

.. .
...

vH
Mr

∆v1 vH
Mr

∆v2 · · · vH
Mr

∆vMr




. (4.31)

The aim is to approximate or bound the individual elements ofthe aboveMr ×Mr matrix. Two

approximations may be made from which the above matrix (4.31) may be simplified. The first

approximation may be made by looking at an example that is valid for any dimensions of the

vectorsvij, for any columns iñV, regardless of the size of̃V. Multiplying two vectors ofṼ results

in a product equal to zero, but also reveals some useful approximations such as,

ṽH
i ṽj = (vi + ∆vi)

H (vj + ∆vj) = 0 (4.32)

0 = vH
i vj + vH

i ∆vj + ∆vH
i vj + ∆vH

i ∆vj (4.33)

0 ≈ vH
i ∆vj + ∆vH

i vj. (4.34)

Recall thatvi denotes theith column of the right singular vectors of the trueH and the∆vi terms

are the errors. Thus the terms inside the parenthesis in (4.32) indicate the true value plus the error

term due to imperfect CSI. The first term of (4.33) is zero because the vectors are orthogonal due

to the unitary structure of̃V. The final term of (4.33) is approximated to be zero because itis the

inner product of two small terms. The remaining terms of (4.34) show that the(i, j)th element is

equal to the negative of the(j, i)th element.

The second approximation may be made from the two dimensional example shown in Fig.

4.3. The two perpendicular sets of vectors in Fig. 4.3 show that the error of the right singular
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vectors, is assumed to be small. As the error terms of∆v1 and∆v2 approach zero, the two pairs

of vectors (v1, ṽ1 andv2, ṽ2) approach each other. For small errors, the vectors∆v1 and∆v2 are

approximately perpendicular to the vectors they are corrupting, v1 andv2, respectively. In other

words, the following products are approximately zero

vH
i ∆vi ≈ 0 (4.35)

Applying these to approximate the right-hand-side of (4.29) produces

ZV ≈ I +




0 vH
1 ∆v2 vH

1 ∆v3 · · · vH
1 ∆vMr

−vH
1 ∆v2 0 vH

2 ∆v3

−vH
1 ∆v3 −vH

2 ∆v3
.. .

...
...

... vH
Mr−1∆vMr−1

−vH
1 ∆vMr

· · · −vH
Mr−1∆vMr−1 0




. (4.36)

The above matrix may be simplified further, by noting that theoff diagonal elements are the dot

product of two vectors. Recall that the dot product is the multiplication of two vectors and is

denoted as

a · b = aH · b = ||a|| · ||b|| cos θab, (4.37)

whereθab is the angle between vectorsa andb and ||·|| denotes the norm. This allows the off-

diagonal elements to be reduced to

ZV ≈ I +




0 ||∆v2|| cos θ12 ||∆v3|| cos θ13 · · ·
− ||∆v2|| cos θ12 0 ||∆v3|| cos θ23

− ||∆v3|| cos θ13 − ||∆v3|| cos θ23
. ..

...
...




. (4.38)

This shows that each of the off-diagonal elements in columni is bounded by||vi|| wherei =

1 . . .Mr. It is also apparent that the size of the off-diagonal elements are directly related to the

amount of CSI error. The above equation (4.38) may be bounded by

ZV ≈ I +




0 ||∆v2|| ||∆v3|| · · ·
− ||∆v2|| 0 ||∆v3||
− ||∆v3|| − ||∆v3|| . ..

...
...




. (4.39)
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Figure 4.3: A two dimensional example.

4.5 Equivalent Channel Model: Tall Case

The analysis of the previous section may be rederived in order to make use of the SVD theorem

of Section 4.3 to apply to tall channel matrices. Recall that the matrix of the imperfect right

singular vectors may be approximated asṼ = V, according to the theorem, and the amount of

error introduced into the matrix of singular values is shownin (4.22). This eliminates two of the

three unknowns (∆Σ and∆V) introduced in (4.2). The only remaining unknown variable of

equation (4.16) is∆U which will be determined next.

In Section 3.3 it was shown that for a wide channel model, the irrelevantMt −Mr columns

of Σ, Σ̃, V andṼ may be eliminated. For a tall channel model, theMr −Mt columns ofU and

Ũ and theMr −Mt rows ofΣ andΣ̃ may be eliminated. The matrices that have had columns or

rows eliminated are denoted with a subscript (e.g.,ΣMt
),

Ψ̃Mt
= σ−2

nn Σ̃
−1

Mt
Ũ

H

Mt
UMt

ΣMt
VHṼ

= σ−2
nn Σ̃

−1

Mt
Ũ

H

Mt
UMt

ΣMt

= σ−2
nn Σ̃

−1

Mt
(U + ∆U)H

Mt
UMt

ΣMt
. (4.40)

The∆U parameter is the only unknown and will be determined in a manner similar to∆V in the

previous section.
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4.5.1 Effects of∆U

By computing the SVD of a tall (Mr ≥ Mt) H̃ andH of the same dimension and eliminating the

Mr −Mt columns ofU, Ũ, and theMr −Mt rows of Σ andΣ̃, the SVD ofH̃ andH may be

rearranged as follows

ŨMt
= H̃VΣ̃

−1

Mt

UMt
= HVΣ

−1
Mt
,

whereŨMt
,UMt

, H̃ andH areMr ×Mt andΣ
−1
Mt
, Σ̃

−1

Mt
andV areMt ×Mt. ∆U may be rewritten

as

∆U = Ũ − U.

Or in this case, it is

∆UMt
= ŨMt

− UMt

= H̃VΣ̃
−1

Mt
− HVΣ

−1
Mt
. (4.41)

Again, by subtracting and adding the same term (HVΣ̃
−1

Mt
) from (4.41) yields

∆UMt
= H̃VΣ̃

−1

Mt
− HVΣ̃

−1

Mt
+ HVΣ̃

−1

Mt
− HVΣ

−1
Mt
. (4.42)

After manipulating (4.42) the final expression for∆UMt
becomes

∆UMt
=

(
H̃ − H

)
VΣ̃

−1

Mt
+ HV

(
Σ̃

−1

Mt
− Σ

−1
Mt

)
(4.43)

= ∆HVΣ̃
−1

Mt
+ HV∆Σ

−1
Mt

(4.44)

This produces an approximate expression for the matrix∆UMt
which provides the final unknown

from (4.40) for a tall channel matrix.

It is assumed from (4.20) that̃V = V and the size of̃Σ may be inferred from (4.22). The

question remains as to the size of the errors inŨ. The following is an analysis bounding the size

of ∆U, which will give insight to the impact of the error of̃U.
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4.5.2 Elements of∆U

By mimicking the previous analysis which derived the bound for ∆V, a similar derivation may

be completed for the∆U matrix in the case of a tall channel matrix. By isolating the unknown

matrices(U + ∆U)H
Mt

UMt
of (4.40) an approximation to the size of the error∆UMt

may be made.

This matrix product may be clarified as

ZV ≡ (UMt
+ ∆U)H

Mt
UMt

= IMt
+ ∆UH

Mt
UMt

. (4.45)

Again, generalizing the matrices∆UH
Mt

UMt
into vector form




∆uH
1

∆uH
2

...

∆uH
Mt




[
u1 u2 · · · uMt

]
, (4.46)

then taking a closer look at their individual elements produces



∆uH
1 u1 ∆uH

1 u2 ∆uH
1 u3 · · · ∆uH

1 uMt

∆uH
2 u1 ∆uH

2 u2 · · · ∆uH
2 uMt

...
...

. ..
...

∆uH
Mt

u1 ∆uH
Mt

u2 · · · ∆uH
Mt

uMt




. (4.47)

The goal is to approximate or bound the individual elements of the aboveMt ×Mt matrix. Two

approximations may be made

uH
i ∆uj = −∆uH

i uj and ∆uH
i ui ≈ 0. (4.48)

Again, recall thatui is theith column of the right singular vectors of the trueH matrix and the∆ui

indicates the errors due to imperfect CSI.

Applying the two approximations to (4.45) produces

ZV ≈ I +




0 ∆uH
1 u2 ∆uH

1 u3 · · · ∆uH
1 uMt

−∆uH
1 u2 0 ∆uH

2 u3

−∆uH
1 u3 −∆uH

2 u3
.. .

...
...

... ∆uH
Mt−1uMt−1

−∆uH
1 uMt

· · · −∆uH
Mt−1uMt−1 0




. (4.49)
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Similar to equation (4.36), the above matrix may be simplified through the use of the dot product.

The simplification of the above matrix produces

ZV ≈ I +




0
∣∣∣
∣∣∣∆uH

1

∣∣∣
∣∣∣

∣∣∣
∣∣∣∆uH

1

∣∣∣
∣∣∣ · · ·

−
∣∣∣
∣∣∣∆uH

1

∣∣∣
∣∣∣ 0

∣∣∣
∣∣∣∆uH

2

∣∣∣
∣∣∣

−
∣∣∣
∣∣∣∆uH

1

∣∣∣
∣∣∣ −

∣∣∣
∣∣∣∆uH

2

∣∣∣
∣∣∣ . ..

...
...




. (4.50)

This is a significant result because it shows the direct relationship of the size of the CSI errors and

the size of the off-diagonal elements for the case of a tall antenna configuration.

4.6 Equivalent Channel Model: Non-Full Rank Case

The final case of the equivalent channel model is for the case of a non-full rank channelH. In

the event of a non-full rank channel, the effective size of the channel reduces to the rank ofH,

regardless of the antenna configuration, square, wide or tall.

The results of Section 4.3 may be applied to a non-full rankH or H̃. If the non-full rank

channel is wide, the results of Section 4.4 apply. Similarly, if the non-full rank channel is tall, the

results of Section 4.5 apply. The effects of a non-full rank channel simply reduces the number of

parallel and independent subchannels that exist to be less than the minimum ofMr andMt.

4.7 Performance Results

The cascade of theG andF with perfect CSI is given in (3.18) and depicted in Fig. 3.2. When the

CSI is perfect it also allows ther suchannels to be written as parallel, independent subchannels.

However, when the suboptimalG̃ andF̃ (equations (4.7) and (4.8), respectively) are cascaded, they

do not conveniently reduce to an identity but produce equation (4.13). The corresponding noise

correlation for the cascaded precoder/decoder is

G̃nnHG̃
H

= Λ̃
−1

Ṽ
H

HHR−1
nnRnnR−1

nnH̃ṼΛ̃
−1

= σ−1
nn Λ̃

−1
Ṽ

H
H̃

H
H̃ṼΛ̃

−1
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= σ−1
nn Λ̃

−1
Ṽ

H
(

ŨΣ̃Ṽ
H
)H (

ŨΣ̃Ṽ
H
)

ṼΛ̃
−1

= σ−1
nn Λ̃

−1
Σ̃Σ̃Λ̃

−1

= σ−1
nn Λ̃

−1
.

This results in the estimated signal being written as

ŝ =




γ̃11ψ̃11φ̃11s1 + γ̃11ψ̃12φ̃22s2 + · · · + γ̃11ψ̃1rφ̃rrsr + γ̃11n1

γ̃22ψ̃21φ̃11s1 + γ̃22ψ̃22φ̃22s2 + · · · + γ̃22ψ̃2rφ̃rrsr + γ̃22n2

...

γ̃rrψ̃r1φ̃11s1 + γ̃rrψ̃r2φ̃22s2 + · · · + γ̃rrψ̃rrφ̃rrsr + γ̃rrnr




, (4.51)

whereγ̃rr and φ̃rr are therrth elements of the diagonal power allocation matrices andψ̃ is the

approximated channel as shown in (4.13).

The signal received in any of the subchannels may be found by selecting the desired row

element of ther × 1 vector of (4.51). For example, the signal recieved at the first subchannel is

expressed as

A1 = γ̃11ψ̃11φ̃11s1 + γ̃11ψ̃12φ̃22s2 + · · · + γ̃11ψ̃1rφ̃rrsr + γ̃11n1. (4.52)

This helps in the computing the SINR at theith equivalent channel

αi =
σ2

ss|[γ̃ψ̃φ̃]i,i|2

λ̃−1
i

(
|γ̃i,iψ̃i,i+1φ̃i+1,i+1| + |γ̃i,iψ̃i,i+2φ̃i+2,i+2| + · · · + |γ̃i,iψ̃i,rφ̃r,r|γ̃i,ini

)2 (4.53)

wherei, j ≤Min(Mr,Mt). Recall that̃λi is theith eigenvalue of̃H.

Finally we may write the channel capacity, as derived in Chapter 3 and shown in (3.20), with

the precoder and decoder computed based on imperfect CSI. Thechannel capacity may be written

as

CMIMO = maxRss
log2

(
det

((
G̃RnnG̃

H
)−1 (

G̃HF̃RssF̃
H

HHG̃
H

+ G̃RnnG̃
H
)))

. (4.54)

4.8 Gaussian Approximated BER and Capacity

Knowledge of the distribution of the CSI errors may be useful in simplifying the performance

equations. If the CSI errors are found to be Gaussian in their distribution then they may be treated
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in the same manner in which the AWGN is treated with probability of error and the type of detector.

This simplifies the performance analysis greatly.

It is desirable to know the distribution of the CSI errors ofH̃. Histograms of the diagonal

and off diagonal elements of the equivalent channel model will be shown. Recall how in the

event of perfect CSI, the equivalent channel model, excluding diagonal matricesΦ andΓ, reduces

the to anMr × Mr identity as shown in (3.18). The imperfect channel model shown in (4.13)

differs from (3.18) only in the inclusion of errors. For small errors, the imperfect channel model of

(4.13) should be strongly diagonal with small values on all of the off-diagonal elements. For this

reason, the use of a histogram will aid in the development of the results by showing the probability

distribution of the diagonal and off-diagonal terms.

A simulation was created which begins by creating 1,000,000randomH andH̃ matrices and

computes (4.13). Histograms for the elements ofΨ̃ are plotted for various values ofσ2
p. The

histograms are plotted (f (p) andp on thex- andy- axes, respectively) in Fig. 4.4 and Fig. 4.5 for

the diagonal and off-diagonal elements, respectively. Themean and variance of the PDF’s in Fig.

4.4 are 0.5883, 0.7692, 0.9091 and 0.0154, 0.0112 and 0.0052, respectively. Notice in Fig. 4.4, that

as the variance of the CSI error decreases, the distribution of the diagonal elements approaches 1,

as expected. The mean and variance of the PDF’s in Fig. 4.5 are0.0001248, 0.0000062, 0.0001339

and 0.0154, 0.0113 and 0.0052, respectively.

Additionally, for each different value ofσ2
p in Fig. 4.5, the distribution is centered around 0.

The PDFs of Fig. 4.4 approaching 1, and the PDFs of Fig. 4.5 remain centered around 0, which is

expected. Forσ2
p = 0, the PDF would be centered at 1.

If the CSI errors of the overall channel̃Ψ may be shown to be Gaussian then existing perfor-

mance measures that have been derived in previous works willbe applicable to our results. The

PDF’s shown in Fig. 4.4 display how as the CSI error decreases the mean becomes more closely

centered around zero and the variance decreases. Similarlythe PDF’s of Fig. 4.5 display how an

off-diagonal element of the overall channelΨ̃ matrix becomes more closely centered around zero.

Given this information that the CSI error resembles that of Gaussian noise is not enough but

will be supported by mathematical expressions. By reviewingthe received signal̂s, shown in

(4.51), the CSI error may be approximated and a new estimated signal may be shown. Based on
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Figure 4.4: PDF of the (1, 1) element of̃Ψ for a2 × 6 channel model.
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the simulations resulting in the PDF’s of Figs. 4.4 and 4.5 the terms due to interfering signals and

the AWGN may be lumped into a single AWGN termu, as follows,

ŝ′ =




γ̃11ψ̃11φ̃11s1 + u1

γ̃22ψ̃22φ̃22s1 + u2

...

γ̃rrψ̃rrφ̃rrs1 + ur




. (4.55)

Note thatu is white Gaussian noise since the interferings andn (in row 1 s2 throughsr) are

Gaussian. The mean and variance of the interfering terms that are approximated as Gaussian are

denoted as (usingu1 as an example)

E [u1] = γ̃22ψ̃22φ̃22E [s2] + · · · + γ̃rrψ̃rrφ̃rrE[sr] + E [n1]

Var (u1) =
(
γ̃11ψ̃12φ̃22

)2
Var (s2) + · · · +

(
γ̃11ψ̃1rφ̃rr

)2
Var (sr) + Var (n1) .

Recall thatE
(
nnH

)
= Rnn = σnnI andE

(
ssH

)
= Rss = σssI

Now (4.52) may be rewritten as in a similar fashion as (4.55).Again using the first subchannel,

A′
1 = γ̃11ψ̃11φ̃11s1 + u1. (4.56)

Next equation (4.53) may be rewritten as follows,

α′ =
σ2

ss|[γ̃ψ̃φ̃]1,1 + [γ̃ψ̃φ̃]2,2 + · · · + [γ̃ψ̃φ̃]r,r|2
λ̃−1

r (ur)
2 . (4.57)

This new SINR equation will in turn lead to a probability of error equation.

We derive the BER based upon a 16-QAM constellation. The M-QAMconstellation was

selected based upon its high spectral efficiency in AWGN. Unfortunately, the performance is poor

because of channel amplitude and phase variation. Beginningwith the probability of error for an

M-QAM system we obtain [54],

P√
M = 2

(
1 − 1√

M

)
Q



√

3α′

M − 1


 . (4.58)

From the probablility of error the probability of a symbol error for the system herein may be

defined as

PM = 1 −
(
1 − P√

M

)2
(4.59)
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To complete the performance equations of the Gaussian Approximation case we now show the

mathematical expression for capacity. Similar to the previous capacity equation shown in (4.54)

for the case of imperfect CSI we have

C′
MIMO = maxRss

log2

(
det

((
G̃RuuG̃

H
)−1 (

G̃HF̃RssF̃
H

HHG̃
H

+ G̃RuuG̃
H
)))

. (4.60)

4.9 Conclusion

This chapter has shown theoretical analysis of the impact oferrors in CSI used to compute a

decoder/precoder in a MIMO system. This analysis is complete because it applies to full rank

channels with both transmitter and receiver diversity. In the next chapter the focus is shifted to the

performance of the equations derived within this chapter and their robustness to channel errors, or

lack thereof.
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Chapter 5

Simulation Results of Linear

Precoders/Decoders with Imperfect CSI

The simulation results of linear precoders/decoders determined in the presence of imperfect CSI

is analyzed herein. Results are shown that describe the distribution of the error caused by the

imperfect CSI by way of BER and capacity plots for various antenna configurations.

5.1 CSI Error

To begin the performance analysis, the first step is to quantify what happens to the vectors of the

channel matrix,H, when an error matrix such as∆H, is added to it. This first set of plots is shown

to verify how in a three dimensional case the angles of the column vectors comprising theH and

H̃ matrices differ. By taking a pair ofH andH̃ matrices and performing the SVD a comparison

between the disturbed and undisturbed matrices may be made.From this comparison the angles

between the individual vectors ofU, Ũ, V andṼ may be shown.

The simulation begins with a three transmit and receive antenna configuration. The random

H and∆H matrices are selected from a Gaussian distribution with zero mean and unit variance.

After performing the SVD on theH and H̃, the individual vectors of theU, Ũ, V and Ṽ pairs

are plotted against one another with a measure of the angles between the individual vectors listed.
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The angles between each of the vectors and their imperfect counterpart are computed using the

equation

βi = cos−1

(
uH

i ũi

‖ui‖ ‖ũi‖

)
× 180

π

and is shown in Fig. 5.1. For a CSI error variance ofσ2
p = 0.01 the measure of angular error

between the vectors ofU andŨ areβ1 = 3.8, β2 = 2.1 andβ3 = 3.1. For the same CSI error

variance the measure of angular error between the vectors ofV andṼ areβ1 = 1.9, β2 = 1.8 and

β3 = 2.4. This plot showing the angles between theU, Ũ, V andṼ pairs is included to reinforce

the discussions of Fig. 4.3 in Section 4.4.2 and in Section 4.5.2.

Additional examples of the angular error between the vectors of U, Ũ andV, Ṽ for a larger

σ2
p are shown in Fig. 5.2 and 5.3. Fig. 5.2 displays the measure ofangular error for a CSI error

variance ofσ2
p = 0.05. The angular error between the vectors ofU andŨ areβ1 = 7.2, β2 = 7.2

andβ3 = 1.3. The angular error between the vectors ofV andṼ areβ1 = 10.3, β2 = 9.0 and

β3 = 5.2. Fig. 5.3 displays the measure of angular error for a CSI errorvariance ofσ2
p = 0.1.

The angular error between the vectors ofU andŨ areβ1 = 11.6, β2 = 18.8 andβ3 = 20.2. The

angular error between the vectors ofV andṼ areβ1 = 4.3, β2 = 28.2 andβ3 = 28.0.

From Figs. 5.1, 5.2 and 5.3, it is evident that asσ2
p (the CSI error variance) increases, the

distance between the column vectors ofU, Ũ and V, Ṽ increases. SinceU, V and Ũ, Ṽ are

from the SVD of the channel matricesH andH̃, respectively, this implies that the column vectors

betweenH andH̃ are similarly corrupted. This discussion shows how a small error will alter the

vectors of theH matrix, but it does not describe the type of distribution of the error.

5.1.1 SVD Theorem

The next simulation is presented to show extreme cases of theSVD theorem of Section 4.3 asMt

approaches infinity. Two channel models are compared given different transmit and receive antenna

configurations for different values ofσ2
p. The equivalent channel model of (4.13) is compared

against the approximation to the equivalent channel model.The approximation to the equivalent

channel model is found by substituting (4.28) into (4.23) which yields

Ψ̃AW = σ−2
nn Σ̃

−1

Mr
ΣMr

VH
Mr

(
V + ∆HHUΣ̃

−1

Mr
+ HHU∆Σ

−1
Mr

)
. (5.1)
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Figure 5.1: Angles between the vectors of the actualU andV and error matrices̃U andṼ, respec-

tively.
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Figure 5.2: Angles between the vectors of the actualU andV and error matrices̃U andṼ, respec-

tively.
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Z
 a

xi
s

Figure 5.3: Angles between the vectors of the actualU andV and error matrices̃U andṼ, respec-

tively.

The two norm of the difference between the two channel modelsis then averaged over 5000 trials

and plotted, as shown in Fig. 5.4, wherẽΨ, Ψ̃AW indicate the equivalent channel and the approx-

imation to the wide equivalent channel model, respectively. Each point on thex axis indicates a

different value ofσ2
p and they axis indicates the average of the two norm of the difference between

the two channel models, which indicates the amount of error introduced by the∆H term. The

different antenna configurations are listed in the upper left corner of the plot. The plot shows that

as the channel model becomes wider, the closer the approximation becomes for various values of

σ2
p. In particular notice that the approximation is not good forsquare matrices, but a5 × 7 has a

significantly better approximation than the5 × 5 and is nearly as good as very wide matrices such

as5 × 15, especially for smallσ2
p.

The SVD theorem is shown to hold true for a tall channel model as well, whenMr approaches

infinity. The setup for the simulation of the tall channel is the same for the case of the wide

channel. The theoretical channel model for this simulationwas found by substituting (4.44) into
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Figure 5.4: SVD theorem example.

(4.40) resulting in

Ψ̃AT = σ−2
nn Σ̃

−1

Mt

(
U + ∆HVΣ̃

−1

Mt
+ HV∆Σ

−1
Mt

)H

Mt

UMt
ΣMt

. (5.2)

The result is averaged over 5000 trials and is shown in Fig. 5.5, whereΨ̃AT indicates the approx-

imation to the tall equivalent channel model. Again, each point on thex axis indicates a different

value ofσ2
p and they axis indicates the average of the two norm of the difference between the two

channel models. The different antenna configurations are listed in the upper left corner of the plot.

This plot reinforces the idea that as the channel matrix becomes taller, the better the SVD theorem

holds. Since the resolution of the non-square antenna configurations is poor, the simulation was

repeated but with the square antenna configuration left out.The result of that simulation is shown

in Fig. 5.6.

Although the theorem holds for the case of a tall channel, theapproximation is not as good as

the wide case, notice how much greater the error is in Fig. 5.5than that of Fig. 5.4. This indicates

that settingU = Ũ results in a better approximation to the equivalent channelmodel for wide
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Figure 5.5: SVD theorem example.

channel matrices than settingV = Ṽ for the equivalent channel model for tall channel matrices.

This is shown to hold true in a similar simulation without theapproximations for∆V and∆U as

shown in (4.28) and (4.44), which will be shown next.

By looking closer at the equivalent channel model (4.13) assists in the investigation to why

the assumptionV = Ṽ performs worse than the assumptionU = Ũ. The equivalent channel model

is presented again

Ψ̃ = Λ̃
−1

Ṽ
H

H̃
H

R−1
nnHṼ

= σ−1
nn Σ̃

−2
Ṽ

H
(

ŨΣ̃Ṽ
H
)H (

UΣVH
)

Ṽ

= σ−1
nn Σ̃

−2
Σ̃ Ũ

H
U︸ ︷︷ ︸Σ VHṼ︸ ︷︷ ︸ . (5.3)

From this point one of the two assumptions may be made which leads in two different directions,

as indicated by the underbraces, depending on the desired antenna configuration. If a wide antenna

configuration is desired, the assumptionU = Ũ may be made and (5.3) may be simplified further
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as

Ψ̃W = Σ̃
−2

Σ̃UHUΣVHṼ

= Σ̃
−1

ΣVHṼ.

Now if a tall antenna configuration is desired, the contrary assumptionV = Ṽ, may be used to

simplify (5.3) as follows,

Ψ̃T = Σ̃
−2

Σ̃Ũ
H
ΣVHV

= Σ̃
−1

Ũ
H

UΣ.

Now the desire is to investigate why the error
∥∥∥Ψ̃ − Ψ̃AT

∥∥∥
2

is greater than the error
∥∥∥Ψ̃ − Ψ̃AW

∥∥∥
2
.

Due to the symmetry of the SVD one would guess that they would be relatively close. A separate

simulation was setup that mimicked what is shown in Fig. 5.4 and Fig. 5.5, but instead computed

ǫW =
∥∥∥Ψ̃ − Ψ̃W

∥∥∥
2

and ǫT =
∥∥∥Ψ̃ − Ψ̃T

∥∥∥
2
. (5.4)

The result is shown in Fig. 5.7, where all of the antenna configurations used are square. Square

antenna configurations were used in order to present an unbiased analysis. Notice that the perfor-

mance of the equivalent channelΨ̃T , still performs worse thañΨW , for large values ofσ2
p. This

shows that the assumptionU = Ũ is initially poor, but as the antenna configuration becomes taller,

the better the approximation holds, which leads to improvedperformance.

5.1.2 Distribution of CSI Errors

Despite the insight provided in the PDF’s of Section 4.8, theanalysis is lacking because it does

not take into account the statistics of the other elements inthe equivalent channel model,̃Ψ. The

statistics of the other elements differ slightly. The next analysis quantifies a relationship between

the mean and variance of each row versusσ2
p for different antenna configurations.

In order to describe the mean of the overall channel model,Ψ̃ and compare it withσ2
p a

simulation was setup to show how individual antenna configurations vary with different values

of σ2
p. For a given antenna configuration, the simulation begins bycreating randomH and∆H
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Figure 5.6: SVD theorem example.

matrices for a givenσ2
p andΨ̃ is computed. The simulation then repeats for 10,000 iterations,

storing the individual entries of the overall channel matrix, Ψ̃. From the stored values of the

overall channel matrix the mean and variance of each entry iscomputed. Excluding the diagonal

element, each entry is then averaged row-wise to produce onemean and one variance for each row

of Ψ̃. The simulation then repeats for increasing values ofσ2
p.

Specific cases of wide antenna configurations, such as2×6, 4×10 and6×12 with σ2
p values

of (0, 0.1, 0.2, ...1.0) were evaluated. The antenna configurations were selected toalso take into

consideration the ratio of receive antennas to transmit antennas, which is0.3333, 0.4 and0.5 for

the aforementioned cases, respectively. The results are shown in Fig. 5.8, Fig. 5.9 and Fig. 5.10

for the2 × 6, 4 × 10 and6 × 12 configurations. From the three figures, it may be observed that as

the CSI error,σ2
p increases, the mean of the diagonal elements decreases, whereas the mean of the

off-diagonal elements stays centered at zero, regardless of the size of the antenna configuration.

Within the same simulation to capture the relationship between the means of the overall chan-

nel model versus CSI error, the variances of the overall channel model versus CSI error were
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Figure 5.7: SVD theorem example.

captured as well. Figures 5.11, 5.12 and 5.13 show the variances of the diagonal and off diagonal

elements of various antenna configurations versus CSI error.

In Fig. 5.11 it is shown that the variance of the diagonal and off diagonal elements increase

at the same rate as the CSI error increases. This is an expectedresult since the Gaussian plots of

Figs. 4.4 and 4.5 become wider as the CSI error increases. The same conclusion may be made for

the4 × 10 and6 × 12 cases shown in Figs. 5.12 and 5.13, respectively.

Additional information is revealed in the plots of Figs. 5.12 and 5.13 which shows that differ-

ent rows of the overall channel model have different variances. This is due to thẽΦ matrix which is

used in the precoder̃F (recallF̃ = ṼΦ̃. Φ̃ is computed using the eigenvalues ofH̃, the eigenvalues

are ordered from increasing to decreasing along the diagonal of Λ̃, the matrix of eigenvalues). This

causes more of the power to be allocated to the higher rows found in the equivalent channel model,

Ψ̃, hence their variance is smaller and the variance of the lower rows is larger. This is why in Fig.

5.12 the variance of the off diagonal elements of row4 is higher than the other off diagonal rows.

Similarly in Fig. 5.13 the off diagonal elements of row6 are higher than the other off diagonal
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Figure 5.8: Mean versusσ2
p of Ψ̃ for a2 × 6 channel model.
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Figure 5.9: Mean versusσ2
p of Ψ̃ for a4 × 10 channel model.
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Figure 5.10: Mean versusσ2
p of Ψ̃ for a6 × 12 channel model.

rows.

A similar simulation was executed with tall antenna configurations analyzing the means and

variances of the overall channel model versus the increasing CSI error. As expected the results

were very similar for the cases of6 × 2, 10 × 4 and12 × 6. The results for mean versusσ2
p are

shown below in Figs. 5.14, 5.15, 5.16. The results for variance versusσ2
p are shown in 5.17, 5.18

and 5.19.

5.2 BER

One important aspect of a wireless communications system isits’ BER performance. Simulations

were setup for wide, square, and tall channel models for the designs of Chapter 4, to emphasize

the SVD theorem (as bothMr andMt increase). Simulations were also setup to emphasize the

loss in performance as the CSI error (σ2
p) increased. A flat fading Rayleigh channel was simulated

using theMATLAB commandRAYLEIGHCHAN, with a sampling frequency of 10kHz and Doppler
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Figure 5.11: Variance versusσ2
p of Ψ̃ for a2 × 6 channel model.
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Figure 5.12: Variance versusσ2
p of Ψ̃ for a4 × 10 channel model.
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Figure 5.13: Variance versusσ2
p of Ψ̃ for a6 × 12 channel model.
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Figure 5.14: Mean versusσ2
p of Ψ̃ for a6 × 2 channel model.
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Figure 5.15: Mean versusσ2
p of Ψ̃ for a10 × 4 channel model.
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Figure 5.16: Mean versusσ2
p of Ψ̃ for a12 × 6 channel model.
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Figure 5.17: Variance versusσ2
p of Ψ̃ for a6 × 2 channel model.
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Figure 5.18: Variance versusσ2
p of Ψ̃ for a10 × 4 channel model.
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Figure 5.19: Variance versusσ2
p of Ψ̃ for a12 × 6 channel model.

frequency of 80Hz to the symbols. The noise variance is assumed to be unity, since the transmitted

symbols are white and the noise is modeled as AWGN. Every transmission period results in 1

symbol being transmitted from each antenna.

In order to be cognizant of the appropriate values to use for the variance of the CSI errors,σ2
p,

a literature search was undertaken on the topic of channel estimation errors. For the simulations of

[47], σ2
p was set to 0.09, [39] letσ2

p be equal to 0.2, 0.6, 0.7 and 0.9, [42] letσ2
p = 0.12 and 0.375,

[43] let σ2
p = 0.02 and 0.625 and [41] variedσ2

p between 0 and 1. For this reason variousσ2
p values

were used to simulate CSI error for this section.

The precoder that was used to precode the transmitted symbols (which were already modu-

lated by a 16 QAM constellation) is the same as found in (4.8) using theφ̃ii found in (4.9). This̃φii

was selected because according to [21] it provides the best compromise between BER and infor-

mation rate. AWGN corrupts the transmitted signal prior to reception at the receiver where (4.7)

is used to decode the received signal. The received signal isthen compared with the transmitted

signal and the number of bits in error results in the BER curves.

69



0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

Perfect
Approximation
Actual
AWGN

Figure 5.20: BER for a2 × 6 channel withσ2
p = 0.05.

The first set of BER curves shown in Fig. 5.20 are for anMr ×Mt antenna configuration of

2 × 6. The first of the four curves shown in the figure are the scenario where the CSI is perfect,

the second curve uses the approximation of the SVD theorem, the third curve denotes the actual

case when the CSI is imperfect. A variance ofσ2
p = 0.05 was used to degrade the quality of the

CSI. Notice that the two curves with CSI errors are able to perform as well as the curve with no

CSI error up to 20dB. This system reaches a BER of10−3 at approximately 18dB, 20dB and 22dB

for the perfect CSI, imperfect CSI and the approximation usingimperfect CSI, respectively. The

fourth curve, which is denoted as AWGN, depicts the BER for an AWGN channel with no fading

for a1 × 1 channel configuration. It is displayed for comparison purposes only.

The same simulation setup was then used for an increased amount of CSI error. Withσ2
p = 0.1,

the three curves given (Perfect, Approximate and Actual) inFig. 5.21 nearly achieve a BER of10−2

at 15dB before the performance degrades. At10−3 the curve with perfect CSI is at 18dB, but the

actual curve does not achieve that same level of performanceuntil 25dB and the approximation

is not on the plot. This shows a degradation in the performance of the approximation to the wide
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Figure 5.21: BER for a2 × 6 channel withσ2
p = 0.1.

channel model when compared to the perfect CSI case.

This issue was explored further with a wider antenna configuration, to investigate how well,

if at all, the SVD theorem held as the number of transmit antennas increased. Fig. 5.22 shows

a 3 × 10 with three curves: perfect, approximation and actual with aσ2
p = 0.05. There is a

noticeable increase in performance of the approximation since at10−4 there is approximately 1dB

of separation between the curve with perfect and the curves with imperfect CSI. The approximation

curve of Fig. 5.20 never even achieves a BER of10−4, which indicates that for the same CSI

error variance ofσ2
p = 0.05, a wider antenna configuration will perform better, as well as the

approximation.

Next, Fig. 5.23 shows a3 × 10 antenna configuration with a CSI error variance ofσ2
p = 0.1.

It is here that the performance gains of the wider antenna configuration break down. At10−2 there

is 1dB of separation with the perfect and approximate BER curves. At 10−3 a 7dB separation

in performance, which shows that with a higher CSI error variance, the gains achieved by wider

antenna configuration are lost.
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Figure 5.22: BER for a3 × 10 channel withσ2
p = 0.05.
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Figure 5.23: BER for a3 × 10 channel withσ2
p = 0.1.
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By isolating the individual effects of different values of the CSI error variance it allows inves-

tigation into the point at which the approximation breaks down due to too much CSI error. Given

the3 × 10 antenna configuration in Fig. 5.24 the effects of different values ofσ2
p are shown. At

10−2 BER the approximation usingσ2
p = 0.08 is less than 1dB away from the perfect curve, the

approximation withσ2
p = 0.12 is around 2.5dB away and the approximation withσ2

p = 0.16 is

10dB away. At10−3 only the approximation usingσ2
p is on the plot and is a little over 2dB away

from the curve with perfect CSI.

Next the CSI error was isolated and different antenna configurations were used to show how

a wider antenna configuration effected the BER. In Fig. 5.25 the2 × 6 case with perfect CSI

(where perfect indicates the ideal situation of zero CSI) compared against imperfect CSI with

σ2
p = 0.1 with antenna configurations2× 6, 2× 10 and2× 14. At 10−2 there is 2dB of separation

in performance between the approximation using the2 × 6 antenna configuration. At10−3 the

2 × 6 antenna configuration is not in the figure, but there is only 1dB of separation between the

approximation using2× 10 and the2× 14 and perfect2× 6 case. At10−4 the approximation with

the2 × 10 case begins to degrade more and now there is 2dB of separation. The approximation

using the imperfect CSI with a2 × 14 antenna configuration performs as well as the2 × 6 case

with perfect CSI throughout the entire range of SNR values. The cases for perfect CSI for antenna

configurations of2× 10 and2× 14 are left off of Fig. 5.25 to readily compare approximation and

actual curves easily for the other antenna configurations.

Due to the symmetry of the SVD theorem, a converse analysis was performed for tall channel

matrices. The performance of this tall approximation was examined under the same simulation

conditions as the previous approximation for a wide channel. Various antenna configurations all

with Mr > Mt were performed with different values ofσ2
p.

The first simulation result presented for a tall antenna configuration is with a6 × 2 channel

with a CSI error variance ofσ2
p = 0.05, shown in Fig. 5.26. When the BER reaches10−2, the curve

which indicates the case using perfect CSI, the approximation and the actual curves found using the

imperfect CSI are all near 12dB. Once the BER reaches10−3 there is significant degradation in the

performance since the perfect curve is at 20dB, the actual curve is at 25dB and the approximation

is too poor to be on the figure.
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Figure 5.24: BER for a3 × 10 channel with multipleσ2
p.
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Figure 5.25: BER with a CSI error variance ofσ2
p = 0.1 and multiple antenna configurations.
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Figure 5.26: BER for a6 × 2 channel withσ2
p = 0.05.

By increasing the value of the CSI error variance,σ2
p, it may be shown how the performance

of the approximation for the tall channel degrades. Fig. 5.27 shows a6 × 2 antenna configuration

with a CSI error variance ofσ2
p = 0.1. When the SNR of the system reaches 13dB the BER of

the perfect curve is only at10−2 and the approximation does not reach the same level of perfor-

mance until 17dB. At a BER of10−3 the approximation is not on the figure, which indicates the

decline in performance due to the increase of CSI error in addition to the poor quality of the tall

approximation compared with that of the wide approximation.

By increasing the number of receive antennas and making the antenna configuration10 × 3

and reducing the CSI error variance toσ2
p = 0.05 the performance of the system improves, as

shown in Fig. 5.28. When the three curves achieve a BER of10−3 the SNR of the curve found

using perfect CSI is at 13dB, the actual curve is at 14dB and the approximation is at 15dB. At

this level of BER performance there is only a 2dB difference between the perfect curve and the

approximation to that perfect curve. However, at10−4 there is a 6dB separation between the perfect

(16dB) and approximate (22dB) curves. Comparing these resultsto that of Fig. 5.26 this shows
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Figure 5.27: BER for a6 × 2 channel withσ2
p = 0.1.

that by making the channel taller better BER performance is achieved.

By increasing the CSI error variance of the10 × 3 antenna configuration, the gains that were

achieved in the previous simulation and shown in Fig. 5.28, are lost. The poor performance which

is achieved when the CSI error variance is set toσ2
p = 0.1 is shown in Fig. 5.29. At a BER of

10−2 the perfect curve is at 10dB, where as the actual and approximation curves achieve 12dB and

13dB, respectively. The approximation curve performs so poorly that it never achieves a BER of

10−3.

Next, the antenna configuration of6 × 2 was used to investigate how well different values of

σ2
p effected the BER and is shown in Fig. 5.30. The curve computed with perfect CSI achieves a

BER of10−2 at 12dB. The approximation using the smallest CSI error varianceσ2
p = 0.08 achieves

the same level of BER at 14dB. The values of the CSI error varianceσ2
p = 0.12 andσ2

p = 0.16 do

not achieve the level of10−2 BER. Notice in Fig. 5.30 how as the CSI error variance increases by

0.04 for each pair of curves, each pair is equidistant from each other.

The next group of curves presented uses one value for the CSI error variance and multiple
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Figure 5.28: BER for a10 × 3 channel withσ2
p = 0.05.
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Figure 5.29: BER for a10 × 3 channel withσ2
p = 0.1.
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Figure 5.30: BER for a tall channel with manyσ2
p.

antenna configuration pairs. Forσ2
p = 0.1 the antenna configurations of6 × 2, 10 × 2 and14 × 2

were used to show that as the channel model became taller, thebetter the approximation becomes,

as shown in Fig. 5.31. The perfect curve computed with perfect CSI achieves a BER of10−3 at

21dB. The6 × 2 approximation to the perfect curve barely achieves10−2 at the same SNR. The

10 × 2 approximation achieves a BER of10−3 at 15dB, and the14 × 2 approximation achieves a

BER of10−3 at 11dB. This shows that as the tall approximation becomes taller, the BER improves,

for a givenσ2
p. The cases for perfect CSI for antenna configurations of10 × 2 and14 × 2 are left

off of Fig. 5.31 to readily compare approximation and actualcurves easily for the other antenna

configurations.

The final scenario is for a square antenna configuration. Fig.5.32 shows two curves, the

perfect and the actual for aσ2
p = 0.05. There is no approximation curve since there was no SVD

theorem which allowed an approximation to be made, which leaves only two curves. At 10dB the

CSI error does not have an adverse effect on the BER curve, sincethe two are at the same level

10−1. However, the actual curve does not reach a BER of10−2 within the range of 10dB to 25dB,
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Figure 5.31: BER with a CSI error variance ofσ2
p = 0.1 and multiple antenna configurations.

whereas the perfect curve reaches10−2 at 19dB.

To investigate further the effects of imperfect CSI for a square antenna configuration, Fig. 5.33

reveals the BER curves for another4 × 4 channel matrix using a CSI error variance ofσ2
p = 0.1.

The performance of the system for a4 × 4 antenna configuration is not able to withstand errors in

the CSI, given that there is a 5dB difference in perfect and theactual curves at10−1 BER, which is

poor.

To conclude our discussion on BER, we now present the approximation to the equivalent

channel model and the Gaussian approximation together on the same figure for both wide and

tall antenna configurations. Beginning with Fig. 5.34 it is shown that the performance of the

approximations remains relatively equal up to 10dB, but at 15dB the superior performance of the

Gaussian approximation is clear. The performance of the equivalent channel model approximation

for σ2
p = 0.12 is relatively close to that of the Gaussian approximation for aσ2

p = 0.08.

The tall antenna configuration of6 × 2 with both approximations is shown in Fig. 5.35. In

this figure there exists separation between the types of approximations at low SNR values. Similar
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Figure 5.32: BER for a4 × 4 channel withσ2
p = 0.05.
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Figure 5.33: BER for a4 × 4 channel withσ2
p = 0.1.
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Figure 5.34: BER for a2 × 6 channel with both approximations.

to the previous figure, the overall performance of the Gaussian approximation is better and the

performance of the Gaussian approximation forσ2
p = 0.12 is equivalent to the approximation to

the equivalent channel with aσ2
p = 0.08.

5.3 Capacity

In addition to BER, capacity is also an important system performance measure. Simulations were

setup for different antenna configurations to analyze the performance of a precoder/decoder setup

under perfect and imperfect conditions. The CSI error variance was set at 0, 0.4 and 0.8 in each

case. The simulations begin by first creating a Rayleigh fading channel with the desired fading

characteristics, computing the optimal decoder and precoder, then finally using the equation for

capacity as given in the perfect (3.20) and imperfect (4.54)cases. The value of capacity computed

was then averaged over 10,000 iterations for each SNR/SINR value.

The first capacity plot to be shown is for a wide channel model with an antenna configuration
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Figure 5.35: BER for a6 × 2 channel with both approximations.

of 2 × 6. The capacity of the system with perfect CSI is given and is shown in Fig. 5.36. In

this case the capacity of the system computed using perfect CSI achieves 23bps/Hz at 10db. The

capacity of the system computed using CSI with an error variance ofσ2
p = 0.4 loses 0.5bps/Hz,

and the system computed using CSI with an error variance ofσ2
p = 0.8 loses nearly 1bps/Hz.

By increasing the number of receive antennas the overall capacity of the system improves, as

shown in Fig. 5.37 which uses a3× 10 antenna configuration. When the capacity of the system is

computed using perfect CSI a capacity of 32bps/Hz is achievedat 10dB. Given the same scenario

but using imperfect CSI results in a 0.5bps/Hz and 1bps/Hz loss in capacity for the same SNR level

for σp = 0.4 andσp = 0.8 respectively.

The final illustration of the capacity of a wide antenna configuration is shown in Fig. 5.38

with a 4 × 10 antenna configuration. Analyzing the capacity curves at 10dB shows a capacity

of 37bps/Hz while using perfect CSI. The subsequent performance degradation losses incurred

while using imperfect CSI are 1bps/Hz and 1.5bps/Hz with a CSI error variance ofσ2
p = 0.4 and

σ2
p = 0.8, respectively.
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Figure 5.36: Capacity of a2 × 6 channel.
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Figure 5.37: Capacity of a3 × 10 channel.
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Figure 5.38: Capacity of a4 × 10 channel.

By reversing the antenna configurations similar capacity figures were achieved using the same

values forσ2
p. The first capacity plot to be shown is for a tall channel modeluses an antenna

configuration of6 × 2. The capacity of the system with perfect CSI is given and is shown in

Fig. 5.39. In this case the capacity of the system computed using perfect CSI achieves 23bps/Hz at

10db. The capacity of the system computed using a CSI error variance ofσ2
p = 0.4 loses 0.5bps/Hz,

and the system computed using a CSI error variance ofσ2
p = 0.8 loses an additional 0.5bps/Hz.

By increasing the number of transmit antennas the overall capacity of the system improves, as

shown in Fig. 5.40 which uses a10× 3 antenna configuration. When the capacity of the system is

computed using perfect CSI a capacity of 31bps/Hz is achievedat 10dB. Given the same scenario

but using imperfect CSI results in a 0.5bps/Hz and 0.5bps/Hz loss in capacity for the same SNR

level forσp = 0.4 andσp = 0.8, respectively.

The final illustration of the capacity of a tall antenna configuration is shown in Fig. 5.41

with a 10 × 4 antenna configuration. Analyzing the capacity curves at 10dB shows a capacity

of 37bps/Hz while using perfect CSI. The subsequent performance degradation losses incurred
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Figure 5.39: Capacity of a6 × 2 channel.

while using imperfect CSI are 0.5bps/Hz and 0.5bps/Hz with a CSI error variance ofσ2
p = 0.4 and

σ2
p = 0.8, respectively.

From the previous six figures it can be concluded that increasing by increasing the number

of transmit or receive antennas increases the system capacity. As shown in the figures, as the CSI

degrades from perfect to imperfect, it is shown that there isa loss in capacity, but not more than

1.5bps/Hz in any of the cases.

5.4 Gaussian Approximated BER and Capacity Results

The equations of Section 4.8 were then simulated to relate their performance to the performance

of the plots in Section 5.2. The first group of results are for the wide cases using different antenna

configurations for multiple values ofσ2
p. The first set of plots shown in Fig. 5.42 are for a2 × 6

antenna configuration. For the three differentσ2
p cases, the Gaussian approximations outperform

the results of Section 5.2. This is because the off-diagonalelements are approximated as Gaussian,
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Figure 5.40: Capacity of a10 × 3 channel.
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Figure 5.41: Capacity of a10 × 4 channel.
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which results in the elimination of terms which influence theperformance of the system. In the

approximation of the BER, the performance of each of the Gaussian approximations outperforms

the actual system.

Moving on to a different antenna configuration, such as the4 × 10, as shown in Fig. 5.43

shows improved performance over the previous2 × 6 case. Each of the Gaussian approximations

outperforms its’ counterpart using the sameσ2
p value. Additionally the4×10 Gaussian approxima-

tion usingσ2
p = 0.08 achieves a BER of10−4 at20 dB, whereas the2× 6 Gaussian approximation

never achieves a BER of10−4.

However, by further increasing the size of the antenna configuration from4 × 10 to 6 × 12

does not significantly improve the performance of the BER as did the2 × 6 to 4 × 10 increase.

Taking the Gaussian approximation for the case ofσ2
p = 0.08 for the6 × 12 case, shown in Fig.

5.44 shows a BER of10−2 at a SNR of14 dB, a BER of10−3 at 17 dB and a BER of10−4 at 21

dB. In Fig. 5.43, the same Gaussian approximation value ofσ2
p = 0.08 performs the same. It was

previously shown that as the antenna configuration changed from wider to square with this linear

MMSE design, that the performance decreased. However, by increasing the number of propagation

paths, BER improves. The comparison of the plots of Figs. 5.43and 5.44 shows that the benefits

of more propagation paths is offset by a more square antenna configuration. Where more square

indicates a ratio of receive to transmit antennas is closer to 1.

The second group of results compare the approximations for the tall cases using different

antenna configurations for multiple values ofσ2
p. Beginning with Fig. 5.45, one may see that the

performance of a6 × 2 antenna configuration is quite similar to that of Fig. 5.26 which is with a

σ2
p = 0.05. Again, similar to Fig. 5.42, the Gaussian approximations outperform the actual plots

for each of the variousσ2
p values.

Increasing the number of antennas and moving to a10 × 4 antenna configuration is shown

in Fig. 5.46. The increase in the number of propagation pathsfrom transmitter to receiver is the

dominating factor in the increased performance from the6 × 2 to 10 × 4 cases. Again, as in Fig.

5.45, the Gaussian approximation plots in Fig. 5.46 outperform theirσ2
p counterparts.

The last BER approximation plot is for a12 × 6 antenna configuration and is shown in Fig.

5.47. There is not a significant performance improvement found by increasing the antenna config-
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Figure 5.42: BER of the Gaussian approximations and their counterparts of Section 5.2 for a2× 6

antenna configuration.

uration from10×4 to 12×4. Looking closely at the performance withσ2
p = 0.12 of Fig. 5.46, the

BER value at10−2 is 14 dB and at10−3 is 19 dB. The corresponding plot for the12 × 6 antenna

configuration shown in Fig. 5.47 has a BER of10−2 at 13 dB and10−3 at 20 dB. This shows that

for benefit of increasing the number of propagation paths is negated by the poor performance of

the approximation to the linear MMSE design. However, similar to the previous Gaussian approx-

imation plots, the12×6 antenna configuration performs in accord with the previous figures in that

the Gaussian approximations outperform their actual counterparts.

It may be concluded that the Gaussian approximations are nota good indicator of the true per-

formance of the linear MMSE designs corrupted with CSI error.It is not a good indicator because

in all of the cases as the SNR of the system increased, the BER ofthe Gaussian approximations

decreased at a higher rate than that of their corresponding curves for the particularσ2
p values.

Now we will delve into the Gaussian approximations to capacity and show a parallel analysis.

Based on the above development of the Gaussian approximationon BER the capacity simulations
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Figure 5.43: BER of the Gaussian approximations and their counterparts of Section 5.2 for a4×10

antenna configuration.

of the previous section were repeated in order to investigate how well the Gaussian approximation

applies to capacity computations. The simulations were carried out identically as in the previous

section, with the exception of the addition of the two additional curves indicating the Gaussian

approximation to the CSI error for each antenna configuration.

The first plot shown in Fig. 5.48 shows a 2bps/Hz increase using the Gaussian approximations

for both CSI error variances between 5 and 25dB with a2 × 6 antenna configuration. Increasing

to a 4 × 10 antenna configuration, as shown in Fig. 5.49 shows an increase of nearly 17bps/Hz

between 5 and 25dB. This an unreasonably large increase in capacity and shows the limitations of

the Gaussian approximation, due to the increase in the number of antennas.

Next, by changing to a tall antenna configuration as shown in Fig. 5.50, similar results are

obtained. Using a6 × 2 antenna configuration there is a 1bps/Hz increase using the Gaussian

approximation than that of the case with perfect CSI from 5 to 25dB. Increasing the size of the

antenna configuration to a10 × 4 shows an alarming increasing in the capacity of the Gaussian
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Figure 5.44: BER of the Gaussian approximations and their counterparts of Section 5.2 for a6×12

antenna configuration.
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Figure 5.45: BER of the Gaussian approximations and their counterparts of Section 5.2 for a6× 2

antenna configuration.
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Figure 5.46: BER of the Gaussian approximations and their counterparts of Section 5.2 for a10×4

antenna configuration.
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Figure 5.47: BER of the Gaussian approximations and their counterparts of Section 5.2 for a12×6

antenna configuration.
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Figure 5.48: Capacity of a2 × 6 channel.

approximations. In Fig. 5.51 the Gaussian approximations are 11bps/Hz greater than the case with

perfect CSI. Again, similar to Fig. 5.49, Fig. 5.51 shows the limitations of the Gaussian approxi-

mation. This is why the Gaussian approximation for the6× 12 and12× 6 antenna configurations

were left off, they averaged an increase of 25bps/Hz increase in capacity. This only reinforces the

idea that the Gaussian approximation has limitations.

5.5 Conclusion

In this chapter, a performance analysis of linear precoder/decoders was performed. It was shown

that the errors disturbing the CSI may be approximated as Gaussian, since their probability distribu-

tion is Gaussian-like. The SVD approximation of Section 4.3is shown to be a better approximation

for wide channels than for tall channels. The BER plots indicate the robustness at low SNR values

of the SVD approximations. Additionally, the BER plots indicate that as the channel matrix be-

comes wider or taller and asσ2
p decreases, the better the performance of the system. The capacity
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Figure 5.49: Capacity of a4 × 10 channel.
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Figure 5.50: Capacity of a6 × 2 channel.
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Figure 5.51: Capacity of a10 × 4 channel.

figures show how the imperfect CSI matrices decrease the capacity when compared against their

undisturbed counterparts because the precoder/decoder matrices are not properly matched to the

channel, thereby decreasing capacity. The Gaussian approximations to BER and capacity showed

that the Gaussian approximations do hold for small CSI error and relatively smaller antenna con-

figurations.
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Chapter 6

Conclusion

This thesis has presented a performance analysis of the a MIMO precoder/decoder design when the

CSI is imperfect. This is significant because it enables the designer to answer theoretical questions

that cannot be answered through ideal laboratory simulations. This analysis is intended to give a

more realistic impact to the sensitivity of linear MMSE precoders/decoders to CSI errors.

The main benefit of MIMO antenna configurations is the increased performance gains. It was

shown in chapter 2 that if the CSI is not known at the transmitter, the capacity of the system may

be increased linearly by simply by adding antennas at eitherend of the link. If CSI is available,

the simplest precoder/decoder pair (V, UH) may be used to precode the data, which will in effect

cause the capacity to become the sum ofr parallel SISO channels.

This lead into the topic of MIMO precoders/decoders and the benefits of full CSI, when avail-

able. The particular design introduced in chapter 3 is basedon designing the precoder/decoder

pair from the MMSE of the received signal. The optimal linearprecoder/decoder design using

full CSI was then analyzed in the event of imperfect full CSI. A new precoder/decoder design was

arrived at, as well as performance equations based upon the imperfect CSI, in addition to consid-

erations for non-square channels. Most importantly, in chapter 4 we were able to analyze exactly

how the imperfect CSI effects the off-diagonal elements in the wide and tall antenna configuration

scenarios.

Chapter 5 showed detailed analysis of the Gaussian-like probability distributions of the CSI
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error in the channel models. Wide and tall channel model approximations were made from the SVD

theorem presented in chapter 4. The performance of the approximations was relatively good for

wider/taller channel models and low CSI error, but performedpoorly with square channel models

and high CSI error. The figures of chapter 5 which present capacity curves show that poor CSI

does effect capacity, but it is not as large of a factor in the quality of the capacity curves as it is

with BER. This shows that the quantity of information sent across a wireless channel is degraded

only slightly, whereas the quality of information is significantly degraded.

This body of work has revealed the impact that the imperfect CSI has on the performance

of MMSE linear precoders/decoders. The findings indicate that the designs are sensitive to CSI

errors, so the practicality is probably limited, unless highly accurate channel estimation is used.

Future analysis into the performance of MIMO precoders/decoders may be found in investigations

of

• The performance of a multiuser MIMO precoder/decoder design.

• Performance analysis of MIMO precoders/decoders using imperfect partial CSI.

• Performance analysis of MIMO precoders/decoders using imperfect limited CSI.

• The elimination of assumptions such as uncorrelated antennas and the inclusion of their

effect in addition to imperfect full/partial/limited CSI designs.
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